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Experimental data are often affected by uncontrolled variables that make analysis and interpretation
difficult. For spatiotemporal systems, this problem is further exacerbated by their intricate dynamics.
Modern machine learning methods are particularly well suited for analyzing and modeling complex
datasets, but to be effective in science, the result needs to be interpretable. We demonstrate an unsupervised
learning technique for extracting interpretable physical parameters from noisy spatiotemporal data and for
building a transferable model of the system. In particular, we implement a physics-informed architecture
based on variational autoencoders that is designed for analyzing systems governed by partial differential
equations. The architecture is trained end to end and extracts latent parameters that parametrize the
dynamics of a learned predictive model for the system. To test our method, we train our model on simulated
data from a variety of partial differential equations with varying dynamical parameters that act as
uncontrolled variables. Numerical experiments show that our method can accurately identify relevant
parameters and extract them from raw and even noisy spatiotemporal data (tested with roughly 10% added
noise). These extracted parameters correlate well (linearly with R2 > 0.95) with the ground truth physical
parameters used to generate the datasets. We then apply this method to nonlinear fiber propagation data,
generated by an ab initio simulation, to demonstrate its capabilities on a more realistic dataset. Our method
for discovering interpretable latent parameters in spatiotemporal systems will allow us to better analyze and
understand real-world phenomena and datasets, which often have unknown and uncontrolled variables that
alter the system dynamics and cause varying behaviors that are difficult to disentangle.

DOI: 10.1103/PhysRevX.10.031056 Subject Areas: Computational Physics,
Interdisciplinary Physics,
Nonlinear Dynamics

I. INTRODUCTION

Physics has traditionally relied upon human ingenuity to
identify key variables, discover physical laws, and model
dynamical systems. With the recent explosion of available
data coupled with advances in machine learning, funda-
mentally new methods of discovery are now possible.
However, a major issue with applying these novel tech-
niques to scientific and industrial applications is their
interpretability: neural networks and deep learning are
often seen as inherently black box methods. To make
progress, we must incorporate scientific domain knowledge
into our network architecture design and algorithms

without sacrificing the flexibility provided by deep learning
models [1–3]. In this work, we show that we can leverage
unsupervised learning techniques in a physics-informed
architecture to build models that learn to both identify
relevant interpretable parameters and perform prediction.
Because relevant parameters are necessary for predictive
success, the two tasks of extracting parameters and creating
a predictive model are closely linked, and we exploit this
relationship to do both using a single architecture.
We focus our attention on spatiotemporal systems

with dynamics governed by partial differential equations
(PDEs). These systems are ubiquitous in nature and include
physical phenomena in fluid dynamics and electromagnet-
ism. Recently, there has been significant interest in the data-
driven analysis and discovery of PDEs: e.g., explicitly
identifying PDEs using sparse linear regression with a
library of possible terms [4], using a convolutional archi-
tecture with symbolic regression to identify PDEs [5,6],
and representing PDE solutions as neural networks to solve
and identify PDEs [7–9]. However, previous works on PDE
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discovery and parameter extraction often assume the entire
dataset is governed by the same dynamics and also
explicitly provide the key dynamical parameters (with
potentially unknown values). In more complex scenarios,
we may have limited control over the systems that we are
studying and yet still want to model them and extract
relevant physical features from their dynamics. If we
attempt to study such systems by naively training a
predictive model, we are likely to fail in one of two ways:
first, a single explicit PDE model will be unable to capture
the variations in the dynamics caused by uncontrolled
variables in the data, and second, a generic deep learning
method for time-series prediction such as long short-term-
memory-based models [10,11] will not be interpretable
or provide any physical insight and may also result in
unphysical solutions at later times due to overfitting. To
avoid these problems and gain a better understanding of the
physical system, we must first identify important param-
eters or variables that are uncontrolled and that change in
the raw data, producing varying dynamics. Recent work on
learning parametric PDEs has taken steps toward address-
ing this issue [12]. We use an unsupervised learning
method to automate the process of determining the relevant
parameters that control the system dynamics and construct-
ing a predictive model—all without requiring information
on the form of the governing PDE.
We propose a model architecture [Fig. 1(a)] based on

variational autoencoders (VAEs) [13]. VAEs are widely
used for dimensionality reduction and unsupervised learn-
ing tasks [14] and have been shown to be effective for
studying a wide variety of physical phenomena, e.g.,
discovering simple representations of systems in classical
and quantum mechanics [15], modeling protein folding and
molecular dynamics [16,17], and identifying condensed
matter phase transitions [18,19]. In terms of interpretability,
the VAE architecture and its derivatives have also been
shown to disentangle independent factors of variation
[20–22]. The choice of a VAE-based architecture is
motivated both by their prior success in extracting useful
representations and by their strong theoretical foundation
(Appendix E). Prior works have also applied other methods
of parameter identification, such as using principal com-
ponent analysis as a postprocessing step with a standard
autoencoder [23]. This, however, relies heavily on the
poorly understood implicit regularization of the neural
network architecture rather than the explicit regularization
of a VAE, and, in our experience, VAEs produce more
consistent and interpretable results.
Our architecture consists of an encoder [Fig. 1(b)] that

extracts physical parameters characterizing the system
dynamics and a decoder [Fig. 1(c)] that acts as a predictive
model and propagates an initial condition forward in time
given the extracted parameters. This differs from a tradi-
tional VAE due to the additional initial condition provided
to the decoder, allowing the encoder to focus on extracting

latent parameters that parametrize the dynamics of the
system rather than the physical state. Our architecture can
be thought of as a conditional VAE [24], although only the
decoder is conditional. While similar architectures have been
recently proposed for physical systems such as interacting
particles [23] and moving objects [25], our model is
specifically designed to study spatiotemporal phenomena,
which have a continuous set of degrees of freedom.
To take advantage of the spatiotemporal structure of

PDE-governed systems, we use convolutional layers—
commonly employed in image recognition tasks [26,27]
to efficiently represent local features—in both the encoder
and decoder portions of our architecture. The translation
invariance of the convolutions allows us to train on small
patches of data and then evaluate on larger systems with
arbitrary boundary conditions. In the decoder, the convolu-
tional layers are placed in a recurrent architecture to
represent time propagation—analogous to a PDE solver
with a finite difference approximation [5]. In addition, our
architecture efficiently parametrizes PDE propagation by
dynamically generating the convolutional kernels and biases
of the decoder using the extracted latent parameters from the
encoder. In this way, the latent parameters directly control
the local propagation of the physical states in the decoder,
resulting in more stable model predictions and a more
physical encoding of the dynamics. These architecture
choices provide the key physics-informed inductive biases
that enhance the interpretability of the extracted parameters
and ensure a physically reasonable predictive model.
To demonstrate the capabilities of this approach, we test

our method on simulated data from PDE models for
chaotic wave dynamics, optical nonlinearities, and con-
vection and diffusion (Sec. III). These numerical experi-
ments show that our method can accurately identify and
extract relevant physical parameters that characterize
variations in the observed dynamics of a spatiotemporal
system (Sec. IVA), while at the same time construct a
flexible and transferable predictive model (Sec. IV B). We
further show that the parameter extraction is robust to
noisy data and can still be effective for chaotic systems
where accurate prediction is difficult. Finally, we apply
this method to nonlinear optical fiber propagation using
data generated from an ab initio electromagnetic simu-
lation to test the model on a more realistic dataset (Sec. V).
The goal of our approach is to provide an additional tool
for studying complex spatiotemporal systems when there
are unknown and uncontrolled variables present.

II. MODEL ARCHITECTURE

Our model (Fig. 1) has an encoder-decoder architecture
based on a variational autoencoder [13,20]. Given a dataset
of time series from a spatiotemporal system, the dynamics
encoder (DE) extracts latent parameters which parametrize
the varying dynamics in the dataset. These latent para-
meters are then used by the propagating decoder (PD) to
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simulate the system given an initial condition and boundary
conditions. During training, the model is optimized to
match the output of the PD to a time-series example from
the dataset. The goal of the VAE architecture is to allow the

PD to push the DE to extract useful and informative latent
parameters.
For training, the network requires time-series data that

are grouped in pairs: the input series fxtgTx
t¼0 is the input to

o(a)

(b)

(c)

FIG. 1. VAE-based model architecture. (a) The architecture consists of the dynamics encoder (DE) and the propagating decoder (PD)
with kernels and biases given by a latent-to-kernel network. (b) The DE extracts the latent distribution parameters μz and σz from the
input series fxtgTx

t¼0 using dilated convolutions and inverse-variance weighted (IVW) averaging. During training, the latent parameters
are sampled from the extracted distribution z ∼N ðμz; σ2zÞ. (c) The PD then uses a fully connected latent-to-kernel network to map the
latent parameters z to the kernels and biases of the dynamic convolutional layers, which are used in a recurrent fashion to predict the

propagation of the system fŷtgTy

t¼1 starting from the initial condition ŷ0 ¼ y0. The model is trained end to end using the mean-squared

error (MSE) loss between the predicted propagation series fŷtgTy

t¼1 and target series fytg
Ty

t¼1 along with VAE regularization. Time-series
limits are dropped in the labels for conciseness.
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the DE, and the target series fytgTy

t¼0 provides the initial

condition y0 and the training targets fytgTy

t¼1 for the PD.

Each pair of time series ðfxtgTx
t¼0; fytg

Ty

t¼0Þ must follow the
same dynamics and thus correspond to the same latent
parameters. We can construct such a dataset from the raw
data by cropping each original time series to produce a pair
of smaller time series. This cropping can be performed
randomly in both the time and space dimensions, which
allows the network to train on a reduced system size while
still making use of all the available data. In our examples,
we also choose to crop dynamically during training, akin to
data augmentation methods used in image recognition [27].
In detail, the DE network takes the full input series

fxtgTx
t¼0 and outputs a mean μzjx and a variance σ2zjx, which

we will henceforth refer to as μz and σ2z for compactness,
representing a normal distribution for each latent parameter
z. During training, each z is sampled from its corresponding
distribution N ðμz; σ2zÞ using the VAE reparametrization
trick: z ¼ μz þ σzϵ, where ϵ ∼N ð0; 1Þ is independently
sampled for every training example during each training
step. During evaluation, we simply take z ¼ μz. These
parameters z along with an initial condition—the first state
y0 in the target series—are then used by the PD network to
predict the future propagation of the system. The predicted
propagation series fŷtgTt¼1 produced by the PD can be
computed up to an arbitrary future time T, where T ¼ Ty

during training to match the target series. By providing the
PD with an initial condition, we allow the DE to focus on
encoding parameters that characterize the dynamics of the
data rather than encoding a particular state of the system.
This is further reinforced by training on randomly cropped
pairs of time series as well as by the VAE regularization
term (Appendix E).
The full architecture is trained end to end using a mean-

squared error loss between the predicted propagation series

fŷtgTy

t¼1 from the PD and the target series fytgTy

t¼1. We also
add the VAE regularization loss—the Kullback-Leibler
divergence term DKL½N ðμz; σ2zÞkN ð0; 1Þ�—which encour-
ages each latent parameter distributionN ðμz; σ2zÞ generated
by the DE to approach the standard normal prior distribu-
tion N ð0; 1Þ. The total loss function is given by

L ¼ 1

Ty

XTy

t¼1

ðyt − ŷtÞ2 ð1Þ

þ β
X
z

DKL½N ðμz; σ2zÞkN ð0; 1Þ�; ð2Þ

where Ty is the length of the target series without the
initial y0, and β is a regularization hyperparameter which
we tune for each dataset. The β parameter is key to
learning disentangled representations [20,21]. By using
the VAE sampling method and regularizer, we compel the

model to learn independent and interpretable latent
parameters (Appendix E). For additional training details,
see Appendix B.
The source code for our implementation is available

in Ref. [28].

A. Dynamics encoder

The dynamics encoder network is designed to take
advantage of existing symmetry or structure in the time-
series data. We implement the DE as a deep convolutional
network in both the time and space dimensions to allow the
network to efficiently extract relevant features. To ensure
the DE can handle arbitrary system sizes and time-series
lengths, the architecture only contains convolutional layers
with a weighted average applied at the output to obtain the
latent parameters. The weights for the final averaging are
also learned by the network and interpreted as variances so
that the overall variance can also be computed. In this way,
the network is able to focus on areas of the input series that
are most important for estimating the latent parameters,
akin to a visual attention mechanism [29].
Explicitly, we first compute local quantities,

μðt; rÞ ¼ fDE;μðfxt0gTx
t0¼0

Þ; ð3Þ

log σ2ðt; rÞ ¼ fDE;σ2ðfxt0 gTx
t0¼0

Þ; ð4Þ

where fDE;μ and fDE;σ2 are multilayer convolutional net-
works in space and time (see Appendix A for details).
Then, instead of using a fully connected layer to compute
the final mean μz and variance σ2z for each latent parameter,
we combine the local quantities by performing an inverse-
variance weighted average using weights given by

wðt; rÞ ¼ σ−2ðt; rÞ=
X
t;r

σ−2ðt; rÞ ð5Þ

to obtain

μz ¼
X
t;r

wðt; rÞμðt; rÞ; ð6Þ

σ2z ¼ Cd=
X
t;r

σ−2ðt; rÞ; ð7Þ

where C is a constant chosen to correct for the correlations
between nearby points and d is the total number of time and
space dimensions of the input. This averaging serves two
purposes: it allows the DE to scale to arbitrary system sizes
and geometries, and it improves the parameter extraction by
placing greater emphasis on regions of high confidence.
Assuming that nonoverlapping patches should be treated as
independent while overlapping patches are increasingly
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correlated, we take C ¼ 31 to be the linear size of the
receptive field of the convolutional networks fDE;μ
and fDE;σ2 .

B. Propagating decoder

The propagating decoder network is designed as a
predictive model for spatiotemporal systems. We structure
the PD as a multilayered convolutional network fPD (see
Appendix A for details) with a residual skip connection that
maps a state ŷt to the next state in the time series ŷtþ1. Thus,
each propagation step is given by

ŷtþ1 ¼ ŷt þ fPDðŷtÞ: ð8Þ

To generate the predicted propagation series fŷtgTy

t¼1 for

comparison with the target series fytgTy

t¼1, we begin with the
initial condition ŷ0 ¼ y0 and then recursively apply the PD
to propagate ŷt → ŷtþ1, forming a recurrent network. The
PD acts as a physics simulator or, in this case, a PDE
integrator with explicit time stepping. This architecture
reflects both the spatial and temporal structure of PDE-
governed systems and incorporates boundary conditions by
properly padding ŷt at each time step before applying the
convolutional layers. For example, to use periodic boun-
dary conditions during evaluation, we apply periodic
padding at each time step. During training, we treat the
edges of the target series—cropped from a full training
example—as a boundary condition by using the spatial
boundary of each yt in the target series to pad the
corresponding state ŷt before propagation.
Unlike the convolutional layers of the DE, the kernels

and biases for fPD are not directly trained. Instead, the
kernel weights and biases are a function of the latent
parameters z. This type of layer is known as a dynamic
convolution [30] or a cross-convolution [25]. Each con-
volutional kernel and corresponding bias is constructed by
a separate fully connected latent-to-kernel network that
maps the latent parameters to each kernel or bias, forming a
multiplicative connection in the PD. Thus, we can interpret
the PD convolutional kernels and biases as encoding the
dynamics of the system parametrized by z.

III. SIMULATED PDE DATASETS

To study the ability of our architecture to perform
parameter extraction, we generate simulated datasets of
spatiotemporal systems that have spatially uniform, time-
independent local dynamics in a box with periodic boun-
dary conditions; i.e., we consider PDEs of the form

∂uðt; rÞ
∂t ¼ F½u;∇u;u2; ðu ·∇Þu;…�; ð9Þ

where F is a general space- and time-independent, non-
linear local operator acting on u. This allows us to design

an optimized, physics-informed model architecture. We test
our model on a variety of spatiotemporal systems by
creating the following three datasets that cover linear,
nonlinear, and chaotic dynamics as well as giving both
1D and 2D examples. For details on the generation of the
simulated datasets, see Appendix D.

A. 1D Kuramoto-Sivashinsky dataset

The Kuramoto-Sivashinsky equation,

∂u
∂t ¼ −γ∂4

xu − ∂2
xu − u∂xu; ð10Þ

is a nonlinear scalar wave equation with a viscosity
damping parameter γ. This is a key example of a chaotic
PDE [31] due to the instability caused by the negative
second derivative term and was originally derived to
model laminar flame fronts [32,33]. The 1D Kuramoto-
Sivashinsky dataset has a training set with 5000 examples
and a test set with 10 000 examples.

B. 1D Nonlinear Schrödinger dataset

The nonlinear Schrödinger equation,

i
∂ψ
∂t ¼ −

1

2
∂2
xψ þ κjψ j2ψ ; ð11Þ

is a complex scalar wave equation with a cubic nonlinearity
controlled by the coefficient κ. In our data, we represent
ψ ¼ u1 þ iu2 as a real two-component vector u ¼ ðu1; u2Þ.
This equation can be used to model the evolution of
wave packets in nonlinear optics and is known to exhibit
soliton solutions [34]. The 1D nonlinear Schrödinger
dataset has a training set with 5000 examples and a test
set with 10 000 examples.

C. 2D Convection-diffusion dataset

The 2D convection-diffusion equation,

∂u
∂t ¼ D∇2u − v ·∇u; ð12Þ

is a linear scalar wave equation consisting of a diffusion
term with constant D and a velocity-dependent convection
term with velocity field v. The equation describes a
diffusing quantity that is also affected by the flow or drift
of the system, e.g., dye diffusing in a moving fluid. We
consider the case of a constant velocity field. The 2D
convection-diffusion dataset has a training set with 1000
examples and a test set with 1000 examples.

IV. NUMERICAL EXPERIMENTS

We perform numerical experiments by training the model
on both the original noiseless datasets and the datasets with
added σ ¼ 0.1Gaussian noise—corresponding to 10% noise
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relative to the initial conditions. Then, we evaluate the
trained models on the full size noiseless test set examples
(no cropping). By also training on noisy datasets, we test the
robustness of our method and show the effect of noise on the
extracted parameters and prediction performance.

A. Parameter extraction

During training, the model will only use a minimal set of
latent parameters to encode the variation in the dynamics
and will align each latent parameter in this subspace with an
independent factor of variation due to the VAE regulari-
zation [20,21]. Intuitively, the regularization encourages
each latent parameter to independently collapse to a
noninformative prior N ð0; 1Þ, and so the model prefers
to minimize its use of the latent parameters and maintain
their independence (Appendix E). Therefore, the number of
latent parameters provided to the model is not critical as
long as it is greater than the number of independent factors
of variation. In our experiments, we allow the model to use
five latent parameters. Because the 1D datasets have only
one varying physical parameter and the 2D dataset has three
varying physical parameters, the trained model will only
make use of one or three latent parameters, respectively,
and the rest will collapse to the prior.
We can determine the number of relevant latent param-

eters and empirically verify this claim by examining the
statistics of the extracted distribution parameters μz and σ2z
from the dynamics encoder for each dataset. A latent
parameter that is useful to the propagating decoder for
predicting the target series will have high variance in μz and
a low mean σ2z , implying that the extracted parameter is
precise and informative. A parameter which has collapsed
to the prior and is noninformative will have low variance in
μz and high mean σ2z . These statistics indeed show that our
model can correctly determine the number of relevant
parameters for each dataset (Fig. 2). In real applications,
we will not have access to the ground truth physical
parameters, so we must rely on these metrics to identify
the relevant parameters extracted by the model.
To evaluate the performance of our parameter extraction

method, we compare the extracted latent parameters from
the model with the true physical parameters used to
generate our simulated datasets: the viscosity damping
parameter γ for the 1D Kuramoto-Sivashinsky dataset, the
nonlinearity parameter κ for the 1D nonlinear Schrödinger
dataset, and the diffusion constant D and drift velocity
components vx, vy for the 2D convection-diffusion dataset.
Because these simulated physical parameters are drawn
from normal distributions (Appendix D), we expect the
relevant latent parameters—which have prior distribution
N ð0; 1Þ—to be linearly related to the true parameters
(Appendix E). For real experimental systems, this is also
a reasonable assumption for uncontrolled variables because
natural parameters tend to be normally distributed due to
the central limit theorem. We assess the quality of the

extracted parameters by linearly fitting the relevant latent
parameters with the ground truth physical parameters to
obtain parameter predictions and R2 correlation coeffi-
cients. Our numerical experiments show excellent param-
eter extraction on all three datasets (Fig. 3) with R2 > 0.95
for all parameters (Table I) and no degradation in perfor-
mance with added Gaussian σ ¼ 0.1 noise. However, we do
observe some nonlinear behavior at the edges of the
parameter range likely due to data sparsity in those regions.

FIG. 2. Identification of relevant latent parameters: the variance
of μz (blue) and mean of σ2z (red) for the five latent parameters in
the models trained on the (a),(b) 1D Kuramoto-Sivashinsky (KS),
(c),(d) 1D nonlinear Schrödinger (NS), and (e),(f) 2D convection-
diffusion (CD) datasets both with and without added noise. In
each case, the model has correctly identified the number of
relevant parameters (one for the Kuramoto-Sivashinsky and
nonlinear Schrödinger datasets, and three for the convection-
diffusion dataset), which are characterized by high variance in μz
and a low mean σ2z . These relevant latent parameters correspond
to interpretable physical parameters that parametrize the dynam-
ics of the system. The other latent parameters with near zero
variance in μz and high mean σ2z have collapsed to the prior and
are noninformative. Note that while one would expect these
collapsed parameters to have σ2z ¼ 1, the actual extracted σ2z for
the collapsed noninformative parameters is less than one. This is
an artifact of evaluating the model on a larger system size and
longer time series than the cropped patches used during training
(see Appendix F for details).
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Looking more closely at the results for the three-
parameter convection-diffusion dataset, we see that the
trained model correctly extracts three relevant latent
parameters: one latent parameter corresponds to the dif-
fusion constant and the remaining two-dimensional latent
subspace corresponds to the drift velocity vector (Table II).
In particular, the model learns a rotated representation of
the drift velocity vector as a two-dimensional latent sub-
space due to the inherent rotational symmetry of the
dynamics (Appendix F), so we can recover the vx, vy
components of the drift velocity by performing a multi-
variate linear fit [Figs. 3(e) and 3(f)]. The successful
separation of diffusion from drift velocity in the extracted

parameters demonstrates our model’s ability to distinguish
distinct and interpretable factors of variation in the dynam-
ics of the system.

B. Prediction performance

In addition to testing parameter extraction, we evaluate
the prediction performance of the trained models on their
corresponding test sets. Because of training speed and
stability considerations, our models are initially trained
with a PD architecture containing only 16 hidden channels
(Appendix A). To show the potential for further model
refinement, we fix the weights of the DEs trained on
the original noiseless datasets and then train additional

FIG. 3. Predicted physical parameters from a linear fit with the relevant latent parameter (Fig. 2) versus the ground truth physical
parameters from the (a),(b) 1D Kuramoto-Sivashinsky, (c),(d) 1D nonlinear Schrödinger, and (e),(f) 2D convection-diffusion datasets.
Because the drift velocity v from the CD dataset has an inherent rotational symmetry, they are encoded in a two-dimensional latent
subspace (Table II), so we instead show the predicted drift velocity components vx, vy from a multivariate linear regression in the
subspace of two relevant latent parameters, which extracts the linear combination of latent parameters that correspond to vx and vy.
The light blue shaded bars are the 95% confidence intervals produced by the models. Results are shown for models trained on (a),(c),(e)
the original noiseless datasets as well as (b),(d),(f) the datasets with added σ ¼ 0.1 Gaussian noise.
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PDs, each with an expanded 64 hidden channels. These
refined predictive models perform better than the original
predictive models used during end-to-end training. For

comparison, the datasets are also evaluated with a stiff
exponential integrator for semilinear differential equations
[exponential time-differencing fourth-order Runge-Kutta
(ETDRK4) [35] ] using a second-order finite difference
discretization on the same time and space meshes provided
in the datasets. Although this integrator is the same one
used during dataset generation, the time step and mesh size
are set to match the available data to provide a reasonable
baseline. During dataset generation, the solution is obtained
starting with the exact form of the initial condition and
converged using much finer mesh sizes (Appendix D).
Also, note that using a nonstiff integrator fails on many of
the examples in the datasets, so a stiff integrator is required.
The models trained on the 1D Kuramoto-Sivashinsky

and 1D nonlinear Schrödinger datasets both perform
reasonably when compared with the traditional finite
difference method [Figs. 4(a) and 4(b)], with the model
trained on the Kuramoto-Sivashinsky dataset maintaining a
higher accuracy than its traditional counterpart. The pre-
diction error of the 2D convection-diffusion model is
dominated by the uncertainty in the parameter extraction,
so the prediction performance is comparable to a finite
difference exponential integrator with similar noise in the
PDE parameters [Fig. 4(c)]. For the models trained on
datasets with added σ ¼ 0.1 noise, we see some negative
impact on prediction performance (Fig. 4) but no effect on
the parameter extraction quality (Tables I and II).
The refined models, trained on the noiseless datasets,

demonstrate that the PD—the predictive network—can be
improved independently of the DE—the parameter extrac-
tion network. Moreover, the solutions generated by these
models remain stable and physically reasonable well
beyond the number of time steps propagated during train-
ing, suggesting that the models have indeed learned

TABLE I. R2 correlation coefficients from linear fits of the
relevant latent parameters (Fig. 2) with the ground truth physical
parameters for each dataset—both with and without added noise.
For the three-parameter convection-diffusion dataset, the diffu-
sion constant D is fit with a corresponding extracted latent
parameter, while the drift velocity components vx, vy are fit with
a corresponding two-dimensional subspace of the latent param-
eters due to the inherent rotational symmetry.

Dataset Parameter No noise σ ¼ 0.1 noise

Kuramoto-Sivashinsky γ 0.993 0.995
Nonlinear Schrödinger κ 0.997 0.998
Convection-diffusion D 0.963 0.959
Convection-diffusion vx 0.997 0.994
Convection-diffusion vy 0.998 0.996

TABLE II. R2 correlation coefficients from individual linear fits
of the 2D convection-diffusion dataset parameters with each
relevant latent parameter (LP). High correlations are in bold font,
emphasizing the interpretability of the learned latent parameters
as either corresponding to the diffusion constant D or the drift
velocity components vx, vy. The drift velocity is matched with
two latent parameters that form a two-dimensional latent sub-
space corresponding to the velocity vector.

No noise σ ¼ 0.1 noise

Parameter LP 1 LP 2 LP 5 LP 1 LP 2 LP 3

D 0.963 0.000 0.003 0.003 0.959 0.001
vx 0.000 0.205 0.766 0.395 0.006 0.554
vy 0.001 0.818 0.205 0.568 0.000 0.473

FIG. 4. The root mean square prediction error (RMSE) during evaluation at each propagation time step, averaged over the
corresponding test set, for models trained without noise (blue line), trained with σ ¼ 0.1 Gaussian noise (orange line), and refined by
fixing the DE and training with 64 hidden channels in the PD network on the noiseless datasets (green line). Shown for comparison is an
evaluation by a second-order finite difference (FD) discretization integrated with the ETDRK4 method [35] (dashed red line), which
reduces to an exact exponential integrator for the 2D convection-diffusion system. Also, since the prediction accuracy on 2D convection-
diffusion is dominated by parameter extraction uncertainty, we include for comparison the solver with additional parameter noise:
σ ¼ 0.005 forD, σ ¼ 0.01 for vx, vy (dashed purple line). The black vertical dotted line denotes the length of the target series Ty used for
training each set of models, i.e., the maximum number of time steps propagated by the model during training.
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FIG. 5. Time evolution of (a),(d),(g) examples from the 1D Kuramoto-Sivashinsky, 1D nonlinear Schrödinger, and 2D convection-
diffusion test sets with periodic boundary conditions, (b),(e),(h) the predicted propagation of the refined model given the initial condition
at time t ¼ 0, and (c),(f),(i) the model prediction error. The black vertical dotted line denotes the maximum amount of time propagated
by the model during training, corresponding to the length of the target series. For the CD dataset, the maximum amount of time
propagated by model during training is t ¼ π.
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physically meaningful propagators of the PDE-governed
systems (Fig. 5).

V. APPLICATION TO NONLINEAR
FIBER PROPAGATION

To demonstrate our method applied on a more complex
and realistic dataset, we use MEEP [36], a finite difference
time-domain electromagnetic simulator, to model pulse
propagation through an optical fiber with a Kerr non-
linearity. These simulations model Maxwell’s equations
exactly, with no approximation apart from the discretiza-
tion, and often reproduce real experiments point by
point [37]. The simulated fiber consists of a two-layer
core and the surrounding cladding with (relative) permit-
tivity ε ¼ 1 [cross section shown in Fig. 6(a)]. We generate
a dataset with 200 different geometries by varying the size
of the two-layer core through ri and ro as well as the
corresponding permittivities εi and εo, representing uncon-
trolled experimental variables related to fabrication (see
Appendix D for details). Then, we excite a randomly

generated pulse in each fiber and train our model on the
flux-normalized amplitude Aðx; tÞ of the resulting pulse
propagation.
There is no exact first-order PDE describing the evolu-

tion of this amplitude. However, in the slowly varying
envelope approximation, Aðx; tÞ is governed by an effective
nonlinear Schrödinger equation [38],

∂A
∂x ¼ i

X∞
n¼1

inkn
n!

∂n
t Aþ iγjAj2A; ð13Þ

where the dispersion coefficients kn ¼ ∂n
ωkðωÞjω¼ω0

can be
computed from the dispersion relation ωðkÞ at a carrier
frequency 2πω0, and the nonlinearity parameter γ is related
to the Kerr nonlinearity (Appendix D) and the shape of the
propagating mode in the fiber [39]. Because of the form of
this effective equation, we choose our propagation variable
to be the distance x rather than the time t; i.e., our model
will predict Aðx; tÞ given an initial pulse A0ðx ¼ 0; tÞ by
propagating forward in the x direction. We obtain the
ground truth dispersion coefficients using MPB [40], a

FIG. 6. Analysis of the model trained on the nonlinear fiber propagation dataset. (a) The cross section of the fiber shows the cladding
with (relative) permittivity ε ¼ 1, the inner core with radius ri and permittivity εi, and the outer core with radius ro and permittivity εo.
(b) Three relevant latent parameters are identified by the trained model. (c) A linear fit of the latent parameters predicts the true k1 with
R2 ¼ 0.966 and k2 with R2 ¼ 0.863, corresponding to group velocity and second-order dispersion. (d) Varying the remaining spurious
latent parameter z while propagating a Gaussian pulse using the trained propagating decoder, we observe that the spurious parameter
represents a phase velocity. The plot of ArgðAÞ shows the phase of the pulse mapped to the color hue while the amplitude is mapped to
lightness. (e) The root mean squared prediction error at each propagation step of the originally trained PD (blue) and a further refined PD
(green) are comparable to an explicit solution (second-order finite difference, adaptive fourth-order Runge-Kutta method) of the
effective equation (13) with fitted parameters (up to fourth-order dispersion) for each individual test set example (dashed red).
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frequency domain electromagnetic eigenmode solver, for
comparison with the extracted parameters from the model.
The trained model identified and extracted three relevant

latent parameters [Fig. 6(b)]. Two independent directions in
the latent parameter space (primarily, latent parameters 2
and 3) correspond to the group velocity k1 ¼ 1=vg with
R2 ¼ 0.966 and second-order dispersion k2 with R2 ¼
0.863 [Fig. 6(c)]. Note that the extracted parameters are
not the geometry parameters used to generate the dataset,
but rather parameters relevant to the effective propagation
of the pulse. These two latent parameters also capture
variations in higher-order dispersion terms, which are
correlated with the group velocity and second-order
dispersion in the dataset. As a result, although important
and present in the effective equation (13), the higher-order
terms are already well correlated with the existing latent
parameters, so no additional parameters are required to
characterize the dynamics. See Appendix I for more
parameter analysis details.
In addition to the parameters corresponding to k1 and k2,

the model extracted another relevant latent direction
(primarily, latent parameter 1), which is independent and
orthogonal to the previous two. This seemingly spurious
latent parameter does not correspond to a term in the
effective equation (13); instead, it represents a spurious
phase velocity, which is the result of imperfect preprocess-
ing (Appendix D). We discovered this correspondence by
varying the spurious parameter, while leaving all other
latent parameters fixed, and observing the effect on the
model predictions [Fig. 6(d)]. This uncontrolled variable
was successfully extracted by the model and subsequently
identified, demonstrating the process by which unknown
extracted parameters can be understood and interpreted.
We evaluate the prediction performance of the trained

propagating decoder as well as a refined version of the PD
(with an expanded 64 hidden channels) by comparing the
prediction error of our models with an explicit solution to
the effective equation (13) as a baseline. The effective
equation parameters are determined by a linear fit of the
finite difference derivatives computed from the dataset. For
each example in the test set, we fit the dispersion param-
eters k1, k2, k3, k4 (i.e., up to fourth-order dispersion) and
the nonlinearity parameter γ. The effective equation is then
integrated using a fourth-order Runge-Kutta method with
adaptive step size and second-order finite difference dis-
cretization. This approach is a simplified version (with the
terms preidentified) of explicit PDE identification methods,
such as SINDy [4]. Our predictive models achieve similar
prediction performance when compared with this explicit
effective equation baseline [Fig. 6(e)].

VI. DISCUSSION

We developed a general unsupervised learning method
for extracting unknown dynamical parameters from noisy
spatiotemporal data without detailed knowledge of the

underlying system or the exact form of the governing
PDE. While we do not explicitly extract the governing
PDE, our method provides a set of tunable relevant
parameters, which characterize the system dynamics in
independent and physically interpretable ways, coupled
with a highly transferable predictive model. This is often
enough to provide significant insight into the physics of the
system: for example, by examining the effect of varying an
unidentified relevant parameter on the predictions of the
model, we can disentangle the parameter from other effects
(parametrized by the other relevant parameters) and inter-
pret it independently. This is precisely how we identified
the spurious phase velocity parameter extracted by the
model trained on nonlinear fiber propagation [Fig. 6(d)].
One potential complication of interpreting the parameters
extracted using our method is that each parameter must
represents an independent factor of variation in the dynam-
ics of the dataset. This means that if features of the
dynamics are highly correlated in the underlying dataset,
they will be parametrized by the same parameter; e.g., the
parameters extracted from the nonlinear fiber propagation
dataset corresponding to group velocity and second-order
dispersion also capture higher-order dispersion terms
(Appendix I).
The flexibility and robustness of our model comes from

using a generic physics-informed neural network model
for nonlinear PDEs. The interpretability of the resulting
extracted parameters is a result of the variational autoen-
coder training and regularization (Appendix E) as well as
the inductive biases imposed by our physics-informed
network design. By using appropriate spatial averaging
in the dynamics encoder and dynamic convolutions in the
propagating decoder, we ensure that both the parameter
extraction and the propagation prediction from our model
are physically motivated and generalizable to arbitrary
system sizes and geometries. The dynamic convolutions,
in particular, are an important physical inductive bias for
encouraging the model to learn latent parameters which
govern the propagation dynamics. As a result, the learned
parameter-to-kernel mappings in the trained predictive
model are fully transferable, which we can demonstrate
by evaluating the predictive model without retraining on a
different set boundary conditions (see Appendix H).
Our strategy for modeling spatiotemporal systems is to

retain the expressiveness of a neural network model while
imposing general constraints—such as locality through
using convolutional layers—to help the network learn more
efficiently. For particular applications, this could also
include spatial symmetries [41–43], e.g., properly trans-
forming fluid flow vectors, as well as additional sym-
metries of the internal degrees of freedom, e.g., the global
phase of the nonlinear Schrödinger equation. These archi-
tecture-based constraints encourage the model to learn
physically relevant representations and can be tailored to
individual applications, allowing us to incorporate domain
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knowledge into the model. This also lets us use datasets that
are much smaller than is traditionally required by deep
learning methods. The model trained on nonlinear fiber
propagation used only 200 examples (Sec. V), and we
have been able to successfully train models on the
Kuramoto-Sivashinsky dataset with as few as 10 examples
(Appendix G). Additionally, the model’s robustness to
noise is a powerful feature of deep learning methods and
provides a promising avenue for studying dynamical
systems in a data-driven fashion [44].
The primary challenges associated with applying our

current implementation involve setting hyperparameters
to improve training stability (see Appendix C for more
details) and choosing the β regularization hyperparameter,
which controls parameter extraction (Appendix E). The
choice of β can be somewhat ambiguous, with very high
values resulting in no relevant parameters and very low
values failing to enforce independence (for our choices, see
Appendix B). This trade-off and other related issues are a
very active area of research, and parameter extraction
methods will continue to improve following the rapid
advances in unsupervised learning and disentangling rep-
resentations, e.g., through a deeper theoretical understand-
ing of the β-VAE [21,45,46] and alternative formulations
[22,47]. Physics-informed inductive biases, however, will
remain the key ingredient for ensuring the representations
are interpretable [48].
The predictive model will also likely achieve better

accuracies by using more sophisticated architectures, such
as echo state networks which have been shown to perform
extremely well on even chaotic PDEs [49], or by explicitly
incorporating differentiable PDE solvers with gradients
computed by the adjoint method [50]. An echo state
network or other alternative decoder architecture would
have to be adapted to retain the transferability of our current
PD. Using a differentiable PDE solver would allow the PD
network to focus on encoding the PDE rather than also
learning a stable integration method, and thus may improve
the interpretability of the model.
Our unsupervised learning method is also highly com-

plementary with the significant body of work applying
machine learning methods for more accurate predictions of
specific physical systems, such as multiscale hydrodynamic
systems [51] and turbulence modeling [52–55]. These
methods often combine a known physics model with a
machine learned correction or parametrize an unknown part
of the physics model using neural networks. Such machine
learning–physics hybrid models can be adapted into
decoders for our unsupervised learning method, with the
extracted relevant parameters representing independent
variations of and providing insight into the machine learned
portions of the model. Our current method can also be
adapted in the future for a more general class of spatio-
temporal systems by incorporating spatially inhomo-
geneous latent parameters and will also be able to use

data with incomplete physical state observations by infer-
ring missing information.
The ultimate goal of this work is to provide additional

insight into complex spatiotemporal dynamics using a data-
driven approach. Our method is an example of a new
machine learning tool for studying the physics of spatio-
temporal systems with an emphasis on interpretability.
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APPENDIX A: MODEL IMPLEMENTATION
DETAILS

For the 1D datasets, the dynamics encoder (DE) uses
2D convolutions with output channel sizes (4,16,64,64,5),
linear kernel sizes (3,3,3,3,1), and dilation factors
(1,2,4,8,1). For the 2D dataset, the DE uses 3D convolu-
tions with output channel sizes (8,64,64,64,5) with the
same kernel sizes and dilation factors. The fDE;μ and fDE;σ2
networks share the same convolution weights for the first
four layers and have distinct final layers to produce μ and
log σ2. The final output channel size is determined by the
number of latent parameters; in our tests, we use five latent
parameters.
For the 1D datasets, the propagating decoder (PD)

architecture uses three 1D dynamic convolutional layers
with output channel sizes (16, 16, data channel size), linear
kernel size 5, and periodic padding. For the 2D datasets,
the PD uses three 2D dynamic convolutional layers with
the same output channel sizes, kernels, and padding. The
refined models increase the number of hidden channels in
the PD from 16 to 64, resulting in output channel
sizes ð64; 64; data channel sizeÞ.
The latent-to-kernel network, which maps the latent

parameters to each kernel or bias in the PD, consists
of two fully connected layers, i.e., one hidden layer.
For the 1D datasets, the hidden layers have size ð4 ×
input channel size × output channel sizeÞ for kernels and
ð4 × output channel sizeÞ for biases, where the input and
output channel sizes refer to the corresponding dynamic
convolution in the PD. For the 2D dataset, the hidden layers
have size ð16 × input channel size × output channel sizeÞ
for kernels and ð4 × output channel sizeÞ for biases.
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Our architecture uses rectified linear unit activations
throughout except for the unactivated output layers of the
DE, PD, and latent-to-kernel networks. The output of the
PD convolutional network fPD uses a tanh activation with a
learnable scaling parameter [x ↦ λ tanhðx=λÞ with learn-
able parameter λ initialized to 1] to stabilize the recurrent
architecture. The network fPD also has a fixed multiplica-
tive prefactor set to 10−6 to improve the initial training
stability. For the nonlinear fiber propagation dataset, we
add Gaussian noise with σ ¼ 10−2 between propagation
steps in the PD network for improved prediction stability.
Our model is implemented using PyTorch v1.1 [56], and the

source code is available in Ref. [28].

APPENDIX B: TRAINING DETAILS

All models are trained using batch size 50 and the Adam
optimizer [57] with learning rate 10−3. Models for the 1D
datasets and the noisy 2D convection-diffusion dataset
were trained for 2000 epochs; the model for the noiseless
2D convection-diffusion dataset was trained for 4000
epochs; and the corresponding refined models were trained
for 2000 epochs. The VAE regularization hyperparameter is
set to β ¼ 0.02 for the 1D datasets and β ¼ 10−4 for the 2D
convection-diffusion dataset. The model for the nonlinear
fiber propagation application was trained for 40 000 epochs
due to small size of the dataset and significant data
augmentation; the corresponding refined model was trained
for 20 000 epochs; and the VAE regularization hyper-
parameter was set to β ¼ 7 × 10−4. During validation,
we choose β such that we obtain the maximum number
of relevant latent parameters while still maintaining stat-
istical independence among the parameters as well as a
clean separation between the relevant and irrelevant
(i.e., collapsed to the prior) parameters. All hyperparameter
tuning is done using the training set for validation.
For the 1D Kuramoto-Sivashinsky dataset, we train the

model using a random 64 × 94 crop—in the time and space
dimensions, respectively—for the input series and another
random 64 × 76 crop for the target series. For the 1D
nonlinear Schrödinger dataset, we train using a 64 × 94
crop for the input series and a 32 × 76 crop for the target
series. For the 2D convection-diffusion dataset, we train
using a 45 × 62 × 62 crop—in the one time and two space
dimensions, respectively—for the input series and a
16 × 44 × 44 crop for the target series. For the nonlinear
fiber propagation dataset, we train using a 128 × 158 crop
for the input series and a 32 × 76 crop for the target series.
During evaluation, we always use the full size time series
from the test set for both the input and target series.

APPENDIX C: NOTES ON TRAINING STABILITY

We find our model to be particularly sensitive to the
architecture of the propagating decoder: with larger, more
complex networks and more propagation steps during

training resulting in increasing instability. The dynamics
encoder does influence stability, but the effect is more
indirect through its interaction with the PD and is not very
architecture sensitive. This instability is likely related to the
problem of vanishing and exploding gradients seen often in
recurrent architectures, which is mitigated using gating
mechanisms like in long short-term memory networks
[10,11] or by explicitly using unitary norm-preserving
matrices [58]. Importantly, this is only a significant
problem when training the model end to end using both
the DE and PD; when we fix the DE weights, we are able to
further refine a more complex PD model without instability
(Sec. IV B). This also does not affect the prediction
performance and stability of the model during evaluation,
which generalizes well past the number of time steps
propagated during training (Fig. 4). We currently imple-
ment a learnable gating mechanism (Appendix A) that
significantly stabilizes the network, but further work is
required to fully address this issue.

APPENDIX D: DATASET GENERATION
DETAILS

For each time-series example in the 1D Kuramoto-
Sivashinsky dataset, we sample the viscosity damping
parameter γ from a truncated normal distribution (μ ¼ 1,
σ ¼ 0.125, and truncation interval [0.5, 1.5]). We then use
the ETDRK4 integrator [35] to generate each time series
to within a local relative error of 10−3. Each time series
consists of a uniform time mesh with 256 points for a total
time T ¼ 32π and a space mesh with M ¼ 256 points for
an L ¼ 64π unit cell. These are produced by solving on a
finer time and space mesh to ensure convergence and then
resampling to the dataset mesh sizes. Each initial state is
generated from independently sampled, normally distrib-
uted Fourier components with a Gaussian band-limiting
envelope of varying widths (uniformly sampled in the
interval ½8π=L;Mπ=4L�) and then normalized to unit
variance.
For each time-series example in the 1D nonlinear

Schrödinger dataset, we sample the nonlinearity coefficient
κ from a truncated normal distribution (μ ¼ −1, σ ¼ 0.25,
and truncation interval ½−2; 0�). We then use the ETDRK4
integrator [35] to generate each time series to within a local
relative error of 10−3. Each time series consists of a uniform
time mesh with 256 points for a total time T ¼ π and a
space mesh with M ¼ 256 points for an L ¼ 8π unit cell.
These are produced by solving on a finer time and space
mesh to ensure convergence and then resampling to the
dataset mesh sizes. The initial states are generated in an
analogous manner to the Kuramoto-Sivashinsky dataset.
For each time-series example in the 2D convection-

diffusion dataset, we vary the parameters by sampling the
diffusion constant D from a truncated normal distribution
(μ ¼ 0.1, σ ¼ 0.025, and truncation interval [0, 0.2]), and
each velocity component vx, vy from a normal distribution
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(μ ¼ 0, σ ¼ 0.2). Because the convection-diffusion equa-
tion is linear, we use the exact solution to generate the
dataset. Each time series consists of a uniform time mesh
with 64 points for a total time T ¼ 4π and an M ×M ¼
256 × 256 space mesh for an L × L ¼ 16π × 16π unit cell.
Each initial state is generated from independently sampled,
normally distributed Fourier components with a Gaussian
band-limiting envelope of varying widths (uniformly
sampled in the interval ½16π=L;Mπ=2L�) and then nor-
malized to unit variance.
The nonlinear fiber propagation dataset aims to roughly

model a set of highly dispersive nonlinear optical fibers
with variations in geometry due to fabrication. Each of the
200 examples in the nonlinear fiber propagation dataset
corresponds to a randomly generated fiber geometry
excited with a randomly generated pulse. Specifically, each
fiber geometry [Fig. 6(a)] corresponds to a set of geometry
parameters sampled from normal distributions: inner core
radius ri (μ ¼ 75 nm, σ ¼ 3 nm), outer core radius ro
(μ ¼ 150 nm, σ ¼ 7.5 nm), inner core (relative) permittiv-
ity εi (μ ¼ 30, σ ¼ 2), and outer core permittivity εo
(μ ¼ 8, σ ¼ 1). There is an overall fixed Kerr non-
linearity that corresponds to a nonlinear refractive index
n2 ¼ ð3.375 × 10−4 μm2 W−1Þ=ε, where ε is the material
permittivity. The excited pulse is generated from independ-
ently sampled, normally distributed frequency components
with a Gaussian band-limiting envelope centered on a
carrier frequency f ¼ 200 THz (λ ¼ 1.5 μm) and with
a width of f=20. This pulse is slowly turned on with a
sigmoid of width 20=f, and, for the test set, the pulse is also
turned off at half the total simulation time, allowing the
pulse to fully propagate through the fiber. During the
simulation, the amplitude Aðx; tÞ of the electric field at
the center of fiber is recorded and later normalized to the
total flux passing through the fiber. The space and time
Fourier components of each resulting dataset example
Aðx; tÞ are shifted to remove the carrier frequency and
the peak wave number, resulting in a slowly varying
envelope. Then, the final dataset is normalized again so
that the amplitude at the initial point x ¼ 0 has, on average,
unit variance over the whole dataset. Each example consists
of an x-direction mesh with 500 points for a propagation
length of 75 μm and a uniform t-direction mesh with 800
points for a total time 4.00 ps (training set) or 1000 points
for a total time 5.00 ps (test set).
The dataset generation scripts are available in Ref. [28].

APPENDIX E: UNDERSTANDING THE EFFECTS
OF VAE REGULARIZATION

Using VAE [13] or β-VAE [20] regularization in our
model provides three main benefits for learning physically
interpretable representations: the regularization encourages
the model to minimize use of the latent parameters,
enforces independence among the learned latent para-
meters, and matches the marginal latent distribution to a

standard normal prior. We can explicitly see these effects by
decomposing the data-averaged VAE regularization term in
the following way [22,59]:

EpDðxÞfDKL½qðzjxÞkpðzÞ�g
¼ DKL½qðz;xÞkqðzÞpDðxÞ� ðE1Þ

þDKL

�
qðzÞk

Y
i

qðziÞ
�

ðE2Þ

þ
X
i

DKL½qðziÞkpðziÞ�; ðE3Þ

where pDðxÞ is the data distribution, pðzÞ ¼ Q
i pðziÞ are

the standard normal priors for the latent parameters
z ¼ ðz1; z2;…; zi;…Þ, qðzjxÞ is the output distribution
of the dynamics encoder, qðz;xÞ ¼ qðzjxÞpDðxÞ is the
joint distribution of the encoded latent parameters
and the data, and qðzÞ ¼ R

dxqðz;xÞ and qðziÞ ¼R
dx

Q
j≠i dzjqðz;xÞ are the marginal distributions of the

latent parameters z or a single latent parameter zi, respec-
tively. The three terms in this decomposition correspond
directly to the three effects: the first term (E1) represents the
mutual information between the latent parameters and the
data; the second term (E2) represents the total correlation
between the latent parameters; and the third term (E3)
consists of KL divergences between the marginal distribu-
tion for individual latent parameters and the standard
normal prior.
By minimizing the mutual information between the

latent space and the data (E1) as well as correlations
among the latent parameters (E2), the model is compelled
to learn a latent space with minimal information and
independent parameters; i.e., the model will use a minimal
set of independent relevant latent parameters to capture
only the necessary information for better prediction per-
formance. The rest of the unused latent parameters will
collapse to the prior. Furthermore, by matching the mar-
ginal latent parameter distributions qðziÞ to the standard
normal priors pðziÞ (E3), the VAE regularizer encourages a
linear relationship between the relevant learned latent
parameters and the true physical parameters if the physical
parameters are normally distributed in the data. Even if a
physical parameter zphys is non-normally distributed, the
VAE regularization will still compel the model to learn a
monotonic relationship between zphys and a corresponding
latent parameter z given by

zphys ¼ �CDFpðzphysÞ ∘CDF−1pðzÞðzÞ; ðE4Þ

where CDFpð·Þ is the cumulative distribution function for
the probability distribution pð·Þ. One caveat—in addition
to ambiguities introduced by symmetries of the physical
parameters—is that the relationship may not be monotonic
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for physical parameter distributions which have support on
a topologically distinct space from the real line, e.g., a
uniformly distributed periodic angle parameter. However,
the result may still be interpretable; e.g., an angle parameter
may be encoded as a ring in a two-dimensional latent
subspace.
Although this decomposition is suggestive of the effects

of VAE regularization, the study of the performance of
VAE-based models and the relative importance and model
dependence of each of these effects is still very much
ongoing [21,22,45–47,60]. While training our model, we
empirically observe that the latent parameters retain their
independence and that their marginal distributions match
the standard normal priors, so only an increase in infor-
mation stored in the latent space is traded for better
prediction performance. We believe we can attribute this
to the physics-informed inductive biases present in our
architecture, which allows our model to achieve its best
performance using a minimal set of independent and
normally distributed latent parameters.

APPENDIX F: RAW PARAMETER
EXTRACTION RESULTS

We can explicitly see the relevant and collapsed latent
parameters in the raw data by plotting the latent parameters
versus the true physical parameters (Fig. 7). The latent
parameters that show a correlation with the true physical
parameters also have small variances σ2z and correspond to

the identified relevant latent parameters (Fig. 2), while the
remaining latent parameters have collapsed to the prior.
Note that for the collapsed parameters, we see variances σ2z
that are less than one—the value expected for parameters
which have collapsed to the prior distributionN ð0; 1Þ. This
is because, to average over systems of different sizes, the
model makes the assumption that patches separated far in
space or time provide independent estimates of the
extracted parameters and computes the total variance
accordingly. This assumption is reasonable for relevant
parameters but will artificially lower the extracted variances
for collapsed parameters. During testing, we choose to
evaluate on the full system size resulting in this artifact. If
we were to evaluate on smaller patches that match the size
of the crops used during training, we would indeed see that
the collapsed parameters have σ2z ¼ 1.
We also note that, for the model trained on the 2D

convection-diffusion dataset, the latent parameters associ-
ated with the drift velocity v are not aligned with the vx, vy
velocity components. This is an expected result due to
the inherent ambiguity of choosing a coordinate basis—
introduced by the rotational symmetry of the velocity
vector—and makes judging the extraction performance
more difficult. Instead of examining one latent parameter
at a time, we must consider the two-dimensional latent
subspace associated with the velocity vector. Taking the
two relevant latent parameters that are correlated with the
drift velocity (Table II), we can perform a multivariate

FIG. 7. The five latent parameters in the models trained on the (a),(b) 1D Kuramoto–Sivashinsky, (c),(d) 1D nonlinear Schrödinger,
and (e),(f) 2D convection–diffusion datasets both with and without added noise versus the ground truth physical parameters used to
generate the datasets. In these plots of the raw extracted latent parameters, we see the direct correspondence between the identified
relevant latent parameters in Fig. 2 and the true physical parameters as well as the collapse of the unused latent parameters. Note that the
relevant latent parameters corresponding to the drift velocity v in the convection-diffusion model are not precisely aligned with the two
components vx, vy due to the inherent rotational symmetry. The gray shaded bars are the 95% confidence intervals (�1.96σz) produced
by the model.
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linear regression of the velocity components vx, vy in this
two-dimensional latent subspace to verify that the model
has indeed learned a simple rotated representation of the
velocity vector [Figs. 3(e) and 3(f)].

APPENDIX G: PERFORMANCE SCALING
WITH DATASET SIZE

Because of the significant physics-informed inductive
biases in our architecture, our model still achieves usable
results even when trained on very small datasets. We test
the dataset size dependence of our method using the 1D
Kuramoto-Sivashinsky system and find that the model is
still able to identify the relevant latent parameter even with
a dataset of just 10 examples (Fig. 8). The accuracy and
precision of the extracted parameter and the prediction
performance do begin to suffer when using such extremely
small datasets, but the model is still able to provide some
insight into the dynamics of the spatiotemporal system
represented by the data.

APPENDIX H: ALTERNATIVE BOUNDARY
CONDITIONS

The fully convolutional structure of the propagating
decoder means that we are able to evaluate our model
on arbitrary geometries and boundary conditions. By
training on small crops and evaluating on the full size

examples in the test set (Sec. IV), we have already shown
the trained model can be directly evaluated on larger system
sizes. To show direct evaluation on an alternative boundary
condition, we test the refined predictive model—originally
trained on the 1D Kuramoto-Sivashinsky dataset with
periodic boundaries—on a new test example generated
with Dirichlet hard wall boundary conditions (Fig. 9). In
general, we can apply alternative boundary conditions by
adjusting the padding scheme of each propagation step in
the PD. For Dirichlet boundaries, this corresponds to
applying antireflection padding at each propagation step.
This preliminary test suggests that we can achieve similar
prediction performance using an alternative boundary
condition, which the model has never previously seen,
and demonstrates the transferability of the learned convolu-
tional kernels.

APPENDIX I: NONLINEAR FIBER
PARAMETER ANALYSIS

In the three-dimensional relevant latent space
ðz1; z2; z3Þ extracted by the model trained on the nonlinear
fiber propagation dataset [Fig. 6(b)], we determine two
independent and interpretable directions by a linear fit:
ð−0.101; 0.971; 0.218Þ and ð0.477;−0.0303;−0.878Þ,
which correspond to the group velocity k1 ¼ 1=vg and
second-order dispersion k2, respectively [Fig. 6(c)].
The final direction ð0.882;−0.107; 0.459Þ in the latent

FIG. 8. Parameter extraction and prediction performance for models trained on noiseless 1D Kuramoto-Sivashinsky datasets with 50,
25, and 10 examples to show the effect of dataset size. The (a)–(c) parameter identification and (d)–(f) extraction plots demonstrate the
ability of the model to identify and extract a relevant latent parameter using very few examples. In the extraction plots, the small black
points show the evaluation on the test set, the large red points show the training examples used for each model, and the light blue shaded
bars are the 95% confidence intervals produced by the model. There is also a subtle decrease in prediction performance seen in (g) the
RMSE averaged over the 10 000 example test set. The parameter identification and extraction plots for the 5000 example dataset are
shown in Figs. 2(a) and 3(a), respectively.
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space—orthogonal to the previous two—is a seemingly
spurious relevant parameter unrelated to the parameters
of the effective equation (13) and represents a spurious
phase velocity [Fig. 6(d)].
For the examples in the nonlinear fiber propagation

dataset, higher-order dispersion terms kn are still signifi-
cant. However, because these terms are correlated with k1
and k2 in the data, the model does not require additional
latent parameters to capture their effect. Instead, the
existing latent parameters also adjust the higher-order
dispersion terms; in other words, the latent parameters
each correspond to a dispersion operator that includes
higher-order dispersion along with k1 and k2.
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