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Using single ions in Penning trap, we determine the mass ratio of 
carbon monoxide to molecular nitrogen to be 0.9995988876(4), an 
accuracy of 4 parts in 1010. The major source of error is temporal 
instabilities in the magnetic field. All other sources of error, 
including special relativistic effects and spatial inhomogeneity in the 
trapping fields, are believed to contribute an error of less than a part 
in 1010 to the measured ratio. 

Cyclotron frequency measurements are made using a novel, phase- 
sensitive, twin-pulse technique which makes use of a classical 
"pi-pulse" to move the phase and action from one normal mode into 
another. 

We discuss the possibility of simultaneously trapping two ions, one of 
each species, thereby circumventing the problem of magnetic field 
drift. Our calculations and some preliminary experiments indicate 
that this technique should permit mass comparisons with accuracies 
at a part in 1011 or better. 
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Chapter 1 Introduction 

1A. My Theses: 

That, with cyclotron resonance measurements on a single ion 

in a Penning trap, we can determine ion mass ratios to better than a 

part in 109; 

that, in particular, the ratio of the mass of CO+ to the mass of 

N 2 +  is 0.9995988876, to an accuracy of four parts in 1010; 

and that, with two ion techniques, determining ion mass 

ratios to better than a part in 1011 is ultimately feasible. 

1B. Motivation and a Little History 

[I]f one is being iconoclastic about precise measurement, the 
power of a measurement to generate other measurements is 
hardly compelling justification. 

--- Ian Hacking [HAC83] 

The relative masses of the stable ions are already known to 

better than a part in 107. Many are known to parts in 109. 

[WAA85] Why on earth should we want to do orders of magnitude 

better? The short answer, in defiance of Hacking, is that we 

measure masses more precisely because it gives us the power to 

generate other more precise measurements. Three such 

measurements bear mentioning. 

The first is the electron neutrino rest mass. Does it have any 

at all? Currently experiments [BGL85] and observations [ARR87] 
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put an upper bound around 20 eV. At least one group [BGL8S] 

reports a non-zero result around 17 eV. About a dozen groups are 

performing experimental studies of the high energy tail of the 

tritium beta decay spectrum in an effort to measure the mv. These 

efforts would greatly benefit from an independent measurement of 

the total energy available to the decay, the mass difference 

between tritium and helium-3. A part in 109 measurement of the 

mass ratio determines the mass difference to 3 eV. 

A second more precise measurement we could generate with 

better mass spectroscopy is  the combination of fundamental 

constants N A ~ .  Better knowledge of the product of Avogadro's 

number and Planck's constant would in turn help determine a 

better value for the fine structure constant [JOHS4]. Mass 

difference measurements, combined with garnma-ray wavelength 

measurements, can determine the energy of a gamma ray both in 

amu and in inverse centimeters. The conversion factor between the 

units is N A ~ .  One implementation [JOH84] of this scheme requires 

measuring the mass ratio of an ammonia isomeric doublet to better 

that a part in 101 1 ,  in order to contribute to a part in 107 

determination of a? 

Finally, improvements in mass spectroscopy will bring enough 

precision to weigh the binding eiiergy of molecules, atoms and 

clusters. For certain classes of molecules, calorimetric and 

spectroscopic measurements of energies don't work. To weigh 

molecular bonds at a generally useful level, mass spectroscopy has 

to reach accuracies of parts in 1012. 
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The mass comparison techniques described in this thesis 

involve single ion cyclotron resonance in a Penning trap. The 

Penning trap was originally developed into a precision instrument 

originally at the University of Washington by Hans Dehmelt and his 

colleagues, including Gabrielse, Schwinberg, Van Dyck, Wells and 

Wineland. It was at the University of Washington that the first 

precision trap was machined, the first single particles detected, 

almost all the single ion theory worked out, sideband cooling 

developed, etc. The most renowned Penning trap experiments 

performed there are the parts in 1012 measurements of the 

electron and positron magnetic moments [VSD87]. For a summary 

of these developments see for instance Brown and Gabrielse's 

comprehensive review article [%RG86] or Weisskoffs very readable 

thesis [WEI88]. Current high precision ion mass comparison efforts 

of which I am aware are by Dunn's group in Boulder, van Dyck's in 

Seattle [VMF85, M08891, and G. Werth's in Mainz, Germany. 

1C The Basic Idea 

Here, in essence, is how we compare the masses of ions: We 

load the trap with ions of one species, ejecting all accidentally 

trapped impurity ions and all but one ion of the desired species, 

and measure the normal mode trap frequencies. Then we dump 

the ion out and repeat the procedure with the second species. From 

the trap frequencies of each ion we reconstruct the free-space 

cyclotron frequency, that is, the cyclotron frequency we would have 
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measured had there been no electric fields. Assuming the magnetic 

field remains constant while we exchange ions, the ratio of the ion 

masses is just the inverse of the ratio of the cyclotron frequencies. 

As it turns out, the magnetic field does not remain constant, 

at least not at the part in 1010 level, and that is why we are 

developing techniques to measure the cyclotron resonance of two 

trapped ions simultaneously. 

ID Penning Trap Primer 

The ideal Penning trap consists of a strong, uniform magnetic 

field, and a quadrupole electric field, usually established by 3 

electrodes, hyperbolae of rotation. (Fig. 1.1) We write the electric 

and magnetic fields respectively as 

-. 
~ ( p , z )  = ( v J ~ ~ ) (  p;p/~ - z;) (l.la> 

E = B ~  (1.lib) 

where Vt  is the potential between the ring electrode and the 

endcap electrodes, and d is the characteristic trap size, defined in 

fig 1 . l . t  For a single ion of mass m and charge e, the equation of 

motion is: 

Here, and throughout the thesis, boldface type denotes vectors and normal 

weight type denotes the scalar length of the corresponding vector. For 

example, r = Irl. For typographical reasons, vectors labeled with Greek letters 

have to be indicated with arrow superscripts rather than bold type. The 
Greek letter p is always a component of a vector given in cylindrical 

coordinates, r = (p,8,z);  the right-handed set of orthogonal unit vectors is 
/ . " A  A 

( ~ 9 9 , ~ ) .  The vector P = P P  is always used to refer to a vector with no axial 
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Fig. 1.1 The geometry of the Penning trap. The electrodes are 
hyperbolic surfaces of rotation. In our trap, po = 0.696 cm and 
zo = .600 cm, giving an effective hap size d = (poz/4 + %2/2)112 
= 0.549 cm. 



m r  = eE(r) + (e/c) r x B (r) (1.2) 

In the ideal fields, the equation of motion is linear and is 

readily solved to yield three normal modes, known as the axial, the 

magnetron and the trap cyclotron modes. The frequencies are, 

respectively, 

mz = [eVt/(md2)]1/2 

Om = [ a c  - (ac' - 2COz2)'/2]/2 

Oc = [ o c  + ( 0 ~ 2  - 2mz2)'/21/2 (1.3) 

where mc  is the free-space cyclotron frequency, oc = eB/(mc). The 

ion motion will be some linear superposition of the three normal 

modes, which are as follows: 

Axial: z(t) = Re (Z exp (io,t) ;) 
4 

Magnetron : pm(t) = Re (M exp (io,t)(c+ i i ))  
4 

Trap Cyclotron: pc(t) = Re (C exp (ioct)(n^+ i ?)) 

Z, M, and C are the complex amplitudes of the axial, 

magnetron and trap cyclotron modes. The magnitude of the normal 

mode motions, referred to as the mode radii, are also written aZ=IZI, 

Pm = IMI, and pc = ICI. The trap cyclotron mode is so named because 

component. When convenient, I also use right-handed rectangular 

coordinates (x,y,z). The two systems are aligned conventionally: 
n A A A 

z = z, and x = p(8=0). One final convention: Vt and B are positive; we trap an 

ion with positive charge e. 
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in the limit of vanishing electric fields the trap cyclotron frequency 

approaches the free-space cyclotron frequency. For precision mass 

spectroscopy in a Penning trap, the electric field is always weak 

enough that o~'>>o~>>o~. (For instance, for our measurements on 

N2+, mc' = 27c x 4$.5MHz, = 27c x 160 kHz, and Om = 27t x 2.8 kHz.) 

For the actual determination of precision mass ratios, we need to 

correct the trap cyclotron frequency for the effects of the electric 

field, but when it is cleix- from context that I'm discussing motion in 

the trap, I will sometimes drop the "trap" from "trap cyclotron 

mode. " 

1E. Summary of Contents 

If you set about reading this thesis cover-to-cover, here is 

what to expect. 

In Chapter 2, I discuss the impr~vements we have made to 

the apparatus since Weisskoff and Flanagan wrote their theses. The 

term "apparatus" is  used inclusively; the chapter includes 

techniques in data analysis as well as physical modifications to the 

trap. 

Chapter 3 is a summary of the factors determining the 

accuracy of single particle measurements, including field 

imperfections, impurity ions, special relativity and a host of smaller 

effects. The gist is that for single ion comparisons, all these effects 

are small compared to errors arising from the magnetic field drift. 

Chapter 4 is the real experimenter's chapter. I include all the 

major techniques and results obtained with single ions over the last 

Chapter 1 11 



two years. Trapping and purifying individual ions of various 

species, measuring and shimming the field imperfections, and mode 

coupling and resonance techniques are all covered. The chapter 

culminates with an account of our measuring the CO+/N2+ mass 

ratio to four parts in 1010. 

The forward-looking Chapter 5 deals with the proposed 

techniques for working with two ions simultaneously and thus 

beating the field drift problem. Some preliminary experimental 

results are presented, but most of the chapter is a theoretical 

discussion of the motion of two, interacting trapped ions, with 

ernpha.sis on the implications for precision mass spectroscopy. The 

overall results: the dominant errors, from ion-ion perturbation and 

special relativity, can be held below a part in 1011. 
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Chapter 2 Apparatus and Analysis  
Technology 

The apparatus used in our experiment has not changed very 

much since Robert Weisskoff wrote his thesis two years ago. 

Accordingly, this chapter will include only a brief overview of the 

basic machinery, with particular emphasis on modifications made 

since the spring of 1988. For further details see the theses of 

Weisskoff [WE1881 and of Flanagan [FEA87]. 

Our trap hangs vertically in the bore of an 8.5T 

superconducting Oxford magnet (Fig. 2.1). The magnet is fitted with 

superconducting shims and a custom Dewar in the bore which 

allows us to cycle the trap from room temperature to 4.2K while 

keeping the magnet itself cold. The main electrodes of the trap 

are precision-machined oxygen-free high-conductivity copper, 

plated with gold and coated with a layer of graphite particles 

(Aquadag) to minimize patch effects. The three main electrodes 

are spaced by machinable ceramic (MACOR) rings on which are 

painted guard ring electrodes, used to shim out higher-order 

electric field components. The lower guard ring is split into halves 

to permit both driving the radial modes of the trapped ion and also 

coupling the three modes one to the other (Fig. 2.2). The trap has a 

minimum endcap-to-endcap spacing of 1.2 cm, and a minimum 

radius of 0.696 cm, giving and effective trap size d = (z02/2 

+p02/4)1f2 = 0.549 cm. Guard rings are of the orthogonal design 

invented by Gabrielse [GAB83]. The trap is inside a copper vacuum 

can, which cryoadsorbs to ultrahigh vacuum, but there is a line-of- 
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Fig. 2.1 The overall physical arrangement of the trap, the 
magnet, and the SQUIB detector circuit. 
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Fig. 2.2 The Penning nap, with field emitter mounted. The 
trap is axially symmetric, except that the lower guard ring 
electrode is split into halves to permit driving the radial 
modes. 



sight path through a hole in the center of the upper endcap up the 

pumpout tube to a room-temperature gas-handling manifold. The 

vacuum can and pump-out tube are immersed in liquid helium. 

Ions are created in situ from neutral gas admitted from above 

colliding with electrons which enter the trap from a field-emission 

point just below. 

The ion's motion is detected via the image current induced in 

th;? upper endcap. The detection circuit, described in detail in 

CWLB88 and WEI881, includes a superconducting tank circuit 

(Q=25,000) and an rf SQUID. When the axial motion of a single ion 

is in resonance with the detector, the real part of the impedance 

damps the ion's motion with a l / e  amplitude time constant that 

scales with the ion mass: = (0.21 sec)(M), where M is the ion 

mass in amu. A single N2+ ion, for example, damps in 6 seconds. 

The ion sees an effective noise temperature from the detector of 

about 15K, which is then the cooling limit for the axial motion. 

Detector signal-to-noise is adequate to detect a single ion driven to 

1/4 of the trap size with less than one half second of averaging. 

Pulse Sequencing and Data Acquisition: Wares both Hard ~ n d  Soft 

Our more intricate measuring schemes involve driving the 

ions with several pulses, at different frequencies, administered 

with precise timing, followed by recording of the ion's response in a 

way which is sensitive to the phase relations between the pulses 

and the resulting ion motion. Small wonder a computer figures 

prominently in the requisite electronics. 



The excellent data acquisition software left to us by Robert 

Weisskoff [WE1881 has been augmented in several ways. First, the 

programs have themselves been made programmable, in the sense 

that whole series of little experiments can be performed while the 

graduate student is asleep, at play, or (more typically) trying to 

figure out what to do next. More important, Weisskoffs "Transient" 

program has been generalized to permit any number of driving 

pulses to be applied to the ions, at various frequencies, in a 

completely flexible way, before the resulting transient in the ion 

signal is recorded. 

Fig. 2.3 shows a schematic of the ion driving and detecting 

electronics. Note that the frequency synthesizers, the analog-to- 

digital converter and the pulse controller are all phase-locked to 

the same 10 MHz stable clock. The frequency synthesizers are 

always set to generate integer frequencies. This means that once 

one has arbitrarily picked a point in time, one second later and 

every integer number of seconds thereafter the synthesizers will all 

have the same phase as they had at initial arbitrary point. When 

we do phass sensitive measurements, the beginning of each pulse- 

and-detect sequence is triggered by a 1 Hz square wave, thus 

ensuring the reproducibility or" the initial phase of each synthesizer. 

Fitting Routine for the Phase and Frequency 

Most of the data we take is in a pulsed mode -- we have 

driven the ion's axial motion suddenly, either directly or via a pulse 

of energy coupled from a radial mode, and we take data during the 

few seconds i t  takes for the motion to damp. The signal (Fig 2.4a), 
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Fig. 2.3 A schematic of some of the electronics for driving and 
detecting ions. Not shown: electronics for "killing" bad ions. 



0 1. 5 3. 0 4.5 

T I M E  [SECI 

12 15 18 

FREQUENCY CHZI 

Fig. 2.4 (a) The signal from a single ion that has been excited 
into an axial orbit of initially 1/5 the trap size. (b) A portion 
of the discrete Fourier Transform of t&e signal. The two peak 
bins, A,, and Ano+ 1,  are used to determine the central 
frequency and initial phase and amplitude of the ion signal. 



an exponentially damped sinusoid, is always buried in a lot of noise, 

from which we want to extract three values: the initial amplitude, 

the initial phase, and the central frequency. A fourth parameter, 

the damping constant, is necessary to describe a damped sinusoid, 

but the damping may be independently determined and does not 

vary much from shot to shot. 

One approach to reducing the data would be to use a 

nonlinear fitting routine, adjusting initial phase, amplitude and 

central frequency to determine a damped sinusoid shape which 

best fits the data. Although conceptually simple, this approach is 

computationally disastrous. 

It turns out to be far better for us to use a discrete fourier 

transform (DFT) to separate the wheat from the chaff. A typical 

transform of four seconds of signal from a single ion ringing down 

contains only two or at most three bins of information 

distinguishable from the noise (Fig. 2.4b). If we include both the 

real and the imaginary part of the transform, the values in the two 

highest bins include four real numbers worth of information. If 

the original input has adequate signal-to-noise, we can use these 

four numbers to determine the central frequency to better than a 

bin width and to extract the initial phase and amplitude with a 

technique free from DFT "windowing" errors. For a very clear 

explanation of the pitfalls inherent in DFT data analysis, see for 

instance [WEISS]. 

The input signal has the form 

z(t) = Re (B ei21tvt-yt) + noise (t) 
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from which we wish to determine the phase and magnitude of the 

complex amplitude B and the central frequency v,  given that we 

already know the damping y. We will ignore the noise in this 

treatment, although of course it causes scatter in our final results. 

The initial data set is a series of N voltage measurements, recorded 

over time with a sampling rate fsamp: 

where N is the number of data points, tm = m/fsamp k=Nv/fsamp, 

and P=Nyl(2nfsamp) 

The DFT converts the N initial real values to N/2 complex 

amplitudes as shown: 

Plug in zm and carry out the summation: 

Since we are only interested in the peak value of An, which 

we will call Ano, and in the neighboring bins, which we will call 

An-1 and An+l,  we write the frequency k = k, + &, with I&l < 112 and 

k, an integer. We expand the exponential in the denominator and 
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ignore the B* term, a good approximation as long as N >>2n and the 

peak bin no is not too near either side of the spectrum, i.e. (N/2-no) 

>> 1, and no >>I. 

Now to determine E from the peak bin and the larger of the An+l  

and An-1, take the ratio a = (IAno~2/IAn+/-1 1 2 )  and solve: 

112 
e =[-(&I) f (I  - (a- 1?p2+(a- I))] /(a- 1 )  

Where the upper (lower) sign corresponds to the case that A,+1 

(An-1) is larger. Once we know E ,  it is easy to solve equation 2.3 for 

the initial complex amplitude of,--the sinusoid: 
.." 

Of course, B can be expressed as an initial phase and amplitude, and 

the central frequency is just v = fsamp (no + E)/N. Since B and v 

together are only three real numbers, and since real and imaginary 

parts of the two peak bins are four real numbers, there is some 

redundancy, which can be useful. If there were no noise, and if the 

signal were purely a damped sinusoid, certain relations would hold 
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among the real and imaginary parts of the four peak. bins. Assume 

for definiteness that the upper sidebin is the larger. We use B and E, 

which we determine using the magnitude but not the phase of 

A n + l ,  to predict a value for Re (An+l) (Eqn. 2.6). We compare the 

predicted value with the actual value and use the normalized 

difference, (6 Re (A,+1))2/IB12, as a measure of the "goodness of fit." 

Routine to Fit the Two-Ion Difference Frequency 

Another analysis trick worth describing here is a technique to 

extract the difference frequency from two simultaneously recorded 

signals such as we detect when we have two simultaneously 

trapped ions. As explained in chapter V below, when two ions are 

trapped simnltaneously, their interaction is nonlinear and thus 

their frequencies will be amplitude dependent, but under certain 

conditions the difference frequency will not. The input voltage 

might look like ZT = zl  + z2, where the two components are: 

zl = We A1 exp(2ni(vl+f(t))t - yt) 

z2 = Re A2 exp(2ni(v2+f(t))t - yt) (7) 

where f(t) represents a frequency shift over time that both ions 

undergo. Thus at any moment the instantaneous difference 

frequency, v l  - v2, is a constant. 

The simplest way to recover v 1 - ~2 from the signal is to 

square the data in the time domain: 

(zT)2 = . . . + B1 B2* exp{ 2xi(vl-v2)t -2yt 1 + c.c + . . . 



so that when we take the DFT of z ~ ~ ,  there will be a clean, single 

frequency peak in the spectrum at v,l-v,2. The central frequency 

and even the difference in the initial phase (BlB2*)/IB 1B2l may be 

extracted using the debinning technique outlined in the section just 

above. The problem is that squaring data wastes information -- 

decreases the signal-to-noise, and in practice the difference 

frequency peak will not emerge above the noise in the DFT of ZT. 

We get around this problem as follows: First, we use the DFT of ZT to 

compute the DFT of Z T ~ .  If we write 

N/2 -1 

z T m = l  Z [~,e2zinmm+ c.c.] 
2 n-o , then 

N/2 - 1  

zTm2 = 1 X [ck e2nikmM + C.C] 
2 k=o , where 

We see here the "physical" origin of the increased noise after 

squaring the data: For most values of n, An is just noise, but the 

squaring operation folds this noise into the bins of Ck that contain 

the desired signal. In our application, the amount the frequency of 

each ion shifts as it damps is equivalent to only six or seven 

binwidths in An, depending on the size of the initial excitation and 

the time span of data recorded. The signal for the two ions, then, 

appears in two sets of seven contiguous bins each in An, and 

nowhere else (Fig. 5.5a). The computer is trained, when performing 
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the summation (Eqn 8), to include only the bins of An that contain 

signal. This minimizes the noise in the final result. (Fig 5.5b). 

Shielding 

The SQUID detector is an extremely sensitive nonlinear 

device, and external electromagnetic noise at any frequency can 

manifest as noise at the signal detection frequency. To attain the 

very low noise level necessary to see a single ion, shielding out 

noise across a broad spectrum is necessary. Any of the half dozen 

cables attached to the apparatus is potentially an antenna, and 

higher frequency noise can penetrate the poorly conducting 

stainless steel Dewar walls and enter the detector directly. 

Working to understand the sources of noise and to shield 

systematically and rationally has been very frustrating. Since the 

level of noise in o u r  lab varies from minute to minute and from day 

to day, i t  is really hard to convince oneself that a particular 

component of the shielding is doing any good, or even that it is not 

doing harm. However, two recent modifications to the shielding 

seem to be big improvements (Fig. 2.5). First, a superconducting 

lead foil bag now completely surrounds the boxes that hold the 

tank circuit and the SQUID sensor. Soldered around the end of the 

SQUID probe tube at top, and around the tube shielding the twisted 

pair leading to the trap below, the foil bag is very nearly water 

tight. All seams are soldered shut (the solder should form a 

superconducting joint) and any holes are meticulously patched with 

additional foil and solder. Only two holes breech the bag, small 

pinholes at the top and bottom of the bag to allow liquid helium to 
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Fig. 2.5 A sketch of additional noise shielding added to the 
SQUID detector circuit. 



flow in and out freely. The pinholes are tucked back into folds in 

the foil, which should serve to cut off any radiation trying to 

propagate through the holes. The lead bag itself is wrapped in a 

layer of aluminum foil, but we have come to mistrust the shielding 

properties of aluminum fo~l ,  and we think of the foil as a sheathing 

to protect the lead from tears, and not as additional electricai 

shielding. 

A second helpful modification is a large copper box which 

surrounds the SQUID rf head and its cabling. We now distrust the 

noise seals on the af head and on the jacks used to connect the rf 

head to the cables leading to the SQUID sensor and to the control 

electronics. Additional copper braid augments the shielding on the 

SQUID cabling. 

Where we think it, might be helpful, cables leading to the 

apparatus are wrapped through a torrus of highly permeable 

material (Fair-rite) to suppress common mode rf noise. 

All in all, the current version of the shielding looks like a 

desperate overdesign, but it works. Often noise levels on the SQUID 

are acceptable for weeks or months on end. 

External Magnetic Field Monitoring Station 

Fluctuations in the external magnetic field cause error in our 

measurements (see sections 3D and 4C, below) and will continue to 

be a big problem until we install self-shielding coils [GAT88, and 

VMF861 or get the two-ion techniques working. Until then, we 

want to monitor the vertical component of the magnetic field as 

reliably as possible. The current situation, with a flux-gate 
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magnetometer probe mounted on a partition wall about three 

meters from the magnet, is not very satisfactory. For one thing, 

fluctuations from sources within the lab building may well vary 

considerable across the several meters from probe to trap. For 

another, the partition is made of soft steel, and its magnetic 

permeability may affect the field seen by the probe. 

Both problems would be solved if we could mount the 

magnetometer on a stand near the experiment's Dewar. 

Unfortunately, the fringe fields from the superconducting solenoid 

are large enough to drive the magnetometer reading off scale if the 

probe is any closer than about three meters ts the magnet. We are 

currently building an apparatus to overcome this problem. A solid, 

mechanically stable stand will incorporate a smaller solenoid coil of 

its own to null out the fringe fields immediately around the 

magnetometer probe. The stand and the stable current source for 

the solenoid are completed, and the solenoid itself is under 

construction. 

Gas Handling System 

The room temperature gas handling manifold, used to prepare 

and dispense the small puffs of neutral gas from which we make 

ions, has been completely overhauled. Up to five different species 

of gas may now be stored in various bottles plumbed directly into 

the manifold. In anticipation of our tritium experiment, much of 

the plumbing is stainless steel. In addition to a conventional oil- 

sealed mechanical pump, there is also an oil-free pump to allow us 
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t~ flush the tritium out of the system without permanently 

contaminating a pump. 

Magnet ic  Field Homogenei ty  

As soon as we had progressed in our technique far enough to 

be able to use the ion itself to probe the spatial inhomogeneity of 

the Oxford magnet's field, (section IV, below) we immediately 

noticed that the field gradients were much larger than we had 

anticipated, larger, in fact, than could be compensated for using the 

superconducting shim coils built into our magnet. The main 

problem turned out to be the field emission point, which was 

mounted on posts constructed not only of tungsten, as we had 

t h ~ u g h t  [WEISS], but of ferromagnetic nickel. Moreover, earlier 

calculations [FLA87] had suggested that the MACOR guard rings, 

which are both paramagnetic and near the trap center, were 

responsible for some portion o f .  the gradients. We replaced the 

field emission point and also installed a thin nickel ring around the 

outer circumference of the central electrode, a ring of size and 

location calculated to compensate for the bulk of the MACOR effect 

(Fig. 2.6). We constructed a current source to charge the Oxford 

magnet shim coils. The shimming procedure is described in section 

4C, below. 
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Chapter 3 Sources ' of Error in Single Ion 
Mass Spectroscopy 

This chapter discusses the sources of error in single ion 

cyclotron resonance mass comparisons. In section 3A I review how 

to correct the trap cyclotron frequency for the effects of the electric 

field in order to determine the free-space cyclotron frequency. 

Although this correction is a large one, it can in principle be done 

exactly and thus is not strictly speaking a source of error in and of 

itself. Section 3B covers the effects of electric and magnetic field 

imperfections and of special relativity. The magnitudes of these 

effects are about a part in 109, but they will typically be the same 

for both species to within a few percent and thus, for a mass 

doublet,? will affect the measured mass ratio hardly at all. Section 

3C covers several miscellaneous sources of error. These effects are 

all small but potentially treacherous because they may vary 

systematically with ion species. Section 3D assesses the errors due 

to the temporal drift in the magnetic field. For single ion 

measurements on mass doublets, drift in the magnetic field is much 

the largest source of error. 

f The mass ratios we are most interested in determining are those 

between two molecules that each have the same total number of protons 

and neutrons, so-caIled "mass doublets." The two molecules in a mass 

doublet will differ in mass by less than a pan in lo3. 
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3A. Correcting for the Electric Field 

The presence of the electric field in our Penning trap perturbs 

the cyclotron frequency by almost a part in 103 -- for part in 109 

mass spectroscopy, the electric field is no small correction! 

Fortunately, there is a theorem, due to Brown and Gabrielse 

[BR@82], relating the free space cyclotron frequency to the three 

measured trap frequencies. 

COc2 = (ac')' + 0 ~ 2  +am' (3.1) 

Here wc', o Z,  and urn are the frequencies measured in the 

(possibly) imperfect trap. This relationship is exactly correct as 

long as the magnetic field is uniform and the electric field is purely 

quadrupole. The magnetic field need not be aligned with the axis of 

the electric field, nor need the electric quadrupole field be axially 

symmetric. 

Because of the inequality a c '  >> OZ >> Om, we see from Eqn. 3.1 

that only act  need be measured to the final accuracy desired, 

6 a c / ~ , .  An error in measuring the axial frequency 6w, contributes 

a relative error of ( ~ , 2 / 0 1 ~ 2 ) 6  w,/w, to the determination of a , .  An 

error in measuring the magnetron frequency contributes only 

( ~ r n 2 / u c 2 ) 6 0 r n l ~ m  

If the trap is neither out-of-round nor tilted, we can 

determine? the magnetron frequency from the other two measured 

t None of the equations in section 3A and 3B is my work. Anything not 
specifically attributed in the text is derived, or at least reviewed, in 

[BRG86] or [WE1881 . I recommend both works; the material is 

summarized here only as a convenience to the reader. 
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frequencies: = o,2/(2wc') .  For a small tilt 8 between the 

magnetic field and the electric quadrupole axis, the magnetron 

frequency is 

om = ~ 0 ~ 2 / ( 2 0 ~ ' ) [ 1  + (9/4)sin% + O (84) 1. (3.2) 

If all three trap frequencies are measured, Eqn. 3.2 may be 

used to estimate the trap tilt angle 8. It is frequently the case that 

8 and 0,2/0,2 are sufficiently small that o m  need not be 

separately measured, and Eqn 3.1 may be approximated as follows: 

o c 2  = (oc1)2 + w,2 + (w2/(20c'))2 (3 -3)  

The relation (Eqn 3.1) does not include the effects of a 

nonuniform magnetic field, nor of a nonquadrupole electric field, 

nor of special relativity. In a physically realizable trap, the effects 

of field flaws and special relativity are always present, and they 

are discussed in the next section. 

3B. Field Flaws and Special Relativity 

If the ion were confined to a infinitesimally small region 

around the center of the trap -- that is, if its cyclotron, magnetron 

and axial radii were all very small -- the ion would have no way of 

knowing that the magnetic field was nonuniform, or that the 

electric field had nonquadrcpole components. Moreover, in this 

small-radii regime, the magnitude of the ion's velocity would 

vanish as well. Therefore, special relativity and field flaws would 

have no effect on the measured trap frequencies. In reality, the ion 

does have some finite motion about the trap center; the imperfect 

fields are sampled; the velocity does not vanish; and the measured 
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trap frequencies will be shifted from their ideal values, the 

perturbation proportional to even powers of the radii. 

This section describes how flawed electric and magnetic fields 

can be characterized by polynomial expansions about the center of 

the trap, and how the frequency shifts resulting from these field 

flaws and from special relativity can be expressed in power series 

expansions of the cyclotron, axial and magnetron radii. Knowing 

the form of these shifts, one can extrapolate to vanishing radii to 

recover frequencies that would be measured in an ideal trap. 

Electric Field Exp~nsion 

Assuming that the trap is axially symmetric,* we can write 

the electric potential in spherical coordinates as follows: 
w 

where Pk are the Legendre polynomials. For the region of the trap 

in which the ion moves, rld is a small number, perhaps 0.2 at most, 

so the expansion converges rapidly. Co is a uniform potential 

without physical significance. C1 vanishes with appropriate choice 

of the origin. C2 is just the desired quadrupole trapping potential. 

The lowest order field imperfections then are C3 and Cq. The trap is 

* The effect o f  small axial asymmetries will be thoroughly averaged away 

by the ion's magnetron motion over the course of a measurement. The 

exception is a tilt of the electric quadrupole axis with respect to the 

magnetic field (discussed in section 3A, above). 

* Well, I lied. It turns out once in a while I need to use spherical instead 

o f  cylindrical coordinates. 
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constructed to be very symmetric with respect to reflection about 

the z = 0 plane, so the C3 component of the electric field, odd with 

respect to reflection across the z = 0 plane, is small. For most 

purposes Cq is the only component of the electric field imperfection 

we need to worry about. If the ion is excited to particularly large 

orbits, as when the axial frequency is being measured, the value of 

Cg can become important. The principal function of the guard ring 

electrodes is to shim out the C4 fields resulting from patches of 

surface charge and from impcrfect trap construction. If C4 has becn 

very nearly nulled out, the effect of the asymmetric C3 may become 

significant (see below in this section and also in Chapter 4C). 

Magnetic Field Expansion, and Ion Velocity 

The magnetic field, like the electric field, may be expanded iri 

components about trap center. We consider only the three lowest 

order axially symmetric terms: 

B = BZ + BI[ZZ - ] + B2[(z2-$12 - z ;] 
The coefficient B is just the uniform trapping field. B1 is 

essentially a linear gradient field and B2 is the second order 

gradient. B1 and B2 may be independently corrected for with 

superconducting shim coils in the Oxford magnet. (See chapter 4B 

below .) 

The special relativistic frequency shift 

6 ~ i / c r ~  i = (I -<v'/c~>)-'/' -1 (3 06) 
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is to lowest order proportional to the mean square velocity. Motion 

in all three normal modes contribute to the total mean square 

velocity 

<v2> = ac2pC2 + (aZ2/2) a z 2  + pm2 C O , ~  . (3.7) 

The cyclotron frequency is so much the highest of the frequencies 

that for most purposes we need consider only the cyclotron 

contribution to the velocity: <v2> = pc2 ~ ~ 2 .  

Effect on Normal Mode Frequencies of "The Big Three" -- B2, C4 and 

Special Relativity 

In most situations, the three largest radius-dependent 

perturbations are the B2 magnetic gradient, the Cq electrostatic 

component, and special relativity. I recapitulate here the results 

from [BRG86] concerning the effects of these three perturbations, to 

second order in the mode radii. The results are readily expressed 

in matrix form: 

where the matrix D is given by 
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(Eqn. 3.9) 

I have already simplified this matrix somewhat b l  not 

including the velocity associated with the axial and magnetron 

motion in the special relativistic shift (represented in Eqn 3.9 by 

the terms with c2 in the denominator). Many of the other terms are 

also absolutely negligible. Since we are interested in the frequency 

shifts of the axial and the magnetron modes only in as much as 

they affect our final determination of the free space cyclotron 

frequency, let's look at another matrix: 

here the notation b C~I~ /CO~[CO~]  refers to the portion of the error in 

determining a, contributed by the error in measuring the 

perturbed frequency of the ith mode. As explained in section 3A 

above, the contribution to the final error from the measurement of 

the axial frequency is down by rnZ2 /ac2  and from the magnetron 

frequency, by rnm2/ac2. To get D' from D, multiply the first row of 

D by 1, the second row by a ,2 /ac2  and the third row by m,2/rnC2. 
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This matrix notation is very compact, but potentially misleading, 

because it  leads one to believe that there is a single vector, 

(p c , a z , p m )  that describes the mode radii during the frequency 

measurement of all three modes. Actually, for any given 

measurement, the two modes which aren't being measured have 

only thermal motion, while the measured mode's radius has been 

driven to a much larger value. (See section 4G). So we must use a 

different set of radii to calculate the error associated with each 

different mode. Because the measured mode's radius is always the 

largest, it is the diagonal elements of D' that contribute most of the 

error. In Tables 3.1 and 3.2, I evaluate some experimentally 

useful numerical examples of the matrix elements Dlcc and DfZz. 

In the particular case of our measurement of M(CO+)/M(N2+), 

only the elements DLc and DwZz contribute errors larger than five 

parts in 1011. But in writing out D' I preserve several smaller 

teams for illustrative purposes explained below. 

For determining the mass ratio of a doublet, (see the footnote 

on the first page of Chapter 3, above) the size of the average 

perturbations, given by the matrix D', is not the key issue. If a 
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perturbation is constant and identical for the two ions, it affects the 

ratio hardly at all. There are two important questions then: First, 

!low much scatter do "thermal" fluctuations in p c, ac, and p,, cause 

in a particular frequency from measurement to measurement. It is 

the size of this scatter that determines the number of times a 

frequency must be measured to reach a desired precision. Second, 

how does the average value of the radii vary systematically with 

ion species? Any systematic variation is obviously very worrisome. 

Thermal Fluctuations in Radii 

It is  easy to predict the thermal fluctuations in the mode 

radii, although it is hard to verify them experimentally. In theory 

it should be like this: The axial motion is coupled to the tuned 

circuit, and it comes to equilibrium with the effective temperature 

of the circuit, T,. Mode coupling pulses applied at the cyclotron and 

magnetron coupling frequencies will reduce their temperatures, Tc 

and Tm , to the pi-pulse cooling limit: Tc= ( o  c / o  ,) T,, and 

Tm =(Om/OJz)Tz (see e.g. [CWBBO], reprinted as section 4B, below) 

These temperatures correspond to the following thermal radii: 

p c b  = <pc2>1/2 = [ ( 2 T z ) / ( ~ Z ~ c m )  1112 = 1.3~10-3 cm. 

Pm& = <pm2>'f2 = [ (2T,)/(w,ocm) = 1.3~10-3 cm.  

pzth = <pZ2>1f2 = [ ( 2 T Z ) / ( ~ , ~ , m )  = 7x10-3 cm. 

The quoted numerical values are for single mass 28 ions in 

our trap, in which TZ is about 15K. (Amplifier noise prevents the 

axial mode from coming into equilibrium with the 4.2K liquid 

helium bath). 

The two modes whose frequencies are not being measured 

have thermal radii. The mode being measured has been driven by 
CHAPTER 3 
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a short pulse to some larger value, perhaps 20 times the thermal 

radius. The thermal radius that the driven mode has just before 

the driving pulse is applied adds vectorially to the effect of the 

drive pulse, so the variance in the square of the driven radius is 

just 2po pth, where po is radius the driven ion would have in the 

absence of initial thermal motion. 

The measurement-to-measurement variation in the mean 

square radius depends on the mode due to the specific 

measurement procedure which we employ. When we measure for 

example the trap cyclotron frequency, we observe how much 

cyclotron phase evolves during a long period of time between two 

widely separated pulses (In the case of the M(CC/+)/M(N2+) 

measurement, the pulses are separated by up to 65 seconds.) 

During the measurement, the axial motion remains coupled to a 

thermal bath via the tuned circuit. Thus although the scatter in the 

initial axial radius is the ful l .  thermal value, the axial radius 

reequilibrates with the thermal bath 22 times in the course of the 

measurement, so the scatter in the square of the axial radius, 

averaged over the whole measurement period, is not p Z t h 2  b u t  

pzth2/(22) 

The magnetron radius, on the other hand, is not coupled to 

the thermal bath (except when we deliberately apply the mode 

coupling fields, as we do before each sequence of measurements). 

So no matter how long a cyclotron measurement takes, the scatter 

in the mean square magnetron radius is just the thermal value, 

pmth. In fact, unless we deliberately cool the magnetron radius in 



the middie of a series of cyclotron measurements (we don't, as a 

rule), the magnetron radius remains constant, and thus error 

proportional to p m 2  will not average away over the series of 

measurements. The case of the cyclotron radius is intermediate 

between the case of the axial and of the magnetron radii. The 

cyclotron radius does not couple to the thermal bath during a 

particular measurement, but the process of reading dut the 

cyclotron phase after each measurement reequilibrates the 

cyclotron motion with the thermal bath, so that the scatter in the 

p,-dependent perturbation is reduced by the square root of the 

number of individual cyclotron measurements made. 

Some numerical examples of the size of thermal effects are 

presented in Tables 3.1 and 3.2. 

Systematic Dependence on Species 

If we average away thermal effects, are the two ions always 

measured at exactly the same radii? A systematic difference could 

arise in several different ways -- frequency-dependent driving 

amplitudes, background-pressure effects (see section 3C, below), 

leakage drive from an a.m. radio station resonantly heating one 

species more than the other, etc. Experimentally, every phase or 

frequency measurement we make yields an amplitude 

measurement as well, and we can verify, by averaging many of 

these measurements, that any species-dependent amplitude change 

is less than 3% for N2+ and CO+. This means that a systematic error 
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from perturbations proportional to the radius squared must be less 

than 6% of the the average value of the perturbation. 

Numerical examples are presented in Tables 3.1 and 3.2. 

Cancelling Relativistic Perturbation of the Cyclotron Frequency 

There is no fundamental reason why we can't adjust C4 and B2 

to be as small as we like, and thus minimize the effects of field 

flaws. But we have no knob we can turn to eliminate special 

relativity. We have, however, considered a scheme to cancel out 

the effects of relativity by intentionally leaving residual field 

gradients. Notice the first row of the matrix D. (Eqn. 3.3) If we 

adjust C4=O and & = - W ~ ~ / C * ,  the cyclotron frequency becomes 

independent to second order of pc. 

Further, with the appropriate choice of B;? and Cq, it is possible 

to make mc independent, to second order, of both the cyclotron and 

the magnetron radii. Such a configuration may be particularly 

useful for two-ion cyclotron resonance, during which the magnetron 

orbits are quite large, and the average relativistic shift is a hundred 

times larger than the desired final accuracy. This will be discussed 

in Chapter 5, below. 

Frequency Shifts from Potentials with O.dd Symmetry 

The B1 and the Cg field components, because of their odd 

parity, contribute to frequency perturbations in second order, i.e. as 

B 12, C32, or l31 C3. For instance, the p,*-dependent effect of B 1 o n  

the trap cyclotron frequency is 6 w ~ ' / o ~ '  = ( a c 2 / m Z 2 ) ( ~  */2)p ,2. 
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The az2-dependent effect of C3 on the axial frequency is 8mz/mz = 

(- 15/1 6)(C32/d2)az2. 

B l  can be accurately measured and shimmed (See Chapter 4) 

to a point where its effect is negligible. Unfortunately, it is difficult 

to measure C32 independently from Cq, which may make it difficult 

to perform the delicate adjustment of Cq necessary to implement 

the relativity-cancelling scheme suggested above. 

E'ec t s  Proportional to Higher Powers of the Mode Radii - -  And 

Summary of Radius-Dependent EfSects 

The field components of higher order than Cq and Bz give rise 

to frequency shifts in most combinations of even powers of the 

mode radii -- az4, az*pc2, pm6, whatever. A thorough analysis of all 

these dependencies becomes very tedious, but we are saved by the 

simple fact the expansion parameters (pi/d)' are very small, and 

thus the fourth and higher order perturbations are correspondingly 

much smaller than the quadratic perturbations. 

The one exception to this rule is the quartic dependence of oz 

on aZ, which we will discuss in Chapter 4C. 

I will conclude this section by emphasizing two crucial points: 

First, all the perturbations due to field imperfections and special 

relativity vanish quadratically in the limit of very small mode radii. 

Thus if we extrapolate frequeilcy measurements made at various- 

sized radii down to vanishing radii, we recover the ideal frequency 

values. Second, for the purpose of determining tne mass ratio of a 

doublet, there is no need to explicitly perform the extrapolation, as 
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long as we are convinced the frequencies of the two different ion 

species are measured at nearly identical radii. 

Section 3C. Miscellaneous Little Effects 

Unseen Impurity Ions 

The effects of impurity ions trapped along with a single ion 

are usually quite obvious. The axial frequency is anharmonic and 

unstable, and magnetron cooling seems ineffectual. We go to great 

lengths to eject the impurity ions, and we are confident that we 

usually succeed. After performing the ion purification routine (see 

Chapter 4), we are rewarded with a stable and well-behaved ion 

that shows no sign of being affected by impurity ions. Sometimes, 

however, the bad ion seems to "reappear", in the form of 

observable instability in the good ion, perhaps some 10 to 15 

minutes after completion of the purification routine. The timing of 

the bad ion's return leads us to believe that the bad ion was never 

completely ejected from the trap, but rather inserted into a very 

large orbit, where it did not significantly perturb the good ion. 

Over the course of ten minutes the bad ion cooled, (perhaps via 

collisions with neutral gas or via weak interactions with the 

resistively cooled good ion,) until its orbit was small enough to 

allow it once again io manifest its presence by perturbing the good 

ion. 

It is very rare for a bad ion to resurrect itself after more than 

about 15 minute's absence from view. A series of precision 
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cyclotron measurements takes 30 minutes, and we habituaily 

assume that if no instability disturbs the good ion over these 3 0  

minutes, then measurements made on that ion are free from bad 

ion perturbations. 

Our assumption that absence of instability implies absence of 

perturbations carries a risk. The possibility exists that the 

purification process drives bad ions into some very large orbit, a 

sort of Oort cloud if yo11 will, out of which the bad ions do not cool 

in the course of 30 minutes, and that the separation is such that 

although the trap frequencies do not exhibit instability, they are 

unacceptably perturbed from their single ion values. 

This is a rather conspiratorial scenario and although we can 

not discard it out of hand, we c a n  say that the effect of the Oort 

cloud ions is not very large, or not very large very often, or it 

would have appeared as scatter in our ion mass comparisons. 

Residual Neutral Gas Atoms 

During the course of several days measurements, we load new 

ions into the trap a dozen or more times, injecting perhaps 102 ton- 

cc into the high vacuum system. Most species of atoms and 

molecules have completely negligible vapor pressure at 4.2K, and 

thus the residual pressure in the trap remains below 10-12 tom. At 

this pressure, interactions between trapped ions and background 

neutral gas will affect the measured frequencies not at all. But in 

the particular case of measurements on hydrogen and helium atoms 

there is some cause for concern. The bulk vapor pressure of helium 
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(760 torr) and hydrogen (approximately 10-7 torr) at 4.2 K are far 

too high to permit precision trap measurements. We rely on the 

fact that the vapor pressure of thin films of molecules adsorbed on 

surfaces is usually much lower than for the same molecules in bulk. 

As long as we admit only small quantities of gas, the gas should 

distribute itself thinly over the available cold surfaces, and the 

residual vapor pressure should be acceptable. 

How low must the vapor pressure be to be acceptable? One 

major concern is that there be no hard, cyclotron-dephasing 

collisions occurring between the pulses of the separated oscilIatory 

fields measurement of the cyclotron frequency. If the ion has a 

cross section a for a hard collision with the dominant species of 

background gas, then during a s.0.f. measurement of duration T  the 

ion sweeps out a volume c ~ p ~ w , T ,  where pc  is radius of the initial 

cyclotron excitation. We require that there usually be no neutral 

atom in this volume. For a precision measurement on a mass 3 amu 

ion, with an approximate cross-section CJ = 10-14 c m2, this 

requirement is met if the density is  lower than 107 n e  u t r  a1 

molecules/cc, which is to say, if the pressure at 4.2K is lower than 

3x  10-12 tom. 

Less obvious (and more insidious) are the effects of grazing 

collisions. It takes some time for the pressure to reequilibrate 

after each burst of atoms is admitted into the vacuum system, time 

for the neutral atoms "find their niche". The pressure in the system 

during the equilibration period will most likely differ depending on 

whether, say, helium-3 or tritium has just been loaded. If the 



pressure is Tow enough that there are seldom hard, dephasing 

collisions, but high enough to slightly damp the amplitude of the 

cyclotron motion, cyclotron frequencies for the two species will be 

measured at different average radii. This raises the specter of a 

measurement error with systematic dependence on species. If we 

do wind up making a mass 3 measurement, some thought should be 

put into ruling out gressure-dependent frequency shifts. 

Tuned Circuit Pulling 

The tuned circuit coupled to the ion's axial motion not only 

damps the axial motion but also shifts its frequency slightly. Since 

the ion's coupling to the detector is weak, (the damping time for the 

ion '6z is much greater that the damping time for the detector Zcoil) 

the magnitude of the ion's frequency shift is small and proportional 

to the imaginary component of the circuit's impedance. If the ion's 

detuning from the circuit's resonance is small, (Ocoil - OZ) << l/+Tcoil, 

the resulting shift in the axial frequency is given by [WE1881 

602 = - ( ~ z  - acsil) (%oil / Zz). 

For example, an N2+ ion has a 'damping time of 7 ,  = 6 seconds, 

while our resonant detection circuit damps in Zcoil = 43 msec. If we 

were particularly sloppy in tuning the axial frequency to the circuit 

frequency, we might have ( a Z  - 0 ~ ~ i l ) / 2 ~  = 1.5 Hz. The resulting 

shift in the axial frequency is then on the order of a few mHz, 

which contributes a relative error to the free space cyclotron 

frequency of less than a part in 1010. 
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Patch-Effect Shifts 

Please see section 4F for a description of this source of error. 

Though only a problem at the part in 1011 level for mass doublets, 

it can cause significant error in measurements on non-doublets. 

1II.D Temporal Changes in the Magnetic Field 

Our approach to comparing masses by comparing cyclotron 

frequency measurements rests on the assumption that the magnetic 

field remains constant. The field at the center of our trap is n o t  

constant, and it is the uncertainty in the field change that is the 

dominant source of error in our experiment. Specific details of the 

causes and consequences of the field drift are presented in Chapter 

4E, but a few general comments are appropriate here. 

If the field variations were very smooth, if they could be 

represented by say a linear or a quadratic in time, we could readily 

remove the field variations from the data; the variations would be 

no limit on our overall accuracy. If, on the other hand, the field 

variations were totally uncorrelated, just normally distributed 

scatter about an average field value, we could make N 

measurements on one ion and N measurements on the other, and be 

able to determine -- in a completely orthodox way -- the error in 

our average difference frequency. 

When we fit the cyclotron frequency data to two offset 

smooth curves, (Chapter 4F, 4G) our initial estimate of the error is 

based on the assumption that the field variations are accounted for 

by a "linear combination" of these two extremes: uncorrelated 
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scatter on a smooth underlying drift. If the actual field behavior is 

more complicated -- in the conspiratorial worst case the field varies 

in a square wave with phase and frequency commensurate with 

our ion swaps -- our naive initial estimate may understate the 

error. 

I emphasize that temporal variations in the magnetic field 

have several causes, and that it is difficult even to a priori estimate 

their relative contributions, let alone compensate for them. We are 

confident, however, that the magnetic field variation is in no way a 

systematic effect. We take great care to avoid doing anything that 

might change the magnetic field in a way which is correlated to ion 

species. On the other hand, to the extent that the field changes 

have a random effect, the obvious way to estimate their magnitude 

is to use the scatter in our data. Our approach has been to collect 

several sessions of data, average the results using our preliminary 

error estimate as a weighting function, and then set conservative 

error bars based on the scatter. 

For example, in section 4G (the CO+/N2+ comparison) our error 

bars encompass the values from all three runs, whether the 

magnetic field drift is fit by a linear, quadratic or cubic polynomiai 

(the one exception being the results of the linear fit to run #1, a fit 

whose paorness is manifest in the large error bars assigned by the 

fitting routine). See Table 1 at the end of section 4G. See chapter 

4E for further discussion. 
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3E Single Ion Error -- Conclusion 

The main result of this chapter is that, for the time being, 

magnetic field temporal instability is the major source of error in 

comparing the masses of doublets. We have considered a large 

variety of other frequency perturbations, and found them all to 

have an insignificant affect on mass doublet ratios. To review: 

The presence of the electrostatic quadrupole field perturbs 

the cyclotron frequency in a very well understood way, which can 

be corrected for to very high accuracy. L[BRG83] 

Frequency shifts having to do with spatial inhomogeneity of 

the fields and special relativity are small, less than a part in 189, 

and moreover are the same to much higher accuracy for both 

members of the doublet. This conclusion has been subjected to a 

number of experimental tests, the. most crucial of which I cover in 

section 4C. 

A variety of smaller effects, some quite exotic, have been 

analyzed, and in some cases investigated experimentally, and are 

shown to cause insignificant error. 

Not covered so far in this chapter, but worthy of dispatching 

here, ale several possible objections which are not a source of 

concern at all: 

Although the cyclotron frequency is measured by a phase- 

sensitive technique, (see Section 4B) the measurement is not 

sensitive to accumulated phase shifts, whether in the driving 
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electronics, the detection electronics, or in the phase read-out 

routine. This is because we measure the frequency from the 

change in measured phase with respect to the length of a time 

delay. 

Another potential concern is that the physical process of 

changing from one ion species to another induces some systematic 

change in the trapping fields. We go to great lengths to avoid any 

such shift and are quite confident that none occur. Any r a n d o m  

change in trapping fields with the injection of a new ion, while 

undesirable, manifests itself as increased scattcr in the 

measurements and is duly incorporated into the error estimate. 

Incidentally, in our earlier experiments we did see large (perhaps 

part in 108) and unpredictable cyclotron frequency jumps when we 

switched from one ion to another. But we were able to reduce the 

size of these jumps to the point of undetectability (parts in 1010) by 

reducing the residual magnetic field gradients and by modifying 

our procedure for loading ions in such a way as to avoid physically 

bumping the apparatus during the ion interchange procedure. See 

Section 4F, and Fig. 4.9 for some data taken with this particular 

concern in mind. 

Thus it is reaiiy only ungredictabie changes in the magnetic 

field that contribute significantly to the overall comparison error. 

But we expect that two ion cyclotron resonance techniques will 

reduce the effect of field jitter to the point where we will once 

again have to worry about field inhomogeneity, special relativity, 

the "pulling" effect of the tuned circuit, and so on. 
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An overall accuracy of 4 parts in 1010 is not necessarily the 

limit for single ion cyclotron resonance with our apparatus. There 

is always the possibility of simply taking more data. With perhaps 

a week of nighttime runs, it should be possible to reduce the field 

jitter noise to perhaps 2 parts in 1010. We considered a project like 

that for our carbon monoxide-nitrogen measurement but decided 

against it because half a part per billion seemed good enough, for 

the time being, and because we anticipated advances in field 

stabilization and two-ion resonance techniques. 
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Table 3.2. Effect, to second order, of axial amplitude on axial frequency, and the 
corresponding error introduced into the determination of the cyclotron frequency (by 
Eqn. 3.11). The axial amplitude a, = 0.13 cm. The thermal axial motion, azth = 
[2kTZ/(mo,2)] 112. 

The values "now" are lCql < 5x10-5, 'Zz = 15K, and the maximum systematic 
difference in axial amplitudes for the two species is 8az/az < 3%. 

The values "soon" are IC4I < 1.5~10-5, T, = 5K, and 8az/az < 1%. 



Chapter 4 Techniques and Results 

Section 4A Catching a Single Ion 

Catching am Ion, Tuning the Trap 

When the ring and guard-ring voltages are correctly set, 

when the protocol for getting rid of impurity ions is in order, and 

when all the electronics are all working well -- in short, when 

everything is tuned up -- trapping a single ion is the work of less 

than half an hour. But getting to that well-tuned state may take 

weeks or months, even understanding the apparatus as well as we 

do now. 

On a typical well-tuned day, the procedure for trapping a 

single ion is as follows: Briefly reverse the voltage on the trap to 

remove any ions left-over from previous experiments. Fill the gas- 

handling manifold with the appropriate pressure of the desired 

species of gas. Turn on the electron gun and leave it on a few 

seconds while admitting the neutral gas into the cryogenic region of 

the apparatus. Reduce the voltage on the lower endcap for 1 
. , . . 

second, "dip" the ions, as we say, to allow most of the newly created 

ions to escape. Verify, by pulsing the axial motion and seeing how 

large a transient signal results, that of the desired species only a 

single ion remains. Run an automated purification routine which 

excites the axial motion of impurity ions with white noise (band- 

limited, so that the axial motion of the good ion is not excited) and 

then digs the ions, so that only the good ion remains in the trap. 

Finally, apply a coupling drive at the axial-magnetron cooling 



frequency to remove the magnetron excitation that often results 

from the purification routine. The whole procedure should take 

only 20 minutes, 45 minutes at the outside. 

Unfortunately, when the trap is reinserted in the magnet 

after a round of repairs or modifications, it is not in a well-tuned 

state. The Ping voltage, the guard-ring voltage, the correct endcap 

voltage for "dipping" the: ions very close to the lower endcap, and 

even sometimes the efficiency of the cryogenic electronics all 

change from cool-down to cool-down. It is hard to adjust the 

guard-ring voltage when there are impurity ions present, and it is 

hard to eject the impurity ions when the guard-rings are mistuned. 

Tuning up the trap is a process of inspired guessing which may take 

dozens of working sessi0ns.t 

Other Ion Species -- the Patch Effect 

Once we have managed to tune the trap for one species, 

usually N2+, tuning the trap up for other ion species is much easier. 

We find that for a well-tuned trap, the voltages for the ring and the 

guard ring electrodes are given by 

Vring = m(wz2d2/e) + Vdngpatch 

Vguardring = m(az2dgr2/e) + Vguardringpatch 

f We are considering a modification to the apparatus which will allow 

externally produced, mass-selected ions to be injected into the trap. This 

might greatly simplify the tuning problem by insuring that there are no 

bad ions in the trap from the start. 



where dgr is a constant with dimensions of length that sets the 

slope of the guard-ring potential with respect to ion mass, and d 

becomes the measured trap size (as opposed to the machined trap 

size, defined in Fig. 1.1). Vcingpatch and Vguardringpatch are 

voltage ~ffse ts  which vary from month to month. In ihe absence of 

any better understanding, we call these offsets "the patch effect". 

lVringpatchl is usually on the order of 30 or 40 mV, and changes 

discontinuously when the trap is warmed to room temperature and 

recooled. lVguardingpatchl can be as large as 200 mV and is also 

"reset" every time the trap is cycled. The trap dimensions d and 

dgr are much more stable. We measure 

d = 0.5479(1) cm. and dgr= 0.3973(8) cm. The measured value of 

d agrees well witk the value specified for machining, d = 

0.5487(10) cm. The experimentally determined value of d has 

remained constant to a part in a thousand, and of dgr to a two 

pszts in a thousand, over several years of r:qpi::g experiments. 

(However, if the trap is tilted, both d and dgr must be multiplied by 

a factor of (1 + 3/2sin28) in order to correctly predict the tuned 

trap voltages.) 

Other Ion Species -- Signal-to-Noise, Bad Ions, Background Pressure 

Working with each species of ion has its own particular 

challenges. For instance, the lighter the ion we are working with, 

the less energy there is in an axial excitation of given amplitude. 

(Recall that the axial frequency is always tuned to be resonant with 

our detector at 160 kHz.) Less energy in turn means smaller 
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signal-to-noise ratios in our measurements of transient excitations. 

While the signal-to-noise detected from a single pulsed N2+ ion is 

adequate and from a single N+ ion is marginal, there is no hope of 

being able to detect the axial signal from a single 3He+ ion in the 

time it takes to damp (about 0.5 seconds). Precision work with 

very low mass ions will require us to use different (non-pulsed) 

techniques or else improve our detector. 

Another species-dependent experimental difficulty is  

impurity ion expulsion. Let us imagine, for instance, that the 

dominant impurity species is tungsten ions that have been 

sputtered out of the field emission point. When we are working 

with N2+ io1;s. tiiz trap voltage is such that the axial frequency of 

W+ is about 62 kHz. When we work with N+ ions, the voltage on 

the trap is lower, and the W+ axial frequency is only 44 kHz. It 

may be that a impurity ion ejection protocol we developed while 

experimenting with N2+ is adequate to eject ions at 62 kHz but 

inadequate to eject ions at 44 kHz. (The efficiency of the ion driving 

electronics starts to fall off quite rapidly around 60 kHz.) With 

each new ion species, we have been obliged to reoptimize our 

impurity ion ejection protocol, a trial-and-error process that 

establishes ejection drives strong enough to get rid of the bad ions 

while gentle enough to preserve the desired species. 

The least tractable problem we have encountered with novel 

ion species concerns background neutral gas. Tuning up the trap 

for mass 3 amu ions, (so that we can measure the helium-3/tritium 

mass ratio) has been a priority with us for over 18 months. Our 



Ring Voltage Offset [rnVoltsl 

Fig. 4.1 The signal from a single HD+ ion, detected by ramping 
the trap voltage so as to sweep the ion's resonant frequency 
across the two-frequency drive. The homogeneous width of 
the resonance is proportional to the number of trapped ions. 
The FWHM calculated for a single ion is .48 Hz. 



approach has been to load the trap with HD+ molecular hydrogen 

ions, a species which is very close in mass to helium-3 and tritium. 

(Fig. 4.1) Unfortunately, every time we begin work with the 

hydrogen gas, we always find experimental conditions deteriorating 

after a only a very few days of tests. Our suspicion is that the 

hydrogen gas in not cryopumping efficiently, and that background 

neutral gas pressure is building up in the apparatus. However, we 

can't rule out other possible explanations -- for instance, that for 

some reason an unusually large number of impurity ions are made 

after the trap has been contaminated with hydrogen. 

Section 4B Mode Coupling Techniques 

In our trap, only the axial mode couples directly to the 

detector. As a consequence, the cyclotron and magnetron modes 

are normally undamped and undetectable. In order to cool these 

motions, and in order to measure their frequencies, we need to 

temporarily couple the two radial modes to the axial mode. We 

accomplish this with an inhomogeneous rf electric field applied via 

oscillating potentials [WID74, VSD781 on the split guard rings. Such 

coupling fields have typically been used in a continuous wave 

fashion for damping the magnetron motion, so-called sideband 

cooling. We have developed a pulsed technique, which enables us to 

swap the action of one mode with the action of another, in a phase- 

coherent way, using a single pulse. We use this "pi-pulse" 

technique for measuring frequencies and also for cooling the 
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cyclotron motion. Typically we use the more conventional sideband 

cooling for damping the magnetron motion. 

Section 4B was originally published [CWB90] in P h y s i c a  1 

Review A in January of 1990, with three coauthors listed on the 

title page below:' 

* There is a notation change in section 4B. Note that the complex mode 

amplitudes, C, M and 2, have dimensions o f  [ ( a ~ t i o n ) l / ~ ]  in section 4B, 

whereas elsewhere in this thesis they have dimensions of [length]. 
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In experiments to perform precise resonance measurements on single charged 

particles in a Penning trap[VSD87,VMF88,CWB89], only one of the particle's normal 

mode motions is typically detected directly. For example, in our recent single ion 

cyclotron resonance experiment[CWB89,WLB88], only the axial mode couples to our 

detector. The cyclotron and the magnetron modes are undetected and essentially 

undamped. Cooling, driving and measuring the frequency of the undetected modes 

require techniques for coupling them to the detected mode. 

Wineland and Dehmelt[WID75] suggested that an inhomogeneous rf electric field 

at the sum or difference frequency of two modes will couple those modes, and that in 

particular the magnetron mode can be cooled by coupling it to the damped axial mode. 

The technique was demonstrated experimentally by Van Dyck, Schwinberg, and 
RQG 

DehmeltwSD78], Cohen-Tannoudji[COH84] and Brown and Gabrielse[86] discuss rf 

coupling fields in some generality and kgor. In this paper we develop two particular 

effects of such coupling fields, using an analogy with a two-state quantum mechanical 

system to motivate our purely classical results. 

The data which we present here were taken on an apparatus designed to compare 

the cycl~aon frequencies of single ions with the eventual goal of measuring ion mass 

ratios to parts in lo1*. The apparatus, an orthogonally compersated [GAB85], hyperbolic 

Penning trap in a cryogenic environment is described in references [ C W 8 9  and 

WkB881. 

For work with a single particle of mass m and charge e it is convenient to write the 



electric and magnetic fields in an ideal Penning trap as 

when a z ~ e  vmp/(rnd2), wc=eB,,/(mc), d is the characteristic trap size, and e is the 

charge on the ion. The motion of the ion in these fields is a linear superposition of the 

three normal modes, 

where 

and %, %, and a, are the complex am$tudes of the cyclotron, axial, and magnetron 

motions, respec tively[BRG86]. We will. work in the approximation a, w a, w 0,. For 

most. of this paper, we study the example of cyclotron-axial coupling, although, as 

explained below, this approach can be adapted to magnetron-axial coupling. For 

cyclotron-axial coupling, the permrbation fnquency cop must be near the difference 

frequency, with a small detuning 8: 8~ % - w; + a,. In our experiment, the fields are 

produced by applying voltages to segments of the pard rings. Near the center of the trap, 

the coupling field to lowest order is ar. oscillating quadruple field tilted whh respect to 

the static electric field: 



where iEp is the complex amplitude of the coupling field gradients. 

For simplicity, we assume that the cyclotron mode may k treated as if it were a 

one dimensional harmonic oscillator, with spring constant k = ui2m. In the presence of a 

driving force in the jZ direction, we ignore the 9 motion and write the equation of motion: 

A Green function treatment of the ion's motion in the x-y plane shows that this 

assumption is good for a; * om when F, is nearly resonant with the undriven cyclotron 

motion, at [BRG86,WEI88]. Then the forces from the coupling field give two 

paramemcally coupled simple harmonic oscillators. 

We guess solutions 

and define the coupling strength in units of frequency: 



Z and C are slowly varying functions of t, such that 12 l2 and I C I equal the classical 

action (i.e. dpc, -dq I, see Table 1) in each mode. Making the adiabatic 

approximation, and keeping only secular terms, Equation 1 becomes 

We recognize the standard equations for a driven two-level systern[CDL77]. Two 

particular properties of these equations are of experimental importance to us. 

Action Exchanging Pulses 

The first property concerns the special case 6 = 0. Imagine that the coupling drive 

is on between t = 0 and t = 2. Before the pulse, the initial conditions are: 

Z ( t ) = Z ,  tSO (3d 

C ( t ) = C ,  (33) 

where C, (Z,) is a complex number proportional to the initial phase and action of the 

cyclotron (axial) motion. 

During the pulse, the solution to Equation 2 satisfying Equation 3 is 

lVlt V c ( t )=e , cos  --- IVlt 
2 IVI 

Z, sin - 
2 

v* IYlt 
Z (t) = - C, sin - lVlt 

IVI 2 
+ Z, cos - 

2 
If the strength and duration of the pulse is such that I V I z = x ,  then after the pulse: 



Note that the action and phase informatior, of the cyclotron motion is preserved 

now in the axial motion (but shifted by the phase of the perturbing field). Similarly, the 

x-pulse has put the initial phase sand action of the axial mode into the cyclotron mode. 

The total action, I Z 12+ I C 12, is a constant of the motion. Figure 1 illustrates the effect of 

mode-coupling pulses of varying strengths. 

This x-pulse is used in a novel technique for measuring the cyclotron frequency 

a,'. We begin the measurement by driving the (initially cold) ion into a cyclotron orbit of 

known phase with a pulse of rf electric field directly at the cyclotron frequency. The 

cyclotron motion evolves in the dark, unperturbed by coupling fields, for a precise length 

of time T, and then, with a x-pulse, the cyclotron motion is swapped inio the axial mode. 

We then detect the current induced on the endcaps and determine the phase. The 

procedure is repeated with a variety of lengths of time between pulses T, to determine the 

cyclotron phase as a function of T. T:;e cyclotron frequency is simply the time derivative 

of the cyclotron phase. Reference [CWB89] describes a precision mass comparison 

made using this technique. The procedure is essentially a variant of Ramsey's method of 

separated oscillatory fields[RAMS6], except that it is the final phase, rather than the . 

transition probability, that is measured after the two pulses. 

The x-pulse may be used to cool rapidly the cyclotron mode by exchanging its 

action with that of the resistively cooled axial mode. The cooling limit for this scheme 



(Table 1) is the same as the limit for cw sideband cmling[BRG86], but the n-pulse 

cooling rate is higher. 

Avoided Crossing 

The second interesting property, which we call a "classical avoided crossing" is 

again easily understood in analogy with a near-resonantly driven two-level system. In 

this case, the analogy is to the dressed atom fomalism[DAC85]. Instead sf thinking of 

the motion of the p r n k d  ion as swinging back and forth between the axial and 

cyclotron modes, we can find time-independent linear superpositions of cyclotron and 

axial motions, the normal modes of an ion "dressed" by the oscillatory perturbative 

field. 

By analogy with driven systems generally, we expect that the two components will 

oscillate with frequencies which differ by the driving frequency, %. We guess that the 

dressed modes consist of the ion moving in the axial direction with a frequency o near 

a,, with E = o -a,, and at the same time moving in the cyclotron direction with 

frequency a + % ,  sothat ( a+wk , -q '=+s+e .  

Then solutions to Equations 2 will have the form 

when ( D,,D, ) describes the eigenvector of the dressed mode. Plugging these solutions 

into Equation 2, and solving the characteristic equation for &, we get two solutions: 



We can observe the dressed modes directly by exciting the axial motion of an ion 

with a short pulse and then detecting the axial component of its ring-down signal in the 

presence of a coupling drive. As the coupling Brive approaches resonance, the observed 

axial frequency shifts from its unperturbed frequency. For small detunings both modes 

have sigcificant a i a l  components and it is possible to detect the axial component of both 

modes simultaneously (Fig. 2). By fitting the observed frequency shifts to the avoided 

crossing line shape (Eq. 4), one obtains a value for the cyclotron frequency and a 

calibration for the strength of the coupling drive, I V I, a quantity which is difficult to 

calculate from electrode geometry a priori. 

Magnetron Motion 

Extending the preceding results to magnetrodaxial couplings involves a few 

subtleties. To begin with, the magnetron motion, driven near resonance in the jZ 

direction, does not act like a simple harmonic oscillation with spring constant k = a: m. 

But again using a Green function approach, we find that by rescaling the applied force 

, am 
F,=-F, ;- 

a~ 
we can write h e  equation for the near resonantly driven magnetron motion in the familiar 

In order to get coupled equations of motion in the form of Equation 2, it is 

necessary for the coupling frequency to be near the sum, rather than the difference 

frequency, so we define the detuning q = - a, - w, 
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Guessing solutions 

and defining V exactly as before, we get the equations 

The K-pulse and the avoided crossing results follow from here. 
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Figure Captions 

Fig. 1 For each plottcd point, the following experiment is performed: An N2+ ion is 

excited into a 0.2 mm radius cyclotron orbit, a 40 msec coupling pulse (of indicated 

strength) is applied, and the resulting axial amplitude measured. The solid curve, the 

absolute value of a sine wave, is fit to the points. The peak at pulse strength 11 mV-sec 

corresponds to a x-pulse, the zero at 22 mV-sec, a "276-pulse", and so on. 

Fig. 2 An experimental illustration of the avoided crossing effect, using a single N$ ion. 

We adjust the coupling frequency in 1 Hz increments, then excite the axial motion by 

pulsing. Each trace is the fast fourier transform (fft) of the detected signal from the axial 

motion after the excitation. The dotted lines are a fit of the peak centers to the avoided 

crossing line shape (Eqn. 4) . The fit yields I V I = 1.5(1) Hz and 

v; - v,= 4,467,761.36(15) Hz. 

cpr Table 1. A summary of mode properties and cooling limits. The action of the cyclotron 

or magnetron m ~ d e  is just 2~ times the magnitude of the canonical angular momentum, 

(note that the magnetron canonical angalar momentum is dominated by the field term, 

T% e& ). The cooling limits given for the cyclotron and magnetron modes are reached 

after a single x-pulse exchanges the action in the mode to be cooled with the action in the 

axial mode, which is assumed to have been cooled resistively to an rms radius r,*, 

corresponding to a temperature T,. The cyclotron or magnetron motion is then cooled by 

a single n-pulse at the appropriate frequency. 



TABLE I. Summary of mode propmica d coolbq timitr. Tbc d o n  of the cyclotron or myae- 
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Fig. 4.2 The results of a magnetron pi-pulse experiment, 
similar to the cyclotron pi-pulse experiment described in Fig. 2 
of the mode-coupling paper [CWB90], reprinted on the 
preceeding page. Note that the voltages in both figures refer 
to signal generator outputs; delivered voltages on the 
electrodes are not directly comparable because of frequency 
dependence in transfer efficiency. 



Addendum to Section 4B. Although we don't often need to 

measure the magnetron motion to great accuracy, the pi-pulsed 

frequency measurement technique described above works well for 

the magnetron motion. In Fig. 4.2 I present some coupling pulse 

data taken on the magnetron motion. The experiment is a little 

harder than with the cyclotron motion because a short pulse with 

central frequency o, + am will have significant energy at e),, which 

excites the axial motion directly in an undesirable way. To assure 

ourselves that we have attained maximum cooling, we usually do 

not use the pi-pulse technique for cooling the magnetron motion, 

but instead apply the coupling drive at very low amplitude for 

several minutes. 

4C Measuring and Shimming Field Imperfectioras 

In this section I discuss our efforts to characte~ize, and to 

minimize, amplitude-dependent frequency shifts caused by 

imperfect electric and magnetic fields.? 

Electrostatic Anharmonicity -- Dependence of mZ on aZ 

Imperfections in the electric field are revealed by 

anharmonic behavior of the the axial motion, that is, by having a 

dependence on the axial amplitude, a,. We expand this dependence 

t This section is the experimental companion to section 3B. Make sure you 

are familiar with that material before plunging on. 
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in powers of a, (for symmetry reasons, we can exclude odd powers 

of a,): 

( a Z / a Z o )  = 1 + ~ ~ 2 ( a ~ l z ~ ) 2  + a4(a,/zo)4 i a6(azlzo)6 + . . . (4.3) 

For small a,, the quadratic term a 2  is sufficient to describe 

the amplitude-dependent frequency shift. In this regime, we can 

measure 012 with two different techniques -- pulsing or sweeping. 

With the sweeping technique, we drive the ions at a fixed 

frequency, while sweeping the trap voltage to bring the ion's axial 

frequency into resonance with the applied drive. The shape of the 

resulting resonance curve, which depends on the value of a2, is in 

general asymmetric and hysteretic with respect to sweep direction. 

See Weisskoffs thesis [WE1881 for data taken in our trap with the 

sweep technique. 

If the drive amplitude is sufficient to excite the axial motion 

into the regime where the frequency shifts quartic (and higher) in 

aZ become significant, the swept lineshapes become very difficult to 

interpret. For quantifying the higher-order frequency shifts, the 

pulsed technique is useful. The ion is driven into an axial orbit 

with a single pulse, and the discrete fourier transform of the 

resulting axial signal is analyzed to determine the central 

frequency. By using pulses of varied amplitude, a, as a function of 

az can be mapped out. (Fig 4.3) 

The main limit to the pulsed technique is that as the ion 

signal is detected, the axial motion is damping, and as aZ decreases 

the axial frequency shifts; the detected signal is "chirped". 

However, the routine for extracting the average frequency and 
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Fig. 4.3 The axial frequency as a function of axial amplitude, 
for different values of Vgr. The ion is pulsed to a certain axial 
amplitude, and as it damps the axial signal is recorded. The 
central frequency is extracted from the fourier transformed 
signal. The indicated axial amplitude is not the peak 
amplitude (that is, not the amplitude immediately after the 
excitation pulse) but the amplitude-weighted time-average 
amplitude. Note that Vgr affects not only the dependence on 
amplitude but also the extrapolated zero-amplitude frequency. 
The near orthogondity of the guard-ring design minimizes this 
inconvenient effect. 



initial phase of the signal (See Ch. 2, above) performs adequately as 

long as the chirp, or frequency shift during the data-taking interval, 

is less than ahout 40% of the fft bin width -- that is, as long as the 

chirp in Hertz is less than 40% of the inverse of the data-taking 

time. In practice, as we drive the ion to larger pulses, we take data 

for shorter periods, which minimizes "chirping" artifacts but which 

reduces signal-to-noise and frequency resolution. As a 

consequence, the e1c:ctrostatics in the trap volume beyond the 

central two or three millimeters can not be characterized. 

By tuning the guard ring voltage, we can make a2 very 

small, less than 3 X 10-6 (Fig. 4.4). The coefficient a 2  is related to 

the coefficients of the Legendre polynomial expansion of the 

electric field [GAB831 

a;! = (3C4/4 -15 C32/l d)(z02/Q2). (4.4) 

The symmetry of the guard rings is such that change in the 

voltage of ti;e guard rings can not effect C3. Thus the change we 

observe in a 2  due to a change in the guard ring voltage must be due 

to a change in C4 with respect to the guard ring voltage. Using the 

pulsed technique, we measure (dC4/dVg,)Vt = .09(2). See Fig. 4.4. 

There are several sources of error in our measurement of Cq. 

One problem is that C3 can mimic the effect of C4 (Eqn. 4.4). The 

trap is constructed such that asymmetries with respect to reflection 

in the x-y plane should be small, but patch effects may contribute 

to a non-zero value of C3. Based on the magnitude of observable 

patch effects, we crudely estimate C3 to be less than about 3x10-3, 

which means that there is possibly an error in our measurement of 
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Fig. 4.4 A quadratic dependence of frequency on amplitude is 
extracted from the data in Fig. 4.3 and used to determine 
(from Eqn 3.9) C4 as a function of Vgr Strictly speaking, the 
zero crossing at Vg =-4.51'74 is not the guard-ring setting 
which nulls '24, but it does indicate the zero of a2 = (3C414 - 
4C32 / S ) ( Z , / ~ ) ~ .  



Cq of about 1 x 10-5. Until we better understand asymmetric patch 

effects, we cannot confidently reduce C4 below about 1x10-5, the 

value we use in our future error predictions in Tables 3.1 and 3.2. 

Another cause of error in our determination of C4 stems from 

lingering uncertainty in our absolute amplitude calibration -- a 

20% error in amplitude calibration (about what we estimate) 

corresponds to a 40% error in the Cq measurement. This is not 

really a fundamental limitation. The frequency perturbation in the 

i th  mode is proportional to pi2C4, so the effect ~f an error in the 

absolute calibration cancels out. Finally, since @4 is determined by 

fitting a quadratic curve to the o, vs a, data, the presence of a 

quartic component (due to a Cg component in the electric potential, 

for instance) can cause an error in the fit. This effect can be 

minimized by fitting only to the lower amplitude points. 

Our measurement of the effectiveness of the guard-rings, 

(dC4/dVg,)Vt = .09(2), should be compared to that obtained by 

Weisskoff [WE1881 with the sweeping technique, 0.074(4). The 

difference can readily be accounted for by a change in our estimate 

of the overall absolute calibration s f  orbit sizes, a measurement 

which has had some inconsistencies that were only resolved in the 

spring of 1989. 

Our trap was designed to have "orthogonal" compensation 

rings [GAB83], which is to say, designed so that changes in the 

guard ring voltage did not change the zero-amplitude oZo. (Earlier 

Penning trap workers found that the absence of this feature made 

guard ring tuning more tedious.) From the frequency vs. amplitude 
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data in Fig. 4.3, we can extrapolate to determine OZO as a function 

of guard-ring voltage. Time dependent drifts in o z o  confound the 

results somewhat, but we estimate ( d o  z o / d V g c ) / ( d ~  zo/dVt)  = 

-0.0055(8) from the data in Fig. 4.3. Gabrielse points out that what 

really matters is the ratio of the undesired guard-ring effect 

( d m  z o / d V  g,) to the desired guard-ring effect, (dC4/dV g,) .  

Gabrielse defines the figure-of-merit y=[(dfoz o / d V g r ) l ( d ~  ;>ldVt)l I 

[(dC4/dVgr)Vt]. From the data in Fig. 4.3, we measure y= -0.061. It 

has been pointed out that for negative y, there must be some finite 

value of aZ for which the trap is perfectly compensated -- the 

nearly triple crossing that occurs in Fig. 4.3 suggests that in our 

trap is "perfectly compensated" for an excitation of a,/zo = 0.15. But 

in any case, we are not inconvenienced by the residual non- 

orthogonality of the trap. 

Fig. 4.5 presents evidence for shifts in o, that are quartic or 

higher-order in a,. Although the data are not very good, we can 

use it to estimate a 4 = -1.0(5)~10-4. Several terms in the 

electrostatic expansion contribute to the quartic dependence, but 

the most likely culprit in our case is Cg. Interpreting the quartic 

shift we see as a Cg effect, gives C6 = 16014115 = -1 x [GAB83]. 

With the trap configured as it is now, we can not tune out the 

shifts in a, proportional to quartic and higher powers of a,. Since 

we can not fit initial frequencies and phases to signals whose chirp 

is comparable to the fft bin-width, the quartic shifts constitute an 

absolute ceiling on useful axial pulse size. (At present, the 

maximum useable aZ/zo is about 0.25). Additional sets of guard 
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Fig 4.5 When the ions are driven to only slightly larger orbits, 
the frequency's amplitude dependence is clearly no longer 
simply quadratic. The solid line is a fit to a quartic polynomial 
(even powers only). The data may indicate that still higher 
powers of amplitude are involved, but more likely it  simply 
indicates the limitations of our fourier transform-based 
analysis technique, which was never meant to handle time- 

. varying frequencies. 



rings might improve the situation, but it is not clear they would be 

worth the trouble. 

Measuring the Magnetic Field Nonuniformity - B7 

A glance at the perturbation matrix (Eqn 3.9) is enough to 

convince one that the most apparent signature of the second-order 

magnetic field gradient ( B2) is the quadratic dependence of O,  on 

pc: 

bmz/oz  = 2 / ( 4 0 , )  - (3/2)C4/d21 PC*. CEqn 4.5) 

Determining B2 then becomes particularly easy. The 

procedure is as follows: The axial and cyclotron motions are cooled 

to their thermal values. Then the cyclotron motion is excited with a 

single rf pulse, so that pc is driven te a preselected value. Then the 

axial motion is excited, and the axial frequency is extracted from 

the resulting axial signal. This procedure is repeated for a range of 

values for the driven p,, and a plot is made of O,  vs p,. Finally, a 

polynomial is fit to the data; I32 is proportional to the coefficient of 

the quadratic term. A measurement of B2 with a precision of 

5 x  10-8/cm2 can be completed in about 15 minutes. See Fig. 4.6. 

There are two miiin sources of error in our B2 measurements. 

The first is the confounding effect of Cq. As is apparent from Eqn 

4.5, the presence of a residual Cq term in the electrostatic potential 

mimics the effect of B2 in this measurement. For the case of our 

N 2+  measurements, as long as IC4I < 2 x 10-5, the error in our 

determination of B2 is less than about 2x10-7. The second source of 

error is the same problem with the overall amplitude calibration 



Cyclotron radlus CcmI 

Fig 4.6 The Pb2 second-order magnetic field gradient i s  
measured by determining the axial frequency dependence on 
the cyclotron radius. Before we adjusted the current through 
the shim coils (square pcints) B2 = 9 x 10-71cm2. After two 
cycles of adjusting the current and measuring ehe gradients, B2 
= -8x10-*/cm2. 



that caused uncertainty in the Cq measurement. Again, this is not 

a real problem: if the orbits are larger than we believe them to be, 

then B2 is smaller than we think it is, and our estimates for the 

frequency perturbations, which go as p i 2 ~  2 ,  remain accurate. 

Measuring the Magnetic Nonunifoamity, Continued - -  B1 

The first order gradient in the magnetic field, B1, can not be 

unambiguously determined from amplitude-dependent frequency 

shifts. We measure B1 by shifting the effective trap center 

vertically through the field gradient, and measuring the cyclotron 

frequency as a function of vertical position. We shift the vertical 

position of the ion with two different techniques, which produce 

slightly different effects. The simpler technique involves simply 

loosening the screws that clamp the top-plate sf the dewar onto the 

O-ring seal. The resiliency of the O-ring lifts the top-plate, and with 

it the entire trap probe which hangs down into the center of the 

magnetic field. Knowing the number of threads per centimeter on 

the clamping screws, we can shift the vertical position with some 

accuracy -- perhaps to 8.003 cm accuracy across a useful range of 

0.015 cm. This technique is not sensitive to gradients caused by 

magnetic materials attached to the trap or to its support structure. 

As we move the trap up and down, all of the associated 

? paraphernalia move up and down with it, although the trap does 

move with respect to the coils of the magnet. 

A second approach to moving the trap center is to apply a 

small d.c. offset voltage ts the lower endcap, which moves the 
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equilibrium axial position of the ion [WEISS]. The effective trap 

center is then shifted with respect to the trap electrodes and 

support structure and so on, as well as with respect to the magnet. 

The first time we compared the results of these two differect 

techniques for determining B1, we were astonished to find radically 

different numbers. See Fig. 4.7. When the whole apparatus was 

shifted up and down relative to the magnet, we saw relatively 

small changes in the cyclotron frequency. But when the ion was 

shifted with respect to the trap, we saw large shifts in the cyclotron 

frequency (corresponding to a gradient of 13 gausslcm). This was 

the first evidence we encountered for the presence of strongly 

magnetic materials attached to the trap. Later we confirmed that 

the support posts of the lield emitter point were made of 

ferromagnetic material. After the point was replaced, shifts in the 

cyclotron frequency associated with moving the ion up and down in 

the trap were much smaller (corresponding to a gradient of 0.6 

gausslcm.) 

Shimming the Magnetic Fields 

Our Oxford superconducting magnet has built-in super- 

conducting shim-coils. The various coils were designed to be 

orthogonal, i.e. so that current flowing through each coil would 

affect only a particular component of the magnetic field. The 

currents in these coils may be adjusted by opening the appropriate 

superconducting switches and injecting the desired current into the 

desired coil. In principle. the procedure for shimming the field is 



Ion Axial Displacement [microns] 

Fig. 4.7 Evidence for the existence of a magnetic field- 
distorting object attachtd to the trap-supporting structure. 
The square data points were recorded by moving the 
equilibrium position s f  the ion up and down in the trap using 
asymmetric d.c. voltages on the endcaps. The solid line fit to 
these data indicates a B1 field gradient of 13 gaussfcm. The 
diamond points were recorded by moving the entire trap (and 
its support structuri) with respect to the magnet coils, and 
show very little field change. Since these data were recorded, 
the offending field distorter has been removed and the 

, gradient has since been shimmed to less than .25 gauss/cm, or 
B 1=3x10-6. 



completely straightforward. We measure Bl and B2, adjust the 

currents in the coils, measure B1 and B2 again, and repeat until we 

have reduced the gradients to acceptable values. In practice, there 

are several csmplications. 

During the adjustment, the leads to the shim coils carry 

several amps of cu'rrent. Leads capable of carrying adequate 

current to the coils will of necessity carry heat to the helium bath-- 

heat that increases t h e  rate of liquid helium boil-off to 

unacceptable levels. The leads are therefore designed to be 

demountable. The leads are packaged in a long stainless steel tube 

which can be inserted down into the helium bath and then removed 

after shimming. At the end of the leads-containing tube is a plug 

which mates with a socket, located near the level s f  liquid helium, 

wired to the coils themselves. In our experience, connecting and 

disconnecting the plug and socket is a tricky business, with some 

risk of breaking pins off in the socket and even of freezing the two 

connectors together with inadvertently introduced frozen air. The 

prospect of having to warm up the experiment to repair the shim 

coils so frightened us that we were inclined to do as little shimming 

as possible, although the shimming procedure itself was not 

particularly tedious. 

Another complication we had to confront is that the coils are 

not in fact perfectly orthogonal. Changes in the B2 coil affect the 

first-order gradient as well as the second-order gradient, changes 

in the B1 coil affect the second-order gradient, and a change in 

either coil affects the field at the center of the trap, the Bo field. 
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Shimming Results 

The following equations summarize the results of several 

days of tinkering with the shimming current. 

A(BB I)= (A2 1 C)[.33(7)] +(mC)[?] 
[gausslcm] [amps] [amps] 

AZlC and AZ2C refer to changes in the current flowing 

through the superconducting shim coils which are supposed to 

compensate for the first and the second order gradient, 

respectively. The "C" in Z1C and Z2C refers to "coarse"; the magnet 

also is equipped with fine shim coils, but it appears as though i t  will 

not be necessary to make use of them. We measure changes in  BE31 

and B in units of gauss by converting changes in frequency into 

changes in field. We know BBl in [cml-1 from lifting the ion up by 

twisting the endplate bolts. We measure I32 in units of the "bottle", 

the amount the axial frequency shifts as a function of pc (Eqn. 3.9). 

We measure pc operationally in mYolts, referring to the amplitude 

of the 20 mSec pulse required to excite the ion to the desired value 

of p c ,  the voltage being measured at tRe output of the signal 



generator. The question mark refers to a value which was not 

readily determinable from our data. 

The effectiveness of the shimming currents could be 

determined with more accuracy that the errors quoted in Eqn. 4.6 

indicate. For instance, while we were performing the shimming 

procedure, we did not imagine that the results would ever be a 

component of the most reliable absolute amplitude calibration. (See 

below in this section, and below in section 4E.) Accordingly, the 

care with which we proceeded, and the thoroughness of the notes 

we recorded, were appropriate for the "zeroing" operation we 

thought we were performing, but a little lax for an amplitude 

calibration. This work could be repeated to good effect. 

Our shimming work reduced lBll to less than 3x10-6, and B;! 

got as low as 2x18-7, although the final value of B2 was -1.0(2)~10- 

6 .  There appeared to be no reason why another round or two of 

adjustments couldn't reduce these gradients another factor sf ten. 

Our measured values for the effectiveness of the coils should 

be compared with those specified by Oxford, the magnet's 

manufacturer: 
A(BB I)= ( a 1  C)[.25] +(nc)[?] 

[gauss/cm] [amps] [amps] 

w 2 ) =  (UlC>[?] +(aZZC) [. 151 
[gauss/cm2] [amps] [amps] 

(Eqns 4.7) 



Oxford does not quote values for the "non-orthogonal" or 

off-diagonal effects of its shim coils, (the question marks in Eqn. 

4.7) but it does specify the diagonal terms: Z1C changing B1, Z2C 

changing B2. Being able to compare values turns out to be very 

importarrt for us. We compare our value for 6B 2/6Z2C, -1.1(2) x 10- 

5 (Hz/mVz)/amp, to the specified value, -.I5 (gauss/cm2)/amp, and, 

using equation 3.9, we are immediately able to establish an 

absolute calibration for the radius of the cyclotron orbit, pc: pc(in 

cm) = (3.0(6)x 1 0-4)(pulse amplitude)(in mV at the signal generator 

for a 20 mSec pulse). This calibration procedure is discussed 

further in section 4E. 

D. Magnetic Field Drift 

Changes in the magnetic field which are smooth on the scale 

of 5 to 200 minutes can be removed from our data and do not 

cause major error in our doublet measurements. But swddea 

changes in the field or in its first time: derivative are our chief 

source of experimental error. It has even been suggested that, 

significant as we believe the problem to be, we may still be 

underestimating its size. Our publication of the CO+/N2+ mass ratio 

stimulated a Comment in Physical Review Letters to this effect 

[GAB90, see also our Reply, CWB90bl. 

We have considered several causes of the temporal 

instability of the magnetic field, three internal to the magnet dewar 

and one external. 
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First, the superconducting coil may Rave some residual 

resistance which causes a gradual decrease in current and field 

strength. This effect, if it exists at all, is tiny compared to other 

problems. 

Second, the size of the superesnducting coil can change due 

to pressure and temperature fluctuations. Thus even though the 

flux linking the solenoid is conserved, the field strength changes. 

We are not sure what the size of this effect is, but are constructing 

a pressure regulator to stabilize the pressure and temperature of 

the magnet's helium bath. 

Third, an increase in room temperature causes expansion of 

the magnet housing, which in turn lifts the trap with respect to the 

magnet's field center. The residual linear field gradient would then 

cause a change in field strength at trap center. Rough calculations 

show that this may well be the dominant source of gradual field 

change at trap center, (See Fig 4.9 for an illustration of the long 

term smooth change) and indeed that fluctuations in the rate of this 

process may contribute to the unsmooth field change. 

Finally, changes in the ambient magnetic field in the lab are 

not perfectly shielded by our finite superconducting solenoid, and 

thus are felt at trap center. The shielding of external field by a 

superconducting magnet may be quantified by the field penetration 

factor, the ratio of ABinternal to ABexternal We have measured this 

ratio by finding the correlation coefficient between internal 

magnetic variations (seen as shifts of the ion cyclotron resonance 

frequency) and external magnetic field variations measured with a 



B field [m~auss]  

Fig. 4.8 A scatter plot of simultaneous cyclotron frequency 
and external magnetic field measurements. Before plotting, a 
quadratic time dependence was removed from the frequency 
data and, for consistency, from the field data as well. The 
remaining field dependence, 1.2(1) ppbImGauss, indicated the 
field at trap center is 0.11(1) the field at the magnetometer 
probe. These data were taken during the day, with both 
subway and elevator running. 



fluxgate magnetometer. We measured a field penetration factor of 

0.03(2) when the subway was off and ABexternal dominated by an 

elevator 12 m away, and of 0.1 l ( 1 )  when the subway dominated 

the magnetic field noise (though various apparatus within the 

building contributed as well). (Fig. 4.8) The large dependence of 

the observed penetration factor on the source  of the external 

magnetic field suggests that magnetic materials in the building 

contribute to the in situ field penetration factor (and does not 

necessarily contradict Gabrielse's [GAB901 estimate of 0.3 for our 

solenoid in free space). 

Between 1:30 a.m. and 4:30 a.m. the external field 

fluctuations are much lower (particularly if the elevator is 

disabled). It is not clear whether the remaining frequency jitter we 

see during this "quiet time" is due to processes external or internal 

to our magnet. During the day, however, external field noise is 

definitely the dominant problem. Daytime measurements of 

ambient (external) field fluctuation in our lab (using a fluxgate 

magnetometer), combined with our shielding estimate, suggest that 

we must expect an average error of around 8 x 10-10 for a daytime 

A-B-A measurement. (Measuring each ion about several times over 

the course of 40 minutes or so, and taking about 25 minutes to 

swap the ions). 

Field stabilization techniques, such as those demonstrated by 

Gabrielse and Tan [GAT881 and Van Dyck et a1 [VMF86], may well 

be worth implementing. Myself, I'm more excited about developing 

the two-ion techniques suggested in Chapter 5, which should make 



magnetic field jitter irrelevant for mass comparisons at parts in 

10'2.  

E. Absolute Amplitude Calibration, Absolute Error 

Determining the absolute size of the ion's motion has proven 

to be harder than we anticipated. The overall sensitivity 

calibration of our detector suffers from our inability to inject a 

calibrated current into the extremely high impedance input circuit. 

On the other hand, our efforts to drive the ion to an orbit of known 

absolute size are frustrated by a change in the efficiency of the ion 

driving electronics that occurs as the apparatus is cooled to 

cryogenic temperatures. In the end, we turned to an indirect but 

robust calibration method (based on the effects of magnetic field 

gradients of known absolute magnitude) which continues to hold 

our confidence. These then are the three, topics 1'11 discuss in 

section 4E: an ab  initio calibration of the detector sensitivity, an 

attempt to calibrate the detector using the signal from an ion 

driven to a supposedly calibrated orbit size, and the field gradient 

calibration method currently in favor. 

Ab Initio Detector Calibration 

From the upper endcap electrode on which the ion's image 

current is first induced, through the SQUID which amplifies the 

current, to the software which puts the data in  the format for 

storage and analysis, the detected signal must follow a 

technologically tortuous route. The most reliable way to calibrate 



the entire system would be to inject a known current onto the 

upper endcap and compare it to the final value read in by the 

computer. Since this is not possible, we are left to combine the 

results of calibrations of the individual components of the system. 

The following data are relevant: the Q of the tank circuit, the tank 

circuit's primary-secondary mutual inductance, the SQUID input coil 

inductance, the SQUID open loop current sensitivity, the ratio of 

open-loop to closed-loop gain through our 160 kHz feedback 

amplifier, the combined transfer function of the mixer, lowpass 

f~lters, amplifier, and analogue-to-digital converter, and finally, for 

measurements made in transient mode, the numerical details of the 

discrete fourier transform routine. 

We measure all of these quantities, except for the SQUID 

current sensitivity, which is specified by the manufacturer. The 

current induced in the endcap by a particular amplitude single ion 

motion is given by ipeak= a u Z B  l(a,/z,), where B1 is constant 

determined by the trap geometry, calculated [%RG86] to be 0.8. 

Thus, if we believe our calibration, we readily relate the recorded 

ion signal to the absolute amplitude of the ion's motion. 

Driven ion Calibration 

To increase our confidence in the above calibration, we 

decided to drive the ion to a known orbit size, and check that the 

signal we record corresponds with the anticipated current induced 

in the upper endcap. To make the ion dynamics as simple as 

possible to understand, we drive the ion 8 Hz off resonance (8 Hz is 
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160 damped linewidths) and detect the response at the driven 

frequency using a lock-in. With the ion driven so far off resonance, 

its response is not affected by anharmonicities or by damping. In 

practice we avoid capacitive feed-through of the driving signal onto 

the upper endcap by driving the ion with two different frequency 

fields (159 kHz and 1 kHz). The ion mixes these fields and feels a 

driving force at the sum frequency of the two drives, the force 

being proportional to the product of the amplitude of the two 

drives. The efficiency of the ion driving electronics from signal 

generators through to electrode surfaces is measured with the 

apparatus at room temperature. 

When Robert Weisskoff first compared the results of these 

two independent calibration methods in the spring of 1988, he 

noted agreement at the 10% level [WEI88]. We attempted to repeat 

the double calibration, after making modiiicatisns to tlie detector 

and repairs to the trap, and csr~cluded Weisskoff was either very 

talented or very lucky. No matter how many times we went over 

it, we were left with a discrepancy of nearly a factor of 2. 

Eventually, we found what we believe to be the source of the 

discrepancy: The efficiency s f  the electronics that filter the ion 

driving signal changes as the experiment is chilled to liquid helium 

temperature. We were able to detect this because of some 

redundancy bui:r into the cabling that carries the driving signal to 

the trap, but the redundancy is inadequate to allow us to correct 

the calibration. We rely, therefore, on a third calibration: 

Field Gradient Calibration 



As described is section 4B, above, we can use the data from 

our magnetic field shimming work to absolutely calibrate the 

cyclotron drive in our trap. Qnce we are able to drive the ion to an 

absolutely known cyclotron radius, the remainder of the calibration 

is straightforward. To the ion with its known p c  we apply a pi- 

pulse, which swaps the action from the cyclotron motion into the 

axial mode. The ratio of p c  before the pi-pulse to aZ after the pi- 

pulse is readily calculated [CWB90] to be (0,/0~)1/2, or 5.3, for a 

mass 28 amu ion. As the ion's axial motion damps we detect the 

signal from this now absolutely known axial motion and thus 

calibrate our detector. A similar pi-pulse experiment calibrates the 

magnetron drive. 

The critical assumption in this calibration procedure is that 

Oxford gets right their specification of the Z2C shim coil efficiency. 

We have two assurances that they do. First, they quote two values 

for the effectiveness of each shim coil, a theoretical value 

(presumably calculated from shim coil geometry) and an 

experimental value. The two values agree within about 10%, 

suggesting they care about these things. Second, we are able to 

verify the specified Z1C shim coil efficiency ourselves: compare the 

values in equations 4.6 and 4.4: they are in marginal agreement, 

although our measurement is  unfortunately only a 25% 

measurement. The fact that we predict the Z1C efficiency correctly 

indicates that we understand their specifications, and that there are 

no factors of two, for instance, that v; interpret differently from 

Oxford. 
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There is further evidence that we are not making a large 

error (say, a factor of 1.5 or more) in our calibration: for one thing, 

the determination of the efficiency of guard-ring tuning scales 

quadratically with the amplitude calibration, and Weisskoff 

[WE1881 has found that our value for (dC4/dVgr)Vt agrees within 

20% of Gabrielse's theoretical calculation for a trap of our design. 

Also scaling quadratically with calibration is our estimate for the 

effective noise temperature of the detection circuit -- our current 

estimate of 15K agrees with independent SQUID calibration 

measurements [WLB 881. All things considered, our calibration 

might be wrong by 20%, but not by 50%. 

For predicting the size sf errors proportional to the field 

flaws C4 and B2, errors in the absolute calibration are not important. 

In a calculation of the perturbation expected from a certain size 

excitation, the absolute calibration, which enters also into the 

determination of Cq and B2, cancels out. Special relativity is 

different. The factor which sets the scale of the special relativistic 

per turbat ion,  ( w c 2 / c 2 ) ,  does not depend on calibration 

considerations. Thus our prediction of the relativistic perturbation, 

which scales as (oc2/c2)p,2, goes as the square of the absolute 

amplitude calibration. 

Testing Special Relativity 

During our N2+/C 0 + mass comparison experiments, we 

performed some tests designed explicitly to test the relativistic 

shift. Before the tests, we measured B2 to be -l.O(l)x10-6/cm2, and 

IC4I < 3x10-5. Coincidentally, the value of B2 was such as to almost 



cancel the relativistic shift. We expected the cyclotron frequency to 

shift 6 O,/O = -2(1) x10-10 (p ,/0.024 cm)*. Magnetic field 

fluctuations make it difficult for us to measure frequency shifts at 

the 2x10-10 level, but we performed a series of measurements 

alt9rnating between pc  = .021 cm. and p c  = .033 cm., expecting to 

see a relative shift of 6 0 ~ / o ~  = -2(1) x10-10. We measured 6 o c / o c  

= +1(3) x10-10, which is consistent if not informative. 

The actual mass comparison experiments were performed at 

p, = .024 cm. The important result here is that even if there is a 

factor of 2 error in our amplitude calibration (such that both our 

amplitude dependence tests and our mass comparisons were 

actually performed at radii twice as large as we imagined), we 

have shown that large variations in p c  (much larger than thermal 

or systematic effects could cause), cause frequency shifts smaller 

than our quoted error of 4 parts in 1010. 

F. Checks on the Overall Accuracy of Mass Comparisons 

Unfortunately there are no "calibrated" mass doublets against 

which we can test our claims of unprecedented overall accuracy. 

However we can learn many of the things we would have learned 

from measuring a calibrated doublet simply by comparing the 

"identity doublet," that is, comparing N2+ to N2+. We followed 

exactly the same procedure described in for rui. #3 in section 4G, 

below, except instead of loading sequentially N2+ - CO+ - N2+, we 

loaded N2+ - N2+ - N2+. When analyzing the data, we pretended that 

the second N2+ ion loaded was a different species, N 2 + .  
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Time [ x 1 0 4  secl  

Fig. 4.9 The first four and the last two points plotted above 
correspond to, respectively, the first and the third sf three N2+ 

ions trapped during an evening of cyclotron frequency 
comparisons. The lower solid line is fit to these data. The 
remaining points -are from the second ion in the series. The 
upper line is fit to these data. The fit frequency difference is 
2 mHz, with an estimated error of 2 mHz, which is an accuracy 
of about 5 parts in 1010. 



Compensating for the magnetic field drift exactly as in section 4G, 

we measured from a single evenings data M(N2+)/M(N2+) = 1 + 4(4) 

x 10-10 (Fig. 4.9). This measurement was a another confirmation 

that the process of loading and unloading ions does not cause 

discontinuous changes in the cyclotron frequency, and further 

evidence that night-time field instabilities are not a major concern 

at the 4 parts in 1010 level. 

A second test of overall accuracy we performed was to 

compare the mass of N+ to the mass of N2+. After correcting for 

binding energy and the mass of half an electron, the ratio 

M(N+)/M(N2+) is exactly 112. We performed the comparison and 

measured the significant discrepancy 2M(N+)/M(N2+)= 1 + 3(1) x 

10-9. At first we believed that the discrepancy was due to the sort 

of amplitude-dependent errors described in 3B and 4C; since we 

were not measuring a mass doublet, we reasoned, we could not rely 

OP frequency shifts cancelling out in a mass ratio determination. 

But we ruled out this scenario by measuring the dependence of the 

measured frequencies on mode radii for both N+ and N2+, and 

extrapolating back to zero radius. This procedure puts a limit on 

the total radius-dependent frequency perturbation which is less 

than a part in 109. 

The explanation we favor, although more experiments are 

required to verify it, is based on the "patch-effect" fields mentioned 

in section 4A, above. We have shown that there are fields (due to 

surface potential patches, we surmise) in the trapping volume 

which do  not scale with applied bulk potential of the electrodes. 
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For instance the Vringpatch term defined in section 4A is the 

hypothetical d.c. surface potential on the central ring electrode 

which accounts for the observed offset in the strength of the 

quadrupole trapping fields. ("Offset" in the sense that it is the field 

that remains even with nominally zero volts applied to the ring.) 

Similarly, there is a Vguardringpatch associated with the Cq fields. It 

seems highly probable that this offset potential has an asymmetric 

component as  well, corresponding to a non-vanishing axial 

component of the electric field at the trap's geometrical center. We 

define an effective potential Vendcappatch which produces an axial 

field at trap center Vendcappatch/(2d). This field shifts the effective 

trap center (the point where electric fields vanish) axially a 

distance zpatch/d = Vendcappatch/(2Vt). This axial shift will couple 

with the residual linear magnetic field gradient, B1, to cause a shift 

in the cyclotron frequency inversely proportional to the applied 

trapping voltage Vt. Since Vt is adjusted differently for different 

mass ions, this patch effect shift has a potentially very hazardous 

systematic dependence on ion species. 

6 a c l w c  = B1Vendcappatchd/(2Vt) 

HOW large is vendcappatch? Well, the endcaps are made of the 

same material and are about the same size and distance from trap 

center as the ring, so an educated guess for the size of Vendcappatch 

is on the order of Vringpatch, that is, about 30 meV. In the case of 

our M(N+)/M(N2+) measurement, Vt is 9 volts for N2+ but only 4.5 

volts for Nf. We determined that IB11<3x 10-6. Thus we might 

expect a systematic error on the order of 8 parts in log! 



In light of these considerations, finding a final error as small 

as 3 parts in 109 in the M(N+)/M(N2+) measurement now seems 

rather fortuitous. If we wish to measure non-doublets to pare in 

109 accuracy we clearly must put more effort into understanding 

patch effect shifts. It is important to note that when measuring a 

mass doublet, the patch effect shift is tiny because Vt is so nearly 

the same for both ions. For instance, for our M(CO+)/M(N2+) 

doublet, using the same estimates for B1 and Vendcappatch, we 

estimate a systematic error due to the patch effect shift of only 4 

parts in 1012. 

6. CO+/N2+ Mass Ratio Measurement 

I conclude this chapter with an account of our best 

measurement to date, a 4 part in 1010 determination of the CO+/N2+ 

mass ratio. Section 4G was originally published in October, 1989, in 

Physical Review Letters, with the five coauthors listed on the title 

page below. 
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The Penning trap, with its strong uniform magnetic field and its much weaker 

elecmc field, has been used to perform a number of very accurate quantitative 

experiments.[VSD87, VMF85, WBI83, PBISS] We have used a Penning trap for mass 

spectroscopy using single ion cyclotron resonance (SICR). The absence of ion-ion 

interaction makes systematics easy to understand, hence SICR is the most accurate 

method of comparing mass. The A M/M= 4 x 10-lo result reported here, limited 

predominantly by the temporal drift in  the magnetic field, is a factor of six [actually, two] 

better than the value from current tableswAA85], and may be the most accurate ion 

mass comparison to date. 

A hyperbolic Penning t rap[~IZ~67j '  consists of three main electrodes, all 

hyperbolic surfaces of rotation, which provide a restoring electric field which is linear 

with displacement along the axis of rotation. The much stronger axial magnetic field 

confines the particle radially. For a single charged particle there are three normal modes, 

one mode (the "axial" mode) which is aligned with the nlagnetic field, and two 

perpendicular to it. The perpendicular ("radial") modes are the electric field-modified 

cyclotron motion at frequency v,' and the slower magnetron orbit, due basically to E x  B 

drift. 

The ratio of the cyclotron frequencies for two different ion species, when corrected 

for electric field effects, is simply the inverse of their mass ratio. Our approach, then, is 

to compare the cyclotron frequencies of alternately loaded single ions. For an M = 28 

a.m.u. ion, the cyclotron, axial and magnetron frequencies in our trap are respectively 

vLg4.5 MHz, v,G 160kHz, a n d ~ ~ s 2 . 8  kHz. 



Our trap hangs vertically in tlie bore of an 8.5 Teslsb superconducting Oxford 

magnet. The magnet has superconducting shims and a custom dewa. in the bore which 

allows us to cycle the trap from room temperature to 4.2K while keeping the magnet 

itself cold. The main electrodes are precision-machined O.F.H.C. copper, plated with 

gold and coated with a layer of graphite particles (Aquadag) to minimize surface patch 

effects. The three main electrodes are spaced by machinable ceramic (MACOR) rings on 

which are painted guard ring electrodes, used to shim out higher-order electric fi'eld 

components. The lower guard ring is split into halves to pennit driving of the radial 

modes of the trapped ion. The trap has a minimum endcap-to-endcap spacing 1.2 cm, 

and minimum radius .696 cm, giving an effective trap size d = .549 cm. The trap is 

inside a copper vacuum can, which cryo-adsorbs to ultra high vacuum, but there is a 

line-of-sight path through a hole in the center of the upper endcap up the pump-out tube 

to a room temperature gas-handling manifold. Ionizing electrons enter the trap from a 

field emission point just below. 

The ion's axial motion is detected via the image current induced in the upper 

endcap. The detection circuit includes a superccqducting tank circuit (Q = 25000) and an 

rf SQUIDWLB851. The real part of the detector's impedance damps the axial motion 

with a damping time z,= 6 seconds. For a single ion pulsed to 1/5 the trap size, detector 

signdnoise from 4 seconds of data is adequate to measure the axial frequency to SO mHz 

and the phase to 15'. 

The presence of even a single impurity ion has been observed perturb the trap 

frequencies of the desired ion unacceptably. Ejecting impurity ions is a surprisingly 

difficult task. Our approach has been to heat the axial motion of impurity ions with 



band-limited white noise[M8087] and then to lower ("dip") the voltage on the lower 

endcap, bringing the equilibrium position of the ion c1,oud very near the lower endcap. 

The more highly excited impurity ions are neutralized by striking the trap, leaving only 

the desired ion species in the trap. We use a similar dipping technique to thin the desired 

ions until only a single ion remains (Fig. 1). 

The two radial ion modes do not couple to the detector and hence are undetected 

and undamped. In order both to cool these motions and to measure the all important 

cyclotron frequency, they must be coupled to the axial mode. We accomplish this with rf 

voltages applied across the halves of the lower guard ring at the sum or difference 

frequencies of the modes to be coupled[BRG86, WID75, WEI881. To cool the magnetron 

motion we use the traditional sideband cooling scheme, a cw drive at v,+v,~ID75]. 

But for cooling the cyclotron motion, and for precision measurements of both the 

magnetron and cyclotron frequencies, we use a a short pulse at the coupling frequency of 

two modes. A pulse with the appropriate amplitude-duration product, (a "x-pulse"), will 

exchange the phase and action of one mode with those of the other[cwb90]. To cool the 

cyclotron motion, we cool the axial motion resistively, then use a x-pulse to swap the 

cwled axial motion into the cyclotron mode. The caption of Figure 2 describes how we 

use x-pulses to measure the trap cyclotron and magnetron frequency. 

In order to measure the mass ratio of two ions, we alternate SICR measurements of 

the two ions under comparison - loading a CO+, measuring its frequencies, then 

dumping it and loading an NJ ion, measuring its frequencies, and so on. Figure 3 shows 

the results of an evening of such measurements. Preparing a new ion for precision 

measurement, that is, loading a cloud of ions, ejecting the impurity ions, reducing the 
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cloud to a single ion, and cooling the magnetron motion, requires at least 25 minutes. 

Any discontinuous field change, or even any dramatic change in the drift rate during this 

time will cause an emor in the measured mass ratio. 

Because our superconducting solenc id is only imperfectly self-shielding (85% 

efficient), changes in the ambient field are felt at trap center. The data from run 3 were 

taken early in the morning, when the ambient magnetic noise was very low, and the 

scatter correspondingly small. 

We also observed frequency drifts over longer timescales that were evidently due 

to processes inside the apparatus. The drifts are affected by refilling the &yogenic fluids. 

We suspect they are caused at least in part by thermal expansion moving the trap center 

relative to the superconducting coils. 

To extract a mass ratio from the data, we fit the magnetic field magnitude to a 

polynomial in time. The coefficients of that polynomial, and the CO+/N$ mass ratio, are 

the fit parameters. We fit the same data several times assuming, in turn, linear, quadratic 

and cubic magnetic field temporal profiles. The data seldom fit any better to a cubic 

shape than to a quadratic shape, whereas the linear shape seems overly restrictive. In 

any event, the difference in the final mass ratio results obtained from the different 

analyses is an informal measure of the price we pay for our ignorance of the temporal 

variation of the magnetic field. Combining the errors from the quadratic fits yields an 

ovmll error of .2 ppb (Table 1). Our judgement is that .2 ppb is insufficiently 

conservative and our best estimate for M(CO+)/M(Nz) is: 0.9995988876(4). 

Although magnetic field uncertainties dominate our errors here, it is important to 



consider other sources of error which arise in this experiment. Many of these (eg. effects 

which perturb the axial frequency) enter because the free space cyclotron frequency 

wc = eB/mc, which must be used to determine the mass ratio, is[BRG86] 

2 2 v ~ = v ; ~  f V, + V, (1) 

where v,',v, and v, are the measured trap frequencies. Eqn (1) is exact even when the 

axis of the electrostatic field is not aligned with the magnetic field provided that the 

magnetic is unifonn and the electric field is a pure quadrupole. The hierarchy of 

frequencies, vC>>vz>>v,, implies that for a desired final uncertainty (6v&,), we need 

measure v, to a much lower precision, and v, to a still lower precision. In practice, we 

do not wony a b u t  any corrections to the magnetron frequency. 

The finite sensitivity and nonzero temperature of our detector require the use of 

bite ion orbit radii a,, a,, and G. For finite radii, the measured frequencies are 

perturbed by the gradients in the magnetic field, the nonquadrupole components in the 

electric field, and special relativistic effects. The effects of the~d errors, which depend on 

various powers of the orbit radii, are summarized in Table 2. The only systematic error 

which does not depend on the orbit radii is frequency pulling of a, due to coupling to the 

detector's tuned circuit, which causes a random error less than 4 x lo-''. 

Clearly, the first obstacle to higher accuracy is temporal instability. While better 

engineering can stabilize the field somewhat[M0089,GAT88], a more elegant route to 

ultra-high precision would be trapping one ion of each species to be compared and 

measuring them simultaneously. Preliminary theoretical and experimental work on the 

two-ion problem encourages our belief that ion-ion perturbations are 

controllable[KUC89]. 
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We estimate that the troublesome field inhomogenities B2 and C4 (which are 

higher-order spatial coingonents of the magnetic and electric fields, defined in reference 

[BRG86]) can each be reduced by at least a factor of ten by more careful shimming 

techniques, but relativistic mass shifts will limit accuracy to the lo-'' level unless there 

are improvements in cooling the cyclotron motion. Feedback cooling with a subthermal 

detector is a possibility. Also, under certain circumstances, one can win additional 

accuracy by deliberately distorting the magnetic field so as to cancel the relativistic 

correction to v,'. 

Mass comparisons at the lo-" level and beyond will permit weighing molecular 

bonds and electronic binding energies. Measuring nuclei levels involved in gamma-ray 

emission will give a value for the gamma-ray energies in a.m.u. This information, 

combined with a precise determination of y-ray wavelength, would yield a new value for 

NAh[JOH84]. NAh, in turn, can be combined with a precise value for the electron mass, 

in amu, and with the Rydberg, to determine an independent value for a*. 

We'd like to thank Deborah Ruchnir for technical assistance. This work was 
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Graduate Fellowship to E.A.C.), and by the Joint Services Electronics Program grant 

#DAAU)3-89-C-0001. G.P.L. thanks the donors of the Petroleum Research Fund. We 

are very grateful to R. Van Dyck for extensive helpful discussions. 



Table 1 

Fitting Scheme: linear 

run #1 

run #2 

run #3 

average 

quadratic cubic 

Combined value: 0.9995988876(4) 

Table 1: Determination of M(CO+)/M(Nz). The values listed in the table are the 

measured mass ratio M (CO+)/M (Nl)  - .9995988800, as fit to the data from three 

different data runs, using three different polynomial forms for the time dependence of the 

magnetic field. The quoted error reflects the spread in the different fitting schemes, f .2 

ppb, and the typical "error" determined by assuming a given scheme, f .3 ppb. 



Table 2: Error. The first column lists the major amplitude-dependent corrections to v: and 

v,. The second co lum gives the effect of the corrections on v,, to lowest order in the 

orbit radii. During the v: measurement, %=0.024(2) cm, a,= .005 cm r.rn.s., and 

& < .003 cm. During the v, measurement, a, 5.802, %=. 120(7), and a,,, 5.003 cm. The 

errors indica:xl are due to thermal motion or imperfect cooling. Because we measure a 

mass doublet, the value of the mean comection is not particularly important. Fluctuations 

(fourth column) put a limit on the accmcy attainable with a single pulse-and-phase 

measurement. The fifth column is an upper limit to the systematic dependence on ion 

species, for which we assume the driving and cooling pulses are constant to 1%. B2 and 

C4, higher-order components of the magnetic and electric fields [BRG86], were 

compensated to I C4 1 5 5 x and B2 = 1.2(2) x ~ m - ~ .  

Figure 1: Steps in the axial signals as one ion after another is expelled 

from the trap. The ions were driven to 20% of the trap size. 

Figure 2: For each plotted point, the following experiment is performed: 

the (initially cold) ion is pulsed into a cyclotron orbit of known initial 

phase, then allowed to evolve "in tRe dark" for the indicated amount of 

time. Then a A-pulse is applied, bringing the ion's cyclotron action and 

phase into the axial mode. As the ion's axial motion rings down, its: 

phase is detected. The appropriate multiple of 360 degrees is added, and 

a line is fit to the points. The slope of the line is the offset fmm the 

frequency generator to the trap cyclotron frequency. 



Figure 3: The data from run #3. The solid points are v, (NJ); the open 

points are v,(CO+). A total of three ions were loaded, in order 

N2+ - CO+ - N;. The solid lines are a fit to the two frequencies assuming 

a field drift that is linear in time. The dotted line fit assumes a quadratic 

field drift. The indicated value for v, (CO+) -v, (N;) results from the 

latter assumption, and corresponds to 

M (CO+)/M ( NJ ) = 0.9995988876(3), 
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FIG. 1. Steps in the axial signab as one ion after another is 
expelled from the trap. The ions were driven to 20% of the 
trap size. 

time [hours] 

FIG. 3. The data from nm 3 are shown. The solid quares 
are v,(Nz+); tbe open squares are v,(CO+). A total of three 
ions were lorded, in the order Nz+-CO+-Nz+. The solid lines 
are a fit to the two frequencies assuming a field drift that is 
Linear in time. The dotted-line fit assumes a quadratic field 
drift. The indicated value for v,(CO+) - v,(N2+) results 
from the latter assumption. a ~ d  corresponds to M(CO+)/ 
M(Nz+) -0.999 598 8876(3). 
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FIG. 2. For uch plotted point, the following experiment is 
performed: The (initially cold) ion is puleod into a cyclotron or- 
bit of known initial phue, and then allowed to evolve "in the 
dark ' for the indicated amount of time. Then a x pulse is ap- 
plied, bringing the ion's cyclotron action and phase into the ax- 
ial mde. As the ion's axial motion rings down, its phase is 
detected. Fbe appropriate multiple of 360e is added, and a 
line is fitted to the points. The slope of the line is the offset 
from the frequency generator to the trap cyclotron frequency. 

TABLE I. Determination of M(CO+)/M(N~+). The 
values listed in the table are the measured mass ratio 
M(C0 )/M(Nz+) -0.999598 8800, as fitted to the data from 
three different data runs, using three different polynomial 
forms for the time dependence of the magnetic field. The quot- 
ed error reflects the spread in the dfierent fitting schemes, 
f 0.2 ppb, a ~ d  the typical "error" determined by assuming a 
given scheme, + 0.3 ppb. Combined value: 0.999 598 8876(4). 

- - - -  

fitting scheme 
Run Linear Quadratic Cubic 

-- -- 

I 84(9 80(4) 74(6) 
2 74(9) 75(8) 75(12) 
3 72(3) 76(3) 770)  
Average 730)  77(2) 760)  

TABLE 11. Error. The first column lisps the major ampliaude-degendent correction, to v: md VX. The second column gives tbe 
effect of the corrections on vc, to Iowm order in the orbit radii. During the v: miasuremeat, ec-0.024(2) em, -0.005 cm ranr, 
mil O n  50.003 m. During the vx measurement, ec $0.002. m, 08 -0.120(7) cm, and an S 0 . W  cm. The m o m  hdiuted m due 
to thermal motion or imperfect cooling, Bcuuse we mwure a mass doublet, tbs value of the m u n  correction u not particularly im- 
p n m t .  Fluctuations (fourth column) put a limit on the amracy attainable with r single pulse-and-phuc measurement. The fifth 
column b an upper limit to the systematic dependence on isn species, for which we mume the driving and cooiing p h  u e  eon- 
m n t  to 1%. B2 and Ch higher~der components of the magnetic a d  electric &Ids (Ref. 9). were compnrrtd to lc4 1 S 5 x  10" 
and ~2-1.2(2)xl0"cm". 

Co- 
(mode aR#ted) Fom of AV,/V, 

Relativity (v:) - i (a2/c2)d 
Electrostatic (v:) f (CJB')(~,/OD~)(- bd+a. l -d)  
Ekctrortrtic (v,) (CJd1)(mm/ae)(-a?+ i a? -o i l  
Magnetic (v : )  (BJ2)(-d+a?-q?) 
Magnetic (v,)  (~J2)a?  

Upper limit of systematic 
nmttbtrmrl vui.tjinl 

m e  with ion apecia 

4 x  10'" sx10'" 
4~ lo-1z 5 ~ 1 0 - ~ ~  
9 x  10'" 1x10'" 
6 x  7x lo'11 
3x10'" 1 x lo'" 



Chapter 5 Simultaneous Two-Ion Cyclotron 
Resonance 

5A Basic Two Ion Theory 

Mass comparisons using sequential resonance experiments 

on single ions require a magnetic field stability comparable to the 

desired accuracy of comparison. Take for example the ammonia 

mass doublet ( I ~ N H ~ +  and ~ ~ N D H ~ +  ) whose masses differ by 

about five parts in 104. To be of use in fundamental constant work 

[JOM84], the mass ratio must be determined to nearly a part in 

1 0 1 2 .  A sequential measurement (load one ion; measure; dump; 

load the other ion; measure; etc) must determine each ion's 

cyclotron frequency to microhertz out of megahertz. During each 

measurement, and while the ions are being exchanged, the 

magnetic field has to be constant to a parts in 1012. Also draconian 

given current technology, is the requirement on electric field 

stability, parts in 109. 

On the other hand, if the two ions are measured 

simultaneously, in the same trap, the requirements on field 

stability relax immensely. As we shall see in section 5C, below, the 

precision quantity is  the instantaneous cyclotron frequency 

difference, which must be measured to 7 pHz out of 1.5 kHz. The 

magnetic field must be constant to only parts in 109, the electric 

field to a part in 105, both standards already achieved in our 

experiment [CWBSg]. 
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Even as simultaneous two-ion cyclotron resonance finesses 

the problem of temporal field drifts, however, it raises new issues. 

If the two ions are too close together in the trap, the coulombic 

coupling may perturb their cyclotron frequencies unacceptably. On 

the other hand, if the ions are well-spaced, any residual spatial 

inhomogeneity of the trapping fields may affect the two ions 

unequally. The first question to ask then, is what is the motion of 

two ions, relative to each other and relative to the trap electrodes, 

under the combined influence of the trapping fields and of the ion- 

ion coulombic repulsion? 

The motion of two ions in a Penning trap is  a three-body 

problem and can not in general be solved exactly. However, in the 

regime of experimental interest we can make several useful 

approximations. If the initial ion-ion separation ps is large enough 

to keep the ion-ion coupling weak, we can carry over from the 

single ion solution the idea of independent cyclotron and axial 

motions for each ion. Ion interaction will perturb the frequencies 

of these four modes, to be sure (as discussed below), but we will 

not have to think of the axial or cyclotron motions as collective 

modes of the two ions. 

The magnetron motion, however, is another story. The 

unperturbed magnetron frequencies of a mass doublet are so 

nearly degenerate that even a small perturbation will strongly 

couple the magnetron modes. We will use conservation principles 

to establish that the distance between the two ions -- an important 

quantity that sets the scale of ion-ion perturbations -- is an 
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approximate constant of the motion. Further, we will show that the 

geometry of the locked magnetron motion is such that, over time, 

the ions sample very similar fields. 

Conserved Quantities 

Regardless of the number of ions in the trap, the conserved 

quantities are the total energy and the z-component of the total 

canonical angular momentum [WBI85]. As a first pass at the 

problem, let us imagine that the axial and the cyclotron radii of 

both ions are zero, and write the energy and canonical angular 

momentum as follows: 

4 -. -a 

where PS = P i  - P2 is the ion-ion separation (Fig. 5.1). We now 

rewrite the equations, explicitly separating out the effects of the 

ion-ion perturbation: 

where we have substituted for the ions' velocities the values of 

Chapter 5 



Fig. 5.1 The axis of the trap is perpendicular to the plane of 
the figure. When only the magnetron motions are considered, 
the angular momentum and energy of the system of two 
particles are well approximated by functions only of the 
distances PI=F~[  , ~ z = p d , m d  ~s=bd. 



4 - 
their unperturbed magnetron velocities: P i = - a m i  p i .  The 

small errors associated with this substitution are accounted for in 

the terms SKE and SL (for Small bit of Kinetic Energy and of anguLar 

momentum, respectively). Here the ion-ion interaction is 

represented only by a potential term, e2/ps, and by the two small 

corrections SKE and SL. Define a mass splitting ~l such that mi = 

mo(l + q )  and m2 = mo(l - q). Here, and throughout the chapter, the 

subscripts 1 and 2 refer to properties of one ion, or the other, and 

the subscript o refers to ,  properties of a hypothetical ion whose 

.mass is the average of the masses of the two ions. We now make 

two key approximations (whose validity we will check shortly): 

first, that o ~ ~ = c O ~ ~ = C O ~ ~ ,  and second, that SKE = SL = 0, and rewrite 

the energy and angular momentum: 

- -As.- = (p12 +p22)( 
mo mops 4 

p l  and p2 evolve over time, but conservation of energy and angular 

momentum put a strict limit on the amount ps  can change. In order 

to conserve L,, changes in p 12 and in p 2 2  must be related. Eqn 

5A.6 gives: 
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We will simplify expressions using the inequality Oc>>Oz>>Om. (In 

practise, the ratio is about 8000:160:1.5 for a mass 18 ion.) 

Combining Eqns. 5A.5 and 58.7, we find that changes in the ion-ion 

potential energy are restricted: 

2 - - Qorn0 6 ( p I 2  - ~ 2 ~ )  
mops  2 

And what, typically, is the maximum expected change in (p12 - 

p22) ? As we shall see in section 5B, below, ions are typically 

loaded into the trap with an initial separation p s  = 2pcOm,  where 

pcom is the length of the average position vector, 

Further, as we shall see in just a moment, both p s  and pcom are 

approximate constants of the motion. The maximum change in (p12 

- p 22) we can expect then is about 2p §2, which implies that the 

maximum possible change in ps  i s  

6 ps - rlomo 2 -- 
Ps K (5A.9) 

where we have defined the coupling constant, 

~ = e 2 / m ~ p ~ .  (5A. 11) 

In the limit of degenerate masses, (q goes to O), the ion-ion 

separation is a constant of the motion. p s  is nearly a constant of 
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Fig. 5.2 Any initial positions of ion 1 and ion 2 can be 
+ 

described as superpositions of the common mode vector, P c ~ m ,  
* 

and the separation vector, Ps. If the magnetic field lines come 
up out of the plane, both vectors rotate clockwise. In a frame 
rotating at a,, the ions trace out counterclockwise tandem 
circles centered on opposite sides of the origin. The angular 
frequency of the motion is a,,, - a,. 



the motion as long as the mass splitting is small compared to the 

coupling, q << K/cII,,~. 

We will look more carefully at the effects of nondegenerate 

masses on the orbits in section 5D, below, but for now keep q = 0, 

and make the purely geometrical observation that since ps  and p 12 

+ p22 are both constant, so must? be Pcom. The allowed ion motions 

thus decompose nicely into a common mode and a "stretch" mode 

(Fig. 5.2). The stretch mode is so called in analogy with tightly 

coupled harmonic oscillators, although of course in this case a 

vector pointing from one ion to the other does not stretch in length 

but merely rotates. 

Let us recheck our earlier assumptions for self-consistency. 

First, how large are the supposedly small terms SKE and SL, and 

how much effect did our neglect of them have on the calculated 

length of the vectors, Pcom and ps? Because the ions are in a strong 

magnetic field, the electric field from each ion induces an E-cross-B 

drift in the other. These drifts are relatively small corrections to the 

unperturbed ion velocities, and (for the magnetron motion) the 

velocity terms are in turn relatively much smaller than the electric 

and magnetic potential contributions to the total angular 

momentum and total energy. The magnitude of the E-cross-B 

velocity is cE/B, or ec/(Bps2). The largest change that this drift 

could cause in the angular momentum would be if the induced drift 

were perpendicular to the ion's position vector, and if that vector 
- - -- 

-. -. + - 
?ps2 = p12 + p22 - 2p1.p2 = constant implies p 1 . p ~  = constant. 

4 4 

Therefore pcom2 = pI2 + p22 + 2p1 432 = constant. 
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were at maximum length. Given typical experimental initial 

conditions, Pi Ps , so that the change in angular momentum must 

be less than 6 S ~ = m ~ c e / ( B p ~ ) = 2 m ~ p ~ 2 ( ~ / 0 ~ ) .  Similarly, the 

maximum change in the kinetic energy occurs when the drift 

velocity is adding to or subtracting from the ion's velocity when it 

is at its maximum, thus the maximum possible change in the kinetic 

energy is 6s KE=mop s 2 ( 0 m / ~ c ) ~ .  Reinserting the nlaximum values, 

~ S L  and ~ S K ~ ,  back into the the conservation equations (5A.5 and 

5A.6) in which they were neglected, we can put an upper bound on 

the error associated with the approximation: 

It is easy to verify that the errors in p and p corn associated 

with OUT other major approximation, that am 1 = 0 m Z= 0 m o ,  are 

smaller still. The errors in the results obtained so far in this section 

are thus small as long as OZo* << aco2 ,  K << oco2,  and qom2 << K. 

These inequalities are all experimentally realizable. For instance, 

for the case of our ammonia example, with the reasonable initial 

value of ps  = 0.08 cm., we have K = 2 x 107, q o , 2 / ~  = 1 x 10-3, K 

/mco2 = 1 x 10-8, and o ~ ~ ~ / c o ~ ~ ~  = 5 x 10-4. 

Locked Motion 
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Having established the geometry of the modes (or 

approximated them, in the more realistic case of nondegenerate 

masses) by the use of conservation principles, we can confidently 

solve the equations of motion for the corresponding frequencies. 

The equations of motion for two particles moving in the mid-plane 

of a Penning trap are: 

These equations are linear except for the cubic in the denominator 

of the interaction term. We use the results of our conservation 
-m 4 

principle argument, that b l - ~ d  5 PS is an approximate constant, to 

eliminate the nonlinear term. Dividing though by mo, we get the 

equations 

These coupled linear equations are exactly solvable. We get 

that the two normal mode frequencies are 

Ocom = a m o  + Q I ( ' t 1 2 ~ ~ m o 4 > / ( 2 ~ ~ c o >  I 
Os = Wmo + ~ K / W C O  + Q (q2Wmo4)/(2~@co) } (5A.17) 
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The normal mode motions correspond to clockwise motion of the 

vectors shown in Fig. 5.2. in the limit of qom'/IC << 1. (The small 

corrections tc the geometry of the modes for nondegenerate mass 

are described in section 5C.) Viewed in a frame rotating at as, the 

ions appear to drift counterciockwise in tandem, sketching out twin 

circles centered on either side of the trap center (Fig. 5.2). The ions 

take turns moving nearer to and further from trap center, with a 

period of motion t, = 23c/(oS - acorn) = R O ~ ~ / K .  

From the point of view of the precision mass spectroscopist, 

this tandem motion is very welcome. If its period is short compared 

to time between pulses of a separated oscillatory fields (S.O.F.) 

resonance measurement, the ions' orbits will average away, albeit 

incompletely, the effects of field inhomogeneities which are 

functions of distance from trap center. Better yet would be if p,,, 

were cooled as much as possible while p, remained relatively large 

(Fig. 5.3). In such a configuration the two ions would follow each 

other around and around the center of the trap, sampling almost 

exactly the same fields. We discuss schemes for accomplishing this 

specific cooling in section 5C below. 

Axial and Cyclotron Motion 

Now that we understand the basic principles of locked 

magnetron motion, we relax the requirement that the axial and 
+ 4 

cyclotron radii vanish. Ps and Pcom no longer refer to the 

instantaneous ion positions, but rather to the guiding centers of 

each ion's axial-cyclotron motion. We require that the cyclotron 
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Fig. 5.3 If the center-of-mass motion is cooled, the ions are 
"parked" in orbits on either side of the origin. This 
configuration ensures that, as the ions move around the trap 
center, they sample very nearly identical fields. This 
minimizes the risk that inhomogeneities in the mapping fields 
will affect the measured frequency mass ratio. 



radii, pel and pc2, be small enough to avoid the possibility of a hard 

collision, that is, that pel + pc2 < ps. The ion-ion potential averaged 

over the cyclotron and axial motion is no longer simply $ips, but is 

now a function of the cyclotron and axial radii as well as p s .  

However, as long as the inter-ion potential (the quantity which 

appears in parentheses on the left-hand side of Eqn 5A.$) is a 

monotonic function of p S, the result that p and p are constants 

of the motion remains valid. In the absence of hard collisions, the 

large separation between the mode frequencies ensures that energy 

and momentum will not be transferred from axial and cyclotron 

modes to the magnetron motion. 

If the axial displacements zl and 22 are small compared to ps,  

then we can expand the axial component of the ion-ion repulsive 

force, keeping only the dipole term which is linear in zl -z2. 

Using the dipole form for the coupling, and assuming weak 

coupling, that is K << Iq ~0~21, it is easy to solve for the perturbed axial 

frequencies: 
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The primed variables here refer to the frequencies shifted by the 

ion-ion perturbation. As long as the coupling is weak, K/(T %*) < < I ,  

the perturbations are very nearly symmetric, that is, the the axial 

difference frequency, ( ~ 3 ' ~  1 - ~ ' ~ 2 ) ,  is not significantly shifted. 

In experimentally realizable situations the approximation (21 - 
22) << p s  may not be valid. To obtain adequate signal/noise in the 

axial motion detector, the ions may well have to be driven to axial 

motion with peak amplitudes azl, az2 > p ~ .  In this case, the coupling 

is nonlinear and K is replaced with an effective coupling K', which 

depends on the amplitudes aZ1 and aZ2, and which is always less 

than K,  except when the amplitudes vanish. As th3 axial motions 

damp, K' increases and the frequencies shift. The signals detected 

after exciting the axial motion will thus be "chirped". However, if 

the axial amplitudes remain equal to each other as the ions damp, 

the perturbation remains symmetric, and the frequency difference 

0 ~ 1 '  - a Z 2 '  will be only slightly perturbed. 

We have established a general picture of two ion dynamics in 

an experimentally interesting regime, with magnetron modes of the 

ions tightly locked into coordinated motion, and with the axial 

modes perturbed in frequency but still independent. We now turn 

temporarily from the two ion dynamics discussion to describe some 

preliminary experiments we have performed with two ions. Ion-ion 

perturbation of the cyclotron frequencies, and other topics in two 

ion motion will be covered in section 5C below. 
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Section 5B: Preliminary Two Ion Experiments 

We describe in this section our preliminary experimental 

work on two-ion trapping.t The work demonstrates techniques for 

loading a single ion of each species into the trap, and confirms that, 

with appropriate initial inter-ion spacing, the axial m ~ t i o n  of the 

two ions is qualitatively as predicted. We have worked with the 

doublet N2+/CO+, whose masses differ by about 5 parts in 104. The 

apparatus, described in references [WLB88] and [CWB89], is a 

Penning trap at 4.2K, in an 8.5 Tesla magnetic field. When the ions 

are tuned to be resonant with our axial motion detector, the axial 

frequencies of the two ion species differ by 33 Hz out of about 160 

kHz. 

A pair of ions is loaded as follows: from a room temperature 

gas-handling manifold, we admit a small pulse of N2 gas, which 

drifts down into the cryogenic portion of the apparatus and through 

a hole in the upper endcap into the trap volume, where it 

encounters a beam of electrons injected from below the trap. The 

average number of ions produced by electron collisions is 

proportional to the product of the electron current and the number 

of molecules injected. This product has been previously calibrated 

[KUC89] to produce, on the average, 112 ion with every gas pulse 

admitted. After each pulse of gas, we test for ions by driving the 

lower endcap and looking for the signal from the axially excited ion. 

A more detailed account of these experiments appears in D. Kuchnir's 
thesis [KUC89]. 
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Occasionally, more than one ion is trapped, in which case we dump 

the trap and start again. It rarely takes more than a few attempts 

to catch a single N2+ ion. 

Because the ionizing electron beam is thin and very nearly 

coaxial with the trap, ions are initially created near the axis of the 

trap, which is to say, created with a small magnetron radius. The 

moment the second ion is created, ion-ion separation p s  will be a 

constant of the motion. Thus if we wish the two ion motion to have 

a particular ps,  we must control how far the initially created N2+ 

ion is from the site of the CO ionization. Before loading the COC ion, 

we drive the magnetron motion of the newly trapped single N2+ ion 

to about .6 mm, using a short resonant pulse at the magnetron 

frequency. Then we proceed as with N2 to trap a single CO+ ion. At 

the moment the CO+ ion is created (at trap center), the N2 ion is .6 

mm from trap center. Thus initial p s  is .6 mm, and initial p o r n  is .3 

mm. 

If we load the second ion without preparing the first in a 

large magnetron orbit, the ions will be created with Pcom - ps  < 0.02 

cm. The axial signal detected under these conditions is very 

irreproducible. Sometimes a component of the axial signal appears 

at the average of the two unperturbed frequencies, and sometimes 

(especially when the ions are driven hard) we see individual signals 

at close to the unperturbed frequencies. With the radial separation 

so small, the approximations of section 5A, above, are invalid, and it 

is hard to predict what sort of motion should occur. It is possible 

that, as the axial motion damps, the ions come to an equilibrium 
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stacked vertically along the axis. In any case this sort of 

configuration is not appropriate for precision metrology and the 

remainder of the measurements described in this section were 

performed on ions radially spaced by about 0.6 mrn. 

The ions can not only be loaded one at a time, they can be 

unloaded individually as well. This is accomplished by resonantly 

driving only one of the ions into a large axial orbit, and then 

"dipping" the trap, i.e. adjusting the lower endcap voltage so as to 

draw the equilibrium position of the ions near the surface of the 

lower endcap. The ion with the large axial motion then collides 

with the wall, is neutralized and leaves the trap, leaving only the 

undriven ion trapped. 

Truly simultarreous resonance measurements on the two ions 

requires the ability to detect both ions simultaneously. 

Unfortunately, the ions' axial frequency splitting, 33 Hz, is much 

larger than the effective bandwidth of our detector. The ions may 

be detected sequentially by alternately tuning the trap voltage so 

that first one, then the other ion comes in resonance with the 

detector, but we use a trick to bring components of both signals 

within the bandwidth of the detector simultaneously. Adding a 

small a.c. term to the trapping voltage modulates the frequency of 

the axial motion, generating sidebands spaced by the modulation 

fr.equency V od.  The d.c. trapping voltage Vt and v m o d  can be 

adjusted to bring the first upper sideband of N2+ and the first 

lower sideband of CO+ both within the bandwidth of the detector. 
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Offset Frequency (HZ) 

Fig. 5.4 The fourier transform of the signal detected after the 
axial motions of simultaneously trapped single CO+ and N2+ 
ions are excited. The trapping voltage is modulated at 15 Hz, 
giving rise to sidebands on the axial frequencies of the ions. 
Although the axial frequency splitting of the ions is 33 Hz, the 
first upper sideband of the nitrogen ion and the first lower 
sideband of the carbon monoxide ion are separated by only 3 
Hz and fall within the bandwidth of the axial motion detector. 
A calibration peak at 11 Plz has becn removed from the data. 



When the axial motions of both ions &e excited with a short pulse, 

the signals from the ions are simultaneously detectable. [Fig. 5.41 

The amplitude of an ion's sidebands relative to the overall 

amplitude of' its .motion depends on strength of the modulation P = 

( 1 / 2 ) ( v m o d / V t , a p ) ( ( ~ Z / 2 ~ ~ m O d ) ,  where Vmod is the peak modulation 

voltage. The amplitude of the nth sideband is proportional to Jn(p), 

where Jn is the nth order Bessel's function. Since damping of the 

axial motion is due to interaction with the detector, damping time is 

a function of the strength of the sideband that is in resonance with 

the detector (assuming that the vm,d is large enough to ensure that 

only one sideband at a time interacts appreciably with the 

detector.) When the nth sideband is tuned to the detector the 

damping time is increased by a factor of (~ , ) -2  relative to the 

damping time for an unmodulated ion. 

When both species of ion are in the trap, the observed axial 

frequencies differ from single-ion, unperturbed values. The 

qualitative nature of the shifts, a decrease of roughly 1 Hz for small 

excitations, with the shift becoming less pronounced for larger axial 

orbits, agrees with the model described in section 5A, above. A 

more quantitative comparison can not be made with these data 

because at the time the data were recorded there was an 

uncertainty in the o, era11 calibration of orbit sizes and moreover 

the trapping voltage was drifting in time. 

Even without good calibrations, however, there arq several 

essential observations to be made: 
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Fig. 5.5 The nonlinearity of the ion-ion interaction makes the 
axial frequency pcrturbati~n amplitude-dependent. As the 
ions damp their frequencies may shift over several of the 
fourier transform bin widths (a). In (b), we have convolved 
the signal shown in (a) to extract a signal at the difference 

. frequency. The sharpness of the feature in (b) is evidence 
that the difference frequency remains quite constant as the 
ions damp. 



First, the ion-ion perturbation is roughly constant in time. 

Over a period of 90 minutes, the axial frequency shifts changed by 

less that 35%. (Temporal drifts in the trapping voltage prevented a 

more stringent limit.) Since the perturbations scale as p,-3, these 

data suggest that ps varied by at most 10%. 

Second, the perturbations, even though manifestly amplitude- 

dependent, were quite symmetric. In (Fig. 5.5) the ions have been 

pulsed to axial orbits larger than the radial separation. As the ions' 

axial motion damps, the effective coupling becomes stronger and 

the frequencies of both ions shift downward. This "chirp" in 

frequency is on the order of several fourier transform bin widths, 

and the transformed peaks look correspondingly messy. But since 

the shifts are symmetric, that is to Fay, if at any given moment the 

CO+ and the N2' ion are each shifted the same amount from their 

unperturbed values, then the difference in their frequencies should 

remain constant, even as the individual frequencies shift. As 

described in the caption of [Fig 5.63, we numerically extract from 

the data the difference frequency, which is manifestly much more 

stable than either of the individual motions. The same numerical 

routine, incidentally, can extract a difference phase from the two 

chirped signals, which suggests a two-ion generalization of the 

phase-sensitive technique for measuring single ion cyclotron 

frequencies described in references [CWB 89 and CWB901. 

Of course, determining the axial frequency splitting of a mass 

doublet is itself a mass measurement. Corrections due to magnetic 

field tilt and electrostatic anharmonicities are small and moreover 
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Measured Difference Frequency (Hz.) 

Fig. ' 5.6 The difference frequency between the two observed 
signals, S,, ,  i s  measured for a variety of modulation 
frequencies, vmod. Since we observe the first lower sideband of 
C O +  and the first upper sideband of N2+, the difference 
between the frequencies of the actual, axial motions is equal to 
2vmod+Svz. The combined result: v,l' - vz2' = 33.14(3) 



should be identical for the two ions. Most important, temporal drifts 

in the trapping fields should not affect the measured mass ratio. 

Our measurement (Fig. 5.6) of ~ 0 , 1 / ~ 0 , 2 = 0 . 9 9 9 7 9 9 5 3 ( 1 6 )  

corresponds to a mass ratio 

M(CO+)/M(N2+) = (wzl/oZ2)2 = 0.9995991 (3) 

in agreement with published values. Though an accuracy of 3 parts 

in 107 is not spectacular, attaining such an accuracy by comparing 

the axial mode frequencies illustrates the basic two-ion idea. Had 

we measured the axial frequency of a single CO+ ion, dumped it out, 

loaded a single N2+ ion (a 30 minute procedure), and measured its 

frequency, we should have been lucky to measure the mass rc.%io 

to even five times worse accuracy, given typical drifts in the axial 

frequency. 
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5C More two-ion theory 

Implication of the Brown and Gabrielse invariance theorem for two- 

ion measurements 

Brown and Gabrielse have shown [BRG82] that for a certain 

class of trapping field imperfections (i.e., the quadrugole electric 

field not axially symmetric or magnetic field tilted with respect to 

the axis of the electric field) an invariance theorem relates the 

frequencies of motion in the trap to the free space cyclotron 

frequency mc2 = (mc1)2 + a Z 2  + a m 2 ,  where act, w ~ ,  and am are 

the measured frequencies. The equality is true to all orders for a 

range of trap imperfections, and provides a convenient prescription 

for combining the measured trap frequencies to recover the 

cyclotron frequency of the ion in a purely magnetic field. For two 

ions we write: 

oc12  = (mc1')2 + oz12  + mm12 

mc22 = (COc2')2 + mZ22 + mm22 (5C. 1) 

where for our the purposes of this section mcil, OZi, and omi refer 

to the frequencies of each ion as measured in the imperfect trap 

but as unperturbed by ion-ion interaction. We want to examine 

which of these six trap frequencies need be measured, to what 

accuracy, and how they should be combined in order to determine, 

to a part in 1012, the ratio 
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Brown and Gabrielse [BRG82] show that 

where E specifies the out-of-roundness sf the electric field and 9 

and 9 the tilt angle of the magnetic field. For a particle of mass m2 

in the same fields, 

How good is the approximation? For a typical mass doublet 

with mass less than 30 amu, and for reasonable trap parameters, 

the four quantities (ozo/oco)2, q, sin%, and e are each less than 10- 

3 ,  so we ignore terms quartic in any combination of these f ~ u r  

quantities. The error in eqn (5C.4), for example, is on the order of 

~ ( w z o / w c o ) 2  sin20 < 10-9, which contributes an error of order 

~ ( o z o / o c o ) 4  sin% < 10 -12 to the error in our final determination of R 

(eqn 5C.6, below). Consistent with an overall error of less than 10- 12 

we may also approximate 

Using the approximations (5C.4 and 5C.5),  we subtract 

Eqn(5C.la) from eqn(5C.l b), and solve for R: 
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and with no loss in accuracy at the part in 1012 level, we can 

replace wc l 2  with measured values: 

Thus to measure the mass ratio to a part in 1012, it is 

sufficient to measure only three quantities, oc l', m z l  and A o c '  = 

ocl' - 0 ~ 2 ' .  The first two quantities may be measured to relatively 

low accuracy. Compared to the accuracy ultimately desired for R, 

the requisite precision for ocl' is lower by a factor of 2 q ,  and for 

m,l, by a factor of 2q (a,,/ac,)2. At the level of parts in 109 for the 

cyclotron frequency and parts in 106 for the axial frequency, drifts 

in electric and magnetic fields are much less important, so in 

practice one can measure ( 1 ~ ~ 1 '  and mz1 before putting the second 

ion in the trap, thereby ensuring that ion-ion interactions will not 

be a problem. Amc ' ,  the only quantity which must be measured to. 

very high precision, is extremely sensitive to drifts in the field, and 

thus must be measured with two ions in the trap. 

To conclude this section, two points must be emphasized, and 

two questions raised: First, the treatment in this section ignores 

ion-ion perturbation. What error does ion-ion perturbation cause 
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in the measurement of AmC'?  Second, the invariance theorem 

assumes there is no spatial variation of the magnetic field and no 

nonquadrupole components of the electric field. What is the effect 

of these field imperfections? These questions are addressed in the 

next two sections. 

Ion-Ion perturbation of the cyclotron jreq:'.'cency 

As a first pass at the important question of ion-ion 

perturbation of the cyclotron difference frequency, we solve a set 

of linear differential equations approximating the actual situation. 

Imagine the following idealized situation: The guiding centers of 

the cyclotron orbit of each ion are stationary, separated by p,. In 

this picture, there is no trap electric field, no time-averaged net 

force between the two ions, and the magnetic field is not B, but B,'. 

The idea here is not to represent the trap realistically but simply to 

provide the simplest possible mathematical framework that still 

preserves the two-dimensionality of the ion-ion cyclotron coupling. 

If the cyclotron radius is small compared to p,, we can approximate 

the interaction force as a linear function of ion displacement: 

and F2 = - F1. 
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When we include the Eorenz force, we get a system of four linear 

differential equations for the motion of the two ions in two 

dimensions. Guessing solutions: 

x 1 = Re( Ax 1 eiat ), x2 = Re( Ax2 eimt ), 

y 1 = Re( Ayl eiat ), and y2 = Re(Ay2 eiat), , (5C.9) 

and solving the characteristic equation for o we get 

The answer is reassuring. For a reasonable value of K, the error in 

the all-important ol - 0 2  can be very small --- in our example of the 

two ammonia molecules, for p, = 0.07 cm, K =2 x 107 and 

&(ol-m2)/uo = 2 x 10-13. 

But we must be careful. Although the perturbation in the 

difference frequency is small, the perturbation in either frequency 

alone is considerable. In the example cited in the paragraph above, 

~ C I I / C O  = 5 x10-9 . Thus if we aspire to parts in 10-12 accuracy, we 

rely on the perturbation being strictly symmetric, i.e. that the 

perturbation on one ion due to the other is the same as the 

perturbation of the other ion due to the one --- to better than a 

part in 103! As we have seen, this is true in the case of linear 

coupling, but what if the cyclotron radii are large enough to be a 

non-negligible fraction of the ion separation? For coupling beyond 

the linear approximation, the size of the frequency perturbation 
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will depend on the cyclotron radii, and if the cyclotron radii of the 

two ions were not exactly the same, we can readily imagine that the 

ion-ion perturbations would not be symmetric. 

This troublesome question of nonlinearity in the coupling may 

have to be addressed experimentally -- by measuring the 

difference frequency as a function of a deliberately caused 

asymmetry in cyclotron radii. In addition, we are pursuing the 

issue both numerically and analytically, and will report these 

results soon. [CKB90] 

The Magnetron Motion when the Ion Masses are not Equal 

We shall learn in this section that when the ion masses are 

not exactly the same, the average magnetron radii are not the same 

for the two ions. In the presence of residual field imperfections, 

the difference in the average magnetron radii means a systematic 

error in measuring the difference in the cyclotron frequency. 

We have seen in section 5 8  that during locked two-ion 

magnetron motion the distance from the center of the trap to a 

given ion oscillates slowly with a period determined by the 

difference in frequencies of the two normal modes, 2x/(ocom - as). 
In the limit that the two ion masses are equal, the ion motion has 

an important property. Averaged over one period of the slow 

oscillation, the average distance to the center of the trap, and all its 

moments, are the same for each ion. cp12> = <p22>, cp 14>= <p24>, and 

so on. Since perturbations to the cyclotron frequency due to 

residual field imperfections are functions of the distance to the 
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center of the trap, to the extent this averaging pr0ces.s is imperfect 

we must expect systematic errors. 

For ions of approximately equal mass, the conservation of 

energy and angular momentum severely constrain the range of 

possible paired ion motion. (Eqn. 5A.8 and 5A.10) The 

configuration shown in Fig. 5.7, a modification of the degenerate 

mass orbit, satisfies the conservation laws to first order in q o m 0 2 / ~ .  

The ions trace out twin circles on either side of the origin, and both 

circles themselves orbit the origin. As in the degenerate case, the 

centers of the circles are colinear with the origin but the distances 

from each circle's center to the origin, gl and g2, differ from each 

other, and the radii of the circles, f l  and f2, are unequal as well. 

As the mass difference q vanishes, we recover the original 

mass degenerate configuration shown in Fig 5.2, and for this reason 

we use analogous nomenclature for the radii: pco, refers to (fl + 
f2)/2 and ps to (gl+g2). Similarly the frequency os corresponds to 

- P and wcom to a - P  

We want to calculate the time-averaged moments of the 

radii : 
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Fig. 5.7 Conservation laws dictate the allowed orbits for two 
trapped ions sf unequal mass. To first order in q umo2/~, the 
pictured orbits conserve angular momentum and energy. By 
analogy with the degenerate mass limit, Fig. 5.2, B is -as and 

ci is -(a, - u ~ ~ ~ )  In a frame that rotates with 8, the ions move 
in tandem counterclockwise around their respective epicycles 
with angular frequency dr = [ ~ I C I O ~ , ,  1. 



(5C.12) 

The instantaneous frequency difference between the two modes &, 

determines the rate at which the two ions take turns moving closer 

and further from the center of the trap, and is itself basically a 

consequence of the ExB drift induced by the interaction electric 

field. A simple estimate based the separation between the ions, as 

determined from fig. 5.7, and from the resulting ExB velocity, gives 

the form of &: 

& = 3 Pcom qamo 
2 

cos a 
a P s K 

Now we can evaluate the iqtegral 5C.12 for n=2: 

Whether or not pcom has been cooled to be much smaller than p,, 

the important result, as we shall see in section 5D, is that the 

relative difference in the mean square radii scales as I/#, that is, 

scales as the mean separation between the two ions cubed. 
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Cooling pcom 

Using a variant on the sideband magnetron cooling technique 

it will be possible to cool or heat independently the two normal 

mode magnetron radii. The basic idea is to adjust the axial 

frequency modulation rate Vmod SO that the axial sidebands of the 

two ions overlap as nearly as possible. (See Section 5B) We then 

apply a sideband cooling drive coupling the magnetron motion and 

the axial motion. The coupling drive should be weak and somewhat 

off-resonance. In the limit that the coupling drive detuning is 

much larger than the frequency difference between the two axial 

sidebands, and in the limit that the "avoided crossing" frequency 

shift (See section 3B) is smaller than that frequency difference, the 

locked common mode magnetron motion maps directly into a small 

common mode axial motion, and the stretch magnetron mode maps 

into a stretch axial motion. Only the common mode motion couples 

net image current into the endcaps, and thus only the common 

mode damps. (Or heats, depending on the sign of the coupling drive 

-- see [BRGSG]) 

An alternate configuration, with the sideband frequencies 

well separated and the detuning drive coupling as close as possible 

to the average of the two sideband frequencies, results in the 

stretch magnetron motion coupling to a common mode axial motion, 

and vice versa, so that only the stretch magnetron mode damps or 

hsats.  
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The details of these calculations, which are somewhat lengthy, 

are unfortunately not ready for presentation as this thesis comes 

due, but are being written up for publication. [CKB90] 
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5D Two-ion Economy of Errors 

In section 5C, when we applied the Brown and Gabrielse 

invariance theorem to twc ion measurements we learned that part 

per trillion mass comparison requires three frequency 

measurements: two of single ion frequencies and one very high 

precision measurements of the two-ion cyclotron difference 

frequency. Errors affecting single-ion measurement are discussed 

in section 3B, so in this section we cover only the various sources of 

error which affect the crucial two-ion trap cyclotron difference 

frequency measurement. 

Sources of error in measuring A m c '  = o,l' - 0 ~ 2 '  fall roughly 

into three categories. The first category consists of errors having to 

do with the locked magnetron motion and ion-ion perturbation. The 

magnitudes of these errors scale as high powers of p s  and of l/p,, 

respectively. In the second category are errors associated with the 

the cyclotron motion, and in particular with the cyclotron radii of 

the two ions being sf unequal length during the measurement. Into 

the third category we lump everything else, a hodge-podge of 

effects, most of them being much smaller than those in the first two 

categories, but some requiring careful attention. We discuss the 

three categories in the order mentioned. 

Errors Associated with the Magnetron Motion 

Assuming that we have cooled Pcom,  the scale of several of 

the largest sources of error is determined by ps,  the distance that 
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the magnetron locking maintains between the guiding centers of 

the cyclotron motions. As we have seen in section 5C, the ion-ion 

perturbation of A o C '  scales as ~2 - l/ps6, at least in the linear limit. 

On the other hand, errors in each ion's cyclotron frequency caused 

by imperfections in the trapping fields scale as the second or higher 

power of the distance from the ion to the center of the trap, ps/2 . 
In section 5C we saw that differences in the average distance from 

the center of the trap scale as l / ~ ,  SO errors in the difference 

frequency A w ~ '  scale as p  , 2 / ~  - p ,5. 

If we measure the difference frequency several times, 

varying p,, we can trace out the curve of measured Amc'  vs ps.  The 

high power law dependence on p ,  and l / p s  should be very 

distinctive. (Fig. 5.8) The total error in AWC1 will be minimized by 

using a value measured along the flat section of the curve. 

Experimentally, an estimate of the residual error can be obtained 

by checking just how flat the .curve is in the optimum region. 

Obviously, as we make the trapping fields more perfect we can 

operate at a larger values of ps  and reduce errors both from ion-ion 

interaction and from field gradients. 

Let us look at a concrete example. Recall from Eqn. 3.9 that 

the trap cyclotron frequency has a quadratic dependence of the 

magnetron radius, determined by the residual values of the field 

flaws B2 and Cq. With pcom cooled, each ion will have a magnetron 

radiils of about ps/2. The cyclotron frequency of each ion will then 

be perturbed as follows: 

8 wcil/%o = [ -&I2 - (3 /2 ) (~z ,~ /wco~)C4/d2 l  [ps2/41 (5D. 1)  
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As far as this goes, it is not a problem. Identical shifts for the 

two ions will not affect Amc'. But recall that as a consequence of the 

two ions' having unequal masses, they will not have identical 

average radii, and thus the shifts will be slightly different for the 

two ions. Using equation 5C.2, we determine the perturbation to 

the difference frequency from field flaws: 

[aA~c ' /~cI f ie ld  = [-B2/2-(3/2)(azo2/aco2)C4/d21 [ m o ~ m ~ ~ q  p s5/(2e2)] 

(5D.2) 

And from equation 5C.13, we see that the ion-ion 

perturbation contributes a perturbation 

The total perturbation to A o , '  associated with the magnetron 

motion is just the sum of the field and the ion-ion terms. Roughly 

speaking, the total error will be at a minimum (and the curve of 

measured Ao,' vs p s  will be at its most flat) when the two terms 

contribute equal errors. Using this criterion, we calculate the 

optimum ps 

and the corresponding total error is 
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Magnetron Radius [as fraction of optimum1 

Fig. 5.8 Error in the measured value of acl - a c 2  as a function 
of ps. Errors from ion-ion perturbation scale as p s-6, and 
errors from trapping field flaws scale as ps5. Over the region 
where the curve is relatively flat, the total error from field 
flaws and ion-ion perturbation is minimized. 



Let us numerically evaluate these errors for our isomeric 

ammonia doublet. We should have no difficulty shimming out field 

flaws until IB2I < 1 X 10-7 /cm2 and IC4I < 2 X 10-5. We then find 

that the optimum separation will be around p s  = 0.065 cm. 

Assuming the common mode magnetron motion is cooled, two ions 

separated by .065 cm will each be 0.03 cm from trap center. The 

cyclotron frequency of each ion will be shifted by field flaws less 

than 1 part in 1010, and by ion-ion perturbations about 7 parts in 

109. The effects combined cause an error in the measured value of 

A o C 1 / o c  of about 5 x 10-13. There is a range of possible values of 

ps, from .O81 cm. to .052 cm., for which the total error associated 

with the magnetron motion will be less than about 2 x 10-12. 

Errors associated with the cyclotron radii 

Both field imperfections and special relativity can give the 

cyclotron frequency a dep bndence on the cyclotron radius p c .  

Assuming that the dominant effects from the electric and magnetic 

field flaws are from, respectively, the B2 and the Cq components, 

the leading frequency corrections for the ith ion are (from equation 

3.9) 

B o ~ ~ ' / o ~ ~  = { 3(OIzo2/~co2)C4/d2 - B/2 + oco*/(2c') ] pci2 (5D.6) 
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In a well-tuned trap, the relativistic term, mco2/(2c2), will be 

larger than the field flaw terms. Depending on the performance of 

the detector used, signal-to-noise considerations will set some 

lower limit on the size to which the cyclotron radius is driven 

during a resonance measurement, and thus determine a minimum 

relativistic frequency shift in COci'. This shift should be the same 

for each ion, but only to the extent that the two ions are excited to 

identical cyclotron radii. In designing the experiment, care must 

be taken to ensure that the electronics which generate and deliver 

the rf pulses used to drive the cyclotron motion produce the same 

amplitude pulse at both frequencies, lest there be a serious 

systematic error introduced into the measurement of the difference 

frequency. Also troublesome is the possibility of thermal errors. 

Whatever technique is used to cool the cyclotron motions between 

measurements is bound to leave some residual thermal cyclotron 

motion in each ion. When the next measurement is performed, this 

residual motion will add randomly to the driven response, causing 

random and in general unequal fluctuations in the cyclotron radii. 

The measured difference frequency will exhibit thermal 

fluctuatioris about some average. Although the average will not be 

systematically shifted from its correct value, the fluctuations may 

be large enough to require an impractical number of measurements 

to average away to parts in 10-12. 

For example, in our experiments the cyclotron motion is 

cooled by exchanging its action with the resistively cooled axial 

motion with pi-pulses. [CWB90] The cyclotron cooling limit with 
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this technique is T c = ( O  c / o  ,) T ,, where Tz is the effective 

temperature of resistance the axial motion sees -- for our axial 

detector, TZ = 15K. For our ammonia doublet, the cyclotron cooling 

limit would thus be 650K, corresponding to a root mean square 

cyclotron radius for each ion (<pci2>)1/2 = 0.0014 cm. With our 

existing detector sensitivity, we are required to excite. the ions to 

pci = 0.019 crn to get the requisite signal-to-noise to measure the 

difference frequency. The average relativistic shift for each ion 

would then be 4 parts in 1010. If the electronics reliably delivered 

drive pulses which were balanced to .4%, the systematic error in 

the difference frequency would be 3 parts in 1012. But thermal 

fluctuations would be on the order of a 6 parts in 1011 per 

measurement. Since a s ingl~  S.O.F. measurement with parts in 101 1 

resolution could take 103 seconds, averaging the thermal 

fluctuations to parts in 1012 could take many days of data 

collection. Clearly, efforts to improve detector sensitivity and 

cyclotron cooling methods will pay off. 

Another way of reducing pci-related errors has already been 

alluded to in Chapter 3B. If B2 were deliberately adjusted, not to 

the minimum attainable v-alue, but rather as close as possible to 

aco2/c2, (i.e., about 2 x 10-6) the effect of special relativity and of 

the field gradient would cancel out, and m c i '  could be made 

independent of pci.  Of course, the price one pays is an increased 

dependence on magnetron radius. Referring to equation 5D.5, 

above, we see that a B2 of 2 x 10-6 during an ammonia doublet 

measure,ment gives a systematic error of perhaps 2 x10-12. 
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It is also possible to adjust C4 and B2 such that the cyclotron 

frequency depends neither on cyclotron radius nor on magnetron 

radius. The drawback here is that the rather large required value 

of C4 causes unacceptably large "chirp" in the axial ring-down 

motion, which will make it impossible to do the phase-sensitive 

frequency measurements we plan. 

Other perturbations at a part in 1012 

At a part in 1012 resolution, a whole host of little effects start 

to bec~rne significant. For instance: 

Dipole-Dipole interaction of the cyclotron motion with its 

image charge in the electrodes: Van Dyck et a1 [VW90] have 

shown that, especially in small traps, this effect can be significant. 

For a larger trap with characteristic size d = 0.55 cm, this effect is 

on the order of two parts in 1011, but as with the other corrections 

we have discussed, should be the same for both ions to better than 

a part in 1012, 

Axial dependence of trapping fields: Because we don't have 

to measure the axial frequency during a precision cyclotron 

measurement, the axial displacement can be very small -- just the 

thermal value. The long-period S.O.F. measurements will span 

many thermal equilibration periods, so that both ions will have 

many opportunities to reequilibrate with the effective resistor in 

the axial motion detector, which will thoroughly average out any 

initial differences in thermal axial displacement the two ions might 

have. 
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Conclusion 

No section called "Other perturbations at a part in 1012" can 

be considered complete at this time. No matter what one is trying 

to measure, attempting three orders of magnitude improvement in 

accuracy will bring one up against unforeseen sources sf error. 

I hope this thesis has explained how we managed to skirt the 

difficulties we encountered on our way here to part per billion 

mass comparisons. And I hope that I have been able to point out a 

route around at least the problems that have already appeared on 

the horizon, away off in the direction of parts per trillion 
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