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Abstract

“What are the elastic properties of the human motor system, and how are they
incorporated into the control of posture and movement?” Not only do the spring-like
properties of the motor system affect the behavior of the limb, these properties can
be exploited by the central nervous system to simplify the control task. The thesis
addresses three main topics concerning the role of elastic system properties in the
control of posture and movement.

First, the factors which affect limb stability are analyzed. The stiffness of the
limb is shown to be a function of limb geometry and force output, as well as the
ivtrinsic elastic properties of the muscles. The neuro-musculo-skeletal system must
modulate joint stiffness in response to certain force loads in order to maintain stability.
A number of potential control schemes are presented and compared with measured
values of human arm stiffness.

Second, the issue of redundancy is addressed. Biological systems typically have
more degrees of freedom than necessary for a given task. In the thesis an algorithm is
analyzed which uses the passive elastic behavior of a system to resolve the redundancy.
This algorithm has been extended to include the control of stiffness as well as posture.
The control algorithm is used to predict the muscle activations for human subjects
generating torques and forces with the arm. The model predictions are compared
with published data from physiological experiments.

Finally, the concept of movement from posture is addressed. Can the elastic prop-
erties of the human motor system be utilized to provide a servomechanism for the
control of movement as well as posture? A modification to the equilibrium point hy-
pothesis is proposed that better predicts the behavior of the human arm during fast
movernents. The competence of the proposed model is tested via computer simulation
of movement dynamics.

Thesis Supervisor: Emilio Bizzi
Title: Eugene McDermott Professor in the Brain Sciences and Human Behavior
Chairman, Department of Brain and Cognitive Sciences
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Chapter 1

Introduction

This thesis addresses the question “What are the elastic properties of the human
motor system, and how are they incorporated into the control of posture and move-
ment?” In recent years investigators of motor systems have emphasized the study of
the mechanics of movements and the physical properties of the biological hardware
used to produce them. An important finding has been that of describing the spring-
like properties of muscles, and establishing a role for these properties in the biological
control of movement (see Section 1.2 below). These studies have greatly enhanced
our insight into the workings of biological motor systems, but a number of interesting
questions remain open. For instance, what are the physical properties of biological
motor systems, and how and why are they controlled? Are there a few simple control
schemes that can be used to account for the broad range of motor behavior observed
in humans?

The goal of this research is to address some of these questions with an approach
best described as analysis by design. Following this approach, potential models for
the control of movement are derived by an engineering analysis of the problem. These
models are then tested via computer simulation, and the results compared with bio-
logical and psychophysical experiments. The models provide a theoretical framework
for the organization and interpretation of experimental results, and can be used to
drive the design of new experiments.

In this chapter I will describe the qualitative features of mechanical systems which
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exhibit elastic behavior. I will define the terms elastic properties and stiffness, and
relate them to the basic issues of posture !, movement and control, | present a number
of problems which are encountered when controlling any moving mechanical device,
and discuss the relevance of these issues to the study of the human motor system.

Finally, I provide an outline of the work to be presented in subsequent chapters.

1.1 Elastic Properties of Mechanical Systems

The term system elastic properties refers to the relationship betwes=n the forces acting
on a mechanical system and the positions of the system elements. The force/length
relationship of a simple spring is an obvious example of such a system. As the length
of the spring changes, so does the force generated by the spring. Biological motor
systems exhibit similar behavior. Displacement of a limb will cause changes in muscle
lengths and moment arms, which result in changes in the forces and torques acting
on the limb.

The elastic properties of a mechanical system can be exploited in order to control
posture and movement. In this section simple mechanical examples will be used to
identify the fundamental relationship between elastic properties and motor control.
The following section will describe the elastic behavior of biological systems and the

associated issues for motor control.

1.1.1 Stiffness and the Control of Posture

What is stiffness and how does it affect the control of limb positions? The answer is
best illustrated by an example: consider a linear system composed of a mass attached
to a spring and a viscous damper (Figure 1-1), and assume that the spring obeys

Hooke’s law. That is, the relationship between the force generated by the spring and

'The term posture will be used in its general sense to refer to the position of any limb, as opposed
to the more common meaning of controlling the upright position of the body as a whole.
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Definition of Stability in Terms of Stiffness

-
Z-fvw—l
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b. k<0 Stable c. k> 0 TUnstable

Figure 1-1: An example of position control via stiffness. A mass, spring, damper
system at equilibrium (a). Displacement with a stable (b) and an
unstable (c) stiffness.

the length of the spring is described by the equation

f = k(z — zo). (1.1)

If the goal is to control the position of the mass (z), a spring can be used with a
rest-length (z,) equal to the desired position of the mass. If the spring constant k
is negative (k < 0), displacing the mass away from the desired position generates
a force in the spring which acts to move the mass back to the original position

(Figure 1-1b). The magnitude of the restoring force increases with the size of the
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displacement. Thus, the spring can be used to control the position of the mass,
returning the system to the desired location following a disturbance. The time course
of the movement depends on the relative values of the mass, the stiffness, and the
viscosity of the damper. However, a negative value of stiffness guarantees that the
system will eventually settle back in the original positicn. Such a system caa be
described as statically stable®.

One can imagine a system in which the spring constant is positive (Figure 1-1c). In
such a case displacement of the mass results in a force that tends to move the system
away from the initial position. This tendency to move away from the equilibrium
position is clearly undesirable from the point of view of controlling position. Such a
system is called unstable.

A system with zero stiffness produces no change of force when stretched or com-
pressed. If such a system is displaced from the desired position, it will not move back
toward the original position, but neither will it move farther away. A linear system
with zero stiffness is marginally stable.

The static relationship between position and force defines the elastic behavior of a
mechanical device. The stability of many mechanical systems can be assessed by ex-
amining this relationship between force and position. Furthermore, the analysis is not
restricted to linear functions such as that exhibited by the ideal Hooke’s law spring
described above. The response of a non-linear system to small perturbations around
an operating point can be approximated by a linearization of the force/position rela-

tionship at that point. Allowing force to be an arbitrary function of position

f=g(z).
The stiffness as a function of position is given by

3For a reference on stability and control, see [49]. The association between stiffness and stability
can be attributed originally to Lord Kelvin.
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Stiffness and Stability of a Pendulum

a b.
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Figure 1-2: The effective stiffness of a pendulum in a stable (a) and unstable (b)
configuration.

A system can be considered stable around a position z, if the value of the stiffness
at that point is negative (k(z1) < 0), a positive stiffness means the system is unstable.

A nonl'uear system having zero stiffness may or may not be stable.

1.1.2 Geometry and Effective Stiffness

Actual springs need not be present in a mechanical structure for the system to exhibit
elastic (spring-like) behavior. Again, this situation is best explained by an example:
Consider a pendulum consisting of a point mass suspended by a mass-less link of
fixed length (Figure 1-2). Assume that the force due to gravity acting on the mass
is constant with respect to the position of the mass (f, = mg). The torque acting

around the pivot point depends on the angular position of the pendulum 8

T = —fylsind.
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If the pendulum is positioned vertically downward at zero angle (Figure 1-2a), the
net torque is zero, and the system will remain at equilibrium. If the pendulum is
rotated away from vertical, a torque will be generated in the direction of zero angle.

The angular stiffness of the system is defined by

aT
ky = i —fol cosé.

At zero angle, the angular stiffness is negative (— f,l), resulting in stable elastic be.
havior around this point.

The stiffness generated by such a structure is not necessarily stable. Consider the
same pendulum in an inverted position (0 = «) (Figure 1-2b). In this position, the
net torque is also zero, so the pendulum is at equilibrium. However, in this case,
if small displacements are made around this point, the resulting torque is directed
away from the equilibrium position. The angular stiffness at this position is positive
(ke = —f,lcosm = fal), resulting in an unstable equilibrium point.

It is important to note that the elastic behavior exhibited by the pendulum
emerges even though the stiffness of the gravitational field is zero. This effective
angular stiffness kg results from the non-linear transformation between the cartesian
and angular coordinate frames (see Section 2.2). As can be seen in this example, the

effective stiffness can act to stabilize or destabilize a mechanical system.

1.1.3 Multi-Dimensional Systems

The concept of stiffness can be extended to the control of multi-dimensional mechan-
ical systems. Ia these cases, the position of the system and the force acting on the
system are :escribed by n-dimensional vectors X and F. If the force acting on the

system is described by a vector function G

F = G(X).
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Figure 1-3: Representations of two-dimensional stiffness fields.

The stiffness of the system is an elastic field represented by the n by n matrix

8F; S5

8X, °°° 68X,
K = . .

8F, 8F,

fa1 " 8Xa

The stiffness field is stable if a small displacement in position AP results in a change

in force AF that acts to restore the original position. A necessary and sufficient
condition for stability is that K is negative definite. That is, all of the eigenvalues of
K must be less than zero [49].

For a two dimensional system, the stiffness field can be represented graphically as
in Figure 1-3. The base of each arrow represents a displacement of the system from
the center position. The size and direction of each arrow corresponds to the size and
direction of the change in force caused by that displacement. For a stable stiffness

field, all of the arrows should point inward.

1.1.4 Redundant Systems

Mechanical systems can be made up of many elements, each having its own elastic

properties. For a single point of interaction, the aggregate static behavior of such
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Spring parameters producing equivalent endpoint behavior.

@lement [ Stiffness | Restlength [ Stiffness | Restlength | System Output |

1 8 0 7 1

2 4 0 9 1 P=4
3 12 0 16 0 F = -20
4 8 1 3 1 K=-10
5 8 2 6 1

Figure 1-4: A redundant elastic system.

a system can be described by a single relationship between force and position (Fig-
ure 1-4). Typically, the computation of the overall behavior of the system from the
characteristics of its components is well-posed in the sense that there is typically a
unique solution. That is, given the force/position relationship of each of the springs
in the system, it is possible to compute analytically the net output force and the
associated stiffness for a particular system configuration.

The inverse or control problem is, however, ill-posedin the sense that for a particu-
lar configuration of elastic elements, there may be an infinite number of combinations
of force/position relationships which will result in the same net force and stiffness at
a given position. The force and stiffness can be distributed in many different ways
among the various springs. For example, the table in Figure 1-4 contains two sets of
component characteristics which result in identical endpoint behavior.

In order to control the elastic behavior of the system, a choice must be made from

among the possible solutions in order to resolve the redundancy.

17



1.1.5 Movement from Posture

The elastic properties of a mechanical system can be exploited to control movements
as well as postures. By shifting the equilibrium position of the structure (imagine
a tunable spring for which the rest length can be modified at will), forces will be
generated to move the system toward the new desired position (Figure 1-5a). With
the appropriate values of stiffness, it is possible to generate movements of the structure
without an explicit computation of the movement inverse dynamics. One need specify
only the desired positions as a function of time. The forces required to produce the
movement are computed implicitly by the elastic behavior of the system ~ - this is
the principle behind a position servo controller.

As stated above, the time course of a servo controlled movement is dependent on
the value of the stiffness relative to the system’s inertia and damping. Having a stable

stiffness field guarantees only that the final position will eventually be achieved. If

a. b.
1.5 1 T
1.0 1 -
0.5 + /
§ .. L2 . .
g ™ 0'5 t '
ime 1.0
S_ -0.5 + -+
-1.0 - 4
-1.5 == = == = destred -L
c. ———— gctual d.
- —W —— o omm amm s e e —
1 1l 7/
/, /
1 | L |
) 1 1 1

Figure 1-5: Equilibrium poirt control of movement.
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the stiffness is too low, relative to the inertia and damping, the movement may be
much slower than desired (Figure 1-5b). If the stiffness is too high, the structure may
oscillate around the final position (Figure 1-5¢), whiie an unstable stiffness will cause
a movement in the opposite direction than is desired (Figure 1-5d). Servo control of

movement requires the control of system stiffness as well as equilibrium position.

1.2 Biological Motor Systems

The concepts illustrated by the simple examples above are impertant issues for the
control of biological systems. It has long been known that the actuators for biological
motor systems act in a spring-like manner. The behavior of muscles in isolation
[55], or in concert with the monosynaptic reflex arc [18, 48] can be described as
a tunable spring in which the stiffness and rest-length can be varied via neuronal
control. More recently the analysis of motor system elasticity has been extended to
the study of multi-joint movements and postures. The static behavior of the neuro-
musculo-skeletal system comprising the human or monkey arm can be described by
a multi-dimensional, conservative stiffness field acting around a varying equilibrium
position of the hand [47, 31, 5]. Establishing an appropriate endpoint stiffness is
an important concern for controlling the interactive behavior of the limb [11, 12].
Of fundamental importance is the need to assure limb stability under a variety of
conditions. Since a multi-joint limb has an inherently non-linear structure, the forces
acting on the limb must be considered as well as the intrinsic stiffness of the actuators
in order to insure stable limb behavior.

A number of researchers have proposed models for motor control that are based on
the elastic properties of biological motor systems. Merton originally proposed a servo
control model for generating movements based on the mono-synaptic stretch reflex
[42]. The reflex acts to control posture by increasing the activation of the muscles
in proportion to the amount of muscle stretch. It was proposed that movements are
generated by altering the set-point of the posture control servo through the gamma

motor neuron drive. Thus the tasks of controlling movement and posture were unified
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under a single control scheme.

Merton’s hypothesis is inconsistent with experimental observations of alpha-gamma
co-activation as well as stability analysis in the face of significant feedback delays (see
Chapter 5). While this theory has since been proven wrong for biological systems, the
underlying concept of movement from posture remains. Feldman has proposed the
equilibrium point model for motor control, based on the elastic properties of muscles
[18]. The spring-like mechanical behavior of the muscies act without the problem-
atic delays of the reflex circuitry. Bizzi, Hogan and colleagues have demonstrated
that goal-directed movements can be performed in the absence of sensory feedback
(9, 8, 6, 53] relying on the muscle mechanical properties alone. Feldman on the other
hand has emphasized the combined role of stretch reflexes and muscle elastic proper-
ties for producing movements of the limb [18, 19]. Common to both of these models,
muscle activities are chosen by the central nervous system to achieve a desired equilib-
rium position. Movements are executed by a gradual shift in the equilibrium position
from the initial to the final position [5, 30]. Evidence suggests that the equilibrium
point model for motor control is adequate for describing certain classes of multi-joint
movements {21, 5].

Biological systems usually exhibit a high degree of redundancy. For instance, the
human arm (excluding the hand) has seven rotational degrees of freedom (three at
the shoulder, one at the elbow, three at the wrist), while only six degrees of freedom
are required to determine arbitrarily the position and orientation of the hand. The
number of muscles is significantly greater than the number of joints as well, with
sixteen muscles acting across the elbow alone [1]. Thus, the central nervous system
must solve Bernstein’s problem [4] when performing motor tasks. That is, when there
are more degrees of freedom in the motor system than necessary, the nervous system
must select a particular solution from all the possibilities which accomplish a given
task. This may include the selection of a set of joint angles for a redundant arm, or
the problem may be to distribute forces among a redundant set of muscles. A number
of strategies have been proposed and tested for resolving the redundancy in biological

motor systems [51, 22, 35], but the issue remains an open area for research.
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Control of movement and posture requires control of real physical devices. Under-
standing the dynamic behavior of the limbs is essential for understanding the overall
system behavior. Furthermore, understanding the elastic characteristics of the system
may provide the key to understanding the underlying control structure employed by

the central nervous system.

1.3 Outline

This thesis addresses a number of issues concerning the control of movement and
posture, with an emphasis on the role of the elastic behavior of the neuro-musculo-
skeletal system.

Chapter Two presents a mathematical framework for the analysis of elastic me-
chanical systems, including algorithms for simulating the behavior of such systems.
Chapter Two provides the concepts necessary for the work presented in subsequent
chapters.

Chapter Three contains an analysis of limb stability for the human arm. As in the
case of the pendulum, the linkage has a non-linear geometrical structure, which adds
an additional dimension to the problem of controlling stability. I discuss a number of
strategies for controlling limb stability and compare them with experimental data.

Chapter Four addresses the issue of motor system redundancy. Muscle activi-
ties must be modified in a coordinated fashion so as to achieve a desired change in
equilibrium position or output force. In this chapter I present a model in which the
changes in activations are distributed among the various muscles based on the relative
stiffness of each component. The model predicts the activations of different muscles
used for the production of forces in the human arm. These predictions are compared
with published experimental data.

Chapter five examines the theory of movement from posture. The ability of the
equilibrium point control model to predict the performance of fast movements has
recently be brought into question. In this chapter I extend the equilibrium point
hypothesis to include the action of reflex control loops and test the ability of this

model to predict the characteristics of fast movements.
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Chapter 2

The Modeling of Elastic Systems

In this chapter I present a mathematical framework for modeling the mechanical
properties of springs and linkages. These techniques can be used to model the static
behavior of a manipulator interacting with its environment. In particular, the tech-
niques can be used to compute the elastic properties of systems of arbitrarily con-

nected springs and linkages.

2.1 Model Structure

I have taken a modular approach to modeling mechanical systems in which the char-
acteristics of the manipulator are lumped in discrete elastic elements connected by
rigid mechanical linkages. The basic building blocks are primitive elastic elements for
which there are known relationships between an element’s effort! e and position p.
This relationship may be dependent on a control input u.

The action of an element may be transformed from one coordinate system to an-
other by a rigid mechanical structure. e.g. For a muscle acting around a joint, the
length/tension relationship of the muscle in transformed into a torque/angle rela-
tionship for the joint. To model this effect, a single composite element is created,
composed of a transformer element coupled to a primitive elastic element. In a

similar way, the action of multiple element connected together is modeled by a junc-

1Effort is a general term which for mechanical systems refers to either force or torque.

22



tion element connecting each of the components. The combined elements formed by
transformers, junctions and their component elements have the same features as the
primitive elements. There is a relationship between the overall position of the struc-
ture and its output effort which is computed from the properties of the component
elements. The control input is simply a vector specifying the control input for each
of the primitive elements that are involved. The behavior of the composite elements
formed by junctions and transformers can be further transformed or coupled to other
elements in order to simulate the behavior of more complicated mechanical systems.

The modeling approach used here is essentially equivalent to that of bond graphs
[50]. Since we are interested primarily in the steady state elastic properties of the
system, the variables of interest are the efforts and Positions (e.g. forces and lengths)
of the elements, instead of the efforts and flows (velocities). The goal is to compute
either the net output effort for the system at a given position, or to compute the
resultant position for a specified applied effort. In addition, we wish to compute the

net stiffness (de/dp) at the endpoint, the net compliance (dp/de), or both.

2.1.1 Primitive Elements

The basic building blocks used in these model systems are described as tunable,
generalized springs in which the effort output (e) of the element is a function of its
pusition (p), or conversely, the position of the element is a function of the applied
effort. Each element typically has a control input (u) which acts to modify this
relationship between position and effort. Thus there are two types of elements, a

stiffness element:

e = f(Piu)
_ of
S »

c = k! (k#O),
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or a compliance element:

p = g(e, ‘U.)

Oe
k= ¢ (c#0).

2.1.2 Causality

A stiffness element in which the effort is a non-monotonic function of position is
described as having position causality, because given a position it is possible to ana-
lytically compute the resultant effort. The inverse problem (the position which gives
a desired effort) may have multiple solutions. Numerical methods must be used to
compute the appropriate solution under the assumption of quasi-static behavior for
the system.

The dual of a position causal element is a compliance which has effort causality.
For an effort causal element the position that produces a given effort can be com-
puted analytically, while the effort that achieves a desired position must be computed
numerically. In many cases the constraint equations are invertible, giving an element

vrith neutral causality:
f(g(z,u),u) = g(f(z,u),u) = =.

2.1.3 Summing Junctions

Two or more elements may be connected together to form a single composite element
by a common position junction in which the same position is imposed on each element.
This corresponds to a set of springs connected in parallel. The resulting element is
necessarily position causal. By specifying the position of the composite element,
the positions of each of the components are known. An infinite number of different
element efforts can produce a given overall effort for the combined system. Numerical

methods must be used to compute the element configurations which will produce the
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solution that minimizes the system potential energy.

The constraint equations describing common position junctions are ?

pp = P
S
= Y k.

E

In a similar fashion a common effort junction (springs in series) generates an effort

causal element via constraint equations:

DL

2.1.4 Transformers

The transformation of an element’s actions from coordinate frame to another is de-
scribed by a transformer. In general, the transformation can be non-linear, with the
Jacobian matrix dependent on the configuration of the structure, and the transfor-
mation may involve a change in the number of dimensions (p,e € R™ = P,E €
R",m # n). The form of the constraint equations depends on the dimensions of the

coordinate frames and the computability of the transformation function.

Forward Transformations

The transformation from p to P will be defined as the forward direction. This may
be the only direction wherein the transformation is analytically defined, as in the
case where the transformation is from a higher to lower dimension, (m > n). The

transformation from p to P is defined as P = L(p). * For example, when describing

3Upper case letters refer to the net values for the composite element, lower case refer to the
individual components.

3The subscript f denotes a transformation in the forward direction (p — P) The reverse trans-
formation P — p will be indicated by an r subscript (p = £, (P)). This notation is useful for keeping
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the transformation from joint coordinates to cartesian tip coordinates for a planar
arm having more than two joints, a single tip position (P) can be achieved by many
possible joint configurations (p); however a given joint corfiguration corresponds to
only one tip position. Such a transformation is described by a compliance transformer

which is effort causal. Its constraint equations are derived as follows:

Coordinate Transformations

P = Ly(p)
o) = L2
dP = Jy(p)dp
e = J{(p)E

Compliance Trunsformations
p o o
= %
8(J7(p)E)
310
BE 6J,T(p)
0E 0P 3JT(p)
= JT +
r(p )BP Op Op

J‘T
= ek + 2L

E

e-—LEE = JeK@)

o E| = [TT (@)K Iy(p)] ™

8JT -1 . -1
I1(0) |- 52 6] = I0) [T VKI, )] T p)

Note that K J,(p) [J!T(p)KJ‘,(p)]—l is a generalized inverse of J?(p):

aJy (p)

7(p) [k — " ) = (CR) @) [T oK) T

track of the distinction, particularly in the cases when the transformation is invertible, meaning that
boih £; and L,, and their associated Jacobians J; and J, are both defined.
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T -1
¢ = s |k~ “LBE| ) (2.)
= C™, (IC]| #0). (2:2)

T
The term i{&(ﬂE reflects the change in effort resulting from the position dependence

of the Jacobian. It is computed as follows:

s [075(p) ST (o) 6P
Yi; = [ dp E] = Z ap; —a———E 231,‘3?:

ij k
Reverse Transformations

When the transformation is from a low dimension to a higher one (m < n), or
whenever the transformation from P to p is well defined, we define this transformation
as p = L,(P). A single muscle acting across two joints is an example of such a case.
A given joint angle vector (P) can be transformed into a unique muscle length (p),
however, a single muscle length may correspond to ar infinite number of joint angle
pairs. Such a transformation describes a stiffness transformer which is position causal.

Its constraint equations are derived as follows:

Coordinate Transformations

p = Li(P) (23)
np) = %) (2.4
dp = J(P)dp (2.5)
E = JY(P)e (2.6)

Stiffness Transformations

Yo
K = 52
d(JT(P)e)
apP .
NG
o 3e 0p 3JT(P)
= L (P55t 9P
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9JT(P)
aP ©
C = K7 (|K|#0) (2.8)

K = JT(P)kJ.(P)+ (2.7)

oP = P BP

F,-,- 2 [ JT(P) z 6[JT(P)]J,, E 3

iJj
Invertible Transformations

When the dimensions of the two domains are the same (m = n), either or both of
the transformations £; and £, may be well defined (not when £; or £, is multi-
valued, or when one of the Jacobians is singular). The dependence of the Jacobians
on the configuration may be expressed in either coordinate system: J t(p) and J,(p) or
J#(P) and J,(P). Either equation 2.1 or 2.7 may be used to compute the transformed

stiffness or compliance.

2.2 Effective Stiffness

The effective stiffness of a transformer element arises from two sources: the linear
transformation of the component element’s stiffness and the non-linear transformation
of the component element’s effort. For a stiffness transformer, the net output effort is
computed from the effort of the component element via the transform of the Jacobian
(equation 2.6). If the transformation is non-lineaz, the Jacobian depends on the
position of the system. As the position changes, the iransformed effort will change,
even if the effort of the component element does not. Thus an effective stiffness is
seen at the output even if the component stiffness is zero.

In a general system, the net effective stiffness can be divided into two components,
the intrinsic stiffness, obtained from the linear transformation of the component stiff-
nesses, and the geometric stiffness, from the non-linear transformation of efforts.

For a stiffness transformer (from equation 2.7):

Kintyinsic = JT(P)kJ.(P) (2.9)
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Kﬂeometn'c = an}(,P)e (210)

Keffectiue = Kintrinu'c + Kgcometric- (2-11)
For a compliance transformer (from equation 2.1):

kintrinn'c =k

8J7 (p)

kgeometric = ap E
Ce!fectiue = Jf (P) [kintriruic + kgeometn':]—l J}‘(P)

2.3 Numerical Methods

A real physical system produces 2 mechanical response to perturbations from the
environment in both position and effort. The causality constraints may, however,
prevent us from solving for this response analytically. In order to compute the time
course of the movement for an imposed change in effort or position, it would be
necessary to solve the dynamic equations which describe the mechanical system. This
would require the estimation of additional parameters for the system which is being
modeled, including inertial parameters and viscosities. If one is concerned with only
the static or quasi-static behavior of the system, the static response can be computed
withou? solving the full dynamic equations. The steady-state solution can be obtained
by finding an equilibrium position for which the sum of all the efforts is zero. This
reduces the problem to finding the roots of a non-linear equation. There may in fact
be more than cne root for a non-linear equation. For a quasi-static analysis one can
assume that the system moves in the direction of the net effort until equilibrium is
reached. A number of different numerical methods have been employed to solve for

the response under these conditions, as described below.
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2.3.1 Newton-Raphson

The simplest approach is to use the stifiness or compliance at the endpoint to search
for the equilibrium response using the Newton-Raphsen method. To drive a position

causal element to 2 desired output effort (eq), the algorithm is

while (e # eq) do {Pn+1 = Pn + kn(en — €a)}.

For an effort causal element, it is necessary to compute the effort output for a desired

position change
while (p # pa) do {€ns1 = €n + ca(Pn — Pa)}-

For a numerical simulation on a digital computer, perfect accuracy will never be
reached. In the simulations, two vectors z and y are considered equal if |z — y| < e.
Typically we will use an accuracy constraint of ¢ = .001 for efforts in the range
e = £10.0.

This technique successfully computes the static or quasi-static behavior for small
displacements in regions around the equilibrium point where the position-effort rela-
tionship are near linear. The robustness of this technique can be improved by reducing

the size of the step when the output begins to diverge [54].

2.3.2 Simulated Damping

When the mechanical system is highly non-linear, the Newton-Raphson method may
not converge. A second technique is used to simulate the relaxation of the mechanical
system and the imposed external force acting against a pure viscous load. This is
consistent with our quasi-static assumption that the system moves in the direction of
the net force.

A system of this form will move with a time course described by the differential

equation

p= %(e — eq) (2.12)

30



where B is the magnitude of the fictitious viscous load. Numerically integrating
equation 2.12 until |e — e4| < € yields the steady state position that produces the
desired effort output. The actual value of B is not important, as it affects only
the time course of the movement, not the steady state result. When numerically
solving the differential equations, however, the integration time step must be chosen
appropriately with respect to 3 in order to assure convergence. We arbitrarily set
B = 1 and solve the equation using a variable step size Runge-Kutta integration to

automatically adjust the step size as needed [54].

2.4 Examples

2.4.1 Pendulum

Consider the pendulum system described in Chapter 1 for a simple example of the
modeling system. The gravitational field can be described as a primitive stiffness

element having position causality. The equations which describe this element are

z
p:
| Y
[0
e =
Lfa
k = 0.

The transformation to angular coordinates * for the pendulum can be described by a

stiffness transformer. Using equations 2.3 - 2.6:

L.(0) = Isin@
L lcosd
[ 1
7.(6) = lcosf
{ lsind

4An angle of sero corresponds to the pendulum hanging straight down.
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Figure 2-1: Model structure for a pendulum.

T = [-lcos@ Isind)
_fg
= —f,lsind.
From equation 2.7 the angular stiffness is
0
ke = JT(0)kJ,(8) + ——— aﬂ( ),
—lcos @ ) 0
= [~lcos® Isin8)]0 + [-Isin@ —lcosb)
lsind fe

= —fylcosé.

The structure of this model is represented in Figure 2-1. Each element is repre-
sented by a block in the graph. The lines connecting the blocks illustrate the flow
of information for the analytical computation of the system’s response. Since both
elements are position causal, position information is passed down the tree (solid lines)

and effort information propagates back up (dashed lines).

2.4.2 Two Joint Arm

A model of an arm provides a more complicated example in which the tree structure
of the system is readily apparent. Figure 2-2 depicts a model of a two joint arm with
six muscles. The length/tension properties of each muscle are represented by discrete
stiffness elements. The action of each element on the appropriate joint is computed
by each of six stiffness transformers. Common position junctions are used, first to
form groups of muscles acting on the same joints, and then to produce a composite

model of the arm at the joint level. Finally, one more transformer is used to represent
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Figure 2-2: Model structure for a two joint arm.

the transformation from tip to joint coordinates.

2.5 Implementation

I have implemented a computer system for the simulation of elastic motor systems,
based on the mathematics presented above. The system is written in LISP on a Sym-
bolics 3600 series computer, usiag an object-oriented programming approach. The
LISP environment easily supports the modular, tree-like structure of the simulation

system.

2.6 Summary

In this chapter I have derived the mathematical formulas for computing the elastic
behavior of mechanical systems, and described a method for modeling the behavior
on a computer. These techniques will be applied in subsequent chapters to the study

of the human motor system.
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Chapter 3

Control of Limb Stability

The stiffness that is measured at the hand for a multi-joint arm emerges from com-
bined effects of the elastic properties of the muscles and joints, the geometry of the
linkages and muscle attachments, and the neural control circuits that act on the arm
(i.e. reflex pathways). From Chapter 2 we know that the effective stiffness of a non-
linear linkage such as a two-joint arm depends on the force acting on the system as
well as the intrinsic stiffness of the actuators. This chapter presents an analysis of
the factors which affect limb stiflness, including the effects of force load on the stiif-
ness field. Potential strategies for controlling the stability of the limb are proposed
and tested via computer simulations. The predictions from the simulations are then
compared with measured stiffness values for human subjects working against a force
load.

The role of multi-joint muscles in the control of posture and movement is unclear.
The current study examines the contribution of these muscles to the control of overall
limb stability. It will be shown that muscles which span several joints provide me-
chanical couplings which are necessary for the maintenance of stability. By utilizing
multi-joint muscles, the neuro-musculo-skeletal system can control a global property
of the system (stability) with a passive local strategy.

This chapter will show that human subjects must increase the stifiness at the
joints in order to stabilize certain force loads at the hand. A local strategy may be

used to accomplish this task, in which the muscle stiffness increases with muscle force.
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Multi-joint muscles are a necessary component of this local strategy.

3.1 Previous Work

Since the observation that muscles act mechanically as tunable springs, both in iso-
lation [55] and in connection with :eflex feedback [18, 48, 59], considerable attention
has been given to the analysis of limb impedance. This has led to the development of
the equilibrium point hypothesis for the control of posture and movement (18, 9, 30].
The establishment of an appropriate mechanical impedance and equilibrium position
for the limb is necessary to achieve stable limb postures and interactive behaviors
(11, 12]. Control of limb impedance may in fact be the primary concern of the neuro-
musculo-skeletal system (31, 26).

The human arm acting in the horizontal plane, is known to behave at the endpoint
like a two-dimensional spring [47, 31, 21]. A control model has been proposed in which
movements are produced via shifts in the equilibrium position of the limb [5, 21]. The
effects of varying stiffness on the output of the model have been studied, suggesting
that humans subjects use near optimal joint stiffnesses for the production of straight
line trajectories [17]. Furthermore, it is known that human subjects can modify the
stifiness behavior of the limb in only a limited number of ways [44].

In 1984 Hogan examined the possibility that joint impedance is modulated by
the central nervous system (CNS) in order to stabilize certain loads [29]. In that
study he has shown that: 1) joint stiffness can be increased via agonist/antagonist
co-contraction, 2) under certain conditions co-contraction is the dynamically optimal
solution for stabilizing the limb (subject to the modeling assumptions), and 3) elec-
tromyographic (EMG) measurements support the claim that subjects co-contract to
stabilize unstable loads. The current study extends this analysis to include multiple

joint limbs producing a net force at the endpoint.
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3.2 Factors Affecting Endpoint Stiffness

What factors affect the stiffness of the limb observed at the hand? For a first order
look at the problem the muscle properties and reflex actions can be lumped into a
joint-level description of the elastic properties of the arm. The question then becomes:
“Given the stiffness parameters at the joints, what factors affect the stiffness measured
at the tip?” Applying Section 2.1.4, the derivation of the hand stiffness matrix for a

two-joint arm is

Definitions
Cartesian Tip Coordinates:
z
Tip Position X =
| Y
Tip Force F = 2
L fy
. Qus oF
Tip Stiffness Ky = X
Joint Coordinates:
| - 0 ;
Joint Position @ =
| 02 |
1
Joint Torque T =
T2
Joint Stiffness Ko = %@t

Coordinate Transformations

X = L(0)

J(®) = g—g
dX = J(©)do
T = JYO)F
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Figure 3-1: Planar two-joint arm model.

Ke

Kx =

JTH0) IK° -

Stiffness Transformations

oT
30
8(JT(O)F)
36

oF  8J7(0)
T Zoo L 2\
J (@)80 + BQJTF
9F X  6J7(0)
x50 T o0 ©

JT(0)KxJ(O) + "_J;@F

J7(0)

T
aJocf)O)F] J-1(0). (3.1)

From equation 3.1 it can be seen that the stiffness at the hand depends not only on

the value of the joint stiffness Kg, but on the position @ and tip force F as well.

The position and force effects both are a result of the dependence on position of the

Jacobian J(0©).
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Tte dependence of the hand stiffness on position has been examined previously for
a twc joint arm with zero net output force [47]. Two primary features of the stiffness
field which emerged from this analysis were the radial orientations of the stiffness
field with respect to the shoulder, and the change in shape of the stiffness field as
the hand approaches the limits of the workspace. Both of these features are captured
to a large degree by a model of arm stiffness control in which the joint stiffness is
held constant. Thus, the human motor system may adopt the control strategy of
maintaining a constant joint (or muscle) stiffness independent of the position of the
limb.

In terms of stability, a constant joint stiffness strategy for no force load is feasible,
because maintaining a stable joint stiffness guarantees that the hand stiffness will be
stable as well. Under the conditions of zero force load (F = 0), equation 3.1 reduces

to
Kx = JT'(0)KeJ ' (O).

If K¢ is negative definite (has all negative eigenvalues, and is therefore stable), then
Kx is also negative definite (stable) independent of the value of J(©)~! [57].

Under conditions of varying force loads, stability of the joint stiffness matrix is no
longer sufficient to guarantee stability of the hand stiffness. At high enough loads,
the geometric stiffness terms (%QF) of equation 3.1 can significantly affect the
hand stiffness field. Figu:e 3-2 shows the affect of output force on the stiffness of
hand. The center field represcnts the stiffness of the tip for a particular value of joint
stiffness operating against a zero force load. The surrounding fields illustrate what
the measured tip stiffness would be for the arm in the same position with the same
joint stiffness, but while producing a steady state force in the direction indicated by
the large arrow. We can see from this figure that loads which cause the hand to
pull (hand force directed toward the joints) tend to stabilize the limb, while hand
forces that push (away from the joints) tend to destabilize the limb. In fact, for this

combination of force magnitude and joint stiffness, the hand stiffness field is shown
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Figure 3-2: Dependence of endpoint stiffness on output force.

to be unstable for forces in certain directions (fields a and h).

An intuitive feel for the source of the instability can be gained by comparing
the two joint arm system with the pendulum described in Section 1.1.2. Imagine
a rigid link connecting the hand in a straight line to a pivot point at the shoulder
(Figure 3-3). An external force acting inward along this line (i.e. the hand is pushing
outward) would cause the system to behave like the inverted pendulum, generating
an instability around the pivot point. Rotation around this pivot results in lateral
motion of the endpoint. Thus, the effective stiffness generated by this geometrical
effect produces instability at the hand perpendicular to the line of force. An applied
force directed toward the pivot at the elbow would have a similar effect.

For non-linear linkages, such as a two joint arm, control of stability for the manip-
ulator depends on the force output produced by the limb. A system which controls

such a linkage must accommodate this dependence, although under certain conditions
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Figure 3-3: Source of endpoint instability.

ignoring the variation may be a perfectly viable solution. This chapter examines how

the human motor system controls limb stiffness under varying load conditions.

3.3 Materials and Methods

The experiments performed for this chapter compared measurements of human motor
responses with simulations of an ideal two-joint arm. Three normal, healthy volun-
teers, ages 25 - 35, participated in these experiments. The stiffness of the human
arm was measured for each subject maintaining a specified posture against different
force loads. The subject grasped the handle of a two-joint manipulandum, the end of
which is free to move in the horizontal plane. The subject’s elbow was supported by a
sling suspended from the ceiling, restricting the movement of the arm to the horizon-
tal plane as well. Stiffness was measured statically by imposing small displacements
on the hand through servo control of torque motors acting at the two joints of the
apparatus. The restoring force due to each displacement was measured by a six axis
force/torque transducer mounted on the handle of the manipulandum. Displacements

of two different magnitudes (7 and 10 mm) and in eight directions were applied for
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each stiffness measurement. Linear regression of this data was used to compute a
best fit, two by two matrix representing the stiffness field at the hand.

The symmetric and anti-symmetric components of the measured hand stiffnesses
were compared for each subject, confirming that for the loads applied in this study
the anti-symmetric component contributes little to the stiffness field (the field is
conservative [47]). Only the symmetric component of this matrix was used in the
subsequent analysis.

Force loads were generated by various lead weights attached to the subject’s hand
via a cable and pulley arrangement. The magnitude of the load was independently
measured at the hand with a linear force transducer. While there is little or no intrin-
sic stiffness associated with the weight and cable, the geometry of the load apparatus
generates a component of stiffness at the hand in the direction perpendicular to the
direction of the cable. This effect was minimized by making the distance from the
hand to the pulley as long as possible. In any case, the stiffness of the load apparatus
is computed for each force value and subtracted from the measured stiffness to get

the intrinsic hand stiffness:

KX = Kmeanured - Kload

K;M = —mgl

where [ is the distance from the hand to the pulley, m is the mass of the weight and
g is the acceleration due to gravity.

For these experimeuts, force loads were restricted to two directions along a single
axis in the horizontal plane (Figure 3-4). A positive force value corresponds to an
outward pushing of the hand, while a negative force value means the hand is pulling
inward. Seven to twelve different load values were applied, ranging from -60 to +60
newtons.

Joint stiffness values were computed from the measured hand stiffnesses by in-
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Simulations and Experiments with a Force Load
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Figure 3-4: Force load apparatus.

verting equation 3.1:

aﬂ(e)

Ko = JT(O)KxJ(O)+—— (3.2)

The computed joint stiffness can be divided into three components corresponding to
the net stiffness contributions of the single-joint shoulder muscles, the single-joint
elbow muscles, and the double-joint muscles of the arm (Figure 3-5). This decom-
position of the joint stiffness is based on the assumption that the muscles act with
constant moment arms at the joints. Furthermore, it was assumed that the moment
arms of the double-joint muscles are equal for each joint (2 = 1). The sensitivity of
the results to these assumptions will be discussed in a later section (3.6.6).

Simulations and analyses were performed on a Symbolics 3600 Lisp Machine using
the algorithms described in Chapter 2.
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Joint Stiffness Components
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where k, = single joint shoulder stiffness,
k . = single joint elbow stiffness,

k 4 = double joint stiffness.

Figure 3-5: Definition of joint stiffness components.

3.4 Simulation Results

A number of strategies can be hypothesized for the control of endpoint stiffness in
the human arm. Three such strategies are described here, each of which has been
simulated on the computer. These simulation results will be compared with the
experimental data in the next section, in order to identify the control algorithm that

best describes the strategy employed by the subject.

3.4.1 Constant Joint Stiffness

The simplest strategy that can be proposed is that of maintaining a constant joint
stiffness independent of the output force. While this means that the hand stiffness
will change with the force load, it is possible that the joint stiffness is high enough to
maintain endpoint stability for loads of reasonable size.

Figure 3-6 shows the results of simulating a constant joint stiffness control strategy

for two different vaiues of joint stiffness. The lower magnitude joint stiffness is typical
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of a human subject acting against a zero force load. The endpoint stiffness was
simulated for conditions in which the limb maintains the same posture and joint
stiffness, but produces a desired output force. The fields along the top of the figure
represent the predicted stiffnesses for nine different specified force loads using the
lower 1aagnitude of joint stiffness. Below these figures is plotted a graph of the
eigenvalues of tiue computed stiffness matrices. This plot shows that if the arm were
to maintain a low constant joint stiffness (solid lines), the endpoint stiffness would
become unstable at approximately 30 newtons of force. The system can be stabilized

to a greater magnitude of applied force if a higher constant joint stiffness is used

(dashed lines).

3.4.2 Constant Endpoint Stiffness

A more complicated strategy is that of controlling the joint siiffness so as to maintain
a constant endpoint stiffness. The question here is: “How must each component of
the joint stiffness be modified in order to maintain a constant endpoint stiffness with
different force loads?” Again, starting with the tip and joint stiffnesses measured for
a human subject with no load, we can use equation 3.2 to compute the joint stiffness
necessary to maintain the initial tip stiffness while the arm produces a range of output
forces.

Figure 3-7 shows the results of this simulation. Each joint stiffness component
is plotted separately as a function of the force magnitude. The plots show that the
shoulder and double-joint stiffness components must vary with the hand force in order
to maintain a constant hand stiffness. This is interesting, because for force loads in
these two directions, there is no torque being produced at the shoulder (the line of
force passes through the shoulder, see Figure 3-4). In order to maintain a constant
endpoint stiffness, shoulder stiffness must increase in response to an increase in torque
at the elbow. Equally significant is the fact that elbow stiffness need not increase in

this case in order to maintain stability.
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Endpoint Stiffness

\\u, \\U, \\M, \\U, \,\U, \\\J, \\\1, \\u, W,
M\\ ’M\\ "r\\\ "M\\ ’r\\\ ’f\\'\ "M\\ ’r\‘\"\ ’T'\'\\

Stiffness Eigenvalues 200}

L L L L -1 [ l
Ly 1 L] T 1 L g L 1
-60 Force -30 30 60

@ 9 —0- S —— ®
.- o ® — ¢ > - - °
-~
S
38+
L]
S\
3
177 § -
&
-1000 -~
Joint Components
Shoulder 20..r Elbow 20.‘(

[ | L N | L L L J
LN L 1§ L L L L] -
-60 Force (newtons) 60 -60 60
\ ——————————¢———o—-

? N\
S8

L.
ST T
&E

2

00+ 80+

Double Joint 201

[

r‘l&*\\( — 160
-60 60 -0—9——0 K
X~ | 60-380

ll=.32m 12= 38 m
-’ z =.09 y=.42

Figure 3-7: Simulation of constant endpoint stiffness control.
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3.4.3 Passive Stabilization

I propose a third control strategy in which the hand stiffness is stabilized passively
via the mechanical properties of the force producing elements. This model is based

on two assumptions:

1. Muscle stiffness increases as the muscle force output increases.

2. Multi-articular muscles are active even when torque is produced only at a single

joint.

The importance of these two conditions is apparent from the previous examples.
Joint stiffness must increase with the force load in order to maintain hand stability.
Furthermore, torque production at one joint must be coupled with stiffness changes
at another. As torque is produced to generate the desired force, increases in muscle
stiffness can produce the necessary change in joint stiffness, while multi-joint muscles
can provide the required inter-joint coupling.

For the simulation of this strategy the muscle elastic response was modeled as an
exponential relationship between muscle length and muscle force (Figure 3-8a). This
relationship satisfies the assumption that stiffness (%{) increases with muscle force
(Figure 3-8b) and is consistent with observed biological data [55, 18]. The torque
required to produce a desired force output is distributed between the uni-articular
and bi-articular muscles based on the relative stiffness values of each. Again, this is
in agreement with experimental observations {35, 10] (see Chapter 4).

Figure 3-9 shows the results of simulating a system with muscles that stiffen with
output force. Unlike the constant joint stiffness model, stability is maintained despite
increases in force load. The mechanics by which the hand stiffness is stabilized are
apparent in the plot of the joint stiffness components. As the force load increases,
the torque at the elbow must increase. This torque load is shared by the double-joint
muscles. The increase in double-joint muscle force generates an increase in stiffness
at both joints. In addition, because the double-joint muscle produces torque at both

the shoulder and the elbow, the single-joint shoulder flexors must become active in
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Exponentlal Muscle Model

Muscle tension is an exponential function of length.
Muscle stiffness increases with muscle force.
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Figure 3-8: Exponential model of muscle length/tension properties.

order to counteract the shoulder torque. The resulting increase in stiffness of the
single-joint shoulder muscles further stabilizes the limb.

In contrast to the constant tip stiffness model, the stiffness at the elbow also
increases due to the increase in elbow single-joint muscle activity. Furthermore, the
joint stiffness increases for hand forces in the negative direction as well. Each these
affects tends to increase the overall stiffness of the hand. The tip stiffness will indeed
change for different force loads, but the fundamental condition of stability will be
satisfied.

The double-joint muscles play a key role in stabilizing the limb under this strategy.
To emphasize this point, Figure 3-10 shows the simulated stiffness fields generated by
a two-joint arm having only single-joint muscles. The stiffness at the elbow increases
with the level of force output, but since the shoulder muscle generates no torque,
there is no change in shoulder stiffness. The pattern of tip stiffness is different from

the constant joint stiffness model, however the stiffness can still become unstable as
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the force level increases.

3.4.4 Summary

The predictions that can be made from these simulations are summarized as follows:

¢ Maintaining a constant joint stiffness will yield a destabilization of the hand
stiffness when operating against certain force loads, possibly to the point of

instability.

e Stabilizing the hand stiffness requires the coupling of torque changes at one

joint with stiffness changes at another.

¢ A local strategy in which muscle stiffness increases with output force, can effec-

tively stabilize the limb.

e Multi-articular muscles provide the inter-joint coupling necessary to stabilize

the limb.

3.5 Experimental Results

The stiffness parameters were measured for three human subjects working against a
range of torque loads. Figures 3-11 through 3-13 show the results of these experi-
ments. Measured hand stiffnesses are plotted as vector fields, along with the stiffness
eigenvalues and compute joint stiffness components for each measurement. (Not all
of the measured stiffness values are plotted as vector fields.)

Experiment 1: Must the joint stiffness change in order to maintain stiffness at
the endpoint? This question was answered by simulating a constant joint stiffness
model, using the measured resting joint stiffness for each subject. The simulated
constant joint stiffness results are plotted as broken lines superimposed on the mea-
sured data. From these simulations we can see that a constant joint stiffness strategy
would produce an unstable hand stiffness at force loads within the range achieved by

subjects SFG and JLM. (Subject SMB was not tested above the potentially unstable
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level of force.) To test the reliability of this result, the hand stiffness was sampled
on subject SFG five times each at loads of 0.0 and 2.5 newtons. For each of these
loads the mean and standard deviation of each coraponent of the hand stiffness were
computed. The arm would become unstable at one or more of the test force loads
even if each component of the stiffness field were increased from the mean by three
times the measured standard deviation. That is, assuming that the variations in rest-
ing stiffness are due to random noise, the prediction of an unstable hand stiffness is
reliable to a confidence level of p < .01, based on the sampled data.

Experiment 2: What model best describes the experimental data? Four such
models were considered for comparison. The first is the constant joint model described
above, using the measured resting joint stiffness of the subject. A second constant
joint stiffness model was also tested, using the average joint stiffness measured for all
the trials. A constant tip stiffness model was considered, using the average measured
hand stiffness and finally, a model in which the muscles stiffen with output force was
examined.

The four control models produce different predictions for the hand and joint stiff-
nesses measured for different force loads. Lines representing the predicted responses
are superimposed on the plots of measured data for each subject. In tables 3.1 and
3.2, the accuracy of the models are compared quantitatively. The error between the

predictions and the data is defined as:

€= Kmeaoured - Kmodel-

Defining the norm of a matrix to be equal to its largest eigenvalue [57], the average
magnitude of the error matrices for a given model was used as a measure of its fit to
the data. For all three subjects the best model was that of increasing muscle stiffness

with output force.
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Subject Model Constraints Average Error
Constant Joint
SFG Stiffness Ko = [ :(1)47'9__13'; ] 409
Rest Stiffness ) ’
Constant Joint
Stiffness Ko = [ :3564__53'3 ] 210
Best Fit - ’
Constant Tip | —251.5 - 16.0
Stiffness Kx = [ ~16.0 — 690.3 ] 197
Exponential Muscle k. —183F —11.8 84
Stiffness k. = —.583F —28.1
k4 —.284F - 3.9
Constant Joint
JLM Stiffness Ke = [ :;51: : ?81(1) ] 233
Rest Stif¥fness ) )
Constant Joint -
Stiffness Ke = :ﬂg : ;;g W 144
Best Fit L - .
Constant Tip [ -145.7 - 5.9 ]
Stiffness Kx = | —5.9 — 461.0 | 149
Exponential Muscle k, = -.111F -9.4 88
Stiffness k. = —-.555F —16.0
kg = —.334F —6.70

Table 3.1: Comparison of control models for subjects SFG and JLM.
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Subject Model Constraints Average Error
Constant Joint
SMB Stiffness Ko = [ _:13099_ 122 ] 319
Rest Stiffness ' '
Constant Joint - y
—-20.0-124
Stiffness Ko = 194 — 439 195
Best Fit L ) R
Constant Tip [ —210.3 — 3.8 ]
= 193
Stiffness Kx=1_38-4693
k, = —.385F — 4.
Exponential Muscle 38 6 107
Stiffness ke = —138F —15.1
kg = —.T714F — 1.40

Table 3.2: Comparison of control models for subject SMB.
3.6 Discussion

It is immediately clear from the cartesian representation of the measured stiffness
that subjects did not become unstable under any of the force loads tested. This is
not surprising, as it would have been very difficult for the subject to perform the
task if the arm were not stable. The question is not so much “Does the arm remain
stable?” as “How does the arm remain stable?” That the joint stiffness must be
varied in order to maintain stability is demonstrated by Experiment 1. If the joint
stiffness observed for the arm at low force levels were maintained for all applied loads,
the arm would bezome unstable for high levels of force.

Using the experimental data from Experiment 2, one can reject the hypotheses
that the central nervous system controls the lirab so as to maintain either a constant
joint stiffness or a consiant endpoint stiffness. The constant joint stiffness model
would predict a monotonic change in the effective hand stiffness with respect to the

applied force. A mnodel in which the endpoint stiffness is held constant would require
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a monotonic increase in shoulder and double-joint stiffnesses, and no change in elbow
stiffness. None of these predictions are in concert with the qualitative features of the
ohserved data.

‘The data are in good agreement with the increasing force/stiffness model for the
control of stability. The fact that the elbow stiffness goes up dramatically with elbow
torque, even though this is not required to maintain stability, is consistent with this
model for the control of stiffness. Furthermore, the stiffness in each joint component

is seen to increase for force loads in either direction.

3.6.1 Stability Margin

The margin of stability is defined as the magnitude of the smallest eigenvalue of
the stiffness field. This corresponds the minimum stiffness that would be observed
for disturbances in any direction. In all cases the subject apparently increases joint
stiffness with force load so as not to reduce the margin of stability. The human nervous
system may control the limb stiffness in such a way as to guarantee a given stability
margin, thus providing a minimum level of disturbance rejection. Whether or not
this observation holds for different limb configurations and experimental conditions

will be the topic of future research.

3.6.2 Role of Double Joint Muscles

The need for multi-articular muscles in biological systems has not yet clearly been
established. Multi-joint muscles are not necessary for the production of arbitrary force
vectors by a two joint arm, the necessary torque could be provided by the single-joint
muscles alone. On the other hand, double-joint muscles are necessary for generating
an endpoint stiffness of arbitrary shape and orientation [31]. Yet the human motor
system seems unable to take advantage of this flexibility. Human subjects are not
able to significantly alter either the shape or the orientation! of the stiffness field
at the hand [44]. It has, however, been shown that optimal trajectory following

1See [47] for a definition of stiffness field shape, sise and orientation.
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with a fixed joint stiffness requires the presence of a significant level of double-joint
stiffness 17, 20].

The current study presents an alternative view of the role of muscles which span
two or more joints. The presence of these muscles allows for the mechanical coupling
of torque and stiffness across joints. To achieve a passive stabilization of the limb
through the actuator mechanical properties, multi-joint muscles must be present.

This is perhaps a more compelling reason for the existence of multi-joint muscles.

3.6.3 Local vs. Global Effects

The destabilizing effect of the endpoint force is a global property of the system result-
ing from the non-linear nature of the linkage. If either joint were studied in isolation,
or if pure torque loads were used, the effects on stability would not be observed. The
level of torque being produced at one joint can affect the stiffness required at the
other. Yet the human motor system seems to adopt a local strategy for controlling
stability. Muscle stiffness need be a function only of muscle force. Again, it is the
multi-articular muscles that provide the necessary coupling between joints. This is
an example of where a clever mechanical design can be used to simplify the control

problem.

3.6.4 Reflexes vs. Mechanical Properties

These experiments have not addressed the question of how the changes in joint stiff-
ness are achieved. A particularly elegant solution would be to have muscles which
mechanically stiffen as the force increases. Stiffness control would be achieved pas-
sively with no additional intervention from the nervous system. On the other hand,
Hogan found that load stabilization was achieved through co-contraction at the elbow
[29]. In that single joint case, no net change in torque was required to support the
change in load, so passive stabilization via increased force output would not accom-
plish the task. Another possibility does exist, joint stiffness could increase through

changes in the reflex feedback gains which contribute to the stiffness around the joint.
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Additional experiments will be needed to distinguish beiween these possibilities for

the multi-joint arm producing a net force output.

3.6.5 Model vs. Data Discrepancies

In the measured data the increase in stiffness seen for each of the joint components is
asymmetric with respect to the direction of force. This is in contrast to the symmetric
patterns of stiffness change predicted by the exponential muscle force model. In the
model, however, torques and stiffnesses were produced by ideal spring-like actuators
acting at the joints, one for each of the joint components. In reality, the joint torques
are produced by agonist/antagonist groups of muscles. The torque produced in one
particular direction would be generated by a different set of muscles than for torque in
the opposite direction. Thus, it is reasonable to expect a different torque vs. stiffness

relationship for forces in different directions.

3.6.6 Modeling Errors

How are the conclusions drawn from this data affected by the modeling assumptions

we have made?

Equal Moment Arms

The computation of the joint stiffness components was based on the assumption that
the double joint muscles act at each joint with equal moment arms (* =1). This
assumption can be relaxed without altering the conclusions, neither the observed hand
stiffness values nor the overall joint stiffness matrix is affected by this assumption.
The conclusion that the subject maintains neither a constant hand stiffness, nor a
constant joint stiffness are valid regardless of the value of a.

Variations in the value of - affect only the relative contribution of each type of
muscle to the overall joint stiffness. Figure 3-14 shows the joint stiffness components
computed for subject JLM using three different values for the moment arm ratio.

The change in ratio quantitatively affects the shoulder and elbow components, but
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Figure 3-14: Effect of varying the ratio of moment arms.

qualitatively the results are the same. The elbow stifiness continues to increase for
forces in either direction. The values for the double joint stiffness components are

unaffected by the choice of the moment arm ratio.

Constant Moment Arms

For the analysis of the measured data, we assumed that the muscles acted at the
joints with constant moment arms and attributed observed changes in joint stiffness
to changes in muscle ctiffness. A muscle acting with a non-constant moment arm
around a joint would produce an effective joint stiffness component dependent on

both the intrinsic muscle stiffness and the muscle force. It is conceivable that the
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observed changes in joint stiffness can be attributed solely to this mechanical effect,
but it is unlikely that it would be sufficient to stabilize the limb in all areas of the
workspace. A muscle attachment which tends to increase joint stiffness with muscle
force for one joint configuration could decrease the stiffness for another.

Additional analvsis and experiments will be necessary to fully elucidate the effect
of non-constant muscle moment arms in the stability of the limb. Yet even if the ob-
served data could be attributed entirely to geometrical effects of muscle attachments,
the significance of this study would not be diminished. Instead of solving the control
problem with cleverly designed muscle mechanical properties, the neuro-musculo-
skeletal system would now have a solution which arises from a cleverly designed
mechanical linkage. Limb stability is still maintained passively through increases in
muscle force, and the double-joint muscles still form an essential compnnent of the

control scheme.

Linear Force/Stiffness Variation

The destabilizing effect of the applied load increases linearly with the force magnitude,
as does the joint torque required to counteract the load. Thus, an appropriate linear
relationship between the joint stiffness components and the applied torque could
guarantee stability for any level of force. Other non-linear relationships between
stifiness and force may also be sufficient to guarantee stability, the key assumption is

only that stiffness must increase with muscle force.

Force Distribution

For a force load acting radially about the shoulder, the shoulder joint stiffness must
increase, although the only net torque required is at the elbow. Passive stabilization of
the limb through muscle mechanical properties requires that the double joint muscles
participate in torques produced at either joint. Measurements of EMG signals during

production of torques in the human arm support this assumption (22, 35].

62



3.7 Conclusions

To adequately control the stability of a multi-joint limb, the force being produced by
the limb must be considered. These experiments have shown that for human subjects
joint stiffness must increase with force output in order to maintain stability at the
hand.

The mechanism by which human subjects maintain limb stability is not known.
A potential control model has been proposed in which muscle stiffness increases with
muscle force. This strategy is biologically plausible and the competence of the model
has been demonstrated by computer simulations.

The stability of the limb is a global property of the motor system, depending on
limb configuration and net output force. The proposed model, on the other hand,
is a local strategy in which a muscle’s stiffness is dependent only on that muscle’s
force output. The ability of this local strategy to stabilize the hand depends on
the mechanical coupling provided by the two-joint muscles of the arm, suggesting an
important role for multi-articular muscles in the control of limb posture.

In human subjects, the central nervous system maintains neither a constant joint
stiffness, nor a constant endpoint stiffness when faced with different force loads. Of
the control models tested, stiffness control in human subjects is best described by the

passive stabilization of the endpoint through increasing muscle stiffness.
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Chapter 4

Redundant Motor Systems

Biological motor systems are redundant with respect to many of the tasks required of
them. A mechanical system can be considered redundant with respect to a specified
task if the number of degrees of freedom which can be controlled by the system is
greater than the number of constraints imposed by the task. As an example, consider
a planar positioning task as shown in Figure 4-1. To arbitrarily position and orient
an object requires three degrees of freedom (two translational and one rotational).
A planar manipulator having four or more revolute joints is redundant with respect
to this task. A given position and orientation of the end effector can be achieved
by an infinite number of limb configurations. Similarly, a particular velocity at the
endpoint can be obtained by an infinite number of different joint velocities.

The above example illustrates the concept of motor redundancy with respect to
limb positions (position redundancy). A motor system may be redundant with respect
to the production of effort (force or torque) as well (effort redundancy). If the number
of actuators exceeds the number of positional degrees of freedom in the system, the
effort required from each of the actuators to produce a particular net output is not
uniquely determined. For example, consider two muscles acting in opposition around
a single joint (Figure 4-2). If the force being produced by each of the muscles is
the same, the net torque acting around the joint is zero. In order to generate a net
positive torque, the force in the flexor could increase, the force in the extensor could

decrease, or both muscle force levels (in the appropriate combination) could change.
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Figure 4-1: Example of position redundancy.

Redundant Actuators
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Figure 4-2: Example of effort redundancy.
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Biological systems, and in particular the human arm, are redundant with respect
to both positions and efforts. Typically the number of joints and the number of
muscles in the system exceed the minimum numbers required to complete a par-
ticular task. The central nervous system (CNS) faces the problem of resolving the
redundancy in order to achieve a particular solution. In terms of the human arm,
the neuro-musculo-skeletal system must select an appropriate set of joint angles to
achieve a desired hand position, and the CNS must dztermine a set of muscle activa-
tions which results in the desired force and torque output.

An algorithm has recently been proposed, called backdriving, that provides a
method for the control of redundant motor systems {45, 46, 41]. Under this strategy,
the elastic properties of the system are used to determine the active coordination of
the individual mechanical elements. The algorithm unifies the control of position and
effort redundancies into a single computational framework.

In this chapter I will demonstrate some of the advantages of the backdriving
method, which include solutions to problems of kinematic singularities, variations of
muscle moment arms, and muscle saturation. I will extend the algorithm to include
the control of system impedance (stiffness or compliance) as well as position and effort.
Finally, I will test the biological plausibility of the control scheme by comparing model
predictions with published experimental data.

4.1 Previous Work

In general a biological limb will have more degrees of freedom at the joints than are
needed for a particular positioning task. In some cases, the workspace may impose
additional hard constraints which which will determine the allowable values for the
free degrees of freedom. For instance, an obstacle in the workspace may preclude cer-
tain limb configurations which would otherwise achieve the desired endpoint position.
When such constraints are not present, the control system is free to choose any of the
allowable configurations.

Bernstein observed that the frog hindlimb is redundant with respect to the spinal
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wiping reflex [4]. To reach a particuiar location on the body in order to remove a
noxious stimulus, the limb may assume one of many different joint configurations.
Feldman and colleagues observed that the spinal frog retains the ability to adapt the
selection of joint configuration for trials to the same target location. They use the
term motor equivalence to describe different kinematic behaviors which accomplish
the same task [18, 3].

In our laboratory, the issue of kinematic redundancy has been examined for the
spinal frog as well. We observed that, while the spinal frog may switch between
discrete motor equivalent strategies for a given stimulus location, there was little
continuous variation between joint configurations for a given approach. It was sug-
gested that the free degrees of freedom for the task were exploited in order to simplify
the computational complexity of the inverse kinematics problem. Due to the system
redundancy, a simple linear relationship between the target location and each joint
angle is sufficient to accomplish the task [23].

In robotics the resolution of kinematic redundancy is an active area of research.
A popular solution to the problem is to use the excess degrees of freedom available
in the manipulator to optimize control in terms of secondary performance criteria.
Numerous optimization criteria have been proposed to resolve the extraneous degrees
of freedom, including minimizing joint velocities [37], avoiding joint limits [39], and
minimizing torque loads [32]. It has also been demonstrated that the choice of joint
configuration can be used to modify the effective endpoint impedance of the limb [31].

The above examples fit into a conceptual framework in which movement planning
and ezecution are computed separately and sequentially {33, 25]. A desired trajectory
of joint angles is computed (perhaps in real time) and then fed to a control system
which ensures that the manipulator follows this plan. An alternative strategy is to
plan the movement in task coordinates only, and allow the controller to determine
the joint configurations as the movement progresses. Such a strategy has been used
to successful control a redundant robot [28]. The Jacobian (J}') of the forward model
is used to translate positional errors at the tip directly into torque commands at the

joint. Inversion of the non-square Jacobian matrix is not needed. By appropriately
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selecting the control law for the endpoint, this strategy can also be used to avoid
workspace obstacles and singularities. Control laws such as these have been proposed
for the control of biological motor systems [43].

Another approach might be to learn the inverse kinematic solutions necessary
to accomplish a given task. Jordan has proposed a learning algorithm in which
incremental adjustments are made in articulatory (joint) space in response to errors
generated in task space [36]. Errors from one trial are used to improve the performance
in the next attempt. In this model, the task level errors are translated into joint level
corrections, again through the forward model of the system.

Redundancy with respect to force production is more of an issue for biological
control systems than it is for artificial systems. Mechanical linkages are usually de-
signed with only one actuator per joint. Recently, however, redundancy in terms of
force has become an issue due to the development of tendon driven robot arms and
hands [34].

For biological systems, the means by which forces and torques are distributed
among the various muscles of the limb is unknown. Bernstein suggested that the
CNS must lump muscles having similar actions into single control entities (synergies),
thus reducing the number of available degrees of freedom. Experimental evidence
shows, however, that rigid coupling of the activations of different muscles is rare
when the muscles are observed performing different tasks or operating under different
conditions. The concept of a task group [40] by which parts of different muscles (i.e.
motor units) are controlled as single units preserves the idea of a classical muscle
synergy, but the question remains as to how these synergies are defined and activated
for different motor tasks.

A number of optimization criteria have been proposed to describe the how the
CNS resolves redundancy with respect to muscle force. These include minimizing
a weighted sum of forces and torque [56, 52|, minimizing energy [24], minimizing
fatigue [16], and maximizing endurance [13]. Another approach has been to relate
the active coordination of muscles to the afferent sensory feedback generated by the

muscles (51, 22].
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This chapter analyses a new strategy for the control of redundant motor systems,
called backdriving [46]. Under the backdriving model the complementary problems of
resolving redundancy with respect to positions and efforts are combined under a single
computational framework. The generation of a particular control pattern is based on
the passive mechanical properties of the mechanism, providing a natural solution
to the problem of motor system indeterminacy. By incorporating the mechanical
properties of the motion execution system into the planning of the movement, certain
problems associated with other control strategies, such as kinematic singulari’ties and

joint limits, can be avoided.

4.2 Control Update Algorithm

The motions of a mechanical system made up of elastic elements are well defined
for passive interactions between the system and the environment. For instance, a
redundant arm can be controlled by placing springs across each of the joints. If an
external force displaces the endpoint of the arm to a new position, the joints will
settle into a configuration which minimizes the amount of potential energy stored in
the springs (provided that the system is stable, see Chapter 3). Similarly, if several
springs act around a single joint, a change in torque imposed by the environment
will cause a shift in the position of the joint. At the new position the torque will be
distributed to each of the elements, again so as to minimize the sum of the potential
energies stored in each of the springs. By obeying fundamental physical laws, a
passive elastic system in effect resolves redundancy by minimizing the total potential
energy stored in the system.

Control of a redundant system requires a solution to the inverse of the passive
motion problem. What is the active change needed in each element which will pro-
duce a desired change in output at the endpoint? Under the proposed backdriving
algorithm, the active change in each element is computed based or the response to
an equivalent passive change imposed by the environment. To illustrate the concept,

I will apply the algorithm to a simple linear system. Subsequently I will derive the
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equations necessary to compute the soluticn for arbitrary non-linear systems.

4.2.1 Example: A Linear Redundant System

Consider the system of linear springs shown in Figure 4-3a. Each spring obeys Hooke's
law, and each spring has a control input which determines the rest length of the spring.

The behavior of each spring is described by the equation
fi = ki(zi — w).

The sensitivity of the force in each spring to changes in input is given by

If the stiffness is non-zero, a desired change in force A f; can be achieved by a change
in input:

A‘!l.,' = —d’.-IAf.' = k.-lAf, (41)

In this example the goal is to compute a change in inputs which will produce a desired
change in endpoint position AX without changing the net output force Fy. Since there
are more elements than free degrees of freedom at the endpoint, this problem is ill-
posed. Cou:eptually, the proposed control algorithm resolves the indeterminacy as
follows: If the endpoint of the system is passively displaced to the new desired position
(Xo+AX), the system will settle to a configuration consistent with a minjimum change
in potential energy(Figure 4-3b). Each spring will experience a change in output force
due to the passive displacement. The control update is computed by equation 4.1 so
as to cancel the change in force in each element. Because the system is linear, the

net output force will return to its initial value Fj (Figure 4-3c).

4.2.2 Problems with Non-Linear Systems

When the system is non-linear, the solution cannot be so simple. The problem is

demonstrated by the mechanism shown in Figure 4-4. As the joint angle varies, the
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Backdriving Algorithm

a. Start at the initial desired force.

Force

1 H

4

b. Displace to the new desired position.

Force

=

—> = changein f.

c. Update control inputs to cancel changes in f.

Force
N

14

Figure 4-3: Control of a linear redundant system.
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Non-linear Transformer

a. Initial state: u, 1, f, 0, T

b. Passive Displacement to Desired Position:
u I f+k(I'-10,06,T

Active Update to Cancel Change in Force:
SR O

T’ does not equal T due to change in moment arm.

Figure 4-4: Effect of changing moment arm.

torque around the joint changes due to both the change in spring force and the change
in moment arm. Applying the simple algorithm described above, after the passive
displacement and active control update the force in the spring will be restored to
its oviginal value. The torque, however, will not be restored, due to the change in
moment arm (Figure 4-4b). The final torque value is the product of the original
spring force and the new moment arm. In the derivation of the control algorithm

that follows, accommodation of changing moment arms will be a significant issue.

4.2.3 Solutions for General Non-Linear Systems

Two fundamental operations must be defined in order to control the position and

effort of a mechanical device. It is necessary to compute a change in input that
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will achieve a desired change in position at constant effort, or compute a change in
input which produces a change in effort at a constant position. Compound changes in
both position and effort can be achieved by sequential application of these two basic
functions.

The control solution for a system of arbitrary complexity can be computed re-
cursively using the same modular structure that was used to model elastic systems
(Chapter 2). The two basic operations are defined as differential relationships between

positions or efforts and inputs:

du = =dp
du = 1pde.

where in general du, dp and de are vectors and 7 and 1 are matrices. Causality
constraints may preclude the direct computation of r or 3. In these cases, the stiffness
or compliance of the element can be used to transform from one computation to the

other. For stiffness and compliance elements we have, respectively:

du = w-g—le’de
Y = =
Oe
du = ¢8—pdp
T = k.

The control law is computed for compound elements from the known relationships for
each of the component elements and from the mechanical properties of the junction

elements.
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Primitive Elements

It is assumed that at least one of the two sensitivity functions is known for each

primitive element in the system:

a Oe
~ Bu
a Op
— Ou’

For a primitive stiffness element, the control update relationships are

For a compliance element:

Junctions

= o k.

Junction elements combine the appropriate transformations from each component

element to compute a change in input for each element. For a common position

junction, the displacement in each element is the same for a change in the overall

position dP. Since the efforts sum linearly, it is sufficient to cancel the change in

effort in each element:

IdP
m™

L}

Tn
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Since a common position junction is position causal, changes in effort must be trans-

formed into changes in position via the compliance:

- WIC -
W:C

.1rnC.

By a similar argument, a common effort junction yields

dU = V¥V dE
]

(2
¥s

| ¥n |
ENd
K

| ¥nK |
Transformers

As pointed out in Section 4.2.2, straightforward application of the backdriving pro-
cedure would not produce the appropriate result for a non-linear stiffness transfor-
mation. The effect of changing moment arm must be accounted for when general,
non-linear transformations are involved.

Consider a non-linear transformation with position causality. For an initial input

uo and initial position Po, the state of the system is given by

Po LP(PD)
€ = f(PO’uO)

Eo = J?(Po)eo.
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For a small displacement in position P*, the change in state is given by

P = Py,+dP*

p = po+J(Po)dP"

e = eo+ kJ,(Py)dP*
E = Eo+KdP

T
= Eo+ |JT(Pokdu(Py) + O ;P) dP*
T
= JY(Py)eo + JT(Po)kJ,(Py)dP"* + %eo dP°*
= J',T(Po)e + 3—J'T'—£P—)eo dP°.

opP

Applying the input update rule so as to cancel the change in element effort e:

du

e

E

xdp
xJ,(Po)dP*
€o
JT(P
JT(Py)eo + 5;, )eo dP*.

Now impose the condition that the output effort effort E; must be equal to the initial

effort E,:

dP

E,

P - CaJ;}(JP) apP*

Py +dP* — 8J;I(JP) e dP°
[I.. - CaJ'T(P) eo] dP°.

where I, represents the identity matrix of appropriate dimensions. By imposing a

displacement dP* and applying the input update rule a displacement of dP with zero
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change in effort has been achieved. The dP* required to produce a desired dP is

aJr (P) .
KdP = [K - Teo dP

. aJr(P) 17
dP = [K — a_Peo K dP.

For a non-linear transformation, the change in input which will achieve a desired

change in position is given by

du = IIdP
= «J.(P)dP*

-1

= nJ.(P) [K - %eo K dP.

Simplifying, using equation 2.7, the control input update rule for a non-linear stiffness

transformer is

= nJ.(P) [JI(P)kJ.(P)] " K (4.6)
= 1c
= =J,(P) [JT(P)kJ.(P)] . (4.7)

Note that JT(P)kJT(P) is defined by equation 2.9 to be the intrinsic stiffness of the
mechanism. That is, it is the stiffness that would be observed for the mechanism if
all the forces and torques acting on the system were zero. Using this definition, the

relationship between change in position and input becomes

o = er(P)Cintrinn'cK
= ”Jr(P)Cintﬂ'nu'c-

By a similar argument, the backdriving solution for a compliance transformer with

effort causality is derived as follows: The goal is to compute a change in input which
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produces a desired change in effort dE. Beginning with the mechanism in an initial

stable state in which

€ = J}r(po)Eo
Po = g(eo,uo)
Py EJ(PO)-

A small change in effort at the endpoint dE yields a displacement in the element

position p:

E = FEy+dFE
P = Py+J](po) dp
P = potdp

aJ}r(Po)
dp

e = e +J](po) dE + E, dp.

Compute a change in input to cancel the change in element position:

dP = CdE
aJ7 -
Jy(pa)dp = Jy(po) [k— gip")Eo] J{ (po) dE

87 (po) . 17"

dp = [k— 3,, Eo] J7 (po) dE

du = n=ndp
aJ7 -

- «[k— 3:’“)130] JT(po) dE,

leaving the system in a consistent state:

El = Eo + dE
Pl = Po
Pi = Po
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ey = eg+ J}'(Po) dE
= J{(po)Eo + J{ (po) dE
= J}(po)Er.

Thz control update relationships for a compliance transformer are

aJ?(po) .

v ==« [k - J}'(po) dE (4.8)

x [k - 3ﬂ(”°) Eo J}‘(po)K dP. (4.9)

4.2.4 Backdriving as a Pseudo-Inverse

The computation of a change in posture from a change in input is a well-posed
problem. There exist analytical solutions to the problem of computing the changes
in position or effort resulting from a given change in input. For a compound element
formed by a stiffness element and transformer, the relationship between effort and

force at a constant position is given by

de = o.du
dE = JT(P) de
= JT(P)o.du.

The inverse problem, computing a change in input for a desired change in effort
dE', is ill-posed since, in general, JT(P)o, is non-square and therefore non-invertible.
Using the backdriving algorithm (equations 4.3 and 4.7) to substitute for du, it can
be seen that the backdriving relationship forms a stiffness weighted pseudo-inverse

for JT(P)o.:

dE = JT(P)o, (o;'K) (J,(P) [J,.T(P)kJ,(P)]") dE'
= (JT(PKJ(P)) [JT(P)J.(P)| " dE'
dE = dE'.
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The pseudo-inverse minimizes the quadratic form deTkde, which corresponds to the

minimization of the change in potentjal energy.

change in control input can have widely different effects on the overa]] behavior of

the system, depending upon the initial state of the components.

muscle saturatijon,

4.3.1 Changing Moment Arms

Consider two identical spring-like muscles acting around a single joint as shown in

Figure 4.5. The muscles obey the contro] law

Thus, the input to a muscle determines the rest-length of the Spring. An increase of
input u; generates g decrease in rest-length. At constant length, this will cause an
increase in muscle tension.

As the position of the joint changes, the moment arms for each of the muscles
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Backdriving with Changing Moment Arms

b.
1
1.0
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Figure 4-5: Muscle effectiveness affects muscle activity for the backdriving al-
gorithm. The relative activations of muscles 1 and 2 change as the
moment arms change.

change as well. Figure 4-5 shows the joint in two positions. In position a, muscle
1 has a greater mechanical advantage for producing torque than does muscle 2. At
position b, however, the relative effectiveness of these two muscles is reversed. The
backdriving algorithm has been applied to the structure for each of these two positions
in order to produce one unit of flexion torque. The modifications of control input
predicted by the algorithm are shown in the ﬁgure. In position a, the change in input
to muscle 1 is larger than the change for muscle 2. For position b, the input change
for muscle 1 is decreased, with muscle 2 contributing more to the total production
of torque. This illustrates a basic property of the backdriving algorithm: as an
actuator becomes more effective in producing an output effort, the contribution of

that actuator increases relative to other effort producing elements in the system.
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Defining Synergies Through Backdriving

a. .

1 3
2

ul
1.0 1.0

U= == ——
- - ua ----------
3 = 3
3 Bl
£ £

e ek an e - .
0.0 = o - |

0.0

Figure 4-6: Defining synergies through backdriving.
4.3.2 Synergistic Behavior

Figure 4-6 demonstrates how synergies are defined by the backdriving algorithm. In
position a, muscles 1 and 2 both act to flex the limb, while muscle 3 is an extensor.
In position b, muscle 1 is the only flexor, while muscles 2 and 3 act to extend the
limb. The change in action of muscle 2 is reflected in the Jacobian of the joint angle to
muscle length transformation at each of these positions. In position a, the value of the
Jacobian will be positive for muscles 1 and 2, and negative for muscle 3. At position
b, the sign of the Jacobians is unchanged for muscles 1 and 3, but the Jacobian for
muscle 2 is now negative.

The computed input for a change in joint torque is shown under each figure. At
position a, muscles 1 and 2 act synergistically, while at position b muscles 1 and 2 are
antagonists and muscle 3 acts synergistically with muscle 2. Under the backdriving

algorithm, synergies are defined by the passive mechanical properties of the system:
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Passive Driving at Kinematic Singularities
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Figure 4-7: Passive driving through kinematic singularities.

Elements which respond in the same manner to a passive displacement of the system

act as synergists during active contro] of the system.

4.3.3 Kinematic Singularities

The same mechanism is used to illustrate another feature of the backdriving algo-
rithm in Figure 4-7. For the Position of the joint shown in figure 4-7a, muscle 2 s at
a kinematic singular point. Small displacements around this point generate no change
in muscle length. Similarly, the muscle can contribute no torque at this position. At
positions near the singular point, producing small changes in torque with muscle 2
would require very large changes in muscle input. The backdriving algorithm ac-
commodates kinematic singularities of this sort, again due to its dependence on the

Jacobian of the transformations. As the limb approaches the singular point for a
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particular muscle, the Jacobian of that muscle approaches zero. Provided that there
are other muscles acting on the joint which are not near singularities, the muscle in
question is not required to contribute to the production of movement or torque at
this point. Under the backdriving algorithm, actuators are passively driven through

kinematic singularities (see Figure 4-7b).

4.3.4 Muscle Saturation

The force produced by a muscle cannot be modulated over an infinite range. Muscles
cannot push, therefore the minimum tension which can be generated in a muscle is
zero. Similarly, muscles have maximum activation levels, above which no additional
force can be generated. A system which controls actuators having these properties
should not try to drive the elements outside the effective range of activities.

The backdriving algorithm effectively handles actuator saturation as well. When
a muscle saturates, the stiffness of the muscle drops to zero. A muscle acting in
this region of operation undergoes no change in muscle force in response to a passive
displacement of the system. Thus, the backdriving algorithm computes a zero change
in input for the actuators in this state.

Figure 4-8 demonstrates the backdriving principle for a model of muscle which
exhibits saturation. In the initial state, both of the muscles are active. Each of the
muscles contributes to the change in output torque by changing its control input.
As a muscle reaches a limit in force production, its stiffness goes to zero. Further
increases in torque require no additional change in activation for that muscle. The
rate of input change for muscles which are still active increases, to compensate for

the lack of change in the saturated elements.

4.4 Control of Stiffness

The backdriving algorithm provides a means of controlling effort and position only.
As was demonstrated in Chapter 3, control of a limb requires consideration of the

endpoint impedance as well. Due to non-linear transformations in the system, limb
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Passive Driving of Saturated Muscles
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F: ure 4-8: Passive driving of saturated muscles.

stiffness will change as a function of limb configuration or output force.

4.4.1 Passive Stabilization

The backdriving algorithm is compatible with the passive stabilization scheme pro-
posed in Chapter 3. Figure 4-9 shows a model of a planar two-joint arm having six
muscles. If the muscles are described by an exponeitial relationship between force
and length, the backdriving algorithm produces stable endpoint behavior for the six

muscle arm (Figure 4-10).

4.4.2 Active Impedance Modulation

The passive changes in actuator stiffness may be insufficient to meet the control
constraints of the notor system. For instance, if the rate of stiffness increase versus
force output is small, the passive strategy may not produce a change in joint stiffness
sufficient to stabilize the load. Alternatively, it may be necessary to increase endpoint
stiffness without changing endpoint force. Finally, the control system may wish to
exert more precise contro, over the shape and orientation of the endpoint stiffness
field. All of these cases would require active modulation of the actuator inputs to
control the endpoint behavior.

Section 4.2.3 defined two basic operations for the control of a mechanical system:

du = wdp, which computes a change in input to produce a desired change in position
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Six Muscle Arm Model

Figure 4-9: Model of planar two joint arm with six muscles.

at constant effort, and du = iyde, which produces a change in effort at constant
position. The goal of this section is to derive a third fundamental operation which

produces a change in stiffness without affecting position or effort:
du = k dk.

Consider a system that is redundant with respect to efforts: u € R™, e € R",m >
n. Provided that the control inputs have an effect on actuator stiffness (% # 0), the
additional m — n degrees of control freedom can be used to modulate the stiffness of

the system.

Nullspace Input Changes

Given a transformation from control input to effort o, = g—:, let ¥ be any pseudo-
inverse relationship which maps a desired change in effort to a desired change in input.

The backdriving algorithm provides a specific example of such a mapping, but the
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Figure 4-10: Control of stiffness for a six muscle arm.
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following analysis applies to any inverse transformation which satisfies the condition

oy = I,.

The matrix 1) maps a desired change in effort to a particular change in input, from
an infinite number of possible input changes. The more general solution can be given

by the expression

du = yYde + (I, — Yo )u"

where I, is the nzn identity matrix and u® is an arbitrary vector in R" [37]. By
varying the value of the vector u®, all possible changes in input that will produce a
given change in effort can be computed. The matrix [I, — o.¢] projects the vector u*

into the null space of 1. A change in input du’ computed by the expression
du’ = (I, — yo.)u"
will produce no change in the effort output of the system.

Control of Stiffness

[n order to control the endpoint stiffness of a position causal element, it is necessary
to know the relationship between the control input and the impedance of an element.
First, consider the stiffness of an n dimensional system. The stiffness k£ is an nzn
matrix. If the element behaves in a passive manner, the stiffness field must be con-
servative, and therefore the stiffness matrix is symmetric. Thus, the nz n stiffness
matrix k has only (n? + n)/2 elements which can be controlled independently.

Let S(m) represent a matrix operator which produces a vector from the indepen-
dent elements of the symmetric matrix m. A vector k can be defined which represents
each of the independent elements of k. For example, if k is a two dimensional sym-

metric matrix,
a b

b ¢

k=
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the vector k is the three dimensional vector

o
I
)
—_
=
N
I
o

The sensitivity of an element effort and stiffness to changes in control input is

assumed to be known for a primitive element having an n-dimensional control input:

a O

Te = du
_ |G | Oe
- 3u1 Bun
4 [a: a:]
a Ok

O = 5:
_ ok o
- 6U| 3u,,
2 [Ui a;,‘]

where o denotes the nth component of the row vector o.. For a common position

junction with m elements the sensitivities are simply

—_— ‘ " .. l DY "
o = [Uel Ue’ . O'em O'cm]
a _ Ul B SRR al oo ol
K = k1 ki km km

where o7 denotes the nth component of the sensitivity row vector o, for element m.
The effort and stiffness sensitivities for a position causal transformer under conditions

of constant position are
o = [JT(P)al - JT(P)a7]
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T T
ox = [(J,T(P)a,“J,(P)+aJéI(JP )eo a:) (J?(P)a:J,(P>+‘”5,‘,P e a:)]-

The sensitivity of the independent elements of k to the input is defined by
0i £ [S(a}) - S(op)].
A change in input produces a change in stiffness given by
dk = o du.

If the change in input is first projected into the null space of ¥, the change in stiffness

can be computed for which there is no change in effort:

dk|ge=o = ¢ du
= 0O (In — Y0o.) du

i = 0p(In—1vo.).

A weighted pseudo-inverse can then be used to compute a change of input that will

produce a desired change in stiffness at zero change in force:

du = «dk
= wc,-f (c,;wc,{)_l S(dk)

where w is a diagonal matrix of weights. If w = I, the mapping x produces a
minimum norm change in input which will produce a desired change in endpoint

stifiness. Another option would be to weight the contribution of each control input
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by the force sensitivity:

which would tend to minimize the change in muscle force for a given change of stiffness.
Arbitrary changes in position, effort, and now stiffness can be computed by se-

quentially applying the three update rules:

Upnpr = Uy +7 dp
Upnpz = Upyy + P de
Upn43 = Upyo + & dk.

The control of stiffness can be applied to the six muscle arm described above. Figure 4-
10 shows the changes in hand stiffness that occur when simple force backdriving is
used with an exponential relationship between muscle length and force. Figure 4-10
also shows the same force task implemented with active control of stiffness in order

to maintain a constant endpoint stiffness.

4.5 Model Predictions and Biological Data

The above sections have described an algorithm which can be used to control the
posture and impedance of a redundant motor system. The question remains as to
whether the backdriving algorithm can be considered as a model for the control of
the human motor system. To test this hypothesis I will compare the change in muscle
activations that would be predicted by the backdriving algorithm to the actual levels
of activation measured in human subjects. This section will make use of data from a
published study [10] in which the activation of muscles acting around two joints was

measured during the production of torques in different directions.
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Figure 4-11: Torque measurement apparatus (from Buchanan, et. al. 1986 [10]).

4.5.1 Comparison with Buchanan Data

Buchanan and colleagues built an apparatus with which they could measure the
torque generated by a subject around two joint axes of the arm (Figure 4-11). The
torques which were measured acted to flex or extend the elbow, or to generate varus or
valgus rotation around the axis of the humerus. While subjects were asked to generate
specific target combinaticns of torque, intra-muscular electrodes were used to measure
the electromyographic (EMG) signal from the muscles acting around these joints. (See
the Buchanan paper {10] for details of the experimental procedure.) While the exact
relationship between muscle activatior aad EMG is not known, this technique can
be used to compare the relative activity of a given muscle during the production of
torque in one direction versus another. The ability to make this comparison depends
only on the condition that muscle force is a monotonically increasing function of EMG
for a muscle at a fixed length. Quantitative comparison of the relative activation of
two different muscles cannot be made based on EMG, but qualitative observations
about patterns of muscle coordination can be made. It is possible to test for which

directions of torque two muscles are concurrently active, and for which directions
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they are not. In this way it is possible to assess the synergistic and antagonistic
relationships gencrated by a group of muscles.

The data from the Buchanan experiments are displayed in the polar plots of
Figures 4-12 and 4-13, as they were in the original paper. A data point is plotted
at the tip of a vector, the direction of which corresponds to the direction of torque
which was generated for that trial. The maznitude of the vector is proportional to
the amount of EMC measured in a particular muscle during torque production in
that direction. Data were collected from nine muscles (eight of which are shown),
for torques generated in ten different directions and four different magnitudes. Data

points for torques of the same magnitude are connected by solid lines in the figure.

Backdriving Predictions

Can the backdriving algorithm predict the patterns of muscle activations observed
for this task? Knowledge of the muscle stiffness properties,and the muscle attach-
ment geometries is necessary in order to compute the activations predicted by the
backdriving algorithm. In 1981, An and colleagues measured the moment arms for
the muscles acting around the elbow by serial sectioning cadaver arms (1]. In addi-
tion, they measured the cross-sectional area and rest-length of each muscle. From
these measurements jt is possible to estimate the relative stiffness properties for each

muscle.

Stiffness Scaling

If one assumes that muscle sarcomeres each have identical stiffness properties, the
stiffness of a muscle is directly proportional to the number of sarcomeres in parallel
and inversely proportional to the number of sarcomeres in series. The cross-sectional
area provides an estimate of the number of sarcomeres jn parallel, while the rest-
length corresponds to the number in series. Given a reference muscle with stiffness

Kres, cross-sectional area Qres and rest-length Ares, the stiffness of another muscle &;



Pronator Teres Anconeus
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========Model Predictions

Triceps - Medial Head

Figure 4-12: Comparison of Backdriving Model with EMG Data. EMG data is
from Buchanan, et. al. 1986 {10].
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Figure 4-13: Comparison of Backdriving Model with EMG Data. EMG data is
from Buchanan, et. al. 1986 [10].
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Muscle Moment Arm Physiological Data

Flexion / | Varus / | Cross Section | Rest Length | Stiffness

Extension | Valgus a A k
Brachialis 2,052 0.129 7.0 9.0 0.8
Brachioradialis 1.164 -0.182 1.5 16.1 0.09
Biceps - Long 3.431 1.133 2.5 13.6 0.18
Biceps - Short 3.431 1.133 2.1 15.0 0.11
Prouator Teres 1.646 1.528 34 5.6 0.61
Anconeus -1.126 -1.762 2.5 2.7 0.93
Triceps - Lateral -2.039 -0.027 6.0 8.1 0.71
Triceps - Medial -2.039 -0.027 6.1 6.3 0.97
Triceps - Long -2.039 -0.027 6.7 10.2 0.66
ECRL 2.871 -0.462 2.4 7.8 0.31
ECRB 2.871 -0.462 2.9 5.3 0.55
FCR 0.923 2.294 2.0 5.8 0.34
FDS 0.027 1.887 4.2 6.4 0.66
FCU -1.326 1.611 3.2 1.8 0.66
ECU -0.639 -2.873 3.4 4.5 0.76
EDC 0.443 -2.045 1.0 6.1 0.16

Table 4.1: Physiological data for elbow muscles (from An, et. al. 1981 [1]).

can be computed by scaling according to its geometrical parameters a; and \;:

a; ’\re/k
Lk
Qres Ai

Since we are concerned only with relative stiffness values, the reference values can be

set to unity in arbitrary units, yielding a simple formula for relative muscle stiffness:

R

ki =

>

The physiological data from 1] and the computed stiffness values are shown in Ta-
ble 4.1.
Model Predictions

The physiological data was used to generate a model of the human elbow with sev-

enteen muscles. The backdriving algorithm was applied to the model to predict the
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activation of each muscle for a given level of joint torque. The simulated procedure

is based on the following model assumptions:

e Constant Moment Arms: Lacking specific data to the contrary, I assumed
that each muscle acts with a constant moment arm for joint angles in the neigh-
borhood of the tested posture:

9J7(6)
a0

=0.

T . : . .
Since "—’g,-,!-"l does not enter into the expression for ¥ (Equation 4.7), this as-

sumption has no effect on the results.

e Constant Muscle Stiffness: An active muscle (that is, a muscle which is
producing force) is assumed to have a constant level of stiffness, i.e. force is a
linear function of position. Muscles cannot push, therefore the stiffness of an

inactive muscle is zero:

of; ki fi=0

al- 0 otherwise .

e Activation Equivalent to Muscle Force: Since the length of each muscle is
held constant for the task, the observed activation of the muscle was assumed

to be simply the force generated by that muscle:

EMG,; = f..

Results

The predicted activations for each of the muscles included in the Buchanan study are
plotted as dashed lines on the polar plots of Figures 4-12 and 4-13. The backdriving
algorithm predicts three of the main features apparent in the measured EMG data.
First, each muscle is broadly tuned with respect to the direction of torque production.

Each muscle is active for a wide range of torque directions. Second, for a given
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magnitude of torque load, both the model and the data show a unimodal pattern
of activation level as the direction of the load is varied. Finally, the directicn of
maximum activation is predicted by the backdriving algorithm for each muscle. For
six of the tested muscles, the predicted direction of maximum activation agrees with
the experimental data.

The two heads of the biceps are the exception to the third finding. The anatomical
data from [1] predicts .nat the biceps contributes to humeral rotation in the varus
direction, while the EMG data shows that the biceps is active during valgus torque
generation. Buchanan noted this anomaly as well and suggested that the An paper
may be in error, citing additional evidence for a positive biceps moment in the valgus
direction [10]. A brief experiment was performed in our laboratory ., verify that the
biceps is active when a valgus torque is produced. The biceps shows little activity
during production of torque in the varus direction. If the sign of the varus/valgus
moment arm was changed for the biceps, the backdriving algorithm would produce a
much closer fit to the measured EMG data (shown as a dotted line in Figure 4-13),
as is to be expected. This modification in the model parameters had no noticeable
affect on the predicted activations for eack of the other muscles.

On the other hand, the observed pattern of EMG activity can be more broadly
tuned than predicted by the model, specifically in this case for the triceps. One
possible explanation is that the CNS is actively controlling stiffness as described in
Section 4.4.2. Co-contraction of the elbow flexors and extensors may be needed to
maintain limb stability. Note also that the triceps acts at the shoulder as wel] as the
elbow. The additional measured activity may be related to its function at this joint.

The Buchanan study illustrates a basic property of the human motor system.
Muscle coordination is based on the mechanical properties of the system, and is not
necessarily organized into fixed synergistic relationships. A muscle is most active when
it is mechanically most effective. The backdriving algorithm predicts the same sort
of behavior, and as such is a biologically plausible model for the control of biological

motor systems.
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4.6 Conclusions

The backdriving algorithm has been presented for the control of redundant motor
systems. The control solution is derived from the passive elastic behavior of the
mechanism, providing a natural basis by which moter system indeterminacies are
resolved. By including the mechanical properties of the controller in the planning of
movement, certain problems with system nonlinearities can be avoided.

In addition to controlling the position and force output of a limb, the CNS must
control the limb impedance as well. An algorithm has been presented by which the
excess degrees of freedom in the actuators can be used to modulate the limb stiffness
at a given posture.

Backdriving is a biologically plausible model for the behavior of the human motor
system. Predictions about muscle activations, based on the elastic properties of the

muscles are in good agreement with observed biological behavior.
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Chapter 5

Movement From Posture

Merton’s hypothesis first brought forth the idea of movement from posture; the same
neuro-muscular system which acts to control the stationary position of the limb (i.e.
the stretch reflex) could be used, with appropriate modulation of the set point, to
control movements as well. While Merton’s original hypothesis has been rejected,
the idea of movement from posture has nct. The equilibrium point model for motor
control, as first proposed by Feldman [18] is based on the same principle ~ ~ the
muscles and reflexes acting around a joint form a feedback servo mechanism which
acts to control the position of the limb. Under these models the CNS generates
movements by specifying an appropriate reference signal to the servo control circuit.

An on-going discussion in the field of human motor control concerns feedforward
versus feedback models of movement control. Does the CNS represent movements
in dynamic terms, with explicit representations of the forces and torques required
for a movement, or does the motor system rely on feedback only to generate the
appropriate muscle {orces from a central representation of the desired movement?
This chapter address the question by examining quantitatively the performance of
several feedback based control hypotheses. Can feedback control alone account for

the observed behavior of the human arm?
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Input Output Input Output

Figure 5-1: Definition of a servo. (a) meets the criteria, (b) does not.

5.1 Definition of a Servo

What exactly defines a servo system? “A servomechanism is an automatic device for
controlling and correcting the performance of a mechanism.”! Typically, the correct-
ing aspect of the controller is achieved through feedback. The output of the system is
compared with a reference input, and corrective control signals are generated accord-
ingly. The interpretation of the term automatic may generate some ambiguity about
the definition of a servo mechanism. To focus the ensuing discussion on the issue of
feedforward versus feedback control, I will adopt a strict working definition of a servo
which states: “A servomechanism is an automatic control system for which the input
to the system is simply a representation of the desired system output.” Figure 5-1
illustrates this point. The system in Figure 5-1a fits the definition of a servo, the sys-
tem in Figure 5-1b does not. Appropriate control via circuit b requires knowledge of
the system characteristics,thus requiring an element of feedforward control to achieve

satisfactory performance.

5.2 Servo Models for Biological Motor Control

Can the human motor system be described as a servomechanism? There is no question
that the human motor system employs feedback to control rnovements. Perturbations
to movements and postures are effectively corrected for by the neuromuscular system.

The question is, “To what extent does the peripheral motor system form a position

!Webster’s Dictionary
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Figure 5-2: Neural circuitry for the stretch reflex.

servo for the control of movement?” Can feedback alone account for the movements,
or must the CNS provide a feedforward component based on the dynamics of the

desired motion?

5.2.1 Reflex Servo Hypothesis

The reflex servo loop proposed by Merton was an interesting hypothesis for the control
of movement, based on feedback alone. The theory was based on the parallel alpha
and gamma motor drives to muscles in the human motor system (Figure 5-2). Under
this scheme, the gamma motor neurons would drive the muscie spindles through
the desired trajectory of the imb. The error between the spindle movement and

the actual muscle movement would generate the neural activity in the alpha motor
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Figure 5-3: Merton’s reflex servo control model.

neurons (via the monosynaptic spinal reflex) that actually drives the limb. This
methed is attractive from a computational point of view because it produces the
desired movement without an explicit solution of the inverse dynamics. In order
to produce a limb movement, the CNS commands a time series of positions for the
muscle spindles via the gamma motor neurons. The muscle forces and resulting joint
torques are generated implicitly by reflex feedback onto the alpha motor neurons.
Figure 5-3 shows a block diagram representation of the Merton reflex servo model of
motor control.

Experimental and analytical evidence does not support Merton’s theory, however.
Feedback loop delays are too long to allow for the stable operation of such a system. In
addition, alpha and gamma motor units are known to become active simultaneously

(alpha-gamma co-activation) at the initiation of movement [58]. The reflex servo
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hypothesis would predict a slight lead in the activation of the gamma motor neurons.
Alpha motor neurons would fire only after the stretch reflex signal had reached the
spinal cord, a delay of approximately twenty milliseconds for the human arm. Finally,
deafferented monkeys are known to be capable of directed movement of their limbs
in the absence of reflex feedback [9, 8] This would not be possible if reflex feedback

were ...e sole source of alpha motor activation.

5.2.2 Equilibrium Point Models

Alternatives to Merton’s hypothesis are described by the equilibrium point models
for motor control. Under these models the mechanical properties of muscles and
the myotactic reflexes generate equilibrium positions for the limb, at which the net
force and torque acting on the limb is zero. Movements are generated as shifts in the
equilibrium posture of the limb. The equilibrium point hypotheses are in better agree-
ment with the experimental data, yet they maintain the computational simplicity of
Merton’s reflex servo hypothesis.

Currently there are two formulations of the equilibrium point hypothesis under
consideration. The a model, as proposed by Bizzi, Hogan and colleagues [9, 5, 30,
31] relies on the spring-like properties of muscles to generate the forces required to
cause movement. Feldman's A model, on the other hand, emphasizes the combined
role of stretch reflexes and muscle elastic properties for producing movements of the

limb (18, 19]. Each model will be considered separately in the following sections.

a Model

The a equilibrium point model is based on the mechanical properties of muscles. As a
muscle is stretched, the tension in the muscle increases [55, 26]. The muscle acts like a
spring for passive displacements. For two muscles acting in opposition around a joint
there exists an equilibrium position at which the net torque acting on the joint is zero.
The location of the equilibrium point is determined by the rest lengths and relative
stiffness of the two muscles, which are in turn determined by their activation levels

(7, 30]. If the limb is displaced from this position, the spring-like properties of the
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Figure 5-4: Block diagram of « equilibrium model of motor control,

muscles generate the appropriate restoring torques to return the limb to equilibrium.

Figure 5-4 is a simplified model of the musculo-skeletal system of a single joint,
The position feedback gain K corresponds to the net stiffness of all the muscles
acting around the joint, while B is the net viscosity. The inputs to this model system
consist of a reference trajectory which specifies the equilibrium position of the joint as
a function of time and a stiffness level determined by the level of agonist/antagonist
co-activation. (I will assume for simplicity that the viscosity B is dependent on K 80
as to produce a constant damping ratio with no load.)

Limb movements can be generated by adjusting the muscle activations so as to
smoothly vary the equilibrium point along the desired path. As in Merton’s reflex
servo model, no explicit computation of inverse dynamics is performed. In contrast

to the reflex based model, however, stability is not an issue. Because the servo action
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which generates the movement is based on the mechanical properties of the muscles,
there is no problem with feedback delays.

The experimental evidence for the « equilibrium point model is quite strong.
Deafferented monkeys can make pointing movements to visually selected targets in
the absence of any sensory feedback about the location of the limb [9, 7, 6, 30]. Fur-
thermore, the production of such movements is robust with respect to perturbations
imposed by the experimenters [6, 5, 27, 30]. The fact that the monkey can achieve
a desired target position regardless of the starting point of the limb belies the idea
that movements are generated by centrally generated torque commands.

The a formulation of the equilibrium point hypothesis is not completely satisfac-
tory, however. Experiments with deafferented monkeys and humans have shown that
motor performance in the absence of sensory feedback is seriously degraded. While
the limb may reach the final desired position, the trajectory of the arm is much
more erratic than in normal subjects. Clearly, reflexes play an important role in the

production of movements and should be included in any model of motor control.

A Model

Under the A equilibrium point model for motor control movements are also generated
by shifts in the equilibrium posture of the limb. The X model differs from the a model
in the way that the equilibrium position is defined. Under the A model changes in
equilibrium position are generated by adjustments to the threshold of the monosy-
naptic stretch reflex [19, 3]. The simplest possible interpretation of this formulation is
shown in the block diagram of Figure 5-5a. At first glance, this model appears to be
identical to the Merton hypothesis. The model in Figure 5-5a differs from the Merton
circuit of Figure 5-3 in one subtie way. Because the subtraction of the CNS generated
reference signal and the spindie generated position signal occurs in the spinal cord,
there is no delay required between the initiation of the central motor program and
the alpha motor signal. This model is consistent with the experimentally observed
alpha-gamma co-activation.

Model 5-5a has the same inherent feedback delays as the Merton model, and
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therefore suffers from the same problems of stability. The equilibrium point model
is dependent on the mechanical properties of the muscles to provide stability to the
system.

Figure 5-5b shows a second interpretation of the A hypothesis. The reflex cir-
cuit computes an equilibrium position for the musculo-skeletal system based on the
sensory feedback from the limb. This equilibrium point is fed to the muscles via
an appropriate combination of agonist and antagonist alpha motor commands. This
model is, however, inconsistent with the experiments in deafferented monkeys. If
the reflex pathways were cut, the muscles would no longer receive an alpha motor
command that is consistent with the desired posture or movement.

Figure 5-6 is the simplest interpretation of the A hypothesis that satisfies both the
theoretical stability constraints and the experimental observations. In this model the
centrally generated equilibrium point is fed directly to the rnusculo-skeletal system,
via the alpha motor neurons. This signal is modified during the course of the move-
ment by sensory feedback. The equilibrium position of the limb is defined by both
the threshold of the stretch reflex and the mechanical properties of the muscles.

The point of the foregoing discussion is the following: Figure 5-6 is the only viable
formulation of the A equilibrium point model. At the heart of this formulation is the
a model shown in Figure 5-4. One cannot accept the A hypothesis without accepting
the a model as an important component. On the other hand, since the action of
reflexes clearly improves the performance of movements, neither should the o model
considered in isolation. The two control circuits must work in concert to produce
movements. While one might argue about the relative contributions of the muscle vs.
reflex elastic properties, the equilibrium point model of motor control is dependent

on both of these components.

5.3 Velocity Scaling

While the basic form of equilibrium point control may be adequate for the production

of relatively slow movements (as in the case of the deafferented monkey experiments),
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some problems may appear as the speed of motion is increased. To move faster along
the same path, it is necessary to do one of two things, either increase the stiffness of
the muscles or modify the equilibrium point trajectory. In this section [ will examine
this issue of velocity scaling as it relates to the equilibrium point model of motor
control.

Consider the a equilibrium point model of Figure 5-4. The simplest way to pro-
duce a desired trajectory with this system is to use the desired trajectory as the
reference trajectory input to the system. If the stiffness of the system is sufficiently
high relative to the speed of the movement, the actual trajectory produced will be
close to (but not exactly equal to) the desired trajectory (Figure 5-7). If the same
strategy is used to produce a faster movement, the difference between the actual and
desired trajectories may become significant. In particular, the movement may be sig-
nificantly lower than desired and the velocity profile will no longer be symmetric and

bell shaped {Figure 5-5).

5.3.1 Stiffness Scaling

By increasing the stiffness of the system the increase in desired speed can be accom-
modated. To achieve the same level of performance as for the slower movement, the
stiffness must be scaled with the square of the movement velocity. To move four times

as fast, the system must be sixteen times as stiff (Figure 5-9).

5.3.2 Equilibrium Trajectory Modification

The speed of movement can be increased without increasing stiffness if the reference
trajectory is no longer constrained to be the same as the desired trajectory. Since
the reference trajectory need never be achieved, it has been called a virtual trajectory
[30]. Using this approach, the equilibrium point trajectory will initially lead, then
lag the actual desired position during the course of the movement. The equilibrium
position may actually overshoot the final desired position (Figure 5-10).

While this formulation of the model increases the efficiency of the system, it
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also increases the computational complexity of the problem. The equilibrium point
trajectory required to produce the movement is no longer simply a copy of the desired
movement. The system must solve the inverse dynamics problem in order to generate
the appropriate motor command, and it must recompute this cornmand for movements
of different speeds and with different loads. By the strict definition of Section 5.1 a

system which requires an input of this type does not qualify as a servo system.

5.3.3 Velocity Scaling and the Equilibrium Point Control
Models

Can stiffness scaling account for the production of fast movements under the equi-
librium point models of motor control? Under the @ model, increasing the stiffness
corresponds to increasing the level of co-contraction around the joint. While this
may be a possible option for increasing speed, it is not necessarily the most efficient.
Co-contraction requires an increase in the consumption of metabolic energy (29]. Un-
der the A model, an increase in stiffness could be achieved by either an increase in
muscle stiffness, or an increase in the reflex feedback gain. The latter may, however,
be limited by the feedback delays of the system. In either case the level of stiffness
that would be required for fast movements of the human arm is relatively high. Fig-
ure 5-11 shows the trajectory of the limb produced by a subject asked to move as
fast as possible. The duration of this movement is approximaiely 125 milliseconds,
which would require a servo stiffness of approxi.mately 252 newton-meters/radian (for
an estimated limb inertia of 0.1 kilogram-meter?).

The stiffness of the arm can be estimated by measuring the response to distur-
bances applied during the movement. Experiments such as these estimate that the
natural frequency of the elbow is low during the production of fast movements, on
the order of 1 — 3 hz. [2, 38]. This corresponds to stiffness values in the range of 4.0 to
36.0 newton-meters/radian. Note that these estimates would include the combined
contributions of the muscle mechanical stiffness and the stretch reflex gain.

Hogan computed the virtual trajectory required to produce a movement of a
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ACTUAL AND VIRTUAL POSITION
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Figure 5-12: Estimation of the virtual trajectory for a monkey arm movement
(from Hogan, 1984 [30]). The equilibrium trajectory has a different
time course than the actual trajectory.

monkey arm, based on estimates of stiffness for the limb [30], the results of which are
shown in Figure 5-12. Even for a slow movement such as this one (700 milliseconds)
the virtual trajectory is seen to be significantly different from the actual trajectory.
The evidence suggests that neither formulation of the equilibrium point control
model can adequately describe the production of fast arm movements if these models
are restricted to act as position servos as defined above. Adequate performance
of these models requires the inclusion of a feedforward component in the virtual

trajectory command provided by the CNS to the sensory-motor system.
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Proposed Reflex Control Model
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Figure 5-13: Proposed equilibrium point model with reflex feedback.

5.4 Enhancement of the Equilibrium Point Con-
trol Model

Can any feedback-only control system adequately account for the known behavior
of the human limb? I have proposed a new control structure which defines such a
system. (Figure 5-13). The controller is computationally simple in that the CNS
need specify only the actual desired trajectory for the limb. The desired trajectory

is fed directly to the muscles, as in the a equilibrium point control scheme. This
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virtual trajectory is modified, however, by reflex feedback during the execution of the
movement.

The proposed model differs from the A equilibrium control model by the addition
of a velocity reference signal. The addition of this signal effectively implements a
position plus derivative controller which serves to increase the command following
performance of the system. This allows the system to produce faster movements at

a given level of K and G,,,.

5.4.1 Simulation of the Proposed Controller

A potential problem with this approacii is that the aelays in the reflex pathways limit
the feedback gains, and thus the performance level that can be achieved. Computer
simulations have been carried out in order to establish the feasibility of such a control
scheme.

Figures 5-14 — 5-17 show the results of the simulations for a variety of different sys-
temn parameters. Table 5.1 shows the parameter values for each of these movements.
Estimates of feedback delays are based on values reported in [14] in which a best esti-
mate of a 47 msec. was reported for both reflex paths, and from [15] in which distinct
values of 25 msec. and 65 msec. were reported for the velocity and position reflex
components, respectively. Reflex parameters were selected by simulating controlled
movements while systematically varying the appropriate gain values. The system is
stable, where pure reflex feedback would not be, and the system produces fast move-
ments at stiffness levels below those required by the equilibrium point hypothesis
alone. In addition, the movements speeds and velocity profiles are comparable to

that achieved by a human subject asked to move “as fast as possible” (Figure 5-11).

119



1.0

.5
/2]
=]
.
g~
«©
)

< .50
kS
-
G
(=}
[a¥

25

0.0

10.0

Velocity (radians/second)

| | | |
| | | |
1.0 2.0

— Time (seconds)

— — — Desired

Actual

I I I |
| I I [
1.0 2.0

Time (seconds)

Figure 5-14: Fast movement with proposed reflex feedback model.
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Figure 5-15: Lower muscle damping ratio.
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Figure | Muscle Characteristics Reflex Parameters Effective
Natural = Damping Position Velocity Natural
Freq. (hz.) Ratio Gain Delay (msec) Gain Delay | Freq. (hz.)
5-14 1.0 707 2.5 65 .60 25 1.9
5-15 1.0 A4 14 65 .50 25 1.5
5-16 1.0 707 2.0 40 .30 40 1.4
5-17 1.0 4 1.5 40 .35 40 1.4

Table 5.1: Control Model Parameters.

5.5 Conclusions

Recent criticism of the equilibrium point hypotheses for motor control have centered
on the inability of these models to predict the characteristics of high speed move-
ments. The feedback loop gains (stiffnesses) that would be required for the servo-like
production of fast movements are not experimentally observed. Under these models
the command input cannot be a simple representation of the desired output. The
command must contain a feedforward component based on the dynamics of the sys-
tem, and thus the computational simplicity of a servomechanism is lost.

In this chapter a new control structure has been proposed which fits the strict
definition of a servomechanism. Under this model the CNS need specify only the
parameters of the desired trajectory. The model requires a representation of the
desired velocity as well as the desired positions to improve the command following
performance of the system. Using realistic values for the feedback gains and delays,
it has been shown that the proposed controller can produce high speed single joint

movements using a pure feedback approach.
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