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Abstract

An oligo-electrolyte model of humic substances is developed to explain ionic strength
effects on copper and hydrogen ion titrations. After discussing the relevance of various
polyelectrolyte models to humic substances, two models are chosen in which the molecules
are approximated by either ion-penetrable or impenetrable spheres. The electrostatic effect
is calculated using numerical solutions of the appropriate non-linear Poisson-Boltzmann
equations. The models are shown to converge on Debye-Hiickel behavior when the
molecular size is small, and on either Donnan or Gouy-Chapman behavior in the limit of
large molecular size, depending on whether a penetrable or impenetrable geometry is used.
A simple model, containing two copper binding sites and an additional acidic site, and two
size classes of impenetrable spheres, is shown to be successful at explaining the ionic
strength effects on cupric ion and pH titratons of fulvic acid.
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The Buddha...resides quite as comfortably in the circuits of a digital computer or the
gears of a cycle transmission as he does at the top of a mountain or in the petals of a

flower.

Robert Pirsig, Zen and the Art of Motorcycle Maintenance
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Introduction

Humic substances abound in natural waters and may have significant effects on metal
speciation and mobility, especially in waters with high levels of dissolved organic
carbon (DOC). At present, our ability to predict these effects -using equilibrium
models are quite limited. The interactions between humic substances and metal lons
are not well-described by a set of equilibrium constants; "constants” relevant for one

set of conditions may fail completely for another.

These so-called "condiiional constants" have been used by many workers as a convenient
method of describing data sets of metal binding by humic substances (for example Buffle
et al. 1977, Mantoura and Riley 1975, Sunda and Hanson 1979). Usually two or three
discrete binding sites are required to fit a given ftitration. Unfortunately, such constants
cannot possibly be of use in predicting natural water speciation, since pH, ionic
strength, and the presence of competing metals have all been shown to affect their value
(pH: Sunda and Hanson 1979, ionic stength: Cabaniss 1986, Cd2+ effect on Cu2+ binding:
Fish 1984); finding conditional constants for every possible set of conditions is a
daunting task. A better approach is to wonder what affects these “"constants”. |f we can
determine the chemical reasons for the changes in binding strength under different
coriditions, we may be able to gain some ability to extrapolate from one set of conditions

to another.

One often-stated possibility is that the humic substances' heterogeneity is the
problem. After all, if no two humic acid molecules fook exactly the same, then every
binding site on every molecu's should have a different binding constant. instead of
assuming the presence of a smal! number of individual binding sites to find conditional
consta .ts, some researchers have taken this heterogeneity into account by using a

more statistical approach, using for example a Gaussian distribution of binding sites
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around a mean log K or equilibrium constant (Perdue and Lytle,1983). This approach
may be more pleasing conceptually, but the end result is similar to that of the discrete
site model: a given titration data set can be described with a smaller number of fitting

parameters, but extrapolation is still not possible.

A more important consideration regarding heterogeneity is that a different binding site
may dominate the binding under different conditions. For example, proton competition
may make the site which dominates at high pH's completely insignificant at low pH's.
Cabaniss and Shuman (1988a) used this idea to simultaneously fit a series of copper-
fulvate titrations carried out at different pH's, ionic strengths, ana total DOC levels,
using five discrete ligands of varying "protonicities” (a term referring to the number of _
protons exchanged when a site binds to a Cu2* jon). All but the large ionic strength
effacts are adequately described by this model, although extrapolation to pH's outside of
the range of calibration did not yield satisfying results. This is not surprising, since one
would expect the protonicities of the copper hinding sites to vary with pH as the sites
deprotonate, an effect not included in the model. Another work by Cabaniss and Shuman
(1988b) demonstrates that the same model (with identical fitting parameters) could
successfully p;edict copper binding by a variety of fulvates isolated from different
sources, indicating that source heterogeneity has a less significant effect than the

conditions of the titration: pH, Cut, DOC, and ionic strength.

To explain ionic strength effects, consideration of the humic molecule's size and charge
density are crucial. One would not expect a mixture of ligands with a charge of -1 or -2
to behave like a solution of large molecules, eaéﬁ having a charge of -6 or higher and
containing three or more binding sites in close proximity' to each other. Seve-al models
have been proposed to handle this problem: an empirical approach using some convenlent
functional form to describe the electrostatic effect (Tipping and Hurley, 1988),

variations on Debye-Huckel and similar models (Cabaniss and Shuman,1988a), and an

7



empirical two-phase model which assumes a Donnan equilibrium between humic and
aqueous "phases" (Ephraim and Marinsky, 1986). So far, none of these is in common
use. None of them attempts to incorporate data other than the titrations themselves
(such as molecular weight information or spectroscopic data). Furthermore, no model
has been developed that can explain the variations in ionic strength effects over large pH
ranges (three or more pH units) or ionic strength ranges (a factor of ten or more), or
that explains why ionic strength effects on copper ion titrations are so much larger than

effects on pH titrations.

The goal of this study is to develop an electrostatic model of humic substances that can be
incorporated into simple equilibrium calculations and that can provide a chemical
picture of the observed pH and ionic strength effects. There are two parts to this work.
First, we compare various electrostatic models that have been proposed for
polyelectrolytes and consider their applicability to humic substances. The model we
choose to use must satisfy several requiréments: it must be simple and based on a
reasonable physical picture, require a minimum of empiricism, and draw on the wealth
of available data regarding the make-up and structure of humic substances. In the
second part we will attempt to model a data set showing the pH and ionic strength effects
on copper binding, using a discrete ligand model combined with the electrostatic model
developed in the first part. A priori information gained from spectroscopic and
titrimetric data, such as the expected types and amounts of various ligands, will again

make the cholice of fitting parameters less arbitrary.

Our overall goal in this approach Is to answer two questions: can a simple electrostatic
model explain observed pH and ionic strength effects on copper-humate titrations and pH
titrations? And if it can, does the model suggest new experimental approaches to

improve our chances of predicting metal speciation in humate-rich natural waters?



Background -- Choice of an electrostatic model

Electrostatic models for small ions interactions with other small ions, polyelectrolytes,
and charged surfaces in electrolyte soluticns have been studied for many decades and give
us a starting point for our model. However, none of these models diréctly fits our needs.
Aiken and Malcolm(1987) have pointed out that the term "oligoelectrolyte” may be most
appropriate for a fulvic acid molecule. With an average molecular weight of close to
1000 daltons and a strong acid content of roughly 6 meq/g, the "average" molecule will
have a charge near -6, falling outside the range of both Debye-Hickel and

polyelectrolyte theories.

However, a significant fraction of the molecules in a fulvate sample may have molecular
weights much higher than 1000. In a flcw field-flow fractionation study, believed to be
more accurate for determining molecuiar weight distifbutions than more commonly used
chromatographic methods, Beckett et al. (1987) found that typical fulvic acid samples
with average molecular weights near 1000 daltons also included a large fraction (10 %
or more by weight) of molecules in the 5000-10000 dalton size range. In humates
approximately 5-20 % of the total mass consisted of molecules in the 10000-25000
dalton sizo range. These considerations lead to the conclusion that in addition to
satisfying previously stated requirements of simplicity and parsimony, our model
should also be able to handle a size distribution ranging from molecules almost described
by Debye-Hiickel theory to ones closer to true polyelectrolytes. We shall see later that
the use of a size distribution of molecules instead of an average-sized molecule will
greatly improve our ability to model certain ionic strength effects. With these thoughts
in mind, let us examine a number of proposed models: Counterion condensation, Donnan

equilibrium, and various Poisson-Boltzmann theories.



Counterion Condensation

One of the most discussed polyelectrolyte models in the biophysical chumistry
literature Is Manning's model of counterion condensation (Manning, 1979). The
molecule is pictured as an infinitely long cylinder of infinitesimal r'a.dius, so that the
only geometrical parameter is a linear charge density. The charged sites are then
treated as point charges by a Debye-Hickel limiting law, and the electrostatic energy
of the molecule is given by the sum of the energies of interaction of all pairs of point
charges. Manning also postulates a phenomenon he calls "countericn condensation:" any
counterions found in the near vicinity of the cylinder (in the condensation volume,
effectively a second phase as described above) can be considered "bound" to the polyion
and therefore partially neutralize its linear charge density. By considering both the
entropic contributions of the free and bound counterions as well as the electrostatic
contribution of the polyion to the free energy of the system, Manning derives a very
simple formula predicting the extent of counterion condensation in the limit of zero
ionic strength (limiting law). The most significant result of his calculations is that,
under conditions where the limiting law is a good approximation, the number of bound,
or condensed, counterions is independent of the bulk solution concentration. Another
result is that condensation is a discontinuous phenomenon, which only occurs when the
linear charge density of the polyion exceeds a certain critical value. Manning's theory
seems to provide good predictions regarding a variety of polyelectrolyte properties,
especially configurational and transport properties of biological macromolecules such

as nucleic acids (Anderson and Record, 1982).

However, several problems make this model unsuitable for humic acid madeling. The
first has already been mentioned: the picture of the molecule as an infinitely long

cylinder is unrealistic for small molecules, and unable to accomodate size
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distributions, which may play an important role in humic acid properties. Even if
this model could be redesigned using a different geometry (unlikely, since the
cylindrical symmetry is what gives it its simplicity), a second, more significant
problem still remains: the model does not distinguish site-bound ions from condensed
ions. Indeed in cases where a significant amount of site-binding o'c;curs the model's
thermodynamic assumptions are incorrect and its results no longer accurate (Manning
1979). Manning's model is generally viewed as a simple but limited approximation to
the difficult mathematics of more complicated models it was not created to explain
strong binding behavior and to use it for modeling the metal- and proton- binding

properties of humic substances would be inappropriate.
Electroneutral phases (Donnan Model)

The Donnan Model is another very simple two-phase model. The name originally
refers to the distribution of small ions across a semipermeable membrane when
charged macromolecules are restricted to one side of the membrane. Although there is
no semipermeable membrane separating the two phases in this model, the situation is
similar: the polyion's charged sites are constrained to remain in the polyion "phase”
(defined by the area filled by the loosely coiled, solvated polyion) while smaller ions
are free to diffuse in and out from the bulk solution. Two assumptions are necessary:
that the osmotic pressure terms in the expressions for chemical potential are
negligible, and that both phases are electroneutral. The first assumption leads to the
conclusion that

()5

{x}; (1)
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where {X}; and {X}; are the activities of an ion X; with charge Z; in the bulk and polyion
phases respectively, and A is a constant for all the ions in the solution (Tanford,

1961, p.227). The second assumption allows us to solve for A:

bulk phase electroneutrality:

D 7xL = 0

i (2)
polyion phase electroneutrality:

z Zi [5(]| + ZP - O
i ’ (3)

where [X]j and [)_(‘]g are the concentrations of Xj in the bulk and polyion phases
respectively, Zp is the charge of a polyion molecule, Vp Is the phase volume occupied
by the molecule, and N is Avogadro's Number. Thus, Zp/NVjpis the density of charged

sites in the polyion phase. No assumption needs to be made about lhe'geometrlc shape

of the polyion phase. Assuming that the activity coefficients of [X]; and [3(°]i are equal

and substituting equation (1) into equation (3) yields:

D 7 XK AR + p, = 0
i (4)

where pp = Zp/NVp, and can be calculated if pp and the bulk solution concentrations of

the major ions are known.

If the total concentration of monovalent ions Is much greater than that of any

multivalent ions (I (ionic strength) = [Na*] = [CI], for example), then the

expression becomes much simpler:
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Pyt f P2+l

A= 3T (5)

Note the limiting behaviors:

A approaches 1 if I >> |ppl

A approaches -pp/l if lppl >>1 and pp < 0 (polyanion)
and A approaches ljpp  If lpp| >>1 and pp > 0 (polycation).

Thus if |pp| is large compared to I, the concentratior: of counterions in the polyion phase
is simply equal to the concentration of polyion charge, lppl, and is independent of ionic
strength. This is reminiscient of the counterion condensation model; the difference Is
that in this case the condensed counterions neutralize the charge density completely in
all cases (as long as |pp| >> I ) while in Manning's model they partially neutralize the

charge and only condense at ali if the charge density exceeds a certain value.

Another difference is that this model easily accomodates site binding. Intrinsic
equilibrium constants can be written in terms of the local concentration of ions near
the polyion's binding sites. Apparent equilibrium constants are then a function of A.
For example, if

c . - 11 (A}
a, Int {H:—A} . (6)

where A" is a weakly acidic site on the polyanion, then

_ i AT K
Y {HA) A . (7)

K

In other words, the apparent pKy of the pclyanion is a function of A, which is itself a

function of I and pH (since pp is a function of pH).
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A model of this type combined with a number of proton- and or metal- binding sites
has been applied to humic substances by Ephraim and Marinsky (1988). One
disadvantage of this model is that there is again no easy way to account for size
distributions. One could assume that pp is some function of molecular weight, but this
introduces another arbitrary parameter inte our model, which we are trying to keep
as simple and constrained by our knowledge of the problem as possible. Another
disadvantage is that even if fulvic acid can be well described as a penetrable phase, the
Donnan model is almost certainly inappropriate for the smalier sized molecules, as we

will discuss in the foilowing section.
Poisson-Boltzmann Theories

This category is a broad one, encompassing Debye-Huckel theory of small ions in
solution, Gouy-Chapman theory for adsorption on charged surfaces, and a number of
polyelectrolyte models. The Poisson-Boltzmann Equation assumes that an electrostatic
potential ‘¥’ is created by a central charge region of interest (the polyion), and that the
small, mobile ions in the solution arrange themselves accordiny to this potential. It is

derived from two parts; the Poisson equation reiates potential to charge density,

ty o 2P
TR (8)

(where ¥ is the electrostatic potential, p Is the charge density, and e the permittivity
of the medium), and a Boltzmann relation for the distribution of co- and counterions in

the potential field:

Zie\P
Py = Ez, X exp(— T )

(9)
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where p+ is the charge density created by the local imbalance of co- and counterions, e
is the charge of an electron, k is the Boltzmann constant, and T is the absolute
temperature. Thus the distribution of mobile ions affects p, affecting ‘¥ itself. A sort
of equilibrium is achieved when the distribution of charges in the potential field ¥ Is

consistent with the ¥ created by the mobile ions and the central charged region:

(po+ p:t)

2 = —
Vi = : (10)

where pg is the charge in the region in the absence of mobile ions. This equation easily
accomodates both one-phase and two-phase models. In a one-phase model, po is zero
everywhere and the surface charge density o of the central charged region results in

the boundary condition:

(?;)IHR - (11)

where (o¥/dr)[=R Iis the potential gradient at the surface (Gauss' Law). In a two
phase model, po is equal to pp inside the polylon phase and zero in the bulk phase. The

boundary condition becomes:

(%P)'FRI =0 (12)

where R1 is the center of the charged region. In both the one-phase and the two-phase
models, the other boundary condition is that the potential disappears at large distances

from the central charged region:
im ¥ =0 -
— (13)

Some possible problems with this approach have been discussed . The first concerns

the assumption that the distribution of the mobile lons can be described by a
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continuous function, p, representing the ions not as point charges but as "smeared"
regions of charge, and that the mobile lons' only interactions with each other are
coulombic and therefore included in the Poisson Equation. LeBret and Zimm (1984)
have used Monte Carlo methods to demonstrate that substantial errors may arise when
the local concentration of counterions is so large that non-Coulombié interactions can
no longer be ignored, or when the size of the counterions is not small compared to
geometrical parameters (such as the cylindrical radius) of the polyion. Another
problem arises from the inadequacies of the Poisson-Boltzmann equation itself, which
assumes that the potential of an average force (the ¥ of the Boltzmann relation) Is the
same as the average potential (the ¥ of the Poisson equation). Kirkwood (1934)
shows that this is a good approximation only when |eW/kT| << 1. However, Fixmann
(1979) shows that the equation also gives reasonable results when the potentlials are
high, since the solution for ¥ is not very sensitive to small errors in the Boltzmann
distribution.  For all its shortcomings (theoretical flaws and lack of analytical
solutions in all but the simplest cases), the Poisson-Boltzmann equation remains the

most practical and flexible method of studying electrostatic interactions in solutions.
Analytical solutions to the Poisson-Boltzmann equation

When the potential ¥ is small, so that exp(e¥/kT) = 1 + e¥/kT , and a one phase

model is chosen, equation (10) reduces to:

Vi = Xy (14)
where «x is a constant. This linearized equation has analytical solutions for planar,
cylindrical, and spherical geometrles. The impenetrable sphere was first used by

Debye and Huckel (1923) to derive their well-known limiting laws regarding the

activity coefficients of smalil ions in solution.
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Tanford (1961) also solved the equation for a penetrable sphere. Tanford's model has
been applied to humic substances by Wershaw and Pinckney(1973). However, when ¥
is large the linear approximation is quite inappropriate -- this is a major problem

with both Tanford's and Wershaw's approaches.

The only non-linear Poisson-Boltzmann equation for which an analytical solution has
been found is the planar one. This solution was used by Verwey and Overbeek (1948) to
model the interactions between the charged surfaces of suspended colloids, and applied by
Dzombak and Morel (1990) in a surface complexation model. The latter's model
resembles the Donnan formulation explained in the previous section: intrinsic
equilibrium constants of various surface reactions are combined with an electrostatic
factor A to give apparent constants which are functions of surface charge density and
ionic strength. Any Poisson-Boltzmarnin theory for which ¥ Is known as a function of
charge could be used in the same fashion. Since a plane is probably not a good
approximation for the shape of a polyelectrolyte or a humic acid, and since analytical
solutions of the non-linear form are not known for the other geometries, we have

explored the idea of using a numerical soluticn for this purpose.
Impenetrable cylinders

A number of numerical solutions have been proposed for the Infinitely long,
impenetrable cylinder (for example Kotin and Nagasawa 1962 and Delville 1980), the
prevalent geometry used in polyelectrolyte modeling. The resulting surface
concentrations of mobile ions have also been L:ompared to the predictions made by
Manning's counterion condensation model (Bizzarrl ot al. 1988, LeBret and Zimm
1984b, Cametti and DiBiasio 1988) (see above). When comparing the two models, a
somewhat arbitrary parameter has to be introduced to specify how closely the

counterions have to approach the cylinder to be considered "condensed" in the Polsson-
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Boltzmann formulation (which is a one-phase model). Nevertheless, the models compare
quite well where Manning's assumptions are valid. However, since the Poisson-
Boltzmann equation can also be applied in a much broader range of conditions, it is the
more flexible of the two models, and Manning's model could be considered a simplified

special case of the Poisson-Boltzmann equation (Mandal 1988).

In order to construct an impenetrable cylinder model that can handle size distributions,
we could use finite cylinders of varying lengths. However, this would add another
position dimension to the Poisson-Boltzmann equation, resulting in a non-liﬁear partial
differential equation that would need considerable computing power to solve numerically.

We do not consider this possibility here.
Penetrable and impenetrable spheres

One might wonder why an impenetrable cylinder is almost invariably chosen to model
the solvated linear polyelectrolytes most studied by biochemists. Would a penetrable
sphere not be a better description of the loosely coiled molecule one might expect to see
in a good solvent? This idea was considered in some early studies (Hermans and
Overbeek 1948, Wall and Berkowitz 1957), but later abandoned because the
potentials obtained from these models were not high enough to fit experimental data
(Mandel 1988). This observation is justified by the fact that the radius of curvature
of the curled, cylindrical polyion is large compared to the distance scale characteristic
to the problem of polyion-small ion interactions. Other prcblems with larger

characteristic distances do require different formulations (Mandel 1988).

Since humic substances are hardly linear polymer chaihs, it is not clear that the same
reasoning is appropriate to their modeling. The picture of a penetrable sphere may be a

better approximation. For smaller molecules an impenetrable sphere also seems likely
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to be a good description. The latter would at least guarantee Debye-Huckel behavior

under conditions of low potential, since it uses the same physical picture.

Furthermore, size distributions are easily handled by both models. We could assume
that the molecular weight of the molecule is proportional to the cube of its radius and
that all size groups have the same number of charged sites per unii weight. Then in the
case of the penetrable sphere, the charge density p;) will not vary with size, while in the
case of the impenetrable sphere the surface charge density o will increase in direct
proportion to the radius. These models require a minimum of size parameters: a
molecular weight distribution (such as the ones measured by Beckett at al. 1987), a
charge per unit weight ratio (measured titrimetrically and spectroscopically by a
number of researchers) and a parameter describing the relationship between radius and
molecular weight (which requires knowing the radius associated with a particular
molecular weight). Data relating an average radius, measured by small angle x-ray
scattering, to a (number) average molecular weight (Aiken et al. 1989) should give a
reasonable estimate of the last parameter, since the more abundant smaller molecules

should dominate both averages.

It appears that the penetrable and impenetrable sphare modals both fit our requirements
of simplicity and ability to handle size distributions well. Unfortunately, the non-
linear forms of the equation (10) for these models do not have analytical solutions and
we must resort to numerical methods in both cases. (Appendix A provides a detailed

description of the methods used.)

The result of a numerical solution is ¥ as a function of r, (the distance from the center of
the sphere) for a given ionic strength, molecular radius R, and charge on the molecule.
In the case of the impenetrable sphere, the relevant charge parameter Is o, the surface

charge density on the sphere (assumed to be uniform). Figure 1 shows the results of
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calculations for a variety of ionic strengths and radii. The electrostatic factor A is

analogous to that used in the Donnan model (equation 1) and is given by:

e?, ]

A = exp [“W (15)

where ¥y is the value of \¥ at the surface of the sphere. Since a functional form A versus
o is needed to carry out equilibrium calculations, we have fit the curve to a three

parameter function (shown by the solid lines):

¢ = a sinh(b logA) + ¢ (logd) (16)

Note that the slopes of the lines at small o (small ) approach the slope given by the
linear approximation (essentially, the Debye-Hiickel solution) to the Poisson-
Boltzmann equation. Also, when the radius of the molecule is much greater than the
characteristic length scale of the probiem (1/x from equation 14, or 10 A, 32 A, and
100 A for ionic strengths 0.1, 0.01, and 0.001 M respectively), the curvature of the
sphere becomes unimportaht and the solution approaches that of the Gouy-Chapman

solution for a plane (figure 2).

We now assume that the acid content of a fulvic acid is 6.1 meqg/g (Bowles et al., 1989),
and that an average molecule has a radius of gyration of 7.7 A and an average molecular
weight of 711 daltons (Aiken et al.,1989). The total charge on the molecule of radius
7.7 A is the 4.3, leading to a o of 9.2 pc/cm2. Assuming that the molecular weight (and
hence the total charge) is proportional to the cube of the radius, we can calculate o for
other sizes, leading to figure 3, which describes tl'1'e effect of size on A. As In the case of
Manning's and Donnan's models, the concentration of counterions in the vicinity of the
molecule (given by Al) approaches a constant as the ionic strength decreases, so that a
decrease in | of a factor of ten can never increase A by more than a factor of ten.

cut
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it is important to note that in all of the results shown here, the variable | refers to the
concentration of monovalent ions only. The traditional definition of ionic strength is
only useful when the Poisson-Boltzmann equation is linear, as in the Debye-Hiickel
model. In a non-linear model, the presence of multivalent counterions will only be
insignificant if Al >> Z; AZi [M2+] (see equation (9) ). For example, for a value of A
of 100 and a concentration of a monovalent salt of 0.01 M, a Ca2+ concentration of 10-4
M is sufficient to significantly affect the electrostatics of the model even though the ionic
strength only changes by a few percent. In some fresh waters and especially seawater,
ionic strength is likely to be a poor predictor of the effect ions such as Ca2+ and Mg2+

may have on the electrostatics of large ions in the solution.

In the case of the penetrable sphere, the relevant charge parameter Is pp, the charge
density contained in the volume of the sphere. Figire 4 zhows the model results for this

geometry, analogous to figure 1 of the impenetrable sphere modei. In this case,

x = ex (_C\Pave)
G (17)
where Waye is an average of ‘¥(r) over the volume of the humic phase:
2
3r
O - LA
¢ JmprI-R;? (18)

This averaging of ¥ to find an average A Is strictly only correct when ¥(r) is small (so
that exp(-eV¥(r/kT) is approximated by 1 - _@¥(r)/kT ) or when ¥(r) is almost
constant over the volume of the phase, so that ¥ave = ¥(r). It serves as a reasonable
approximation in other cases. (This definition of‘ '\Pave is strictly correct If A Is
considered to be a work function instead of a concentration factor -- a complete

description of this thermodynamic formalism is found in Appendix B.)
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The solid lines in Figure 4 are a fit to the three parameter equation

op=a sinh(b logA) + c (log) (19)

However, instead of optimizing the fit, as we did for the impenetrable sphere, we used
our knowledge of the limiting behaviors of the solution to estimate the parameters a, b,
and c. When pp and log A are small, log A Is a linear function of pp, its slope predicted by
the Tanford model. When pp and log A become very large, the numerical solution
behaves like the Donnan Model, which simply says that A = pp/I (if A >>1). The function
above displays the required behavior when a = 2|, b = In(10), and 1/(c+ab) is equal to
the slope (log A)/pp given by the Tanford model (which can be calculated directly given
R and I). The solid lines in figure 4 demonstrate that this estimate is able to
approximate the numerical solution to within 0.2 log units for a larger range of Ionic

strengths, radius, and charge density than we are likely to need.

Using the same charge density parameters that we used in the impenetrable sphere
model, we find that a radius of 7.7 A and a molecular weight of 711 daltons correspond to
a charge density pp of. 3.7 M inside the humic phase. Since total charge and valume are
both proportional to R3, in this model the charge parameter Is a constant for all size
groups. Nevertheless, the effect of size on log A is substantial in the size range of
interest (5 A - 20 A). Figure 5 shows this effect as well as the asymptotic behavior of
the function -- approaching the Tanford (linearized) model when log A is small and the
Donnan model when A is large. Note that once the molecule is large enough to be well-
described by the Donnan model (R > 30 A or sé); there is no longer a size effect on A.
Also, the effect of ionic strength on A is once again no iarger than proportional. Finally,
despite the difference in the physical picture, the penetrable sphere model's results for
small molecules agree closely with those predicted for the impenetrable sphere (Debye-

Huckel) model.(Table 1).
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Comparison of Polyelectrolyte Models

Of the different models discussed above, we have found the penetrable and impenetrable
sphere models the most convenient to use in our modeling efforts. Both models can
describe the effect of size distributions elegantly, and 'brovide an "i-n-between" solution
for molecules not described well by either Debye-Hlickel or polyelectrolyte models.
Their behavior converges on a Debye-Hiickel type behavior for small-sized molecules
(Table 1), and on either the Donnan model (penetrable spheres) or the Gouy-Chapman
model (impenetrable spheres) when the radius becomes very large . In the case of
penetrable spheres, the limiting behavior allows us to reliably predict the slope of the
function log A versus pp without carrying out numerical solutions for each new set of
conditions. For impenetrable spheres, numerical solutions must be calculated for each
new radius and ionic strength, but the resulting function of log A versus o is well

described by three parameters.

The choice betwean penetrable and impenetrable sphere models is at this point somewhat
arbitrary. Both present a reasonable physical picture, although intuition suggests that
the penetrable sphere is more appropriate for larger molecules while the impenetrable
sphere (with a surface charge density proportional to its radius) is probably only a
reasonable approximation of smaller molecules. Comparison of figures 3 and 5 shows
that in the size range of interest (5 Ato 20 A), and especially in the lower part of this
range, the predicted log A does not greatly differ from one model to the other. Although
the penetrable sphere model is more convenient computationally, we have chosen to use
the impenetrable sphere in the modeling to follow. Both the values of log A and the size
effect in the 5 A to 20 A size range are larger for this model, which will prove to be an

advantage in the modeling of ionic strength effects on copper and hydrogen ion titrations.
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The ability of these models to predict observed behavior of humic substances will be

discussed in the next section.

It is impurtant to realize, however, that the seemingly very different types of
electrostatic models discussed in this section are all indistinguishable -from each other in
some sense. All of the models exhibit the behavior first discussed in relation to
Manning's model: that A is proportional to 1/l at sufficiently low ionic strengths and
sufficiently high charge densities, so that the local concentration of counterions
eventually reaches some value that no longer varies with ionic strength. The predicted
absolute values of A, and the amount of neutralization of polyion charge by counterions,
vary from model to model, but if we have no a priori information concerning the
magnitude of intrinsic binding constants, the observation that A is proportional o 1/|
or that Ka app is proportional to | for some reaction does not alone suffice to let us
distinguish between penetrable and impenetrable, or spherical and cylindrical

geometries, or differing thermodynamic pictures.
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Modeling Work

Now that we have chosen a model and explored its basic characteristics, we can study the
data sets and ask ourselves whether or not our chosen model is able to explain the
cbserved effects. We wish our model to exhibit the pH and ionic 's-trength effects on
titrations of Suwannee River Fulvic Acid with Cu2+(figure 6) measured by S. E..
Cabaniss (1986), while at the same time showing the lack of ionic strength effect

observed in pH ftitrations (pers. comm., D.M.McKnight and S.E. Cabaniss).

Our computational techniques have been adapted from the Diffuse Layer Model version of
J. C. Westall's BASIC computer program MICROQL (1979). In addition to copper-
fulvate complexes, the inorganic species Cu(OH)* and Cu(OH)2 were included in the
equilibrium calculations, using the formation constants compiled in Morel (1983).
Inorganic complexes of copper with the buffer ions {1 mM POg4 in the pH 7.00 titrations
and 1 mM COg in the pH 8.44 titrations) wére found to be insignificant. Precipitation of.
solids was not considered although it should be noted that at high pH, the solution was
oversaturated with Cu(OH)2 (s) at copper concentrations up to a factor of ten lower than
those at which Cabaniss (1986) could detect the presence of precipitates and stopped the
titration. In the modeling that follows, pCu and pCur refer to -log[Cu2*] and -log[CuT]
(concentration scales), while pH refers to -'log{H+} (activity scale). Solution activity
coefficients were estimated using the Davies equation with A = -1.17 and b = 0.24

(Morel, 1983).

Our forward modeling approach consists of beginning with an oversimplified model (one
size group, one copper binding site) and exploring how closely we can fit the data by
varying the model's parameters. We then consider how the model fails and why, and add

complexity stepwise, reasoning at each step how the next level of complexity should
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improve the fit. Our goal is not to an optimized fit of the data set but a concise

explanation of the observed pH and ionic strength effects.
The featurgs of figure 6 to be explained are:

» the general "smoared" appearance of the curves (slope of pCu

vs. pCut = 2 over 1.5 orders of magnitude).

« the lack of binding and the small ionic strength effect at pH

5.14.

- the very large ionic strength effect (almost 2 orders of

magnitude for a tenfold change in ionic strength) at pH 7.

- a smaller ionic strength effect (approximately one order of

magnitude) at pH 8.44.

- the large pH effect at lonic strength 0.1 M (at low CuT, 1.6 log
units as pH varies from 5.14 to 7.00, and also 1.6 log units as

pH varies from 7.00 to 8.44).

» varying pH effects at ionic strength 0.01 M (at low CuT, 3.0
log units as pH varies from 5.14 to 7.00 and only 0.9 log units

as pH varies from 7.00 to 8.44).

To understand how A relates to pH and ionic strength effects, we must consider how an
apparent copper binding constant may be formu-léted under different conditions. For a
diprotic site, three cases are possible: binding copper to the site may release two
protons, one proton, or no proton, depending on the acidity constants of the site and the
pH of the solution. It is convenient to define an intrinsic binding constant of the humate

site to a divalent solution ion (M2+) in terms of the humate site concentrations and a
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"local" ion activity {M2+} = A2 {M2+}, The intrinsic copper binding constant of site A"

is then defined as:

[CuAl
[AT] {Cu®*"} (20)

KCu, int =

Similarly, intrinsic pKa's are

~_{H [AY] c. - {H} HAT
T HAT T Al (21)
We define the "apparent" copper binding constant for this site as
K _ [CuAl
c =

Assuming that Cut << AT, the quantity [AT - CuA] is approximately equal to [AT].
Depending on the pKjy's of the site and the pH (or "local" pH, given by pH - log A),

(@) Ap = [HA] if PI:I < PKa2, int

(b) Ar = [HA]  if pKyy i > pH > PKa2, int

© Ar = [A"] if pH > PKa, int (23)

This leads to three possible expressions for Kc;u'app:

Keu, int Kat, int Ka2, ine

@ Key,app = if pH < pK,p ;
" 'y -
Keu int Katine A -
(b) Koy, app = o el if pKyy,ine > PH > PKy i
{H"} -
(C) KC\], app = KCu, int 12 . if 'pH > pKal. int (24)

In other words, when the site is more deprotonated, competition with H* becomes less of

a factor since fewer protons are exchanged in the. reaction, but the electrostatic factor A
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becomes more significant since more charge Is exchanged. Thus it would be reasonable to
expect the ionic strength effact to increase and the pH effect to decrease with increasing

pH.

This expected effect occurs in the modeling attempt shown in Figure 7. To construct this
model, we assumed that carboxylic acids are the prevalent acidic sites and that two
carboxylic acids in close proximity to each other (such as a phthalic acid) ara the
prevalent copper binding sites. Ka's and Kcy's were chosen to reflect this assumption
(Table 2); total ligand concentrations are consistent with the titrimetric measurements
of Bowles et al.(1989} and the spectrometric measurements of Noyes and Leenheer
(1989), who measured total carboxyl contents of Suwannee River Fulvic Acid at 6.1
meqg/g and 6.8 meqg/g respectively. To keep the model simple, the monoprotic acid site
was assumed to create charge density only and not to affect the copper binding (although
at the high copper loadings characteristic of some data sets, a weck sita such as acetate or

benzoate could play a significant role).

Figure 7 demonstrates that this one-site model has other flaws besides its expected
inability to produce the pH and ionic strength effects observed in the data. The titrations
are not "smeared", reflecting the fact that only one binding site dominates the binding.
To see reasonably large ionic strength effects, a molecular weight much larger than the
measured averages had to be used. Finally, a pH titration of the same model (figur2 8)
shows large ionic strength effects. Like the pH and ionic strength effects on copper
titrations, this was also to be expected. The largest effect electrostatics can have on
Kcu,app Is a factor of A2, while the smallest effecf -we would see on the Ka,app Is a factor
of A. To model the ionic strength effect at pH 7, we need A to increase by about a factor of
ten as the ionic strength is decreased from 0.1 to 0.01 M — and this factor of ten

produces significant effects indeed on the pH titration (which is on a linear scale). Note
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also that according to our conclusions of the previous section, the factor of ten is the

largest possible ionic strength effect on A.

In the context of Poisson-Boltzmann models, there is only one way that the electrostatics
could have such a large effect on Cu titrations and such a small one on pH ftitrations: the |
fulvic acid must be a mixture of substances with different electrostatic properties, one
of which dominates the H*+ binding and the other the Cu2+ binding. This situation Is most
simply and logically produced by using a size distribution of molecuies. As shown below,
even if the content of acidic and copper binding sites remains constant from one
molecular size to another, a small amount of large molecules with large values of A can
dominate the Cu2* binding while a larger amount of smaller molecules with a small A

will dominate pH titrations.

Figures 9 and 10 were produced using a mixture of two size groups. The ratio of
molecular weights used produces a polydispersity of 2.0, within the range of Beckett ot
al's measurements. Note also that the number average molecular weight is now 907, in
closer agreement with the measurements, and that the Cu2+ titrations appear more
smeared than in figure 2, because the same copper binding site distributed among two

size groups behaves like two sites of different strengths and concentrations.

However, introducing two size groups has not solved the problem of pH and lonic
strength effects. We can greatly improve our model fit by simply introducing another
binding site. Examination of figure 9 suggests that the titration most out of place is the
one at pH 8.44 and ionic strength 0.1 M. Introducing a binding site which becomes
significant only under these conditions may solve the problem. A diprotic site such as
catechol does not significantly deprotonate in the pH range of interest. Its apparent
binding constant is hence governed by equation 24a. When incorporating this new type

of site into our model, we are again guided by the titrimetric data of Bowles et al.(1989)
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and the spectrometric data of Noyes and Leenheer(1989), reporting phenolic OH
contents in Suwannee River Fulvic Acids of 1.2 meq/g and 1.4 meqg/g ("reactive”
phenolic OH) respectively. Our chosen value of 0.53 mM/g catechol content is not
incompatible with these figures, although it suggests that almost all of the phenolic sites

are paired in a catechol-type site.

When a site of this kind is added to the model, its behavior is much closer to that
exhibited by the data (figure 11), while the pH titration (figure 12) remains
unaffected. Note, however, that the copper titrations at high pH become sharp again
instead of smeared. Since the diprotic site dominating at this pH is not affected by
electrostatics (see equation 24a), the two size groups do not appear as two sites of
apparently different strengths. A third binding site, which agaln only becomes

significant at high pH's, may be needed to produce the smearing.

Although we could add more binding sites or size groups to smoothe out figure 11 a bit,
the two-site, twd-size group model does meet our initial requirement of explaining the
major pH and ionic strength effects concisely. It is now possible to consider what
advantages the impenetrable sphere model provides over the penetrable sphere. First,
the "smeared" look of the titration curve results when most of the copper is bound by the
largest size group at low copper loading, and the smaller size group becomes significant
only when the binding sites on the larger molecules have been titrated. Since the size
effect on log A is smaller in the penetrable sphere model, the difference in apparent
binding strength of the sites in the two size groups is smaller, and the larger size no
longer dominates the binding at low copper loadi;lg. One could partially compensate for
this by increasing the ratio of large to small molecules; but this would stretch the limit
placed on polydispersity by Beckett et al.'s measurements (1987) and also decrease the

difference in lonic strength effect between Cu and pH ftitrations.

30



The second advantage of the impenetrable sphere model is that the larger log A values
lead to slightly smaller values of intrinsic Kcy's. Table 2 shows that the Kcy's required
to model the observed magnitude in copper binding are already larger than would be
expected from the literature values of phthalic acid and catechol; using the penetrabie

sphere model would have increased this discrepancy further.

However, comparing intrinsic constants in electrostatic models to literature constants is
not as straightforward as it may seem: one problem is that the "ideal" thermodynamic
state (activity coefficient = 1) in this electrostatic model is one where ¥ approaches
zero, or at infinite ionic strengths. Literature constants follow the convention of
defining an ideal state of ionic strength zero (see Appendix B). Since the non-linear
Poisson-Boltzmann equations we used predict that |¥| approaches infinity as the ionic
strength approaches zero (so that the local concentration of counterions does not vary
with ionic strength) and since interactions other than electrostatic ones become
significant at high ionic strengths, it is not clear how the intrinsic and literature
constants should be compared. Furthermore, literature constants are given in terms of
molecular reactions whereas the model's constants refer to specific site's reactions (see
Tanford 1961 for a discussion of this difference). Given these problems, the agreement
between literature constants for expected binding sites, and the intrinsic constants of the )
model is not bad, although the correlation is certainly not strong enough to provide
evidence for specific types of functional groups or to distinguish one electrostatic model

from the other.
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Conclusion

We have shown that a very simple oligo-electrolyte model with two size groups, two
copper binding sites, and one additional acidic site can do very well in modeling the non-
intuitive pH and Ionic strength effects seen in the data. For example‘..lt is not necessary
to invoke irreversible effects such as size changes ("unfolding") or esterification to
explain the smaller than expected ionic strength effects on copper binding at high pH's.
Our model also suggests that it is sufficient to assume that only oxygen-containing
binding sites, with their binding strengths enhanced by an electrostatic effect, are
significant copper complexants in the range of copper-humate ratios studied here.
Finally, we have shown that at least two size groups of molecules are necessary to
explain the difference in ionic strength effects observed in pH and Cu2+ titrations. Our
forward modeling approach successfully incorporated a variety of available data
concerning the molecular weight distribution, size, and functional group content of
humic substances, resulting in a parsimonious, chemically plausible description of the

humate molecule.

To measure the conciseness of the model, we can count the number of fitting parameters
used: 7 equilibrium constants (2 Kcy's and 5 Ka's), 3 total ligand concentrations, and 4
size parameters (the two radii, the concentration ratio of large to small molecules, and
one parameter describing the size to charge density relationship), for a total of 14.
However, the two Kj's of the catechol-type site are arbitrary, since the same results
would be achieved as long as the pKa's are both greather than 8.5. We used the value of
6.1 meg/g measured by Bowles e/ a/.(1989) as the total content of carboxylic acid sites,
reducing the number of ligand concentration parameters to two. The smaller radius (7.7
A) was measured by Aiken et al. (1989) and the size to charge density relationship was

calculated using given molecular weight and acid content data. These considerations
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reduce the number of fitting parameters to nine. Furthermore, the other size
parameters and the total concentration of catechol-type sites are not.arbltrary. since
they are also limited by measurable quantities (polydispersity and total phenol content).
We have done quite well modeling copper titration data and, the ionic strength effect on
pH titrations, using fewer fitting parameters than Cabaniss and Shufr{an's 5 binding site
model (1988a). This model used a total of 15 parameters: 5§ unconstrained Kcy's and
total ligand concentrations,and five "protonicities", although one could argue that the last

of these, which could only take on values of 0, 1, or 2, should not be counted fully.

The ultimate test of a model is its ability to predict as well as to explaii. Surprisingly
little data showing large ionic strength effects on metal-humate binding have been
published; we predict that further experiments under the right conditions will confirm
Cabaniss’ results (1986). The belief that ionic strength effects are in general not large
still prevails, despite the evidence to the contrary. One reason for this is that at the
conditions of high metal loading studied in m'ost cases, one would not expect to see large
ionic strength effects: both the binding sites on the larger molecules and the diprotic
sites will already be titrated. When the more abundant monoprotic weak binding sites
(such as acetate) on the smaller molecules are dominating the binding, the ionic strength
effect must be similar to that observed in the pH titrations, and could easily be described
by Debye-Huckel activity coefficients. Since the “right" conditions for seeing large
ionic strength effects are also the conditions most likely found in natural waters, more

studies need to be carried out at low metal loading.

Based on our educated guesses about the types of‘ I;unctional groups dominating the binding
under various conditions, we can also make predictions regarding metals other than
Cu2+. Cd2*, for example, is not strongly bound by catechol-type sites. If our two-site
model is sufficient for describing Cd2+ complexation with humates, we snould see

increasing ionic strength effects and decreasing |5H effects with increasing pH in Cd2+
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titrations. In solutions containing both Cd2+ and Cu2* jons, we would expect strong
competition at low ionic strengths and pH's, when the phthalate site dominates the
binding of both metals. At high ionic strengths or pH's, when the catechol site will
dominate the Cu2+ binding while the phthalate site dominates the Cd2+ binding, there
should be less competition. Contrary to these expectations, Fish (1984) saw only
relatively weak competition of Cd2+ for copper binding sites at pH 6 and ionic strength
0.001 M. However, it is difficult to interpret possible electrostatic effects in an
experiment that was only conducted at one pH and one ionic strength. A data set
comparing metal binding competition in a range of ionic strength and pH conditions would
provide some valuable insights into the issues discussed above. Since the presence of
competing metals is the norm in natural waters rather than the exception, experiments

such as these will provide crucial information for the development of predictive models.

Doubts remain that predictive models of metal-humate interactions based on laboratory
data will ever be applicable to natural waters. Under each new set of conditions, ligand
types may become significant which were invisible in other experiments. However, we
are encouraged by our attempts to build a simple model capable of explaining a variety of
phenomena, and we are looking forward to seeing new data sets to test and challenge our

predictions.
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Table 1. Comparison of electrostatic factors log A derived from:

(a) a linearized Poisson-Boltzmann equation of an impenetrable sphere (essentially the
Debye-Hlickel model, but without correction for the electrostatic potential at the limit
of zero ionic strength -- see Appendix B)

(b) non-linear Poisson-Boltzmann equation of an impenetrable '.sphere (numerical
solution)

(c) non-linear Poisson-Boltzmann equation of a penetrable sphere (numerical

solution)
| 0.1 M | 0.01 M | 0.001 M
R=3A (a) 0.79 0.94 1.0
Z=1 (b) 0.77 0.93 0.99
(c) 0.89 1.1 1.1
R=9A (a) 0.18 0.27 0.32
Z=1 (b) 0.18 0.26 0.31
(c) 0.20 0.32 0.35
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Table 2. Total ligand coricentrations (per 5 mg/l C), intrinsic equilibrium constants,
and, for comparison, literature constants, of the binding sites used in the modeling work.
Where two size classes are present, the total amount of ligand In each size class is
determined by the weight fraction of that size class. Literature constants were taken
from Morel (1983). Catechol constants are from Martell and Smith (1977), corrected

for ionic strength as in Morel (1983).

Model ptg log LT pKai pKa2 pKcu log LT pKai1 pPKa2 pKcu log LT
Fig. 7/8 3.8 -4.40 45 4.5 4.5-5.00 - - - - - - - -
Fig.9/10 3.8 -4.40 45 45 5.1-5.00 - - - - - - - -
Fig.11/123.8 -4.40 45 45 5.1-5.00 9.40 12.60 14.68 -5.28

literature 4.76 2.55 5.41 4.0 9.40 13.44 14.78
constants (acetate) (phthalate) (catechol)
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Figure 1. The electrostatic factor log A of impenetrable spheres as a function of negative
surface charge density o for various radii (R in A). Triangles, squares and diamonds
represent numerical solutions for ionic strengths 0.001 M, 0.01 M, and 0.1 M

respectively. Lines represent fits to equation (16). The parameters a, b, and ¢ in each

case are:
R (A) lonic strength (M) a b c
7.7 0.001 0.01866 1.737 5.782
0.01 0.1966 1.549 6.403
0.1 1.201 1.457 7.890
10.0 0.001 0.03138 1.616 4.596
0.01 0.2523 1.499 5.098
0.1 1.410 1.416 6.413
15.0 0.001 0.04762 1.568 3.104
0.01 0.3214 1.474 3.625
0.1 1.426 1.459 4.965
20.0 0.001 0.07375 1.480 2.375
0.01 0.4862 1.352 2.749
0.1 2.173 1.298 3.511
50.0 0.001 0.1626 1.327 1.029
0.01 0.7735 1.248 1.209
0.1 2.873 1.224 1.577
100 0.001 0.2213 1.267 0.5495
0.01 0.9359 1.205 0.6360
0.1 3.184 1.197 0.8730
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Figure 1
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Figure 2. The analytical solution of the Poisson-Boltzmann equation of a plane (Gouy-
Chapman model), log A as a function of negative surface charge density ¢. A is again

defined as exp(-e¥o/kT), where ¥, is the potential at the surface of the plane.
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Figure 2
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Figure 3. The electrostatic factor log A of an impenetrable sphere as a function of radius
and ionic strength. It is assumed that total charge Is proportional to R3, so that the
charge density o is increasing proportionally to R. A charge density_ot 9.2 uC/cm? was
chosen for a radius of 7.7 A, consistent with the measurements of fulvic acid molecular

weight, size, and charge by Aiken et al.(1989.) and Bowles et al.(1989).
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Figure 4. Numerical solutions of the Poisson-Boltzmann equation for a penetrable
sphere. In this case, A is given by exp(-e¥ave/kT), where Waye is a potential average
over the volume of the sphere. Charge density pp inside the spherica._l volume is given in
terms of moles/I. Solid lines are functions of the form pp = a sir;h (b logA) +c(log
A), with a8 = 2| (where | is ionic strength in moles/l), b = In(10), and 1/(c+ab) is

equal to the slope (log A)/pp calculated from the analytical solution of the linearized

form of the Poisson-Boltzmann equation (Tanford, 1961).
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Figure 5. The electrostatic factor log A of a penetrable sphere as a function of radius R
and ionic strength |. Dashed lines represent the "Donnan” limit (electroneutrality in the
charged phase). Since total charge is assumed proportional to R3, the charge density Pp.
is not a function of radius. A value of 3.7 M was chosen, again consistent with
measurements of fulvic acid molecular weight, size and charge by Alken et al.(1989)

and Bowles et al.(1989).
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Figure 6. The Cu2+ titration data collected by S. E. Cabaniss (1986). The plot shows

pCu versus pCut (concentration scales) at three different pH's (5.14 -- squares,
7.00--triangles, and 8.44--inverted triangles) and two ionic stréngths: | 0.01 M
(filled symbols) and | 0.1 M (open symbols), in the presence of 5 mg C/I Suwannee

River Fulvic Acid.
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Figure 7. Lines show an attempt at fitting the data using one copper binding site and one
size group (radius R = 15 A, molecular weight = 5260 dalktons). using equilibrium
constants and total ligan concentrations shown in Table 2. An additlonal acidic (but not
copper binding) site dominates the electrostatics. The solid lines and dotted lines
represent model results for ionic strengths 0.01 M and 0.1 M respectively, at pH's

5.14, 7.00, and 8.44. The symbols represent the data shown in figure 6.

This and subsequent model fits use an impenetrable sphere model with the same size to

charge density relationship as the one used in figure 3.
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Figure 8. lonic strength effect on a model pH titration, using the same model parameters
as in figure 7. The total concentration of dissociated acidic sites in the solution,

represented as "[A’]", is given by [OH]added - [OH] + [H*].
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Figure 9. Model resuits using one copper binding site, one acidic site (see Table 2), and

two size groups:
R = 7.7 A, molecular weight = 711 daltons, 75 % by weight,
and R =15 A, molecular weight = 5260 daltons, 25 % by weight.
Solid lines and dotted lines represent model results for ionic strengths 0.01 M and 0.1 M

respectively, at pH's 5.14, 7.00, and 8.44; symbols represent the data shown in figure

6.
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Figure 10. lonic slréngth effects on a model pH ftitration using the same parameters as

in figure 9.
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Figure 11, Model results using two copper binding sites, one acidic site (Table 2), and
the same two size groups used in figure 9. Solid lines and dotted lines represent model
results for ionic strengths 0.01 M and 0.1 M respectively, at pH's 5.14, 7.00, and

8.44; symbols represent the data shown in figure 6.
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Figure 12. lonic strength effects on a model pH titration using the same parameters as

in figure 11.
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Appendix A

Although numerical solutions for the Poisson-Boltzmann equation of penetrable and
impenetrable spheres have previously been derived (Wall and Berkowitz, 1957;
Hermans and Overbeek, 1948), they are not of a convenient form for our purposes; we

therefore chose to rely on our own computations.

Penetrable sphere

The spherical form of the Poisson-Boltzmann equation Is:

2 ..
2 d¥ d*¥ -
- + = = e ¥-e? + ¢,
r dr dr A.l

where ¥ = e¥/kT, r = r/R (the distance from the center of the sphere r divided Its
radius R), and c1 and c2 correspond to p+ and po in equation 10 of the text. The constant

c1 is given by:

o = 1000 F R’1
1 ekT A.2

where F is the Faraday constant, € is the permittivity of water at 25°C, and i Is the ionic

strength in M. The constant ¢ Is zero everywhere except within the humic phase,

, =
ekT 4/31tR3 A.3

Q is the number of negative charges on the molecule.

To solve equation A.1, we used a second-order finite difference approximation, resuiting

in the equation
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¥ P ¥, 2%, +¥,_ : v
% [ 1+1 i 1] + [ 141 A_: i 1] = —c, [exp(-¥;) - exp(¥))] + ¢,
r r I'

A.4

for all internai nodes ¥|(1<i<n+1). The total number of nodes is n+1; Ar is the
spacing between nodes and r = (i-1) Ar. Because the potential should approach zero at

large distances from the molecule, we 'specify the boundary condition

lFn+1 = 0 A.5

where ¥n,1 is the right boundary node. Since the potential ¥(r) decays more slowly at
low ionic strengths, the distance to the right boundary node, nar, was adjusted with
ionic strength to assure the validity of equation A.5. The other boundary condition

(equation 12 in the text) results in the equation

= = —c, [exp(-¥,) - egp(‘i’l)] + ¢,

for the left boundary node ¥1.

The resuiting non-iinear sysiem of n equations in n unknowns (¥4 io ¥n) was soived
using the Newton-Raphson method and a modified Thomas algorithm, following the
methods of Presset al(1986).The integral in equation 18 of the text was estimated by

the Riemann sum:

1
- +1

Ar
kT kT T T ATy T
Y.ove = - Yoo = = 1_21 ¥, [(r+Ar) —r’]

(a reasonable approximation since Ar was usually less than 0.01).
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The calculations were carried out on an IBM AT compatible using Turbo PASCAL (see

computer code 1).
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impenetrable Spheres

The finite difference approximation described above was also used for the Impenetrable

case, with several modifications (see computer code 2). The constant cp was zero

everywhere and the boundary condition given by equation 11 of the'-text resulted in the

expression
2 (¥, - ¥) _ _
2_2 2 = ¢, [exp(-¥,) — exp(¥)] + c3(2 -—2:-)
Ar Ar A.8

for the left boundary node, where
() (&)
cy =|l—]| |/
4R ekT A.9

The value of the surface potential ¥, used In equation 15 is given by (kT/e)¥1.
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Appendix B

This appendix addresses some of the fundamental thermodynamic issues behind the use of
the Poisson-Boitzmann equation to calculate solution activity coefficients. [n the main
body of this paper, we have used the idea of a "“local" activity of ;netal ion near the
charged polyions, {I\./Tz:‘} = A% (MZ+}, to derive expressions for the electrostatic
effect on the apparent equilibrlum constants of metal-polyion reactions. Although this
is an intuitively pleasing mental construct, we would like to show here that the
electrostatic factor A can also be interpreted as a ratio of polyion activities. This more
rigorous approach emphasizes our models' formal similarity to the Debye-Hiickel model

and also clarifies why the models diverge from Debye-Hiickel at low ionic strengths.

Debye-Hiickel activity coefficients for lons in electrolyte solutions are calculated from
the work required to'bring a solution ion from a hypothetical uncharged state to its
charge Q, assuming that with each inflﬁltesimal Increase in charge dq the ions
surrounding the ion of interest rearrange themselves In the resulting potentlal field
according to the Poisson-Boltzmann equation. The work is calculated from the Poisson-

Boltzmann potential at the surface of the central ion:

wel = F\Po(q) dq
0

Assuming that Wg is the only non-chemical contribution to the free energy of the

system, and using the linear approximation to the Poisson-Boltzmann equation (which

results in a W, that is a linear function of q),

L W Qe¥,(Q)
"R =%r T T 2 B.2
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Since it takes a finite amount of work to charge the ion when no other ions are present in
the solution, it is customary to subtract out this contribution to Wg|, guaranteeing that

In Yo equals zero when the ionic strength is equal to zero.

One could also define the activity coefficients of larger charged ions dsing ecqjuation B.1:

1 e
ln ¥y, = H"J: ¥.(q) dq

for an impenetrable sphere, and

ln Y, = (I —‘I"(r q) dr) dg

for a penetrable sphere, where the inner integral sums the work required to charge each
sphereica‘lhshel‘l of thickness dr over the total volume of the sphere (Tanford, 1961).
Note that equation B.2 is no longer valid since the linear approximation is expected to
fail when the charge density is large. When a chemical reaction between the polyion and
a small lon of charge Z Is considered, it is the ratio of polylon activity coefficients

Yo+z/Yo that will appear as the correction to Kjat in the equilibrium expression,

resulting in an "effective" activity coefficient

Yotz
Yess = 1n Yo = 1n Yoz — 1n Y
L [T (@
= — W¥.(q) dq
kT Joe ° impenetrable sphere ~ B.5

Qt+z)e
e f (j ‘P(r,q) dr) dq

penetrable sphere
B.6
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If Q Is much larger than Z, ¥, and ¥(r,Q) are approximately equal 10 ¥o(Q+Z) and

¥(r, Q+Z) respectively, so that

Ze
ln v, = — ¥, (Qe)
Yees kT ° impenetrable sphere B -7

R 2
Ze " 2% w(e,0) ar
° R penetrable sphere B.8

Thus yeff equals A as defined by equations 17 and 18 In the text as long as the charge of

the polyion does not come close to being neutralized by the reaction..

The difference between this formulation and the Debye-Hiickel model is that there is no
easy way to define an activity coefficient that approaches 1 in the limit of zero ionic
strength. In the non-linear formulation of the Poisson-Boltzmann equation, ¥o does not
approach a finite value as the ionic strength approaches zero, even though the work
required to charge the sphere in the absence of counterions is finite. As was mentioned
in the modeling section of the text, this poses a difficulty when one attempts to compare
literature constants for which the reference state is zero lonic strength with Intrinsic
constants in the context of a polyion model, for which the reference state Is zero
potential (high ionic strength). Although the Debye-Hiickel model and the sphere models
presented in this paper are products of the same thermodynamical foundations, the

Issues surrounding this discrepancy in possible reference states remain to be resolved.
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Computer program 1
program psicalc (input. output);

const
RO = 20e-10 ; (outer radius in m)
R1 = 1e-10; {inner radius in m}
Q = 50; {number of charges in humic phase)
I =0.1; (ionic strength in moles/l)
n =100 ; {number of nodes in approximation). -
n =101 ; {n+1)
length =5 ; {range from r=R1 to r=length*(RO-R1)}
alph = 1.00 H (proportion of solvated penetrable phase volume)
jitmax =25 ; {number of iterations before stopping)
tolrx =0.01 ; ({values for convergence test)
tolrf = 0.0001 ;
Ka = le-4; {Ka of acidic site)
H = le-12; (hydrogen ion concentration}
version = ‘pH - pKa = 8/¢
e = 1.602¢-19; (elementary charge in c)
epsilon = 6.954e-10; (permittivity of water at 25 C)
T = 298; {temperature in K)
k = 1.381e-23; {(Boltzman’s constant)
F = 96500 ; (Faraday’s constant}
ﬁi = 3.14159 ;
A = 6.023e23; (Avogadro’s number)
type

glnarray = array(1..n1] of real;
glnbyn array(1..n,1..5] of real;
glindx array(1..n] of integer;

var
dv, a, b, r, kappa, Qave, psiave, lambdave, deltar, erx, erf : real;
x, psi, bete : glnarray;

z,j: integer;

datafile, prnt: text;

filename: string;

answer: char;

alpha : glnbyn;

function dissacid(ps : real) : real;

begin
dissacid := 1/(1+exp(-ps)*H/Ka);
end;
function derivdiss(ps : real) : real;
begin
d:givdiss := sqr(dissacid(ps)) * exp(-ps) * H/Ka;
enda;
function cube(z : real) : real;
begin

cube := z%z%*2; ]
end;procedure usrfun(x: glnarray; n: integer; VAR beta: glnarray);
var
f,j : integer;

begin
for i := 1 to ndo
begin {initialize alpha matrix}
for j := 1 to5 do
and; alphali,jl :=0; -

beta(1] := -1%(-2%x[11/sqr(deltar) + a*(exp(-17x[11)-exp(x[11))
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+ 2*x[2)/sqr(deltar) - b*dissacid(x[11));
alpha(1,3] := -2/sqr(deltar) - a*(exp(-1*x(11)+exp(x{11))
-b*derivdiss(x[11);
alphaf1,4] := 2/sqr(deltar);
for i := 2 to n-1 do

begin

r := R1/RO + (i-1)*deltar;
betali] := -1%((-1/deltar + r/sqr(deltar))*x([i-1]

- 2*r*x[i}/sqr(deltar) + a*r*(exp(-1*x[i1)-exp(x[{1))

+ (1/deltar + r/sqr(deltar))*x[i+1] - b*r*dissacid(x[i1));
alphali,2) := -1/deltar + r/sqr(deltar);
alphali,3] := -2*r/sqr(deltar) - a*r*(exp(-1"x[i])+exp(x({1))

-b*r*derivdiss(x[il);
alphali,4] := 1/deltar + r/sqr(deltar);
if i = ((n div length) +1) then
begin
beta(i] := -1/cube(deltar) * ( x[i-2) - 2*x(i-1]
+ 2*x[i+1] - x[i+2]1) - 1/deltar*b*dissacid(x

til);
alphali,1] := 1/cube(deltar);
alpha(i,2] := -2/cube(deltar);
alphali, 3] := 1/deltar*b*derivdiss(x(il);
alphali, 4] := 2/cube(dettar);
o alphali,5] := -1/cube(deltar);
end;

if i > ((n div length) +1) then
betali) := beta(i] - b*r*dissacid(x(il);
alphali,3] := alphali,3] + b*r*derivdiss(x(il);

’
r 2= R1/RO + (n-1)*deltar;
betaln] := -1%((-1/deltar + r/sqr(deltar))*x(n-1] -2*r*x(nl/sar(deltar)
+ a*r*(exp(-xIn])-exp(x(n])));
alphain,2] := -1/deltar + r/sqr(deltar);
:;gha[n,3] := -2*r/sqr(deltar) - a*r*(exp(-1*x[nl)+exp(x(nl));
’

procedure thomas(d: glnarray);
{expanded Thomas algor’thm -- banded matrix solver)

VAR
i : integer;
quotient : real;

BEGIN
(Gaus?;:n[$l:?inataon}lph (1,2} 0; alphal2,1] 0; alpha(n-1,5] 1]
alphaf1,1] := 0; alpha(1,2] := 0; alphal2,1] := 0; alpnaln-1,0] == U;
alphaln,4] := 0; alphaln,5) := 0;
alpha(1.4] := alphal1,41/alpha(1,3]; alphal1,5] := alphal1,5)/alpha(1,3];
d[1] := d[1)/alpna(i,3]l;
alpha(1,3] := 1;
for i := 2 tondo

begin
tient := alphali,3] - alphali,1)*alpha(i-2,5] -
al a[i-1,2?'(a(pha[i,2?h? a[pha[i,]]'alpha[i-z,él):
dtil := (dfil-alpha(i,11*d(i-2)-(alphali,2] - alphali, 11"
alphafi-2,41)*d{i-11)/quotient; "
alpha(i,1] = 0;
alphati,2] :=0;
alpha(i,3] := 1;
atphali,4] := (alphali,4) - (alphali,2) - alphali,1]*
alpha(i-2,41)*alphalfi-1,5]1)/quotient;
ond alphali,5) := alphali,51/quotient;
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{backsubstitution)

beta(n] := d(nl;

betaln-1] := d(n-1]1 - alphaln-1,4]1*betaln];

for i := n-1 downto 1 do
d betali]l := d{i] - atphal(i,4)*beta(i+1] - alpha(i, 51*beta(i+2];
end;

procedure printoutput;

var
j: integer;

begin
assign (prnt,/PRN');
rewrite(prnt); .
writeln(prnt, version);
writeln(prnt, ‘Rt = ¢ ,R1*1e10:5:1,’ A. RO = ¢ ,RO*1e10:5:1,/A.');
writeln(prnt,’Q = ’/,Q:5 ‘. 1.S. =¢,1:8:5,'4.7);
writeln(prnt,‘Saved as filename / filename,’. alpha = /,alph:5:2);
qrite%n(prnt,'errx = /,erx:8:5,'. errf = ?,erf:8:5,'.");
ure;elﬁ<prnt,' Radius (A) psi.corv psi.Tanford’);
repeat
writetn(prnt,(R1 + RO*(j-1)*deltar)*1e10:10:3,' ’,
. D x(j1:10:3,’ ',psilj1:10:3);
j=0+1;
until j>(n+1);
close (prnt):

end;

PROCEDURE mnewt(ntrial: integer; VAR x: glnarray; n: integer;
tolx,tolf: real);

LABEL 99;
VAR )
k,i: integer;
errx,errf,d: real;
indx: glindx;
BEGIN
FOR k := 1 to ntrial DO BEGIN
writeln(’iteration ’/,k);
usrfun(x, n, beta);
errf := 6.6;
FOR i := 1 to n DO errf := errf+abs(betalil);
IF (errf <= tolf) THEN

in

::?teln('errf <= tolf after /,k,’ iterations.’);

GOTO 99;

erd;
thomas(beta);
errx := 0.0;
FOR i := 1 to n DO BEGIN

errx := errx+abs(beta(il);
E“Dxti] := x[il+betalil

’ ..
writeln(’errx = /,errx:12:5,"’. errf = /,errf:12:5,/.7);
erx := errx; erf := errf;
IF (errx <= tolx) THEN )

in )
writetn(’errx <= tolx after /,k,’ iterations.’);
22;0 99;

END;
writeln(’/stopped after /,ntrial,’ iterations.’);
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¢, errx:8:5,’. errf = 7, errf:8:5,'.7);

99:writeln(’/errx
END;

function psill(r : real) : real;
var
£1,€2,13,f4 : real;

(1+ alph*kappa*R1) / (1-alph*kappa*R1);

f1*exp(alph* appa*(r+R0-2*R1))-exp(alpﬁ'kappa*(Ro-r));
(1+alph)*f1*exp(2*alph*kappa*(R0-R1)) - 1 + alph;
3xqwe*(1+kappa*R0)/(cube( appa)*4*pi*epsilon*sqr(alph)
*(cube(RO)-cube(R1)));

psill := -1* f4 * ((kappa/(1+kappa*R0)) - f2/(r*f3));

-
N
e o8 se

-
&~
L]

;:ngtion psilll(r : real) : real;

gin

od psilll := RO * psilI(RO) * exp(-1*kappa*(r-R0)) / r;
end;

begin
write(/printer output ? /);
readln(answer);
write('filename = /);
readln(filename);
assign(datafile, filename);
rewrite(datafile);
a := sqr(RO)*e*1000*F*I/(epsilon*k*T);
b 3= sqr(RO)/(epsilon'k*T'k/S*pi)*sqrge)*O/(cube(RO)-cube(Rl));
ka 1= sqrt(2*sqr(e)*NA*1000*1/(epsilon*k*T));
deltar := length/n*(RO-R1)/R0;

(set up initial guess: Tanford model...)
for j := 1 ton+l do

begin
r =R+ RQ'({-1)'deltar'
if j< ((n div length) + 1
then x(} := e*psilI(r)/(k*T)
else x[j] := e*psillI(r)/(k*T);
psiljl := x[j1; x[j1 := 0;
end;

{solve for corrected model)

mnewt( itmax,x,n, tolrx,tolrf);

x[n+1) := 0; (boundary condition on right side

Qave := 0; psiave := O; lambdave := 0; L

{print results)

if answer = ‘y’ then printoutput;

writeln(’R1 = /,R1*1e10:5:1,” A. RO = /,RO%1e10:5:1,’A.");
writeln(’Q@ = /,Q:5,'. i.s. =/ ,1:8:5,'M.');

writeln(’Saved as filename /,filename,’. alpha = /,alph:5:2);

j= 1
writeln(’ Redius (A) psi.corr - - psi.Tanford’);
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repeat

writeln((R? + RO*(j-1)*deltar)*1e10:10:3,’ ',x(j1:10:3,¢
psi(j1:10:3);
for z :=ij to j+9 do

n
writeln(datafile,(R1 + RO*(z-1)*deltar)*1e10:10:3,’,’,
(R1 + RO%(z-1)*deltar)/R0:10:3,’,,x(2):10:3,7,7,
psilz]:10:3); -
ff 2 < {n div length) + 1 then

begin
r := R1/RO + (z-1)*deltar;
dv := (cube(r+deltar) - cube(r))/(1-cube(R1/R0));
Qave := Qave + dv*dissacid(x(zl);
psiave := psiave + dv*x(z];
l:ﬂbdave := lembdave + dv*exp(-x[21);
end;
end;
_Ja=jo+0;
until j>(n#1);
writeln(’average charge = / Qave*Q:6:2,’ .');
writeln(’average psi = /,psiave:5:3,’ .’);
writeln(’average lambda = /, lambdave:5:1,’ .’);
writeln(datafile,’average charge = / Qave*Q:6:2,’ .’);
writeln(datafile,’average psi = /,psiave:5:3,’ .');
writeln(datafile,/average lambda = /, lambdave:5:1,’ .’);

close(datafile);
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Computer program 2

program psicalc (input, output);

const
RO = 7.7E-10 ; {outer radius in m> .
Qmax = 16; {number of charges in humic phase}
maxpoints = &5; .
1 = 0,001; (fonic strength in moles/l}>
n = 500 ; (number of nodes in approximation)
n = 501 ; {in+ 1)
length = 300e-10 ; (distance from edge of molecule to “R-infinity")
itmax =100 {number of iterations before stopping}
tolrx = 0.001 ; (values for convergence test)
tolrf = 0.0001 ; .
Ka = le-4; {Ka of acidic site)
b = 1e-1é; {hydrogen ion concentration)
version = ‘pH - pKa = 8/;
e = 1.602e-19; (elementary charge in c)
epsilon = 6.954e-10; (permittivity of water at 25 C}
T = 298; (temperature in K)
k = 1.3é1e-23; {Boltzman’s constant)
F = 96500 ; (Faraday’s constant)}
ﬁi = 3.14159 ;
A = 6.023e23; (Avogadro’s number)
t
Ypeglnarray array[1..n1) of real;

var

glnbyn = array(1..n,1..3] of real;
glindx = array(1..n] of integer; ’

sigma, Q, dV, a, b, r, keppa, deltar, erx, erf : real;
X, psi, beta : glnarray;

2,j,point: integer;

datafile, prnt: text;

filename: string;

answer: char;

alpha : glnbyn;

procedure usrfun(x: glnarray; n: integer; VAR beta: glnarray);

var

beg

i,] : integer;

in
for i := 1 tondo

begin
for j := 1 to 3 do
end; alpha(i,jl := 0;

beta(i]l := -i%*(-2*x(1)/sqr(deltar) + e*(exg(-1*xt1])-exp(x[1]))
+ 2*x{2]1/sqr(deltar) - b®(2 - 2/deltar));

alpha(1,2] := -2/sqr(deltar) - a*(exp(-1*x[1])+exp(x[11));

alpha(1,3] := 2/sqr(deltar);

for i := 2 to n-1 do

begin
r := 1+ (i-1)*deltar;
betalil := -1*((-1/deltar + r/sqr(deltar))*x[i-1]
- 2*r*x(i1/sqr(deltar) + a*r*(exp(-1*x[i1)-exp(x([il1))
+ (1/deltar + r/sqr(deltar))*x(i+1]);
alphali,1] := -1/deltar + r/sqr(deltar); .
alphali,2] := -2*r/sqr(deltar) - a*r*(exp(-1*x[il)+exp(x(il));
atpha(i,3] := 1/deltar + r/sqr(deltar);

{initialize alpha matrix}
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= 1 + (n-1)*deltar;
beta[na 3= =1%((- 1/deltar + r/sqr(deltar))*x[n-11 -2*r*x(nl/sqr(deltar)
+ a*r*(exp(-x(nl)-exp(x[n]))j;
alphaln,1] := -1/deltar + r/sqr(deltar);
:égha(n,Z] := -2%r/sqr(deltar) - a®*r*(exp(-1*x[nl)+exp(x(nl));

procedure thomas(d: glnarray);
{Thomas algorithm -- banded matrix solver)

VAR
i ¢ integer;
quotient : real-

BEGIN
{Gaussian elimination)
Bl#"ﬂn 1] a" 0- almﬂlﬂ,3] o“ 0'
alpha(1,3] := alphal1,3)/alphal1,2);
d{1 :=dr1 v/ alpha[1 21;
alpha{1,2] := 1;
for i := 2 to n'do
begin
tient := alphali, 2] - alphali,11*alphali-1,3]);
(i) := (d[i] alpha[t 11*d(i- 1])/quotlent,
alpha[l 1 := 0,
alphal(i, 2] :
alpha[l )31 : atpha(i,B]/quotient;
(backsubstltutlon}
beta[n] = dinl;
for i := n-1 downto 1 do
end beta(il := d(i] - alphali,31*betali+1];

procedure printoutput;

var .
j: integer;

begin
assign (prnt,/PRN’);
reurlte(prnt),
writeln(prnt, version);
writeln(prnt,’RO = /,RO*1€10:5:1 A.'),
writeln(prnt,’Q =’/ 0 5./ i.s. =/,1:8:5,/M.7);
writeln(prnt,’Saved as fileneme / filename,'.')'
uritetn(prnt,'errx = /,erx:8: 5,’. errf = /,erf:8:5,’.’);

uriteln(prnt ! Radius (A) psi.corr psi.Tanford’);
at
u:ggeln(prnt (RO + RO‘(] 1)*deltar)*1e10 10:3,’ ',
i j o+ 1 x[j1:10:3,’ ',psiljl1:10:3);
.g <+

until j>(n+1),
close (prnt);
end;

PROCEDURE mnewt(ntrial: integer; VAR x: glnarray; n: integer;
tolx,tolf: real);
LABEL 99;

VAR
k,i: integer;
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errx,errf,d: real;
indx: glindx;
. BEGIN
FOR k := 1 to ntrial DO BEGIN
write(k);
usrfun(x,n,beta);
errf := 6.6;
FOR i := 1 to n DO errf := errf+ebs(betalil);
IF Cerrf <= tolf) THEN
GOTO 99;
thomas(beta);
errx := 0.0;
FOR 1 := 1 to n DO BEGIN
errx := errx+abs(beta(il);
x[i) := x([il+beta(i]
END;
erx := errx; erf := errf;
IF (errx <= tolx) THEN
GOTO 99;

END;
uri&eln('stopped after /,ntrial,’ iterations.’);

99:writeln;
END;

function cube(z : real) : real;
begin

cube := z%z*2z;
end;

begin

write(’/printer output ? ’);
readln(answer);
write(’filename = /);
readln(filename);
assign(datafile, filename);
rewrite(datafile);
for j := 1 to m+1 do

x[j] := 0;

for point := 0 to maxpoints do
begin
Q := point * Gmax /maxpoints;
a := sqr(RO)*e*1000*F*1/(epsilon®*k*T);
b := Q/R0*7.135e-10;
ka 1= sqrt(2*sqr(e)*NA*1000*1/(epsilon*k*T));
deltar := length/n/RO; L
sigma := Q*e/(4*pi*sqr{R0))*100; (surface charge density in microC/cm™2}
(solve for corrected model)

mnewt( itmax, x,n, tolrx,tolrf);
x{n+1] := 0; (boundary condition on right side)

{print results)
{f answer = ‘y’ then printoutput;
writeln(Q:6:3,sigma:10:4,x[11/2.303:10:3); . :
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write(datafile,Q:6:3,’,’,sigmasé:4,’,’,x[11/2.303:10:3,",");

close(datafile);
end.
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