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Abstract

Dynamic coupling between a manipulator and its spacecraft can introduce control problems
not found in fixed-base manipulators. This thesis takes a fundamental approach to the
dynamic modeling and control of manipulators mounted on spacecraft. An efficient and
compact modeling methodology based on barycenters and Lagrangian dynamics is
developed. This methodology provides closure equations, differential kinematics and
equations of motion for space systems.

The nature of a free-floating system, one in which the spacecraft is uncontrolled and
free to move in reaction to manipulator motions, is analyzed. The existence of Dynamic
Singularities, which are functions of the mass and inertia properties of the system, is
shown. All control algorithms that use an inverse Jacobian will fail computationally at a
dynamic singularity, while all those that use a transposed Jacobian will result in large
errors. The reachable workspace is composed of Path Dependent Workspaces, which
contain all points that may lead to dynamically singular configurations, and of Fath
Independent Workspaces, which contain all “trouble-free” points. Free-floating
manipulators are controllable in joint space but in general, uncontrollable in cartesian space.
It is shown that nearly any motion control algorithm which can be implemented on a
terrestrial robotic manipulator also can be applied successfully to a free-floating space
manipulator if certain mild conditions are met.

The control of free-flying manipulator systems, ones in which the spacecraft reaction
jets are turned on, is studied also. Coordinated Control of both a system’s spacecraft and
of its manipulator is achieved by augmenting system outputs to include the spacecraft’s
coordinates.

Finally the problem of controlling a failed joint of a space manipulator is addressed.
It is shown that Failure Recovery Control is possible when dynamic coupling exists
between the failed joint and some working joint, and when the system inertia matrix is
invariant with respect to the failed joint angle.
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Professor of Mechanical Engineering
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1 introduction

1.1 MOTIVATION

During the coming decades, a major thrust in the scientific exploration, military and
commercial use of space will be seen. In order to meet these challenges, the capability to
perform a number of construction, inspection and repair tasks in space will be required.
However, Extra Vehicular Activity (EVA) by astronauts in the space environment is
dangerous. In order to minimize the hazards to astronauts, much training, extensive life
support systems and safety procedures are required, but these are very costly. These

dangers and costs can be minimized by the use of robotic space manipulator systems.

Space manipulators are often seen as astronaut “assistants” or astronaut surrogates
capable of performing EVA. Ideally, space manipulators will be mobile, versatile,
dexterous and autonomous. Current designs of space manipulators under construction are
the Flight Telerobotic Servicer (FTS) [23] and the EVA Retriever {12]. The FTS, see
Figure 1.1, will be mounted on mobile platforms or on the Space Shuttle anr and will be
mainly used for assembly operations while the EVA Retriever, see Figure 1.2, will be an
autonomous free-flying system used in retrieval, inspection and contingency operations.

The use of manipulator systems in space introduces many new planning and control
challenges. An earth-based manipulator can have a fixed base and its tasks can be planned
relative to its base. A number of control laws have been developed to enable manipulators
accomplish their tasks. In contrast to fixed-base manipulators, space manipulator systems
have no fixed base. Manipula;ior motions will produce dynamic forces resulting in motions

of the spacecraft which carries the manipulator.
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Figure 1.2. The EVA Retriever space robotic system.

The dynamic behavior of space robotic systems is not well-understood and cannot be

adequately described by dynamic equations derived assuming a fixed base. Symbolic or
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numerical computer programs may be employed in modeling space manipulators, but in
general these are not well suited in revealing a system’s dynamic structure. In addition, in
space it is not possible to use directly control algorithms developed for fixed-base manipu-
lators. Control algorithms for such systems are currently proposed on an ad-hoc basis.
Some of these depend on a particular dynamic formulation, while others are based on a
mainly kinematic description of the system. Further, it is not clear what sensory
information is required and why, and what is the nature and remedies to control problems

encountered. Hence, some of the open questions that need to be resolved are:

* What is the kinematic and dynamic nature of spacecraft-bome robotic systems?

» What is the nature of control problems for these systems? What are the differences,
similarities and limitations of the characteristics of space systems as opposed to fixed-
based systems? Is it possible to use in space algorithms developed for terrestrial
systems and if yes, under what conditions? What sensory information is needed in
space and why? What is the behavior of space manipulator control systems in the
presence of disturbances or unknown system parameters?

« Is it possible to design a system for improved robustness against actuator failures?

Clearly, in order to deploy robotic systems in space, a better understanding of the
fundamental nature of the dynamics and control of such systems is required. This is the

major theme of this thesis.

1.2 LITERATURE REVIEW

1.2.1 Background
Early assessments agree that robotic systems must be used in space, for four main reasons

[2,8,19,66]: (a) Crew time and availability wiil be scarce. Robotic systems may increase
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crew productivity by a factor of two to three. (b) Complex life-support systems, required
by EVA, are costly to send into orbit. (c) The space environment is hazardous to people,
due to radiations, meteorites, €tc. (d) Over a period of 10-20 years, the estimated total
costs of robotic systems in space are predicted to be much lower than the costs of
employing humans for the same mission objectives.

Various studies have identified space operations which are candidate to be performed
by robotic systems 2,1 1,12,19,23,52]. These include: () Scheduled servicing of
satellites and spacecraft, including refueling tasks. (b) Inspection of remote sites or
verification of structures etc. (c) Retrieval of tumbling tools or astronauts. (d) Assembly
or welding of space structures. (e) Contingency operations.

Many researchers have been active in investigating several aspects of space robotic
manipulation. These include man-machine and teleoperation aspects, selection of system
architecture, applications of artificial intelligence, mechanical design of manipulators,
development of sensors, and finally, dynamics and control issues, the theme of this thesis.

In order to control a space robotic system, two basic functions are required. The first
and hierarchically higher function is realized by a human or by a computer, according to the
selected mode: teleoperated, supervised or independent control mode [66,67]. This level
deals mainly with the generation of commands to the second and hierarchically lower level,
which is a feedback control system. However, in order to ever realize high level control
functions, low-level feedback control algorithms, responsible for executing the given
commands, are needed.

In this thesis, two types Of space manipulator systems will be considered: free-flying
and free-floating. Both systems include a spacecraft or platform on which one or more
robotic manipulators are mounted. In the case of 2 free-flying system, a spacecraft’s
control system is active and hence, the entire spacecraft/manipulator system is capable of
being transfesred and oriented arbitrarily in space. In the case of a free-floating system, 2

spacecraft’s control system is turned off and therefore, the spacecraft is free to translate or
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rotate in reaction to forces and torque generated by its manipulator. However, the system

center of mass cannot experience a net translation in space.

1.2.2 Muiltibody Systems and Space Manipulator Dynamics

Dynamics of multibody systems have been studied by many researchers in both the
aerospace and robotics communities, resulting in many different formulations {30,39,5]. A
short review of the main approaches to multibody dynamics in the aerospace literature is
given by Hughes [30]. For a more comprehensive review, see Jerkovsky [31]. Hughes
distinguishes two basic formulations. The first is based on Newton-Euler methods and
was pioneered by Hooker and Margulies [29], Hooker [27], and Roberson and Wittenburg
[53]. General characteristics of these methods are the use of a tree topology to describe
open chains of multibody systems, the choice of the system center of mass to represent the
translational Degrees-of-Freedom (DOF) and the introduction of the so-called barycenters
and augmented bodies which simplify the repeated and systematic occurrence of certain
weighted linear combinations. In some cases, this formulation results in simple
translational equations of motion that can be decoupled from the rotational equations.

The second basic formulation in deriving the equations of motion is to choose one
body of the system as a home body and a point on it to represent the translational DOF of
the system. The equations that result are coupled but simpler to interpret. This method
was called the direct-path method by Ho [24], see also Frisch {20], and Hooker [28].

The robotics community has been mainly interested in fixed-based manipulator
dynamics, with primary focus on Newton-Euler [42] and Lagrangian formulations [26] and
recently on Kane’s method [32]. These methods result in fundamentally the same equations
of motion, one being preferred over the other depending on how efficient a method is in
terms of required algebraic operations and computer memory.

Equations of motion for space manipulators can be written using multibody dynamic

formulations. The Virtual Manipulator (VM) technique, proposed by Vafa, can be used to
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simplify the dynamics of space robotic systems [17,62-65]. The VM is an idealized
kinematic chain that corresponds to the real manipulator and describes the motion of its
end-effector. The VM’s base is at the system CM, called Virtual Ground. In the case of a
free-floating system, the VM decouples the translational DOF and hence, it simplifies the
equations of motion. In Masutani et al., closure equations were written about a
spacecraft’s center of mass, and conservation equations were used to reduce a system’s
equations of motion [44]. Due to the involved complexity, researchers have sometimes
derived equations of motion for specific systems, usually employing general purpose
programs like MACSYMA [3,58]. However, in such a case, a system’s kinematic and

dynamic structure may not be clear.

1.2.3 Contro! of Space Manipulators

Motion control implies that the manipulator moves its end-effector to specified locations in
the inertial or spacecraft frames, without significant force interactions between its end-
effector and its environment, with the exception of those with its payload. However, a
manipulator’s payload may be considered as part of its last link.

A number of control techniques for space manipulator systems have been proposed.
These schemes can be classified in three categories. In the first category, studied by
Dubowsky et al., spacecraft position and attitude are controlled by reaction jets which
compensate for any manipulator dynamic forces exerted on the spacecraft [18]. In this
case, control laws for earth-bound manipulators can be used, but the utility of such systems
may be limited because manipulator motions may either saturate the reaction jet system or
consume relatively large amounts of attitude control fuel, limiting its useful life. In order to
extend a system'’s life, Dubowsky and Torres proposed some heuristic path planning
methods which can reduce the use of control fuel [16]. In the same context, Umetani and
Yoshida correlated spacecraft disturbances induced by manipulator motions to manipulator

manipulability ellipsoids. However, their results were mostly qualitative [61].
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In the second category, a spacecraft’s attitude is controlled, while its translation is not.
Longman et al. proposed a control scheme that estimates the required torques to keep a
spacecraft’s crientation fixed and uses reaction wheels to provide! these to the spacecraft
[41]. In general, manipulator control of controlled-attitude space systems is somewhat
more involved than that where both position and attitude are controlled, although the VM
technique can be used in modeling, path planning and workspace analysis of such systems
[63,64].

In order to conserve fuel or electrical power, or to avoid sudden motions of the
manipulator end-effector due to firing of jet actuators, the third category of control
approaches has been proposed [3,40,44,60,63]. In these systems, called here free-
floating, a spacecraft is permitted to move freely (rotate and translate) in response to its
manipulator motions. The analysis of these systems, too, can be simplified using the VM
approach [62-65] while related work, tailored to a specific system, is discussed in [40].
Alexander and Cannon proposed a control scheme based on the resolved acceleration
algorithm, and used it to control succesfully an experimental two-DOF free-floating system
[3,43]. Their controller relied on end-point position feedback provided by a vision camera
mounted on the spacecraft. Umetani and Yoshida derived a Generalized Jacobian for a
free-ﬂoating system and proposed a control algorithm based on the resolved rate algorithm
[60,69]. Their experimental two DOF system used end-point measurements provided by
an inertially fixed video camera. Masutani et al. proposed a transposed Jacobian controller
using a Jacobian derived for a fixed-based system [44]. This controller includes end-point
feedback and drives the manipulator end-effector to a desired location provided that the
spacecraft mass and inertia are large; otherwise, stability problems are encountered.

With the intention to minimize use of reaction fuel and maintain a large workspace,

Spofford and Akin proposed a blending of the first and third methods and assumed a free-

1A spacecraft’s orientation also can be fixed by using reaction jets (thrusters), but this method has the same
drawbacks as discussed above [18]).
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flying system switching between free-flying and free-floating control modes [58]. This
work focused mainly on algorithm switching as well as on man-méchinc considerations.
Nakamura and Mukherjee explored the “non-holcnomic nature’2 of path-planning for free-
floating space manipulators and tried, to employ Lyapunov functions for path generation
[45]. Finally, Vafa proposed a planning scheme that takes advantage of the redundant
nature of free-floating systems in order to simultaneously control a system’s manipulator
and its spacecraft’s attitude [63].

Concluding this review, it must be pointed out that past works on the control of space
manipulator systems have generally proposed particular algorithms and showed their
validity on a case by case basis. Control algorithms which do not take into account the

kinematic or dynamic nature of a system have been found to have problems [44).

1.3 CONTRIBUTIONS OF THIS THESIS
This thesis is founded on the idea that a fundamental knowledge of the kinematic and
dynamic nature of a space manipulator system is a prerequisite in designing effective
control algorithms. Therefore, initial emphasis is placed in the development of a coherent
modeling methodology capable of revealing the structure of free-flying and free-floating
space systems.

Important characteristics of the modeling methodology developed in this thesis are:
(a) The position of a system’s CM, its spacecraft’s attitude and the relative joint angles
between two adjacent bodies are selected to be the system’s independent coordinates.
Relative joint angles are preferred because these coordinates can be measured and

controlled readily. (b) The equations of motion are derived with respect to the system CM,

2The word is in quotation marks, because strictly speaking, a free-floating system is a holonomic system
exhibiting nonholonomic characteristics due to the non-integrability of the angular momentum. For further
details, please refer to section 3.2.2.
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whose coordinates, represent the translation of the system. The motivation for doing so is
that in the absence of external forces and torques, the equations of motion decouple
automatically, resulting in a reduced dynamic system. Such an approach suggests the
adoption of barycentric vectors that are essential in describing both the kinematics and the
dynamics of space systems. (c) A Lagrangian approach is used to obtain a system’s
equations of motion. With this approach, constraint forces are automatically eliminated and
the structure of the equations of motion becomes more clear. This is a departure point from
derivations like [29,53], where a Newton-Euler approach was adopted. Further, in the
case of a free-floating system, this approach easily yields a reduced positive definite
symmetric inertia matrix which describes all the necessary dynamic structure. (d) Very
compact expressions for the angular momentum and its time derivative are derived and used
to obtain kinematic and dynamic equations.

The modeling methodology used in this thesis is well suited for free-floating systems
and can be used to describe free-flying systems, although in this case, other approaches can
be used equally well. In the negative side, it should be pointed out that the barycentric
vectors and the new position of the system CM must be re-calculated when a payload is
picked up. This is because a payload becomes part of the last link, and therefore changes
its mass properties. However, this new CM position must be re-calculated anyway,
because a free-floating system’s reachable workspace is a sphere with its center at the
system’s CM and with a radius which depends on the mass properties of the manipuiator
system and the payload. Also, no comparisons with respect to computer efficiency for time
domain simulations were attempted; the focus was placed on the analysis of structure.

The developed methodology is first applied to the analysis of the kinematic and
dynamic structure of free-floating systems. A free-floating system’s Jacobian is formed in
a systematic way and based on it, a system’s Dynamic Singularities were found. Ata
dynamic singularity the manipulator is unable to move its end-effector in some inertial di-

rection; thus dynamic singularities must be considered in the design, planning, and control
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of free-floating space manipulator systems. The existence and location of dynamic
singularities cannot be predicted solely from the manipulator kinematic structure because
they are also functions of the system dynamic properties, namely the mass and inertia of the
system, unlike the singularities for fixed-based manipulators. Workspaces of free-floating
systems are defined according to the reachability properties of the points that belong to
them. A system’s reachable workspace is divided to Path Independent Workspaces, which
contain points reachable with any path, and to Path Dependsnt Workspaces, which contain
points reachable with some paths only.

Then the dynamics of an N+6 DOF free-floating system with an N DGF manipulator
are shown to be governed by just N second order cquations. The state and output
controllability of a free-floating system is investigated and it is shown that such a system is
always state controllable but it may not be output controllable in the Path Dependent
Workspace. This lack of contrellability is due to the existence of dynamic singularities and
cannot be altered, because it is a physical limitation of the system. Based on a detailed
comparison of the kinematics and dynamics of fixed-based and free-floating systems, it is
shown that nearly any algorithm which can be applied to conventional fixed-based
manipulators can be directly applied to free-floating manipulators, with a few weak
additional conditions. These are the avoidance of dynamic singularities and the estimation
of a spacecraft’s attitude. It is further shown that internal feedback is enough for control
purposes if a sysiem’s mass and inertia properties are sufficiently well known. If this is
not the case, end-point feedback or attitude measurements may be needed.

The basic idea that system structure musi be used to design effective controllers is
carried further in the control of free-flying manipulator systems. The inherent redundancy
in free-flying systems is used to control in addition a spacecraft’s position and attitude. A
control law that achieves such a task and is called Coordinated Control, is designed and
demonstrated. Using the basic kinematic and dynamic description of free-flying

manipulators, other control laws can be applied equally well.
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In this thesis, another important type of conirol for space manipulators called Failure
Recovery Control is considered. A failure recovery controller uses the working actuators
of a system to control a joint angle whose actuator has failed. Once a desired set-point for
such an angle is reached, the corresponding joint can be locked using the joint’s brakes,
and the system may continue operating with somehow reduced capabilities. It is shown
that in order for such a controller to be effective, two basic conditions must be observed.
These are the existence of dynamic coupling in the system and the invariance of the

system’s inertia matrix with respect to the failed joint’s angle.

1.4 ORGANIZATION OF THIS THESIS

This thesis is organized into six chapters and six appendices. In Chapier 2 the modeling
methodology used throughout this thesis is developed. This methodology includes
development of closure equations, differential kinematics, momentum equations and
equations of motions for free-flying systems subject to force interactions. When a system
is planar, these equations simplify considerably and are given in a closed form.

Chapter 3 uses the methodology developed in Chapter 2 to analyze the fundamental
kinematic and dynamic nature of a free-floating system. Irntegrals of motion are used t»
derive a system’s Jacobian and the nature of the Dynamic Singularities is investigated. A
system’s workspaces are defined according to the associated reachability properties and
some guidelines that may help in maximizing the less troublesome Path Independent
Workspace are given. The effect of nonzero initial momentum in the system is also
considered.

Chapter 4 focuses on motion control of free-floating and free-flying space systems.
The various control modes of such systems are categorized and emphasis is placed in se-
lecting the appropriate description with respect to a system’s task. Based on this

description, a free-floating system’s state/output controllability is determined and based on
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the fact that the kinematic and dynamic nature of a free-floating system is essentially the
same to that of a fixed-based system, control algorithms are proposed. The required sen-
sory measurements are analyzed with respect to whether system parameters are adequately
known. The effect of disturbances is examined. Along the same lines, the “plant”
structure of a free-flying system is analyzed and Coordinated Control that allows
simultaneous control of both the spacecraft and its manipulator is designed.

Chapter 5 introduces the idea of Failure P.ecovery Control and examines some
engineering systems for which independent control of more outputs than available control
actuators is possible. This analysis is further developed in the case of a space manipulator
with failed actuators and the necessary conditions for failure recovery centrol are identified.

Finally, Chapter 6 concludes this thesis and suggests some directions for future research.
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2 Modeling of Free-Flying
Manipulator Systems

2.1 INTRODUCTION

In this chapter, the fundamental kinematic and dynamic relationships are formulated for the
spatial free-flying manipulator system depicted in Figure 2.1. This system consists of a
spacecraft and of a manipulator mounted on it. The spacecraft and its manipulator are
assumed rigid, an assumption which is reasonable for systems like the FTS and EVA
Retriever. Most proposed systems assume revolute! manipulator joints, hence this
assumption will be made in this thesis also. Space manipulators systems will be equipped
with two or more manipulators, cameras, antennas and thus will be extremely complicated
dynamic systems. In this thesis the focus will be on a system consisting of a spacecraft
and one manipulator. As it will be explained later in this thesis, this formulation can be
extended to include more than one manipulators or other movin g bodies.

Some of the formulation’s basic characteristics are: (a) The system CM is chosen to
represent the translation of the system. (b) Spacecraft attitude and relative angle joints
(gimbal angles) are chosen to describe the system’s orientation and configuration. These
variables were chosen to be the independent coordinates of the system, because then the
equations of motion assume a compact and very useful form. (c) The notion of barycenters
is used to simplify resulting kinemnatic and dynamic equations. (d) Momentum and

Lagrangian methods are employed in deriving equations of motion. (e) A dyadic vectorial

1Revolute joints are proposed mainly for three reasons: (a) they can be driven by small direct drive electric
motors that use renewable energy (electric energy from solar panels), (b) they maximize workspace to
manipuiator weight ratio and (c) manipulators with revolute joints can designed to be anthropomorphic
facilitating their teleoperation by humans.
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form is used for presenting the results in a compact way and avoiding unnecessary
derivations involving transformations. All cquations are converted to a scalar (matrix) form
when it is absolutely required; this reduces the effort of writing equations substantially.
The approach taken in this thesis has the advantage that the resulting kinematic and
dynamic equations are general, compact and explicit2. Also, other approaches result in
forms in which the integrals of motion (the conservation of momentum equations), do not
decouple when no ¢xternal forces or torques act on the system. In contrast to this, the
formulation presented in this chapter results in equations of motion that decouple and

hence, the integrals of motion are readily available.

N-DOF
Manipulator

Link

End-Effector -
Te

Sce

(body 0) Denotes body

Inertially Fixed Origin center of mass

Figure 2.1. A spatial (nonplanar) free-flying manipulator system.

2For example, this author found that to derive analytically the dynamic equations of a planar two-DOF
manipulator on a three-DOF spacecraft, required fifteen pages of derivations when a Newton-Euler approach
was used, but only four pages when the formulation in this thesis was used.
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In Section 2.2 the kinematic relationships are written in vectorial form. First, the position
of an arbitrary system point is given as a function of the position of the system CM and of
its barycentric vectors. Expressions for the linear velocity of an arbitrary point and of the
angular velocity of any link are derived as functions of the linear velocity of the system
CM, of the angular velocity of the spacecraft, and of the relative angular velocities. These
vectorial formulas are converted to scalar equations required to form Jacobians that relate
the controlled velocities (system CM linear velocity, spacecraft angular velecity and
manipulator joint velocities) to the linear and angular velocity of any point of the system.
In Section 2.3 vectorial momentum equations and their derivatives are derived. Then, these
are converted to scalar equations. In Section 2.4 the general equations of motion are
derived using a Lagrangian approach. Section 2.5 deals with the simplification of these
equations for planar systems. Two examples are used to illustrate the formulation
developed in this chapter. Finally, Section 2.6 outlines ways in which these methods can

be applied to similar systems, and Section 2.7 closes this chapter.

2.2 KINEMATIC MODELING

The objective here is to obtain analytical expressions for the position and velocity of an
arbitrarily located point of a space manipulator system, as the one shown in Figure 2.1. To
this end, position vectors are expressed as vectorial sums of a minimum number of body-
fixed vectors, called barycentric vectors. These barycentric vectors are calculated once and
are used to find all the important kinematic and dynamic quantities of the system. Hence,
they play an important role in the kinematic and dynamic analysis of space systems. Linear
velocities are obtained by differentiating position vectors. Due to the specific
decomposition of the position vectors, expressions for velocities are particularly compact,

efficient and elegant. The orientation of the different links is described with the help of
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transformation matrices and the angular velocities are written as functions of the controlled
angular velocities. More features of the modeling methodology developed in this thesis
will be apparent in later sections.

The body 0 in Figure 2.1 represents the spacecraft and the bodies k (k=1,...,N)
represent the N manipulator links. The manipulator is in an open-chain configuration so
that a system with an N degree-of-freedom (DOF) manipulator will have in total N+6 DOF,
the additional 6 DOF corresponding to the spacecraft position and attitude.

2.2.1 Position of arbitrary system points

From Figure 2.1, it can be seen that the vector from the inertially fixed origin O to an

arbitrary point m on body k, R, ., is given by:

Ron=Ro+r,.. k=0,...N (21

where R, is the vector from the inertially fixed origin O to k body’s CM, and r, ., is a
body-fixed vector from k body’s CM to the point of interest m. As shown in Figure 2.1
R, can be {urthe: decomposed to:

Ri=r.+ 0, k=0,..,N (2-2)

where r__ and p, are defined in Figure 2.1. The CM locations of the individual links and
the spacecraft with respect to the system CM are defined uniquely by some sysiem
configuration and thus it is possible to express p, vectors as sums of weighted, body-fixed
vectors 1 ;, and r; (i=0,...,N), defined in Figure 2.1. Indeed, from Figure 2.1 we have

the following N equations in N+1 unknowns:

Q‘k - Qk-l = —r-k-l - -l—k k = l’--wN (2'3)

Since the p, vectors are defined with respect to the system CM, it holds that:
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N
E)mk 0,=0 (2-4)

where m, is the mass of body k. As shown in Appendix C, equations (2-3) and (2-4) can
be solved to yield p, as a function of r, and 1 ,. The result is:

k N
8, = Zi (L LK - ; (Eiq L) (1) k=0..N (25
i= fmk41

where |, represents the mass distribution defined by:

0 i=0
5 o
) vV E i=1,... 2-6
uls = M vN ( )
1 i=N+1

M is the total system mass. As shown in Appendix C, Equation (2-5) can be written as the
sum of mass-weighted vectors, each fixed in one of the N+1 bodies of the system.
Although the resulting expression is quite complex, it can be simplified by using the notion
of a body’s barycenter (BC) defined in [29,72]. The barycenter of the jth body can be
found by adding a point mass enual to My, to joint i, and a point mass equal to M(1-i,,,)
to joint i+1, forming an augmented body . The barycenter is then the center of mass of the
augmented body as shown in Figure 2.2. The barycenter location for the i body with
respect to its CM is defined by the body fixed vector ¢ ; shown in Figure 2.2 and given by:

c;=bip+r, (A-p,) i=0,...,N 2-7)

Figure 2.2 also shows a set of body-fixed vectors, called in this thesis barycentric vectors,
which are defined by:

£. = -C. (2-83)
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ri=r.-c (2-8b)

.- C. (2-8¢)

Joint i+1

Joint i

m+.+ my,

G Body i Center of Mass

G Body i Barycenter

Figure 2.2. Barycenter and barycentric vectors

Using these definitions, Equation (2-5) can be written in a compact and general form as:

N
8= 2 Y k=0,...N (29
i=0

where the barycentric vectors v, are given by the following expression, see Appendix C:

L 3

r, i<k
Ya=19 ¢ i=k (2-10)
1 i>k

Equation (2-9) plays a central role in the subsequent analysis, because it decomposes p, to

a set of N+1 independent body-fixed vectors and provides an easy way for its construction:
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Dy is the sum of all the 1 | before body k, the ¢ | of body k and all the r after body k3.
Figure 2.3 shows the construction of p, for k=3 and N=4. Further, Equation (2-9)
reveals an interesting characteristic of space manipulators, namely that the position of the
center of mass of link k in inertial space depends on the position of all links, including the
ones after link k as well as on the position of the base. This is to be contrasted with the
case of fixed-base manipulators where the position of a link depends on the positions of the
previous links only.

Spacecraft

‘. System End-effector
cm

@ Denotes body center of mass
& Denotes body barycenter

Figure 2.3. Construction of p, for k=3 and N=4.

The expression for p, can be substituted in Equations (2-1) and (2-2) to yield R, and R, |

as a vectorial sums of the vector pointing to the system CM and of a set of barycentric

3Equau'on (2-9) has similarities to the Virtual Manipulator (VM) constructed to the CM of body k.
However, each VM link is equal to a sum of various body-fixed vectors, and therefore, it may result in
uninecessary algebraic opesations, especially when derivatives of p, must be written.
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vectors:

B-k.m = I-cm+2-k+Lk.m

N
= Lcm""z -‘!-ik"'-l:-k,m
i=0

N
=r <+ 4 (2'11)

—Ccm —ik,m
i=0

where v, . just absorbs r, ., according to the formula:

Yiem= Y +dnLin i,k=0,..,N (2-12)

8. is a Kronecker delta. The end-effector position vector, g, can be written by applying

Equations (2-11) and (2-12), noting that INne=IN

Ig= Lot Ying (2-13)

This completes the closure analysis for a space system. Obviously, no vectorial equations
can be written about the orientation of the bodies in the chain, because rotations are not
vectors. These orientations can be described by transformation matrices, see Section

2.2.3. In the next section, expressions for the linear and angular velocities are written.

2.2.2 Linear/angular velocities of arbitrary points/bodies.
In order to write expressions for the linear velocities of arbitrary system points, derivatives
of p, must be obtained first. Since v, is a body-fixed vector in body i, its time derivative

is written using Equation (2-9) as:

N
8= 2 @ix¥y k=0,..N (2-14)
i=0
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Similarly, differentiating Equations (2-11) and (2-13) yields the following expression for

the velocity of a point m in body k, R, ., and of the end-effector, Fy:
Rym=Em*) Qix¥ym (2-15)

Eg= Eom+ 2 @ixYing (2-16)

Expressions (2-15) and (2-16) can be written as functions of relative angular
velocities which correspond to the controlled manipulator jeint rates: the angular velocity
w, of the e body is written as a sum of relative angular velocities of body i with respect to

body i-1, called @ ¥}, as:

1

k
0, = @+ @il ji=L..N (217
i=1
where @, is the spacecraft angular velocity. The end-effector angular velocity is obviously
the angular velocity of the last link in the system and is given by:

N
@y = @+, ol (2-18)
£

Equations (2-14), through (2-18) relate the linear and angular velocities of an
arbitrary point and of the end-effector in inertial coordinates Bk.m, ';E and @,, @, to the
controlled relative angular velocities @ i‘il, to the spacecraft angular velocity, @,, and to the

system CM linear velocity I __.

2.2.3 Free-flying system differentiai kinematics - Jacobians
The vectorial description of the kinematics is very powerful and independent of specific

frames of reference. However, for simulation and control design reasons, it is effective to
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write the kinematic equaticns in matrix form, including the construction of Jacobians. The
Jacobians derived in this section relate the input (independent) velocities of the system,
namely the system CM linear velocity, the spacecraft angular velocity and the manipulator
joint rates, to the output (dependent) velocities, namely the linear and angular velocities
corresponding to any point of the system. To this end, Equations (2-15) to (2-18) must be
expressed in matrix form. A reference frame with axes parallel to each body’s principal
axes is attached to each center of mass. The body inertia matrix expressed in this frame is
diagonal. As noted in the List of Symbols Section, bold lower case symbols represent
column vectors, bold upper case matrices. Right superscripts must be interpreted as “with
respect to,” left as “expressed in frame.” A missing left superscript implies a column
vector expressed in the inertial frame.

The 3x1 column vectors ivik expressed in frame i are represented by a set of three

constant numbers. These are transformed in the inertial frame as follows:
Va = T, i"ik =T, ovik (2-19a)
ovik = OTi ivik (2-19b)

where Ti is a 3x3 transformation matrix that describes the orientation of the i frame with

respect to the inertial frame. This matrix can be written as:
T; (e, n, qy,..., q;) = Ty(e, n) T, (q;,---» ) (2-20a)

0Ti qyseeer Q) = OAl(ql)---i'lAi(qi) (2-20b)

Note that *?A(q;) transforms a column vector expressed in frame i to a column vector in
frame i-1 and is a function of the relative joint angle of the two frames, q;. The 3x3 trans-

formation matrix T, can be computed using the Euler parameters e and n [30]:

Toe,n) = (n*-eTe)1+2ee’ +2ne (2-21a)
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e (a, 0) = asin(0/2) (2-21b)

n (a, 0) = cos(6/2) (2-21¢c)

where a is the unit vector of the instant axis about which the spacecraft is rotated for an
angle 0, the T superscript denotes transposition, and the * superscript denotes a skew-
symimetric matrix that is formed from a vector e according to Equation (B-3). Note that T
follows the definition used in robotics and rot the one used in dynamics, where the matrix
T} is usually used. 1 is the 3x3 identity matrix. Other vectors transform in a similar way.
For example, the position of the end-effector is written according to Equations (2-13) and
(2-19) as:
N
rg=r+T, go T, 'Ving (2-22)

The scalar form of Equation (2-17) can now be written as:

K
W = @+ @ = %*Tog OT; 'u; g (2-23a)

= @y + Ty F, q k=1,..N (2-23b)

where iui is the unit column vector in frame i parallel to the revolute axis through joint i,

and oFk is a 3xN matrix given by:
oF, = [°T,'u, °T, 2u,,..., °T, Fu,, 0] k=1,..N (229
where 0 is a 3x(N-k) zero element matrix, and:
q=[9,9%qay]T (2-25)

Using Equations (2-19) through (2-25), Equations (2-15) and (2-17) yield scalar
expressions for the linear and angular velocities of an arbitrary point m on body k:
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Rk.m = i'cm + TO { OJllk.m omo + 0J12k,m q ] (2-2v)
@ = Ty { o“’o + onzk_m q} 2-27)
where:
N .
oJllk.m = 'z [oTi lvik.m]x (2—288)
i=0
N .
OJIZK.m = '2 [T, Vil °F, (2-28b)
i=1
Trsm = Fy (2-28¢)

Equations (2-26) and (2-27) reflect the fact that the moticn of point m of body k is the sum
of two partial velocities. The first is due to the motion of the joints, the second to the mo-
tion of the spacecraft with the joint angles fixed. | 11k 1S @ skew-symmetric 3x3 matrix
whose elements correspond to the vector from the system CM to point m, expressed in the
spacecraft frame. This can be understood by recalling that Jacobians are matrices that
correspond to cross products of a position vectors with an angular velocities (products like
-r‘mo). 8 | 12k.m and o.lm are 3xN matrices describing the effect of joint motions on the
motion of point m. All matrices in Equations (2-28) depend on the system configuration q,
only. Expressions (2-26) and (2-27) can be combined in one single matrix equation as

follows:

R cm
Xim =[ "'"'] = Jem| %0y (2-29)

where:

J; olen,q) = diag(To,To) °Jf (@) (2-302)
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OJI.m(‘I) - [ ! oJllk.m 0:l2k,m (2-30b)
0 1 Jonm
where 1 is the unity 3x3 matrix and 0, the zero 3x3 matrix4. oj‘;'m is a function of the
barycentric vectors of the system, which are functions of the masses and geometry of all
the system bodies, includir« the spacecraft, and of the configuration q. .l'*k'm is a Jacobian
matrix that relates the controlled variables to the linear and angular motion of a point m in
body k. Its size is 6x(N+6), so even when N=6, it is a non-square matrix. This is due to
the redundant nature of a free-flying space manipulator system: a point in space can be
reached by either moving the end-effector or by moving the whole system. The
dependence of J,tm on the spacecraft attitude is expressed through the matrix T, see
Equation (2-30a). Note that these Jacobians are what Khatib calls basic Jacobians, that is
Jacobians independent of the particuiar set used to describe end-effector orientation [33].
Kinematic equations relating attitude variables to angular velocities also must be used.
Similar equations can be written for the end-effector, by noting that body k in this
case is body N and that point m is the end-effector point E. The subscripts N and E are

dropped for simplicity and the resulting expressions are repeated here for future reference:

fg = Fo + T { %3y %05+ %0540} (2-31)

4This defixition of the Jacobian does not follow the usuai transformation rules. The appropriate definition
would be:

3, (enq) = diag(T,T,) °J; (q) diag(T, T, 1)
Sucha J: - would map controlled velocities in the inertial frame to inertial velocities of point m in body k:

o - ’:“[Ea.:]

However, in this thesis we assume that the controlled variables are defined in the spacecrafi frame, hence we
are interested in a map from spacecraft-measured velocities to inertial velocities.
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wg = Ty { %wg+ %4} (2-32)
where:
N .
= -2 T i gl” (2-338)
=0
N -
0312 = -2 [°T; vy g1 OF; (2-33b)
i=1
%, = Fy (2-33)

93,, is a skew-symmetric 3x3 matrix whose elements correspond to the vector from the
system CM to the end-effector, expressed in the spacecraft frame. °J,, is a 3xN matrix
whose N columns are the components of vectors starting at the manipulator joints and
| ending at the end-effector. Along with OJn, they cotrespond to the Jacobian of the end-
effector Virtual Manipulator [65], with the first link fixed. (This is 2lso equivalent to the
Jacobian of a fixed attitude spacecraft). Again all matrices in Equations (2-33) depend on

the system configuration q, only.

. oi.cm

. g + o

X = =J'| %0, (2-34)
g )

J*(e,n,q) = diag(T,,Ty) %J*(@) (2-35a)

1 1] 0
o 1 %,

Note that the rank of J* is always six, because its first six columns always contain six
independent column vectors. This reflects the fact that even when the manipulator does not
move, its end-effector can reach any position or orientation by moving the spacecraft alone.

Of course, the same remark applies equally well to Jg .



44 CHAPTER 2

As the system moves, T, must be updated. The new e and n are compuied according to

Equation (2-36) given below, see aiso [30]:

e=12[e*+n1]%, (2-36a)

n=-172 ¢ %, (2-36b)

Equations (2-30) and (2-34) describe the differential kinematics of any point in the

system, including the end-effector. They will be used again later on.

2.3 MOMENTUM EQUATIONS

In this section, the linear and angular momentum equations are formulated. These become
important when no external forces or torques act on the system, see chapter 3. Also, some
of the equations of motion can be derived by differentiating momentum equations, thus

avoiding the additional cownlexity of using quasi-coordinates [30,70].

2.3.1 Linear momentum

For the system shown in Figure 2.1, the linear momentum vector p with respect to the

origin O is simply given by:
. N .
p=Mi_ = ) mR, (2-37)
k=0

The time derivative of the linear momentum results in the translational equations of

motion for the system CM:

(2-38)

where f . is the resultant of the external forces acting on the system. Ifby f, = we

denoie the external force acting on point m of body k, then f_, is given by:
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N
fo= 2. Zm fom (2-39)

k=0

In other words, f__, is the sum of all forces acting on ali bodies at all points.

2.3.2 Angular momentum

The system angular momentum with respect to the inertial origin is given by:
h=3% (Lo +mRxR] (2-40)
where 1, is the inertia dyadic of bedy k with respect to its center of mass. Using
Equations (2-2) and (2-4) it is easy to show that h can be written as:
h=r_xp + h_ (2-41a)

where h__ is the angular momentum of the system with respect to its CM and is given by:

N

Lc.n=k)20{1k-gk+mkakxékl (2-41b)

Using Equations (2-9) and (2-14), b can be written as:

N
D, My Vi x @x ¥y (2-42)
k=0

M=z

N N
h= 2 Lo + 2,

k=0 =0 i

[}
o

As shown in Appendix D, Equation (2-42) can be simplified to yield a very compact

expression for h

M=z

N
b=
j=0 i=

D;- o (243)

(-]

where the _Qij are inertia dyadics given by:
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(M (W] DL -15r]) i<j
N
D; = y I+ ka (vl - vy vyl i=) (2-44)
k=0
C-M (&) < 1D L -xj 1) i>]

where 1 is the unit dyadic. Note that the inertia dyadics _Dij are functions of the barycentric
vectors only; once these are found, all other quantities, including Qij. are easily derived.
The dyadic D;; can be expanded further, see Equation (D-12b).

Next, the angular momentum, given by Equations (2-41a) and (2-45) is differentiated
with respect to time, see Appendix D. If n_, is the resultant external torque acting on the

system, and n,, is the total torque which includes the effect of external forces, then:

N N
h=n,=r xf_ +3 ¥ Dyt +
j=0 i=0
N N
+ Z 2 Q_JxDJI o, +
j=0 i=0
N N
I WY o (2-45)
j=0 i=0
where:
N
Doy = By z Z llk.m X-Lk.m (2-46)
k=0 m
N
By =2 Y Lo (2-47)
k=0 m
and:
- M (U x £) i<
4;=9 0 i=] (2-48)
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Equation (2-45) is the equivalent of the Euler equations for a single rigid body. Its form is
very compact and demonstrates once more the importance of the barycentric vectors, since

all other quantities depend on them.

2.3.3 Scalar momentum equations

Developing the matrix form of the lincar momentum equation is straightforward, see
Equations (2-37) and (2-38). Using the transformation properties found in Appendix B

(Section B.6), Equation (2-43) is written as:
h., = To (D %0y +°D, q) (2-49)

where for simplicity the following defining equations were used:

G=0...N) (2-50a)

(2-50b)

)
o
1]

.= 2 °D;°F, (2-50c)
j=

0
D‘I‘l

i“. °F] °D;°F, (2-50d)
j=1

D is the 3x3 inertia matrix of the entire system as seen from the system CM, expressed in
the spacecraft frame, and as such it is a positive definite symmetric matrix. °Dq is a 3xN
matrix which corresponds to the inertia of the system’s moving parts. Oqu is an NxN
matrix which will be used in Equation (2-57). The mixed inertia matrices °D;; (ij=0,....N)
correspond to the mixed inertia dyadics, and are derived from Equation (2-44) with the help
of identities from Section B.6, Appendix B. For example, 0Dij (igj) is given by:
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*D;(qy--q) = - M ( O Y ( °|; > i<j (2-51a)
= -MT; (] )< A (1)) oTT g (2-51b)
Since ir;, jl'j' are constants, °Dij is a function of (ql....,qj) (i<j), see also Equations (2-20).

Similarly, %D, is a function of (q;,...,q;). Then, all inertia matrices in Equations (2-50)

are functions of the system configuration q. Due to Equation (2-51), the following is true:

%,T = %D, i,j=0,...N (2-52)

Of interest is also the time derivative of the angular momentum with respect to system
CM, h__. This can be done by transforming Equation (2-45) in matrix form using

Equations (2-23), (2-24). The external torque n,, in Equation (2-46) is written as:

Rt = + l-c):ﬂ fext + TO E Z Jl 1k, m (2'53)

k=0 m

where f, _ is the resuitant of all the forces applied on the system, sce Equation (2-39). The

second term in Equation (2-53) cancels the first term in Equation (2-45) and the result is:
cm = To {OD 0(:00+ ODq .q. + CT ( q, Omo’ ‘.l)]
N
=To 2 2 (%ngg + 0 e fim) (2-54)
k=0 m

C1 is a 3x1 vector containing the nonlinear terms in velocities; since this term is very

complex, only the linear acceleration terms are provided explicitly.

2.4 EQUATIONS OF MOTION

In this section, the equations of motion are derived for rigid link free-flying manipulator
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systems. The approach taken is based on Lagrange’s equations, because constraint forces
and torques are automatically eliminated. They also yield a minimum number of equations,
e/qual to the number of generalized variables. Their drawback is that in the general case, it
is quite involved to differentiate the Lagrangian of the system and obtain “closed form”
equations. However, in this thesis we are primarily interested in the structure of the
dynamics of space systems, and Lagrange’s method serves ideally this purpose. In the
case of a planar N DOF system, closed form equations of motion are obtained explicitly.

In order to form the Lagrangian of the system, we need an expression for the kinetic
energy of the system. The potential energy due to gravity is zero and since the system is
assumed to be rigid, the potential energy due to flexibility is also zero. The kinetic energy

T, of a space manipulator system is:

-1
1
NI
Z
Nu--

N
dloeliea +m p p,) (2-55)
k=)

where all terms have been defined previously. Using summation properties, and Equations
(2-14), (A-8), and (D-8), it is relatively easy to show that the kinetic energy can be
compactly written in the form:

1N N
Mr -icm+§j§0 2 @Dy (2-56)

where the first part represents the translational energy of the system and the second part,
the rotational energy, which is also the energy of the system with respect to its CM.
In order to use Lagrange’s equations, we need the kinetic energy in matrix form.

Using Equations (B-6), (2-23), and (2-50), the kinetic energy can be written as:

T=sMiT i+ 5%0 %D % + %l D, q + 707 Dgqd  (2572)
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It can be written also in the more usual form as:

I.-C!'I'I
T= 5 [%7, %], 4] H*(q)l_%o (2-57b)
q
where H*(q) is given by:
M1 0 0
H@=| 0 "D D@ (2-58)

0 TO
¢ °0 ()" "D (@)

where 1 is the unit matrix. The inertia matrix H*(q) is obviously positive definite
symmetric and its size is (N+6)x(N+6). It depends upon the mass and inertia properties of
the system and is a function of the configuration q only. In other words, the spacecrafi
attitude is an ignorable variable. This fact will be used later.

The generalized forces required in the Lagrangian approach are found using the
principle of virtual work. The virtual work that corresponds to the forces applied on the

system is given by:

W = t78q + 2, [*fy o °ny " 8%y

k.m

= QF %r_ +Qf ad0+ Q;'l' 3q (2-59)

where T is an Nx1 torque vector, a is an instantaneous axis of rotation, 86 the
corresponding angle of rotation, see [30], Q,, Q,, Qq are generalized forces corresponding
to translation of the whole system, to rotation around the CM and tc change in the
configuration, and "fk'm and O“k.m is the force and torque acting on point m of body k, as
measured (seen) from the spacecraft. The oﬁxm term is the virtual displacement of point
m in body k and can be written with the help of Equation (2-29) as:
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C'Brcm
0% m = Ui | 230 (2-60)
5q

where OJ*mis a Jacobian given by Equation (2-30b). In this case the Jacobian represents
the cross product rf, that is it represents the lever of a force f. Equations (2-59) and (2-
60) can be combined to yield the generalized forces:

Qr 0 N T Of
Q E[Qo]= o [+ 2 G M CY) [0 o ] (2-61a)
T

If some of the forces are defined or measured in the i frame, then ofk_m can be replaced by
OT,if, ... The same observations hold for the applied torques. In particular, if a force is
measured in the inertial frame, this procedure yields:

Q, 0 \ T[f
QE[Q0}= +ZZ (Jgn(en q) [nk'm] (2-61b)
T

Qq k=0 m k,m

Note that the generalized forces, Q, are in general a function of the spacecraft attitude (e, n)
and of the system configuration q. This results in a coupled system. However, in some
cases decoupling of the equations of motion can be achieved. One such case occurs when
no external forces act on the system; this case will be examined thoroughly in Chapter 3.
Lagrange’s equations will be used to write the system’s equations of motion.
However, as noted in [30], Lagrange’s equations are not well suited for problems

involving three-dimensional rigid body rotationsS. Quasi-coordinates can be used, but the

5Note that afier climinating the matrix T,, Equation (2-54) can be written as:
D%, +°D, q + Cf (a0, @ = Q,
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process is cambersome [39]. It is much simpler to use momentum equations to derive that
part of equations that corresponds to differentiation of T with respect to omo. To this end,

Equation (2-45) or (2-54) can be used. The result follows:

0. .
rcm .
H*(@)| %, |+ C*q,%% @) = Q (2-62)
q
where the inertia matrix H*(q) is given by Equation (2-58) and the nonlinear ter:ns in the

equations of motion have the form:

0
C*(q, %y @) = | C1 (@, "0g, @) (2-63)
C} (q, %0 q)

Equation (2-62) represent N+6 equations and it describes in the most general way the
motion of a free-flying manipulator system under the effect of external forces and torques
and internal actuator torques. The first term in the left side of Equation (2-62) is an inertia
matrix times an acceleration vector, while the second term contains all the centripetal and
Coriolis terms. The first three equations are just Equations (2-38) written in the spacecraft
frame. If all the external forces are defined in one frame, these three equations are totally
decoupled from the rotational equations. For example, if the external forces are the ones
due to the spacecraft actuaiors, then the translational equations are decoupled. If all

external forces are zero, these three equations can be integrated twice. If integrated once,

This equation would also result from a quasi-Lagrangian formulation of the equaticns of motion, by noting
that T is not a function of the spacecraft attitude, see also [30):

g oT _ 0- 0 .. + 0 a) =
4 (F5) -0 = D%,+ D, i+ C{ (a0, 0 = O,

Lagrange's equations corresponding to the q's are straightforward.



CHAPTER 2 53

they result in the statement that the system CM moves with constant velocity. This is a firsz
integral of motion and will be used in Chapter 3. The next three equations of motion
correspond to the Euler equations for a multibody system,; if there is no manipulator on the
spacecraft, they result in the Euler equations for a rigid body. If all external forces and
torques are zero, these equations can be integrated to yield a second integral of motion.
Again, this integral will be used in Chapter 3. The remaining N equations describe the
motion of the manipulator, coupled to its spacecraft. If the spacecraft does not move, they
result in equations of motion of a manipulator with a fixed base. Of course, in order to
estimate a spacecraft’s attitude expressed by the transformation matrix T, Equations (2-22)

and (2-36) must be used.

2.5 PLANAR SYSTEMS

The equations of motion of a space manipulator are complex. However, they simplify
significantly for planar systems. This happens for the following reasons: First, all inertia
matrices become scalars, equal to the inertia of a body around an axis perpendicular to the
plane of motion. Second, the mixed inertia dyadics given by Equation (2-51) reduce to the
product of two barycentric vectors, each one expressed in its home frame, times the cosine
of the relative angle. If the center of mass of cach individual link lies on the line that
connects the two body joints, in other words if the barycentric vectors only have an x-

component in their home frame, see Figure 2.4, then the ODij matrices reduce to the dij

scalars given by:
d; = -Mr; I cos(8;- 8) = - Mr; I} cos(g;,+...+q) i<j (2-64a)
dy = L+ (mg+...+m, )(AD? + m; ()2 + (myr..+my)(F})> (2-64b)

d;; = -Mr} I} cos(8; - 6) = - M1 1; cos(g;, +...+q) > (2-64c)
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where, the left superscript was dropped for simplicity. It is obvious again that once the
barycentric vectors are found, the required inertia matrices follow very easily. Using the
parallel-axes theorem, it is easy to see that d;; corresponds to the inertia of the augmented
body. Third, cross products like the one in Equation (2-45) are zero.

In order to find the equations of motion of planar systems, Equations (2-62) can be
used directly. However, additional compactness can be gained if the absolute angular
velocities Oi are used in writting the nonlinear terms of planar systems, see Figure 2.4.
Equations relating the absolute to the relative velocities, g;, can be introduced at a later
stage. To this end, a slightly different procedure than the one used before is employed here.

The translational part of the Lagrangian vields trivial translational equations of motion
for the system CM, and hence it is neglected temporarily. The rotational part of the
Lagrangian of a planar system is written using Equations (2-56) and (2-64):

T= (2-65)

Mz
ﬂ.

Nl-a

>
MO i

1l
(=]

Lagrange’s equations can be used directly. For simplicity, all external forces and torques
are assumed temporarily equal to zero. From Figure 2.4, the net torque acting on link i is
equal to T, - T,.,. Then, Lagrange’s equations result in:

[‘-”} L A i=0..N (2:66)

The first term in the above equation is written as:
N N N
{?’T}=%2 6, =Y d;6,-> d;6,®-6) @67
=0 0 FO

where ai,. are defined by:
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i ® -Mrj 1 sin®;-8) = - Mr [] sinq,, +...+q) i<j (2-68a)
dy= 0 (2-68b)
d;; = - MI} 1] sin®;-8) = ML r] sin(q,;+...+) i>j (2-68¢)

\:.\ s00

G Link Cénter of Mass
@ Link Barycenter

Figure 2.4. Definitions for planar systems.

The second term in Equation (2-66) is written as:

VMz

S 33 4,08, - 02,0
—=— 0. = : 0 (2-69)
a a 17) 4 ) )

Combiring Equations (2-66), (2-67) and (2-69), the equation of motion for body 1 is

written as:

N N
2 d;0;- 3 d; 8% =5-1, i=0,..N  (2-70)
0 0
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The above co- stion is summed from i=k to i=N and the result is a set of N equations with

inputs just the 7.’s:
NN = NN,
2.2 d; 8-> d.62=1 k=1.,N (271
=& 0 i 70

For k=0, a similar in form equation results. However, this is more important because it is

actually the time derivative of the angular momentum of the system:
N N N N \ '
22 d;6, -3 d,;62=0 2-72)
=0 j=0 =0 =0

This equation could have been directly written using Equation (2-45). Indeed, the first
term on its right side corresponds to the second term of Equation (2-72). The third term in
the right side of Equation (2-45) is zero for a planar system, while its fourth term
corresponds to the second term of Equation (2-72). Equations (2-70) and (2-71) can be
easily written as a function of the @’s. All kuk in Equation (2-24) are equal to [0 C 1%
Then, the °F, matrices are simplified to a 1xN matrix with k 1’s and dropping the

superscript (°):

F,=[11,..1,0,..,0] Cox=1..N (@273
where there are k 1°’s. Equation (2-23b) is then simplified to:
. . k
8, =0+F,q=06+) q, k=1..N (274
m=1
where 0 is the spacecraft angular velocity. Equations (2-74) are substituted in Equa:ions

(2-71) and (2-72), and using the summation property used in Equation (C-5), the following
results are obtained:
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N N
=D=3 3 d; (2-753)
=0 j=0
N N
[°Da],, = [Dal, = X 3, d;; m=1,...N (275b)
= j=0
N N
[*Daaly = [Daalyy, = X, Y d;; k,m = 1,...,N(2-75¢c)
X jal
MO0 O O
0OMO 0
H@=] 00 b D, (2-76)
¢ 0 D'D,

where the symbol [-]ml stands for the k,m element of the matrix <. The left superscript (°)
is dropped here because all the elements are independent of 0, the spacecraft attitude. Note
that the inertia matrix of the system is just the matrix given by Equation (2-58), written for
a planar system. For planar systems, H'(q) is a (N+3)x(N+3) matrix.

The nonlinear terms can be found explicitly using the same procedure as above.
However, it is better to substitute Equation (2-74) in (2-71) and (2-72) without expanding
the nonlincar terms, since such an operation is quite error-prone. Such an expansion is
performed only in the worked examples. The nonlinear terms in the general Equation (2-
62) are written by inspection from Equations (2-71) and (2-72):

N N
C; = c.; = ‘2 2 é‘ij ajz (2-77a)
=0 0
N N
Cla=-X 3 ;62 m=1,..N (2-77b)
==
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0
C+(¢l !éid) = c l+ (q 'é '(I) (2-770)
C; (4.0,9)

Adding the generalized forces, the general equations of motion for a planar system {ollow:

(1 b
xl:l'll

o. .
H*(q) 2?"' + C*(g.0.4) = QO, @ (278)
%
Two examples that demonstrate the kinematic and dynamic modeling of free-flying

manipulators follow. A more detailed exposition of these examples can be found in

Appeadix E.

2.5.1 A one DOF manlipulatoi example

A one DOF manipulator (N=1) on a three DOF spacecraft is assumed here, see Figure 2.5.
Hence, the independent variables are the system CM position, (°x ., %), the spacecraft
attitude, 0, and the joint angle q. This example will be used to demonstrate the various
forms that equations of motion can assume depending on the operating conditions.

As shown in Appendix E, the equations of motion for this system are:

M%, = Q (2-79a)

M%..=Q (2-79b)

D8 +D_d - 28q+a)dy, = Q (2-79¢)
DB +D, 4 + 624y, = Q (2-79d)

where 0 is the spacecraft angular velocity, M is the total mass, Q’s are generalized forces,
and ali D-terms are inertia terms that depend on the joint angle q. Detailed definitions of all
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terms involved are provided in Appendix E.

1 DOF Manipulator

Spacecraft

Figure 2.5. A one-DOF manipulator on a three-DOF spacecraft.

2.5.2 A two DOF meanipulator example

In this section, the basic equations describing a two DOF system on a 3 DOF spacecraft are
presented, see Figure 2.6. The independent variables are the system CM position, (oxm,
0y‘,m). the spacecraft attitude, 6, and the manipulator joint angles q, and g,. A detailed
derivation can be found in Appendix E. This system is capable of demonstrating scme
interesting characteristics of space manipulators.

1. Kinematics. The end-effector vosition and orientation are written using Eq. (2-22):

Xg = X, + 0 cos(0) + P cos(6+q,) + ¥ cos(6+q,+q,) (2-80a)
YE = Yo + @ sin(0) + P sin(6+q,) + v sin(8+q,+q,) (2-80b)
95 = 9+ql+q2 (2‘8&)

where o, B, v, are lengths of barycentric vectors and are defined in Appendix E.
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2 DOF Manipulator

Spacecraft

Figure 2.6. A two-DOF space manipulator system on a three-DOF spacecraft.

2, Differential kinematics. The Jacobian submatrices in Equation (2-33) are given by:

-Bs;-1sy, -Bsy-vs12 -¥8y2
9,, = ,, = 03, =11 1] (2-81)
a+f8c,+yc, (IS P (2P

where s, =sin(q,), ¢,, = cos(q,+q,) etc. The Jacobian J* relating the end-effector motion

to the controlled velocities is written using Equations (2-35):

cos(@) -sin@)0f 1 0  -PBs;-vs;, -Bs;-¥s;5 -¥812
J'(8,9) = | sin®) cos@®) 0] 0 1 a+Bc +yc,, Be;+¥c,2 YCi2 (2-82)
0 01L0 O 1 1 1

In this case, it is desired to examine the effect of forces and torques acting on the
spacecraft, due to jet actuators or moraentum wheels. To this end, the Jacobian given by

Equations (2-28) and (2-30) with k=0 and m=CM will be required. For simplicity, °J,,
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is used instead of %J,, ., etc.:

0 essia | -€sy-Lsyy -Lsyy o
Jis = Ji2s = Jyps = [0 0] (2-83)
d+ec,+lc;, ec,+Gc,,  Ccy,

where ¢, §, 7, are lengths of barycentric vectors and are defined in Appendix E. The
Jacobian °J‘s' relating the end-effector motion to the controlled velocities is written using

Equations (2-30b), see also Equation (2-29):

T5@ =| 0 1 s+ec,+8c,, ec,+le,, Yoo, (2-84)
00 1 0 0

3. Dynamics. It is assumed that a force fg and a torque ng (both fixed in inertial space)
are applied at the manipulator end-effector. Also, a force °fs and a torque °ns are applied
&t the CM of the spacecraft and are measured in the spacecraft frame; these are due to the
spacecraft jet actuators. The generalized forces are, see Appendix E:

Q, = %, 5 + cos(O)f, g + sin(B)f,

Q, = %, ¢ - sin(O)f, g + cos(B)f,

(1)
f, S f .E
Qe = ons +ng+o-'11,sT [ofx ]+(’l‘o°Ju)T l:f‘J
y

S Y,
Qu] |=*ne %5 b e
Q= [ = "'ole.sT oo | (TJ,)" ¢ (2-85)
12+n fy,S Y.

where T, is given by:
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cos(0) -sin(0)
Ty(0) = Rot(8) = (2-86)

sin(9) cos(0)

Finally, the equations of motion are written as:

M%, = Q (2-87a)
M% . =Q (2-87b)
Dé +D,q + cf = Q (2-87¢)
D6 +D,q + C;=Q (2-87d)

where all the terms are defined in accordance to Equations (2-75), see also Appendix E.

The matrix form of the equations of motion is given below:

%, 0
. f Of
+ Yem e B 0 + T|'E Oy+ T| 'S
H(q) o + C'(q.0,9) = || + J76.9) . + Js(@) 0 (2-88)
q T .

2.6 EXTENSIONS OF THE FORMULATION
The formulation presented in this chapter can be easily extended to multi-manipulator
systems. This extension is outlined here only.

Assume for simplicity that three manipulators with N, DOF each, (4G=1,2,3), are
mounted on the spacecraft, see Figure 2.7. Assuming no closed loops, the total system has
N DOF equal to the sum N,+N,+N,+6. Equations for the individual link CM, like
Equations (2-3) and (2-4) can be written, still. However, the notation must be changed to

show to which manipulator a particular p, belongs. To do this systematically, Hooker and
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Margulies [29] used a tree topology. A similar approach, avoiding the use of topology,
was proposed by Vafa [65]. If P, denotes the position of the CM of link k belonging to
the j* manipulator, then it is easy to show that Equation (2-9) can be written still, although

there are 3(N,+N,+N,+6) barycentric vectors, defined by equations similar to Eq. (2-10).

Figure 2.7. A three-arm space manipulator system.

Jacobians derived for such a system will have as input (independent) variables, the system
CM linear velocity, the spacecraft angular velocity and the N,+N,+N, joint rates.
Equations of motion will have the same form as Equation (2-62), however, the state vector
will be augmented. In the absence of external forces or torques, the integrals of motion
will be readily available. It is obvious that the complexity of such a system increases very
much, and that some automated procedure must be employed to derive equations of

motion.
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2.7 SUMMARY

In this chapter a modeling methodology that describes the kinematics and dynamics of a
free-flying space manipulator system was developed using an approach based on
barycenters. The system CM coordinates, the spacecraft attitude and the joint angles vector
of the manipulator were chosen as the independent variables. Closure equations and
differential kinematical equations were derived. Equations of motion were formulated
using a Lagrangian approach. This approach yielded an explicit and compact description of
free-flying manipulator systems and will be used again in the subsequent chapters.
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3 Free-Floating Manipulator
Systems

3.1 INTRODUCTION

In this chapter, a free-floating manipulator system is analyzed. Such a system has an N
DOF manipulator mounted on a 6 DOF uncontrolled spacecraft; in other words, spacecraft
position and attitude control is turned off. As mentioned in Chapter 1, this may be desired
for the following reasons. First, a substantial amount of jet (control) fuel can be consumed
for station keeping of the spacecraft. Jet fuel consumption increases further when
flexibilities in the system are excited and interact with the spacecraft controlier [55].
Turning off a spacecraft's control system may extend a system’s life. Second, space
manipulators will be required to handle extremely fragile payloads or work in areas in
which EVA astronauts may be present. End-effector jerky motions that may occur when jet
actuators are turned on suddenly are not desirable; turning off a spacecraft’s control system
reduces those problems.

It must be noted here that turning off a spacecraft’s controller is feasible only in the
absence of large external forces or torques and initial momentum. If these effects are
present, the spacecraft will drift in space. However, space is an ideal environment in
which sources of external disturbances can be ignored for extended time intervals.
Disturbances like solar pressure, atmospheric drag, or gravitational forces are negligibie for
the purposes of this thesis, see [65, 71, p.241]. Of course, from time to time a
spacecraft’s control system should take action to correct for any accumulated momentum.

The assumption of an uncontrolled spacecraft has an important result: the position of
the system CM and the spacecraft attitude are dependent variables, the independent being
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the manipulator joint angles which are controlled by the joint motors. In order to control
such a system, it is desired to eliminate any dependent variables and have a minimal
description of the system “plant.” This is the main focus for this chapter. Once such a
minimal description, or system reduction, is achieved, it is possible to examine its
characteristics and possible limitations.

The methods developed in Chapter 2 are adapted in this chapter to describe free-
floating manipulators. Section 3.2 investigates the existence of integrals of motion in the
absence of external forces and torques. The non-integrability of the angular momentum is
proved and its consequences are discussed. In Section 3.3, a free-floating system’s
differential kinematics are formulated and a system’s Jacobian is construcied. This
Jacobian is used in Section 3.4 to investigate the extent of feasible motions for free-floating
manipulators and to define and quantify the notion of dynamic singularities. It is shown
that dynamic singularities are functions of the dynamic properties of the system and that
points in the workspace mgy or may not be singular, depending on the path taken by the
end-effector in inertial space. In Section 3.5 a systematic exposition of the nature of free-
floating manipulator workspaces is presented. Path independent workspaces, in which no
dynamic singularities occur are defined. Section 3.6 deals with the issue of minimizing the
negative effects of dynamic singularities. In Section 3.7 equations of motion for free-
floating manipulators are written, based on the methods of Chapter 2. Section 3.8 deals
with the consequence of non-zero system momentum, and Section 3.9 illustrates the key

ideas in this chapter using an example. Finally, Section 3.10 concludes this chapter.

3.2 INTEGRALS OF MOTION
The first step in eliminating dependent variables from a dynamic system is the search for
integrals of motion [51]. In the absence of cxternal forces and torques, the system linear

and angular momentum is conserved. However, it is not clear what is the effect of the



CHAPTER3 67

existence of those integrals to the capabilities of free-floating systems. Hence, in this

section the nature of the conservation equations is examined in detail.

3.2.1 Linear Momentum
Consider the free-floating space manipulator shown in Figure 3.1. In the absence of
external forces, the linear momentum of the system, p is equal to a constant p ,, see

Equation (2-38):

R= Mi‘-an =By (3-1)

This is a first integral of motion. It follows that system CM velocity, I__, is also constant
and equal to .Lan.O' Equation (3-1) can be integrated once more to yield an expression for

the position of the system CM as a function of time t, which is a second integral of motion:

r

<em T .Lcm,o t+ X mo (3-2)

The constants p, and L o are determined by the initial conditions. Equations (3-1) and
(3-2) could be obtained immediately from the equations of motion of the whole system,
see Equation (2-62). Indeed, the three first scalar equations correspond to the time
derivative of the linear momentum of the system. When no external forces are present,
these equations decouple and can be integrated to yield the position of the system CM, as
above. Hence, there are just N+3 dynamic equations. In other words, the effect of these
integrations is to reduce the order of the system from an N+6 order system to an N+3 order
system. This reduction also can be achieved by applying the Virtual Manipulator method
proposed by Vafa [64].

" Since the motion of the system CM is known, it can be substituted into all the
kinematic equations, for example to Equation (2-11). The same is true for jcm, see
Equation (2-15). However, Equation (3-2) describes a system that drifts with time. It will

be assumed that the system is initially at rest, or equivalently that p , is zero. As was
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mentioned in the previous section, when this assumption is violated, the spacecraft
controller must eliminate any accumulated momentum. The effects of nonzero momentum
will be examined in more detail in Section 3.8. The other constant, £, o, is not important
because it represents a constant offset to all system positions. Without loss of generality,
I o Will be assumed zero, which is equivalent to locating the inertial origin, O, at the

system CM.

2 T2 Manipulator

3, Link N
-N
| (Xg» ¥ )
End-Effector
Uncontrolled
Spacecraft v Denotes body
Origin center of mass

Figure 3.1. A Free-floating space manipulator system.

3.2.2 Angular Momentum
The time derivative of the angular momentum of the system with respect to its CM, h,,

given by Equation (2-54), or equivalently by the second set of three equations in the system
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equations of motion (2-62), is zero in the absence of external forces and torques. Hence,

Equation (2-54) can be integrated to a constant hmo. see also Equation (2-49):

e = To(®D 0y +°D @) = g (3-3)

In other words, the angular momentum with respect to the system CM, h_, is a conserved
quantity, or a third integral of motion. If the above is solved for 00)0, then it provides a
spacecraft’s angular velocity as a function of its manipulator rates, q.

It would be desirable to integrate Eq. (3-3) once more to obtain a spacecraft’s attitude
as a function of manipulator angles and possibly of time. In such a case, spacecraft attitude
could be substituted in the kinematic and dynamic equations and thus be eliminated.

Spacecraft attitude is described by matrix! T, and it is well known that [30]:
T, = T, w} (3-4)
Combining Equations (3-3) and (3-4), yields the following differential equation for T
Ty = To{ D™ (T} b - D, @)} (3-5)

Op-1 s always non-singular because it represents the inertia of the whole system.
Equation (3-5) is a generalized Pfaffian equation, see [54,70). Integrability conditions
were given by Frobenius and can be used to prove that Equation (3-5) is non-integrable.
However, these conditions are very hard to apply, see [54]. Similar conditions in a more
general setting involving vector fields, Lie brackets and distributions can be used, although
the required computations are quite involved [46]. In both cases, no general results can be

There are many ways to describe the attitude of a body, for example Euler angles, Euler parameters,
direction cosines, etc. An excellent treatment of this subject can be found in [30]. Euler parameters are
used mainly in this thesis. However, Equation (3-4) implies the use of direction cosines. This is preferred
here because Equation (3-4) is the basic form from which all others can be derived and provides a more
understandable and compact form. Alternatively, the Euler parameters equivalent, see Equations (2-36) and
(2-21), could have been used instead.
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obtained because applying these methods can be done in association to specific systems
only.
Here, the non-integrability? of Equation (3-5) is proved using physical arguments.

Assume that one can integrate Equation (3-5) and obtain an expression of the form:

Tyle, n) = Ty(q) = T(q) T(0) (3-6)

where T(q) is a transformation matrix satisfying T(0) = 1. This expression, implies that a
spacecraft’s attitude (e,n) is a function of q only, or in other words that the final atiitude of
a spacecraft is independent of the path taken in joint space, (the space with axes q,....qy)-
Partition the joint angle vector q in two sub-vectors and (abusing somehow the notation),
write: q = (q;, q,)- Construct first a path in joint space that starts from point ¢ = 0 and

moves first to point (q,, 0) and then to the final point (q, G,¢). Then T, is given by:

To(‘lf) = T(0, qu)T(qlp 0)T0(0) 3-7
Consider now a second path that passes first from point (0, q,) and then moves to the final
point. Then T is given by:

Toqp = T(q,p 0)T(0, q,)T((0) (3-8)

Since both paths have same initial and final q, the following must be true:

T(0, q,0T(q,5 0) = T(q,. 0T, q,) (3-9)

However, it is well known that finite rotations do not commute, see for example [21], that
is Equation (3-6) does not hold. In other words, the attitude of the spacecraft is not only a
function of the joint angles q, but also of the parh taken in joint space; different paths in the

manipulator joint space will result in different final attitudes for the spacecraft; closed paths

2Clean'ly. Equation (3-5) always can be integrated numerically. But numerical integration implies a path,
that is a succession of joint angles as a function of time. Integrability deals with the question of whether
the final attitude is a function of the path or not.
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in joint space will result in changes in spacecraft’s attitude3. Because of this path
dependency, which is solely due to the non-integrability of the angular momentum, some
rescarchers attributed a “non-holonomic nature” or “structure” to free-floating
manipuiators, see [45]. However, a free-floating manipulator is a perfect example of a
holonomic system; no physical constraints of any form limit its motion.

As shown in Appendix D, Section D.4, the only non-trivial case in which the angular
momentum can be integrated, is that of the one-DOF example described in Section 2.5.1.
This is because all rotations in this system occur around the same and only axis, a case in
which rotation matrices do commute. As a demonstration of the more general case, it is
proved in Appendix D that the angular momentum of the two-DOF example of Section
2.5.2, can not be integrated.

In this section it was shown that free-floating manipulators possess three integrals of
motion which can be used in simplifying their kinematic and dynamic description. Also
shown was that the conservation of angular momentum cannot be integrated to give a
spacecraft’s attitude as a function of its manipulator joint angles. This results in a system
with path dependency, a characteristic that will be used later on. In the next section, the

above results are used to analyze the behavior of free-floating manipulator systems.

3.3 KINEMATICS OF FREE-FLOATING SYSTEMS

In the previous section, free-floating manipulators were shown to possess three integrals of
motion. In this section, those results will be used to provide expressions for the motion of
the manipulator’s end-effector as a function of the controlled (independent) variables, q and
q. This is required for investigating the kind of feasible motions one can expect from a

free-floating system and for control design, the theme of the next chapter.

3This property allowed Vafa to propose small joint space cyclic motions that can result in simultaneous
control of the spacecraft and the manipulator, see [63,65].
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It was shown above that spacecraft attitude cannot be written solely as a function of
manipulator joint angles. For the same reason, no expression for the end-effector
orientation can be written; such orientation depends on spacecraft attitude. Also, under the
assumptions of Section 3.2.1, the system CM does not move, and hence, an expression for

the end-effector position can be written according to Equation (2-22) as:
N .
rg = Tolen) Y, °Ti(qp 0) 'Vin g (3-10)
i=0

In fixed-based systems, closure equations like the above can be inverted, in principle, to
yield a map between end-effector positions and joint manipulator angles. In order to
achieve a certain end-effector position, it suffices to move the joint angles of the
manipulator to a pre-programmed set of desired angles. However in free-floating systems,
end-effector position depends upon a spacecraft’s attitude described by T,. This attitude
depends upon the history of system motion. Hence, Equation (3-10) can not be inverted
and no map between the joint angles q and the end-effector position ry exists. Hence,
Equation (3-10) cannot be used for planning or control purposes. Next, the differential
kinematics of free-floating systems are considered.

As mentioned above, in free-floating systems the system CM does not move and

hence, Equations (2-31) result in expressions for the end-effector linear and angular

velocity:
i'E = Ty { 0-'11 0‘J')o"' 0-'12;1 } (3-11a)
wg = Ty { 0‘”0* onz‘.l } (3-11b)

where the J-terms are linear functions of the barycentric vectors and of the system
configuration q; they are given by Equations (2-33). Similar expressions can be written for

any point or body of the free-floating manipulator, as done in Chapter 2. Equations (3-11)
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reflect the fact that the motion of the end-effector is the vector sum of two partial velocities.
One is due to the motion of the joints, the second to the resulting motion of the spacecraft
caused by dynamic coupling. Since no expression relating the spacecraft attitude to
manipulator joint angles can be written, the dependence of T, on the spacecraft attitude
cannot be removed.

Equations (3-11) do not permit the construction of a system’s Jacobian, because °a)o
is a dependent variable. To this end, the conservation of anguiar momentum can be used.

Indeed, if a system is initially at rest, Equation (2-49) results in:
0 = °»%,+°D, q (3-12)

where the D-terms are quadratic functions of the barycentric vectors, the system inertias
and the configuration q, and are given by Equations (2-50). Since %D is the system inertia
calculated with respect to the system CM, it is always a positive definite symmetric matrix
and thus it is always invertible. Hence, Equation (3-12) can be solved to provide Omo as

follows:
%wy = - D' D, q (3-13)

The above can be substituted in equation (3-12) to yield expressions for the end-effector

“relocities and for the free-floating system Jacobian, called a generalized Jacobian by [60]:

x=[r,ol"=)q (3-14)
where:
. . _anoD-l qu+an
J'(e,n,q) = diag(T,,T,) ore-10 0 (3-15a)
DD q? Js
= diag(T,,Ty) °J'(@) (3-15b)

with:
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(3-15c¢)

0 Ony-10 0
. 03, %p-10p 4 0
°J(q)s[ " 1 '2]

On-10 0

Note that unlike to fixed-based manipulator Jacobians, ®J° is a function of the dynamic
properties of the system. Both J* and °J° are 6xN matrices. If N is equal to six, then J°
is square and, if not singular, can be inverted. Note also that diag(T,,T,) is always non-
singular, because T, is always non-singular. If N is less than six, it is not possible to
follow any given end-effector trajectory while, if N is greater than six, the manipulator is
redundant and a generalized inverse technique can be used. Here, it will be assumed that N
is equal to six (no redundancy) unless it is otherwise noted. It will be shown in Chapter 4,
that unlike the kinematic Equation (3-10), J° can be used for planning and control

purposes. In the next section, the invertibility conditions for J° are investigated.

3.4 DYNAMIC SINGULARITIES

In the previous section a Jacobian J* that provides the motion of the end-effector as a
function of the manipulator’s controlled rates q was found in spite of the uncontrolled
motions of the spacecraft. That Jacobian’s explicit structure was revealed. In this section,
the important question of when the Jacobian becomes singular is addressed. This is
important for both physical and control reasons. The physical reascn is that for a
manipulator position, the system Jacobian must be invertible or of full rank in order
physically 1o move the manipulator end-effector in all directions at that point in space.
Also, since nearly all planning algorithms as well as all resolved rate or acceleration control
algorithms need to invert a Jacobian, it is important to examine when this is possible.
Singularities occur for fixed-base non-redundant manipulators when end-effector
velocity due to the motion of one joint is parallel to the velocity due to the motion of some
other joint. At such points, at least one degree of freedom is lost and the rank of the ma-
nipulator Jacobian J is reduced accordingly, becoming singular. Singular points for fixed-
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base manipulators occur at workspace boundaries or when there is alignment of joint axes.
Given the kinematic structure of a manipulator, we can find all its singular configurations
by solving the equation det{J(q)]=0. The literature usually describes singular points in
terms of fixed-base manipulator workspace positions instead of singular configurations or
of singularities in the joint space because at any singular set of joint angles q,, there
corresponds a singular point in the six DOF workspace. The obvious benefit is that the
manipulator path planner or controller can be designed to avoid these workspace points.
Singularities of fixed-base manipulators are kinemaric, because it is sufficient to analyze the
kinematic structure of the manipulator in order to identify them.

The singularities of J° for a free-floating space system are obtained by examining
Equation (3-15). First, it can be seen that the term diag(T,,T,) is always square and
invertible. Thus, any singular points of J* are due to singular points of °J'(q) which can

be found from the condition, (N=6):
det(’J"(q)] = 0 (3-16)

Equation (3-16) proves that all singularities are functions of the manipulator con-
figuration with respect to its spacecraft, q, not to the spacecraft attitude. These singularities
correspond to singular points in the manipulator’s Joint space, in other words, singularities
arc fixed in joint space.

As mentioned in connection to Equation (3-10), no direct map from the configuration
q to end-effector workspace points exists. Hence, singular points in joint space cannot be
mapped into unique points in the workspace. In general, each end-effector workspace
point can be reached with infinite system configurations q and spacecraft attitudes (e,n),
satisfying Equation (3-10). The set of (e.n,q) that will actually result during some motion
of the end-effector depends on the path taken by the end-effector in inertial space. This can
be explained as follows: Assume that in some region Equation (3-14) is invertible, that is a

smooth map between q and x exists. Since Equation (3-5) is not integrable, the same
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holds if x is substituted for q. This proves that spacecraft attitude depends upon the parh
taken by the end-effector in inertial space. Due to Equation (3-10), the joint configuration
q that is needed to reach a workspace point also depends upon the path taken to reach that
point. In other words, the set of (e,n,q) that results at the end of a motion during which
the end-effector reaches a particular workspace point, depends upon the path taken by the
end-effector in reaching that point. Therefore, a workspace point can be singular or not
depending on whether the manipulator reaches this point in a singular configuration. In
other words, free-floating manipulator singularities in the end-effector workspace are path
dependent.

In addition, °J°(q) in Equation (3-15¢) depends on the kinematic, mass and inertia
properties of both the manipulator and the spacecraft. Since the 0Dij matrices that represent
the inertia properties of the system are functions of the configuration, singular configura-
tions cannot be predicted by examining the kinematic structure of the manipulator alone.
Since the singularities of J* depend on the system’s dynamic parameters, its mass and
inertia properties, they are called dynamic singularities, see also [48,49].

The dynamic singularities of a free-floating manipulator space manipulator system can
be explained physically by noting that the end-effector velocity X, given by Equation (3-
11), can be decomposed in two parts. The first part is due to the motion of the manipulator
joints, the second is due to spacecraft motion. This second motion occurs because of the
dynamic coupling of the spacecraft and the manipulator and is a function of the system
masses and inertias. The matrix J* becomes singular when the end-effector velocity X,
produced by the combined joint-spacecraft motion caused by the motion of a manipulator
joint, is parallel to another x produced by the by the same means by some other joint and
the spacecraft. If the mass and inertia of the vehicle becomes very large, approximating a
fixed-base manipulator, then all the dynamic terms in Equation (3-14) vanish and J:
reduces to the fixed-base manipulator Jacobian, while the dynamic singularities reduce to

the ordinary kinematic singularities.
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The conclusion of this analysis is that if the spacecraft of a space manipulator system
is not actively controlled but is free-floating, then dynamic singularities can occur. All
resolved rate or resolved acceleration control schemes will fail bec: ise at these points,
Equation (3-14) has no inverse. Control schemes that compute the desired joint torques by
using a transposed Jacobian will fail to keep the desired end-effector velocity because
dynamic singularities represent an inherent physical limitation. The manipulator will move
with a velocity that is the projection of the desired velocity on the allowed direction: the

result may be large end-effector errors.

3.5 FREE-FLOATING MANIPULATOR WORKSPACES

Space manipulators have more complex workspace characteristics than fixed-base
manipulators, as was shown by using the concept of the Virtual Manipulator. Vafa
describes a constrained workspace, one where all points can be reached if the attitude of the
spacecraft is controlled, but not its position [65]. This workspace is a sphere with its
center at the sys:em’s CM. To show this, note first that the orientation matrix T, does not
change the length of a vector; hence, the distance R of the end-effector location from the
system CM can be written using Equation (3-10) as a function of the system’s

configuration q only:

N
R = R(@ =Y °T,(q) ap i g Il (3-17)
i=0
The symbol ll-ll denotes a vector’s norm (length). Equation (3-17) also defines a spherical

shell in inertial space with its center at the system CM and of a radius R. The reachable

workspace is constrained between the spherical shells of radii (R, R,,,,) given by:

R . = min R(q) (3-18a)

min
q
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R, = max R(q) (3-18b)
q

However, due to the non-integrability of the angular momentum discussed in Section 3, 1,
infinite many spacecraft artitudes4 can be achieved by cheosing appropriate joint space
paths’. Hence, even if the attitude is not controlled, points in the constrained space can still
be reached by selecting a suitable path. For this reason in this thesis it is preferred to cail
this workspacs the reachable$ workspace. What follows below shows that the nature of
this workspace is related to a system’s dynamic singularities.

It was proven already that a system’s dynamic singularities are a unique function of
the configuration and that their occurrence at a particular inertial workspace location is path
dependent. For practical reasons, it is desirable to find regions in the reachabie workspace
in which dynamic singularities never occur. Recall that dynamically singular configura-
tions can be found from Equation (3-16). Its solution represents a family of hypersurfaces
Q,; (i=1,2,...) in the manipulator joint space. These hypersurfaces are collections of
points q, that result in dynamically singular configurations. Each singular configuration g,
is mapped according to Equation (3-17)to a spherical shell in inertial space. By the same
token, each hypersurface Q, ; is mapped according to Equation (3-17) to a volume con-
tained within the spherical shells with radii:

Rpin; = min R(q) (i=1,2,...)  (3-19a)

qe Q;'i

“This is a similar characteristic to the one found in systems with non-holonomic constraints, which also
are non-integrable. It is well known that these constraints do not reduce the dimensionality of the
configuration space; all of it is available to the system, see {54]. However, reaching a particular
conﬁgmtionrequiresapanicularpath, likememerequimdloparkacar.

5This fact induced research in path planning for free-floating manipulators with the goal to find appropriate
inertial workspace paths that will move the end-effector 1o a desired location and control the spacecraft
aftitude at the same time, see [45). So far, success in doing so is arguable.

6Some authors make a distinction between dextrous and reachable workspaces (14]. The reachable
workspace is that volume of space which the end-effecior can reach in at least one orientation, The dexirous
workspace is that volume of space which the end-effector can reach with any orientation. This thesis will
not be concerned with ihe latter.
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R, ; = max R(Q) (i=1,2,...)  (3-19b)
17 geq,
All workspace points that belong in this volume can be singular if they are reached in
singular configurations q,. As shown earlier, this may happen or not depending on the
path taken by the manipulator’s end-effector. If there is more than one singular
hypersurface, then there are more such voluies containing points that can lead to singular
configurations. The union of all these volumes is calied a Path Dependent Workspace
(PDW). The Path Dependent Workspace contains all reachable workspace locations that
may be reached in singular configurations, depending upon the path taken by the end-
effector. It follows that locations in the PDW can be reached with some paths but not with
others; this justifies their name. In order to reach points belonging to the PDW, carefully
selected paths must be employed.

Subtracting the PDW from the reachable workspace results in the Path Independent
Workspace (PIW). Due to its construction, this workspace region contains all reachable
workspace locations that will aever lead to dynamically singular configurations. It follows
that all points in the Path Independent Workspace can be reached by any path, assuming
that this path lies entirely in the PIW.

Another workspace defined by Vafa is the free workspace [65). This is the
workspace volume that can be reached with any spacecraft attitude. Probably, the main
reason for defining such a workspace is that it simplifies the problem of finding a path to a
point in it with uncontrolled spacecraft attitude, because the problem reduces to a search of
paths in joint space. As shown in Section 3.9, the PIW is a subset of the free workspace.

It is interesting to analyze the effects of payloads to system workspaces, because it
has been proposed that space manipulator systems should be able to manipulate objects of

size and mass comparable to theirs. Since a payload increases the mass of the last link, as
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well as the total system mass, its effect is to decrease the size of all the barycentric vectors’
iviN'E, because all barycenters move closer to the joint closer to the payload, see Figure
2.2. This results in a reduction of the reachable workspace as given by Equations (3-17)
and (3-18). This means that although a space manipulator may be able to handle big
payloads due to the absence of gravity, still it will not be able to manipulate them in any
desired way; feasible motions will be restricted in a small region that will shrink with the
size of the load. This fact makes sense: if a system attempts to move an object of size
comparable to its own, it is not clear which is going to move which!

The PIW or PDW spaces may reduce to zero depending on the case. A clear goal for
the designer is to reduce the PDW and increase the PIW. This is the theme of the next

section.

3.6 REDUCING THE EFFECT OF DYNAMIC SINGULARITIES

Maximizing the PIW clearly reduces the impact of dynamic singularities on a system’s
effectiveness. One way to achieve this is to keep the spacecraft attitude constant, because
then 0(00 is zero, and the only singular points are of kinematic nature. Indeed, if Omo is
zero then only the terms °J 1251 and °J22¢'1 remain in Equations (3-11). In these equations,
the columns of the sub-Jacobians, 9J 12 and o.ln. are columns of a fixed-based manipulator
Jacobian where instead of real manipulator link lengths, barycentric vectors are substituted.
These barycentric vectors are real manipulator lengths scaled by mass ratios of the form
m/M, see Equations (2-33), (2-12), (2-10) and (2-7). Since linear scaling does not change
topological properties, kinematic singularities of a fixed-based manipulator are transformed

1t must be noted that the system CM after picking up a payload is instantly moved to a new location;
obviously, the end-effector is in the reachable workspace before and after the acquisition of the payload.
However, for comparison reasons, the dashed circle in Figure 2.2 is shown as having its center at the new
CM.
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to kinematic singularities8 of the free-floating one. This means that if for example a two-
DOF fixed-base manipulator has a singularity which depends on q, only, the same will be
true for the free-floating one, when its spacecraft attitude is constant. Also, if the fixed-
based manipulator does not have interior singularities the same will be true for the free-
floating one, etc. This does not necessarily imply that, for example, a two-DOF free-
floating manipulator will be singular at q,=0°, £180°. It may be singular at some other q,,
but still this singularity will correspond to reachable workspace limits? and will be
independent of q,. The problem with this method is that requires active control of
spacecraft attitude which can increase cost and reduce a system’s useful life.

Another method to reduce the effect of dynamic singularities is to increase the inertia
of the spacecraft. Indeed, in such a case °I,and %D, become large, and, %, is almost
zero. Therefore, the PIW is maximized for the reasons mentioned above. Although it is
desirable in most cases to make a spacecraft as light as possible for a number of reasons,
such as launch weight, a system’s designer has the freedom to increase a system’s inertia
keeping its mass constant. Such a design would result in an increase in the system’s PIW.

The PIW also can be maximized by using manipulator redundancy. If a manipulator
is at a singular configuration, redundant degrees of freedom may be used to achieve the
necessary end-effector velocity. This is an area which requires additional research and will
not be explored in this thesis.

Finally, for the case where the manipulator acts in a plane, it can be shown that if the
manipulator is mounted at a spacecraft’s center of mass, the PIW is equal to the reachable

workspace and the PDW is eliminated. This occurs because in this case the effect of

8In the Virwal Manipulator setting, singular points that occur when the spacecraft attitude IS fixed

carespond to a kinematically singular VM whose first link is fixed. See also the interpretation of .llz and
.l , after Equation (2-33).

9]( can be shown that if the CM of each link is along the line connecting two joints, then not only the

topological properties are conserved, but also a free-floating and a fixed-based manipulator have exactly the

same singular configurations. For example, a two-DOF free-floating manipulator with constant spacecraft

attitude is singular when q,=0°, +180°.
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spacecraft rotations due to dynamic coupling is the same to the effect of first manipulator
joint motion. In such a case, system singularities are due to joint axes alignments or to
workspace extremums, in other words they are of kinematic nature.

To prove the above statement, assume first that r is zero, that is a manipulator is
mounted at its spacecraft’s CM. Then vy g, and c;, are zero, too. Also, ODOO = %I, while
°Dio and 0l)Oj (i=1,...,N) are zero. The absolute inertial velocity of the end-effector
produced by the motion of the k™ joint, E'E.k' is written using Equations (2-23) and (2-31)

and setting all m? (j=k) equal to zero:

N N
ey = - E{ [T; Vingl* 0 - E{ [T; 'Vin gl @ (3-20)
Recall that 0)2 is the inertial velocity of the k™ link with respect to the spacecraft. Then,
Equation (3-20) represents the contribution in end-effector inertial velocity by the motion of
the k™ joint. Setting k equal to 1, it is clear that (o? and wy, are multiplied by exactly the
same matrix. If m? and w; are parallel vectors, both sums in Equation (3-20) correspond to
parallel vectors differing only by a constant, c. Thus, the second sum in Equation (3-20)
can be replaced by the first one, with k equal to 1, times the constant ¢. In such a case,

Equation (3-20) can be rewritten as:

N N
. . 0 , 0
ey = - Zk [T; 'Vinel™ @ - z{ [T; Vinel* @ ¢ (3-21)
1= 1=

Note that all mﬁ (k=1,...,N) are relative to the spacecraft inertial angular velocities and
that @, does not appear in Equation (3-21). Hence, end-effector inertial velocity does not
depend on a spacecraft’s angular velocity, in which case, all dynamic singularities reduce to
kinematic singularities, and the PDW is eliminated.
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It remains to examine when m? and @, can be parallel vectors. If only the first joint is
driven, the conservation of angular momentum equation can be written as, see Equations

(2-43), and (2-18):

N N

{i ENJ Dol + {I+ Y, Y D;}o,=0 (3-22)

j=1 i=1 Jj=1 i=

-

and shows that m‘l’ and wy are indeed parallel only in the planar case, where all inertia sums
are scalars and all angular velocities are perpendicular to the plane of motion. In general,
adding I to the double sum in Equation (3-22) will result in a matrix with different
principal axes and the angular velocities m‘l’ and w, will not be parallel. However, the
planar case can be quite important in some designs and this guideline can help in reducing
or eliminating dynamic singularities.

In some cases it may be possible to use combinations of the various techniques
discussed. For example, a system may be designed to have a large moment of inertia about
one axis while the manipulator arm is mounted near the spacecraft CM in the other two
dimensions. Hence, a system’s properties can be enhanced by thoughtful design.

The previous sections have examined the nature of feasible motions of free-floating

manipulators. In the next section, the nature of their dynamics is analyzed.

3.7 DYNAMICS OF FREE-FLOATING MANIPULATORS

As mentioned in Chapter 2, development of equations of motion is important not only for
simulations but also for designing controllers. In this section equations of motion for free-
floating manipulator systems are developed. It is shown that under the assumptions of
free-floating systems, the equations of moticn developed in Section 2.4 can be reduced

from N+6 to just N, that is as many as the manipulator DOF. This reduction will be
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achieved using a Routhian function {21,51]. This method!0 shares characteristics from
both the Lagrangian and Hamiltonian formulations, and can be used when some
generalized momentum is conserved in a system in which the corresponding coordinate is
ignorable, that is the Lagrangian is nor a function of that coordinate.

The first step in deriving equations of motion is to express the system kinetic energy
as a function of the genecralized coordinates and the corresponding velocities. The system
CM of the free-floating system shown in Figure 3.1 does not move in the absence of
external forces. Following the same reasoning as in Section 2.4, the system kinetic energy
is equal to the system’s Lagrangian. The symbol T is used for the Lagrangian also. The

kinetic energy, T, can be written as, see Equation (2-57a):
. 1. .
%" D %y + %" °Dgq + 5 a"%Dgq (3-23)

Note that T is a function of %, q and q only, since the D-terms above were shown to be
functions of the configuration q and not of the spacecraft attitude; spacecraft attitude
coordinates are ignorable. Next examine the generalized momentum that corresponds to
spacecraft angular velocity, %, This can be obtained by differentiating the Lagrangian
given above. Due to the conservation of angular momentum in the system, see Equation

(3-3), this generalized momentum is given by:
o— =%, +%Dq = Toh o =h (3-24)
This momentum can be recognized as the system angular momentum calculated with

respect to the spacecraft frame, located at the CM. Although h_, 4 is a constant, T'g is not,

so the momentum given by the above expression, is not constant in direction, and a

10Reduction of equations of motion also can be achieved by the highly mathematical and abstract methods
of theoretical mechanics, using Hamiltonians and symmetry arguments. An excellent reference for these
methods is [1], while an example application can be found in [59].
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Routhian function cannot be constructed, in general. However, if the system is initially at
rest, h_, o is zero and angular momentum is conserved in both the inertial and spacecraft
frames. The same is also true for planar systems, even if h__ is nonzero, because both
h o and 0h‘_.m.o are perpendicular to the plane of moticn. Under those conditions, one
can use a Routhian to reduce a system’s dynamic equations. In the case of zero angular
momentum, the Routhian is equal to the Lagrangian given by Equation (3-23), in which
%y is climinated using Equation (3-13). The result of this operation is given below:

T=;d"H'@4 (3:29)

where H'(q) is the system inertia matrix, given by:
H'(q) = ‘Dyq - °D] °D-' D, (3-26)

As shown in Appendix F, H® is an NxN positive definite symmetric inertia matrix,
which depends upon the configuration q and the system mass and inertia properties.
These properties of H® will be exploited in Chapter 4. Equation (3-26) shows how to
construct the inertia matrix efficiently. One just needs to find the barycentric vectors of the
system, compute the inertia matrices oDij using these barycentric vectors, find the D-inertia
terms using definitions (2-50), and finally assemble H".

The expression for T given by Equation (3-25) is the system Routhian, which is the
appropriate Lagrangian function for this system. Clearly, T is a function of (q, q), the
manipulator joint angles and velocites, only. Lagrange’s equations, for this system are

written as:

oT
%[56} - gg =1 (3-27)
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where 1 is the generalized force vector which, in this case, is equal to the applied torque
vector [ T, Ty,..., Ty " Applying Equation (3-27) to the Routhian given by Equation (3-

25) results in a set of N dynamic equations of the form:
H'@q+C'@pg=r1 (3-28)

where C*(q,q) q contains the nonlinear Coriolis and centrifugal terms. As shown in
Appendix F, H®- 2C* can be written as a skew-symmetric matrix. Note that the above
equations of motion do no depend upon a spacecraft’s attitude or position variables. A
spacecraft’s contribution to the kinetic energy, T, appears through the presence of the iner-
tia matrices °Dg; (i=0.,...,N), which are functions of a spacecraft’s mass mg and inertia I,

Equations (3-28) describe the dynamics of free-floating systems. Note that a space
manipulator system has N+6 DOF, while the derived equations are only N. In other
words, the dynamics of a space manipulator system with uncontrolled spacecraft can be
reduced to the dynamics of an N DOF system!l. The dependent variables were eliminated
completely. As said earlier, the motion of the systern CM is completely known; the CM
does not move. This accounts for three more DOF. Spacecraft attitude coordinates are
controlled by Equation (3-5), or by Equations (3-4), (2-36) and (2-21). In both cases,
given a joint rate vector q, spacecraft angular velocity and spacecraft attitude follow, see
Equations (3-4) and (3-5), or (2-36) and (2-21). This accounts for the last three DOF of
the system.

The above analysis has certain important implications for the control of free-floating
systems and will be used as a building block in Chapter 4. In the next section, examples

are used to demonstrate the theory that was developed in this chapter.

114 similar case is the one where two cants interact through a force acting between them. This system can
be described with just one dynamic equation, although two masses are involved. In bend-graph
terminology, the mass of one of the two carts would I_Je a dependent mass. The reduced mass defined in
such a case is the equivalent of the inertia matrix H™ here. Off course, the two carts problem is much
simpler because it is linear and not configuration dependent.
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3.8 EXAMPLES

Example 1. For the one-DOF system of Section 2.5.1, the system inertia matrix H” and

the nonlinear term C are 1x1 scalars given by:

H'(q) = Dy~ D;D' Dy

42
- _d_wg.%_dil— (3-29a)
C'@Q 9= (d°°+d°‘l))(2d°‘+d“)-3m q (3-29b)

where all the terms are defined by Equations (E-5) and (E-7). The only equation of motion

for this example is:
H@q+C@da=" (3-30)

Example 2.  The planar two link system shown in Figure 2.6 assumes the two coor-
dinates of the end-effector, X and y, are controlled by the two manipulator joint angles, q,
and q,. System parameters are given in Table L. End-effector orientation is not controlled

for this two DOF system (N=2), hence Equation (3-14) for this system is simply:

x=t =Sty = Y0 (3-31)
where:

x = rg = [xg Ygl' (3-32)

q = (a4, 9] (3-33)

Table I. System parameters for the two-DOF manipulator example.
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The free-floating Jacobian J* given by Equation (3-15), becomes:
J®.9) =Ty©)°3"(q) =T,[-%,, D" D_+°J,] (3-34)

where 9 denotes the spacecraft attitude, as shown in Figure 2.6. The left superscript in the
D-terms was dropped as done previously. For this example, the total inertia D and the
inertia matrix D, are given by Equations (E-24), and °J,, and °J,, are given by Equation

(E-26). By direct substitution in Equation (3-34), the following Jacobian is obtained:

. cos(0) -sin(0) .
J'6.q) = Y (q) (3-35a)
sin(6) cos(0)
D,+D D
-(BSI+7312)+(|3$1+YS|2)-—11-;—2- ‘7512*'(351"'7512)31
3 (q) = (3-35b)

D,+D D
(Bs, +Ys,2)-(a+Bs,+Ys,,) —1—-2-D yclz-(a+Bs,+ys,2)T)2-

where s, =sin(q,), ¢,, = cos(q,+q,), etc. The inertia scalar sums D, Dy, D, and D, are
defined by Equations (E-24), and a = r; =0426m, P = r; =0.894 m, and y= c; +T1, =
0.968 m.

In order to invert J° given by Equation (3-35), the 2x2 °J*(q) must be inverted. This
is not possible when its determinant becomes zero. In this case, the condition det{°J°(q)}

results in the following:
aBD,(q,.q,)sin(q,) + BYDy(q,,q,)sin(qy) - ayD,(q,.q,)sin(q,+q,) = O (3-36)

When the above condition is satisfied, the system is in a dynamically singular
configuration. The values of q, and q, which satisfy Equation (3-36) are plotted in joint
space as shown in Figure 3.2. This figure also shows that conventional kinematic
singularities like q,=k=m, q,=kn, k=0,fl,... still satisfy Equation (3-36). These

correspond to the boundaries of the reachable workspace. However, infinitely more dy-



CHAPTER 3 89

namically singular configurations exist which cannot be predicted from the kinematic
structure of the manipulator. These are interior singularities which do not exist if the same
manipulator has a fixed base; only singularities which occur at workspace boundaries exist
in this case. Note that there are two singular hypersurfaces, called Q, | and Q, ,. This is
because to each q; correspond two angles q, for which the system becomes dynamically
singular. Since the joint space is two-dimensional in this case, those surfaces are lines, that

is one-dimensional spaces.

190
170 Q sl @
o 7 z
Q.. Fixed-base Manipulator
10 1 D Kinematic Singularities
i
o
3 |
~ 3
LAY
-10 1 K
% ®
1, P Pt
Z = Q =
- 170 sl D Free-Floating Manipulator
- Dynamic Singularities
:
- 180 ;
- 180 -90 o % 180
Q) (degrees)

Figure 3.2. Dynamic singularities in joint space.

Figure 3.3 shows the manipulator in the singular configuration ai ql=-65°, q,=-
11.41°; the spacecraft attitude is 8=40". This figure also shows the only available direction
for the end-effector motion. The inertial motion of the end-effector in this configuration
will be the shown, no matter how the joint actuators are driven. The best a control

algorithm can do is to follow the available direction. All algorithms that use a Jacobian
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inverse, such as the resolved rate or resolved acceleration control algorithms, fail at such a
point. Ones that use a pseudoinverse Jacobian or a Jacobian transpose will likely follow

the available direction, but may result in large errors.

2 DOF Manipulator

0 fo . § 4

Uncontrolled &
Spacecraft Available direction of ,“(x , y_)
motion 4 E

¥’

Figure 3.3. A dynamically singular configuration at q,=-65° and q,=-11.41°.

It is instructive to examine what exactly happens at a singular configuration. Figure 3.4
shows the two components of velocities that contribute to generate the end-effector
velocity. Assume first that only the first joint is operated; the second remains fixed.
Referring to Figure 3.4, the end-effector velocity is the vectorial sum of two componerits.
Component v, is a velocity perpendicular to line AE and equal to the size of AE times qQ.
where AE corresponds to sub-Jacobian °J 12 in Equation (3-11a). Component v, is a
velocity perpendicular io line (CM)E and equal to the length of (CM)E times 8, where
(CM)E corresponds to sub-Jacobian 0 11- Of course, the magnitude of 9 is set by
Equation (3-12). The vectorial sum of v, and v, gives the partial end-effector velocity due

to joint 1, called i ;, see Figure 3.4.
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Spacecraft

(CM)A =a
AB =8 G System center of mass

BC=Y © Spacecraficenterofmass vy

Figure 3.4. Velocity components at a singular configuration.

Similarly, if joint 1 is fixed and joint 2 is operated, another partial velocity, called i'a,z' is
obtained. In the general case where both joint operate, end-effector velocity is the vectorial
sum of the two partial velocities, i ; and i ,. If these are not parallel, the end-effector
can move in any direction by adjusting the magnitudes of the joint rates, q, and q,. When
these two partial velocities are paraliel, a degree of freedom is lost and the system is
dynamically singular. Clearly, the available direction of motion is set by the only possible
direction of the end-effector velocity.

Next, the nature and size of the workspaces is examined. The distance R of the end-

effector E from the system CM, see Figure 3.4, is given by Equation (3-17) and written as:

R = R(g) = \/ x2 +y2 (3-37a)
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= \la2+52+12+2aﬂcos(ql)+2a'ycos(ql+q2)+2mcos(q2) (3-37b)

Also see Equation (E-25). Applying Equations (3-18), the boundaries of the reachable
workspace are found to be:

R_. = 0.352m = o+B-y (3-38a)

R, = 2288 m = a+f+y (3-38b)

Therefore, the reachable workspace is a disk with a hole in it, see Figure 3.5. To construct
the PIW and PDW workspaces for this example, note from Figure 3.2 that there are two
hypersurfaces Q, which are lines in the joint space. These hypersurfaces are found
according to Equation (3-36). Each of these lines corresponds to pairs of q; and g,, which
are substituted in Equation (3-37). Then, conditions (3-19) result in two Path Dependent
Workspaces, constrained by (R, ;. R, ) and (R, 5, R, ;) respectively:

Rpin; = 0.352m = a+f-y (3-39)
Rpa; = 0.500 m = a+y—P (3-39b)
Rpinz = 1436 m = Bty-a (3-3%)
Rpax2 = 2.288 m = a+B+y (3-39d)

The PIW is then found by subtracting the two PDW regions defined above from the
reachable workspace, see Figure 3.5. In general, the PIW is smaller than the free
workspace defined in [65], although in this case it is equal to it. For example, consider a
system with mass properties given by Table II. In this case, the same procedure yiclds the

following boundaries for the workspaces:

R = 1.941 m = a+B—y (3-40a)

min, 1

R 2.756 m > a+B-y (3-40b)

max,1
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3.734 m < -a+f+Y (3-40c)

= 4.568 m = -a+f—y (3-40d)

min,2

max,2

o Systern Center
of Mass

Path Dependent
Workspace (PDW)

y (meters)

Path Independent
Workspace (PIW)

Reachable Workspace
Boundaries

x (meters)

Figure 3.5. The Reachable, Path Independent and Path Dependent Workspaces.

Table II. Aliernative system parameters for the two-DOF manipulator example.

Body I, (m) r. (m) m (Kg) | I (Kgm?)
0 .5 .5 40 6.667
1 2.0 2.0 16 21.333
2 5 5 3 0.250 ||

The boundaries of the free workspace are constrained by o+B—y = 2.618 m, and -a+f+y
= 3.890 m. These boundaries correspond to points q2=0°. +180° which always belong to
PDW/PIW boundary. Therefore the PIW is equal or smaller than the free workspace (a
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subset). For example, point (xg,yg) = (3.8,0.0) is singular when (9,q,,q,;) =
(236.06°,118°,45.29") although it can be reached with any spacecraft orientation.

When the end-effector path has points belonging to the PDW, such as path A in Fig-
ure 3.5, the manipulator may assume a dynamically singular configuration because points
in the PDW region can be dynamically singular, depending on the path. On the other hand,
paths totally within the PIW region, such as path B, can never lead tc dynamically singular
configurations, because these cannot be reached in singular configurations.

Consider next the effect of a payload on the workspaces. It is assumed that the
payload is a disk with mass 20 kg, that is half of the spacecraft’s mass, and its radius is
0.30 m; the payload is grasped at its center of mass. The net effect of this payload can be
described by modifying the mass and incrtia properties of the last link of the system. The
new system parameters are given in Table III.

In Figure 3.6, the dashed circle shows the boundaries of the reachable workspace if
no load is present. When the load is captured, the system of mass changes position and the
new workspace boundaries are the ones shown in Figure 3.6. By direct computation, one
can find that in this case, R ;, | =0.246 m, R, , =0421 m, R, , = 1.01m, R, =
1.605 m. Obviously, the region in which the load can be manipulated effectively has
shrunk dramatically. At the limit, if the payload is very massive, all workspaces will

reduce to zero; motions of the manipulator will result in spacecraft motions only!

Table ITI. System parameters for the two-DOF manipulator example, manipulating a load.
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Figure 3.6. The effect of a payload on workspaces.

As discussed earlier, it is desired to reduce the effect of dynamic singularities. Applying
the results of Section 3.6, first assume that spacecraft inertia, I, approaches infinity.
Then, dy,, D, become very large and the only significant term in Equation (3-36) is
Igsin(q,). Therefore, singular configurations in this case are the usual kinematic ones
(q2=0°, +180°). In other words, as the inertia of the spacecraft becomes larger, the effects
of dynamic singularities are reduced and and PIW is increased, approaching the reachable
workspace limits.

Another method discussed in Section 3.6 is to mount the manipulator at the CM of the
spacecraft. Indeed, if ryis zero, then r; and « are zero, and the only singular corfiguration
that exists is at g,=0’, £180’, see Equation (3-36). Again, this is a kinematic singularity
and corresponds to reachable workspace boundaries. As r(', or a approach zero, R ,,

approaches R ; and Rmm_2 approaches R, . Therefore, the two circles that define PIW,
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shown in Figure 3.5, approach the reachable workspace boundaries, and dynamic
singularities become less important.
In deriving equations of motion for this example, the system inertia matrix must be

found. This is accomplished using Equation (3-26) and definitions (E-24). The result is:

2
(D;+D,) dyp+das - D,(D,+D,)

d)+2dy+dye - — D
H'(q) = DD b2 (3-41)
(Dy+D,)
djy+dj,; - —z_lj)_J‘ daz - _&

The system inertia matrix, H’, is a 2x2 positive definite symmetric matrix whose elements
are functions of the joint angles q, and gy, cnly. Note that D represents the inertia of the
whole system with respect to its CM and thus, is always a positive number. Using H" and

Lagrange’s equations, the system’s equations of motion are obtained in the form (3-28).

3.9 NON-ZERO INITIAL MOMENTUM
In the previous sections, it was assumed that the system is initially at rest, or equivalently,
that the system linear and angular momentum is zero. Here the consequences of non-zero
momentum are examined.

Using Equations (2-31), (2-32), (3-1), and (3-3), an expression for the end-effector

velocity can be written still as:

M1 T, 5,,°D'T] Po
0 J11 0 In ] (342)
c

x=Jq+
Ve [ 0 T, D!T]

m,0

In the above, J° is the free-floating system Jacobian defined by equation (3-15), p, is the
constant linear momentum and h_;, 4 is the constant angular momentum about the system
CM. The 6x€ matrix in Equation (3-42) is a function of both the spacecraft attitude and the

system configuration. Multiplying this matrix with the constant momentum vector results
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in an end-effector drift term, which is non-zero even when the manipulator does not move
(q = 0). From the above, it is clear that no Jacobian can be written in this case. However,
Equation (3-42) can be inverted to result in a set of q as a function of x and the drift term,
and hence it is possible to drive the manipulator joints appropriately. Clearly, this can be
done for small momentum and/or for relatively short periods of time. To see this, imagine
that the end-effector must stay at some fixed inertial point, (x = 0). Then, because of
Equations (2-22) and (3-2), the configuration q will be changing continuously to keep x at
X4, After some time, J° will become singular and hence, there will be no q that can result
in x = 0. Even if no dynamic singularities occur, as the reachable workspace drifts in
inertial space, J° will become singular when X4, reaches the boundaries of the reachable
workspace. At this point, it will not be possible to compensate for the momentum vector
any more and the end-effector will drift away from x;,,. Although this is a problem, it may
not be a fatal one; the system may be able to function for some time till this happens.
Thereafter, spacecraft actuators must eliminate any accumuiated momentum.

The effect of initial momentum to the equations of motion must be examined also. As
was mentioned above, in general, a Routhian function cannot be found for a spatial system.
To avoid this difficulty, Equation (2-54) is solved for Oc'oo and Equaiion (3-3) for 00)0,
(recall that no external forces or torques are present). The results are substituted to the

general equations of motion given by Equations (2-62) which yield:
H'@q) q + C*(q.9)q + G’(qenh,, o) =T (3-43)

where H® and C" were defined earlier and G° is an extra term which is a function of q, e,
n, and h_ o. This extra term vanishes when h_ q is zero, but not when the manipulator
stops moving. The symbol G* was selected because this term exhibits similar
characteristics to those of gravity terms in fixed-based manipulators, if g, the gravity
vector, is substituted for h__ . Note that the dynamic equations are still N, but coupled to

the first order momentum equations because G* is a function of the spacecraft attitude.
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In planar systems, it is easy to find the exact form of G* by constructing a Routhian

function R, given below without proof12:

. 1. . . . . .
R@® = 3a"H' (@ q + hyoDDgq - 302, D" (3-44)

Note that the second term of R is linear in the joint velocities and that the third term depends
only on the configuration q, hence, it acts like 2 potential term. Applying Lagrange’s

equations on R, the following equations of motion result:

H'@q + C'(q9q + %hﬁn,o@?;o—;' =1 (3-45)
The above shows that for planar systems, G° is independent of the spacecraft attitude and
therefore the reduced equations of motion are truly decoupled. However, (q,0) points are
not equilibria any more; in general!3 some torque must be applied to cancel G*, which acts
like a disturbance to the system. This disturbance can be cancelled under the provisions
mentioned above.

Example. For the one-DOF system of Section 2.5.1, the only equation of motion is:

® LK) L ] 3 . 3
H'(@Qq + C'(q. 9)q + 502111;,‘0 =1 (3-46)
where all terms are by Equations (3-29), (E-5) and (E-7). Since the term am is
proportional to sin(q), the system equilibria are q=0°, £180°. The disturbance term is

configuration dependent, like a gravity term in fixed-based systems, and can be cancelled
similarly.

12The Routhian can be found by subtracting hmo.G from the kinetic energy of the unreduced system given
by Equation (3-23a) and by substituting 6 in the expression that will result, as a function of the joint rates
and the constant momentum, see Equation (3-3).

13When Equation (3-32) reaches an equilibrium, the whole system revolves around the CM without
deforming. Equilibria of Equation (3-32) are not infinite, but rather countable. A reader interested in such
equilibria is refereed to some recent theoretical studies, for example to [9).
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The conclusion of this section is that although non-zero momentum is a problem for free-
floating systems, it can be handled tor some period of time. Eventually, once momentum

is detected, jet actuators and/or momentum wheels must eliminate it.

3.10 SUMMARY

Integrals of motion that exist in space manipulator systems where spacecraft position and
attitude are not controlled, are found and analyzed. It was shown that the non-integrability
of the angular momentum results in a system with path dependencies; a closed path in joint
or end-effector space does change a spacecraft’s attitude.

The system Jacobian was derived and shown to be singular in configurations that are
distinct from the usual kinematically singular configurations: these are due to the dynamic
coupling between manipulator motions and its spacecraft. These singularities are called
dynamic singularities and can be a serious problem for all planning and control algorithms
that do not assume active control of spacecraft attitude. Consequently, their effects must be
considered in the design of such systems. Additionally, a workspace point may be singular
or not depending on the end-effector path used to reach this point. A manipulator’s
reachable workspace is defined and is divided in two regions. In the first, called a Path
Independent Workspace (PIW), no dynamic singularities can occur; in the second, called a
Path Dependent Workspace (PDW), dynamic singularities may occur depending on the
path taken by the end-effector in the inertial space. Some notions are presented that may
help in maximizing the PIW. Finally, the effect of non-zero momentum was shown to
degrade a system’s performance gracefully, but spacecraft actuators must eliminate
periodically any accumulated momentum.

In this and the previous chapter, the characteristics and capal Z'ties of free-flying and
free-floating systems were analyzed. The next chapter deals with the problem of controi-

ling such systems.
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4 Motion Control Algorithms for
Space Manipulators

4.1 [INTRODUCTION

It is well known that one generally needs three basic elements in order to control a fixed-
based manipulator. These are, first, an invertible representation of manipulator kinematics,
which can be in the form of a closure equation or a Jacobian. Second, one may need a set
of dynamic equations describing the response of manipulator joint angles to actuator
torques or forces. Third, one must design a control algorithm using internally or externally
provided sensory information in order to calculate torques or forces required to achieve a
desired task.

In most cases, the two first elements are in direct correspondence to a system’s
“plant,” that is to an input-output description of the dynamical system to be controlied.
This description for space manipulator systems was obtained in the two previous chapters
where their kinematics and dynamics were analyzed from a fundamental point of view. In
this chapter, a fundamental approach is taken to the question of what kind of control
algorithms can be applied to the motion control of space manipulators; control algorithm
design will be based on the obtained description of the plart. Further, the analysis of the
previous chapters will be used as a guideline of what is feasible in controlling space
systems. The main issues that will be covered are controllability, controller structure,
sensory requirements, and controller robustness.

Section 4.2 analyzes the various modes of operation of space manipulator systems
and identifies the appropriate plant description for each mode. In Section 4.3, state and

output controllability of free-floating systems is investigated. In Section 4.4, the kinematic
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and dynamic description of free-floating systems is compared to the one for fixed-based
systems: the same structure between fixed-based and free-floating systems is shown, with
some exceptions. From this analysis it is deduced that nearly any control algorithm can be
applied in the control of free-floating systems, provided that some mild conditions are
observed. Also in the same section the issue of required sensory capabilities and of
robustness to disturbances and parameter variations is discussed. Section 4.5 illustrates
these results with an example of control law design for a free-floating system. Section 4.6
generalizes the above methods, treating a free-flying manipulator as a MIMO mechanical
system with redundancy. This redundancy is used to control the spacecraft and the
manipulator in a coordinated way. In Section 4.7 Coordinated Contro! for a free-flying

system is demonstrated using an example and Section 4.8 closes this chapter.

4.2 CONTROL MODES FOR SPACE MANIPULATOR SYSTEMS
In this section, the appropriate system description with respect to some control objective is
prescribed. As shown in Figure 4.1, the system to be controlled is described by some
dynamical equations which correspond to the “dynamics” block of the figure. The input to
this block is a control vector, for example actuator torques, and the output is a state of the
system, for example joint rates and joint angles. This state vector does not necessarily
represent variables to be controlled; the “kinematics” block represents a map! from the state
of the system to its output. This block is not always the same; what it really is depends
upon the task which sets the command (or set-point).

Usually two modes of motion control are implemented in fixed-based systems. In the

first mode, joint angles of a manipulator are commanded to some desired angles

1Consider the linear system dzscribed by: X = Ax + Bu, y = Cx, where x is the system state, u the input
and y the outpur. Then, the dynamics block is equivalent to the “A” matrix in linear systems, cr to the pair
(A,B), and the kinematics block to the “C” matrix.
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(command), in other words, the manipulator is controlled in its joint space. Kinematics do
nor_' Play any role in this case; the kinematics block in Figure 4.1 is just an integrator,
assuming that the dynamics block output is a set of joint positions and rates. Knowledge
of the system dynamics may improve this mode of control, although a simple PD joint
controller is in many cases adequate for this task. In the second mode, the end-effector is
commanded to move with respect to some fixed coordinate frame; the end-effector is
controlled in some cartesian or operational space [33], and the command is some cartesian

space position and/or velocity.

- Plant ~——— |
[ |
| | Command
| |
+

11.-_ ? ? Output ! »CS
| | -
: Dynamics Kinematics {

Feedback

*~
Ny

Control

Figure 4.1. General block diagram for closed-loop control.

The kinematics block contains either a Jacobian matrix that maps joint rates to end-effector
velocities, or a set of closure equations that map joint angles to cartesian space points2, or

both. Inversion of manipulator kinematics, either in the form of closure equations or in the
-«

21f Euler angles are used to represent the orientation og the end-effector, then end-effector
position/orientation is described by a 6x1 column vector, xe R™. This description is valid locally only,
since Euler angles cannot provide a global description of orientation; four parameter descriptions, for
example Euler parameters, are required to avoid singularities in the description. Also see [34,36,43].
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form of a Jacobian is required for planning or control parposes. Note that the two *plant”
blocks in Figure 4.1, are part of the actual physical system, as defined from an input-output
point of view and cannot be removed or altered; this is why it is important to have this
picture in mind. Planners or controllers invert a part or the whole of a plant, and hence
must use an available representation of these blocks. Although this is straightforward in

fixed-based systems, it needs clarification in space systems.

4.2.1 Joint Space Motion Control
Similarly to fixed-based systems, a space manipulator may operate under different modes,
differing by the control objective. In some cases, the only objective may be to command a
simple joint motion, such as when the manipulator is to be driven at its stowed position.
As in the fixed-based case, kinematics are not needed to achieve this task; simple PD joint
controllers are in general enough. If it is desired to predict the motion of the entire system,
or if a computed torque algorithm is used, one needs the appropriate equations of motion.
In the case of a free-flying system, these will be characterized by the full system inertia
matrix H* while in the case of a free-floating system by H", see Equations (2-62) and (3-
28). The “dynamics” block in Figure 4.1 contains precisely these equations.

Unlike fixed-based systems, there are two types of cartesian space motion control:
Spacecraft-Referenced End-Point Motion Control and Inertially-Referenced End-Point

Motion Control. These are discussed below.

4.2.2 Spacecraft-Referenced End-Point Motion Control

Spacecraft-Referenced End-Point Motion Control is the mode of control where the
manipulator end-point is commanded to move to a location fixed fo its own spacecraft.
That is, the position of the target or the reference trajectory is defined with respect to the
moving spacecraft. For example, in Figure 4.2 the task is to move the end-effector close to

the screw which is fixed with respect to the spacecraft. The appropriate dynamics are the
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same as mentioned in Section 4.2.1, depending on whether the system is free-flying or
free-floating. However in this mode, system kinematics are important to achieve the task.
Since motion of the space manipulator is controlled with respect to its own base, the
appropriate Jacobian in this mode of operation is identical to that of a fixed-based ma-
nipulator, called J. If the manipulator structure is solvable3, closure equations can be
equally well used to yield set-points for the joint angle control systems. Of course, since
the dynamics are different from the fixed-based case, control torques of different
magnitudes will be required. But this is a trivial difference, and one can use any controller
designed for a fixed-based system; if a computed torque method is used [43], the

appropriate dynamics must be used.

Spacecraft _kWN
V. Manipulator

Figure 4.2. Spacecraft-Referenced End-Point Motion Control.

4.2.3 Inertially-Referenced End-Point Motion Control
Inertially-Referenced End-Point Motion Control, is the mode where the manipulator end-
point is commanded to move with respect to inertial space. Kinematic descriptions that

apply to this mode were developed in the two previous chapters.

3A kinematic structure is called solvable if a closed-form inverse solution, (a map from end-effector
positions/orientations to joint angles), exists, see (S, p.46].
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Two cases may be distinguished here. The first is the one where a desired trajectory
is fixed in inertial space, but the controller receives feedback from instrumentation fixed on
the spacecraft, for example from a spacecraft-fixed camera, see Figure 4.3. Then, the
available feedback is the end-effector position as seen from the moving spacecraft, O, and
hence, the appropriate Jacobians are just °J* or °J°, given by Equations (2-35) and (3-
15c). Note that these Jacobians are functions of the configuration q only. This fact will be
used later again.

One problem with a spacecraft-fixed camera is that the target may move out of the
camera’s range. Some absolute inertial measurement may be preferred in such cases. This
can be provided for example, by an inertially-fixed camera mounted on some space
structure, see Figure 4.4.

Here the appropriate Jacobians are J* or J * depending on whether the system is free-
flying or free-floating. As mentioned above, the dynamic equations are always the same,
described by either H* or H’. Note that in this mode of control, Jacobians are in addition
functions of a spacecraft’s attitude. By far, this is the most interesting case of motion
control, and hence, in the next sections it will be assumed that the task is to follow an

inertially fixed path in a six dimensional space.

4.3 STATE/OUTPUT CONTROLLABILITY OF FREE-FLOATING
SYSTEMS

In the previous section, emphasis was placed in identifying the right plant description,
according to various control objectives. Assuming that this description is determined, the
next step is to check whether a system is controllable; a free-floating systern is assumed.
Two types of controllability are considered here, state and output controllability. These can
be defined for any type of system, linear or nonlinear, [47, p.762]. First, state

controllability of a free-floating system is examined.
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4.3.1 State Controllability

A system is state controliable if it is possible to transfer the system state from an initial state
to any other sta‘e in a finite interval of time. As will be seen later, state controllability is
related to whether joint-space control is possible. To examine state controllability for a
free-floating system, its input-output description will be used; for convenience it is

summarized here using Equations (3-28), (3-13) and (3-4):

H'@Qq + C'(q@q =1 (4-1a)
Fem = Tomo (4-1b)
%wy = -D" D, q (4-1c)
T, = Ty 0} (4-1d)

These equations are represenied in block diagram form in Figure 4.5, where 6 denotes the
spacecraft’s attitude, and the trivial linear equations are not included. The system is initiaily
atrest. Since the objective is to control a manipulator’s configuration g, © is not part of the
feedback-loop and not controlled.

The form of Equation (4-1a) suggests that it is trivial to transfer state (q, q) to any
other by an appropriate controi law. To show this it suffices to consider a decoupling law

which includes a feedforward nonlinear term and an auxiliary control input ue RN
t=C"(q,9)q + H'(Q)u (4-2)

The inverse of H® always exists since it was proven to be positive definite and therefore,

Equations (4-1a) and (4-2) result in a linear decoupled and controllable system of the form:
q=u (4-3)

Note that any state (q,q) = (q,,,,0) is an asymptotically stable equilibrium.
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Figure 4.5. Block diagram of a free-floating system in Joint Space Control mode.

To draw conclusion about the behavior of the whole system, the remaining system
states must be examined. Since it is not possible to control the position or velecity of the
system CM with internal forces, such as manipulator joint torques, r_ and I, are
uncontrollable. These states correspond to a double integrator system, with zero inputs and
zero initial conditions, that is to a marginally stable system. The states left are the
spacecraft angular velocity and attitude. Obviously, one cannot set omo independently of q
because of Equation (4-1c), but for exactly the same reason, when q—0 asymptotically
°m0—>0 asymptotically. Then duc io Equation (4-1d), Tj—T, (, that is the attitude
assumes a constant but unknown value#; stability in the motion of the sbacecraft is assured.
This analysis proves that under the assumptions of free-floating systems, the uncontroilable
states of the system span a stable space; the subspace that corresponds to the manipulator

states is controllable ana possesses infinite equilibria of the form (qdﬁ.O)-". Note that if the

4As mentioned in Chapter 3, this value also can be manipulated by using an appropriate path in the joint
space. This is due to the non-integrability of the angular momentum equation. However, the focus here is
in controlling the manipulator configuration and not the spacecraft’s attitude.

5This correspoads to the notion of stabilizability in linear systems, where one requires that the unstable
subspace of a system is controilable; in other words, the uncontrollable part must be stable, [37].
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system has nonzero momentum, the uncontrollable space is unstable. However as noted
earlier, spacecraft actuators should remove any momentura, because otherwise the system

becomes unpractical.

4.3.2 Output Controllabiiity

In the previous section it was proved that the subspace spanned by (q,q) is controllable.
However, when a system operates under one of the end-point control modes, the system
output is the end-effector position and/or velocity. Hence, the focus here is to check if the
system is output controllable, that is if the output can be taken from any initial state to any
other state in finite time. Below it is assumed that the system operates under Inertially-
Referenced End-Point Control mode.

First, the appropriate block diagram is constructed using results from Chapter 3 and
depicted in Figure 4.6. It is clear that the same remarks that were made above about the
motion of the system CM and the spacecraft hold here, too. The main difference with the
previous case is the existence of a kinematics block, described by Equations (3-14) and (3-

15), and repeated here:

x=Jgq (4-4a2)

Y = diag(T, Tp) °J*(q) (4-4b)

where xe R® is the end-effector velocity. Kinematic equations relating attitude variables to
angular velocities also must be used; these equations are represented here by an integrat(;r
block, see Figure 4.6. Next, the effect of this Jacobian on a system’s output controllability
is analyzed.

As done above, one can use the control law (4-2) to linearize and decouple the
system. Also, Equation (4-4a) can be differentiated once more to yield the end-effector

acceleration as a function of q and q:
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X=Jq+7§ (4-5)
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Figure 4.6. Block diagram of a free-floating system operating in Inertially-Referenced

End-Point Control mode.

Assume that the system is linearized around an equilibrium point, for example around (q,
0). Then J' is almost a constant and the above can be written as X = J* @ Multiplying
the two sides of Equation (4-3) by J* and substituting X for J*§ the following linearized

equations of motion are obtained:
X =J'u (4-6)

This system can be written in the standard form for linear systems as:

AR AN



CHAPTER 4 111

= A [:] +Bu (4-7b)
where the state of the linear system is a 12x1 vector. Applying the controllability rank
condition to this system, one can easily see that unless J* has rank 6, the system described
by Equation (4-7) is uncontrollable. If this rank is r<6, then the controllable subspace has
order 2r<12, in other words only r coordinates and the corresponding velocities can be
controlled. If the manipulator is not redundant (N=6), J’ is square, and hence it must be
nonsingular. However, in Chapter 4 it was shown that J' can become dynamically
singular at some configuration. Then, at these points the system is output uncontrollable.
As shown in Chapier 4, this problem can be avoided by working at the Path Independent
Workspace, because there J* is guaranteed of full rank.

It has been noted that reaching a point in the Path Dependent Workspace may or may
not be possible, depending on the path taken by the end-effector. This is not in
disagreement with this analysis, since this is local by nature. Some global technique may
yield a path that conceivably can take any initial state to any desired one; such 2 path may be
feasible for a nonlinear system although it is not for a linear one. Finally, note that a
similar analysis can be done for the other modes of control, discussed in Section 4.2, with
similar results. The next section deals with the nature of control algorithms for free-

floating manipulators.

4.4 THE NATURE OF CONTROL ALGORITHMS FOR FREE-
FLOATING SYSTEMS

In the above section, state and output controllability of a free-floating system was assessed.
Assuming that the system operates in a domain where it is controllable, the next question is
what kind of controllers one can use and what kind of feedback is needed to accomplish

this task.
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It can be argued that if a free-floating space manipulator and a fixed-base manipulator have
the same dynamic and kinematic structure, then a control law which can be used for that
fixed-based manipulator is theoretically suitable for the space manipulator. Hence, the
structures of the dynamic and kinematic equations of free-floating manipulators are
compared to the ones correspending to fixed-based manipulators. By structure it is meant
that the matrices of the dynamic equations and the Jacobian of the two manipulators have
the same order and symmetry and depend upon the same variables. Of course, the
numerical values of the elements of the matrices of the free-floating space systcra will have
different values. For example, the elements of the dynamic matrices H® and C*, will be
different from those of the similar matrices of the fixed-base manipulator, H and C, since
H* and C* depend in part on a spacecraft’s mass properties. As a result, the same torque
vector T will produce different joint accelerations in the two systems. Also, since the
applicability of fixed-base controllers does not depend upon the existence of gravity, it can
be neglected for the purposes of this comparison. Here it is assumed that the control mode
is the one described in Section 4.2.3, that is inertial motion of the end-effector. Similar

results hold for the other modes, see also [48,50].

4.4.1 Comparison of fixed-based and free-floating systems
This comparison is rather straightforwaid; it is only required to compare J andH 10
and H, that is to the Jacobian and inertia matrix of the same manipulator with a fixed base.
It has been shown, see Chapter 3, that the minimum number of equations describing
the dynamics of the N+6 DOF system is N for an N DOF manipulator, the same as for a
fixed-base N DOF manipulator. As proved in Appendix F, H® is an NxN symmetric
positive definite matrix, function of the system configuration q only, that is it has the same
structure as the inertia matrix H of the same manipulator with a fixed base. A slight
difference, important to some adaptive controllers, will be discussed in section 4.4.2.

Finally, since C" is derived from H®, it will have the same form as the fixed-base C which
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is derived from H, see also Appendix F. Hence, the dynamic equations of both systems
have the same structure as defined above.

If the spacecraft becomes very large, mg and I approach infinity, an. H*® and C”
converge to H and C. To show this, note that in such a case D, the total system inertia
becomes large. Then the second term in the defining equation for H® becomes zero. Also,
M, the total system mass becomes large and all y, in Equation (2-6) are equal to 1
(i=1,...N+1) and barycenters move to the joint closer to the spacecraft. It is easy to show
that in such a case, °qu (=qu), converges to H. This should be expected, because a
very large spacecraft will not react to its manipulator’s motions and the system will behave
essentially as a fixed-base system. Further, the order of the system remains fixed and
eaval to N, independent of the size of mg and ;.

Also in Chapter 4 was shown that %3*(q) is a 6xN Jacobian which is a function of
both the manipulator configuration, q, and of the system mass and inertia properties. If
N=6, then °J*(q) becomes a square matrix. T, depends on the spacecraft attitude, which
can be measured or estimated using Equations (4-1c,d). It is unnecessary to use spacecraft
attitude where the inertial motion is measured with respect to the spacecraft frame, see
Section 4.2.3. In that case the Jacobian required is simply % (@).

It is well known that the Jacobian, J, of a fixed-base manipulator is a 6xN matrix that
depends on q and the link lengths of the manipulator. J* or 03%(q) has the same dimen-
sions as J and also depends on q as well as on the %v;, vectors, scaled by the °Dij
(1,j=0....,N) inertia matrices. This means that the free-floating system differential
kinematics, although complicated, have the same structure as the kinematics of the same
manipulator with a fixed base.

If a spacecraft’s mass and inertia, mg and I, are large, T, approaches a constant
matrix and diag(To,To)oJ'(q) results in the normal fixed-based manipulator Jacobian.
Mass and inertia dependencies vanish. This can be shown using the same as above

arguments, in connection to Equation (3-15).
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The above analysis confirms that the kinematics and dynamics of free-floating and fixed-
based systems are essentially the same, with some minor exceptions. These are

summarized below:

1. Terrestrial fixed-base manipulator Jacobians depend on the joint angles q, only. In
space, system Jacobians also depend on spacecraft orientation. This orientation can
be calculated, or measured on-line by additional sensors. No such procedure is
needed for fixed-base systems.

2. In general, the knowledge of kinematic parameters, such as link lengths, is enough
for fixed-based manipulator contrcl purposes. In space, this is not enough. The
Jacobian of free-floating space system depends on its dynamic properties, such as
the masses and inertias of its spacecraft, and on its manipulator’s link lengths. In
addition, system dynamics are more complicated and depend on products of inertias
which increase the error in obtaining the mass matrix. External sensing or on/off-
line parameter identification, see [7,68], can be very important for space systems.

3. Singularities are functions of the kinematic structure of the terrestrial fixed-base
manipulator only. In space, dynamic singularities exist that depend on the mass
and inertia distribution. A point in a free-floating system’s workspace can be
singular or not depending upon the path taken to reach it. These singularities
represent physical limitations and render a system uncontrollable; hence they must
be avoided. Terrestrial and space workspace sizes and structures are not the same.

4. Many controllers implemented in fixed-based terrestrial systems, use an invertible
closure equation to map desired workspace points to manipulator joint angles.
These joint angles are fed to the servo of a manipulator as set-points. The path
from one point to another may not be known, but the final point will be the desired
one. This type of control is called “point to point” control by [15]. However, in

the case of free-floating manipulators, such a map between g and x does not exist,
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because workspace locations are functions not only of the configuration q but also
or the spacecraft attitude, which depends on the system’s history, see Equation (3-

10). This characteristic does not allow the use of “point to point” control.

So far it has been shown that the dynamics and kinematics of free-floating systems are
described by equations that are same in structure with their counterparts in fixed-based
systems, see Equations (4-1a) and (4-4). Also it has been shown that the matrices in these
equations have the same structure to the matrices that correspond to fixed-based systems,
with some minor exceptions. Hence, this analysis confirms that nearly any control
algorithm that can be used for fixed-base manipulators can also be used for free-floating
manipulators, provided, of course, that the appropriate matrices are used. For example,
laws like resolved rate [69], resolved acceleration [43], impedance control [25], or simple
PD and PID algorithms [4], including adaptive control [13,57], can be used if one uses the

appropriate Jacobian and inertia matrix.

4.4.2 Sensory requirements and robustness issues
Required Measurements. The statement that nearly any control law can be used in
free-floating systems has certain implications upon the kind of sensory information
required. Assuming absolute knowledge of geometry, mass and inertia properties,
measurement of q and q is in general enough, as is for fixed-based systems. For example,
if spacecraft attitude is needed, se- Section 4.2, it can be estimated using Equations (4-
1c,d) if a system’s properties are known.

Attitude Measurement. The requirement for an exact knowledge of a system’s
parameters can be relaxed by allowing measurement of additional variables. Since it is
harder to identify inertia properties than mass properties, spacecraft attitude can be

measured instead of being estimated. In such a case, measurement of attitude and
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knowledge of mass and geometry properties is in general enough. This information is in
general available in space system.

End-point feedback. If system parameters are not known with sufficient
accuracy, end-point position and/or velocity for closed-loop control in the cartesian space is
required. Note that the same is true for fixed-based systems, when the kinematic properties
of the system are not known with sufficient accuracy; exact knowledge of mass and inertia
properties is desirable but not absolutely necessary.

Some authors have suggested that end-point feedback is essential to free-floating
systems due to either the existence of a “nonholonomic constraint,” or to “history” depen-
dence of the end-effector location, [3,44]). However end-effector position and attitude can
be known to a system’s controller even if it relies entirely upon internal measurements, see
Enuations {3-10) and (2-20a); the only requirement is that geomeiry, mass and inertia prop-
erties of the system must be known with high accuracy. Hence, one can conclude that end-
point sensing is needed for robustness reasons and is not due to the nature of the problem.
This observation is important in view of the fact that it is very difficult to have inertial end-
point-feedback in six DOF throughout a system’s workspace. Until effective sensing
techniques are developed, end-point sensing will remain a research issue.

Adaptive Control. Some advanced adaptive controllers for manipulators rely on
two “extra” properties [13,57]. First, matrix H'- 2C* must be skew-symmetric. As
shown in Appendix F, the first property holds. The second property requires that dynamic
matrices are linear in the unknown geometry, mass and inertia parameters. This property

allows one to write:

H'@Q)q + C(q.@)q = Y(q,q. ) a (4-8)

where a is a vector that contains all unknown parameters; the equations of motion are

written in a linear parameter space. However, due to the definition of H’, see Equation (3-
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26), this property does not hold. Nevertheless, an adaptive controller can still be applied,
if one uses the last N equations of the unreduced system, given by Equations (2-62),

because these are linear in the unknown parameters:

H'(@) § + C*(2,0) @ = "Dy(@)" %y + D (@)q + C3 (q, "0, &) =
= Ya (4-9)

In the above, the spacecraft angular velocity is not eliminated, and therefore, oa)o must be
measured in addition to q, q. (Some algorithms require additional measurement of
accelerations, for example [13]). These conditions are enough for designing an adaptive
algorithm capable of tracking in the joint space. To guarantee tracking in the inertial
workspace, system Jacobians must be known accurately. Since J* is a function of the
mass properties of the system, algorithms which assume perfect knowledge of the J° may
not track in inertial workspace. This limitation may be solved by writting the end-effector
velocities as functions of the spacecraft linear and angular velocities and not of those of the
system CM, and by measuring the spacecraft coordinates and velocities.

Robustness to disturbances. As noted earlier, turning off a spacecraft’s
controller is only viable in the absence of external disturbances. Although the system may
not fail fatally if a disturbance occurs, jet actuators must take over in such a case, and
therefore the system will not satisfy the definition of a free-flcating one any more.

In conclusion, if system parameters are sufficiently known, intemally provided
feedback is enough to control a system, using any controller. Additional measurements are
required if this assumption does not hold. These measurements include either a
spacecraft’s attitude and angular velocity or end-point feedback, depending on the
algorithm used. Finally, to eliminate the effect of disturbances (external forces/torques)

spacecraft actuators must be used.
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4.5 EXAMPLES

Here the five-DOF example system of Section 3.8 is used to illustrate the key results of the
previous sections. System parameters are given in Table I. First, the structure of the
Jacobian and inertia matrices are compared against the same matrices, derived for a fixed-

based manipulator. As shown in Section 3.8, Jis given by:

. cos(0) -sin(0) .
J'8,q) = () (4-10a)
sin(0®) cos(0)
D,+D D
-(Bs,+Ys,)+(Bs;+7s,,) _%-_L Y815+ (Bs;+Ys,5) D_2
°I(q) = (4-10b)

D,+D D

Since the inertia terms D, (i=0,1,2) and D are functions of q, the Jacobian elements are
more complicated functions of the q than their fixed-based counterparts. J * should be

compared to the fixed-based manipulator J which is given by:

J(@ = [ ] (4-11)
(1,4r))c +(,+15)c,,  (lp+ry)c,
It can be seen that J° and J have the same structure, as defined above.
H' is given by Equation (3-41) and repeated here for convenience:
(D,+D,)? D,(D,+D,)
dy+2djp+dyy - L2 djptdyy-
H(q) = ) (4-12)
djp+dy; - m da - 21%'

Direct examination of all the terms in H® shows that it has the same structure as the fixed-

base inertia matrix H, whose elements are given by:
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hy; hyy
H(q) = (4-13a)

hy, hj,

hy, = L+m, 1 2+my(L+1,)>+2myly (1, 41, )cos(qy)+1,+m, L,

hy, = hy, = “‘2‘2(11"'1'1)"':’S(‘12)*'12""'”2".22
hyy = Lyrmyl,? (4-13b)

At the limit, when both m, and I, approach infinity, it is easy to see that my/M— 1,
m,/M—0, my/M—0, B—(,+r,), y=(,+1,), i.e., they approach the manipulator link
lengths, Dy/D—1, D;/D—0 and D,/D—0; T, becomes a constant transformation from the
manipulator base frame to the inertial frame, usually the unit matrix; and hence, J°>J, the
fixed-base manipulator Jacobian, and H*—H, the mass matrix of the fixed-base
manipulator, as given by Equations (4-11) and (4-13).

Next, the attention is focused on control. Inertially-Referenced End-Point Control is
assumed here. One can select any control algorithm that can be used for fixed-base
manipulators, using the two matrices H' and J*. In this case, the Transpose Jacobian
Control will be used, augmm;wd by a velocity feedback term for increased stability margins
[14]. The end-point position and velocity, x and X, can be calculated or measured directly.

Assuming x and X are measured, the control law is:
t=JT{K, (%, -0 -Ks%} (4-14)

where x,,, is the inertial desired point location. The matrices K, and K, are diagonal.
Note that this algorithm drives the end-point to a desired location, but does not specify a
path. If the control gains are large enough, then the motion of the end-point will be a

straight line. First, the end-point path will be restricted to the PIW part of the workspace,
and hence dynamic singularities will be avoided.
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Figure 4.7 shows the path of the end-point from the initial location (1,0) to the final
(0.8,0.8). The control gain matrices are Kp = diag(5,5) and K4 = diag(15,15), and the
initial conditions are (6, q,, q,) = (39.6, -134.2°, 134.4°). The end-effector path, shown
with a heavy line, is almost a straight line and converges to the desired location. Shown
also is the end-point path that results when the control law given by Equation (4-14) uses
the fixed-base Jacobian given by Equation (4-11). In this case, the end-effector diverges
from the straight line because it does not resolve the error term correctly; it still converges
to the desired point due to end-point feedback. Depending on the situation, the use of the
fixed-base Jacobian can create stability problems [44].

y (m)

00 T
08 0.9 1.0

X (m)

Figure 4.7. End-effector path in inertial PIW space, using J*and J.

Figure 4.8 shows the spacecraft attitude 0 and the joint angles as a function of time, during
the end-point motion depicted in Figure 4.7, when J* is used. Note that although the
spacecraft attitude changes by about 35°, the end-point converges to the desired inertial
location as it would do if its base were fixed. Figure 4.9 shows the system in inertial
space. The origin is fixed at the system’s CM. The spacecraft is depicted as a square and

the initial and final manipulator configurations are shown in bold lines. The end-effector
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moves from point A to point B and the path is as shown in Figure 4.7. Note that during

the manipulator motion the spacecraft translates and rotates.
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Figure 4.8. Spacecraft attitude  and joint angles q, and g, during a motion in the PIW.
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Figure 4.9. Sysiem configurations following a path in PIW .
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Next, the same control algorithm is used but this time the path lies in the PDW. The
manipulator end-effector is commanded to reach workspace point D(1.5,1.5) starting from
the initial location of A(2,0) with initial attitude (6, q;, q,) = (21°,-58°, 60.3"). As shown
in Figure 4.10, the end-effector initially moves along a straight line in the reachable
workspace, leading to point D. However, at point B a dynamic singularity occurs and the

end-effector fails to keep on line AD; instead it diverges to point C where it stops.

1.5 1

0.5 1

0 . T . T . T %
1.3 1.5 1.7 1.9 2.1

- X (m)

Figure 4.10 Dynamic singularity at point B results in large unrecoverable end-point errors.

By looking at the slopes of joint angles in Figure 4.11, it can be seen that the joint rates
increase as the configuration q moves closer to a singular one. Note that the first
singularity occurs in about t = 5 sec, at a point where (8, q;, q,) = (-32.38", 74.24,
10.60"). This configuration is indeed singular as can be seen with the help of the singular
configurations plot, given by Figure 3.2.
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(degrees)

1,

e, 9.
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Figure 4.11. Spacecraft attitude 0 and joint angles q; and q, during a motion in the PDW.

At point B, the system is output uncontrollable and the end-effector follows the only
available direction whose slope is -25.34° to the horizontal. Notz that the end-effector does
not stop at point B because its acceleration at this point is still parallel to line AD. Trying to
get back to its track towards point D, another singularity occurs and the joint angies
oscillate around their steady state values which are (8, q,, g,) = (-39.29°, 88.81",
10.60"), see Figure 4.11. This effect can bz explained by transforming the equations of
motion in the cartesian domain. Indeed, Equations (4-14), (4-5) and (4-4a) are substituted
in Equation (4-1a) and assuming for simplicity that the control gains are larger compared to

the nonlinear velocity terms, the following error equation can be written:
e+ 'HJ'DK e + J°H™! J-'-‘)er =0 (4-15)

where e = x, -x. If the configuration and the joint angles do not change much, this is a
linear second order system. This system has not only the obvious equilibrium e = 0, but

also any other e which belongs in the null space of J'H"'J*TK . Such points do exist
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because it was proven in Chapter 3 that J° is not of full rank in dynamically singular
configurations. Recall that K, and H*-! are positive definite and therefore are always of
full rank. Hence, the end-effector is attracted by the equilibrium at point C, see Figure
4.10. At point C motion stops because er is in the null space of J*T and the torque input
is zero; the end-effector is stuck at point C.

Figure 4.12 shows the motion of the whole system in cartesian space; the path is the
same as in Figure 4.10. Note that the path is in the PDW and that g, at the separation point
B is approximately 10.60°. An algorithm using a Jacobian inverse either for planning or
for closed-loop control would fail computationally at a location like point B. This problem

cannot be overcome because dynamic singularities represent a physical limitation.

Yi Reachable
Workspace

ol Final
gg:ition Spacecraft
Position

Figure 4.12. A path in PDW results in a dynamic singularity at point B.
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To prove that point D is still accessible from point A, one can work as follows: First, since
point D is in the reachable workspace, start by any configuration that corresponds to point
D and command some desired location lying in the PIW; such a path can always be found.
Then move from point A to the same point in the PIW; this will in general result in a
different system configuration than that during the previous motion. Since the end-effector
is in the PIW no singularities will occur if one moves the end-effector alon g a small cyclical
path around that common point in the PIW, see also [65]. This cyclical motion will change
the spacecraft’s attitude and after some time the configuration that resulted from ore of the
two motions will be identical to the one that resulted from the other. Then, working
backwards, the end-effector will move to point D withoat any problems. Of course, this
methed is not efficient, but it is described here to show that paths from A to D do exist.
Following the above procedure, any control algorithm that employs the system’s H®
and J* can be designed. However, control methods that depend on cancellation of terms,
e.g. computed torque methods, require the exact system inertia matrix H*, and thus
emphasis must be placed in its computation. This can be done by either off-line or on-line

identification or by using adaptive control.

4.6 COORDINATED CONTROL FOR FREE-FLYING MANIPULATORS
In the previous sections the fundamental nature of control algorithms for free-floating
systems was studied. In this section it is assumed that the spacecraft is using its actuators
which are capable of applying a force at its CM as well as a torque around it. Forces can be
generated by thruster (jet) actuators, while torques may be generated by thruster actuators,
momentum gyros or reaction wheels. The two last methods have the advantage of using
electric power that can be available from solar panels; their drawback is that they have
limited torque capabilities; momentum wheels rﬁay saturate, revolving at the maximum

angular velocity and momentum gyros may reach their maximum control angles (90°). In
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those cases momentum dump maneuvers must be performed using spacecraft thruster
actuators. For more details on this subject, the reader is referred to (71].

Spacecraft actuators are required for the following reasons: (a) To keep a spacecraft’s
attitude and/or position fixed, since in some cases it may not be desired to let a spacecraft
rove, (for communications or safety reasons). A fixed spacecraft greatly simplifies
manipulator control but has the drawbacks that were pointed out in Chapter 3. (b) To move
the entire system freely in space (free-flying system). (c) To compensate for external
disturbances. (d) To apply useful forces to cther bodies or structures or to prepare for
docking.

The approach taken in the previous sections can be extended and used here, too;
controllers will be designed based on a system’s kinematic and dynamic descriptionS,
obtained in Chapter 2. This is quite straightforward, although one should provide some

way of resolving a system’s redundancy.

4.6.1 Dynamic Modeis for Control

For simplicity, it will be assumed that external forces on the system are due to spacecraft
thrusters and to forces acting at the end-effector. Of course, any other forces or torques
can be modelled in the same way. Since thrusters are fixed with respect to the spacecraft
trame °J§(q) must be used in the equations of moticn. Forces at the end-effector tip are
assumed fixed in inertial space. Using Equations (2-61), (2-62), (2-30b), (2-34) and (2-

35) the cquations of motion for a free-flying system are written as:

H*(q) Z, + C*(q, %0y, q) = Q (4-16)

6The formulation presented in Chapter 2 is well suited for free-floating systems because in the absence of
external forces the equations of motion are naturally decoupled. This is not always the case in the presence
of forces and torques, since these affect both the translation of the system and its change of configuration.
It should be noted that some other kinematic and dynamic description of the system can be used to design
controllers for a free-flying system. For example, instead of using the system CM to describe the system’s
translation, one can use a fixed point on the spacecraft. Which formulatior is better is not clear; sometimes
it is a matter of preference.
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where 11, is a vector that contains the independent velocities and is given by:

'..Cﬂl
zy = | %, (4-17)

q

Equation (4-16) describes in the most general way the motion of & free-flying manipulator
system under the effect of external forces and torques and internal actuator torques. The
generalized forces Q are decomposed into the unknown disturbance forces, Q, and the

control forces, Q_:
Q=Q. +Q (4-18)

The control forces include the spacecraft’s thruster forces and the manipulator’s joint
torques. To simplify the notation, S is used to represent for the CM of the spacecraft, see

also Equation (2-30). Then, the control forces can be written as:

Tr-9
0 fs

0
T ofs 1 J11,s ole.s 0
Q. = Jq ng|=10 1 0 ng (4-19)
T 0 0 1 T

where ofs and 0ns are the thuster forces and torques applied to the spacecraft, expressed in
its frume. Forces can be generated by thruster actuators, while torques may be generated
by thruster actuators, momentum gyros or reaction wheels. Note that Jq is square and
always invertible.

Similarly, the disturbances can be modeled using Equations (2-62). For simplicity, it

is assumed here that disturbances act on the end-effector only. Then, these are given by:

+ T fE
Q; = J¥(en,q) (4-20)
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Equation (4-16) is the “engine” that can be used in any type of conirol: it describes the way
accelerations depend on inputs (°f5,%ng,t) and unknown disturbances, (fg,ng). A
controller must calculate a required set of thruster forces and torques and a set of
manipulator joint torques that will move the end-effector along a desired path and reduce
the effect of disturbances. Disturbances in space are generally very small, [65]. However,
when a manipulator system is docking to some object, interaction forces will result and

then they must be compensated for by a spacecraft’s thrusters.

4.6.2 Cocrdinated Motion Contro!

The similarity between Equation (4-16) and the equations of motion that correspond to a
fixed-based manipulator leads to an investigation of whether control laws that are applicable
in the latter case also can be used in the control of space robotic systems. However, two
differences between the two situations must be pointed out. The first is that an appropriate
representation of a spacecraft’s attitude is needed, e.g. Euler angles, Euler parameters, etc.
The second difference is that, due to a spacecraft’s mobility, a space robotic system is
inherently redundant. This redundancy can be used to achieve additional tasks; here it will
be used to control a spacecraft’s location and attitude by augmenting the system output.
This has the advantage that the location and attitude of the spacecraft can be controlied to
follow some prescribed plan, and hence, impacts can be avoided. In addition, by planning
a spacecraft’s motion, the end effector can reach a point while its manipulator assumes
some desired configuration. For example, this scheme may allow a manipulator to be in a
configuraticn suitable for applying some forces or to avoid singularities.

Equation (2-34) is used to control the end-effector position and orientation, an
important task in free-flying manipulation. As noted in Chapter 2, even when the
manipulator has six DOF, (N=6), J* is not square and therefore is not invertible, although
its rank is always six. If N=6, then J* is a 6x12 matrix. The additional control

requirements of controlling the spacecraft location and attitude are introduced by adding
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C3%, the Jacobian relating z, to spacecraft linear and angular velccity, Rg, and g = @,
This Jacobian is obtained from Equation (10) by setting the subscript S to stand for the
spacecraft’s CM, (k=0 and m=CM).

e 1 9y, (;-112
. [0} . . .
7, = R: = diag(T T To T ‘: o 1 . Ja2 |3,=0,2, (@21)
1,s Y128
©g 0 1

where Z, is the vector of output velocities. The Jacobian J, is an invertible 12x12 matrix,
unless the manipulator is kinematically singular, and relates input to output velocities
providing a basis for controlling a free-flying system. Different control requirements can
be appended in the same way.

Equations of motion (4-16) and Jacobians given by Equation (4-21) can be used to
apply various standard motion control techniques, in a way similar to Khatib’s
“operational” approach [33], where a Jacobian map relating generalized joint velocities to
operational velocities is used to design controllers in the cartesian space. In this case,
Equation (4-21) is used as a map between the selected state variables z, and the output
variables z,. Then, based on this map, a controller operating in the z, domain can be
designed.

Here, a Transposed-Jacobian type controller with inertial feedback is designed to
demonstrate this technique. The equations of motion in the z, domain can be found by

substituting Equation (4-21) into Equation (4-16) to obtain the form:
iz, +C=QN'Q, (4-22)
where C contains the nonlinear terms and H is given by:

fi = gHTH I (4-23)
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This inertia matrix is positive definite if J, is nonsingular. An error e is defined in the

output domain z, as:
€= Z .7 (4-24)

where z; is provided by inertial feedback, and z, 4, is the desired inertial point. It is
assumed here that inertial measurements of the position and orientation of the spacecraft

and the end-effector are available. Then, if the input Q, is iaken to be:
Q =J{B®Ke+Ke+%,,) + ] (4-25)

where Kp. K are positive definite diagonal matrices, then the error dynamics are given by:
e+ Kje+Ke =0 (4-26)

and therefore the error converges asymptotically to zero. Equation (4-25) is a modification
of the operational space controller, [33). If high enough gains are used, the simpler

Transposed Jacobian controller can be used, [14]:
Q. = J] (Ke + Kz (4-27)

Note that if a singularity is encountered, the controllers given by Equations (4-25) and (4-

27) will result in errors but will not fail fatally. If some small disturbance acts on the

system, a small steady state error is expected, because these controllers are basically PD

controllers. Finally, the reaction jet forces and torques and the joint torques can be found

by inverting Equation (4-19). Assuming that Equation (4-27) is used, these are given by:
ofs

Ong | = AT (Ke+Ke) (4-28)
T
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The inversion of Jq is possible since this Jacobian is always nonsingular. Equation (4-28)
is the final result that permits coordinated control of both the spacecraft and its manipulator,
based on inertial measurements of the spacecraft and end-effector locations and
orientations. If no such measurements are available, the error e can be estimated by
integrating in real time the equations of motion, but then errors due to model uncertainties

will be introduced. This method of motion control is demonstrated with an example.

4.7 EXAMPLES

As an example of the general framework outlined in the previous section, a controller will
be designed capable of controlling a spacecraft’s position and attitude and simultaneously
the motion of its manipulator’s end-effector. To this end, the example system introduced in
section 2.5.2 and shown in Figure 4.13 will be used. Its kinematic, mass and inertia
properties are given in Table I. The spacecraft is assumed to be equipped with thrusters
that can previde forces and torques proportional” to the commanded control input. The
equations  f motion for this system are given by Equation (2-88), see also section E.2. In
this case the independent coordinates vector, Z, and the vector of coordinates to be

controlled, z,, are:
Zy = loxcm’oycm'e’ql'qZ]T’ ) = [xS’yS’e'xE’y E]T (4-29)

where %__and % m are the system CM coordinates with respect to an inertia frame, 0 is
the spacecraft’s attitude, q,,q, are the manipulator joint angles, Xg,Ys are the spacecraft’s

CM coordinates and finally xg,yy are the end-effector’s coordinates.

TIn practice, this can be achieved by aajusting the pulse duration of the thrusters. For example, for some
particular thrusier with minimum pulse dwration of 30 ms and minimum impulse bit of 0.5 Ibf-sec, the
minimum force is 0.003 N, see [38).
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Controlled 2 DOF Manipulator

Figure 4.13. A two-DOF manipulator on a three-DOF free-flying spacecraft.

The Jacobians J and J, required by the controller of Equation (4-28) are derived using
sub-Jacobians derived in Appendix E. The result is given here:

0 1 B+ec,+fc,, ec,+Lcy, Ccyy
= 0 o 1 0 0 (4-30)
0 O 0 1 0
-0 0 0 0 1 =

Fcose -sin@ O

00
sin® cos® O 09
J, = 0 0 1 00

0 0 cosO -sin6 0
. 0 0 sin® cosO O

0 -es;-Usyy -esy-Usyy Ly |

1 8+ec,+lc,, ec +lc,, Ly

0 1 0 0 (4-31)
0 -PBsy-vsyy -Bsi-1si2 512

1 a+Pcy+yc,, Bey+yc,;, YO, o

O e OO =

where s, =sin(q,), ¢,5 = cos(q,+q,;. etc. Both Jacobians are 5x5 matrices and functions
of the barycentric vectors a.8,Y,3,€,(, defined in the Appendix. Simple inspection reveals
that .]q is always nonsingular, and that J, is nonsingular unless s, = 0, which corresponds

to a kinematically singular manipulator.
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The controller described by Equation (4-28) is used to calculate the required reaction jet
forces and torques, °fg and °ng, and the manipulator joint torques, . It allows the
specification of a desired trajectory for both the spacecraft and the manipulator. Hence, the
motion of the whole system can be coordinated. If the given trajectory is not feasible, the
desired motion will not be achieved, but the controller will try instead to come as close as
possible to the specified trajectory.

In the simulations that follow, the incrtially fixed frame is set at the position of the
system CM at the initial time, when (8,,,9,) = (21°,-58°,60.3") and the end-effector is at
(2.0, 0.0). Hence, these results are comparable to the ones in section 4.5. In this
coordinate frame, the end-effector is commanded to move to point (1.5, 1.5). The
spacecraft is commanded to move to (,xg,ys) = (15,0.5,0.5). The gains used are K =
diag(30,30,30,30,30) and K, = diag(60,60,60,60,60). It is assumed here that no
disturbances are exerted on the system. Figure 4.14 shows the motion of the system in
inertial space. The end-effector converges along a straight line to the desired point, while

the spacecraft assumes the desired location and attitude.

Final

spacecraft B Final location
position |

Initial
spacecraft
position

Spacecraft Center
of Mass

Figure 4.14. Coordinated spacecrafi/manipulator motion of the example system.
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Note that if the spacecraft were fixed at its initial location, the end-effector would have
reached point B in an almost singular configuration. If the spacecraft were free-floating
and its reaction jets were turned off, then point B could not have been reached from point A
following the straight line path, due to the existence of dynamic singularities. In contrast to
these schemes, coordinated control permits the end-effector to reach point B in a favorable
configuration, away from singularities.

Figure 4.15 shows the error in the spacecraft’s position and attitude during the end-
effector motion. These errors are eliminated in about 12 sec. Figure 4.16 shows the
reaction jet forces required to move the spacecraft during the first five seconds of the
maneuver. Since the error corverges asymptotically to zero and no disturbances act on the

system, the reaction jet forces approach asymptotically to zero as soon as the motion stops.

Time (s)

Figure 4.15. Motion of the spacecraft during the maneuver shown in Figure 4.14.
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Figure 4.16. Thruster forces required during the maneuver shown in Figure 4.14.
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By changing the spacecraft set-point, the spacecraft is commanded not to move. Figure
4.17 shows the error in the spacecraft’s position and attitude during the same end-effector
motion as above. As shown in Figure 4.17, small deviations from the initial position of the
spacecraft are eliminated when the manipulator stops.

Oﬂﬁ
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Figure 4.17. Sinall motions of a spacecraft during a manipulator maneuver.

Next the same manipulator maneuver is simulated but this time a constant disturbance force
of (-1.5 N, -0.5 N) is exerted on the end-effector tip. The spacecraft is commanded to
remain fixed. Such assumed constant forces are not expected in space; nevertheless here it
is desired to see what is the effect of such a severe assumgption. The end-effector trajectory

is shown in Figure 4.18.
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Figure 4.18. End-effector misses the desired location due to a disturbance.
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Note that the desired location (1.5, 1.5) is missed because a PD results in steady state
errors in the presence of constant disturbances. Figure 4.19 shows the required thruster
forces. It can be seen that thrusters continue operating after the end of the motion in order
to cancel the disturbance. Note that the two components of the thruster forces, °fx and ofy
are not equal to the components of the disturbance, because these are fixed at the spacecraft
frame, while the disturbance was assumed of fixed direction in inertial space. This
constant thruster operation is undesired because the life of the system is greatly reduced.

However, this required to compensate for disturbances or o apply useful forces in space.

a & 9w e
=t

Thruster forces ° £, °f, (N)

Time (s)

Figure 4.19. Thruster forces required to keep a spacecraft fixed, in the presence of

disturbances.

The same as above steps can be followed to design a controller to control some other
variables. To do this, first define an appropriate vector z, and a transformation Jacobian J,
given by Equation (4-21). The new error e is then defined by Equation (4-24) and the
control forces are given by Equation (4-25). In this section, a ransposed Jacobian-based
controller was used for simplicity. However, other controllers can be equally well used, if
z, and J, are properly defined. For exampie planning algorithms, like the ones based on

resolved-rate control, can be used to generate desired spacecraft positions, attitudes and
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joint angles which can be fed to thrusters and joint servos. Other control laws like resolved

acceleration, impedance and adaptive control laws can be used equally well.

4.8 SUMMARY

A fundamental study has been performed of the characteristics of control algorithms which
may be applied to the motion control of space manipulators. The results obtained show that
nearly any control algorithm which can be applied to conventional terrestrial fixed-base
manipulators, with a few additional conditions, can be directly applied to space manipu-
lators. The steps required to do this include the identification of the right inertia, Jacobian
and transformation matrices. These elements also can be used to find the feasible motions
for the system, and avoid commands that are physically impossible. It is hoped that these
results will encourage the development of more effective control algorithms for space

manipulator systems.



138 CHAPTER 5

5 Failure Recovery Control for
Space Manipulators

5.1 [INTRODUCTION

In space systems, it is very important to be able to tolerate failures of such systems and
their components, since such failures can jeopardize an entire mission. These systems are
often designed with redundant subsystems and componensts to give them higher reliability.
They may be also designed to operate after a failure, but with reduced capabilities. For
example, imagine the consequences of a failed Space Shuttle manipulator actuator so that it
cannot drive the manipulator back into its stowed position. In such a case it would be
highly desirable to be able to use the working manipulator joints to control partially the
system and “‘recover”” some of its functions. In this chapter, the question of the control of a
space manipulator system after a failure of cne of its joints functions is addressed.

A possible scenario for failure recovery control is as follows: The i'h joint of a
manipulator system fails in some way, such as its actuator, controller or control circuitry,
but its brakes and encoders still function. Then, assume that working joints can be used to
control the i joint, and drive this joint to some point, where it is locked using the brakes.
It could then be stowed using the system’s other actuators. The joint could also be driven
to some “optimal” joint position determined according to some criterion, for example to
maximize a broken system’s workspace. The system could then be used with a reduced
number of DOF, and hence the system “recover” to some extent from the failure. The basic
thrust of this chapter is to show that such failure recovery control is possible and to identify

conditions that are required for its use.
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5.2 SYSTEMS WITH FEWER CONTROL INPUTS THAN OUTPUTS

The situation introduced above can be recognized to be a subset of a more general problem,
which is the control of systems having fewer actuators than DOF. Such instances may
occuy for example in the control of walking machines, where the “joint” formed oy a leg
touching the ground may be uncontrolled, or where some DOF may be passively controlled
by springs and/or dampers. Similar situations can be found in the control of flexible links,
where one actuator is supposed to stabilize an infinite mode system, etc. Next, some
interesting cases where the number of control inputs is smaller than the number of

controlled variables are discussed.

5.2.1 Linear systems

The question to be addressed here is: “How many controls are needed to set a controlled
variable y equal to any y,.,, at steady state?”. The answer to this question can be found by
adopting ideas from regulator theory, see for example [37]. First, a MIMO linear system in

its standard state space form is considered:

x = Ax + Bu (5-1a)
y = Cx (5-1b)

where X is an nx1, u an mx1, and y an rx1 vector and A an nxn, B an nxm, and C an rxn
matrix. It is well known that if the pair (A, B) is state controllable, then the state x can be
transferred to any point in the state space R". However, controllability does not imply that
the state can stay at any point indefinitely; in order for this to happen, a point must be an
equilibrium for the system. Hence, u not only must stabilize and shape the closed loop
dynamics, but also change the equilibrium point of the system. A control input that can

achieve the two first tasks and possibly change the system equilibrium, is the following:

u=-Kx+u (5-2)
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where u” is a constant vector. Substituting Equation (5-2) in (5-1) and setting x = 0, the

following expressions can be written for the steady state value of x, x, and for y,,,:

x,, = (A-BK)'Bu’ (5-3a)

Y4ee = C(A-BK)!Bu’ (5-3b)

The inverse in Equation (5-3) always exists, since controllability implies that there exists a
gain matrix K that can move all the eigenvalues of (A-BK) in the left haif plane. Note that
the dimensions of the matrix C(A-BK)™!B are rxm. Equation (5-3b) can be used to find
how many controls are needed 10 set y = y,,,. Since it is desired to find the minimum
number of controls that can achieve this task, the case of more controls than conirolled
variables (r<m) is not of interest. If r>m, Equation (5-3b) cannot be solved for u’ for any
given y,.,. A solution exists only in specific cases. Finally, if r=m and C(A-BK)'B is
nonsingular, a solution for u’ exists for an arbitrary Y4 The conclusion is that to sccure
that any set-point can be achieved, in general one needs as many controfs as controlled
variables.

These remarks also are applicable to nonlinear systems that can be input-output
linearized. For example, manipulator nonlinear dynamics can be input-output linearized by
including a nonlinear feedforward term in the control law, because then, the remaining

dynamics reduce in a double integrator, see also section 4.3.1.

5.2.2 Inverted pendulums

The problem of controlling two serially connected inverted pendulums mounted on a cart
can provide some important insights. Here, the focus is in analyzing what such a system is
capable of doing; a reader interested in switching laws for this example is referred to [56].
Figure 5.1 shows a three-DOF pendulum-cart system, where the only available control
input is the force f applied on the cart.
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Equations of motion for this system can be written using any standard method. Assuming
that the mass of the cart m, is large with respect to pendulum nasses, m;, and m,, and

linearizing the system around some equilibrium point (q, q,, 45) = (9, 0, 0) the following

linear equations result:
1 Fo1 00 0 073[x] 07
X, 0 0 00 00 X, b,
di x3 00 01 00 X3 0
a|x, [=] 00a, 0a, 0[x|*|p[* ©F
X 0 0 00 O 1 Xg 0
-xs— . 0 0 a3 0 34 0 - —x6- _bS'J

where all 2, (i=1,...,4) are nonzero, unless gravity is zero, all b, (i=1,2,3) are nonzero,

u=f/m, and (x,, X,, X3, X4, X5, Xg) = (Qq; 210. q;» Elp dz zlz)-

Figure 5.1. A double inverted pendulum on a moving cart.

The open-loop system has two stable poles, two unstable poles and two poles at the origin.
Applying the controllability rank condition to this system, it is easy to find that unless
gravity is zero, the system is controllable. Also, a set of gains K can be found to stabilize
the system. As discussed in the previous section, this is not enough to guarantee that the

controlled variable y = x can be driven to any desired point. Condition (5-3) must also be
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satisfied. Note that in this case, n=6 but m=1, that is only one control is available. As
noted above, in general it is not possible to achieve any y,,,. However, it is easy to see
that condition (5-3) can still be satisfied when the desired set-point is y,., =
(dp 3es'0:0:0,0,0), because then it follows that u’ = 0. Therefore, since in this case both
the system is controllable and condition (5-3) holds, one can move the cart anywhere and at

the same time keep the double pendulum vertical.

5.2.3 Manipulators

The same ideas also apply to manipuiators. It is well known that a manipulator can be
transformed to a double integrator system with some appropriate nonlinear feedforward
action, see also section 4.3.1. Applying a state feedback controller to that double integrator

system, the following system results:

-l Bl e

where q, ue RN, and Kp' K, 1 are NxN matrices for an N-DOF system. It is easy to
show that this system is controllable and that condition (5-3) can be solved for u'’ for any
state (q,q) = (q,0). This confirms the well known fact that to control an N-DOF

manipulator, just N and not 2N actuators are needed.

5.3 CONTROLLABILITY OF A SPACE MANIPULATOR WITH A
FAILED JOINT

In the previous section, conditions that allow a linear or linearized system’s output to be
driven to some constant set-point were determined. It was shown that although in general
one needs as many controls as outputs, in many important cases fewer controls can still be
used. In this section, state controllability for a space manipulator after a joint failure is

investigated.
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As shown in the previous chapters, equations of motion for space manipulators are given

by the following generai representation:

H@@4q + CQqqG="1 (5-6)

If the spacecraft is kept at a fixed position and orientation, then H and C are the matrices
that correspond to a fixed-based manipulator. If the system is free-floating, then H = H'
and C = C°, while if it is free-flying, then H = H* and C = C*, while the control input 1 is
substituted by [Q}'. QT, QqT]T. see Equations (2-61) and (2-62). It can be seen that
Equation (5-6) describes not only space manipulators, but also SCARA manipulators, since
gravity does not affect their dynamics.

Next, it is assumed that the i joint function has failed, and that joint friction is very
small so that it can be neglected; then 7, = 0. The objective is to control this joint with the
remaining active joints. This control objective can be stated formally as: find conditions
under which it may be possible to drive angle q; to a desired value in a stable manner, when
1, =0. It can be recognized that if not all joint controllers operate, it is rot possible to use
feedback linearizatiun to convert Equation (5-6) to a double integrator system, that would
permit the application of established linear control methods for this problem.

The first step is to note that the system has infinite equilibria of the form (q,q) =
(q,0); driving q; to q; 4., corresponds to driving the state to one particular equilibrium. In
the neighborhood of an equilibrium point, a system’s model can be linearized into the form:

H(q,,) 5q = 81 = 8[Ty,....T; 1,0,T;, oo Ty]T (5-7)

Equation (5-7) can be written in the standard form as:

IR AR
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where u = 8[T,...,T; |, T\ 00Tyl € RN! and 1, and 0, are Nx(N-1) matrices obtained
from the unit and zero NxN matrices after their i column, the one that corresponds to the
failed joint, is removed. It is easy to see that the controllability matrix for this linearized

system, C, is:

H'1, o0,
C-= (5-9)
0. H'1

Clearly, since C has 2(N-1) columns, its rank is at most 2(N-1) and not 2N for the system
to be controllable, and therefore the system is uncontrollable with a 2(N-1) dimensional
controllable subspace. It might be noted that it is well known that the double inverted
pendulum system is controllable, although its two joints are not actively controlled.
However, there is one important difference and that is gravity. Indeed, the effect of gravity
is to introduce a matrix of rank 2 at the lower left corner of the “A” matrix in Equation (5-
8), and that makes the system controllable.

The fact that a failed space robotic manipulator has an uncontrollable lincarized model
does not prove that the nonlinear system is uncontrollable. More general methods that deal
directly with nonlinear controllability must be used, see for example [10,22]. In general,
controllability conditions for nonlinear systems must be applied to specific systems, since
they rely on forming successive Lie brackets and testing a rank condition of a “distribution”
formed by these brackets [22,46]. Although it may be possible to utilize properties of
mechanical systems io deduce controllability results for general mechanical systems, this
was not attempted. It can be shown that for a two-DOF manipulator with a failed joint ona
inertially fixed spacecraft, shown in Figure 1, the nonlinear controllability conditions
require nonzero joint velocities q to assure state controllability at some state (q,q). Since
the system is not controllable everywhere in its state space, it is concluded that it is not

controllable.
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Recall that the main interest here is to control g; and not necessarily to control the entire
configuration q. Therefore, in the next section the attention is focused in controlling g; at
the expense of some other joint q;. If this task can be achieved, then joint angle g, can be
locked at its desired position, and normal operation of the remaining DOF may resume, or

the system maybe stowed effectively.

5.4 FAILURE RECOVERY CONTROL

In the previous section it was shown that if N-1 actuators are in operation, the controllable
subspace is R2M-D i other words, N-1 DOF can be controlled. A question that arises
next is whether g; is among the angles that can be controlled.

To answer this question, first define the vectors ¢; = [0,..., 0, 1, 0,....0Te R2N
where the 1 is at the i position, which span the system’s state space. It can be seen that
e,, (isN), is the unit vector in the direction of coordinate q;, and that vector ey, (isN), is
in the direction of q;. It is well known that in order to be able to reach any q; and ¢;, €; and
ey,; must belong in the controllable subspace, [37]. Note that due to the form of the
controllability matrix given by Equation (5-9), if e;, (isN), belongs in the controllable
subspace, ey,;, (iSN), does also.

Assume first that all the hij entries of the inertia matrix H are zero, except h;. This

results in an inertia matrix H having the form:

x 0 x
H=|0 h; 0 (5-10)
0

X X

where x is a nonzero matrix and 0 a zero matrix of appropriate dimensions. Note that due
to properties of inverse inertia matrices, H! has the same zero elements as H. Then, it is

easy to see that all the elements of the i™ row of the product H''1; are zero, and therefore,
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the vector e;, which has a nonzero element at the i'" position, does not belong in the
controllable subspace spanned by the columns of matrix C, given by Equation (5-9). Due
to the structure of C, the same observations hold for ey,;. Hence, it can be concluded that
if all hijzo (i=4), the failed joint cannot be controlled. However, if some h;; is nonzero, the
i™ and (N+i)™ rows are in general nonzero and hence, e, and ey, can be chosen to be
basis vectors of the controllable subspace. Then the system state can be driven to a desired
any q; and Eli- In other words, this means that to control the angle of a failed joint, there
must be dynamic coupling between the link with the failed joint and a link with a working
joint. Physically, this condition requires that the control input corresponding to some
coordinate be able to affect some other coordinate. In many cases, this condition is
satisfied. For example, all rotational DOF of a planar system are coupled. On the other
hand, the second and third joints of the manipulator shown in Figure 5.2 are not coupled to
the first one, and in this case hlj =0 (=2,3).

Figure 5.2. A space manipulator whose first joint is not coupled dynamically to the other

two.

If the first motor of such a manipulator is not working, no motion of the other motors will

affect the angle that comresponds to the non-working one. Similarly, by mere inspection of
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the inertia matrix of a free-flying space robotic system, given by Equation (2-58), it can be
seen that the translational DOF that correspond to the system CM are not coupled to the
rotational DOF which correspond to the spacecraft attitude and to the manipulator revolute
joints. This confirms the fact that if a spacecraft’s thrusters do not operate, there is no way
to control the translation of the system CM by using manipulator actuators or spacecraft
reaction wheels.

Now, assuming that some nonzero hij has been found, the task is to design a
controller which will use input j to control the i DOF corresponding to the failed joint. To

this end, write the i equation of motion, see Equation (5-6), as follows:
N N N .
Do hid; + Y Yhdh, =0 (5-11)
j=l j=1 k=1

Since it was assumed that hy; 0, Equation (5-10) can be solved for q and substituted in

the remaining Equations (5-6) to yield the following N-1 equations of motion:
H'@)7 + C*q. q) = (5-12)

where H* is a (N-1)x(N-1) matrix, t*e RN-! contains all nonzero control torques, ct

contains nonlinear terms and finally ze RN! contains all coordinates to be controlled:
Z = [Gue-es Qs jppoeees ONT T (5-13)

It is easy to show that z can be driven to any z,,,, whenever H¥ exists and is

nonsingularl. For example, consider the following nonlinear feedback-linearizing control:

v = CY(q, 9 + HYQ) (K (z,,,2) - K, Z] (5-14)

ISince h;; is at the denominator of the entries of H, this matrix is not defined when becomes zero and
thezefore, there is some region in which actuator j can be used. If this region is not sufficient, then it may
be possible to use some other joint.
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where Kp and K are (N-1)x(N-1) positive definite diagonal matrices and where it was
assnmed implicitly that joint encoders still work. Applying control law (5-14) to the
reduced system equations (5-12), a stable linear decoupled system is obtained. Clearly, for
this system, z—z,,, Z—0, asymptotically. Recall that q; belongs in z; therefore, the task
of controlling the failed joint i is achieved. However, these conditions do not guarantee
stability for the overall system; the behavior of Equation (5-11) must be analyzed. When

z—2,,,, 2—0, Equation (5-11) reduces to:
oo - 2 -
hd; + hy g% = 0 (5-15)

where hij, hijj. are functions of q only. Equation (5-15) is in general unsrable, unless
hm.iljlhij is always positive. However, this condition cannot be guaranteed and when it is
violated, q; will drift and not converge to some constant. Hence, although the control law
given by Equation (5-14) drives g; to a desired set point, it may destabilize another DOF.
However, if a condition to guarantee that Elj—)O could be found, then the system would
remain stable. This issue is addressed next.

Note that Equation (5-11) can be written also as:

d oT, T
Ela_qi -5 =0 (5-16)

where T is the system’s kinetic energy, given by:

T=5q H(@Q) § (5-17)

D) =

Equation (5-16) can be integrated and assuming that the system is initially at rest, and
taking the limit as z—z,,, z—0, the following expression for the asymptotic behavior of

q; results:

.o qf= dT -
tm@) = [ STt (519)
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Expression (5-18) shows that Elj will reach zero, if the integrand is identically zero. This is
equivalent to requiring that q; be ignorable, that is that the inertia matrix H is invariant with
respect to this coordinate. Note that when q; is ignorable, Equation (5-16) becomes an
integral of motion, and then the system order is N-1. However, H* is not a positive
definite matrix and this restricts in general the range of possible maneuvers.

It remains to examine when a coordinate can be ignorable. In some cases, this is a
feature of the system itself. For example, the inertia matrix of a two DOF free-flying
manipulator system with a fixed spacecraft, given by Equations (4-13) is not a function of
the first joint angle. This means that in some range, one can control the first joint by the
second motor - obviously it can always be controlled by the first motor. In other cases, the
invariance of the inertia matrix can be obtained by design, as was done by [6] with the aim
of designing a controller with configuration-independent behavior.

To conclude this section, we note that in order to design a controller for failure
recovery, two basic conditions must be satisfied: (a) There must exist dynamic coupling
between the broken joint and some other joint during a maneuver, and (b) the angle
corresponding to the failed joint must be ignorable. Recall that two minor conditions were
also assumed: (a) that joint friction is negligible and (b) that the system is initially at rest.

In the next section, failure recovery control is demonstrated using two examples.

5.5 EXAMPLES
Example 1. Consider first a two DOF manipulator mounted on a spacecraft fixed in inertial

space by using jet actuators. The equations of motion for this system are written below:
hy; 4y +h;, G - 2hq - 2hqyq; = T, (5-19a)

hipd; + hp @ + hal =1 (5-19b)
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where hij are given by Equation (4-13) and h = m,L,(1,+r,)sin(q,). Note that any plarar
space system can be reduced to this case by fixing all its coordinates except two, which
then are q, and q,. Next, assume that the first joint has failed, that is T, = 0. Obviously
this system is dynamically coupled because h,, is nonzero, except at two distinct angles g,
at the most. Hence, failure control may be possible in a region where q, stays away from
these values. Note that in this case all hij are functions of g, only, and q, is ignorable.

Therefore, Equation (5-19a) can be integrated to yield:

h;;q; + h,q,= 0 (5-20)

where it was assumed that the system was initially at rest. Equation (5-20) can be solved

for 212 which is then substituted in Equation (5-19b) to yield the only equation of motion for

this system:
-(hy;hgy-hy, 2y, Q) + hgd = 1, (5-21)

where -(h, ;hyy-h,,2)/h,, is the 1x1 H* matrix for this system. Note that since (h,,h,,-
hlzz) is the determinant of the full inertia matrix H, it is always positive, and therefore the
sign of HY is opposite to the sign of h,,; H*is not positive definite. However, if h,, is

nonzero, the control law (5-14) can be applied and the result is:

T, =h qf - (hllh22'h122)/h12{Kp(ql.du'ql)"KdEll} (5-22)
This control law guarantees q,—q, 4., and 211—)0, asymptotically. Also, due to the integral

of motion (5-20), q,—0, and the system is asymptotically stable.

Example 2. Next consider the free-floating space manipulator example system of section

3.8. lts inertia matrix is given by Equation (3-41) and is a function of both joint angles q,
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and q,. Assume that the second joint has failed, that is T, = 0, see Figure 5.3. A simple

joint control law is used here:
% = KGp e Ko (5-23)

with K = 50 Nm/rad, and X = 45 Nmsec/rad, and q, in radians. In order to maximize
the system's reach, the desired position for the second joint angle is set to be q; 4., = 0.
The initial conditions are (8, q,, q,) = (39.5’, -1342°, 134.4). System parameters are
given by Table L

Spacecraft
Figure 5.3. A space manipulator with a failed joint.

Figure 5.4 shows the time history of the joint angles and the spacecraft attitude. Since q, is
not ignorable, the system drifts as predicted, although g, reaches its set-point of 0". Figure
5.5 shows the actual motion of the system in the inertial space. The system is initially at
rest and the end-effector is at point A. When control action starts, the end-effector follows

the path shown in Figure 5 and continues to drift; instability is obvious.
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Figure 5.4. Spacecraft attitude and joint angles history during a failure recovery maneuver.
Motion is unstable.
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Figure 5.5. A failure recovery mancuver in inertial space. Motion is unstable.

Close examination of the entries of the inertia matrix given by Equations (E-22) and (E-24)
reveals the fact that if the center of mass of the second link lies on the second joint axis, in

other words if 1, is zero, then all dj; (i=0,1,2) are zero and g, is ignorable. Note that this
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can be achieved by changing the mass distribution of the second link, for example by using

counterweights. Such a system’s parameters are given by Table IV.

Table IV. System parameters for the two-DOF manipulator example.

To show this, the same case as above is simulated, but this time 1, = 0. As shown in
Figure 5.6, this time q, converges to the desired set-point and the motion is stable, as
predicted. Figure 5.7 depicts the same maneuver in inertial space. The end-effector
follows the path from point A to point B and stops at B. Once the system reaches the

steady state configuration, joint 2 can be locked and operation of joint 1 may resume.

8
o

’

;
<

1
-
d

Spacecraft attitude 6(deg)
Joint Anglesq,,q, , (degrees)

3 4 s
Time (s)

o
- o
N

Figure 5.5. Spacecraft attitude and joint angles history during a failure recovery maneuver.

Motion is stable.
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Note that since the CM of the second link is on the joint axis, no torques due to the offset
of bearing fo. s at the joint can be applied to the second link, (this offset is zero). Hence,
this link can only translate and this is why its inertial orientation remains constant. The
controller produces a torque that rotates the first link till q, becomes equal to the set-point,
which in the case of Figure 5.6, is zero.

Finai
spacecrafi B Final
7 position End-effector

System Center of
Mass

Figure 5.7. A failure recovery maneuver in inertial space. Motion is stable.

It should be noted that designing a system to be invariant with respect to some coordinate
has limitations similar to the ones observed in studies of dynamic decoupling of fixed-
based manipulators, [6]. For example, for the planar system used here, both joint angles
can be made ignorable. However, this is also the upper limit for planar systems. On the
other hand, the observations made in this chapter may help in improving the reliability of
non-redundant space systems. If redundancy is available, then the same principles can be
used still and the system may be able to be fully operational, even after a fa:iure is

experienced.
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5.6 SUMMARY

In this chapter, the possibility of using the working joints of a space system to control a
failed joint was explored. This is a problem that belongs to a more general class of
problems, namely the control of systems with fewer actuators than DCF. Results showed
that in order to be able to design a failure recovery controller, dynamic coupling and
invariance of the inertia matrix with respect to the angle of the failed joint must exist.
Although this type of control may not always feasible, the analysis presented here can lead
to new developments in this important direction.
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6 Conclusions and Future
Research

6.1 CONCLUSIONS

The main motivation of this thesis was to investigate what is the structure, requirements
and limitations of controllers to be used in the control of spacecraft-borne manipulators.
The basic assumption that effective control is possible only if based on knowledge of the
structure of a system’s “plant,” lead to a modeling methodology that yielded an explicit and
compact kinematic and dynamic description for free-flying systems, taking into account
forces due 1o spacecraft thrusters, to end-effector forces and to disturbances.

It was shown that when the system’s thrusiers are turned off and no other forces act
on the system, i.e. when the system is free-floating, then the kinematic and dynamic struc-
ture of such a system is essentially the same to that of a fixed-based system. Exceptions
are ihe dependence of the system’s Jacobian on the mass and inertia properties of the entire
system, and the existence of Dynamic Singularities. These Dynamic Singularities are fixed
in a manipulator’s joint space and are function of the mass and inertia properties of the
system. Their occurrence in a system’s inertial workspace depends upon the path taken by
the manipulator in reaching some inertial workspace point. All control algorithms that use
an inverse Jacobian will fail compurationally at such points, while al’ those that use 2 trans-
posed Jacobian will result in large unrecoverable errors. Path Independent Workspaces
which contain all points that cannot induce Dynamic Singularities and can be rcached by
any path, were identified. The remaining workspace was called a Path Dependent
Workspace because its points can be reached by carefully planned paths, only.
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It was shown that the implication of the above results on the control of a free-floating
system is that it may not be output controllable in the Path Dependent Workspace. It was
shown further that nearly any motion control algorithm which can be implemented on a
terrestrial robotic manipulator also can be applied successfully to a free-floating space
manipulator if certain mild conditions are met. Also, the sensory requirements for free-
floating systems were shown to be exactly the same to those required by fixed-based
controllers. However, if a system’s kinematic and dynamic properties are not known with
sufficient accuracy, end-point feedback and measurement of a spacecraft’s attitude may be
required.

The control of free-flying manipulators, capable of translating in inertial space and
applying forces and torques, was considered also. Coordinated Controi that allows the
simultaneous control of both a spacecraft and of its manipulator was designed. This
controller was designed systematically, based on an appropriate description of the “plant”
kinematics and dynamics. Depending on the task requirements, existing control algorithms
for fixed-based systems can be modified and applied in the control of free-flying systems.

Finally, the important problem of Failure Recovery Control of a spacecraft-borne
manipulator was addressed. It was shown that a joint angle whose actuator has failed still
can be controlled, at the expense of scme other joint, provided that dynramic coupling

between the two exists and that the inertia matrix of the system is invariant with respect to

the angle that corresponds to the failed actuator.

6.2 DIRECTIONS FOR FUTURE RESEARCH
In Chapter 3, it was mentioned that dynamic singularities can be avoided by using
manipulator redundancy. Such redundancy also can be used to minimize fuel expenditure

in free-flying systems, or to improve a system'’s reliability, an important and under-
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explored issue. These issues become more important in the view of future multiple-arm
systems.

There is a number of interesting problems related to path-planning that remain
unresolved. For example, it was mentioned in Chapter 4 that if a system is free-floating,
then an end-effector path can be selected in such a way that the attitude of a system'’s
spacecraft will be controlied also. Despite some efforts so far, such paths remain elusive.
Further, practical end-effector paths that could allow a free-floating system to use its Path
Dependent Workspace without the associated problems, would be desired.

On earth but even more so in space, system calibration is very important in order to
improve a system’s accuracy. It would be desirable to design a self-calibrating system that
would be capable of identifying itself as well as its payloads. To this end, adaptive
controllers for space systems could be considered also.

System calibration is required because it is very hard to use closed-loop feedback and
hence, to reduce system uncertainty. This difficulty is due to the lack of effective end-point
sensing techniques. Techniques that would reduce this problem would be very useful in
space.

In Chapter 5, failure recovery control was achieved, provided that some restrictive
conditions hold. It would be useful to develop planning or control algorithms that would
not be restricted in their usage.

This thesis focused on fundamentals of space manipulators but assumed idealized
models for such systems. From a more practical point of view, other important issues
must be treated also. These may include among others, the control of multiple manipulator
systems, joint or link flexibilities, interactions of manipulators and payloads at grasping,
sensing and sensor data fusion, communication delays, telerobotic and human factor

issues, as well as safety and reliability issues.
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Appendix A: Vectors and Dyadics

A dyad is an ordered pair of vectors, written one next to the otheras a8 b. A dyadicisa

linear polynomial of dyads [21]:
D=ab+cd+.. (A-1)

The dot product of a dyadic and a vector is a vector:

Dee=a(bee)+ec (dee)+.. (A-2a)

e*D=b(ace)+d (cee)+.. (A-2b)
The unit dyadic, 1 is defined by:

Lea=a-l=a (A-3)

Using dyadics, the double vector of three vectors can be written as:
ax(bxe)=b(acec)-c(a*b)=D-b (A-4)
where the dyadic D is given by:
D=(c-a)l-ca (A-5)

In other words, D acts as an operator on a vector, resulting in another vector. Next
consider a triple cross product of three vectors, and use Equation (A-5):
ax(bx(axec)=cxa(a+b) (A-6a)
=gx((g*bl-cb)ea-=

=axDea (A-6b)
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where in this case, D = (¢_* b)1 - ¢ b. Another useful triple cross product identity is:

ex@x(axb)=¢cx(@(@-b)-b(a-a)=
=exa(ash)-cxbllal?

(A-7)

"
™
x
==
[ ]
80
;
x
o
=
=

where identities (A-6a) and (A-6b) were used, lisll denotes the norm of a vector and again,

D =(c *b)1 - ¢ b. Finally, another useful identity is provided below without proof:

@xbexd)=@-ab-d-@-db- o) (A-8a)

=a*((d*bl-db)-¢c (A-8b)
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Appendix B: Matrix Operations

When one writes matrix equations, physical vectors are expressed as column vectors
whose components are the projections of the physical vector on the selected frame of
reference. Similarly, dyadics correspond to matrices and that is another reason for their
usefuiness (besides the fact that result in more compact notation). The identities that follow
are very useful in establishing the connection between physical vectors and dyadics with
vectors and matrices and are needed when one writes matrix equations. Unless otherwise
noted, all vectors are expressed in the same reference frame. The components of a vector a
in some reference frame are a,, a,, and a,.

B.1 The dot product ¢ = a ¢ b is written as:

c=a'b=bla (B-1)
B.2 The cross product ¢ = a x b is written as:

c = a*b=-b*a (B-2)

where the symbol (+)* denotes the construction of a skew-symmetric matrix from the

components of (*), according to the following:

0 -a, a,
aX = a, 0 -ay (B-3)
-a,  a, 0
Some useful properties are the following:
@) = -a (B-4)
a%a =0 (B-5)
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B.3 The scalar quantity, T=2 D ¢ b is written as:
T=a"Db (B-6)
B.4 The double cross product p = a8 x (b x ¢), is written as:

p = a¥b*¥¢
= (-a*c)b=(a*c*T)b
=Db (B-7)

B.5 Equation (B-7) provides the means to find the matrix that corresponds to a

dyadic. Compare Equations (A-4) and (A-5) to Equation (B-7). Obviously, D is given by:

D=-2%c* =clal-ca’ (B-82)
a,c, +a,c, -a,.c, - a,Cc,
D= - a,C, ac, +ac, -apc, (B-8b)
- a,c, -a,c, a,c, +ac,

Note that if a = ¢, the above corresponds to a transliation by a used in Steiner’s theorem;
otherwise, it can be thought of as a “mixed translation” matrix. One must be careful to
express both vectors a and ¢ in the same frame of reference. This introduces the next set of
properties.

B.6 Transformations of vectors and inertia matrices. Two frames of reference are
considered in this section. A left superscript (°) denotes the O frame, and a missing
superscript denotes the “inertial” frame. T, transforms a vector given in the 0™ frame to
the inertial frame. The following properties are given without proof:

a=T, Oa (B-9)
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D=T, D T, (B-11)

As noted earlier, both vectors that are used in forming an inertia matrices D must be
expressed in the same frame. Otherwise, one of the two vectors must be first expressed in

the other’s frame and then a matrix can be formed according to the following identity:
D=-a"c"= -T, ) %A, () T,T (B-12a)

where %A, transforms a vector given in frame 1 to the 0 frame, and T, =T, °A,.
Sometimes it is useful to express a mixed inertia matrix in the frame of one of the vectors.

This can be achieved by the foliowing identity:
Op = . 0% (oAl 1ox oAl'r) (B-13)
B.7 Time derivatives of the transformation matrix T, This is given by:
T, = @*T,=T, 0" (B-14)

B.8 Partial derivatives of quadratic terms:

:—x(x"Ay)=Ay (B-15)
9 T T
a—y(x Ay)=ATx (B-16)

In particular if A is symmetric, then:

9

ax(x:"'m:)= 2Ax (B-17)
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Appendix C: An Expression for p,

The system of N+1 vectorial equations in N+1 unknown vectors p, as given by Equations

(C-1) and (C-2) is soived here:

[LIEN LI DREY I k=1,.,N (C-1)
N
z m p =0 (C-2)
k=0

From Equation (C-1):
D=0yt -1, k=1..N (C-3)

Writing Equation (C-3) for k=1 to k=k and adding up the k equations, yields p, as a
function of p :

I
2, = Do+, (£,-1) i=L.N  (C3)
j=1

Equation (C-3) is substituted in Equation (C-2) which yields:

N i
Mpy+ 3 m; 3 (r;,-1)=0 (C-4)
=1

i=0

Solving Equation (C-4) for p; and using a sum property results in:

e

n
Mz
2
a
Mz

JE



APPENDIX C 169

N

= -2, (& -1) () (C-5)

i=1

Parameter j, is defined by Equation (2-6). The sum in Equation (C-5) is broken at i=k and
then it is substituted in Equation (C-3) to yield:

k N
0= 2 (T L)W - 2 (B L) () k=0..N (C6

i=1 i=k+1

If k=0, the first sum in Equation (C-6) is zero and the result is identical to Equation (C-5).
Equation (C-6) is repeated in Chapter 2 as Equation (2-4). Equation (C-6) is not in its most
useful form because the sums contain vectors fixed in body i-1 and i. It is preferable to

cluster all vectors fixed in the same body in one term. This results is the following:

—

Do = -Ig (1)) 21, (£ () - L Q) + Ly (1) (C-6a)

8y = Loy +

k-1
+ 3 (- Lw)-

i=1

- {Lk (Q-py )+ 1 By }-

N-1
- Y {mepy) - L A-p)) +
i=k+1
+ LN(I-uN) k =1,.,N-1 (C-6b)
N-1
o= Kot + X (it~ Lit] - Lky (C-62)

Using the definition of the vector ¢ ;, given by Equation (2-6), it is easy to sec that:

€= L+ (py,) i=0,.,N
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=1;-1L,d-p)+x,(1-n,) i=0,..N
= l'-l + l—i ui - -'-.-n p’iq»l i= ov-'lN (C"7)

Equations (C-6) can be simplified using Equations (C-7) and result in the very compact

form given as Equation (2-11).
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Appendix D: Derivations Involving h

D.1 A USEFUL PROPERTY
Consider the sum S of mass-weighted brackets:

N
S = 2 my [ljkv lik] ®-1)
k=0

where the symbol [¢,] represents an ordered pair of the vectors v ,,, v... For example,

Y
such an ordered pair is the cross product ¥ ,xv ;, or the dyadic {(vy e vy ) 1 - v, v, ).

Since the vectors v j are equal to a specific vector according to Equation (2-10), it makes
sense to examine if this sum can be simplified. Such simplification can indeed result by
breaking S in five pieces, as the index k takes the values (0...i-1), i, (i+1...,j-1), j,

(j+1...N), where it is assumed that i<j. For simplicity, set:

fy = My,
fip = MG,y -1y = m;
s = MGy - i,y

By = M@y, -p) =m

Hs = M(1-p,p) (D-2)
ﬁ1+ﬁ2+f’v3+ﬁ4+ﬁs=M ' . (D-3)

Equation (D-3) resuits by adding up expressions (D-2). Using the ﬁi's. Equation (2-7)

can be rewritten in the following two equivalent forms:

iy L ﬁz + (i +i ] = D-4)

ﬁl [l—?-l—;] + i [ -._.] syt P'4 + l—ls)[__l '—i] =0 (D-5)



172 APPENDIX D

where Equation (D-5) is obtained from Equation (D-4) by forming brackets with §_ ; from
the left. Similarly, Equation (2-7) written for body j can be transformed to:

@y + iy + i [0+ By [e.ei] + A5 [ef.ef]= 0 D-6)
Finally, the sum § is written as (i<;j):
= iy [505]+ g [0 LTI c¢il+ i, [l_; i1+ by [e.r3] + i [L;.L;] D-7)
Subtracting Equations (D-5) and (D-6) from Equation (D-7) we find that:
s=-M[l J,_j] i< (D-8a)

This is a very rewarding result, because it saves somecne from many sin() and cos()

manipulations in deriving equations. Similarly, if i>j, S is given by:

s =-M[r:1}] i>j (D-8b)

J""'

The last case that remains is when i=j. Itis easy to see that in such a case:
s = pM[LL1 ] +mict.ei]+ ap oMl x}] ij (D-8¢)

If the [+] represents a cross product, then S is obviously zero for i=j.

D.2 SIMPLIFICATION OF THE EXPRESSION FOR h.
Using property (A-5), the double cross products in Equation (2-42) can be written in the

following compact form:

N
(D-9)

LMz

N
he, =2

j=0 i=0 k=0

where:

D =1 8118 +my [(ljk vl- ljklik] i, j, k=0,.,N D-10)
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The dyadics Qijk are functions of the distribution of inertia through the system and are
formed from the barycentric vectors v ;. The terms §;;, Sjk are Kronecker deitas. The
summation over k in Equation (D-8) can be eliminated using the useful property proved in
section D.1. Indeed, setting the brackets in Equation (D-1) equal to the dyadic {(1jk v.)

1 - v, v, )} and applying Equation (D-8), b, is written as:

>

Mz

(D-11)
j=0 i=0 .
where the dyadic .Qij is given by:

D;=-M{dj-rpL-1ir]] i (D-122)

D, =1, +(mg+... +my {21 -17 17} +

+ m; (IeIPL-¢5 i) +
+ (mg+... +mg){NEI2L - £} £} i=j (D-12b)
D;=-M{(j-1)Ll-r;L]} ] D-12c)

where 1 is the unit dyadic. D.; appears in the derivation of the Newton-Euler equations of
multibody systems and was called the inertia dyadic of the ith augmented body by [29].
Indeed, I, + m; {ne ;Ilzl -c : c :} is the inertia of body i calculated with respect to its
barycenter (parallel-axes theorem), eic. No li_)ij (i#j) were defined in [29].

D.3 TIME DERIVATIVE OF h.

First, the time derivative of r  x p is written using Fquations (2-38) and (2-37) as:
dthme) = —cmeext (D-13)

The system angular momentum about the CM, given by Equation (2-42) is repeated here:
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N N N N
b= Y Lea,+2 2 D myvyx@xyy ©-14)
k=0 )j=0 i=0 k=0

Recalling that Yy is a body-fixed vector of bedy i, the time derivative of h_ is written as:

k=0 k=0
N N N .
+ 2 2 kallkxg’x ij
j=0 i=0 k=0
N N N
+ Z 2 ka!_ikxgjxg)_jxy_jk D-15)
j=0 i=0 k=0

Using property (A-4), the first and second sums can be combined using the definition of
the D.. inertia matrices, see the previous section. Similarly, using property (A-7), the

—lj

second and fourth sums can be combined. The result follows:

F
M=
P
-
+

Do, +

Ll
]
(=]

k
NGJ2 Y my v xvy (D-16)

i=

+

+
M=z TMz TM=z
Mz iMz
€
<
=

[
o

The last sum can be simplified using the summation property, see section D.1., where the

[+,°] is now interpreted as a cross product. The result is given as Equation (2-45).

D.4 NON-INTEGRABILITY OF THE ANGULAR MOMENTUM
EQUATION
This section investigates with the possibility of integrating the conservation of angular

momentum equation to yield a spacecraft’s orientation as a function of the manipulator’s
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joint angles and possibly of time, see Equation (3-5). In general, this is a difficult problem
and the interested reader is referred to [54]. Here, the non-integrability of the conservaticn
of angular momentum is demonstrated via two examples.

To do this, the following theorem will be used, see [35]. Consider the Pfaffian

equaton:

Adx + Bdy + Cdz =0 O-17)

This equation can be integrated and result in an equation of the form f(x,y,z) = 0, iff the

following condition is true:

dB dC A A dB

AB-EY + (58 + c{%-2) = (D-18)
Example 1. Now consider the one DOF example used in section 2.5.1. The

conservation of angular momentum for this system, see Equation (2-49), yields the

following:
D(@)6 + D (@)1 = hy D-19)

where D(q) and Dq(q) are explicitly given in Appendix E, Eq.(E-5). The above can be

written as:
D(q)do + Dq(q)dq -hydt = 0 (D-20)

where time t is considered to be one of the variables. In order for Equation (D-20) to be
integrable, condition (D-18) must hold, with A=D(q), B=Dq(q). C=h, and (x,y,z) =
(8,q,t). After going through the algebra, condition (D-18) results in the requirement that
prol,sin(q)h, be identically equal to zero. Assuming that ry and 1, are not zero, see Figure
2.5, there is only one possibility for this to hold: hy must be zero, or in other words, the

(constant) system angular momentum must be zero. In such a case, the variabies in
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Equation (D-20) can be separated and using indefinite integral properties, see [35, p.957],

the following result can be obtained:

0 = 6, + (q-qp/2 + E{1an’(F tan(q/2))-tan"'(F tan(qy/2)) } @-21)
where:
A= L+1 +p(r?+1? B=1I+pl? (D-22a)
€= urglicos(@) n= T (D-22b)
) (AZZB. ;1&”2 ) (,3 : 420%”2 (b-220)

As a numerical example, assume that the system mass and geometry properties are the
ones given in Table I, and let q; = 6, = 0°. Then, the resulting final 0 that corresponds to
a final q=45° is equal to -8.8657°; that is the spacecraft rotates clockwise and results in a
final attitude that is a function of the final joint angle q. Using Eq. (D-21), 6 can be
completely eliminated from the kinematics and dynamics of the system. This is the only

non-trivial case where the angular momentum equation can be integrated.

Table V. Parameters for a one DOF manipulator system.

Example 2. Consider next the two DOF example of section 2.5.2. Assuming a

system initially at rest and using Equation (2-49), the angular momentum is written as:

D(‘lqu)é + {DI(QI-Q2)+D2(Q1-Q2)] ‘.]1 + Dy(q,,9,) élz =0 (D-23)
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where D, D,, and D, are defined by Eqs. (E-24). The above is again a Pfafian of the form
(D-17). Hence, in order to be able to obtain a function of the form £(8,q,,q,)=0, the
integrability condition (D-18) must hold. This holds iff the following conditions are

simultancously satisfied:
dood, 2 = dyed) (D-24a)
duazo = alZalO (D-24bj
dyd;g = a’ZOaIZ (D-24c)
where aij is equal to dij, given by Equation (E-22), but without the cos(®) terms. These can

only be satisfied if m, =0 and L, = 0. But then, the threc-body system reduces (o a two-
body one, a case proven to be integrable. The conclusion is that there is no nontrivial

three-body system for which the angular momentum can be integrated once more.
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Appendix E: Example derivations

E.1 A ONE DOF MANIPULATOR EXAMPLE

In this section, the equations of motion for a one link rmanipulator will be derived, in order
to demonstrate the theoretical analysis presented in Chapter 2. The system has four DOF.
Three DOF are due to the spacecraft and a one DOF to the manipulator. Obviously, for this
example, N=1.

1. Preliminary quantities. The first step is to calculate the barycentric vectors,
according to Equations (2-7) and (2-8). The center of mass of an individual link is
assumed to be on the line connecting the two joints, so only the x-components of all
vectors in the i™ frame are non-zero. The left superscripts denoting the i"™ frame are

dropped for simplicity, see also Figure 2.4.

= Moo
. 1
€ = - MTo™
Ip = - %roml -l
r = 1%411"‘0'”1
¢, = éllmo
1} = - g lym, E1)
M = my+m, (E-2)
where M is the total system mass. For simplicity set:
o= Ovong = T (E-3a)

B = lle.B = c; + l'l (E°3b)
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T, is given by Equation (2-21) with a = {0, 0, 11T and l'I‘0 by Equation (2-20b):

cos(9) -sin(0)
(E-4a) -

T4(0) = Rot(6) =[
sin(0) cos(8)

IT(q) = Rot(q) (E-4b)

There is just one F; matrix, which in this case reduces to a scaiar, F| = 1. The inertia
terms are found using Equation (2-64) and (E-1). Only the inertia components

corresponding to rotations around an axis perpendicular to the plane of motion are of

interest:
doo = Ip + 11’ (E-5a)
dg, = Krglcos(q) = dy (E-5b)
d; = L +ul®>=D (E-5¢)
p= S (E-50)

where W is the system reduced mass. From Equation (2-68):
do1 = Krglysin@ = -d; (E-6)

The definitions (2-75) result in the following:

D = dyy +2dy, +dy, (E-7a)
D, = dgy +d, (E-Tb)

2. Kinematics. The end-effector position and the end-effector orientation are written as,

see also Equation (2-22):
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Xg = X +a cos(8) + P cos(6+q) (E-8a)
Yg = Yo + @ 5in(0) + B sin(8+q) (E-8b)
ez = G'H'.h (E‘BC)

In this case, the end-effector orientation is trivially written. In the general case, it can be
described by the orientation matrix T;.

3. Differential kinematics. The submatrices that make up the Jacobian J* are
found as functions of the above barycentric vectors using Equations (2-33):

..Bs -ﬂs
= 2 = Up=F=1 €9

a+fc Be

The end-effector Jacobian is assembied according to Equations (2-35):

1 0 -Bs -Bs
TF'@={ 01 a+tpc Bc (E-10a)
0 0 1 1

cos(0) -sin(0) O
J*8.9) =| sin(8) cos(8) 0 |V@ (E-10b)
0 01

where the matrix multiplying °J*(q) in the above, is the term diag(T ;, T,) for planar
systems, see Equation (2-35a). Note that the rank of J*(0, q) is always three, which
means that if the spacecraft DOF are used, any point on the plane can be reached with any
end-effector orientation. The differential kinematics for the motion of the manipulator end-

effector are written as follows:
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kB f‘cm
x=|ve =0 ’3"' E-11)

8g ,

q

4. Dynamics. Only a force f; and a torque ng acting at the manipulator tip will be
considered here. Any other forces or torques can be taken into account in a similar way.
The force f is assumed to be of constant direction in inertial space and its components are

f.p fyg- Obviously, in the planar case ng is equal to onE. The generalized forces are

found using Equations (2-61):

[Q‘] T T[f"'j (E-120)

= o - a

QY fY-
. fx.E
Qp = ng + (ToOJu)T[f J (E-12b)
y.
fx.B
Q= t+ng+ (T J,)" [f J (E-120)
y.

The equations of motion describing rotations are written using Egs. (2-75) through (2-78):

M%, = Q (E-13a)

M% . =Q (E-13b)

D6 +Dj4 - 28q+3)dy, = Q (E-13c)
D6 +Dq + 6 dy, = Q (E-13d)

In matrix form, the equations of motion (see also Equations (2-78)), are written as:
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Xem 0 0
y 0 0 T f

| Yo+ | o | =|o|+ 3@ | ] 14
q c; T

where the inertia matrix, H*(q), and the nonlinear terms, C] and C, are given by:

MO 0 O
. oM 0 0
H'@ =| ¢ 0 D@ D@ E-1
0 0 D@ D,
Cr=c =-283+a)d,, (E-162)
Cl=c = 6°3,, (E-16b)

The above equations provide a complete description of a one DOF manipulator system.

E.2 A TWO DOF MANIPULATOR EXAMPLE
In this section, the basic equations describing a two DOF system on a 3 DOF spacecraft are
derived.

1. Preliminary quantities. As in the previous cxample, r;and }; are assumed to
be parallel to the x axis of the i® frame. Hence, only the x-component of the barycentric

vector ivik is non-zero and is found by using Equations (2-7) and (2-8), written in the ith

frame:

. 1

Ig = ﬁromo

. 1

Co = - M Fo(my+my)

. 1

Iy = - pfo(my+my) -1y
. 1
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I =- hld {ll(m1+m2)+'1m2}
r; = ﬁlz(m(ﬁml) +1,

3= jl(mgtm)
= - M, ©17)
M=my+m +m, (E-18)

where M is the total mass of the system. For simplicity, set:

a= vy =1 (E-19a)
B=lvixg =1 (E-19b)
Y= g = G+ 1 (E-19¢)
0= ovoo's = c; (E-20a)
es lvgg =1 (E-20b)
g 2"2o.s =1 (E-20c)

T is given by Equation (E-4a) and the “I'i are given by:
°T, = Rot(q,) (E-21a)

T, = Rot(q,) Rot(gy) (E-21b)

The inertia terms dij and aij are found using Equations (2-64) and (2-68); their explicit form
is given below. One should recall that these terms are functions of the barycentric vectors,
so the required additions and multiplications are less than what they appear to be:

(m, +m,)
dgp = 10+‘_“9_§14_mz_r02

dyg = E%Q{ll(m,+m2)+rlm2}cos(ql) = dy,
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dyo = or2rehc0s(ay ) = doy

m m,m !
dy, = I +—-°!;1112+ 522+ Illnh%l(llﬂ,)2

dyy = { Eﬂﬂzfﬂ'z*n—lol\iﬂlzalﬂ1)}°°3(qz) =dp

dyy = 1+ ZHEET 2 (E-22)
dy, = %&[ll(mﬁmz)ﬂlmz}sin(q,) = -d,

dy, = EIB'1\'[4'112'olzsi“(‘ll‘“lz) =-&

8, = { Ti2r L+ 821,041 Jsiny = -4, E23)

Dropping the left superscript (®), the inertia sums defined by Equation (2-48) or (2-78) are:

D, = [D,;+D, D, (B-24¢)
D = [d11+2d12"‘d22 dxz"‘dzz] (B240)
W ld)p+dyy dy,

2. Kinematics. The end-effector position is found using Equation (2-22); in this case
the end-effector orientation is trivial to write:
Xp = X + @ cos() + B cos(6+q,) +7v cos(6+q,+q,) (E-252)
YE = Yem + @ sin(8) + B sin(0+q,) + 7 sin(6+q,+7,) (E-25b)

6 = 6+q,4q, (E-25c¢)
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3. Differential kinematics. The Jacobian submatrices in Equadon (2-33) are given by:

-Bsy-vs)2 Bsi-1s12 1512
Uy = %), = 03, =101 1] (E-26)
a+fc,+yc,, Be,+ve,,  YCq2

where s, =5sin(q,), ¢,, = cos(q,+q,) etc. The Jacobian J* relating the end-effector motion

to the controlled velocities is written using Equations (2-35):

1 0 -Bs;-1syy -Bsy-1s12 -¥5y2
M@= 01 a+fc,+yc,, Bc,+yc,, ¥C), (E-27a)
0 0 1 1 1

cos(8) -sin(8) 0
J5©, @ = | sin(@) cos(8) 0 [%'@) (E-27b)
0 01

In this case, it is desired to examine the effect of forces and torques acting on the
spacecraft, due to jet actuators or momentum wheels. In addition to the end-effector
Jacobian, one must use a Jacobian written for the spacecraft CM. To this end, the Jacobian
given by Equations (2-28) and (2-30) with k=0 and m=CM is required. For simplicity,

0y 12,5 is used instead of % 120,cm» €tC-

0 -€s1-0sy2 0 -€s;-Csy; -Gsyy 0
Jis = Jiz,s = Jops = [0 0] (E-28)
d+ec,+{cy, ec,+lc,, Lcy,

The Jacobian °J; relating the end-effector motion to the controlled velocities is written

using Equations (2-30):
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1 0 -es;-§s,, -€s,-Lsyy -Csys
°J§(¢l)= 0 1 d+ec,+{c,, ec,+Llcy, vy E-29)
00 1 0 o0

4. Dynamics. Ir this case it is assumed that a force f and a torque ng (both fixed
in inertial space) are applied at the manipulator end-effector. Also, a force °f; and a torque
ons are applied to the center of mass of the spacecraft and are defined in the spacecraft

frame; these are due to the spacecraft jet actuators. The generalized forces are written

below using Equations (2-61):
Q, = %, 5 + cos(B)f, g + sin(O)f, (E-30a)
, = %%, ¢ - sin(O)f, ¢ + cos(B)f, ¢ (E30-b)
ofx.s fx.E
Q = "ng +ng + 0y 5T o +(Tdy)" [f J (E-30c)
Y. )

7,40 O f,
Q- [g:] = [ l j*anz.sT [o .s] +(To°~'n)T[ j (E-30d)
T,+n fy.s f,

The inertia matrix for this system is written using the Equation (2-76) where all terms were

defined above. The nonlinear terms are written using Eqgs. (2-74), (2-77) and (E-23), as:

cf(qqu'évéhv‘elz) = '{‘.112"'26‘.11} (am'*aoz) - {"122"’2@‘.12"'2511‘.12](302*312) (E-31a)

¢51(93:92:8.0,,0p) = 62(am*’aoz) - {‘.122+2é£lz+2"11‘.lz]axz (E-31b)
¢ (2;:92,9.0,,Gp) = 0%(dgy+d,y) + {,%+20q,)4d,, E-310)
and:

C; = ic, ¢ E-31d)
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C*=[0,0,c},c3,,c3,I" (E-33¢c)

The equations of motion are written using Equation (2-78):

M%, . = Q (E-32a)

M%.p = Q (E-32b)

DB +D.q +c] = Q (E-32¢)

D 6 +D,q + C;=Q, (E-32d)

Finally, equations (E-32) are written in matrix form as:

.oot[fe] .7 of
+ J7(6.q) + "J5(@) (E-32)

n 0

xcm

H'(q) y.;.'“ + C*q.0.9) =

a O OO

q
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Appendix F: Properties of H and C’

Due to the defining equation for H', see Equation (3-26) and the dimensions of the D-
terms, given after the definitions (2-50), H’ is a is an NxN matrix. Also, from the same
definitions, it is obvious that H' is a function of the configuration q only. It is also easy to
prove that H® is symmetric. Indeed, because of Equations (2-50) and (2-52), °qu is
symmetric. The term °Dz D %D, is also symmetric because the inertia matrix %D, is
symmetric positive definite.

It remains to prove that H' is positive definite. To this end, note that the full system
inertia matrix H* is positive definite. Due to properties of positive definite matrices, the

same is true for the sub-partition H' that corresponds to the rotational part of H:

D(q) °Dy@ ] E1)

H'(q) =
@ ["D.,(q)T D (@)

The inverse of HF exists and can be written using standard linear algebra techniques as:

OD-I + OD-l OD H‘-I 0DT OD-l OD-l OD H‘-l
Hf -1 _ q qQ q

H‘-l OD; OD-l H‘-l ] (F-z)

Note that since H' ! exists, H'! also exists. Since H"! appears at the bottom right corner
of a positive definite matrix, it must be a positive definite matrix itself.

Another interesting property, useful to adaptive controllers for manipulators is that
qT(H" - 2C*)q is zero. This can be shown by noting that the increase in the kinetic energy
of the system is due to the energy provided by manipulator actuators. Therefore, the time

derivative of the kinetic energy (power) must be equal to the power of the actuators:
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T=q" (F-3a)
- TH @i+ 547G
="t -Caa+ 3 B (F-3b)

where, the equations of motion, given by Equation (3-28) was used. From Equations (F-

3a) and (F-3b), the required property follows:
T{IH - C@Dla=0 (F-4)

It can be shown that by a suitable selection of C*, H® - 2C" becomes skew-symmetric.






