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Abstract

The phenomenon in which metastable austenitic steels gradually transform into a
much harder, fine-scale martensite phase under the driving force of plastic deforma-
tion is termed “strain-induced transformation plasticity” (SITP). Certain high strength
(o, = 1380 MPa) alloys of this type have displayed remarkably high fracture toughness
(Kj. = 380 MPa+/m) [1]. These high toughness values can be attributed tc the trans-
formation process and its effect on the fracture event. We propose a constitutive model
which describes the transformation plasticity accompanying strain-induced martensitic
transformation in nonthermoelastic alloys. The model consists of two parts: a transfor-
mation kinetics law describing the evolution of the volume fraction of martensite and
a constitutive law defining the flow strength of the evolving two-phase composite. The
Olson-Cohen model for martensite volume fraction evolution is recast in a generalized rate
form so that the extent of martensite nucleation is not only a function of plastic strain
and temperature, but also of the stress state. A self-consistent method is then used for
predicting the resultant stress-strain behavior. The model describes both the hardening
influence of the transformation product, and the softening influence of the transformation
itself, as represented by a spontaneous transformation strain. The model is then imple-
mented in a finite element program suitable for analysis of boundary value problems.
Model predictions are shown to be reasonably consistent with existing experimental data
for austenitic steels. We then examine the effect of the transfcrmation on the state of
stress and strain at three critical length scales: in the neck of a tensile specimen; near
the tip of a stationary crack; and at the interface of an included particle. The predom-
inant mechanism of fracture in high strength steels involves the nvcleation, growth and
coales-ence of voids in highly localized bands of intense deformation. We therefore fo-
cus attention on the influence of the transformation on these critical fracture processes.
We find that transformation-softening can Jead to suppression of void nucleation while
subsequent transformation-hardening significantly increases the stability of plastic flow in
highly triaxial regions. Finally, in order to directly assess the interaction of transforma-
tion with the fracture processes, we incorporate a model accounting for the continuum
effects of porosity evolution into our constitutive framework. Finite element calculations
using this model clearly indicate that the transformation hardening accompanying SITP
directly combats the deleterious strain-softening effects of void nucleation and growth
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and therefore leads to suppression of plastic flow localization. We conclude that, funda-
mentally, the sources of transformation toughening in these materials can be traced to
the observation that the mechanical features which promote void nucleation and growth,
namely high strain and triaxiality, are precisely the same features that promote nucleation
of martensite. Moreover, our calculations indicate that the beneficial consequences of this
localized formation of martensite are twofold: (1) retardation of void nucleation through
early transformation-softening; and (2) counteraction of the strain-roftening effects of void
growth by means of transformation-hardening.

Thesis Supervisor: Dr. David M. Parks

Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

The search for alloys which exhibit both high strength and high fracture toughness
is an area of continual interest. Unfortunately, it is rare for one material to possess
both of these desirable properties. In fact, there is typically an inverse relationship
between the two, because the same microstructural processes which strengthen an
alloy, particularly the precipitation of hard particles that interfere with slip mech-
anisms, generally lower the toughness of the metal by inhibiting plastic flow, and
ultimately serve as the “seeds” of fracture by a process of nucleation, growth, and
coalescence of voids which form around these particles. It is nevertheless desirable
for a structural material to be both strong and tough, and a material demonstrating
both of these qualities would certainly have many practical applications.

One means of achieving this desirable but rare combination of properties is through
transformation toughening, whereby toughness is achieved through a martensitic
transformation which occurs during plastic deformation, a process which has been
named transformation plasticity. Transformation plasticity accompanying marten-
sitic transformations under applied stress has provided several examples of extraor-
dinary mechanical behavior, ranging from substantial enhancements of ductility and
toughness in metallic and ceramic alloys exhibiting nonthermoelastic transformations

[2-4], to the reversible plasticity phenomena in thermoelastic shape memory alloys
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(5]

Within a specific range of temperatures, martensitic transformations occur sub-
sequent to, and as a resuit of, plastic slip in the austenite matrix. We refer to
this temperature range as the strain-induced transformation regime. Experiments
on metastable austenite steels, precipitation-strengthened to 1300 MPa tensile yield
stress, have demonstrated remarkable transformation toughening in the strain-induced
transformation regime when ductile fracture is controlled by plastic shear localiza-
tion [1,2,6-7). Recent results show Jp. toughness in excess of 500 kJ/m? [1]. Fig. 1.1
compares fracture toughness measured in [1] and [6] with those of other high strength
materials [8]. It is clear from this figure that the fracture toughness/strength combina-
tions of the transforming steels are significantly greater than those of the other listed
high strength steels, where toughness is achieved by more standard means. These
high toughnesses can be attributed to the transformation process and its eflects on
the fracture event. The complex nature of this process, however, makes it difficult
to pinpoint the sources of the beneficial effects of the transformation. It is generally
argued that the toughness increase results from ane or both of the following features
of the transformation: the gradual hardening of the two-phase austenite/martensite
composite due to evolution of the much harder martensite phase, and the volume
expansion (as high as 5 percent) that accompanies the transformation. With regard
to the first of these features, the predominant mechanism of failure in high strength
steels involves nucleation, growth and coalescence of voids which form around hard
particles embedded in the ductile matrix [9-11]. It is argued here that local transfor-
mation hardening toughens the region near the crack tip by countering the softening
effects of void nucleation and growth, and retarding the closely associated process of
localization of plastic deformation into shear bands. Controlled experiments further

indicate that the transformation toughening effect is greatly enhanced with increased
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transformation dilatation [6,7,12]

The macroscopic mechanical behavior of high strength austenitic steels which ex-
hibit strain-induced martensitic transformations is a result of three primary processes
at the microscale: crystallographic slip of both phases, nucleation of martensite, and
the fracture process. The driving forces that control the evolution of a single process
depend upon the applied boundary conditions as well as the current state of each pro-
cess. The broad scope of this research has been to quantify the complex interactions
of these processes and their macroscopic consequences through continuum mechanics
modelling.

In preliminary research conducted as part of a Master’s thesis project [13], we
examined some of the more basic aspects of strain-induced transformation plasticity
using existing models for martensite evolution and stress-strain relationships. This
work focussed primarily on the effects of the transformation on the shape of the
stress-strain curve, as illustrated in Fig. 1.2, and its consequences on the mechanical
behavior of the material studied through numerical analyses of boundary value prob-
lems. Although this work suggested possible explanations for the increased toughness,
the relative simplicity of the constitutive model implemented for numerical analyses
limited the usefulness of the results. An important parameter which was not con-
sidered in this previous model is the stress-state sensitivity of the transformation.
Recent results have shown that the state of stress has a pronounced effect on the ez-
tent of transformation, as demonstrated by the great differences between the amount
of martensite formed in tension versus that formed in compression for an overaged
0.5Mn-phosphocarbide-strengthened alloy studied by Young (7] (Fig. 1.3). Stress-
state dependence is viewed as a critical feature of the transformation because the
regions of interest in the study of fracture resistance, i.e., the area ahead of the tip

of a crack or along the interface of a hard particle, are also regions of high triaziality,
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where triaxiality is a measure of the size of the hydrostatic component of stress rel-
ative to its deviatoric component. Moreover, several investigations have shown that
the triaxial nature of the stress state is a critical factor controlling the rate of growth
of voids ultimately leading to fracture {15-19].

The research discussed in this thesis consists of two major parts. The first, and
perhaps most critical portion of the research, described in chapter 3, has been devoted
to improvement of existing constitutive models, implementing new features that al-
low for quantification of the interactions of slip-based plasticity, stress, temperature
and transformation. Analysis of the interactions of transformation plasticity with
crack-tip shear localization processes and investigation of the role of transformation
dilatation require reliable constitutive models which take proper account of trans-
formation strain hardening, transformation dilatation, and the associated pressure
sensitivity of transformation kinetics.

In the temperature regime of enhanced toughness, the transformation is domi-
nated by strain-induced nucleation on potent sites created by plastic strain, and as
a result, transformation kinetics and plastic flow behavior involve a complex interac-
tion of slip and transformation; constitutive models for this regime [20-21] are not
as well developed as models for transformation at stress lcvels which preclude slip
in the austenite — stress-assisted transformation. Here, we re-examine and improve
upon existing kinetics models and develop techniques for averaging the stress-strain
properties of the evolving two phase composite in a manner that directly accounts for
the sizable transformation shape strain. A reiatively straightforward but critical third
step in this first portion of the research is the correlation of model predictions with
existing tensile and compressive test data at various temperatures [7,21]. Finally,
an extended form of the model is proposed, accounting for the continuum effects of

porosity evolution, in order to evaluate directly the interaction of transformation with

28



the failure process. Here we have adapted methods for evaluating void volume frac-
tion nucleation and evolution as proposed by Needleman and Tvergaard [22], based
on the models of Needleman and Rice [23] and Gurson [24,25].

With a relatively general formulation accounting for these phenomena in hand, in
the second portion of the research (chapters 4 and 5) we analyze several boundary
value problems in order to evaluate the effects of the transformation, especially in
regard to its interactions with the fracture process. We believe that a better grasp
of the mechanical aspects of this interaction is essential to an understanding of the
toughening mechanism. We have therefore applied these models to simulations of
various problems of inhomogeneous deformation, each designed to identify critical
aspects of the transformation.

At the smallest continuum length scale over which our models can be reasonably
applied, we have considered the stress and strain fields surrounding an included parti-
cle, in order to directly assess the effects of the iransformation on the void nucleation
process. At a larger continuum length scale, we have embedded the effects of void
nucleation and growth into a continuum model appropriate for numerical study of the
interactions of transformation and nucleation and growth, and their combined effect
on the state of stress and strain at blunt notches and blunting crack tips.

Finally, we correlate the results of these analyses with experimental observations
concerning ductility and fracture. Young (7], for example, found strong correlations
between the increment in fracture toughness due to transformation and the trans-
formation volume change. This sort of correspondence, as well as other empirical
findings, are investigated in order to assess the relative importances of various fea-
tures of the transformation.

Our hope is that, with a better understanding of this phenomenon, future alloys

can be designed to maximize the benefits of the transformation for particular ap-
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plications. In recent experiments on phosphocarbide-strengthened steels, Young has
demonstrated that alteration of the critical transformation parameters, i.e., the phase
hardness difference and the extent of volume change, can be accomplished simply by
changing the ageing process. Thus, once the nature of the transformation/fracture
interaction is clarified, it may be relatively easy to process alloys for which the bene-
ficial mechanical effects of the transformation are maximized for the environment and

loading conditions to which they will be subjected.
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Chapter 2

Historical Perspective

In this chapter, we review some of the relevant research that has been performed
leading up to this thesis project. We first present a short description of martensitic
transformations, followed by a more specific discussion of the mechanically-induced
martensitic transformations which produce transformation plasticity. We then review
the pertinent experimental work on transformation toughening that has motivated
this research, and discuss the possible sources of transformation toughening that we
will later explore through analysis. Finally, we review the processes of fracture in high
strength steels and discuss a few basic mechanical issues related to these experimental

observations.

2.1 Martensitic ’I‘ransformations

The strengthening of steel through quenching is a process that has been used for thou-
sands of years. It has been only in relatively recent years, however, that this strength-
ening has been shown to be the result of a structural change called a martensitic
transformation. The martensitic transformation is a widely observed phenomenon
which has been observed in many metallic as well as ceramic systems.

The phenomenological features which distinguish martensitic transformations have

been reviewed by Cohen, Olson and Clapp {26]. Martensitic transformations repre-
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sent a subset of a more general classification of displacive (diffusionless) phase trans-
formations which are characterized by high speeds of transformation during which
atoms move over distances less than the atomic spacing. The transformation is char-
acterized by lattice-distortive displacements rather than shuffle displacements (see
Fig. 2.1). Moreover, the deviatoric component of the displacement dominates, rather
than the dilatational component, with the result that there are lines within the crys-
tal structure that remain undistorted during trai.sformation. Within the group of
transformations which exhibit the above characteristics, a martensitic transformation
is defined to be one in which strain energy dominates the kinetics and morphology of
the transformation.

In iron-based alloys, martensitic transformation alters the fcc crystal structure of
the parent austenite to the bcc or bet structure of martensite, as depicted in Fig. 2.2.
(Transformations from fcc to hep are also observed.) Parent and product structures
of several sysiems are summarized in Table 2.1. The transformation produces a shear
strain of about 20 percent [28] as well as a volume expansion or positive hydrostatic
strain which can vary from 0 to 5 percent, depending upon the chemical composition

of the alloy [6,28,29].

Alloy Structural Change
Co, Fe-Mn, Fe-Cr-Ni fcc — hep

Fe-Ni fcc — bec

Fe-C, Fe-Ni-C, Fe-Cr-C, Fe-Mn-C fcc — bct

In-Tl, Mn-Cu fcc — fct

Li, Zr, Ti, Ti-Mo, Ti-Mn bce — hep

Cu-Zn, Cu-Sn bee — fct

Cu-Al bece — distorted hep
Au-Cd bce — orthorhombic

Table 2.1  Systems in which martensitic or quasimartensitic (martensitic-like) transfor-
mations occur (adapted from [27]).
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2.2 Temperature/Stress-Dependence of Marten-
sitic Transformations

At any given temperature, there exists one preferential crystallographic structure
corresponding to the lowest energy level. The martensite phase has the thermody-
namically preferred crystal structure at relatively low temperatures, so that when the
steel is quenched, the original austenite structure — stable at high temperatures —
tends to transform into martensite. For the transformation to occur, an energy bar-
rier must be overcome, since, during transformation, crystal atoms will temporarily
assume configurations corresponding to higher energy levels. If the driving force for
transformation is not high enough, the energy barrier cannot be overcome: the parent
state (austenite) cannot transform into the the thermodynamically favorable product
phase (martensite), and it is said to be metastable. As the temperature decreases, the
difference between the energy levels of the two structures, i.e., the driving force for
transformation, increases so that, when austenite is rapidly cooled below a sufficiently
low temperature, M,, a spontaneous transformation to martensite occurs. Another
means of altering the driving force for transformation is by supplying mechanical work
in the form of an applied stress. In this manner, the austenite/martensite transfor-
mation can occur at temperatures higher than that for spontaneous transformation.
Transformation at temperatures above M, is said to be mechanically-induced. Fig.
2.3 gives a schematic representation of the conditions for transformation under ap-
plied macroscopic loading. Nucleation of martensite at temperatures just above M,
is termed stress-assisted, since it relies on applied stress to provide the additional
driving force required for transformation. As the temperature increases above M,,
the amount of stress required to produce the transformation increases linearly until it
finally reaches the yield stress of the austenitic phase at that temperature, Yp. This
occurs at M7, the temperature at which the observed linear relationship between
the nucleation stress and temperature abruptly ends [31]. Subsequently, the stress
for transformation follows a curve which lies slightly above the yield stress versus

temperature line of the austenite, and well below the extrapolated stress-assisted
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transformation line.

At temperatures below M7, martensite particles form at pre-existing sites in the
parent austenite. Above M?, however, new nucleation sites are created by plastic
strain in the austenite (e.g., [14]). This strain-induced form of the transformation is
observed at temperatures between M? and My, the temperature at which fracture
occurs prior to transformation [32]. At temperatures near M7, both stress-assisted
and strain-induced modes of nucleation are observed [33].

The morphology of the two-phase product of the transformation is dependent
upon the general conditions of plastic flow in the parent austenite [14]. As shown in
Fig. 2.4a for a 0.27C (0.27 weight percent carbon) metastable austenitic steel, solu-
tion treated at 1200C, martensite forms spontaneously during isothermal holding at
—196C. The wide, jagged bands observed here are indicative of an autocatalytic nu-
cleation process [34]. A similar morphology is depicted in Fig. 2.4b for stress-assisted
transformation at —196C, however, the bands here have become more randomly ori-
ented, most likely due to interference in the growth process caused by slip in the
austenite [14]. The similarities between the stress-assisted and spontaneous mor-
phologies are consistent with the notion that the essential mechanism of nucleation is
the same in both cases, the only difference being the thermodynamic assistance given
by the applied stresses [14]. At temperatures well into the strain-induced regime,
however, the morphology is quite different, indicating that the nucleation process is
different at these higher temperatures (—28C and 25C), as shown in Figs. 2.4e and
2.4f. Although there has been much debate over the exact nature of the nucleation
process for strain-induced martensite, most investigators agree that, in austenitic
steels, the martensite forms at the intersections of microscopic shear-bands, which
typically consist of one of the following: intermediately formed ¢-martensite (hcp),
mechanical twins, or stacking fault bundles [35-39]. Recent experimental work by
Young [7] on phosphocarbide precipitate-strengthened alloys suggests that the nucle-
ation process can also involve interactions between shear bands and the precipitate
particles. At intermediate temperatures (—128C and —75C), both types of morpholo-
gies are present, as shown in Figs. 2.4c and 2.4d, which suggests that the boundary
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between stress-assisted and strain-induced transformation regimes is not sharp.
Kulin, et al. [40] demonstrated in the early 1950’s that M7 changed under different
states of stress. Shortly thereafter, Patel and Cohen [29] quantified the effect of stress
on the driving force for transformation. It is now well established (e.g., [41]) that the
M? and M, temperatures are strong functions of stress state. In the next section,
we review the mechanisms of transformations that occur in conjunction with, and as
a result of, an applied stress. One should keep in mind when reading this section
and the remainder of this thesis that, when we speak of temperatures in the “stress-
assisted” or “strain-induced” temperature regimes, we are referring to temperatures
relative to the M,, M? and M, temperatures for a particular stress state, e.g., M,
(the M? temperature in uniaxial tension) or My, (the My temperature in the triaxial

stress field ahead of the tip of a crack).

2.3 Mechanically-Induced Transformations

The macroscopic deformation associated with phase transformations under applied
stress has been termed transformation plasticity. Transformation plasticity occurs not
only during martensitic transformations, but has also been observed in diffusional al-
lotropic transformations and precipitation reactions, such as the carbide precipitation
during the tempering of steels [42-47]. Even biological structures with crystalline ar-
rays of molecules have been observed to display transformation plasticity [48].

The transformation plasticity that accompanies martensitic transformations in
the presence of an applied stress provides substantial alteration of the mechanical
properties of the material. This unique process allows for the design of materials
which take advantage of the transformation itself, not simply the properties of the
transformation product. The notion of exploiting the properties of such a structural
change is quite novel with respect to the classical view of the relationships between a
material’s structure and its properties.

When transformation plasticity is accompanied by an accommodating slip, as it is
in the strain-induced regime, the transformation is irreversible or non-thermoelastic.

If there is no slip, then the transformation is reversible, or thermoelastic. The unique
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properties of thermoelastic martensitic transformations have been utilized to produce
the so-called shape memory effect, where a reversal of transformation plasticity oc-
curs upon heating, allowing martensite to transform back into austenite at the new
temperature. The remarkable consequence of this reversibility, first discovered by
Kurdjamov [49], is that, after being deformed by means of transformation plastic-
ity at one temperature, the original shape of the material is recovered upon being
heated to a second temperature. The two temperatures can be controlled by the al-
loy composition. In recent years, a wide body of research has been devoted to taking
practical advantage of this phenomenon. At least one such family of alloys, Nitinol
(Nickel-Titanium), has found several technical applications, ranging from pipe fittings
that are installed at low temperature, and shrink to fit when heated to the working
temperature, to space antennas that unfold when deployed [50].

The focus in this thesis, however, will be on non-thermoelastic transformations
leading to transformation toughening. In the following section, we review certain
aspects of the kinetic models that have been developed for non-thermoelastic trans-

formations.

2.3.1 Kinetic Models
Stress-assisted Nucleation

The kinetics of stress-assisted transformations have been modeled by simply adapt-
ing existing models for spontaneous transformation kinetics to take into account the
thermodynamic effects of an applied stress [32]. Patel and Cohen [20] estimated the
contribution of an applied stress by considering the work done by this stress acting
during the transformation strain. Let AG represent the driving force for transforma-
tion. Patel and Cohen suggested that the kinetics of stress-assisted transformation
could be treated by adding the mechanical contributior to the transformation driving

force, AG”, to the chemical contribution to the driving force, AG°":

AG = AG® + AG°. (2.1)
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For an invariant-plane shape strain with shear and normal components ~, and ¢, and
corresponding resolved stresses 7, and ,,, the work done per unit volume during the

transformation (the mechanical contribution to the driving force) is given by:
W = AG° = TyYs + Onén. (2.2)

Fig. 2.5 shows, in terms of Mohr’s circle diagrams, how this extra contribution to the
driving force varies for a few different stress states. Expressions (2.1) and (2.2) are in
reasonable agreement with the linear portion of the curve given in Fig. 2.3 [32, 51]: as
the chemical driving force, AG*, decreases with temperature (roughly linearly, due
to the entropy term), a correspondent (linear) increase in AG?, and thus in stress, is
required in order to maintain the same level of driving force for transformation.

At temperatures in the stress-assisted regime (well below M), where kinetics
are not affected by slip in the parent phase, experimental data for volume fraction
martensite formed, f, versus uniaxial tensile plastic strain, €, also show linear behav-
ior:

f = ke, (2.3)
where k is a proportionality factor, and k~! = de/df can be regarded as a mea-
sure of the average transformation strain per unit transformed volume. Stress-strain
data measured in the stress-assisted temperature regime suggest that k is a stress-

dependent quantity [14]. The linear relationship between f and € implied by eq. (2.3)

is consistent with the suggested work contribution term given by eq. (2.2).

Strain-induced Nucleation

In the strain-induced temperature regime, transformation kinetics are more complex
due to the interaction of slip in the parent austenite phase with the transforma-
tion process. A one-dimensional quantitative model for trausformation kinetics in
this regime was developed by Olson and Cohen [20], based on the assumption that
intersections of shear-bands created by slip constitute the primary strain-induced
nucleation sites (see Fig. 2.6). Their model was designed to predict martensite evo-

lution in one-dimensional stress states (namely uniaxial tension), and as such, does
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not explicitly account for the effect of stress state on the nucleation process. It yields
sigmoidal f - € curves which are in excellent agreement with existing experimental
data, including the uniaxial tensile data of Angel [53], obtained over a wide range
of test temperatures for an annealed type 304 stainless steel (Fig. 2.7). We utilize
the Olson-Cohen model in this thesis as the foundation of our more complex kinet-
ics model, which does account for stress-state effects; a complete description of the

detailed model is given in section 3.3.

2.3.2 Constitutive Flow Relations
Stress-assisted Nucleation

Models for flow behavior in the stress-assisted temperature regime, where plastic flow
is controlled by transformation kinetics, are based on accounting for the operation
of the transformation as a deformation mechanism. Olson and Cohen [51] devel-
oped one-dimensional constitutive relations predicting flow stress, o as a function of

temperature, strain, strain rate and stress state, given by
o = 6(o,f,f)
f

(22 ) 9

which, using (2.2), yields ¢ = &(0,¢,€é). Here A and B are constants, R is the

gas factor, n; is the initial density of nucleation sites, p, is an autocatalytic factor
accounting for new nucleation sites created during transformation, N, is the number
of martensitic plates per unit volume, V is the instantaneous mean plate volume and v
is the nucleation attempt frequency. This expression produces the fit to experimental
stress-strain data for a high strength metastable austenitic steel shown in Fig. 2.8.
As indicated in the figure, the model flow curve shown here fits the transformation
softening behavior well, but produces a much sharper upturn than the experimental
curve. Olson [29] attributed the error between model and experimental curves at high
strain levels to the assumption of a single activated nucleation process involving the
most favorably oriented martensite nucleus as assumed in the Patel-Cohen model (see

eq. 2.2). More recently, Olson, et al. [39], have produced better fits to experimental
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data using constitutive equations based on statistical models of martensite nucleation

accounting for the distribution of plate orientations.

Strain-induced Nucleation

Models for flow behavior in the strain-induced regime are not as well defined, again
because of the complicated nature of the interactions between stress, sirain, and
transformation kinetics. A simple model was proposed by Narutani, et al. [20],
which, along with the Olson-Cohen model for transformation kinetics, formed the
basis for the preliminary Master’s thesis work. Its principal feature is the use of a
Voigt upper bound approach in which the incremental and total strain in both phases
are assumed equal. Due to the typically large difference in strength between marten-
site and austenite, this model, unaugmented, significantly overestimates the plastic
stiffness, and does not correctly predict the strain levels in the individual phases.
This upper bound estimate is then scaled to match experimental data by subtracting
a “dynamic softening” factor proportional to the rate of martensite formation. In
addition, in calculating the respective phase contributions to the total flow stress, a
“shape strain” contribution to the total strain is subtracted because it does not di-
rectly contribute to the strain-hardening of either phase. The functional form used in
this model yields reasonable agreement with experimental data from uniaxial tension
tests, as shown in Fig. 2.9, but, in our experience, leads to numerical problems when
introduced into computer codes for study of boundary value problems. With pres-
sure sensitivity of transformation incorporated into the model, triaxiality gradients
can lead to tremendous local changes in the rate of martensite formation — and thus

to large changes in flow stress as a result of this dynamic softening term.

2.4 Transformation Toughening

2.4.1 Stress-assisted Temperature Range

At temperatures below M7, the two-phase transformation product material is in-

clined to be brittle, as coarse martensitic plates tend to fail by cleavage. For this
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reason, stress-assisted transformations in metallic systems typically do not produce
particularly tough materials. On the other hand. in ceramic systems, deformation-
induced transformation of dispersed metastable zirconia (ZrO,) particles have lead
to significant increases in fracture toughness at temperatures where stress-assisted
nucleation is observed [54]. The process of toughening in ceramics now seems to be
well understood. The volume change accompanying the transformation relaxes local
stresses, acting to shield the crack tip from the applied far-field stress, thereby reduc-
ing the stross-intensity factor [55]. As the crack advances, a transformation “wake”
forms above and below the crack, which, in effect, acts to clamp the crack shut (3, 56]
(see Fig. 2.10). Ductile second-phase particles, such as aluminum, have been added

in other instances to further increase toughness.

2.4.2 Strain-induced Temperature Range

Returning our attention to steels, the enhancement of ductility and toughness by
means of transformation plasticity in the strain-induced regime is well established.
In the late 1960’s, Zackay, et al. [57] found that transformation plasticity in the strain-
induced temperature regime suppressed tensile necking in low-carbon metastable
austenitic steels by means of the strain-hardening accompanying the gradual transfor-
mation to the much harder martensite phase. This process resulted in high ultimate
tensile sirength (UTS) and uniform ductility (187 ksi [1290 MPa)] UTS with 75% elon-
gation and 212 ksi [2150 MPa] UTS with 22% elongation) for this class of metastable
austenitic steels exhibiting strain-induced transformation, which were termed TRIP
(TRansformation-Induced Plasticity) steels. These results generated a wide body of
research in the late 1960’s and early 1970’s concerning ductility and toughness of
TRIP steels.

The more interesting aspects of toughening lies in the ability to retard fracture.
The same alloys that showed such promise in the early tensile tests did not behave as
well in fracture toughness tests. Significant toughness enhancements were measured
in lower strength alloys [58]. Results for higher strength alloys were not quite as

impressive. Antolovich and Singh [59] did report K. fracture toughness increments
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(with respect to nontransforming values) ranging from 37 to 57 ksi Vin (41 to 63
MPay/m) for a high strength (UTS = 250 ksi [1700 MPa]) alloy. Antolovich and
Singh proposed a model accounting for the toughness increment due to transformation
based which was based on the energy dissipated by the transformation shape strain.
They found that their model predictions correlated well with their experimental data,
despite the fact that transformation volume change, to which the toughness increment
in ceramic systems has since been attributed, was not considered in their analysis.

These relatively small increases in toughness were not great enough to compen-
sate for several problems inherent to these steels that severely limited their practical
application. They required a significant amount of difficult processing and used large
amounts of expensive alloying metals such as chromium [60]. In addition, the transfor-
mation process during uniform tensile deformation was found to be quite sensitive to
the rate of deformation — high strain rates retard transformation [31,61). This unfor-
tunate consequence can be attributed, in part, to local adiabatic heating produced by
the high strain rates which raise the local temperature. Finally, the strain-induced
temperature range (My; — M?) was generally quite small for these alloys, greatly
affected by the alloying process, and often too low relative to room temperature.
Consequently, research on transformation toughening in metals slowed, and much of
the attention gradually shifted toward transformation toughening in ceramics.

One reason why these early fracture toughness tests were not successful is that they
were likely conducted at temperatures much too low relative to M and My. In fact,
they seem to have been carried out at the same temperatures for which the remarkable
tensile properties were measured. However, because of the previously noted stress-
state dependence of transformation kinetics, M? and M, are much different in the
crack tip stress field than in uniaxial tension. More specifically, because of the triaxial
state of stress ahead of the crack tip, local M? and M, temperatures increase, and
the kinetics and morphology of stress-assisted nucleation often take over, resulting
in brittle modes of fracture. Antolovich and Singh [59], for example, reported that
the fracture modes in their experiments were indeed brittle, and plate martensite was

clearly evident in their micrographs. Thus, the crack tip region was clearly governed
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by the kinetics and morphology of stress-assisted transformation, despite the fact that
they were investigating strain-induced transformation toughening.

A renewed interest in TRIP steels as a means of achieving toughness in high
strength materials was generated in 1984 by the work of Leal [6], who measured ex-
tremely high fracture toughness values for certain high strength (Y ~ 1300 MPa) Ni-
Cr alloys in tests where ductile fracture modes were observed. His measured fracture
toughness results are summarized in Fig. 2.11. The toughness increments measured
by Leal are much higher than those reported by Antolovich and Singh for equivalent
strength TRIP steels. Moreover, the toughnesses shown in Fig. 2.11 are significantly
higher than any steel of equivalent strength (recall Fig. 1.1). For each of the alloys
Leal studied, maximum toughness was measured at test temperatures at or above
the estimated M, temperature for uniaxial tension. Unfortunately, the stability of
these alloys was such that both the M7 and M, temperatures were quite low relative
to room temperature, and thus were difficult to pinpoint experimentally, so that a
quantitative experimental assessment of the optimal temperature for peak toughness
could not be made.

The next comprehensive data set regarding transformation toughening of high
strength austenitic steels was produced by Young [7], who conducted tests on a 0.5Mn-
overaged alloy, phosphocarbide-strengthened to 1300 MPa tensile yield strength. Pre-
cipitate strengthening was chosen here as a means of achieving high strength, because
warm-working, the other predominant strengthening mechanism, limits the commer-
cial application of the material. The emphasis of Young’s work was toward a better
characterization of the parameters which affect toughness in high strength steels, for
which available data is sparse compared with that for lower strength alloys. Young
studied the effects of aging on the stability of the austenite, conducted tests in both
tension and compression to better characterize the stress-state dependence of trans-
formation kinetics, and varied the alloy content in order to correlate fracture tough-
ness with transformation volume change and with the hardness difference between
martensite and austenite. He found that there is indeed a strong correlation between

toughness and volume change, as indicated in Fig. 2.12. Young also found that in-
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creased martensite/austenite hardness difference enhanced toughness (also shown in
Fig. 2.12), but to a lesser degree. An important question which must be answered
is whether the beneficial effects of positive transformation volume change are due di-
rectly to the mechanical effects of plastic dilatation on the failure process, or indirectly
related through the positive correlation of volume change with the pressure-sensitivity
of transformation kinetics. Since dilatation is normally a destabilizing effect, the lat-
ter notion seems more plausible. Previous investigators (e.g., [59]) have speculated
that transformation dilatation leads to relaxed stresses in much the same manner
that it does during stress-assisted transformations in ceramics, by dissipating energy
that would otherwise be available for crack advance. Closer scrutiny of this notion
reveals that the volume change is likely easily elastically accommodated; preliminary
results obtained in [13] in fact showed little, if any, direct effects from transformation
volume change.

Taking advantage of the improved knowledge of the stress-state dependence of
transformation plasticity and improved alloying techniques, Stavehaug [1] recently
completed a fracture toughness study where the goal was to produce a high strength,
high fracture toughness alloy that exhibits peak toughness at room temperature. Using
a v'-strengthened A286 steel with tensile yield strength of 1300 MPa as a baseline,
he then added chromium to increase the width of the My — M temperature band.
He developed two series of alloys: a 4% chromium series with 24%, 25% and 28%
Ni, and a 12% chromium series with 17%, 19%, 21% and 23% nickel. The 12%
chromium series was chosen for the practical reasons that the resultant alloy is not
only stainless, but requires a smaller amount of nickel, a costly alloying element.
Stavehaug performed tensile tests and three-point bending fracture toughness tests,
all at room temperature, as summarized in Fig. 2.13. The fracture specimens were
all fatigue-pre-cracked at high temperature so as to avoid premature formation of
martensite, as Leal [6] observed. Pre-cracking was also conducted in a vacuum, in
order to avoid crack-branching. He chose the several weight percents of nickel hoping
to bracket peak toughness. He found, however, that peak toughness values were

reached at the ends of each series, as evident in the figure, so that higher toughness
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values are possible for this combination of alloys. Stavehaug’s experimental results
relating to fracture are discussed in more detail later in the thesis.

Strain-induced transformation toughening has also been demonstrated in titanium
alloys [62]. Here a retained metastable §-phase transforms into an orthorhombic
martensite a”-phase. Fig. 2.14 shows data taken from both static and dynamic
fracture toughness tests conducted on a Ti-6Al-4V alloy [62]. The high toughnesses
reported here for the dynamic tests are especially encouraging in light of the noted

difficulties caused by high strain rates.

2.5 Mechanical Features of Transtormation
Toughening

In this final section of background information, we review some of the mechani-
cal issues which must be considered in assessing the mechanisms of transformation
toughening. In particular, we review the processes of fracture in high strength steels,
and then discuss a simple, but nevertheless critical, consequence of the unique stress-
strain behavior of transforming steels, which we believe lends insight into the effects
of transformation with regard to ductility on a macroscopic scale and with regard to

fracture toughness on a microscopic scale.

2.5.1 Fracture Mechanisms in High Strength Steels

The term toughness is used to describe the ability of a material to absorb energy prior
to and during fracture. The terms brittle and ductile are further used to distinguish
between materials and fracture modes which, on a macroscopic scale, exhibit low
toughness and high toughness, respectively. On a microscopic scale, the most brittle
fracture mechanism is cleavage, wherein fracture occurs by separation along crystallo-
graphic planes across which atomic bonds have been broken. Fracture surfaces are flat
and shiny, indicating smooth planar separation. In contrast with the fine, “needle”
martensite produced through strain-induced transformation, plate martensite tends
to behave in a brittle fashion; in the stress-assisted temperature range, as noted, frac-

ture occurs by cleavage within the thick martensite plates. The mechanism of ductile
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fracture involves nucleation, growth, and coalescence of voids which form around par-
ticles or inclusions present in the matrix material. Smaller particles are generally in
the form of a second phase, purposefully put into the matrix to refine grain size (e.g.,
as in the precipitation-strengthened materials of Leal [6], Young (7] and Stavehaug
[1]). Larger particles are usually in the form of impurities which remain in the matrix
after processing. Fracture by void nucleation, growth and coalescence is regarded as
the predominant mechanism of fracture in ductile metals. The transforming steels
which demonstrate high fracture toughness in the strain-induced temperature range
exhibit this latter mode of fracture.

Although it is generally agreed that nucleation of voids around particles is an
important part of the fracture process, the critical conditions for nucleation are not
yet entirely clear. Nucleation occurs in one of two ways: cracking of the particle
or decohesion of the particle/matrix interface. Nucleation of voids around equiaxed
particles such as FesC (iron carbide) is generally observed to occur by decohesion
of the particle-matrix interface [63]. The necessary conditions for debonding include
reaching a critical energy level for formation of a new surface, and reaching a critical
value of either the interfacial tractions or the matrix strain at the interface. For
particles greater than 250A in diameter, such as the 0.1uym to 0.3um alloy carbides
often found in TRIP steels, the energy criterion is always satisfied [64]. There is still
debate over the second necessary condition for nucleation of voids at large equiaxed
particles. Although a majority of investigators (e.g, [65]), agree that nucleation occurs
when a critical level of the interfacial normal traction is reached, others [66] argue
that reaching a critical matrix strain at the interface induces nucleation or that some
combination of interfacial traction and strain might be the key parameter [67].

Experimental data from tension tests suggest that the nucleation event starts near
the pole axis of the particle, i.e., the axis of applied stress (e.g., (68]). This evidence
would seem to preclude the possibility of a strictly strain-controlled event, because
peak interfacial strains are generally found at 45° away from the pole. Peak interfacial
normal tractions, on the other hand, occur near the pole, and thus a stress-controlled

nucleation event seems much more likely. A critical combination of traction and strain
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remains possible given this nucleation scenario, since a parameter of this sort would
peak somewhere between the pole and the 45° line. The precise location of the initial
debond is still unclear and may, in fact, be different for different materials.

Voids generally nucleate around larger particles first (e.g., [69]). In relatively
low strength, low purity materials containing a large volume percentage (2-4%) of
large particles (mean particle radius between about 0.1 gm and 10 gm), a significant
amount of porosity develops prior to localization and fracture. Fracture is governed
by growth and coalescence of the voids. At the tip of a crack, rupture occurs by
eventual interaction of the coalescence process with the surface of the crack (see Fig.
2.15). In clean, high strength steels with a low volume percentage (0.01 - 0.1%) of
small particles (mean particle radius less than 0.1 pm) fracture occurs by a process of
“zig-zagging” , or ridge formation on a fine scale above and below the fracture surface
[71] (see Fig. 2.16). Here fracture may be predicated on a nucleation criterion rather
than a growth criterion. Rogers [10] first noted periodic ridge markings in tensile
specimens of OFHC copper. Van den Avyle [71] showed that the zig-zags follow paths
of highly localized local shear strain at directions +£45° to the macroscopic fracture
surface. Within the highly localized region (void sheets) microvoids form around the
smaller particles. Van den Ayvle attributed the zig-zag pattern to be a result of the
combined effect of strain and triaxiality. The localized path of deformation follows
the direction of highest combined strain and triaxiality. At a certain point, the
combination of strain and triaxiality in the path direction becomes too small, and the
optimal direction, in terms of these two parameters, becomes the path at right angles
to the original path following the macroscopic propagation direction. This process
has been observed in a wide variety of high strength, high purity materials, including
OFHC copper, 200 grade maraging steels, 4340 steels, titanium, aluminum and cobalt
series alloys [72]. In the absence of transformation, the metastable austenitic steels
considered in our studies also exhibit this fracture mode [1]. With transformation,
the fracture mode can be much different, as evidenced by the micrograph shown
in Fig. 2.17, taken from the crack-tip region of Stavehaug’s 12Cr-17Ni three point

bend specimen just after crack advance. This micrograph shows a much more diffuse
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fracture process, with a tremendous amount of crack tip biunting as well as crack
branching,.

Void nucleation not only leads to failure, but it also reduces the macroscopic strain-
hardening capacity of the steel. The shedding of the load carried by nucleated particles
results in a redistribution of stress and strain within the matrix, altering its stress-
strain response in a deleterious fashion. There is evidence [23] that shear localization
can occur almost simultaneously with the onset of void nucleation. An obvious and,
we believe, critical consequence of martensitic transformation is that the extra strain-
hardening brought about by martensite formation can counteract the strain-softening
of void nucleation and growth, resulting in retardation of localization to higher levels
of strain and altering the onset and the subsequent direction of localized flow. This
notion is discussed in further detail in section 3.6.2.

Mechanical analysis reveals that the triaxiality of the state of stress has a strong
effect on void nucleation, because negative pressure adds directly to the peak normal
tractions at the matrix-particle interface (see section 4.3). The observed pressure-
dependence of shear localization supports this mechanical evidence. On the other
hand, the experimental findings of Cox and Low [68] show little or no evidence of
triaxiality dependence. This lack of direct experimental evidence of the triaxiality-
dependence of nucleation may be the result of the difficulty of capturing the nucleation
phenomenon experimentally. Furthermore, MnS inclusions of the sort present in the
4340 alloy studied in [68] are generally poorly bonded, thus the alloy likely behaved
as if cavities were present to begin with.

Numerous investigations, e.g. [15-19], have further shown that triaxiality plays
a critical role in determining the rate of growth of voids. Within this context, it is
both interesting and important to note that the mechanical features which promote
void growth, namely high strain and triaziality, are precisely the same features that
promote nucleation of martensite.

In assessing the toughening effect of strain-induced transformations, one must
consider how the transformation interacts with these fracture processes, i.e., how the

transformation alters the stress and strain fields which interact with the microstruc-
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ture of the material. Within this context, the critical question that must be addressed,
from the viewpoint of continuum mechanics modeling, is whether the transformation
does indeed retard the nucleation and associated localization that leads to failure in
these steels.

With these microscopic features of fracture in mind, we end this chapter with a
short discussion demonstrating how the unique stress-strain behavior of these steels
is close to ideal with respect to retarding flow localization from a continuum, macro-
scopic viewpoint and offering qualitative insight into the microscopic behavior of these

materials.

2.5.2 The Stability of Plastic Flow

The enhancement of ductility observed in the early experiments on TRIP steels can
be attributed to the curve-shaping of strain-induced transformation. As is evident
in Fig. 1.2, the tremendous strain-hardening which accompanies formation of the
much harder martensite phase leads to stress-strain curves which have an unusual
“S”_shape. This unique shape turns out to be beneficial for producing large uniform
ductility and represents perhaps the most potentially beneficial effect of martensitic
transformations in the strain-induced regime. As reviewed by Olson in [31], and
discussed at length in [13], this S-shape leads to prolonged stabilization of plastic
flow. Here, we review a few aspects of the aforementioned discussion, which we feel
lend critical insight into the nature of the toughening mechanism.

Consider a one-dimensional (uniaxial) tension test in which a load P is applied
to a bar of length [ and cross-sectional area A, resultiﬁg in a uniform axial stress
o. Backofen [72], consistent with the ideas of Considére, suggested that in a one-
dimensional framework, loss of stability during tensile plastic loading occurs when
the point of maximum tensile load is reached. Assuming that the load increases until
it reaches some peak and then drops off, as is generally observed, then at the point

of maximum load, dP = d(gA) = 0, so that:

odA + Ado = 0, (2.5)
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or

do
g = gﬁ- . (26)

If elastic and plastic volume changes are neglected, then Al is constant during plastic

flow, so that:

ldA+ Adl =0 = #:#:dc. (2.7)

Restricting attention to rate-independent materials, let the hardening rate, k, be
defined as the slope of the stress-strain curve; i.e., h = do/de. Then substituting for
—dA/A in (2.6) yields a rclationship for the minimum strain hardening rate necessary

to maintain “stable” plastic flow:
h=—=o0. (2.8)

Use of the term stability is restricted here to the one-dimensional meaning of the
term, as implied by Considere and defined in (2.6), which suggests that stability is
lost at the maximum tensile load. Other, more sophisticated measures of stability,
such as those suggested by Needleman and Rice [23], exist and are briefly discussed
later in this section. Careful studies of bifurcation in tensile tests, however, suggest
that the point of bifurcation, or loss of stability, is generally just a little beyond the
point of maximum load [73].

One consequence of strain hardening is that, as the material hardens, the strain-
hardening rate must increase in order for plastic flow to remain stable. Thus, stability
becomes more and more difficult to maintain with increasing strain. For a typical

power-law material, which assumes the following stress-strain relationship:
)" (2.9)
oma(2)" .
€

where 0 and ¢ are reference stress and strain, stable flow cannot be maintained
past a few percent, as demonstrated in Fig. 2.17 for a power-law material with a
strain hardening exponent N = 0.1. In fact, for power-law-hardening materials, it
can easily be shown that ¢, the true strain at which A decreases below o, is equal to
N. Thus, in this example, as this figure illustrates, the intersection of the flow stress

and strain-hardening curves is reached at a strain ¢, = 0.1.
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For steels which undergo strain-induced transformations, however, the dramatic
strain-hardening resulting from transformation delays the final loss of stability to
much higher strain levels, as illustrated in Fig. 2.18. In this figure, the hardening
curve dips below the flow stress curve at a relatively low strain, €,, but as martensite
continues to form, there is a recovery of stability which brings the level of hardening
back above the flow stress at a higher strain, €;. A second instability point is not
reached until a strain ¢, = 0.32.

In fact, for strains less than about 40%, the shape of the flow curves for transform-
ing materials at certain temperatures within the strain-induced regime is very close
to the “ideal” stress-strain curve for maintaining stability, given by the integration of
(2.8):

o = aoezp(e) . (2.10)

Fig. 2.19, which depicts the flow curve for this ideal case as well as for a transforming
and a non-transforming, power-law material, demonstrates how the curve for the
transforming material follows the ideal curve much more closely than the curve for
the non-transforming material.

In order to provide a better picture of how the degree of tensile stability changes
with strain, the parameter h/o has been plotted for several values of © in Fig. 2.20.
(The parameter © represents a normalized temperature in the strain-induced regime
— © =0at M7,; © =1 at My, [see section 3.2].) Within our one-dimensional
framework, stability of plastic flow is lost when h/o decreases below unity. A non-
transforming material (© = 1.0) with a power-law exponent N = 0.045, behaves in the
manner shown by the solid line. At low strains, its flow behavior is quite stable, but
at a strain of €, = 0.045, the h/o = 1 line is crossed, indicating that stability is lost.
At higher strains this material becomes increasingly unstable. TRIP steels exhibit
markedly different behavior at certain temperatures within the strain-induced regime.
Due to the unique shape of their stress-strain curves, these materials undergo a loss
of stability at relatively low strains (even lower than for the power-law material).
However, due to the hardening action of the transformation, a “restabilization” of

flow oaccurs at ¢; and subsequent flow proceeds in a stable manner. Finally, these
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materials undergo a second and final loss of stability at €, as the saturation level of
the transformation is reached, but not until the strains are much higher than when
transformation does not take place. At higher temperatures in the strain-induced
range (© > 0.6), the effect of the transformation is not great enough to result in a
recovery of stability. Experimental evidence, however, suggests that the increase in
h/o delays the onset of fracture even though restabilization never occurs [7,31]. This
feature of the transformation is explored in some detail in chapter 4.

As previously noted, other, more sophisticated measures of stability, such as those
suggested by Needleman and Rice in [23], account for the destabilizing effects of tri-
axiality and porosity evolution. Needleman and Rice, for example, offer the following
formula for determining the critical hardening rate/stress ratio necessary for local-

ization when porosity evolution is accounted for using a stress-controlled nucleation

model:

h 1 {3 (3 ) . (3 )

— ~ —pcosh (=X ) sinb [ =X

(a)cﬂ't 1 — K"l cosh (%2) 2” 2 2
(14 v)K™lo (3 ) [ 1 . (3 )]
e — EKnue e .
60 —7) cosh 22 1+6E cosh 22 , (2.11)

where p is the void volume fraction, & = —p/o (see section 3.2) is triaxiality, E is

Young’s modulus, v is Poisson’s ratio, and K™ is a parameter related to the void
nucleation rate, which can be varied to fit this criterion to tensile fracture data. This
equation yields critical hardening/stress ratios which are generally on the order of p,
but increase with increasing triaxiality.

We do not wish to suggest here that localization of plastic flow occurs simply
when (h/a)/(k/o)_,; < i. Nevertheless, the simple notion that stability is lost at
some critical value of h/G can lead to a qualitative understanding of the tendencies
for plastic flow to localize, and as such, is useful for interpreting results from finite ele-
ment simulation of boundary value problems, in which there is an artificial numerical
stability resisting localization, due to the discrete nature of the elements.

It is evident that the hardening which accompanies the transformation has a

pronounced effect on the stability of the plastic flow process in this material. This

could be significant in explaining the increase in fracture toughness of these materials,
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especially since the onset of fracture in these relatively impurity-free low carbon
materials is thought to be closely associated with the localization of plastic flow in
the fracture area [31]. Moreover, localization conditions, such as those proposed by
Needleman and Rice, are qualitatively similar to a local loss of Considere stability,
since they also depend on the hardening rate reaching some criticallly small fraction

of flow strength.
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Figure 2.1 Schematic illustration of simple lattice distortive and shuffle displace-

ments [26)].
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Figure 2.2 Lattice correpondence for the formation of martensite in steels: (a) bct
cell of axial ratio 2 outlined in austenite structure of cell size aq; (b) deformation carrying
this structure into a martensite cell with parameter 2 (taken from {27)).
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Figure 2.3 Schematic representation of the interrelationships between stresé-

assisted (below M?) and strain-induced (above M?) martensitic transformation [30).
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Figure 2.4 Morphology of martensites formed in 0.27C TRIP steel solution treated
at 1200 °C. (a) Spontaneously formed martensite (~196C); (b) Stress-assisted marten-
site formed near M, (-196C) (c) Stress-assisted martensite (~128C); (d) Stress-assisted
martensite formed just below MZ (=75C); (e) Stress-assisted and strain-induced martensite
formed just above M7; (—28C); (f) Strain-induced martensite formed well above A{; but
well below My (-175C) (14].
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Figure 2.5 Mohr’s circle diagrams and thermodynamic assist of applied stress for
stress states corresponding to uniaxial compression, uniaxial tension and an efastic crack
tip [31].
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N o

Figure 2.6 Nucleation of martensite in AISI 304. The intersections of needles
with the plane of polish in (a) are seen as dark spots due to heavy etching. Transmission

electron micrograph in (b) shows dark bands with martensite forming at the intersections.
(taken from [52]).
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Figure 2.7 Comparison of calculated transformation curves with data of Angel
(53] for a 304 stainless steel. Experimental data are indicated by points. The solid curves
represent predictions obtained using the model of Olson and Cohen (20].
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Figure 2.8 Comparison of model predictions obtained from eq. (2.4) with observed

stress-strain behavior for a high strength metastable austenitic steel steel which exhibits
stress-assisted nucleation (taken from [32]).
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[57)).
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Figure 2.16 Crack-tip micrograph of a 4340 steel fracture toughness specimen
studied by Van den Avyle [72], illustrating the characteristic zig-zag mode of fractuic ob-
served in high strength steels.
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Figure 2.17 Crack-tip micrograph of the three point bend fracture toughness
specimen studied by Stavehaug (1}, exhibiting local transformation, crack tip branching
and tremendous blunting for his extremely high fracture toughness 12Cr-17Ni material.
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Chapter 3

Constitutive Model

3.1 Introduction

In this chapter, we present a constitutive model for transformation plasticity in the
strain-induced temperature range suitable for incorporation into a computer program
for numerical analysis of boundary value problems.

We first present an updated form of the Olson-Cohen [20] model for strain-induced
martensitic transformation kinetics, in which we have accounted for the stress-state
sensitivity of the transformation process. Under isothermal conditions, the volume
fraction of martensite formed is then a function of both plastic strain and the local
stress state.

With a knowledge of the functional dependence of martensite evolution in hand,
we then present a straightforward analysis for the prediction of the stress-strain prop-
erties of the evolving two-phase composite. A simple model for the stress-strain be-
havior of steels which exhibit strain-induced transformation plasticity was proposed
by Narutani, et al. [21]. In this model, a first estimate of the flow stress is made using
a Voigt method, where the strains in the two phases are assumed equal. This leads to
predicted stress-strain curves which overestimate the actual behavior. A correction
accounting for the effect of the transformation process is then introduced; the trans-
formation shape strain leads to strain-softening. In this manner, composite flow stress
predictions are obtained which are in reasonable agreement with experimental data

for low strength austenitic steels deformed in uniaxial tension; however, the hardness
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differences between austenite and martensite are often so large that the assumption
of equal strains in the two Phases leads to grossly inaccurate predictions of composite
behavior. Furthermore, the functional form of the constitutive models used in [21] to
account for the effects of transformation strain have often, in our experience, led to
aumerical difficulties when used for the modeling of boundary value problems.

We have therefore developed a self-consistent model which not only partitions the
strains in the two phases according to their relative hardnesses, but is also better
conditioned for numerical analysis. Moreover, the structure of the model is amenable
to the incorporation of transformation strain in a straightforward manner.

We first derive a general model sujtable for a multiphase material, but applicable
only to materials with fixed phase fractions. We then specialize the model to the
case of a two-phase material in which the volume fraction of each phase evolves with
time and where transformation strain js accounted for. This modified model is less
rigorous than the model for fixed phase fractions, but nonetheless leads to reasonable
fits to experimental data. Several assumptions are made in deriving a model for this
complex mechanical process, and these are discussed.

After illustrating a few of the features of the self-consistent model predictions
for two-phase steels with fixed phase fractions, we compare model predictions with
experimental data caken from [74] for dual-phase steels. More significantly, we then
compare model predictions for metastable austenite/martensite steels with data taken
from [7] and [21}, and illustrate a few of the one-dimensional features of the trans-
formation in terms of the resulting kinetics and flow response under various loading
conditions.

Finally, in order to model the fajlure process directly, we extend the model to
account for the continuum effects of void nucleation and growth. The influence of
void nucleation and growth becomes evident only at high strain and triaxiality, where
porosity evolution leads to strain-softening. With a few additional assumptions, these

processes are easily incorporated into the framework of the original model.
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3.2 Preliminaries

3.2.1 Notation

For the discussion of our constitutive relationships, we have adopted the tensor nota-
tion of Gurtin [75). Scalars are written in regular type (e.g., 7, ). Vectors are written
in boldface lowercase Roman (e.g., e,t) and 2™ order tenscrs are written in boldface
uppercase Roman and boldface lowercase Greek (e.g., T, 0). 4" order tensors are
written as capitalized calligraphic letters (e.g., Z, £). Given an orthonormal vector

basis, e;, 2" and 4** order tensors can be defined as follows:
A = Ajje;®e;, (3.1)
where repeated indices indicate summation, and
C=Cijuei®e; Qe Qe, (3:2)

where the tensor product a ® b of two vectors a and b is a 2" order tensor, defined

such that for any vector v,

(a®@b)v=(b-v)a, (3.3)

where the dot product of vectors b and v, b- v, is defined to equal b;v;. Second order
tensors are linear maps which assign vectors to vectors. Similarly, 4** order tensors
are linear maps which assign 2™ order tensors to 2™ order tensors, etc. The following

notation is used to denote this mapping:
u=A[v], (3.4)

B=Cl[A]. (3.5)

Some standard operators are defined as follows: The inner product A - B of two 2™

order tensors A and B is a scalar, and can be written in component form as follows:
A-B =) A;B;. (3.6)

)

The magnitude of A can now be defined as
Al = VAT -A. (3.7)
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The tensor product A ® B of two 2"? order tensors A and B is a 4** order tensor

which is defined such that for any second order tensor V,
(A®B)[V]=(B-V)A. (3.8)
In component form,
(A® B)ijkl = A;jBu. (3.9)

Two identity tensors can now be defined. The second order identity, 1, is defined
such that
1= 5,'_,'8,' ® €;, (310)

where §;; is the Kronecker delta. The fourth order identity, Z, is defined such that

T = (bibji + bubjr) e; ®e; ® e ®ey. (3.11)

N | =

Identity tensors have the property that they map vectors or tensors into themselves:
1[u] = u; T[A] = A.

Finally, the deviatoric part of tensor A can now be defined as
/ 1
A=A- (gtrA) 1, (3.12)
where trA = Y, Ay is the trace of A.

3.2.2 Kinematics

Using the above notation, we give definitions for a few standard kinematical quantities
which are referenced in the derivation of the model: If we let x be the position of a
particle in the current configuration at time ¢; then the following quantities can be

defined in terms of x:
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V(X,8) oo spatial description of velocity,

L(x,t) = %v(x,t) .............. velocity gradient,
D=1%(L+ A stretching,

w=1 (L - LT) ................ spin,

(s 4 63 ) Cauchy (true) stress,

PO + vt Mass density in reference

undeformed configuration,

/71 67 9% 2 P Mass density in current
configuration,

T(x,t) = ﬁ‘)-a‘ .................. Kirchhoff stress.

T(x,t) = Z(T(X,8)) eeveeennnn. material time derivative of T,

The following definitions are also used frequently throughout the remainder of the

text: The Mises equivalent tensile stress, &, is defined as follows:

5= %s 'S, (3.13)

where S = T'. The hydrostatic pressure, p, is defined as

p= —%trT . (3.14)

The equivalent strain, ¢, is given by:

e= [ed, (3.15)

. [2
¢ = ‘/gn .D. (3.16)

Similar definitions can be given for the equivalent shear stress, 7 and the equivalent

where € is defined such that:

shear strain rate 7:

r= %s s, (3.17)
5=AD D. (3.18)
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3.3 Transformation Kinetics

In previous studies, Olson and Cohen [20,30] reviewed the kinetic aspects of trans-
formation plasticity in the strain-induced regime. They argued that the kinetics and
morphology found in the strain-induced temperature range are a result of the con-
tinuing generation, by the intersection of slip bands in the austenite, of a population
of sufficiently potent embryonic nuclei for triggering the martensitic transformation.
The potency of a given distribution of slip-band intersections in activating the trans-
formation process depends on the local temperature and stress state. Olson and
Cohen [20] developed a model for the kinetics of strain-induced martensitic transfor-
mation which was based strictly on the above nucleation hypothesis; it is hereafter
denoted as the OC model. The stress-state sensitivity of the transformation kinetics
was not explicitly considered in the original OC model formulation; only temperature
and plastic strain were considered as the parameters controlling martensite evolution.
In their application of the OC model, Olson and Cohen considered only uniaxial ten-
sile states of stress under isothermal conditions. In this case, the volume fraction of
martensite formed becomes a function, through some temperature-dependent param-
eters, of plastic strain only. This single-variable dependence leads to an integrable
form for the martensite evolution equation. This approach is not, however, suffi-
ciently general to encompass the noted dependence of the transformation kinetics on
the stress state. In light of the unknown histories of stress, strain and temperature to
which material points in the vicinity of blunt notches, crack tips, etc. are subjected,
it is important to establish more general evolution equations for martensite volume
fraction. The proposed model will therefore incorporate stress-state sensitivity into
the general framework of the OC model of transformation kinetics, utilizing results of
Haezebrouck’s [76] recent investigation of this matter. The incorporation of pressure
sensitivity as a second independent quantity necessitates a reformulation of the OC
evolution law into an incremental form, because the extent of martensite evolution at

a material-point depends on its stress-state history.
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Model Formulation

The rate of increase in the volume fraction of martensite, f, is proportional to the

rate of increase in the number of martensitic embryos per unit austenite volume, N,,:
f=Q=f)oulNn, (3.19)

where #,, is the average volume per martensitic unit, which is assumed to be constant.
The factor (1 — f) represents the decreasing volume fraction of austenite available for
transformation.

The OC model is based on the observation that strain-induced nucleation occurs
predominantly at shear-band intersections. The number of operational nucleation
sites, N, is taken to be equal to the number of shear-band intersections per unit
volume, Ny, multiplied by the probability, P, that a shear band intersection will act

as a nucleation site. N,,. is thus given as
Nm=PN1+N1PH (P) , (3.20)

where H (P) is the Heaviside step function, reflecting the fact that the transformation

is irreversible . Ny can be defined as
N = (3.21)

where f; is the volume fraction of shear-band intersections, and o is the average
volume of a shear-band intersection. The parameter f; is assumed to be related to
the volume fractivn of austenite occupied by shear-bands, f,;, through a power-law

expression of the form
fr=C(f)", (3.22)

where C is a geometric constant, and the exponent r;=2 models a random orienta-

tion of shear-bands. Olson and Cohen pointed out that these shear-bands tend to be

!The form of (3.20) is adequate for most probability histories; however, in some cases it leads
to double accounting of nucleation sites. A short illustration of such a case and its effect on the
formation of martensite is given at the end of this section.
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initially parallel, reducing the initial rate of intersection, so that a value greater than
2 (typically 4 to 5) is assumed for the exponent r;.

Consistent with available data for the special case where the shear bands consist
of hcp e-martensite, the remaining austenite volume fraction of shear-bands, f, is

taken to evolve with plastic shear strain in the austenite, v,, as follows:

j-b = (1 - fab) 0‘.70 . (323)

Equation (3.23) is based on the assumption of a constant rate of shear-band produc-
tion. The factor (1 — f,5) accounts for the diminishing austenite volume available
to produce new shear-bands. The parameter a represents the rate of shear band
formation, df,;/dv., at low strains. It is dependent upon stacking-fault energy, and
since lower levels of stacking-fault energy promote shear-band (planar slip) deforma-
tion modes [20], a generally increases with decreasing stacking fault energy. The
a-parameter is temperature-dependent through the variation of stacking fault energy
with temperature.

Integrating (3.23) under isothermal conditions, we obtain
fab =1—e ", (324)

Substituting for f, in (3.22) and using (3.21) provides

C oy \T!
N,=;_;(l—e )", (3.25)
or, differentiating,
o _ [rCa _a, =97 "_l] :
Ny = [ o e (1 e ) Ya - (3.26)

Consistent with available strain-induced transformation kinetics data [20], the
probability parameter, P, is determined assuming that there exists a Gaussian dis-
tribution of shear band intersection potencies (where “potency” is definzd to be the
minimum thermodynamic driving force at which a given nucleation site can be acti-

vated). P is thus cast in the form of a cumulative probability distribution function,
1 s 1 (¢ -3)]

P=— -z dg', 3.27

V2r _mezp[ 2( 39 )J ! (321
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where g is the dimensionless mean of a given probability distribution function and s,
is its standard deviation (both of which are fit to experimental data). P is taken to be
a function of temperature and stress state through the argument of the distribution
function, g. The narameter g is a normalized net thermodynamic driving force,
defined as:

9=90— 00+ gk, (3.28)

where go, ¢, and g, are dimensionless constants. In eq. (3.28), © is a normalized

temperature which is related to the absolute temperature, T, according to

T- M,
= —__Md.uz Mo (3.29)

where M7, and M ., are the absolute M; and My temperatures for uniaxial tension.

The parameter ¥ represents a ratio of the volumetric and deviatoric stress invariants:

r=—f_-"F (3.30)

& \B3r’
We will refer to ¥ as the “triaxiality” of the state of stress. The rate of change of the

probability function, P, under isothermal conditions (6 = 0), is thus given by

—\ 2
g2 1/9—g :

—= P 3.31
\/27rsge$p[ 2( Sg ) ] ( )
where it can be easily shown that

=% (E - 1) . (3.32)
D T
Substituting for Ny, in (3.19) using (3.20), (3.26) and (3.27), we obtain the fol-

lowing expression for f:

P=

f=0-1) (A + BE) , (3.33)

where
A = afori(1— fu) ()" P (3.34)
B = (/) e [—% (-";g)z]ﬂ(iz) . ()

where fy = Cv,,, /5.
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Discussion

In the model described in equations (3.19 - 3.35), martensite volume fraction is viewed
as a function of temperature, plastic strain and stress state. Temperature affects both
the number of shear-band intersections produced, through o(T), and the probability
of nucleation, through (3.28). The effects of plastic strain and stress state decouple;
plastic strain affects only the number of intersections, while the stress state affects
only the probabiiity distribution. The thermodynamic driving force variable, g, of the
probability function is a critical parameter determining the extent of transformation
under different conditions.

It decreases with increasing temperature but increases with increasing triaxiality.
Thus, at fixed temperature, as the triaxiality increases, so does the probability that
martensite will nucleate at a potential site. Fig. 3.1 depicts P and P as functions
of g and the dependence of P on temperature and stress state. The variation of P
with stress is seen as one of the most important features of the transformation. For
example, as indicated in Fig. 3.1, at fixed temperature, the driving force for transfor-
mation under a highly triaxial state of stress js significantly greater than it is under
a mildly triaxial state of stress, with the result that the probability of nucleation can
increase from a negligible value to a value approaching unity. Following the origi-
nal Patel-Cohen analysis of the thermodynamics of martensitic transformation under
stress [29], the pressure dependence of nucleation scales directly with transformation
dilatation, so that the g, term in eq. (3.28) is strongly correlated with the relatjve

volume change associated with the transformation,

Ay = (Vm*‘:va—)- ) (3.36)

where V, and V,, represent the unstressed relative volumes occupied by the austenite
and martensite phases, respectively. Leal [6] found experimentally that A, ~ 0.02 to
0.05 in austenitic steels, depending upon alloy composition.

Stress-state sensitivity enters the present kinetics model through a linear function

of the triaxiality ratio, & = ~p/\/3r, so that the probability of nucleating a potential

86



site is not explicitly biased by the magnitude of either p or 7. The use of a linear
combination of hydrostatic and deviatoric stress measures (see eq. 2.2) is attractive
from a thermodynamic point of view, since these would add to the driving force for
the transformation in a consistent manner. In fact, we attempted to implement a
model in which a linear combination of p and 7 were used in the definition of g. We
found, however, that this invariably resulted in far too much transformation at high
stress levels. We attribute this result to a disregard of the influence of dislocation
hardening on the frictional resistance to martensite interfacial motion [77]. In the
present model, the thermodynamic contribution of the net deviatoric stress (applied
stress minus athermal friction stress) can be regarded as residing primarily in the
constant go, with some contribution to the temperature coefficient g; through the
temperature dependence of the flow stress.

One final note regarding the functional form of eq. (3.20): the Heaviside step
function, H( P), i> added to account for the irreversibility of the transformation. The
resulting incremental predictions of AN, =~ N Al are accurate for most stress-state
histories. More specifically, (3.20) is accurate when ¥ (and thus P) is a concave
function of plastic strain (i.e, P increases and then decreases). However, whenever
¥ is a convex function (i.e., it decreases and then increases), the form used in (3.20)
leads to double accounting of N;. This difficulty could be overcome if the entire

history of P was tracked, in which case
t
AN, = PAN; + / H [P = Praz(t')] [P = Pmas(t')] AN)(t')at’, (3.37)
()

where P, is the maximum probability seen by each AN;. Storing the history of
P is impractical from a computational point of view. In light of the rare instances
in which the stress state history — and thus the history of P — exhibits this kind
of behavior, the form of (3.20) is sufficient for our model. Fig. 3.2 compares the
more accurate integrated form (3.37) with the approximate form (3.20), in terms of
the effect on the resulting f - 7, behavior, for a hypothetical probability history,
P =1+ 1lsin(57v,). The difference between the predictions of (3.20) and (3.37) does

not manifest itself until P begins to increase for the second time at 4, = 0.3. The
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maximum error in this extreme example is only about 5%, so that we can consider
the approximate form (3.20) adequate for our purposes.
In section 3.6.2, below, we present a comparison of model predictions of martensite

volume fraction versus plastic shear strain with uniaxial tension and compression data

measured by Young [7].

3.4 Stress-strain Bel avior

A constitutive law which adequately describes the behavior of this unique class of
steels must be able to mode! a finitely-deforming, dynamically-evolving, two-phase
elastic-plastic composite having the following significant features: 1. each phase
is strain-hardening, and there are generally large contrasts between the plastic resis-
tances of each phase, leading to substantial differences between the average plastic
strains in each phase; 2. the evolution of martensite, as we argued in the previous
section, is a strong functior: of temperature, plastic strain, and stress state; 3.
the transformation process generates a “nucleation” strain having both deviatoric
and hydrostatic components; 4. the incrementally-formed martensite, as shown,
for example, in ausforming studies [78], “inherits” the dislocation substructure of its
parent austenite, so that the martensite formed at higher levels uf plastic strain will
be harder than that formed at lower levels of plastic strain.

Any model attempting to account for all of these features will have a certain
complexity; however, if a few appropriate assumptions are made, these features can

be directly incorporated into a straightforward model.

3.4.1 Constitutive Formulation

An isotropic hypoelastic formulation is used te define the evolution of the stress state
as a function of the rate kinematics. This choice renders the model properly frame-
indifferent, as is necessary when large deformations are considered. Anand [79] has
shown that the hypoelastic form is a good approximation to the proper hyperelastic

form when elastic stretches are small. The evolution equation for the average stress
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in the composite, T, is thus given by:
T =L [D-D7], (3.38)

where the stretching tensor, D, which is the symmetric part of the velocity gradient
tensor, L, has been decomposed into its elastic and plastic parts: D = D® + DP. The

Jaumann derivative of stress, "17.‘, is defined as:
T=T_-WT+TW. (3.39)
The 4th order isotropic elasticity tensor L£¢ is defined as:
£=2GT + (K - -;-G)l 91, (3.40)

where G is the shear modulus, and K is the bulk modulus. The elastic properties of
the austenite (£¢) and martensite (L¢,) are virtually equal, so we take £ = £ = L7,.
We can further decompose the stretching tensor into deviatoric and hydrostatic

parts:

D=D + %(trD)l , (3.41a)

or

D= i-;TM +é71, (3.41b)

V2

where 4T = /2||D’|| is the total equivalent shear strain rate, M = D'/||D’|| is the
unit deviatoric tensor coaxial with D', and é7 = 1trD is the total dilatation rate. We
can likewise decompose the plastic stretching into deviatoric and hydrostatic parts:
1
D? =D? + §(ter)l , (3.42q)
= —l-#’N +éP1 (3.42b)
V2 v
where ¥ = v/2||D”|| is the equivalent plastic shear strain rate (the bar indicates that
this is a quantity averaged over the composite), €%, is the rate of plastic dilatation, and
N is the unit deviatoric tensor coaxial with D?". Within the scope of our isotropic
model, D*' is chosen to be coaxial with S, so that N is given by

S
N=—. (3.43)
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Using (3.38 - 3.43), the time rates of 7 and p can be expressed as

=q

N=G(#"-%): (3.44)

T =

Sl

p = —=T-1=—K (& —é), (3.45)

ol =

where 8 = M - N. (It can be shown that the tensor dot products of the second and
third terms of the r.h.s of (3.38) with N and 1 vanish.)

The set of equations (3.44, 3.45) for the rates of stress invariants 7 and p can be
completed by constitutively expressing ¥° and é2, — and thus D? — in terms of 7,
p and internal variables, including f and the hardnesses of the two phases, s, and
Sm- In order to obtain these relationships, we first introducc the following further

decomposition of the plastic stretching:
D? = Dall’p + Dnucl , (346)

where the deviatoric tensor D*'P is the part of the plastic stretching which is due to
slip in the austenite and martensite phases and D"*? is an additional inelastic strain
rate resulting from the transformation process. In the remainder of this section, we

give complete descriptions of D*"? and D"*? — and thus 3" and &%, — in terms of 7,

P, f, 8. and s,,.
3.4.2 Modeling Transformation Strain

A critical aspect of the transformation process is the strain softening which occurs as
a result of the transformation strain. We have incorporated strain softening into the
model simply by considering an additional “nucleation” rate contribution to the total
strain rate in a manner similar to that used by Hutchinson and Tvergaard [80] for
modeling softening due to void nucleation. In their constitutive model, ti. * softening
effects of void nucleation are accounted for by considering an additive strain rate term
proportional to the rate of increase of the void volume fraction. Similarly, . ¢ p.opose

the following form to account for the plastic softening due to martensitic nucleation:

Dl = f{-\}-.—z.AN + % Avl} . (3.47)
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The dilatational term in (3.47) accounts for the positive transformation volume change.
We assume that D*/*? is deviatoric, thus (3.47) directly provides that é? = Ay, f. The
deviatoric term models the transformation shape strain, where N, as stated, is pro-
portional to S. Thus, within the framework of our isotropic model, we assume that
the deviatoric part of the nucleation strain rate should be biased in the direction of
the applied stress deviator.

The dimensionless coefficient A in (3.47) reflects an ensemble effect of the shape
strains over an isotropic distribution of nucleation sites as considered by Olson,
Tzusaki and Cohen [41]. Some sites will generate local shape strains in the direc-
tion of N. Others will generate shape strains orthogonal to N. The net shape strains
not aligned with N will tend to cancel themselves, leaving a net shape strain in the
N direction which is much less than the total number of transforming sites per unit
volume times the shape strain associated with each site; hence the need for the factor
A. Consistent with data from tests where inelastic flow is controlled by the stress-
assisted mode of transformation [14], A is taken to depend on the stress level. For

our present development, we chose the following simple form for A:

A= Ao+ A (;T;) , (3.48)
where Ap and A, are constants and s is a reference austenite hardness. Fig. 3.3
shows several values of A plotted versus 7, which have been estimated from (linear)
curves of volume fraction martensite versus plastic strain given in 7] and [14]; these
data were measured at different levels of transformation stress in the stress-assisted
regime. Since the kinetics and morphology of stress-assisted and strain-induced trans-
formations are different, we can expect that values for the parameter A obtained from
experimental data in the stress-assisted regime may differ slightly from the values of
A that are appropriate for the strain-induced regime. However, for lack of direct
measurement in the strain-induced regime, we have used these data, trusting that
they represent reasonable upper bounds for the A coefficient in the strain-induced

regime. The solid line shown Fig. 3.3 represents the value taken for A which is used

later in this work to fit available tensile data given in [21] for a 14Ni-7Cr metastable
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austenitic steel.

3.4.3 Estimation of Composite Stress-strain Behavior

The most critical step in the development of our model involves the partitioning of
the plastic strain rate into its contributions from slip in each phase and a contribution
from the transformation itself. We use a self-consistent model for this purpose. In this
section, we first develop a general model for multiphase materials with fixed phase
fractions. We then specialize the model to two phases and modify it to incorporate
evolving phase fractions and transformation strain. The more general model for fixed
phase fractions is useful in its own right for estimating nonlinear composite behavior
and is also useful for illustrating, for example, the effect of phase hardness difference
on the partitioning of strain and the resultant predictions of the composite flow stress.
We therefore devote a significant portion of this chapter to the development of the

general model and a discussion of its predictions.

A Self-consistent Model for Multiphase Materials with Fixed Phase Frac-

tions

Various methods have been used to predict the elastic—plastic stress—strain behavior
of multi-phase materials. The simplest and most often used is the Taylor [81] method,
in which the strain levels in individual phases are each assumed to equal the average
macroscopic strain. This approach yields an upper bound for the composite stress. An
approach that has received considerable attention in recent years is the so-called “self-
consistent” method. In application of the self-consistent method to multiphase media,
each phase is successively represented by a single ellipsoidal inclusion embedded in an
infinitely extending equivalent matrix which has properties representing the average
of the phases. A uniform stress or strain rate is applied at “infinity” to determine the
conditions in each included phase. Composite properties are determined in terms of
the known average properties of each phase.

The self-consistent method was first proposed by Hershey [82] and Kraner [83] for
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estimating elastic properties of polycrystal aggregates. Kroner’s approach is based
on Eshelby’s [84] solution to the problem of an ellipsoidal inclusion ernbedded in an
infinite medium. Budiansky and Wu [85] formulated an early, simple elastic-plastic
model, but a more general formulation of the method was first proposed by Hill [86]
and later implemented by Hutchinson [87).

In recent years, the self-consistent method has been used extensively in the study
of polycrystalline deformation and texture development (e.g., [88,89]) and two-phase
metal plasticity (e.g., [90,91]). Other means of estimating composite properties have
also been proposed, such as the approach of Mori and Tanaka [92], which was recently
applied to metal plasticity by Tandon and Weng [93]. These models make somewhat
different assumptions regarding the composite averaging scheme. Rigorous bounds
on the composite behavior which are tighter than those of uniform strain or stress
have also been developed — in earlier work by Hashin and Shtrikman [94] for linear
constitutive behavior, and more recently for nonlinear behavior in work such as that
by Talbot and Willis [95] and Ponte Castafieda and Willis [96]. Finally, specialized
self-consistent models of nonlinear behavior have been developed for the limiting cases
of materials with voids or with rigid inclusions [97-99).

In this section, we present a straightforward analysis for the prediction of the
composite properties of a multiphase rigid-plastic material using a viscoplastic, self-
consistent model in the manner of Molinari, Canova and Ahzi [100], who employed
a related approach in the modeling of large deformation polycrystalline plasticity
texture development. Our approach is quite similar in structure to the method utilized
by Chen and Argon [101] in their analysis of creep in heterogeneous materials with
coarse grain structure. The approach is also similar to the simple method outlined
by Berveiller and Zaoui [90] for estimating composite properties of incompressible,
isotropic two-phase metals. This last method relies on an estimate of the ratio of
total values of stress and (small) strain through the use of “secant” moduli, and is
therefore approximate and not incremental in nature. Elasticity is neglected in our

model, but since we are primarily concerned with large deformation applications, this
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Seems a reasonable simplification. lncompressibility is also assumed.
Consider now a materia with N distinct Phases, each of which is isotropic, vis-
coplastic and incompressible. The following relationship is assumed to hold for ma-

terial points within each individual phage:
S=2uD, (3.49)

where S is the deviator of the stress tensor T, D is the plastic stretching tensor and
# is the local value of the “effective viscosity”. Note that since we are modeling
materials with nonlinear behavior, u will vary not only from phase to phase, but also

within each phase, depending on the local magnitude of deformation,

For the simplified case of an isotropic, incompressibse spherical inclusion of shear-
ing modulus (viscosity) u; embedded in an infinitely extended incompressible isotropic
matrix of uniform shearing modulus i, Eshelby demonstrated that the deformation
within the inclusion is uniform, i.e., D = D; = constant, and § = Si = constant. The
following relations can be derived between these local quantities and the macroscopic

strain rate and stress deviator fields of the composite (e.g., [101]):

o =
D; = 3+ 2, D; (3.51a)
5/4,‘ -
Si=——_§ 3.516
3 + 2 ( )

Equations (3.51a) and (3.51b) are precise only for a spherical inclusion embedded in
a linear viscous matrix. We intend to extend the application of a suitably defined

generalization of the localization law (3.51) to non-linear viscous materials, for which
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the deformation D, the stress state S, and the viscosity g within the inclusion are no

longer uniform. The inclusion strain rate and stress deviator must then be considered

as volume averages within the inclusion, i.e.,

1

D; = V.-/viDdV" (3.52a)
1

s.= 7 /S (3.52b)

These two tensors are assumed to be related through a phase-average viscosity pa-
rameter u;, defined by
S, =2u;D;. (3.53)
The averaged quantities D;, S; and p! will satisfy (3.51a) and (3.51b) only approx-
imately. Furthermore, the composite stress-strain rate relationship (3.49) will now
only be satisfied approximately.
Self-consistency is enforced by requiring macroscopic fields to equal volume-averages

of local fields, i.e.,

ﬁ—i/de—iﬁ’j DdV;; (3.54a)
Vv T vgh v '
= 1 1 &
= — [ SdV = — SdV;. .54b
S VA % V;A v, (3.54b)
Using the definitions (3.52a) and (3.52b), (3.53a) and (3.53b) simplify to
N
D= Zf,'D.‘ ) (355(1)
i=1
N
S=)Y fS:, (3.55b)

where f; = V;/V is the volume fraction of the i** phase. For consistency,
N
S fi=1. (3.56)
i=1
The assumption of isotropic symmetry allows us to introduce the equivalent plastic
shear strain rate, § (see eq. 3.18), and the equivalent shear stress, 7 (see eq. 3.17).
Scalar constitutive equations isotropically equivalent to (3.49,3.50) can now be written

as

(3.57a)

il
Il
=i
2



T = BiYis (3.57b)

where 4; and 7; are volume averages of the scalar invariants T and - over the i** phase,

ie.,
N .
W= f, 74V (3.58a)
1
n= L rdV;. (3.586)

In (3.57b), an alternative phase-average viscosity parameter y; is used. Since ¥; and
7; are not scalar invariants of the volume average tensor quantities given by (3.52a)
and (3.52b) ( i.e., i # V2D; - D;) 7, # \/%S—._E.), we find that u; # p; in general.
The Eshelby equations (3.51) relating local and macroscopic quantities can be
recast in an approximate sense as relating macroscopic and phase-average invariants

of stress and strain rate:

. 58
= —7; 3.5
7 3 + 2 7 (3-59a)
Spi
T = 3ﬁ n 2”'_ T. (35911)

A brief discussion regarding the validity of this approximation with respect to the
degree of nonlinearity and the inhomogeneity between matrix and inclusion properties
is given at the end of section 3.6.1.

Let x; =+4:/7 represent the ratio of the average equivalent strain rate within the i**
phase to the composite equivalent strain rate. A self-consistency condition equivalent

to (3.55a) can now be given in terms of x; as:

N
Y fxi=1. (3.60)
=1
A similar rearrangement of the Eshelby equation for equivalent strain rates (3.59a)
yields
3, 2p
d=+==]=1. 3.61
v (3+3%) 00

To close the system, we must provide explicit viscoplastic constitutive equations
for each phase. Rate dependence can be expressed i:. the following simple power law

form:

x_ (E)M , (3.62)



where s represents a reference shear strength level, 4, a reference strain rate, and
M > 1 is a material constant. At low homologous temperatures (Ty < 1/3), the
strain-rate dependence of the flow stress is quite low, because plastic flow is slip
controlled; thus we expect M >> 1 [102]. The shear strength s evolves with plastic

deformation according to

§=hy, (3.63)

where h = iz(s, ...) is the hardening rate. Although more complex viscoplastic models
relating the volume averages of the scalar invariants T and 4 could be chosen, let us
consider each phase to behave according to (3.62), so that the relation between 7; and

"7,' will be
S A\ M
X _ (1) . (3.64)

Yo H

With each phase exhibiting this type of power law response, the composite will behave

according to

J_ G)M , (3.65)

where 3 represents a composite hardness. From (3.64) and (3.65), we can solve for

the viscosity ratios,
Hi _ Tl/7i S .)-All-_l . (3.66)

Let TI; = s,/5 represent the ratio of the average phase hardness to the composite
hardness. Substituting expression (3.66) for u;/7 into (3.61) and simplifying the
result, we obtain

5 2

N |- .
xi =3~ gix: (3.67)

The set (3.67), together with the self-consistency condition (3.60), yields a ciosed
system of equations for the unknowns x; and 3, provided that 7 (or %), f; and s;
are given, along with material constants M and 4. Integration of this system in
conjunction with the hardening rules (3.63) provides a solution for 7 versus 5. Either
T or 5 can be used as the independent control variable. Note that defining a composite
hardness, 3, as we have in (3.65), implies that the rate exponent M is the same in all

phases. An equivalent form of (3.67) can be reached without using (3.65); however,
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in this alternative formulation, one of the unknowns will be 7z, which does not offer

an interpretation as immediate as that offered by 3.

A Modified Self-consistent Model for Evolving Phase Fractions Accounting

for Transformation Strain

Returning now to our dynami-ally evolving metastable austenite/martensite system,
let us define 4*"7 = \/2D*"?/||D*"*|| and separate it according to its contribution

from the individual phases:
Y = fm + (1= f) e (3.68)

where 4, and 4,, represent average equivalent shear strain rates due to slip in the
austenite and martensite phases, respectively. Using (3.42), (3.46), (3.47) and (3.68),

the equivalent plastic shear strain rate can now be written as
=P . Y o
Y =f’7m+(1—f)7a'l"Af- (309)

Apportionment of the plastic strain rate between the individual phases is of critical
importance. As stated earlier, previous models for strain-induced transformation
plasticity were based on the Voigt concept, an upper bound approximation for the
composite stress in which it is assumed that 4, = 4. = 3. Because of the high
hardness differences between the austenite and martensite, Voigt predictions lead to
overestimates of the composite stress. Applying the model outlined in the previous
section to this system, a loose condition of self-consistency of strain rates is enforced by
requiring the macroscopic strain rate to equal the volume-averages of the local strain
rates plus the transformation strain rate. This condition is automatically satisfied by
(3.69). Self-consistency of stresses would require that 7 = fr + (1 — f)7.. This
condition must be relaxed, however, in order to satisfy (3.57, 3.59). In particular,
model prediciions of 7 will generally be lese than fr, + (1 — f) 7, by an amount
proportional to Af7/3”. This term can be seen by first noting that (3.59) requires

that 7;/7 and x; are related as follows:

Ti 9 9
F - Xi - (3.71)



Thus,

frat (L= Nr=7{2 =2 xm+ (1= Nxil} - (3.72)
But, by (3.69), _
Fxm + (1= ) Xa = 1—%, (3.73)
so that, solving for 7:
T=[frm+ (1 - f)7d] [1 ~ ;Ary;f;] . (3.74)

The factor %A f /7 is of precisely the same form as the “dynamic softening” factor
postulated by Narutani, et al. [21] to account for the softening effects of the trans-
formation, which they supported with experimental data. The discrepancy between
(3.74) and the self-consistency condition for stress will be large only when Af = 4trans
is large compared with 7.

We also assume that apportionment of the plastic strain rates is not affected by
either the elastic strain rates or by the hydrostatic part of the transformation strain
rate (recall the assumption of composite incompressibility). Since fAy is generally
much smaller than 5", the error introduced by this assumption is generally negligible.
When f is large, however, fAy /7" can be sizable, and the predictions for ¥, and 4,
may lose a certain degree of accuracy. Nevertheless, the predicted values of 7, and ¥y,
will still be much better than those obtained using a Voigt model. Also, due to the
small strain hardening in these materials, composite stress predictions are relatively
insensitive to small changes in the strain levels in the individual phases.

Let x; =i/ » where the subscript “i” refers to each of the two phases, and let
Xf= f/3". Dividing (3.69) by 7” and substituting for ¥, /7, Am /7 and f /3" provides

a self-consistency condition in terms of x,, Xm and xj:

fxm+ (1= f)xa+ Axy =1 (3.75)

Equation (3.75) together with (3.67) yields a closed system of three equations for
the unknowns X4, Ym and 3, providei that f, s, and s, are given, along with the

material constant M. The equivalent plastic strain rate, 5*, can then be expressed in
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terms of 7, 5 and the material properties M and 4, using (3.65). Thus we now have
a system of equations for 4, and 4,, in terms of f, s, and s,,, 7, M and .

An alternative constitutive formulation can be obtained by assuming that the
self-consistent model accounts only for the slip sirain-rates of the two phases. The
transformation strain-rate term, A f , is then added as an additional strain-rate that
does not affect the apportioning of the slip strain-rates or the predictions of 7. The
resultant stress—strain curve is, in effect, simply moved to the right by a distance A f
relative to the stress—slip strain curve. With this approach, we do not directly violate
either of the two self-consistency conditions. In an earlier modelling effort, we did, in
fa.ct, implement the model in such a manner, but found that we could not produce
fits to experimental curves for T versus 7 that were in reasonable accordance with
the corresponding curves for f versus 7. Experimental data for f and 7 are given in
terms of 77, but our model predicts f as a function of 4,. Thus, both f versus 7* and
T versus 77 must be fit simultaneously, since 4, is a quantity that must be evaluated

within the model.

3.4.4 Phase Hardening Laws

The individua! constituents are assumed to behave as power law hardening type
materials, whose hardening rates can be expressed in the following general form:

S

hi = hi(s;) =

S i
Y Cjnij (3—)

i=1 i

(.76)

where C;, s and n;; are constants. In most cases, a single exponent can be used

(L = 1), yielding the more familiar form in which

B (3_)" , (3.77)

ni \S;
and the second subscript of the hardening exponent is omitted for clarity.
Using the special form (3.77), an integral form of (3.63) is chosen such that the
internal variables s; are related to the accumulated strains -; as follows:
s\
(&) =i (3.19
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where 7! is a reference strain (constant). In a few cases, in order to produce a better
fit to the experimental curves of a given phase, two exponential terms (L = 2) are
employed such that the integrated relation becomes

Ci (:S_:.) + C, (%) =+ ‘7:' . (3.79)

3 i

3.4.5 Accounting for the Inherited Dislocation Structure of
Newly-formed Martensite

To complete the model, one final feature of the transformation process must be ac-
counted for. It has been established that a unit of martensite which forms at a given
plastic strain in the austenite actually inherits the strain-hardened dislocation struc-
ture of its parent austenite [14,78] Thus, each incrementally-formed bit of martensite
is icitially harder than the initial hardness of any previously-formed martensite, and
substantially harder than the initial hardness of undeformed martensite. This feature
is accounted for in the model by keeping a running average of the hardness levels
of previously formed martensite. Each incremental unit of martensite is assumed to
have an initial hardness which is a function of the plastic strain in the austenite from
which it was instantaneously produced. In this manner, the average hardness of the
martensite continues to increase as initially harder martensite is added, even though
(at first) negligible deformation is occurring in the martensite because of its already
high hardness. At each increment, all of the prior-formed martensite is assumed to
have been exposed to the same “average” strain history, despite the fact that each
unit of this group has actually seen a different strain history. The error introduced by
this assumption is second order. Assuming a hardening law of the form (3.78) for the
martensite, the following incremental hardening law is used to determine the average

martensite hardness s,,:
s = 2 (s + hoiimast) + L2, 07 420 (3.80)

whe.e fy and s,,, are the value of f and s,, at the previous time increment.
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3.4.6 Final Form of the Constitutive Model

Now that we have fully defined the plastic strain rate tensor DP, we can express the
evolution equations for T and p in terms of the imposed total rate invariants 4T and
¢T, and the unknown phase strain rates, 4, and 4m,. Substituting for 7" from (3.69)

and f from (3.33) into (3.44, 3.45), and simplifying, we obtain

F o= G (B~ {fim+ (1= Dia} = A= ) {45+ K'CreT}] , (381)
p = —K' [T -y (1-f) (A + D7) (3.82)

where A; and By are given in (3.34, 3.35) and

C; = B;/V3T, (3.83)
D; = Bup/V3, (3.84)
G' = G/[1+G(1 - f)AD}), (3.85)
K' = K/l +K(Q1-f)ACy, (3.86)
A} = Al -K'(1-f)avCy], (3.87)
D) = Dyl - K'(1- f)AyCy] . (3.88)

The evolution of stress with strain has now been defined in terms of two scalar
evolution equations for the stress invariant quantities 7 and p. A solution of these
two equations in conjunction with evolution equations for f, s, and s, provides a

complete description of the constitutive model for these steels.

3.5 Model Implementation

3.5.1 Numerical Procedure

The model has been implemented as a material-law subroutine (UMAT) which can
be incorporated into the finite element code ABAQUS [103]. This code gives the user
the flexibility of specifying a constitutive law through a “user material” subroutine
option. The user is provided with the current level of Kirchhoff stress, To, and any

user-defined state variables (i.e., for this material, 7,, f, sa, and Sm). The strain
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increment A€ and the time increment At are also provided as an estimate of the
kinematic solution for the increment. Within the subroutine, the stress tensor and
the other state variables must be updated based on this estimate. We use an Euler

backwards difference operator, so that
v
AT = TAt, (3.89)

v
where T is the updated value of the Jaumann rate. We also utilize the method of
radial-return [104], in which the deviatoric inelastic strain rate, D' = 7157PN, is

assumed to be coaxial with the elastic predictor of the deviatoric stress, z.e.,

No _(Tot 2GA€)'
I(To +2GA€) ||

(3.90)

The complex nature of the proposed constitutive mcdel leads to a relatively in-
volved numerical integration procedure. We have chosen a bi-level structure in which
the stress invari«:its, 7 and p, and the state variables f, sq, sm, are integrated at the
outer level. An estimate of 7, p, f, s, and s, is first determined. Then, at the inner
level, the set of equations which emerges from the self-consistent procedure (3.67,
3.75) is solved for xa, Xm and 3. From this solution, the rate quantities required
at the outer level (7, p, S., s, and f ) are calculated. A Newton-Raphson method
is used to solve each of these nonlinear sets of equations. After the integration of
the material state is successfully completed, a material Jacobian, which represents
the change in the increment in stress with respect to a virtual change in the incre-
ment in strain, must be computed. This quantity is used in ABAQUS in its global
Newton scheme to achieve an accurate assessment of the incremental kinematics. In
order to obtain a high rate of convergence, the Jacobian must be consistent with the
integration operator.

Detailed time integration and Jacobian calculation procedures for our model are

given in Appendix A.

103



3.5.2 Testing the Constitutive Model

A rather tedious but critical step in the implementation of the numerical model
involves the testing of the numerical procedure. Here there are two important issues:
the accuracy of the integration of the constitutive equations and the accuracy of
each of the three required numerical Jacobians (one for each of the two Newton
schemes internal to the UMAT subroutine and one passed back to ABAQUS for
use in its global Newton scheme). The accuracy of the Jacobian does not affect
the accuracy of the solution, but it can have profound effect on the solution time.
An inaccurate Jacobian can also lead to divergence of the global Newton scheme,
resulting in cutbacks in ABAQUS’s time integration procedure which can bring the
entire analysis to an abrupt halt.

Testing of the UMAT is facilitated by using a driver program which simulates the
interface between the UMAT and the rest of the ABAQUS code. A listing of the driver
used to develop the UMAT subroutine (listed in Appendix A) is given in Appendix

B along with some additional details concerning this aspect of the research.

3.6 1-D Model Predictions and Discussion

In this section, we present one-dimensional model predictions, compare these predic-
tions with available experimental data, and discuss the interesting features and the
drawbacks of our model. We begin with the case of fixed phase fractions, where it
is perhaps easier to demonstrate the salient features of the model and its inherent
limitations. We then proceed to the more relevant case of the strain-induced transfor-
mations where we can show the effects of temperature and stress state on the response

of our system.

3.6.1 Two-phase Materials with Fixed Phase Fractions

For a two-phase material, a useful expression can be developed relating the composite

stress and strain rate to corresponding quantities in the respective phases. Let us
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denote the softer of the two phases as “phase 17 2 and the harder as “phase 2”. One
should expect then that 7, > 7> 7n; 11 = ¥ > 4, . Consider the difference in
equivalent shear stress between the two phases, normalized by the composite average
equivalent shear stress: (1, — 7;)/7. Consider also the difference in the equivalent
strain rates in the two phases, normalized by the macroscopic strain rate: (¥, —%2) /7.
Substituting for 71, 72, 41 and 4, from (3.59), we find that

2T Spa o1
7 m+2m 3m+2m

(3.90a)

T — Y2 SR Sf \
- = - . 3.90b
7 I+ 2 3+ 2p ( )

Dividing (3.90a) by (3.90%), we arrive at a normalized measure of the slope of the line

connecting corresponding points, (¥, 71) and (¥2, 72), which lie on the stress-strain

rate curves of the individual phases. Upon rearrangement, this ratio reduces to the

following simple form: 3

To—T1
= 3
T = - 91
g} Sl 2’ (3.91)
7
or
T2—T1 3 _
. — ==[. 3.92
N — 72 2 ¥ ( )

Interestingly, when the strain hardening exponents n; and n; of the two phases are
equal, an integrated form of (3.92) can be derived in an approximate manner to relate
the equivalent shear stresses and accumulated equivalent plastic shear strains of the
two phases and the composite; i.e.,

T2—T

=

—I-~15. (3.93)

7
This approximation holds because of the relationship between 4; and ¥ given by

(3.59a) and the fact that the Eshelby-type factors, 5/(3 4+ 2i/p;), change very little

2Here “softer” means lower viscosity: p; < g2 .
3See appendix C for details.
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during the strain history for the case of equal strain-hardening exponents in both

phases; therefore:

nom Mo (3.94)
Y v
It is also interesting to note that an exact form of (3.93) can be derived by assum-
ing the secant modulus relationships proposed by Berveiller and Zaoui [30], lending
further credence to their method for small strain applications.

Equation (3.93) provides ‘he geometric interpretation given in Fig. 3.4. The slope
of the line connecting corresponding stress—strain points for the individual phases is
approximately equal to —1.5 times the ratio of the macroscopic stress to the com-
posite strain (i.e., AT/Ay = —1.57/%). It is also evident from Fig. 3.4 that the
distance between (v;,7;) and (7,7) is equal to f, times the distance between (v;, 1)
and (7y2,7;). Likewise, the distance between (v2,72) and (¥,7) is equal to f; times
the distance between (v;,71) and (72,72). Also shown in Fig. 3.4 is an analogous
decomposition of the composite stress—strain curve according to a Voigt model, in
which cace the phase-average stress invariants are similarly weighted to determine
the composite stress, but the associated phase-average strain invariants are assumed
to be equal to that of the composite strain. Note that the self-consistent prediction
of the composite stress can be significantly lower than the Voigt upper bound. Note
also the slight deviation of the self-consistent prediction of the phase 2 stress from
the Voigt prediction. This small difference is due to the slight rate-deperdence of this
harder phase as predicted by our model; the lower strain rate in the harder phase
(relative to ¥) reduces its flow stress. In general, the smaller the hardening exponents
n;, the closer the approximation. For example, when f; = f, = 0.5, n; = nz = 0.06,
M =100 and s}/s} = 2, the ratio given by (3.88) is about 1.497 during the entire
strain history. For n, # n,, the ratio is close to 1.5 for small strains, but deviates
from 1.5 at larger strains, as shown in Fig. 3.5.

Fig. 3.6 summarizes the results for the two-phase, single exponent case (L = 1).
The composite stress determined by our self-consistent method differs from the pre-

diction of a Voigt model only when the rate exponent (M) is low and/or the hardness
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ratio (s3/s7) between the two phases is high. For constituents which are relatively
rate-insensitive (A > 1) and have small hardness differences, the difference between
the stress levels predicted by the self-consistent method and the Voigt model is small.
The apparent agreement is misleading, however. A Voigt prediction yields reason-
able average stresses only because stress-strain curves are generally insensitive to
the magnitude of strain apportioned to each phase, due to the small strajn harden-
ing exponeats of power law relations. Higher hardening exponents, in fact, lead to
greater differences between the predictions of the self-consistent and Voigt models, as
Is evident in Fig. 3.6

Despite the close agreement between the composite stress predictions of the two
methods, the predicted strain levels in the individual phases are much different. For
example, when f; = f,=0.5, M = 100, s5/s1 =5, n, =n, =0.06 and ¥=1.0, the strains
in the two phases as predicted by our method are 4, = 1.43 and 72 = 0.565, while the
predicted normalized composite stress level af this strain, Tsc/s; = 2.80, does not
differ appreciably from the Voigt prediction, Tv/s] = 2.91. Often, the softer phase
has a much higher hardening exponent than the harder phase. For such materials,
the differences between self-consistent predictions and Voigt predictions are generally
even smaller. For example, if n; above is changed to 0.30, then 7go = 2.79, while
Tv = 2.85. The sizable strain difference between the two phases is an aspect of the

problem that is lost using a Voigt model.

Comparison with Experiments

An extensive experimental study of stress-strain behavior in a class of dual-phase
steels was performed by Wojewodzki [74]. She considered ferrite-martensite alloys
with both banded and homogenized microstructures and varying phase fractions.
These were 1.6Mn-0.75Si-0.20Mo alloys with carbon content varying from 0.052 to
0.42 weight percent, which enabled the volume fraction of the ferrite phase to vary
while keeping the carbon content of the austenite constant at the critical anneal-

ing temperature. (The austenite transformed to martensite upon quenching.) The
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banded microstructure was obtained from an intercritical annealing process which
resulted in a complete dissolution of carbides present in the pearlite phase of the as-
received steel and produced a dual-phase structure, but did not eliminate the heavily
banded structure of the pearlite. The homogenized microstructure was obtained by
a homogenization of the austenite for 50 hours at 1250C before quenching, which
effectively eliminated the banding of the pearlite and produced a randomly dispersed
microstructure.

We implemented our model using power law fits to Wojewodzki’s experimental
data. The one-term power law hardening relationship (3.78) was used to fit the data
for the softer ferrite phase, while the two-term form (3.79) was employed to fit the
martensite phase. Values for all constants are given in Table 3.1. Note that the
hardnesses of the respective martensite phases of the dual-phase alloys differed from
the hardness of the 100% martensite measured by Wojewodzki. This difference is
due to the varying carbon content of the martensite phase in its single-phase state
and in each of the dual-phase states. The martensite hardness versus plastic strain
curves listed in Wojewodzki’s thesis — to which we fit our power law model — were
interpolated from the actual data using the carbon content measured during both the

dual-phase tests and the pure martensite tests.

Ferrite — see eq. (3.78)

sj(MPa) ” m
for all cases 384. 0.492 3.33
Martensite — see eq. (3.79)
f2 53 (MPa) 77 Cy Cy na np
banded 0.12 1273. 0.0197 0.01145 0.00171 1.1 23.5

" 0.27 1273.  0.0191 0.01175 0.00089 1.1 22.7
" 0.56 1273. 0.0166 0.01064 0.00044 1.1 23.6

" 0.86 1273.  0.0225 0.01353 0.00148 1.1 24.2
homog. 0.27 1263.  0.0140 0.00683 0.00252 1.1 13.6
7 0.64 1206. 0.0184 0.01064 0.00159 1.1 17.6

” 0.88 1211.  0.0170 0.01006 0.00125 1.1 19.4

Table 3.1 Constants used to fit Wojewodzki’s [74] data.
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A comparison between our model predictions and experimental results js given
in Fig. 3.7 for the banded alloy and Fig. 3.8 for the homogenized alloy. Included
In these curves are the Predictions using the method of Tomota, et al. [105], as
calculated by Wojewodzki, as well as predictions using a Voigt model (based on our
fit to Wojewodzki’s data). The values predicted by the self-consistent model for
the banded alloy (Fig. 3.7) with 12% and 27% martensite are low in comparison
with experiment and the predictions of the other models. This is a result of the
extremely low strain levels predicted by the self-consistent model for the much harder
martensite phase and the high hardening-rate of the martensite at these composite
strain levels. At a given composite strajn level, the self-consistent prediction of the
martensite contribution to the composite flow stress is lower than that of the Tomota,
and Voigt models because the predicted martensite strain is lower and thus, because
of the high hardening-rate, the predicted flow stress is much lower. In defense of the
self-consistent predictions, however, the martensite stress versus plastic strain data
taken from Wojewodzki was not well defined, especially at these extremely low strains.
Not only were the martensite curves interpolated from actuaj data, as noted, but the
given plastic strains were obtained by subtracting an estimate of the elastic strains

from the measured values. It should also be noted that the austenite to martensite

perimental data than the Voigt or Tomota models. At very small strains, the Tomota
model yields somewhat better agreement, but at the larger strajns for which the
model is intended to apply, the improvement js considerable in some cases. Ip fact,

the Voigt model is not even strictly applicable at strajn levels which are higher than
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the strain at which experimental data for the martensite phase ceases (presumably
because of fracture). The strain decomposition of the self-consistent method allows
for predictions of composite behavior at strains which are also considerably higher
than those which can be predicted using the Tomota model, further illustrating the

usefulness of the method.

Discussion

The results which have been presented in this section for a two-phase, constant f;
material are clearly qualitatively correct: the harder phase is apportioned less strain
than the composite and the softer phase is apportioned more strain according to
how much harder or softer each phase is with respect to the composite hardness.
The model leads to results that are more accurate than those obtained using a Voigt
model, and are as good or Better than those obtained by means of other, more complex
models. (Note that Reuss [equal stress| predictions were not included in any of
the figures; these greatly underestimate the composite behavior when the hardness
differences are large.) As the rate exponent, M, approaches one, the localization law
(3.59) becomes precise, and model predictions should be quite accurate. Similarly,
as II; = s;/5 approaches one for each phase, model predictions become precise for all
M.

The important question, then, is how reliable are model predictions when M is
much greater than one (nearly rate-independent behavior), and II; differs significantly
from one? Namely, how accurate is (3.59) for these cases? In response to this ques-
tion, we compare our predictions for the strain-rate ratios, x;, at different values of
M and TI; with the finite element predictions of Gilormini and Germain [107). Their
calculations are based on a variational formulation for incompressible power law vis-
cous materials, suggested by Hill [86], which they applied to the case of a power

law spherical inclusion embedded within a power law matrix of the same exponent,
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but different hardness (II; # 1). The results of this comparison are shown in Fig.
3.9. Note that their model provides data for the variation of 4 within the inclusion,
and the finite element predictions for x; shown in Fig. 3.9, represent averages of
the numerical results over the inclusion volume. As one might expect, current model
predictions of x; become increasingly different from the finite element calculations as
1/m approaches zero. The differences also grow larger as II; deparis from one. These
differences suggest that our model generally overestimates the strain in the harder
phase and underestimates the strain in the softer phase. The differences appear to be
greater for harder phases, II; > 1, than for softer phases, implying that, when roughly
equal amounts of all phases are present, our estimates of the strain in harder phases
are generally less accurate than our estimates of the strain in softer phases.

The trends shown in Fig. 3.9 suggest that, for near rate-independent, two-phase
materials, stress—strain behavior can be quite reasonably predicted for phases whose
hardnesses differ by a factor of about three or less, i.e., s3/s; =1II,/II; < 3. When
s2/s1 becomes much larger than three, the accuracy provided by the localization
law (3.59) becomes increasingly worse (assuming that the finite element calculations
are accurate for large values of M). It will always, however, be much better than
that obtained from a Voigt prediction (x; =1). Furthermore, the errors in predicted
strain will tend to cancel themselves out (just as they do in the Voigt model), in
that an overestimate of strain in the harder phase will always be accompanied by
an underestimate of the strain in the softer phase. The predictions of composite
stress will thus be relatively insensitive to errors owing to the use of an inaccurate
localization law, especially for low strain-hardening materials in which the flow stress
is already insensitive to changes in strain.

The austenite-ferrite data shown in Figs. 3.7 and 3.8 suggest that reasonable
predictions of composite behavior can be obtained even when the hardnesses of the
hard and soft phases differ by a factor of 4 or 5. A more accurate localization law

which partitioned less strain to the harder phase would probably bring the 86% and
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56% martensite curves of Fig. 3.7 and the 88% and 64% martensite curves of I'ig.
3.8 into better agreement with the experimental data, but not by much. The low
values obtained for the 12% and 27% cases shown in Fig. 3.7 would probably not
be improved by a better localization law; as mentioned previously, the errors here
are more likely attributable to an inaccurate fit to the 100% martensite data at low
strain.

The variational principles outlined in [107], which are the basis of the finite ele-
ment calculations given in Fig. 3.9, may lend themselves to the development of an
improved localization law which is applicable for near rate-independent materials hav-
ing large hardness differences. A model derived from such a variational formulation, if
tractable, offers itself as an attractive alternative to the simple model presented here.
The development and implementation of such a model remains a topic for further
investigation.

Finally, it is interesting to note that, in the limiting case of a rigid inclusion
(p2 — 00) embedded in a nonlinear viscous matrix, (3.59) and (3.67) can be simplified

to produce the following relationship between II; and x;:
"
1
I, = 1—:% . (3.95)
This relationship is equivalent to one given by Ponte Castefieda and Willis [96] as
part of an upper bound estimate of composite behavior which they derived using a
different variational principle. In light of these investigations, our estimated strain
decomposition likely leads to an upper bound approximation which is much better
than the Voigt prediction, but perhaps can be improved upon in cases where the
hardness differences are large.
The simple model presented here for multiphase materials with fixed phase frac-
tions yields quite reasonable agreement with experimental data in the application

considered, despite the limitations inherent in its simplicity. The approximate nature

of the localization law used in the model limits its applicability in cases where the
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rate sensitivity of the constituent phases is low and the hardness differences are also
high. One might argue that a lack of consideration of such effects as particle shape
or local effzcts due to the size scale of the microstructure also limits the usefulness of
the model. Nevertheless, these generally good results suggest that the model can be
effective in appropriate situations. One should, however, be careful when applying
such a model to materials in which the size scale of the individual phases is so small
that the material model outlined here, which is meant to apply to coarse microstruc-
tures, is not representative of the material behavior of each phase in regions of fine

microstructure.

3.6.2 Metastable Austenite/Martensite Transforming Ma-
terials

Comparison with Experiments

The most complete set of data for strain-induced martensitic transformation kinetics
in uniaxial tension, covering a wide range of test temperatures, is the data of Angel
[53], obtained on an annealed type 304 stainless steel. It was to this data set that
the Olson-Cohen kinetic model was originally fit [20]. In the case of isothermal
deformation at constant stress state, &, the original and present model are equivalent,
so that the current model will fit the Angel data equally well.

For the high strength aust: »itic steels in which transformation toughening has
been studied, Young [7] has measured martensite evolution with plastic strain during
both uniaxial tension and compression tests. The particular alloy studied is a 10Ni-
16Cr-0.5Mn-0.33P-0.25C phospho-carbide strengthened austenitic stainless steel. The
results of the tests are shown in Fig. 3.10 along with a fit to the data using the
present model. Parameters used for our calculations are listed in Table 3.2. The
proposed model is able to fit these data reasonably well. Compared to the case of

lower strength austenitic steel [53], high strength data are rather limited at higher
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temperatures. This is due to the very small extent of uniform elongation seen at
these temperatures before a necking instability occurs. Due to the Bridgman effect,
reliable data cannot be determined past necking because the stress state becomes

progressively nonuniform.

T (°K) 304 338 369 373 388 399
a 12.0 10.1 7.5 7.5 7.0 6.9
Bo T 9o Q1 g2 g Sg

4.42 4.0 -2120 1459 490 3230 290

Table 3.2 Constants used to fit Young’s [7] data.

As discussed earlier, the high-strength austenitic steels employed in toughening
studies and for which the kinetic data of Fig. 3.10 were generated [7], show high
uniform ductility over a rather limited temperature range. Available flow property
data for the individual phases are also limited. For lower strength austenitic steels,
however, the thorough investigation of tensile deformation behavior by Narutani,
Olson and Cohen [21] provides extensive data for a series of compositions, including
the directly measured properties of austenite and martensite. A comparison of model
predictions with the experimental data for a 14Cr-7TNi metastable austenitic steel are
shown in Fig. 3.11. Values for all constants used in the model are listed in Table 3.3,
including the kinetics constants which fit the data for the martensite volume fraction
versus plastic strain given. The constant values (Ao, A;) chosen for the A coefficient
produce the solid line given in Fig. 3.3, which is in reascnable accordance with the
given experimental data. The modified self-consistent method clearly yields a solution
which matches the shape of the experimental curves quite well, including the early
softening associated with transformation deformation, most noticeable in the T =
223K curve. Note that although the combined influences of the softening/hardening
effects of transformation give the stress-strain curve a sigmoidal shape qualitatively
similar to that of the volume fraction martensite-strain curve, the inflection point of

the former occurs at significantly higher strain than the latter.
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austenite hardening parameters — see eq. (3.78)

T(°K)  s;(MPa) Ya ng
223 697. 0.275 1.0
263 581. 0.300 1.0
296 496. 0.355 1.0

martensite hardening parameters — see eq. (3.79)

T(°K)  s;,(MPa) ™ C1 Cq Nm1 N2
223 865.0 0.052 0.1965 0.8035 5.0 19.9
263 841.0 0.052 0.3107  0.6893 5.6 20.7
296 815.0 0.640 0.0552  0.9448 1.8 18.9

martensite evolution constants

T(°K) a B = PP TI
223 8.4 4.2 4.0
263 4.0 4.0 4.0
296 2.7 2.6 4.0

shape-strain constants rate constants

T(°K) Ag Ay/s% (MPa)™!

223 0.02 1.72 x 107° M =100
263 0.02 1.72 x 1073 Yo = 0.007/s
296 0.02 1.72 x 1073
Table 3.3 Constants used to fit Narutani, et al.’s [21] data. Note that the indicated

austenite hardening parameters produce a linear fit to the near-linear austenite stress-strain
data given in [21]. Notz also that since only tensile f-75? and 7-7? data were measured,
driving force constants go, §1, 92, § and sy could not be distinguished. Thus, values for
8 = foP were chosen simply to yield the best fit to the f-7%? data shown in Fig. 3.11.

An Example Problem

To illustrate the importance of the stress-state sensitivity of the transformation, we
performed a few numerical analyses using the ABAQUS program. We first consid-
ered a very simple one-element model under the following states of stress: plane strain
tension, simple tension, pure shear, simple compression, and plane strain compres-
sion. Each of these five cases is characterized by a different level of triaxiality (Since
Poisson’s ratio for these steels is not equal to one-half (v ~ 0.3), in plane strain the

triaxiality evolves to a certain extent; thus the values given for plane strain are only
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approximate):

plane strain tension : X = 0.577;
simple tension: ¥ = 0.333 ;
simpleshear: X =10.0;
simple compression : ¥ = —0.333;
plane strain compression : XL = —0.577 .

In each case, we loaded the element under displacement control, until equivalent shear
strain levels of order one-half were reached. The results from these five cases are sum-
marized in Figs. 3.12 and 3.13. Material parameters used for these calculations were
estimated for the high-strength austenitic steel studied by Young [7] using the ki-
netic parameters of Fig 3.10, with flow parameters estimated from availabie data.
The model temperature for each case was 373K, which is about halfway between the
experimentally estimated values of M7, and Ma . for this material. The evolution
of martensite with equivalent plastic strain, shown in Fig. 3.12, indicates dramatic
differences between the extreme cases of plane strain tension versus plane strain com-
pression. Recall that the triaxiality level affects the formation of martensite only
through the driving force argument g of the probability function P. As mentioned
earlier, the significance of these data is that they suggest that at higher triaxialities,
such as near a crack tip, where ¥ > 2.0, significant amounts of martensite can form
even at temperatures that are well above the My temperature for uniaxial tension.

Fig. 3.13 shows how dramatically the martensite changes the equivalent stress-
strain curve. In plane strain compression, for example, very little martensite forms
and the resulting stress-strain curve differs little from the curve for 100% austenite.
On the other hand, in plane strain tension, significant martensite evolution results in
a stress-strain curve with a unique “S”-shape that ultimately approaches the curve
for 100% martensite at this temperature. Note the early strain-softening in this
case, where the plane strain tension curve dips well below the curve for plane strain
compression, and thus well below the pure austenite curve. This is a result of the
transformation strain-rate term which was incorporated into the model (see eq. 3.48).
Note that the dip in the curve occurs at the same strain level at which the volume

fraction curve has the steepest slope, i.e., where df /d¥P reaches its maximum value.

116



Discussion

Uniaxial tension and compression represent a fairly narrow spectrum of possible tri-
axialities (£ = —1/3 for simple compression and ¥ = 1/3 for simple tension). Of
utmost interest are the triaxialities near the tip of a crack (£ > 2.0). The linear
form of the triaxiality ratio, as it appears in (3.28), when extrapolated to crack-tip
triaxialities, appears to overestimate the extent of martensite formed in such a region,
based upon indirect calculations which utilize experimentally-predicted crack-tip M7

measurements [6,7] For this reason, an alternative quadratic form for (3.28), in which
g=go— 510 + gL — g:T°%, (3.96)

has also been considered, based on statistical analysis of nucleation site orientation
effects [29]). The size scale of the highly stressed regions near the tip of a crack is
too small to obtain reliable direct measurements of martensite evolution with respect
to strain and stress state; in particular, the gradients of f are too large near the
tip to be measured accurately. An experimental investigation using notched tensile
specimens is currently in progress in order to evaluate the extent of transformation
at intermediate levels of triaxiality [108]. This study should provide more data along
the triaxiality spectrum with which to fit the net driving force parameter g.

Nevertheless, the data of Fig. 3.10 clearly illustrate the need to consider the stress-
state dependence of transformation kinetics in a constitutive model for transformation
[asticity. Of course, the ability to obtain reasonable agreement with experimental
data is not the primary motivation for the development of this model. Its value lies
in its ability to model the phenomenon of strain-induced transformation plasticity
under complex states of stress.

It might be further argued that the proposed model suffers from a lack of consid-
eration of such effects as particle shape — the martensite phase which forms during
transformation plasticity in the strain-induced regime is certainly not spherical, but
rather rodlike — or local effects due to the size scale of the microstructure.

Perhaps a better model of the flow behavior of this system might also be arrived

at by directly solving the Eshelby-type problem of a matrix with an inhomogeneous
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inclusion which undergoes a transformation strain. The solution to such a problem
would likely produce a set of Eshelby-type equations analogous to (3.59) which leads
to self-consistency conditions for both the strain-rates (including the transformation
strain-rate) and the stresses. It is not clear, however, whether such a model would
lead to more reasonable predictions than those presented here. Given the complexity
of the constitutive behavior that we have considered here, several assumptions must
be made in deriving any tractable model, and model predictions must ultimately be
fit to experimental data through adjustable model parameters.

Finally, we note that, in formulating the model as we have, we restrict ourselves
to proportional loading histories. When slip occurs in the austenite matrix near in
the proximity of the much harder martensite phase, the interaction of dislocations
with the hard martensite particle leads to an increase in the resistance to slip. This
is indirectly accounted for in the model through the stress-dependence of the A-
coefficient (eq. 3.47). Upon reversal of loading, however, the opposite will be true
— it will be much easier for dislocations to propagate past the martensite particles,
and thus the overall resistance to slip will decrease. Incorporation of this feature
into the model would require the use of a tensorial internal variable which would
track changes in local loading direction and adjust the flow resistance accordingly.
Although such a variable could be incorporated into the model relatively easily, it
would not be of much help in the analysis of the types of boundary problems that we
are considering in this thesis. We therefore leave the incorporation of this feature as a
future modeling effort that will be necessary when more complicated loading histories
are encountered.

The reasonable fits to experimental data for both martensite evolution versus
strain and stress versus strain indicate that this relatively simple model can be useful
for numerical study of boundary value problems. In particular, this model reason-
ably represents the unusual property of pressure-sensitive strain-hardening in these
materials, a feature that must be accounted for in examining the sources of their

remarkable fracture toughness.
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3.7 A Continuum Model for Void Nucleation and
Growth

The constitutive model introduced in section 3.4 does not account for the strain-
softening and subsequent destabilizing effects of void nucleation, growth and coales-
cence. As such, any insight into the failure process must be gathered in terms of
localization and/or nucleation criteria, such as that offered by Needleman and Rice
[23] (see section 2.5.2). In order to directly account for these mechanisms, we must
incorporate the porosity evolution provided by nucleation and growth into our con-
tinuum model. Because of the already complex nature of the model, we assume that

there is no interaction between transformation dilatation and void nucleation.

3.7.1 Theory

Following the techniques which have been used in numerous recent investigations [22,
109-113], we propose to account for porosity evolution using the model of Gurson
[24,25], as modified by Needleman and Tvergaard [22]. Based on his solution for an
incornpressible matrix with a spherical cavity, Gurson proposed a plastic potential
function, ®, accounting for the effect of porosity on plastic flow. The functional form
of ® has since been modified by Needleman and Tvergaard [22] so that a complete loss
of stress-carrying capacity is predicted at a reasonable value of void volume fraction.

The modified plastic potentia! function, ®, is given by:

87, ) = T + 20w cooh (SauT) 1 - () =0, (39)
where Ty is the matriz equivalent shear stress, 7 is the now interpreted as the effective
average macroscopic equivalent shear stress, ¥j is the matriz triaxiality and q;, ¢,
are constants. Tvergaard [114] showed that ¢, = 1.5 yields good agreement with
numerical studies of periodically distributed spherical voids. Further modification of
® to account for material failure through void coalescence is accomplished through
an effsctive porosity function, p*(p), defined as:

p P < pe
pt = , (3.98)

pe+ K, (p—pc) p>pe
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where p is the void volume fraction, p, is the critical value of p at which void coales-
cence is first observed, and K, is an “acceleration” function, which accounts for the
increased damage due to void coalescence, given by

K,= ﬁ , (3.99)
where pj; = 1/q; is the void volume fraction at which the plastic potential function
(3.97) predicts a complete loss of stress-carrying capacity and pr is the actual void
volume fraction associated with a complete loss of stress-carrying capacity. Exper-
imental investigations have shown that the ligaments connecting neighboring voids
fail when the voids have grown in size to the order of their spacing. Consistent with
the calculations of Brown and Embury [115], we take p, = 0.15. We further assume
that pr = 0.25, a value that has been determined through numerical analyses [116],
and is consistent with experimental observations of failure in AISI 4340 alloy steel
[68]. The values p, = 0.15 and pr = 0.25 are commonly used in the literature (e.g.,
[109,114)).

In normalized stress space (T/T ) versus —p/Tps), this potential function produces
the loci of points shown in Figure 3.14 for various values of p*. When p* = 0, the
potential surface follows a horizontal line, indicating a lack of pressure dependence.
As p* increases, the potential surface approaches the origin. Plastic flow becomes
pressure dependent — the shear stress necessary for plastic flow at fixed void volume
fraction decreases with increasing negative pressure. The direction of plastic flow is
taken to be normal to the potential surface, so that the plastic strain rate tensor is
given by

D? = ,'\g% , (3.100)
where ) is a scalar quantity that must be determined from the work hardening proper-
ties of the matrix. In the absence of transformation dilatation, macroscopic normality
of plastic flow is a direct consequence of matrix normality [117].

Analogous to (3.42), (3.100) can be separated into deviatoric and hydrostatic parts

D’ =

(|22 6@1] (3.101)

A %EN-}-a—P
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Requiring the macroscopic plastic work rate equal the matrix plastic work rate yields
T -D”=(1-p")"M7 » (3.102)

where 4, is the equivalent plastic strain rate in the matriz. Substituting for D? in
(3.102) from (3.101) and solving for A yields:
i | (L=p)TM | =
iz (L= e (3.103)
‘rg—g + p%%
The rate of porosity evolution, p, is taken to have a contribution from nucleation

of new voids and growth of existing voids:

l.’ = f"nucleation + I.’growth . (3104)

The rate of void nucleation is further seen as a general function of three terms: a
strain-based term and two stress-based terms (a deviatoric term and a hydrostatic
term):

f"nucleation = An (77-7[[)7;{ + B, (?, P) ?M +Cn (-'F, p) p . (3105)

As we discussed briefly in section 2.5, nucleation is likely predicated on a stress-
based criterion. An approximate correspondence with the maximum normal inter-
facial stress criterion is provided by setting A, = 0, C, = —1/ V3B,. In certain
cases, however, numerical procedures are simplified by assuming a strain-controlled
nucleation criterion (B, = C, = 0). In analyzing problems in which the gradients in
triaxiality are not severe, stress-based nucleation criteria and strain-based nucleation
criteria lead to similar results. However, in cases where gradients in triaxiality are
steep, namely ahead of the tip of a crack, these two assumptions lead to significantly
different material behavior. In these cases, the arguments presented in section 2.5
strongly suggest that a stress-controlled nucleation criterion should be used.
Following Chu and Needleman [118], we assume that for strain-controlled nucle-

ation there exists a Gaussian distribution for the critical nucleation strain, such that

=P __ =P 2
Am PN o [-% (——"M ”’”)], (3.106)

2TsN SN
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where py is the total volume percentage of nucleating particles, 7% is a mean nucle-
ation strain and sy is 2 standard deviation about that mean. Similarly, for stress-
controlled nucleation, we assume a Gaussian distribution for the critical nucleation

stress, such that

T — — ON 2]
oo () e

27 2 SN

where oy 1s a mean nucleation stress and sy is the corresponding standard deviation.
In the absence of transformation dilztation, growth of voids subsequent to nucle-

ation follows from the plastic incompressibility of the matrix:
Pgrowth = (1-»r%) (trD”) (3.108)

Following [112], in order to avoid problems arising from a flow stress which approaches
zero, the void volume fraction p is maintained at a co onstant level when it reaches the
value p = 0.95pF. Phase hardness levels s, and Sy, are also fixed at this point.
Finally, the effect of porosity evolution on elastic response is determined using a
self consistent model, whereby the elastic constants G and K become functions of the
volume fraction of voids, and the matrix elastic constants Gy and K- We use self-
consistent estimates of elastic behavior derived by Budianksy [119] for an jsotropic
random distribution of spherical voids. Following [119], the elastic moduli are taken

to satisfy the following set of simultaneous equations:

p(1—a)” +(1—p)[1—-a+a(KM/K)]'1 =1, (3.109)
p* (1—b"‘+(1-—p)[1—b+b(GM/G)] =1, (3.110)

where

¢ = .1.(“”’) , (3.111)

1—v

4 — By
b = ( ) 11
15 1—v (3 2)

_ 3 —2u
v = (6n+2p)' (3.113)

The model for porosity evolution that we have outlined in this section is incor-

porated into our constitutive procedure simply by taking 7 in (3.44) equivalent to

122



A(0®/57) and &% in (3.45) is equivalent to A(0®/dp). In addition, the power law
expression (3.65) relating composite stress and strain-rate must now be taken to hold

for the matriz quantities, .e.,

=p = \M
v _ (T—M) : (3.114)
Y ]

The modified final form of the constitutive model (3.81, 3.82) then becomes
F = G837 = Zi {Ffim + (1 - i} — AQ1 = ) { A7 + K'Ce"}] (3.115)
p = —K'[67 - ZeAh - Av (1 - ) (At + DfF)] (3.116)
where, using (3.101 and 3.103),

7 (1 - p" )73 |
) —=3% X
| 7o TPy |

: (3.117)

7. = (1 —P.)?M%:j
2 —_— — .

(3.118)

Numerically, integration of the constitutive equations becomes much simpler if we

assume that

ZH = Zk, (3.119)
Z¥ = 7k, (3.120)
p',k+l — pt,k , (3121)

where the superscript k indicates the value of the parameter at the beginning of
the increment, and k + 1 indicates its value at the end of the increment. Assuming
that the increment size is small, this approximation should not greatly affect model

predictions.

3.7.2 One-dimensional Effects of Void Nucleation and
Growth

In this section, we present several figures showing the effects of void nucleation and
growth on model predictions for uniaxial stress states. As a baseline for these ex-

amples, we choose the following for strain-based nucleation parameters: py = 0.04,
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o = 0.5 and sy = 0.10. These choices are approximately equivalent to values often
used in the literature for high strength steels (e.g. [1 10,112]). All other material pa-
rameters are the same as given in Tables 3.2 and 3.3. Unless indicated, these analyses
were carried out for the non-transforming material.

Fig. 3.15 shows the evolution of prucleations Pgrowths P and p* with equivalent plastic
strain, J° determined from a one-element, plane strain finite element analysis. The
curve for pnucleation takes the shape of a cumulative Gaussian function corresponding
to the chosen pn, Yn and sn- Growth of voids becomes significant when about
one-half of the particles have nucleated (i.e., p = 0.02); Pgrowth then evolves in a
relatively smooth fashion. The void volume fraction, p = Pnucleation T Pgrowth increases
accordingly until it reaches its ultimate numerical value: p = 0.95pF = 0.2375, where
it abruptly levels off. The function p*, as per (3.99), 1s equal to p until it reaches the
critical value, p, = 0.13, at which point the acceleration due to coalescence begins to
take effect, and p* begins to increase at a much faster rate. It too reaches a constant
value where p = 0.95pF-

Figure 3.16 compares the stress-strain response for cases where: nucleation is
not accounted for; only nucleation is accounted for, and when both nucleation and
growth are accounted for. There is little difference between model predictions with
and without void nucleation until strains of about 40% are reached. Thus, void
nucleation and growth should not greatly affect the fits to experimental data given
in Fig. 3.11. The curve illustrating the effects of nucleation (only) drops as prucieation
increases, but then increases again as Pnycleation reaches its saturation value, pn. In the
relatively low triaxiality stress state of plane strain, a build-up of 4% porosity results
in a an 8% decrease in the flow stress, as (3.98) would predict. With both nucleation
and growth accounted for, porosity continues to evolve, and the flow stress drops with
increasing strain. The onset of coalescence is noticeable here as the point where the
flow stress begins to decrease at a much faster rate. Finally, when p = 0.95pF, the
stress levels off at value which is about 13% of yield stress.

Figs. 3.17 and 3.18 illustrate the effect of altering the nucleation parameters N
and py. Increasing Fh pushes both the p — 7° and the 7 - 37 curves toward the right.
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Increasing pn (Fig. 3.18) causes the slope of the p — 7 curve to increase, and thus
increases the extent of softening relative to the case where py = 0.

The effect of triaxiality is illustrated in Fig. 3.19. Increasing triaxiality produces
an effect similar to that produced by increasing pn: the slope of the p — 7" curve
increases and so does the extent of strain-softening. Note that the ¥ = 1 curve shown
here was obtained using the driver program (see appendix B) and not from a finite
element analysis.

Finally, the effect of martensitic transformation (at fixed triaxiality) on the slope
of the stress-strain response is summarized in Fig. 3.20 for three temperatures: T' =
773K (no transformation), T = 423K (0 =~ 0.8), and T = 373K (© = 0.6). For
purposes of illustration, the phase hardening parameters for each case were assumed
to equal that of the T = 373K case. Becaase the model for porosity evolution used
in these examples is strictly strain-based, transformation has little or no effect on
the evolution of p. For this reason, void coalescence causes acceleration of softening
at about the same strain level (37 = 2.0) and, ultimately, the response at all three
temperatures is controlled by this process. Prior to the onset of void coalescence,
however, it is evident that transformation, and its associated strain-hardening, can
lead to a 2 to 2} times increase in the strain at which strain-softening (i.e., d7/dy" <

0) first occurs.
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g = (g --g-)/sg

Figure 3.1 Probability function, P, and its derivative with respect to a normalized
driving force, (g—3)/8,, illustrating the effect of normalized temperature (©) and triaxiality
(¥) on the driving force for transformation.
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Figure 3.2 Comparison of model predictions for martensite volume fraction, f,
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Figure 3.3 Estimate of A dependence on 7 (eq. 3.48), based - on experimental

data of Olson and Azrin [14], and Young [7]. The solid line represents values of A used to
fit Narutani, et al. (21] stress-strain data (Fig. 3.11).

128



phase 2 ool

1 1,=0.68, {,=0.44
Sy /8, =5
1 n;=ng=0.08

- M=100
4 | 156/ | 5 -

Figure 3.4 Geometric interpretation of (3.88). For equal and relatively small
strain-hardening exponents, the slope of the line connecting (71,71) and (72,72) is approx-
imately equal to —1.5F/%?, as shown. In addition, the relative distances between (7,%),
(m1,71) and (73,732) are as shown.
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Figure 3.7 Comparison of model prediction with experimental results for a banded

martensite-ferrite dual-phase steel at martensite fractions of 0.12, 0.27, 0.56 and 0.86. Also
shown for reference are model predictions using the method of Tomota, et al. [105) and the
Voigt model (taken from [74]). Note that the martensite curve shown here represents our
fit to Wojewodzki’s data for behavior of the martensite in the fo = 0.12 composition. The
estimated martensite hardnesses at the other phase fractions can be found using equation
(3.79) and the data of Table 3.1. For comparison, the martensite tensile stress levels at 4%
plastic strain are 2431, 2503, 2567 and 2430 MPa for phase fractions of 0.12, 0.27, 0.56 and
0.86, respectively.
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Figure 3.8 Comparison of model prediction with experimental results for a ho-

mogenized martensite-ferrite dual-phase steel at martensite fractions of 0.27, 0.64 and 0.88.
Also shown for reference are model predictions using the method of Tomota, et al. [105] and
the Voigt model (taken from [74]).. Note that the martensite curve shown here represents
our fit to Wojewodzki’s data for the behavior of the martensite in the fo = 0.27 composi-
tion. The estimated martensite hardnesses at the other phase fractions can be found using
equation (3.79) and the data of Table 3.1. For comparison, the martensite tensile stress
levels at 4% plastic strain are 2544, 2388, and 2400 MPa for phase fractions of 0.27, 0.64
and 0.88, respectively.
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Figure 3.9 Comparison of model estimates of x; = 4;/¥ as a function of 1/M
with the finite element calculations of Gilormini and Germain [107] for various values of
II; = s;/3. Model predictions are obtained by solving (3.67) explicitly. Finite element
predictions represent numerical volume averages according to (3.58a).
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Figure 3.9 Comparison of model estimates of x; = 4;/¥ as a function of 1/M

with the finite element calculations of Gilormini and Germain [108]. for various values of
II; = s8;/3. Model predictions are obtained by solving (3.67) explicitly. Finite element
predictions represent numerical volume averages according to (3.58a).

134



Tension

1.0 L] v T A 1 L] T L 1 L) A} L v 1 v | A 1

Volume Fraction Martensite, {

0.0 0.2 0.4 0.6 0.8
Equivalent Plastic Shear Strain, %°

Compression
oy 1.0 T T T T 1 T T ] T 1 T T T T T v T T T
6 -
=
E 304K 4
| -
=]
.o —— n
..3 338K 4
]
Py .
Q 1
5 369K
S oK
0.0 0.2 0.4 0.6 0.8
Equivalent Plastic Shear Strain, °
Figure 3.10 Comparison of model predictions for volume fraction martensite

versus equivalent plastic strain. Experimental points represent data measured during simple
tension and compression tests for a 0.5 Mn overaged phospho-carbide strengthencd alloy
[7). Model parameters are listed in Table 3.2.
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Figure 3.11 Comparison of model predictions for equivalent shear stress, 7, versus

equivalent plastic strain, ¥°. Experimental points represent data measured in simple tension
tests for a 14Cr-7Ni SITP alloy [21]. Model parameters are listed in Table 3.3.
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Figure 3.12 Martensite volume fraction, f, plotted versus equivalent plastic
strain, J?, for five one-element loading conditions: plane-strain tension, simple tension,
pure shear, simple compression and plane-strain compression. Kinetics data are taken irom
[7] and are given in Table 3.2. T = 373K. '
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Figure 3.13 Equivalent shear stress, 7, plotted versus equivalent plastic strain,
7P, for five loading conditions: plane-strain tension, simple tension, pure shear, simple
compression and plane-strain compression. Model parameters are taken from [7): T =
373K, s; = 903, s;, = 1307, v; = 0.013, v, = 0.019, n, = 0.06, n, = 0.12, 4y = 0.02,
A; = 0.02, Ay = 0.0, M = 100, 5o = 0.007/s, 4T /40 = 1.
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Figure 3.15 Model predictions for evolution of pnucieation Pgrowth, £ and p* with
equivalent plastic strain, obtained from a one-element, plane-strain finite clement analysis.
. Material parameters are taken from Tables 3.2 and 3.3; nucleation parameters are as follows:
pN = 0.04, ¥}, = 0.5 and sy = 0.10.
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Figure 3.16 Effect of nucleation and growth on model predictions of stress-strain

response. Material parameters are taker from Tables 3.2 and 3.3; nucleation parameters
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Chapter 4

Analysis of Continuum Fields:
Comparison of Nontransforming
and Transforming Material
Behavior

4.1 Introduction

In this chapter, we discuss the results of several numerical analyses of boundary value
problems for which we have used the material model outlined in sections 3.3 and 3.4
(i.e., void nucleation and growth are not included). Here, we examine the influence
of transformation on the continuum response of three mechanical subsystems, each
of which is characterizec by a different length scale. We first consider the material
response in a simulated uniaxial tension test. We then focus in by several orders
of magnitude to the smallest length scale over which our -nodel can reasonably be
applied, to consider the stress and strain fields surrounding an isolated elastic particle
embedded in an infinite matrix, subject to a remote stress. At this level, we examine
the particle/matrix interfacial fields in order to assess to what extent, if any, transfor-
mation affects the void nucleation process. Finally, at an intermediate length scale,
we consider the fields surrounding a smoothly blunting crack tip subject to mode I
loading. Here, our objective is to gain insight into the effect of transformation on the
continuum crack-tip fields and attempt to relate these findings to tendencies toward

inhibition of plastic flow localization.
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Each of these boundary value problems was previously considered in [13], where
our preliminary model, which did not account for the stress-state sensitivity of the
transformation kinetics, was not able to completely capture the physics of the phe-
nomena. We concluded that the lack of an accounting of the stress-state sensitivity
in our preliminary model for transformation kinetics limited the usefulness of our
results. We therefore re-examine these fields using the current model in an effort to
identify the mechanical sources of the observed transformation toughening.

Calculations performed in [13] indicated that transformation dilatation does not
directly alter mechanical response to a significant degree. The state of stress and
strain in the composite is not substantially modified when the Ay term is introduced
into the model. Current model calculations support these preliminary findings. For
example, for the problem we present in section 4.4, setting Ay = 0.04 resulted in
a change in the peak normal stress ahead of the crack tip of less that 1% relative
to the Ay = 0 case. Transformation dilatation is rather thought to be indirecily
associated with increased toughness through the correlation between transformation
dilatation and the stress-state sensitivity of transformation kinetics, as discussed in
section 3.3, a notion that still needs to be experimentally verified. Moreover, plastic
dilatation leads to a numerical Jacobian that is nonsymmetric, necessitating the use of
the nonsymmetric solver routines of ABAQUS, which severely increases computation
time. We therefore set the transformation dilatation term, Ay, to zero for all the

calculations described in this chapter and the next.

4.2 Numerical Simulation of the Uniaxial Tension
Test

4.2.1 Introduction

The tension test has been extensively used to determine the stress-strain behavior of
materials. The data from these tests often serve as the basis for critical evaluations
regarding the performance of the material in actual engineering applications. When

materials are tested well past their yield point, they often exhibit a localization of
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deformation at some point along the specimen, leading to the formation of a neck.
In most cases, the neck grows (i.e., the necked cross-section becomes smaller) and
fracture ensues with little further elongation of the specimen. In some materials,
however, the neck stops growing, and instead propagates down the entire length
of the specimen. In either case, the presence of a neck is an indication that the
stress and strain fields that were once homogeneous throughout the specimen are no
longer uniform, and inferred stress-strain data which are based on the assumption of
homogeneity lose validity as the neck grows.

Until the 1940’s, the methods used to interpret data from tension tests did not ac-
count for the nonhomogeneity of flow associated with the onset of necking. Bridgman
[120,:21] and Davidenkov and Spiridonova [122] were the first to suggest corrections
to tension test data based on the effects of geometry changes on the state of stress
in the neck. These corrections, however, were based on simplifying assumptions con-
cerning the state of strain in the neck which are not generally valid. The development
of the finite element method and other numerical techniques has greatly improved the
ability to evaluate the stress and strain fields in the neck and to predict how they
will affect the overall stress-strain behavior of the material. Nonetheless, the inter-
pretation of tensile data is still a difficult problem, and it is even more challenging for
TRIP steels and other materials, such as polymers, which have unusual mechanical
properties that often lead to propagation of the neck, or cold drawing. Experimen-
tally, the neck forms but does not grow, and, instead, propagates down the length of
the specimen, at which point a second period of uniform elongation ensues, followed
by formation of a second neck prior to final fracture.

Using the constitutive model developed in the first part of chapter 3, we simulated
a uniaxial tension test in order to compare the behavior of a model “transforming”
steel with that of a “nontransforming” steel which has material properties equivalent
to those of the austenite phase of the transforming steel.

An analysis of this type is useful for several reasons. First, it serves as a check
on whether the constitutive model is capable of simulating the necking/cold drawing

behavior of these alloys. In addition, an analysis of this type provides macroscopic
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details related to the features of transformation that lead to the observed increases
in uniform ductility and fracture strain during tension tests at certain temperatures
in the strain-induced range (e.g., [1,6]). Since the finite element method provides a
good estimate of the stress and strain ficlds throughout the specimen and especially
in the neck, th&sé'analyses provide insight into the features of transformation that
lead to this enhanced behavior.

In a more general sense, this problem is useful because it provides a better under-
standing of the state of stress and strain which develop during necking (and drawing)
in tension tests. The results of these tests are often the sole basis for determining the
stress-strain properties of the material, and these properties are in turn used in more
complicated numerical analyses. Therefore, it is important that the methods used to
interpret test data are accurate and reliable. In tests of this kind, stress-strain data
are generally formulated under the assumption of uniform stress and strain fields.
In some instances a Bridgman correction factor is used to account for the nonuni-
formities which are thought to be present. In recent times, difficulties in obtaining
accurate data from tension tests has led many investigators to use compression tests
instead. These tests have problems of their own, namely “bulging” of cylindrical
specimens from frictional end constraints. An additional concern arises for strain-
induced transforming steels, because of the demonstrated stress-state dependence of
transformation kinetics. It is worthwhile, therefore, to be able tc test the accuracy
of tensile data using these simulated tests. This can be accomplished by compar-
ing stress-strain predictions obtained through pointwise averages with those obtained
using load-displacement data and the correction factors of Bridgman [120,121] or

Davidenkov and Spiridonova [122], as must be done experimentally.

4.2.2 Problem Description

Using the finite element code ABAQUS in conjunction with the UMAT subroutine
listed in Appendix A, we simulated the geometry and loading conditions of an actual
simple tension test. The specimen modeled here is round, and has gauge length Lo

and initial diameter Dy = 0.3Lo as shown in Fig. 4.1a.
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A model of the round tensile specimen is shown in Fig. 4.1b. Symmetry about
the centerline allows us to model only one-half of the specimen. In order to promote
necking at the center of the specimen, a perturbation is introduced along the outside
of the mesh which reduces the cross-sectional area at the mid-plane of the specimen.
This “fAaw” causes a reduction in the cross-sectional area of the specimen at the mid-
plane, increasing the axial stress, so that localization of deformation occurs first in
this region. This perturbation is meant to model natural imperfections which are
invariably present in an actual specimen. The particular perturbation used in this
analysis takes the form of a sine function with a period equal to the total specimen
length, Lo, defined to reach its maximum value of 0.0025D, at the middle of the
specimen. Preliminary calculations in [13] indicated that a perturbation of this size
is large enough to be sensed by the numerical procedures of the finite element analysis,
but small enough so that it does not significantly affect the results aside from causing
the neck to form in a predetermined location. The undeformed radius, Ro(z), of the

model specimen takes the following form:

Ro(2) = 229 (1 — .005sin ?) , (4.1)
0

where z is measured from the end of the specimen. The corresponding finite element
mesh, as shown in Fig. 4.1c, utilizes 900 4-node axisymmetric, isoparametric quadri-
lateral (ABAQUS CAX4) elemer.ts in a 15 by 60 grid pattern. These elements are
formulated such that mesh locking, a deleterious phenomenon which might otherwise
arise due to the constraint of incompressibility, is prevented {123]. The mesh is de-
signed so that the refinement is greatest near the outside edge of the specimen in
order to adequately model the large deformations which occur in this region during
the necking and drawing process. Symmetry conditions are applied at nodes along
the specimen centerline. The nodes along the axis are, by definition, constrained to
have zero radial displacement, while the nodes along the end of the specimen are
constrained to have equal axial displacements. The calculations were performed on a
Sun microsystems SPARCstation 1 computer using version 4.7 of the ABAQUS finite
element code.

Material parameters, incorporated into the analyses via the PROPS vector of the
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UMAT subroutine (see Appendix A), are given in Table 4.1. The model material is
based, as closely as possible, on the kinetics and stress-strain data of Young [7]. Model
temperatures are given in absolute (Kelvin) units. For reference, Young estimated
that M7, = 323K and M, ~ 448K. Solutions were obtained under displacement
control, with a constant normalized displacement rate, AL/(LoAt) = 0.005/sec, ap-
plied at the end nodes.

It was shown in [13] that, in order to obtain a solution to this problem in a rea-
sonable amount of CPU time, it was necessary to utilize the modified RIKS method
[124-126), available in ABAQUS as an optional solution procedure. The RIKS algo-
rithm is designed to solve problems in which the load-displacement behavior is such
that the load and/or the displacement may decrease as the incremental solution de-
velops, as is the case in necking problems. The routine is based on the assumption
that all loads scale with a single scalar parameter. The method then looks for an
equilibrium path which is defined by nodal variables and the loading parameter. The
solution follows this path until the desired displacement is reached. Details of the
theory upon which the method is based can be found in the ABAQUS theory manual
[123].
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location in material equation
PROPS parameter value reference
1 K 175000 MPa 3.40
2 G 80000 MPa 3.40
3 I 4.0 3.22
4 g 0.06 3.78
5 Ny 0.12 3.78
6 s 904. MPa 3.78
7 Sm 1307. MPa 3.78
8 ¥ 0.013 3.78
9 T 0.019 3.78
10 a 4.33 . 3.23
11 Ay 0.0 3.47
12 g 3230. 3.27
13 Sq 292. 3.27
14 Bo 4.42 3.34
15 0 1.16 3.28
16 do 3400. 3.28
17 a1 4.7 3.28
18 g2 493. 3.28
19 M 100. 3.62
20 Yo 0.007/s 3.62
21 Ao 0.02 3.48
22 Ay 0.02 3.48
23 PN 0.00 3.106
24 TN 0.00 3.106
25 sn(7) 0.00 3.106
26 oN 0.00 3.107
27 sn(o) 0.00 3.107

Table 4.1 Contents of the PROPS vector of material parameters used by ABAQUS
as input to the UMAT material-law subroutine (Appendix A) for T = 225K (© = 1.16).
Changes to these values with changes in temperature will be indicated for each analysis.
The corresponding source and the equation where the parameter first appears are given for
reference.

4.2.3 Results and Discussion

Since we already analyzed this problem in considerable detail in [13], we restrict

attention here to the differences in model predictions due to incorporation of the
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stress-state sensitivity of transformation kinetics into the model. We discuss results
for four cases: a nontransforming material; a transforming material at a temperature,
T = 448K (© = 0.8), that is not low enough relative to M, to resist neck formation;
a transforming material at a temperature, T = 423K (© = 0.7) near that at which a
transition from necking behavior to drawing behavior occurs, and a transforming ma-
terial at a sufficiently low temperature, 373K (© =~ 0.3), for transformation hardening

to result in tensile neck propagation.

Effect of the Transformation on Uniaxial Behavior

Figs. 4.2 through 4.5 compare deformation behavior for the nontransforming and
transforming materials. In Fig. 4.2, the deformed “specimen” (which is actually the
mesh shown in Fig. 4.1c mirrored about the longitudinal and transverse axes) is plot-
ted at several points during deformation for the nontransforming case. Here classical
necking behavior is demonstrated: the neck forms (at the point of the initial “flaw™)
near maximum load and continues to grow. In marked contrast to the behavior for the
nontransforming material, Fig. 4.3 chows the deformation of the model transforming
material at 373K, a model temperature at which a recovery in tensile stability oc-
curs. At this temperature a completely different pattern of deformation is observed.
The neck forms at the center of the specimen just as it did for the nontransforming
case. However, instead of continuing to grow, the neck propagates down the length of
the specimen, at which point a substantial period of uniform elongation takes place.
Finally, a second neck forms at the center of the specimen, and this neck grows with-
out recovery. The final result is a dramatic increase in the total elongation of the
specimen, characterized by the difference in length between the deformed meshes of
Figs. 4.2 and 4.3, as shown together in Fig. 4.4.

The behavior described in the previous plots can be explained in terms of the loss
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and recovery of plastic flow stability as explained in section 2.5.2 (see Fig. 2.20). In
this section, we introduced a “stability” parameter, h/o, lending qualitative insight
into the tendencies for plastic flow localization. Within the context of our viscoplastic
model, the hardening rate, “h”, must now be interpreted as an incremental hardening
rate, h = A6 /A = 3AT/AFP. Since these materials are relatively rate insensitive,
strain-rate-hardening effects are minimal, thus k/& does not lose its qualitative signif-
icance. The neck first forms when the uniaxial strain reaches ¢, (where the stability
parameter h /o falls below unity), and it continues to grow until the the average strain
across the minimum section reaches €r,, at which point /& increases above unity once
again. At this point the neck stops growing in this region, but in a neighboring re-
gion the initial necking strain €, has been achieved, and so the neck forms at this
new location and grows there until ¢, is reached. This continuous process causes the
neck to travel down the specimen until the end of the gauge section is reached. At
this juncture, a second stage of uniform deformation begins, during which the strain
in the specimen increases from ¢g, to €,,. The incremental stability parameter h/a
is greater than 1.0 during this stage of deformation, so the flow is stable. The final
loss of stability first occurs again at €, at the center of the specimen (which still
has a reduced cross-sectional area relative to other locations as a result of the initial
perturbation). As recovery is no longer possible at stili higher strains, this neck grows
until, in an actual specimen, fracture occurs.

Actually, the strain at which the neck propagates must be somewhat greater than
€L, because the propagating region has a reduced cross-section relative to the adjacent
m-terial. Therefore, additional harcening is required to offset the differences in cross-
sectiona! areas of the drawn-out band and the neighboring material. In other words,
the load carrying capacity must be greater in the band than outside the band, and
the extra st.ain-hardening is required for this puryose.

At the higher temperature (448K), the formation of martensite in the necked
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region is not sufficient to cause a recovery of stability, and the neck grows rather than
propagating. However, a comparison of specimen profiles (i.e., the displaced position
of the nodes along the outer edge of the deformed mesh) for the nontransforming
material and this higher temperature transforming material (Fig. 4.5) at equivalent
reduced sections R/ Ry = 0.734, (and thus equal diametral strain levels), reveals that
the transforming material has a more diffuse neck — transformation has redistributed
the deformation away from the mid-specimen plane.

Fig. 4.6 compares the distribution of scalar fields 37, £, and f for the T =
448K transforming material and the nontransforming material at this same reduced
section, R/Ry = 0.734. It is well-known that the formation of a tensile neck is
accompanied by a concentration of strain and an increase in triaxiality (over its
level in uniaxial tension) at the center of the neck. As a result of the increased
triaxiality, the probability of martensite nucleation is enhanced. The resulting levels
of martensite volume fraction are a direct consequence of the combined effect of the
strain and triaxiality fields.

Fig. 4.7 shows the variation of 37, £ and f across the minimum section at this
same reduced section, R/Ry = 0.734. Equivalent strain and triaxiality are both
maximum at the center of specimen and decrease smoothly towards the edge of the
specimen. The increased triaxiality at the center of the neck has led to an enhanced
driving force for transformation, and hence higher f. The corresponding increase in
flow stress at the the specimen center has, at the same time, lowered the triaxiality
at the center with respect to the nontransforming case. Comparing the variation
of triaxiality across the minimum section for the nontransforming and transforming
cases (Fig. 4.8) indicates that diffusion of the neck for the transforming material
results in substantially decreased triaxiality at the center of the neck relative to the
nontransforming value. This trend becomes even stronger at the lower temperature,

T = 423K, where, at a minimum reduced section, R/ By = 0.734, the triaxiality at the
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center of the specimen, was 27% lower than the peak for the nontransforming case,
compared to 17% reduction for the T =: 448K case. For the still lower temperature
case, T = 373K, an early restabilization of plastic flow resulted in very little build-
up in triaxiality prior to propagation. The experimental observations of Young are
consistent with model predictions neck diffusion with transformation, as shown in
Fig. 4.9.

The enhancement of martensite formation is more clearly evident in Fig. 4.10,
where we plotted the strain history of f of a material point at the neck center. For
reference, we have also plotted predictions of f versus 7 obtained from constant triax-
iality analyses conducted under uniaxial and plane strain conditions. As % increases,
freck departs from its uniaxial value, and continues to increase at an enhanced rate,
eventually crossing the reference plane strain curve as X, nears its plane strain
value. Fig. 4.11 shows the corresponding stress-strain curves of this material point.
The resulting variable triaxiality stress-strain history shows a more steady rate of
hardening than do the reference constant triaxiality curves.

Another consequence of the triaxiality-dependence of of martensite formation is
that the temperature at which the transition from necking behavior to drawing behav-
jor occurs is increased above the value predicted by the non-stress-dependent model
of [13]. Our calculations indicate that that this transition occurs near T' = 423K.
Experimental data from Young [7], as shown in Fig. 4.12, suggest that the transition
temperature is lower — around T = 350K. This discrepancy might be an indica-
tion that the predicted stress-state sensitivity of transformation kinetics, manifested
in the model through the g, term of (3.28), which we inferred from Young’s ten-
sion/compression data, may be too high. It could also, however, simply be due to the
lack of stress-strain data for this material at these high temperatures. Attempts to
fit the one available tensile stress-strain curve of Young (7] resulted in an overpredic-

tion of the flow stress. This is likely attributable to the lack of data for the baseline
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martensite material, which cannot sustain strains past a few percent. Overprediction
of the martensite flow strength is consistent with the higher model predictions for the

necking/drawing transition temperature.
4.2.4 Summary

This first application of the constitutive model to a boundary value problem has
provided some insight into the macroscopic effects of transformation plasticity in the
strain-induced temperature regime as well as more general information concerning
interpretation of tensile test data. It is obvious that the formation of martensite can
drastically change the overall macroscopic behavior of the material. It has also served
to demonstrate the stress-state sensitivity of transformation kinetics.

The most readily apparent beneficial property of the transformation is that it
delays the onset of final necking to a much higher strain level. Comparison of the
deformed meshes for the nontransforming material and the transforming material at
T = 373K indicates tremendous increases in ductility with transformation, as has
been observed experimentally.

A less dramatic but equally important feature of the transformation demon-
strated here is the diffusion of the necking and lowering of triaxiality in the neck,
as demonstrated by the behavior of the transforming material at the higher temper-
ature T = 423K. Although the changes in triaxiality are not drastic, it is reasonable
to postulate at this point that these differences, coupled with other, more microscopic
effects (discussed later — such as the effect of the transformation on the stress and
strain fields in the immediate vicinity of particles and its interaction with the flow
localization /void nucleation process) are likely the explanation for the observed 20 to
50% increases in fracture strain relative to nontransforming values measured by Leal

[6] and Young [7].
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4.3 Stress and Strain Fields Around a Stiff Spher-
ical Particle

4.3.1 Introduction

In this section, we consider the fields surrounding an included particle embedded in
a transforming/nontransforming matrix, subject to a far-field load. Previously [13],
using the constitutive model which did not account for the stress-state sensitivity
of transformation kinetics, we analyzed this problem for several normalized temper-
atures within the strain-induced regime, but only for the case of remote uniaxial
tension. Our main findings were that transformation dramatically reduced interfacial
strain levels, but that peak normal interfacial stress levels scaled with the level of
the higher far-field flow stress. Here, in order to assess the influence of stress-state
sensitivity of transformation kinetics, we re-examine this problem using the current
model. Stress-state dependence of transformation kinetics allows for transformation
near the matrix/particle interface (due to high local triaxiality) at temperatures for
which the far-field flow behavior is not significantly affected by transformation.

Since we are primarily interested in the void nucleation process as it occurs in a
crack-tip stress field or at the center of a tensile neck, we have also imposed higher far-
field triaxiality levels, in order to determine whether transformation leads to different
predictions under these conditions.

Because of the small length scales associated with this probiem, some justification
of the use of a continuum model is required. Typically, the carbide or oxide particles
around which voids nucleate are about 0.1 to 0.3 microns in diameter [7]. On the
other hand, the critical size of the martensite nucleation sites which might be found
near these particles has been determined to be about 50A [39]. Thus the ratio of
particle size to aucleation site size is of the order of at least 20:1. It seems, therefore,

that a continuum model is at least marginally justifiable. Of course, another concern
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that arises when considering such small length scales is that the entire domain of the
analysis lies within one grain of the material. Thus, the concepts of polycrystalline
plasticity also become suspect. Nonetheless, substantial insight can be gained by
applying continuum concepts to this problem.

Spherical particle problems were first studied by Goodier [127]. Eshelby [84]
later solved analytically the problem of an elastic ellipsoidal particle embedded in
an elastic matrix and determined that the stresses and strains are uniform inside the
particle, as discussed in chapter 3. More recent studies have been devoted to numerical
calculations of particles in rigid elastic-plastic matrices. Thompson and Hancock [128]
considered rigid spherical particles in elastic-perfectly plastic and elastic power-law
hardening materials. Needleman [129] studied rigid spherical particles in an isotropic
hardening elastic-viscoplastic matrix. Wilner [130] solved the problem of an elastic
particle embedded in a plastically-deforming matrix under the assumption of small

strains.

4.3.2 Problem Description

The boundary value problem considered here models an infinite series of stacked
cylinders with spherical particles, as pictured in Fig. 4.13. Tvergaard [131] proposed
that this problem closely represents the problem of a three dimensional array of
hexagonal cylinders with spherical particles. The model is axisymmetric, and due
to symmetry about the midplane of the cell, only one representative section need be
modeled (as indicated in solid black). Fig. 4.13 depicts the isolated cell. Boundary
conditions along the four sides of the model provide the necessary symmetry and
periodicity conditions for modeling the infinite series of stacked cells. The boundary
conditions are as follows: symmetry conditions are applied along the midplane of the
cell, i.e., the nodes along the midplane are constrained to move only in the radial

\
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direction; the nodes along the top of the cell are constrained to have equal axial
displacements— the prescribed displacement increments which control the loading in
the problem are enforced on these nodes; the nodes along the outer edge of the cell are
constrained to have equal radial displacements; and the nodes along the pole (z-axis)
are, by definition, constrained to have zero radial displacement. In this analysis,
the ratio of particle diameter to cell diameter is specified to be a/b = 1/20. This
ratio yields approximately a 0.2% volume fraction of particles, thus representing a
nearly isolated particle. Thus, for this small volume fraction, the representation of
this model as a series of stacked cells is not critical, because particle interaction is
essentially nonexistent.

Three separate loading conditions were considered: a uniaxial case; and two cases
where higher levels of triaxiality were imposed. For the latter two cases, triaxiality
was imposed by applying a negative pressure along the outer radius of the cell. In
order to keep the level of the far-field triaxiality constant throughout the loading
history, these pressures were defined, via the DLOAD subroutine of ABAQUS (see
Appendix D), to scale with the far-field flow stress. Because the solution was obtained
under displacement control, we estimated the far-field flow stress by assuming it to
be a power-law function (using austenite hardening parameters) of the applied axial
strain, €. This assumption, which neglects the effects of elasticity and of any far-
field evolution of martensite, nonetheless resulted in triaxiality levels that varied by
less than 1% throughout the deformation history.

The finite element grid used for this problem is shown in Fig. 4.15. In this
mesh, the elements are concentrated near the interface on the matrix side, in order to
capture the steep gradients in the various fields which occur along the elastic-plastic
side of the interface. The particle, which is modeled as an elastic carbide particle with

Young’s modulus E = 210 MPa and Poisson’s ratio v = 0.36 [132], did not require

such refinement.
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Several test cases were performed in order to determine which of the many ax-
isymmetric elements available in ABAQUS yielded the most reliable results. Four
node isoparametric quadrilateral axisymmetric elements, as used in the previous se-
ries of problems, were not able to adequately represent a state of constant elastic
strain wk>n both the particle and the matrix were given the same material prop-
erties, and a constant displacement was imposed along the top edge of the mesh.
Standard eight-noded elements failed to provide accurate conversion of the normal
and shear stresses along the interface, due to the tendency of these elements to lock
under the constraint of incompressible plastic flow. Eight-noded hybrid elements and
eight-noded reduced integration elements both seemed to solve the locking problem.
Hybrid elements, for which the pressure siress is inierpo
deviatoric stress throughout each element, were finally chosen because they provided
better convergence of the tractions along the particle-matrix interface. With this
choice of element type, the mesh uses 428 elements with 1400 nodes. Due to the
convergence problems inherent in this highly constrained, large deformation, ~lastic-
plastic analysis, the solutions required substantial computation time. Solutions were
obtained under displacement control, with a constant normalized displacement rate,
Az/[(bAt) = 0.5/ sec, applied at the upper nodes of the cell.

The following discussion considers the results of this problem for two cases: a
nontransforming case; and a transforming case at a temperature, T = 448K (© =
1.0), for which the driving force for transformation under uniaxial conditions is quite

small (i.e., far-field f < 0.001).

4.3.3 Results and Discussion

We begin by reviewing the results of the preliminary study {13], so that we may

then focus directly upon the influence of the stress-state sensitivity of transformation
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kinetics on the near-particle and the interfacial fields, with special attention given to
the higher triaxiality cases.

In the preliminary analysis, we only considered the case of far-field uniaxial ten-
sion (2% = 0.33). As it should be expected, most of the nonhomogeneous plastic
flow occurs in an area very close to the particle-matrix interface. At very low far-field
strains (3%), the results were quite consistent with the work of Wilner [130]). The
plastic zone shapes, the location of the peak traction, and the distribution of intense
straining were all qualitatively similar. Fig 4.16 summarizes model predictions of
interfacial fields at a far-field strain axial level, €2 = 0.125, obtained in the prelimi-
nary analysis. Peak strain levels are dramatically reduced for the transforming cases.
Since the old kinetics model was strictly strain-based, martensite formed as shown
in the figure, peaking at the the location of maximum strain at ¢ = 45° (where ¢ is
measured from the r-axis, transverse to the direction of loading — to the z-axis, par-
allel to the direction of loading). Peak triaxiality and peak normal stress occurred at
about ¢ = 75°. Interfacial triaxiality is significantly enhanced from its far-field value,
x> = (.33. Fig. 4.17 depicts the strain history of maximum normal interfacial stress,
o™=, In Fig. 4.17a, o™ is normalized by the initial austenite flow strength, Yp, and
in Fig. 4.17b, it is normalized by the level of the far-field flow stress, Y(e2). When
scaled by the constant, Y, the history of peak traction resembles the stress-strain
curve of the remote matrix material, and when scaled by the far-field flow stress,
Y (e2), the peak traction approaches a steady state-value. Aside from some transient
effects, it is clear that the peak interfacial traction is a direct function of the applied
far-field load, unaffected by many details of the local fields.

In contrast to these preliminary results, Fig. 4.18 shows current model predictions
for the interfacial levels of equivalent plastic shear strain, martensite volume fraction
and triaxiality for the transforming case at €2 = 0.12 under remote uniaxial tension.

Due to the interfacial distribution of triaxiality, the peak in martensite volume fraction
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is pushed toward the pole of the particle.

Fig. 4.19a shows the distribution of martensite around the particle at €2 = 0.09.
This distribution is in reasonable accordance with an experimental observation of
enhanced martensite formation around an alumina particle in the phosphocarbide-
strengthened alloy of Young [7], as shown in Fig. 4.19b. This micrograph was obtained
from a uniaxial tension test at a measured tensile plastic strain level of 9% and
temperature of 388K, sectioned parallel to the direction of applied load. The lower
experimental temperature can account for the apparently higher volume fraction of
martensite near the pole of the particle.

Figs. 4.20 through 4.23 summarize current model predictions for interfacial fields
for the three different applied far-field triaxiality levels. It is immediately obvious
that increased triaxiality has a significant effect on interfacial fields: 37, and ¥ both
increase significantly, and therefore so does f. The interfacial values of f indicate that,
at the higher far-field triaxialities, the distribution of f becomes less biased toward
the point of maximum triaxiality. This is because the driving force for transformation
is quite high even at the lower angles, and the probability function has reached the
point where it increases much more slowly with increasing driving force (recall Fig.
3.1). More importantly, o™ also increases significantly with increasing far-field
triaxiality. Fig. 4.24 shows the history of peak interfacial normal traction, scaled
by Y,, for the nontransforming and transforming cases. In the uniaxial case, where
the far-field conditions for the transforming and nontransforming cases are essentially
equivalent, it is clear that, at these far-field strain levels, transformation leads to a
slight reduction in peak traction. This decrease can be attributed to the redistribution
of stress and strain near the interface brought about by the formation of the much
harder martensite. At the higher remote triaxiality levels, some martensite does form
in the far-field. The difference between nontransforming and transforming values for

this case can now only be partially attributed to a redistribution of interfacial fields;
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the remainder of the difference must be attributed to the decreased far-field flow stress
for the transforming case, due to transformation softening. Because of the hardening
effect of transformation, the far-field flow stress for the transforming case begin to
increase, and the peak interfacial stresses for the transforming case will ultimately

reach and surpass the nontransforming curve.

4.3.4 Summary

In assessing the effects of transformation with respect to the void nucleation process,
the question that must be addressed is whether or not the critical nucleation stress
is reached at a strain level for which transformation suppresses peak local tractions.
If so, then transformation clearly suppresses nucleation, and, because of the slow
increase in peak normal stress with far-field strain, can lead to significant delays in
macroscopic nucleation strain. If not, the redistribution of stress and strain must be
weighed against the deleterious effects of far-field transformation hardening. Critical
interfacial strength levels are thought to be 0.01 to 0.02 times the material Young’s
modulus [133] (about 2 to 4 times the material yield strength for these materials),
so that nucleation of voids in far-field conditions of high triaxiality probably occurs
at relatively low values of remote strain. The results shown in Fig. 4.24 indicate
that transformation indeed leads to a reduction of peak tractions relative to the non-
transforming case for the given combinations of strain and triaxiality. In view of
the tendencies for transformation to delocalize plastic flow and decrease triaxiality,
as demonstrated in section 4.2, the simple fact that increased remote triaxiality in-
creases interfacial traction is an encouraging result, at least within the context of the
macroscopic behavior manifested in a simple tension test, and lends itself as a further
source of explanation for the observed increases in fracture strain.

We must finally mention that the results presented in this section have focussed

on the nucleation process from the viewpoint of reaching a critical interfacial stress.
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The nucleation process further involves the debonding of the particle prior to com-
plete separation. A question that we do not address here is whether transformation
suppresses this “unzipping” process. Transformation clearly decreases the intense
straining near the particle, with the result that the partially cavitated transforming
and nontransforming materials are quite different. It seems quite plausible that the
lower strain levels and associated hardening capability of the transforming material,
relative to the transforming material, may act to retard this process as well. The
use of cohesive zone models, such as those proposed by Needleman [129], may prove

useful in addressing this question.

4.4 A Self-Similar Analysis of Crack-Tip Fields
in Small-Scale Yielding

4.4.1 Introduction

The fracture properties of a material clearly depend upon the state of stress and strain
in the vicinity of the crack tip. It is important, therefore, to develop an understanding
of the effects of the transformation plasticity in the near-tip region in order to better
understand how the transformation might lead to retardation of flow localization and
subsequent crack extension.

When ductile materials are subject to mode I (tensile opening) loading, the intense
strains at the crack tip lead to blunting of the tip. In the vicinity of the crack tip, the
material is highly stressed due to the geometric constraints imposed by the presence
of the crack. This material plastically deforms, blunting the crack tip, and continues
to deform until some criterion is met for locanzation of flow into shear bands or
coalescence of nucleated voids. Experimental observations suggest that blunting can
result in formation of sharp vertices at the crack tip [134], or it can be smooth, a

mode which was observed by Rawal and Gurland [135] for a pre-fatigued crack in

165



spheroidized steel. Smooth blunting can be thought of as the limiting case of an
infinite number of vertices, and naturally lends itself to analysis of near-tip fields
using standard large strain, large displacement finite element methods. A smoothly
blunted crack tip with a finite root radius can be modeled as a continuum without
creating the numerical difficulties that would otherwise arise for a sharp crack, for
which strain rates become singular at the crack tip.

The analysis which follows is patterned after the studies of McMeeking [136] for
small-scale yielding (SSY) problems and extended to large-scale yielding problems by
McMeeking and Parks [137]. The concept of small-scale yielding implies that the size
of the plastic deformation zone is small in comparison to any other relevant length
scales, e.g., the length of the crack, or the width of the specimen.

The study of SSY problems is well established. Rice (138] first introduced the
concept of the J-integral as a means of characterizing the fields near the crack tip in
terms of one parameter, where the J-integral is a measure of the strain energy release
rate, based on the fracture theory of Griffith [139]. Rice and Rosengren [140] and
Hutchinson [141] developed a methodology for studying crack-tip fields in non-linear
problems based on this single parameter, J. Begley and Landes [142] proposed that
the J-integral could be used as ductile fracture criterion under certain conditions.
The methods of Hutchinson, Rice and Rosengren were extended by Rice and Tracey
[143] and Tracey [144] using improved finite element methods. These studies, which
ignored large geometry changes, predicted intense levels of shear strain above and
below the crack tip and high triaxiality ahead of the tip for plane strain, mode I
loading. Because of the singular nature of the models, however, and the assumption
of small geometry changes, these methods are not well suited for modeling the blunting
of the tip and its effect on the near-tip fields (within a few blunted openings). Rice and
Johnson [145], modeling blunting using slip-line techniques, noted that the intense

deformation ahead of the crack could only be predicted when finite defermations of
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blunting are taken into account. Since transformation plasticity affects stress-strain
behavior predominantly at high strains, it is important to consider the effects of the
transformation within the blunted zone.

McMeeking’s method, on the other hand, does allow for evaluation of the effects
of crack-tip blunting. It is based on the results of Rice and Johnson, who noted that,
for non-hardening materials under the conditions of small-scale yielding, the shape of
the crack tip could be predicted at all times from the steady-state shape of a sharp
crack which has been loaded to the same levels. In other words, once a steady-state
solution is obtained, the entire solution can be appropriately scaled by the level of the
applied load. McMeeking verified these results numerically, and recently his methods
have been used extensively in a wide variety of problems (e.g., [146,147]). The unique
feature of this technique is that it allows for scaling of results to any desired length
scale, including crack-tip openings determined in actual tests, thus allowing for direct

comparison between analysis and experiment.

4.4.2 Problem Description

This analysis models the blunting of an initially sharp crack undergoing plane strain,
mode I loading. The finite element mesh used in the calcuiations, however, has been
constructed such that, in the undeformed configuration, the crack tip has a finite
root radius which is much smaller than the expected plastic zone size or the region
of blunting. This apparent contradiction is allowable because when a steady-state
solution is reached at a sufficient level of loading, the solution is independent of the
original crack-tip notch geometry, as was shown by Rice and Johnson [145]. Since the
notch blunts to several times its original radius, the difference between the solutions
obtained using an initially rounded crack tip and one which supposes a sharp crack

becomes negligible.
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For continued loading past the point at which the steady-state is reached, the size
but not the shape of the blunted zone changes, and thus the crack-tip opening dis-
placement (CTOD) becomes the only significant characteristic length. McMeeking’s
results confirmed that if appropriate restrictions are made in regard to the size of
the plastic zone with respect to the boundary of the finite element mesh such that
the conditions of small-scale yielding are still valid, then the CTOD scales with the
applied load. Therefore, the results can be scaled by the magnitude of the far-field
load.

A schematic of the boundary value problem considered is shown in Fig. 4.25. The
demain of the problem is a fan-shaped area which represents a region surrounding the
tip of a crack that is well within the confines of any physical boundaries, such that the
body can be considered to be infinite in extent, as shown in Fig. 4.25a. Only one-half
of the notch need be modeled due to symmetry about the plane of the crack. Thus,
symmetry conditions are applied at the mid-plane, while traction-free cor.ditions are
imposed along the free surface of the crack. The mode I load is applied by imposing the
linear elastic, asymptotic crack-tip (K 1) displacement field along the outer boundary
of the model (Fig. 4.25b). The load is controlled by supplying a value for the stress
intensity factor, K, at a dummy node. The corresponding relationships between
K and the far-field displacement field are imposed through an option available in
ABAQUS which allows the user to impose constraints via a subroutine MPC which
contains these relationships. In this manner the outer boundary displacements are
determined according to the relationships governing mode [ elastic crack-tip fields,
as first derived by Williams [148] and based on the mathematical formulation of

Muskhelishvili [149]. The displacement field, in Cartesian form, is given by:

t@:% 51.;{(3-4V—cos¢)sin§}, (4.2)
u,:% 72%{(3—4u—cos¢)cos%s}, (4.3)
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where r is the radial distance from the crack tip, ¢ is the angle from the mid-plane, v is
Poisson’s ratio, and G is the shear modulus. The displacements imposed at the outer
boundary (r,), therefore, scale directly with the value of K applied at the dummy
node according to this relationship. Some de.ails of the derivation of the asymptotic
displacement field relationships used in the analysis are given in Appendix E. The
MPC subroutine is also listed in Appendix E.

Although the applied boundary conditions are strictly valid only for an elastic
problem with small geometry changes, it is evident that both plastic strains and large
deformations develop near the crack tip. If, however, the size of the plastic zone is
kept small relative to the outer boundary of the mesh upon which these conditions
are imposed; i.e., the conditions of small-scale yielding are met, then by St. Venant’s
principle, the effect of the plasticity in the near-tip region does not affect the validity
of the asymptotic boundary conditions applied in the far-field.

In order to accurately model the near-tip solution and yet keep the plastic zone
small enough so that SSY conditions are valid, the finite element mesh is designed
with a several order of magnitude difference in size between the near-tip elements
and the elements near the outer boundary. In order to accomplish this, the mesh,
as shown in Fig. 4.26, uses 1340 4-node plane strain isoparametric quadrilateral
elements (ABAQUS CPE4) and 1418 nodes, with a 4000:1 ratio between the outer
radius of the mesh and the root radius of the crack. Note that in this figure the
lower, near-tip mesh fits into the hole in the center of the center mesh which fits
into the middle of the top mesh, as indicated by arrows. Although this seems like
a radical gradient in length scales, it turns out that this is the minimum acceptable
ratio, because the plastic zone must grow to a size of 300 to 400 root radii before
the steady state solution is reached in most of the problems analyzed. The large
number of elements and the incremental nature of the elastic-plastic solution again

necessitated considerable computation time to perform these calculations.
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Another feature of the finite element grid is the initial shape of most of the ele-
ments, which are oriented such that they are much longer in the radial direction than
the circummferential direction. These high aspect ratios, as pointed out by McMeeking
[135], are necessary especially near the crack tip, because as the notch is blunted to
a size much greater than the original size, the elements near the tip become greatly
distorted in the circumferential direction. If the original orientation is not radial, the
deformed elements become distorted to the point where computational difficulties
arise and accuracy is lost. Fig. 4.27 depicts a representative displaced mesh, which
shows the blunting of the crack tip and the severe stretching of the near-tip elements
in the circumferential direction, demonstrating the necessity for the oriented shapes

of the elements.

4.4.3 Results and Discussion

Reaching the Steady-State

As postulated (and demonstrated by McMeeking [135]), after a sufficient number of
increments, the character of the soiutions no longer changed. Instead, a series of self-
similar states were reached at which point the stress, deformation and state-variable
fields, when scaled by the level of the applied load, became asymptotically identical.
Fig. 4.28 shows the approach to the steady-state for a representative stress field (044
for the non-transforming case). In this graph, the normalized circumferential stress,
044/ 00, where ¢ is the angle measured from the plane of the crack and oy is yield stress,
is plotted versus the distance from the crack tip (in the deformed configuration), Ra,
normalized by the load parameter J/op. Here J represents the J-integral, which
when measured in an elastic field, is given by the relationship J = K}/E', where
E' = E/(1 — v?). Calculations in [13] further demonstrate that the relationship

between CTOD and J becomes linear as the steady-state solutions is reached. The
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CTOD, for which we use the symbol “b”, is defined here as the distance between points
on opposite flanks of the crack surface which are intersected by a line originating
from the crack surface at the mid-plane, and leaving at 45° angles from this point, as
schematically illustrated in Fig. 4.29. This measure of b is somewhat arbitrary, but
this particular definition keeps the CTOD consistent with respect to the position of
the crack tip. This direct correspondence between the blunted opening, b, and the
load parameter, J, allows us to present results in terms of b.

As in the previous analyses, we considered both a nontransforming and a trans-
forming material. The model temperature for the transforming material was chosen
to be near My, (448K), so that the crack tip region was not far above M, ,, which

was found experimentally in [1,6] to be the optimum for toughness.

Stress and Strain Fields Ahead of the Crack

Fig. 4.30 shows the extent of transformation near the tip of the blunted crack for the
T = 448K case. Due to the triaxial nature of the stress-state ahead of the crack tip, a
considerable amount of martensite forms in this region, whereas very little martensite
forms elsewhere, because of the relatively high temperature. Figure 4.31 shows the
variation of equivalent plastic strain, triaxiality and martensite volume fraction on
the ligament ahead of the crack tip. Because the strain decays rapidly ahead of the
crack tip, the extent of the transformed region is limited; the peak level of martensite
thus occurs well before the point at which peak value of triaxiality (£ = 2.3) occurs.
In fact, the peak value of martensite volume fraction occurs at the point where the
equivalent shear strain curve intersects the triaxiality curve.

Transformation did not seem to affect the equivalent strain fields and the triaxial-
ity fields, as shown in Figs. 4.32 and 4.33. However, due to the evolution of the much

harder martensite phase, an area of increased hardness relative to nontransforming
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values is formed directly ahead of the crack tip, as shown in Fig. 4.34.

Significant differences between the non-transforming and transforming cases were
found for the parameter h/@, where h = Ag/A¢, in the context of our viscoplastic
model, is the (incremental) hardening rate measured at fixed strain-rate. We again
emphasize that the notion of a hardening rate, h, is strictly valid only in the context
of rate-independent models. Nevertheless, because of the high rate-sensitivity expo-
nents (M = 100) that we have chosen, strain-rate hardening effects are minimal, so
that the parameter h/a still lends significant qualitative insight into tendencies for
plastic flow to become unstable. In Fig 4.35, we have plotted contours of h/a for the
transforming and non-transforming cases. In the non-transforming case, “ stability”
(in the Considére sense — recall section 2.5.2) is “lost” at all points where & > 0.10.
As the crack tip is approached along the ligament, plastic flow becomes more and
more unstable. In the transforming case, the loss of stability is limited to a very
short region in front of the crack, where the strains are tremendously high. There is a
region in front of the crack tip, however, in which the plastic flow is quite stable, due
to the strain-hardening influence of the martensite. This region, whose shape — not
coincidentally — resembles the shape of the martensite zone, is bounded by a narrow
band of low stability, which is a direct consequence of the strain-softening behavior of
the transformation at low strain. Another way of viewing this stable region is demon-
strated in Fig. 4.36. In this figure, we have plotted pairs of flow stress/equivalent
plastic shear strain (7, 37) at nodal locations ahead of and approaching the crack (i.e.
from right to left with reference to Fig. 4.31. When plotted in this manner, these
pairs form a “stress-strain” curve of sorts. We have indicated on these curves the lo-
cation of some of these pairs on the ligament, in terms of their distance from the crack
tip. For the nontransforming case, near the crack tip the strain has reached levels
which are beyond one-dimensional stability limits for this material. Assuming that

one-dimensional stability arguments are qualitatively viable in this multi-dimensional
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analysis, it is likely that further plastic flow will be unstable. On the other hand, for
the nontransforming case, the strain has reached this critical level only very near the
crack tip, and there is a range of equivalent shear strains (analogous to the range of
uniaxial strains between ¢, and €, in Fig. 2.20) — and thus a range of distances ahead
the crack tip — for which stability is recovered. This area of stable flow will not be
overcome until strain levels have increased by a considerable amount. In fact, since
we have reached the steady-state solution, the point at the right end of this stable
region will not become unstable until J (or, equivalently, b) increases by a factor of

ten.

4.4.4 Summary

It is evident from these figures that transformation, because of the combined effects of
strain and triaxiality, leads to the local formation of a region of much harder material,
within which plastic flow is quite stable. It will therefore be very difficult for plastic
flow to localize across this region. If localization of deformation is to take place,
it must either find a path around the hardened zone, or wait for the local strains
to increase to the point where this region becomes again unstable. In either case,
the crack will be able to sustain much higher amounts of blunting and much higher
imposed J's.

The more sophisticated methods which have been developed for predicting the
loss of stability under multiaxial stress states, as we discussed in chapter 2, will not
lead to qualitatively different predictions than those presented here. The stress-state
dependence of the critical hardening rate will likely shift the zones of instability
toward the location of peak triaxiality, a few blunted openings away from the crack
tip. However, the stable region indicated in Fig. 4.35 will still be stable, since h/&

will always be well above the critical value here.
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(a)

0.006R,[1 — sin(mz/L,)]

r
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- Z
(b)
(c)
Figure 4.1 Description of problem studied, showing: (a) the tensile specimen

analyzed; (h) a schematic of boundary value problem with initial perturbation; and (c) the
finite element model.
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Figure 4.2 Deformed finite element meshes (which have been mirrored about the
mid-plane and the longitudinal axis) at several displacement increments for the nontrans-
forming case.
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(b)

Figure 4.4 Comparison of deformed meshes at a reduction of approximately
R/Ro = 0.5 for: (a) the transforming case and (b) the transforming case, T = 373K,

177



R/R, = 0.734

nontranaforming
------ transforming, T=448K (€=0.8)

——

Figure 4.5 Comparison of specimen edge profiles at a reduction of approximately
R/Ro = 0.734 for: (a) the transforming case and (b) the transforming case, T = 448K. In
order to accentuate the differences between the two, the radial position was magnified by a
factor of four.
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Figure 4.6 Comparison of scalar fields for 7, £ and f at equal minimum section

reductions, R/Rp = 0.734, for the transforming (T = 448K [O© = 0.8]) and nontransforming
cases.
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Figure 4.7 Variation of 57, £ and f across the minimum section at area reduction

R/Ro = 0.734 for the transforming (T = 448K’) and nontransforming cases. The increased
f at r = Q is the combined result of the corresponding elevated values of 7 and L.
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Figure 4.8 Variation of triaxiality, £, across the minimum section for the trans-

forming (T = 448K and T = 423K) and nontransforming cases, at equal diametral strain
levels, R/Ro = 0.825.
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Figure 4.9 Comparison of fractured necks of tensile specimens for the over-
aged 0.5Mn phosphocarbide-strengthened alloy of Young, tested at : (a) T = 388K, (b)
T = 523K. These photographs clearly illustrate the decreased curvature of the lower-
temperature (transforming) specimen compared to the higher temperature (nontransform-
ing) specimen.
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Figure 4.10 Comparison of the strain history of f at the center of the necking

tensile specimen with the reference uniaxial and plane strain predictions of f versus F” for
the transforming case (T = 448K),
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Figure 4.11

Comparison of the history of 7 at the center of the necking tensile

specimen with the reference uniaxial and plane strain predictions of f versus 57 for the

transforming case (T = 448K).
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PLASTIC UNIFORM ELONGATION AND FRACTURE STRAIN

1 00

080

0.69 1

0 O SIN-0.UNIF
8 0SrN-0OFRA

040 -

0.20 1
Ept

'—"l- -

000 N v v L
-100 0 100 Mq(UT) 200 300

TEMPERATURE, oC

Figure 4.12 Temperature dependence of the plastic strain at fracture (€ps) and
uniform plastic strain (¢p,) for the overaged 0.5Mn alloy. Arrows indicate mean value of
the relative transformation temperatures. The estimated fracture strain of austenite is also

shown. Taken from (7].
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Figure 4.13 Schematic description of an infinite array of stacked cylinders with

spherical particles. Only the quarter-cell with the matrix indicated in solid black is modeled
in this problem.

186




Az=const. (prescribed)

T
[}
[
!
1
]
!
]
[}
t
]
1
[}
[}
]
]
]
]
]
]
]
—
]
’
]
]
[}
]
]
]
]
1
I
[}
[}
)
]
]
[}
t
[}

(0]

e Ar=const. «—

Q

G
G
G
G
G
G
G
C
C
y
-

Figure 4.14 Schematic description of the spherical particle problem mo. cicd, with
the boundary conditions indicated.

187



\
RN
AARNN

WANANAN

\

Figure 4.15 Finite element mesh for the spherical particle problem. In this
figure, the bottom mesh (“near-particle” region) fits into the indicated area of the top mesh

(“nominal far-field” region).
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Figure 4.16 Summary of interfacial fields obtained in the preliminary analysis,

for which the stress-state sensitivity of transformation kinetics was not considered. (a)
equivalent plastic strain; (b) triaxiality; (c) martensite volume fraction; and (d) normal
traction, normalized by yield stress [13].
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Figure 4.17 History of interfacial normal traction normalized by (a) yield stress,

om%* /Yy and (b) far-field flow stress, o72°* /Y (€33, 60), plotted versus far-field axial strain
level, €2, for © = 1.0,0 = 0.8, © = 0.5, ® = 0.2 and © = 0.0. Taken from [13].
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Figure 4.18 Current model predictions for interfacial distributions of 37, X, and
J for the transforming case, T = 448K at a far-field strain axial strain level, ¢33 = 0.08.
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Figure 4.19 (a) Current model predictions for distribution of martensite volume
fraction, f, around the particle for the transforming case (" = 448K), at a far-field axial
strain level, €53 = 0.09. (b) Micrograph taken from a longitudinal cross-section of necked
tensile specimen, T' = 115C, ¢, = 0.09, showing preferential formation of martensite (light
region in dark field) around an alumina particle [7).
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Figure 4.20 Current model predictions of the inte.iacial distribution of equivalent

plastic shear strain, 77, for the nontransforming case and the transforming case (T = 448K)
and the three indicated levels of far-field triaxiality, at a far-field strain axial strain level,
€% = 0.08.
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Figure 4,21 Current model predictions of the interfacial distribution of triaxiality,
L, for the nontransforming case and the transforming case (T = 448K) and the three
indicated levels of far-field triaxiality, at a far-field strain axial strain level, €23 = 0.08.
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Figure 4.22 Current model predictions of the interfacial distribution of martensite
volume fraction, f, for the nontransforming case and the transforming case (7' = 448K)
and the three indicated levels of far-field triaxiality, at a far-field strain axial strain level,
€2 = 0.08.
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Figure 4.23 Current model predictions of the interfacial distribution of normal

traction, o, /0o, for the nontransforming case and the transforming cace (T' = 448K)
and the three indicated levels of far-field triaxiality, at a far-field strain axial strain level,

€2 = 0.08.
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Figure 4.25 Schematic description of the crack blunting problem. (a) the circular
near-tip region modeled, and the manner in which it fits into a body of infinite extent; (b)
schematic of the near-tip region modeled, with the imposed displacement field indicated.
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Figure 4.26 Finite eiement mesh for the crack blunting problem. In this figure,
the bottom mesh fits into the center of the middle mesh which fits into the center of the
top mesh.
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Figure 4.27 Blunting of the crack tip. (a) The undeformed mesh (innermost
region only); (b) the deformed mesh, showing the blunting of the crack and the intense
deformation of the near-tip elements.
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Figure 4.28 Normalized circumferential stress versus the normalized distance

ahead of the crack tip, R4/(J/Ys), at several load increments, demonstrating the approach
to the steady-state solution. Here Ry is represents distance from the notch surface along
the crack line, ¢ = 0, in the deformed configuration.

201



Figure 4.29 Schematic of the 45°-intercept definition for the crack tip opening
displacement, b. '
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Figure 4.30 Contours of volume fraction martensite, f, ahead of the crack tip
(T = 448K).
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Figure 4.31 Variation of scalar fields 77, L, and‘f ahead of the crack tip (T =

448K).
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Figure 4.32 Contours of equivalent plastic shear strain, 7P near the crack tip for
the nontransforming case (above) and the transforming (T = 448K’) case (below).
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Figure 4.33 Contours of triaxiality, & near the crack tip for the nontransforming
case (above) and the transforming (T = 448K) case (below).
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Figure 4.34 Contours of equivalent shear stress, 7, near the crack tip for the
nontransforming case (above) and the transforming (T' = 448K’) case (below).
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Figure 4.35 Contours of “h” /& near the crack tip for the nontransforming case
(above) and the transforming (T' = 448K) case (below). The parameter h is defined as
h = 307/ AFP, with § = const.
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Figure 4.36 Pairs of flow stress/equivalent plastic shear strain (7, 57) at nodal

locations ahead of and approaching the crack (i.e. from right to left in reference to Fig.
4.31). The normalized distance from the crack tip (R4/b) is indicated for several of the
points.
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Chapter 5

Analysis of Flow Localization:
Nucleation and Growth of Voids

5.1 Introduction

In the previous chapter, we demonstrated that transformation plasticity in the strain-
induced temperature regime clearly alters the mechanical response of mechanical sub-
svstems at several different length scales. Moreover, we indicated means by which
transformation plasticity leads to enhanced ductility and fracture toughness, through
the strain-softening and subsequent strain-hardening behavior caused by the transfor-
mation, and their respective abilities to hinder void rucleation and flow localization.
In this chapter, we go one step further in evaluating tendencies for suppression of
plastic flow localization through numerical analysis of a series of boundary value
problems in which the continuum effects of porosity evolution are accounted for via
the Gurson/Needleman-Tvergaard model outlined in section 3.7. We have ordered
these problems in a sequence characterized by a successively increasing triaxiality of
stress-state and more localized flow fields.
In order to illustrate the interaction of transformation with the nucleation/localization

process, we begin with the macroscopic, mildly triaxial deformations which occur in
a plane-strain tension test. We use this problem not only to illustrate the tendencies

for transformation to suppress localization, but also to provide a qualitative assess-
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ment of the strain-based void nucleation parameters py and yn. For this analysis,
strain-based void nucleation is chosen over stress-controlled void nucleation because
it leads to a numerically more stable integration procedure. For the mild gradients in
the stress-state which characterize this problem, the two void nucleation modes lead
to qualitatively similar predictions. A plane-strain geometry is chosen here because
axisymmetric geometries are relatively ineffective for capture of the localization of
deformation. We next model the extension of a mildly-notched plane-strain tensile
specimen. Here, due to the presence of the notch, the strain and triaxiality fields have
natural gradients which are somewhat more severe than those which arise during the
extension of a constant cross-section tensile specimen. In spite of the local triaxial-
ity gradients, we again rely on a strain-based nucleation criterion for this problem
for the reason noted above. Finally, we consider a sharply-notched tensile specimen,
for which the flow fields near the notch are very similar to a those found near a
smoothly blunting crack tip. For the sharp-notch problem, we use the numerically
more cumbersome, but — in view of the results of section 4.3 — more appropriate
assumption of stress-controlled void nucleation. Because of its crack-like geometry,
this last case provides qualitative insight into the tendency for transformation to re-
tard flow localization ahead of the notch and the subsequent zig-zag process of crack

propagation.

5.2 Numerical Simulation of a Plane Strain Ten-
sion Test

5.2.1 Introduction

In this first analysis, we simulate the geometry and loading conditions of a plane
strain tension test. All of the tensile specimens tested by Leal [6], Young [7] and

Stavehaug [1] were round; we therefore considered an axisymmetric geometry in
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the analysis discussed in section 4.2. Despite the axisymmetry in the experiments,
Young found that fracture ultimately occurred as a result of shear localization. This
can be attributed to anisotropic material behavior (the n:aterial was heavily warm-
worked), leading to “ovalization” of the specimen. Numerically, we cannot predict
these non-axisymmetric deformation patterns using an axisymmetric model. A three-
dimensional model could be used to study these phenomena, but a numerical analysis
of this sort is computaticnally intensive, and we leave it as a problem for future
study. Here, in order to illustrate the interaction of transformation with the localiza-

tion/nucleation process, we resort to a plane strain geometry.

5.2.2 Problem Description

The specimen modeled here has width dy and gauge length Ly, = 4dp, as shown in
Fig. 5.1a. A model of the specimen is shown in Fig. 5.1b. Symmetry about the
z and y axes allows us to model only one-quarter of the specimen. As we did for
the axisymmetric specimen, we introduce a perturbation along the outer boundary
of the mesh, defined analogously to (4.1). The resulting finite element mesh is shown
in Fig. 5.1c. It differs from the axisymmetric mesh used in section 4.2 only in the
neck region, where the mesh density is increased by a factor of four in order to better
capture localized deformation. The nodes along both symmetry axes were constrained
to have zero normal displacement, while the nodes along the end of the specimen
were constrained to have equal longitudinal displacements. The solution was obtained
under displacement control, with the displacement at the end nodes prescribed at each
increment. The calculations were performed on a Sun microsystems SPARCstation 1
computer using version 4.7 of the ABAQUS finite element code. Material parameters
are the same as ziven in table 4.1. Additional nucleation parameters are as follows:

pn = 0.04,7% = 0.5and sy = 0.1. Asstated in section 3.7, these values are consistent
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with those used in several recent investigations. The RIKS algorithm was again used
for this analysis. Solutions were obtained under displacement control, with a constant
normalized loading rate, L/(L4,) = 0.536, applied at the end nodes.

We considered two cases: a nontransforming material and a transforming mate-
rial. The model temperature for the transforming material was chosen to be near
My, (448K). At temperatures much lower than 448K, because of the increased
triaxiality of the plane strain geometry with respect to that of axisymmetric ten-
sion, the enhanced driving force for transformation and the associated increases in

transformation hardening result in cold drawing behavior rather than necking.

5.2.3 Results and Discussion

The evolution of the most significant scalar fields is summarized in Figs. 5.2 through
5.5 for the nontransforming case and in Figs. 5.6 through 5.10 for the transforming
case. Only the central, refired part of the deformed finite element mesh is shown
in these figures. Each figure shows contours of state variables at four progressively
higher transverse strain levels, the last of which was chosen to be the same for both
the nontransforming and transforming cases.

The contours of equivalent plastic shear strain, 7P, for the nontransforming case
(Yig. 5.2) demonstrate a transition from a deformation pattern indicative of classical
necking to one of shear-band localization. The level of triaxiality, ¥ (Fig. 5.3), is
again highest in the middle of the specimen; at the higher strain levels, triaxiality
also appears to be influenced by the shear localization process: the highest values
of ¥ are still at the center of the specimen, but the shape of the next-to-the-highest
contour line suggests that the entire localized band has reached a relatively high
triaxiality. Contours of void volume fraction, p*, shown in Fig. 5.4, also follow this

same pattern of evolution. Recall that the void volume fraction is not only a function
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of strain, through the strain-based nucleation criterion, but also a function of stress-
state, through the triaxiality-dependence of the void growth rate. The final result,
best portrayed by the contours of equivalent plastic shear strain rate, ¥ (Fig. 5.5), is
a complete loss of stable plastic flow resulting in a band of intense local deformation,
within which the porosity is rapidly approaching the critical value for fracture.

In stark contrast to these deformation patterns, the transforming material dis-
plays a much more diffuse, stable flow field. Contours of 3”, shown in Fig. 5.6, show
that the transforming material is resisting the bifurcation from classical necking to
shear-band formation. The reasons for this behavior can be traced to the formation
of martensite in the neck region (Fig. 5.7), which, again, is a result of the com-
bined effect of strain and triaxiality (Fig. 5.8). Even this relatively mild formation of
martensite (faz = 0.35) leads to dramatically different flow patterns. Transforma-
tion has again led to a decrease in triaxiality and an associated diffusion of the neck,
as indicated by the much smoother specimen profile. A significant amount of poros-
ity (6%) does develop at the center of the specimen, primarily due to the relatively
high strains in that region (Fig. 5.9). This void volume fraction is small, however,
compared to the nontransforming case, where p* has reached 20%. This decrease in
porosity relative to the nontransforming case is due to both the decrease in strain and
the decrease in triaxiality, and, more fundamentally, to the retardation of the flow lo-
calization process, manifested by the strain-rate field, which does not show any signs
of localization (Fig. 5.10). To emphasize the differences between transforming and
nontransforming behavior, we have plotted in Fig. 5.11 contours of equivalent strains
and strain-rates for the nontransforming and transforming cases at equal transverse
strain levels, ¢; = In(dy/d) = 0.50, where dj is the undeformed width of the specimen
and d is the deformed width. It is also worth noting the similarities between the
contours of f (Fig. 5.7) and p* (Fig. 5.9). These variables, plotted together in Fig.

5.12, obviously are evolving in a similar fashion.
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In terms of macroscopic behavior, Fig. 5.13 shows how transformation affects the
load-displacement curves for the nontransforming and transforming materials. In the
figure, the applied load P,p, is normalized by the maximum load for the nontrans-
forming case P™ _. Because of the high temperature for the transforming case, the
effects of transformation are mostly confined to the necked region, and, aside from
some minor effects due to transformation softening, there is little difference between
the nontransforming and transforming materials except at the higher displacement
levels, where it is clear that void nucleation-softening has lead to the onset of a rapid
drop in load for the nontransforming material, while the load for the transforming
material decreases at a much slower rate, because of the much lower porosity and the
localized formation of hard martensite across the minimum section.

Finally, if we assume that, after the void porosity has reached its critical value,
p* = 0.15, negligible macroscopic straining occurs prior to fracture, then, we can in-
terpret the transverse strain at this point as an approximate estimate of the fracture
strain. Our calculations show this transverse strain level, ¢, = 0.364. This value is
well below the value €; = 0.6 predicted by Young {7]. This discrepancy is not surpris-
ing, however, given the inherently higher triaxialities and decreased resistance to flow
localization for plane strain geometries relative to axisymmetric geometries. For com-
parison, we conducted the axisymmetric tension test simulation of section 4.2 using
the model accounting for nucleation and growth, with the same nucleation parame-
ters as used here. Because of the symmetry of the problem, shear band formation did
not occur; however, we found that porosity reached the critical value, p = 0.15, at
a transverse strain level ¢; = 0.77. In light of the the noted ovalization effects that
ultimately did lead to shear-band formation in these experiments, this value does not
seem unreasonable — shear-band formation likely leads to a decrease in ¢4 relative to
the case where it does not occur. In any event, bracketing the experimental fracture

strain, as we have, suggests that the nucleation parameters chosen for this analysis

215



represent reasonable estimates for these materials, at least in terms of assessing the

qualitative differences between transforming and nontransforming behavior.
5.2.4 Summary

The simple analysis presented in this section lends significant qualitative insight not
only into the increases in fracture strain observed during tension tests, but also into
the more fundamental nature of transformation toughening. As evidenced in the
contour plots shown here, transformation, along with its beneficial effects, tends to
occur in those places where it is most needed. The similarities between the contours

plots of f and p* in Fig. 5.12 illustrate this point quite well.

5.3 Numerical Simulation of a Notched Tension
Test

5.3.1 Introduction

In this section, we consider the interaction of transformation and shear localization
during the extension of a mildly-noiched plane strain tensile specimen. This geometry
provides plastic flow and transformation fields that are somewhat more local and
constrained than in the plane strain geometry of the previous section, but on a length
scale that is still macroscopic enough so that these fields are, in comparison with the
fields from sharp notch and crack geometries, relatively easy to assess experimentally.
This geometry further imparts a naturally mild gradient to the strain and triaxiality
fields that control the transformation kinetics, and thus represents an excellent tool
for further verification of model properties, especially in regard to the stress-state
sensitivity of the kinetics. At the present time, no experiments have been performed
on transforming alloys for this geometry; however, a series of axisymmetric notched

tensile specimens are cu:srently under study [108].
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Our objective in this analysis is again to illustrate fundamental differences between
transforming and nontransforming material behavior. As such, we have considered
only one temperature for the transforming material. A more complete parametric
study, in which model temperatures and other parameters are systematically varied,
so that correlation with experimental data could be refined is an endeavor of critical

importance that we leave until more complete experimental data are available.

5.3.2 Problem Description

The model specimen considered here has width, Dy, gauge length, Ly = 4D, a semi-
circular notch of radius, ro = Dy/4 and notch ligament ag = Do/2, as shown in Fig.
5.14a. Symmetry about the z and y axes again allows us to model only one-quarter
of the specimen. The finite element mesh is shown in Fig. 5.14b. A small notch-mesh
generator program, capable of generating meshes for various notch geometries, was
developed in order to create the mesh. A listing of the program is given in Appendix
F. The nodes along both axes were constrained to have zero transverse displacement,
while the nodes along the end of the specimen were constrained to have equal ax-
ial displacements. The solution was obtained under displacement control, with the
displacement at the end nodes prescribed at each increment. The calculations were
performed on a Sun microsystems SPARCstation 1 computer using version 4.7 of the
ABAQUS finite element code. Material parameters are the same as in the previous
section. The RIKS algorithm was used. Solutions were obtained under displacement
control, with a constant normalized loading rate, L /(L40) = 0.178, applied at the end
nodes.

We considered two cases: a nontransforming and a transforming material. The
model temperature for the transforming material (T = 473K) was chosen to be

slightly higher than that of the previous analysis, because of the higher triaxialities
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found at the center of the notched cross-section.

5.3.3 Results and Discussion

The evolution of the scalar fields is summarized in Figs. 5.15 through 5.18 for the
nontransforming case and in Figs. 5.19 through 5.23 for the transforming case. Only
the notch region of the deformed finite element mesh is shown in these figures. As
in the previous section, each of these figures shows contours of state variables at four
progressively higher transverse notch strain levels. In these figures, the third contour
plot for the transforming case and the fourth plot for the nontransforming case are
at equal transverse notch strain levels. The fourth plot for the transforming case is
at a still higher strain level. The equivalent plastic strain (Fig. 5.15) and strain rate
(Fig. 5.16) contours for the nontransforming case are, again, indicative of a transition
from classical necking to shear-band localization. Contours of void volume fraction,
p*, shown in Fig. 5.17, are also quite indicative of the intense localization of plastic
flow that has occurred. The levels of triaxiality are much higher than they were in
the plane strain tension test, due to the curvature of the notch (Fig. 5.18). Note that
in the final plot for ¥, a significant amount of numerical noise has appeared within
the localized band. This is a result of taking the ratio (¥) of two quantities, p and 7,
that, in this region, are both small. It is because of numerical noise of this sort that
the calculations eventually broke down.

Once again, in contrast to these deformation patterns, the transforming material
displays a much more diffuse, stable flow field. The contours of ? (Fig. 5.19) clearly
show that the transforming material is resisting the bifurcation from the classical
necking to shear-banding. The triaxiality contours (Fig. 5.20) indicate that, as a
result of transformation hardening (see Figs. 5.21 and 5.22), the peak in triaxiality

has shifted away from the minimum specimen at some strain levels, forming two small
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pockets of peak triaxiality above and below this plane. Finally, despite the relatively
small levels of void volume fraction, the high triaxialities, coupled with the relatively
small extent of martensite formation across the minimum section, eventually lead to
the onset of localization, as indicated by the strain-rate contours of the last plot in
Fig. 5.23. Still, transformation has effectively postponed the onset of localization to a
significantly higher strain level, and it is likely that, at a lower temperature, where the
driving force for transformation is higher, greater martensite formation will lead to
even higher strain levels prior to localization. A comparison of nontransforming and
transforming strain and strain-rate fields at equal transverse notch strain levels (Fig.
5.24), clearly demonstrate the differences in material response, while a comparison of
the transforming case values of p* and f in Fig. 5.25 is indicative of the sources of
these differences: transformation occurs in regions of high strain and high triaxiality,
and thus regions of high porosity.

Fig. 5.26 shows the differences in load-displacement response for the nontrans-
forming and transforming materials. Apart from some small effects due to transforma-
tion softening, there is little difference between the nontransforming and transforming
materials except at the higher displacements, where void nucleation-softening man-
ifests itself, and the transforming material, because of its resistance to localization

and transformation hardening, clearly follows a more benign path.
5.3.4 Summary

This second example again demonstrates the beneficial effects of martensitic trans-
formations in the strain-induced regime. It also shows, however, that even these ma-
terials can localize under certain conditions, emphasizing the need for careful aralysis
and correlation with experimental results for a wide range of temperatures (or, equiv-
alently, austenite stability parameters), so as to obtain materials that are properly

designed for the stress and strain environment to which they will be subjected.
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We note in closing this section that our model breaks down when porosity lev-
els reach certain values, thus it cannot account for the significantly increased levels
of transformation driving force accompanying the increases in triaxiality within the
shear-band due to cavitation. It is likely that transformation will continue to slow

down the final stages of localization by further hardening this region.

5.4 Numerical Simulation of a Sharply-Notched-
Tension Test

5.4.1 Introduction

In this third and final analysis in which we have employed the additional consti-
tutive features of void nucleation and growth, we consider the interaction of trans-
formation and localization during the extension of a sharply-notched plane strain
tensile-specimen. This geometry provides plastic flow and transformation fields that
are mu<;h more confined to the region around the notch than those found in the
mildly-notched geometry of the previous section, and that are characterized by much
steeper gradients. Because plastic flow is occurring so close to the notch, these fields
are not strongly affected by the other length scales of the problem, i.e., the diameter
ard length of the bar, and are therefore qualitatively similar to the fields ahead of a
smoothly blunting crack tip.

Because of the much steeper gradients of strain and triaxiality inherent to this
geometry, we found it necessary to employ a stress-based nucleation criterion. As
noted earlier, a stress-controlled nucleation criterion has a more solid physical basis
in light of the critical interfacial normal stress criterion for nucleation, discussed in
section 4.3. Unfortunately, however, stress-controlled nucleation is numerically more
difficult to implement, due to the complex interactions between stress-state, marten-

site formation, porosity evolution and plastic flow through the potential function, ®.
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Nevertheless, we found that it was necessary to implement the model in this man-
ner in order to properly assess the interactions of transformation and localization of

plastic flow ahead of the notch.

5.4.2 Problem Description

The model specimen considered here has width Dy, gauge length Lo = 4D, a semi-
circular notch of radius ro = Dy /40, and ligament, ap = Dy/2 as shown in Fig. 5.27a.
Symmetry about the z and y axes again allows us to model only one-quarter of the
specimen. In order to better capture the localized patterns of deformation, the near-
tip area of the finite element mesh was designed so that the grid lines followed the
contours of the characteristics of the slip-line field for this geometry [145], as shown
in Fig. 5.27b. The remainder of the mesh is displayed in Fig. 5.27c. The program
developed to create this mesh is listed in Appendix G.

In all respects, this analysis was carried out in the same fashion as the previous
two, i.e, displacement control, symmetry conditions, use of the RIKS method. Solu-
tions were obtained under displacement control, with a constant normalized loading
rate, L/(L4o) = 0.714, applied at the end nodes.

We again considered two cases: a nontransforming and a transforming material.
The model temperature for the transforming material (T' = 448K = M;,,) was
chosen to be near the M? temperature for this geometry (i.e., near M7 ). Material
parameters are the same as given in table 4.1. Stress-based nucleation parameters:
pn = 0.04, oy = 2.4Y, = 2.4 = 2.48%(4,)"*) and sy = Yp were chosen, as representing

reasonable values for alloys of these strength levels [150].
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5.4.3 Results and Discussion

Figs. 5.28 and 5.29 compare model predictions for the scalar fields ahead of the notch-
tip, at a fairly low level of load. Transverse strains lose their significance as measures
of such local deformation, so these deformed fields are characterized by equal levels
of notch-tip blunting displacements, b, according to the 45°-intercept definition of
Fig. 4.29. At this relatively small load level, very little martensite has formed and
void porosity levels are quite low, so that these contour plots show little difference
between the behavior of nontransforming and transforming materials. The contours
of 77 and T are indicative of a classical notch-tip field. The triaxiality field differs
from a fully-developed small-scale yielding crack-tip field, in the respect that the peak
value of triaxiality is decreased and the location of the peak is only about 1.5 blunted
openings (b = 1.5) from the notck-tip rather than the 1.9b prediction of the slip-line
field and the 2.7b prediction of the small-scale yielding solution (see Fig. 4.31). This
difference is likely a result of the lateral “T”-stress which, in the sharp notch limit of
double-edge-cracked tension specimen of comparable geometry, is negative, and thus
has the effect of decreasing the peak value of triaxiality and moving the peak towards
the notch [151].

At a much higher level of deformation, (Fig. 5.30), the nontransforming material
has formed a shear-band between the notch surface and a point on the ligament about
0.5 blunted openings ahead of the notch (Fig. 5.30e). This localization of plastic flow
is due to the evolution of porosity (Fig. 5.30d), which, as a result of the imposed
stress-controlled nucleation criterion, is greatest along the ligament at the indicated
location, where the sum of the deviatoric stress (Fig. 5.30a) and hydrostatic stress
(Fig. 5.30c) is greatest. The pattern of localization shown in Fig. 5.30e is indicative of
the beginnings of a zig-zag fracture process. Because of the high level of damage and

the previously-noted numerical complications caused by stress-based void nucleation,
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numerical difficulties prevented us from carrying out the solution to much higher
levels of deformation. To the limited extent that we could continue the analysis, we
found that the apparent zig-zag pattern of deformation continued, as evidenced in
Fig. 5.31. Experimental observations of the crack propagation in the slow-bending
of a Charpy V-notch specimen of high strength 4340 steel [152] (Fig. 5.32) indicate
that the deformation patterns predicted by our analysis are in reasonable agreement
with observed behavior.

Fig. 5.33 summarized the near-tip behavior for the transforming material at a
blunted opening (b = 1.39b) that is already larger than the maximum value reached
in our simulation of the nontransforming material (b = 1.24b,). Obviously, flow
localization has been completely suppressed by the formation of martensite ahead of
the blunting crack tip. The contours of equivalent strain-rate (Fig. 5.33f) have the
same general shape as the contours of equivalent strain (5.33a), indicating that flow
is still quite stable. A comparison of the contours of f and p* (Figs. 5.33c and e),
again indicate that transformation has “come to the rescue” by hardening the area
where the void porosity and associated nucleation softening are otherwise promoting
the formation of a shear-band. Further deformation resulted in no tendencies to alter
these flow patterns prior to a numerical break-down of the solution.

A comparison of the load-displacement curves in Fig. 5.34 indicates that, because
of the local nature of the deformation, the effects of transformation are not macro-
scopically evident, since little transformation is taking place away from the notch tip.
The nontransforming curve is, however, starting to show the effects of the onset of
localization, as it is beginning to drop in slope very near the top portion of the curve,
whereas the curve for the transforming material is giving no signs of decreasing its
slope. If we could model crack propagation, we would likely see the curve for the

nontransforming case drop abruptly, as is observed experimentally.
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5.4.4 Summary

It is clearly evident from the figures shown in this section that transformation is
suppressing shear localization, as a result of the softening and subsequent hardening
behavior of the transformation. Unfortunately, the complicated nature of the consti-
tutive model, coupled with the limitations of standard finite element methods, made
it impossible to carry out the analyses to much higher deformation levels, in order
to assess more quantitatively the extent to which localization is suppressed in this
problem.

We mention at this point that we did attempt to carry out a simulation of the
three-point bend problem which produced the extremely high toughnesses shown in
Fig. 1.1. The initial trends from this analysis are very similar to the ones we have
shown in this section: ir the nontransforming case, the onset of flow localization
appears tc have occurred, while in the transforming case, the flow fields are much
more diffuse. Unfortunately, because of the much larger gradients that develop as
the crack-tip field evolves, the solutions broke down too early to make any clear and

comprehensive judgments regarding the effects of transformation.
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Description of the plane-strain tension problem, showing: (a) the

model tensile specimen analyzed; (b) a schematic of boundary value problem with initial
perturbation; and (c) the finite element model.
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Figure 5.2 Contours of equivalent plastic shear strain, J?, plotted on the deformed

mesh at the four indicated mid-plane transverse displacement levels (d/dp), for the non-
transforming case. Only the refined, central portion of the mesh (which has heen mirrored
about the mid-plane and the longitudinal axis) is shown in these plots.
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Figure 5.3 Contours of triaxiality, X, at the four indicated mid-plane transverse
displacement levels, for the nontransforming case.
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Figure 5.4 Contours of void volume fraction, p*, at the four indicated mid-plane

transverse displacement levels, for the nontransforming case.
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Figure 5.5 Contours of equivalent plastic shear strain rate, ¥, at the four indicated

mid-plane transverse displacement levels, for the nontransforming case. The reference strain
rate, in consistent units, is 4o = 0.007.
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Figure 5.6 Contours of cquivalent plastic shear strain, 77, at the four indicated
mid-plane transverse displacement levels, for the transforming case (T = 4481K").
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Figure 5.7 Contours of martensite volume fraction, f, at the four indicated mid-

Plane transverse displacement levels, for the transforming casé (T = 448K )-
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Figure 5.8 Contours of triaxiality, I, at the four indicated mid-plane transverse
displacement levels, for the transforming case (T = 448K).

232



\ .
[ —————— e
0.001 0.008

TN

" ———
0.004 .
B —
N

d/d,=0.830 d/d,=0.759

aa———
o

-\0-01 —] 0.012/

~——
PR

0.05 . 0.06 '

d/d,=0.712 d/d,=0.670

Figure 5.9 Contours of void volume fraction, p*, at the four indicated mid-plane
transverse displacement levels, for the transforming case (T = 448K’).
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Figure §.10 Contours of equivalent plastic shear strain rate, ¥, at the four
indicated mid-plane transverse displacement levels, for the transforming cuse (T’ = 4481K).
The reference strain rate, in consistent units, is %0 = 0.007.
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Figure 5.11 Comparison of equivalent plastic shear strain, 37, (above) and equiv-

alent plastic shear strain rate, ¥ (below) for the nontransforming (left) and transforming
(T = 448K) cases at equal mid-plane transverse strain levels (ea = In(d/dp) = 0.50).
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Figure 5.12 Comparison of contours of martensite volume fraction, f (left), and
void volume fraction, p* (right), for the transforming (T = 448K) case at mid-plane trans-
verse displacement level (¢4 = In(d/dg) = 0.50).
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Figure 5.13 Comparison of load-displacement histories for the nontransforming

and transforming (T = 448K) cases, plane-strain tension problem. Here Pqpp is the applied
load and P!, is the maximum load for the nontransforming case.
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Figure 5.14 Description of the mildly-notched plane-strain extension problem: (a)

the model notched-tensile specimen analyzed; (b) the finite element model, with symmetry
and loading conditions indicated.
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Figure 5.15 Contours of equivalent plastic shear strain, 57, plotted on the de-
formed mesh at the four indicated mid-plane transverse displacement levels (a/ap), for
the nontransforming case. Only the notched region of the mesh (which, again, has been
mirrored about the mid-plane and the longitudinal axis) is shown in these plots.
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Figure 5.16 Contours of equivalent plastic shear strain rate, ¥°, at the four indi-
cated mid-plane transverse displacement levels for the nontransforming case. The reference
strain rate, in consistent units, is 4o = 0.007.
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Figure 5.17 Contours of void volume fraction, p*, at the four indicated mid-plane

transverse displacement levels, for the nontrensforming case.
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Figure 5.18 Contours of triaxiality, X, at the four indicated mid-plane transverse
displacement levels, for the nontransforming case.
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Figure 5.19 Contours of equivalent plastic shear strain, 7, at the four indicated

mid-plane transverse displacement levels, for the transforming case (T’ = 473K’).
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Figure 5.20 Contours of triaxiality, , at the four indicated mid-plane transverse

displacement levels, for the transforming case (T’ = 473K).
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Figure 5.21 Contours of martensite volume fraction, f, at the four indicated

mid-plane transverse displacement levels, for the transforming case (T = 473K).
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Figure 5.22 Contours of void volume fraction, p*, at the four indicated mid-plane
transverse displacement levels, for the transforming case (T = 473K).

246



a/a,=0.922 a/ay,=0.863

a/a,=0.786 a/a,=0.767

Figure 5.23 Contours of equivalent plastic shear strain rate, 7, at the four
indicated mid-plane transverse displacement levels, for the transforming case (T = 473K).
The reference strain rate, in consistent units, is 4o = 0.007.
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Figure 5.24 Comparison of equivalent plastic shear strain, 37, (above) and equiv-

alent plastic shear strain rate, 3" (below) for the nontransforming (left) and transforming
(T = 473K) cases at equal mid-plane transverse displacement levels (a/ao = 0.782).
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Figure 5.25 Comparison of contours of martensite volume fraction, f (left), and
void volume fraction, p* (right), for the transforming (T = 473K’) case at mid-plane trans-
verse displacement level (a/ap = 0.782).
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Figure 5.26 Comparison of load-displacement histories for the nontransforming

and transforming (T" = 473K’) cases, mildly-notched extension problem. Here Popp is the
applied load and PP is the maximum load for the nontransforming case.
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Figure 5.27 Description of the sharply-notched plane-strain extension problem:

(a) the model notched-tensile specimen analyzed; (c) the far-field portion of the finite ele-
meni mesh, with symmetry and loading conditions indicated; (c) the near-tip region of the
finite element mesh, which takes the shape of a slip-line field for a semi-circular notch, and
fits into the far-field part of the mesh as indicated.
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Figu.e 5.28 Contours of scalar fields for the nontransforming casc, plotted on
the deformed iinesh at a deformation level characterized by a blunted opening displacement
b/bp = 1.065. Only the near-tip portion of the mesh (see Fig. 5.27c), mirrored about the
mid-plane axis, is shown in these plots. (a) equivalent shear stress, 7; (b) equivalent plastic
shear strain, P; (c) triaxiality, I; (d) void volume fraction, p°, and (e) equivalent plastic
shear strain rate, 3 (reference strain rate, in consistent units, is 4o = 0.007).
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Figure 5.29 Contours of scalar fields for the transforming case (T = 448K),
for b/bo = 1.065. (a) equivalent shear stress, T; (b) equivaient plastic shear strain, 77;
(¢) martensite volume fraction, f (d) tnaxmllty, T; (d) void volume fraction, p*, and (e)
equivalent plastic shear strain rate, ¥ (rcfcrence strain rate, in consistent units, i1s 4o =

0.007).
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Figure 5.30 Contours of scalar fields for the nontransforming case, for b/by = 1.24.
(a) equivalent shear stress, 7; (b) equivalent plastic shear strain, 37; (c) triaxiality, £; (d)
void volume fraction, p*, and (e) equivalent plastic shear strain rate, ° (reference strain
rate, in consistent units, is 4o = 0.007).
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Figure 5.31 Contours of scalar fields for the nontrensforming case, for b/bp =
1.245. (a) equivalent shear stress, 7; (b) equivalent plastic shear strain, J7; (c) triaxiality,
%; (d) void volume fraction, p°, and (e) equivalent plastic shear strain rate, 3° (reference
strain rate, in consistent units, is 4o = 0.007).
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Figure 5.32 Experimental observation of crack propagation in a slow bend test
of a Charpy V-notch specimen of A4340 [151).
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Figure 5.33 Contours of scalar fields for the transforming case (T = 448K),
for b/bp = 1.38. (a) equivalent shear stress, T; (b) equivalent plastic shear strain, ¥7;
(c) martensite volume fraction, f (d) triaxiality, X; (d) void volume fraction, p*, and (e)

equivalent plastic shear strain rate, 3" (-cference strain rate, in consistent units, is §o =
0.007).

257



I ] I ] ) |}
- -
1.0 - - ~
d
f - .
o
a‘ﬂ
\“ i 7
B
a’ 05 |- -
- nontransforming -
--------- transforming, T=448K
- -
0.0 1 1 | 1 \ ]
0.000 0.005 0.010
AL/L,
Figure 5.34 Comparison of load-displacement histories for the nontransforming

and transforming (T' = 448K) cases, sharply-notched extension problem. Here Papp is the

applied load and P3¢ is the maximum load for the nontransforming case.
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Chapter 6

Summary and Conclusions

6.1 Introduction

‘The research that we have presented in this thesis has addressed two major issues
concerning the mechanical behavior of metastable austenitic steels that exhibit trans-
forrﬁation plasticity in the strain-induced temperature regime. The first part of the
research, presented in chapter 3, focused on the development of a constitutive model
which is able to reliably predict the behavior of these materials under various condi-
tions, as well as on the numerical implementation of this model in conjunction with
a finite element analysis program and a fitting of model material parameters to avail-
able experimental data. In the second part of the research, presented in chapters 4
and 5, we used this model for the numerical analysis of a series of boundary value

problems designed to identify the mechanical sources of transformation toughening.

6.2 Constitutive Development

With regard to modeling the stress-strain behavior of these transforming materials,
we found that incorporation of the stress-state sensitivity of the transformation ki-
netics into our constitutive model is essential for providing an accurate description
of material behavior for a representative set of stress states. The results presented in

chapters 4 and 5 show that the triaxiality-dependence of the strain-induced marten-
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sitic transformation is a feature which plays a fundamental role in transformation
toughening.

A substantial portion of the constitutive modeling efiort focused on the imple-
mentation of an improved method for partitioning the strain between the constituent
phases of the composite, accounting for the transformation strain as well, so as to
produce self-consistent estimates of composite behavior.

Although the physical interpretation of the self-consistent method that we pre-
sented is still open to debate, it nonetheless leads to model predictions that are in
reasonable agreement with experimental data and, of equal importance, it results
in a constitutive integration scheme that is relatively robust, given its complexity.
The general nature of the model makes it suitable not only for studying the special
class of transforming materials upon which we have focused our research, but also for
other isotropic multi-phase materials. As an example, with the recent oil crisis, there
is an ever-increasing demand for lightweight materials to be used in the production
of automobile body panels; one of the materials under study for this purpose is a
triple-phase steel containing a retained metastable austenite phase. Because of its
stiffness, such a material can result in thin body panels that, remarkably, are lighter
than those made of plasiic. The model presented in chapter 3 can be easily modified
to simulate the behavior of these triple phase steels so that, through quantitative
analysis, critical questions regarding the forming limits of these materials, as well as
other related problems, can be addressed.

One issue that still must be resolved is the degree of the stress-state sensitivity
of transformation kinetics. As we noted in chapter 3, the form that we have chosen
for the driving force parameter, g, in which stress-state sensitivity enters through a
linear function of triaxiality (see eq. 3.28), is an issue that requires closer scrutiny.
Analysis of experimental data taken from tests where the triaxiality field is mildly

varying, such as the plane strain notched-tension test that we simulated in section 5.3,
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represents an excellent means for verifying the suggested triaxiality-dependence. The
experimentally measured patterns of martensite formation at the macroscopic length
scale provided by this geometry can be directly compared with model predictions. Of
course, comparisons of this kind will only be worthwhile once fundamentally sound
agreement between model predictions and experimental data has been atfained for
fized triaxiality configurations, namely tension and compression tests. Each of the
series of experiments conducted to date has been aimed at gaining a better under-
standing of a particular aspect of material behavior. As such, none of these data sets
is complete to the extent that it provides data for both transformation kinetics and
stress-strain behavior under various states of stress and over a wide range of temper-
atures. A complete data set of this sort would be invaluable from a modeling point of
view. For example, with a complete data set in hand, the tensile test simulation (sec-
tion 4.2) could then be used to fit tensile data in an iterative fashion: the experimental
estimates of stress-strain data (i.e. through, say, load-displacement data coupled with
a Bridgman analysis) could be compared with model predictions of stress-strain data
obtained in the same manner; model parameters could then be iteratively adjusted
until these two predictions are equal. An averaging of pointwise model stress-strain
histories would then provide an estimate of pointwise material properties which does
not suffer from the inherent limitations of a Bridgman analysis. Of course, complete
data sets are not easily obtained for high toughness transforming materials, because
their uniaxial properties are not necessarily remarkable (recall the tension test data of
Young [7] at the higher temperatures, Fig. 3.10). In addition, the tensile properties
of the martensite are also difficult to estimate, because of its brittle behavior.

A second topic related to constitutive modeling that may require further investi-
gation is the correlation between transformation volume change and the stress-state
sensitivity of transformation kinetics. Our results indicate that the extent of trans-

formation volume change does not have a direct bearing on model predictions for the
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state of stress and strain in the composite, yet the data of Young [7] show a strong
correlation between toughening and transformation volume change. We argue that
the effects of transformation volume change are indirectly accounted for in the model
through the magnitude of the coefficient multiplying the triaxiality term of the prob-
ability argument (g;) in (3.28) and the noted correspondence between volume change
and stress-state sensitivity. The positive correlation between transformation volume
change and toughness suggested by the data of Young and the further correlation be-
tween transformation volume change and the stress-state sensitivity of transformation
kinetics needs to be better quantified.

The interaction of continuum models for void nucleation and growth with strain-
induced transformation plasticity is another issue that could be further explored. The
methods that we have presented in this thesis for incorporating void nucleation and
growth into the model do not, for example, account for the interaction of transfor-
mation dilatation with the void nucleation and growth process. Given the already
complex nature of the constitutive model, it might be difficult to account for this
interaction in a precise manner without sacrificing the numerical soundness of the
constitutive integration procedure. It would be interesting, however, tc incorporate
such changes and assess the extent to which transformation dilatation affects model
predictions.

Finally, a next logical step in expanding the modeling effort might be to incorpo-
rate temperature as a state variable. This would allow for studies where, for example,
the possibly deleterious effects of adiabatic heating accompanying high strain-rates
could be assessed. Of course, this would substantially increase the complexity of the

model and consequently, the computation time.
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6.3 Analysis of Transformation Toughening

We can now address the fundamental issue of transformation toughening, which pri-
marily motivated this research. Based upon the calculations presented in chapters 4
and 5, we conclude that, in essence, the sources of transformation toughening in these
materials can be traced to the observation that the mechanical features which pro-
mote void nucleation and growth, namely high strain and triaxiality, are precisely the
same features that promote nucleation of martensite. Our calculations indicate that
the beneficial consequences of this localized formation of martensite are twofold: (1)
retardation of void nucleation through early transformation-softening, as evidenced
by the reduction of normal stresses at the interface of void nucleating particles (sec-
tion 4.3); (2) counteraction of the the strain-softening effects of void nucleation and
growth through transformation-hardening.

With respect to the latter of these two sources, the calculations presented in chap-
ter 5, in which the effects of void nucleation and growth were accounted for, indicate
strong qualitative tendencies towards resistance to plastic flow localization for each
of the boundary value problems that we considered. Although the limited number of
problems and cases studied do not allow us to draw quantitative conclusions regarding
the relative increase in toughness with transformation, these qualitative results are in-
disputable, and are consistent with both the dramatic increases in toughness and the
observed failure modes. With the constitutive model in hand and with these results
in mind, continued research must focus on quantifying these trends through paramet-
ric studies aimed at assessing the relative importance of critical material parameters
and direct comparison with experimental data through model simulation of toughness
experiments. The success of such efforts is strongly dependent on the availability of
fracture toughness data for a material whose properties are well quantified.

The results of the problems presented in chapter 4 further support the notion that
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transformation stabilizes plastic flow, albeit less directly. The tensile necking problem,
because of its triaxiality gradients, serves as an excellent test for the constitutive
model and best illustrates the macroscopic consequences of the transformation in
blunting the neck and, in some cases, eventually causing neck propagation.

The particle problem illustrates the first of the above-mentioned sources of trans-
formation toughening, namely, that transformation softening leads to a reduction of
interfacial normal stresses over a wide range of far-field strain levels. Of course, as in-
dicated in section 4.3, as transformation hardening eventually prevails, the interfacial
stresses increase to values larger than those predicted for the nontransforming ma-
terial. However, considering the high triaxialities that are associated with crack tip
fields, it is quite likely that the void nucleation regime would coincide with the early
phase of transformation softening, before the stresses increase through transformation
hardening.

Two interesting problems might lend helpful insight in further evaluation of this
source of toughness. In the first, a triaxial field that increases with time could be
imposed. Such a problem more closely models the actual stress history that a particle
near to the crack tip might encounter, and would likely reveal some beneficial features
of the transformation that the constant triaxiality problems of section 4.3 might have
missed, because, as we saw in the tensile necking problem, an increasing triaxiality
history would delay the effects of transformation softening to higher strain levels.

A second problem of interest would consider what happens just after the void has
nucleated. After the particle and matrix have first decohered, an interfacial crack
forms that must “unzip” in order for the nucleation process to be complete. Because
of the tremendous local transformation hardening accompanying the large interfacial
strains, the state of the transforming material will be quite different irom that of the
nontransforming material. It is possible that the same features that lead to crack re-

sistance at larger length scales might also lead to a stronger resistance against growth
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of this interfacial crack. Because of the very small size scale involved, a solution of
this problem would surely bring the applicability of the continuum approach near to
its inherent limits. Nonetheless, a model and analysis of the decohesion process might
prove to be revealing.

At this point, we feel reasonably confident that our analysis has indeed identified
the fundamental sources of the transformation toughening in metastable austenitic
steels. In addition to improving the models presented here and quantifying model
predictions in an effort to contribute to the development of better alloys, future
studies can now also be directed at gaining an understanding of how these remarkable
materials can be best used in practical engineering applications. More specifically,
with the aid of the modeling tools that are now available, it should now be possible

to design new steels whose properties are tailored for particular applications.
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Appendix A

Numerical Implementation of the
Constitutive Model

The constitutive model outlined in Chapter 3 has been incorporated into the finite
element code ABAQUS [103] via a user material law subroutine. The subroutine
is provided with the current level of the Kirchhoff stress, T, and any user-defined
state variables. The strain increment A € is also provided as an estimate of the
kinematic solution for the increment. The subroutine updates the stress tensor and
state variables based upon this estimate.

After the integration of the material state is successfully completed, the material
Jacobian, which represents the change in the increment in Kirchhoff stress with re-
spect to a virtual change in the increment in strain, must be computed. This quantity
is needed by ABAQUS in its global Newton scheme to achieve an accurate assessment
of the kinematics. In order to obtain a high rate of convergence, the Jacobian should
be consistent with the integration operator. This appendix will discuss the numerical
integration of the ma.erial state and the computation of the Jacobian. A listing of the

corresponding FORTRAN subroutine, UMAT, is given at the end of this appendix.
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A.1 Numerical Integration of State

Before discussing the method by which the state equations are integrated in the
UMAT subroutine, it should first be noted that since this analysis considers large
deformations, the effects of finite rotations must be considered. The stress tensor,
as passed into the UMAT, has already been rotated using an algorithm developed
by Hughes and Winget [153). The details of this method are not discussed in this
appendix.

Let the siress tensor passed into the subroutine be Tg. The updated stress is then
given by:
T =To+AT. (A.1)

The increment in stress AT is defined to be the integral of the Jaumann stress rate

v
tensor T, given by:

t+AL v
AT:/ Tdt . (A.2)
t

Using the g. ..cralized trapezoidal rule, AT can be approximated as
v v
AT = ¢TAt + (1 — ¢)ToAt . (A.3)
We set ¢ = 1, providing an Euler backwards difference method for which
v
AT = TAt. (A.4)
The stress evolution equation was given in eq. (3.38) as:
T = £¢[D - D] . (A.5)
Substituting equation (A.4) and (A.5) into (A.1) yields:
T = To+ ALL° (D — D] . (A.6)
Since A€ = DAL, then
T = Ty + L°[A€] — AL [DF] . (A.T)
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Within the UMAT subroutine, the first two terms on the right side of this equation
can be regarded as known, as they are passed into the subroutine. The third term is

given through (3.42b) and (3.46) as

1. 1 .
D? = 7_§7y'pN + §Avf1 . (A.8)

Adopting the method of radial-return (Krieg and Krieg [104]) that is commonly used
in rate-independent plasticity, we assume that the updated deviatoric stress is in the

same tensorial direction as the elastic predictor, S*, where
S* = (To + 2GA€)’ . (A.9)

The deviatoric flow direction tensor, N, is thus given as

1 (S
N=— (T:) , (A.10)

?‘:J%s--s- (A.11)

represents the elastic predictor of the equivalent shear stress.

where

Substituting (A.8) into (A.7) and utilizing the definition of £° (3.40), we find that

T = Ty + £° [A€] - At [20(1 - %1 ®1)+K1® 1] (%#’N + %Ayfl) . (A12)
Since N -1 = 0, (A.12) can be simplified as follows:

T = To + 2GA€ — Kir (A€) — V2GF AIN — KAy fAL . (A.13)

Taking advantage of the assumed material isotropy, we separate this equation into its

deviatoric and hydrostatic parts, obtaining an equivalent set of equations:
S =8"-2GY AtN; (A.14)

p=po— Ktr(0€)+ KAy fAL. (A.15)
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Taking the inner product of both sides of (A.14) with V2N yields the following

scalar equation:

FT=T -Gy At. (A.16)

If we define p* as the elastic predictor of the pressure stress,

p" =po+ Ktr (A€) (A.17)
then (A.15) is likewise reduced to

p=p"+KAyfit, (A.18)

To complete the integration procedure, we must update the internal variables s,, s,

and f:
85 = 840 1 3,001, (A.19)
Sm = S;mo + $mdAt (A.20)
f=fot+fnt, (A.21)

where 3,0, Sm 0, and fp are values of s,, 3,, and f at the beginning of the increment,
respectively. Thus, the integration of state over the given strain increment requires

the solution of the set of five equations (A.16, A.18 — A.21).

A.2 Solution Procedure

To facilitate the solution of this relatively convoluted series of equations, we use an
iterative procedure with a bi-level structure to determine the integrated quantities 7,
P, 34, $m and f. The set of equations (A.16, A.18 - A.21) is solved at the outer level
of iteration. At the inner level, the set of three equations (3.67, 3.74) is iteratively
solved in order to predict the incremental quantities 5°, s,, s, and f. With the
viscoelastic formalism that we have chosen, stress and strain rate are directly related

through (3.61). Because of the high rate sensitivity exponents (M > 100) that are
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used to model the near rate-independent materials considered here, we obtained a
more robust numerical procedure by inverting the stress evolution equation (A.16) so

that 3° becomes the dependent variable:

?‘

il

GAt -’

¥ =

(A.22)

At each time step, i.e., each time the subroutine is called, an estimate of the
desired quantities °, p, Sa, Sm and f is first made based upon their values at the
beginning of the increment, and the calculated value of the elastic predictor, 7. Using
these values, control is passed directly to the inner level, with 5°, p, s,, s, and f
fized. At the inner level, we solve the following set of equations, equivalent to (3.66,

3.73), for the unknowns x,, xm and 3:

® = fxm+(1-f)xat+Axy—-1=0, (A.23)
5 2s, L

®; = xa—§+§?x#=0, (A.24)
5 28, L

¢; = Xm-§+§Tx#;’ = (A.25)

A Newton Method is used to solve this nonlinear set of equations. The procedure
is as follows:

Let X;.: represent the vector of unknowns:

Xin! = (Xm Xmas) . (A26)
1. Make a reasonable guess for X;,,:
et = Xl = (xhxhni3') - (A.27)

This guess will usually be equal to the value of these quantities when the inner level was
previously exited.

2. Let Z;,, be the vector of equations:

Zint = (#1,%2,93) . (A.28)
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Evaluate Z;,,(X%,,), where X%,, is the value of X;,, at the k*h iteration.

3. Verify whether ||Z;, ;|| < TOL;, where TOL; is a set of tolerances, one for each equation.

if yes — xa = x5, xa = x%, 3=3"
if no — correct X, as follows:
4. Solve Newton’s equation:
~k Az k+l
) — A.29
th + (AK), L ( )
5. Correct the vector of unknowns:
Kf.H mt + A k';l;l * (A30)

5. Return to step 2 with an updated X, = X3!

In the above procedure, a good estimate of X}, is important for rapid convergence
of the Newton algorithm.

Using the values for X4, Xm, and 3 which have been determined using the fixed
estimates of 3°, P, 34, Sm and f, we then can calculate estimates for 7 and p according

to (3.80, 3.81). Other quantities of interest are evaluated as follows:

Yo = X7 (A.31)
PR (A.32)
5 = z(ﬂ'-i), (A.33)
p T
f = Arv+ BsX (A.34)
b = hata, (A.35)
6, = 124 == Y hin) + f‘it (Stm — Sm0) » (A.36)
where
Sum = 55y (7 + 7)™ (A.37)

Note that (A.37) and (A.38) model the running average of prior-formed martensite
and the inherited structure of newly-formed martensite, which, as discussed in section

3.4.5, behaves as if it had been exposed to the austenite strain (7,).
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Control is then returned to the outer level, where the following set of equations,

which are a restatement of (A.18 - A.22), is solved:

v, = - Z;j =0, (A.38)
¥, = p—p + KAy fAL=0, (A.39)
U3 = 8,—8s0— 8. 0t=0, (A.40)
Uy = 83, —38mo—$mOL=0, (A.41)
Us = f—fo—fOAL=0. (A.42)

The Newton procedure outlined in (A.29 - A.33) is used at this level as well.
Here, we define X.u; = (75 Ps Sas Sms f) and Zoue = (¥1, ¥, W3, Uy, ¥s). We first
evaluate (A.38-A.42). If any of the ||Zo,,,,|| exceed TOL;, a new estimate for
Xbi = ¥, p*, 5, sk, f¥) is calculated using the 5 x 5 matrix of derivatives
(AZ/ A X)out- We will not explicitly write out each of the 25 terms in this appendix.
They are given in the DERIVATIVES routine of UMAT. We note, however, that
the calculation of this matrix is greatly simplified by using terms that have already
been calculated for the inner level derivative matrix, (AZ/AX).-,,. The inner level is

then entered again with the corrected set of unknowns X*!!. After k iterations, we

ultimately want

1Zouell = I (05, W5, W4, W5, 9¢) || < TOL; . (A.43)

Numerical problems can be encountered in solving this convoluted set of equa-
tions. The foremost of these problems involves the prediction of 3”. If the first guess
for X,.. is not an accurate one, it is possible that a subsequent prediction for 5
will be negative, rendering the solution of the equations by standard Newton tech-
niques practically impossible. This situation can, for example, be encountered when
ABAQUS'’s prediction for A€ is much different than its previous one, which often
happens when solving boundary value problems that have steep gradients in stress

and strain fields. To accommodate these difficulties, the Newton procedure is modi-
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fied when this situation is encountered. More specifically, the updating of the vector

X,.: 18 underrelaxed.

A.3 Incorporation of Void Nucleation and
Growth

The softening due to void nucleation and growth (section 3.7) has been incorporated
into the numerical procedure in « ..1aightforward manner. In order to minimize the
impact on our already complex model, we account for the effects of void volume
fraction based upon the value of p* at the beginning of the increment. Within our
bi-level structure, we use the self-consistent model at the inner level to calculate the
matrix equivalent shear stress 7p as a function of the matrix shear strain rate ¥},.
At the outer level, we use (3.91) and (3.97) to predict 7 and 5° as functions of Tps and
the values of p*, Z, and Z, at the beginning of the increment. We then update p*, Z,
and Z, based upon end-of-increment values of 37, 7, etc. Additionally, beginning-of-
increment values for G and K are calculated as functions of p* and matrix parameters

Gy and Ky (see 3.103, 3.104) and used throughout the procedure.

A.4 Calculation of the Jacobian

When the outer loop conditions are finally satisfied, the solution is known and the
stress tensor can be updated. The Jacobian matrix must then calculated. The Jaco-
bian, J, is the fourth order tensor obtained by finding the change in the increment

in Kirchhoff stress, T, with respect to a virtual change in the increment in strain:

dAT
J=0=. (A.44)

The calculations which lead to the final form of the Jacobian are straightforward,
but somewhat lengthy, and for brevity will not be given here. Detailed calculations

are given in Zavaliangos and Anand [114]. The final form of Jacobian is as follows:
J=CI+C:1®@1+CN@N+C:N®1+C51®N, (A.45)
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The C; are given by:

¢ = 26, (A.46)
C = Kdn--%C,, (A47)
Cs = 2gdy—Cy, (A.48)
Ci = —2Gdy, (A.49)
Cs = —Kd, (A.50)

where
G=G$_—. (A.51)

and

dy = ZATf-’ (A52)
dz = g, § (A.53)
dy = -AAT_”_, (A.54)
dy = 2‘:_ . (A.55)

Using the form (A.46) for the Jacobian, the unknowns d;; can be obtained directly
from the inverse of the derivative matrix (AZ/AX);} calculated for the Newton-
Raphson solution of the outer level set of equations (A.38 - A.42): For example, it

can easily be shown that
_ A\ -1
d, =27 - (-Aﬁ) . (A.56)
7
All the d;; are defined at the end of the SINT routine of UMAT.

A.5 UMAT Subroutine Listing

The FORTRAN code listed on the following pages performs the operations outlined

in this appendix. It is written for use with ABAQUS version 4.7 but it can readily be
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modified for use with other versions. The program contains includes several checks on
the convergence of the numerical procedure. If numerical problems are encountered,
‘he subroutine PAUSES, and the routine CHECKINP writes the current state of the
program along with program input to the ABAQUS data file. This data can be used
in conjunction with the DRIVER program (see Appendix B) to isolate the source of

the error.
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Appendix B

Constitutive Subroutine Test
Program

The driver program listed on the following page is able to simulate integration of the
constitutive model for some hypothetical kinematical history, or it can be used in
conjunction with an actual ABAQUS run to identify bugs in the subroutine which
manifest themselves only for certain sets of input data. The integration procedure
fails for such cases, and it becomes necessary to provide the driver program with the
precise values of the data input into the UMAT during the actual ABAQUS run.
This is accomplished through the CHECKINP routine of the UMAT, which prints
out the value of all the parameters passed into the subroutine. These values can then
be inserted into the driver program. The UMAT can then be debugged using the
dbx or dbxtool procedures which are available on the Sun workstations or the Alliant
machine (dbx only).

Testing the accuracy of the Jacobians was accomplished by comparing the pre-
dicted analytical Jacobian with a numerical estimation of the Jacobian obtained
through finite difference techniques. For example, a pumerical prediction of the Jaco-
bian passed back to ABAQUS is obtained by implementing the numerical Jacobian
calculation routine JACOBNUM (a part of the UMAT subroutine), instead of the

standard analytical Jacobian calculation routine JACOBANAL.
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Appendix C

Derivation of Equations (3.92) and
(3.94)

-

In this appendix we provide a few Betails voncerning the derivation of the ratio of
differences in stress and strain-rate for the two-phase material (3.92). We then derive
the approximate integrated form (3.94).

We begin by repeating equations (3.90a) and (3.90b):

T, —T1 LY} LYY
T 3E+2p2 3E+2m (C1)
n—v_ _ SE S (C.2)

Y 3E+2m 3+ 2w
Dividing (C.1) by (C.2), combining fractions, and canceling the arbitrary factor (3z+
2p2)(3E + 2p1), we find that

T —T
7 _CEA2m) e — CE+2m)m (C.3)
M=%  (3F42u)E—-(BE+2m)E ]

7

Simplifying, this becomes

T2 — T

N T 2w -m) 2

v

To derive the integrated form (3.94), we first note the the following approximation:
¢ N

v = / ydt = Y AAL. (C.5)
o =1
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With this approximation, we ca, write the normalized difference in strains between

the two phases as
N2 _ Zo A Zo gPTAY;

C.6
7 Y YAt (C.6)
Substituting for 4, and 4, using the Eshelby-type relations (3.59a),
53 - -
N =7 _ Tomeam 10t~ Ko minm 10t o
7 So At ' :

When n, =n,, the Eshelby ratios do not change to any appreciable degree during the
strain history, so they can be brought outside the summation:

54 t = =
71— 72 ~ SB+2m Yo TAL - 3u+2u2 20 At
7’ Yo AL

Or canceling the arbitrary term Y5 ¥At,

M=% S S
7 SE+2m  3EA+2p2

Multiplying numerator and denominator by 7:

Y1 — 72 1 5-[[ = 571- ;)
S L) S R B C.10
s —(3ﬁ+2ﬂ17 3ﬁ+2,142’y ( )

Finally, making use of the (3.59a) again, we find that

’71:’72 Y — 72. (C.11)

o ¥
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Appendix D

Application of Pressure Loads for
Constant Triaxiality Boundary
Conditions

In order to apply a constant triaxiality at the remote boundary of the cell problem

(section 4.3), we used the DLOAD subroutine listed on the following page.
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Appendix E

Calculation of Mode I Asymptotic
Crack-Tip Field Displacement
Boundary Conditions

In order to model the fields near a plane-strain crack in an infinite body undergoing
mode I (tensile opening) loading, it is necessary to develop relationships which deter-
mine the displacement boundary conditions which can be applied along the outer edge
of the mesh, as illustrated in Fig. 4.25. Prescribing these displacements essentially
imposes the asymptotic crack-tip stress and strain fields within this boundary, such
that only the stress intensity factor, K, influences the crack tip behavior. In struc-
turing the problem in this manner, this region can be considered to be well within
the influence of any characteristic length parameters (e.g., crack length, a, specimen
width, b), other than K.

This appendix outiines some of the details of the problem of a semi-infinite crack in
an infinite body under plane-strain conditions subject to mode I (tensile opening) far-
field loading. Details of the lengthy derivation of the general asymptotic stress fields,
which involve use of equilibrium, mid-plane symmetry and plane-strain stress-strain
relationships are not presented here. It can be shown, however, through solution of

an appropriate harmonic equation derived from the compatibility condition, that the
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stress field surrounding the crack tip is given by:

o = Y. {Axcos A+ Bycos(A+2)0} (A +2)()+1), (E.1)

A
o = I {[(A+2) - )?] Ay cos )0
A

+ [(A+2) = (A +2)"] Bycos(A +2) 6}, (E.2)
o = Y. (A+1){AAysin A+ (A +2) Bysin () +2) 6}, (E.3)
)

where r is the radial distance from the crack tip, 8 is the angle measured from the
mid-plane of the crack, and A represents suitable real powers derived from a series
expansion of an analytic solution to the harmonic equation. For a more complete
derivation of these fields, see Williams [148]. Traction free boundary concitions along

the surface of the crack; i.e., at § = +, require that:
Og6 |0=:i:1r= 0 = [A,\ + B,\] cos A\t = 0, (E4)

Org lo=tr =0 = [AAy+ (A +2)B)]sinAr =0 (E.5)

for each A-power in the expansion. This requirement can be met in one of two ways.

The first solution demands that:
sinAr =0 = A=...,-2,-1,0,1, ---, (E.6)

in which case:

Ay + B, =0. (E7)

In the second possible scenario,
cosAir=0 = A=---,—

in which case:

Ay + (A + 2) B, =0. (Eg)
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Using the plane-strain elastic stress-strain relationships, the strain field can be

expressed as:

€ = 1+ ’\[{(A+1)()\+2)(1—V)—V[/\+2 Az]}A,\cosAO

A
_ [{,,(,\+1)(A+2)+V[(A+2)— (A+2)}eos(A+2)60],  (E.10)

€&r = le”r* HO+1) (A +2)(1—») = v [A +2- 47|} Ascos M0

~ {rO+ 1) +2)+ v [(A+2) - (A +2)*]}eos (A +2) 0], (E.11)
Yo = E”” MHA+1) (A +2) (1 =) = v [A+2 = A2]} Ay cos M
A
—~ {rO+D O+ +r[(A+2) - (A +2)°]Jeos (A +2)8]. (E.12)

From strain-displacement relationships,
up(r,8) = / " epdr + F(0). (E.13)
()

The constant of integration F (@) represents a rigid body motion of the crack tip,

which can be set equal to zero, essentially pinning the crack at r = 0. Thus:

u, = 1; YT /\2](1—V)—V()\+2 ()\+1}A,\cos)\0
+ [0+ - +27] 1= ») = v (A +2) (A + 1)} Brcos (A +2) 6] (E.14)
Similarly,

]
ug(r,0) = /0 [reqr — u,)dO + F (), (E.15)

and F'(r) can also be set to zero. Therefore, ug is given by:

v = ZHT”TM O+ 1) (A +2-40) = (2- A — 4)} Aysin M
0

+ (A +2)Bysin()+2)6]. (E.16)

The strain energy contained within a circular region of radius Ry centered at the
crack tip is given by:
n Ro
W, = / do/ rdrW (r,0), (E.17)
-7 0
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where W represents elastic strain energy density. It can be shown that W is propor-

tional to 72*, so that in order that this expression does not diverge as r — 0, it is

required that A > —1. With these restrictions, the A = —1/2 term is the only singular

term in the expansion of the stress field, while the A = 0 term corresponds to a locally

constant stress field, and thus in order to satisfy the traction free boundary conditions

must represent a uniform loading parallel to the crack. The values of A greater than

zero vanish for the stress field as R — 0, leaving the following expressions for the

near-tip stress fields:

Ky 3 0 + 1 cos §£
sV A PRSI RS Y
o Ky lsmo +lsin3—0

ré (27(1‘)1/2 4 2 4 2|’
o —KI fl osa—lcos&’il
” (21r7‘)1/2 4 2 4 2 f

where the stress intensity factor, K, is defined such that:

K,

A_i2 =3B_y0 = W

The displacement fields are then given by:

"= T2 \\2 RN

Ki(1 +v) ( 7) 1. 30)
BTV (4 Zain 2!
T (27r7‘)1/2 { YT 3 T3 sin 2 I

In a Cartesian basis, these relationships are given by:

Ki(1+v) 6

Uy = W {(3 —4V—cos0)cos§},
K;(1+v) . 0

= W {(3 —4v —cos0)sm§}.

(E.18)

(E.19)

[
B

20)

(E.21)

(E.22)

(E.23)

(E.24)

(E.25)

The local stress and displacement fields, therefore, scale linearly with the loading

parameter, K.

314



The asymptotic stress and displacement fields can therefore be imposed in a finite
element analysis of the mode I plane-strain crack tip problem by specifying this
displacement field at the appropriate boundary nodes. Since these relationships are
based on elastic stress fields, this asymptotic stress field is velid only as long as the
plastic zone is small compared to the radius upon which these boundary displacements
are applied, so that the influence of plasticity is minimal by St. Venant’s principle.

These relationships are introduced into ABAQUS via a user subroutine option
called MPC, which is listed at the end of this section. For more details on the

contents of the subroutine, refer to the ABAQUS User’s Manual [103].

E.1 MPC Subroutine Listing

The FORTRAN listed below performs the operations outlined in this appendix. It is

written in a general form so that up to four A terms can be included in the series.
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Appendix F

Mildly-notched Mesh Generation
Program

The program listed on the following page was used to generate the ABAQUS geo-
metric input data for the mildly-notched bar shown in Fig. 5.14. This program is

sufficiently general for generation of notched-bars of various sizes geometries.
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Appendix G

Sharply-notched Mesh Generation
Program

The program listed on the following page was used to generate the ABAQUS geo-
metric input data for the sharply-notched bar showr. in Fig. 5.27 which features a
near-tip mesh pattern that follows the slip-line field for this geometry. This program

is capable of generating a limited variety of notched-bar gemetries.
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