
MIT Open Access Articles

Extracting Randomness from Extractor-Dependent Sources

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dodis, Yevgeniy, Vaikuntanathan, Vinod and Wichs, Daniel. 2020. "Extracting
Randomness from Extractor-Dependent Sources." Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 12105 LNCS.

As Published: 10.1007/978-3-030-45721-1_12

Publisher: Springer International Publishing

Persistent URL: https://hdl.handle.net/1721.1/137257

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137257
http://creativecommons.org/licenses/by-nc-sa/4.0/

Extracting Randomness from Extractor-Dependent Sources

Yevgeniy Dodi
NYU

Vinod Vaikuntanathan
MIT

Daniel Wichs
Northeastern University and NTT Research Inc.

February 19, 2020

Abstract

We revisit the well-studied problem of extracting nearly uniform randomness from an arbi-
trary source of sufficient min-entropy. Strong seeded extractors solve this problem by relying
on a public random seed, which is unknown to the source. Here, we consider a setting where
the seed is reused over time and the source may depend on prior calls to the extractor with the
same seed. Can we still extract nearly uniform randomness?

In more detail, we assume the seed is chosen randomly, but the source can make arbitrary
oracle queries to the extractor with the given seed before outputting a sample. We require that
the sample has entropy and differs from any of the previously queried values. The extracted
output should look uniform even to a distinguisher that gets the seed. We consider two variants
of the problem, depending on whether the source only outputs the sample, or whether it can
also output some correlated public auxiliary information that preserves the sample’s entropy.
Our results are:

Without Auxiliary Information: We show that every pseudo-random function (PRF)
with a sufficiently high security level is a good extractor in this setting, even if the distin-
guisher is computationally unbounded. We further show that the source necessarily needs to be
computationally bounded and that such extractors imply one-way functions.

With Auxiliary Information: We construct secure extractors in this setting, as long
as both the source and the distinguisher are computationally bounded. We give several con-
structions based on different intermediate primitives, yielding instantiations based on the DDH,
DLIN, LWE or DCR assumptions. On the negative side, we show that one cannot prove security
against computationally unbounded distinguishers in this setting under any standard assump-
tion via a black-box reduction. Furthermore, even when restricting to computationally bounded
distinguishers, we show that there exist PRFs that are insecure as extractors in this setting
and that a large class of constructions cannot be proven secure via a black-box reduction from
standard assumptions.

Contents

1 Introduction 1
1.1 Our Results . 3
1.2 Our Techniques . 4
1.3 Additional Related Work . 6

2 Preliminaries 7

3 Defining ED-Extractors 11

4 Security without Auxiliary Info 13
4.1 Construction from any PRF . 13
4.2 Necessity of One-Way Functions . 14

5 Security with Auxiliary Info 17
5.1 Construction via Constrained PRFs . 17
5.2 Construction via Shift-Hiding Shiftable Functions . 20
5.3 Construction via Lossy Functions . 23
5.4 Negative Results for ED Extractors with Auxiliary Info 35

1 Introduction

Extracting Randomness. Randomness is an important ingredient in many algorithmic tasks,
and is especially crucial in cryptography. Indeed, much of cryptography relies on the assumption
that parties can sample uniformly random bits. However, most natural sources of randomness are
imperfect and not uniformly random. This motivates the study of randomness extraction, whose
goal is to extract (nearly) uniform randomness from imperfect sources.

Ideally, we would have a deterministic function Ext that converts an imperfect source of ran-
domness X into a (nearly) uniformly random output Ext(X). Furthermore, such an extractor
should work for all sources of randomness X having a sufficiently large amount of (min-)entropy.
Unfortunately, this is easily seen to be impossible, even if we only want to output 1 bit [CG85]: for
every extractor function Ext, there is a source X that has almost full min-entropy yet the output
of Ext(X) is completely fixed.

There have been two broad lines of work to get around this. The first line of work designs
extractors for restricted types of sources X that satisfy additional requirements beyond just having
entropy (see e.g., [von51,CGH+85,Blu86,LLS89,CG85,TV00,BST03,BIW04,CZ16]). While this
is an important research direction, we often know very little about natural sources of randomness
and they may fail to satisfy the imposed requirements. The second line of work considers (strong)
seeded extractors [NZ93, NZ96], where the extractor is given a public uniformly random seed S,
which is independent of the source X, and we require that the extracted output Ext(X;S) is close
to uniform even given the seed S.

Extractor-Dependent Sources. In this work, we consider a seeded extractor and envision a
scenario where a single uniformly random seed S is chosen once and then is reused over time by
many different users and/or applications to extract randomness from various “natural” sources of
entropy. For example, the seed S could be a part of a system random number generator (RNG)
that extracts randomness from physical sources of entropy, such as the timing of interrupts etc. If
the sources are truly independent of the seed S, then standard (strong) seeded extractors suffice to
guarantee that the extracted outputs are nearly uniform. However, since the seed S is continuously
reused, past outputs of the extractor will make their way back into “nature” and may affect the
sources in the future. For example, interrupts may depend on processes that themselves rely on
previous outputs of the extractor. Furthermore, since we cannot assume that all users/applications
use the extractor securely, we have to allow for the possibility that some of the prior calls to the
extractor were made on arbitrary samples that may not have any entropy. Unfortunately, if the
source can depends on prior calls to the extractor with the same seed S, we violate the condition
that the source is independent of the seed and can no longer rely on the security of standard seeded
extractors. We emphasize that, although the seed S is public, the sources are not fully adversarial
and not arbitrarily dependent on S. (A restriction of this sort is of course necessary to circumvent
the obvious impossibility result.) Instead, we assume that the sources can only depend on prior calls
to the extractor with the given seed S, but are otherwise independent of S. We call such sources
“extractor-dependent”. Can we design extractors for extractor-dependent sources (ED-Extractors)
that manage to extract nearly uniform randomness in this setting?

Defining the Problem. We now specify the problem in more detail. Our goal is to design a
seeded extractor EDExt that extracts randomness from extractor-dependent sources. We consider a

1

setting where a seed S is chosen uniformly at random. A source SEDExt(·,S) gets oracle access to the
extractor with the seed S and outputs a sample X along with some public auxiliary information
AUX. We say that such a source S is a legal extractor-dependent source of entropy α if two
conditions hold: (1) the (conditional min-entropy) ofX given S,AUX is at least α, and (2) the source
never queries the oracle on the value X that it outputs. An α-ED-Extractor needs to ensure that
for all legal extractor-dependent sources of entropy α, the output EDExt(X,S) is indistinguishable
from uniform, even given the seed S and the auxiliary information AUX.

Discussion on the Legality Conditions. We motivate the reason behind the two legality
conditions imposed by the definition.

Firstly, just like for standard (seeded) extractors, we need to assume that X has a sufficient
level of entropy even conditioned on AUX in order to extract randomness from it. In our case, the
source also has access to the oracle EDExt(·, S) with a random seed S, but we want the entropy to
come from the internal randomness of the source rather than from the seed S since the latter is
public and known to the distinguisher. Therefore, it is natural to also condition on S.

The second condition is clearly necessary: without it we could define a source that queries the
oracle on random values and outputs the first such value on which the extracted output starts
with a 0. Such a source would have almost full entropy, yet the extracted output would be easily
distinguishable from uniform. Moreover, this condition is also reasonable when modeling our in-
tended scenario since the sample should have entropy even given all the prior extractor calls that
influenced nature, and therefore it should differ from all of them.

In particular, the two legality conditions include the following simpler sub-class of sources, which
already intuitively captures our intended scenario. Consider sources S = (S1,S2) that consists of
two components. The first component SEDExt(·,S)

1 makes arbitrary oracle calls to the extractor and
models the influence that these calls have on nature; it outputs some value state. The second
component S2(state) then outputs X,AUX without making any further oracle queries and captures
the entropic process that produces the sample. The only condition we impose is that, for every
possible fixed value of state, the entropy of X conditioned on AUX when they are sampled according
to S2(state) should be at least α. If α is large enough then S satisfies both of the previous legality
conditions. In particular, S1 could not have queried the oracle on X since the entropy of X comes
only from the random coins of S2 that are unknown to S1.

Discussion on Auxiliary Info. Our default definition allows the source to output some public
auxiliary info AUX that can be correlated with the sample X as long as it preserves its (average
conditional min-)entropy. It is natural that some such information may be public (e.g., the source X
denotes the timing of interrupts, but the adversary can learn some auxiliary info AUX denoting the
high-order bits of such timings by interacting with the system). We also consider a weaker setting
without auxiliary info, where we don’t have AUX. In the case of standard seeded extractors, it turns
out that there is not much difference between a setting with auxiliary info and without [DORS08].
However, as we will see, there is a significant difference between the two settings when it comes to
ED-Extractors.

Prior Work. The work of Coretti et al. [CDKT19] initiates the study of extracting from extractor-
dependent sources in the special case where the extractor is a random oracle. While their definition

2

is specifically tailored to the random-oracle model, our definition can be seen as the natural exten-
sion of it to the standard model. In particular, they consider the setting where O(·) = EDExt(·, S)
is a truly random function. They show that this is an α-ED-Extractor for any super-logarithmic
entropy α, as long as the source only makes polynomially many queries, but even if the distinguisher
is computationally unbounded and can see the entire truth table of the oracle. This gives us heuris-
tic evidence that a “good” cryptographic hash function is an ED-Extractor in the standard model
even against computationally unbounded distinguishers (as long as the source is computationally
bounded). The main open question is therefore whether we can construct ED-Extractors under
standard computational assumptions.

1.1 Our Results

We give positive and negative results for ED-Extractors with and without auxiliary info.

Without Auxiliary Info. On the positive side, we show that any pseudo-random function
(PRF) with a sufficiently high security level is a good ED-Extractor without auxiliary info. In
particular, assuming the existence of sub-exponentially secure one-way functions, there exist α-
ED-Extractors with any output size m for entropy α = m + ω(log λ), where λ is the security
parameter. Furthermore, such extractors achieve security even against computationally unbounded
distinguishers, as long as the source runs in polynomial time. If we only want security against
polynomial-time distinguishers, we can allow the output size to grow to an arbitrary polynomial m
while only requiring entropy α = λΩ(1).

On the negative side, we show that ED-Extractors imply one-way functions and therefore cannot
be constructed unconditionally. This holds even without auxiliary info, even if we require that the
source has almost full entropy, and even if the extractor outputs only 1 bit. Furthermore, we show
that such ED-Extractors cannot exist for computationally unbounded sources.

With Auxiliary Info. We construct ED-Extractors in the setting with auxiliary info under
standard assumptions. In particular, we give three constructions.

• The first construction relies on (adaptively secure) constrained PRFs [BGI14,KPTZ13,BW13]
for NC1 constraints. These can be instantiated under the sub-exponential security of either
the learning with errors (LWE) [BV15] or the Decisional Diffie-Hellman Inversion (DDHI)
assumption in arbitrary prime-order groups (without requiring pairings) [AMN+18].1

• The second construction relies on shift-hiding shiftable functions [PS18], which can be seen
as a type of constraint-hiding constrained PRFs, and can be instantiated under LWE without
requiring sub-exponential security.

• The third construction relies on lossy functions and can be instantiated under any of: deci-
sional Diffie-Hellman (DDH), decisional-linear (DLIN), LWE, or decisional composite residu-
osity (DCR) assumptions.

1The DDHI assumption in a cyclic group G of order q with generator g states that, given any polynomially
many values of the form (g, ga, ga2

, . . . , gaL

) where a← Zq, the value g1/a is computationally indistinguishable from
uniform.

3

In all cases, we prove security against polynomial-time sources and distinguishers. Our α-ED-
Extractors can have arbitrarily large polynomial input size n and output size m, and require
entropy α = λΩ(1).

Note that, in the setting without auxiliary info, we achieved security even against compu-
tationally unbounded distinguishers. Furthermore, the random-oracle based result of [CDKT19]
heuristically suggests that good cryptographic hash functions achieve security against computa-
tionally unbounded distinguishers even in the auxiliary info setting. However, our constructions in
the auxiliary info setting from standard assumptions only achieve security against polynomial-time
distinguishers. Unfortunately, we show that this is inherent. In particular, we show that in the
auxiliary info setting, one cannot prove the security of any ED-Extractor against computationally
unbounded distinguishers under any standard assumption via a black-box reduction.

Furthermore, our instantiations in the auxiliary info setting rely on “cryptomania” assumptions
(known to imply public-key encryption]) rather than one-way functions, and we ask whether this
is necessary. While we do not resolve this question, we give some evidence that the two settings
necessitate substantially different constructions. Firstly, one may be tempted to conjecture that
every PRF is also a good ED-Extractor even in the auxiliary info setting. We show that this is not
the case: there exist PRFs that are insecure as ED-Extractors in the auxiliary info setting even for
very high levels/rates of entropy α. Moreover, we show that a large class of natural PRFs (e.g., the
Naor-Reingold PRF) cannot be proven to be secure ED-Extractors in the setting of auxiliary info
via a black-box reduction from any standard assumption.

1.2 Our Techniques

ED-Extractors without Auxiliary Info from PRFs. Our first result shows that every PRF
is already a good ED-Extractor in the setting without auxiliary info. In particular, the seed of
the extractor is the PRF key and the extractor just evaluates the PRF on the sample X. The
main difficulty in proving ED-Extractor security is that the distinguisher gets the seed of the
ED-Extractor, but PRF security only holds if the key is never revealed. Our insight is to design
a reduction that never calls the distinguisher – indeed, this allows us to prove security even for
computationally unbounded distinguishers.

Let’s start with the case where the PRF/Extractor only outputs 1 bit. If the extracted output is
statistically far from uniform given the seed, it means that it is biased towards either 0 or 1, but the
direction of the bias is unknown and may be different for each seed. Consider running the source
S twice with independent randomness, while giving it oracle access to the PRF/Extractor with the
same random key/seed. Let X0, X1 be the samples that the two runs output respectively. Then
the PRF/Extractor evaluations on those samples are more likely to agree than disagree, since they
are biased in the same direction. But the legality conditions ensure that X0, X1 were never queried
during either of the two runs and are different from each other (since each run cannot query its own
output and the output of the other run should have enough entropy to be be unpredictable). So,
given oracle access to the PRF, we can use the source S to find two values X0, X1 that we haven’t
yet queried, but if we then proceed to query the PRF on them, the outputs are noticeably more
likely to agree than disagree. This cannot be the case given oracle access to a random function,
and therefore allows us to distinguish the two and break PRF security. The analysis extends to a
larger output size m, but the advantage of the reduction shrinks by a factor of 2−m. Therefore, we
need very secure PRFs that cannot be distinguished from random functions with advantage better
than negl(λ)2−m, which requires sub-exponential security assumptions.

4

Note that the above argument completely breaks down in the setting with auxiliary info. The
problem is that now the direction of the bias can be different for each choice of the key/seed and
the auxiliary info. But the two independent runs of the source S are unlikely to produce the same
auxiliary info and hence we cannot argue that the bias would go in the same direction. Indeed,
we show that there are PRFs that are completely insecure as ED-Extractors in the setting with
auxiliary info.

ED-Extractors imply One-Way Functions. We show that ED-Extractors cannot exist if the
source is allowed to be computationally unbounded. This holds even in the setting without auxiliary
info, even if we only consider polynomial-time distinguishers, even if we require that the source has
almost full entropy, and even if the extractor outputs only 1 bit. The high level idea is that a
computationally unbounded source S with oracle access to the function EDExt(·, S) can learn the
function sufficiently well to predict its output on a random value with high probability. It can then
sample a random X subject to predicting that EDExt(X,S) = 0, without querying the extractor on
X. This is a legal source with almost full entropy, yet the extractor output is highly biased towards
0. We extend the above argument to showing that such extractors imply one-way functions.

ED-Extractors with Auxiliary Info from Constrained PRFs. We construct ED-Extractors
in the setting with auxiliary info, using constrained pseudorandom functions (C-PRF). A C-PRF
allows us to constrain a PRF key k on some constraint function C to yield a constrained key, denoted
k{C}. The constrained key allows us to evaluate the PRF on all points x such that C(x) = 0.
However, given the constrained key k{C}, the PRF outputs at all points x for which C(x) = 1 look
random. We need to rely on adaptively secure constrained PRFs, where the adversary can choose
the constraint C after seeing some PRF outputs.

Our construction of ED-Extractors uses a constrained PRF and a standard (seeded) randomness
extractors Ext. The seed of the ED-Extractor is a constrained PRF key k{CS,U}, with the constraint
CS,U (X) that outputs 1 (i.e., prevents evaluation) on all points X such that Ext(X;S) = U , where
S,U are chosen randomly. We choose the output size of the extractor to be ` = ω(log λ) and
therefore the key is constrained on a negligible fraction of points. On input X, the ED-Extractor
checks if CS,U (X) = 1, in which case it outputs some fixed dummy value, and otherwise it uses the
seed k{CS,U} to evaluate the PRF on X.

To argue ED-Extractor security, we consider a source SEDExt(·,k{CS,U}) that gets oracle access
to the ED-Extractor with a random seed k{CS,U} and outputs X,AUX. A distinguisher D then
gets the seed k{CS,U} together with AUX and the extracted output R = EDExt(X, k{CS,U}). We
first argue that this is statistically indistinguishable from giving the source S oracle access to the
unconstrained PRF and setting R to be the output of the PRF with the unconstrained key on X
(since the probability that any of the queries of S or its output lie in the constrained set is negligible).
Now, instead of giving the distinguisher D the constrained key k{CS,U} where U is uniform, we
give it the key k{CS,Ext(X;S)} which is constrained on X. This is statistically indistinguishable since
X has entropy even conditioned on AUX and is sampled independently of S; therefore Ext(X;S)
is close to uniform even given AUX. But now we can switch R from the output of the PRF on
X to uniform, and this is computationally indistinguishable even given the constrained PRF key
k{CS,Ext(X;S)} since it is constrained on X (and we know that the source didn’t query the oracle
on X). This shows that the extracted output is indistinguishable form uniform even given the
ED-Extractor seed and the auxiliary info. (The above proof outline conveys the intuition but is

5

slightly oversimplified and ignores some subtleties; see the full proof for details).
Since standard extractors can be evaluated in NC1, we only need constrained PRFs for NC1

circuits. Fortunately, we have such constructions from the LWE and DDHI assumptions [BV15,
AMN+18]. However, they only achieve selective security, where the constrained circuit needs to be
chosen ahead of time before any PRF outputs are given out, while we need adaptive security. We
can get this via standard complexity leveraging at the cost of having to assume the sub-exponential
security of the LWE and DDHI assumptions.

Additional Constructions. We give two alternate constructions of ED-Extractors in the setting
with auxiliary info. The first uses shift-hiding shiftable functions [PS18], which can be instanti-
ated from standard LWE, without needing complexity leveraging. The construction and proof of
security differ substantially from the one above. The second one uses lossy functions, which are
essentially equivalent to lossy trapdoor functions (LTDFs) [PW08] without requiring a trapdoor.
The construction can be instantiated from several different assumptions (DDH,DLIN,LWE,DCR).
See Sections 5.2 and 5.3.

Not all PRFs are ED-Extractors with Aux Info. We construct PRFs, which fail to be good
extractors in the setting of auxiliary info. For example, consider a PRF which first hashes the
input x into a small digest using a collision-resistant hash function and then applies another PRF
on the output. Consider a source that chooses a random x and sets the auxiliary info to be the
hash of x. Since the hash is small, this does not reduce the entropy of x by much. However, if
the distinguisher is given the PRF key (which is the ED-Extractor seed) and the auxiliary info,
it can compute the PRF on x and therefore easily distinguish it from uniform. In this example,
the auxiliary info reduces the entropy of x by some small super-logarithmic amount. We give an
even more dramatic example of this type using fully-homomorphic encryption (FHE) where the
auxiliary info reduces the entropy of x by only 1 bit.

Black-Box Separation Results. Lastly, we give two black-box separation results showing that,
in the auxiliary info setting, one cannot prove security (via a black-box reduction under a standard
assumption) against computationally unbounded distinguishers or for certain natural classes of
constructions. Our results rely on the framework of [Wic13] and rely on the fact that the ED-
Extractor definition is expressed as a two-stage game where the attacker consists of two components
(the source and the distinguisher) that cannot communicate. This allows us to give black-box
separations showing that, in certain cases, we cannot prove security under any standard assumption
which is in the form of a single-stage game between a challenger and a single stateful adversary.

1.3 Additional Related Work

RNGs. Our scenario is partially motivated by the problem of extracting randomness from phys-
ical sources as part of a system Random Number Generator (RNG). We note that extracting
randomness is only one component of a good RNG; see e.g., [BH05, DPR+13, DSSW14, GT16,
Hut16,CDKT19] for works that formally deal with the broader problem of RNG design.

Universal Computational Extractors (UCE). The notion of universal computational ex-
tractors (UCE) [BHK13,ST17] was originally proposed as a way of capturing “random-oracle like”

6

security properties of hash functions via a standard-model definition. While the format of the UCE
definition is also given in terms of an extraction game with a source and a distinguisher, there
are major differences between the UCE definition and that of ED-Extractors, both in terms of
their syntactic structure, but also more conceptually in terms of what they aim to capture. The
key such difference is that the notion of legal source is defined in the “ideal model”, and permits
sources which only have computational unpredictability in the “real” model (say, conditioned on
the auxiliary information).2 In contrast, this work only aimed to capture a smaller class of sources
that have entropy even in the “real model”, but could depend of the previous extractor output.

Unfortunately, it is known that even the weakest form of UCE security cannot be achieved
under standard assumptions (via black-box reductions; this indirectly follows from [Wic13]), while
our work shows that ED-Extractors can. It remains an interesting open problem whether ED-
Extractors can be used in place of UCEs to get any broader cryptographic applications beyond the
immediate ones of extracting randomness.

Low-Complexity Samplers. Introduced by Trevisan and Vadhan [TV00] and later extended
by [KRVZ11], these seedless extractors assume that the entropy source producing input X is unable
to run the extractor even once. In contrast, our sampler can be much slower than the extractor,
but we use a seed and give the sampler oracle access to the extractor, before releasing the seed to
the distinguisher.

Seed-Dependent condensers. This approach, formalized by Dodis, Ristenpart and Vadhan [DRV12],
relaxes the security guarantees of the randomness extractor to only ensure that the output of the
condenser is almost full entropy, but not necessarily close to uniform. In this sense it is weaker than
ED-Extractors. However, the sampler is given the actual seed, which is stronger than our setting.
Interestingly, the availability of auxiliary information also played a crucial role in the constructions
of seed-dependent condensers from standard assumptions.

2 Preliminaries

When X is a distribution, or a random variable following this distribution, we let x ← X denote
the process of sampling x according to the distribution X. If X is a set, we let x ← X denote
sampling x uniformly at random from X.

Let X,Y be random variables with supports SX , SY , respectively. We define their statistical
difference as

SD(X,Y) = 1
2

∑
u∈SX∪SY

|Pr[X = u]− Pr[Y = u]| .

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]). Following Dodis
et al. [DORS08], we define the (average) conditional min-entropy of X given Y as: H∞(X|Y) =
− log

(
Ey←Y

[
2−H∞(X|Y=y)

])
. Note that H∞(X|Y) = k iff the optimal strategy for guessing X

given Y succeeds with probability 2−k.

Lemma 2.1. For any random variables X,Y where Y is supported over a set of size T we have
H∞(X|Y) ≤ H∞(X)− log T .

2Somewhat confusingly, this is true even for so called “UCEs for statistically unpredictable sources”.

7

Definition 2.2 ((Strong, Average-Case) Seeded Extractor [NZ96]). We say that an efficient func-
tion Ext : {0, 1}n×{0, 1}d → {0, 1}` is an (α, ε)-extractor if for all random variables (X,Z) such
that X is supported over {0, 1}n and H∞(X|Z) ≥ α we have SD((Z, S,Ext(X;S)) , (Z, S, U`)) ≤ ε
where S,U` are uniformly random and independent bit-strings of length d, ` respectively.

Theorem 2.3 ([ILL89]). There exist (α, ε)-extractors with input length n and output length ` as
long as α ≥ `+ 2 log(1/ε).

Definition 2.4 ((Strong, Average-Case) Two-Source Extractor [CG88]). We say that an efficient
function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m is an (e1, e2, δ)-strong 2-source extractor if for all
random variables (X1, X2, Z) such that X1, X2 are independent conditioned on Z and H∞(X1|Z) ≥
e1, H∞(X2|Z) ≥ e2 we have SD((Z,X2, 2Ext(X1;X2)) , (Z,X2, Um)) ≤ δ where Um is a uniformly
string of length m.

Theorem 2.5 ([Raz05]). For any polynomial input length n = poly(λ), any e1 = λΩ(1) and any
e2 = (1/2 + Ω(1))n, there exist (e1, e2, δ)-extractor with input length n, output length m = λΩ(1)

and error δ = 2−λΩ(1).

Definition 2.6. The collision probability of a random variable A is defined as Col(A) = Pr[a =
a′ : a ← A, a′ ← A]. The conditional collision probability of A given B is defined as Col(A|B) =
Pr[a = a′ : b← B, a← (A|B = b), a′ ← (A|B = b)].

Claim 2.6.1 (Statistical Distance vs Collision Probability [IZ89]). Let A be a random variable
supported over {0, 1}m such that SD(A,Um) ≥ ε, where Um is uniform over {0, 1}m. Then Col(A) ≥

1
2m (1 + 4ε2).

Furthermore, let A,B be correlated random variables, where A is supported over {0, 1}m and

SD((A,B) , (Um, B)) ≥ ε.

Then Col(A|B) ≥ 1
2m (1 + 4ε2).

Proof. See [IZ89] for the first part of the claim. For the second part of the claim, we have:

Col(A|B) = Eb←B[Col(A|B = b)]

≥ Eb←B[1
2m (1 + 4ε2

b)] where εb = SD((A|B = b), Um)

≥ 1
2m (1 + 4Eb←B[ε2

b])

≥ 1
2m (1 + 4Eb←B[εb]2)

≥ 1
2m (1 + 4ε2)

where the first line follows from the definition of (conditional) collision probability, the second line
follows by applying the first part of the claim on the distributions (A|B = b), the third line follows
by the linearity of expectation and the fourth line follows by Jensen’s inequality.

8

Learning with Errors. The (n,m, q, χ) LWE assumption states that (A, sA+e) is computation-
ally indistinguishable from (A, u) where A ← Zn×mq , s ← Znq , e ← χm and u ← Zmq . Throughout
this work, the LWE assumption (without qualification), refers to assuming that there exists some
n = poly(λ), some q ≥ 2λΩ(1) and some distribution χ over Z which is poly(λ) bounded such that
the (n,m, q, χ) assumption holds for all m = poly(λ). This is implied by the hardness of worst-case
lattice problems with sub-exponential approximation factors.

Definition 2.7 (Pseudorandom Function (PRF) [GGM84]). A polynomial-time function F : {0, 1}`×
{0, 1}n → {0, 1}m with key length ` = `(λ), input length n = n(λ) and output length m = m(λ) is
a PRF if for any polynomial-time attacker A there exists some negligible function µ(λ) = negl(λ)
such that

| Pr[AF (k,·)(1λ) = 1]− Pr[AO(·)(1λ) = 1] | ≤ µ(λ).

where we choose k ← {0, 1}` and O : {0, 1}n → {0, 1}m is a uniformly random function. We say
that the PRF has security level σ = σ(λ) if µ(λ) ≤ 1/σ(λ).

Definition 2.8 (Constrained PRFs (CPRF) [BGI14, KPTZ13, BW13]). A CPRF for a class of
constraints C = {Cλ} consists of two polynomial-time algorithms (F,Constrain) where:

• y = F (k, x) is a deterministic polynomial-time function that takes as input a key k (either
constrained or unconstrained) and a value x ∈ {0, 1}n and outputs y ∈ {0, 1}m for some
polynomial length parameters n = n(λ),m = m(λ) in the security parameter λ.

• k{C} ← Constrain(k,C) takes as input a key k ∈ {0, 1}λ and a constraint C : {0, 1}n →
{0, 1} with C ∈ Cλ. It outputs a constrained key, denoted k{C}.

We require that the scheme satisfies a correctness and a security property defined below:

Correctness: We require that no adversary can find an input which is not constrained, yet the
constrained key disagrees with the original key. More concretely, consider the following game
between a stateful adversary A and a challenger:

• The adversary A(1λ) chooses C ∈ Cλ
• The challenger chooses k ∈ {0, 1}λ and k{C} ← Constrain(k,C).
• The adversary AF (k,·)(k{C}) gets the constrained key k{C} and oracle access to F (k, ·).

It outputs a value x ∈ {0, 1}n.

We require that, in the context of the above experiment, we have Pr[C(x) = 0 ∧ F (k, x) 6=
F (k{C}, x)] ≤ negl(λ).

(Adaptive) Security: Consider the following distinguishing game between an adversary A and a
challenger:

• Challenger chooses k ← {0, 1}λ and a bit b← {0, 1}.
• Adversary AF (k,·)(1λ) gets oracle access to F (k, ·) and outputs a constraint C ∈ Cλ and

a values x such that C(x) = 1 and x was never queries to the oracle.
• If b = 0, the challenger sets r = F (k, x) and else it chooses r ← {0, 1}m. The challenger

also computes k{C} ← Constrain(k,C).

9

• The adversary A is given k{C} and r. It outputs a bit b′.

We require that for all polynomial-time adversaries A, we have |Pr[b = b′]− 1
2 | = negl(λ).

We also consider several variants of the definition. Firstly, we define the notion of no-constrained-
evaluation security, where we restrict the adversary to never querying the oracle F (k, ·) on a point x
for which C(x) = 1. Secondly, we consider selective security where the adversary chooses C ∈ Cλ at
the beginning of the game before getting oracle access to F (k, c)̇). Lastly, we consider no-evaluation
security where the adversary does not get oracle access to F (k, ·) at all.

Note that, via a simple guessing argument where we guess the adversary’s choice of C, selec-
tive security with a sufficiently high security level σ(λ) = |Cλ|ω(log λ) implies adaptive security.
Furthermore by the same argument, no-evaluation security (which is inherently selective) with a
sufficiently high security level σ(λ) = |Cλ|ω(log λ) implies no-constrained-evaluation security. This
is because, if we guess the adversary’s choice of C ahead of time and gets k{C}, we can answer
queries on unconstrained points using k{C} rather than calling the PRF oracle.

Definition 2.9 (Shift-Hiding Shiftable Functions [PS18]). A shift-hiding shiftable family of func-
tions (CPRF) for a class of shift functions S = {Sλ} consists of two polynomial-time algorithms
(F,Shift,Round) where:

• y = F (k, x) is a deterministic polynomial-time function that takes as input a key k (either
“original” or “shifted”) and a value x ∈ {0, 1}n and outputs y ∈ {0, 1}m for some polynomial
length parameters n = n(λ),m = m(λ) in the security parameter λ.

• k{Sh} ← Shift(k, Sh) takes as input a key k ∈ {0, 1}λ and a shift function Sh : {0, 1}n →
{0, 1}m with Sh ∈ Sλ. It outputs a shifted key, denoted k{Sh}.

We require that the scheme satisfies a correctness and a security property defined below:

Correctness: First, we require that there is a round operation Round such that for any x and any
shift function Sh ∈ Sλ, with probability 1− negl(λ) over the choice of the PRF key k,

Round(F (k{Sh}, x)) = Round(F (k, x) + Sh(x))

Moreover, we require that no adversary given oracle access to F (k, ·), can find a x that violates
this equality. More concretely, consider the following game between a stateful adversary A
and a challenger:

• The adversary A(1λ) chooses Sh ∈ Sλ
• The challenger chooses k ∈ {0, 1}λ and k{Sh} ← Shift(k, Sh).
• The adversary AF (k,·)(k{Sh}) gets the shifted key k{Sh} and oracle access to F (k, ·). It

outputs a value x ∈ {0, 1}n.

We require that, in the context of the above experiment, we have

Pr[Round(F (k{Sh}, x)) 6= Round(F (k, x) + Sh(x))] ≤ negl(λ)

Selective Shift-Hiding Security: Consider the following distinguishing game between an adver-
sary A and a challenger:

10

• Adversary chooses two shift functions Sh0, Sh1 ∈ Sλ.
• Challenger chooses k ← {0, 1}λ and a bit b← {0, 1} and sets k{Shb} ← Shift(k,Shb).
• Adversary AF (k,·)(1λ, k{Shb}) gets oracle access to F (k, ·) and the shifted key k{Shb}.
• The adversary outputs a bit b′.

We require that for all polynomial-time adversaries A, we have |Pr[b = b′]− 1
2 | = negl(λ).

3 Defining ED-Extractors

In this section, we give a formal definition of extractors for extractor-dependent sources (ED-
Extractors) and provide some discussion on the various aspects of the definition.

Definition 3.1 (Extractor-Dependent Extraction). An extractor for α-entropy extractor-dependent
sources (α-ED-Extractor) consists of two polynomial-time algorithms (SeedGen,EDExt) with the
following syntax:

• seed← SeedGen(1λ) is a randomized algorithm that generates seed.

• EDExt(x, seed) is a deterministic algorithm that takes a sample x ∈ {0, 1}n, together with seed
and outputs a value y ∈ {0, 1}m for some polynomial length parameters n = n(λ),m = m(λ).

Consider an adversarial source/distinguisher pair (S,D) and define the following extraction exper-
iment EDGameS,D(1λ):

• Sample a random bit b← {0, 1} and a random seed← SeedGen(1λ).

• Run (x, aux)← SEDExt(·,seed)(1λ).

• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.

• Let b′ = D(1λ, seed, aux, r).

We say that S is an α-legal extractor-dependent source if the following conditions hold:

1. The probability that S queries its oracle on the value x that it outputs is negligible.

2. H∞(X|AUX, SEED) ≥ α(λ), where X,SEED,AUX denotes the joint distribution of the values
x, seed, aux in the above experiment.

An α-ED-Extractor is secure if for all α-legal polynomial-time sources S and all polynomial-time
distinguishers D, the above experiment satisfies∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ = negl(λ).

We can also define a weaker notion without auxiliary info by restricting aux to be empty. We
can also strengthen security to computationally unbounded sources or distinguishers by removing
the restriction that the source or the distinguisher runs in polynomial time.

11

Remark on the Legality Conditions. As we discussed in the introduction, the legality con-
ditions above may not seem entirely intuitive on first look. For example, it may be unclear why
we prohibit the source from querying the extractor on the value it outputs. Another undesirable
aspect of definition is that the legality conditions are construction-dependent: in other words, a
source may be legal for some constructions of the ED-Extractor but illegal for others since the
entropy of the output may depend on the oracle queries. Ideally, the legality of the source could
be checked independently of the construction. For these reasons, we can also consider an alternate,
weaker, definition, which may be more intuitively compelling and does not suffer from the above
issue. We say that source S is α-super-legal if:

• It can be written as S = (S1,S2) where SEDExt(·,seed)
1 (1λ) gets oracle access to the extractor

and outputs some value state ∈ {0, 1}p(λ) for some polynomial p, and S2(state) outputs x, aux
without getting any further access to the extractor.

• For all choices of state ∈ {0, 1}p(λ) it holds that H∞(X|AUX) ≥ α(λ), where (X,AUX) are
random variables for the output of S2(state).

Note that “super-legality” is only a condition of S2 which does not have oracle access to the
extractor, and is therefore construction-independent.

We claim that for any α(λ) = ω(log λ), every α-super-legal source S is also α-legal. Firstly,
if S1 only makes polynomially many queries and has a non-negligible probability of querying the
oracle on the value x that S2 outputs then there must be some value of state for which we can
predict the value x that S2(state) outputs with non-negligible probability. But this contradicts
H∞(X) ≥ H∞(X|AUX) ≥ ω(log λ). Therefore S satisfies the first legality condition. Secondly, let
STATE be a random variable for the value state ← SEDExt(·,seed)

1 (1λ). Then SEED is independent
of (X,AUX) if we condition on STATE. Therefore, H∞(X|AUX,SEED) ≥ H∞(X|AUX, STATE) ≥
minstateH∞(Xstate|AUXstate) ≥ α(λ) where Xstate,AUXstate is the conditional distribution of X,AUX
conditioned on STATE = state, which is just the distribution of the outputs of S2(state). Therefore
S satisfies the second legality condition.

As discussed in the introduction, the super-legality condition can also be interpreted very in-
tuitively: we think of S1 as capturing all of the influence that prior extractor call can have on
nature and S2 as modeling the entropic process that’s responsible for generating x, aux. We chose
to use “legality” rather than “super-legality” in our default definition since it makes the definition
stronger and thus gives stronger positive results. We mention that (by simple inspection) all of our
negative results also hold for the weaker definition using super-legality.

Remark about Conditioning on the Seed. Our legality condition in the formal definition
requires that the entropy H∞(X|AUX, SEED) ≥ α(λ), where we condition on SEED. Note that we
could remove this conditioning and have an alternate, stronger, definition where we only require
H∞(X|AUX) ≥ α(λ). We observe that, assuming one-way functions, any α-ED-Extractor according
to our definition can be converted into an (α′ = α + λε)-ED-Extractor according to the stronger
definition for any constant ε > 0. The idea is that we can modify the SeedGen algorithm to only use
λε random bits by expanding them out using a PRG to get as many pseudorandom bits as needed
by the original algorithm. By the security of the PRG, this change cannot harm ED-Extractor
security. But now SEED comes from a domain of size only 2λε and therefore H∞(X|AUX,SEED) ≥
H∞(X|AUX)− λε ≥ α′ − λε ≥ α. Hence the new construction is an α′-ED-Extractor according to

12

the stronger definition. The take-away is that (as long as we’re only considering polynomial-time
distinguishers) it does not make much difference whether or not we condition on the seed in the
definition.

Remark on Output Size. Note that if we have an α-ED-Extractor with output size m =
λε for some constant ε > 0 then, assuming one-way functions, we can also construct an α-ED-
Extractor for arbitrarily large output size m = λc for any constant c just by using a pseudorandom
generator (PRG) to expand the output. This holds as long as we’re only considering polynomial-
time distinguishers.

4 Security without Auxiliary Info

4.1 Construction from any PRF

We first show that every pseudorandom function (PRF) with a sufficiently high level of security is
a good ED-Extractor in the setting without auxiliary info.

Theorem 4.1. Let F (·, ·) : {0, 1}` × {0, 1}n → {0, 1}m be a pseudorandom function (PRF) with
key-length ` = `(λ), input length n = n(λ) and output length m = m(λ), having security level
σ(λ) = 2m(λ)ω(log λ). Define (SeedGen,EDExt) where SeedGen(1λ) outputs seed ← {0, 1}`(λ) and
EDExt(x, seed) = F (seed, x). Then (SeedGen,EDExt) is an α-ED Extractor without auxiliary info
for any α ≥ m+ ω(log λ). Furthermore, it has security for unbounded distinguishers.

Proof. Assume that (S,D) is some α-legal source and distinguisher pair with advantage ε = ε(λ) in
the ED-Exractor security game. Assume that S runs in polynomial time, but D can be unbounded.
We define a polynomial-time adversary A that has (ε2 − negl(λ))/2m advantage in the PRF game.
In particular, AO(·) is given access to an oracle O and runs SO(·) twice with independent randomness
to derive two values x, x′. Then AO(·) computes r = O(x), r′ = O(x′). If r = r′, it outputs 1 else 0.

Firstly, consider the experiment where we sample k ← {0, 1}`, x ← SF (k,·), r = F (k, x) and
let K,R be the random variables for the values k, r respectively. Then the statistical distance
SD(((K,R) , (K,Um)) ≥ ε since D distinguishes the two distributions with probability ε. There-
fore, by Claim 2.6.1, we have Col(R|K) ≥ 1

2m (1 + 4ε2) where Col denotes the collision probability
(Definition 2.6). It’s easy to see that, by the definition of A, we have Pr[AF (k,·) = 1 : k ←
{0, 1}`] = Col(R|K) ≥ 1

2m (1 + 4ε2).
Secondly, consider the experiment where we sample k ← {0, 1}` and then sample x← SF (k,·), x′ ←

SF (k,·) by running S twice with independent randomness and let K,X,X ′ be the random variables
for the value k, x, x′ in the experiment. Since S is an α-legal source we know that:

• The probability that S queried the oracle on x during the first run or on x′ during the second
run is negligible.

• Since H∞(X|K) = H∞(X ′|K) ≥ α ≥ m+ ω(log λ), the probability that either (1) S queried
the oracle on x′ during the first run or (2) S queried the oracle on x during the second run
or (3) x = x′ is bounded by negl(λ)/2m.

To summarize, in the above experiment, if we define the “bad event’ that x = x′ or that the oracle is
queried on one of x, x′ during the course of the experiment, then the probability of the bad event is

13

at most negl(λ)/2m. Now, consider the modified experiment where we sample x← SU(·), x′ ← SU(·)

and U is a truly random function. By σ(λ) security of the PRF, the probability of the bad even
occuring in the modified experiment is still be bounded by negl(λ)/2m. If the bad event does not
occur, then r = U(x), r′ = U(x′) are random and independent values and therefore Pr[r = r′] = 1

2m .
This shows that Pr[AU(·) = 1] ≤ (1 + negl(λ))2m.

This shows that the advantage of A in the PRF security game is (4ε2(λ)− negl(λ))/2m which
must be ≤ 1/σ(λ) ≤ negl(λ)/2m, by the σ(λ) security of the PRF. Therefore ε(λ) = negl(λ), which
concludes the proof of the ED-Extractor security.

Corollary 4.2. Assuming the existence of sub-exponentially secure one-way functions, for any
polynomial input size n = n(λ) the following holds:

• For any polynomial output size m = m(λ), there exists an α-ED Extractor in the setting
without auxiliary info and with security for unbounded distinguishers as long as α ≥ m +
ω(log λ).

• For any constant ε > 0 and any polynomial output size m = m(λ), there exists an α-ED
Extractor in the setting without auxiliary info and security for polynomial-time distinguishers
as long as α ≥ λε.

Proof. We note that sub-exponentially secure one-way functions imply the existence of PRFs with
security level 2p(λ) for any polynomial p (by making the key sufficiency large). Therefore the first
part of the corollary follows directly from the preceding Theorem. The second part follows by using
a pseudorandom generator (PRG) to expand the output-size of the ED-Extractor as discussed in
the Remark on Output Size in Section 3.

4.2 Necessity of One-Way Functions

Theorem 4.3. For any input length n = n(λ), the existence of an (α = n − 1)-ED-Extractor,
even without auxiliary info and even with output length m = 1, implies the existence of one-way
functions. Furthermore, such extractors cannot be secure for computationally unbounded sources,
even if we restrict to polynomial-time distinguishers.

Proof. Let (SeedGen,EDExt) be an ED Extractor as in the theorem statement. Assume SeedGen(1λ)
uses at most ` = `(λ) bits of randomness and let q = 7`+ λ. Define the function f(r, x1, . . . , xq) =
(x1, . . . , xq, y1, . . . , yq), which takes as input a uniformly random r ∈ {0, 1}` and xi ∈ {0, 1}n and
computes seed = SeedGen(1λ; r) and yi = EDExt(seed, xi) for i ∈ [q]. Then we claim that f is a
one-way function.

Assume by way of contradiction that a polynomial-size adversary A breaks the one-wayness of
f with non-negligible probability. We define a source SEDExt(seed,·) as follows:

1. Choose x1, . . . , xq uniformly at random form {0, 1}n. Query the oracle to learn yi = EDExt(seed, xi)
for each i ∈ [q].

2. Run A(xq, . . . , xq, y1, . . . , yq) and get some value (r′, x′1, . . . , x′q).

3. Test if f(r′, xq, . . . , x′q) = (x1, . . . , xq, y1, . . . , yq). If not, output a uniformly random x∗0 ←
{0, 1}n and halt. Else continue.

14

4. Compute seed′ = SeedGen(1λ; r′). Choose a random x∗1 ← {0, 1}n and if EDExt(seed′, x∗1) = 0
output x∗1 and halt. Else continue.

5. Choose a random x∗2 ← {0, 1}n and output it.

We define a corresponding distinguisher D(seed, r), which outputs r. We claim that the pair (S,D)
breaks the (α = n− 1)-ED-Extractor security.

Firstly, we claim that S is an (α = n − 1)-legal source. It is easy to see that the probability
of it outputting a value x that it previously queried is negligible since it outputs one of x∗0, x∗1, x∗2
each of which is individually uniformly random and independent of the prior queries. To analyze
entropy, let us fix any choice of the values of seed, x1, . . . , xq and randomness of A and let X be
the random variable for the output of S in the above experiment. We argue that, even for any
choice of the fixed values, it holds that H∞(X) ≥ n− 1, which proves the claim. The fixed values
determine whether the test in line 3 passes or fails. If it fails, then X is uniformly random and so
H∞(X) = n. If it passes, then let us define the variable V which is 0 if x is output in line 4 and 1
if it is output in line 5. Let us define the value P0 = |{x : EDExt(x, seed) = 0}|. Then we have

max
x

Pr[X = x] = max
x

(Pr[X = x|V = 0] Pr[V = 0] + Pr[X = x|V = 1] Pr[V = 1])

≤ 1
P0
· P0

2n + 1
2n (1− 1

P0
)

≤ 2−(n−1)

and therefore H∞(X) ≥ n− 1.
Next, we analyze the success probability of the pair (S,D) in the ED-Extractor security game.

If the challenger chooses the challenge bit b = 1 then, since r is uniformly random, we have
Pr[b′ = 1] = 1

2 . On the other hand, let’s analyze the security game when the challenge chooses the
bit b = 0. Assume that the adversary A breaks the security of the one-way function f with some
non-negligible probability ε = ε(λ). Then ε(λ) ≥ 1/p(λ) for some polynomial p and for infinitely
many values of λ. We define several events in the context of the ED-Extractor security game with
the particular sampler defined above:

FAIR: Let’s call a seed biased if Prx←{0,1}n [EDExt(seed, x) = 0] ≤ 1
2 − δ where we set δ := 1

20p .
Let’s define the event FAIR to occur if the seed is not biased. Since we assumed that the
ED-Extractor is secure, it must be the case that probability that a random seed is biased is
negligible (otherwise the sampler that outputs a random x and the distinguisher that tests if
the seed is biased and if so outputs r else outputs random would break security). Therefore,
Pr[FAIR] = 1− negl(λ).

INV: Let this be the event that the test in line 3 of the execution of S succeeds, meaning that A
succeeded to invert correctly. By definition Pr[INV] = ε.

CLOSE: Let this be the event that for the value seed′ computed in line 4, it holds that

Pr
x←{0,1}n

[EDExt(x, seed) = EDExt(x, seed′)] ≥ .9

where, if the process terminates before line 4, we define seed′ = seed. If CLOSE does not occur,
it means that there exists some seed′ for which Prx←{0,1}n [EDExt(x, seed) = EDExt(x, seed′)] <

15

.9 but for all i ∈ [q] it holds that EDExt(xi, seed) = EDExt(xi, seed′). The probability of this
happening for any fixed seed′ is .9q ≤ .97`+λ ≤ 2−`negl(λ). By taking a union bound over
all 2` values of seed′ the probability that some such seed′ exists is negligible and therefore
Pr[CLOSE] ≥ 1− negl(λ).

For simplicity, we also define the event IFC = INV∧ FAIR∧CLOSE. When b = 0 we therefore have:

Pr[b′ = 0] ≥ Pr[b′ = 0 ∧ INV] + Pr[b′ = 0 ∧ ¬INV]
≥ Pr[b′ = 0 ∧ INV ∧ FAIR ∧ CLOSE] + Pr[b′ = 0 ∧ ¬INV ∧ FAIR]
≥ Pr[b′ = 0|IFC](Pr[INV]− Pr[¬FAIR]− Pr[¬CLOSE])

+ Pr[b′ = 0|¬INV ∧ FAIR](Pr[¬INV]− Pr[¬FAIR])
≥ Pr[b′ = 0|IFC](ε− negl(λ)) + Pr[b′ = 0|¬INV ∧ FAIR](1− ε− negl(λ))

≥ Pr[b′ = 0|IFC](ε− negl(λ)) +
(1

2 − δ
)

(1− ε− negl(λ))

To analyze Pr[b′ = 0|IFC] let us fix all randomness z of the experiment except for the choice of
x∗1, x

∗
2, such that this fixing makes the event IFC occurs. Let IFCz be the event that the randomness

takes on this value. For any such choice, let E1 be the event that EDExt(x∗1, seed) = 0, let E′1
be the event that EDExt(x∗1, seed′) = 0, let A be the even that EDExt(x∗1, seed) = EDExt(x∗1, seed′)
and let E2 be the event that EDExt(seed, x∗2) = 0, where the randomness is only over the choice of
x∗1, x

∗
2. Since we conditioned on CLOSE we have Pr[A] ≥ .9. Since we conditioned on FAIR we have

Pr[E1] ≥ (1/2− δ),Pr[E2] ≥ (1/2− δ). Therefore, for any such choice of randomness z we have:

Pr[b′ = 0|IFCz] = Pr[E1 ∧ E′1] + Pr[E2 ∧ ¬E′1]
= Pr[A ∧ E′1] + Pr[E2]

(
1− Pr[E′1]

)
≥ Pr[E′1]− Pr[¬A] +

(1
2 − δ

) (
1− Pr[E′1]

)
≥ 1

2 − δ − .1 + 1
2 Pr[E′1]

≥ 1
2 − δ − .1 + 1

2(Pr[E1]− Pr[¬A])

≥ 1
2 − δ − .1 + 1

2(1
2 − δ − .1)

≥ .6− 3
2δ

which also implies that Pr[b′ = 0|IFC] ≥ .6− 3
2δ. Combining, we have:

Pr[b′ = 0] ≥
(
.6− 3

2δ
)

(ε− negl(λ)) +
(1

2 − δ
)

(1− ε− negl(λ))

≥ 1
2 − δ + ε(.1− δ/2)− negl(λ)

≥ 1
2 + ε/10− (3/2)δ − negl(λ)

≥ 1
2 + 1

10p(λ) −
3

40p(λ) − negl(λ)

≥ 1
2 + 1

40p(λ) − negl(λ)

16

for infinitely many values of λ. Therefore Pr[b′ = b]− 1
2 is non-neglgible, which leads to a contra-

diction and hence f must be one-way.
For the second part of the theorem, note that we showed how to convert an inverter for f into

a source S together with an efficient disitinguisher D that break ED-Extractor security. Since an
inefficient inverter for f always exists, it means that there exists an inefficient source S and an
efficient distinguisher D that break the security of the ED-Extractor.

5 Security with Auxiliary Info

5.1 Construction via Constrained PRFs

We now show how to construct an ED-Extractor in the setting with auxiliary info, using constrained
PRFs (Definition 2.8) and standard seeded extractors (Definition 2.2).

Construction. Let Ext : {0, 1}n × {0, 1}d → {0, 1}` be an (α′, ε)-seeded extractor for some
lengths n = n(λ), d = d(λ), ` = `(λ) and some α′ = α′(λ), ε = ε(λ). Further let Ext also be a
universal hash function. Let (F,Constrain) be a constrained PRF with input length n and output
length m = m(λ) for the class of constraints C = {Cs,u}s∈{0,1}d,u∈{0,1}` where Cs,u(x) = 1 iff
Ext(x; s) = u. We construct an ED-Extractor (SeedGen,EDExt) as follows:

• SeedGen(1λ): Choose a random k ← {0, 1}λ. Choose a random s ← {0, 1}d, u ← {0, 1}`
and let Cs,u ∈ C be the corresponding constraint. Let k{Cs,u} ← Constrain(k,Cs,u). Output
seed = k{Cs,u}.

• EDExt(x, seed): Output F (k{Cs,u}, x).

Note that F always outputs some value, even if x is in the constrained set. Without loss of generality,
we can assume that the constrained key k{Cs,u} reveals s, u in the clear and that, F (k{Cs,u}, x)
outputs 0m whenever Cs,u(x) = 1.

Theorem 5.1. Assuming the constrained PRF has no-constrained-evaluation security, the con-
struction above is an α-entropy secure ED-Extractor for α = α′ + m, as long as the parameters
satisfy `(λ) = ω(log λ), and ε(λ) = negl(λ).

Proof. Our proof of security follows by a sequence of hybrid games:

Hybrid 0: This is the game EDGameS,D(1λ) with a source S and a distinguisher D as in Definition
3.1. The game proceeds as follows:

• Sample a random bit b← {0, 1} and a random seed← SeedGen(1λ). The latter consists
of sampling k ← {0, 1}λ, s ← {0, 1}d, u ← {0, 1}`, k{Cs,u} ← Constrain(k,Cs,u) and
setting seed = k{Cs,u}.
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• Let b′ = D(1λ, seed, aux, r).

17

Hybrid 1: In this game, instead of giving the source SEDExt(·;seed) access to the oracle EDExt(·, seed) =
F (k{Cs,u}, ·), we replace it with the oracle F (k, ·) using the unconstrained key k. Further-
more, if b = 0, instead of setting r = EDExt(x, seed) = F (k{Cs,u}, x), we now set r = F (k, x).
In detail, the hybrid is defined as follows:

1. Sample a random bit b← {0, 1} and a random k ← {0, 1}λ.
2. Run (x, aux)← SF (k,·)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d, u ← {0, 1}`

and seed← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 0 and 1 are indistinguishable. The only time Hybrid 0 differs from Hybrid 1 is
if in Hybrid 0 either: (A) some oracle query or the final output x produced by S satisfy
Ext(x; s) = u, or (B) some oracle query or the final output x produced by S satisfy Cs,u(x) =
0 ∧ F (k, x) 6= F (k{Cs,u}, x). Since u is uniformly random, the probability of (A) happening
when S makes q queries is at most (q + 1)/2` which is negligible. By the correctness of the
constrained PRF, the probability of (B) happening is also negligible.

Hybrid 2: This is the same as Hybrid 1, except that we give the source access to an oracle
EDExt(·; seed′) where seed′ = k{Cs′,u′} ← Constrain(k,Cs′,u′) is a constrained PRF key for
random and independent values s′, u′. In detail, the hybrid is defined as follows:

1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ. Choose s′ ← {0, 1}d, u′ ←
{0, 1}` and seed′ ← Constrain(k,Cs′,u′).

2. Run (x, aux)← SEDExt(·,seed′)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d, u ← {0, 1}`

and seed← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 1 and 2 are statistically close. The only time Hybrid 1 differs from Hybrid 2 is if
in Hybrid 2 either: (A) some oracle query xi produced by S satisfies Ext(xi; s′) = u′, or (B)
some oracle query xi produced by S satisfy Cs′,u′(x) = 0 ∧ F (k, x) 6= F (k{Cs′,u′}, x). Since
u′ is uniformly random, the probability of (A) happening when S makes q queries is at most
q/2` which is negligible. By the correctness of the constrained PRF, the probability of (B)
happening is also negligible.

Hybrid 3: This is the same as Hybrid 2, except that in step 3, instead of choosing u← {0, 1}` we
now set u = Ext(x; s). In detail, the hybrid is defined as follows:

1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ. Choose s′ ← {0, 1}d, u′ ←
{0, 1}` and seed′ ← Constrain(k,Cs′,u′).

2. Run (x, aux)← SEDExt(·,seed′)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d u = Ext(x; s)

and seed← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

18

Hybrids 2 and 3 are statistically close if Ext is an (α, ε)-extractor. To argue this, let us use
capital letters to denote random variables for the corresponding values in the experiment.
Firstly, note that the view of the source S in hybrid 2 is identically distributed to that
of hybrid 0.3 Therefore, we can rely on the legality to S (which is defined relative to the
distribution of hybrid 0) to argue that H∞(X|AUX,SEED′) ≥ α. By Lemma 2.1, we also
have H∞(X|AUX,SEED′, R) ≥ α − m ≥ α′. Lastly since K is independent of X when
conditioned on SEED′, R, we also have H∞(X|AUX,K,R) ≥ α′. Therefore, by the security
of the extractor, U = Ext(X;S) is statistically close to a uniformly random and independent
U even given AUX,K,R, S. Lastly, since the view of D in hybrids 2 and 3 is a function of
AUX,K,R, S, U where U = Ext(X;S) in hybrid 3 and U is uniform/independent in hybrid 2,
the two hybrids are statistically close.

Hybrid 4: This is the same as Hybrid 3, except that we switch back from giving S oracle access
to EDExt(·, seed′) to giving it access to the unconstrained PRF F (k, ·). In detail, the hybrid
is defined as follows:

1. Sample a random bit b← {0, 1} and a random k ← {0, 1}λ.
2. Run (x, aux)← SF (k,·)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d u = Ext(x; s)

and seed← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 3 and 4 are indistinguishable by the same argument as the indistinguishability of
hybrid 1 and 2.

Advantage in Hybrid 4: We now claim that in Hybrid 4, the advantage |Pr[b = b′] − 1
2 | is

negligible by the no-constrained-evaluation security of the constrained PRF. In particular,
we define a reduction that runs (x, aux) ← SF (k,·)(1λ) by making queries to its PRF oracle.
The reduction chooses s ← {0, 1}d, sets u = Ext(x; s) and gives the constraint Cs,u together
with the value x to its challenger. Since S is a legal source, x was never queried by the oracle
and, by the definition of the constraint, we have Cs,u(x) = 1. Secondly, since Ext(·; s) is
a universal hash function, the probability that of any of the previous queries xi made by S
satisfy Ext(xi; s) = Ext(x; s) is also negligible. Therefore, our reduction makes no constrained-
evaluation queries to the PRF.
So, the reduction is a legal attacker in the no-constrained-evaluation security game of con-
strained PRF. The reduction receives a value r, which is either F (k, x) or uniform, along with
a constrained key k{Cs,u}. It sets seed = k{Cs,u} and outputs the bit b′ = D(1λ, seed, aux, r).
The advantage of the reduction in the constrained PRF security game is exactly the same as
that of the adversary in hybrid 3, and therefore the latter is negligible.

Since the advantage in hybrid 3 is negligible and hybrid 3 is indistinguishable from hybrid 0, the
advantage in hybrid 0 must be negligible as well. This proves the theorem.

Corollary 5.2. Under the sub-exponential security of either the LWE assumption or the DDHI
assumption in an arbitrary prime-order group, there exists an ED-Extractor for α-entropy sources

3This was the reason for introducing hybrid 2 rather than directly going from 1 to 3.

19

with auxiliary info, for any α = λΩ(1) and with any polynomial input length n and output length m.
Security holds against polynomial-time sources and distinguishers.

Proof. The work of [BV15] construct selectively secure constrained PRFs for all circuits from LWE.
We can then use complexity leveraging to get adaptive security by assuming sub-exponential LWE.
The results of [AMN+18] constructs no-evaluation secure PRFs for NC1 from the DDHI assump-
tion in arbitrary prime-order groups (the also construct selectively secure PRFs from the DDHI
assumption in specific groups). We then use complexity leveraging to get no-constrained-evaluation
security under sub-exponential DDHI, as discussed in the remarks after Definition 2.8.

We use an extractor with output length α/4 which is secure for entropy α′ = α/2 with ε =
2−(α/8) = negl(λ). We combine this with a constrained PRF with output length m = α/2 which
ensures α ≥ α′ + m. This gives us an ED-Extractor with output length α/2 = λΩ(1). We can
then use a PRG to then get arbitrarily large polynomial output size as discussed in the Remark on
Output Size in Section 3.

5.2 Construction via Shift-Hiding Shiftable Functions

Our second construction builds an ED-extractor in the setting with auxiliary info, using shift-hiding
shiftable PRFs (Definition 2.9). Compared to the construction in Section 5.1, the one in this section
achieves security under polynomial hardness assumptions, in particular the polynomial hardness
of LWE with a subexponential approximation ratio. In addition, the proof of security appears to
follow a fundamentally different route, as we explain below.

Construction. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be an (α′, ε)-seeded extractor for some
lengths n = n(λ), d = d(λ),m = m(λ) and some α′ = α′(λ), ε = ε(λ). Let (F,Shift,Round) be a
shift-hiding shiftable PRF with input length n and output length m = m(λ) for the class of shift
functions Sh = {Shs(x) = Ext(s, x)}. We construct an ED-Extractor (SeedGen,EDExt) as follows:

• SeedGen(1λ): Choose a random k ← {0, 1}λ. Let Z denote the zero circuit which on all inputs
outputs 0m. Let k{Z} ← Shift(k, Z). Output seed = k{Z}.

• EDExt(x, seed): Output F (k{Z}, x).

Theorem 5.3. Assuming that (F,Shift) is a shift-hiding shiftable PRF, the construction above is
an α-entropy secure ED-Extractor for α = α′ +m as long as ε(λ) = negl(λ).

Proof. Assume for contradiction that the ED-Extractor adversary (A1, A2) has a non-negligible
success advantage ε = ε(λ) in the ED-Extractor game. We proceed in the following sequence of
hybrid experiments.

Hybrid 0: This is the ED-extractor game with the construction (SeedGen,EDExt). In more detail,
the game proceeds as follows.

• Sample a random bit b← {0, 1} and a random seed← SeedGen(1λ). The latter consists
of sampling k ← {0, 1}λ, computing k{Z} ← Shift(k, Z) and setting seed = k{Z}.
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.

20

• Let b′ = D(1λ, seed, aux, r).

By assumption, then,
Pr[(A1, A2) wins in Hybrid 0] = 1/2 + ε

Hybrid 1: Let H = {h : {0, 1}n → {0, 1}`} be a family of pairwise independent hash functions.
Define the property

P`,β,h(x) =
{

1 if h(x) = β
0 otherwise

where β ∈ {0, 1}` and h ∈ H. When β ← {0, 1}` and h← H are chosen uniformly at random
from the respective sets, the following holds.

Claim 5.3.1. Assume β ← {0, 1}` and h ← H. Denote by Good the event that for all the q
queries xi made by A1, P`,β,h(xi) = 0, and for A1’s output x, P`,β,h(x) = 1.

Pr[Good] ≥ (1− q/2`) · 1/2`

where the probability is over the coins of β and h and those of A1.

Proof. We know from the legality condition on A1 that x is different from all the queries.
Then,

Pr[Good] = Pr[for all i ∈ [q] h(xi) 6= β ∧ h(x) = β]
= Pr[for all i ∈ [q] h(xi) 6= β] · Pr[h(x) = β]
≥ (1− q/2`) · 1/2`

where the second equality is because of pairwise indepedence and the inequality follows by
an application of the union bound.

Hybrid 1 proceeds exactly like Hybrid 0 except that if Good does not happen, the game ignores
the output of A2 and replaces it with a random bit. In more detail, the game proceeds as
follows.

• Sample a random β ← {0, 1}` and h ← H. Sample a random bit b ← {0, 1} and a
random seed ← SeedGen(1λ). The latter consists of sampling k ← {0, 1}λ, computing
k{Z} ← Shift(k, Z) and setting seed = k{Z}.
• Run (x, aux)← SEDExt(·,seed)(1λ). Let {xi} be the queries generated by S.
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If P`,β,h(xi) = 1 for some i ∈ [q] or P`,β,h(x) = 0, set b′ ← {0, 1} to be a uniformly

random bit. Otherwise, let b′ = D(1λ, seed, aux, r).

We then have the following claim.

Claim 5.3.2. Set ` = log q + 1. We have:

Pr[(A1, A2) wins in Hybrid 1] ≥ 1/2 + ε/4q

21

Proof. First note that Pr[Good] ≥ (1 − q/2`) · 1/2` = 1/4q. Let Win denote the event that
(A1, A2) wins in Hybrid 1.

Pr[Win] = Pr[Win | Good] Pr[Good] + Pr[Win | Good] Pr[Good]
≥ (1/2 + ε) · Pr[Good] + 1/2 · (1− Pr[Good])
≥ 1/2 + ε/4q

where the first inequality comes from the fact that Pr[Win | Good] = Pr[Win] and Pr[Win | Good] =
1/2, and the second comes from the bound on Pr[Good].

Hybrid 2: Let Sh`,β,h,s(x) = P`,β,h(x) · Ext(s, x) be a shift function where s ← {0, 1}d is chosen
uniformly at random. That is,

Sh`,β,h,s(x) =
{

0 if P`,β,h(x) = 0
Ext(s, x) otherwise

Instead of K{Z}, use K{Sh`,β,h,s} throughout the game. In more detail, the game proceeds
as follows.

• Sample a random s ← {0, 1}d. Sample random β ← {0, 1}` and h ← H. Sample
a random bit b ← {0, 1} and a random seed ← SeedGen(1λ). The latter consists of
sampling k ← {0, 1}λ, computing k{Sh`,β,h,s} ← Shift(k, Sh`,β,h,s) and setting seed =
k{Sh`,β,h,s}.
• Run (x, aux)← SEDExt(·,seed)(1λ). Let {xi} be the queries generated by S.
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If P`,β,h(xi) = 1 for some i ∈ [q] or P`,β,h(x) = 0, set b′ ← {0, 1} to be a uniformly

random bit. Otherwise, let b′ = D(1λ, seed, aux, r).

By shift-hiding we have:

Claim 5.3.3.

Pr[(A1, A2) wins in Hybrid 2] = Pr[(A1, A2) wins in Hybrid 1]− negl(λ)

Hybrid 3: Use K{Z} to answer the queries of A1 but then use K{Sh`,β,h,s} to give to A2 and to
compute the output of the extractor. In more detail, the game proceeds as follows.

• Sample a random s ← {0, 1}d. Sample random β ← {0, 1}` and h ← H. Sample
a random bit b ← {0, 1} and a random seed ← SeedGen(1λ). The latter consists of
sampling k ← {0, 1}λ, computing k{Sh`,β,h,s} ← Shift(k, Sh`,β,h,s) and setting seed =
k{Sh`,β,h,s} and seed′ = k{Z}.
• Run (x, aux)← SEDExt(·,seed′)(1λ). Let {xi} be the queries generated by S.
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If P`,β,h(xi) = 1 for some i ∈ [q] or P`,β,h(x) = 0, set b′ ← {0, 1} to be a uniformly

random bit. Otherwise, let b′ = D(1λ, seed, aux, r).

22

Claim 5.3.4.

Pr[(A1, A2) wins in Hybrid 3] = Pr[(A1, A2) wins in Hybrid 2]

Proof. If Good happens, then the view of A1 is the same in Hybrids 2 and 3. On the other
hand, if Good does not happen, then the output of the experiment is a uniformly random bit
in both cases. The claim follows.

To finish the proof, note that in Hybrid 3, the view of A1 is the same as in the real game so the
entropy condition on its output X holds. That is:

H(X|SEED′,AUX) ≥ α and H(X|SEED′,AUX, FK(X)) ≥ α−m ≥ α′

Furthermore, in Hybrids 2 and 3, S is random and independent of X since S is chosen after A1
outputs X. Therefore, A2 gets SEED,AUX,Round(F (K,X) + Ext(S,X)) (with high probability),
which can be replaced by a uniformly random string by the security of the extractor. Thus,

Pr[(A1, A2) wins in Hybrid 3] ≤ 1/2 + negl(λ)

which, combined with the preceding claims, contradicts the assumption that (A1, A2) wins in Hybrid
0 with non-negligible advantage.

Corollary 5.4. Under the LWE assumption, there exists an ED-Extractor for α-entropy sources
with auxiliary info, for any α = λΩ(1) and with any polynomial input length n and output length m.
Security holds against polynomial-time sources and distinguishers.

Proof. For any α = λΩ(1), instantiate Ext with optimal seeded extractors with output length
m = α/3 and entropy requirement α′ ≥ m + ω(log λ) ≥ (2/3)α, eg the leftover hash lemma
extractor [ILL89]. Then, using Theorem 5.3, instantiated with the shift-hiding shiftable functions
of [PS18] based on LWE with subexponential approximation ratio gives us an ED-extractor for
entropy m + α′ = α as needed, but the output length is only m = α/3 = λΩ(1). However, we can
then use a PRG to then get arbitrarily large polynomial output size as discussed in the Remark on
Output Size in Section 3.

5.3 Construction via Lossy Functions

We present yet another construction of ED-Extractors in the setting with auxiliary input via lossy
functions (LFs), which are equivalent to lossy trapdoor functions (LTDFs) [PW08], but without
requiring a trapdoor. We give two constructions of ED-Extractors via LFs: the first one is simpler
but relies on quasi-polynomial security, while the second one builds on the first, and is more complex,
but only needs standard polynomial security. Our first construction of ED-Extractors from LFs is
motivated by the works of [BHK11,GKK19], which used a similar construction to solve seemingly
unrelated problems. While the construction and some high-level intuition behind it are analogous
to those of the above prior works, the proof is fairly different.

We begin by defining the notion of lossy functions (LFs). Then, we extend it to a notion of
cumulatively all-lossy-but-one (CALBO) functions and show how to construct CALBOs from LFs.
The notion of CALBOs with a trapdoor was also explored in a recent work of [CPW19], where they
gave a construction using DDH and indistinguishability obfuscation (iO). In contrast, our notion of

23

CALBOs without a trapdoor appears to be significantly easier to achieve and we do not rely on iO.
Our notion of CALBOs was also implicit in the works of [BHK11,GKK19], where they essentially
gave a construction under the DDH assumption in specific groups (the quadratic residues mod a
prime p). Here we give show that our notion of CALBOs follows from standard LFs and therefore
can be instantiated under many standard assumptions, such as DDH (in arbitrary groups), LWe
and DCR.

Definition 5.5 (Lossy Functions (LFs)). An (n,m, `)-family of Lossy-Functions (LFs), for some
polynomial input length n = n(λ), output length m = m(λ) and leakage ` = `(λ) consists of two
PPT algorithms (KeyGen, F) with the following syntax:

• pk ← KeyGen(1λ, b): On input the security parameter λ and b ∈ {0, 1}, outputs pk. If b = 0,
we say that pk is generated in “lossy” mode and if b = 1 it is generated in “injective” mode.

• y = Fpk(x): A deterministic algorithm that takes as input pk along with x ∈ {0, 1}n and
outputs y ∈ {0, 1}m.

We require the following two properties:

Injectivity: With overwhelming probability over the choice of pk ← KeyGen(1λ, 1) the function
Fpk : {0, 1}n → {0, 1}m is injective.

Lossyness : With overwhelming probability over the choice of pk ← KeyGen(1λ, 0) the function
Fpk has an image of size |{Fpk(x) : x ∈ {0, 1}n}| ≤ 2`.

Indisitnguishability: The distributions KeyGen(1λ, 0) and KeyGen(1λ, 1) are computationally in-
distinguishable. (We say that the LF has security level σ = σ(λ) if every PPT distinguisher
has distinguishing advantage at most µ(λ) ≤ 1/σ(λ).)

We extend the notion of LFs to Cumulatively All-Lossy-But-One (CALBO) Functions. Such
functions also take as input a tag. The public key pk is created with a special tag∗ for which
the function is “almost” injective, meaning that each output y has at most some small number
of pre-images under this tag. On the other hand, for any other tag 6= tag∗, the function is lossy.
Moreover, the leakage does not accumulate – even seeing the output at the function at all lossy
tags tag 6= tag∗ only reveals some small amount of information about the input. Lastly, in the case
of CALBO, we insist on the output length being the same as the input length.

Definition 5.6 (Cumulatively All-Lossy-But-One (CALBO) Functions). An (n, t, `, d)-family of
Cumulatively All-Lossy-But-One (CALBO) functions, for some polynomial input length n = n(λ),
tag length t = t(λ), leakage ` = `(λ), and max collisions d = d(λ) consists of two PPT algorithms
(KeyGen, F) with the following syntax:

• pk← KeyGen(1λ, tag∗): On input the security parameter λ and tag∗ ∈ {0, 1}t, outputs pk.

• y = Fpk,tag(x): A deterministic algorithm that takes as input pk along with tag ∈ {0, 1}t and
x ∈ {0, 1}n. It outputs y.

We require the following two properties:

Almost Injectivity: For any tag∗ ∈ {0, 1}t, with overwhelming probability over the choice of
pk← KeyGen(1λ, tag∗) we have that for all y ∈ {0, 1}n, it holds that |F−1

pk,tag∗(y)| ≤ d.

24

Cummulative Lossyness : For any tag∗ ∈ {0, 1}t, any pk ← KeyGen(1λ, tag∗), if we define
F lossypk (x) := {(tag, Fpk,tag(x)) : tag 6= tag∗} to be the set of evaluations of all lossy tags
cumulatively, then the image of Fpk,lossy is of size at most |{F lossypk (x) : x ∈ {0, 1}n}| ≤ 2`.

Indisitnguishability: For any tag∗0, tag∗1 ∈ {0, 1}t, the distributions KeyGen(1λ, tag∗0) and KeyGen(1λ, tag∗1)
are computationally indistinguishable. (We say that the CALBO has security level σ = σ(λ)
if every PPT distinguisher has distinguishing advantage at most µ(λ) ≤ 1/σ(λ).)

Note that the lossiness property can be equivalently stated as follows: there exists some (po-
tentially inefficient) functions g : {0, 1}n → {0, 1}` and h : {0, 1}` × {0, 1}t → {0, 1}n such that
for all x ∈ {0, 1}n and tag ∈ {0, 1}t with tag 6= tag∗ we have Fpk,tag(x) = h(tag, g(x)).

5.3.1 Constructing CALBOs

We now show how to construct “Cumulatively All-Lossy-But-One Functions” (CALBOs) from
arbitrary Lossy Functions. In doing so, we need to solve two issues:

• Firstly, the output size m of an LF can be much larger than the input size n while in a
CALBO the output size needs to equal the input size.

• Secondly, a CALBO has a large tag space while an LF can be thought of as only having two
tags b = 0 and b = 1.

We solve the first issue by using k-wise independent hash functions to compress the output. We
solve the second issue by using composing many lossy functions together.

Construction. Let (KeyGen, F) be an (n,m, `)-family of Lossy-Functions (LFs), for some poly-
nomial input length n = n(λ), output length m = m(λ) and leakage ` = `(λ). Let H =
{h : {0, 1}m × {0, 1}n} be a collection of d-wise independent hash functions. For any polyno-
mial tag length t, we define the CALBO (KeyGen′, F ′) as follows:

• pk ← KeyGen′(1λ, tag∗): For i = 1, . . . , t generate hi ← H, pki,tag∗i ← KeyGen(1λ, 1) and
pki,1−tag∗i ← KeyGen(1λ, 0) where tag∗i denotes the i’th bit of tag∗. Output

pk = ({pki,b}i∈[t],b∈{0,1}, {hi}i∈[t]).

• y = F ′pk,tag(x). If we let tagi denote the i’th bit of tag, we define:

F ′pk,tag(x) = ht ◦ Fpkt,tagt
◦ ht−1 ◦ Fpkt−1,tagt−1

· · · ◦ h1 ◦ Fpk1,tag1
(x)

To facilitate notation, we define the function F ′pk,w(x) inductively for all w ∈ {0, 1}≤t. If
|w| = 0 then F ′pk,w(x) = x. For any w = b||w′ with |w| = i and b ∈ {0, 1}, we define
F ′pk,w(x) = hi(Fpki,b

(F ′pk,w′(x))).

Theorem 5.7. For any polynomial t, if (KeyGen, F) is an (n,m, `)-LF then the above construction
(KeyGen′, F ′) with d = max{2et, n+ λ} is a (n, t, `′, d)-CALBO where `′ = ` · t.

25

Proof. The indistinguishability property of the CALBO follows immediately from that of the un-
derlying LF.

To argue the cumulative lossiness of the CALBO, let pk ← KeyGen′(1λ, tag∗) and, for each
i ∈ [t], let wi = (1 − tag∗i)||tag∗i−1||tag∗i−2|| · · · and zi = F ′pk,wi

(x). Then, for any tag 6= tag∗,
the value F ′pk,tag(x) is completely determined z1, . . . , zt. In particular, if i is the smallest value
such that tagi 6= tag∗i then F ′pk,tag(x) is completely determined by zi. On the other hand, with
overwhelming probability over the choice of pki,1−tag∗i there are only 2` possible values for each
zi and therefore 2t` possible values for (z1, . . . , zt). Therefore, with overwhelming probability, the
image of F lossypk (x) :=

{
(tag, F ′pk,tag(x)) : tag 6= tag∗

}
is of size at most 2t`.

To argue the almost injectivity of the CALBO, fix some tag∗ ∈ {0, 1}t and let wi = tag∗i || . . . ||tag∗1.
Let pk = ({pki,b}i∈[t],b∈{0,1}, {hi}i∈[t]) ← KeyGen′(1λ, tag∗). First note that, with overwhelming
probability, Fpki,tag∗

i
is injective for each i ∈ [t]. If this happens, we claim that, with overwhelming

probability over the choice of h1, . . . , ht for all y ∈ {0, 1}n, it holds that |F−1
pk,tag∗(y)| ≤ d. The only

way that the latter may not happen is if there exists some set S = {x1, . . . , xd} ⊆ {0, 1}n and some
values I = (i2, . . . , id) ∈ [t] such that each ij ≤ t is the smallest i for which F̂pk,wi

(xj) = F̂pk,wi
(x1).

For any S, I the probability of this happening (by d-wise independence) is 2−n(d−1). By the union
bound, the probability of such values S, I existing is the

≤
(

2n

d

)
td−12−n(d−1)

≤ (e2n/d)dtd−1(1/2n)d−1 ≤ (e2n/d)(et/d)d−1 ≤ 2n(1/2)n+λ−1

≤ 2−λ+1 = negl(λ).

The works of [PW08, FGK+10, AKPW13] show how to construct “very” lossy functions. In
particular, under any of (1) the decision-linear assumption (DLIN) which is implied by DDH,
(2) the decisional composite residuosity (DCR) assumption, or the learning with error (LWE)
assumptions they achieve the following: for any arbitrarily large input n = poly(λ) and arbitrarily
small leakage ` = λΩ(1), there exists an (n,m, `)-LF for some polynomial m = poly(λ).

Corollary 5.8. Under any of (DDH, DLIN, LWE, DCR), the following holds. For any polynomial
n = n(λ), t = t(λ) and any ε > 0 exist (n, t, `, d) CALBOs with ` = t · λε and d = λO(1).

5.3.2 ED-Extractor from CALBOs: Quasi-Polynomial Security Loss

Construction. Let (KeyGen, F) be an (n, t, `, d)-CALBO. Let 2Ext : {0, 1}n×{0, 1}n → {0, 1}m
be a (e1, e2, δ) strong-2-source extractor. Let f : {0, 1}λ ×{0, 1}n → {0, 1}t be a PRF family. We
construct an ED-Extractor (SeedGen,EDExt) as follows:

• SeedGen(1λ): Sample a random tag∗ ← {0, 1}t, pk ← KeyGen(1λ, tag∗), s ← {0, 1}n, k ←
{0, 1}λ. Output seed = (s, pk, k).

• EDExt(x, seed): Let tag = f(k, x), y = Fpk,tag(s). Output 2Ext(x, y).

26

Intuition. Intuitively, the PRF ensures that if the sample x differs from all prior queries xi to the
extractor then the corresponding tag = f(k, x) differs from all tagi = f(k, xi). Since tag∗ is hidden
by pk, there is a (roughly) 2−t chance that tag = tag∗ is the injective tag and, since the adversary
cannot tell if this happens, his success probability must remain high even if it does. But in this
case the value y = Fpk,tag(s) has a lot of entropy even conditioned on the entire view of the source,
which only depends on F lossypk (s). Moreover y and x are independent of each other conditioned on
F lossypk (s). Therefore, we can rely on the strong 2-source extractor security to guarantee

Theorem 5.9. The above construction is an α-entropy secure ED-Extractor as long as the tag size
is t = ω(log λ), e1 = α − 1, e2 = n − ` − log d − 1, δ = 2−tnegl(λ) and the CALBO has security
level 2tλω(1).

Proof. The proof follows via a sequence of hybrids.

Hybrid 0. This is the ED-Extractor game with a source/distinguisher S,D. The game proceeds
as follows:

• Sample a random bit b← {0, 1} and a random seed = (s, pk, k)← SeedGen(1λ).
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• Let b′ = D(1λ, seed, aux, r).

Let Pr[b = b′] ≥ 1
2 + ε(λ).

Hybrid 1. This is the same as Hybrid 0 except that, if S outputs some value x such that f(k, x) =
f(k, xi) for some previous query xi then output a random bit b′.

• Sample a random bit b← {0, 1} and a random seed = (s, pk, k)← SeedGen(1λ).
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If f(k, x) = f(k, xi) for some value xi on which S previously queried its oracle then set
b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

By the legality condition, we know that the sample x differs from all other queries xi. Since
the PRF has output length t = ω(log λ), the probability that f(k, x) = f(k, xi) for some
query xi is negligible (otherwise the sampler S breaks PRF security). Therefore we have
Pr[b = b′] ≥ 1

2 + ε(λ)− negl(λ).

Hybrid 2. In hybrid 2, we sample random tag′ ← {0, 1}t at the very beginning of the game.
(This is done independently of the choice of tag∗ ← {0, 1}t that is used to select pk ←
KeyGen(1λ, tag∗) during the run of SeedGen.) If for the value x output by S we have f(k, x) 6=
tag′ then we output a random bit b′, and otherwise we proceed as in Hybrid 1. In more detail,
the hybrid proceeds as follows.

• Sample a random bit b← {0, 1} and a random seed = (s, pk, k)← SeedGen(1λ). Sample
a random tag′ ← {0, 1}t.

27

• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If f(k, x) 6= tag′ or f(k, x) = f(k, xi) for some value xi on which S previously queried

its oracle then set b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

Since tag′ is random and independent of other values in the experiment, the probability of it
being correct is exactly 2−t. Therefore:

Pr[b = b′] = |Pr[b = b′ ∧ f(k, x) = tag′] + Pr[b = b′ ∧ f(k, x) 6= tag′]

≥ (1
2 + ε(λ)− negl(λ))2−t + (1− 2−t)1

2
≥ 1

2 + 2−t(ε(λ)− negl(λ))

Hybrid 3. In this hybrid, instead of choosing tag′ randomly, we set it to be the injective tag tag∗.
In particular, the hybrid is defined as follows:

• Sample a random bit b ← {0, 1} and tag′ ← {0, 1}t. Sample the seed = (s, pk, k) by
selecting pk← KeyGen(1λ, tag′) and s← {0, 1}n, k ← {0, 1}λ as before.
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If f(k, x) 6= tag′ or f(k, x) = f(k, xi) for some value xi on which S previously queried

its oracle then set b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

Hybrid 3 and Hybrid 2 are indistinguishable by the security of the CALBO. In particular,
we can think of both Hybrids 2,3 as choosing two tags tag∗, tag′ uniformly at random in the
beginning of the game, but only tag′ is used later in the game to perform the check in the
4th line, while tag∗ is not used anywhere else. The only difference between Hybrid 2 and 3 is
then that we choose pk← KeyGen(1λ, tag∗) in Hybrid 2 and pk← KeyGen(1λ, tag′) in Hybrid
3. These are indistinguishable by CALBO security. By choosing the CALBO to have security
level 2tλω(1), the distinguishing advantage becomes 2−tnegl(λ) and therefore, in hybrid 3, we
have:

Pr[b = b′] ≥ 1
2 + 2−t(ε(λ)− negl(λ))− 2−tnegl(λ) ≥ 1

2 + 2−t(ε(λ)− negl(λ)).

Hybrid 4. In this hybrid, we always choose r as uniform. In particular, the hybrid is defined as
follows:

• Sample a random bit b ← {0, 1} and tag′ ← {0, 1}t. Sample the seed = (s, pk, k) by
selecting pk← KeyGen(1λ, tag′) and s← {0, 1}n, k ← {0, 1}λ as before.
• Run (x, aux)← SEDExt(·,seed)(1λ).
• Set r ← {0, 1}m.

28

• If f(k, x) 6= tag′ or f(k, x) = f(k, xi) for some value xi on which S previously queried
its oracle then set b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

Fix any choice of tag′, k, pk in the experiment for the remainder of the analysis.
Let S,X,AUX,SEED = (S, pk, k) be random variables for the corresponding values in the
experiment. Let Y = Fpk,tag′(S). Let E be a random variable which is 0 if “f(k,X) 6= tag′
or f(k,X) = f(k,Xi) for some value Xi on which S previously queried its oracle” and 1
otherwise. Define X̂ and Ŷ to be equal to X,Y respectively if E = 1 and to be uniformly
random and independent over {0, 1}n otherwise. Let R = 2Ext(X̂, Ŷ).

Claim 5.9.1. There is a randomized function A such that Pr[A(S,AUX, E,R) = 1] = Pr[b =
b′ in hybrid 3] and Pr[A(S,AUX, E, Um) = 1] = Pr[b = b′ in hybrid 4].

Proof. We define A(s, aux, e, z) to choose a random b ← {0, 1}. If e = 0, select b′ ← {0, 1}.
If e = 1 let b′ = D(1λ, (s, pk, k), aux, z′) where z′ = z if b = 0 and z′ ← {0, 1}m otherwise.
Output 1 iff b = b′.
It’s easy to see the claim follows. In particular, the only time A(S,AUX, E,R) makes use of
R = 2Ext(X̂, Ŷ) is when E = 1 in which case R = EDExt(X,SEED).

Claim 5.9.2. The statistical distance SD((S,AUX, E,R), (S,AUX, E, Um)) ≤ δ.

Proof. Let us define an additional random variable L = F lossypk (S). First, we claim that

SD((S,AUX, E,R), (S,AUX, E, Um)) ≤ SD((S,AUX, L,E,R), (S,AUX, L,E, Um))
≤ SD((Y,AUX, L,E,R), (Y,AUX, L,E, Um))
≤ SD((Ŷ ,AUX, L,E,R), (Ŷ ,AUX, L,E, Um))

The first inequality follows since adding information can only increase the statistical distance.
The second inequality follows since S is independent of (AUX, E,R) conditioned on (Y, L) and
therefore we can think of S as a randomized function of (Y, L). The last inequality follows
since Y is independent of R conditioned on (Ŷ ,AUX, L,E) and therefore we can think of Y
as a randomized function of (Ŷ ,AUX, L,E).
Next, we note that X̂, Ŷ are independent conditioned on (AUX, L,E).
Furthermore we have:

H∞(X̂|L,E,AUX) ≥ H∞(X|L,E,AUX)
≥ H∞(X|L,AUX)− 1
≥ H∞(X|SEED,AUX)− 1
≥ α− 1

The first inequality follows since X̂ is harder to predict than X, and the third inequality
follows since L = F lossypk (S) is fully determined by SEED + (S, pk, k).

29

We also have:

H∞(Ŷ |L,E,AUX) ≥ H∞(Ŷ |L,E)
≥ H∞(Ŷ)− `− 1
≥ H∞(Y)− `− 1
≥ n− log d− `− 1

The first inequality follows since Ŷ is independent of AUX conditioned on L,E and the third
inequality follows since Y = Fpk,tag′(S) where S is uniform over {0, 1}n and Fpk,tag′ is at most
d-to-1 so maxy Pr[Y = y] = maxy Pr[S ∈ F−1

pk,tag′(y)] ≤ d/2n.
Therefore, by the security of the strong two source extractor, we have

SD((Ŷ ,AUX, L,E,R = 2Ext(X̂, Ŷ)), (Ŷ ,AUX, L,E, Um)) ≤ δ

which concludes the proof of the claim.

Combining the two claims, we have:

1
2 = Pr[b = b′ in hybrid 4] ≥ Pr[b = b′ in hybrid 3]− δ ≥ 1

2 + 2−t(ε(λ)− negl(λ))

Therefore, we must have ε(λ) = negl(λ), which completes the proof.

Corollary 5.10. Under the quasi-polynomial security of any of (DDH, DLIN, LWE, DCR), there
exists an ED-Extractor for α-entropy sources with auxiliary info, for any α = λΩ(1) and with any
polynomial input length n and output length m. Security holds against polynomial-time sources and
distinguishers.

Proof. We can assume n >≥ λ (we can always apply the construction on shorter inputs by append-
ing 0s to the input). We rely on the CALBOs of Corollary 5.8. In particular, we set the tag length
t = log2 λ. we can rely on an (n, t, `, d) CALBOs with ` = t · λ.1 ≤ λ.2 and d = λO(1) and quasi-
polynomial security level λ2 log λ. We then rely on the Raz 2-source extractor (Theorem 2.5) with
e1 = α−1 = λΩ(1), e2 = n−`− log d−1 ≥ n−n.2−O(logn) ≥ (1−o(1))n, δ = 2−λΩ(1) = 2−tnegl(λ)
and m = λΩ(1). This satisfies the conditions of the theorem and therefore gives use the claimed
result, except that the output size is only m = λΩ(1). We can then apply a PRG to the output to
get arbitrarily large output size.

5.3.3 ED-Extractor from CALBOs: Polynomial Security Loss

Construction. Let imax, jmax, v be some parameters (in the security parameter λ). For i =
1, . . . , imax and let (KeyGeni, F i) be an (n, i, `, d)-CALBO with tags of length i. Let f : {0, 1}λ ×
{0, 1}n → {0, 1}v be a PRF family and let G : {0, 1}v → {0, 1}w be a PRG with input size v
output size w = jmaximax(imax + 1)/2. Let 2Ext : {0, 1}n × {0, 1}n → {0, 1}m be a (e1, e2, δ)
strong-2-source extractor (see Definition 2.4). We construct an ED-Extractor (SeedGen,EDExt) as
follows:

• SeedGen(1λ): For i ∈ [imax] and j ∈ [jmax]: sample a random tag∗i,j ← {0, 1}i, pki,j ←
KeyGeni(1λ, tag∗i,j), si,j ← {0, 1}n, k ← {0, 1}λ. Output seed = ({si,j , pki,j}, k).

30

• EDExt(x, seed): Let z = f(k, x). Parse {tagi,j} = G(z) as a collection of tags for i ∈ [imax], j ∈
[jmax] with |tagi,j | = i. For i ∈ [imax] and j ∈ [jmax]: let yi,j = F ipki,j ,tagi,j

(si,j). Let
y :=

⊕
i,j yi,j . Output 2Ext(x, y).

Intuition. Assume the source makes q queries to the oracle. Our reduction will then target the
value i∗ = dlog qe+1 ∈ [imax]. There are 2i∗ ≥ 2q possible tags of length i∗. For each j ∈ [jmax], the
source’s queries to EDExt produce at most q different tags in position (i∗, j), and therefore at most
only 1/2 of all possible tags that could be in that position. This means that, with overwhelming
probability, there is some j∗ such that the tag in position (i∗, j∗) produced by the computation
of EDExt on the actual sample x∗ was never produced in that position by any prior query. We
can then guess j∗ as well as the tag of length i∗ that’s produced in position (i∗, j∗) on the sample
x∗. This guess is correct with inverse polynomial probability 1/(jmax2i∗) ≤ 1/(4jmaxq). Now we
choose the public key pki∗,j∗ so that the guessed tag is the injective one. This is indistinguishable
by the CALBO. The rest of the proof proceeds analgously to the previous one, where we rely on
the fact that, if our guess is correct, then si∗,j∗ (and hence also yi∗,j∗) have very high entropy, even
conditioned on the view of the source.

Theorem 5.11. The above construction is an α-entropy secure ED-Extractor as long as imax, jmax =
ω(log λ), e1 = α− v − 1, e2 = n− `− v − log d− 1, δ = negl(λ).

Proof. Let S,D be some adversarial source/distinguisher pair. Assume that the sampler S makes
at most q queries to its oracle and let i∗ = dlog qe+ 1. The proof follows via a sequence of hybrids.

Hybrid 0. This is the ED-Extractor game with a source/distinguisher S,D. The game proceeds
as follows:

• Sample a random bit b← {0, 1} and a random seed← SeedGen(1λ).
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• Let b′ = D(1λ, seed, aux, r).

Let Pr[b = b′] ≥ 1
2 + ε(λ) for some ε.

Hybrid 1. We define the event BAD to occur if, for all j ∈ [jmax], the value of tagi∗,j produced
in position (i∗, j) during the computation EDExt(x, seed) already also appeared in position
(i∗, j) during the computation of EDExt(xa, seed) for some prior query xa. In Hybrid 1, we
choose b′ uniformly at random if BAD occurs.

• Sample a random bit b← {0, 1} and a random seed← SeedGen(1λ).
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If BAD occurs, then set b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

We claim that the probability of BAD occurring is negligible. By the legality condition, we
know that the sample x differs from all prior queries xa made by S. Furthermore, S only
made q queries to the oracle before outputting a sample. Therefore, these queries produced

31

at most q distinct tags in each position (i∗, j), out of a total of 2i∗ ≥ 2q possible tags. If
the values tagi∗,j corresponding to the sample x were truly random, the probability that for
each j ∈ [jmax] such tag also already appeared in position (i∗, j) for a previous query would
therefore be at most (q/2i∗)−jmax ≤ 2−jmax = negl(λ). Therefore, if S can trigger the event
BAD with non-negligible probability it can break the security of the PRF or the PRG.
This shows that, in Hybrid 1, we have
Pr[b = b′] ≥ 1

2 + ε(λ)− negl(λ).

Hybrid 2. In hybrid 2, we sample random value j∗ ← [jmax], tag′ ← {0, 1}i∗ at the very beginning
of the game. If ¬BAD occurs then there exists some j ∈ [jmax], such that the value of tagi∗,j
produced in position (i∗, j) during the computation EDExt(x, seed) never appeared in position
(i∗, j) during the computation of EDExt(xa, seed) for any prior query xa. Let j′ be the minimal
j for which the above holds. We define the event GUESS to occur if ¬BAD occurs and j∗ = j′

and tag′ = tagi∗,j∗ . We define Hybrid 2 to choose b′ uniformly at random if either BAD or
¬GUESS occurs.

• Sample a random j∗ ← [jmax], tag′ ← {0, 1}i∗ . Sample a random bit b ← {0, 1} and a
random seed← SeedGen(1λ).
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If BAD ∨ ¬GUESS occurs, then set b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

If we let b′0 = D(1λ, seed, aux, r) in the above experiment and set p = jmax2i∗ , then we have:

Pr[b = b′] ≥ Pr[b = b′ ∧ ¬BAD]
≥ Pr[b = b′ ∧ ¬BAD ∧ GUESS] + Pr[b = b′ ∧ ¬BAD ∧ ¬GUESS]

≥ Pr[b = b′0 ∧ ¬BAD ∧ GUESS] + 1
2 Pr[¬BAD ∧ ¬GUESS]

≥ Pr[b = b′0 ∧ ¬BAD] Pr[GUESS | b = b′0 ∧ ¬BAD]

+1
2(1− Pr[GUESS | ¬BAD]) Pr[¬BAD]

≥ (Pr[b = b′0]− Pr[BAD])(1/p) + 1
2(1− 1/p)(1− Pr[BAD])

≥ (1
2 + ε(λ)− negl(λ))(1/p) + 1

2(1− 1/p)(1− negl(λ))

≥ 1
2 + ε(λ)/p− negl(λ)

We rely on the fact that, if we condition on ¬BAD then, Pr[GUESS] = 1/p where the prob-
ability is only over the choice of j∗, tag′ and independent of any other randomness in the
game.

Hybrid 3. In this hybrid, we set the injective tag tag∗i∗,j∗ to be tag′. In particular, the hybrid is
defined as follows:

32

• Sample a random j∗ ← [jmax], tag′ ← {0, 1}i∗ . Sample a random bit b← {0, 1}. Sample
the seed = ({si,j , pki,j}, k) by selecting pki∗,j∗ ← KeyGen(1λ, tag′) and choosing all other
components in the same manner as previously.
• Run (x, aux)← SEDExt(·,seed)(1λ).
• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
• If BAD ∨ ¬GUESS occurs then set b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

Hybrid 3 and Hybrid 2 are indistinguishable by the security of the CALBO. In particular,
we can think of both Hybrids 2,3 as choosing two tags tag∗i∗,j∗ , tag′ uniformly at random
in the beginning of the game, but only tag′ is used later in the game to determine if the
event GUESS occurred. The only difference between Hybrid 2 and 3 is then that we choose
pki∗,j∗ ← KeyGen(1λ, tag∗i∗,j∗) in Hybrid 2 and pki∗,j∗ ← KeyGen(1λ, tag′) in Hybrid 3. These
are indistinguishable by CALBO security and therefore, in hybrid 3, we have:

Pr[b = b′] ≥ 1
2 + ε(λ)/p− negl(λ).

Hybrid 4. In this hybrid, we always choose r as uniform. In particular, the hybrid is defined as
follows:

• Sample a random j∗ ← [jmax], tag′ ← {0, 1}i∗ . Sample a random bit b← {0, 1}. Sample
the seed = ({si,j , pki,j}, k) by selecting pki∗,j∗ ← KeyGen(1λ, tag′) and choosing all other
components in the same manner as previously.
• Run (x, aux)← SEDExt(·,seed)(1λ).
• Choose r ← {0, 1}m.
• If BAD ∨ ¬GUESS occurs then set b′ ← {0, 1}, else set b′ = D(1λ, seed, aux, r).

Fix any choice of tag′, j∗, k, {pki,j}, {si,j : (i, j) 6= (i∗, j∗)} in the experiment for the remainder
of the analysis.
Let Si∗,j∗ , X,AUX, SEED be random variables for the corresponding values in the experiment.
Let Yi∗,j∗ = F i

∗
pki∗,j∗ ,tag′(Si∗,j∗). Let Z = fk(X). The seed Z determines all the values

{TAGi,j} = G(Z). Let Yi,j = F ipki,j ,TAGi,j
(si,j) for (i, j) 6= (i∗, j∗). Let Y =

⊕
i,j Yi,j . Let E

be a random variable which is 0 if BAD ∨ ¬GUESS and 1 otherwise. Define X̂ and Ŷ to be
equal to X,Y respectively if E = 1 and to be uniformly random and independent over {0, 1}n
otherwise. Let R = 2Ext(X̂, Ŷ).

Claim 5.11.1. There is a randomized function A such that Pr[A(Si∗,j∗ ,AUX, E,R) = 1] =
Pr[b = b′ in hybrid 3] and Pr[A((Si∗,j∗ ,AUX, E, Um) = 1] = Pr[b = b′ in hybrid 4].

Proof. We define A(si∗,j∗ , aux, e, r) to choose a random b← {0, 1}. Let seed = ({si,j , pki,j}, k)
where si∗,j∗ is given as an input and the remaining values are already fixed. If e = 0, select
b′ ← {0, 1}. If e = 1 let b′ = D(1λ, seed, aux, r′) where r′ = r if b = 0 and r′ ← {0, 1}m
otherwise. Output 1 iff b = b′.
It’s easy to see the claim follows. In particular, the only time A(S,AUX, E,R) makes use of
R = 2Ext(X̂, Ŷ) is when E = 1 in which case R = EDExt(X,SEED).

33

Claim 5.11.2. The statistical distance SD((Si∗,j∗ ,AUX, E,R), (Si∗,j∗ ,AUX, E, Um)) ≤ δ.

Proof. Let us define an additional random variable L = F lossypki∗,j∗
(Si∗,j∗) and recall that Z =

fk(X). First, we claim that

SD((Si∗,j∗ ,AUX, E,R), (Si∗,j∗ ,AUX, E, Um)) ≤ SD(Si∗,j∗ ,AUX, L, Z,E,R), (Si∗,j∗ ,AUX, L, Z,E,Um))
≤ SD((Yi∗,j∗ ,AUX, L, Z,E,R), (Yi∗,j∗ ,AUX, L, Z,E,Um))
≤ SD((Ŷ ,AUX, L, Z,E,R), (Ŷ ,AUX, L, Z,E,Um))

The first inequality follows since adding information can only increase the statistical distance.
The second inequality follows since Si∗,j∗ is independent of (AUX, E, Z,R) conditioned on
(Yi∗,j∗ , L) and therefore we can think of Si∗,j∗ as a randomized function of (Yi∗,j∗ , L). The
last inequality follows since Yi∗,j∗ is independent of R conditioned on (Ŷ ,AUX, L, Z,E) and
therefore we can think of Yi∗,j∗ as a randomized function of (Ŷ ,AUX, L, Z,E).
Next, we note that X̂, Ŷ are independent conditioned on (AUX, L, Z,E).
Furthermore we have:

H∞(X̂|L,Z,E,AUX) ≥ H∞(X|L,Z,E,AUX)
≥ H∞(X|L,AUX)− v − 1
≥ H∞(X|SEED,AUX)− v − 1
≥ α− v − 1

The first inequality follows since X̂ is harder to predict than X, and the third inequality
follows since L is fully determined by SEED.
We also have:

H∞(Ŷ |L,Z,E,AUX) ≥ H∞(Ŷ |L,Z,E)
≥ H∞(Y |L,Z,E)
≥ H∞(Yi∗,j∗ |L,Z,E)
≥ H∞(Yi∗,j∗)− `− v − 1
≥ n− log d− `− v − 1

The first inequality follows since Ŷ is independent of AUX conditioned on L,Z,E and the
third inequality follows since Y is completely determined by Z, Yi∗,j∗ .The last inequality
follows since Yi∗,j∗ = F i

∗
pki∗,j∗ ,tag′(Si∗,j∗) where Si∗,j∗ is uniform over {0, 1}n and F i∗pki∗,j∗ ,tag′ is

at most d-to-1 so maxy Pr[Y = y] = maxy Pr[Si∗,j∗ ∈ F i
∗,−1

pki∗,j∗ ,tag′(y)] ≤ d/2n.

Therefore, by the security of the strong two source extractor, we have

SD((Ŷ ,AUX, L, Z,E,R = 2Ext(X̂, Ŷ)), (Ŷ ,AUX, L, Z,E,Um)) ≤ δ

which concludes the proof of the claim.

34

Combining the two claims, we have:

1
2 = Pr[b = b′ in hybrid 4] ≥ Pr[b = b′ in hybrid 3]− δ ≥ 1

2 + ε(λ)/p− negl(λ)

where p = jmax2i∗ ≤ jmax(4q) = poly(λ).

Therefore, we must have ε(λ) = negl(λ), which completes the proof.

Corollary 5.12. Assuming the security of any of (DDH, DLIN, LWE, DCR), there exists an ED-
Extractor for α-entropy sources with auxiliary info, for any α = λΩ(1) and with any polynomial input
length n and output length m. Security holds against polynomial-time sources and distinguishers.

Proof. We can assume n >≥ λ (we can always apply the construction on shorter inputs by append-
ing 0s to the input). We set imax, jmax = λ.1. We set v = min{α/2, λ.1}. We rely on the CALBOs
of Corollary 5.8, so that for any i we have an (n, i, `, d) CALBOs with ` = i·λ.1 ≤ λ.2 and d = λO(1).
We then rely on the Raz 2-source extractor (Theorem 2.5) with e1 = α− v − 1 ≥ α/2− 1 = λΩ(1),
e2 = n − ` − v − log d − 1 ≥ n − 2n.2 − O(logn) ≥ (1 − o(1))n, δ = 2−λΩ(1) and m = λΩ(1). This
satsifies the conditions of the Theorem and therefore gives use the claimed result, except that the
output size is only m = λΩ(1). We can then apply a PRG to the output to get arbitrarily large
output size.

5.4 Negative Results for ED Extractors with Auxiliary Info

Our constructions of ED-Extractors in the auxiliary info setting have several disadvantages com-
pared to our construction in the setting without auxiliary info. Firstly, in the auxiliary info setting
we needed complex constructions based on “cryptomania” assumptions (LWE and DDHI), whereas
in the setting without auxiliary info, we showed that any sufficiently secure PRF is a good ED-
Extractor. Secondly, in the auxiliary info setting we only achieved security for polynomial-time
distinguishers while in the setting without auxiliary info we got security even for computationally
unbounded distinguishers. In this section, we give some evidence that the two setting are substan-
tially different and that we indeed need to work harder and cannot hope for as much in the setting
with auxiliary info.

5.4.1 Not All PRFs are ED-Extractors with Aux Info

Firstly, we show that not every PRF is a good ED-Extractor in the setting with auxiliary info. We
give two variants of this result. The first is based on collision-resistant hash functions (CRHFs)
and gives a PRF that is not an α-ED-Extractor for entropy α = n− λε. The second one is based
on fully homomorphic encryption and gives a PRF that is not an α-ED Extractor even for entropy
α = n− 1. In both cases, the result holds even if the PRF/ED-Extractor only outputs 1 bit.

CRHF-based Construction. Let F ′ : {0, 1}` × {0, 1}n′ → {0, 1} be a PRF with key-length
` = `(λ), input length n′ = n′(λ) and output length 1. Let H : {0, 1}d × {0, 1}n → {0, 1}n′ be
a collision-resistant hash function (CRHF) with seed length d = d(λ), input length n = n(λ) and
output length n′ = n′(λ). We define a PRF F : {0, 1}`+d × {0, 1}n → {0, 1} as follows. Parse the
key k = (k′, s) with k′ ∈ {0, 1}`, s ∈ {0, 1}d. Define F (k, x):

35

• If x ≤ d output s[x], where we interpret x as an integer in the range [2n] and s[x] denotes the
x’th bit of s.

• Else output F (k′, H(s, x)).
It is easy to see that F is a PRF if F ′ is a PRF and H is a CRHF. On the other hand it is
not an α = (n − n′)-ED-Extractor. In particular, consider the source that queries the oracle on
values 1, . . . , d to learn the CRHF seed s. It then chooses a random x ← {0, 1}n and outputs
x, aux = H(s, x). It is clearly an α legal source. Yet we can define a distinguisher D that gets
k = (k′, s), aux, r and outputs 1 iff r = F (k′, aux). Then D always outputs 1 if r is the outputs
of the ED-Extractor on x but only outputs 1 with probability 1/2 if r is truly random, giving it
a non-negligible advantage of 1/2. For parameters, we note that the existence of CRHFs implies
the existence of a CRHF with arbitrary polynomial input size n = n(λ) and output size λε for any
constant ε > 0. Therefore, we get a PRF with arbitrary polynomial input size n = n(λ) and output
size m = 1, which is not an α-ED-Extractor for α = n− λε.
Theorem 5.13. Assuming the existence of collision-resistant hash functions, for every polynomial
n = n(λ) and every constant ε > 0 there exists a PRF with n-bit input and 1-bit output which is
not a secure α-ED-Extractor with axuliary input for α = n− λε.

FHE-based Construction. Let F ′ : {0, 1}` × {0, 1}n′ → {0, 1} be a PRF with key-length ` =
`(λ), input length n′ = n′(λ) and output length 1. Let (KeyGen,Enc,Dec,Eval) be an FHE scheme
capable of evaluating the PRF F ′. Furthermore assume that the ciphertexts are pseudorandom and
that the Eval procedure is statistically circuit private. Assume that the key-generation algorithm
and the encryption algorithm each use at most d = d(λ) bits of randomness, and that the encryption
of an `-bit message produces an `′-bit ciphertext. Define the the PRF F : {0, 1}`+2d × {0, 1}n →
{0, 1} as follows. Parse the key k = (k′, s1, s2) with k′ ∈ {0, 1}`, s1, s2 ∈ {0, 1}d. Define F (k, x):
• Check if x ≤ `′(where we interpret x as an integer in the range [2n]). If so let (pk, sk) ←

KeyGen(1λ; s1), ct← Enc(pk, k; s2). Output the x’th bit of ct denoted by ct[x].

• Else output F (k, x).
It is easy to see that F is a secure PRF: by the security of the FHE with pseuduorandom

ciphetexts, we can replace ct by a uniformly random value independent of k, and by the security
of the PRF F ′ the above is then a good PRF. On the other hand it is not an α = (n − 1)-ED-
Extractor. In particular, consider the source that queries the oracle on values 1, . . . , `′ to learn the
the ciphertext ct. It then chooses a random x ← {0, 1}n and outputs x, aux = Eval(F ′(·, x), ct)
so that aux is an FHE encryption of F ′(k, x). Since Eval is circuit private aux does not reveal
anything about x beyond F (k, x) and therefore is an α = n − 1 legal source. Yet we can define a
distinguisher D that gets k = (k′, s1, s2), aux, r and outputs 1 iff Dec(sk, aux) = r where (pk, sk)←
KeyGen(1λ; s1). Then D outputs 1 with probability 1) if r is the outputs of the ED-Extractor on x,
but only outputs 1 with probability 1/2 if r is truly random, giving it a non-negligible advantage of
1/2− negl(λ). Therefore, we get a PRF with arbitrary polynomial input size n = n(λ) and output
size m = 1, which is not an α-ED-Extractor for α = n− 1.
Theorem 5.14. Assuming the existence of Fully Homomorphic Encryption (FHE) with statistical
circuit privacy and pseudorandom ciphertexts, for every polynomial n = n(λ) there exists a PRF
with n-bit input and 1-bit output which is not a secure α-ED-Extractor with axuliary input for
α = n− 1.

36

5.4.2 Black-Box Separations

We now show give two black-box separation results, showing that certain types of ED-Extractors
cannot be proven secure via a black-box reduction from virtually any “standard” computational
assumption (e.g.,including general assumptions such as the existence of one-way functions or public-
key encryption, as well as specific assumptions such as DDH, LWE, RSA, etc., even if we assume
(sub-)exponential security). In particular, we show two results of this type. Firstly, we show that
one cannot prove the security of any ED-Extractor in the auxiliary info setting against computa-
tionally unbounded distinguishers (and polynomial-time sources) under such assumptions. This is
contrast to the setting without auxiliary info, where we were able to do so. Secondly, we show
that one cannot prove security in the auxiliary input setting (even for polynomial-time sources and
distinguisher) of any ED-Extractor that has a certain type of seed-committing property: if you
query the extractor EDExt on some polynomial set of values x1, . . . , xq then the output uniquely
fixes a single possible seed that could have produced it. This is true for many natural constructions,
such as the Naor-Reingold PRF or most block-cipher and hash-function based constructions. (But
is crucially not true for our constructions based on constrained PRFs.) We view this as partial
evidence that more complex constructions are necessary in the setting with auxiliary info.

Note that these results do not show that ED-Extractors with such properties cannot be con-
structed; in fact the work of Coretti et al. [CDKT19] in the random-oracle model can be interpreted
as showing that “good” hash functions are heuristically likely to be good ED-Extractors in the aux-
iliary info setting with security even against computationally unbounded distingusihers, and they
are also likely to be seed-committing. However, our results show that we cannot prove security
under standard assumptions.

Our results are of the same flavor as the work of Wichs [Wic13]. They define the class of (single-
stage) cryptographic game assumptions, which are modeled via a game between a challenger and
a stateful adversary. They require that any polynomial-time (or sub-exponential time) attacker
has at most a negligible (or inverse sub-exponential) success probability in winning the game. This
captures essentially all standard assumptions used in cryptography. However, the security definition
of ED-Extractors is not a single-stage game since it involves two separate entities (the source and
the distinguisher) who cannot share state.

We use the “simulatable attacker” paradigm (also called a meta-reduction) to prove our black
box separations. This paradigm is formalized in [Wic13] and we give a high-level overview. To
prove a separation, we design a class of inefficient attackers Ah indexed by some h that break the
security property but otherwise satisfy any strucutral/legality conditions (e.g., being multi-stage,
entropy conditions etc.). However we also design an efficient simulator A′ that may not satisfy such
conditions, such that one cannot distinguish between black-box access to Ah for a random h versus
A′. Therefore if some reduction can break an assumption given black-box access to every Ah it
would also be able to do so given access to A′. If for any polynomial ` we can further show such
a simulatable attack which is 2−`(λ) indistinguishable, then we also rule out black-box reductions
under sub-expoential or even exponential assumptions.

Unbounded Distinguishers. We first give a black-box reduction for ED-Extractors in the aux-
iliary info setting with security against unbounded distinguishers. Since the distinguisher can be
computationally unbounded, a black-box reduction cannot call it. Therefore it suffices to construct
a class of simulatable inefficient sources Ah tha satisfy the legality conditions and ensure that
for the output (x, aux) it holds that seed, aux,EDExt(x, seed), is statistically far from seed, aux, u

37

where u is uniform. Our a high level, the source Ah that we construct makes oracle queries and
inefficiently learns the function EDExt(·, seed) sufficiently well to predict EDExt(x, seed) for a ran-
dom x with high accuracy without querying it. It chooses such random x and sets aux to be a
“statistically binding commitment” of its prediction for EDExt(x, seed). This ensures that the distri-
bution of (seed, aux,EDExt(x, seed)) is statistically far from (seed, aux, uniform). The commitment
is generated using an exponentially large random function h and can therefore be simultaneously
statistically hiding and binding. Therefore this attack is simulatable by an efficient simulator that
chooses a random x and outputs a commitment to a random value.

Theorem 5.15. For any candidate ED-Extractor (SeedGen,EDExt) with n(λ)-bit input and 1 bit
output and for any polynomial ` = `(λ) there exists a 2−`(λ)-simulatable attack against the α =
(n − 1)-ED-Extractor security of the candidate in the setting with auxiliary info and unbounded
distinguishers.

In particular, if there is a black-box reduction showing this type of security for the candidate
based on the security of some cryptographic game G, then G is not secure. If the reduction is based
on the 2`(λ)-security of the game G then G is not 2`(λ) secure.

Proof. Assume that the length of seed ← SeedGen(1λ) is bounded by |seed| ≤ p(λ) for some
polynomial p. Let q = q(λ) = 3p(λ) +λ. Let Hλ be the set of all functions from {0, 1}`(λ) to {0, 1}.
For any h ∈ Hλ, consider the inefficient source Sλ,h that chooses x1, . . . , xq uniformly at random
and queries its oracle on them, gets back y1, . . . , yq, and finds the (lexiographically first) value seed′
such that EDExt(xi, seed′) = yi for all i ∈ [q]. It chooses a random x, computes z′ = EDExt(x, seed′)
and sets aux = (r, h(r)⊕ z′) where r ← {0, 1}`.

First we claim that for any h ∈ Hλ, the above source Sλ,h breaks the security of the ED-
Extractor with auxiliary info and an unbounded distinguisher. It’s easy to see that Sλ,h is a
legal source with entropy n − 1 since x is uniformly random and aux can reveal at most 1-bit of
information z′ about x. Secondly, we claim that if Sλ,h has oracle access to EDExt(·, seed), then
with overwhelming probability the value seed′ that it finds must agree with seed on at least 3/4 of
all inputs. Otherwise there exists some seed′ that agrees with seed on < 3/4 inputs yet agrees with
it on x1, . . . , xq which occurs with probability at most 2p(3/4)q = negl(λ). This also implies that
if we let z′ = EDExt(x, seed′), z = EDExt(x, seed) in the experiment, then z′ = z′ with probability
3/4 − negl(λ). But this shows that the distribution (seed, aux, u = EDExt(seed, x)) is statistically
far from (seed, aux, u← {0, 1}) since in the first case, if we let aux = (r, v) then h(r)⊕ v = u with
probability at least 3/4 − negl(λ) while in the second case this happens with probability at most
1/2.

Secondly, we claim that for a random h ← Hλ, the above source Sλ,h can be simulated by
an efficient S ′λ that runs in time poly(λ). We define S ′λ which chooses x1, . . . , xq uniformly at
random and queries its oracle on them, gets back y1, . . . , yq, and outputs a uniformly random
(r, v)← {0, 1}` × {0, 1}.

The only way that Sλ,h for a random h can be distinguished from S ′λ using black-box access is
if two different executions of S use the same randomness r. Given Q queries to S, this happens
with probability at most poly(Q)2`.

Seed-Committing Extractors. We show that one cannot prove security in the auxiliary input
setting (even for polynomial-time sources and distinguisher) of any ED-Extractor that has a certain
type of seed-committing property.

38

Definition 5.16. An ED-Extractor is seed-committing if there exist some polynomial q = q(λ)
and some inputs x1, . . . , xq ∈ {0, 1}n(λ) such that for any seed, seed′ for which EDExt(xi, seed) =
EDExt(xi, seed′) for all i ∈ [q] it must hold that for all x∗ we have EDExt(x∗, seed) = EDExt(x∗, seed′).

For example, if we use the Naor-Reingold PRF [NR97] as an ED-Extractor then it is seed-
committing. Moreover, we believe that ED-Extractor constructions using standard hash-functions
and block-cipher will be seed-committing.

Theorem 5.17. For any candidate seed-committing ED-Extractor (SeedGen,EDExt) with n(λ)-bit
input and m(λ) bit output and for any polynomial ` = `(λ) there exists a 2−`(λ)-simulatable attack
against the α = (n− 1)-ED-Extractor security of the candidate in the setting with auxiliary info.

In particular, if there is a black-box reduction showing this type of security for the candidate
based on the security of some cryptographic game G, then G is not secure. If the reduction is based
on the 2`(λ)-security of the game G then G is not 2`(λ) secure.

Proof. Let Hλ be the set of all pairs of functions h1 : {0, 1}` → {0, 1}q`+1, h2 : {0, 1}q`+1 → {0, 1}`.
First we define (Ench1,h2 ,Dech1,h2) to be an information-theoretic authenticated encryption scheme
whose key is h1, h2. In particular, Ench1,h2(m) = (r, h1(r)⊕m,h2(r, h1(r)⊕m)) where r ← {0, 1}`
is uniformly random and Dech1,h2(r, c, σ) = h1(r)⊕ c if h2(r, c) = σ and ⊥ otherwise.

For any h = (h1, h2) ∈ Hλ, consider an inefficient source/distinguisher pair Aλ,h = (Sλ,h,Dλ,h)
defined as follow. The source Ssec,h chooses x1, . . . , xq as given by the seed-committing definition
and queries its oracle on them, gets back y1, . . . , yq, and finds the (lexiographically first) seed′ such
that EDExt(xi, seed′) = yi for all i ∈ [q]. It chooses a random x, computes z′ to be the first bit
of EDExt(x, seed′) and sets aux ← Ench(y1, . . . , yq, z

′). The distinguisher Dλ,h gets (seed, aux, u), it
computes z to be the first bit of u. It sets Dech(aux) = (y1, . . . , yq, z

′). If EDExt(seed, xi) = yi for
all i ∈ [q] and z′ = z it outputs 0 else 1.

It is easy to see that, for any h, the adversary Aλ,h is an α = (n−1)-legal adversary and breaks
ED-Extractor security with advantage 1/4: If the challenge bit is b = 0, the distinguisher always
outputs 0 and if the challenge bit is b = 1 the distinguisher only outputs 1 with probability > 1/2.

Secondly, for a random h = (h1, h2) the adversary Aλ,h can be efficiently simulated by a
stateful adversary A′ = (S ′,D′) that acts as both the source and the distinguisher but allows
them to share state. On input y1, . . . , yq to S ′, it chooses a random x, aux and remembers the
tuple (aux, y1, . . . , yq, x). On input (seed, aux, u) to D′ it checks if it stores a tuple of the form
(aux, y1, . . . , yq, x). If it does store such a tuple and EDExt(seed, xi) = yi for all i ∈ [q] and u is
equal to the first bit of EDExt(x, seed) it outputs 0 else 1.

To show that one cannot distinguish between black-box access to A vs A′ we define an in-
termediate A∗ which is inefficient but also stateful. In particular, A∗ = (S∗,D∗) acts just like
A, but instead of encrypting, the source S sets aux to be uniformly random and stores the tuple
(aux, y1, . . . , yq, z

′) and instead of decrypting D∗ retrieves the tuple indexed by aux to uses the
corresponding (y1, . . . , yq, z

′).
Firstly, we claim that A and A∗ are indistinguishable by any (comp. unbounded) distinguisher

that makes Q queries with probability better than poly(Q) · 2−`. This essentially follows by the
authenticated-encryption security of the encryption scheme.

Secondly, we claim that A∗ and A′ are perfectly indistinguishable. The only difference between
them is that A∗ compares u against the first bit of EDExt(seed′, x) while A′ compares it against
EDExt(seed, x). But since seed, seed′ agree on x1, . . . , xq, the seed-committing property ensures that
EDExt(seed′, x) = EDExt(seed, x).

39

Acknowledgements. YD was partially supported by gifts from VMware Labs, Facebook and
Google, and NSF grants 1314568, 1619158, 1815546. VV was supported in part by NSF Grants
CNS-1350619 and CNS-1414119, an NSF-BSF grant CNS-1718161, the Defense Advanced Research
Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226
and W911NF-15-C-0236, an IBM-MIT grant and a Microsoft Trustworthy and Robust AI grant.
DW was supported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and the Alfred P.
Sloan Research Fellowship.

References

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited - new reduction, properties and applications. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042
of Lecture Notes in Computer Science, pages 57–74. Springer, Heidelberg, August 2013.

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Constrained PRFs for NC1 in traditional groups. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 543–574. Springer,
Heidelberg, August 2018.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference
on Theory and Practice of Public Key Cryptography, volume 8383 of Lecture Notes in
Computer Science, pages 501–519. Springer, Heidelberg, March 2014.

[BH05] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation
with applications to /dev/random. In Vijayalakshmi Atluri, Catherine Meadows, and
Ari Juels, editors, ACM CCS 2005: 12th Conference on Computer and Communica-
tions Security, pages 203–212. ACM Press, November 2005.

[BHK11] Mark Braverman, Avinatan Hassidim, and Yael Tauman Kalai. Leaky pseudo-entropy
functions. In Bernard Chazelle, editor, ICS 2011: 2nd Innovations in Computer Sci-
ence, pages 353–366. Tsinghua University Press, January 2011.

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles
via UCEs. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages
398–415. Springer, Heidelberg, August 2013.

[BIW04] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using
few independent sources. In 45th Annual Symposium on Foundations of Computer
Science, pages 384–393. IEEE Computer Society Press, October 2004.

[Blu86] Manuel Blum. Independent unbiased coin flips from a correlated biased source-a finite
stae markov chain. Combinatorica, 6(2):97–108, 1986.

40

[BST03] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number generators secure
in a changing environment. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2003, volume 2779 of
Lecture Notes in Computer Science, pages 166–180. Springer, Heidelberg, September
2003.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptog-
raphy Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages
1–30. Springer, Heidelberg, March 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASI-
ACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science, pages
280–300. Springer, Heidelberg, December 2013.

[CDKT19] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, and Stefano Tessaro. Seedless
fruit is the sweetest: Random number generation, revisited. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, vol-
ume 11692 of Lecture Notes in Computer Science, pages 205–234. Springer, Heidelberg,
August 2019.

[CG85] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity (extended abstract). In 26th Annual Sympo-
sium on Foundations of Computer Science, pages 429–442. IEEE Computer Society
Press, October 1985.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[CGH+85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Ro-
man Smolensky. The bit extraction problem of t-resilient functions (preliminary ver-
sion). In 26th Annual Symposium on Foundations of Computer Science, pages 396–407.
IEEE Computer Society Press, October 1985.

[CPW19] Suvradip Chakraborty, Manoj M Prabhakaran, and Daniel Wichs. Witness maps and
applications. 2019. Manuscript.

[CZ16] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM
Symposium on Theory of Computing, pages 670–683. ACM Press, June 2016.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM J.
Comput., 38(1):97–139, 2008.

[DPR+13] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and
Daniel Wichs. Security analysis of pseudo-random number generators with input:

41

/dev/random is not robust. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013: 20th Conference on Computer and Communications Security,
pages 647–658. ACM Press, November 2013.

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers for
efficiently samplable, seed-dependent sources. In Ronald Cramer, editor, TCC 2012:
9th Theory of Cryptography Conference, volume 7194 of Lecture Notes in Computer
Science, pages 618–635. Springer, Heidelberg, March 2012.

[DSSW14] Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs. How
to eat your entropy and have it too - optimal recovery strategies for compromised
RNGs. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science, pages
37–54. Springer, Heidelberg, August 2014.

[FGK+10] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev. More
constructions of lossy and correlation-secure trapdoor functions. In Phong Q. Nguyen
and David Pointcheval, editors, PKC 2010: 13th International Conference on Theory
and Practice of Public Key Cryptography, volume 6056 of Lecture Notes in Computer
Science, pages 279–295. Springer, Heidelberg, May 2010.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In 25th Annual Symposium on Foundations of Computer
Science, pages 464–479. IEEE Computer Society Press, October 1984.

[GKK19] Ankit Garg, Yael Tauman Kalai, and Dakshita Khurana. Computational extractors
with negligible error in the CRS model. IACR Cryptology ePrint Archive, 2019:1116,
2019.

[GT16] Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs and KDFs.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EU-
ROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Science, pages
87–116. Springer, Heidelberg, May 2016.

[Hut16] Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency. Cryp-
tology ePrint Archive, Report 2016/886, 2016. http://eprint.iacr.org/2016/886.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In David S. Johnson, editor, Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA, pages 12–24. ACM, 1989.

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In 30th An-
nual Symposium on Foundations of Computer Science, pages 248–253. IEEE Computer
Society Press, October / November 1989.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th Conference on Computer
and Communications Security, pages 669–684. ACM Press, November 2013.

42

http://eprint.iacr.org/2016/886

[KRVZ11] Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extrac-
tors for small-space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011.

[LLS89] David Lichtenstein, Nathan Linial, and Michael E. Saks. Some extremal problems
arising form discrete control processes. Combinatorica, 9(3):269–287, 1989.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th Annual Symposium on Foundations of Computer Science,
pages 458–467. IEEE Computer Society Press, October 1997.

[NZ93] Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In 25th
Annual ACM Symposium on Theory of Computing, pages 235–244. ACM Press, May
1993.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, 1996.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the
LWE way. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st Interna-
tional Conference on Theory and Practice of Public Key Cryptography, Part II, volume
10770 of Lecture Notes in Computer Science, pages 675–701. Springer, Heidelberg,
March 2018.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on
Theory of Computing, pages 187–196. ACM Press, May 2008.

[Raz05] Ran Raz. Extractors with weak random seeds. In Harold N. Gabow and Ronald Fagin,
editors, 37th Annual ACM Symposium on Theory of Computing, pages 11–20. ACM
Press, May 2005.

[ST17] Pratik Soni and Stefano Tessaro. Public-seed pseudorandom permutations. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer Science, pages
412–441. Springer, Heidelberg, April / May 2017.

[TV00] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distribu-
tions. In 41st Annual Symposium on Foundations of Computer Science, pages 32–42.
IEEE Computer Society Press, November 2000.

[von51] John von Neumann. Various techniques used in connection with random digits. In A.S.
Householder, G.E. Forsythe, and H.H. Germond, editors, Monte Carlo Method, pages
36–38. National Bureau of Standards Applied Mathematics Series, 12, Washington,
D.C.: U.S. Government Printing Office, 1951.

[Wic13] Daniel Wichs. Barriers in cryptography with weak, correlated and leaky sources. In
Robert D. Kleinberg, editor, ITCS 2013: 4th Innovations in Theoretical Computer
Science, pages 111–126. Association for Computing Machinery, January 2013.

43

	Introduction
	Our Results
	Our Techniques
	Additional Related Work

	Preliminaries
	Defining ED-Extractors
	Security without Auxiliary Info
	Construction from any PRF
	Necessity of One-Way Functions

	Security with Auxiliary Info
	Construction via Constrained PRFs
	Construction via Shift-Hiding Shiftable Functions
	Construction via Lossy Functions
	Negative Results for ED Extractors with Auxiliary Info

