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ABSTRACT

This thesis considers from a new standpoint the problem of
tracking a moving source by a passive observer.

The changes induced by the source dynamics in the spatial
and temporal structure of the emitted narrow-band signal are processed
by a spatially and temporally coupled receiver which simultaneously
estimates the range, the bearing and their time derivatives.

Unlike the classic "bearings only" problem, we model the bear-
ing and range waveforms as finite-~state-dimension stochastic processes.

Depending on the particular choice of the coordinate frame,
we are led to different system representations. The two frameworks here
considered, polar and cartesian, both led to a nonlinear estimation pro-
blem. The Nonlinear Filtering Theory for lumped-state systems is then
applied to process the received signal.

Two linear approximations of the (»-dimensional) optimal pro-
cessor are considered: the Extended Kalman filter and the Maximum A
Posteriori filter.

A mathematical analysis shows that the (sub)optimal receivers
essentially perform two beams which are the inputs to two phase lock
loops tracking respectively the bearing and range waveforms. We derive
bounds on the expected performance of these channels.

After formulating the discrete version of the continuocus non-
linear estimation problem extensive simulation studies are carried out
in a digital computer in order to assess how the filter performance is
affected by the geometric configurations and the several parameters (sig-
nal to noise ratio, driving noise level, .array length). The simulation
results confirm the main analytical conclusions of Chapter V and show the
existence of a threshold for the signal to noise ratio.

When using the polar frame, to overcome numerical innaccuracies
which make the propagated error covariance to lose its positive semidef-
initeness character, we implemented the square root algorithm which im=
proved the overall filters performance.
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Finally to initialize the (Kalman) filters some a priori inform-

ation is needed. A bearing maximum likelihood estimation followed by a
triangularization procedure solves for the starting point of the filters.

THESIS SUPERVISOR: Harry L. Van Trees

TITLE: Professor of Electrical Engineering
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Chapter 1

Introduction

The problem of concern in this work is the study of performance
of several processors for the estimation of the position and velocity of
a moving source generating a narrow band signal.

A new model is considered, developed by Van Trees [B-1], where
a spatial-temporally coupled tracking allows the simultaneous estimation
of range, range rate, bearing and bearing rate.

The moving target induces a change on the temporal structure
of the marrow ban& signal and causes a geometric change reflected in its
spatial structure. By considering these changes, Van Trees successfully
developed a model which utilizes the temporal and spatial effects in an
optimally-coupled processor.

In this work we consider the case of a stationary observer.
Although this may not be the best strategy, the main theoretical questions
arise and more easily can be dealt with in this éimpler context. The
main issues we consider relate to the choice of the coordinate systems
(polar versus rectangular), of the nonlinear processor and finding regions
of convergence as well as range of the important parameters (e.g. signal
to noise ratio, driving noise power level, etc.)} for which the filters

converge and exhibit an acceptable performance.
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As for the organization of this report we present in Chapter 2

the development of the model leading to the dynamical system (state vari-
able model) representing the target's motion and establish the observed
waveform structure in both polar and rectangular frameworks.

In Chapter 3 we set up the general nonlinear estimation problem
within the framework of the lumpen - state variable theory. After a brief
discussion we are led for reasons indicated in the chapter, to the choice
of two first order approximations of the optimal processor, the Extended
Kalman filter (EKF) and the Maximum a Posteriori (MAP) filter.

In Chapter 4 we reformulate the problem in its discrete version
and derive the actual implementation of the several receivers. For rea-
sons that will become apparent later, we develop in section 4.5 the square
root algorithm implementing the EKF and the MAP filter.

In Chapter 5 we present a mathematical model of the filter and
analyse its behavior. We conclude that essentially the filter's action
is equivalent to a two beam forming operations followed by a 4~dimensional
system, the receiver's lincarized "copy" of the dynamical system, where we
are able to distinguish two phase-lock loops one essentidlly tracking the
range and the second locking the bearing angle.

In Chapter 6 we present the simulation results and compare them
with the mathematical analysis of Chapter 5.

In Chapter 7 we resort to a maximum likelihood estimation pro-
cedure to imitialize the Kalman filter.

Finally, Chapter 8 recaptures the main conclusions drawn from

this work and presents the pertinent bibliography.
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Chapter II

Model

In this section we intend to suitably characterize by a
stochastic dynamical system the motion of the moving source and then
develop the assumed temporal and spatial structure of the received
signal. Por simplicity we will consider a discrete linear array and
a planar geometry, i.e. that the target moves on the plane defined by
the linear observer and the target's position at time t = o. We fur-
ther assume the far-field hypothesis, i.e. that the observer is suf-
ficiently far from the source so that the receiving waveforms can be
congsidered as planar.

As pointed out earlier this model although not considering
all the intricacies of the real phvsical problem is sufficiently com-
plex to give a first account on the main theoretical issues arising
in the real situation and allows us with enough information to draw
jmportant conclusions about the expected performance of the designed
processors.

We first establish the quantitative aspects of the target
motion and observer geometry. Then we proceed by choosing a temporal
model for the emitted signal and discuss its integrated spatial and

temporal structure at the receiver.
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2.1 Geometry
Figure 2-1 gives a sketch of the plane where the target motion
evolves and the observer is fixed. We choose the coordinate system, as
indicated in the figure, with the x-axis pointing east, along the linear

array, and the y-axis pointing north.

A Y
Xps Yop)
© R
X - - - — F— e
Fig. 2-1 X

The observer has N senscrs distributed along its main axis
(¥~axis) with positions given by the position vector
51
p=|: (2-1)
Py
The target location is given in rectangular coordinates by

(XT, YT) and in polar coordinates by (R, O) with the usual relations:

/x4 2
R = /XT + Y4 (2-2)
0 = tan~ (X /Y,) (2-3)

2.2 Dynamical System

We consider that the source moves with a nominal velocity
which is perturbed by random acceleration components along the X and

Y directions.
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In the classical analysis the target's velocity is considered
constant, so that this model allows much more freedom and is more real-

istic. In the rectangular frame we define the 4-state vector

xl = XT

e =
2T (2-4)

3

X
x_ = YT
X4=Y

T

and the source motion is governed by the linear dynamical system
x(t) = F x(t) + Gu(t) (2-5)
x(0) = x,

where

|

L]
0OQ oo
G O 0K
0000

o =00

o o]

lo (2-6)
o

)

u_ (t)
E(t)'[ux (t)J

We model the driving term u(t) as a zero mean white Gaussian

noise with covariance matrix

cov {u(t), u(M} = E {ult) uT(1)} = Q &t - 1) (2-7)

We assume known the statistics of X, with:

Ex =%
o = (2-8)

Cov {x,. %} = P,
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and furthermore

1’ --t"l"

Ex,(0) u,{t) =o
1k X,y (2-9)

(o 0 o
Iv u n
(o]

We see that we have modeled the target's acceleration components

%y = ¥p =y, (2-10)
%, = Y =

by a sample function of a (mathematical) white noise vector process.
More complex situations could be handled by augmenting the
state~vector with for example XT and YTZ Also we could, for example,
have modeled the accelerations as a one pole stochastic vector process.
The range and bearing can easily be computed through the nonlinear re-
lation (2-2) and (2-3).
In the polar coordinates geometry, as fixed in Fig. 2-1, we

define the state vector as

(2-11)

™

N

]
Qe A= X

and the dynamical system is obtained by translating into polar coordin-

ates the velocity and acceleration of the source. We obtain

% = f(x(t)) + g(x(t)) ult)
(2-12)
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where
"xz (t) ]
x, (8) x2(t)
£x(t)) = 2, () (2-13)
| =2x, () x,(t)/x;(t)]
and
[ o o ]
sinx4(t) cosxa(t)
gx(t)) = o o (2-14)
fosx3(t)/x1(t) -sinx3(t)/xl(tz

and u(t) and X have predefined statistics.

We observe that now the range, range rate, bearing and bear-
ing rate are directly available in the state-vector, and so no nonlinear
transformation is needed to get back these quantities. But we ended up
with a nonlinear dynamic system, where, the driving term matrix coef-

ficient is a nonlinear function of the state vector and so a random matrix.

Warning

Since the dynamical systems (2-5) and (2-12) are stochastic
differential equations (2-5) and (2-12) are merely formal descriptions
of the model.

More properly we should have written the Langevin equations

dx(t) = Fx(t)dt + GdB(r)

(2-5")
x(0) = x
and
dx(t) = £(x(t), t)dt + g(x(t)) dB(t)
(2-12")

x(0) = x_
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where {§ﬂt), t 3_0} is a random vector Brownian motion (Wiener process)
with covariance parameter 0.
The differentials (2-5') and (2-12') are defined in terms of

their integral counterparts:
t t
x(t) - x_ = [ Fx(t)de + [ G dB(t) (2-5")

and

x(0) -5 =[5 £Ge)de + ] glx(e)) d4B(o) (2-12")

Because of the particular form of the matrices F, G, £(.)
and g(.) (equations (2-6), (2-13), (2-14)), and the statistical hypothesis

assumed the stochastic process x(t) is mean square integrable so that

[5 Fx(t)de (2-15)

and

Ig £(x(e))dt (2-16)

are interpreted as well defined m.s. Riemman integrals for the sample
functions.

It remains to interpret the remaining integrals in (2-5") and
(2-12"). However, no ambiguity arises in either case as we shall see
in a moment.

In (2-5") because G is independent of B(t) the ItG and Strato-
novitch formulations give the same answer ((2-5') is a linear system).

As for
fgg(z(t)) dg(t) (2-17)

we interpret it in the It6(I) sense. But if we consider g(x(t)) as an
explicit function of 8(t) through
s (@) (2-18)
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we also could interpret (2-17) as a Stratomovitch (S) integral. Anyway,

in this example they both also coincide. In fact for the ith component

we would have the transformation, see Jazwinski [A-4],

2 4
1
1) <« (s) : = L I g . 9g,./0x (2-19)
2 jap =1 KUK
but given the particular form of (2-14)
a i = 1’ ...’é
By “Bi3/ox, = o for k=1, ...,b (2-20)
j=1,2

so that both interpretations give the same value for (2-17) and we can
speak of (2-5) and (2-12) as formal descriptions of (2-5") and (2-12").
Finally we observe that the vector random process x(t) as con-
ceptually generated by (2-5") is a Gauss-Markov stochastic process (for
Gaussian initial condition 50) and that x as conceptually generated by

(2-12") is in any case a Markov process.

2.3 Structure of the Received Signal

We proceed by first choosing a temporal structure for the sig-
nal and then by discussing the temporal and spatial structures of the
received signal induced by the target's dynamics.

We assume that the source generates a narrow band signal that

we simply model as a sinewave with carrier frequency LA i.e.

S(t) = V2P sin Wt (2-21)

where P is the transmitted power assumed constant throughout.



-22-

At the reference sensor a delayed version of S(t) is received
plus an additive white noise component

ro(6) = 8o(t) + w_(¢) (2-22)

where

8o(t) = g(t - 7)) (2-23)

and To is the delay corresponding to the travel time of the wavefront

from the source to the reference élement, given by

R(t - To(t)) (2-24)
[od

Tolt) =

where ¢ is the medium propagation velocity.

At the ith sensor the received signal is

ri(t) = si(t) + wi(t) (2-25)
with
s,(t) = 8 (t + 1,(t))
1 ° 1 R(E + T, = T,)
= /2P gin v, |t + Ty - c (2-26)

and the relative delay T, to the reference element is given by

1
eindlt - Ty (¢ + 7,) + T, (1)) * (2-27)

Ti - c pi

We observe that (2-24) and (2-27) are memory functions of the
dynamics. In order to apply the lumpen state variable theory we have to
approximate (2-24) and (2-27) by no memory functions. The difficulty
lies in the interdependence of the range R(t) and bearing angle O(t) on

the several delays TosTys i=1, ... N,

* Obviously T, can be ¢ 0. For (2-26) we considered + T4 so that if we
choose the re%erence eiement to be the geometric center of the array and
also the center of the coordinate system the sign convention for the x-axis
for the Py and T4, as well as O, will all be consistent.
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We proceed by considering Taylor's series expansions of R(t - To),

R(t - T + T4) and ot - T, + T;) and truncating these expansions to the

linear terms

R(E - T) = R(t) - R(D)T, (2-28)
Substitution of (2-28) in (2-24) leads to
T, - .lci I . (2-29)
14+R
(o4
for the dynamics we are interested in
% << 1 (2-30)
and so (2-29) can in fact be approximated by
T, B.g_) (2-31)
Since we have for the usual arrays and usual geometries
T, > T, (pi << R) (2-32)
we can approximate (2-27) by
- sin@:t - Ty) vy (2-33)

Expanding in Taylor's series the argument of the sin(.) function

and retaining the linear terms

ot - B =0y -2 a(t) (2-34)

substitution of (2-34) in (2-33) and expanding the sin(.} leads directly

to

Ty Ei {sin O(t) cos(é%) - sin(%é) cosO(t)} (2-35)
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Unless © = o, for the usual dynamics we consider, we can fur-

ther simplify (2-35) to

P
T = 1 in0C) (2-36)
[od

For a better feeling of how these approximations might relate
to the actual world we present a numerical example.

Let

RN 104 feet

¢ v 5000 feet

R A 30 feet

pyv 250 feet (afray of 500 feet)
0~ 1071 rad

é ~n 1073 rad/sec

then we get

To v 2 seconds

R %1 ainO(t - Ti) < -]210 sec
Bw 3 -1

c 2 x 1077 rad << 9~ 10 ~ rad
R 3

c “300 <!

Returning to (2-26) we can write
R(t - T + Ti)

8 (t) V2P sin[ w (t + 74 - ) 1

c

/F stal w(c + T, - SR(E) + RTp)]

= /T etnl w_(t - S+ 1,00 - D)) @

Once again we observe that

<<1 (2-38)

0.
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and so approximate

si(t) n 2P sin w (t - R+ Ti(t)) (2-39)
— c (o}
with
T, () = 24 s1n0(t) (2-40)
In summary we conclude that at the ith sensor the received
signal is

ri(t) = si(t) + wi(t)

= Y2F sin wc(t - EéEl +'Ei'sin0(t)) + wi(t) (2-41)

(2-41) is the modeled received waveform. We see that because of
the source motion the available signal at the receiver is phase modulated.
It is this phase modulation, together with all the other a priori in-
formation that allows us to estimate the target dynamics, in particular
the range, range rate, bearing and bearing rate.

For completely specifying the structure of the received signal
we have to indicate the assummed statistics for the additive noise in
(2-41).

In this work we will only assume a white Gaussian disturbance.
So we have that

v, {t)
wle) = | (2-42)
ey t)]
is a sample function from a zero mean, white Gaussian real random vector,

with covariance matrix

cov {w(t), w(t)} = E{w(t) gT(r)} = R(t) §(t = T) (2-43)
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We further assume that

R(t) = 30 T (2-44)

i{.e. the noises are spatially and temporally uncorrelated. Furthermore,

we take
E{wi(t) uj(T)} = o all 4 =1, ..., N
=%, 9, £, T
and (2-45)
E{wi(t) xg(0)} = 0 all 1 =1, ..., N

These restrictive assumptions on the statistics and joint stat-
istics of the several noises and initial conditions are assumed fér sim-
plicity. We could relax to the case of coloured noise or spatially
correlated noise since there are available several techniques reducing
the problem to the one sketched above. We proceed in the simpler con-

text of (2-43) to (2-45).

2.4 Summary

In brief in this section we established the geometry of the
problem in paragraph 2-1, the dynamical system modeling the source motion
in 2-2 and the temporal and spatial structure of the signal at the receiver.

&8s for now we have two different characterizations of the dy-
namical system. In the rectangular frame the system is linear

x(t) = F x(t) + G x(t)

x(0) = (2-5)

%
and in the polar case we have the nonlinear stochastic dynamical system

= £x()) + glx(t)) ult)

©) = % (2-12)
2o

L]
X
x
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We modeled the emitted signal as a narrow-band process, for

simplicity the sine wave

S(t) = V2P sin wct

(2-46)

and at the ith sensor we derived the structure of the received waveform

to be

REE 4 P1 ooy ) + w, (t)

c °

ri(t) = /2P sin wc(t -

We define
w

a (t) = ;fi[pi sin®(t) ~ R(t)]

In the rectangular coordinates we can express (2-48) as

*1 % 2 4 x2
pi)/:%":‘;g’"l 3)

r = W
a;(t) = ¢

and in polar coordinates as
w
ag(t) = EE{Pi sin x4 - x]
Collecting (2-47) in a N-vector
r(t) = s(x(t), t) + w(t)
with
s(x{t), t) = /2P sinfw t + al(t)i

sin(wct-+ aN(t))

with ai(t) given in the general setting of (2-48).

igl' .-’N
(2-47)

(2-48)

(2-49)

(2-50)

(2-51)

The statistics of the driving vector u(t), the additive dis-

turbance w(t) and the initial state were previously defined.

We observe that we did not consider any amplitude fading or

phase drift in the received signal, the only disturbance being additive.
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We also assume known all the other parameters as the signal power P, the

carrier frequency wc. the noige levels gb and Q. This is a simpler ap-
proach taken at this stage in order to explore the essential features
of the problem. Van Trees [B-2] considers several generalizations of this
model.

What we want is from the available data, i.e. (2-51) and all
the other knowledge we have to do an estimation of the range, range rate,
bearing and bearing rate which is good in some semse (e.g. MMSE).

In the next chapter we discuss the nonlinear estimation pro-
blem in its general context and justify the choice of the optimal (in

a given sense) processors we are going to consider in this work.
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Chapter III

General Nonlinear Estimation Processor

In the previous chapter we saw how the assumed time structure
of the emitted signal and the phase modulation of the signal by the tar-
get dynamics led us to an inherently nonlinear observation model. We
also saw that in the case of the polar frame the stochastic dynamical
system was nonlinear.

In this chapter we want to discuss the solution of the essen-
tially nonlinear estimation problem where strong nonlinearities of the
system function and/or of the observation function arise.

In the framework of a dynamical differential equation Jes-
cription the nonlinear estimation problem has essentially been solved by
Stratonovitch [C-3], [A-7]. Later Kushner [C-1], [C-2] also derived
the optimal solutiom.

This optimal solution involves the knowledge of the a posteriori
probability which requires in general the solution of partial integro-
differential equations. As observed by Kushner the general optimal non-
linear procc sor is an © - dimensional system and as such unfeasible in
practice. In order to get computationally effective algorithms, one has
to resort to some kind of approximations. In most of them one of the
steps in the derivation of the suboptimal processcrs 1s a truncated Tay-

lor's series expansion of the system and observation function about a
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nominal trajectory or the previous estimate. Depending on the various

optimality criteria (e.g. MMSE, MAP, etc.) and on the nature of the in-
volved approximations (e.g. finite parametrization of the a posterior
probability, assumptions on the shape and moments of the conditional
probability, order of the retained terms in the Taylor's series expan-
sions, etc.), one is led to several approximate filters which in turn
are computationally practicable.

The literature is indeed very vast in this subject and an ap-
preciable number of suboptimal algorithms have been developed. A good
account on the "state of the art" is given in Jazwinski [A-4]. Other
suitable references include Snyder[A-6], Sage and Melsa [A-5]). Papers
dealing with the subject inciude references [D].

Unfortunately the derivations of these filters do not give an
intuitive measure of the relative importance of the several approximations
made .

In other words the particular choice of a specific solution
for a given problem has to be determined by some kind of an arbitrary

criterion if not based first on a simulation study of how well the several
filters do perform in the situation under considerationm.

Filters with low order approximations are particularly relevant
since they led to simpler solutions to implement.

In this work we will only consider filters with a first order
approximation (only linear terms are retained in the Taylor series' ex-
pansions). In a subsequent work we intend to carry out the simulation
of several second order filters.

We are going to simulate the so~called Extended Kalman filter

(EEKF) and the first order Maximum a Posterior filter (MAP).
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The filter equations consist of the equations of propagation

of the first and second moment of the conditional probability density
function. The EKP is derived assuming the conditional mean estimate
g_(MMSE estimate) is known and is used to expand the message and obser-
vation model in a Taylor series about

x (£) = &) (3-1)

and retaining the linear terms. With the linearized model we can then
apply the results from linear filtering, i.e. the Kalman-Bucy theory.

The MAP* filter is derived, e.g. Sage and Melsa [A-5], by use
of the maximum principle and a quadratric cost functional where the
weighting matrices are the inverses of the system driving noise and of
the observation noise covariance matrices.

We now summarize the general nonlinear estimation problem and
the two approximate solutions we implement.

Dynamicsl system

x(t) = £(x(t), t) + glx(t), ) ult) (3-2)
x(t) = x

Received signal
r(t) =h(e, x(£)) + w(t) (3-3)

Noise statistics

u(t), w(t) are sample functionms of zero mean, statistically

% Because of the wide number of available filters in the literature and
because of the fact that alternate derivations using approximations of
the same order lead in some cases to essentially equivalent algorithms
the nomenclature is not uniform. The continuous version of the algor-
jthm we call therein MAP filter is Snyder's filter derived using a MMSE
criterion. Sage and Melea rederive the discrete version result using

a MAP criterion.
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independent Gaussian white noise real vector processes.
has (a priori) known statistics and is statistically indep-

endent of u(Tt) and w(t) for T > o and every t.

Filter equations
Case I Extended Kalman filter

a) Estimator equation
o T -
2= £(g, t) + P(t) 33‘-—5%-‘-)-)—5’1[5(:) - h@EE)] (3-4)
t) Error covariance equation
3¢T r-1 oh
P(t) = ax P(t) + P(¢t) ——w +,gﬁx(t)) Q gT@&(t)) - P(t).__,__ %L ~=P(t)
B = (3-5)
¢) Initial conditions
X(o) = E x(o)
(3~6)
B(o) = P_ = cov(x(o), x(0)}
Case II MAP filter
a) Estimator equaticn
2(t) = £&(0)) + pee) B r7Hz(e) - hGR(E)] (-7
o2
b) Error covariance equation
afT A Tsn
B(t) = 5_.; P(t) + P(t) 2=+ g&(t)) Q g &(t)) +
P(r)

Ton
+ o) g (RO oy ) - negeen)

(3-8)
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c) Initial conditions

|2(0) = E (o)
(3-9)
I_Po = cov(x(o), x(0))
Notation:
By g; ’ 9;2_- we mean the Jacobians ?E-(’:‘s(-t-)—)— and
X 3% 3x(E) () = £(0)

3h(x(t)) 35T onT

3% () and by TE s = their transposes. Hat

2() ) x(e) = &0 S

stands for the expectation operator.

The particular form of equations(3-2) to (3-9) depends on the
particular choice of the coordinate systems as was discussed in Chapter 2.

Comparison of equations (3-4) to (3-6) with (3-7) to {3-9)
shows that the ERF and the MAP are very similar. In particular the es-
timator equations are identical and the only difference is on the quad-
ratic term in the error covariance propagation equation. But while in
the EKF the covariance does not depend explicitly on the received signal,
in the MAP covariance propagation equation the received waveform enters
explicitly. A priori one can expect an improvement of performance (at
least when the underlying iinearized assumption holds) with the MAP
filter since the actual difference between the received signal and our
best estimate influences directly the covariance determination.

On the other hand the implicit presence of the residual (or

innovations process)

r(t) - h(R(t))
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in the MAP covariance equation leads one to suspect that this filter

will be more sensitive to, for example, the value of the signal to noise
ratio and the actual geometry with the danger of eventual instabilities
due to the theoretical impossibility but actual possibility of the pro-
pagated error covariance as computed by (3-5), lcosing its positive
semidefiniteness and so its practical significance leading to an un~
stable filter. These and other questions are explored in Chapter 6
where we present the simulation results.

As argued before (end of section 2-2) equations (3-2) are
formal descriptions of the actual mathematical model. A similar dis-
cussion should be made with respect to equations (3-3) to (3-9) which
are once again mere formal descriptions of the mathematical model. We
should rewrite them in terms of differentials, to be interpreted in the
sense of their corresponding Ito stochastic integral equations, given
that the Stratanovitch integral seems to have problems of interpretation
in nonlinear estimation theory (with this respect see Jazwinski [A-4]
or Kushner [D-2], but also Stratonovitch [A-7], pp 43).

In the next chapter we reformulate the just described nonlinear

estimation problem in the discrete framework of a digital computer.



-35-

Chapter IV

Imglementation of the Nonlinear Receiver

Our comparative studies of the several processors, for different
sets of parameters, different initial conditions and different tracks are
to be made in a digital computer.

Before we actually simulate the filters we reformulate the con-
tinuous time, narrow band model as a discrete, low pass problem.

In section 4-1 we consider the quadrature component model for
the narrow band signal problem of Chapter 2 and develop its low pass ver-
sion. In sections 4-2 to 4-4, we approximate the continuous time by a
discrete time stochastic model and write down the actual form of the
several filters. Finally in section 4-5 we present an alternate algorithm,
the square rcot filter (SQRT) implementation, to which we have to resort

in order to circumvent practical prcblems due to computer roundoff errors.

4,1 Quadrature Components and Low Pass Model

We recall from Chapter 2 that the received signal at the ith
sensor can be written as
ry(t) = sy(t, x(£)) + wy(e)

R

= /2P sin w (¢ + 21 sin0(c) - ét) ) +w(e)

i=1, ..., N (4-1)
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We modeled w,; (t) as a sample function from a white noise Gaus-

sian process with spectral height of §°' This model is just a mathemat-
ical realization of a true physical wideband pass process (noise at the
sensors) which is present and corrupts the signal in the measured wave-
forms.

We assume that O(t) and R(t) are low pass stochastic processes,
so that ry(t), 1 =1, ..., N, are in fact band-pass stochastic processes.

We recall, Van Trees [A-8] prcblem 3.3.8, or Viterbi [A-12],
Appendix A, that for a bandpass stationary Gaussian process n(t) with
mean o and spectral density

Sn(w) = Sp(w - w,) + SL(-w - wb)

€4-2)
where: S;(w) is negligible for lwl > W,
a sample function deéomposition can be made
n(t) = V2 n, (t) sin wt + V2 nz(t) cos wot + A (4-3)

where nl(t) and nz(t) are sample functions of statiomary, zero mean Gaus~
sian processes, wheose spectral densities are negligible for |w‘ > Vg i.e.
are essentially low pass stochastic processes.
If we let R{T), R, (1), RZ(T) be the covariance functions for
a(t), ny(t) and nz(t) respectively and Ry, .T), Ry; {T) the crosscovariances
of nl(t) and n,(t) then the following relations hold:
RI(T) = Ry (T)
Ryp(7) = i"Rzl(‘l‘) (4-4)
R{(T) = 2[R1(T) cos w,T = Rlz(T) sin wOT]
Furthermore if SL(w) is an even function then

Ryp(T) = -Rpy (1) =0 (4-5)
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and the two processes nl(t) and nz(t) are uncorrelated and therefore,

being Gaussian, are statistically independent.

Applying these results to the received waveform r, (t) we have:
ry(e) = /2 rci(t) cos wyt + V2 rsi(t) sin w t

and we recover r. i(t:) and rg i(t) as shown in Figure 4-1:

e<§} »  ILPF [———> rci(t)
ri(t) S Y2 cos vt
ﬂ? ;I- ILPF _—‘-—--——-—-—? rsi(t)
V2 sin wt Fig. 4-1

where: ILPF stande for Id=al Low Pass Filter

re (€) = /B sin lry si00(t) - R(E)] + v, (©)

(4-6)
rg (t) = +/F cos Telpy s1n0(e) - R(E)] + wg, (6D

wci(c), wsi(t), i=1, ..., N are sample functions of uncorrelated zero
mean, white Gaussian noise processes with gpectral height of %b.
In the simulation we work with the low pags components (4-6) in-

stead of {4-1). We define

he (e) = /B sia elpy sin0(t) - R(D)]

‘ (4-7)
hsi(t) = +/P cos %c[pi sinS(t) - R{t)]
i=1, ..., B
In vector notation
T (t
() =[27 5] = hle, x4e)) + wie) (4-8)

Ig(t
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with:
£(t) € BN, hix(), t) ¢ R, w(e) e ™
E_c(t) = (X(t), t) +vw (t) (4-9)
rglt) = h(x(t), t) + w wg(t)

and

ey (x(8), 0]
he Gx(e), t i:”(x(:), £)

hx(e), €) = | i, o h, (x(c), t)

-8
fs;.i;cgc), ©)
rwc (t)- (4-10)
-‘fc(t ;:;N(t)
!(t) = '!s(t = w51(t)
v.w;l;(t)

We conclude that at the receiver we have available a 2N-dimen-
sional stochastic vector waveform phase modulated by the system dynamics
and which is to be processed in some optimal way in order to estimate

the range, range rate, bearing and bearing rate.

4,2 Sampled Data Version of the Continuous Time Stochastic System

In Chapter 2 we presented two (formal) descriptions of the dy-
pamical system, summarized by equations (2-5') and (2-12')
Rectangular:
dx, (t) = F x,(t) dt + G dB(¢t)

x,.(0) = x(o)

(4-11)
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dx (t) = £(x_(t), t) dt + g(x (t), t) dB(t)
P P A% - (46-12)

x,(0) = x5

depending on the particular choice of the coordinate system.
We observe that the state vectors in (4-11) and (4-12) are

related by the nonlinear transformations:

xpl = R = ngx + x%B = /4% + Y%
X

T
= = "1 --—-]; = -1 _x:.r-
xp3 C] tan X tan Ty

I3

(4-13)

The strategy we adopt in our simulation studies is to generate
the target’s motion in rectangulaxr coordinates and obtain the state vec-
tor EP through the nonlinear transformation (4-13).

When simulating the dynamical system (2-5) care must be taken
because of its stochastic nature. Essentiaily at stake is the best way
of approximating a stochastic continuous process by a stochastic sequence.

Wong and Zakai [C-4], [C-5], see Jazwinski [A-4], considered
a polygonal approximation to the Wiener process Bt

-, ot

+ T, -ty st=t
t ty i1 ~ 4 i i+l

(4-14)

and showed that for broad conditions orn the system functions £{.) and
g(.) (e.g. Lipschitz type on both arguments) and on the initial state

the Markov processes generated by the sequence of differential equations
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ax® = £, )t + gxf,t)dBY (4-15)

xP (o) = x(o)

would converge in the mean square sense to x(t) as generated by

dx, = f(xt, t)dt + g(x,, t)dB, (4-16)
i.e. 2.1.m. xg = x,
0+ o (4-17)

This important result suggests that we approximate the white
noise process w(t) by its sampled version, in order to get a discrete

white noise sequence, after conveniently adjusting the white noise level.

Example (Kalman) (see [A-4])
Let {5“, n=1, 2, ...} be a white Gaussian sequence with stat-
istics

Ex =o0 every n
b= -~ y

(4-18)
cov (g ) = Q Gy
where amn stands for the Kronecker symbecl and Q is a constant matrix.
Define the stochastic process y(t) by
7() = xp(t)
(4-19)
y{o) =0
where
§T(t) =X %-ia an integer, nT < t < (n + )T (4-20)

Consider the random vector

1
y() = jo x (t)de _ (4-21)
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and compute the variance of |y(1)]:

T .,
var(Jly()|) = tr T QI° = tr QT (4-22)
i=] .

which goee to zero as T > o. In order to circumvent this result and to
keep the variance of y(1) constant as T + o we have to adjust the noise
level by a factor of %-when we approximate the continuous time stochastic
process by its sampled version.

Returning to the actual implementation of the stochastic dynam-

ical system (2-5) we construct the following discrete version:

w(t)—=| S € H ——> system—>{ S € § —=>

Figure 4-2

where

v(t) +| S € H z(t)

is a sample and hold device with sampling period T, i.e.:

z(t) = v(kT) , kT £t < (k + )T (4-23)
Pefining
x, = x(kT)
k= (4-264)
u, = u(kT)

the variation of constants formula, e.g. R.W. Brocket [A-2], gives for

the system (2-5):

x() = £ 7 %) gy + [F £ 7P 6 uioddo (4-25)
o



42—

Choosing:
t = kT
° (4-26)
t € [kT, (k + 1)T]
we get for the sampled data version of (2-3)
x 1= x + (T ETT Do) g uaen (4-27)
and at intermediate points:
x(e) = (€~ kT)_:_;k +(E - KT E(t - kT - 0)445) g u(kT),
(4-28)

KT < t < (k + 1)T

In (4-27) and (4-28) we approximated the white noise process

u(t) by a "flat white noise."

u(t) = 9(t) = u(kT) KT < t < (k + 1T (46-29)

Hence the sampled data mathematical description of the dynamiéal system

{2-5):
x(t) = F x(t) + G u(t)
ufo) = x, (2-3)
is:
="r!‘lx +'(\;Ju
X = %
where
E =0
. (4-31)
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FT
= e~

=2

(4-32)
&= f7 T " Do g

For the particular matrices F 2nd G of Chapter 2, we obtain:

0
% ~ ol —
= - 17T
0
)
(4-33)
'T2 -
5 O
8 T o
L = 32
° 32
| o T_

For the nonlinear system (2-12) a simple discrete approximation
can be derived (Euler's approximation), in a nonrigorous way, just by
considering the continuous stochastic process x(t) to be the limit, as
the samples become dense (T + o) of the stochastic sequence generated

by the discrete system:

Boe1 T 2D +E®) o

(46-34)
%, = X,
and where
¥ = [T £&(0) + x(6)]
t = kT
(4-35)
£Gx) = T 6x(E)
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and {u , k= ¢, 1, 2, ...} i8 a white Gaussian sequence
“k

u - u(t)
t = kT (4-36)

with adjusted spectral level of %gg.
Note that in the linear case the sampled version is valid for

all T whereas in the nonlinear case it is a small T approximation.

4.3 Received Signal

In the discretized version of the continuous physical model

we assume that the measurements (4-1) are available at discrete points

of time.
The received signal in the discrete model is
I = r{t)
t = kT (4-37)
= .l_\.(_lik’ kT) + Ek
with
w, = w(kT) (4-38)

and where once again we normalize the spectral height of the white noise

sequence {w,, k =1, 2, ...} to %.go

4.4 Discrete Fxtended Kalman Filter - Discrete MAP Filter

We saw in the previous paragraphs that for simplicity the
solution to the nonlinear estimation problem that we simulate in this

work is the discrete version of the nonlinear algorithms of Chapter 3.
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In this section we present the several suboptimal solutions

Before we proceed we will make preliminary definitions.

Be-

cause the filters we are going to implement, the Extended Kalman filter

(EK?) and the Maximum A Posteriors (MAP) filter, correspond to first

order approximations, we need the following Jacobian matrices:

of s ) .
R

oh )

355 (gk)
9x

3f1(§k)

2oy 8
9x
by

3hg, (x,)

ax4k

BhE (x,)

QX4k

(4-39)

(4~40)

Applying these definitions to both cases, rectangular and polar coordin-

ates, we have:
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Rectangular coordinates:

(4-41)

Polar coordinates:

(4-42)

We next define a composite observation as

", b e, 1=1, ..., K} (4~43)

i.e., ﬂk is the set of received vectors up to and including time k.
Let:

Elx, | 7.}
Tk (4-44)

(4-45)

is the corrected estimate of x, after we incorporate the meas-

ured H

4p ;y>

X, 1s the predicted value of the estimate of Xy s before we do the

It

measurement at time k;
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zk is the covariance of the corrected error (after we measured

Ek); and

Ek is the covariance of the predicted error at time k.

Within the above framework we present the Discrete Extended

Kalman Filter. The most common format is as follows:

I. Measurement Update Equations {correction)

A. Estimator Equation

= % + K(r, - h(x,, K))
= F x
%o

4”>

£,
B. Kalman Gain
& =B B &S
C. Covariance Propagation Equation
B =y - B B+ R

To = coviz,s %)

1

L

II. Time Update Equations (prediction)

A. Estimator Equation
- ~ oA -
5o ER) YEQ) &
B. Covariance Propagation Equation

=ag a’gT PPN '\I'VI'A
L 3§&32)+&%ggggg

(4-46)

(4-47)

(4-48)

(4-49)

(4-50)

Remark:
1) We can evaluate at each stage the Jacobians.i: at X, = 3k and that
is exactly what we mean by the notation %§=. The Jacobians Ek can be

.—k
evaluated at the predicted estimate.
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2) Because at each stage we relinearize the system and observation

functions about the previous estimate we cannot compute off-line the
covariances, and hence the Kalman gain has to be computed on-line since
it is coupled to the current estimates. This on-line computation of
the propagated covariance values increases the computational burden of
the filter and a desirable property is to see if the gain reaches a
steady state. We will see that for some cases this is in fact true and
that these steady state values are intimately related to the assumed

parameters (array geometry, signal to noise ratio, driving noise level).

A close look at equations (4-46) to (4~50) shows that the main
computational effort relates to the matrix inversion in (4-48), which is

a 2N x 2N matrix. By standard manipulations starting with (4-48) we

have:
P=y-E [ma +RIT W
E_ETB—I = _Pm:_T__-l [.].:.. _ B[ E_'I_ET + &]—l MTE-I] (4-51)
=w'R EER T+ 07 e 41 - TR

= wi’ [mm’ +R] 7
Substitution of (4-51) in (4-48) gives:

RP=M-PHR M
or _ _ (4-52)
P +ER g
or equivalently:
o "1
P = M[I + HR HM] (4-53)

Looking at (4-53) it seems that we have increased the computa-
tional effort since we need the inversion of a 2N x 2N matrix R plus the

inversion of the n x n bracketed matrix.
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But in the case of stationary noise, R is a constant matrix
and so the 2N x 2N matrix inversion takes place only once and by consid-
ering the coding (4-53) instead of (4-48) we do in fact decrease at each
stage the computational burden.

Equation (4-52) will be used for theoretical discussions.

MAP Discrete Filter

This algorithm is essentially similar to the discrete EKF des-
cribed above. The only difference relates to the mesasurement update
covariance equation.

This equation becomes, instead of (4-53):

-1 9 T 21 - -1

where

9
(-) = 3 (o)
x T

X, x = (4-55)

We ohserve that gk as given by (4-54) is essentially a stochastic matrix

(in the sense that its elements are random numbers) and so a priori, we

suspect that for some cases (essentially depending on the signal to noise

ratio and on the geometry tracking) it can lose its positive semidefiniteness.

T - =2 @ R, - n@E,, N} >0 (4-56)
3%y BB 4 - 3% =

then we can find a matrix gk such that

B & B - ‘Ség .} (4-57)
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Bearing in mind (4-57) (and (4-56)) we can formally reduce eq-

uation (4-54) to equation (4-52) or (4-53).
For the sake of easy reference we summarize the whole reformu-

lated discrete nonlinear estimation problem.

I. Discrete System:

Boe1 T EEm) Yae) y

(4-58)
%%
A. Rectangular coordinates
R S
¥ ¥ °t T (4-59)
f) =Ex = 1T % i}
2 o1
%2
g =8 = |° ° (4-60)
° /2
o) T
b -3
B. Polar coordinates
x, (k)
? = T xlxz(k)
_%() = [T s(z‘_(t)) + E(t)] %, (k) + ik (4-61)
t = kT 4
xl(k)
[ o o
n sin x3(k) ces x3(k)
£G) = T g(a(e)) = T . o
= kT cos x3(k) -gin x3(k)
xl(k) xl(k)
L

(4-62)
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I1. Received Signal:

I, = ()
€= kI (4-63)
= gﬁzk. k) + w
with
hcigk, k) = /P sein %c [p, 81n0(k) - R(K)]

(4-64)
hsi(gk, k) = ¥YP cos {c [p, sia0(k) - R(K)]

and O(k) and R(k) were previously defined in terms of the state variables,

either in polar or rectangular coordinates.

III. Statistics

E ulk) = o (4-65)
Eu(k) u (§) = Q Sy  with Q = 21

Ex = X

j = (4-66)

leovs,s x,) =

[F e

Ew wT = §. ., with =1X I (4-67)
By = Ry O B2 L

1, «oes 4 2 =1,2, k>0

E xoi ul(k) =0 , every i

{E X, wz(k) =0 , everyl =1, ..., 4, every %, any k
i {4-68)

E ui(k)wl(j) = o0, every i, £, k and j



IV. Extended Kalman Filter

A. Starting Values

2(o) = Ex_

(4-69)
P(0) = cov(x_, 3_:0) =P
B. Time Update (prediction)
1. Estimator Equation
Xeopq = E@Y (4-70)
2, Covariance Equation
3Z B?T LY AT
Fer173g Bogp tE@) Q4 @) (4-71)
C. Measurement Update Equation (correction)
1. Estimater Equation
%, =% + R, - hix, ©) (4-72)
2. Kalman Gain
K - g @7
3. Covariance Equation
P, =M [I+H RIn M1t (4-74)
B mhRUI+E B EY

V. MAP Filter
Framework of equations (4-69) - (4-73). The covariance equation

can still formally be written as (4-74) with the foregoing definition (4-57).

i;fc L i’k - %gk (B B Ir - 0Gy, 01D (4-75)
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4.5 Square Root Algorithm

As it will become apparent from the simulation results the
incorporation of new accurate available data reduces drastically the co-
variance matrix to a small value.

Due to the truncation and roundoff errors introduced by the
computer, particularly relevant for example when subtraction of small
numbers of almost the same size occurs (e.g. covariance measurement up-
date equation) the covariance matrix may lose its positive semidefinite-
ness becoming meaningless.

The numerical computation of the covariance matrix becomes

particularly sensitive when the matrix condition number, defined as
o= maximum eigenvalue
minimum eigenvalue

is of the order of bn, where

b is the arithmetic basis used

n is the number of significant digits.

As we will see, particularly with the polar frame where in the diagonal
of the covariance matrix appears the variance of the range and the var-
iance of the bearing rate, U is in fact of the order of b".

The numerical improvement of the covariance matrix reflects
directly in the overall performance of the filter since the Kalman gain
is directly proportional to the covariance matrix.

There are several remedies to improve the numerical ability
of the filter and to obviate the inherently theoretical impossibility
of the propagated covariance losing its positive semidefiniteness. We

consider the square root implementation of the filter equations.
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For a symmetric positive semidefinite matrix P we can always

find a (not unique) matrix W such that
P - (4-77)

The nonuniqueness can be used to impose additional require-
ments on the form of W, in order to expedite the numerical computations
(e.g. the Cholesky algorithm [E-4], computes W in lower A form with
positive diagonal elements). We will call W the square root form of P.

The square root filter algorithm propagates the square root
of P and M instead of P and M themselves. This improves the filter's
ability of keeping P > o as well as improves its numerical efficiency
since

1/2

uiet’?) = urent/? (4-78)

There are several available methods. Suitable survey refer-
ences include Schmidt [E-5] and Kaminski et al. [E-4].
After a brief discussion of the pertinent methods, we construct

the square root algorithm (SQRT) as it applies to our problem.

Let
P (4-79)
M= ss’ (4-80)
coe” = vv' (4-81)

The SQRT includes algoritims for:

Step 1) Initializing the filter, i.e., to find from a given
covariance go its square root.

Step 2) Correcting the square root covariance matrix when

incorporating new data, i.e. for computing W.



-55-
Step 3) Propagating forward in time the square root covariance

matrix, i.e. an equation for S.

We consider separately each one of the above steps.

Step 1) Initialization of the filter
Cholesky algorithm, [E-4], is an efficient algorithm construct-
ing the square root of a given matrix in triangular form. Ve present

the routine in Appendix B.

Step 2) Equation for propagating W

The first algorithm was developed by Potter, e.g. Battin [a-1],
problem 9.11, for the case of a no driving noise plant and scalar measure-
ment. This method is referred to as Potter's algorithm and is essentially
the method discussed below. Bellantoni and Dodge [E-2] generalized Pot-
ter's method to the case of r-vector valued measurements by essentially
considering a spectral decomposition procedure. Andrews [E-1] gave another
(simpler) generalization of Potter's method for the case of r-vector
measurements and also gave an alternate formulation for the SQRT.

Schmidt [E-5) discusses the different algorithms as they apply
to the nonzero driving noise case.

We discuss very briefly Potter's method and some of its gener-

alizations in order to have the necessary background to construct the SQRT.

Potter’s Method

The essential step in Potter's method consists of the factori-
zation of

P=y - [+ Jo) ™t hM (4-82)

We remark that in (4-82) E? is a column vector and ' + go

is a scalar.
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We present the main argument in the proof of the following

Lemma : Let P = gg?
The measurement correction of W for the no plant noise and

acalar measurement case can be implemented by the recurrent equation

o T

bb
W=sll-s059! (4-83)
where
T, N
a = hMh- + 50 (4-84)
No/2
- T, T
WO/Z b=Sh (4-85)
Proof

Using definitions (4-79) to (4-81) we can write equation (4-82)

in the form

wi = s - a”t pphs’ (4-86)

R VL P 1 ' | 4-87
2 Bt aaso| |l @+ (4-87)
where a and ¢ are given as in the statement of the Lemma.
The expansion of the right hand side leads to:
T,.T T
bb bb b
“I+.—.—.—2._==..-_—2--2;—t%'—+-zs- (4-88)
a“(1l + c)
T
-1 2 bb T
I-a" b - ;12 (4-69)

[
~
=
+
0
A
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But the scalar

E?E 2a(l + c) - Tb a + No/Z + 2ac

bb
* = 2 =

al + ¢) a(l + ¢)?

a(1+c2+2c) 1

a(l + c)2

and so equation (4-83) follows.
QED.

Andrews generalized Potter's method to the r-measurement case
by first diagonalizing the covariance matrix R via a similarity transfor-
mation (recall that R being covariance matrix of a real vector stochastic

process is R = 3? > o0). Let T be an r x r orthogonal matrix s.t. A de-

fined by
A=1RL (4-90)
is a diagonal matrix.
Then equation (4-48) can be written as
P=y-naD (@07 HED + N7 @’ N (4-91)

where the matrix H is replaced by HT with the equivalent measurement noises
uncorrelated. Potter's method can then be applied to an r-vector measure-
ment by processing sequentially one at a time.

Before we apply essentially these arguments for implementing
the measurement update of the square root covariance matrix W, we recall

trivial facts from matrix theory.
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Any real symmetric matrix A with eigenvalues xq and eigenvectors

a; can be written as
T
A=-Ix a a (4-92)
It immediately then follows the
If A= AT > 0 then
Property: - = -
A= §_§T (4-93)
with
B = [b b ). b =x/%a , 1=1 n (4-94)
S R TR T ’ »oeeto

If any X, = 0, some of the P—i are o and the remaining are lin-

early independent (Standard Linear Algebra result).

Remark: 1In the above fact the matrix B was constructed to be unique.
Obviously it's not the unique solution to equation (4-93).
We have chosen to implement the covariance measurement updste

e¢juation via

LENUSES ¢ (4-95)
T -1 ;
Since R > o, HR "H > 0o and so
2
B=HR'E= I bb (4-96)
™ T

where £ is the rank of B, £ < n (n = 4) and the b, are linearly independent.

_i
Recalling from matrix calculus the
Fact: At +bb 1 = A - @ +bT AR BT A (4-97)

Proof: Algebra manipulation.
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Then the square root algorithm follows by applying sequentially £ times

Potter's algorithm to the equation

T -1 T,-1
WE = 1G5, 85 )7+ BT el b (4-98)

and where
5,=8 4-99)
s, = ¥ 1=1, cvey 2 =1 (4-100)
¥ = Hg, (4-101)

We remark that if we had used directly Andrews' argument
we would have to do 2N iterations at each stage to update the covari-
ance square root of P,

In our particular problem % is always = 2, while N (number of

array elements) may be very large (e.g. 20).

Step 3) Time Update
We can apply directly the method as developed by Schmidt, e.g.
Kaminski et alt. [E-4].

In Appendix B we present the complete routine.
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Chapter V

Mathematical Analysis of the Optimum Receiver

In this chanter we analyse the receiver structure derived in
4.4 and Appendix A.

Our goal is to have a certain understanding of how the filter
behaves in order to be able to interpret the simulaticn results.

This analysis is carried in two steps. First the estimator
equation is considered and several block diagrams are drawn. The polar
coordinates case is expléred more in depth and we conclude that in the
receiver we can distinguish essentially two 'phase locked loops', one
trying to lock on the waveform

w

¢, (£) = == R(£) (5-1)
and the second one on
Y
¢,(t) = == sind(t) (5-2)

We remark that this analogy gives hindsight on the expected
behavior of the several receivers.

Secondly, we analyse the covariance propagation and conclude
that a steady state regime is reached (polar coordinates case). As
pointed out earlier, this steady state regime is a desirable character-

istic of the filter since it avoids the computational burden of propa-
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gating the covariance equation. But even in the real world where the
simplified hypothesis of the analysis do not necessarily hold this shows
that at least after a transient the filter will essentially stabilize
its covariance matrix and so in each application we only do need to pro-

pagate the covariance matrix for the initial transient period.

5.1 Estimator Equation

We summarize the results from section 4.4 and Appendix A:

1

A - T N -
£ =x +P B R" [ -hx, k] (5-3)
Een1 © Z(Ek) (5-4)
where
Z
= nul g~ _lo
B=H R" [£-hl=],, (5-5)
o
N
Z1 = 2V§-T Y dli{cos ;i(rc - h, ) - sin Ei(rs - h )} (5-6)
o 1i=1 i i i i
2T N - -
23 = =5 z d3i{cos ai(rc - h, ) - sin ai(rS - h, )} (5-7)
o i=1 i i i i
dli’ d3i’ are given in Table A-1,
— wc : -
a; = — [pi sin® - R] (5-8)

In figure (5-1) we present the general block diagram of the
estimator processor in the general setting of equations (5-6) and (5-7).
Figures (5-2) and (5-3) particularize for the polar and rectangular co-

ordinate systeme, vespectively.
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7
N Jcosw! h =/Fsn 3,
b

V2 sn wt h‘~=-./5 cos oy

Pig. 5-1

Estimator Processor: General Case

:L
(1) ﬁ? Y_
—= J2c0s wt JPsn§
? W

YZ sin wet ~vP cos g,

rN(’) i
T dV2coswt VP singy,
——

VZsinwt  -J/P cos B,

—®

Fig. 5-2

Estimator Processor: Polar System
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1
- . 2V/PT |2
= N
. ) i hi ? °
I dV2cos it VPsing cos §, @
R S S
V2 sin @t -/P cos 8, sin 8 %
e --
L To)
.? (2> ?
'"(I) T *
N JV2coswt P sing, cos 8, <
® Py 2/PT |23 |
1 L
K X —J

VZsnat /P cosdy, sin -

Fig. 5-3
Estimator Processor: Rectangular Coordinate

W3"=I2°.{‘}.
w/ﬁﬁ
No
W |
3 23
©r 4?_‘
cos i3
W'"T{'}. =
2PT
No
):w 21
D

a=Z cos (pI Abi)
B=Zp, snlp Abl)
1

w,

Abﬁ-é (sin xgsin RS)
w,

Bby=-F (x-1)

{'}|=COS °| W, Sin Oiﬂl“

Fig. 5-4
Mathematical Model: Polar System
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Figure (5-1) (general case) shows that the filter performs

two beams Z1 and Z3 each one being a given weighted sum of the individ-
ual sensor outputs. These two beamg are input to a beam combiner which

essentially consists of the matrix operation P

21 —=>
PL==!

Z3 —>

generating the input (control) V to the receiver's copy of the dynami-

cal system.

Performing the P matrix multiplication

<
0

1 PllZI + Pl Z3

3

<3
L}

P.,21 + P, .23

) 2 12 23
(5-9)
V3 = P1321 + P33Z3
\Va = 91421 + P3AZ3

we see that the input V, to each state variable processor equation is

i
a weighted sum of the two beams Z1 and Z3, the weights being the ele-
ments of the first and third column of the covariance matrix.

Finure (5~2) and figure (5-3) show the two beam performing
operations in each one of the coordinate systems.

In the polar case each beam is essentially performed in an
"independent" channel. 21 corresponds to a conventional delay and sum
beam (i.e. Van Trees [A-11]) and 23 to a "difference" beam. This "in-
dependence”" is not complete at this stage since a coupling exists

through ;i’ i=1, ..., N and the factor cos 23. In the rectangular

case both channels intervene in the comstruction of both beams.
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Fig., 5-5
Mathematical Model I: Rectangular System
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In Appendix A we derived a mathematical model for the filter

which is more suitable to pursue the analysis. Essentilally we consid-

_ 2PT /ZPT
Zl--—N—Sl+ N Wl
(o] (o]

2PT 2PT
TS3+ ——N—W3
o] (o]

ered that

{(5-10)

[}

23

where S1, S3, W1, W3 are given in Table A-3 and equation (A-20).
Figures (5-4) and (5-5) show the block diagrams in polar and
rectangular coordinates respectively.
In (5-10) each beam is decomposed as the weighted sum of a
"signal term" and an additive '"noise disturbance', the weights being

proportional to the signal to noise ratio (SNR). We see that if

the coefficient of the signal term is larger than the coefficient of

the noise term. But if

2PT
w <1
(o]

exactly the opposite occurs. Hence a degradation of performance is ex-

pected for values of E%E around 1.
o

5.1s1 Polar Coordinates

We now concentrate in the polar case. From its mathematical
model we see that the two beam forming operations can be decomposed in
the generation of two "signals™ Sl and S3 and two "additive noise dis-

turbances” W1 and W3.
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1f we assume that the linearized assumption is valid, the

errors will be small and

cos Ab3 N1 (5-11)

cos pyAby V1 (5-12)
from which it follows that

o v N = number of sensors of the array (5-13)

and the real active elements in both channels are the sin(.)elements,
respectively sin(pi Abl), ie 1, ..., N which perform 8 and sindb,.

This argument shows that Sl contains essentially information
about the difference x - ﬁl while 53 has essentially the available in-
formation about the difference between the true bearing and the bear-
ing estimate. So we see that the 23 channel is mainly a bearing chan-
nel while the Z1 is a range channel with a weak coupling, e.g. modulation
of B by cos Ab3 in the bearing channel and through the modulated gain
o in the range channel.

21 and 23 are as noted before combined by the matrix operation
P to give a weighted imput to each state variable equation, the weights
being the covariance elements which represent the coupling between the
several channels. At this stage we are not able to see how strong or
weak this coupling is but if the cross covariances are small when com-
pared with the variances (e.g. Py << Pll) and if the covariance ele-
ments reach a steady state then a decoupling of the range channel and
of the bearing channel effectively takes place.

To see this, we reorganize figure (5-4) in figure (5-6). In

figure (5-6) it becomes apparent that in the linear regime the modulation
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effects by cos Ab3 in the bearing channel and the modulation of the
range channel gain o are negligible. Also it is now obvious that the

main coupling between the two channels, if it exists, is through the

Pll’ P13 and P33 gains.

For the two remaining state variables, figure (5-7) shows

the respective processors.

n Sl

ﬁm\ LA
DELAY > DELAY >
7] 5T
Z3 ‘—>- 23 1 ?(.) 23 34 1 ?( )
Fig, 5-7

In figure (5-8) we show in detail the last section of figure

(5-6):
Wl W3' cos §3
P xl ot ;3
Sl 11 DELAY >53 #P33 | DELAY >
' ]
1 |
— |
| |
z
35 Py3f 4 (¥ 721 (%13 } 4 ¥
Fig. 5-8

We obserye first that in dashed lines we represented the coupl-
ing effect (assuming the gains Pll’ P33 reach a steady state value) bet-
ween the two channels.

If we can show that

P11 > Py3 (5-14)

33 7> P13
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than the two channels are really decoupled.

We see that when the relations (5-14) hold, figure (5-8) shows
that the range channel and the bearing channel perform like phase locked
loops tracking the waveforms

w
-c-°— R(t) (5-15)

¢, (&)

and

A
95(t) = == sind(t) (5-16)

as previously indicated.

We remark that in figure (5-8) we have explicitly indicated
the cos §3 multiplying factor to show that the performance of the bear-
ing "phase lock loop" is degraded for increasing bearing angles. In
figure (5-6) we have associated the cos §3 factor with the position
elements Pys showing that the net effect of increasing the bearing angle
is the reduction of the array length.

The rate channels of figure (5-7) are essentially coupled to
the previous ones. This is obvious since no direct information is avail-
able at the received signal about the rates. The only way the filter
can estimate the range rate is looking at the modulation of the received
waveform induced by the target dynamics. At each rate channel we have
present both beams Z1 and Z3 weighted by the respective crosscovariances
between the error of x, and xj and the errors of X, and xj respectively,
vhere j = 2, 4.

One suspects that in each case, in the linear analysis:

1ol >> [Py,] (5-17)
and

|P34l >> 'Plal (5-18)
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but at this stage this can only be verified by the simulation results.

Remark: We should point out that because the whole filter corresponds
to a linearized analysis, the above arguments are only valid when we
are indeed in a linear region of performance. We also see that since
the available copy of the source at the receiver 1is an "egtimated" copy,
this means that the performance of the different channels is degraded
by the errors on the estimates. But we suspect that in the linear re-

gion these will be small.

To finish the analysis of the polar coordinates receiver, we
make a brief error analysis.

From figure (5-6) we can see that if Aby > o (xl > ﬁl) then
S1 > o and for sufficiently high signal to noise ratio Z1 > o the
estimate moves up in the range channel to track the right value.

Conversely, if Ab3 X o the same argument shows Z1 < o and
the estimate will be reduced and so once again the filter moves in the
right direction.

This whole argument is true whenever
IAb3| <T (5-19)

In fact if we consider the estimate range parameter space we see that
there are equilibrium points in the range space where the filter will
lock in. These equilibrium points are half of a wavelength apart of
the true range.

This is essentially due to the fact that the net effect of Ab3

is through the sin (.) function.
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In figure (5-9) we show diametrically this effect.

A

sin(Ab3)

, A

d ™ Ab,

-

w

o - stable equilibrium points

x - unstable equilibrium points
Fig. 5-9

Of these equilibrium points the ones apart 20* of the true
range are stable and the ones apart (2k + 1) %-are unstable equilibrium
points in the sense that a small perturbation will make the filter to
lock on the nearest stable equilibrium point.

These phenomena just parallel the similar behaviour of a phase
lock loop (see Van Trees [A-9]).

From this analysis we conclude that the primary lockin range
is limited to an interval centered on the true range and width of one

wavelength.

5.1.2 Rectangular Coordinates Receiver

We can rearrange figure (5-5), i.e. the derived mathematical
model of the rectangular coordinates case , in a similar way. This is
done in figure (5-10).

In the rectangular coordinates case for small bearing angles,
i.e. %y << Xgs We can neglect, in the linear analysis, in the upper path

of figure {5~10) the summand 831 compared to S33. So the bottom path

# X is the wavelength, i.e. lwc = 2Tc
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only influences the upper one through the coupling between the covariance

gains and through the dependence on the estimates (which in a linear
analysis can be translated qualitatively in terms of a degraded perform-
ance).

We see that now the essential dynamics in each path are gov-
erned by Ab1 and Ab3 with both depending on % and Xq.

But we 3till can argue that Z3 is essentially controlled by

Ab3 (1f X, << x3) and that
fxi + xg - in + §§ ~ |x3| - =

So the upper path represents essentially a phase lock loop similar to

N (5-20)

the range channel in polar coordinates, trying to lock on the waveform
Ve
Y (t) = = x4 (5-21)

We call it the Y-channel. We remark again that the Y-channel will have
a degraded performance with respect to the range channel, and that this
analysis is essentially valid only for x << Xqe

On the bottom path Z1 is controlled by both Ab3 and Abl, be-
ing difficult to compare the two quantities S11 and 313.

It is easily seen that S1 << S3 for the geometry under con-

gideration and so even if

P13 v P33 (5-22)

we can neglect the coupling to the Y-channel induced by Z1. The only

coupling remaining is then through the covariance gain P33.

For the bottom path which we will call X-channel, both beams

are processed and it is hard a priori to pursue the analytical argument.
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5.2 Covariance Equation

Fecalling the covariance measurement update equation in the
form

P= I.Pfl + g Ryt (5-23)

from Appendix A we have

[o] [} [+ [o]

B-ERrlE - (5-24)
H2 o H3 o
[e] o [¢] [o]

with Hl, H2, H3 given in the Table A-4.

The special form of the matrix B just illustrated the fact
that on the received waveform the receiver has only present direct in-
formation about x and Xqe The fact that the filter can effectively
egtimate x, and x, is a result, as pointed cut many times before, of
the modulation induced in the signal by the target's dynamics.

We have seen before that the filter's processing of the re-
ceived waveform consisted in filtering two beams Z1 end Z3 where es-
sentially Zl(Abl) and Z3(Ab3) and that these two beams were the inputs
of Q dynamical systems. We argued that excluding the coupling through
the covariance gains no additional coupling existed between the range
channel and the bearing channel (in the linearized analysis the fact
that the copy of the dynamical system at the receiver depends on the

®
actual estimates can be thought of as a degradation in the performance).

* As a final general remark on the covariance equation, we observe that
in the EKF {polar or rectangular), as shown by Table A-4, the covariance
equation (5-23) only depends on the estimated values of the state vector
and not on its actual values. In the MAP filter the measurement update
equation explicitly depends on the actual values of the state vector.
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To pursue the analysis, we concentrate first on the:

5.2.1 Extended Kalman Filter, Polar Coordinates Case

The covarlance measurement update equation in this case has

H2 = o (5-25)

in the B matrix.

To get an upper bound on the values of P, we imagine the worst
situation where we assume that we rely om nothing in the orevious estimate,
i.e. make

Ml-o (5-26)

(This could, for example, be the starting attitude).

Because B is singular, this says nothing of interest about P.
But if we recall our previous discussion about the way the filter pro-
cesses the data (beams Z1 and 2Z3) and that the important dynamics of
the filter relate essentially to Abl and Ab3, i.e. to the range and bear-
ing estimate errors, this suggests that we think of our problem as a

2-gtate variable problem

13

Then we get from equation (5-23) and (5-24) in the "worst" situation

Py i3 T
. (5-27)
Pl3 P33 o) H3
or
(P13 = p (5-28)
p n L by (5-29)
11 VH
v 1 A
Py Vg - B3 (5-30)
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So, if the argument holds, we should expect that in the linearized

analysis
1
P E (5-31)
P A< —ho
33 H3 (5-32)
and that
P13 LYr (5-33)
Recalling from Table A-4
w
Jm «ZL (5% (5-34)
()
] 2T Ye2 2- Y 2
H3 = -1"!: ('E—) cos” X, i Py (5-35)

we see that essentially the bounds Bl and B3 depend on the signal to
noise ratio, the array height (or number of elements) and in the bearing
channel also on the bearing angle.

We show below in figure (5-11) graphs of Bl and B3 when the

geveral parameters vary.

g

Bl N >> Bl ‘
2PT/N N
T o o
B3 A B3 B 53 b
N >
x3 <<
m/2
2PT/N° array length *3

Fig. 5-11
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Obviously we expect that the agreemeat between the actual behaviour of

Pl and P33 and the sketched bounds Bllgand 833 is better when the

1
values of the parameters imply a good filter performance (e.g. high
signal to noise ratio (SRR), long arrays, small bearing angles, etc.).
The above heuristic argument can be made more rigorous by
considering the expanded form of the equations of the covariance ele-
ments P ILERERE P44 and by taking limits of these values when for ex-

1

ample Mll + ®,

We present now a

Numerical example

2P
i 10
o
T= .5 sec

c = 5000 feet/sec
Q = 21f

c c

fc = 100 cycles/sec

N = 20 elements

array length = 500 feet

x3 = Q0
Then
Bl = .825
B3 = 2.5 x 10

The numericazl values of Bl and B3 and physical consideration
lead one to suspect that Bl and B3 are tight bounds of Pll and P33 res-
pectively. In fact the simulation results agree with the above quan-

tities, 1.e.
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<
JPll Bl

}Pas < B3

(5-36)

(5-37)

and they show that the covariances remain practically unchanged after

a finite number of iterationmns.

Nevertheless the strict inequalities in (5-36), (5-37) just-

i1fy in terms of a gain in performance the actual work of propagating

the covariance matrix by the Kalman filter in order to evaluate the

final values of the covariance elements.

5.2.2 Extended Kalman Filter, Rectangular Coordinates

By an argument similar to the one used in the previous para-

graph, we get in the "worst" situation

where

m m] !

H2 H3

H4 = H1 H3 - H22

From Table A-4 we get

2 2
2pT| Ye 1 -2
B4 [T E—') (.)] NO’X3
o .
225>
P
(.)
Bl Q H3
H4 DEN
=4
3 o+ N
X
335&3:('2 1

H3

H2

-H2

H1

(5-38)

(5-39)

(5-40)

(5-41)

(5-42)



;2
3 - ey
-3 o-N xlx3
A om A
B3 = - @ = DEN
where
2 2 N
s— X O’=Z
.) Xy + Xy : Py
-2
w12 X
DEN = 2PT| ¢ 3 No
NO (o4 ;2_'_;2
1 3
For a geometry where
X) << x4

we can approximate the above bounds by:
;2
3
2PT i(:_zd
N lc
o

Bl =

1

2pr| ¥e|? o
N c
(o]

B3 =

w2
2l

B13 =

Not ¢

Once again we present a

Numerical example

For a well sized array

N =20
length = 500 feet
G =5x 105

(5-43)

(5-44)

(5-45)

(5-46)

(5-47)
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and for
2P . 100

N
o

T=.5

x3 = 104

x, = 102

we get

Bl = 250

[}

B3 =~ .0625

B13 = 2.5

We remark that for the broad side array the Y-channel has a
performance similar to the range channel in polar coordinates as mea-
sured by the bounds {5-46) and (5-29) which are the same.

From the numerical example we suspect that the performance
of the X-channel will be worst than the performance of the Y-channel.
The simulation results will show that

P11 << Bl (5-48)

and in fact

P, >P (5-49)

11 33

We see that the general expressions (5-41) to (5-43) give
the bounds as functions of the geometry. As a final comment, we ob-
gserve that for an endfire array the values of Bi, B3, B13 are in mod-

ulo much larger than the ones corresponding to the broadside array.
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5.2-3 MAP Filter

By a similar argument we obtain

B=l (5-50)
= (5-51)
B3 = - 52 (5-52)
where as before
2

H4 = H1 H3 - H2 (5-53)

and Hl, H2, H3 are given by expressions (A-47) to (A-59). The complexity
of these equations make almost useless the heuristic analysis pursued

in the previous paragraphs. But two remarks are in order in this case:

1) The dependence of the covariances on the actual errors of the es-
timates which show that the propagated covariance and so the Kalman gain
will tend to follow the actual errors. Physically and in other words,
the filter bandwidth is directly modeled by the errors in the estimate.
2) 1In the expressions of Hl1, H2, H3 we distinguish essentially two terms,
one related to the signal and the other related to the noise, the "gig~
nal term" being weighted by the signal to noise ratio while the "noise
term" is multiplied by the square root of the signal to noise ratio.

The presence of the additive "noise terms" in H1, H2, H3 show
that the filter bandwidth is also directly modeled by the noise. For
large SNR this modulation is small. But when the SNR decreases, it
may become very significant and cause the filter to diverge. One ex-
pects the threshold to be about

2§? N1
o
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This discussion ends the mathematical analysis of the Kalman

filter. The next chapter presents the results of the simulation runs

which support the main conclusions developed in this chapter.
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Chapter VI

Simulation Results

In this chapter we present the results of the simulation rums
in a digital computer where the receiver structures discussed before
were implemented for several geometric configurations and different sets
of parameters and initial conditioms.

The practical experience with the Kalman filter confirmed the
main arguments developed in Chapter 5 when a linearized assumption holds.

Before pursuing we briefly discuss the organization of the
chapter. After we explain the criteria used to compare the several struc-~
tures, we present representative runs showing that the linearized as-
sumption holds in the sense that the actual ensemble mean square errors
are small and converge to the corresponding propagated covariances. This
justifies that the comparative study of the different structures be car-
ried out by simply comparing the propagated values of the covariance
matrix.

Then we concentrate mainly on the polar, EKF, SQRT implementation
and study the effect of the several parameters and different initial con-
ditions on the propagated covariance elements. Finally, we discuss in

summary the main conclusions drawn from the simulation work.
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Performance criteria

The performance is measured by the bias

i
b(1) =5 I oy Q) 2O (7-1)
jni— -1

and by the standard deviation as computed by

i
: ) - @2 e

s{1) =
I=i-(M-1)

el

Our studies are based in Monte Carlo simulations. The proces-
sors are compared in terms of their performance and actual regions of

convergence.



-85~
Representative Runs

Figures 6-1 to 6-9 show several runs of the four processors for
the indicated conditions. In all the cases the filters converged.

In fig. 6~1 we summarize a typical situation for the four fil-
ters. The bias is effectively removed and they all work in a linear re-

gion, i.e.

s(i) + J?;;

Figure 6-2 shows in expanded scale the bearing curves for the
four receivers. This was done in order to appreciate the spread of the
different curves. The small magnitude of /f;; coupled with possible com-
putational numerical errors and the relatively small sized sample over
which we averaged the results explain the relatively large spread of the
curves in fig. 6-2. But they show the errors are small and that their
expected magnitude is related to the (optimistic) propagated standard
deviations.

Figure 6-3 and fig. 6-4 show in particular for the polar, EKF,
SQRT algorithm the bearing channel performance for different initial bear-
ing rates. We remark as an interesting fact the inertia exhibited by the
filter.

In figures 6-5 to 6-7 we considered a sizable nonzero initial
error on the range and range rate as well as on the X and Y coordinates.
It is seen that as long as the range lies inside the primary lock in range
the filters converge. -As for the range rate the filter is not very sen-—
sitive to the initial value as we note from fig. 6-5.

Figure 6-8 compares the X-channel and the Y-channel in the rec-

tangular coordinates case for a broadside geometric configuration.
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Figure 6-9 shows in particular the modulated covariances for

the MAP filter.

Driving Noise Level 2

Figures 5-10 and 6-11B show the effect on the performance when
Q varies.

As Q increases the error covariance and so the Kalman gain al-
so increases. This accounts for the increase of the filter's bandwidth*
necessary for the filter to follow the larger source dynamics. As a net
effect more noise is allowed in the filter with a correspondent perform-

ance degradation.

SNR

Figure 6-11A and 6-12 show the effect of the SNR on the several
diagonal elements of the covariance matrix.

The filters exhibited a sharp threshold which, as argued in

Chapter 5, is located in the neighborhood of

2PT

N
(¢]

vl

For several runs the MAP filter diverged. This occurred for

2PT

N
o

vEL

this being caused by the fact that the covariance matrix lost its positive

gsemidefinite character.

We remark that this divergence is a true divergence in the sense

that once
Pto

* This concept is here used in a heuristic sense.
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then the errors become actually unbounded as compared with the divergence
observed with the EKF below threshold where because of the large values
assumed by the covariance elements the spread of the actual errors is

so large that the estimate loses its practical significance. In part-

jcular for the range channel when the standard deviation is near

| o

the filter may lose the lock, jumping to other stable equilibrium points

of the range space.
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Effect of SNR on the Rect., EKF, SQRT Performance
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Array Length

Keeping the space between sensors equal to half of a wavelength, 1i.e.
A
Ap’i
decreasing the array length also means reducing the number of sensors N.

Figure 6-13 shows the effect in the performance when we vary N.
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.6252
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Study of the Effect of the Array Length on the Filter Performance

Geometry
The geometry mainly affects the bearing angle channel as pointed
out in Chapter 5.
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Effect of the Range on the Bearing Channel Performance
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Figure 6-14 shows the effect on the bearing covariance when

the bearing angle increases. We observe that the broadside array per-
forms better. The net effect of increasing © is comparable to a reduc-
tion on the effective array length as discussed in Chapter 5.

Figure 6-15 shows the performance gain (reduction of J?;;, #?ZZ)
of the bearing channel when the range increases. We observe that for
ranges of the order of 105 feet a saturation seems to occur while for
small ranges the performance degrades almost expomentially.

This can be explained by the fact that small errors with large
range values induce small bearing errors, while the same errors for small

ranges may induce large bearing errors.

This completes the more interesting cases studied. Many more
variants could be simulated but the above examples consider the import-
ant theoretical questions. We next recap the main issues explored in this

chapter.

Summary

1) Choice of the Coordinate System

We picked two different cocrdinate frameworks to describe the
target's and observer's geometry. In the natural system (polar frame)
both the system function and the observation function exhibit strong non-
linearities; the cartesian dynamical system is linear but the observation
function is nonlinear. From the mathematical analysis it was difficult
to predict how the systems would perform.

The simulation results show that in both frames for specific
configurations of the nonlinear estimation problem the filters converge

and that for a broadside array, as analysed in Chapter 5, the Y-chanrel
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of the rectangular coordinate processor has a performance ailmost equiv-

alent to the performance of the range channel of the polar frame.

2)- Gheiee of the Filter: EKF versus MAP

Both filters are obtained by a first order linearization of
the problem about the previous estimate with the two filters differing
only in the covariance measurement update equation as pointed out in
Chapter 4.

For each filter eand on both frames one can find a set of para-
meters, a geometric configuration and source dynamics such that the pro-
ceéssors will converge and work in a limear region.

In the MAP filter the measurements are explicitly present in
the covariance equation and so the errors in the estimate modulate dir-
ectly the covariance propagation as is exhibited by the graphs of Fig. 6-9.

In the EKF only through the estimates is the covariance prop-
agation coupled to the measurements. As it is seen from Fig. 6-3 and
Fig. 6-5 the covariance matrix reaches a steady state value which de-
pends mainly on the assummed parameters and the geometric configuration.

The simulation runs showed that the MAP filter is more unstable
than the EKF. This unstability of the filter can be traced to the explicit
presence of the measurement noise in the covariance equation, from which
the covariance matrix may lose its positive semidefiniteness character,
thus becoming meaningless (we remark that the SQRT algorithm cannot cir-
cumvent this fact since the problem now is not of a numerical difficulty).
Obviously this fact is more important for small SNR and for geometric con-

figurations different of the optimal one.
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3) Effect of the Different Parameters

Signal to noise ratio: All the filters show a sharp threshold

with respect to the SNR below which the performance deteriorated quickly.
This threshold is not uniform for the class of filters studied.

For the EKF it is about

2PT
w v

o

while for the MAP filter it is
2§T n 2,

o

With the MAP filter the danger of unstability is much more

pronounced for SNR near the threshold.

Driving noise power: Q also directly influences the filter's

performance and convergence ability. As we increase Q the filter tracks

with more and more difficulty as one would expect.

Array length: The array length is an important parameter of
the simulation with a better overall performance for larger arrays as

it is physically intuitive and was predicted by the bounds of Chapter 5.

4) Tracking Geometry

The filter's performance is dependent of the tracking geometry,
range and bearing as well as their assumed rates of change.

As we increase the bearing angle the performance deteriorates.
But essentially the bearing estimate is much more affected than the range
estimate.

With respéct to the range we observe that as the target gets

further away the performance gets better.
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5) The Conventional Implementation Versus the SQRT Algorithm

The conventional implementation does not converge in the case
of polar coordinates because of numerical difficulties as it was ek-
plained in Chapter 4.5, With the polar frame we have to resort to the
SQRT algorithm.

With the rectangular frame the conventional implementation is
able to converge because on the one hand the condition number of the co-
variance matrix is smaller than the b" factor of the computer and on the
other hand the elements of the covariance matrix are sufficiently far
zway from zero. The SQRT algorithm does not give a significant improve-

ment in this case.

6) 1Initialization

In some of the runs we have started the polar filter with an
initial guess for which

S0 A
IR - ®l >3

It was assessed that the Kalman filter would converge to the
nearest stable equilibrium point (see Chapter 5). This confirmed the
previous theoretical analysis that asserted that because of the periodic
structure of the signal the filter can only solve for the range within a
half of a wavelength interval of the true value. So we have to initial-
ize the filter within the primary lock in range (section 5.1.1).

As for the initial value of the remaining state variables the
filter was particularly sensitive to the initial bearing error and pract-
ically insensitive to the initial guess of the range rate.

A maximum likelihood approach is taken in Chapter 7 to find

the starting "guess” of the Kalman filter.



~-105-

We observe from the simulation results that the final values
of the propagated covariances are intimately related to the parameters
and geometry, and are almost independent of the assummed a priori co-

variance thus confirming the analysis of Chapter 5.2.
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Chapter VII

Initialization of the Kalman Filter

As discussed earlier in this report, the convergence of the
filters depends intimately on the starting point. This is theoretically
obvious given that the noniinear estimation problem was solved by a
first order approximation, i.e., by linearizing'the system about the
previous estimate.

If the "a priori" knowledge, i.e., the initial estimate, is
not good enough, the neglected terms in the Taylor series expansions
contribute with important errors and the linearized assumption fails.

In this chapter we return to the conventional "bearings only"
problem. Our main concern is to find a good estimate of the bearing
angle. Then a triangularization procedure solves for the range in
order to get in the primary lock in interval of the range channel.

The solution is carried in two steps. In the first ome an
M-ary detection problem is solved to find the correct subinterval in
the bearing parameter space, i.e., in the interval [o, 2m] where the
true bearing angle is. In the second step the bearing maximum likeli-
hood (ML) estimate is found by carrying a local maximization.

The global accuracy is measured in terms of the probability
of large errors (i.e. of choosing the wrong cell) given by equation
(7-44). The local accuracy is measured by the mean square error of the

ML-estimate given by (7-56).
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In section 7.1 we present the maximum likelihood estimation

problem, the detailed model and the optimum receiver. In 7.2 we derive
the expression of the probability of large errors, im 7.3 the variance
of the ML-estimate, in 7.4 the low pass mecdel and finally in 7.5 we

present the simulation results.

7.1 Maximum Likeliliood Estimation

The Model
We recall from section 2.3 that at the i-th semsor the received

signal is modeled by equation (2-41):

ri(t) = si(t) + wi(t)

P
= /3 sinw(t -:‘-‘-(—§l+gIL s100(t)) + w,(€), 1 =1, ..., N

(7-1)

We will assume that during the processing interval [o,T], O(t)
and R(t) do not vary significantly so that they can be treated as un-
known, non varying parameters.

Furthermore we will model

w = - %— (7-2)

as an unwanted random parameter with a prespecified probability dig-
tribution.

We want to find the maximum likelihood estimate of the bear-
ing angle. This problem falls in the category of the detection and es-
timation of signals with unwanted parameters (see Van Trees [A-8], sec-

tion 4-4).
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The maximum likelihood function follows by a simple generaliza-

tion to the vector case of equation 4-359 in Van Trees [A-8]. Ve get

Me()] = [T o, expl+ 2 [T 7o) - ate, v, B - 7 5, v, O,
o [¢]

ste, ¥, O)dt] (7-3)
where
;l(t)
r{e) = §. . . (7-4)
fu(t>
e v @
s(t, ¥, 9) =|. .. R (7-5)
sN(ta Yy, ©)
and )
ti(t) = Bi(tn Y, 0) + Wi(t) (7-6)
with
Py
Si(t, Y, ©) = v 2P sin wc(t +-E— sin® + ¥) (7-7)
We remark that
[T 6", 0 s, O)at (7-8)

gives the received energy which is independent of the phase and so can
be ignored in the maximization procedure.
Following the rationale in Van Trees (for the details refer to

chapter 4«4 of [A-8]) we define
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v,
Fr (:) cos Iw t + = £ Py s:anJdt

L = ]'1‘/_2;-1, (t) sin Iw t +f£p s:lna]dt
3 o/ T 1 c c ‘1

and

Ae(0)] = [T pW)aY exp

Choosing

p(Y: Am) =

For A =0
m

p(y:

exv[Aln cosy]

fe=— N
2 NPT z [Lc cosy ~ Ls
o i=1 i i

-T<B<T

27 Io (Am)

A)e—— -T<O<T

i.e. ¥ is uniformly distributed in [-m, 7].

Define

¢ =1 4
N
L= I 1,
i=1 B84

Substitution in (7-11) leads to

Mzte)] = 1 (2' [+ 1”")
0

where Io(.) is a modified Bessel function of the first kind.

The.! log-maximum~1ikelihocd function becomes

in Allz(t)] = fn Io ( N

o

2T IL .t ]1/2)

G-9)

(7-10)

(7-11)

(7-12)

(7-13)

(7-14)

(7-15)

(7-16)

(7-17)
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Because of the monotonicity of the lnI (.) we need only to max-

imize the argument in {7=17). So we want to maximize
2/ PT
e =S | k4 ih (7-18)

The maximization of £(r) is carried out in two steps. First

we do a parallel processing dividing the parameter space in M equal cells

of length %‘r_r_

- -

o' 2w 27 ' 27

and comstructing the function L(r) for the central points Oi in each cell

as indicated in Fig. 7-2.

rl(t) T
— /.

2
J-thos wc(t: + P, sin@i)

\/% cos wc(t + Py s:ln@i)

2“&?/)«0 SQUARER |——

2z, Gi)

r, (£) | fr‘ | %____.,_

1=1, .., M

‘gsin wc(t +p sin@i)

\,% sin wc(t + Py sin@i)

- zlﬁ'/No SQUARER
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The largest of 2(r, Gi), i=1, ..., M, indicates in which

cell the true bearing angle is. Then we carry out a local magimization
» -
procedure to find sz. given that the magimum is in the chosen cell.
Equivalently the first step corresponds to an M-ary detection

problem:

H: r(t) = s(t, ¥, 6,) + w(c) 0<t<T
H2: r(t) = s(t, ¥, 62) + w(t) 0<t<T (7-19)
o<t<T

B,: x(t) = s(e, ¥, 6 + w(r)

In each hypothesis the same waveform is present corrupted by
an additive zero mean Gaussian, white noise disturbance and it is desired
to decide what the value assumed by the parameter © is. We remark fur-
ther the presence of the unwanted parameter |y modeled, as pointed out
earlier, as a random variable with a priori probability density speci-
fied by equation (7-18).

The optimum receiver for the M-ary detection problem outlined
above, given the equal energy on all hypothesis, assumming equal a priori

probabilities
P(E) = ... = P(R) = =
1) % e B =y (7-20)

and choosing as criterion the minimum probability of error is the "largest
of" receiver implemented in Fig. 7-2.

The final estimate is obtained by conducting a local maximiza-
tion, assumuing the correct value of the bearing is inside the chosen

region.
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To study the performance of the designed recéiver, we consider
two kinds of errors: the large errors and the szmall errors (vhen a high
signal to noise ratio assumption holds).

We want to minimize the occurrence of large errors and so chose
as criterion the minimum probability of error Pr(c) in the M-ary detection
problem

M

Pr(e) = I Pr(e|R)) Pr(H)) (7-21)
i=1

where Pr(elﬂi) is the probability of choosing O = Gj, =1, ..., M,
j # 1 given that hypothesis Hi is true, i.e. O = Gi.
Under the hypothesis of small errors we want the mean square

error

E [0 - 92 (7-22)

to be small.

We will compute the probability of error Pr(e) in section 7.2

and the variance of the M-L estimate in section 7.3.

7.2 Global Accuracy (Ambiguity): Probability of Error

Vhen maximizing

2

2
() = Lc + Ls

an M-ary detection problem is solved by assumming that the parameter
space of © is discretized to the set
o, =1, ..., M}

Under each hypothesis the received signal is:

Hi: r(t) = s(t, ¥, @1) + w(t) 0<t<T
(7-23)
1=1, ..., M
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where - P

g(t,lp,ei)=J2P ¢ s s s 0

o

sin wc(t + E!'- sinei + V)

N
sin wc(t + - sinei + )

Defining:
i T T
L fo £ (t) s (t, 0,)dt
i T T
L=J,z (t) gs(t, Gi)dt
with w -
c
cos(wct + - P 8in0)
_s_c(t,G)a)% . . w
c
cos(wct + = Py sin@i
and

- -
Py
sin w (t + — sin®)
c c

2
gs(t,e)-—-/;

Py
sin w (¢t + — 8in®)
c c

The likelihood ratio test {(LRT) computes

L) =L

c 8

and chooses the largest.

. —d

-

a

i2 + Li 2 i=1, «e., M

(7-24)

(7-25)

(7-26)

(7-27)

(7-28)

(7-29)

Up to this point we did not question what the correlation of

the signals is under the different hypothesis. We know that a consgider-

able simplification occurs in the computation of the probsbility of error

if the signals are orthogonal.

We investigate now this point by computing the time-frequency

correlation function, er equivalently its modulo squared, the ambiguity
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function (for a detailed discussion of the ambiguity function and its

properties see Van Trees [A~10]. Also references [F]).

The ambiguity function for the problem under consideration

is defined by:

L2 %2 (7-30)
¢N Lc + Ls
where
L = [T 8", © s (¢, )it (7-31)
Ly = [o 2 (e, ©) g, (¢, O)at (7-32)

Neglecting double order frequency terms and assumming the equal

spaced linear array of Chapter 2, we get

1Y ~ ]2
sin{N 3T Ap(sin® - sind))
b = (7-33)
N lwc A,
sin( e Ap(sin® - &inb))
, For O = 0 and Ap = %-, where A is the wavelength, i.e.,
Afc = ¢ (7-34)
we get
uun%uw)P
b = =
N sin(% 8in0) (7-35)

A sketch of the ambiguity function ¢N is presented in Fig. 7-3

where N = 10, O = o°, bp = %-= 25 feet.

The graph shows

But we observe that ¢N is

the existence of several lobes (ambiguity).

sharply reduced for O outside the first lobe
27

and so choosing M such that ﬁr'“ 10° it is plausible to assume that
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the signals are orthogonal under the differemt hypothesis.

In summary we have an M=-ary detection problem with M orthogonal
signals, with an unknown unwanted phase Y.
We proceed to compute the

Probability of error

P(e) = [T p (el¥) p(W)aW (7-36)
But
M
P (e|y) = Z P (elv, B) P (R)
(7-37)
1Y op (elv, 1,)
= — € s
M 1=1 r i
Now
P (ely, B) =1 -7 (2, > Rsoally#i v, &) (7-38)
But

M
P8, > 2, all 341 [y, B) = [T ple v, Hy) N Uo oty I8y wargdag,

j#

3

(7-39)

and we need

pfg'i l v, Hi)

Pl | ¥ B, 544

These probability demsities follow immediately from the statistics

of Li ’ Lj ’ Li
c c

g * Lg conditioned on ¥ and H

i.
Under the orthogonality assumption of the signals in the differ-

ent hypothesis we summarize the results on Table 7-1.
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L1 L1 LJ 3
c c s
El. | H:L' 17} N PT siny N PT cosy o 0
var [. | H, 1] N;g_
Table 7-1

Remark: 1In Table 7-1 j # 1

Then
N @l - WPT sinp )2 + @l - W/ PT cost?
o -1 c siny )° + (L - N/ PT cosy)
p(zi | ‘l’, ni) = (27N '2“) exp{ ~ No
2N'§-
(7-40)
and
12, 92
N L +1L
p4, | v, B)) = (ZwN2—°)'1 exp (- —F—g-Y1 =1, ..., M, § # 1 (7-41)
2N 5>

We remark that equations (7-40) and (7-41) are symmetric on H,

and ¥ and so

L
P el) = 2 (elv, 1) =1 - [ peelu, B [ Te e, lny, wag "ty o

This integral is easily computed (see for example Van Trees [A-8])

2 2
Pr(ew) =1 - %[1 - exp( = 5—4';—-&- )J M-1 (7-43)
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and for ¥ uniformly distributed in [~-7, 7] we obtain

/2T
M-1 exp{-‘ W

. -1y (_1ykHL o (7-44)
P(e) = T O (D) 2

7.3 Local Accuracy: Variance of the Maximum Likelihood Estimate

The received signal is

r(e) = s(t, ¥, 0) + w(t) 0<t<T (7-45)

with

p N
si(t, Y, 0) = v 2P a(t) sin "c(t +E§= gin® + ¥) (7-46)

where in the case under consideration we took
ale) =1 (7-47)

We assummed O(t) to be slowly varying so that it can be condider -
ered constant in [0, T], i.e. we modeled © not as a random process {as
before, Chapter 2) but as an unknown quantity.

The variance of the maximum likelihood estimate of

e = s:ne (7-48)

has been compute& by H. Urkowitz [F-5] with the result

2 2
2E w B
1 -Ic r 2 2,2 2 _
Var & - a + w.z ) Lr + Brxc/ LA (7-49)
c
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vhere:

Mean square radian bandwidth

2 WP lace) |2t

= (7-50)
T [lace) |2
Horizontal centroid N
2
L op,le,l
X = i=1
c N (7-51)
X lcilz
i=1
Mean square aperture length
N
2 2
z pilGi! :
L2 o i=1 _ X2 (7-52)
T N 2 c
z |,
i=1
Beam pattern of i'th element of discrete antenna
G, = G,{w u)
SO PR (7-53)
Total energy absorbed by antenna in [0, T]
ET = PT {(7-54)
Carrier frequency
f
[¢]
Fourier transform of a(t)
A(f)

Applying the Urkowitz result to our problem we get, assumming

all array elements are isotropic:
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r N (7-55)

var sinG = (7-56)

~

For O near zero sin® v O and the variance of O will be ap-

proximately given by the expression above.

7.4 Low Pass Model

For simulation purposes we present the low pass version of the

model discussed in section 7.1.

Following the rationale of section 4.1, we have at the ith

——?———"‘ ILP ;———_"‘ci(t)

}/:?_ cos Wct

’? > 1LP > r, (t)
i
v2 sin wct

Fig. 7-4

sensor

r,(t)
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where ILP stands for ldeal Low Pass Filter.

w
ri(t) = y 2P sin(wct + Eg Py sin® 4+ Y) + wi(t)

w
rci(t) = /Ff.sin(zg Py sin® + ¥) + wci(t)

w i
rsi(t) = Vri—cos(zs Py sin® + ¥) + wsi(t)

In vector notation

rci(t)

r, (v)
N
(e) = r )| ° s(t, ¥, ©) + w(t)
51

o & b o)
SC (t, ¥, 0)
_8_(t, v, 0) =

8 (ts v, 0)
51

SS (t, v, o)

with

w
s (t, ¥, 0) =/ P  sin(= p, sind + ¥)
ci (o i

w
SS (-t’ IP. e) = /T COS(’&'C' Pi sin® + ‘p)
i

(7-57)

(7-58)

(7-59)

(7-60)

(7-61)

(7-62)

(7-63)
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and

wci(t)

w (&)
°N

w(t) =
wsi(t)

wSN(t)

(7-64)

where, as argued in section 4.1, v, (t), LA (t) are sample functions of

i i

zero mean white Gaussian processes and Y is a random variable uniformly

distributed in the interval [-m, 7].

The optimum receiver follows by the same argument as in 7.1:

Mzl = [T p,av exp {+ % [T 2T (0) sCe, v, 0)dt}
o]

and so:
L = IT//(E—{r (t) sing +r_ (t) cosa lat
c o T c i s i
i i i
T 2 ~ ~
Lsi =1, ;/T: {- r_ (t) cosp, +r_ (t) sing, }dt
i i
with
S Wc ~
¢1 = C_ Pi sin G
Defining
N
Lc = Z L
=1 ci
N
L = Z Ls
8 =1 84
the test is

() = L, + 1]

(7-65)

(7-66)

(7-67)

(7-68)

(7-69)

(7-70)

(7-71)
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Mathematical model

Substitution of (7-58), (7~59) and (7-68) in (7-69) and (7-70)

leads to, after some algebraic computations and for the equally spaced

linear array previously considered:

N ~ ~
sin Nx 0
Lc v PT Sinx cosy + T E (wn sind)i + W eos¢1) (7-72)
i=1 ci si
N N ~ ~
—J sin Nx o
L = v PTY - —In % siny +y 57 E (wu sind)i - cos¢i) (7-73)
i=1 si ci
where
AP Ve -
=5 {(s3in® - sinB) (7-74)
A Wc ~
¢1 =c P1 sind {(7-75)

and LA y W, are two Gaussian random variables N(o, 1).
ci si

The "largest of" receiver is then mathematically equivalent to

[
7

the block diagram of Fig. 7-5.

PT]
+ S
sind ul ¢y cosv PN SQUARER
- 21
sin® i <
sin® + s
BCFF_ > Oy sinV —9('?——’ SQUARER [

sin®
et {=1, ..., M

1N
W
s

Fig. 7-5
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7.5 Simulation Results

We present now the results of the maximum likelihood (ML) sim-

ulation work.

These results were averaged over the observation noise and over

the uniformly distributed unwanted parameter Y.

Values of parameters:

N= 10
SNR = 10

T = 1 sec

The ﬁrobability of error as given by (7-44) is

P_ = ,082
r

The variance of the ML estimate as computed from (7-56) is
Var = .1102 x 10_2 radz

with the corresponding standard deviation

STD = .033 rad

The experimental results are summarized in Table 7-1.

* Because the ambiguyity function as given by equation (7-33) has two
main peaks (e.g. at © = o and 8 = %, for © = o) the complete solution
of the ML estimate of the bearing angle in (o0, 2m) requires that the
process be repeated with two different geometries which can be done by
mechanically steering the array. But this puts no conceptual problems.
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0O (rad) S) var (radz) STD
0 -.0062 1298 x 107 .0172
-3
.1396 .1386 .488 x 10 .022
.2792 .2768 284 x 1073 .0168
.4189 4185 .345 x 1073 .0185
.5585 .5585 .3164 x 1073 .0177
9774 .9913 .529 x 1073 .023
1.256 1.178 .533 x 1072 .073
Table 7-2

Table 7-2 summarizes the case when the bearing is in a

neighborhood of zero.

@ (rad) e} var (radz) STD

.0349 .03298 151 x 1072 .0123

.0698 .0688 .196 x 1072 .0140

.1047 .1021 .373 x 1073 .0193

.1396 .1385 .488 x 1072 .0221

1745 .1732 .578 x 107> .0240
Table 7-3

We observe from these results that the bearing estimate is
close to the true value and that the standard deviation as computed from
the simulation runs agrees with the theoretical result given by equa-

tion (7-56).
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Initialization of the Kalman Filter:

Solved the "bearings only" problem several strategies can be
implemented in order to start the Kalman filter (KF). As an example we

can start the KF with

®>0 o

%(0)

]

) (7-76)

(o}

From Chapter 6 we know that the KF is then able to solve for
the other state variables, except/for an integer multiple of wavelengths
in the range estimate.

This can finally be solved by a triangularization procedure

as sketched in Fig. 7-6.
(XT’ YT)

®
4

Fig. 7-6
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Summary

In this chapter we solved the problem of initializing the
Kalman filter (KF).

We looked into the nonlinear estimation problem from a dif-
ferent standpoint reducing it to a "bearings only" problem.

The bearing's maximum likelihood estimate was successfully
solved via a composite hypothesis test. Then a simple triangularization

provides the remaining required information to start the KF.
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Chapter VIII

Conclusion

A new model, developed in [B-1], for the study of the motion
of a source generating a narrow band signal, was presented.

The source's motion induces a modulation on the structure of
the signal and by conveniently exploiting the changes in its temporal
and spatial structure an integrated spatially-temporal tracking is pos-
sible which allows the simultaneous estimation of the range, range rate,
bearing and bearing rate by a stationary observer (linear array).

The moving source was modeled by a stochastic dynamical system.
The nonlinear estimation theory for lumpen state systems (Kalman filter-
ing) was then applied. Simplicity considerations led to the implementa-
tion of first order approximations of the optimum {®-dimensional) receiver.
We implemented the discrete version of the Extended Kalman filter (EKF)
and of the Maximum a Posteriori filter (MAP).

One of the issues explored in this work related to the choice
of the coordinate system. We studied the source's motion in the natural
frame (polar) and in the rectangular system. Because of the nonlinear
nature of the problem and of the nonlinear transformation between the
two coordinate systems and because of the approximations involved in
the actual receivers only through comparative simulation studies could

one assess their relative performance.
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When implementing the polar EKF we encountered the problem of
filter divergence which was related to roundoff errors in the computer
and made the covariance matrix lose its positive semidefiniteness char-
acter. To prevent this the square root algorithm was implemented which
improved the numerical accuracy and the overall filter's performance.

The results of Chapter 6 showed that all filters presented a
threshold on the signal to noise ratio and on the driving noise level
above which a good performance is to be expected and below which the
performance degrades significantly and the filter diverges. The filters
performance also depended on the array length (number of elements of the
array) and on the geometry, being better for the broad side array as one
would expect (maximum effective array length).

The polar frame is to be chosen for simplicity reasons. The
EKF is more reliable than the MAP for a larger range of the parameters.

With the polar EKF filter the error covariance matrix reached
practically a steady state solution. This can be used to further simplify
the processor avoiding the propagation of the covariance equation.

In Chapter 5 a mathematical analysis of the filter was made
with special incidence on the polar EKF. Essentially it was concluded
that the filter performs two beams Z1 and Z3 which ;re inputs to two

phase lock loops, one locking on the waveform

]

¥, (€) = == R(t) (8-1)
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and called the range channel and the other locking on

¥, (8) = 0(e) (8-2)

and designated the bearing channel.

The coupling between the two channels, when a linearized anal-
ysis holds (small errors) was mainly introduced via the cross- covariance
of the range and bearing. 1In the linear region of performance we have
seen that this cross-covariance is small so that the two channels may be
thought decoupled (except for the presence of the whole state estimate
in the receiver's copy of the dynamical source)}.

With rectangular coordinates the analysis was more involved
but an X-channel and a Y-channel could also be distinguished. For a
broad side configuration the Y-channel presented a similar behavior to
the range channel of the polar frame.

The starting of the Kalman filter required some a priori inform-
ation. In Chapter 7 we remodeled the received waveform at the ith sen-

sSor as

ri(t) = /fﬁ.sin(wct + 0+ ) (8~3)

where O is an unknown quantity and

£

v=-—R (8-4)

is a uniformly distributed random variable.
We then applied the maximum likelihood estimation techniques
to this "bearings only" type problem which led to a composite hypothesis

test.
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This approach successfully solved the initialization of the

Kalman filter as discussed in Chapter 7.

In Chapter 5 bounds for the range and bearingcovariances
were derived which allowed important theoretical conclusions about the
expected performance.

Comparing the bound (5-35) of the bearings covariance with the
variance (7-56) of the ML-estimate on the "bearings only" problem of
Chapter 7, for the single signal case and conventional array receiver

(delay and sum) (e.g. Van Trees [A-11]) under consideration we get

Var Omz

0 =N (8-5)

33

We see that the Kalman filter increases the performance by a factor which

is exactly the array gain of the linear array for the single signal case.
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Appendix A

Dérivation of the Processor Equations

In this appendix* we derive the actual form of the EKF and MAP
as given by equations (4-69) - (4-75). To avoid unnecessary repetitions
we derive the actual mathematical models for the receivers in a general
setting, presenting at each stage the final result in both coordinate

frames.

Step 1) Measurement Update Equations

A. Estimator Equation
2 =% +P B E'lr -hGE, 0] (a-1)

We recall the Jacobian matrix

oh
~ - 1
ahc ng
%
= o o - ' (A"z)
Ek dh .
—3
3 dh
| _°8
%y
th Bhs
where i i ,1=1, ..., N stand for the covector gradients:
ng agk

*# To keep the notation as simple as possible we will often delect the ex-
plicit time dependence. Also, for avoiding confusion, throughout we re-
serve the letter k for time dependence parameter. When explicitly indic~
ated, either as subindex or as parameter, the letter i, i =1, ..., 4,

is used to refer to the i'th element of the vector, e.g. X stands for

the i'th component of -
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th ahc ahc
i i i
= I s & o o TR—— ] (A"S)
ox ox) ox,
oh

8
and similarly for 31;‘ .

Defining:
w

a, = 1‘:2 [p, sind(k) - R(Kk)] (A-4)

we have:

%, = YP cos a, ng(ai}

i=1, ..., N (A-5)

ng‘ = -/P sin a, Vﬁkla:‘)

where . g the covector gradient. pecializing to
h ng()i h di Specializi

Rectangular coordinates:

Ye *1 :E2+x2
8= ey - /7173 4-6)
/x1+x3
and so
vE [a e 1 x§ o 3%y :
R T | 00 T - el g lo
Yx7 + x + +
1773 17 *3 SRR '
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Polar coordinates:

w
c
a; = — I Py sin Xq = x1] (A-8)
Y
.S 1! b -
V_ﬁklai} ol lio!picosx3'o] (A-9)
In a general setting
vg,k(ad- [dlj o d3j o] 1=1, ..., N (A-10)
where
Rectangular Coordinates Polar Goordinates
2
v, Xg v,
dyy £ —— O, Z..Z x)) Iy
/x + %,
1 X3
LA Xq%) v,
d31 STy 7,2 % | T Pt
/x + X, + x
*1 3
Table A-1
The Jacobian is: B -
Ek cos a; Vﬁ{ a;
cos ay V-’Ek ay
E-'k = /P (A-11)

-éin a, Vl_:_k a;

-s:.ln ay ng( aN_

A
A



d31 cos al

O+« ¢+ O
0O e+ +« O

d3N cos aN

B =7 (a-11)
-d11 sin a, o -dsl sin a; o

—le gin ay o -d3N sin ay o©

Let: B =E R'[r -hGE, O] (a-12)
We get: _
21
B =|° (A-13)
23
o
where

N
Zl = %2 Pz dn{cos ;1(rc -h ) - sin ;:l(rs -h )} (a-14)

o  i=1 i i i 8
za=ﬂﬁg d, {cosa,{r -h )-sgina,{r -h )}
N o1 31 1c; T ey 1Vs, " sy

Remark: a, =a

1 s h hs are always assumed to be evaluated

il _= "¢
notEHoOL

at 4;31(’ e.g. hcj_ = hci(%{, k).

In order to get a mathematically equivalent model more suitable
to analytical and simulation analysis we proceed by substituting the math-~
ematical expressions of T.s T s hc ’ h8 , etec. in (A-14). By algebraic

i i i i
manipulation:
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cos ai(rc - hc ) - sin ai(r8 - h8 ) = »’f'sin(a1 - ai) +
i i i i
(A-15)
+cosa,w =-sina, w
i ci i s1
but:
a, -a; =— [pi(sine ~ 8in0) - (R - R)] (A-16)
or, defining:
Ye
Ab1 - (sin® - sind)

(A-17)

M, =& ®-B
3 ¢
By expanding the sin(ai - ;1) and cos(a:l - ;i) terms in (A-14)
and collecting terms, we get:

2PT /ZPT
ZI._N: S1 + w Wi

[¢]

(A-18)
2pT 2PT
Z3 = S3 +-/-i$- W3
o o
where:
N
81 = 121 dli{cos Ebs sin(piAbl) ~ gin Ab3 cos(piAbl)}
(A-19)
N
83 = 151 dsi{cos Bb, sin(p,Ab)) - sin Ab, coa(piAbl)}
: }
W= L d {cosa,w -sina,w
i{=1 ii i ¢y i si
N _ ) (A-20)
W3= I d3i{cos a,w, - sina; w }

i=1 i i
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vhere in (A-20) we normalized the noise samples to unit variance.

To proceed, we write

d + q

i1 T 1T

d + q

31 0 933 7 93
where

Rectangular Coordinates

(A-21)

Polar Coordinates

]

-<
c

2
e 2 ]
934 c 7. LI %

X, X

3%
934 T T P

£ co8 X
c P1 3

2 2
() = (x + x3)

where /{ia lxi + xg and

Table A-2

We can then rewrite S1 and S3 as

N
81 = X {q; +4q,,) ()
R B T

N
83 = I (q +4q,,) ()
o1 37 93g

where as before:

(.) = cos Ab3 ain(p1 Abl) - sin Ab3 cos(piAbl)

(A-22)

(A-23)
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Choosing for center of coordinates the geometric cenmter of the array,

we get:

qu sin(pdb,) = o

Zq3 sin(piAbl) = 0
qui cos(piAbl) =0
£q31 cos(piAbl) = 0

Calling

N
a= I cos(p,Ab.)
{=1 i1

1] N

g =~ ETZEIT.S 151 1 sin(piAb

1

we can rewrite S1 and S3

Rectangular Coordinates

(A-24)

(a-25)

Polar Coordinates

3

=2 -2
xl + x3

|3

51 cos Ab38 + X 3

w
_c 1
¢ ;"1*%

sin Ab, o

Ye
— gin Ab,0
c 3

;1;3
=2 , =2

xl + x3

sin 4Ab

S3 cos Ab38 + x

3

w
< 15,1-
¢ ;xi + §3

Table A-3

3

W
=& cos §3 cos Ab38
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Substitution in equation (A-1) gives the estimator equation

£,00 = %, () +3§-§ [P, () SL+ P (k) §3] + /-”-g-f [P, () W1 + B30 W3]

for 1 =1, ..., 4 (A-26)

Step 2) Measurement Update Covariance Equation
T -1 -1
P m ML+ B R B M (a-27)

Remark: We omit thereoff the explicit time dependence unless ambiguity

arises.
Recalling the form of the Jacobian H, from (A-11), one gets:
HA o H2 o
B?Ef1§_= o o o o (A-28)
H2 o H3 o
o o o o
where:
N
mo=2L 5 el
o i=1
N
2PT
B2 =—— I d,.,d
N o, 1473 (A-29)
N
ms = &L 1 &
o i=1

Substitution of the values of dli’ d319 from Table A-1l, and re-
calling that for the particular choice of the coordinate center, the

first moment

Ip, =0 {&-30)
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Calling the second geocmetric moment:

N
o= I p; (A-31)
i=1
we are led to the Table A-4:
Rectangular Coordinates Polar Coordinates
—:-:4 ] w_\2
Hl ZPT' ) ) 2 o+ XN -——-ng(EE) N
() . o
szl R ]
2PT "¢, 2 *1%3 3
Hz N (c ) -'z':-)" N - ( )2 o o
_ ° -
-2-2
2 XX w_ 12
2PT Ye, © 1 |*1%3 -2 2pT | Ve 2-
H3 -——Norc—-, 8] ——;f 0+x§N No(c ) cos X, O
=2, =2
where (.) = x; + x5
Table A-4
Step 3) Time Update Estimator Equatiorn (prediction)
- LTI
with the foregoing definitions of ?(.), equations (4-59) and (4-61).
Step 4) Time Update Covariance Equation (prediction)
ok,
Y % & “*ax B O By (a-33)

where
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Rectangular coordinates:

1
o
ng . |lo 1 -
£33
1 (A-34)
2 o 1
?
4 2
o
I 5
n
£ 0 5 =a |2 (a-35)
¥ 1
4 2
o
T
i 2 Y
Polar coordinates:
[ 1 T o o
3 1 o 2T 2.4
4 174
agk (A-36)
%r = o o i T
2T §2ﬁ4 2T ﬁ‘b 22’52
" - T o 1l -~ T =
X 1 1
- 1 —
- o -
¢}
n " o 1 -
= A-37
B Y B = QT o (a-37)

>
= N o
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Step 5) MAP Measurement Update Covariance Equation

B ™ I!l:l - % {l’: E-IIEk - h(ik. KIn~t (A-38)

We recall from equations (A-12) and (A-13):

Z1
T -1 e
B=H R [r-hl=|,, (4-39)
(o]
and sc the Jacobian
- v, 21|
X
o
)
- B = (A-‘iO)
& = - V. 23
X
o

where Vﬁ. is the previously defined covector operator, see equation (A-3).

Because of the limearity

_ 2PT /2PT _
Vo 21 =% Vﬁ SL+ /55— vﬁm (A-41)
g 3 o = o =

_ 2PT 2PT _
Vg Z3 = -——No V_g S3 + _No \73AE w3 (A-42)

S1, 83, Wi, W3, are only functions of ﬁl, §3 and given their

definitions



-2 (a-43)

which is formally equivalent to (A-~28).

Recalling (A-25) and further defining:

2 N

98 3°a 2
Y = = - — = I p, cos(p, Ab.) (A-44)
P puwp? =t
{311 = gin 51 LA + cos ;i LA (A-45)
i i
's¥zi = cos ;i w, - sin ;i vy (A-46)
i i
ve get
Polar coordinates
2 w 2 N
2PT Ye f2pT Ve N
H = N o cos Ab3 o+ N o _Z_ i?ii {A-47)
o () i=1
2 w 2
2PT Ve - 2PT “c - -
m = - LS cos By sin M+ AT GE con B ¥ o®)
w 2 w
H3 = 2—%2- { -c—g cos2 §3 cos A‘b3'y - E‘-:- gin §3 cos A‘b38 }+

2 N
2PT “c 2 - 2
+ To_ e cos x3 121 Py Wi (A-49)
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Rectangular coordinates

- =2 4
. ~N X, X X
..—.-2:? ——g:lncl I""—'2 cos3+2-:-c-sin3] 1(?34' 32(‘-083"{‘
o 1 v : >
22 v
-{-ésin3+z—e§icos3]a
Ve (a-50)
2PT 9S3 ’-‘i - ’—‘g -2 Y ;‘1 (’4-51’.23)2 Ve
--—N: -5;;=GII c033-2x3-5—sin3]?-.-)-8+—-——(—-)52—- -é—cos3Y+
2 v
1 72 _¢
+ [ sin3+x3c cos 3] a (A-51)
-2 -2 -
9s X, - 2% w x
_2er %5y 37 %% -2 -2, ¥ 3
N Gl{[ o cos3+(x3-x1)c sin3]-c-)'B+
[+) i .
X Xy W w
173 "¢ 1 c - =
+—=—c083Y =~ [~——35in 3 - — cos 3] x.%x, Q _
(.)Zc S c 173 } (A~52)
N 3p,x ;2 p;tz W
2T WL ol ALy 3 W -3 ozx2 e (a-53)
N ax - (o) f— i -2 =2 1l c i
o) 1 . X, + x
1 3
-[2BT 3W3 _ ., g [p ﬁ_ﬁg_;]ﬁ&”[p i].'_.pljz;zzzg.efl
NO 31{3 1 i {.) 1 /o i i Gy 3¢ i
(A-54)
-2 -2
oW N X, = 2% x
PT 3 1 - 3
SR d gl p, 2t Rl 2, +
No 3xi {1 i C.) 1 o i

- -2
X X

Ww
+ [Pi *('T‘)' + 1] (‘Pi (?—) + Xl) X4 EE i¥11 tA—SS)
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where:
w
c 2PT 1
o No J_zz + §2
1 3
S —
PT 1
c2 = - 2
cV N =2 =2
o] xl + x3
14#3,4i=1,3; §=1,3
-2 -2 (4-56)
.) (xl + x3)
/2 -2
/._== x1 + x3
sin 3 sin(Ab3)
cos 3 = cos(Ab3)
Finally:
2PT 3S1 2PT 9wl
H = - 3% "y W % (4-57)
0o 1 o 1l
98 oW
HZS--g?—T--—;i-/-z—P—T—:i (a-58)
N 99X N 9%
o i (o} i
2PT 23S3 2PT OW3 _
= -5 w o/ W m, (4-59)
0 3 o 3
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Appendix B

In this appendix we present the SQRT algorithm used in the im-

plementation of the optimum processors as discussed in section &4-5. The

following coding has been considered in the literature, e.g. [B-4].

Step 1) Matrix Decompesition: Cholesky Algorithm

The square root form of a symmetric positive semidefinite n x n

matrix P can be written as

with

w o e 0 w
n nn

where the W,, are given by the Cholesky recursive algorithm

13

V// -1
W.=/P .- L W
11 17,2

(o]
LT =
1 =1
—— (P,, - L S S..)
C7P e L 5

Step 2) Measurement Update

I. Estimator Equation: same as equation (4=46)

II. Covariance Equation:

j<t

j=14+1i, n

(8-1)

(8-2)

(8-3)

(8-4)
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Recall equation (4-96)

)
T -1 T
B=H R H 151 b;by (8-5)

Apply 2 times the following routine

T T
b, S S b
= et O o S o i _
By=5, 0 saFo (8-6)
with
T T
a=b;88 b +1 (B-7)
T T
c /1/(1+_13j_8_§_ hj) (3-8)
starting with
S =8
2552
=Y J=1, e, 2 =1 (3-9)
=4

Step 3) Time Propagation

I. Estimator Equation: same as equation (4-49)

II. Covariance Equatiomn:

Recall equations (4-80) and (4-81)

§T (B-10)

=

jn

(8-11)

)
o
)

L]
|<
I3
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Then:
T T, . AT
Sk+1) w k) 7 )
¢ o o o @ - .,1-. e o o & T & o o 0_12)
° v'

where T is am orthogonal transformation such that equation (B-12) is
satisfied with S in lower triangular form.
There are several routines for the construction of T. We
use the
Modified Gram~Schmidt (MGS) Algorithm

Notation: Let

Sl =TA (8-13)

where S is n x n lower triangular matrix.

Define
Al 4y

>

51(1) ith column of é(j) (B-14)

1

element in ith row and 2th column of A™°.

)
An

] g

Then the MGS algorithm follows:

For j =1, n
@t W
Gj = Aj éj (8-15)
(
) i=1, j-1
5y 1 1=13 (B-16)
1@, @ L.
=4 = j s B
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(3+1) _ () _ i3 D - :
Al A o, Aj i=35+1,.

cey N (B-17)






