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Abstract
We study distributed algorithms implemented in a simplified biologically inspired model for
stochastic spiking neural networks. We focus on tradeoffs between computation time and network
complexity, along with the role of noise and randomness in efficient neural computation.

It is widely accepted that neural spike responses, and neural computation in general, is
inherently stochastic. In recent work, we explored how this stochasticity could be leveraged to
solve the ‘winner-take-all’ leader election task. Here, we focus on using randomness in neural
algorithms for similarity testing and compression. In the most basic setting, given two n-length
patterns of firing neurons, we wish to distinguish if the patterns are equal or ε-far from equal.

Randomization allows us to solve this task with a very compact network, using O
(√

n logn
ε

)
auxiliary neurons, which is sublinear in the input size. At the heart of our solution is the design of
a t-round neural random access memory, or indexing network, which we call a neuro-RAM. This
module can be implemented with O(n/t) auxiliary neurons and is useful in many applications
beyond similarity testing – e.g., we discuss its application to compression via random projection.

Using a VC dimension-based argument, we show that the tradeoff between runtime and
network size in our neuro-RAM is near optimal. To the best of our knowledge, we are the first to
apply these techniques to stochastic spiking networks. Our result has several implications – since
our neuro-RAM can be implemented with deterministic threshold gates, it shows that, in contrast
to similarity testing, randomness does not provide significant computational advantages for this
problem. It also establishes a separation between feedforward networks whose gates spike with
sigmoidal probabilities, and well-studied deterministic sigmoidal networks, whose gates output
real number sigmoidal values, and which can implement a neuro-RAM much more efficiently.

1998 ACM Subject Classification F.1.1 Models of Computation – Self-modifying machines (e.g.,
neural networks), F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases spiking neural networks, biological distributed algorithms, circuit design
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1 Introduction

Biological neural networks are arguably the most fascinating distributed computing systems
in our world. However, while studied extensively in the fields of computational neuroscience
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and artificial intelligence, they have received little attention from a distributed computing
perspective. Our goal is to study biological neural networks through the lens of distributed
computing theory. We focus on understanding tradeoffs between computation time, network
complexity, and the use of randomness in implementing basic algorithmic primitives, which
can serve as building blocks for high level pattern recognition, learning, and processing tasks.

Spiking Neural Network (SNN) Model. We work with biologically inspired spiking neural
networks (SNNs) [18, 19, 12, 15], in which neurons fire in discrete pulses in synchronous
rounds, in response to a sufficiently high membrane potential. This potential is induced by
spikes from neighboring neurons, which can have either an excitatory or inhibitory effect
(increasing or decreasing the potential). As observed in biological networks, neurons are
either strictly inhibitory (all outgoing edge weights are negative) or excitatory. As we will
see, this restriction can significantly affect the power of these networks.

A key feature of our model is stochasticity – each neuron is a probabilistic threshold unit,
spiking with probability given by applying a sigmoid function to its potential. While a rich
literature focuses on deterministic circuits [21, 13] we employ a stochastic model as it is
widely accepted that neural computation is stochastic [1, 24, 9].

Computational Problems in SNNs. We consider an n-bit binary input vector X, which
represents the firing status of a set of input neurons. Given a (possibly multi-valued) function
f : {0, 1}n → {0, 1}m, we seek to design a network of spiking neurons that converges to an
output vector Z = f(X) (or any Z ∈ f(X) if f is multi-valued) as quickly as possible using
few auxiliary (non-input or output) neurons.

The number of auxiliary neurons used corresponds to the “node complexity” of the
network [14]. Designing circuits with small node complexity has received a lot of attention –
e.g., the work of [10] on PARITY and [3] on AC0. Much less is known, however, on what is
achievable in spiking neural networks. For most of the problems we study, there is a trivial
solution that uses Θ(n) auxiliary neurons for inputs of size n. Hence, we primarily focus on
designing sublinear size networks – with n1−c auxiliary neurons for some c.

Past Work: WTA. Recently, we studied the ‘winner-take-all’ (WTA) leader election task
in SNNs [17]. Given a set of firing input neurons, the network is required to converge to
a single firing output – corresponding to the ‘winning’ input. In that work, we critically
leveraged the noisy behavior of our spiking neuron model: randomness is key in breaking the
symmetry between initially identical firing inputs.

This Paper: Similarity Testing and Compression. In this paper, we study the role of
randomness in a different setting: for similarity testing and compression. Consider the
basic similarity testing problem: given X1, X2 ∈ {0, 1}n, we wish to distinguish the case
when X1 = X2 from the case when the Hamming distance between the vectors is large –
i.e., dH(X1, X2) ≥ εn for some parameter ε. This problem can be solved very efficiently
using randomness – it suffices to sample O(logn/ε) indices and compare X1 and X2 at these
positions to distinguish the two cases with high probability. Beyond similarity testing, similar
compression approaches using random input subsampling or hashing can lead to very efficient
routines for a number of data processing tasks.
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1.1 A Neuro-RAM Unit
To implement the randomized similarity testing approach described above, and to serve as a
foundation for other random compression methods in spiking networks, we design a basic
indexing module, or random access memory, which we call a neuro-RAM. This module solves:

I Definition 1 (Indexing). Given X ∈ {0, 1}n and Y ∈ {0, 1}logn which is interpreted as an
integer in {0, ..., n− 1}, the indexing problem is to output the value of the Y th bit of X1.

Our neuro-RAM uses a sublinear number of auxiliary neurons and solves indexing with high
probability on any input. We focus on characterizing the trade-off between the convergence
time and network size of the neuro-RAM, giving nearly matching upper and lower bounds.

Generally, our results show that a compressed representation (e.g., the index Y ) can be
used to access a much larger datastore (e.g., X), using a very compact neural network. While
binary indexing is not very ‘neural’ we can imagine similar ideas extending to more natural
coding schemes used, for example, for memory retrieval, scent recognition, or other tasks.

Relation to Prior Work. Significant work has employed random synaptic connections
between neurons – e.g., the Johnson-Lindenstrauss compression results of [2] and the work of
Valiant [26]. While it is reasonable to assume that the initial synapses are random, biological
mechanisms for changing connectivity (functional plasticity) act over relatively large time
frames and cannot provide a new random sample of the network for each new input. In
contrast, stochastic spiking neurons do provide fresh randomness to each computation. In
general, transforming of a network with m possible random edges to a network with fixed
edges and stochastic neurons requires Ω(m) auxiliary neurons and thus fails to fulfill our
sublinearity goal, as there is typically at least one possible outgoing edge from each input. Our
neuro-RAM can be thought of as improving the naive simulation – by reading a random entry
of an input, we simulate a random edge from the specified neuron. Beyond similarity testing,
we outline how our result can be used to implement Johnson-Lindenstrauss compression
similar to [2] without assuming random connectivity.

1.2 Our Contributions
1.2.1 Efficient Neuro-RAM Unit
Our primary upper bound result is the following:

I Theorem 2 (t-round Neuro-RAM). For every integer t ≤
√
n, there is a ( recurrent)

SNN with O(n/t) auxiliary neurons that solves the indexing problem in t rounds with high
probability. In particular, there exists a neuro-RAM unit that contains O(

√
n) auxiliary

neurons and solves the indexing problem in O(
√
n) rounds.

Above, and throughout the paper ‘with high probability’ or w.h.p. to denotes with probability
at least 1− 1/nc for some constant c. Theorem 2 is proven in Section 3.

Neuro-RAM Construction. The main idea is to first ‘encode’ the firing pattern of the input
neurons X into the potentials of t neurons. These encoding neurons will spike with some
probability dependent on their potential. However, simply recording the firing rates of the
neurons to estimate this probability is too inefficient. Instead, we use a ‘successive decoding

1 Here, and throughout, for simplicity we assume n is a power of 2 so logn is an interger.
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strategy’, in which the firing rates of the encoding neurons are estimated at finer and finer
levels of approximation, and adjusted through recurrent excitation or inhibition as decoding
progresses. The strategy converges in O(n/t) rounds – the smaller t is the more information
is contained in the potential of a single neuron, and the longer decoding takes.

Theorem 2 shows a significant separation between our networks and traditional feedforward
circuits where significantly sublinear sized indexing units are not possible.

I Fact 3 (See Lower Bounds in [16]). A circuit solving the indexing problem that consists
of AND/OR gates connected in a feedforward manner requires Θ(n) gates. A feedforward
circuit using linear threshold gates requires Θ(n/ logn) gates.

We note, however, that our indexing mechanism does not exploit the randomness of the
spiking neurons, and in fact can also be implemented with deterministic linear threshold
gates. Thus, the separation between Theorem 2 and Fact 3 is entirely due to the recurrent
(non-feedforward) layout of our network. Since any recurrent network using O(m) neurons
and converging in t rounds can be ‘unrolled’ into a feedforward circuit using O(mt) neurons,
Fact 3 shows that the tradeoff between network size and runtime in Theorem 2 is optimal up
to a logn factor, if we use our spiking neurons in this restricted way. However, it does not
rule out improvements using more sophisticated randomized strategies.

1.2.2 Lower Bound for Neuro-RAM in Spiking Networks

Surprisingly, we are able to show that despite the restricted way in which we use our spiking
neuron model, significant improvements are not possible:

I Theorem 4 (Lower Bound for Neuro-RAM in SNNs). Any SNN that solves indexing in t
rounds with high probability in our model must use at least Ω

(
n

t log2 n

)
auxiliary neurons.

Theorem 4, whose proof is in Section 4, shows that the tradeoff in Theorem 2 is within a
log2 n factor of optimal. It matches the lower bound of Fact 3 for deterministic threshold
gates up to a logn factor, showing that there is not a significant difference in the power of
stochastic neurons and deterministic gates in solving indexing.

Reduction from SNNs to Deterministic Circuits. We first argue that the output distribu-
tion of any SNN is identical to the output distribution of an algorithm that first chooses a
deterministic threshold circuit from some distribution and then applies it to the input. This
is a powerful observation as it lets us apply Yao’s principle: an SNN lower bound can be
shown via a lower bound for deterministic circuits on any input distribution [27].

Deterministic Circuit Lower Bound via VC Dimension. We next show that any determ-
inistic circuit that succeeds with high probability on uniform random inputs cannot be too
small. The bound is via a VC dimension-based argument, which extends the work of [16].
As far as we are aware, we are the first to give a VC dimension-based lower bound for
probabilistic and biologically plausible networks and we hope our work significantly expands
the toolkit for proving lower bounds in this area. In contrast to our lower bounds on the
WTA problem [17], which rely on indistinguishability arguments based on network structure,
our new techniques allow us to give more general bounds for any network architecture.
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Separation of Network Models. Aside from showing that randomness does not give signi-
ficant advantages in constructing a neuro-RAM (contrasting with its importance in WTA
and similarity testing), our proof of Theorem 4 establishes a separation between feedforward
spiking networks and deterministic sigmoidal circuits. Our neurons spike with probability
computed as a sigmoid of their membrane potential. In sigmoidal circuits, neurons output
real numbers, equivalent to our spiking probabilities. A neuro-RAM can be implemented
very efficiently in these networks:

I Fact 5 (See [16], along with [19] for similar bounds). There is a feedforward sigmoidal
circuit solving the indexing problem using O(

√
n) gates.2

In contrast, via an unrolling argument, the proof of Theorem 4 shows that any feedforward
spiking network requires Ω

(
n

log2 n

)
gates to solve indexing with high probability.

It has been shown that feedforward sigmoidal circuits can significantly outperform
standard feedforward linear threshold circuits [20, 16]. However, previously it was not known
that restricting gates to spike with a sigmoid probability function rather than output the real
value of this function significantly affected their power. Our lower bound, along with Fact
5, shows that in some cases it does. This separation highlights the importance of modeling
spiking neuron behavior in understanding complexity tradeoffs in neural computation.

1.2.3 Applications to Randomized Similarity Testing and Compression
As discussed, our neuro-RAM is widely applicable to algorithms that require random sampling
of inputs. In Section 5 we discuss our main application, to similarity testing – i.e., testing if
X1 = X2 or if dH(X1, X2) ≥ εn. It is easy to implement an exact equality tester using Θ(n)
auxiliary neurons. Alternatively, one can solve exact equality with three auxiliary neurons
using mixed positive and negative edge weights for the outgoing edges of inputs. However
this is not biologically plausible – neurons typically have either all positive (excitatory) or all
negative (inhibitory) outgoing edges, a restriction included in our model. Designing sublinear
sized exact equality testers under this restriction seems difficult – simulating the three neuron
solution requires at least Θ(n) auxiliary neurons – Θ(1) for each input.

By relaxing to similarity testing and applying our neuro-RAM, we can achieve sublinear
sized networks. We can use Θ(logn/ε) neuro-RAMs, each with O(

√
n) auxiliary neurons to

check equality at Θ(logn/ε) random positions of X1 and X2 distinguishing if X1 = X2 or if
dH(X1, X2) ≥ εn with high probability. This is the first sublinear solution for this problem in
the spiking neural networks. In Section 5, we discuss possible additional applications of our
neuro-RAM to Johnson-Lindenstrauss random compression, which amounts to multiplying
the input by a sparse random matrix – a generalization of input sampling.

2 Computational Model and Preliminaries

2.1 Network Structure
We now give a formal definition of our computational model. A Spiking Neural Network
(SNN) N = 〈X,Z,A,w, b〉 consists of n input neurons X = {x1, . . . , xn}, m output neurons
Z = {z1, . . . , zm}, and ` auxiliary neurons A = {a1, ..., a`}. The directed, weighted synaptic

2 Note that [20] shows that general deterministic sigmoidal circuits can be simulated by our spiking model.
However, the simulation blows up the size of the circuit size by

√
n, giving Θ(n) auxiliary neurons.

DISC 2017
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connections between X, Z, and A are described by the weight function w : [X ∪ Z ∪ A]×
[X ∪ Z ∪A]→ R. A weight w(u, v) = 0 indicates that a connection is not present between
neurons u and v. Finally, for any neuron v, b(v) ∈ R≥0 is the activation bias – as we will see,
roughly, v’s membrane potential must reach b(v) for a spike to occur with good probability.

The weight function defining the synapses in our networks is restricted in a few notable
ways. The in-degree of every input neuron xi is zero. That is, w(u, x) = 0 for all u ∈ [X∪Z∪A]
and x ∈ X. This restriction bears in mind that the input layer might in fact be the output
layer of another network and so incoming connections are avoided to allow for the composition
of networks in higher level modular designs. Additionally, each neuron is either inhibitory
or excitatory: if v is inhibitory, then w(v, u) ≤ 0 for every u, and if v is excitatory, then
w(v, u) ≥ 0 for every u. All input and output neurons are excitatory.

2.2 Network Dynamics

An SNN evolves in discrete, synchronous rounds as a Markov chain. The firing probability
of every neuron at time t depends on the firing status of its neighbors at time t− 1, via a
standard sigmoid function, with details given below.

For each neuron u, and each time t ≥ 0, let ut = 1 if u fires (i.e., generates a spike) at
time t. Let u0 denote the initial firing state of the neuron. Our results will specify the initial
input firing states x0

j = 1 and assume that u0 = 0 for all u ∈ [Z ∪ A]. For each non-input
neuron u and every t ≥ 1, let pot(u, t) denote the membrane potential at round t and p(u, t)
denote the corresponding firing probability (Pr[ut = 1]). These values are calculated as:

pot(u, t) =
∑

v∈X∪Z∪A
wv,u · vt−1 − b(u) and p(u, t) = 1

1 + e−pot(u,t)/λ
(1)

where λ > 0 is a temperature parameter, which determines the steepness of the sigmoid. It is
easy to see that λ does not affect the computational power of the network. A network can
be made to work with any λ simply by scaling the synapse weights and biases appropriately.

For simplicity we assume that λ = 1
Θ(logn) . Thus by (1), if pot(u, t) ≥ 1, then ut = 1

w.h.p. and if pot(u, t) ≤ −1, ut = 0 w.h.p. (recall that w.h.p. denotes with probability at
least 1−1/nc for some constant c). Aside from this fact, the only other consequence of (1) we
use in our constructions is that pot(u, t) = 0 =⇒ p(u, t) = 1/2. That is, we use our spiking
neurons entirely as random threshold gates, which fire w.h.p. when the incoming potential
from their neighbors’ spikes exceeds b(u), don’t fire w.h.p. when the potential is below b(u),
and fire randomly when the input potential equals the bias. It is an open question if there
are any problems which require using the full power of the sigmoidal probability function.

2.3 Additional Notation

For any vector x we let xi denote the value at its ith position, starting from x0. Given binary
x ∈ {0, 1}n, we use dec(x) to indicate the integer encoded by x. That is, dec(x) =

∑n−1
i=0 xi ·2i.

Given an integer x we use bin(x) to denote its binary encoding, where the number of digits
used in the encoding will be clear from context. We will often think of the firing pattern of a
set of neurons as a binary string. If B = {y1, ..., ym} is a set of m neurons then Bt ∈ {0, 1}m
is the binary string corresponding to their firing pattern at time t. Since the input is
typically fixed for some number of rounds, we often just write X to refer to the n-bit string
corresponding to the input firing pattern.
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Boolean Circuits. We mention that SNNs are similar to boolean circuits, which have
received enormous attention in theoretical computer science. A circuit consists of gates (e.g.,
threshold gates, probabilistic threshold gates) connected in a directed acyclic graph. This
restriction means that a circuit does not have feedback connections or self-loops, which we
do use in our SNNs. While we do not work with circuits directly, for our lower bound, we
show a transformation from an SNN to a linear threshold circuit. We sometimes refer to
circuits as feedforward networks, indicating that their connections are cycle-free.

3 Neuro-RAM Network

In this section we prove our main upper bound:

I Theorem 6 (Efficient Neuro-RAM Network). There exists an SSN with O(
√
n) auxiliary

neurons that solves indexing in 5
√
n rounds. Specifically, given inputs X ∈ {0, 1}n, and

Y ∈ {0, 1}logn, which are fixed for all rounds t ∈ {0, ..., 5
√
n}, the output neuron z satisfies:

if Xdec(Y ) = 1 then z5
√
n = 1 w.h.p. Otherwise, if Xdec(Y ) = 0, z5

√
n = 0 w.h.p.

Theorem 6 easily generalizes to other network sizes, giving Theorem 2, which states the
full size-time tradeoff. Here we discuss the intuition behind the basic construction. The full
details and proof are given in Appendices A.1 and A.2 of our full paper.

We divide the n input neurons X into
√
n buckets each containing

√
n neurons3:

X0 = {x0, ..., x√n−1}, ..., X√n−1 = {x(
√
n−1)

√
n, ..., xn−1}.

Throughout, all our indices start from 0. We encode the firing pattern of each bucket Xi

via the potential of a single neuron ei. Set w(xi√n+j , ei) = 2
√
n−j for all i, j ≥ 0. Thus, for

every round t, the total potential contributed to ei by the firing of the inputs in bucket Xi is:
√
n−1∑
j=0

xi
√
n+j · 2

√
n−j = 2 · dec(X̄i). (2)

where X̄i is the reversal of Xi and dec(·) gives the decimal value of a binary string, as defined
in the preliminaries. We set b(ei) = 2

√
n+2 + 2

√
n − 1. We will see later why this is an

appropriate value. We defer detailed discussion of the remaining connections to ei for now,
first giving a general description of the network construction.

In addition to the encoding neurons e0, ..., e√n−1, we have decoding neurons d0,k, ...,

d√n−1,k for k = 1, 2, 3 (3
√
n neurons total). The idea is to select a bucket Xi (via ei) using the

first log
√
n = logn

2 bits in the index Y . Let Y1
def= {y0, ..., y logn

2 −1} and Y2
def= {y logn

2
, ..., ylogn−1}

be the higher and lower order bits of Y respectively. It is not hard to see that using O(
√
n)

neurons we can construct a network that processes Y1 and uses it to select ei with i = dec(Y1).
When a bucket is selected, the potential of any ej with j 6= dec(Y1) is significantly depressed
compared to that of ei and so after this selection stage, only ei fires.

We then use the decoding neurons to ‘read’ each bit of the potential encoded in ei. The
final output is selected from each of these bits using the lower order bits Y2, which can again
be done efficiently with O(

√
n) neurons. We call this phase the decoding phase since ei

encodes the value (in decimal) of its bucket Xi, and we need to decode from that value the
bit of the appropriate neuron inside that bucket.

3 Throughout we assume for simplicity that n = 22m for some integer m. This ensures that
√
n, logn,

and log
√
n are integers. It will be clear that if this is not the case, we can simply pad the input, which

only affects our time and network size bounds by constant factors.

DISC 2017
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Figure 1 Illustration of the neuro-RAM module. Di represents the set of 3 decoding neurons for
each bit: {di,1, di,2, di,3}. The dotted lines from Y1 and Y2 represent connections to the buckets and
decoding neurons which are not currently selected. The index encoded by Y is marked in bold and
the selected encoding and decoding neurons are highlighted.

The decoding process works as follows: initially, ei will fire only if the first bit of bucket i
is on. Note that the weight from this bit to ei is 2

√
n and thus more than double the weight

from any other input bit. Thus, by appropriately setting b(ei), we can ensure that the setting
of this single bit determines if ei fires initially.

If the first bit is the correct bit to output (i.e., if the last logn
2 bits of the index Y2 encode

position 0), this will trigger the output z to fire. Otherwise, we iterate. If ei in fact fired,
this triggers inhibition that cancels out the potential due to the first bit of bucket i. So ei
will now only fire if the second bit of Xi is on. If ei did not fire, the opposite will happen.
Further excitation will be given to ei again ensuring that it can fire as long as the second bit
of Xi is on. The network iterates in this way, successively reading each bit, until we reach
the one encoded by Y2 and the output fires. The first decoding neuron for position j, dj,1, is
responsible to triggering the output to fire if j is the correct bit encoded by Y2. The second
decoding neuron dj,2 is responsible for providing excitation when ei does not fire. Finally,
the third decoding neuron dj,3 provides inhibition when ei does fire.

In Appendix A.1 of our full paper, we describe the first stage in which we use the first
logn/2 index bits to select the bucket to which the desired index belongs to.

In Appendix A.2, we discuss the second phase where we use the last logn/2 bits of Y , to
select the desired index inside the bucket i. Our successive decoding process is synchronized
by a clock mechanism. This clock mechanism consists of chain of Θ(

√
n) neurons that govern

the timing of the Θ(
√
n) steps of our decoding scheme. Roughly, traversing the

√
n bits of

the chosen ith bucket from left to right, we spend O(1) rounds checking if the current index
is the one encoded by Y2. If yes, we output the value at that index and if not, the clock
“ticks” and we move to the next candidate.

Note that our model and the proof of Theorem 6 assume that no auxiliary neurons or
the output neuron fire in round 0. However, in applications it will often be desirable to run
the neuro-RAM for multiple inputs, with execution not necessarily starting at round 0. We
can easily add a mechanism that ‘clears’ the network once it outputs, giving:

I Observation 7 (Running Neuro-RAM for Multiple Inputs). The neuro-RAM of Theorem 6
can be made to run correctly given a sequence of multiple inputs.

4 Lower Bound for Neuro-RAM in Spiking Networks

In this section, we show that our neuro-RAM construction is nearly optimal. Specifically:
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I Theorem 8. Any SNN solving indexing with probability ≥ 1 − 1
2n in t rounds must use

` = Ω
(

n
t log2 n

)
auxiliary neurons.

This result matches the lower bound for deterministic threshold gates of Fact 3 up to a logn
factor, demonstrating that the use of randomness cannot give significant runtime advantages
for the indexing problem. Even if one just desires a constant (e.g., 2/3) probability of success,
a lower bound of Ω

(
n

t log3 n

)
applies: by replicating any network with success probability

2/3, Θ(logn) times and taking the majority output (which can be computed with just a
single additional auxiliary neuron), we obtain a network that solves the problem w.h.p.

4.1 High Level Approach and Intuition

The proof of Theorem 8 proceeds in a number of steps, which we overview here.

Reduction to Deterministic Indexing Circuit. We first observe that a network with `

auxiliary neurons solving the indexing problem in t rounds can be unrolled into a feedforward
circuit with t layers and ` neurons per layer. We then show that the output distribution of a
feedforward stochastic spiking circuit is identical to the output distribution if we first draw
a deterministic linear threshold circuit (still with t layers and ` neurons per layer) from a
certain distribution, and evaluate our input using this random circuit.

This equivalence is powerful since it allows us to apply Yao’s principle [27]: assuming
the existence of a feedforward SNN solving indexing with probability ≥ 1− 1

2n , given any
distribution of the inputs X,Y , there must be some deterministic linear threshold circuit
ND which solves indexing with probability ≥ 1− 1

2n over this distribution.
If we consider the uniform distribution over X,Y , this success probablity ensures via an

averaging argument that for at least 1/2 of the 2n possible values of X, ND succeeds for at
least a 1− 1

2n fraction of the possible Y inputs. Note, however, that the Y can only take on
n possible values – thus this ensures that for 1/2 the possible values of X, ND succeeds for
all possible values of the index Y . Let X be the set of ‘good inputs’ for which ND succeeds.

Lower Bound for Deterministic Indexing on a Subset of Inputs. We have now reduced
our problem to giving a lower bound on the size of a deterministic linear threshold circuit
which solves indexing on an arbitrary subset X of 1

2 · 2
n = 2n−1 inputs. We do this using

VC dimension techniques inspired by the indexing lower bound of [16].
The key idea is to observe that if we fix some input X ∈ X , then given Y , ND evaluates

the function fX : {0, 1}logn → {0, 1}, whose truth table is given by X. Thus ND can be
viewed as a circuit for evaluating any function fX(Y ) for X ∈ X , where the X inputs are
‘programmable parameters’, which effectively change the thresholds of some gates.

It can be shown that the VC dimension of the class of functions computable by a
fixed a linear threshold circuit with m gates and variable thresholds is O(m logm). Thus
for a circuit with t layers and ` gates per layer, the VC dimension is O(`t log(`t)) [5].
Further, as a consequence of Sauer’s Lemma [23, 25, 4], defining the class of functions
F = {fX for any X ∈ X}, since |F| = |X | = 2n−1, we have V C(F) = Θ(n/ logn). These
two VC dimension bounds, in combination with the fact that we know ND can compute any
function in F if its input bits are fixed appropriately, imply that `t · log(`t) = Ω(n/ logn).
Rearranging gives ` = Ω

(
n

t log2 n

)
, completing Theorem 8.

DISC 2017



33:10 Neuro-RAM Unit with Applications in Spiking Neural Networks

4.2 Reduction to Deterministic Indexing Circuit
We now give the argument explained above in detail, first describing how any SNN that
solves indexing w.h.p. implies the existence of a deterministic feedforward linear threshold
circuit which solves indexing for a large fraction of possible inputs X.
I Lemma 9 (Conversion to Feedforward Network). Consider any SNN N with ` auxiliary
neurons, which given input X ∈ {0, 1}n that is fixed for rounds {0, ..., t}, has output z
satisfying Pr[zt = 1] = p. Then there is a feedforward SNN NF (an SNN whose directed edges
form an acyclic graph) with (t− 1) · (`+ 1) auxiliary neurons also satisfying Pr[zt = 1] = p

when given X which is fixed for rounds {0, ..., t}.
Proof. Let B = A∪ z – all non-input neurons. We produce t− 1 duplicates of each auxiliary
neuron a ∈ A : {a1, ..., at−1} and of z : {z1, ..., zt−1}, which are split into layers B1, ..., Bt−1.
For each incoming edge from a neuron u to v and each i ≥ 2 we add an identical edge from
ui−1 to vi. Any incoming edges from input neurons to u are added to each ui for all i ≥ 1.
Finally connect z to the appropriate neurons in Bt−1 (including zt−1 if there is a self-loop).

In round 1, the joint distribution of the spikes B1
1 in NF is identical to the distribution

of B1 in N since these neurons have identical incoming connections from the inputs, and
since any incoming connections from other auxiliary neurons are not triggered in N since
none of these neurons fire at time 0.

Assuming via induction that Bii is identically distributed to Bi, since Bi+1 only has
incoming connections from Bi and the inputs which are fixed, then the distribution of Bi+1

i+1
identical to that of Bi+1. Thus Bt−1

t−1 is identically distributed to Bt−1, and since the output
in NF is only connected to Bt−1 its distribution is the same in round t as in N . J

I Lemma 10 (Conversion to Distribution over Deterministic Threshold Circuits). Consider any
spiking sigmoidal network N with ` auxiliary neurons, which given input X ∈ {0, 1}n that
is fixed for rounds {0, ..., t}, has output neuron z satisfying Pr[zt = 1] = p. Then there is a
distribution D over feedforward deterministic threshold circuits with (t− 1) · (`+ 1) auxiliary
gates that, for ND ∼ D with output z, PrD[zt = 1] = p when presented input X.
Proof. We start with NF obtained from Lemma 9. This circuit has t−1 layers of `+1 neurons
B1, ..., Bt−1. Given X ∈ {0, 1}n that is fixed for rounds {0, ..., t}, NF has Pr[zt = 1] = p,
which matches the firing probability of the output z in N in round t.

Let D be a distribution on deterministic threshold circuits that have identical edge weights
to NF . Additionally, for any (non-input) neuron u ∈ NF , letting ū be the corresponding
neuron in the deterministic circuit, set the bias b(ū) = η, where η is distributed according
to a logistic distribution with mean µ = b(u) and scale s = λ. The random bias is chosen
independently for each u. It is well known that the cumulative density function of this
distribution is equal to the sigmoid function. That is:

Pr[η ≤ x] = 1
1 + e−

x−b(u)
λ

. (3)

Consider ND ∼ D and any neuron u in the first layer B1 of NF . u only has incoming
edges from the input neurons X. Thus, its corresponding neuron ū in ND also only has
incoming edges from the input neurons. Let W =

∑
x∈X w(x, u) · x0. Then we have:

Pr
D

[ū1 = 1] = Pr[W − η ≥ 0] = Pr[η ≤W ] (Deterministic threshold)

= 1
1 + e−

W−b(u)
λ

(Logistic distribution CDF (3))

= Pr[u1 = 1]. (Spiking sigmoid dynamics (1))
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Let B̄i denote the neurons in ND corresponding to those in Bi. Since in round 1, all neurons
in B1 fire independently and since all neurons in B̄1 fire independently as their random biases
are chosen independently, the joint firing distribution of B1

1 is identical to that of B̄1
1 .

By induction assume that B̄ii is identically distributed (over the random choice of
deterministic network ND ∼ D) to Bii . Then for any u ∈ Bi+1 we have by the same argument
as above, conditioning on some fixed firing pattern V of Bi in round i:

Pr
D

[ūi+1 = 1|B̄ii = V ] = Pr[ui+1 = 1|Bii = V ].

Conditioned on Bii = V , the neurons in Bi+1 fire independently in round i+ 1. So do the
neurons of B̄i+1 due to their independent choices of random biases. Thus, the above implies
that the distribution of B̄i+1

i+1 conditioned on B̄ii = V is identical to the distribution of Bi+1
i+1 .

This holds for all V , so, the full joint distribution of B̄i+1
i+1 is identical to that of Bi+1

i+1 .
We conclude by noting that the same argument applies for the outputs of NF and ND

since B̄t−1
t−1 is identically distributed to Bt−1

t−1 . J

Lemma 10 is simple but powerful – it demonstrates that the output distribution of a
spiking sigmoid network is identical to the output distribution of a deterministic feedforward
threshold circuit drawn from some distribution D. Thus, the performance of any SNN is
equivalent to the performance of a randomized algorithm which first selects a linear threshold
circuit using D and then applies this circuit to the input. This lets us show:

I Lemma 11 (Application of Yao’s Principle). Assume there exists an SNN N with ` auxiliary
neurons, which given any inputs X ∈ {0, 1}n and Y ∈ {0, 1}logn which are fixed for rounds
{0, ..., t}, solves indexing with probability ≥ 1− δ in t rounds. Then there exists a feedforward
deterministic linear threshold circuit ND with (t− 1) · (`+ 1) auxiliary gates which solves
indexing with probability ≥ 1− δ given X,Y drawn uniformly at random.

Proof. We use the idea of Yao’s principle, employing an averaging argument to show that the
existence of a randomized circuit succeeding with high probability implies the existence of a
deterministic circuit succeeding with high probability on uniform random inputs. Specifically,
given X,Y drawn uniformly at random, N solves indexing with probability ≥ 1− δ (since
by assumption, it succeeds with this probability for any X,Y ). By Lemma 10, N performs
identically to an algorithm which selects a deterministic circuit from some distribution D and
then applies it to the input. So at least one circuit in the support of D must succeed with
probability ≥ 1− δ on X,Y drawn uniformly at random, since the success probability of N
on the uniform distribution is just an average over the deterministic success probabilities. J

From Lemma 11 we have a corollary which concludes our reduction from our spiking
sigmoid lower bound to a lower bound on deterministic indexing circuits.

I Corollary 12 (Reduction to Deterministic Indexing on a Subset of Inputs). Assume there exists
an SNN N with ` auxiliary neurons, which, given inputs X ∈ {0, 1}n and Y ∈ {0, 1}logn

which are fixed for rounds {0, ..., t}, solves indexing with probability ≥ 1 − 1
2n in t rounds.

Then there exists some subset of inputs X ⊆ {0, 1}n with |X | ≥ 2n−1 and a feedforward
deterministic linear threshold circuit ND with (t− 1) · (`+ 1) auxiliary gates which solves
indexing given any X ∈ X and any index Y ∈ {0, 1}logn.

Proof. Applying Lemma 11 yields ND which solves indexing on uniformly random X,Y
with probability 1 − 1

2n . Let I(X,Y ) = 1 if ND solves indexing correctly on X,Y and 0
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otherwise. Then:

1− 1
2n ≤

1
n · 2n

∑
X∈{0,1}n

∑
Y ∈{0,1}logn

I(X,Y ) = E
X uniform from {0,1}n

 1
n

∑
Y ∈{0,1}logn

I(X,Y )


which in turn implies:

E
X uniform from {0,1}n

 1
n

∑
Y ∈{0,1}logn

(1− I(X,Y ))

 ≤ 1
2n. (4)

If 1
n

∑
Y ∈{0,1}logn(1− I(X,Y )) 6= 0 then 1

n

∑
Y ∈{0,1}logn(1− I(X,Y )) ≥ 1

n just by the fact
that the sum is an integer. Thus, for (4) to hold, we must have 1

n

∑
Y ∈{0,1}logn(1−I(X,Y )) = 0

for at least 1
2 of the inputs X ∈ {0, 1}n. That is, ND solves indexing for every input index

on some subset X with |X | ≥ 1
2 |{0, 1}

n| ≥ 2n−1. J

4.3 Lower Bound for Deterministic Indexing on a Subset of Inputs
With Corollary 12 in place, we now turn to lower bounding the size of a deterministic linear
threshold circuit ND which solves the indexing problem on some subset of inputs X with
|X | ≥ 2n−1. To do this, we employ VC dimension techniques first introduced for bounding
the size of linear threshold circuits computing indexing on all inputs [16].

Consider fixing some input X ∈ X , such that the output of ND is just a function of
the index Y . Specifically, with X fixed, ND computes the function fX : {0, 1}logn → {0, 1}
whose truth table is given by X. Note that the output of ND with X fixed is equivalent to
the output of a feedforward linear threshold circuit NX

D where each gate with an incoming
edge from xi ∈ X has its threshold adjusting to reflect the weight of this edge if xi = 1.

We define two sets of functions. Let F = {fX |X ∈ X} be all functions computable using
some NX

D as defined above. Further, let G be the set of all functions computabled by any
circuit N ′D which is generated by removing the input gates of ND and adjusting the threshold
on each remaining gate to reflect the effects of any inputs with xi = 1. We have F ⊆ G and
hence, letting V C(·) denote the VC dimension of a set of functions have: V C(F) ≤ V C(G).
We can now apply two results. The first gives a lower bound V C(F):

I Lemma 13 (Corollary 3.8 of [4] – Consequence of Sauer’s Lemma [23, 25]). For any set of
boolean functions H = {h} with h : {0, 1}logn → {0, 1}:

V C(H) ≥ log |H|
logn+ log e .

We next upper bound V C(G). We prove in Appendix B of our full paper:

I Lemma 14 (Linear Threshold Circuit VC Bound). Let H be the set of all functions computed
by a fixed feedforward linear threshold circuit with m ≥ 2 gates (i.e., fixed edges and weights),
where each gate has a variable threshold. Then: V C(H) ≤ 3m logm.

Applying the bounds of Lemmas 13 and 14 along with V C(F) ≤ V C(G) gives:

I Lemma 15 (Deterministic Circuit Lower Bound). For any set X ⊆ {0, 1}n with |X | ≥ 2n−1,
any feedforward deterministic linear threshold circuit ND with m non-input gates which solves
indexing given any X ∈ X and any index Y ∈ {0, 1}logn must have m = Ω

(
n

log2 n

)
.
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Proof. Let F and G be as defined in the beginning of the section. We have V C(F) ≤ V C(G).
At the same time, by Lemma 13 we have V C(F) ≥ log |F|

logn+log e = log |X |
logn+log e ≥

cn
logn for some

fixed constant c. By Lemma 14 we have V C(G) ≤ 3m logm. We thus can conclude that
cn

logn ≤ 3m logm, and so m = Ω
(

n
log2 n

)
. J

We conclude by proving our main lower bound:

Proof of Theorem 8. The existence of a spiking sigmoidal network with ` auxiliary neurons,
solving indexing with probability ≥ 1− 1

2n in t rounds implies via Corollary 12 the existence
of a feedforward deterministic linear threshold circuit with (t−1)`+1 non-input gates solving
indexing on some subset of inputs X with |X | ≥ 2n−1. So by Lemma 15, ` ·t = Ω

(
n

log2 n

)
. J

5 Applications to Similarity Testing and Compression

5.1 Similarity Testing

I Theorem 16 (Similarity Testing). There exists an SNN with O
(√

n logn
ε

)
auxilary neurons

that solves the approximate equality testing problem in O(
√
n) rounds. Specifically, given

inputs X1, X2 ∈ {0, 1}n which are fixed for all rounds t ∈ {0, .., 5
√
n + 2}, the output z

satisfies w.h.p. z5
√
n+2 = 1 if dH(X1, X2) ≥ εn. Further if X1 = X2 then z5

√
n+2 = 0 w.h.p.

Our similarity testing network uses K = Θ
(

logn
ε

)
copies of our neuro-RAM network

from Theorem 6, labeled S1,k and S2,k for all k ∈ {1, ...,K}. The idea is to employ logn
auxiliary neurons Yk = y1,k, ..., ylogn,k whose values encode a random index i ∈ {0, ..., n− 1}.
By feeding the inputs (X1, Yk) and (X2, Yk) into S1 and S2, we can check whether X1 and
X2 match at position i.

Checking Θ
(

logn
ε

)
different random indices suffices to identify if dH(X1, X0) ≥ εn w.h.p.

Further, if X1 = X0, they will never differ at any of the checks, and so the output will never
be triggered. We use:

I Observation 17. Consider X1, X2 ∈ {0, 1}n with dH(X1, X0) ≥ εn. Let i1, ..., iT be chosen
independently and uniformly at random in {0, ..., n− 1}. Then for T = c lnn

ε ,

Pr[(X1)it = (X2)it for all t ∈ 1, ..., T ] ≤ 1
nc
.

Proof. For any fixed t, Pr[(X1)it = (X2)it ] = 1− εn
n = 1− ε as we select indices at random.

Additionally, each of these events is independent since i1, ...iT are chosen independently so:
Pr[(X1)it = (X2)it for all t ∈ 1, ..., T ] ≤ (1− ε)T =

(
1− ε)1/ε)c lnn ≤ 1

ec lnn ≤ 1
nc . J

5.1.1 Implementation Sketch
It is clear that the above strategy can be implemented in the spiking sigmoidal network
model – we sketch the construction here. By Theorem 6, we require O

(√
n logn
ε

)
auxiliary

neurons for the 2K = Θ
(

logn
ε

)
neuro-RAMs employed, which dominates all other costs.

It suffices to present a random index to each pair of neuro-RAMs S1, k an S2, k for 5
√
n

rounds (the number of rounds required for the network of Theorem 6 to process an n-bit
input). To implement this strategy, we need two simple mechanisms, described below.
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Figure 2 Illustration of our ε-approximate similarity testing network.

Random Index Generation: For each of the logn index neurons in Yk we set b(yi) = 0 and
add a self-loop w(yi, yi) = 2. In round 1, since they have no-inputs, each neuron has potential
0 and fires with probability 1/2. Thus, Y 1

k represents a random index in {0, ..., n− 1}. To
propagate this index we can use a single auxiliary inhibitory neuron g, which has bias b(g) = 1
and w(x, g) = 2 for every input neuron x. Thus, g fires w.h.p. in round 1 and continues
firing in all later rounds, as long as at least one input fires.

We add an inhibitory edge from g to yi for all i with weight w(g, yi) = −1. The inhibitory
edges from g will keep the random index ‘locked’ in place. The inhibitory weight of −1
prevents any yi without an active self-loop from firing w.h.p. but allows any yi with an
active self-loop to fire w.h.p. since it will still have potential b(yi) + w(yi, yi)− 1 = 1.

If both inputs are 0, g will not fire w.h.p. However, here our network can just output 0
since X1 = X2 so it does not matter if the random indices stay fixed.

Comparing Outputs: We next handle comparing the outputs of S1,k and S2,k. We use two
neurons – f1,k and f2,k. f1,k is excitatory and fires w.h.p. if at least one of S1,k or S2,k
has an active output. f2,k is an inhibitor that fires only if both S1,k and S2,k have active
outputs. We then connect f1,k to z with weight w(f1,k, z) = 2 and connect f2,k with weight
w(f2, z) = −2 for all k. We set b(z) = 1. Thus, z fires in round 5

√
n+ 2 w.h.p. if for some

k, exactly one of S1,k or S2,k has an active output in round 5
√
n and hence an inequality is

detected. Otherwise, z does not fire w.h.p. This gives the output condition of Theorem 16.

5.2 Randomized Compression
We conclude by discussing informally how our neuro-RAM can be applied beyond similarity
testing to other randomized compression schemes. Consider the setting where we are given n
input vectors Xi ∈ {0, 1}d. Let X ∈ {0, 1}n×d denote the matrix of all inputs. Think of d as
being a large ambient dimension, which we would like to reduce before further processing.

One popular technique is Johnson-Lindenstrauss (JL) random projection, where X is
multiplied by a random matrix Π ∈ Rd×d′ with d′ << d to give the compressed dataset
X̃ = XΠ. Regardless of the initial dimension d, if d′ is set large enough, X̃ preserves
significant information about X. d′ = Õ(logn) is enough to preserve the distances between
all points, d′ = Õ(k) is enough to use X̃ for approximate k-means clustering or k-rank
approximation [6, 8], and d′ = Õ(n) preserves the full covariance matrix of the input and so
X̃ can be used for approximate regression and many other problems [7, 22].

JL projection has been suggested as a method for neural dimensionality reduction [2, 11],
where Π is viewed as a matrix of random synapse weights, which connect the input neurons
representing X to the output neurons representing X̃. While this view is quite natural, we
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often want to draw Π with fresh randomness for each input X. This is not possible using
changing synapse weights, which evolve over a relatively long time scale. Fortunately, it is
possible to simulate these random connections using our neuro-RAM module.

Typically, Π is sparse so can be multiplied by efficiently. In the most efficient construc-
tion [7], it has just a single nonzero entry in each row which is a randomly chosen ±1 placed
in a uniform random position. Thus, computing a single bit of X̃ = XΠ requires selecting on
average d/d′ random columns of X, multiplying their entries by a random sign and summing
them together. This can be done with a set of neuro-RAMS, each using O(

√
d) auxiliary

neurons which select the random columns of X. In total, we need Õ(d/d′) networks – the
maximum column sparsity of Π with high probability, yielding O(d3/2/d′) auxiliary neurons
total. In contrast, a naive simulation of random edges using spiking neurons requires Θ(d)
auxiliary neurons, which is less efficient whenever d′ > d1/2. Additionally, our neuro-RAMs
can be reused to compute multiple entries of X̃, which is not the case for the naive simulation.

Traditionally, the value of an entry of X̃ is a real number, which cannot be directly
represented in a spiking neural network. In our construction, the value of the entry is encoded
in its potential, and we leave as an interesting open question how this potential should be
decoded or otherwise used in downstream applications of the compression.
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