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ABSTRACT

The problem of bounding the optimal cost of nonlinear dynamical sys-
tems is studied. Conditions are given under which it is possible to
upper bound the optimal performance of a nonlinear system with a
quadratic cost functional by the optimal performance of a linear sys-
tem with the same cost functional. Results are stated both in the fre-
quency and the time domain. A sharp lower bound for the optimal
performance of a linear system with quadratic penalty function is
given in terms of the performance of a class of suboptimal systems.
The application of this result to direct evaluation of the degree of
suboptimality of a given design is studied. Two numerical examples
illustrate the usefulness of the results in design procedures when
computational and/or structural restrictions are present.
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CHAPTER I

INTRODUCTION

"El peor enemigo de lo bueno es lo perfecto"

1. Motivation

Some optimization problems--although they can be formulated in

a precise mathematical form--are too large to solve by analytical or

iterative techniques. Moreover, even if the optimal control can be

found it may be very difficult to implement.

Linear programming, for instance, has been used to solve many

problems of resource allocation (transportation routing, machine

H-4t
scheduling, product mix, oil refinery operations, etc.), but some

problems are just too large for it--job scheduling for instance. Con-

ceptually, linear programming could lead to an optimum assignment

of start times for the thousands of jobs to be scheduled in a large

shop, given some criterion, like "minimizing the idle machine time,"

but the number of steps necessary to reach the optimum solution--

though finite--is so large as to render the method useless. In this

application, linear programming is computationally inefficient since

by the time the optimal solution has been reached, enough time has

elapsed, even with the aid of the fastest computers, as to make the

solution obsolete.

It can be said, in general, that the usual tools available for

B-6

system optimization (Dynamic Programming, Calculus of Vari-

ations G-3 Pontryagin's Maximum Principle etc.), are not useful

Superscripts refer to the items in the Bibliography.

- -



on most "large problems " t because of computational infeasibilityB-5

For this reason it is necessary to find short-cuts. The price paid,

however, is that the solutions obtained are not optimal according to

the minimization criterion. This type of solution, called suboptimal,

is then a trade-off between a guaranteed optimal solution and a "good"

one, if the computational effort to find the latter is considerably re-

duced.

Little attention has been paid to the problem of predicting "how

far" from optimal a given suboptimal system is. When either because

of computational infeasibility or because of easier or more convenient

implementation (real time computation, for example) it is necessary to

resort to suboptimal solutions, it becomes imperative to have at hand

a way of determining the "quality" of the suboptimal system. A way of

measuring the suboptimality of a system is to compare its performance

with the optimal one.

In conclusion, because either

a. a computation of the optimal control is not feasible
(large problems), or

b. the implementation of the control is not practical
(off-line computation) or

c. initial guesses of the optimal performance are
needed (iterative solutions) then, it is necessary
to find suboptimal controls.

The aim of the present research is to find ways to evaluate the

performance of suboptimal solutions without either computing the

optimal one or using simulation.

A large problem is defined as one in which 1012 or more operations
are required for its solution.



-3-

When the optimal solution is impossible to compute there is, as a

rule, no knowledge of the value of its performance, and, therefore, it

is impossible to judge beforehand how close a suboptimal control comes

to the optimal control.

Upper and lower bounds can be used to fill this gap. An a priori

lower bound will put a limit on the optimal performance of the system,

and therefore enables one to compute a bound on the "efficiency" of a

given control. An upper bound supplies information to the effect that

the optimal performance is better than certain value. The difference

between the upper and lower bounds defines an interval and the search

for suboptimal controls can be stopped when the performance falls

within this range, if the two bounds are close enough to each other.

With this criterion the "efficiency" of the controls that belong to the

suboptimal interval is guaranteed to be acceptable according to the

definition of optimality.

Another important area in which a priori bounds play an important

role is that one of determining the effects on the performance when

finite changes are made in some parameters of the system. This

aspect of sensitivity analysis, from the practical point of view, is

more relevant than the usual problem treated in the literature, i.e.,

when infinitesimal changes occur in the plant; the reason being that in

actual situations the parameters used in the model of a physical system

are nothing else but a rough approximation of the actual parameters.

Therefore, it is important to know how the performance of an optimal

system changes when a given parameter varies between some given

limits. By means of upper and lower bounds we are able to guarantee
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that for a certain range of parameter changes the optimal performance

will remain within certain values.

2. Organization

The results of the present research are divided in two farily in-

dependent parts. The first one, Chapters II and III, deals with the

problem of determining a priori upper bounds on the performance of

nonlinear dynamical systems for quadratic cost functionals.

Chapter II treats the problem entirely in the frequency domain and

the analysis is restricted to scalar systems, that is, systems in which

both the control and the output are scalar functions of time. There are

two main ideas involved in the analysis presented in Chapter II. The

first one is to control a nonlinear system with an optimal feedback law

derived for a linear system (model) and then to express the perform-

ance of the nonlinear system associated the chosen control as the sum

of two terms, one of which is the optimal performance of the model.

Conditions under which the second term is negative are found; when

those conditions are satisfied then it is possible to give an upper bound

on the optimal performance of the nonlinear system in terms of the

optimal performance of a linear system.

The second idea used in Chapter II is to find a control for a non-

linear system such that the trajectories thus generated coincide with

the optimal trajectories of a linear system with respect to the same

cost functional. As before the performance of the nonlinear system

for that given control is expressed as the sum of two terms, one of

which is the optimal performance of the linear system and conditions

under which the second term is nonpositive are given.
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One of the interesting features of the analysis described above is

that results dealing with the problem of determining when the product

of two operators is a positive operator, previously restricted to sta-

bility analysis, can be used in the determination of upper bounds.

Chapter III deals with the extensions of the results given in Chap-

ter II to systems in which the control and the output are not necessarily

scalar functions. The results in this chapter are stated in the time

domain.

The second part of this thesis, Chapter IV, treats the problem of

determining lower bounds on the performance of linear systems with re-

spect to quadratic cost functionals. The main result of this chapter is

a sharp lower bound on the optimal performance of a system in terms of

a suboptimal performance. One of the advantages of that result is that

it is possible to give a qualitative measure of the degree of suboptimality

of a given (suboptimal) design entirely in terms of the design on hand.

Applications of the above ideas are presented in two specific examples;

one of them calling for the design of feedback control in which only part

of the state vector is allowed to be fed back and the other one deals

with the evaluation of a suboptimal design for a large system.

Two appendices are included. Appendix A presents some theorems

about positive real functions relevant to some derivations in Chapter II.

In Appendix B the proof of one lemma used in several other proofs of

Chapter II is given.

Each chapter is divided into sections. Section 2.5 is the fifth section

of Chapter II. Definitions, theorems, lemmas, colloraries and equations

are numbered separately within each section, thus theorem 3.4. 1 is the

first theorem of Section 3.4. When reference is made say, to equation 9,
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it refers to the ninth equation of the current section, equation 3.4, is

the fourth equation of Section 3 of the current chapter.



CHAPTER II

SCALAR SYSTEMS

In this chapter conditions under which it is possible to find a

linear system with an optimal performance greater than the optimal

performance of a given nonlinear system are derived.

1. Preliminary Concepts

In reference to dynamical systems the optimization problem is

defined as follows: Given the elements:

1. A system that satisfies a given Dynamical Equation

dx(t)

t-- = fix(t), u(t),t]

whe re

t is the current time

x (t) is an n vector representing the state of
the system at time t.

u(t) is an r vector representing the control
of the system at time t.

f is a vector valued function of the state, the
control and the current time.

2. A constraint set Q2 in r- space to which the control u (t)

should belong.

3. x (t 0 ) a set of initial conditions.

4. A target set T, in Rn, to which it is desired to drive the

system, and

5. A cost functional tf

If L[x(t), u(t), tl dt

to

-7-
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Find a control u' that satisfies the constraint u: E Q2, transfers

the system from the initial condition to the target set, and minimizes

the performance J.

Our aim is to be able to answer the following question:

How can we give bounds on min J without computing u_*? A
u

coarser classification of the elements of the optimization problem is

the following:

1. A control u and a set 52 such that u c Q

2. The state x, the initial condition x 0 and the

target set T

3. The cost functional J

4. The dynamic equation

One general approach to finding bounds on the optimal performance

is to make simplifying assumptions on the above elements in order to

reduce the computational effort and to make the changes in such a way

as to be able to guarantee that the performance of the modified system

fulfills the requirements of being less (or greater) than that of the

original system.

In the present research only the type of modifications dealing with

the dynamical equation have been treated. In this case the general

statement of the problem is: Given the elements of the optimization

problem then:

To find a lower bound To find upper bound

replace the vector valued replace the vector valued
function f by f_ such that function f by f such that

min J(u) < min J(u) min J(u) > min J(u)
u u u u

dx dx dx dx
E-- -*-:- dt - dt - - --
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then it can be said that in some sense a system described by the dif-

ferential equation

dx f,[x(t), u (t), t] (1)

is "better" than a system described by the differential equation

dx
d = f[x(t), u(t),t] (2)

and in a similar fashion a system described by the differential equa-

tion (2) is in some sense "better" than the system described by the

differential equation

dx _f [x (t), u(t), tl (3)

From the above considerations the problem of finding bounds on the

optimal performance J is substituted by the problem of determining

conditions under which it is possible to find a better system than the

given one and such that the computations needed to find the optimal

performance value of the modified system are simpler than those of

the original system.

In the problems treated in the present research it will be assumed

that Q2 is R r and that the target set is Rn .

The following definitions give a more precise meaning to the ideas

presented in the paragraphs above:

Definition 1. 1.1 A system r2 is said to be better than a system

r1 ~ in some region S of the state space with respect to J if

When reference is made to the two systems ~ and 2 it is assumed
that the differential equations governing the motion of both systems is
of the same order.
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J1 = Jl(U infJ(u,x 0 )> inf Z2 J(ux 0 ) = J 2 (u'x 0 ) J2
_ _ 1' O

U U

for all x c S.

Definition 1. 1. 2 A system E is said to be globally better than

a system Z1 with respect to J if it is better than system Z1 in

Rn with respect to J.

Definition 1. 1. 3 A system Z2 is said to be universally better than

a system E1 with respect to a class of cost functionals if system

E2 is globally better than system Z1 with respect to any J eC/.

The only problem treated in this investigation is the so called

Regulator Problem. This is an optimization problem in which the cost

functional is of the formt

tf

J f [ u'(t)u(t) + x'(t)C(t)C'(t)x(t)] dt

to

The only Dynamical Systems for which a solution to the regulator

problem is known are those in which the dynamics are linear (Ref. A-2,

K-4, K-3), and it will not be included here since there exist an ex-

tensive literature in the subject.

2. Notation and Assumptions

Denote by D the operator dt- Let p be a polynomial of degree

n with real coefficients, q and h be polynomials of degree less than

n. Let f(t, .) be a nonlinear time varying mapping from the real line

into the real line. x (t) an element of B associated with the (n-l)-

times differentiable function x(t) such that

There exists more general forms of the cost functional but they can
be reduced to the form presented above. (See reference K-4)



x_(t) = col[x(t), Dx(t),..., Dn-lx(t)l . A function x(t) is said to belong

to [0,ool if it is n times differentiable with respect to t and

lim |x (t) IIE=0, where IIE denotes the Euclidian norm. Let S
t-oo0

be a subset of Pt. Let E 1 be the system described by the equations

(see Fig. 1)

p(D)x(t) = u(t) ; h(D)x(t) = y(t)

u(t) 1 x(t) y(t)
|[ p~( s ) _ h(s)

P(s)

Fig. 1 The System 21

and let 52 be the system described by the equations (see Fig. 2)

p(D)x(t) + f[t, q(D)x(t)] = u(t) ; h(D)x(t) = y(t)

u(t) + 1 x(t) y(t)
At, qsh(s)y

Fig. 2 The System Z 2

Let J be the cost functional given by

oo

J(u,x0 ) = {u 2 (t) + Y2 (t)} dt

0



It will be assumed that the polynomials p(s) and h(s) do not have

common factors and that the nonlinearity f(t, r-) satisfies the condition

f(t, O) = 0

3. Purpose

The object of the present chapter is to give some sufficiency con-

ditions on p, q, h and f(t,-) that will guarantee that the system s2

is better, in a region S with respect to J, than the system EC1

It should be recalled that the optimal feedback law for the system

K-l
71 (denoted by k1 (D)x(t)) is linear and time invariant and

there are methods to compute itB L- L-2 while in general the opti-

mal feedback control law for a system of the form of E2 is not known

when the cost functional is quadratic in u and y. If the sufficiency

conditions to be derived in this chapter are satisfied then it is possible

to obtain an upper bound to the optimal performance of the system E2

by simply computing the optimal performance of the linear system 51'

Intuitively it would be expected that if f(t,q(D)x) is "close" to or

in the "direction" of the optimal control law of the system C1 then the

system ~2 is better than the system C 1. To illustrate this point take

the following example: If it is assumed that f(t,q(D)x) is identically

equal to the negative feedback law kI(D)x (the optimal feedback law

for the linear system E1) then, the performance of ~2 when no con-

trol is applied (i.e., u(t) - 0) coincides with the optimal performance

of the system Z1 . However, as it will be shown, under less restric-

tive conditions, the system 'Z is better than the system 1'l

The study of the problem in the present chapter is carried out in

the frequency domain, the reason being that many concepts, relevant

to the solution of our problem such as passivity, are displayed more



-13-

explicitly in that framework. Once the underlying ideas are under-

stood, the extensions to multiple input-output systems becomes a less

difficult task.

4. The Two Main Theorems

In this section two of the main theorems of the present chapter are

derived. Theorem 2.4. 1 was motivated by the observation made in

Section 3. Essentially, the optimal feedback law for the linear system

C1 (i.e., k 1 (D)x) is applied to the nonlinear system 2'. The per-

formance of the system ,2' generated by the feedback law kl, de-

noted by J 2 (k' ), is obtained and conditions under which

are derived. But, since by the optimality of k',

J _2 J2 (k2) < J2 (k") 1

we want to guarantee that

J., <J

2- 1

The above idea is not new in the literature and has been exploited

by RissanenR and McClamrock .M

In the theorem 2.4. 2, on the other hand, a different approach is

used. In this case a feedback control law (k (x(t)) (in general time

varying and nonlinear) is applied to the system 2 in order to generate

trajectories that are identical to the optimal trajectories of the system

~1' Using the same type of arguments as in theorem 2.4.1 conditions

are given as to guarantee that

J1 > J (ka) ' J
2
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Theorem 2.4. 1: The system Z2 is better than the system

in S with respect to J if

00

a. f(t, q(D)x)[p(D)x - (pp + hh) (D)x] dt <O (3)

0

along trajectories satisfying

f(t,q(D)x) + ([pp + hh] + ( D)x) = (4)

b. All solutions of (4) with x 0 c S belong to [0, oo]

Proof:

Assume that x c S. Apply the optimal feedback law of system

B -i
~1' namely

k1 (D)x = p(D)x - [pp + hh] + (D)x (5)

to the system 2'. Then the trajectories thus generated satisfy the dif-

ferential equation (4).

The performance of system ~2 associated with the feedback law

kl is given by

0o

J 2 (k") :f {[p(D)x + f(t,q(D)x) 2 + [h(D)x] 2 }dt (6)
0

with x(t) satisfying the differential equation (4).

Therefore, from equations (6) and (4) it follows that

00

J(k: )=f ([ p(D)x+f(t, q(D)x)] 2 [ h(Dxl -{f(t, q(D)x)+[ pp+hFl] +(D)x} )dt

0
!7)

t [ g+ denotes the left half-plane spectral factor of the polynomial g.
p is the polynomial such that p(s) = p(-s).
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From the above equations it follows that

00

JZ(k' ) ([ p(D)xl 2 +[h(D)x] 2 _{[ p + h +(D)x} dt

0

00

+ 2 f(t, q(D)x){p(D)x-[ pp+hh-] +(D)x}dt 8)

0

The first integral of the right hand side of ( 8 ) is independent of

B-i
x(t) and is only a function of x 0 and lim x (t). Also if lim x(t)=O

t- .00 t-00o
that integral is identical to the optimal performance of system E1B- 1

from the initial condition x (0)=x 0 . But by assumption (b) if x (0) eS

and x(t) is a solution of (4) then x(t)<on[0,oc , therefore

o0

J 2 (k) = J1 + f (t, q(D)x) p(D)x-[ pp + h] +(D)x}dt (9

0

and by assumption (a) it follows that

J < Jz(k ) < Ji (10)2- 21-1

therefore -2 is better than 71 in S with respect to J.

Collorary 2.4. 1: The system -2 is better than the system E 1

in S with respect to J if

o00

a. f f[ t, q(D)x] [ p(D)x + f(t,q(D)x)] dt <O (11)

0

along trajectories satisfying (4), and

b. all solutions of (4) with x (0) eS belong to

od n [0, o).
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Collorary 2.4. 2: The system E 2 is globally better than the

system El with respect to J if

a. Inequality ( 11) holds

b. The null solution of (4) is asymptotically
stable in the large.

Comment:

As it was mentioned in Section 3, if f(t, ') is the "direction" of

-kl(D)x(t) then it would be expected that the system Z2 is better

than the system 1'. Equation (3) gives in some way a more precise

meaning to the word "direction". Note that if kl(D)x(t)=-f(t,q(D)x)

for all x(t) then conditions (a) and (b) of theorem 2.4. 1 are satisfied.

One of the drawbacks of the conditions given by theorem 2.4. 1 and

colloraries 2.4.1 and 2.4.2 is that besides testing for inequality (3) it

is necessary to investigate the stability characteristics of the dif-

ferential equation (4). To avoid this problem there are two alter-

natives: Either find conditions under which if inequality (3) is satisfied

then stability condition (b) will automatically hold, or find an alter-

native feedback control law that will insure that the trajectories thus

generated will approach zero as t-oo . We take the second alternative.

Theorem 2.4.2: System E2 is better than system Z in
-2 1

S with respect to J if

00

f f(t, q(D)x){2p(D)x + f(t, q(D)x)}dt < 0 (12

0

along trajectories satisfying

[PP + hh-]+(D)x(t) = 0 (131

and x 0 S.
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Proof:

When the feedback control law

k (D)x = p(D)x + f(t,q(D)x) - [pp + hl +(D)x (14)

is applied to system E2 the trajectories thus generated satisfy the

differential equation (13). The value of the performance of system E2

associated with kp is given by

00oo

Jz(f) k :{ [p(D)x + f(t,q(D)x)1 2 + [h(D)x] 2}dt (15)
J2 (k)J2(

0

where x(t) satisfies (13) and x (O) e S. Since the trajectories satisfy-

ing (13) and the initial condition are the optimal trajectories of the

system E1 then
1

~O 00

J (k~)=J {[ p(D)x] 2+[h(D~]2 }dt+ f(t, q(D)x)[ 2p(D)+f(t, q(D)x)l dt

(16)
oo

= J + f(t,q(D)x)[ 2p(D)x + f(t,q(D)x)]dt

0

but by hypothesis the second integral of the right hand side of (16)

is nonpositive then

J 2
< J 2 [k < J1

and it can be concluded that the system 72 is better than the system

1 in S with respect to J.

Collorary 2.4.3: System E2 is globally better than the system

E1 if inequality (12) is satisfied along all trajectories satisfying

(13).
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5. On Universally Better Systems

In the previous section some sufficiency conditions that guarantee

that a nonlinear system is better than a linear system have been de-

rived. In this section specific conditions under which a nonlinear

system is universally better than a linear system for a wide class of

quadratic cost functionals are presented. For that purpose the class

of nonlinearities that will be treated are classified as follows:

1. f(t, ) = f(.) and f is a first and third quadrant
nonlinearity.

2. f(t, .) = f(.) and f is a monotone or odd monotone
nonlinearity.

3. f(t,) = k(t)( ) and k(t) is restricted.

4. f(t,) = (.) k.

In this section the results derived in stability theory about positive

operators will be used extensively.

As was mentioned in defintion 1. 1.3, a system Z2 is universally

better than a system E1 with respect to certain classes of cost func-

tionals CAt . In the remainder of this chapter the class of cost func-

tionals C4t will be any quadratic functional of the form

00

J= f {u 2 (t) + y (t) dt

0

and h(s) and p(s) do not have common factors.

It is not clear if it is possible to find a system E2z that is uni-

versally better than another system C1 with respect to J. To gain

some insight into what class of systems might be universally better

than another consider the following problem:

Given a linear time invariant system E 1 when does there exist

another system Z2 taken among the linear and time invariant systems
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of the same degree as E l , such that the system E2 is universally

better than the system 1 ?

The question of existence is completely solved by the following

theorem:

Theorem 2.5. 1: Given the system

E1 : p(D)x = u (1)

then there exists another system of the form

Z2 : p(D)x + q(D)x = u ; q(s) / 0 (2)

that is universally better than E1 if and only if p(s) has one or

more zeros in Re[ s]> 0,

Proof: Sufficiency

Assume that p(s) has one or more zeros in Re[ sl> 0 then

factor p(s) as follows

p(s) = r(s)m(s)

such that m(-s) is a Hurwitz polynomial. Make

q(s) = r(s)m(-s) - p(s) (3)

and define

p*(s) - p(s) + q(s) (4)

The difference between the optimal performance of the system E1 and

E2 is given by

00

-f {[ p*(D)x 2 + [ h(D)x 2 _ ([ p + h I + (D)[x)2} d t (5

0
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00

Pr, 2 2 -0+ 2
J I D{[ ) -p*(D)x] _ [ p(D)x] ([p p + hh (D)x)

0

+ ([pp + hF] + (D)x)2}dt (6)

but

pp(D) = p*'j*(D) (7)

by construction, then

00oo

2rJ~iD)] 2 (8)
J2 - J1 | { [p*(D)x2 _ [p(D)x] }dt (8)

0

However, the integral of the right hand side of equation (8) is inde-

pendent of path (i.e., depends only on the value of x and its first

(n-1) derivatives at t=O) then

00

J = f {[m(-D)r(D)xl2 - [m(D)r(D)x] 2 }dt (9)
0

Denoting by

z(t) = r(D)x(t) (10)

the integral in the right hand side of equation (9) depends on z(t) and

its first (3-1) derivatives where 3 is the degree of m. Then since

m(-s) is a Hurwitz polynomial we can choose a trajectory such that

m(-D) z(t) = 0 (11)

then

J -J <0
2 1

with the inequality holding for a space of P degrees of freedom.

Necessity:

As in the sufficiency proof we will define



p*-(s) = p(s) + q(s)

We will show first that if p-'(s) does not have the same zeros of

p(s) that are in Re[ sl < 0 then there exists initial conditions and

quadratic cost functional for which

> 

J2 J1 (12)

Once the above statement has been proved we will consider systems

32 where p*(s) differs from p(s) only on the zeros with Re[ s] =0,

then we will show that in the latter cases also there exist initial con-

ditions and quadratic cost functionals for which inequality (12) holds.

Assume that there exists an s0 with Re[ so] < 0 and

P(s 0 ) = 0 while p*(s0 ) / 0

The difference between the cost functionals of the systems C1 and

Ed is given by (6), and the integral of the right hand side. of (6) is

independent of path.

But by virtue of lemma lB (Appendix B) it is possible to choose

hO(s) such that

[p*p + h*h* 1(s 0 )= 0 (13)

Now if x(t) is chosen as

sot
x(t) = Re e (14)

it follows that

00

J J = I j[p(D)xl2 + ([pp+ hh +(D)x) }dt : 0 (15)

0

The last part of the theorem is to show that if p(jw) - 0 and p*(jw )/ 0

then there exist initial conditions and quadratic cost functionals for which

inequality (12) holds.
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In a similar manner as the proof above choose

jW t
x(t) =e- -t Re[e e (16)

and h can be chosen (by virtue of lemma lB)in such a way as to satisfy

the condition

[ 'P + hiJ] ±(,+jwO) = (17)

If C is made small enough it is possible to make the term
00

-[p(D)x]dt of equation (6) as small as desired, therefore

0

00

2 + 2 (18)
f {[p*(D)xl +([pp+ hihl+(D)x) 2 - [p(D)x]2dt> 0 (18)

0

for o- sufficiently small, then

J - Jl > 0 for some a-. I2 1

Most of the result that follow are based largely on collorary 2.4.3.

As it was mentioned before, many of the results in stability theory

dealing with the problem of the determining when the product of two

operators is a positive operator will be used in this section. The reason

is the following: Since the trajectories satisfying equation (4. 13) ap-

proach zero as t--o, then in order to guarantee that a system 2z is

universally better than a system E1 it is only necessary to verify in-

equality (4. 12) for all x(t) that approach zero as t-boo. With this

idea in mind the next theorem follows trivially:

Theorem 2.5.2: System E2 is universally better than

system E1 if

f f(t,q(D)x){2p(D)x + f(t, q(D)x)}dt< 0 (19)

0

for all x(t}¢o~n[o ,
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It should be made clear that if inequality (19) hold for all

x(t)° Eon [0, oo) then inequality (4.11)is automatically satisfied. How-

ever if (4.11) is satisfied for all x(t)Eoen [ 0, oo ) it can not be concluded

that the system Y2 is universally better than the system ~1 because

of the additional stability condition on the solution of the differential

equation (4. 4).

Let us consider now the nonlinear systems mentioned at the be-

ginning of this section:

The Class Ak

Definition 2. 5. 1: A nonlinear function -f( )- is said to belong

to the class Ak if (see Fig. 3)

0 < f(cr) < k for all I I (20)
- ( --

f(m)

/

//

/ /
/

Fig. 3 An Element of the Class Ak
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The following two properties of the nonlinearities of the class

A k will be used

o0

i) (f[ z(t)] d z(t))dt< 0 provided that z(t) co 1 [ 0,oo) and

0

fEA (20a)
00

ii) r z(t)f[ z(t)[ - k + fz(t)] < provided that f cA k

0

and z(t)ct 2 (square integrable function) (20b)

Lemma 2.5. 1: Inequality (19) holds for all x(t)Ecin[0,o01 if

2p(s) = [cs-klq(s) (21)

where c is a positive constant.

Proof:

Denote by

00

ca[x(t)] t f[ q(D)x {2p(D)x + f[q(D)x] } dt

0

but by equation (21)

00

a[x(t)l : f f[q(D)xl {cDq(D)x - kq(D)x + f[q(D)x] }dt (22)

0

Denoting by

z(t) = q(D)x(t) (23)

then z(t)a,1[O0, oo) and z(t)iz 2 , therefore

0 oo

a[ x(t)] - c f[ z(t)l Dz(t)dt +z(tf[ z(t)f(t)] {-k + f-z (t) dt (24)

0 0
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but by properties (i) and (ii) it follows that

a[x(t) < O

Theorem 2. 5.3: System EZ is universally better than

system C1 if f A k and

2p(s) = [cs-k]q(s) with c> 0

Proof:

Follows immediately from lemma 2.5.1 and theorem 2.5.2.

Comment:

There exist a very close relationship between theorem 2.5.3 and

Popov's criterion. In a similar manner as Popov's criteria theorem

2.5.3 has the same kind of limitations. From equation (21) two im-

portant restrictions of tne class of systems for which theorem 2.5.3

could give information are the following:

a. The difference in degree of the polynomials.
p(s) and q(s) should not exceed unity.

b. p(s) should have at least one zero in Re[ s]> O.
This condition, however, is a trivial consequence
of theorem 2.5. 1.

Example 2.5.1: Assume that system Z2 is given by

Z x(t) + f[ dt) + x(t) - x(t) - u(t)
dt

where feA2 . Then, given any quadratic cost functional it is

possible to upper bound the performance of the system ~2 by

simply computing the optimal performance of the linear system 1'

x(t) x(t) = u(t)
dt 2
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The Classes M k and Ok

Definition 2.5.2: A nonlinear function -f( ) - is said to belong

to the class Mk if (see Fig. 4)

a. fEAk

b. (r 1--2)[ f(r - 1)-f( -2 )]> 0 for all u1 and cr2.

f(cr) /

///

_/ /

Fig. 4 An Element of the Class Mk

Properties of the class Mk

Of course the class Mk has properties (i) and (ii) of the

class A k . The following two additional properties will be needed

for later developments

iii) F(y) - F(x) + (x-y)f(x) > 0 for all x and y

where F(c-) = f(u)du

0
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Proof:

(See Fig. 5) The result is immediate from the graph. However it

follows also very easily from the fact that

y

[ f(u) -f(x) du> O

x

iv) f x(t + Tr)f[x(t)] dt <rx(t)f[x(t)] dt (26)

0 0

f(T)

Area 
F(y)- F(x)-(x- y)f(x) 

x/ Y

Fig. 5 If f e Mk then F(y)-F(x) > (y-x)f(x)

Proof:

From property (iii) when y=x(t+T) and x=x(t) it follows that

F[x(t+T)] - F[x(t)] + [x(t)-x(t+T)l f[x(t)>1 O0 (27).

Integrating with respect to t from - x to x- it is obtained that
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F[X(t+T)] dt - F[ x(t)j dt + x(t)f[ x(t) dt

-00 -00 -00

(28)
00

- x(t+T)f[x(t)] dt > 0

-00

From (28) inequality (26) follows trivially.

Lemma 2.5.2: Inequality (19) holds for any x(t)eDOn[O0,o) if

kfEM k and

2 p(s) = [ -c 0 -k + c 1 s]q(s) + r(s) (29)

where r(s) is a polynomial of degree strictly less than the degree

of q(s) and if [A, b, c is a realizationY of r(S) then
q(s)

w(t) = c'eAtb > 0 for all t c[ 0,oo) (30)

00

q(0) -Cojw(t)dt - r(°0)) - CO (31)

0

and c o , c1 are nonnegative constants

Proof:

De fine

co

a[ x(t) = q(Dx {p(Dx + ff q(D)xl }dt (32)
0

but since f M k then

00

ct[ x(t)l <f f[q(D)xl {2p(D)x + kqt D)x}dt (3 3)

0



-29-

Now. substitute equation (29) into (33) to obtain

00

a[x(t] <f f[ q(D)x [ (- c + C D)q(D)x + r(D)x dt (34)

0

Define

z(t) ~ q(D)x(t) then

(35)
00

r(D)x(t) = w(T)z(t-T) dT

0

The refore

C x(t)j< c f f[f z(t) Dz(t)dt + f fr z(t) { -cz(t) +

0 0

(36)
t

f W(T) z(t-T) dT} dt

0

The first integral on the right hand side of inequality (36) is nega-

tive by property (i) the fact cl> 0 and z(t)coJ[O0,od. Define now

0 for t<0

gr(t) =tg(t) for 0 < t <

0O for t > (r

then,

oo t

arx(t)l< 1im ft[ z(t) { -coz(t) + w(T) Z(t-T)dT}dt
' f -- -co 0 0

c0O O0

- -O Olim ff[ z9 (t)1 {-coz (t) + f W(T) Z (t--T)dT}dt

- li ra f -00 00fz (t)

lim f[ z(t)Fl -coz(t)dt f (T) zt) z(tT)dTdt

0 0(3

(37)



-30-

by using property (iv) and condition (30) it follows that

o00

a[x(t)] < lim [ f f[ z(t)] [ -c 0 z(t)] dt

-oo (38)

+fw(T)dT f f[ z(t)] zo(t)dt]

O -oo

then

oox,~ oo

atxltil< I fr z(t!l z>t)I -co +f w!~>dr)l dt
-oo 0

and finally, by inequality (31) it can be concluded that

a[x(t)l < 0 I 

Theorem 2.5.4: System Z2 is universally better than

s ystem 71 if f cMk and

i) there exist positive constants cO and c 1 such that

2p(s) = [ -c o - k + c l s]q(s) + r(s)

ii) the degree of r(s) is strictly less than the degree of

q(s) and if [A, b, c is a realization of r() thenq(s)

w(t) c IeAtb>0 for all tEc[O,oo)

00

iii) w(t)dt = r(O) < cq(0) - 0
0

Proof:

The above statement is an immediate consequence of lemma 2.5.2

and theorem 2.5.2.
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Definition 2.5.3: A nonlinear function -f( )- is said to be-

long to the class Ok if

d) f EMk

e) f(cr) = -f(-c-) !

The additional property of the class Ok that will be used in

lemma 2. 5.3 is the following

v) x(t+T) · f[x(t)l dt< f x(t)f[ x(t) dt (39)

-00 -00

Proof:

In inequality (28) replace x(t+T) by -x(t+T) then

j F -XFx(t+T)]dt - [x(t)] + x(t)f[x(t)dt (40)
-00 -oo0 -00

(40)

+ x(t+T)f[ x(t)i] dt > 0

but by property (e), since F[ -X(t+T)] = Ff X(t+T)] then

ox(tT)f[ x(t dt x(t)f x(t)] dt (40a)

-00 -00

Therefore inequality (40a) in conjunction with inequality (26) gives in-

equality (3 9) .

With the additional property of nonlinearities of the class Ok less

restrictive conditions on q(s) and p(s) can be derived in order to

satisfy inequality (19). The following lemma gives those results:

Lemma 2.5.3: Inequality (19) holds for any x(t)Eodn[ 0,oo) if

f O k and



-32 -

2p(s) = [ -c - k + cls]q(s) + r(s) (41)

where r(s) is a polynomial of degree strictly less than the de-

gree of q(s) and if [A,b,c] is a realization of r(s) then
q(s)

f Ic'e _tb dtt< c (42)

0

where co and c 1 are nonnegative constants.

Proof:

The proof of this lemma follows the same lines as the proof of

lemma 2 .5.2 with the difference that after inequality (3.7) the fact that

oo oo

I ce- b f[z (t)] z (t-T)dtdT

O -oo

(43)

00 co

f Icte ATb If f[ z (t)(t)] z(t)dt dT
O -00

is used. The remainder of the proof is the same.

Theorem 2.5.5: A system -2 is universally better than a

system ~1 if fEOk and conditions (41) and (42) hold.

Proof:

Direct consequence of lemma 2.5.3 and theorem 2.5.2.

The Time Varying Class

In this section sufficient conditions that guarantee that a

system 52 in which f(t,q(D)x) - k(t)q(D)x is universally better

than a system Z1 are derived.

Lemma 2.5.4: [Gruber and WillemsF - l The integral

00

a[x(t)] =f k(t)m(D)x(t)n(D)x(t)dt is nonpositive for all

0
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a) x(t) 0a, oo)

b) 0 < k(t) < oo for all t> 0

c) dk(t) > 0 for all t > 0 (44)
dt -

if and only if

- (-) is positive real (45)
n(-s)

Proof:

De fine T

aT[x(t)l] - k(t)m(D)x(t)n(D)x(t) dt
0

then integrating by parts the above integral it follows that

t=T
0oo

aT [x(t)] = -k(t) f m(D)x(T)n(D)x(T)dT
t t=O

(46)

T oo

·+ dk(t) I m(D)x(T)n(D)x(T)dTdt

0 t

or

T[ox(t)] -k(T) f (D)x(Tr)n(D)x(r)dT + k(Oofm(D)x(T)n(D)x(TidT

T 0
(47)

T co

+f dk(t) m(D)x(T)n(D)x(T)dTdt
dt

0 t

since

a[x(t)l = lim aT[x(t)]
T-'oo
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the n

00

a[x(t)l = lim {-k(T) m(D)x(T)n(D)x(T)dT} +
T- oo T

k(0)J m(D)x(t)n(D)x(t)dt + 'dt Jm(D)x(T)n(D)x(T)dTdt
0 0 t

(48)

The first term in the above expression is zero since by condition (44b)

k(T) is bounded for all T> 0; the second term is nonpositive from

(44a), (44b) and theorem 2A (Appendix). The third term, is also non-

positive since its integrand is, by use of (44a), (44b) and theorem (2A)

als o nonpos itive. The only if part follows from theorem

ZA.

Lemma 2.5.5: The integral

00

a[ x(t)] = k(t)m(D)x(t)n(D)x(t)dt

0

is nonpositive for all

a) x(t) c jn[ 0, oo)

b) 0 < k(t) < oo (49)

c) dk(t) > - 2 y k(t)
dt

if and only if

_ m(-s+y)n(-s+y') is positive real (50)
n(-s+7y)

Proof:

Let us introduce some preliminary facts

i) m(D)[x(t)e Pt]= [m(D-p)x(t)]e -Pt (51)
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ii) there exists a constant matrix M such that

(m(D+a) x(t)e -'Yt] )(n(D+ac)[x(t)e - T t] )=e -2ztx'(t)Mx (t)

(52)

Let

00oo

x(t)l = k(t)e 2 t[ m(D)x(t)] e Yt[ n(D)x(t)] e 7tdt

0

by virtue of (51) it follows that

oo

a[x(t)] =r k(t)e Zt(m(D+a)[x(t)e -Lt] (n(D+a)[x(t)e 't]dt (53)

0

proceeding in a similar fashion as in the proof of the previous lemma,

after integration by parts of (53) and by taking the limit as T- oo

it is obtained that

00

a[x(t)] = lim {-k(T)e 2 ft [mn(D+,y)(x(t)e Yt)][n(D+y)(x(t)e n-t)]dt}
T- oo

o00

+ k(0)f [m(D)+y)(x(t)e z-t)] [n(D+y)(x(t)e -Yt dt (54)

0

o0

+ dk(t) + 2yk(t)e2m(D+y)(xe 7- n(D+)(xe -o-) do- dt

0 t

The last two terms in the expression above are nonpositive, since

x(t)e -yt E o[ 0, o) for y> 0, (49b), (49c) and theorem 2A. It re-

mains to be shown that the first term of the right hand side of (54) is

zero. That fact can be proved as follows:

oo

|k(T)e 2 [y m(D+yy) (x(t)e -7t) [ n (D+7) (x(t)e -t) I dt|
T

........ Continued on next page
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00

< k(T)e2 y 7 t f [m(D+y)(x(t)e t] [n (D+7y)(x(t)e -t) Idt

T

00oo

< k(T)e2f ee2 I x'(t)Mx(t) ldt by virtue of (ii)

T

oo

< k(T)e 27J e I(+E)t |IMIIEdt for some E > 0 by virtue of (44a)

T

k( -2ET

2 (,y+ E) IM _MI E

k(T)JIMlI2 -2ct
and lim e = 0

Theorem 2.5.6: The system '2_ is universally better than

the system E1 for all f(t,q(D)x)= k(t)q(D)x if

a) 0 < k(t) < k'

dk (t)
dt

b ) t > -2y
k (t) -

and c) -Zp(-s+y) - lk' is positive real
q(-s+y)

Proof:

The inequality

oo

f k(t)q(D)x[ 2p(D)x+k(t)q(D)xl dt

0

00oo

< f k(t) q(D)x[ 2p(D)x + k*q(D)xl dt < 0

0

in conjunction with theorem 2.5 . 2 leads to the claim of the theorem.
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The Linear Time Invariant Class

In this section it will be assumed that f(t, q(D)x) is of the

form kq(D)x.

Lemma 2.5.6: Inequality (19) holds for all x(t)¢ O,oo] if

and only if

p(s) = -Z(-s) - k (54a)
q(s)

and Z(s) is positive real.

Proof:

Let us define

o0

a[x(t)] fkq(D)x(t)[ 2p(D)x(t) + kq(D)x(t)]dt (55)

0

m ) -Z(-s) (56)q(-s) 

Then at x(t)] = - [ kq( D))xt [ m-Dx(t)] dt

0

But by virtue of theorem 2A, a[x(t)l is negative if and only if -Z(-s)

is positive real.

Theorem 2.5.8: The system 72 is universally better than

the system Z1 for f(t, q(D)x) = kq(D)x if and only if condition

(5 4a) is satisfied.

Proof:

Use lemma 2.5.6 and theorem 2.5.2.

Example 2.5.2: Consider the following specific case

S 2 : D 2 x + b2 Dx + a2 x = u

1' D2x + blDx + alx - u1 1 1
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Find conditions on al, a 2 , bl and b 2 such that Z2 is universally

better than E1'

Solution:

Apply Theorem 2.5.8. In this case

p(s) = s + b l s + al

and q(s) = (b 2 -bl)s + (a 2 -a1 )

then we want to find conditions under which

2s2 - ZblS + 2a - (b 2 -bl)s + a2 -
z(s) -(b 21 a 2 is p.r., or

-(bZ-bl)S + a 1 -a

Zs Z - (bZ+bl)S + aZ + al

Z(S)
(b 2 -b)s + a1 - a2

These conditions are

-b2 - b > 0

b 2 -bl > 0

al + a 2 > 0

a I -a 2 > 0

and they can be reduced to

al > 0 bl< 0

la 2 < a1l b 2 1 < -bl

The above result is apparently new in the literature and it simply says

that a second order system, with a damping less in magnitude and

with a spring constant less in magnitude than a system with negative

damping and positive spring constant, will have a lower quadratic

dx
criteria independent of the penalty on x and dt

6. On Globally Better Systems

The conditions under which a nonlinear system -2 is universally2
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better than a linear system derived in the previous section are easy

to apply. The drawback of course is that the upper bounds obtained by

computing the performance of the linear system are in general not

sharp. Improvements of the upper bounds can be expected if the quad-

ratic cost functional is specified (i.e., -h(s) is fixed) since it is re-

quired that the nonlinear system performs better than the linear only

with respect to a specificcost functional. Nevertheless the problem

becomes more difficult because, in contrast with the results of

Section 5, it is necessary to determine the negativity of an operator

not in all 4nt[ 0,oo) but for a manifold of it. That manifold in our

case is the one form by the solutions of a linear time invariant dif-

ferential equation. We will present here only an extension of theorem

2.5.3.

Lemma 2.6.1: Inequality (3. 12) holds for all feAk along tra-

jectories satisying (3. 14) if there exist a nonnegative constant c

and c 2 arbitrary such that

2p(s) = [cls - k]q(s) + c 2[p + hh]+(s) (1)

Proof:

Denote by

00

t[x(t)] =f f(q(D)x){2p(D)x + f(q(D)x)}dt (2)

0

and by using equation (1), it follows that

00

[x(t)] =f f(q(D)x){(c1 D-k)q(D)x + c 2 [p+ hhl + (D)x

0

+ f(q(D)x)}dt
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but since x(t) satisfies (2. 13) then

00oo

a[x(t)l =ff[q(D)xl {(clD-k)q(D)x + f(q(D)x)}dt (3)

0

Denoting by z(t) = q(D)x(t) then z(t)coto[ 0, oo) and z(t) 2[ 0, 0)

therefore

a[x(t)] - cl f[ z(t)] Dz(t)dt+f z(t)f[ z(t)] [ -k + f[ z(t)] dt (4)

O 0

but by virtue of properties (5.20a) and (5.20b) of the class Ak it

follows that

a[x(t)] < 0

Theorem 2.6.1: The system ZE is globally better than the

system F1 with respect to J if condition (1) is satisfied.

Proof:

Immediate consequence of lemma 2.6.1 and collorary 2.3.3

Example 2.6.1: Consider the following second order systems

dx(t) +fdx(t dx(t) + +alx u(t)
+2 dt 1 dt 1 

dt

2x(t) db d(t + alx(t) = u(t)2g' 2 +b 1 dt 1
dt

If f eA k find conditions on al, bl, and k such that the system

E2 is universally better than the system Z 1

Solution:

Apply theorem 2. 6. 1. In the present case

p(s) = s + bls + a1

q(s) = s
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then, we want to find constants c 1 and c2 referred to in theorem

2.6.1 such that

2s2 + 2bs + 2a 1 = [C 1 s - ks + C2 (S 2 + 12 s + PI)

where 31>1 p 2 >O (i)

2 a2 > 0 (ii)

P2 a2 - bl 1 - al)> O (iii)

(see Kalman )

The equations that the constants cl, c 2 and k should satisfy are

the following:

c1 + C2 = 2

-k + C2g 2 = 2b1

c2 1 -a 2aa

2a1 al
therefore c 2 = and c = 2(1 ).2 P1

We can guarantee that cl is positive by condition (ii) above. On

the other hand

2al P 2
k - c 2 P 2 - 2b 1 2b 1

then, if we restrict bl < 0 and al > 0 we have

k< 12bl 1

(as it can be seen the above example is an improvement over example

2.5.2 of the previous section). The conditions are then

fEA IZbl a 1 >0 1 b<0

Sharper results will be obtained if we specified a given cost functional.

Assume for example, the following numerical values:
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a 1 = 2 , b 1 = 1 , -1 = 2 and p2 = 4

then in this case

f cA2



CHAPTER III

GENERALIZATIONS TO THE VECTOR CASE

1. Preliminaries and Notation

In the present chapter the results presented in Chapter II will be

generalized to multivariable systems. In the sequel when reference

is made to system Z 1 it will be understood to be the system described

by the equations

dx(t)

=1: dt = _A(t)x (t) + _B(t)u(t)

y(t) = C'(t)x(t)

and when reference is made to system >2 it will be understood to be

the system described by-

dx (t)

Z' A dt = A(t)x(t) + f(t, x ) + B(t)u (t)

y(t) = C'(t)x (t)

The cost functional is of the quadratic type

T

J(u,x 0 ) [ y'(t)y(t) + u'(t)u(t)l dt

to

It will be assumed that the system E1 is uniformly completely

controllable and uniformly completely observable. K-

The nonlinearity is assumed to have the property

f(t, 0) = O

-43-
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2. The Main Theore ns

The theorems derived in the present section follow the same ideas

as the theorems of Section 4 of the previous chapter.

Theorem 3. 2. 1: System 2 is better than system Z1 is S

with respect to J if

T

i) f'[ t,x(t)]K(t)x(t)dt < 0 (1)

to

along solutions of

dx(t)

dt = [A(t)- B(t)B'(t)K(t)]x(t)+f(t,x(t)) (2)

with x(t 0 ) =x 0 S

ii) the solutions of (2) are bounded in the interval

[to T] for all x0 S

where K(t) is the unique (positive semidefinite) solution of the

Riccati equation

dK(t)

dt = -K(t)A(t) - A'(t)K(t) - C(t)C'(t) +K(t)B(t)B'(t)K(t) (3)

with the boundary condition

K(T) = 

Proof:

Observe that the optimal feedback solution of system with respect

to J is given by 3

u (x) = -B'(t)K(t)x(t) (5)

Apply this control law to the system Z. to obtain the equation
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dx(t)

dt = [A(t)-B(t)B'(t)K(t)Jx(t)+f[t, x(t)] (6)

The performance of system r2 associated with the feedback law (5) is

T

Jz[ul(X)] = [_x'(t)C_(t)C '(t)xt) + x'(tK()Kt)B(t).B'(t)_x(t) dt

to (7)

along solutions of (6) or

T

J 2 [U(x)] = f {x'(t)[C(t)C'(t) +K(t)B(t)B'(t)K(t)]x(t) (8)
to

dx(t)
-2 d-t - A(t)x(t) - f(t,x(t)) + B(t)B'(t)K(t)x(t)] 'K(t)x(t)}dt

T
dx'(t)J {x'(t)[C(t)C'(t) +K(t)B(t(t)B(t)K(t)]x(t)-2 dt K(t)x(t)to

(9)
+2x'(t)A'(t)K(t)x(t) + 2f'(t, x(t))K(t)x(t) - 2x'(t)K(t)B(t)B(t)K(t)x(t)}dt

T

{x'(t)[ C(t)C'(t) -K(t)B(t)B '(t)K(t)+K(t)A(t)+A'(t)K(t)]x(t)}dt

to

T

{x'(t)K(t)x(t) +)x(t)'(t)K(t)x(t) - 2f [t, x(t)]K(t)x(t)}dt

to (10)

By using now the fact that K(t) satisfies the differential equation (3) we

can write
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T

(u -x'(t)K(t) dx(t) dx'(K(t)x(t) - x(t) dK(t) x(t)}dt
-- - dt dt dt

to

T

+ 2 f f '(t, x(t))K(t)x(t)}dt (11)

to

The integrand of the first term of the right-hand side of (11) is a

perfect differential, therefore

T T

J2(Ul ) = { dt-[x'(t)K(t)x(t)] }dt + 2 {f'(t, x(t))K(t)x(t)}dt

to to

x(t 0 )K(t 0 )x(t o ) - x'(T)K(T)x(t)

T

+ 2 J {f'[ t,x(t)]K(t)x(t)}dt (12)

to

but from boundary condition (4) and from hypothesis (ii) it follows that

T

J 2 (U ) x= '(t 0 )K(t 0 )x(t 0 ) + 2 (f'[t,_x(t)]K(t)x(t)}dt (13)

to

but the first term of the right-hand side of (13) is exactly equal to

* . * K-3
J 1 (ul) = Jl(u ) then

T

J2 ) = J + 2 {f'(t,x(t))K(t)x(t)}dt (14)

to

therefore if condition (i) holds then

< u
J2 < J1 = J 1 ( 1 )

and system E2 is better than system 1 .'
2~~~~~~~~~~~~~~~~ ]'
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One of the motivations of the definitions and study of "better"

systems was to find bounds on the performance of optimal systems.

For that purpose some improvements over the previous theorem can be

achieved by finding conditions under which

J 2 < q J where q > 0

Those conditions can be given without too much effort from theorem

3.2.1 as follows:

Collorary 3.2. 1: An upper bound for the optimal performance

of the system Z2 is given by

J 2 (u, x 0 ) < q x 0K (to)x 0 (15)

if

T

'[t t, x(t)] K(t)x(t) dt < - x ;K(to)x 0 (16)

t0to

where K(t) is the unique solution of the differential equation (3)

with the boundary condition (4) and x (t) is the solution of (2)

with x(t 0 ) = x 0 and all solution of (2) are bounded in the interval

[to, T].

Proof:

As in the proof of the theorem after equation (13) use inequality

(16) then,

J < x'(t 0 )K(t 0 )x 0 + (q-l)x4-(t0 )x = qx- (t0 )x 0

Of great interest is the case in which the system E1 is time in-

variant and T - oo and should be considered separately. The following

theorem furnishes conditions similar to those given in theorem 3.2. 1.
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Theorem 3.2,? If A, B and C are constant matrices and

T-boo system ~2 is better than system E1, in S with respect

to J if

00

i) f f'[t,x(t)]Kx(t)dt < (17)

to

along solutions of

dx_(t)

dt = [ A -BB'K] x (t) + f[ t, x(t)l (18)

with x(t 0 ) = x 0 ES

ii) the null solutions of (18) is asymptotically stable,

SCR where R is the region of attraction of the null
a a

solution of (18) and K is the unique positive definite so-

lution of the algebraic equation

KA+ A'K- KBB'K+ C C' - O (19)

Proof:

The proof of this theorem follows the same lines as the proof of

theorem 3.2.1 and will be omitted. The only difference in the argu-

ment is that after equation (12) instead of using the boundary condition

(4) in order to show that

x'(T)K(T)x(T) = 0

the fact that x(t)--O as T - oo is used based on the assumption (ii)

in the statement of the theorem. I 

The counterpart of collorary 3.2.1 is the following:

Collorary 3.2.2: An upper bound for the optimal performance

of the system -2 is given by

Jz2 (, 2 x O) < q x oSKXO
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if

00

{ft'[txx(t)lKx(t)}dt < q1 xKxO (20)

to

where K is the unique positive solution of (19) and x_(t) is the

solution of (18) with x(t 0 ) - xO and the null solution of (18)

is asymptotically stable in the large. The proof of this collorary

will be omitted.

Comment:

The usefulness of theorems 3.2.1 and 3.2.2 is limited by the fact

that in order to apply them it is necessary to find the required stability

characteristics of equations (2) and (18). That might be a difficult

task. The following theorem is a simplified version of theorem 3.2. 1

that overcomes the difficulty of condition (ii).

Theorem 3.2.3: If the matrices A, B and C are constant

and

f'(t,x_)Kx < 0 for x / 0 (21)

then the system E2 is globally better than the system E1.

Proof:

Condition (i) of theorem 3.2.2is trivially satisfied. To show that

condition (21) implies that condition (ii) is automatically satisfied,

consider the following Lyapunov function

v(x) = x'Kx (22)
dv(x)

then dt along solutions of (18) is given by
dt

dv(x_)

dt -x' CCx - x'KB B'Kx + f'(t,x)Kx

which is negative definite, therefore the null solution of (18) is asymp-

totically stable. H
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Another important class of nonlinear time varying systems that

will be considered is the following:

dx(t)
2 dt - A(t)x (t) + B(t)g (t, x (t)) + _B(t)u(t) (23)

Y (t) = C(t)x(t) (24)

Even though the above class of systems is a subclass of systems con-

sidered in theorem 3.2. 1 additional conditions under which a system

~2 (as described by equations (23) and (24)) is better than system 1l

can be derived. The results are contained in the next theorem:

Theorem 3.2.4: System 32 is better than system 1 in S with

respect to J if

T

f '(t,x(t))[ (t, x(t)) + 2B'(t)K(t)x (t)] dt < 0 (25)

to

along solutions of

dx (t)

dt = [A(t) - _B(t)B'(t)K(t)]x (t) (26)

where K(t) is the unique positive solution of (3) with boundary

condition (4), and x O = x (to0 )S.

Proof:

A feedback law will be chosen in such a way that the trajectories

of system 72 generated by that feedback law coincide with the optimal

trajectories of system 1.' The appropriate feedback law is given by

u (x) = -B'(t)K(t)xt) - g_[t ,x(t) (27)

then the trajectories of systems 72 generated by the feedback law (27)

satisfy (26).
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The performance of system Z 2 associated with the feedback law

(27) is given by

T

J 2 () = {x' (t)C(t)C'(t)x(t)

to

+ [B' (t)K(t)x (t) + g(t,x(t))]'[ B' (t)K(t)x(t) +g(t,x(t))] }dt

(28)

T

f { x' (t)C(t)C'(t)x(t) + x' (t)_K(t)BB' (t)K(t)x (t)} dt

to

T

+ {2x' (t)K_(t)B(t)g(t, x(t)) +g (t, x(t))g(t, x(t))}dt (29)

to

The first integral of the above expression is identically equal to the opti-

mal performance of the system ,1 then

T

J 2 <J 2(u) = J'l + ' [t,x(t)] [ (t,(t) ) +

to

2B' (t)K (t)x (t)] dt (30)

therefore when inequality (25) is satisfied along solutions of (26) system

Z2 is better than system Z1o

Collorary 3.2. 3: An upper bound for the optimal performance

of the system Y'2 is

< q (t)
J2 < q x; 5(t0)x O
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if

T

S g (t, x(t))[ g(t, x(t)) + 2B (t)K(t)x(t)] dt

to

< (q-l)x 0 K(t 0 )x 0 (31)

along solutions of (26).

3. On Universally Better Systems

It will be assumed in this section the class CI in the definition

of universally better systems is the class of cost functionals

00

J(u,0) = (ulu + x_ C _dt (1)

0

for all C 's such that [A, C] is an observable pair. The existance of uni-

versally better systems is guaranteed by the following theorem:

Theorem 3.3. 1: Given any time invariant linear system Z

of the form

dx(t)
dt = Ax(t) + Bu(t)

and a cost functional (1), there always exists another linear system
dx(t)

S2 of the form dt = Ax(t) + D(t)x(t) + Bu universally better

than system Z

Proof:

Consider the system Z 2 given by

dx(t)
d( t)= (A + k(t)I) x(t) + B u(t), with k(t) < E< 0
dt _

Since k(t)x' Kx< 0 and K is positive definite for all J Eatothen

theorem 3.3, 1 follows immediately from theorem 3o 2. 3.
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The result of the above theorem seems to contradict the result of

theorem 2. 5. 1, however it should be kept in mind that the form of the

permissible class of systems ' 2 in theorem 2. 5. 1 was more re-

strictive than the one allowed in this chapter. In contrast with the re-

sult there it is not necessary to require that the system Z1 be un-

stable in order to find a universally better system.

4. Globally Better Systems

In this section we will focus our attention to linear systems. Let

us assume that f(t,x) = D(t)x then the following theorem is an im-

mediate consequence of theorem 3. 3. 1.

Theorem 3.4. 1: The system , 2 is globally better than the

system '1 with respect to J if Dt(t)K(t) is positive semidefinite,

where K(t) is the solution of (23) with the boundary condition (24).

For the time invariant case an upper bound for the optimal cost of

the system Z2 can be found by using the result of collorary 2.2.

Theorem 3.4. 2: An upper bound for the optimal performance

of the system C2 is given by

J2 (u,xO)< q xOK-xO ; q > 0 (1)

if

(q-1)(CC'+ KB B'K) - q[ D'K+ KD] = HH' (2)

for some matrix H and if the pair [A+ D,C] is observable.

Proof:

The proof is in two parts. First it will be shown that condition (2)

implies that the null solution of

dx(t)

dt = (A - BB'K+ D)x(t) (3)dt
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is asymptotically stable in the large.

For that purpose consider the following Lyapunov function:

dv(x)
v(x) = x'Kx then along solutions of (3) - is given by

_ - dt_ givenbydt

dv(x)
-t = x'[AK- KBB'K+ D'K+ KD+ KA- KBB'K] x

but since A'K+ KA- KBB'K = -CC' (4)

then

dv(x)
= x'[-CC'- KBB'K+ D'K+ KD]xdt

now, by using equation (1)

dv(x)
d = x)[- [ HH' + (q-1 -1)(C C' + KB B'K)]x
dt -- q

- x' [HH' +CC' + KBB'K]x
q -

dv(x) dv(x)
but since q is assumed to be positive then dt < 0 ; for dt to

vanish identically it is necessary to have B'Kx(t)- 0 which implies

that (1) becomes

dx
dt = (A+ D)x (5)

but then C'xt) can not be identically zero, since the pair [A+D,CI
dv(x)

was assumed to be observable. Then dt < 0 and not identically

zero along solutions of (1). It should be noted here that if we define

PP' = C C' -HH'

the observability assumption can be weakened by requiring only that

the pair [A+ D,P] be observable. The second part of the proof con-

sists in showing that inequality (2. 2. 1) is satisfied, that is

oo

e(A+D-BB'BK)'t (D'K+ KD)e (A+ D - BB'K)tdt < O (6)

0

if equation (2) holds for some H.o



-55-

From equations (2) and (4) it follows that

(q-l)[-A'K- KA+ 2KBB'K] - q[D'K+ KD ] = HH'

or

(q-l)[ -A'K - KA+ 2KBB'K- D 'K- KD] = H H' + D'K+ KD

(q-1)[(A-BB'K + D)'K+ K(A-BB'K+ D)] = HH' + D'K+ KD

Pre- and post-multiplying the above equation by e -B BK+ D) t

and e(A - B B 'K + D )t respectively, and by integrating from 0 to

oo it follows that

(q- d (A - BB K+ D)'t e(A B BT'K + D)td t
dt d Ke }dt

0

00

(A-BB' K+ D)'H, e (A-B B' K+D)t} dt

0

co

J e(A-BB' K+ D)t(D K+ K D)e (A -B B' K+D)t dt

0

Performing the integration of the left-hand side and using the fact

proved in the first part, that the eigenvalues of (A - B B 'K + D ) are

in Re[ s] < 0 it is obtained that

oo

(q-1)K = e(A - B' K+D) 't (A-BB' K + D)tdt

0

oo

+ (A + D - B I (A+BB'K) ')t

0

which implies that inequality (6) is satisfied, and by collorary 3. 2. 2

inequality (1) holds. I 



-56-

A very similar result to the above theorem was presented in

Ref. M-1.



CHAPTER IV

ON LOWER BOUNDS ON THE PERFORMANCE OF
THE REGULATOR PROBLEM

In this chapter the problem of determining a priori lower bounds

on the optimal performance of linear systems is analyzed. Then the

problem of evaluating the degree of suboptimality of a given design is

studied. Two examples illustrating the advantages of the obtained re-

sults are given.

1. Notation and Preliminaries

Consider the linear time varying system described by the equation

dx(t)

1!' dt = A(t)x(t) + B(t)u(t) (1)

(t) =C' (t)x(t) ; x(t 0 ) = x 0 (2)

and the cost functional

T

J(ux0) = f [y (t)y(t) + u' (t)u(t)]dt ; > T> t (3)

to

also denote by

T

II uf! 2 f u' (t)u(t)dt (4)

to

T

2 f y (t)y (t)dt (5)

0

-57-
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and the operator G mapping Rrx[t o ,T] into Rmx[t o ,T] as

t

Gu fC' (t) BA(t, r)B()u((o)dc ; t o t< (6)

to

where !A(t,to) is the transition matrix associated with the matrix

A(t) that is -A should satisfy the following two conditions

-Ai) TA(t8O to) = I
ii) dt (t, t 0 ) = A(t)-A(t, to) (8)

The gain of the operator G is defined as

g = GII sup G (9)
u Co Z[ t T] (-9

The inner product of two vectors functions of time, 'F(t) and r (t)

is defined as

< (t), r (t) > =f '(t)r(t)dt (i 0)

to

Y 0 wi 1 de note the homogeneous output of system Z1, that is

Yo(t) = C' (t) _A(t to)Xo (11)

The performance associated with the control u(t) - 0 will be called

the homogeneous performance and is denoted by

JO I- ll (12)

Note that for any u(t) the performance associated with that control,

by virtue of linearity, can be expressed alternatively as

J(uxo) = u_ 2 + IGu + L0 2 (13)
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2. A Fundamental Inequality

In this section we will derive an inequality that is essential for

the development of latter sections. First we will derive a theorem

giving some characterization of optimal feedback controls.

Lemma 4. 2. 1: (A characterization of optimal controls). If

u-- is the optimal control for the system 1 and y; is the cor-

responding output then

T

J;: = <I:, y > = I (t)(t)dt (1)
to

Proof:

It has been determined K - 3 that the optimal trajectories generated

by the optimal control satisfy the equation

dx(t)
t = [A(t) - B(t)B' (t)K(t)] x(t) (2)

where K(t) is the unique (positive semidefinite) solution of the Matrix

Riccati equation

d lt)
A! (t)K(t) + K(t)A(t) - K(t)B(t)B' (t)K(t) + dt -C(t)C'(t) (3)

and K(T)- 0. In addition, the optimal cost is given by

J e K(to)x0 (4

Denote by T It,t o) the transition matrix associated with the matrix

A(t) - B(t)B' (t)K(t) then, after pre- and post-multiplying (3) by

Ix't (tt0) and 4 t,t 0 )xO respectively, one obtains thatx ( =-A 0 m- 1t0X~t
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- 10) b(t, to)A (t)K(t)j*K(t' to)Xo

+ X,_b (t, t 0 )K(t)[_A(t) - B(t)B' (t)K(t)] - K(t'to)xo (5)

=O= "0 (dK¢) )K0 t
--0A(-'0)- dt (t to )x 0 (t to)C_(tC'(t),K(t, t)xodt -- ~A~t '_

However, the left-hand side of equation ( 5) is a perfect differential,

then equation (5) can be written as

dt{'A(t' 00't0)-(t) K(t'oto )} = -~A(tO to) (t)C'(t)(txt)

(6)

where we have used the following definitions:

A (t,,O'to ) A _A(t,tO)_)O (7)

±K(t,xOt0) __ _K(t,to)xO (8)

Integrating both sides of (6) from t 0 to T it is obtained that

xK(tO)xO + A(T , xtO)K(T)yK(T,,t (9)

since y 0O(t) = C'(t) A(t,5,to)

and y*(t) = C' (t) K(t,xo,to)

From (4), (6) and the boundary condition on K (t) it follows that

J* = <Y0 Y'-*> I I

Collorary 4. 2. 1: If J0 and J* are the optimal performance

and the homogeneous performance of the system Z 1 respectively,

and if u*': is the optimal control then

a) J - Jo - || GU'-l 2 _ || u*|| 2 (10)

b) J; 0 <Gu'-, y 0>1
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Proof:

Because of linearity of the system, by relation (1. 13) and

equation (1) it is obtained that

I| u*ff + 2+ GuI 2 + 2<Gu*,y0> + I 2 o 2 + <G| , >

(12)

or | 2 f+ | G fI 2 + < GU, o> 0 (13)
or + Gu* Gu*, yo > 0 (13)

then, by using equation (13) and equation (1. 13) both equations (10) and

(11) follow immediately.

Another interesting, nontrivial by-product of lemma 4. 2. 1 is

the following

Collorary 4. 2. 2: An upper bound for the optimal energy is

IIUCII2< JO (14)

and equality holds if and only if y; = 2yO.

Proof:

From equation (1) it follows that

I1 u_ 2 + 11 1 2 = <r... > (15)

then, by completing the square, it is obtained that

II f 2 11 *11 2 <Xy 0> + 11 0 o 2/4 = fl yofl /4 (16)

therefore y1 u _ *[ 2 + - yoll z = J0/4 (17)

from which the statement of the collorary follows immediately.

Theorem 4. 2. 1: The ratio of the optimal performance to

the homogeneous performance of system Z 1 obeys the inequality

The original statement and proof of this particular theorem is due to
R.-W. Brockett. His proof however is different -to the one presented
here.
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j>:< > 1 (18)

J0 1 +g 2

where g= I G II .B-4

Proof:

By using equation (1) and the fact that || Gul <_ II GII u|| it

follows that

J:<_< J0 - I Gu_:*I 2(1 + 1 ) (19)
g

Similarly by using equation (11) and the Schwarz inequality, (i.e. ,

< Gu*, YO > >- I1 Gu*II 11 Yo 1 ) (20)

then JP>I Jo - II Gu_-- l II y 0 1 (21)

J -J*
therefore || Gu* |I > 0 

but since both sides of the inequality are nonnegative, then

--Gu 2> J (22)

By making the definition

R =
Jo

it follows from (22) that

II Gu*ll 2> (1-R) (23)
Jo

by dividing both sides of inequality (19) by J0 it is obtained that

R < 1 - (1 + )4)0 g) (24)
0 g

By substituting inequality (23) into inequality (24) it follows that

R 1 - R)2(1 + )
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or

(l-R) >(1-R)2 (1 + )(25)
g

Inequality (25) is satisfied (see Fig. 6) if and only if R satisfies

1>R> 
l+g2

LHS of (25)

RHS of (25)
1

2 1 (1-E)

l+g 2

Fig. 6 Region for which inequality (25) is satisfied.

therefore

>1
-J0 1+g

C omment:

The proof of the theorem above displays explicitly the two approxi-

mations made. For completeness we repeat them here:
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a) Gu*jI 2 < II G2 II| (26)

b) < Gu_,0yo > >_ - 1lGu*1 IIyo0I (27)

The difference between the right- and left-hand sides of inequality

(26) becomes arbitrarily small for some u'. This fact follows im-

mediately from the definition of the gain of the operator G. Inequality

(27), on the other hand, becomes equality whenever Gu* = +cy 0 where

c is a negative constant. Therefore it can be said that inequality (18)

is the best of its kind, that is, given that only known parameter of

the system Y1 is the gain of the operator G then there does not

exist a function f( | G ) such that

J* > f( | G |I ) > 1(28)1 0 (28)
o 1+IG11II 2

One of the natural questions that arise at this point is the fol-

lowing: Given that the only known parameter of the system is the

gain of the operator G it is possible to find an upper bound strictly

less than unity for the ratio J ? Posing the problem in a more pre-

cise manner, does there exist a function f( II GIl ) such that

1>f(J G|il ) L ?
J*

The answer to this question is negative as shown in the following

theorem.

Theorem 4. 2. 2: Given any positive real number g then there

exist a linear time invariant system with a transfer function G B - 3

such that

g = ||G

and a set of initial conditions such that

J* = Jo (29)
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Proof:

Assume that

G(s) = aq(s)
p(s)

and that p(s) is a Hurwitz polynomial. Without loss of generality it can

be assumed that p(s) is chosen with all its roots in the real axis and a

will be adjusted accordingly in order to make I G I = g.

As it was shown earlier the optimal performance of the system

p(D)x(t) = u(t)

aq(D)x(t ) = y(t)

for the cost functional

00

J(u) = {u (t) + y (t)}dt

0

is given by

00

J* I {[ p(D)x(t)] + [aq(D]-[ PP+ qq)+(D)x(t)] Z d t

0
(30)

where x(t) satisfies some prescribed initial conditions.

Let us assume that so is a root of p(s). q(s) is chosen such that

q(-s 0 ) = 0 but q(s) /0 (31)

therefore (pp + a2qq)(s 0) = o (32)

Since the integral of the right-hand side of (30) is independent of

path, it can be evaluated along solutions of the equation

p(D)x(t) = 0 (33)
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then

oo

JI { [ aq(D)x(t)] [ (pp + a2qq)+(D)x(t)] 2 } dt (34)
0

whenever x(t) satisfies (33).

If the initial conditions are chosen in such a way that

s t
x(t) = e (36)

then by using (32) it follows that

~00 2s t
J* =f [~q()aqi)] 2 e dt

0

but on the other hand

Jo f [ q(so)] 0 dt
0

therefore J* = J 0 .

Now based on theorem 4. 2. 1 the fundamental inequality of the

section will be derived.

Consider the system Z2 described by the equations

xk(t) = F(t)x(t) + B(t)u(t) (36)

X(t) = I' (t)x(t) (37)

and in a similar manner as in Section 1, define the operator H by the

relation

t

Hu =f _ F(t, ) B(r)u() do t < t< T (38)

to

where - is the transition matrix associated with the matrix F(t).-F-
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Theorem 4. 2.3: The inequality

T

0f ·O F (t, t0)K(t)B(t)B' (t)K(t)F(t, tO)dtxO
to

(39)

T

( 1+ IHJI 2) - O 'F(t't0 )J (t )D' (t)jF(tt 0 )dt x0
to

holds for all 0O where K(t) is the unique (positive semi-

definite) solution of the differential equation

dK(t)
+ F' (t)K(t) + K(t)F(t) - K(t)B(t)B' (t)K(t) = -D(t)D' (t)dt

(40)

with K(T) = 0 (41)

Proof:

Pre- and post-multiplying equation (40)by x'o0'F(t,t0) and

~.F(t,to)xo respectively, and by noticing that the left-hand side be-

comes a perfect differential, it follows that

d I
dt x--0F (t t0) --K(t)F(t' to0)O}

(42)

+x '' (t, t )K(t)B(t)B' (t)K(t)4_F(t,to)x = _ 0 ( ) - (t)F(t, t0)

by integrating equation (42) from to to T and use of the boundary con-

dition (41) it follows that

T

x0K(to)xO + _0o_~(t, t0)K(t)B(B(t)B' (t)K(t) F(t,t0)_O dt

to
(43)

T

t fo _ (t, t0)D(t)D' (t) (t, t0)xO dt
t o
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However, x__0 K(t 0)x0 is the optimal cost of the system Z2 with re-

spect to the cost functional

T

J(u: xo) {u (t)u(t) + y' (t)y(t)}dt

to

T

and; xf'0 F(t,t0)D(t)D' (t)F(t,to)xodt is the homogeneous per-

t o

formance of the system Z2, then

T

J' + x'0 _ F (t, t0 )K(t)B(t)B' (t)K(t) F(t, t 0 )x 0 dt = Jo (44)

to

but from theorem 4.2. 1

J':' > [H0 = J0 (45)
> + H 2 Jo 0 0 I+ H1 2 Jo

then from equation (44) and inequality (45) the statement of the theorem

follows immediately. I l

3. A Measure of the Degree of Sub-Optimality

In theorem 4. 2. 1 a lower bound for the ratio of the optimal to

the homogeneous performance of a system has been given as a function

of the gain the operator G. In this section a lower bound for the

ratio of the optimal to some sub-optimal design will be given. We will

restrict our study to those sub-optimal feedback laws given by

u(t) = -B(t)L(t)x (t) ( 1 )

where L(t) is a positive semidefinite matrix that satisfies a differential

equation of the form

dL(t)
dt +At (t)L(t) + _L(t)A(t) - L(t)B(t)B' (t)L(t) + C' (t)C (t) =D' (t)D(t)

(2)
and L(T) = 0.
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Theorem 4.3. 1: Given a suboptimal feedback law (1) where

L(t) satisfies equation (2) then

1 2 i 01x0 L(t 0 )X-0
J 1 > 2+ I2 ° ° -Lt °(3)
L 1+g l+g L

where JL is the performance associated with the feedback law

(1) and g is the gain of the operator defined by

t

Gw =f D' (t) L(t,cr)B(-)w(r)dr (4)

to

and -L is the transition matrix associated with the matrix

A(t) - B(t)B' (t)L(t)

Proof:

By adding to both sides of equation (2. 3) the matrix

-K(t)B(t)B' (t)L(t) - L(t)B(t)B' (t)K(t)

it is obtained that

dK(t)
d+K(t)[A(t)-B(t)B' (t)L(t)] + [A(t)-B(t)B'(t)L(t)l'K(t)

- K(t)B(t)B' (t)K(t)

= -C(t)C' (t) - K(t)B(t)B' (t)L(t) - L(t)B(t)B' (t)K(t) (5)

Subtracting from both sides of equation (5) the matrix

L(t)B(t)B' (t)L(t) and rearranging terms it follows that

dK(t)
dt + K(t)[A(t)-B(t)B' (t)L(t)] + [A (t)-B(t)B' (t)L(t)] 'K(t)

-[ K(t)-L(t)] B (t)B' (t)[ K(t)-L(t)] =-C(t)C Yt)-L(t)B(t)B' (t)L(t)

(6)
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Now by pre- and post-multiplying the above equation by xObL(t,t o )

and §L(t,to)xo respectively and integrating from t O to T, the fol-

lowing relation is obtained:

T

x 0 K(to)xO + xOI L(t to)[ K(t)-L(t)] B(t)B/ (t)[ K(t)-L(t)] L(t, to)xdt = JL

to
(7)

therefore

T

J* + x L (t to)[ K(t)-L(t)]B(t) B' (t)[ K(t)-L(t)] _ (tx to) dt (8)

to

JL

Since the matrix M(t) = [K(t)-L(t)] satisfies the differential equationt

dM(t)
-d-t +F' (t)M(t) + M(t)F(t) - M(t)B(t)B' (t)M(t) = -D(t)D' (t)

where F(t) = [A(t) - B(t)B' (t)L(t)] (9)

then by using theorem 4. 2. 3 and equation (8) it follows that

jL+ Gj < x_0oL(t,to)D (t)D(t)±L(t,to)xOdt (10)

L 1+ fIG2J
t0

Now the left-hand side of inequality (10) can again be expressed in

terms of JL and x' L(t )x0 . In order to do this consider equation

(2), by adding L(t)B(t)B' (t)L(t) to both sides of the equation it is found

that

dL(t)
dt +[A(t)-B(t)B' (t)L(t)]' L(t)+L(t)[A(t)-B(t)B' (t)L(t)]

...... Continuted on next page

To verify the above statement simply substitute M(t) by [K(t)-L(t)]
and use the differential equations that K(t) and L(t) satisfy.
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= -C (t)C' (t) + D(t)D' (t) - L(t)B(t)B' (t)L(t) (11)

After pre- and post-multiplying the terms of equation (11) by

xo 'L(t,to) and L(t,to)xo respectively and by integrating every

term, it follows that

T

xLx0 = JL I (t, to)D(t)D' (t) L(t, to)x dt
to

By using equation (12) in conjunction with inequality (10) the following

relation is obtained

J - j: < ' G I (13)
L -+II GI 2 (JL-o L(to)X-o)

by dividing both sides of (13) by JL then

,[G±,, 2 (xiL(to)Xo
1 - J < G0 (1 -°-(O

JL - 1+1 G+II 2L

then

+J> 1 +_||G|2 (/ L(t 0 )x 0> 4
JL 1+1I G II 1+1L GI 2 JL

Collorary 4.3. 1

J* 1

JL- 1+11 GII 2

The importance of both collorary 4.3. 1 and theorem 4.3. 1 are

obvious for the following reasons:

a) The lower bound of the ratio J':"/JL is given entirely
as a function of L,

b) The bound given in theorem 4.3. 1 is sharp, that is, there
exist initial conditions for which equality is attained.

c) The bound given in collorary 4. 3. 1 is independent of the
initial conditions, and last
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d) It is possible to give a quantitative measure of the de-
gree of suboptimality of a large class of designs by

J *
evaluation of the lower bound on -.

L

It has been assumed that the optimization interval (i. e., [t o , T])

is finite, and results given so far are based very strongly on the

finiteness of T.

As has been mentioned before, time invariant systems are of

great importance in conjunction with the optimization interval [ O,oo ] .

For this case the optimal feedback control is linear and time invariant

and therefore very attractive from the implementation point of view.

It would be expected that the results given in theorem 4. 3. 1

generalizes for the case in which the system Z1 is time invariant

and T--oo. However, some problems of existence and uniqueness are

introduced that should be taken into account, for example, existence

00

of integrals of the form x eAR R' eA- tx dt is not guaranteed, un-

0

less specific assumptions on the location of the eigenvalues of the

matrix A are made. Also uniques of positive semidefinite solutions

of the algebraic Riccati equation is not guaranteed. In order to over-

come these difficulties several assumptions will be made and some

introductory results will be proved before stating the version of theorem

4. 3. 1 for the case in which T-oo.

The system Z1 under consideration is the system described by

the equations

dx(t )

I1' dt =A x(t) + Bu(t) (14)

y(t) C, x(t) ; x(O) = x (15)
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with the qualification that the system 1 is both completely con-

trollable and completely observable. The cost functional is given by

00

J(u,x 0 ) = {u'(t)u(t) +yt)yt)(t)}dt (16)

0

The matrix L is assumed to be positive semidefinite and there exists

a matrix D such that

A'L+ LA- LBB'L+ C'C = D'D (17)

It will be assumed that the suboptimal feedback law u = -B' Lx

is such that the eigenvalues of (A - B B' L) lie entirely in Re[ s]< O.

The following theorem establishes the positive semidefiniteness

of K- L.

Theorem 4.3.2: If the matrix L satisfies equation (17)

then K-L is positive semidefinite where K is the unique positive

definite solution of the algebraic Riccati equation

A'K+ KA- KBB'K = -CC' (18)

Proof:

After some algebraic manipulation from equations (17) and (18)

the following relation is obtained:

[A- BB'K ]'[ K - L] + [ K - L [A- BB'K]

=- D'D - [K- L] BB'[K - L ] (19)

and since the eigenvalues of [A - BB'K] are in Re[s] < 0 it fol-

lows that K - L is positive semidefinite.

The following theorem guarantees the existence of a unique positive

semidefinite solution of the algebraic Riccati equation.
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Theorem 4.3.3: If the matrix A is stable (all the eigen-

values are in Re(s)< 0) and the pair [A,B] is controllable,

then there exists a unique positive semidefinite solution to the

algebraic equation

AK+ KA - KBB' K = -D'D (20)

(Note here that the usual observability assumption on the pair

[A,D] is absent.)

Proof:

First we will show that if two solutions of (20), say K 1 and K 2

are such that the matrices are [A - B B'K 1 ] and [A'- BB'K2 ] are

stable then K should be identical to K2. So if K and K are
-1 -2' -1 -2

solutions of (20) then

AK + K A - K BB'K = -DD'
1 -1- -1-- - --

A'K + K A- KBB'KK -DD'
-- 2 -2- -2---2 --

by subtracting the two equations and rearranging terms it is obtained

that

[A-B B'K 2] [K1 -K 2] + [K-K 2 ][A - BB'K1 ] = O

However the equation AX+ X'B = 0 has a unique solution X 0 if

G-2
A and -Bt do not have common eigenvalues, then it can be concluded

that

K1 -K2

By using the result obtained by Wonham (Theorem 4. 1 of Ref. W-2)

that if any positive semidefinite solution of (20), say P, with A stable

and [A,B] controllable, has the property that the matrix A-BB'P is

stable. Then by the first part of the theorem it follows that equation

(20) has a unique positive semidefinite solution.
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For the system under consideration with the assumption that the

matrix A is stable, both lemma 4. 2. 2 and theorem 4. 2. 2 still hold.

The proofs for the time invariant case and T -oo are identical to the

ones presented in the previous section, and will be omitted. By as-

suming stability of A the existence of the terms in equations (2. 9)

and (2. 22) are assured. Theorem 2. 3 also holds for the time invariant

case under the assumption that the matrix F is stable and the pair

[F, B] is controllable. With the above observation we can state the

following theorem:

Theorem 4.3.4: Given a suboptimal control law

u (t) = -B'Lx(t) (21)

with L positive semidefinite, satisfying the algebraic equation

(17) and (A- BB'L) stable, then

1 ; -2 x'Lx
>!- 1 + 9 0 L(22)

JL l+g 2 + L

where g is the gain of the operatort

t

Gw = D' e(A BB L)(t)Bw()d (23)

0

It is not difficult to verify that the gain of the operator G is given by

v1 -I
2 2 =supsupv'D' (-Ijw_-A+ BB' L) BB' (+Ij-A +BB' L) Dv

g | Gl 2= sup sup
LC v V' v

where v is the complex conjugate of v.
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Proof:

Proceed as in theorem 4. 3. 1. The equation (27) becomes

00

' + (A-B B' [ K- ] B B [ K-L] e (A-B B' L)tdt
x0 K0 0 e JLB- e xJdt JL

0

(24)

By virtue of the fact that feedback does not destroy controllability,

theorem 4. 3. 2 and theorem 4. 3. 3, guarantee that the matrix M is the

unique positive semidefinite solution of the algebraic equation

[ A-BB'L]' M+ M[ A - BB'L] - MBB'M = -DD' (25)

then by theorem 4. 2.3

00

L (A fB BB L ) tDD, e _(A L ) dt (26)
1+ GII 2 0

0

By using the fact that the eigenvalues of (A-BB' L) are in the left-

half plane then

00

x-Lx : JL x'0e (A - BB'L)'t (A-BB d (27)
-LO -o L . _ A )t0

0

therefore from equations (26) and (27) the claim of the theorem follows. 

4. Frequency Domain Interpretation

One of the advantages of treating some problems in the frequency

domain is that a great deal of insight is gained and new interpretation

of results can be found that otherwise, in the time domain, would be

very difficult to give. Above all, the most important advantages of the

frequency domain analysis is that fundamental properties, such as the

input output relations, are coordinate free (i. e., they do not depend

upon the particular choice of the state variables).
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Consider the algebraic equation that the matrix L satisfies (i. e.,

4.3. 17), then, by adding and subtracting L's to the left-hand side and

rearranging terms it follows that

(-sI -A+BB' L)' L+ L(Is - A+ B B' L) = CC' -DD' + LB B' L

(1)

Defining now

L = (Is - A+ B B' L) (2)

then, by pre- and post-multiplying the terms of equation (1) by

B't' (-s) and 4L(s)B respectively, it follows that
--L -L -

B' LDL (s)] + B'%'I(-s)LB

(3)

=B'' (-s)CC )B - B'' (-s)DD' BL+ B' 'L(-s)LBB' L (-s)B
-_ _L , -- -- _Ls - -'LL L

By calling !KL = LB (the suboptimal feedback gain matrix) then

B' ('' (-s)DD' P (+s)B-L --- L

=B' ' (-s)CC'_ L(s)B + [ I-B' IL(-S)KL] [ I- KLL(S)B] (4)
L

It should be noted that G(s)=D'I L(s)B is the Laplace transform

associated with the convolution operator G of equation (3. 23). Simi-

larly HK(s) =C'9L(s)B is the transfer function of the close loop

system with the feedback law u = -K'Lx then equation (4) takes the

simple form

G'(-s)G(s) = HK(-s)HK(s) + [I-B' L(-s)KLl [ I-K L(s)B -

(5)

by replacing s=jw then

G' ( -jw)G(w)=H (-jw)HK(jw)+[ I-B 'L( -jw)L [I-K (jw)B] (6)
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From equation (5) it follows that if the matrix L satisfies an

equation of the form of (3.17) implies (and is implied by) the conditiont

()I+ I -iL(J')P I_> 0 (7)

Note that only under optimality of the feedback law the equality holds,

and in that case inequality (7) becomes the main result of Kalman.K

In order to interpret inequality (3.3) in its simplest form assume

that the system Z1 is a system with a scalar transfer function, then

B, K L and C become vectors and will be denoted by b, k and c

respectively. Under these circumstances equation (5) becomes

I| (jw) Ih k(jw) t+ I1 l- k L (jw)b I1 (8)

Now, since G(jw) is exactly the operator G of theorem 4.3.4 in the

frequency domain,+ then in order to find a bound for the suboptimal

control law it is necessary to have

Ihk(jw) l + Il-kgLLg(jo)b > 1 (9)

and if

A = sup { Ihk(jw) IZ + I 1 -kgL(jw)b ! 2 (10)

then

J*> 1
J - A

Notice that l-k.i P(jc)b in "classical control" language is nothing else

but the inverse of the "return difference" of the feedback law -k.iH-2

t I ldenotes A A where A is the adjoint (complex conjugate trans-
pose) of A.

5+~~~~~~~~~ ~~~(A-bk' )t
G(jw) is the Fourier transform of the L 1 function D'e L b



-79-

If the return difference is denoted by Tk(jw) the conditions for opti-

mality become s simply

Ihk(jw )
2 + (11)

!Tk(jw) 2I

which says that the square of the magnitude of transfer function plus

the inverse square of the return difference should be unity for all fre-

quencies. The theorem of Kalman K which states that a feedback law

is optimal with respect to some quadratic cost functional if and only if

ITk(jw) > 1, follows immediately from the relation (11). In addition,

we obtain the condition that the gain of the closed loop transfer function

should be less than unity. Going back to our problem of suboptimality

of given feedback law, in order to be able to apply our criterion of

suboptimality we require that

thk(jw) [2 + > (12)
' ITk(JoW) [2

then

J* 1
J* > 1 (13)
L - sup { |hk(j ) |2 + 1

co [IT Tk I }

The importance of the above result stems from its simplicity since

once a feedback law is given then condition (12) is easily checked and the

left-hand side of (13) is not difficult to compute, it is possible to give a

quick measure of the degree of suboptimality of a given feedback law.

5. Applications

Suboptimal design with restricted feedback structure. One realistic

assumption from the practical point of view is that not all the state

variables of a system to be optimized can be measured directly.
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Another restriction from the implementation point of view is that the

feedback structure is restricted by the available instrumentation. With

these constraints in mind the following example illustrates an appli-

cation of some of the inequalities presented in this chapter.

Problem:

Given a system described by the equations (see Fig. 7)

d 2 t dx(t)
z x(t) dt + 3x(t) = u(t)

dt dt

y(t) dx(t) + x(t)
dt

s 2 -s+3

.a

Fig. 7 System to be Optimized

dx
the restriction is that u(t) = -a - and the cost functional

J f I{u2(t) + y 2 (t)}dt

0

The problem is to determine a value of a such that the performance of

the system is "close" to the optimal performance (if all the states were

measurable and the structure of the feedback were not restricted).

Solution:

The closed loop transfer function of the system with a feedback of the

form u(t) = -a dcL ) is given by
dt

s+l
h(s) 2

s +(a-1) s+3
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and the return difference is given by

s + (a-l)s+l
a 2

s - s + 3

In order to have stability of the feedback system it is necessary

to restrict a to be larger than unity. On the other hand, to satisfy

condition (4. 12) it is necessary to have

(-W2+ 3 )2 + 202 + 1 >1

(-w +3) 2 + (a-12) 2 

which implies that a < 42 + 1, therefore

1 <a < 'T2 + 1

If a is chosen to be N/2 + 1, then A (as given by equation 4. 10) is

5
4

J* 4therefore
J 5
s

In Fig. 8 a lower bound for the ratio of is displayed as a
s

function of a, for the allowable range of a.

9.

15I p I I na

1,5 2 ~+ 1 .a.5

Fig. 8 Region where the Performance Ratio should
lie as a function of the parameter a
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However, the above lower bound is quite conservative since it is

based on collorary 4. 1. A sharper result is obtained if full advantage

of the lower bound derived in theorem 4.4 is taken, that is, when the
2 xLx

term 2J 2 is included. Of course more computations are
l+g L

needed but still they are quite simple.

Let us assume, based on the graph of Fig. 8, that it has been de-

cided to make

u(t) = -(N. + 1) dxdt

We will compute the corresponding L matrix and the cost functional

JL' The matrix L should be positive definite and satisfy the equation

A'L+ LA - L BB'L+ CC' = IYD

In our case

r011 0 1
A = ; B'L = 

3- 1 ·P+ 

then the value obtained for L is given by

6.23 0

L0 2.41

In order to obtain JL ( = x4Q-x) it is necessary to solve the linear

equation

(_A- BB'L)Q+ Q(A- BB'L) = -CC' - L BB'L

the corresponding value of the matrix Q is

6.83 1661

.166 2.53 
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therefore

xiLx 2
-O - 0_ 6.233 + 2.41

JL 6.8313 + 0.33p + 2.53

1 (0)
where 13 =

xz(O)

then a lower bound for the performance of the feedback

u(t) = -(2 + 1) dx(t) is given bydt s given by

> 0.8 + 0.2 6.23(' + 2.41
L - 6.8313 + 0.331 + 2.53

In Fig. 9, a graph of the lower bound on the performance ratio versus

the ratio of the initial position to the initial velocity is given. The re-

sult is quite impressive since the minimum of that lower bound occurs in

the neighborhood of P=1 and its value is larger than .977, therefore

J- > .977

then, no matter what type of feedback is used (even by allowing the feed-

back of x(t)) the performance cannot be improved by more than two

percent ! The optimal feedback solution, as computed by digital com-

puter was obtained to be

u(t) = -. 158 x(t) - 2.521 dx(t)

However, when simulation was made for the worst initial condition,

that is, x(0) = 1 and dt = 1 it was difficult to distinguish between

the optimal and suboptimal trajectories (see Figs. 10a and 10t.
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Fig. 9 Lower bound on the suboptimal performance as
a function of the ratio of the initial position to
the initial velocity.
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Suboptimal Design of Weakly-Coupled Systems

The objective of this application is to demonstrate that by the use

of the bounds derived in the present chapter it is possible to find sub-

optimal controls for large systems, composed of two (or more)

weakly coupled systems, with a guaranteed performance ratio, by

finding the optimal feedback controls of the individual systems that

make up the large system. In order to present the above idea in a

more precise context consider, for simplicity, that the large system

is composed of only two weakly coupled systems.

Assume that a system, denoted by S 1 is given by

= A X1 + B UI'

so = C x1

and a system S2 given by

x2 = -A2 x2 + BZU-2

-2 = C-2 x2

and the large scale system SL given by

x1 Al 1A: [] 1 0 l1

,xL2 ; iA21 A"2 2I o!2

Y: C1 -[ CO1 0 1_

The SL is said to be weakly coupled if the matrices A12 and A

are in some sense "small" relative to the matrices A and A=1 +

Intuitively it would be expected that the optimal feedback law that mini-

mizes the cost functional
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00

J= |{u1 + u2-2 + lyl + z 2 }dt
0

will be "close" to the decoupled feedback law generated when the

systems S 1 and S 2 are assumed to be decoupled (i.e., when _A12

and A21 are identically zero).

With the aid of the results presented in this chapter it is possible

to give a qualitative measure of the degree of suboptimality when the

above approximation is made.

In order to be able to apply the results derived in Section 4

certain preliminary considerations are in order.

Assume that _K1 and _K2 are respectively the unique positive

definite solutions of the equations

Al K + KA - K B B' K -C C (1)-1-1 -1-1 -1-1-1-1 -1-1

AK2 + K -A KB BK = -C2C2z (2)

the matrix

_ K

does not necessarily satisfy the condition imposed by equation 4.3. 17,

that is the matrix

A' Al 1 2 
1 E~LZ 121 L 1 1i 4 '

M A | L+ L 21 -
AI2V 2 1 20 0 0

+ -L L +

_z A 11i2+KAl_21

K2A2 ,+Al KI 0
L 1 1 
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is not always positive semidefinite. However if we consider instead

(1 -eKl 

_L(E, 5) =

then

ClC+(1 -E)KiB B iK (1-6)A K2+(1-E)_KA12

(1-6)K2A 2 +( 1 -E)A 2 KK 6C 2 C+6(l-6)K 2 B 2 B K2

can be made positive semidefinite if 6 and e are made sufficiently

large (O< e < 1 , 0 < 6 < 1). It should be kept in mind that for our

criterion of suboptimality to be applicable it is required to have the

suboptimal closed loop system stable.

If M(E, 6) is positive semidefinite then

J > 1

JL l+g

where g is the appropriate gain defined by equation (3.23).

In order to demonstrate the procedure in detail consider the fol-

lowing specific system:

x I 0 1 0 0 .05 0 x0 0 

X 2 0 0 1 0 0 0 X2 0 0

d x -1 -2 -3 0 1 0 X31 0 u l

dt
X4 ° ° ° 1 ° X4 ° °j

X5 °00 0 0 0 1 X5 E 
x6 . LO 0 0 -2 1 -2 x 6 O 1

y. = xc

and the cost functional
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00 2 6

=f {ZE u + yE } dt
O i=l i=l

If we consider the two systems

S1xl 0 1 0- x 0 x

d x 2 _ 0 1 x 2 + 0 u ; y 1 x2__ = [:5 HO1 O1 O1 i 2] [+ [1 u;

dt [ [°H]][] -2 -1.83 x 41

K1 -1.83 3.81 .96

S 2 · x 2 .41 .96 .450 x
dt x5-

.921 4.2 .246 6 -2 x6

.,24 4.22 1.67guarantee that the positive definite solutions of equations (1) and (2) are re-

speictively

For our1.83 3.81 .96

L41 .96 .45

Kz2 4.20 1.36 4.22

.24 4. 22 1.67

At this point it is necessary to pick the values of c and 6 in order to

guarantee that the matrix M is positive semidefinite. One way of

doing so is to chose c and 6 large enough as to make the matrix M

diagonal dominant, that is that for every row the diagonal element is

larger in magnitude than the sum of the absolute value of the off

diagonal elements of that row. By Gersagorin theorem all the

eigenvalues of M will be positive. By this method the tedious task

of determining the nonnegativity (Sylvester test) of M will be avoided.

However on the other hand the degree of suboptimality will be increased.

For our particular example the values of the parameters 6 and c
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chosen are .01 and .1 respectively. For these values of E and 6

the corresponding M matrix is

.115 .035 .016 0 .060 0

M= .035 .185 .038 0 -0 .04 0

.016 .038 .118 0 -. 021 0

0 0 0 .011 .010 .040

.060 -. 040 -. 021 .010 .188 .070

0 0 0 .04 .070 .028

which is indeed positive definite. The closed loop system with the

suboptimal feedback corresponding to the values of e and 6 becomes

x 1 0 1 0 0 .05 0 x1

d
dt~ Ix2 = 0 0 1 0 0 0 X

X3 -1.38 -2.86 -3.40 0 -. 1 0 x3

x 4 0 0 0 0 i 0 X4

X5 0 0 0 0 0 1 x5

x 6 0 0 0 -2.24 -3.22 -3.67 x

and the suboptimal feedback law is

u1g [38 .86 -. 40 0 0 0

:Lu 3 0 0 .24 4.22 1.6 61

In order to have a measure of the degree of suboptimality of the given control

law it is necessary to compute the gain of the operator G defined by

(4.23). After some algebraic manipulations the following relation is

obtaine d:

.115-. 153s2 + .118s4 .06s - .04s 2 + .021s 3

Pl(S)Pl(S) Pl ( - S ) p 2 (+S )

G(s)G(-s) =
2 3 2 4

-.06s + .04s 2 - .021s - .011 -. 108s + .0 2 8s

.Pl ($)P2 (- S) P2(s)p 2(-s)

where pl(s) = (s 3 + 3.40s 2 + 2.86s + 1.38)
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and p 2 (s) = (s + 3.67s + 3.22s + 2.24)

the value of hIGI12 is .092

therefore > = 91
J 1.092 = 29

then, the suboptimal feedback law has a guaranteed performance ratio

of . 91. However as it was demonstrated vividly in the previous ex-

ample this lower bound is quite conservative since the term due to the

initial conditions has been ignored.



CHAPTER V

CONCLUSIONS

The research presented in the first part of this thesis was moti-

vated by the lack of systematic methods in finding optimal feedback

control laws for systems with nonlinear dynamics and quadratic cost

functionals. The contribution of the present work to the field of opti-

mal control has been the study of the possibility of being able to give

upper bounds to the optimal performance of a nonlinear system by

computing the optimal performance of a linear system.' One of the

methods used was to derive the optimal feedback law of a linearized

version of the nonlinear system and apply that control law to the non-

linear system. However this method had the disadvantage that in

order to apply it, it is necessary to determine the closed loop sta-

bility characteristic of the nonlinear system with linear feedback. In

order to overcome this difficulty a second method was investigated--

namely, use of a nonlinear feedback control law such that the tra-

jectories thus generated coincide with the optimal trajectories of a

linear system, known a priori to be stable. In the development of this

second method extensive use was made of the known results of the

problem of determining when the product of two operators is a positive

operator, thus bringing results already widely used in stability theory

to the area of optimal control. Specific conditions were given under

which the second method can be applied.

The second part of the research dealt with the problem of obtaining

lower bounds on the performance of linear systems with quadratic cost

-92 -
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functionals. An attainable lower bound was derived in terms of a

suboptimal performance, thus obtaining, a qualitative measure of the

degree of suboptimality of a given design. The lower bound was given

in terms of a measure of the deviation of a given control law from

satisfying a certain optimality condition (the Riccati equation). Two

numerical examples were presented in order to illustrate the usefulness

of the derived lower bound in the design of suboptimal systems, when,

either it is desired to avoid a large number of computations or, due to

practical limitations, there exists a structural constraint on the class

of allowable feedback controls. The main contribution -of the second

part of this research has been the derivation of a simple measure of

the degree in which a given suboptimal design can be improved. This

measure is specified entirely in terms of the given design hence avoiding

the need for computation of the optimal performance.



APPENDIX A

POSITIVE REAL FUNCTIONS

Definition 1A K - 2 A function f of a complex variable

s - f(s) - is said to be positive real (p. r. in short) if

Re[f(s)] > 0

throughout the region

Re[s] > 0

of the complex s-plane where f(s) is defined andt

f(s) = f(s) for all complex s.

W-l
Theorem 1A [Weinberg and Slepian]

If f(s) is a rational function of s - f(s) = (s) - where

q(s) and p(s) do not have common factors, then a necessary

and sufficient condition for f(s) to be positive real is that

a) Re lpj 0)J>) for all real w

b) q(s) + p(s) has all its zeros in Re[s] < 0

Proof: Necessity

Assume that f(s) is positive real, then (a) follows immediately

from the definition of positive realness

If q(s 0 ) + p(s 0 ) = 0 then

q(sO )
= -1

p(s 0)

ta indicates the complex conjugate of a.

-94-
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therefore

q(s 0 )
Re ( 0) =-1 < 0

p(s 0 < 0

but since f(s) is positive real it follows that Re[s 0 ] < 0

Sufficiency Define

1 - q(s)
w(s) p(s) = p(s)-q(s)

w+ g(s) p(s)+q(s)
p(s)

then

Re[(s)] > 0 if and only if Iw(s)l < 0

Apply now the maximum modulus theorem R - 1 to the restriction

w(s) to the closure of the right-half plane and use the fact that w(s) is

analytic in Re[s] > 0 and Re[f(jc)] > 0 in order to conclude that

Iw(s)j < 1 for Re[s] > 0, then Re[(s)l > 0 for Re[s] > 0
Lp(s)J

Theorem 2A (on integral properties of p. r. functions)

o

p(D)x(t)q(D)x(t)dt < 0 for all x(t) C04n[,o )
0

if and only if- q(-s) is p. r.
q(-s)

Proof: Sufficiency

00

f p(D)x(t)q(D)x(t)dt = {p(D)x(t)q(D)x(t) + [(Ev[pq]-(D)x(t)J 2 }dt
0 0

{(Ev[pq])(D)x(t) } 2 dt
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The second integral is negative. The first integral is independent of

B-1
path and (depends only on x(O) and lim x(t)) but since

t - oo

x(t) c8O6n[ 0, o ) then

lim x(t) = Q
t- o

therefore we can write

F[x(O)] = f {p(D)x(t)q(D)x(t) + [(Ev[pq]) (D)x(t)]}dt
0

t[O] {p(D)z(t)q(D) z(t) + [(Ev[pq])-iD)z (t)]2}dt

t[ x(O)]

where

~'t(x(O))] = x(O) and _[t(O)] = O.

Changing now t by -t, it is obtained that

- t(O)

F[x(O)] = {p(-D)z(-t)q(-D)z(-t)] - [(Ev[pq])+(+D)z (-t)J2 }dt

-t[x(O)]

Choose a z(t) such that

p(-D)z(-t) - q(-D)z(-t) = 0

with z{t[x(0)]} = x(O). But since - q is p. r. t(O) = O then

-t(O)

F[x(O)] = - {-[p(-D)z(-t)] 2 - [(Ev[pq])+(D)z(-t)]}dt

-t[x( O)]

which is certainly nonpositive.
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Necessity: This is more complicated. Here we want to show

that if - ( - s) is not p. r. then
q(-s)

I p(D)x(t)q(D)x(t)dt > 0 for some x(t)aEO[ 0, oo)

0

If - q(-s) is not p. r. then, either
p(-s)

a) there exists an so with positive real part such that

q(-s0 ) - p(-sO) = O (1)

and

ReP q- () > 0 for all real w, or (2)

b) Re[- qp(_j0) < 0 for some realo (3)

Consider the first case. Define

-s t -s t
x 0 (t) = a 0 e 0 +a e ° n[0' 0o)

then

o00

a[xo(t)l = p(D)x 0 (t)q(D)xO(t)dt

-S t s 0 -;t 0 , -s 0 t
[p(-s 0)a 0e + p(-sO)ae [q(-s)ae

0

-s t

+ q(-s 0 )a 0 e ]dt
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but by virtue of (1)

a[x 0 (t)] = p(-sO)aOe + p( S0 )a 0 e ] dt> O
0o

Consider now the second case. Inequality (3) can be written as

q(-jo)P(jwoo) + p(-jco)q(jwO) > 0

observe that by continuity in w it follows that there exists an E > 0

such that

q( -joo- 0O)p(+joo-a O) + p(-jc-O- 0 )q(joo-or 0 ) > 0

for all I ol < E

-cr t -jWcot jcot] on[
take now x(t)= e [e + e I O6n0,o) if > 0

then

r[x(t)] = f p(D)x(t)q(D)x(t)dt

0

co

= J e [p(-jco-o-0 )e + P(jwO 0-r)e ]q(-joO-O)e

0

+ q(joo0 -o)e ]dt

= J {e_ 0 t[ P (-jwo - r0 o)q(-jwio-) 0 )e + p(jwo-- 0o)q(jo-o- 0 )e 
0

-2aO t

+ [p(-jwO--o)q(jwo-O-) + q(-joo-To)p(jcO-o)je 0 }dt
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After performing the integration it is obtained that

a[x(t)] = Re [ jo- , o] + Re

the term on the right is positive. Choose or0 small enough such that

rP(jCo0 -To 0 )q(jjoo- 0) p)q(-jo- 0 )1
Re -2(-jo-o) < Rel 2

therefore arx(t)] > O.



APPENDIX B

Lemma lB Given any monic real polynomial p(s) of

order n (n>2) and any complex number so with Re[sO] / 0

then there exists another real polynomial h(s) of order less

than n such that

p(So)P(-So) + h(so)h(-so) = 0

Furthermore there exist a polynomial h of second order that

satisfies the above equality.

Proof: i) Assume that so is real. Then we will show that for any

real number x there exist real numbers a and b such that:

x = (as +b)(-aso+b) = -a 2 s +b 2 (1)

Simply choose a such that

a > 2 (2)
s o

For that choice of a, b is guaranteed to be real.

ii) The proof when so is complex [Im(s0 ) 0] is more

involved. We will show that for any complex number x + jyt then

exists real constants a, b and c such that

(as 2+bs +c)(as0 2-bs +c) = x + iy (3)

or

2 222
(as 0 +c) -b s = x + iy (4)
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then in order to satisfy equation (4) for any so, given that sO = To+jcO

it is necessary to have

22 2 2+ (ac-b2)d0+c2
a ( + (ac-b2)r 0 + = x (5)

2a2 w0 aO' + (2ac-b2)co = y (6)

Substituting (6) into (5) it follows that

2 -x + Y/ +c 2
a (7)2 2

TO +W0 0

therefore if c is chosen such that

c > - x + Y/Wo (8)

a will be real.

The problem now is to determine if it is possible to choose b real

and satisfy (6). The expression for b2 as a function c is given by

1/2
2 (-x + Y/o + ) ( -x + Y/0o + c c-Y

2O +c o d + 2 

If c -t co then b approaches asymptotically to

0 0 0 0

however

2
dO0~ 1

2 2 + / IT2 2 > 0 for all dO, then
T O +o / rO +o0o

b2 - positive number, therefore for c large enough both a and b

will be real.
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