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Abstract

A hybrid analytical-numerical method combining the Galerkin boundary inte-
gral and wavenumber integration technique is presented for two-dimensional acous-
tic propagation in a laterally inhomogeneous, vertically stratified medium.

The range dependent ocean is first divided into range independent sectors and
the field within each sector is expressed by a boundary integral over the vertical sec-
tor boundaries in terms of a set of unkaown boundary displacements. The proper
choice of a set of distribution functions (in this case, Legendre polynomials) for
these boundary displacements leads to an efficient evaluation of the kernel of the
boundary integral by means of wavenumber integration/global matrix approach, as
implemented in the SAFARI code. This leads to a matrix relation between the
displacement and stress amplitudes along the vertical boundariez, similar to the
stiffness matrix of finite element method. Once solved for the displacement ampli-
tudes at the sector boundaries using a Galerkin approach, the boundary integral
formulation directly yields the total field within each sector including both the
forward propagating and back reverberated fields.

Illustrative numerical examp’ s of canonical problems are given to explore the
feasibility and efficiency of the pr jposed hybrid method for solving step-wise varying
range dependent ocean acoustic propagation problems. It is demonstrated that the
present method yields reliable results and forms another class of solution methods
for range dependent acoustic propagation problems.

Thesis supervisor : Prof. Henrik Schmidt
Associate Professor of Occan Engineering
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Glossary

superscripts : * - source solution
“~ — homogeneous source solution
~ displacement gource solution
- — homogeneous displacement source solution

a

Ax(s) : amplitude of up- and down-going homogeneous compressicnal solution
in layer n due to real source

A,‘f’u(s) : amplitude of up- and down-going homogeneous compressional solution
in layer n due to displacement source of order k in layer {

BX(s) : amplitude of up- and down-going homogeneous shear solution in layer n
due to real source

BX,(s) : amplitude of up- and down-going homogeneous shear solution in layer
n due to displacement source of order & in layer /

C : medium sound speed

C,’:,,,(s) : amplitude of up- and down-going homogeneous compressional solution
in layer n due to shear source of order k in layer !

D,f.,,,(s) : amplitude of up- and down-going homogeneous compressional solution
in layer n due to shear source of order k in layer {

G(z,2) : total solution or Green’s function
h : medium compressional wavenumber
Jm(-) : spherical Bessel function of order m
k : medium shear wavenumber

l : layer depth

M : totai order of basis function expansion
N : total number of layers

P : pressure
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Pn(-) : Legendre polynomial of order m

r : horizontal range in cylindrical coordinates

8 : horizontal wavenumber

Sam(0) : shear source strength of order m in layer n
v : horizontal displacement

Unin (0) : displacement source strength of order m in layer n
w : vertical displacement

w; : Gauss-Tchebycheff quadrature weight

W; : Gauss-Legendre quadrature weight

z; : Gauss-Legendre quadrature point

z, : source range

X : valid maximum range when using FFT for wavenumber integral

‘-N

: horizontal length of jth sector super-element
y; : Gauss-Tchebycheff quadrature point
z, : receiver depth

z, : source depth

fa : compressional vertical wavenumber(i1/s? — h?) in horizontal wavenumber
integral representation

8 : shear vertical wavenumber(sv/3* — k?) in horizontal wavenumber integral

representation

{7y : compressional horizontal wavenumber(iy/n? — k%) in vertical wavenumber
integral representation

6 : shear horizontal wavenumber(fy/n? — k%) in vertical wavenumber integral
representation

6ym : Kroenecker delta
6(-) : generalized Dirac delta function

A : representation of small increment
11



€ : imaginary axis offset of complex contour integration
¢m : parameter defined as (—1)™"!

n : vertical wavenumber

k : condition number of a matrix

A : medium wavelength

A, ¢ : Lam? constants

p : density of the medium

0. : normal stress in z-direction at vertical interface
o,, : normal stress in z-direction at horizontal interface
0., : shear stress in z-direction at horizontal interface
¢ : compressional wave displacement potential

¢ : shear wave displacement potential

w : circular frequency of monochromatic source
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Chapter 1

Introduction

The propagation of sound waves in the ocean is often considered to be range inde-
pendent, where the sound propagation speed and density of the medium do not vary
along the horizontal propagation path. Because the lateral inhomogeneity is usually
weaker than the vertical inhomogeneity in the ocean,this generally is 2 very good
approximation in many cases and greatly simplifies the theory [7] [59]. However,
there are instances where range dependence is encountered in such forms as changes
in the medium itself or the changes in the boundary such as bathymetric changes.
In such cases, the approximation of a range independent ocean is no longer valid.

Some examples include:

1. acoustic wave propagation across frontal zones in the ocean, such as Gulf

currents, marginal ice zone, etc.;

2. long range propagation over thousands of kilometers, especially in the merid-

ional direction;

3. sound propagation in a coastal wedge, or in deep water along & bottom

seamount, where bottom depth variation is significant; and

4. other inhomogeneities arising in the ocean environment including anomalies of

geological features, such as large amounts of trapped bubbles near the surface,

13



a sub-bottom salt dome, ice edge, etc.

Any of the above situations have significant effects on the propagating and revex-
berated sound fields and should be modeled to adequately incorporate such range
dependent phenomena as facet reverberation, mode coupling, compressional-shear
wave conversion, etc., and ensure that the model correctly replicates the actual
physics of sound propagation. Presently, four numerical solution techniques are

well established to treat range dependent phenomena:

e adiabatic or coupled mode methods
e ray methods
¢ parabolic equation methods

o finite difference/finite element methods.

The Green’s function methods employing direct wavenumber integration(WI)
has emerged as one of the most accurate and versatile techniques in wave propa-
gation problems with the advent of digital computing and development of highly
efficient computer codes such as SAFARI [43]. The wavenumber integration method
is often referred to as a fast-field program(FFP) technique [15] in the underwater
acoustics community and as the discrete wavenumber method [4] [5] in seismol-
ogy. These terms, FFP and discrete wavenumber, are used to represent the way of
evaluating the inverse transformation following the solution of the depth separated
ordinary differential equation, which is obtained from the spatial transform of the
original partial differential equation governing range independent wave propagation
in the frequency domain. There are several ways to evaluate the integral of which
the fast Fourier transform(FFT) is preferred in underwater acoustics. But since
other ways of directly integrating the inverse transform are also being employed,
these solution techniques may be generally categorized as wavenumber integration
methods. WI methods have not been applied to range dependent problems in un-

derwater acoustic area until very recently. Thus, using a concept similar to the
14
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Figure 1.1: Schematic drawing of typical discretely varying range dependent ocean
environment solvable by the proposed hybrid scheme.

parabolic equation method, Gilbert et al. [23] generalized the Green's function
wavenumber integration method for exactly solving the one-way wave equation in
an environment that varies discretely in range.

The boundary integral equation method 18 an alternative formulation of inho-
mogeneous media wave propagation problems. As will be detailed in Chapter 2, the
boundary integral equation(BIE) method has been extensively applied to scattering
problems involving inhomogeneities of limited size in otherwise homogeneous media.
Due to discretization limits or limits imposed by the computer, these methods are
not applicable to globally range dependent problems concerning range dependence

over a long distance.

It is in this coutext that a new hybrid solution techinique combining the wavenum-
ber integration method and boundary integral equation is eought for wave propaga-

tion in an ocean environment that varies discretely in range as shown schematically

16



in Fig. 1.1. This new technique is capable of modeling both short and long range
propagation and reverberation for muiti-layers, discretely varying media, multiple
sources and rectangular scatterers. Furthermore it is possible to extend this method
to treat elastic media, enabling physical interpretation of the coupling between the
elastic and the acoustic waves in a range dependent ocean environment which is
essential in understanding such problems as noise propagation in an ice-keel laden
arctic environment, and also the shallow-water/bottom interaction phenomena in a

range dependent ocean environment.

1.1 Background

There exist a variety of techniques to model and solve range dependent acoustic
propagation, each with some limitations in terms of applicability. Presently, four
methods of solution techniques are well established to treat range dependent phe-
nomena. For general description of the following methods, refer to Jensen et al. [29)
and the special issue of the Journal of the Acoustical Socscty of America, describ-
ing benchmark colutions for two range dependent problems involving: (1) a sloping
bottom problem and (2), in a parallel waveguide with continuous sound speed vari-

ations [10][18]{28][53][56]{57][60]. The four methods are summarized below.

e Adiabatic and Coupled mode theories: based on the local modal expansion
method for homogeneously approximated segments which are matched at the
boundaries using the continuity conditions, adiabatic and coupled mode meth-
ods are applicable to weakly and strongly range dependent problems, respec-~
tively. Coupled mode theory [16] accounts for the exchange of the energy
between the modes but are not amenable to efficient numerical treatment.
Simplifying the numerical complexity of coupled mode, the adiabetic theory
ignores the cross coupling between modes [41] as an approximation to model
weakly range dependent problems. Ignoring the back-scattered waves, one-

way propagating coupled mode is used for numerical simplicity. Based on
16



the normal mode formulation, extensions to deal with the elastic media have
been made in seismology [31]. Their application is limited to SH-wave(shear
horizontal wave) propagation in a simple model due to the complexity in nu-

merically implementing the theory to a general environmental model.

Parabolic equation(PE) method: this method reduce: the elliptic, Helmholtz
equation to a parabolic equation by means of a small angle (paraxial) approxi-
mation. A further approximation of neglecting the back-scattered component
leads to a one-way initial value problem in range which can be solved by
a marching solution technique. The conventional small angle PE valid for
grazing angles within 10-20° off the horizontal is soived by a split-step Fourier
technique [55] whereas various wide angle PE’s valid for greater angles are usu-
ally solved by a finite difference scheme [39]. Neglecting the back-scattered
component gives rise to energy conservation problems and because of the
approximations made in PE method, it is only applicable to weakly range de-
pendent problems. The question of propagaticn in elastic media is a current

research topic, but in any case the PE is limited to weak range dependence.

Ray theory: this method is based on the conservation of energy principle and
geometrical optics, and can deal with an arbitrary environment but is essen-
tially a high frequency approximation requiring the wavelength to be much
smalier than the relative gradient of the ¢ ound velocity with singularities such
as caustics, shadow zones and head waves (which need special treatment [9]).
In dealing with the elastic media, the splitting of a ray into the compressicnal
and shear waves for every bounce at the interface of two diiferent medis com-

plicates the problem to a great extent.

Finite difference(FD) and finite element methods(FEM): these methods have
recently become very popular with the availability of large computing power.
FD and FEM can in principle solve range dependent elastic problems, but in

reality, due to the discretization problem, they are restricted to local prop-
17



agation within a few wavelengths or water depths in range. The interval of
discretized grid must be less than one-tenth of the wavelength to avoid what
is known as the ‘grid-dispersion’ [2]. Since the discretization is limited to a
finite region, the radiation condition can only be satisfied approximately by

12placing the outer boundary with an ahsorbing boundary.

These four methods cannot effectively model and give full solution to the dis-
cretely varying range dependent seismo-acoustic propagation for both short and
long ranges. In order to treat these oc:an environment scenarios, 2 new solution
technique combining the spectral wavenwnber integration method for range inde-

pendent seismic propagation and the boundary integral method is presented.

1.2 Approach

The approach in this thesis, firet dividea the model environment into a convenient
geometrical form. Mathematics are then introduced to both solve the wavefield
in each geometrical sector and to provide sector-to-sector continuity. As shown in
Fig. 1.2, we divide the range dependent ocean into scgments of range independent
seciors separated by vertical boundaries (or vertical cuts), where each sector is
allowed to be horizontally stratified. Then we express the solution within each sector
in terms of a set of arbitrary basis functions and finally solve for the amplitudes
of these basis functions by satisfying the boundary conditions at the boundaries
between the gectors. This basic idea of discretization into homogeneous sectors and
matching at the boundaries is similar to the coupled mode approach but the details
are significantly different. In the coupled mode approach, the solution within each
homogeneously approximated sector is constructed using standard normal modes,
allowing numerical implementation for coupling between sectors in the fluid part
of the waveguide only. Here, a wavenumber integration method combined with a

boundary integral approach is applied, allowing for any sequence of fluid and solid

18
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Figure 1.2: Schematic drawing of typical discretely varying range dependent ocean
environment which is modeled as range independent sectors.

layers within each sector.

Within each sector, the field can be expressed as a boundary integral with the
kernel being the depth dependent Green’s function. By properly choosing a set of
distribution functions for the field along the vertical cuts, the wavenumber integral-
global matrix solution technique [43] can be applied to determine the snfluence
matriz for the sector, s.e. the relation between the displacement and stress distri-
butions on the vertical cuts. Due to the global nature of the method it allows for
simultaneous treatment of multiple sources and receivers, and the influence matrix
can therefore be computed in a single step for each multi-layered eector.

Once these kernels are determined, the amplitude of the vertical distribution
functions are found by matching the appropriate boundary conditions between the
sectors, which is conveniently performed in a Galerkin approach [19]. After solving

the boundary element equations, the acoustic field within each sector is determined

19



directly by 2 wavenumber integral, including both forward and backward propagat-
ing wavefields.

This hybrid method is intended for cbserving both short and long range sound
propagation in multiple isovelocity layered, sharp medium contrasted range de-
pendent ocean environments. In this respect, there are several advantages of this

approach compared to existing methods described in the previous section.

o Compared to PE, it is a full wave solution including both forward and back-
ward propagating waves., These waves can be treated separately enabling

analysis of reverberation from individual features in the environment.

e In contrast to normal mode approaches, problems with halfspaces can be
treated, s.e. problems with branch line integral contributions. Normel mode
has to include virtual (complex wavenumber) modes [58] to reprezent the
continuous spectrum whereas this method directly deals with 2 wavenumber

integral.

e The cumbersome radiation conditions for FD and FEM in the frequency do-
main are conveniently handled and automatically included in the wavefield
representation. In addition, this method is applicable to both short and long
range propagation problema.

o The wavenumber integration within each sector enables elimination of the
range discretization within each sector from the degrees of freedom. The
length of each sector can therefore be chosen arbitrarily large without affecting
the number of degrees of freedom in the BIE solution. Furthermore, the
Galerkin boundary integral formulation reduces the degrees of freedom to the
amplitudes of the distribution functions in the vertical cuts. The proposed
technique is therefore more suited to problems in ocean acoustics, where the
range variation of the environment is much slower than the depth variation.
Additionally, as will be demonstrated, this method is robust in the degrees of

freedom employed.
20



e As in the case of traditional wavenumber integration methods, the field within
each sector is directly represented as a wavenumber integral, the kernel of
which is important for physical interpretation purposes such as mode coupling

and coupling into seismic waves in the bottom and an ice cover.
e The method is applicabie to elastic range dependent environments.

o Finally, a marching soluticn including single back-scattering can be obtained
if multiple back-scattering is ignored, significantly reducing the computational

requirements.

1.3 Thesis Organization

Following the introduction, this thesis is composed of five chapters and appendices.

In Chapter 2, the preiiminary knowledge required for the formal derivation of the
hybrid Galerkin boundary integrai-wavenumber integration method is discussed.
We begin by describing the boundary integral method which is appropriate for a
vertically stratified acoustic medium. This is formu!ated in the frequency domain
in terms of Helmholtz indirect boundary integral equation. Subsequently, a brief
outline is presented of the numerical wavenumber integration method algorithm,
SAFARI (acronym for Seismo Acoustic Fast-field Algorithm for Range Independent
environments), for horizontally layered, range homogeneous problems employing
the so-called direct global matrix method [43] for determining the depth dependent
Green’s function.

Formal derivation of the proposed method for acoustic media is given in Chepter
3. The solution is comprised of four separable components: the real point source
solution, solution of line distributed fictitious sources of unknown strength used
to represent the vertical boundary contributions, and two homogeneous solutions
which must accompany these source solutions to satisfy the horizontal boundary

conditions in the layered media. Each component is sitaultaneously expressed as
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a basis function expansion and as a horizontal wavenumber integrafion. The basis
function expansion is used for the matching of the boundary conditions at the ver-
tical interfaces while the horizontali wavenumber integration is needed to find the
homogeneous solutions for the satisfaction of the horizontal boundary conditions
for the vertical stratification of the media. Following the field expressions deriva-
tion, the Galerkin boundary integral equation technique for the discretely varying
range dependent problem is explained along with the final field evaluation method.
Derivation of the field equations for elastic media is presented in Appendix A.

Chapters 4 and 5 are devoted to examining the feasibility and efficiency of the
proposed hybrid method for solving stepwise varying range dependent ocean acous-
tic propagation problems. Description of various numerical aspects of the proposed
hybrid method are given to clarify which types of problems it is most appropriately
applied. Illustrative numerical examples of canonical problems, which indirectly
proves the validity of this method, are presented, followed by other examples of
ocean acoustics reverberation problems.

Finally, concluding remarks of this study are presented along with suggestions for
further research direction in the realm of combined boundary integral-wavenumber

integration method.
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Chapter 2

Review of Boundary Integral
Equation and Wavenumber

Integration Method

Although the boundary integral equation formulation for acoustic waves was intro-
duced more than a century ago by Helmholtz and Kirchoff, the use cof this method
to solve problems of wave propagation in multi-layered media has been limited due
to the difficulty of determining the kernels. Recent development of Green’s func-
tion methods using wavenumber integration techniques enables the evaluation of
the kernel of the boundary integral equation formulation for multi-layered media in
an efficient manner. In this chapter, preliminary discussions needed for the formal
derivation of combining the two methods will be given. We begin by describing the
boundary integral method which is appropriate for vertically stratified acoustic me-
dia and subsequently briefly outline the wavenumber integration method using the

direct global matrix method for horizontally layered range homogeneous problems.
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2.1 Boundary Integral Equation(BIE) Formula-
tion

Given a governing equation and boundary conditions for a physical problem, the
shape of the boundary is of significance in the classical approach of separation of
variables where only a limited class of geometries are available. Other methods
which relieve this restriction can be categorized as differential or integral type de-
pending on whether the numerical procedure precedes or follows the integration
of the governing equations. Compared to a differential method such as FDM and
FEM which requires discretization of the whole domain, BIE is based on an in-
tegral formulation requiring only a surface discretization. Thus in ocean related
acoustic propagation where the domain is of “infinite” extent, BIE is mora suited
for solving long range propagation problems. Numerous examples of the bound-
ary integral equation method applied to acoustic scattering problem can be found
in the literature (for reference listing, see Shaw [52]). Colton and Kress [11] have
detailed the theory of the acoustic integral equation and Schuster et al. [50] give
a comprehensive treatment of various direct BIE schemes along with analytic and
numerical considerations in scattering theory.

Applications of BIE are primarily found in wave scattering problems in un-
bounded media where the free-space Green’s function can be used. Unfortunately
in ocean acoustic problems, the nuinber of known Grezn’s function for specific ge-
ometry and boundary condition is quite small and corresponds essentially to those
problems which could have been solved by separation of variables. Thus, with a
free-space Green’s function formulation, the surface integration term in the time
harmonic Helmholtz integral equation has to be performed not only for the scat-
terers but also for the upper and lower interfaces of the ocean environment in
which case the numerical solution via discretization of the surface tusns out to be
computationally very expensive. Use of the Green’s function which satisfizs the

boundary conditions for these infinite interfaces has to be made, in which case only
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the scatterers boundary needs to be discretized. The Green’s function for ocean
environments can be represented by either ray representation, modal expansion or
spectral wavenumber integration. Ray representation is a high frequency approx-
imation with too many rays required for large source-receiver separation. On the
other hand, modal expansion requires introduction of a false bottom and inclusion of
many complex modes for short source-receiver separation even when the frequency
is relatively low. Dawson et al. [13] have used the modal expansion to provide the
Green’s function for solving scattering from compact deformation of an acoustic
oceanic waveguide’s surfaces. Lu [38] combined the ray and mode expansion for the
Green’s function to solve wave scattering by scatterers in layered acoustic media.

Spectral wavenumber integration yields a full wave solution at the expense of
computatioral difficuity and time. With the advent of fast field algorithms and
digital computing power, it is being favored over other methods of finding the
Green’s function. In seismology, much research has been conducted using hybrid
BIE and discrete wavenumber approach to eolve scattering problems for layered
elastic media [6] [8] [20] [30]. Schuster et al. [49] [51] have combined boundary
integral method with Haskell-Thomson method to solve for scatterers in plane-
layered media using spectral expansion of the Green’s function. In parallel with the
work presented in this thesis, Gerstoft and Schmidt [21] combined the direct global
matrix-wavenumber integration method and boundary integral method to solve
scattering and reverberation problems for facets in plane-layered seismo-acoustic
media.

All of the above cited works have applied BIE method to solve for inhomogeneity
of limited size in an otherwise homogeneous medium. Range dependence occurring
in a step-wise manner and continuing for long spatial duration, like abrupt sea
bottom elevation in the continental shelf or arctic surface ice in marginal zones
with cutting edges or poasible medium characteristics change where currents meet,
are not amenable to treatment by these methods. In this context, the present

new method has the power to solve these acoustic scattering and reverberation
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Figure 2.1: Schematic diagram of scatterer in infinite half-space. The interior(1;)
and the exterior domain(V,) are separated by the boundaries B, and B.

problems as long as the variance of the ocean and possibly scatterers can be divided
into rectangular homogeneous acoustic media. To gain some insight to the present
method, review of the Helmholtz integral equation in plane geometry will be given

with emphasis on the indirect method of monopole-only distribution.

2.1.1 Helmholtz Integral Equation

For the scalar functions ¢; and ¢, which are twice continuously differentiable in a

region V bounded by the closed surface B, Green’s theorem can be written as

//;(Plvz‘Pz — V20 )dA = fs fi- (p1Vi2 — paVio,)dl (2.1)

with 7 being the outward normal vector. This is essentially the Gauss (divergence)

theorem which is the building block of the boundary integral equation method.

Consider an inhomogeneity in an otherwise homogeneous infinite half-space as
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shown in Fig. 2.1. The displacement potentials in the interior and the exterior
domain are called ¢ and ¢* respectively. For simplicity we concentrate on the inte-
rior domain problem. In each of the domains, the potentials satisfy the Helmholtz

reduced wave equation with time harmonic dependence e*“* implied.
V34 + hig = Q(3) (2.2)

where @ represents the volume source term and h is the acoustic medium wavenum-
ber equal to w/C where C is the medium sound speed. We define the Green’s
function G as the function satisfying the same governing equation except for re-
placement of the right hand side by the inhomogeneous Dirac-delta function with

yet arbitrary boundary conditions.
ViG(%;Z,) + *'G =6(Z - Z,) . (2.3)

Z is the field point and Z, the source point. Identifying ¢ as p; and G as 2, Eq. 2.1
combined with Egs. 2.2 and 2.3 becomes

[ [, 52— 2)aa@ = [ [ co@)da+ (d’%% _ G%) aE. (24

The integral involving the source term Q will be treated separately and will be
denoted #= ¢, m the following and we will treat only the homogeneous solution.
The value of the volume integral of the delta function is either the kernel itself or
zero depending on whether the observation point %, is located inside or outside of
the volume of interest. For the observation point on the boundary, we follow the
conventional rule of taking half the value of its kernel since the indentation of the
singularity becomes a semi-circular arc. Then we arrive at the Helmholtz integral

equation for ¢ as

ac P ¢(£o) B, €V
)‘, (¢79'; - G%) d=1\4¢/2 Z,€B . (2.5)
0 Z, €V,
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For the two-dimensional case, this is often referred to as Weber integral equa-
tion [52]. The corresponding equation in the time domain, referred to as Kirchoff
integral equation, can be obtained in a similar manner for the full wave equation.
Here it is more convenient to work in the frequency domain with harmonic time
dependence since we will be combining this integral equation with the wavenumber

integration-global matrix method.

2.1.2 Discussion

The original governing rartial differential equation and boundary conditions have
been transformed to a single integral equation with boundary conditions absorbed
in the surface integral. Once this equation is solved for values on the boundary, the
field at every point inside the volume of interest is given by the integration over the
boundary.

The boundary condition along with radiation condition for the Green’s function
can be chosen arbitrarily. Simply, it can be chosen as the free-space Green’s func-
tion satisfying Sommerfeld radiation condition which in plane geometry is a Hankel
function ng)(hﬁ:‘ — %,|). Using the free-space Green’s function then requires in-
tegration over the infinite boundary B, + B, as shown in Fig. 2.1. Truncation of
the boundary along with absorbing boundary conditions have to be introduced for
numerical treatment when closed form solutions cannot be found. This is especia!}
critical for ocean environments where the free surface and botiom boundaries ex-
tend to “infinity”. If we choose the Green’s function G to satisfy the same boundary
condition as ¢ for certain regions of the boundary, the integration over B for that
portion of the boundary is identically zero.

Assuming that the exterior domain is filled with same medium as the interior
one, the Helmholtz integral equation for the ’saltus’ problem, corresponding to

replacing the physical surface by a geometrically identical boundary of monopoles
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and dipoles, in terms of the exterior solution ¢° becomes

f Lst 5’? — Ga ) di() =0 (2.6)

for an observation point Z, in V. Adding Eq. 2.5 and Eq. 2.6 using the relation

—

il = — gives

o) = f |6~ 9155 - 6 (32 - )] aia @)

for field point located wiviin V;. If we choose the potential to be continuous scroas
the bcundary B but allow the normal derivative of it to be discontinuous, we arrive

at the simplified integral equation
=¢ Guvdl 2.6
¢ }i v (2.6)

where v = (g—ﬁ - %';') is the sndirect unknown source strength. Physically, the
Green'’s function G' can be viewed as the solution from the diatribution of sources
on the boundary B puleating symmetrically in the normal direction of the boundary.
Thus for a straight boundary, this will cause the field to be symmetric with respect
to the boundary. It can be shown that Eq. 2.8 is also valid on the boundary B by
adding Eq. 2.5 and Eq. 2.6 and realizing that ¢ equals ¢* on the boundary.
Following the above two arguments, we are led to an indirect integral equa-
tion which has been greatly simplified at the expense of finding the appropriate
Green's function. This can be justified since, in a iayered ocean environment, we
can efficiently find the Green’s function which entisfies the boundary conditions
at the horizontal interfaces, as well as satisfying the symmetry of the potential a3
the vertical boundaries, using the global matrix method described in the following

section,



2.2 Wavenumber Integration(WI) Method

With the introduction of the efficient numerical code SAFARI [43], the wavenumber
integration method has become very popular over the last few years for solving
various range independent ocean related acoustic problems. Using the direct global
matrix method, Schmidt and Jensen [46] give full wave solution for plane-layered
seismo-acoustic mediun. in terms of spectral integration. Schmidt et al (45] 48]
have extended the formulation and numerical implementation to arbitrary three-
dimensional range independent problems. Using the same formaliam, Kim [33]
implemented various seismic sources into SAFARI.

For the multi-layered range independent problem, the scluticn is comprised of
the field produced by the source in the ubsence of layers and an unknown field
which satisfies the homogeneous wave equation in each layer. The unknown field
is determined by requiring the boundary conditions at each of the interfaces to be
satisfied along with appropriate radiation conditions. In a full wave solution these
fields are expressed 2s a wavenumber integral, the kernels of which enables direct
physical interpretation. Another advantage of wavenumber integration method is
its capability to treat various scenarios of ocean acoustic problems, i.e. multiple
sources, arbitrary fluid-solid layering [43], transverse isotropy and some degree of
interface roughness [36).

In this section a brief outline is presented of the wavenumber integration method
which forms one of the basic toals for the present solution technique, along with
some discussions concerning the incorporation of this scheme irto the present hybrid

method.

30



2.2.1 Derivation of Field Equations

Consider an ocean environment which can be modeled as range independent and
horizontally stratified. Here we will limit the presentation to a plane layered acoustic
medium remembering that the extension to other geometries and elastic media
follows directly without further complications. Harmonic time dependence ¢“f is
assumed, but transient solutions can be obtained by Fourier synthesin. In each
of the layers, the acoustic medium is assumed to be homogeneous, characterized
by its compressional sound epeed C and density p. In each layer, there exists
a scalar (displacement) potential ¢ which satisfies either the inhomogeneous or
homogeneous, reduced Heliaholts equation in an zz-cartesiun coordinate system
depending on the presence or absence of sources. The reduced Helmhoitz equation
is given by Eq. 2.9.

6(z - z,)6(z—2,)
o

W%+£%=[ (2.9)
Referring to Fig. 2.2, the subscripts refer to the layer number and A, is the com-
pressional medium wavenumber, h, = w/Cn. The inhomogeneous term represents
a compressional line source perpendicular to the z-z plane located &t z = z, and
& = z, and its contribution ; will be superimposed whenever a source is present
in that layer. The boundary conditions to be satisfied are continuity of pressure
and normal displacement at all ranges for upper and lower boundary of the layer,
together with the radiation condition of no incoming waves fror infinity. For a half-
space layer one of the interface boundary cendition changes to a radiation condition

requiring that no waves originate at infinity.

Applying the forward Fourier transform in range z to Eq. 2.9, we obtain the

depth-separated wave equation as

B tn(a,) - (= K)o = { e (2.10)
z 0
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Layer 1: Uppsr halfspace
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Layer m+1

Layer N: Lower halfspace

Figure 2.2: Horizontally stratified medium where each layer is homogeneous, char-
acterized by its medium wavenumber h, and density p,.
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where s ia the horizontal wavenumber and {a(s) = iy/s® — k2 is the vertical wavenum-
ber. After soiving the depth-separated equation and applying the inverse Fourier
transform, a particular solution of the inhomogeneous equation Eq. 2.9 is given by

&(3’3)':"'[

—o0 an

() c"l"'ﬁl"n
———

e~i(a=re) gy | (2.11)

The solution of the homogeneous version of Eq. 2.10 followed by the inverse trans-
form, is given by the following integral representation for the solution to the homo-

geneous equation.
én(z,2) = / > [A; (a)e~*==1) 4+ A% (a)c("")"'] e(s-2) g {(2.12)

where AZ(s) are unknown functions of the horizontal wavenumber a to be found by
imposing boundary conditions and { is the depth of the layer.

Note how the depth eigenfunctions, e~*?= and el*-!)2~ are written in terms of a
local coordinate system with origin at the top of the layer. This ensures that uncon-
ditional stability is achieved when the global system of equations is solved for the
unknowns. Each element of the global syatem is comprised of functions of wavenum-
ber and depth eigenfunctions. For purely imaginary arguments of the exponentizal
functions, the magnitude of the exponentials is unity. For evanescent waves with
real arguments of the exponential functions, the magnitude of the exponentials do
not exceed unity for any value of z within the layer, and the solution becomes un-
conditionally stable for any value of the wavenumber. Note also the source range
z, appearing in the exponential. This accounts for the offset of the source from
the origin of the local coordinate system, making the unknown spectrum function
symmetric with respect to horizontal wavenumber s.

By definition and via Hooke’s law, displacements and pressure in the field are

given by
;]
un(z,2) = -a%
8
wn(z,2) = 5%
pa(z,2) = —puwd. (2.13)



For multi-layered media, the unknowns AZ(s) can only be found numerically by
imposing the boundary conditions at the interfaces. This is achieved by mstching
the kernels of the integral representations for each horizontal wavenumber s. This
gives the full wave solution which is termed the depth-dependent Green’s function
because the kernel is only a function of depth. In the next section the direct global
matrix method is described for finding the unknowns of the depth dependent Green's

function.

2.2.2 Numerical Solution Technique

For multi-layered media, the exact response of the layer stack is computed us-
ing Haskell matrices [25], or Kennett iteration [32], or the direct global matrix
method(DGM) [43]. The DGM approach has the capability of efficiently treating
multiple sources in a single step which is essential in the present hybrid method as
will be evident in the next chapter.

In the direct global matrix methed, the unknown arbitrary functions of s are
found numerically at a discrete number of horizontal wavenumbers from the system
of equations that express the boundary conditions to be satisfied. if the kernels
for the relevant field variables to be matched for layer n(subscripts) at interface
m(superscripts) are denoted in coiumn vector as {v}"" with the source terms written

with an asterisk on top, then the local system of equations at interface m iz

{v}™ = {v}m + {v}m = {v}mp + (O)mpa - (2-14)

Rearrangement of Eq. 2.14 for the unknown arbitrary vector {a}n, i.e. AX(s)'s,
with coefficient matrix [¢]™ which consists of functions of the wavenumber and the

depth exponentials gives

[e)m{a}m — [clmir{a}mer = {}mss — (¥} - (2.15)

Combining the local system of equations for N —1 number of total interfaces into the

global system using the pointers similar to topology matrices found in finite-element
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Figure 2.3: Mapping between the local and the global systems of equations. The
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local systems of equation is written for the mth interface.
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method, a global system of equation is obtained as follows (Fig. 2.3).

Although this equation has to be solved for every horizontal wavenumber, the
mapping of the local systems to a global matrix is unique for a given environment
as seen in Fig. 2.3. So once the pointers for the mapping are determined, the
calculations needed at each horizontal wavenumber are reduced to the creation of

the local coefficient matrices [¢| and solving Eq. 2.18. This is done by Gaussian

[Cl{A} = {V}.
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elimination with partial pivoting and unconditionally stable solution i8 obtained
with this method. For detailed explanation of numerical stability, refer to Schmidt
and Jensen [46]. Another advantage in using this scheme is it capabilities of treating
multiple right hand sides, i.e. multiple sources. This proparty is crucial for the
development of the present hybrid method.

Once the global system of equation has been solved at a discrete wavenumber,
the kernels for the field variables can be readily evaluated at any depth by superim-
posing Eq. 2.11 and Eq. 2.12. The depth eigenfunctions e~**~ and e(*~!)2» are the
only additional terms to be calculated.

For numerical treatment, the wavenumber integrals extending to infinity have
to be truncated at some point where its contribution is negligible. This is usually
truncated at 10 to 20 % higher than the maximum medium wavenumber [43] to
include all possible modes present. Sudden truncation of the integrand when it is
not fully zero could cause what is known as the Gibb’s phenomenon even though
the remaining part of the kernel does not contribute to the field due to cancellation
from the oecillatory term e~%**. This can be avoided by tapering the envelope of
the kernel over several oscillations from the truncation point.

Within the truncated horizontal wavenumber interval, the global system of equa-

tions are solved at equidistantly separated M sampling points
Sm = 8min + mAs, m=0,1,...,(M-1). (2.17)

For plane geometry, these sampling points must include both the positive and the
negative part of the spectrum. Since the unknown function was set up to be sym-
metric with respect to s (by taking into account the offset of the source from the
origin of the local coordinate system by the shift in the exponentials in Eq. 2.11
and Eq. 2.12), only the positive spectrum part needs to be determined, dividing the
numerical effort in half. Integration of the kernel can be performed conveniently

using the FFT by selecting the number of sampling points M to be an integer power
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of 2, simuitaneously yielding all values of the field at M equidistant ranges
Zp = Zmn +nAz, n=0,1,...,(M—-1) (2.18)

where range increment is given by the sampling theorem as

2r

Az = AsM

(2.19)

and the valid maximum range is simply X = AzM. Then the following discrete
appreximation of the integral is obtained.

G(Zay2) = /: g(s,2)e "*ds

M-1
&~ AgePmiats 3 [g(a,.,z)t:""""““] e~ i3rmn/M (2.20)
m=0

where the summation is performed by means of an FFT. Thus signals outside the
maximum range X are aliased (or “wrapped around”). Aliasing can be reduced by
selecting the parameters such that X becomes large enough to ignore the wrapped
around signals. Another way to overcome aliasing problem is to use complex contour
integration, reducing the wrapped around signals. This is explained in detail by
Schmidt [43] for cylindrical geometry. Fellowing the same argument, explanation
of complex contour integration for plane geometry with both the positive and the
negative part of the spectrum will be given in chapter 3.

In the next chapter, details of the indirect boundary integral equation method of
distributing vertical line displacement sources combined with the wavenumber inte-
gration approach for solving a laterally inhomogeneous vertically stratified problem

will be presented.
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Chapter 3

Formulation of Hybrid (zalerkin
Boundary Integral and
Wavenumber Integration

Approach

The previous chapter has provided the basic starting tools, i.e. indirect boundary
integral equation method(BIE) and the wavenumber integral/direct global matrix
method(DGM), for the development of the hybrid range-dependent layered media
solution technique. In this chapter, the formal derivation of the hybrid Galerkin
boundary integral and wavenumber integration method is given.

First we divide the range dependent ocean into range independent sectors where
each sector is allowed to be horizontally stratified. By employing the concept of
the saltus problem, the solution within each sector is expressed as a boundary in-
tegral, described in the previous chapter as a distribution of sources on the vertical
boundaries of the sector by using the Green’s function, noting that Green’s func-
tion already satisfies the boundary conditions for horirontal interfaces. Each sector
then becomes a range independent problem for which the kernels are conveniently

found using the global matrix approach. Omnce these kernels are determined, the
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amplitude of the vertical distribution functions are found by matching the appropri-
ate boundary conditions between the sectors, conveniently performed in a Galerkin

approach.

3.1 Statement of the Problem

We are concerned with the range dependent problem in a stratified acoustic medium,
where the range dependence occurs in a stepwise mananer such that the environment
can be geometrically separated into rectangular elements as depicted in Fig. 3.1.
Each rectangular element is assumed to be isotropic and homogenecus and charac-

terized by its sound speed and density.

Here we intentionally focus the derivation on acoustic medisa, but we note that
it is not difficult to extend the idea to elastic media by including the shear wave
potential together with the additional boundary conditions. Expressions for the
elastic media are derived in Appendix A. Compared to other existing range depen-
dent solution methods such as the parabolic equation(PE) or the coupled mode, no
difficulties are encountered when extension to elastic medium is considered. Since
the present method is based on a global matrix method, the treatment of elastic
medium can be considered simply by adopting the shear wave terms in the same
manner.

The derivations now developed are for a two-dimensiona. geometry with a line
source extending infinitely in the direction perpendicular to the plane. Cylindrical
geometry where medium changes in the radial direction , s.e. superposition of
concentric layered rings, with a point source located at the origin of the cylindrical
geometry may be considered when the cylindrical spreading effect is accounted for
in the final stage of evaluating the field. The sources are assumed to be harmonic
with angular frequency w and the time dependence ' is implied in the following

development.
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Figure 3.1: Nomenclature for hybrid BIE+WI method. After discretization into
homogeneous rectangular elements, range and depth direction partitions are called
sectors and layers, respectively with decomposed total solution a3 shown.
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3.2 Overview of Approach

Before we proceed, an analogy to the ‘super-element’ used in finite 2lement meth-
ods(FEM) will aid in understanding the approach more clearly. Referring to Fig. 3.1,
the range discretized or ‘sub-structured’ sectors can be regarded as a ‘super-element’
where the horizontal interfaces, s.e. ‘nodes’, within the super-element are treated
by the wavenumber integration method. The ‘nodal displacements’ of the super-
element are the unknown source strengths where the influence of these sources, or
equivalently the ‘stiffness’ matrix, are determined by the Galerkin boundary integral
method.

We first divide the range dependent ocean into segments of range independent
sectors separated by the vertical boundaries at each discontinuity, where cach sector
is allowed to be horizontally stratified. Within each sector, the field can be expressed
as an integral over the enclosing boundary, per Eq. 2.8. In the boundary integral
equation, the kernel G is chosen to be the depth dependent Greer’s function for
a multi-layered media. This already satisfies the horizontal interface bourdary
conditions, reducing the integration to the vertical portion only. Additionally, by
distributing continuous line sources of various shapes extending over the whole
depth of each stratified layer, we can adopt Galerkin’s method for the solution of
the boundary integral equation. Thus the kernel G consists of the field produced by
the distributed source in the absence of layers (G in Fig. 3.1) and an unknown field
which satisfies the homogeneous wave equation in each layer (G). These sources are
artificial constructions which allow the boundary conditions throughout the model
to be satisfied from sector to sector. Thus, it is important to distinguish between
the sources used strictly for boundary condition purpose(the artificial sources) and
the true sound sources(real sources).

In the case where a real source is present in a particular sector, we add its
contributions (C‘;' and é) By properly choosing a set of distributior functions

(basis functions) for the field along the vertical cuts, the wavenumber integral-global
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matrix solution technique [43] can be applied to determine the kernel G for a unit
line distributed source strength. Due to the global nature of the method it allows for
simultaneous treatment of multiple sources and receivers, and the influence matrix
can therefore be computed in a single step for each multi-layered sector.

Once these kernels are determined, the amplitude of the vertical distribution
functions are found by matching the appropriate boundary conditions between the
sectors, conveniently performed in a Galerkin approach. Since the field variables
are expanded using orthogonal basis functions, we can simply match each expansion
coefficients of the basis function. This leads to a local system of equations for each
vertical interface. After collecting all the local system of equations into a global
system of equations in a manner similar to that of the range independent glebal
matrix method [46], we sclve the system of equations using Gaussian elimination
technique. This will simultaneously reveal all the vertical distribution function
amplitudes. After solving the boundary element equations, the acoustic field within
each sector is determined directly by a wavenumber integral, including both the
forward and the backward propagating wavefields.

In the following sections, the derivation will be given of the Green’s function, as
tailored for the boundary integral, combined with the global matrix method (and
subsequently the solution of the boundary integral equation by Galerkin’s method).

3.3 Green’s Function for Layered Medium

Derivation of the Green’s function used in the indirect boundary integral method is
given for a layered acoustic medium. As discussed in the previous chapter, the field

within each partitioned sector can be found from the boundary integral Eq. 2.8 as

¢=£gud1+¢o’ (3.1)

where ¢, is the real compressional source term if it exists in that particular sec-

tor(this will be dealt with in the following section), B consist of two horizontal
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interfaces at the top and bottom plus two verticel interfaces, thus entirely bound-
ing the discretized range-depth rectangular sector; and v is the indirect unknown
to be found from conditions of coniinuity across boundaries. Since we have elimi-
nated the normal derivative of the Green’s function in Eq. 2.5, v is a source which
oscillates symmetrically about the vertical axis, giving rise to the Green’s function
G. This indirect source strength v, which can be viewed as a discontinuity of the
normal displacement at the vertical boundaries, has no physical mexning attached
to them as described in Chapter 2. Although this is the case, they are termed
displacement sources due to the fact thut their displacements are discontinuous znd
are of an explosive source type.

Because the ocean invariably has to be modeled as layered media within each
gector, it is impossible to find an analytic expression for the Green's function for the
entire layered sector. Instead we resort to numerical methods to find the Green's
function as a wavenumber integral. Traditionally this is accomplished by distribut-
ing point sources. Here we use continucus line sources of various shapes extending
over the whole depth of ‘each’ horizontally stratified layer. This reduces the total
number of sources o be distributed which is advantageous when the Green's func-
tion has to be found for multi-layered problems. Here, tensor summation notations
are discarded, and each summation is written out explicitly for clarity. Denoting
the total number of layers as N and the depth of the sth layer as {;, with the source

contribution ¢, suppressed for the time being, Eq 3.1 can be written as

N
¢i(z,2) =3 [ Gii(z. 2) vi dl; (3.2)
=1 %

where §j; represents the depth-dependent Green's function at layer j due to dis-
placement source of unit strength at layer i. The closed contour integral of Eq. 3.1
has been reduced to integration along the veriical boundaries only, as mentioned
in Chapter 2, since the Green’s function is chosen to satisfy the same boundary
condition, i.e. the radiation condition, along the horizontal part of the contour

integration. The summation in Eq. 3.2 implies both sides of the vertical boundaries
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for a finite sector whereas for a half-infinite sectors they reduce to a eingle boundary
since the integration at infinity vanishes if § satisfies the radiation conditien. It
will be shhown in the following context that each line integral over the vertical cut
can be performed analytically, reducing Eq. 3.2 to
N
$i(z,2) = Z_; Gji(z, z) vi (3.3)
where integration of G over the depth direction for each layer has been replaced by
G. Thus the Green’s function Gj; can be viewed as the influence of a distributed
line source at the vertical boundary of layer ¢+ onto a field point in layer j.
Analogous to the concept of the direct global matrix method for horizontally

layered medium, this Green’s function can be divided into two components as
G'-,- = G;ﬁ.',' + G.‘,’ (3.4)

where G is the solution for a homogeneous infinite medium and applies only t» the

layer at which the displacemen? source i8 located, represented by the Kroenecker

delta .

5.','={0 for s #£ 3 (3.5]

1 for s=7y

and G is the homogeneous counterpart for horizontaily layered medium to satisfy
the boundary conditions at each horizontal interfaces. In addition to these two
components, contributions arising from the real source must be added in sectors
where they are present. They are denoted as c.}' for source in an infinite medium,
and as G for the homogeneous solution in a stratified medium.

Recapping the decomposition of the total solution, we write

G(z,z2)=C+ 8+ C +& (3.6)
1 I

where the first two terms are the combination of the displacement source distribu-
tions and the homogeneous solutions; the second terms are for real compressional

source and its homogeneous solution. For clarity they are called
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G(z, z) : total solution or Green's function

Qe O

: (vertical boundary) displacement (source) solution
: (vertical boundary) displacement (source) homogeneous solution
: source soluticn

: (source) homogeneous solution.

which is also shown in Fig. 3.1. In the following sections, analytic expressions for

each of the components are dealt with separately.

3.3.1 Displacement Source Green’s Function

As mentioned previously, the displacement source Green's function is the solution

to Helmholtz equation for a vertically distributed line source in an infinite medium.

Two forms of representations are needed for this solution.

1. When the boundary conditions are matched for vertical interfaces, we equate

Eq. 3.2 for the left and right sector resulting in a Fredholm integral equation
of the first kind for the unknown source strength v. Numerical solution to this
integral equation is performed either by a distribution of point sources which
results in a collocation method or by utilizing various sources of finite length
in terms of summation of basis functions which lead to the Galerkin method.
Since we can perform the integration analytically in the depth direction, it is
more efficient to adopt the latter method. Thus we need a representation of

the field in terms of a basis function expansion.

. To arrive at the displacement homogeneous solution for multi-layered media,

it is expedient to resort to the DGM approach which takes care of multiple
sources in a single computation step. This requires the displacement source
solution, which act as sources in this approach, to be represented in terms of

a horizontal wavenumber integration.
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The above argument is aiso true for the other solutions G, C.,‘, and G. An added note
is that half-spaces must be treated separately from finite layers since a common basis
function cannot be used. Thus far in the math literature, they do not possess a basis
function expansion suitable for modification into horizonta! wavenumber integral
representation. This resuits because of a convergence problem when the conversion
between the vertical and the horizontal wavenuraber integral is made (Appendix B).
This poses no difficulty for the upper half-space which can be modeled as vacuum
for the ocean environment. For the lower half-space, we simply introduce additional
layers until there is no significant back-reflected energy. In contrast to the coupled
mode theory, where a false bottom is introduced to discretize continuous modes
in order to achieve coupling between sectors, causing false energy to propagate
back [16], in the method shown here we do not generate any type of false propagation
although we might lose some of the energy if the half-space is not sampled to
sufficient depth.

Pertinent field variables for matching the boundary conditions are written out
explicitly using the same superscript notations for each component as given by
Eq. 3.6. The boundary conditions involve the normal displacement u and pressure

p for vertical interfaces, and w and p for horizontal interfaces.
Basis Function Expansion

Consider the nth layer of an N layered homogeneous sector depicted in Fig. 3.2.
Using the local coordinates it is convenient to use an expansion of the following

form based on physical and mathematical considerations ([34] (35] [47].

() e

]

fin(z, 2) _2x 00 f},.,,.(z)
Pn(z, 2) lmz::l Snm(z)

where m is the order of expansion and P, is the Legendre function and [ is the

thickness of the layer.

Displacement sources distributed along the vertical boundary of the nth layer
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G (n-1)th  layer

>

L | n th layer

(n+1)th layer

N

Figure 3.2: Local coordinate system for rectangular elements. { is the layer depth
and (z,, 2,) is the coordinate of the source.
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are simply represented as boundary conditions in terms of the unknown source

strength U, (0)

0 2<0,z>1
2n(0,2) = { (3.8)

2 T Oan(0) Pt () 021

and appropriate radiation condition.
Finding the Green'’s function for this displacement source is equivalent to ex-
pressing the expansion functions ¥ (z) and 8(z) in terms of source strength. In this

thesis, the inverse and forward Fourier transform pairs are defined as

f(z)

g(k)

[ - g(k) e**=* dk

51; /_m f(z) e** dz. (3.9)

The displacement potential which satisfies the Helmholtz equation and the ra-
diation condition can be written in terms of the vertical wavenumber spectral rep-

resentation as
3z, 2) = f ® A(n) e et gy (3.10)

with n being the vertical wavenumber and s+ is the horizontal wavenuinber given
by t4/n% — h? where h is the medium wavenumber. The spectral density A(n) is
determined by the conditions at the source [26]. We first differentiate Eq. 3.10 with
respect to z to produce the horizontal displacement & and take the forward Fourier

transform with respect to z to give
Aln) e = 51; [7 a(zz)e ds . (3.11)

Substituting the boundary condition at z = 0, Eq. 3.8, and making use of the
identity [24]

/:P 1 (Z—I—i) e dy = lenkim-y, (%1) (3.12)

gives

Aln) = =2 S -00nOhin-1 (1) - (3.13)
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Here we can see that the integration over 2 in the transform has been performed
analytically and is accounted for by the spherical Beasel function Jm-1. Back sub-
stitution into Eq. 3.10 yields

oo

a(x,z)=§30,,.,.(o)s -1 j

e--nwe-m(-—‘hJ'm__l (.’_;'_) dn. (3.14)

oo
This is the desired Green’s function for the displacement source solution in the form
of Eq. 3.3 where the depth integration has vanished.

Finally, we rewrite the field variables for the horizontal displacement and the
pressure in terms of the basis functions:

ed) = 225 O ()

b,,(z,z) = ?%r'i;lsnm(z)}) -1 (f—z—z) . (3.15)

The expansion coefficients, which are a function of range only, are found by equating
the displacement and the pressure derived from Eq. 3.14, and Eq. 3.15 and using
the orthogonality relation for the Legendre functions (1}

{
z2—3

/o Py (f—’,;-li) Pay (—,—) dz = 2ml— b (3.16)

where 6., is the Kroenecker delta. This yields
00
0nm(z) = E Cnm,k(z)fjnt(o)
k=1
Bam(z) = Y Bama(2)0mi(0) (3.17)
k=1
where the influence functions of the kth order source on the mth order expansion

for the displacement and the preasure are given by

— ! _ m-1 m+hk-2 ® g l_'l_ . L'l
Compk = 2",(?‘m 1)(~1)™""s /_ € m-1 | 5 | -1 g dn

| m—1 m+k— o ™", l" . 1'7
Brmy = 2,":-":(2”"— 1)(—1)m et ’/ 7 Im-t (;) Ja-1 (-2‘) dn
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and A is a Lame constant. Since the displacement source solution applies only at
the layer at which it is located, no summation for multiple layers appears. When

z = 0, the influence of kth order source for mth order displacement should be

0 m#k
Cnm.k(o) = (3-19)
1 m=k
since we have used symmetric displacement sources. This is seen to be true when

the following identity [24] is substituted intc Eq. 3.18.

[ imes (%”) et (%") n = [y (3.20)

The kth order displacement source influences the mth order pressure at z = 0 only

when m + k is even. Had we used dipoles instead in the boundary integral formu-
lation, s.e. the stress source, the situation would be reversed and this is analogous
to the displacement or stiffness method in finite element analysis. When z # 0
displacement sources of every order influences every order of the field expansion as
long as m + k is even.

These influence functions and all others that follow, which construct the in-
fluence matrix for the unknown source strength ﬁnm(O), should be evaluated with
precision since the success of the hybrid BIE+WI method depends highly on the
accuracy of the source strength. The integration in Eq. 3.18 is performed using
Gauss-Tchebycheff quadrature scheme (Appendix D) with square-root weight func-
tions included explicitly to account for 4 = /n? — h%.

Horizontal Wavenumber Integral Representation

The homogeneous displacement solution accompanying the displacement source so-
lutions for the multi-layered medium is found by the DGM approach which requires
the integral representation to be expressed in terms of the horizontal wavenumber.

Using contour integration, the vertical wavenumber integral Eq. 3.10 can be

deformed into a horizontal wavenumber integral (Appendix B) as

d(z,2) =14 /w

A (—sign(z - -;-)ia) Pl o i e~ ds (3.21)
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where we have used s for horizontal wavenumber and vertical wavenumber sa =
iv/s? — h%. The above representation is valid only for z < 0 and z > [ (Appendix
B), but still allows the application of the global matrix method for satisfying the
horizontal interface boundary conditions since it is at the interfaces at 2 =0,z =1
of each layer that the fields are being matched. When the field is sought inside the
layer(0 < z < ), we resort to numerical quadrature of equivalent discrete source
distribution (Appendix C).
From Eq. 3.13

A (—sign(z -~ -;-)ia) = -% g‘: Do (0)5™ 1 (—slgn(z - -)""“) (3.22)

and upon eubstitution into Eq. 3.21, the following set of equations are obt=-ined for
the vertical displacement @ and pressure $, which are the field parameters involved

in the boundary conditions at the horizontal interfaces:
. I, & -1
Wn(z,2) = sign(z— —) Z Upm(0)s
/ Jm-1 (—slgn(z - —)'la") e ls-3lan =iz g
pn(:o z) = th: E 0,.".(0): -1
m=1

/_:j..._,( t“tm(~'=--)"°"‘) e-l.:lanc"“da. (3.23)

The above two equations are similar to the real compressional point source potential
(Eq. 2.11) when the source depth 2, is replaced by the midpoint of the line source
z= %, and with the source wavenumber spectrum modulated by the spherical Bessel

function jm-1 for the various line sources of shape Pp_;.

3.3.2 Displacement Homogenecus Solution

The previous displacement Green’s function is not complete until we add the ho-
mogeneous contributions arising from satisfaction of horizontal interface boundary

conditions for the multiple layered sector. These contributions arise for each order of
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the line source distribution at every layer. This means that the global matrix equa~
tions have to be solved a number of times equal to the total number of expansion
orders multiplied by the total number of layers, times tha number of discontinuities
in range. When we resort to the global matrix method, the mapping pointers need
to be set up only once for different layering, and multiple right hand side is rela-
tively easy to handle with small additional computing time. Thus, all displacement

sources within a sector can be treated simultaneously.

Horizontal Wavenumber Integral Representation

Following the global matrix approach, the horizontal wavenumber integral for the
homogeneous solution in layer n consists of sum over all contributions from dis-
placement sources of order k located in layer {:

N oo
Ta(z:2) = 3.3 0u(0)

=L:=l | |
/—oo [_%A;Jl(s)c—‘an + anA:.,,,(a)e('- )"-] e ds

Pu(z,2) = —Ash2 f; i 0.(0)

i i=1k=1
j-: [A;,u(S)c""" + AI,:&(’)C('_‘)%] ¢™"ds (3.24)

where N is the total number of vertical stratification. These solutions satisfy ho-
mogeneous Helmholiz equation and the radiation condition is eazily satisfied when
the up or down going wave is neglected in the half-spaces. Again, the unknowns
Af,u are the horizontal wavenumber amplitudes of the up and down going compo-
nent of the displacement homogeneous solution at layer n due to a displacement
source of unit strength ffu,(O) = 1 of order & located in layer I. They are found at a
discrete number of horizontal wavenumbers from the system of equations that ex-
presses the boundary conditions for horizontal interfaces with displacement source
terms Eq. 3.23 on the right hand side. The wavenumber sampling needs to be done
only for the positive spectrum since the unknowns are symmetric in s. Ageain, each

combination of indices | and k represents a single SAFARI run. Due to the nature
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of SAFARI which can treat multiple right hand side efficiently, these unknowns can

be found with single global matrix set up.

Basis Function Expansion

For the purpose of matching boundary conditions at the vertical cuts, expansion of
the homogeneous solutions in terms of the basis functions is needed. Using a similar

expansion as Eq. 3.15, we express the displacement and pressure as

8n(z,2) = 210,,,,.(:)19 i ("‘—'Lz)

mied) = 3 Sun@Pucs (1) e

and subsequently the range expansion coefficients are extracted by equating the
above equations to Eq. 3.24 and using the orthogonal property of the Legendre
functions to produce

Ounlz) = —(2m— 13" 52 0u(0)

1=1 k=1

[ [oAzuo) + (~1)™ st (o)) € F imos ("%n) ieag,

Sunle) = —Mah(m— 113 5 04(0)

o=1k=1
tla,

/_ : [A,‘;',,,(a) + (—l)m-lA:,u(a)] € P jm1 ( 2

) e **ds . (3.26)

Similar to the case with the displacement solution, there should be no contribution
to the horizontal displacement at the cut, i.e. 0U,n(0) = 0, since the integrand
is odd with respect to s for z = 0. Numerical integration of the above influence

functions are best performed by means of a trapezoidal rule [22).

3.3.3 Source Solution

Whenever a real point source {for tLo two—dimensional case a line source extending
infinitely in the y direction) exists in & certain sector of the discretized environment,
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its contribution has to be added separately along with the homogeneous solution.
Representation of these components are similar to the displacement soiutions s0 a
detailed derivation will not be given. These sources act as the inhomogeneous term
when displacement source strengths are sought from the matching of the boundary

conditions at the vertical boundaries.

Horizontal Wavenumber Integral Representation

A compressional source in acoustic medium has the integral representation [17]
L] o0 .
Wy, (1:, z) = —sign(z - z‘)/ C_l'—"la”c-'(z-")‘ds
-0

N w0 g—|s-2slan
Py (z,2) = —A..h,’,/ c—a——-e"('“""da (3.27)

where z, is the source depth from the upper interface (lower for upper half-space)

and z, is the horizontal range from the discontinuity.

Basis Functior Expansion

When the source is not located on the interface, t.e. 2, # 0, we cannot express the
source solution in terms of a Legendre polynomial expansion. The reason for this is
the absolute value |z~ z,| in the argument to the exponential function which makes
the kernel and all its derivatives discontinuous inside the layer, and so a regular
expansion using a complete set of orthonormal functicns is impossible. One way to
avoid this problem is to introduce an artificial interface at the depth of the source
to impose z, = 0, making the kernel and its derivatives continuous inside each layer.

Following the same argument used in the displacement source solution, the basis

function expansion can be found as;

in (202) = ; G (2) P (_E_i)
Po(z,2) = g S (2) Py (i’;‘—é) (3.28)
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with the range expansion coefficients given by

Unm (2) = —(2m—1)i™

Snm (£) = —Ash3(2m — 1)i™!
/ LI (";’") e~itla-2e) g (3.29)

As is the case with the displacement sources, these influence functions should also
be evaluated with precision since they determine the accuracy of the solution of the
unknown displacement source strengths. The horizontal wavenumber integration in

Eq. 3.29 is therefore performed using a Gaussian quadrature scheme (Appendix D).

3.3.4 Source Homogeneous Solution

We next consider the homogeneous solutions corresponding to a real source in a

stratified media.

Horizontal Wavenumber Integral Representation

Following the previous discussions, the homogeneous solution is expressed az an
integral of up and down going waves with unknown spectrum AZ(s), with s being

the horizontal wavenumber

Wa(z,2) = /:: [—%A; (8)e™* + o, A} (a)e("‘)"*] P Ll D LN

Pn(z,2) = =Anhd /_ : [A; (s)e™®~ + A} (s)e("')""] e~i=-=deds . (3.30)

Since the source does not have to be located at the origin of the local coordinate
system, as shown in Fig. 3.2, we have expressed its dependence explicitiy as e~$(*—=2),
This makes the unknowns symmetric with respect to the horizontal wavenumber s,
enabling the reduction of discretization of the wavenumber integral to the positive

part of the spectrum only.
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Basis Function Expansion

For the purpose of matching the vertical boundary conditions, similar basis function

expansion to those of Eq. 3.15 can be written as

!
zZ—3

nerd) = 3 Uanl@)Pos (272

\
Z ) (3.31)

03 [e~

iﬂ(z’z) = ils'nm(x)P —1(

with the range expansion coefficients given by

i’nm(z) = —(2m-—1)™ |
/_:, [s45 () + (—1)™"a4% (s)] € jns (.%ﬂ) -isle—22) gy
g'nm(z) = —Anhﬁ(zm — l)im—l
[_: [A; (s) + (-l)m_iA;';(s)] e’k‘g‘jm_l (ll:n) e~ (z-x) g

(3.32)

Numerical evaluation of the above influence functions is again performed by a trape-

zoidal rule integration scheme.

3.4 Solution of Discrete Range Dependent Prob-

lem

Now we are ready to solve the discrete range dependent acoustic wave propagation
problem. First the global matrix for the unknown source strengths is established
and solved for the unknowns; then the fields are calculated at each desired receiver
depth for all ranges within each sector as in the global matrix approach to the range
independent case, except that in each sector, contributions from the left and the

right vertical section must be added.
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3.4.1 Solution of Displacement Source Strength

Originally we started out with the boundary integral equation Eq. 3.2, which is a
Fredholm integral equation of the 1st kind with the unknown indirect displacement
source strength appearing inside the integral. Applying the various line source dis-
tributions over the vertical boundary of each layer and carrying out the boundary
integral for these layers analytically, this integral has been transformed to summe.-
tion over all orders of the basis function. Truncating this basis function expan-
sion to M orders, each vertical discontinuity in range produces M unknown source
strengths for N layers at both sides of the interface. Thus M x N x 2 conditions
must be supplied for each vertical cut which is provided by requiring continuity of
both the normal displacement and the pressure for the M orders of the expansion
in each of the N layers. This is exacily the Galerkin method which requires that
the difference beiween two integrals appearing on both sides of the vertical interface
be orthogonal to M linearly independen. weighting functions over the interval in
each layer. This method can also be inte:preted as weighting two integral for both
sides of the interface and requiring that the integral of the weighted members be
equal. By selecting the weighting function and approximating the basis function to
be identical orthogonal functions, this reduces to simply matching each expansion

coefficients of the basis functions.

Since all physica! variables to be matched were expanded in terms of orthogonal
basis function with integration over the vertical bcundary of each layer performed
analytically, imposing the boundary condition at a vertical interiace will generate a
local system of algebraic equations for the unknown expansion coefficients or source
strengths ,.(0). These local systems of equations for every vertiral interface
are then combined into a global system cof equationa analogous to the homogeneous
layered case. Denoting the physical parameters, normal displacement u and pressure
p, at interface(node) j for the Ith sector(super-element) es {u}!, which is a row

vector of dimension M x N x 2, the local system of equations to be satisfied at the
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j th sector interface

j th sector j+1 th sector

{u} ‘“}iij

— X] >l Xi+ oo

Figure 3.3: Heuristic diagram of the components for matching the boundary con-
dition at the jth vertical interface.
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vertical interface j is

(¥ = {w}ip + {u}jp + {4}
{u}{j+l)l. + {“}{,'H)R + {E‘}f+l . (3.33)

Each term of Eq. 3.33 is shown schematically in Fig. 3.3, where for simplicity the
horizontal stratification is not shown. Arrowa represent influences from all layers to
that layer being matched where only & single arrow has been drawn. {u} is displace-
ment source related, and {u} is the real source related terms with subscripts L and
R meaning contribution from the left and the right part of the sector element being
considered. For half-infinite sectors, contributions from infinity vanisk because of
the radiation condition inherent in the wavenumber integral. Again, each of these
terms consist of particular and homogeneous solutions. For clarity, we will write
out the elements of the full column vector for the real source solution assuming that

the source is located at layer s:

{8} = (W} + (&} (3.34)

- - [ ] - [ ] - - - L ] - T
= {Ull(xj)"” yUa+ Un,Uis+ Uiz, -, Unay S11y -+ S+ Siay - ',SNM}

where the expansion coefficients U(z), S and l.],é‘ are given by Eqs. 3.29 and 3.32.
Range z in the expansion function should be the sector iength X; for jth sector
and 0 for (5 + 1)th sector since origin of the z-coordinate for the source solution
was chosen to be on the far-left vertical cut of the sector being considered. For
the displacement solution it is written as a sum of the displacement source and

displacement homogeneous solution as

{"}fz. = {a}fz. + {“};L
[A(X})]s{a};c + [B(X;));{a};r (3.35)

where {a},L is the unknown displacement source strength at the left interface of
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sector 3
\

([ 01(0)

Dh1(0)

{a};L = (3.36)

| Onne(0) §

and the influence function matrices of the jth sector [A(z)]; and [B(z));, which have
dimension of N x M x2by N x M » are given by Egs. 3.17 and 3.26 respectively.
Since the displacement source influences are restricted to its own layer, [A(z)); is
seen to be a block diagonal matrix, per Eq. 3.17, while the influence matrix of
the homogeneous solution becomes a fully populated matrix since the homogeneous
solution propagates through all layers. Agein, the range appearing in the expansion
coefficients is O when it is self influencing and X; when influencing the other vertical

interface.

Rearranging Eq. 3.33, contributions from the unknown displacement source,

Eq. 3.35, are isolated on the left hand side as

[A(X;))i{a}ic + [B(X;))i{a} iz + [A(0)];{a}:r + [B(0));{a};x —
[4(0))i+1{a}+1z ~ [B(0))s+1{a}ijenz — [A(X)]j41{a} 1) — [B(X))j+1{a}s+1)r
| = {“‘}fﬂ - {".‘}} . (3°37)

Combining both influence matrices into [C(z)), this equaticn reduces to

[C(X)i{a}se + [C(0))i{a}se ~ [C(O)]s41{a}yssny - [C (Xje1)1+1{a}j+n)n
= {;‘};'H - {“‘}j . (3.38)

Referring to Fig. 3.4, these local systems of equations for all vertical interfaces
are combined into a global system of equations for the discretely varying range
dependent problem. Again, the global system is solved by Gaussian climination.
Compared to range independent solution technique for layered media, this global
system needs to be constructed only once. Solution of the global system reveals all

the displacement source strengths at all vertical cuts simultaneocusly. If the ocean
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changes such that numerous discretization in range is required, a marching solu-
tion can be obtained by ignoring multiple backecattering, significantly reducing the
computational requirements, and allowing analysis of reverberation from individual

features in the environment.

3.4.2 Field Evaluation

Once the global matrix has been set up and the unknown indirect source strengths
at the vertical interfaces are found, we can compute the field at any desired receiver
depth and ranges. Comparison of the two forms of the solutions (for example, Eq.
3.24 and Eq.3.25,3.26) shows that the basis function expansion solution contains

one more summation over all orders of expansion than the horizontal wavenumber

solution. Thus it is much more efficient to use the horizontal wavenumber integral
representation. Furthermore, this solution form allows the use of the FFT for the
integration, yielding the field at multiple ranges simultaneously. If instead the field
was desired at multiple depths for a relatively few fixed ranges, for example for
vertical receiver arrays, it seems likely that use of the basis function expansion is
more desirable since the depth function is given analytically. By comparing the
previous equations for both solution forms, the basis function solution still contains
one more summation with the kerneis of the integration numerically more expensive
to compute. Therefore the basis function expansion is used only to satisfy the

vertical interface continuity condition.

Returning to the horizontal wavenumber integral for the field at multiple ranges
for designated receiver depths, it is given by the summation of contributions from
forward propagation and reverberation from the discontinuity with an additional

real source component if it exists in that sector, conveniently written as
G(t, z) =G + Gp + Gg (3.39)

where centributions coming from right(subscript R) and the source(subscript S)

are coordinate transformed to a local coordinate with z = 0 at the left interface,
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Figure 3.5: Local coordinate system for wavenumber integration. z, is the source
location and X is the length of the sector element.

as shown in Fig. 3.5. This coordinate transform is convenient when the fields are
calculated for multiple ranges using an ¥FT technique, where the range sampling is
uniquely determined by the horizontal wavenumber sampling as shown in Chapter
2. If the origin of the local coordinate systems were chosen differently, we would
have to adjust the starting point of the range sampling to be identical for each

sector.

There is an aliasing problem when performing the FFT, which is fully discussed
for the cylindrical geometry in [43]). To avoid this problem we can always deform
the integration contour in the complex wavenumber domain. For plane geometry
where the integral bounds are from —oo to oo, the contour has to be deformed as
shown in Fig. 3.6. The integration is truncated at +a.,,, and consist of 3 separate
contours. The contribution from the vertical contour C; is negligible when the offset

¢ is small. Following SAFARI [43], it is chosen to be

3

€= 2n(L —1)log ¢ max (3.40)

where L is the number of sampling points for horizontal wavenumber. This gives
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Figure 3.6: Complex integration path for poles lying close to the real axis.

an attenuation of the alias wrap-around by at least 60 dB which is proven to be
sufficient for most practical purposes.
Expressing the wavenumber integral in terms of depthk-dependent Green’s func-
tion g(s, 2) as
G(z,2) = /: g(s,z)e " ds , (3.41)
the discrete approximation of the above integral for the G component, with com:-

plex contour and same notation as Chapter 2 introduced, is given by

L/2-1
GL(z,-,z) = Aae“'-h’ic"’: z 9L(3l—3€ z)c i:.huh] -(ZE:,
=0

L-1
Ase~=i=%ie®*i | 3~ gy (8 + ieiz)c-“‘hm.] Y. (342)
i1=L/3

The negative and positive spectra have been separated due to offset in different
directions. Both summations are performed by means of an FFT. Contributions

from the right sector interface become

L/3-1
Gn(z,', z) — A“-uu...(x-s,)c-a(x--,) Z gn(a: _ l'E; z)e-‘(x—-.l.)m-] e(’{-u +
=0
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L-1

Ase~Hmin(X=2;) (X %)) [ Y gr(sr + ie; z)e X """)’A'] e ¥4 (3.43)
i=L/3

Notice the change of sign in the Fourier transformation which iz caused by the

coordinate transform. Similarly, for the source term

_ L/3-1
Gs(zj,2) = Ageimin(zj—20) ge(zj—=e) [ E gs(8 — ie;z)e"“(""“"')m'] e EY 4+
) 1=0

L-1
Asc—icnh(z,-—z,)cz(z;—z.) [ Z 98(31 + ic;z)e—i(s.;.-l:.)lAa] C-i’#'(3.44)
I=L/2

Cylindrical geometry

Helmholtz reduced wave equation is

3, 8 a’
181. q’)+ S rhs=o0. (3.45)

Separating out the cylindrical spreading effect by introducing a new function

é(r,2) = ,/%q»(r, 2) (3.46)
Eq. 3.45 becomes
6’¢
81"
When the ¢/4r? term is dropped for la.rge r, cylindrical spreading can be treated

¢+ +h’¢ 0. (3.47)

with the present 2-dimensional derivation simply by multiplying \/_—}:- in the final
evaluation of the field.

This procedure is equivalent to performing a Hankel transform to the cylindrical
3-D Helmbholtz equation, arriving at the same depth-separated ordinary differential
equation. When the inverse Hankel transform is performed, the Bessel function is
split up as a sum of two Hankel functions with negative propagating waves neglected
and the use of the principal asymptotic expansion for large arguments of the Hankel
function is made, enabling the use an of FFT for the integration. In the former

‘transformation of variable’ method, the inhomogeneous source condition is changed
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accordingly and this is the reason for the difference of the £ phase shift and /5 in the
kernels of the conventional fast-field program and the present derivations. Another
minor difference between the two methods is retention of both the negative and the
positive spectrum in the present method. This essentially has no effect on the final

field values but is convenient for the sake of book-keeping.



Chapter 4

Convergence and Performance

Analysis

This chapter and the next chapter will be devoted to examining the feasibility
and efficiency of the proposed method for solving stepwise varying range depen-
dent ocean acoustic propagation problems. First we will describe various numerical
aspects of the present hybrid method. This discussion will clarify the types of
problems most appropriate for this method. In the following chapter, numerical
examples of canonical problems of underwater acoustics, which directly and indi-
rectly prove the validity of this method, will be presented along with application
to matched field processing for active localization of a volume inhomogeneity in an
otherwise range independent ocean.

The primary measure used for the solutions in this and the following chapter,
is the transmission loss, which is defined as the drop in sound pressure level in
decibels(dB) from the pressure expected at 1 m from the source, defined as TL
= —20log(|p|/|S|) dB. S is customarily taken as 1uPa in underwater acountics.
Results of transmission loss are presented in either of two formats: a) transmission
loss versus range for a fixed receiver depth; b) the transmission loss contours plotted
over depth and range. For reference purposes, the magnitude of the kernel of the
depth dependent Green'’s function is presented in the horizontal wavenumber (m™!)
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domain.

4.1 Numerical Considerations

There are numerous complications in numerically irnplementing the hybrid bound-
ary integral and global matrix method. Sor: of the principal questions regarding
the numerical implementation and, more importantly, its correct use in ocean acous-

tic simulatior, can be stated by the following:

e How many degrees of freedom should be used in the polynomial expansion for

the solution to converge ?

o Where should the horizontal wavenumber spectrum truncation be made and

what is the proper wavenumber sampling ?

o Will the range discretization cause any stability problem in the global matrix

when solving for the unknown source strength ?
e To which depth do we have to discretize the half-space for a reliable result ?

The numerical aspects concerning the hybrid method are addressed in this chapter,

which will clarify these four issues.

4.2 Convergence of Basis Function Expansion

According to the Weierstrass approximation theorem [12], the algebraic polynomial
expansion of a continuous function over a bounded interval converges to its true
value. The convergence is faster when the continuous function is smoother and its
interval is narrower. The convergence is also known to be even faster when orthogo-
nal polynomials are used. Infinite series for the basis function representation should
eventually converge to its true value since physically, the field being represented is

a continuous function except for the source point.
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For numerical treatment, this infinite series has to be truncated to a finite sum.
Truncation should be made with caution since not only does it directly introduce
errors in the field values, but also couples to other sectors and layers through the in-
fluence matrix which was constructed to solve for the displacement source strengths.

First, we investigate the convergence problem by applving the present hybrid
technique to a problem with a known analytic result. An example is the acoustic
propagation of a source signal of two discrete frequencies in a waveguide with per-
fectly reflecting boundaries (Fig. 4.1). The depth of the waveguide is 10 m. The
source, having frequencies 250 and 750 Hz, is located at the midpoint of the water
channel. The medium is homogeneous with 1500 m/sec constant sound speed and
the density is a uniform 1 g/cm®. We introduce an arbitrary vertical interface at
500 m to the right of the source location to determine the ability of the present
approach to correctly represent the coupling between two sectors, and the water
properties are the same on both sides of the vertical interface. The dependence on
the separation distance between the source and the dummy vertical interface will
be investigated in a later section. The sector to the left of the interface contains

the source and is referred to as the first sector and the right as the second sector.

For the 250 Hz source centered in the waveguide, only the firat and the third
modes will be excited. The depth dependent Green’s function for each sector, at
a receiver depth of 5 m is shown in Fig. 4.2. The peaks are due to the poles
corresponding to the normal modes. Because the poles are located very close to the
real axis, it is difficult to accurately sample the integrand. The complex integration
scheme previously described is adopted, and is responsible for the magnitude of
the third mode integrand being larger than the first. For only one term included
in the expansion, it is seen from the integrands that complete coupling between
two identical sectors is not properly achieved. As we increase the total degrees
of freedom used in the expansion, the ratio of the magnitude of the maximum

integrand value to its true value approaches unity as shown in Fig. 4.3 for both
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Figure 4.1: Homogeneous waveguide with perfectly reflecting boundaries and a
dummy vertical interface.

modes. Since the first mode shape is smoother than the third mode, convergence
is achieved with fewer degrees of freedom. Complete coupling into the right sector,
and also its couvergence, is achieved with 4 degrees of freedom; this is also verified by
the excellent agreement between the computed transmission loss and the analytic
result. In contrast, the conventional boundary element method requires at least
ten or more nodes per dominant wavelength for an accuracy of better than few
percent [50], which converts to 20 nodes over the vertical depth for the current
example. Meanwhile, Galerkin’s method produces an accurate result with only 3 or

4 degrees of freedom.

By raising the source frequency to 750 Hg, the first five symmetric modes {modes
no.1,3,5,7,9) are generated by the mid depth source. Fig. 4.4 represents the ratio of
the magnitude of the maximum integrand at both sectors to its true value, versus
total order of the basis function expansion used, and shown separately for each
mode. Since the mode shape in the depth direction for the 9th mode has 8 nuils,
accurate modeling of the fieid variation would require Fo,...,P; as can be seen

from Fig. 4.4. The total degrees of freedom required for lower modes follow a similar
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Figure 4.2: Depth dependent Green's function using only zeroth order polynomial
expansion (Fo): (a) integrand in the first sector ; (b) integrand in the second sector.
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Figure 4.3: Convergence of the maximum of depth-dependent Green's function on
total degrees of freedom employed for: (a) 1st mode ; (b) 3rd mode.
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argument with extra expansion necessary to take into account the coupling between
modes. This example is a worst-case scenario, in terms of expansions needed, since
for perfect modes complex wavenumber integration has to be performed. This
magnifies the higher modes present which results in requirement of more expansion

terms to accurately represent the field variation.

In the second example, we examine the mode conversion in a waveguide with
an abrupt change in the medium propagation speed. The acoustic waveguide has
perfectly reflecting boundaries with sound speed changing from 1500 m/sec to 600
m/sec as shown in Fig. 4.5. A simple source of 100 Hz frequency is located at depth
z = 6 m and 500 m away from the vertical discontinuity interface. Only the first
mode can be generated in the first sector whereas up to 3 modes ‘can’ be generated
in the right. The source in the left sector generates the first mode which partially
couples into the right sector as the first mode only because of the orthogonality
of the mode shapes which are sine funciions and the remaining energy is back-
reflected. Fig. 4.6 represents the ratio of the magnitude of maximum integrand at

both sectora to its true value versus total order of the basis function expansion used.

When a single degree of freedom is used in the expansion (i.e. Fp) it corresponds
to a collocation method with 2 nodes. This is the reason for poor performance with
erroneous 2nd and 3rd modes generated in the right sector. Increasing the expansion
to 2 degrees of freedom results in correct magnitudes for the first mode but higher
modes of small magnitude are also coupled into the right sector giving errors in
the total field vaiue. This is because the mode shape of the first mode which is a
sinusoid cannot be represented accurately by P, and P, alone. The transmission
loss compared to analytic result will be shown for this case in the next chapter.

Convergence of the infinite series for the basis function has been tested for var-
ious problems and it is found that this scheme is very robust to the degrees of
freedom used as long as they are able to represent the actual variation of the field

along the vertical cut reasonably well. This can be translated as the following: If
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Figure 4.5: Waveguide with perfectly reflecting boundaries with abrupt propagation
speed change from 1500 to 600 m/sec. Source (6 m depth) of 100 Hz is located 500
m to the left of the discontinuity.

1st mode integrand

1.1
[
3
. L
>
® 1.0 - =
S
v ——@— Secior 1
s —¢— Sectlor?
g 0.9 -
£
»
]
£ 08 t—r—r—r—y—v—p—r—p—r——T—

0 1 2 3 4 5 6
Numbeor of D.O.F

Figure 4.6: Convergence of the maximum of depth-dependent Green's function on
total degrees of freedom empioyed.

75



there are n number of modes propagating, where n > 2, then employing n degrees
of freedom in the expansion is sufficient to represent the actual field at the vertical
interfaces since they have an equal number of nulls in the mode shape. Forn =1
or 2 modes, we need at least 3 expansion terms (P, Py, Ps) to account for smooth
variation of the field. This ie a conservative statement since, for most cases, only
the dominant lower modes will contribute to shaping the actual field variation in
which case the total expansion needed is drastically reduced. In this manner, pre-
determination of the number of degrees of freedom to be employed can be made
from a rough physical understanding of the actual problem to be solved although

it is always possible to check its convergence by brute force.

4.3 Wavenumber Integration

The numerical evaluation of the Green’s function for both displacement scurces and
real sources is important for the success of the present hybrid scheme. Improper
evaluation of these solutions leads to incorrect influence matrix coefficients, yielding
inaccurate displacement source strengths.

The inhomogeneous solutions of the displacement (artificial) source and the real
source are given in closed form and are evaluated by a quadrature scheme described
in Appendix D. The homogeneous solutions for each sector are found using the
range independent wavenumber integration algorithm. Numerical evaluation of the
wavenumber integrals is a critical point for wavenumber integration approaches. As
already discussed in Chaptecr 2, truncation of the horizontal wavenumber integration
interval and wavenumber sampling are two critical issues governing the success of
wavenumber integration algorithms.

Truncation of the horizontal wavenumber spectrum can be performed with sim-
ilar philosophy to that of the range independent SAFARI code, with an extra issue
which has to be considered. Truncation should be made to include all possible

waves that couples not only through layers but also through sectors. When the
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wavenumber integration is the final step in the computational sequence as is the
case in range independent problems, this truncation point can be taken as 10 tc 20
% higher than the maximum medium wavenumber present. This introduces little
or no detectable local errors in the field, especially with smcothing of the kernel
for large wavenumbers where cancellation occurs due to the highly oscillating e™***
term when z # 0. In our present formulation, the influence matrix must be found
for £ = 0, in which case there are no cancellations and the truncation point must
move up higher than the range independent cases. This is also critical since a small
error in the influence matrix evaluation will introduce errors in the displacement
source strength giving rise to global errors in the final evaluation of the field at 2li
ranges.

The previous example of mode conversion in a waveguide with abrupt change
in medium propagation speed (Fig. 4.5) is taken as an example to demonstrate
the influence of the truncation point. Since the maximum wavenumber present
corresponds to the minimum wave propagation speed present, 600 m/sec, then
Cmin = W/8max of 500 m/sec should be enough to ensure an accurate solution if
we follow the guidelines of the range independent wavenumber integral approach.
For example, the transmission loss for a 5 m depth receiver is shown in Fig. 4.7
along with its integrands. An erroneous third mode is generated in the gecond
sector which results from selecting too small a truncation point for the wavenumber
integration. Although the integrand value is virtually zero from the truncation
point, small error in the influence matrix evaluation has resulted in the phenomena

of the third mode coupling into the right sector.

As we increase the truncation point or equivalently lower the Cy, value, the
fluctuating transmission loss in the 2nd sector of Fig. 4.7 decreases and eventually
stabilizes to the correct value. The fluctuating magnitude of transmission loss in dB
is plotted as function of Cy,, along with the relative error expressed in percentile in
Fig. 4.8. As Cu, approaches 100, the relative error reduces to less than 1 percent.

Again this is a worst case scenario where perfectly trapped modes inside the channel
7
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are not amenable to numerical treatment due to near singular behavior even with
complex integration scheme. For most cases explored, Cy, selected to be half of

the minimum present propagation speed was found to be sufficient.

The wavenumber sampling within a truncated horizontal wavenumber spectrum
is less critical as long as the integrands between sampling points vary smoothly. It is
relatively straightforward to determine an adequate sampling through the sampling
theorem in combination with choosing a complex wavenumber integration scheme,
as described in detail in [43]. Denoting the larger of the two between the maximum
range of interest and the largest finite sector length present as X, the wavenumber

sampling interval As should satisfy the inequality

2n
As < H (4.1)

where a is a factor which can be taken as 2 to account for the negative spectrum in

the case of a plane geometry.
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4.4 Numerical Stability

We investigate the numerical stability problems that might arise when sclving a
system of equations, s.e. one for layering and the cther for sectors.

Solution of the global system of equations, Eq. 2.16, at each sampled wavenum-
ber for every sector is done by Gaussian elimination with partial pivoting. As
described in detail by Schmidt [46], unconditionally stable solutions are cbtained
simply by choosing a proper local coordinate system located at the top of each layer
and writing the depth eigenfunctions as appearing in Eq. 2.12.

The stability analysis of the global matrix for the unknown displacement source
strength is fairly straightforward. Referring to Fig. 3.4, the global matrix for the
vertical stratification is a banded matrix with bandwidth 4 x M x N, where M
is the total degrees of expansion employed and N is the number of layers exclud-
ing half-spaces. The influence of displacement sources on themselves, denoted as
[C(0)k;, are bound to be greater than the influence on the other vertical interfaces
within the sector, written as [C(X)]; where X is the sector length. Thus the global
matrix becomes diagonally dominant in which case pivoting is not required. Qual-
itative numerical stability checking is not feasible since the elements of the matrix
are determined numerically. Instead, its stability has been tested with a condi-
tion number & using a subordinate matrix bound norm defined analogously to the

maximum vector norm as

£(C) = [[Cllell C7" llo
ICllw = lrgg.glcﬁl : (4.2)

In all of the tested cases which are physically well defined, including very sharp
medium contrasts in range, condition numbers were found to be in the range of
0 ~ 10* which is a safe indication of numerical stability for the global matrix for
vertical interfaces.

Once the stability has been checked, it remains to verify the accuracy of these

golutions. By arbitrarily varying the range discretization, elements of the global
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matrix are changed along with its dimension. Propagation of an acoustic signal in
a homogeneous waveguide shown in Fig. 4.1 was investigated. From 2 to 5 dummy
vertical interfaces were placed at various positions. Transmission loss over all ranges

matched with analytic result within few percent of error for all cases.

4.5 Modeling of Half-space

As described in Appendix B, it is not possible to find a basis function expansion for
half-spaces which also have horizontal wavenumber integral representations. Thus
free space radiation problems are not suited for treatment by the present hybrid
method. In ocean acoustic problems, where there is a free surface and a bottom to
trap acoustic energy, most of the energy is confined to a combination of the finite
water column and some part of the bottom half-space; this may be handled in the
following way.

When there is penetration of energy into the bottom half-space, which for some
cases will back radiate this energy into the layer, we introduce a dummy horizontal
interface down to the point where the back radiation is negligible. The half-space ex-
isting below this dummy interface is truncated only in relation to coupling between
sectors which is negligible for evanescent waves in the half-space. The radiation
condition within a sector is correctly represented in contrast to the coupled mode
theory where a false bottom and attenuation have to be introduced.

This depth location of the dummy interface depends on various factors, partic-
ularly on the geometry of the ancmalies existing in the haif-space, frequency of the
source, attenuation in the medium and mode wavenumber. Since mode wavenum-
ber is not known a priors, the bottom half-space can only be modeled by trial and
error by checking the convergence of the kernel. In the following chapter, examples
with bottom half-spaces are investigated and the depth of the dummy interface is
listed in the text along with other modeling parameters. From these, and numerous

other examples tested, a general rule-of-thumb is to model the bottom half-space
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as finite thickness layers having a thickness equal to or not much greater than the

water column depth.
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Chapter 5

Numerical Examples

This chapter discusses and shows numerical examples including four canonical prob-
lems, and with applications to matched field processing. Critical modeling param-
eters such as wavenumber sampling, degree of orthogonal polynomials, number of

equivalent point sources and half-space modeling will be discussed for each example.

5.1 Canonical Problems

By applying the hybrid numerical algorithm code, solutions of following canonical

problems are given in this chapter. These include:

1. Mode conversion in a perfect waveguide of discretely varying medium param-

eters;
2. Mode conversion in a Pekeris waveguide with changing bottom parameters;
3. Acoustic propagation in a stepwise depth varying environment;
4. Propagation in an ocean environment with a buried salt diapir.

The first example, which Fas an analytic solution using coupled mode thenry, is
chosen to demonsirate the overall accuracy of the hybrid BIE+WI method. The

second example demonstrates the feasibility of modeling abrupt medium change
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problems which are not amenable to treatment by other range dependent solu*ion
techniques. The third example compares the hybrid method with the coupled mode
solution and with the parabolic equation method. Finally, the fourth example
demonstrates the effect of a buried salt dome in the sub-bottom on the received

signals at various depths.

5.1.1 Mode Conversion in a Perfect Waveguide

Consider a waveguide with perfectly reflecting boundaries on both the top and the
bottom interface as shown in Fig. 5.1. In the left region, only the first perfect mode
can be generated by the source of frequency 100 Hz located at the mid-depth of the
water channel whereas up to 3 modes can propagate in the right sector. We use 2!
wavenumber sampling points to cover the horizontal phase velocity interval from
Chmin = —400 to Cax = 400 m/sec and a total of 3 polynomials( Py, Py, P;) are used.
The displacement source solution, in terms of horizontal wavenumber integral valid
inside the layer, is found from the discrete equivalent poini source representation
given in Appendix C. Ten equivalent point sources have been used. The perfect
mode present in the channel reveals itself as a sharp peak in the wavenumber inte-
gration kernel which makes it necessary to adopt the complex integration scheme
for smoothing the kernel, as mentiocned in Chapter 3.

Fig. 5.2 shows the transmission loss vs. range for receiver at the source depth.
The discontinuity of the medium is at range = 0 km. The transmission loss between
the source and the discontinuity reveals interference of the back-scattered signal
with the forward propagating first mode and only the first mode is coupled into
the right water column. To the left of the source, the interference pattern dees not
arise since the two signal are propagating in the same direction with equal phase

speed.

Table 5.1 shows the transmission loss values at the right sector, which is a con-

stant, for receivers located at 2.5 and 5.0 m respectively. They are independently
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Figure 5.1: Waveguide with perfectly reflecting boundaries with abrupt propagation
spead change from 1500 to 600 m/sec. Source of 100 Hz is located 500 m to the lelt

of the discontinuity at 5 m depth.
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calculated from both the analytic expression and the hybrid BIE+ W]/ scheme. The
last result is from a coupled mode code [16] where difficulty in madeling lower vac-
uum half-space was reported. Using the hybrid method, the largest relative error
of the presaure is 3 % for this example. The inherent numerical errors involved in
the hybrid method are: truncation of the basis function expansion to a finite num-
ber of terms, and truncation of the horizontal wavenumber spectrum. Aside from
the inherent nuwmerical errors, complex integration in the horizontal wavenumber
domain was performed and neglecting the contribution of the srnall vertical contour
is another source of numerical error. In spite of these errors, the overall accuracy is
satisfactory. In underwater acoustics modeling, an accuracy to within 1 dB of the
true solution is more than sufficient.

As a further check on the validity of the solution, and hence the model, we
employ reciprocity, which is a check of correctness. We exchange the locations
of the source and the receiver and again calculate the pressure field. Reciprocity,
however, has to be tested with care when the media are inhomogeneous. When
the source and the receiver are interchanged, the calculated pressure ficld at the
receiver has to be multiplied by the medium impedance (¢C). Table 5.2 shows the
received pressures for the source and the receiver interchanged. After the impedance
correction, the results are found to comply reciprocity, which again validates the

hybrid method and model.

Receiver | Transmission loss at right sector (dB)

depth (m) | Analytic | Present | Coupled mode
2, =25 8.72 8.7 7.25
2, = 5.0 5.71 €.0 4.24

g

‘Table £.1: Transmission loss comparison
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5.1.2 Mode Conversion in a Pekeris Waveguidv

The second example examined is propagation of the acoustic signal in a waveguide
having a bottom contrast. A canonical choice is the Pekeris waveguide [40]. The
water column is 10 m deep with a pressure release upper boundary and the bottom
layer medium parameters change abruptly as shown in Fig. 5.3, denoted as region
IIT and IV respectively. As in the previcua test case, we use left and right sectors.
In the left Pekeris waveguide (region I and III combined) only one trapped mode
is generated by a 200 Hz source located at the mid point of the water column.
To the right of the discontinuity (region II and IV combined), up to two trapped
modes can propagate. Again, 2!! wavenumber sampling points are used to cover &
horizontal phase velocity interval from Cpyn = —1000 to Cpax = 1000 m/sec and
a total of 5 polynomials and 10 equivalent point sources are used. The bottom

haif-space is modeled to a depth of 20 m which is found to be sufficient in this case.

Contoured transmission lc ,ses over depth and range are given in Fig. 5.4 where
an attenuation of 0.1 dB/)X is introduced in every medium. The bottom left-right
discontinuity is at range = 0 km and Fig. 5.4(a) is for a source at range = —0.5 km
whereas Fig. 5.4(b) is for a source at range = 0.5 k. When the source is located
at the left of the discontinuity, which excites the first mode, the Pekeris modal

pattern and the continuous spectrum (which constantly leaks energy into the bottom

Source & receiver coordinate (m)
Received signal (z4s 2z,) = (-500,5) | (z,,2,) = (500,2.5)
(zry z-) = (500,2.5) | (z/,2,) = (—500,5)

Transmission loss | 9.09 (dB) 5.01 (dB)
Imnedance
corrected (p?pC) | 4.87 x 10* 4.75 x 10*

Table 5.2: Reciprocity test
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&
p =10 (g/an?)
f =200 (Hz)
* C = 1500 (mysec) h=10 (m)
Region I Region II x
Region III Region IV
P=1.6(gan’) p=2.0(gtm)
C = 1600 (mysec) C = 2500 (m/sec)
a=0.1 @A) a=0.1(dB/A

Figure 5.3: Pekeris waveguide with bottom discontinuity. Media parameters are as
shown and the source (6 m depth) of 200 Hz is placed at 500 m to the left of the
bottom discontinuity.



directly below the source location) can be seen for the left sector. Interference
arising from the back-scattered field due to the bottom contrast can also be seen.
In the right sector, energy is coupled into two trapped modes, giving rise to a modal
interference pattern. The continuous spectrum is also observed, leaking energy into
the bottom at the discontinuity. For the vice versa reciprocal case, where the source
is to the right of the discontinuity and excites two Pekeris modes, the interference
pattern is more pronounced due to the first and second mode and the back-scattered

propagation. To the left, only the first mode is coupled into the medium.

This example demonstrates the class of problems the present method is most
suited for, and which are not amenable to treatment by other existing range depen-
dent solution techniques. This method yields reliable fuli-wave solutions even for
half-space problems, by modeling the half-space as finite layers and introducing a

dummy horizontal interface.

5.1.3 Cylindrical Seamount Problem

Consider a cylindrically symmetric ocean environment with a ring-like seamount.
The seamount has a rectangular cross section as shown in Fig. §.5. A source of
frequency 25 Hz is located at the mid-depth of a 200 m water column. A 135 m
high seamount is located with inner radius at 6 km and an outer radius at 10 k.
The water column is homogeneous with the customary medium parameters and the
bottom is a homogeneous half-space with attenuation of 0.5 dB/). 2!® wavenumber
sampling points are used to cover a horizontal phase velocity interval from C, =
1300 to Crax = 1.0 X 10® m/sec. A total of 4 polynomials(Po, Py, P3, Ps) and 10
equivalent point sources are used, along with complex integration for smoothing the
kernel for trapped modes present in the channel. The bottom half-space is modeled
to the depth of 300 m which is found to be sufficient in this case because of relatively

large attenuation in the bottom half-space.

This numerical example was treated using a one-way wave propagation Green's
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h=50 (m)
C = 1500 (m/sec) p = 1.0 (g/em3)
Receiver
e K
¢ h=200 (i)
£=25(Ha) h=135 (m)
<4— 5 (kan) 5 (km)

v

C=1700 (m/sec) P = 1.2 (glem3) &= 0.5 (dB/A)

Figure 5.5: Wave propagation in cylindrical ocean environment with bottom
seamount of rectangular cross sectional shape. Media parameters are shown and 26
Hz source is at 100 m depth with receivers placed at all ranges at 50 m depth.

function model by Gilbert and Evans [23]. Their method was first in generaliz-
ing Green’s function method to range dependent problems, but it was based on a
marching solution technique where the source function is the field at the end of
the previous range step. Thus, only a one-way wave equation solution could be
found which makes their method just like the parabolic equation method. For an
even comparison, this problem is solved by the hybrid BIE+WI method with the
back-scattering ignored at the end of the field calculation. This is achieved sim-
ply by dropping the back-scattered field term, either of G, or Gr depending on
the location of the source, in the Green’s function of Eq. 3.39. Fig. 5.6 shows the
transmission loss vs. range for receiver at the depth of 50 m calculated by various
methods. Thick solid line is from RDFFP of Gilbert and Evans (23] and dashed
line is calculated in two different ways (these are indistinguishable on the plot):
tirst, the coupled mode model CUPYL [16) was used with back-scatter turned off

to solve the one-way wave equation; second, the wide-angle version of parabolic
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Figure 5.6: One-way wave propagation transmission loss for the ocean with bottom
seamount.

equation model IFD [37] was used. The thin solid line is from the hybrid 312+ WI
numerical code SAFRAN, and excellent agreement can be observed betwzen these
methods. The little difference in troughs are due to different sampling points in
range. The small spike belongs to the right half-infinite secto. after the seamount
vanishes and occurs due to aliasing when the FFT is performed. The difference in
the third sector arises because of the inherent problem with energy conservation us-
ing the one-way wave equation solution technique [42] whereas the hybrid BIE+WI
method entirely satisfies the energy conservation. Fig. 5.7 shows the hybrid result
with the back-scattered component switched-on, and a small interference pattern

can be observed at all ranges except for the right half-space sector.

As pointed out by Gilbert and Evans {23], using the Green’s function method
to solve range dependent problems is advantageous since we deal directly with its
spectral components and valuable information on mode conversion phenomena can

be obtained by looking at its kernels. This is demonstrated in the next section.
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Figure 5.7: Both-way wave propagation transmission loss for the ocean with bottom
seamount.

5.1.4 Salt Diapir Problem

We now consider a problem similar to that of the previous section except that the
plane geometry plus the seamount is replaced by a buried salt diapir as shown
in Fig. 5.8, where three separate vertical strips are termed as sector 1,2 and 3
respectively. Note that media parameters are chosen as approximate representative
of a real situation where the sub-bottom salt diapir, which is an upswelling of salt
from the deep basement containing an extensive layer of salt, has a lower density
than the overlying sea bottom. Real salt diapirs have been detected as sharply
defined, almost columnn-like features, in geoseismic sections, and approximately as

shown in the figure.

The source frequency and depth dimensions are chosen such that only two
trapped modes will be present, thus simplifying the interpretation of the result.

A source of frequency 150 Hz is located near the surface of the ocean at z, = 1 m

and 0.5 km in range to the left of the salt diapir which continues for 1 km in range.
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\
=150 () 3
RcccivcrsQ C=1500 (m/sec)  p = 1.0 (g/em?) h=5 (m)
<D C=3000 (my/sec)  p =2.3 (g/emd) Xh=5 (m)
h=>5 (m)

Figure 5.8: Ocean environment with a salt diapir in the sub-bottom. Media param-
eters are as shown and 150 Hz source is at 1 m depth with 4 receivers located at
z =2.5,7.5,12.5 and 17.5 m depths.

210 wavenumber sampling points are used to cover a horizontal phase velocity in-
terval from Cpyn = —1000 to Cpay = 1000 m/sec and a total of 4 polynomials and
10 equivalent point sources are used. The bottom half-space is modeled to a depth

of 20 m.

Initially, 4 receivers are placed at depths RD = 2.5, 7.5, 12.5 and 17.5 m. Fig. 5.9
shows the transmission losses at these receiver depths vs range. The elevated salt
diapir is from range = 0 to 1 km and the source is ﬁt range = —0.5 km. Fig. 5.10
shows the horizontal wavenumber spectrum at the start of each of the three envi-
ronmental regions at all receiver depths. In the open water channel, originally there
would be two propagating modes; however, the second mode is cut off in sector 2
due to the bottom salt diapir and consequently, only one mode is dominating in
sector 3.

At the bottom receiver, RD = 7.5 m, the layer is still homogeneous in range with
a medium wavenumber hg = 0.31. Looking at the integrand of the 1st sector of
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Figure 5.9: Transmission loss vs. range at: (a) z=25m;(b) z=75m ;(contin-

ued)
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Fig. 5.10(b), the magnitude of the propagating second mode increases relative to the
evanescent first mode, giving a severe interference pattern in the transmission loss
plot. As the signal propagates into sectors 2 and 3, this second mode is cut off. The
first mode has 1nost of its energy confined in the water column, and shows a rapidly
decaying evanescent tail in the bottom, and thus is not affected by the presence of
the salt diapir, which is seen in the unchanging first mode in all sectors. At RD =
12.5 m where the medium changes in range, the second mode dominates in sector
1. Due to the salt diapir in sector 2, there is a slight shift of mode wavenumber
which is just below the cut off of hs = 0.21 and begins to transform to a continuous
spectrum. As the signal reaches sector 3, the magnitude of the now-propagating
second mode is drastically reduced compared to near constant evanescent first mode.
At RD = 17.5 m, the same phenomenon is observed giving rise to a sharp drop in
the transmission loss curve as the salt diapir is encountered. This anomaly in the
acoustic propagation has been experimentally observed in the Barents sea, where a

known salt diapir occurs in the region of basement outcrop (see Hug [27]).

Finally, the contoured transmission loss over depth and range is given in Fig. 5.11
where an attenuation of 0.1 dB/) is introduced in every media. The propagating
first modal shape can be observed throughout the water channel with the additional
second mode in sector 1. Slight interference arising from the back-scattered field
due to the sub-bottom salt diapir can also be seen. Over an elevated column such
as the salt diapir region, the transmission loss is relatively high. This indicates the
presence of an inhomogeneous feature (relative to the surrounding region) in the

sub-bottem structure.
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5.2 Generation of Reverberated Field for Matched
Field Processing

Matched field processing is a parameter estimation technique for localizing the
range, depth and bearing of a point source from the signal field propagating in
an acoustic waveguide. Specifically, matched field localization employs an envi-
ronmental model to match the acoustic field received by an array of sensors, with
calculated replicas of the expected field for all possible source locations. The general
approach of matching involves the correlation of the pressure field at the receivers
in a hydrophone array with a field calculated at the receivers that is based on us-
sumed model of the environment. The model-based calculation field is used as the
replica and is dependent on an assumed source range and depth. A high degree of
correlation between the received pressure field and the calculated pressure field at
a particular range and depth is an indication of a source at that range and depth.

Most of previous works on matched field processing has been related to passive
sonar systems employing hydrophone arrays to localize a point source. An active
sonar system for localizing an inhomogeneity of finite extent has, in contrast, been
paid little attention. Because of the tools readily available, 5.e. the present hybrid
BIE+WI scheme to generate svnthetic data of a reverberated field from an active
sonar system and a robust matched field processing algorithm designed by Schmidt
et al. [44], we may now investigate the performance of localizing anomalies of finite
extent in an otherwise homogeneous ocean environment using the matched field
processing scheme.

An active sonar matched field processing is performed in three steps.

1. First we select an ocean environment with an inherent inhomogeneity. This
ocean environment must be solvable by the hybrid BIE+WI scheme. By plac-
ing an active source of known frequency, we may synthesize the reverberated
field from the inhomogeneity at an array of receivers placed near the source

range.
103



C = 340 (m/sec) p=0

= -3 cm3
p =103 (g )\_ ¢

AAAAA

C = 1500 (m/sec) p = 1.0 (g/em3)
[/ 7SS S S S S S S SSSSSSSTTTTT
C = 3000 (m/sec) p=2.1(g/m3)

Figure 5.12: Cross sectional diagram of cylindrically symmetric ocean environment
with an air plume of finite dimension near the surface of the ocean.

2. Using only the information provided by the signals arriving at the array of

receivers together with environmental parameters of a homogeneous ocean,

apply the point source localizing matched field processing scheme.

3. From the results of the signal processing we then attempt to detect and (if

possible) estimate the location and size of the inhomogeneity.

For numerical simulation, consider a cylindrically symmetric ocean environment,
as shown in Fig. 5.12. At range = 500 m from the source location, an inhomogeneity
consisting of air bubbles trapped near the ocean surface, which we call a plume,
exists. The plume is modeled as continuum having parameters close to those of air.
A 100 Hz source is located at the mid-depth of the water channel, and a receivir.g
vertical hydropi.one array is at the same range location. Using the hybrid BIE+WI
technique, only the back-reverberated signals are measured. Fig. 5.13 shows the
depth dependent Green’s function of the back-scattered field for 2 receivers, one

in the water column and the other placed in the seabed. The reason for both
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the negative and the positive spectrum being plotted for a cylindrical geometry
was explained at the end of Chapter 3. For the matched field processing to yield
reliable results, the vertical array hydrophone spacing must be less than half the
vertical wavelength of the highest mode that contributes significantly to the sound
field [61]. Since the vertical wavelength of the significant highest mode present (11th
mode) is seen to be 17.6 m (from the figure), 16 hydrophones are placed from 10
to 122.5 m at 7.5 m spacing. This gives a slight spatial oversampling and so we
avoid wavenumber aliases when we sample the field. In generating the synthetic
reverberated field, 2!° wavenumber sampling points are used to cover the horizontal
phase velocity interval from Cp,, = 1000 to Cpex = 1.0 x 10® m/sec and a total of
4 polynomials(P,, P,, P2, Ps) and 10 equivalent point sourcez are used. The bottom
half-space is modeled to a depth of 200 m which is found to be sufficient.

Given the information provided by the signals arriving at the array of the vertical
receivers, in addition to the environmental parameters of the homogeneous ocean,
we could develop a new algorithm to localize a volume inhomogeneity, but this task
is beyond the scope of this thesis. Instead, two methods of array processing for point
source localization in correlated noise are employed: first the maximum likelihood
method (MLM) described by Baggeroer et al. [3], and second, the more robust
multiple constraint method (MCM) by Schmidt et al. [44]. Since these numerical
codes are used and identical terminology adopted, reference is made to above cited
papers concerning the detailed derivations and expressions. Referring to Fig. 5.14
adopted from Baggeroer (3|, ambiguity surfaces are constructed from replica fields
from a point source that scan through f, ff space. Since the ambiguity surfaces
provide an indication of the similarity between the assumed fields (replicas) and
the actual received data, for localization of a point source, a desirable feature of
these contour plots is the occurrence of a single prominent peak at the true source
location. The point source localizing algorithm applied to the plume problem is

shown in Fig. 5.15, where the range and depth are sampled by 25 m and 10 m,
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Figure 5.13: Wavenumber kernel for the back-scattered acoustic pressure: (a) in
the water column at depth z = 47.5 m; (b) in the seabed at depth z = 122.5 m.
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respectively, with an additive white noise of —20 dB. Each contour in the ambiguity

surfaces denotes a 1 dB increase in the estimator output.

MLM and MCM beamformers were both able to detect the plume inhomogene-
ity, which are indicated by light shading near the ocean surface. High ambiguity
surfaces are spread out over a region of space, as compared to an almost single
“point” peak behavior for a point scurce localization in this kind of relatively sim-
ple environment using the MFP algorithm which has a high resolution feature. This
spread in the estimated poor target location is caused by the volume inhomogeneity
which basically is a mismatch of environmental parameters in terms of point source
localization, causing the detected source location to spread out over a region. In
essence, we are using point source localizing schemes in order to find a distributed
target — and so the match can never be perfect. The spread region of high ambiguity
surface group is seen to closely relate the true location and size of the inhomogene-
ity. The central peak of high ambiguity surfaces is shifted towards the receivers,
and away from the true geometric center of the plume, which is due to higher scat-
tering from the vertical surface closer to the receciver. MCM shows more ambiguity
(sidelobes) than the ML beamforme:r because of its robustness to mismatch in the
environmental parameters to locate a point source. The sea bottom reveals almost

no ambiguity, as expected.

When the plume is infinitely extended in the range direction away from the
source 8o that it becomes a half-infinite strip of 25 m depth starting from range = 500
m, the MFP results of ambiguity surfaces for both the MLM and MCM beamforming
' do not change considerably compared to the finite plume problem. Since only the
back-scattered pressure field information is provided, which will not differ much
for the finite and half-infinite plumes of small size, this behavior is expected of the
point source localizing matched field processing scheme. Matched field processing
for localizing 2 plume of larger dimension, creating high back-scattered field at the

receiving array is performed to investigate if the estimation of the volume scatterer

108



o 0 Ff= 1000Hz sL= 048

50.0

100.0

Depth (m)

150.0

200.0
.0

0 0 F=1000Hz sSL= .0dB

AMBDR,MCM

50.0

1
500.0

100.0.0 1500.0

Range (m)
(b)

Figure 5.15: Contours of ambiguity function for the plume problem (Fig.5.12) using:

(a) MLM beamformer ; (b) MCM beamformer. Lightly shaded area represents the
plume and dark shaded area is the sea bottom
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Figure 5.16: Contours of ambiguity function for the half-infinite plume using: (a)
MLM beamformer ; (b) MCM beamformer. Lightly shaded area represents the
plume and dark shaded area is the sea bottom
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Figure 5.17: Contours of ambiguity function for the finite plume using: (a) MLM

beamformer ; (b) MCM beamformer. Lighily shaded area represents the plume and
dark shaded area is the sea bottom
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is possible. These results are shown in Fig. 5.17 and Fig. 5.16 for both the finite
and half-infinite plume, with light shaded areas representing the plume locations.
Because of the strong back-reverberated field, both the MLM and MCM revenl
no other ambiguous surfaces except at the true plume location. The maximum
level of the ambiguity function for the MCM is seen to bz 15 dB higher than the
MLM beamformer for both cases of the plume configuration. Thus in the case of
a low signal to noise ratio, the performance of the MCM tc localize these kinds of
inhomogeneities will be better than the MLM beamformer.

In the half-infinite plume MCM beamforming case, the central peak pcint of the
ambiguity surfaces occur at a depth slightly below the center of the vertical surface
that is facing the receivers and at range close to this surface. The half-infinite inho-
mogeneity is localized as a finite inhomogeneity since the infinite tail of the plume
does not contribute significantly to the back-scattering. MCM beamforming for the
finite plume of Fig. 5.17 shows more clearly the overall location and dimension of
the volume. The center of the clustered ambiguity surface has now receded closur to
its true geometric center with 2 dB higher estimation for the peak va'ue compared
to the infinite case. This results from the sharp edge at the far vertical surface
which identifies itself more to the receiver that there is an inhomogeneity at that
location.

Without detailed further studies, we applied two point source localizing matched
field processing schemes to identify volume inhomogeneities within a waveguide from
the synthetic back-reverberated pressure fields generated by the hybrid BIE+WI
method. It is found that inhomogeneities are at least detectable and in some cases

it is even possible to estimate their location and dimension.
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Chapter 6

Conclusions and Suggestions for

Future Studies

8.1 Conclusions

A hybrid super element method for discretely varying range dependent ocean wave-
guide propagation has been developed based on a hybrid Galerkin boundary integral
and wavenumber integration approach. The wavenumber integration approach is
used to generate solutions within range homogeneous segments, providing the kernel
of the integral equation. The Galerkin boundary integral approach is used for the
matching of the boundary conditions at the range discontinuities. The overall per-
formance of the BIE+WI method is excellent compared with the analytic, coupled
mode and parabolic equation solutions.

There are several advantages of the present method compared to alternative

global range dependent solution techniques.

e The full wave solution is obtained, including both forward propagating and
back-reverberated waves. These waves can be treated separately enabling

analysis of reverberation from individual fratures in the environment.

o Short as well as long range propagation and reverberation can be treated
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efficiently.

e As in the case of traditional wavenumber integration methods, the field within
each sector is directly represented as a wavenumber integrai, the kernel of

which is important for physical interpretation purposes.

e This basic idea is applicable to an elastic medium range dependent environ-

ment simply by introducing additional variables which represents shear waves.

Compared to other methods employing boundary integral formulation, the present
method has more applicability to global range dependent problems in ocean acoustic

due to the following features.

e The wavenumber integration within each sector enables elimination of the
range aiscretization within each sector from the degrees of freedom. The
length of each sector can therefore be chosen arbitrarily large without affecting
the number of degrees of freedem in the BIE solution.

e The Galerkin boundary integral formulation reduces the degrees of freedom
to the amplitudes of the distribution functions in the vertical direciion. Ad-
ditionally, this method is robust in the choice of degrees of freedom.

o Efficient comiputation of the Green’s function for layered media is achieved by
means of a modified SAFARI code.

¢ Finally, a marching solution can be obtained if multiple back-scattering is

ignored, which significantly reduces the computational requirements.

Without detailed further studics, we applied two matched field processing schemes
for localizing a point source to actively identify any volume inhomogeneity within
a waveguide from the synthetic back-reverberated pressure flelds generated by the
present method. By using the replicas of the homogeneous waveguide, it has been
found that inhomogeneities are at least detectable and in some cases it is even

possible to estimate their location and dimension.
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6.2 Contributions

This thesis ninvides a number of new contributions to the field of underwater acous-

tics and signal processing. These contributions may be classified into three areas.

e A new range dependent solution technique has been developed for solving
the wave propagation problem in two-dimensional seismo-acoustic media. It
incorporates the Galerkin boundary integral and the wavenumber integration
method. Furthermore, a numerical code has been developed for an acoustic

medium case.

e Exiensive convergence analysis of the basis function expansion has been per-
formed. This analysis enables the future underwater acoustician to employ

the Galerkin boundary integral method since it is shown to converge rapidly.

o We have demonstrated the possibility of an active sonar system for the detec-
tion and the localization of a bulk inhomogeneity. Specifically, this possibility
was shown by applying a point source matched field processing scheme to lo-

calize & bulk inhomogeneity in an otherwise homogeneous ocean environment.

6.3 Suggestions for Future Studies

It has been demonstrated that when the boundary integral equation and wavenum-
ber integration methods are combined we have a much larger possibility of efficiently
solving a complex inhomogeneous wave propagation problem. Some of these possi-
bilities are mentioned which should be the future studies to be carried out. Direct

extensions of the proposed method can be described as follows.

o Extension to treat elastic media simply by including the shear wave compo-
nents into all field components. The only additional work involved is to set

up the influence matrix for shear waves. (The wavenumber integral method
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already exists which can produce homogeneous solutions for the elastic me-
dia.)

¢ Time domain solution of the signals by Fourier synthesis can be accomplished

with relative ease without resorting to the Kirchoff integral equation.

¢ Various seismic sources of higher order other than the current point monopole,
which has already been studied and exists in the range independent version of
the global matrix method, can be introduced to examine physical phenomena

arising especially in seismology and structural acoustics.

o If a velocity profile other than isovelocity within a layer is incorporated, which
has known eigenfunction in depth such as n? linear profile, then a more realistic

modeling of the ocean would be possible with less number of layers.

Aside from these, the modeling of the half-infinite space should be studied with
the goal of finding a more convenient, more efficient alternative to the dummy
interface. The conventional method using the basis function has been shown to
fail due to the poor representation of the basis function expansion in terms of a
horizontal wave number integral.

Following the basic theme of the present BIE+WI method, another area in
which it may be useful is in rough surface scattering in layered inhomogeneous
media problems. This has been done for the layered homogeneous media using a
perturbation method but has not been applied in the range dependent case.

Further studies for inclusion of the irregular inhomogeneities other than a rect-
angular shape, such as the finite ice sheets with keels protruding into the water, in a
range dependent environment combining the proposed solution technique with the
regular boundary element method in lesyered media should be pursued for dealing
with more complex real ocean environments.

To enable a consistent treatment of the various 2ffects influencing the sound

propagation and reverberation in a realistic ocean environment, a seismo-acoustic
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propagation model for simulation of three-dimensional reverberation from facets in
an otherwise horizontally stratified ocean should be developed using the present
basic idea, allowing for simulation of out-of-plane scattering and reverberation,

which are important in the active bistatic or passive sonar scenarios.
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Appendix A

Field Representation in Laterally

Inhomogeneous Elastic Medium

In this appendix, a concise derivation along with full final expressions, needed to
implement the proposed hybrid method to treat elastic medium case, are given.
Since it follows the same context of the acoustic medium derivation cutlined in
Chapter 3, explanations are given for newly introduced concepts only. First the
elastic equivalent of displacement solution in terms of the basis function expan-
sion is given followed by the horizontal wavenumber integral representation. Then
the accompanying homogeneous solutions arising from matched horizontal interface
boundary conditions are sought both in terms of the horizontal wavenumber integral
representation and the orthogonal basis function expansion. Next, the contribution
from the compressional sources and its homogeneous solutions are given, both in
terms of wavenumber integral representations and basis function expansions. The
notations are consistent with Chapter 3.

The introduction of shear wave terms, makes the expressions more complicated,
and makes it necessary to express the field equations in a matrix form. For the
basis function expansion, which is used to match vertical interface boundary con-
ditions, the first vector form of the following equation is used. For the horizon-
tal wavenumber integral representation, used for matching of horizontal interface
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boundary conditions, the second vector form is used for the field variables.

u(z, 2) 1 ’ u(z, z)
w(z, z) w(z, 2)
z,2) = ¢ or z,2) =« A.l
v(z,2) oun( ) ’ v(z,2) our(z,2) (A1)
{ ozs(z,2) /1 ) | oes(z,2) /10 )

where 4 and w are displacements in the horizontal and vertical direction respectively
followed by normal and shear stress terms normalized by the shear Lame constant
.
The basis function expansion is written, using orthogonal polynomials identical
to those of Chapter 3, as
co z--4
v(z, Z) = E VM(Z)P -1 (__‘_2.) (A2)
m=1 3

where the expansion coefficient functions are

( Um(x) 3
Wan(z)
T(z)
\ Sm(:l:) J

Vonl(z) = - (A.3)

In the following, only these expansion functions are given except for the displace-

ment source solution which is written out in-full for clarity.

A.1 Displacement Source Solution

Extension of the present hybrid technique to treat an elastic medium is straightfor-

ward by including the shear wave displacement potential similar to Eq. 3.10 as
o(z,2) =4 f * B(n) e~ e~"le-3) 4y (A.4)
—00

where 1) is the vertical wavenumber, 16 is the horizontal wavenumber, 16 = §\/n% — k3,

and k is medium shear wavenumber.
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In addition to the normal displacement type source distribution of Eq. 3.8,
another arbitrary source must be added at the vertical cut to represent the shear
wave terms. We can either choose between the vertical displacement or the shear
stress or the normal stress type sources. Here, they are chosen to be the “shear
stress” type, which renders the field expressions in a more compact form than the
other types of sources. Thus it is more appropriate to name this section as “Normal
displacement— shear stress source solution”. To be consistent with the main context,

we wil! simply call them displacement solution.

Basis Function Expansion

Following the same derivation of acoustic medium case with additional shear wave

terms gives us the following expressions:
2r & z—1
ta(2,2) = =Y Upn(2) Prca | 2

z

Oulzrz) = o gwm(z)p . (_,_z)
ez )i = 3% Bunle)Pucs (211

Oenn(z,2) 1 = %Em{:lﬁm(x)P " ("—L—l) : (A.5)

1
As with the acoustic medium case, a factor of 27/l is necessary in the displace-

ment source solution. Expansion coefficient functions are given by Eq. A.6 through
Eq. A.9. Note in particular that the depth integration has been performed ana-
lytically producing spherical Bessel function, implying that the Galerkin method is

used in matching boundary conditions at the vertical cuts.

Va(z) = §’;(2m —1)(-1)™"1! gium-z

[° 00 + BOR) B s (%7) wi (L) a9

E = diag [c”" , e""] (A.7)
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_(2"1 _ kt) 2'12
R, = % z :50(20’ - k*)/y 2inb (A8)
(2nk4/h? + (20? — k2)?) [y —4n?$
in(n? — 2k?) —in(n? — 2k?) |
n —tn .
R, = L '/ 6 A9
B —inm*—k)/y 26 (4:9)
2"2 __(2’,2 _ k!) ]

where 0,,,(0) : Strength of normal displacement source of order m at layer n

S‘,.,,, (0) : Strength of shear stress source of order m at layer n

7 : Lame? constant

l : Layer thickness

P, : Legendre polynomial of order m

Im : Spherical Bessel function of order m
n : vertical wavenumber

1y : Compressional horizontal wavenumber /9% — h?
16 : Shear horizontal wavenumber /77 — k?
: Medium compressional wavenumber

k : Medium shear wavenumber.

Horizontal Wavenumber Integral Representation

From the contour deformation of the vertical wavenumber integral, the following
horizontal wavenumber integral representations are obtained which are valid outside

the layer of interest but still applicable on the interfaces:
¥(z,2) =3 / Z (Om(O)Ra + Sn(0)R,) B 3, = ds (A.10)
m=1 ¥ —%0

where each of the matrices are given by Eq. A.11 through Eq. A.14. Although du-
plicate notations with basis function expansions are used for these matrices because
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of similarity in nature, the individua! elements are different.

E

diag [e""‘“" , c""’fi“’]

5. - { ™ (—sign(z—%)ﬂgn) }

i8(20? + k?) /e —2isa
g - 1 sign(z — £)(20? + k?) —sign(z — §)2s?
: k1 —(28? — k?)(20? + k%) /a 4sa
- | —sign(z — §)2is(2a® + k*) sign(z — $)24s(2s% — k?) |
[ sign(z — 1)is —sign(z — §)is -
k - 1 p -8*/B
’ k* | _sign(z — $)(28® — k?)  sign(z — §)2s?
—2isf ~2i8(2s* — k) /8 |

where s : Horizontal wavenumber

iz Compressional vertical wavenumber /3% — k2

if% Shear vertical wavenumber i1/3% — k2.

A.2 Displacement Homogeneous Solution

(A.11)

(A.12)

(A.13)

(A.14)

Homogeneous solutions accompanying the disnlacement sources are comprised of

each contribution from the normal displacement sources and the shear stress sources.

Horizontal Wavenumber Integral Representation

Field equations can be written as a superposition of homogeneous solutions for

normal displacement sources (0;,(0)) and shear stress sources (5;;(0)) located at

each finite layer (I = 2,...,N — 1) for each order (k = 1,2,...).

N-1 oo

n(z,2) = ). z/: R B [0u(0)A + 5,,(0)C] e™*** ds

=2 k=17
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where the matrices are given by

—18 —48 if —ip
K = - * ° ° (A.18)
(2* — k%) (26* — k%) —2sf 230
| diew  die et k) —i2et kY

E = diag [e""' , ex-a g=2p c('-')p] (A.17)
T

A = {A_u Arn Bop Boyu } (A.18)

~ T

c = {C;,u Con Dan Din } . (A.19)

The unknown vectors A and C are the down- and up-going (superscript ¥) com-
pressional (A and C) and shear (B and C) waves due to displacement and shear
stress sources. Thus each combination of indices ! and k represents a single SAFARI

run.

Basis Function Expansion

Using the orthogonality relation of Legendre polynomials, expansion functions can

be extracted as

m(*) = (2m l)t -1 Eli/ REJ [Uu(O)A + Su(O)C] e ** ds (A 20)
1=2 k=1
where the matrices are given by
[ _is —is ig —ig
K = —@ * ? ° (A.21)
—(2a® + k?) —(202 + k?) 258 —2sf
| 2isa —2iscc  —5(28% — k?) —i(28* - k?) |
E = diag [e'Lgl s ‘!} "%] (A.22)
. . tla tlp slj
J = dlag [Jm—l( 2 )o fme—l( ) Jm-l( ) fme-l( )] (A.23)
T
A { Ao Anp Bou Bin } (A.24)
T
c { Cot Can Do Dap } (A.25)

123



where ¢, = (—1)™1.

A.3 Source Solution

Analogous to the conventional SAFARI code, this method has no limitation on the
implementation of various seismic sources [33]. Although this is true, compressional
real point sources are derived in this Appendix, which demands that only point

sources are allowed in the acoustic medium layer.

Horizontal Wavenumber Integral Representation

Field equations for an acoustic point source are given by

Va(z,2) = / oo Kel-selang-ils=2.)s4 (A.26)
with '
—t8/a 1
. -1
K = | ? (A.27)
(28 — k?)/
\ 2is )

where 2, : Source depth

z, : Source range

Basis Function Expansion

Again, extracting an expansion coefficient function using the orthogonality gives us

Vim(2) = (@m —1)im* [ ke-‘%‘jm-,(%?)e"""-"ds (A.28)
where '
—1s8/a 1
. -1
K= > (A.29)
(2a® + k) /e
k 128 )
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A.4 Source Honiogeneous Sohition
The homogeneous solution accompanying a real point source in a layered media is

straightforward.

Horizontal Wavenumber Integral Representation

Similar to the displacement homogeneous solutions, the horizontal wavenumber

integral is given by the following equation:
w o~ L ~
Fulz, 2) = / R E A eile-=dgs (A.30)

where each matrix is identical to displacement homogeneous solution

—18 —18 i -1

- —a a s 8
K = (A.31)

(28 — k%) (28% — k) —2sp 2sp

| 2isa ~2isa  —i(2s® — k?) —i(2s® — k?) |

E = diag [e"“ ,els—ha =58 e('"')p] (A.32)
. T
A = { A; Af B; B} } . (A.33)

Note how the depth separated portion is written such that wxves generated at each
horizontal interface decays as they propagate away, rendering iiie scheme uncondi-

tionally stable.

Basis Function Expansion

Vom(z) = (2m — 1)i™? / "KRB A eileegs (A.34)
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where each matrices, given in the following equatians, are also identical to that of

displacement homogensous solutions except for the unknown vector A.

—15 —58 ig -if8
K - - * ’ ? (A.35)
—(2a® + k) —(2a® + &?) 2sf ~2sp
| 2sa —2isa  —i(26* - k) —i(2s® - £?) '
E = diag [c"' P e‘£f , "’f] (A.38)

= diag [Ju-l("i?') fmJn-l("a)oJu-l( ) fn.’u—l(“ﬁ)] (A.37)

X ]

A = {.4; A} B:; B }r (A.28)

where ¢ = (~1)™-1,

126



Appendix B

Horizontal Wavenumber Integral

for Displacement Sources

The displacement sources which are originally written in terms of a vertical wavenurn-
ber integral must be deformed into an integral ir, terms of a horizontal wavenumber

so that we can utilize the conventional numerical code of the direct global matrix

method for layered media (SAFARI) to arrive at the corresponding homogeneous

solutions. In order to convert the integral (Eq. 3.10)

#z2) = [* Aln) VR eto-bin gy (B)

which is an integration over the vertical wavenumber n, we make use of the contour

integration acherne as follows.

CASE I (z < i/2)

Consider a closed contour integration in the complex ¢ plane of the following
(Fig. B.1) .
I= {A(;\/fi — k1) e=iot (- §1/EO-N VF'FE_EF d¢ (B.2)

where the analytic function A is same as that of Eq. B.1 and h is the acoustic

medium wavenumber with a small negative imaginary part accounting for the vol-
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Figure B.1: Closed integration contour for wavenumber conversion.
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ume attenuation which can be either specified or taken from an empirical formula[43..

The branch cuts originating from the square root singularities +h and extending
to infinity are chosen such that /€Y — h? becomes purely imaginary along the branch
cut. Denoting each contribution of the closed contour as depicted in Fig. B.1 and
realizing that there are no singularities inside the cloeed contour, Cauchy’s theorem
gives us

I=Ic, + Ic, + I, +Ia’ + Icp =0. (B.3)
Since C) is running along the real axis of the complex § plane,
Ie, = /' ? A(iVaT —R3) et clo- VIR 7;,?.’:, ds (B.4)

and this is the required horizontal wavenumber integral representation. Along C,
and Cj, the arguments of /2% — h? are —§ and § respectively so that the following
change of variables are valid:

\/f’—h’ = —in along 7, (B.6)
\/f’—h’ = <ty along Cj;. (B.6)

With the above change of variables,

0 , —
To + Io, = [ Aln) VP eemimay — [ p(—n) etV lle-bingy

_ _m/:: A(n) sV —i(s-{)n dn
= —¢(z,2) (B.7)

where the last equality comes directly from Eq. B.1. Denoting the kernel of Eq. B.2
as f(€), on the circular arc C,, the value of (¢ — h)f(£) — O uniformly as p — 0.

Thus from the theorem on limiting contours,

Ig, = lim /a e de=o. (B.8)

p—0
Finally, the contribution along the infinite circular arc Cp vanishes if the kernel
S(€) without the e~*¢ part, where = > 0 for our choice of coordinate system, tends
uniformly to zero

R—o0

Ion = Jim [ 1(€)de =0 (B.9)
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according to Jordan’s lemma. Now from Eq. 3.13 and using the principal asymptotic
expansion for large argument of the Bessel function [1]

1) gy N i fE R
(c(l—l)\/(’-—h’ + c‘m) . (B.10)

1
BGEYTTL
So as long as & < 0, the kernel tends uniformly to zero slong the infinite circular

arc and Iz, becomes gero. Collecting Eq. B.3 through Eq. B.10, we arrive at the
desired equivalent horisontal wavenumber integral representation as

&(z,2) = /_: A(sV/aT = B¥) ¢~t% (- VT3 7;:‘?”40 (B.11)

which is valid for £ < 0.

CASE II (z > 1/2)

Following the same analogy as the previcus case, the horizontal wavenumber integreal
valid for £ > ! becomes

é(z,2) = f_ : A(—1vs¥ —RY) e e-('-hﬁ’:“m{;‘:ﬂa . (B.12)

Collecting Eq. B.11 and Eq. B.12,

#z,2) =i [ A(sign(s - %)f\/‘_.t ) ATl s (813

which is valid for z < 0 and z > [. Although this equation is not valid inside the
finite layer where the displacement solution is located, it is still useful to find the
accompanying homogeneous solutions for layered medium using the direct giobal
matrix method since the boundary conditions are applied at the interface of the

layers where the expression is still valid. This same problem is also reported by
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Devaney [14], where horizontal wavenumber spectrum expansion does not converge
inside the horizontal strip bounded by planes parallel to the z axis and containing

a distribution of continuous sources.

It was stated in Chapter 3 that, until now, the half spaces do not poesess a
basis function expansion suitable for modification into a horizontal wavenumber
integral representation. An example of expansion In terms of Laguerre orthogonal
polynomials is illustrative of the difficulty in mcdeling the half spaces. Fisst, the
basis function expansion is written as

a(z,2) = go....(z)c-'s‘r,.-,(u)
Pu(z,2) = ils..(z)c"'fb.-.(u) (B.14)

where L, is the Laguerre polynomial of order m, ¢ is a constant and the exponential
serves as the dual purpose of the weighting function and to represent the decaying
cf the fleld at infinity. Following the same procedure of Chapter 3, we arrive at
the expression given by Eq. B.2 but with a different function A(s\/€¥ — A¥). This
function possesses an essentisl singularity located st the negative imaginary axis of
the complex £ plane. Closed contour integration as in Fig. B.1 produces a residue
value, which is independent of the horisontal wavenumber, yielding this expansion
incompatible with the wavenumber integration method.
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Appendix C

Equivalent Point Source
Representation of Displacement

Sources

For the purpose of evaluating the field along all ranges for the desired receiver
depths, it is preferable to unify all solutions in terms of a horisontal wavenumber
integral representation where an FFT technique can be adoptad for numerical effi-
ciency. In the previous appendix it has been shown that this is not feasible for the
displacement solutions where the horisonta! wavenumber spectrum representation
is not valid in that particular layer where the displacement sources are located. To
overcome this cumbersome problem we shall derive a discretized equivalent point
source horizontal wavenumber representation of the continucus line displacement
sources.
We start from Eq. B.13 combined with Eq. 3.13 for the displacement source
horizontal wavenumber spectrum representation valid outside the layer
(e0) = = [ [ Oom sl -sinte - ) 52| T
where i = iy/s¥ — AY is the vertical wavenumber. Although this equation is not

valid inside the layer because of a non-convergence problem, it may be transformed
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into an expression containing an integral over the source distribution which is valid
inside the strip containing the sources. Remembering that the spherical Bessel func-
tion was produced by the line sources, substitution of the integral representation [1]

)= ot e py (2rd) e, 2

3
into Eq. C.1 gives us

N C T S Ep
The above equation converges for every field point £ and is in the form of a con-
tinuous distribution of simple acoustic point sources. The term inside the square
bracket is the amplitude of the source strength, composed of all orders of the Leg-
endre polynomials (which are the basis function which we employed for the solution
of the boundary integral equation using Galerkin’s method).

Numerical evaluation of the integral inside the curly bracket of Eq. C.3 is time
consuming. Instead we will efficiently discretize the integration by a summation
of point sources with adequate sirength. Discretization into equally spaced point
sources is numerically proved to be inefficient, and requires a fine discretization for
the total energy to be matched. Since we have chosen the Legendre polynomial
as the basis function, intuitively, we will benefit by locating these equivalent point
sources at Gauss-Legendre quadrature points with matching weights to yield better
results. Using a quadrature scheme [54], the total energy of the equivalent point
sources better matches that of the line sources. Replacing the integration in Eq. C.3

with summation,

N e |s-54la
¢(Z, z) = / [E f]nm(o)Pm-l (__‘_Z.) Wj] c""‘da (0.4)
j=1
where Gauss-Legendre quadrature points and its weight 2; and W; respectively are
z; = jth geroof Pn(z :/;/2)
2 l/2
w = 2 [ ()
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and N is the total number of equivalent point sources. Using this scheme it is
numerically verified that N can be relatively small, approximately equal to twice
the number of Legendre polynomial expansion used, and represents the actual field

without any appreciable error.
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Appendix D

Influence Function Integrations

For the computation of influence coefficients, following integral types need to be
evaluated:

L = / : =5y () (8) ds

L = [ ji(o)in(e)ds
Iy = L : -2- € " jm(ic) e** ds
I, = j; : ¢—l!- € %jm(ia) e ds (D.1)

where j represents spherical Bessel function and & = /8% — b3, with h being the
complex medium wavenumber with a small negative imaginary part and its real
value denoted as hy. The integration limits may e changed to (0, 0o) since the ker-
nels can be separated into 2 sum of odd and even functions. The Gauss-Tchebycheff
quadrature formula will be used whenever possible, given by (1]

[ 7;%%@ - gwaf(w) +Ra (D2)
where Gauss-Tchebycheff quadrature points y;, its weight w; and remainder R,

respectively are
(25 - l)x)
2n
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TYPE I,

This integral poses no problem when evaluated numerically since for z = 0, analytic
results are given in a closed form [24] and when z # 0, the kernel decays very fast

once the integration variable s exceeds h,.

TYPE I

This integral type exhibits an almost singular behavior when s is 2round hy. Thus
we separate the integration limits from (0,ho) and (hg,c0). With the change of
variables ¢t = s/ho and t = (8 — hg)/s respectively for the separated integration

limits, it becomes

= 1 c-e\/hoit’-h’ ( ) hodt
/o \Re—w 5 Ja(hot)m(hot) m

¢ [

—t)(Kd - h’(l - t)?)
Ja(ho/(1 — ) sm(ho/(1 —t)) m . (D.4)

If the kernels are regular inside the integration interval, the numerical quadrature
scheme, with square-root weight functions included explicitly, succeeds with a fest
convergence rate. Thus its behavior at an almost singular point s = hg and s —+ o
is examined, which corresponds to ¢ = 0, and ¢ = 1 with the above change of
variables.

The integrand behaves well for t —+ 0. When ¢t — 1 it is well behaved when
z # 0 because of the exponentizl decay. Even if z = 0, since the decaying rate of
the envelope of the spherical Beasel function for all orders is at least

,l_!,r,m(——) ~(1-1) (D.5)

136



the amplitude of the kernel goes to 0 as -,;z-_(i{f"—p

1-t)**

TYPE I

In addition to the square root singular behavior, the integrand is seen to vanish
slowly as 8 — oo. Envelope of the kernel for large complex argument has the

asymptotic expansion [1]
. e 1 -Sa
Jim e™%jm(ia) ~ -;(1 + e73), (D.6)

Although the decay is slow for large &, its contribution to the integral value is
negligible due to highly oscillating integrand with no stationary values which means
that the integrand cancels out. Numerically this is taken care of by applying a
Hanning window over the interval s € (80,80 + T)

1 0<s8<s
Wa(s) = { 1(1+cos(H52))) s <s<s+T. (D.7)
0 +T.<s

where sy is normally taken to be kg and window interval T, to be 10h,.
Following the same partitioning of integration interval and the change of vari-
ables for I, the integral can be written as

I premrs P Pe t3(1—t) hidt
Iy = [) VIR iy B3t — B?) mﬂm(hoﬁ) 7:'(?‘5

+ [ VRIS R (1= 1) - BY)

¢ . hoz h3dt
\/(l—t)’(hs—m(l—z)z) sin(7—) m : (D.8)

The kernel is seen to be regular for ¢ —+ 0. When ¢t — 1, because of the windowing of

the kernel, it is also well behaved with a fast convergence when numerical quadrature

scheme is used.
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TYPE I,

Compared to I5 this integral type converges to zero as 1/s® instead of 1/s, for
8 — 0o. Following the same division of integration limits and the change of variables

as that of I, it becomes

VR, (e~ ‘t(l hodt
- [ 7~ | g eoslbort) i
v [ e-Wj..(e\/hs/(mr—h*)

\/(1 —t,(h3 - hz(l —t)’) — t) 7:6_;; (D.9)

The behavior of the kernel inside the integration interval (including end points) are

regular for the first and the second part where the envelope of second part tends to
zero as m-_;"’lﬁ-)"ﬂ' for ¢t — 1. The numerical quadrature scheme is shown to be
fastly converging for all types of integration mentioned above.
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