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ABSTRACT
Data scientists spend over 80% of their time (1) parameter-tuning
machine learning models and (2) iterating between data cleaning
and machine learning model execution. While there are existing ef-
forts to support the first requirement, there is currently no integrated
workflow system that couples data cleaning and machine learning
development. The previous version of Data Civilizer was geared to-
wards data cleaning and discovery using a set of pre-defined tools.
In this paper, we introduce Data Civilizer 2.0, an end-to-end work-
flow system satisfying both requirements. In addition, this system
also supports a sophisticated data debugger and a workflow visu-
alization system. In this demo, we will show how we used Data
Civilizer 2.0 to help scientists at the Massachusetts General Hospi-
tal build their cleaning and machine learning pipeline on their 30TB
brain activity dataset.
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1. INTRODUCTION
Data scientists spend the bulk of their time cleaning and refining

data workflows to answer various analytical questions. Even the
most simple tasks require using a collection of tools to clean, trans-
form and then analyze the data. When a machine learning model
does not produce accurate results, it is due to (1) raw data not pre-
pared correctly (e.g., missing values); or (2) the model needs to be
tuned (e.g. fine-tuning of the model’s hyperparamters).While there
are many efforts to address those two problems independently, there
is currently no system that addresses both of them holistically. Users
need to be able to iterate between data preparation and fine-tuning
their machine learning models in one workflow system. We worked
with scientists at the Massachusetts General Hospital (MGH), one
of the largest hospitals in the US, to accelerate their workflow de-
velopment process. Scientists at MGH spend most of their time
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building and refining data pipelines that involve extensive data prepa-
ration and model tuning. Through our interaction, we pinpointed
the following hurdles that stand in the way of fast development of
data science pipelines (in the sequel, we use the words “pipeline”
and “workflow” interchangeably).
Decoupling Data Cleaning and Machine Learning: When it
comes to building complex end-to-end data science pipelines, data
cleaning is often the elephant in the room. It is estimated that data
scientists spend most of their time cleaning and pre-processing raw
data before being able to analyze it. While there are a few emerg-
ing machine learning frameworks [2, 1, 13], they fall short when
it comes to data cleaning support. There is currently no interactive
end-to-end framework that walks users from the data preparation
step to training and running machine learning models.
Coding Overhead: In larger organizations, it is typically the case
that several scientists/engineers write scripts that deal with different
parts of the data science pipeline. While many data science toolk-
its and libraries (e.g., scikit-learn) have gained a wide adoption
amongst data scientists, they are only meant to build standalone
components and hence are not well-suited to building and main-
taining pipelines involving a wide variety of tools and datasets. As
a result, scientists have to write code to build and maintain data
pipelines and update the code whenever they need to refine them.
Because building data pipelines is a trial-and-error process, main-
taining scripts hardwired for specific pipelines is time-consuming.
Moreover, the effort required to try out different pipelines typically
limits the exploration space.
Debugging Pipelines: When building a pipeline involving differ-
ent modules and datasets, it is typical that the final output data does
not look right. This is typically due to (1) a problem in the modules
(e.g., bug, bad parameters); or (2) the input data to the modules was
not good enough to produce reasonable results (e.g., missing val-
ues). The latter case is hard to debug using current debuggers that
focus mainly on code, i.e., users have to dump and inspect inter-
mediate data to find where it went wrong. Since it takes hundreds
of iterations to converge to a pipeline that works well for the task
at hand, a data-driven debugger can significantly decrease the time
spent in this process.
Visualization: Different datasets require different types of visu-
alizations (e.g., time series, tables). Typically, scientists visual-
ize the data in its raw format (e.g., tables) or manually visualize
the data using commodity software like Microsoft Excel. How-
ever, when building pipelines iteratively, it is daunting to seam-
lessly integrate visualization applications (panning, zooming) into
the pipeline-building process. Moreover, users need to spend a lot
of time if they elect to write custom visualizations of their datasets.

There are several efforts to support data cleaning tasks [7, 9],
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Figure 1: DC2 Architecture

iterative machine learning workflow development [10, 1, 2, 4], and
data workflow debugging [6]. Each of those efforts focuses on one
aspect of the pipeline development at a time, but not all.

The previous version of Data Civilizer [5, 3, 8] focused on data
discovery and cleaning using pre-defined tools. In most scenarios,
users clean their data to feed it to machine learning models. We in-
troduce Data Civilizer 2.0 (DC2, for short) to fill the gap between
data cleaning and machine learning workflows and to accelerate
iterative pipeline building through robust visualization and debug-
ging capabilities. In particular, DC2 allows integrating general-
purpose data cleaning and machine learning models into workflows
with minimal coding effort. The key features of DC2 are:

• User-defined modules: In addition to a state-of-the-art cleaning
and discovery toolkit that we already provide [8], users can also
integrate their data cleaning and machine learning code into DC2
workflows through a simple API implementation. Users have to
simply implement a function that triggers the execution of the mod-
ule they are adding.
• Debugging: DC2 features a full-fledged debugger that assists
users in debugging their pipelines at the data level and not at the
code level. For instance, users can run workflows on a subset of
the data, track particular records through the workflow, pause the
pipeline execution to inspect output produced so far, and so on.
• Visualization: At the core of DC2 is a component that allows
users to easily implement their own visualizations to better inspect
the output of the pipeline’s components. We have pre-packaged
a few visualizations such as progress bars for arbitrary services,
coordinated table views, etc.

2. SYSTEM ARCHITECTURE
We provide a high-level description of the DC2 architecture (Fig-

ure 1) and details are discussed in the subsequent subsections.
DC2 includes three core components: (1) User-Defined Modules
cover required functionalities to support plugging-in existing user-
defined modules into the workflow system (Section 2.1); (2) De-
bugger which includes a set of operations to do data-driven debug-
ging of pipelines (Section 2.4) and; (3) Visualization abstractions
to facilitate building scalable visualization applications to inspect
the data produced at different stages of the pipeline (Section 2.3).
Users interact with DC2 using the DC2 Studio, which is a front-end
Web GUI interface to author and monitor pipelines.

2.1 User-defined Modules

Users can plug-in any of their existing code into a DC2 workflow.
Because cleaning and machine learning tools can vary widely, DC2
features a programming interface that is abstract enough to cover
any data cleaning or machine learning module.

2.1.1 Module Specification
In order to specify a new module in DC2, users must (1) imple-

ment a module execution function (executeService) using the DC2
Python API; (2) load the module into DC2 by specifying its en-
try point file, i.e, the file that contains the implementation of the
module execution function; and (3) write a JSON file to list the
parameters the module requires for execution.

2.1.2 Pipeline Execution
Service execution happens in two phases: (1) Studio generates

a JSON object containing the authored workflow, which includes:
module names, parameters and the connections between modules.
This JSON object is then passed to the backend (workflow manager
in Figure 1) to run the workflow and; (2) every module produces a
JSON object containing the path of output CSV files which are then
passed to the next module in the workflow. All the DC2 modules
use a “table-in, table-out” principle, i.e., input and output of all
modules is a table. In case the module fails to run, an error code is
sent back to DC2 and the pipeline execution is stopped.
executeService. The module execution function (executeService)
takes as argument the JSON file generated from the DC2 studio.
This JSON file contains the parameter values as specified from the
studio for the individual modules as well as the authored workflow.
Every module (1) reads a set of CSV input files; (2) writes a set of
CSV output files; and (3) might use metadata files if specified as an
argument.

Every module can produce various output streams. We separate
them into: output and metadata. Files produced under the output
stream are passed on to any successor modules in the pipeline while
files in the metadata stream are just meant to serve as “logs” that
users can inspect to debug the module. For instance, a similarity-
based deduplication module can produce an output stream contain-
ing the duduplicated tuples and a metadata stream that includes the
similarity scores between pairs of tuples that were marked as dupli-
cates. Each module has to produce a JSON file (output JSON) that
specifies which files are produced as output or metadata.

2.1.3 I/O Specification
Every DC2 module is associated with a JSON file (input JSON)

containing the list of parameters the module expects and their type.
Additionally, the input JSON contains the module metadata (e.g.,
module name, module file path). DC2 Studio needs this specifica-
tion to load the module into the GUI (e.g., if a module expects two
parameters, two input fields are created in the GUI for that module).

2.2 Managing Machine Learning Models
DC2 supports adding machine learning models in the workflow.

We integrated ModelDB [12] into DC2 to offer first-class support
for machine learning model development. ModelDB supports the
widely used scikit-learn library in Python. Users who include ma-
chine learning modules in the pipeline can (1) track the models on
defined metrics (e.g., RMSE, F1 score); (2) implement the Mod-
elDB API to manage models built using any machine learning en-
vironment; (3) query models’ metadata and metrics through the
frontend; and (4) track every run of the model and its associated
hyperparameters and metrics.

Moreover, we have implemented a generalization of ModelDB
to track metrics in any user-defined module through a light API.
The DCMetric class contains the following methods:
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• DCMetric(metric name): constructor which takes the name of
the metric as a string (e.g., f1 score).
• setValue(value): sets the metric value. The metric can be set
multiple times per run but only the final set value is exposed in
DC2 Studio.
• DC.register(metric): the defined metric object is registered
through this function. Registration is required so the metric is sur-
faced in the studio.

The following is an example code snippet to track a metric “f1”.
First, the metric is defined (line 1). Then, the metric value is set
(line 2). The metric value is finally reported to DC2 (line 3).

1 DCMetric metric_f1 = new DCMetric("f1")
2 metric_f1.setValue(f1score)
3 DC.register_metric(metric_f1)

2.3 Visualization
MGH datasets are massive. For instance, the one we use in our

demo is 30TB. Because we wanted to enable interactive visualiza-
tions at scale, we integrated Kyrix [11], a state-of-the-art visualiza-
tion system for massive datasets into DC2. With Kyrix, users can
write simple code to build intuitive visualization applications that
support panning and zooming. The MGH scientists we worked
with confirmed that visualization is a key component to make it
easier for them to inspect their datasets. While users can write
their own visualization applications using the Kyrix API, DC2
comes with a few generic visualization applications: (1) Progress
reporting: services report their progress periodically to the Studio
through a progress bar; (2) Multi-Canvas Table Views (MCTV):
users can click on arcs interconnecting modules on the pipeline to
visually inspect the intermediate records passing between the mod-
ules and run queries on them (e.g., filter based on predicate); and
(3) Coordinated Views: in the MCTV, when users select a record
in one canvas, other records are selected on other canvases based
on a user-defined function (e.g., provenance, records sharing same
key). DC2 comes with an API for easy integration of Kyrix visu-
alization applications in the DC2 Studio (e.g., show a visualization
application after clicking on a particular module).

2.4 Debugging Suite
We have seen pipelines that run for hours, so the goal of the DC2

debugger is to catch data-related anomalies (e.g. input data is mal-
formed in one of the modules) early in the workflow execution, so
that “bad” data is not passed to downstream processing. DC2 fea-
tures a set of human-friendly debugging operations to assist users
in debugging their pipelines. We implement a GDB-like debug-
ger that is data-driven. Users can add breakpoints by specifying a
record or a set of records that satisfy predicates. Pipeline execution
is paused upon reaching a breakpoint so that users can inspect vi-
sually what is going on so far in the pipeline. The following are the
key debugging operations that DC2 provides.

• filter: while building a data pipeline, users typically experiment
with smaller datasets before testing pipelines on the entirety of the
data. The filter operation allows to specify a set of predicates to
extract smaller subsets from the input datasets. For instance, if the
filter is City = “Chicago”, then, only records with City value of
“Chicago” will be passed as input to the respective module.
• track: an important operation when refining pipelines is to be
able to track a set of records to make sure the pipeline is working
as expected. Users can specify filters to track records in the pipeline
(e.g., track records whose City attribute value is “Chicago”). When-
ever a record satisfies the defined filter, it is added to a tracking file

which contains (1) the attribute values of the record before and af-
ter going through the module; and (2) information related to the
module that produced the record (e.g., name of the module, list of
parameter values).
• breakpoints: users can specify breakpoints in the pipeline using
filters. Whenever a record satisfies the filter, the execution is paused
to allow the user to inspect the record at the breakpoint. Users can
then manually resume the execution.
• pause/resume: this is a way for users to pause/resume the ex-
ecution from the Studio. This functionality is implemented using
breakpoints (see Sections 2.5 and 2.6). This operation is useful
when users want a certain module to run for a limited period of
time (e.g. pause after 5 seconds). When users inspect and validate
the output, then they can resume the execution.

2.5 Manual Breakpoints
Data breakpoints serve as “inspection” points in the pipeline, i.e.,

they are used to inspect records of interest. For instance, in a dedu-
plication module, if users notice that records whose “City” value
is “Chicago” are always incorrectly deduplicated, they can add a
breakpoint on records that meet the filter City = “Chicago”, then
the pipeline execution is paused whenever a record that meets the
filter is encountered. We provide an API to allow users to program-
matically define functions to set data-driven breakpoints. Those
functions are used by the DC2 Studio to allow users to interac-
tively set breakpoints on records that satisfy a given user-provided
filter. Three key functions need to be implemented in the entry
point file (file containing the DC2 API implementation) to enable
manual breakpoints: (1) setBreakpoint which takes as argument a
filter (e.g., City = “Chicago”); (2) pause to pause the execution
when a record satisfying the filter is encountered; and (3) resume
to resume the execution after the user has inspected the records on
the breakpoint.

2.6 Automatic Breakpoints
In some cases, implementing the API to enable manual break-

points can be time-consuming. To address this hurdle, DC2 can
create breakpoints in modules automatically (i.e., without requiring
users to implement an API). This is done by partitioning the input
data (of the module) into different subsets and running the module
with each partition. The goal is to be able to detect errors in the out-
put of the module run with fewer partitions than with the entirety of
the data. For instance, when running a classification module (with
an already trained model), users might want to inspect the output
for every 10% of the input data which results in nine breakpoints,
i.e., output is shown after 10%, then after 20%, and so on. Addi-
tionally, the classification label of a given record does not change
whether we run the model with the entire data or only a partition.
If users detect misclassified records with a run using 20% of the
input data, then, there is no reason to run the module for the re-
maining 80% records. Moreover, users can specify predicates to
create partitions (blocking). For instance, “City = *” would cre-
ate partitions (or blocks) where records in the same partition share
the same value of the “City” attribute. Users can create automatic
breakpoints from the DC2 studio.

3. DEMONSTRATION SCENARIO
We demonstrate DC2 through a medical use case with a group

of scientists at MGH studying brain activity data captured using
electroencephalography (EEG). Figure 2(a) illustrates an example
pipeline to clean the EEG data before running it through a ma-
chine learning model. In Figure 2(a), each numbered module in
the pipeline has its corresponding visualization in Figure 2(b) (e.g.,
module numbered 1 corresponds to raw data input).
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Figure 2: (a) EEG pipeline example. (b) Visualization of numbered components.

Study. Scientists at MGH start with a study goal (e.g., early de-
tection of seizures using EEG data), and then prepare the relevant
datasets using cleaning modules. They then apply machine learning
models to perform a prediction task. In the case of this demo, they
want to predict seizure likelihood given EEG labeled segments.
This process is iterative in nature and it takes several iterations to
converge to a “good” data pipeline. We helped the MGH scientists
clean and then analyze the EEG data using machine learning mod-
els. We will walk the audience through how DC2 was used to help
quickly design data pipelines to carry out the study at hand.
Dataset. The EEG dataset pertains to over 2,500 patients and con-
tains 350 million EEG segments. The total dataset size is around
30TB. Active learning is employed to iteratively acquire more and
more labeled EEG segments as described in the scenario below.
Scenario. The demonstration scenario goes as follows: (1) Raw
EEG data is cleaned. In addition to the cleaning toolkit that comes
with DC2, we plugged the cleaning tools MGH scientists use to
clean the data into DC2 as user-defined modules. An example
cleaning task is to remove high-frequency signals (e.g., area A in
Figure 2(b)); (2) Using the visualization component of DC2, the
specialists interactively explore the 30T EEG data and then label
the EEG segments based on their domain knowledge; (3) After ac-
quiring a set of manually labeled segments, a label propagation al-
gorithm, as a user-defined component of DC2, automatically prop-
agates labels to the nearby segments of the existing labeled seg-
ments; (4) A deep learning model is then learned using part of the
labeled segments as training set. During this process, the DC2 de-
bugger is fully explored to tune the hyper-parameters and the net-
work structures; (5) Active learning is then conducted to improve
the quality of the automatically acquired labels. First, the labeled
segments out of the training set are classified by the learned model.
Then using the ModelDB component of DC2 the 2000 segments
are efficiently extracted where the neural net had highest confidence
but disagreed with the labels; (6) These segments are then fed back
into the visualization component for the domain experts to decide
whether they need to update their labels (go back to step 3) or re-
view the cleaning step (go back to step 1). This iterative process
proceeds until the neural net reaches a satisfactory accuracy.
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