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Abstract

A general model for holographic stereograms in the context of discrete and continuous
optical systems is presented. Building from a simple, highly constrained model, restric-
tions on the viewer's horizontal position and depth, the size and location of the plane of the
stereogram's slits, the spatial resolution of the points in the imaged object, and the optical
properties of the projection screen are relaxed one by one. Emphasis is placed on accurate
modeling of the stereogram and on the correspondence between the photographic capture,
holographic recording, and final viewing geometries. Bandlimiting and anamorphic distor-
tion techniques useful for producing artifact-free images are presented. Discussion centers
on horizontal parallax only, flat format, computer generated stereograms, but general con-
clusions applicable to other stereogram types are drawn. Specific examples of stereograms
created using these techniques are shown and discussed.
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Chapter 1

Introduction

Ever since the first stereo photographs were produced in the 1800's, humanity has been

fascinated with the idea of a medium capable of accurately recording and displaying a scene

in three dimensions. Many schemes for three-dimensional display have been created over

the years. Mechanical schemes, including parallax barrier displays and lenticulars to name

just two, are inherently limited in the quality of their display, but have brought simple auto-

stereoscopic "three-d" to the public. Their intricate construction played to the imagination

of "garage inventors", researchers who through their ingenuity made small, empirically

determined optimizations to their displays without truly understanding the consequences.

Laser-illuminated display holography, developed in 1964 by Leith and Upatnieks[ 10],

was the first truly high quality three-dimensional display medium. The independent work

of Denisyuk and Benton[9] that led to white light viewable holograms brought the new

display medium out of the laser lab and into the practical, useful world. The optimistic

popular press of the 1960's proclaimed the advent of holographic street signs and snapshots.

But the hologram is burdened by the fact that it is not only a display but a recording

medium. Holographic recording must be done in monochromatic, coherent light, and



requires that the objects being imaged remain stable to within a fraction of a wavelength

of light. These requirements have hindered holography from gaining widespread use. In

addition, the amount of optical information stored in a hologram makes the computation

of holographic patterns very difficult. Until recently, the creation of synthetic display

holograms by computer has not been practical.

Holographic stereography weds the structure and basic optical properties of mechan-

ical systems with the huge information storage potential and image fidelity of holography.

A holographic stereogram records a relatively large number of viewpoints of an object

and uses a hologram to record those viewpoints and present them a viewer. The infor-

mation content of the stereogram is greatly reduced from that of a true hologram because

only a finite number of different views of the scene are stored. The number of views

captured can be chosen based on human perception rather than on the storage capacity

of the medium. The capturing of the viewpoints for the stereogram is detached from the

recording process; image capture is photographic and optically incoherent, so that images

of natural scenes with natural lighting can be displayed in a stereogram. The input views

for traditional stereograms are taken with ordinary photographic cameras and can be syn-

thesized using commonplace computer graphic techniques. Using recently developed true

color holographic techniques, extremely high quality, accurate, and natural-looking display

holograms can be produced.

The history of holographic stereograms shares something of the "garage inventor"

level of understanding with its mechanical-3D brothers. The spatially multiplexed stere-

ogram of today closely resembles the single-step stereograms of DeBitetto[3] in 1968 and

the two-step transfers of stereograms made by King, Noll and Berry[8] in 1970. Although

some modifications have been made to the stereogram's holographic exposure geometry,

and some attempts have been made to understand and compensate for the distortions that

occur in stereograms [4][13][14][6], the behavior of the stereogram's optical system as a

whole has seldom been analyzed.



The purpose of this work is to begin that analysis, in order to see if the quality of

stereograms can be improved by better understanding how they work. More specifically,

a primary goal of this thesis is to explore the constraints that stereography places on the

necessary photographic capture, holographic exposure, and final viewing geometries. For

example, conventional display stereograms use an optical transfer step to separate the viewer

from the plane of the hologram. But one-step stereograms are appealing for holographic

printer applications. If a viewer steps away from a conventional one-step stereogram, the

resulting image changes in aspect ratio and otherwise distorts. If these distortions can be

understood, perhaps they can be eliminated, allowing practical one-step stereograms to be

produced. In two-step stereograms, the size of the zone within which a viewer can see an

image is limited to the size of the "master" holographic plate. The viewer must also be

positioned at a distance corresponding to the separation between the master and the transfer

plates during the holographic transfer step. For stereograms with long view distances, this

constraint requires the holographic recording apparatus to be large, bulky, and expensive.

A relaxing of the connection between holographic exposure and viewing would allow the

simplified production of stereograms with large view zones at arbitrary view distances.

Wide applicability and practicality of method are foremost in importance to the

approach of this research. The topics discussed here are of fundamental importance to all

types of holographic stereograms, and the methods presented are designed to efficiently

produce actual images. The amount of extra work required to compensate for image

aberrations is about the same as needed for the other steps in the stereographic process.

Several stereograms developed during the course of this work are presented as evidence

of the correctness and practicality of these new techniques, as well as to provide specific

examples within a historical context.

Again for practicality's sake, this text will concentrate on stereograms made with slit

apertures and presenting horizontal parallax only. While full-parallax stereograms most

closely mimic the natural world, HPO stereograms provide the viewer with most of the



three-dimensional information about the scene with a greatly reduced number of camera

viewpoints and holographic exposures. The principles presented, however, apply equally

to both HPO and full-parallax stereograms. For similar reasons, flat format stereograms

are discussed to the exclusion of cylindrical formats, and diffusing projection screens are

used over cylindrical lenses and other large optical elements. The general ideas transcend

the precise choices of format or design.

In part for practical reasons, this text places its emphasis on issues related to computer

generated stereogram images. The concepts of bandlimiting and distortion compensation

implemented here could be implemented either with physical optics or the computer equiv-

alents of those optics. Unlike physical optical elements, computer models are configurable,

aberration-free, and relatively inexpensive. Computer image processing permits large

amounts of image information to be manipulated in a precise, predictable and adaptable

way. Changes in holographic geometry, for example, can be accomodated by altering soft-

ware parameters instead of fabricating new lenses. Indead, the wide range of holographic

formats and sizes presented here almost necessitates the use of computer image processing.

A prevailing theme throughout this thesis is the importance of correspondence be-

tween the three stages of stereogram creation: photographic capture, holographic recording,

and final viewing. Attention to this correspondence is of paramount importance in order to

minimize image distortions. Similarly, to correct for distortions, a stereogram that violates

this correspondence in some way can be altered so that correspondence is achieved or

approximated. Each step must be accurately modelled to understand how the effect of each

stage matches that of the other two. To simplify this process, a minimal, highly constrained

stereogram model will first be presented. Once that the behavior of that model is under-

stood, constraints of viewer position, slit size, object resolution, slit position, and various

optical restrictions will be removed one by one. Finally, a general model for holographic

stereograms will be presented.



Chapter 2

Stereogram Basics

The holographic stereogram is a means of approximating a continuous optical phenomenon

in a discrete form. In display holo-stereography, the continuous three-dimensional infor-

mation of an object's appearance can be approximated by a relatively small number of

two-dimensional images of that object. While these images can be taken with a photo-

graphic camera or synthesized using a computer, both capture processes can be modeled as

if a physical camera was used to acquire them. The photographic capture, the holographic

recording, and the final viewing geometries all determine how accurately a particular

holographic stereogram approximates a continuous scene. This chapter presents the basic

principles of holo-stereography for visual display and lays the groundwork for later chapters

on the analysis of sampling and distortions effects.

The simple stereogram model

The type of stereogram to be used as a first example is similar to the one described by

DeBitetto, with modifications to the holographic exposure setup made by Benton. It



consists of a single holographic plate comprised of a series of thin vertical slit holograms

exposed one next to the other across the plate's horizontal extent. Each slit is individually

exposed to an image projected onto a rear-projection screen some distance away from the

plate. Once the hologram is developed, each slit forms an aperture through which the image

of the projection screen at the time of that slit's exposure can be seen. The images projected

onto the screen are usually views of an object captured from many different viewpoints.

A viewer looking at the stereogram will see two different projection views through two

slit apertures, one through each eye. The brain interprets the differences between the two

views as three-dimensional information. If the viewer moves side to side, different pairs

of images are presented, and so the scene appears to gradually and accurately change from

one viewpoint to the next to faithfully mimic the appearance of an actual three-dimensional

scene.

In the beginning of this chapter, the assumption will be made that the slit apertures are

about as wide as the pupil of the eye, and that when the viewer looks at the hologram each

eye sees through one and only one aperture at a time. During viewing, then, the viewer's

face must be right up against the surface of the plate, an awkward and inconvenient location,

as shown in Figure 2.1. Later in this chapter, more convenient ways to view a holographic

stereogram will be discussed.

The holographic exposure setups used to expose all of the stereograms discussed in this

chapter follow the same basic layout, similar to the common two beam off-axis holographic

setup used to make holograms of real objects. The layout is shown in Figure 2.2. Two

beams of mutually coherent light are used to expose the holographic recording material.

The reference beam diverges from a point source at the same location as the one that will

eventually be used to illuminate the hologram. The final hologram is to be illuminated

from above and behind; for practical reasons, the entire optical setup must be flipped "on

its side" so that the illumination beam, and by direct consequence the reference beam, can

travel parallel to the table surface and yet strike the plate at the correct angle. The reference



Figure 2.1: Viewing a simple stereogram requires that the viewer's eyes be positioned at
the plane of the holographic plate.

beam is collimated so that each slit of the holographic plate will be referenced with a beam

of the same direction, independent of the slit's precise lateral position on the plate.

The object beam is diverged and used to project an image of the camera's recording

medium, typically photographic frames on cindfilm, onto the projection screen. The pro-

jection screen serves as a two dimensional object that can be changed from view to view.

The actual projected image, whose extent is defined by the projection frame, is the visible

subregion of the projection screen in any particular view. The projection screen itself is a

subregion of a plane of infinite extent called the projection plane.

The projection screen directly faces the holographic plate and slit mechanism. The

details of this mechanism vary for different types of stereograms, but in all cases, the

holographic plate is covered by a piece of optically opaque material with a slit-shaped hole

that masks off all but a stripe for exposure. During exposure, this stripe is exposed both to

the image on the projection screen and to the reference source. Either the plate or the slit



Figure 2.2: An above view of the general holographic table layout used for making the
stereograms of the types described in this chapter.
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is moved between one exposure and the next so that the next adjacent stripe of holographic

material can be exposed.

In display holo-stereography, the pictures imaged onto the projection screen are

projectional views of an object recorded with some sort of camera. For a point on an

object to be visible to the stereogram's viewer from a particular viewpoint, the image

of that point must fall in the projection frame for the slit that corresponds to that view

location. Depending on the exact projection and exposure setup, the projection frame (or

the projection screen itself) may appear stationary as the viewer's eye moves from view to

view across the surface of the hologram; alternatively, the image of the projection frame

may move across the viewer's field of view as if it were at a finite distance from the plate.

Because the setup is flipped sideways, images projected onto the screen must similarly

flipped. The top of the projected images must point towards the reference beam, which

defines from where the eventual overhead illumination will come. "Top" on the projection

screen, then, is toward the interior of the table, while "left" is into the table and "right" is

toward the sky.

Simple camera stereogram

The first example of a stereogram geometry centers the projection frame in front of each

slit being exposed during every exposure. When a stereogram made with this geometry is

illuminated with the reference source, every slit forms an image of the projection screen that

is centered in front of it. Figure 2.3 shows several slits and the location of the projection

screens that each slit forms. Such a stereogram can be produced with a holographic

recording apparatus that fixes the location of the slit aperture with respect to the projection

frame. The following exposing apparatus satisfies this geometrical constraint. The plate is

fixed to a movable plateholder, and positioned behind a fixed horizontal slit aperture. The

projection screen is centered in front of each slit. Figure 2.4 shows this setup.



location of the projection frame when each slit is exposed

1. Is

with slits

Figure 2.3: Three slits of a holographic stereogram using footage taken with a simple
camera. The projection screen is always centered in front of the slit being exposed during
exposure and viewing.

The stereogram is exposed in the following way. The plateholder is positioned at the

upper end of its travel so that the eventual leftmost slit is behind the slit aperture. The image

intended to be seen through the leftmost slit is projected onto the projection frame and a

reference beam simultaneously exposes the slit of hologram. The intensity and direction

of light from every part of the projection frame is recorded as a latent image in the slit-

shaped area of holographic material. The movable plateholder is then repositioned so that

the next unexposed segment of plate is behind the slit aperture, a new image is projected

onto the projection screen, and another exposure is made. The process continues until the

entire width of the hologram has been exposed. After the plate is developed, the resulting

diffraction pattern on the emulsion (either a phase or an amplitude grating depending on

the type of processing used) will, when viewed with a collimated monochromatic source

at the reference beam angle, appear as a sequence of slit-like windows, each presenting a

different image that appeared on the projection screen.

Ii 
i i stereo am



Figure 2.4: Holographic table layout for simple camera geometry.
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How a stereogram displays depth

A closer look at the details of this stereographic exposure provides some insight into how

the projectional views of an object should be captured so that the final stereogram produces

an accurate three-dimensional image of that object. Imagine that the image projected on

the screen consisted of a single bright point centered in a field of black. Each slit of the

stereogram is exposed to this test pattern with the bright point centered in front of it. The

image neither changes nor moves with respect to the slit from one exposure to the next.

When the final hologram is viewed, the viewer's two eyes fall behind two different slits

of the hologram. The point appears to be directly in front of both of the viewer's eyes.

The viewer interprets the two images stereoscopically as if a single point were located at

infinity. This binocular depth cue is very strong; horizontal image parallax provides most

of the viewer's depth sense. However, two other inaccurate depth cues provide conflicting

information to the stereogram viewer. First, the viewer's eyes must still focus on the

projection plane to focus on the point, so focus cues indicate that the point lies on the

projection plane. Second, because the slits are recorded horizontally, the plate records only

a single vertical perspective. The same perspective is presented independent of the viewer's

vertical position. If the viewer moves vertically, the point will move as if it were located

at the vertical projection plane. The precise significance of focus and vertical parallax cues

in stereograms has not been fully studied, but it appears to be minor compared to binocular

cues.

Stereogram camera geometry

Using the observation that a stationary point appears to be at infinity as a landmark, the

correct camera geometry needed to accurately capture a three-dimensional scene can be

inferred. To appear at infinity, then, an object point must remain at the same position in



every camera view. This constraint implies that the camera should face the same direction,

straight ahead, as each frame is captured. The camera moves along a track whose position

and length corresponds to the final stereogram plate. The camera takes pictures of a scene

from viewpoints that corresponds to the the locations of the stereogram's slits. The plate

is planar, so the camera track must be straight, not curved. The camera must be able to

image the area corresponding to the projection frame onto its film; thus, the frame defines

the cross section of the viewing pyramid with its apex is located at the camera position, as

shown in Figure 2.5. Because the projection frame bounds the camera's image, the size of

the projection frame and its distance from the slit determine the angle of view of the image

and thus the maximum (and optimal) focal length of the camera's lens.

The film plane of the stereogram capture camera is always parallel to the plane of

the scene that corresponds to the projection plane (the capture projection plane) in order

to image it without geometric distortions onto the focal plane of the lens. If the film plane

were tipped with respect to the projection plane when the image was captured, that image

that appears on the film would be scaled vertically by an amount that varied from the left

side of the image to the right, turning the bounds of the projection frame into a shape that

resembles a sideways keystone. Keystone distortion is shown in Figure 2.6.

The correspondence between the photographic capture and holographic exposure

geometries for the simple camera stereogram is shown in Figure 2.7. If this correspondence

is maintained, the images of all object points, not just points located far from the camera,

will appear to be at the same depth as in the original scene. So a complicated three-

dimensional scene composed of many points will be maintained will appear undistorted if

correspondence between the two geometries if maintained. To uniformly scale an object in

all dimensions, the holographic recording geometry can be a scale model of the photographic

capture geometry. For proper scaling between the two geometries, the angles A and B in

Figure 2.7 should match. If this restriction is violated, one or more dimensions of the

object will appear too great or too small in extent (for instance, the object's depth may be



projection screen forms
a cross-section of the
viewing pyramid for
each camera view

camera as it moves along
track (one position shown)

Figure 2.5: As the camera moves along the stereogram track, it images the space defined
as a pyramid with apex at the current camera position and a cross-section defined by the
projection plane. The camera is always pointing directly ahead.



undistorted image

The image of the projection
plane and the film plane
are not parallel when
captured, but are so when
projected. This leads to
image distortion.

keystone distorted image

Figure 2.6: Keystone distortion occurs when the relationship between the film plane and
the projection plane is not maintained from photographic capture to holographic recording.

exaggerated or reduced).

Recentering camera stereograms

The above stereogram exposure geometry is well suited for objects far from the camera

because the image of the object wanders little from frame to frame, always remaining in the

camera's field of view and thus always visible to the stereogram viewer. However, distant

objects are seldom the center of interest in three-dimensional images because the different

perspectives captured over the view zone have little disparity and, as a result, convey little

sense of depth. Objects at more interesting locations, closer to the camera, wander across

the frame from one camera view to the next and tend to be vignetted in the camera's image

at either or both extremes of the camera's travel. The solution to the problem is to alter

the capture camera to always frame the object of interest as it records the photographic

sequence. Effectively, this change centers the object plane in every camera frame so that it
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camera moving along track

The image seen through
each slit is the image
that was projected onto
the rear projection screen,
which is centered in front
of each slit during each
exposure.

area corresponding to the
holographic projection screen
for this particular camera view
(screen is narrower than

usual for clarity)

i projection
plane

holographic
plate, exposed
in slits

Figure 2.7: The relationship between holo-stereographic camera and recording geometries.

projection
plane



Figure 2.8: Three slits of a holographic stereogram exposed using a recentered camera
geometry.

remains stationary on the film from view to view. Object points in front of or behind the

stationary plane will translate horizontally from view to view, but at a slower rate than they

would in a simple camera stereogram.

Altering the camera geometry requires changes in the holographic exposure geometry

needed to produce undistorted images. The projection screen is no longer centered in front

of the slit aperture during all exposures. Instead, the holographic plate holder is stationary

and the slit in front of it moves from exposure to exposure. Thus, the projection frame is

fixed in space relative to the plate for all exposures, rather than being centered in front of each

slit during each exposure. In this geometry, called the "recentered camera" geometry, only

one projection frame position exists for all slits, as shown in Figure 2.8. Holographically,

such a stereogram can be realized using a table layout like that shown in Figure 2.9.

Because the projection frame and the plate are fixed with respect to each other for

every slit exposure, the projection frame appears to be at its true, physical location in space.

If the bright point on a black field is projected onto the screen and all the slits are exposed

to that image, the point will appear not at infinity as before, but at the projection plane



reference beam

reference beam
collimator

reference beam

-0

stationary plate holder
and holographic plate projection screen

film transport
projection lens

moving slit mask
(with flexible bottom)

Figure 2.9: Holographic table layout for a recentered stereogram.

slit transport
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distance instead just as if it were a hole cut into a black card. In effect, as the viewer

looks at the final stereogram, the projection frame no longer seems to follow the viewer but

instead appears stationary in space. If an image of the object plane of the original scene

remains stationary on the projection screen, then, the object plane of the original scene and

the projection plane of the final hologram will lie at the same depth.

Recentering cameras

The type of camera necessary to take pictures for this type of stereogram is based on, but

more complicated than, the simple camera used to capture the infinitely distant object. This

new type of camera is called a recentering camera. Recall that in the simple camera image

capture, the image of a nearby object point translated across the camera's film plane as the

camera moved down its track taking pictures. In a recentering camera, the lens and the

film back of the camera can move independently from each other, so the film plane can

be translated at the same rate as the image of the object of interest. The film and image

move together through all frames, so just as desired the image appears stationary in all the

resulting images. A view camera with a "shifting" or "shearing" lens provides this type of

recentering. A picture of a recentering camera is shown in Figure 2.10. The lens of the

camera must be wide enough to always capture the full horizontal extent of the object plane

without vignetting the image at extreme camera positions.

Once again, a correspondence must exist between the camera capture and the holo-

graphic exposure geometries. In the recentering camera system, the necessary translation

of the camera's lens adds another constraint that must be maintained. A point in the middle

of the object plane must always be imaged into the middle of the film plane, and must

always be projected onto the middle of the projection frame. The angle subtended by the

object frame as seen from the camera must equal to the angle subtended by the projection

frame as seen from the slit. If, for example, the focal length of the lens of the taking



Figure 2.10: A recentering camera. As the camera moves down the track, the film back
translates with respect to the lens to keep the image of an object at a finite distance stationary
on the camera's film plane.

camera is changed, the amount of lens translation required and the size of the holographic

projection frame would also have to be adjusted. The relationship between the camera and

holographic geometries is illustrated in Figure 2.11. As in the simple camera case, angles

A and B must be equal in the capture and holographic recording geometries.

Wrong ways to recenter

The advantage of a camera that recenters the object of interest from one frame to the next

has been known to stereographers for some time. However, many different ways of moving

the camera can produce recentered views; most of them, however, produce significant

distortions in the final stereoscopic image. Two common distortion-inducing methods are

shown in Figure 2.12. For instance, a rig with a camera moving on a circular track, always

facing the centrally located object of interest, is especially simple to construct. This setup
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camera moving along track,
lens and film move independently
to keep image of projection screen
on the film

projection
plane

The image seen through
each slit is the image
that was projected onto
the rear projection screen,
which remains at a fixed
position in with respect to
the holographic plate, thus
moving with respect to each
slit.

projection
plane

holographic
plate, exposed
in slits

Figure 2.11: The relationship between capture and recording geometries for a recentering
camera stereogram.



camera spins around object on circular track camera moving along a straight track, but
(same as object spinning on platform) I "toeing in" to recenter image in the frame

Figure 2.12: Two common ways of capturing images for a stereogram that introduce
distortions in the final hologram. Both methods violate the required correspondence between
capture, recording, and viewing geometries.

is geometrically equivalent to one in which a stationary camera takes pictures of a subject

rotating on a turntable. However, the necessary correspondence between the position of

the camera from which a particular image is taken and the position in space from which the

stereogram viewer sees that image is now broken. It makes no physical sense for a viewer

moving along one path (the viewing zone defined by the stereogram plate) to be shown

images that were captured by a camera moving along another path (the camera moving in

an arc). Because of the plate is flat, the camera must move along a straight, not curved,

track.

Another way to recenter the images is to move the camera along a straight track,

but to swivel or "toe in" the camera to face the center of the object frame before every

exposure. This method suffers from the keystoning distortion described earlier because the

film plane is no longer parallel to the object plane during capture, while the film plane is

indeed parallel to the projection plane during holographic recording. However, the camera

is at least in the same physical location when the image is captured as the viewer as the



viewer will be when the image is viewed, so that the perspective distortion is less severe.

Unfortunately, the plane of focus of the camera does not correspond to the plane of the

projection screen, so this stereogram geometry is prone to image blur if the taking lens is

not sufficiently stopped down.

To summarize the previous discussion, there are two common methods of producing

a distortion-free holographic stereogram from a sequence of images: the first in which the

projection frame is located directly in front of the slit during each exposure and the plate

translates with respect to it(the "simple camera" geometry), and the second in which the

screen is centered in front of the plate throughout all the exposures and the slit moves from

one exposure to the next (the "recentering camera" geometry). The first method has the

advantage that the camera needed to acquire the projectional images is the easier to build,

but the input frames tend to vignette objects that are close to the camera. The second

method requires a more complicated camera, but moves the plane of the image where no

vignetting occurs from infinity to the object plane. The camera complexity of this method

is less of an issue if a computer graphics camera rather than a physical camera is used.

Advantages of recentering-camera stereograms

The projection frame in a recentered camera stereogram forms a "window" of information

in space, fixed with respect to the stereogram and located at the depth of the projection

plane. The usefulness of this fixed window becomes important when the slit hologram is

optically transferred in a second holographic step in order to simplify viewing. To maintain

the capture-recording-viewing correspondence in any stereogram, the viewer's eyes must

be located at the plane of the slit hologram. When the stereogram is a physical object, the

viewer's face must be immediately next to a piece of glass or film. However, a holographic

transfer image can be made so as to project a real image of the slit master hologram out

into space, allowing the viewer to be conveniently positioned in the image of the slits, as



Figure 2.13: If a transfer hologram of a slit master stereogram is made, the viewer can stand
at the plane of the slits, or even pass through it, without suffering facial lacerations.

shown in Figure 2.13.

A transfer of a stereogram is directly analogous to a transfer of a continuous master

hologram of a real object. The transfer of the slit master is done by illuminating all the

slits of the master from the same angle from which the reference beam arrived but in the

opposite direction, forming a perfect conjugate illumination source. Each slit then projects

a real image of the projection screen out to the projection plane. The transfer hologram

is also placed on this plane, and records the light that strikes it from the master. The

transfer hologram can then be illuminated with a beam that is conjugate to its reference

source, projecting an image of the master slits out into space at the projection plane-

transfer hologram

projected image
of the slit master
hologram



master separation distance. An important motivation for transfer holograms, besides the

convenience of viewing, is that white light illumination of the hologram is possible.

In the simple camera stereogram, the images of the projection frames that the slits

of the master project to the transfer during mastering are shifted with respect to each other

because each frame image is centered directly in front of its slit. Thus, the frames cannot

completely overlap each other. In the case of the recentered camera stereogram, however,

all images of the projection frames precisely overlap on the projection plane.

When the transfer hologram is made, the position of the transfer plate on the projection

plane determines what window of that plane will be visible to the viewer. In the recentering-

camera stereogram, this window is clearly defined by the projection frame: all information

from all slits overlaps there, with no data wasted off the frame's edge. In the simple-camera

case, some information from every slit (except the center one) will miss the transfer's frame

and as a result will never be visible to the viewer. This fact, which can be thought of as a

double vignetting of two windows (one defined by the transfer plane and the other located

at infinity), eliminates any advantages that a simple camera stereogram has for imaging

distant objects. All extra information captured with the simple camera is cut off by the

transfer's edges. More noticeable, though, are problems due to the fact that most of the

slits do not fully cover the transfer frame with their image of the projection screen.

The area of the transfer frame that overlaps the projection frame projected by a

single slit defines what part of the transfer hologram will bear image information when

the viewer looks through the image of that slit when the transfer is viewed. The rest of

the transfer, having no information about the projection frame for that slit, will appear

black. In effect, as the viewer moves from left to right through the transfer hologram's

view zone, an image window appearing at infinity slides across the transfer plate, also from

left to right. Again, the information that is contained in the window located at infinity that

does not fall within the transfer frame is never visible and thus was captured for naught.



The limitations of a simple camera stereogram transfer are pictured in Figure 2.14. In

contrast, in a recentering camera stereogram master, all parts of the transfer hologram are

image bearing from all viewpoints. The "everything seen, nothing wasted" property of

recentering camera holographic stereograms is especially important when image capture is

difficult or troublesome, which is true, for example, if the images needs to be computed

frame by frame. Computer time is better spent calculating visible parts of images than

invisible parts; the recentering camera geometry defines precisely the areas of visibility

when the transfer is viewed.

So, for transfer holography, a recentering camera has significant advantages over the

simple camera. For one-step holography, the shortcomings of a simple camera stereogram

are not as severe, and the simplicity factor may weigh more heavily when deciding between

the two methods. The following chapters will rely, however, on the fact that the two camera

types are actually quite similar, and that both types present distortion-free images to the

viewer. The differences between the two types can be downplayed in order to show more

important concepts.

Wavefront approximation in stereograms

So far, the discussion of stereograms has centered completely around viewer perception,

with no regard to how light from the stereogram approximates light from the real object.

A stereogram mimics the light emitted by the original scene using a piecewise wavefront

approximation. This approximation can be investigated using the simple stereogram model

described above. Only one spacing of wavefronts need be considered because of the

monochromatic nature of the illumination source. For simplicity, a recentering camera

stereogram model will be used in the following explanation.
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Figure 2.14: In a simple camera stereogram, the projection frames of many slits do not
completely overlap the transfer frame when a transfer hologram is made. As a result, a
significant amount of image data is never seen and thus wasted, while no image is visible in
parts of the transfer from certain viewpoints because no data about those parts was recorded.
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Wavefront of points on the projection screen

An isolated point in space radiates light in a spherical pattern. The radius of the curvature

of the wavefront is a measure of how distant the source is from the observer. The response

of the eye's focusing mechanism is the visual system's way of measuring a wavefront's

curvature. Because a hologram records the direction of light striking it during exposure,

the wavefront of a perfectly illuminated hologram of a single point is also spherical, with a

radius of curvature identical to that of the original point.

If all the points in a scene are restricted to a single depth plane, all the points will

produce wavefronts of identical curvature. Each slit of a stereogram is a hologram of just

such a planar object, with all objects points for each slit being restricted to the projection

plane. A recentered-camera stereogram in which each slit is exposed to an unchanging

test pattern of a white point on dark background will, when illuminated, produce almost

the same wavefront as a true hologram made of the same pattern. The only difference

between the two wavefronts is a series of stepwise phase changes between segments of

the stereogram's wavefront, a difference to which the eye is not very sensitive. Thus, the

holographic and stereographic test patterns are almost identical.

Wavefronts of points at other depths

A stereogram would be rather uninteresting, though, if all objects in its scene were restricted

to a single depth plane. Every slit of the hologram sees, as does the real hologram of

the projection screen described above, a collection of wavefronts radiated by points on

the screen. The radius of curvature of these wavefronts varies based only on the two-

dimensional position of the radiating part of the screen. While each slit is only exposed to

a two-dimensional screen, the resulting stereogram produces an approximation to the light

emitted by objects in a three dimensional field. The wavefront approximation is composed



of pieces of the wavefonts of the fixed, regular pattern pattern radiated by points on the

screen. The example holographic stereogram has horizontal parallax only; as a result, the

piecewise approximation is only complicated in the horizontal direction. Vertically, the

wavefronts for all points in the three dimensional field appear to be, and in fact are, emitted

from the projection plane, independent of the intended depths of the points.

Horizontally, the only depth location at which an object point may lie so that a

stereogram emits a wavefront of the same shape (except for phase variations) as the original

point is at the projection plane. For any slit spacing, each slit sees the same image of the

screen at the same absolute position, so the slit structure of the hologram does not affect the

shape of the reconstructed wavefront. However, if an object point lies at a depth different

from the projection plane, the accuracy of the wavefront produced by the stereogram cannot

be maintained.

For example, if an object point lies between the projection and slit planes, the projec-

tion of the object point onto the projection plane moves right to left in the frames used to

expose the slits in left to right order. The projection's motion, in other words, moves across

the projection plane in a direction opposite the viewer's motion. The rate of this motion is

inversely proportional to the distance from the viewer to the object point, minus the rate at

which the projection screen itself appears to move. Equation 2.1 describes this motion.
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The moving image of the object point on the projection screen provides a series of

wavefront segments that, in total, approximates the point's true wavefront. An object point

in front of the projection plane would produce a horizontal curvature smaller than a point

located at the projection plane. The image points that make up the approximated wavefront

are all located on the projection plane. So the stereogram's wavefront approximation

is composed of pieces that are "flatter" than the true wavefront. An illustration of this

approximation is shown in Figure 2.15.

Similarly, an object point located behind the projection plane will produce a greater

radius of curvature than do the points on the projection plane. In the projected images

for each slit, though, the object point's image moves in the same rather than the opposite

direction from the viewer. When the stereogram image is reconstructed, the resulting

wavefront will have "bumps", being composed of wavefront subsections from the projection

screen that have a smaller radius of curvature than the actual point. Such a wavefront looks

like the one shown in Figure 2.16.

Clearly, the further the object point is from the projection plane, the less similar the

curvature of the wavefront segments is to the wavefront being approximated, and thus the

worse accuracy of the the approximation becomes. However, independent of the quality

of the approximation, there are no restrictions on the location of object points: points at

any depth can be approximated to some degree. Combined with superposition arguments,

this fact assures that objects of any spatial extent can be reconstructed using a stereogram,

although image artifacts may be present.

Minimizing error in wavefront approximation

The errors of stereographic wavefront approximations and their direct correspondence to

the distance from the projection plane establishes a fundamental rule of stereograms. To

minimize the effect of wavefront errors, position the apparent horizontal focus of the
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Figure 2.15: Object points in front of the projection plane are approximated by wavefront
segments of lesser curvature than the actual wavefront.
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projection screen at the plane of the image of greatest visual importance, or position the

plane to straddle several important objects at different depths. While all the object points

on one side of the plane will have segments of too great a radius of curvature, and points

on the other side will have too little, the overall error over the set of object points will be

minimized.

Fortunately, the degradation of wavefront accuracy as object points are positioned

far from the projection plane is a gradual one; compromises in projection plane position

can be made without greatly affecting the quality of the image. The image quality tradeoff

between position and accuracy of wavefront is very similar to depth of field tradeoffs in

a standard variable aperture camera lens: objects on either side of the plane of focus are

somewhat blurred, but the entire object appears reasonably sharp. Depth of field is a

term that traditionally refers to the rate at which the amount of image blur increases as a

function of distance from the plane of focus and is directly controlled by the size of the

lens' aperture. The next chapter will elaborate on this connection between the depth of field

and stereograms.



Chapter 3

Bandlimiting

In the last chapter, two different approaches to the analysis of stereograms were presented:

one based on purely visual considerations, the other on the accuracy of a stereogram's

approximation to an object's true wavefront. The wavefront argument showed that a

stereogram can duplicate the wavefront curvature only of objects at a depth corresponding

to the projection plane; the wavefronts of points at all other depths are approximated

using a piecewise circular wavefront. This chapter will investigate the visual cost of this

approximation, its relation to the discrete nature of stereograms and other sampled systems,

and explore ways of preventing approximation-caused image artifacts.

Continuous and discrete images

The simple stereogram model of the previous chapter was immune to approximation artifacts

because the viewer was constrained to see through one and only one slit at a time. The

"seams" between adjacent pieces of the wavefront never entered the eye, so they were never

seen. This viewer constraint will now be relaxed, leaving the viewer free to look through
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Figure 3.1: The stereogram test geometry. A single point in space lies between the viewer
and the projection plane.

any part of the stereogram. No longer must the eye necessarily look through one and only

one slit; as is often the case in "real-world" stereograms, the eye position may straddle the

border between two adjacent slits. Imagine, for example, that a point in front of the image

plane is visible in the projection screens used to expose two adjacent stereogram slits. The

geometrical relationship between the viewer, the projection screen, and the object point is

shown in Figure 3.1. When the viewer's eye is completely within either slit, the viewer

will see an image of the point as captured from the camera position corresponding to the

middle of each slit. The difference between the real object with its continuous wavefront

and the stereogram with its sampled wavefront becomes evident when the viewer whose

eye is completely in one slit moves incrementally towards the other slit. Figure 3.2 is a

comparison of the visual difference between the continuous and sampled system.

Were the viewer looking at a real object, such an incremental motion would cause

the object to appear to move slightly with respect to the projection plane. On the other

hand, in a stereogram, such a small shift in the apparent position of the object point is

not possible because the object is imaged from only finitely many equally-spaced camera

positions along the camera track. A point cannot appear to move any less than the hop its
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image takes from one camera view to the next. Instead of a small change in position, a

different effect occurs. A faint image of the object as seen from the second slit's camera

position becomes superimposed with the image from the first slit. The separation of the old

and the new image is proportional to the object point's distance from the projection plane;

it is, in fact, the distance that the image of an object point hops from one slit view to the

next. As the viewer moves, both old and new images of the object appear to move as if

they are stuck to the projection plane (which, in fact, they are). The relative contributions

of the first and second slit's images is dependent on how much of each slit falls within

the confines of the pupil of the viewer's eye. For instance, a viewer exactly straddling the

border between the two slits would see two half-intensity images of the object point, one

in its old and one in its new position. The image continues to change as the viewer moves

until the new image completely fades in and the old one fades away. This analysis ignores

the effect of diffrations at the slit edges, a subject for future study.

The visual effect of crossing the slit boundary can be explained by examining the

shape of the stereogram's wavefront approximation. A viewer's eye completely in one

slit sees a wavefront emitted from the projection screen for every object point. The eye's

focusing mechanism determines the depth of the object based on the shape of the wavefront,

so monocular focus cues indicate that the object is at the projection plane. Viewer motion

toward the second slit brings a tiny piece of the wavefront emitted by the second image

of the object point into view. This second wavefront is centered around and thus seems

to come from the object point's second image on the projection screen. No continuity is

guaranteed between the slope of the first and second wavefronts. As the viewer continues

to move into the second slit, more and more of the second wavefront and less and less of the

first enters the pupil, until finally the discontinuity between wavefront sections falls outside

of the eye, leaving visible only the second wavefront and thus the second point.



Perception of stereogram artifacts

Unfortunately, the jumpy motion that the object follows as the viewer moves across the

stereogram may not be readily interpreted as continuous motion. When the eye's pupil

straddles the slit boundary and the object point is seen as it appears from two different

camera positions, extraneous information may separate the two images of the point. This

information is composed of image detail on either side of the object point in the perspective

views used to expose the two slits. This image detail may also be replicated, compounding

the problem. If this unwanted extra information is present, the object point does not seem to

be one continuous, solid object, but rather two almost identical objects separated in space.

In real stereograms of complicated scenes, this replication of object detail can be very

noticeable. For instance, parts of the image far from the projection plane appear vertically

striped, with horizontal detail on distant objects and backgrounds being the most visibly

incorrect. The visual effect is similar to seeing a person walking behind a picket fence; the

gaps between the images of the object move as if fixed to the projection screen and seem

to occlude the object behind. A stereogram slit width on the order of the width of the pupil

of the human eye, commonly used in practice, implies that the viewer's eyes will almost

always straddle a slit boundary, so any unwanted image artifacts that occur are visible from

almost any viewer position.

Stereograms and aliasing

The discrete nature of the stereogram is the underlying cause of this image artifact. Each

slit, and the corresponding camera image, is a single sample of an object's appearance as

seen from a particular location. Each image, then, is a record of the relative positions of

all the points in an object. The stereogram image sequence can in turn be thought of as a

sampled record of an object's apparent velocity through space as the viewer moves over a



range of viewpoints. If this velocity is sampled at too low a rate, or the apparent position

of some points on the object change too rapidly (their velocity is too high), the stereogram

suffers from image artifacts. These artifacts fall into a general category, called aliasing

artifacts, that plague all insufficiently-sampled discrete systems. Stereogram aliasing is

otherwise known as inter-view aliasing because it occurs between adjacent camera views.

The severity of aliasing is directly proportional to the stereogram's sampling rate and is

controlled by the number of stereogram slits per unit distance.

To better see this relationship between aliasing and sampling rate, imagine that the

viewer's pupil exactly straddles by a slit boundary, so that an object point off of the

projection plane will appear as a double image. Now, double the number of slits of the

stereogram, which is the same as doubling the sampling rate. The visual result is shown in

Figure 3.3. If the viewer is still straddling two slits, the viewer will still see two camera

views simultaneously, but the views come from cameras now one-half the distance apart

as were the previous images. Because the distance the taking camera moves from view

to view is directly proportional to how far an object point appears to move from view to

view, the two images of the object point that the viewer sees are half as far apart as were

the original images. As a result, the amount of unwanted intervening detail has been cut in

half.

Eliminating aliasing artifacts

One way, then, to reduce the problem of stereogram aliasing is to sample at a high rate by

capturing and more views and exposing more slits. At some level of sampling, diffraction,

imperfections of the holographic recording process or limitations of the human eye will

obscure the presence of the artifact. This approach is straightforward, but impractical

and inelegant. First, increasing the number of camera views and slits greatly reduces the

simplicity of stereogram production. Narrow slits are difficult to manufacture and are prone
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Figure 3.3: If the number of slits of a stereogram is doubled, the eye sees several views
taken from cameras closer together. The gap between the images of the object point seen
from one viewpoint is half as large.
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to diffraction effects. Lastly, increased sampling does not eliminate the problem, it merely

scales it down; for any finite sampling rate, a point sufficiently far from the projection plane

will still exhibit aliasing artifacts.

Bandlimiting

In other sampled systems, such as digital audio and video, aliasing is eliminated by the

process of bandlimiting, the removal of fluctuations in a signal of a frequency higher than

that which can be accurately captured by the sampling signal or medium. The same type

of approach can be used for stereograms. Up to this point in the analysis, the extent of

the images of object points has not been well defined: points could be arbitrarily small.

As a result, the frequency of occurrence of object points could be arbitrarily high. The

process of bandlimiting in holographic stereograms consists of selectively reducing the

spatial frequency of points in the images of the scene by increasing their horizontal extent.

The high spatial frequencies are thus filtered out of the stereogram's input views. Proper

filtering assures that the image of a point in one frame smoothly blends into the image of

the point in the next frame, with no gap or extraneous detail ever falling between the two

images. The following example illustrates the visual effect of bandlimiting, and follows

Figure 3.4.

Return to the case in which the viewer's eye straddles the slit boundary of a stereogram

of single point located off the projection plane. Recall that the distance that separates the

two images of the the point from the two slits is the distance that the image moves from one

projected view to the next. Now, imagine that the two point images expand horizontally

in both directions until they just touch. Each point is now as wide as the distance that

originally separated the two image points. Another way to calculate this width is to analyze

its endpoints. One end of a point's image extent is where the point appears to be from the

left border of the slit. Similarly, the other end of the point is where the image appears to be
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Figure 3.4: Bandlimiting of a stereogram image eliminates the gaps between the images of
object points when the viewer's eye falls within more than one slit.
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from the rightmost side of the slit. The center camera view, which until now has been the

only image representing the slit, produces an image in the middle of the two endpoints. The

required point width represents the object point as seen from all camera positions width the

horizontal confines of the slit.

In the stereogram model, all slits have the same fixed width, so the distance that the

image of an object point hops from view to view is a constant over all views. Because this

distance is equal to the width of the filter required to bandlimit the point, the filter width is

also a constant for any point. Just as hop size is directly proportional to the distance between

the object point and the projection plane, so too is the filter width. In short, stereographic

bandlimiting requires a filter whose width varies with the depth of the object point being

filtered.

Only at the projection plane, where the stereogram's wavefront approximation exactly

matches the wavefront of the actual object point, can the extent of an image point be

arbitrarily small. The image of objects at all other depth planes must be filtered by some

amount in the direction of sampled parallax so as not to exceed the maximum spatial

frequency allowed by the stereogram. The amount of filtering required for object points at

a given depth plane can be measured in two ways. The first, using the approach discussed

above, is to measure the minimum size of the point's image on the projection plane. This

technique implicitly incorporates camera perspective when calculating the filter size. For

an object Dog from the viewer, the minimum width of the object's image is given by the

equation shown in Equation 3.1, which is the same one that describes view-to-view hop

distance.
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The other way of measuring the required bandlimiting is to define the size of an object's

extent in three-dimensional space, instead of the size of its two-dimenstional projection on

the projection plane. Such a method eliminates the effect of camera perspective. One

useful landmark in determining this extent is that an object on the projection plane can have

points of infinitely small size. Another landmark can be found by positioning an object

point directly in front of and at the same position as the opening of the taking camera's

lens, so that D 1by = 0. Equation 3.1 states that such an object object's projection must be

infinitely wide, a result supported by the reasoning that, were an object point to be located at

the plane of a viewer's eye, that object point would obscure all other objects and cover the

entire visual field. To obscure all other information, the object's three-dimensional extent

must be at least as wide as the opening of the camera lens, or correspondingly, the width

of the stereogram slit. Sampling theory also supports this reasoning: an object resolution

at the camera/slit plane higher than the size of the slits is not sampled often enough to be

recorded without loss of information.

The relationship between amount of filtering and distance between object and pro-

jection plane is linear. Given that infinite resolution is possible at the projection plane, and

only slit-sized resolution is allowed at the slit plane, the general solution at any depth can

be found. Equation 3.2 gives the formula for the three-dimensional extent of the object.

Wobj-2D
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The validity of this formula can be shown by relating it to Equation 3.1. While Wobj-2D is

the union of the images of an object point as seen from all camera locations across the width

of a slit, Wob-3D can be thought of as the width that an object point must be to subtend

Wobj-2D on the projection screen when seen from a camera located on the slit plane. To

project an image of size Wobj-2D onto the projection plane, Wobj-3D must be as shown in

Equation 3.3. Combining Equations 3.1 and 3.3 yields Equation 3.2, assuring that the

three are self-consistent.
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Bandlimiting and wavefront approximation

If all points in the image field of a stereogram have spatial frequencies lower than the max-

imum permitted for the depth plane on which they lie, then the stereogram is bandlimited.

Analysis of the wavefront of a bandlimited stereogram demonstrates why bandlimiting

eliminates wavefront anomalies. In the previous chapter, the approximate wavefront for a

single point emitted by the stereogram had discontinuities in curvature where the wavefront

segments joined. In contrast, in a bandlimited image, each slit presents each object point

not as a single wavefront, but as an incoherent sum of many wavefronts, each wavefront

emitted from a portion of point's bandlimited image. Continuity of slope between the

wavefronts emitted by adjacent slits is guaranteed because the far rightmost portion of a

point's image in one slit contributes a wavefront identical to that of the leftmost portion

of the next slit. In effect, bandlimiting replaces each wavefront with the smallest range

of wavefronts such that will smooth out the cornerlike discontinuities of the stereogram's

wavefront approximation. Bandlimiting's effect on the wavefronts of two slits is shown in

Figure 3.5.

Practical bandlimiting

Several observations can be made about the bandlimiting equations. First, the formulae

and the reasoning behind them apply to points on either side of the projection plane.

Furthermore, the equations include only implicit references to the camera's location in

depth; the same bandlimiting factors apply to objects behind the camera as well as in front

of it. At this point in the discussion, the camera and the viewer are located at the same

plane, so an object located behind the camera would also be located behind the viewer and

as a result would not be a very intuitive or visually useful object. However, the types of

stereograms to be discussed in the next chapter allow the slit plane and the viewer plane to



Figure 3.5: A bandlimited image of a point for each slit emits a range of wavefronts. This
range is wide enough so that the far extreme wavefront of one slit matches the other extreme
wavefront of the the next slit. The shared wavefront for the two slits in the above picture
is emboldened.
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be different, so the viewer may indeed be interested in seeing objects that appear behind

the slit plane.

Bandlimiting and depth of field

Another observation about bandlimiting that can be drawn from the above equations is that

a stereogram's depth of field is not only similar, but identical to, but identical to the depth of

field of a camera lens. A camera lens captures the range of perspective views that enter its

lens aperture or "entrance pupil". The lens aperture fixes the effective diameter of the optic,

determining depth of field. In the image that the lens forms on its focal plane, every point in

the scene is replaced by (or, more correctly, convolved with) an image of the aperture of a

size that varies linearly with the distance of the point to the plane of best focus. To achieve

proper bandlimiting in a stereogram, all points in the imaged field must be convolved with

an image of the viewing aperture (the slit), of a size linearly related to the distance from

each point to the projection plane, in the direction of sampled parallax (here, horizontally).

The finite aperture camera

The similarity between the effect of a finite-sized aperture on photographic capture and

the effect of a finite-width slit on stereogram viewing suggests one way to perform the

necessary stereogram bandlimiting using a physical camera. If the capturing camera has an

effective aperture width equal to the slit width of the stereogram to be produced, and the

lens is focused on the plane of the object corresponding to the eventual projection plane,

all object points will be imaged as the appropriately sized disk on the camera's film plane.

The width of each disk is precisely the correct width to bandlimit the stereogram because

of the lens-slit aperture correspondence. Seen another way, all possible perspectives of the

object as seen from any location along the camera track now enter the camera lens and

are recorded in some camera view. Perspectives that the camera sees simultaneously are



summed to form a single image, and no perspective contributes to more than one sum. This

summation satisfies the stereogram requirements that all perspective views that could be

seen in a slit area be presented together, and that no views be presented twice. Once again,

correspondence between capture and viewing controls the accuracy of the final image with

respect to the original, in this case with regard to image artifacts.

For practical "real camera" stereography, however, such a literal correspondence

between capture and recording geometries is often inconvenient and difficult. Matching

lens aperture to slit sizes is hard for several reasons. First, the size of the taking camera's

aperture controls not only depth of field but also the amount of light passed to the film;

one method of exposure control is lost by fixing the aperture size. (In HPO stereograms,

the vertical size of the aperture can still be used to control exposure.) And while a fixed

pupil's-width camera aperture may be simple to develop for a stereogram with a fixed 1:1

object to image magnification, a stereogram that scales the object down by a factor of

ten or more would require an aperture several centimeters in width, and corrspecondingly

expensive and unwieldy optics. For the range of scale factors and exposures where it does

work, though, the finite aperture camera is a simple way to bandlimit.

The sweep camera

A more general, if approximate, approach to using large apertures to bandlimit natural

scenes is to simulate the effect of a large lens opening by using a small, moving one. Recall

that when a photograph is taken, the different perspectives that enter the lens are recorded

incoherently on the film, with no memory of the direction from whence they came. Except

for diffraction and film reciprocity effects, each perspective could be recorded sequentially

on the film to produce an identical image. So, a slit-sized aperture could be simulated

using an arbitrarily shaped smaller aperture as the camera is swept through the slit area.

Mathematically, the resulting synthesized aperture would be the shape of the small aperture



convolved with the path through which it travels during exposure. The effect of a simple

sweep across the slit width is not exactly equivalent to the effect of a hard-edged aperture,

but at least it includes all the perspectives of the slit. Using small lens apertures approves

the approximation to the intended aperture.

A more serious issue is how to force the projection plane of the object to be the plane

of arbitrarily high sharpness in the resulting images. After all, camera motion is usually

associates with the general blurriness often seen in consumer photographs. A recentering

camera is the key to solving this problem. A recentering camera is useful in stereography

because it assures that the eventual projection plane of an object is imaged to the same

position on the taking camera's film plane through all stereogram views. For the simulated

aperture technique to work, the projection plane of an object must be imaged to the same

position on the film during a single exposure as different perspectives are accumulated. If

a recentering camera is used, both needs can be satisfied. As the camera moves along its

track taking pictures, it no longer opens its shutter only at the middle of each slit. Instead,

the shutter remains open as the camera sweeps through a slit area. When the camera reaches

the end of the slit area, the shutter closes, the film is advanced, and the next image is begun.

The camera's lens translation mechanism assures that the images of points on the projection

plane fall on top of themselves throughout one slit's exposure. An object point located off

of the projection plane will produce a line across the film as the camera and lens move

through the slit, forming a bandlimited image of that object. The sweep of the image is

only horizontal, so the vertical extent and resolution of objects is not affected.

Bandlimiting in synthetic images

If the stereogram's images are generated synthetically using a computer graphics camera

instead of a physical camera, the "sweeping camera" bandlimiting method is even more

straightforward. Computer graphic cameras are typically modeled upon ideal pinhole



cameras, offering infinite depth of field and thus no camera blur. Because computer graphics

are not necessarily bounded by the laws of optics, the film reciprocity and diffraction of the

camera aperture that complicate the physical sweeping camera do not exist in the synthetic

sweeping camera. The camera sweep can be done by rendering recentered synthetic camera

views of the object from many camera viewpoints across the slit area, then combining them

by averaging the intensities of the different images. The resulting images will be have the

desired bandlimiting properties. This method is only practical if the different perspective

views of the object can be computed with little computational expense. Some image artifacts

may also be apparent because only a finite number of views of the object contribute to each

slit's image. Alternatively, any other physically accurate computer graphics methods of

simulating a finite width aperture camera can be used to produce synthetic bandlimited

images.

Volume prefiltering

The synthetic sweep camera works by producing many high resolution views and combining

them to produce one image of selectively reduced resolution. This process can waste

much of the work that the renderer spends producing exact results of high quality and

detail. Another synthetic bandlimiting technique, called volume prefiltering, performs the

necessary bandlimiting on the three-dimensional representation of the object just once. If

every point in an object volume is filtered using a depth dependent filter of width described

in Equation 3.2, then the projection of any object point as seen from any camera location

in the view zone by definition satisfies bandlimiting constraints. Once the volume is

bandlimited, the stereogram capture camera can take one picture per slit, from the center

of each slit, and obtain a set of correctly bandlimited views. Not all object primitives are

conducive to volume prefiltering. Polygonal databases, for example, as poor choices for

this method, while regularly sampled volume data sets are good candidates. Even more

efficient methods of bandlimiting synthetic scenes may be possible.



Raster images and bandlimiting

A final convenience of computer generated image is that they are usually inherently ban-

dlimited. If the image is composed of finitely sized pixels, scanlines, or other image

primitives, no image detail can be smaller than the size of the primitive. Resolution may

be further reduced because of limitations of the device that records the image for coherent

projection in the holographic setup. Similarly, images can intentionally be rendered at a

reduced horizontal pixel resolution, then interpolated back to the correct aspect ratio to

guarantee a fixed maximum resolution. The drawback of this method is that it filters the

image by a constant amount independent of depth, removing resolution from points that

were already sufficiently bandlimited for their depth. Pixel-based bandlimiting techniques

are simple and computationally inexpensive, but limited and crude. The quantized ban-

dlimiting that rasterization implies, however, is an image property generally worthy of

attention.

Changing slit size

Another constraint imposed by the simple stereogram model can now be relaxed. Until

now, the size of the slits of the stereogram was restricted to be about the same as the size

of the pupil of the human eye, as is commonly done in practice. This choice is a practical

compromise. First, were the slits any wider, the object would noticeably jump from one

position to the next as the viewer moves from side to side. Also, very wide slits would limit

the resolution of points far from the projection plane. The pros and cons of sub-pupil width

slits, on the other hand, are more subtle and has not been researched in depth. If the eye is

filled with several slits horizontally, the image presented by each slit will simultaneously be

visible. The effect of seeing several slits at the same time is not an averaging of the different

views, however, because the different views come from different directions. This increased



directionality is more faithful to the light from the original object. Wavefront analysis also

shows that the wavefront approximation of a stereogram using sub-pupil width slits is more

accurate because the piecewise segments are very small. Diffraction effects, on the other

hand, establish a practical limit to how small slits can be made.

The gain that comes from this increase in accuracy seems to be an ability of the eye to

focus on points off the projection plane as if they were at their true position in space. Recall

that for pupil-width slits, all points appear to the eye's focus as if they were on the projection

plane. As always, resolution far from the projection plane is improved with smaller slits

due to the higher sampling rate. The tradeoff for this improved approximation is increased

calculation and more complicated holographic exposure. Stereogram technology seems to

currently be at the point where computation time is more precious than image fidelity, so

little work with very fine slits has been done. Also, for horizontal parallax systems, the

benefits of selective focus are dubious because of the eye's inability to tolerate astigmatism.

And full parallax stereograms, where true focus would be useful, are still too difficult to

generate to afford the luxury of many small stereogram elements. Further experiments must

await more efficient image generation tools and more refined slit designs.

Changing slit shape

Another area that deserves further study is the prospect of stereographic slits without hard

edges. The intensity profile of a slit need not be a binary function; rectangular slits are used

mostly for simplicity of manufacture. From an image processing point of view, overlapping

Gaussian-like slit intensity profiles make more sense than rectangular profiles because they

lack high frequency edges, which is also desirable when the hologram is made because of

diffraction effects of the slit mask. Bandlimiting synthetic images for non-rectangular slits

is straightforward. Instead of simply averaging all perspective camera views, or convolving

a volume with a variable width box filter, the averaging or filter function can be weighted to



reflect the intensity profile of the slit. If adjacent slit profiles overlap when exposed on the

stereogram, some perspective views will be included in the contribution for two (or possibly

more) slits. These experiments are impractical for natural scenes; further research using

computer graphics and careful holographic study may prove the merit of non-rectangular

slits.

The photograph, the hologram, and the stereogram

The likely focusing ability of a finely slitted hologram and the relationship between stereo-

graphic and photographic depth of field both support the stereogram's role as a continuum

between a photograph and a true hologram. Stereograms with wide slits cannot accurately

present much three-dimensional information about an object; in the extreme, a stereogram

with a single slit can present only a single plane and thus no depth at all. Bandlimiting

compensates for limited three dimensional resolution by incoherently blurring together the

different perspectives seen through each slit so that all perspectives within the view zone

will be represented in the stereogram. As more and more slits are added to a stereogram,

more information is stored in a direction-preserving manner. Less information is recorded

incoherently and so less filtering of the image is required. Ideally, if enough slits are

recorded, the amount of directional information may be sufficient to allow the focusing of

points at their true location. If so, incoherent or photographic blur is replaced with true

three-dimensional blur. If other factors did not limit the minimum width of a stereogram's

slit, the width could be reduced until the number of perspectives approximated that of a

true hologram. At that point, all the optical properties of the original object would be

replicated. Unfortunately, boundary effects of the slit aperture, such as diffraction, prevent

a straightforward reduction of slit size. Clearly, though, the stereogram designer has a

wide latitude in deciding how accurately the hologram should approximate a continuous

three-dimensional image.



Chapter 4

Separating the Slits from the Viewer

The previous chapter built on the simple stereogram model, but relaxed it in two ways: the

viewer's eyes could be positioned at an arbitrary position within the view plane (not just

centered in a slit), and the stereogram's slit size could be different from a human pupil's

width. This chapter will relax a different constraint on the simple stereogram model: the

one that requires the viewer to be positioned at the plane of the slits of the stereogram. The

goal of removing this restriction is to allow the creation of stereograms with an arbitrary

view plane distance, freeing both the image designer and the viewer from optical constraints

imposed by the holographic recording apparatus.

Viewer positions behind the slit plane are possible in the simple stereogram, but

viewing locations between the slits and the projection plane are possible only through the

use of two-step holographic techniques. Distortion-free two-step holography does not,

however, alter any other relevant properties of the viewing geometry, so without loss of

generality the beginning of this chapter will implicitly assume that the viewer is able to

pass through the slit plane to viewer locations close to the projection plane. Issues peculiar

to two-step stereography will be reserved for discussion at the end of the chapter.



Understanding the optical effects of moving the viewer to a different view distance

requires another means of optical analysis called ray tracing. While wavefront analysis is

useful when determining the small changes in the direction of light that proved significant

in the stereogram's wavefront approximation, ray tracing's strength is in illustrating the

general paths of light from large areas, overlooking small differences in direction and

completely omitting phase variations. Ray tracing can be used to determine the image that

each camera along a track sees, and thus what each projection screen should look like when

each slit is exposed. It also shows what part of the projection screen of each slit is visible

to a viewer at any one position. Distortion-free viewing requires that the rays from the

photographic capture step and the viewing step correspond to each other.

Understanding stereogram distortion

The single point test pattern used in previous chapters is too simple to display the distortions

experienced as the viewer changes position in depth. Instead, a new test pattern will be used.

The three dimensional object used in this test pattern consists of three hollow squares all

having the same height and width but located at different depths. One square is located on

the projection plane, another is located one unit of distance directly behind the first, and the

last is located one unit directly in front of it. The capturing camera's track is located three

units from the projection plane, and two units in front of the front square. A recentering

stereogram camera moves down this track, which is four units long and centered on the

central axis of the squares. The stereogram in this example has many slits, so the camera

will capture a long sequence of views, but the pictures captured from five judiciously chosen

camera positions will be illustrated here. One view is taken from the center of the camera

track. This view will be called view C for "center". Two more views are captured one unit

to each side of view C, these views are called view NL (for "near left") on the left and view

NR ("near right") on the right. The camera position for views NL and NR was chosen to be



collinear with the edges of the squares of the test pattern so that in those images, the edges

on one side of all three squares would appear to line up. The final two camera views, FL

on the left and FR on the right (for "far left" and "far right"), are taken from positions two

units from the center of the track. A diagram of the geometry of the test pattern stereogram

is shown in Figure 4.1.

Viewing from the slit plane

A viewer located at the slit plane of the stereogram sees an image much like one of the five

shown and, with the help of stereoscopic disparity between two views, correctly interprets

the different apparent sizes of the objects as due to differences in the depth of the squares.

The correspondence between the images that the camera captures and the image that the

viewer sees from a particular position is especially simple when the viewer is at the slit plane:

at any one time, the viewer sees an image of a single projection screen captured entirely

from one camera viewpoint, as illustrated in Figure 4.2. If the viewer moves backwards,

slightly away from the slit plane, this direct correspondence no longer holds. A single slit is

no longer capable of filling the entire field of view of the eye. To the viewer, the left part of

the projection screen will appear through one slit, the center part through another, and the

right part through still another. The viewer sees, through three different slits, parts of three

different projection screens captured from three different camera positions. Conversely,

no projected image captured by any one camera is visible in its entirety from any viewer

position.

Viewing from far away

The visual effect of moving the viewer away from the slit plane is greatest, and hence

the easiest to understand, when the viewer is positioned very far from the stereogram and

centered in front of it. From this distant vantage point, assuming the holographic plate and



object squares

________-----C-

* 1

m ~ m m

C FiJ OFR

- - projection plane

recentering camera
on track (five
positions shown)

Figure 4.1: The camera geometry used to capture the stereogram is shown at the top. The
five selected camera locations capture the images shown below. Different parts of these
camera views will be seen at different view distances, forming the composite image that
the viewer sees at a particular position.
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Figure 4.2: When the viewer is located at the slit plane of the stereogram, only one camera
view is visible. The presented image, shown at the bottom, is identical to one of the images
of the sequence.
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the projection screen are the same size, the viewer will see the leftmost slit-width part of

the screen through the leftmost slit, the next slice of the screen through the second slit, and

so on over to the rightmost slit, which shows the righthand sliver of the projection screen.

In other words, the part of the projection screen that is visible through any slit is the part

directly in front of that slit; the viewer's great distance implies that the lines of sight passing

through the slits are parallel to each other. To figure out what the viewer sees from the

distant viewpoint, the pieces of the different views must be assembled. In this example,

a limited construction will be done with the five camera views shown; this partial view

will be used to guess the appearance of the complete image. Figure 4.3 shows the viewing

geometry and the image as seen from the distant viewpoint.

The narrow slice of the projection screen that the viewer sees through the middle slit

is at the center of the screen. This slice is the only part of the image that the viewer sees

that looks the same as it did at the original viewer depth. In fact, the viewer saw this center

particular slice, along with the rest of the projection screen, from the slit plane. For slits NL

and NR, recall that the camera's position on the track was chosen so that the edges of the

three squares would line up with each other right in front of the camera. A viewer looking

through those slits, then, sees the edges lined up on the left side of the the squares through

NL, and lined up on the right side of the squares through NR. Finally, no part of the squares

is seen through slits FL and FR; there are no objects at the left side of the leftmost camera

view or the right side of the right most view because the front square has shifted to the other

side of the image from its original position, and the rear square has not shifted far enough.

The image seen through these slits, and through the rest of the stereogram, is shown at the

bottom of Figure 4.3.

If a viewer actually were to have moved from the slit plane of a stereogram to a position

far away, the image would gradually change from its original undistorted appearance to its

final distorted one. More and more disparate views would become included in the viewer's

image as the viewer receded, and the pattern of the rays from the viewer to the projection
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Figure 4.3: When the stereogram is viewed from an infinite view distance, the viewer sees
the parts of the projection screen located directly in front of each camera during capture.
The result is that the three squares have the same horizontal extent: the front square has

shrunk and the rear square has stretched horizontally.
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screen would change from fan shaped to parallel. Each ray gradually sweeps across the

projection screen for the slit into which it falls. Just as for a real object, small changes in

viewer position produce correspondingly small changes in image appearance. Additionally,

objects located on or close to the projection plane such as the middle square are immune to

distortion, because their size remains constant independent of viewer position (as shown in

the diagram).

Viewing from in front of the slit plane

Instead of moving away from the hologram, the viewer can instead pass through the slit

plane closer to the projection plane (assuming the stereogram has been transfered). The

viewer's location is shown in Figure 4.4. In this case, analysis is done be tracing the path

of the light from the projection screen to each slit, and seeing which rays are intersected by

a viewer at a particular location. For example, a viewer centered in front of the hologram

and located half way between the slit plane and the first square will see the same part of

the projection screen through the center slit as was visible from the infinite viewer location.

Once again, then, the center part of the viewer's image is unchanged. The viewer's eye

also falls upon a line between the projection screen, an edge of the front square, and either

slit NL or NR. So the part of the viewer's image that forms the right side of the front

square comes from perspective NL, and the left side of the front square originates from NR.

Again, no part of the object is visible through slits FL or FR. In the resulting image, shown

in Figure 4.4, the front square appears stretched horizontally compared to the undistorted

view, while the back square is slightly compressed. Note that the scale of the distortion is

the opposite of that seen from far away.

From this viewer position, if the viewer moves slightly closer to the projection screen,

the eye intercepts rays passing from the projection screen, through the edges of the front

square, and through the far slits FL and FR. So, while the middle part of the image is again



Figure 4.4: When the viewer moves inside the view plane, left camera views control the
appearance of the right side of the object. Here, the eye falls on lines connecting the edges
of the front square with the two intermediate slits. In the resulting image, the front square
widens horizontally, while the back square shrinks. This view position requires that the slit

hologram be a projected image.
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unchanged, the edges of the front square in the final image are located as seen from the

extreme camera viewpoints. The resulting image of the front square is even more stretched

horizontally, while the back square is somewhat more compressed. A diagram of this

geometry is shown in Figure 4.5.

The stereogram as an HPO display

The trend of the image distortion in the stereogram as seen from different distances may

now be understood. In the horizontal direction, the stereogram accurately approximates the

behavior of a continuous parallax system. Horizontally, objects change in perspective in a

natural way as if they were truly three-dimensional. Vertical detail is not three-dimensional,

however; all vertical information in the image is photographically recorded and "stuck"

to the projection plane. No change in viewer position can alter the relative positions of

vertical details. Instead, vertical perspective remains fixed to that seen by the camera when

the images are recorded. The stereogram's discrete structure is irrelevant to this type of

distortion: in this sense, a stereogram is prone to the same distortions as a continuous

parallax HPO display. Were the stereogram instead a full parallax array, both the horizontal

and vertical information in a scene would change naturally as the viewer moved towards or

away from the stereogram.

Prerequisites for undistorted stereograms

What guarantees that the horizontal perspective changes of the stereogram will match those

of the object is the correspondence between the location of the camera plane of best focus

and the location of the slit when the stereogram is viewed. A slit of the stereogram is

the place where all the rays from that slit's projection screen converge, cross, and then

diverge away from the hologram. This horizontal focus must be accurately modeled, using
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Figure 4.5: A closer view distance produces even more extreme distortions. The eye

now receives information about the edges of the front square from the extreme slit on the

opposite side from the edge. Note the non-linearity of the image distortion, as shown by

the curve connecting the the corners of the squares.
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Figure 4.6: As long as the position of the image capture camera and the slits coincide,
a viewer will see the same image rays coming from the stereogram independent of the
location of the slits.

a physical or synthetic camera, when the image is captured. If the horizontal focus is

correctly modeled, a viewer will see the same rays independent of the slit position, as

shown in Figure 4.6. To perform this modeling accurately, the camera's geometry must be

equivalent to the slit's geometry; otherwise, intensity information about the ray directions

that the camera captures will be used to modulate the intensity of rays traveling to the

viewer at slightly different directions, resulting in compression or expansion of all or parts

of the object in depth. In short, the camera and the slits must coincide.

The only viewer location where the viewer can see an undistorted image while looking

at a simple HPO stereogram is at the plane where the camera captured the scene. This is the

only viewer location where the stereogram's variable horizontal perspective and its fixed

vertical perspective are matched. So, while the camera and slit planes must coincide to

avoid depth distortions, the viewer and camera planes must coincide to match vertical and

horizontal perspectives. Therefore, a stereogram captured with a conventional camera must

be viewed at the distance where the slits appear to be if the image is to be undistorted.

The nature of the distortion introduced when the viewer and the slits are not at

the same depth, however, suggests a way of modifying the camera's optics to capture a



sequence of images that, while appearing distorted when examined on a frame by frame

basis, will produce an undistorted stereographic image when viewed from a fixed distance

other than the slit plane. This modification involves separating the positions of the vertical

and horizontal foci of the camera's lens to match the differences between the camera's

slit location and the eventual viewer location. The stereogram requires the position of the

vertical focus of the camera match that of final viewer. It also demands that the horizontal

focus of the camera lie at the same location as the slits of the stereogram. Both of these

requirements can be satisfied by the same image capture camera if that camera's lens is

anamorphic. We call stereograms that use image distortion techniques to change the slit or

viewer position advanced stereograms, or ULTRAGRAMS, because of the added power and

image configurability these methods can provide.

Anamorphic cameras

An anamorphic physical camera can be created with a standard spherical-surfaced lens

coupled with a cylindrical optic; alternatively, two crossed cylindrical lenses can be used.

The appearance of the horizontal and vertical detail in the stereograms images are completely

independent; this is only true if, as in a conventional stereogram, the camera faces straight

forward during the capture of all views. The significance of this independence of the

two axes is especially important if the image capture camera is not physical but instead

synthetic. For a computer graphics camera, horizontal and vertical independence means

that perspective calculations can be altered in one direction without affecting the other,

which greatly simplifies the process. The configurability of synthetic anamorphic cameras,

compared to the expense and complexity of the corresponding physical optics, has resulted

in their exclusive use for the work described here.

The availability of an anamorphic camera frees the stereogram design of any con-

straints on slit plane location with respect to the viewer or to the object. For example, the



object can pass through the plane of the stereogram, or can appear completely out in front

of it. If the plane of the slits of the stereogram is inside the object, the camera geometry

is somewhat unintuitive; it dictates that the horizontal focus of the capturing camera must

also be inside the object. The image captured, however, is not of the inside or the back

side of the object; the location of the focus merely decides where the rays that the camera

captures must cross. The viewer's position still determines what objects or parts of objects

are visible.

As the images of the distorted views of the square test pattern show, however, a non-

lineat distortion is produced by a change in viewer position. The inverse distortion required

to produce an undistorted image, then, also must be nonlinear. For physical cameras and

ray tracing computer graphics cameras, this nonlinearity can be produced with a cylindrical

optic or its computational equivalent. However, most scanline-based computer graphics

renderers, though, rely on the linear properties of image transformations, so that the effect

of a cylindrical lens is difficult to model. This difficulty is especially acute if the object

passes through the slit, or horizontal camera plane, a situation that often occurs in one-

step holography. If the object is intersected by the slit plane, the part of the object on

the projection screen side of the slit is greatly magnified, the part on the opposite side of

the slit is magnified and reversed left to right, and the part that falls on the slit plane has

infinite extent, causing a singularity in standard computer graphics perspective calculations.

Instead of performing the extensive modifications to a standard computer graphics renderer

necessary to deal directly with these mathematical problems, a post processing method of

synthesizing the desired perspective views from other, more easily obtainable views was

used.



Approaches to synthetic anamorphic cameras

The essential property of the final projected images is that the rays that they describe form a

fan that spans the projection screen and crosses at the slit. All the techniques presented here

for synthesizing computer generated images presented here involve the following general

technique: calculate a sequence of images containing the intensity of all rays needed for all

the slit images, but where the information for any one slit is distributed in parts of many

images of the sequence. The parts of the input views are then rearranged to form a new

sequence of images, in which each image is one required to expose a slit. The camera

geometry used to capture the input sequence of images can be chosen to simplify the image

rearrangement process. The vertical focus of the camera always remains at the location that

corresponds to the final viewer position.

The infinite viewpoint camera

One of the simplest approaches to this technique moves the camera's horizontal perspective

away from the slit plane and positions it at infinity, forming a horizontally orthographic

projection of the scene. From this position, the horizontally-displaced rays of the camera

travel parallel to each other. The number of horizontal rays, which corresponds to the

number of horizontal pixels in the computer graphic image that the camera generates,

is matched to the number of slits of the stereogram. The camera's horizontal position

determines the angle at which the camera's rays strike the plane of the hologram. Only

those rays that pass through the stereogram are of interest; therefore, the camera's view is

always recentered to include the horizontal window of space defined by the holographic

plate. If the camera moves horizontally through space, a collection of ray fans is swept out,

each fan centered on the location of a slit. Each fan consists of the rays needed to expose

its particular slit. Figure 4.7 shows how rays from three different camera positions cross to

trace rays through three slits.
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Figure 4.7: The rays that three cameras at infinity trace through a scene cross at each slit
when the cameras recenter on the stereogram plane. This collection of rays can be formed
into a view that appears to be from a camera with a horizontal focus on the slit plane.



camera infinitely far from the stereogram
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Figure 4.8: The image to be projected onto the projection screen for a slit is made up of one
ray from each camera position. The angle that the projection frame subtends with respect

to the slit must match the angle through which the camera travels.

To further simplify the example of this technique, first assume that the stereogram

to be made will be a "simple" or "non-recentered" camera stereogram, so the projection

frame used to expose each slit is centered in front of that slit. If this is true, the shape of

each fan of rays needed to expose each slit is exactly the same for all the slits. To capture

the sequence of input images, then, the camera moves along a horizontal track of a length

proportional to the width of the projection frame, capturing one view for every column

of pixels in the projected image. Figure 4.8 diagrams the camera geometry needed, using

one slit as an example. In the final sequence, The collection of first columns from every

camera view is assembled to form the first slit, the second column for the second slit, and so

on. This reorganization is accomplished by forming a pixel volume by stacking the input

area of image corresponding\ \ 7-to the projection frame

slit plane of stereogram

every pixel of each image
is a ray passing through
a slit



views with the leftmost camera view in back, the next view in front of it, and so on, with

the rightmost view in front. The volume is then rotated ninety degrees around its vertical

axis and resampled into the output frames. This process is summarized in Figure 4.9.

Pseudocode that implements this volume-rotation based predistortion approach is shown in

Figure 4.10.

The advantage of placing the synthetic camera at infinity is that all the objects in the

scene are very far from the camera plane and are thus unlikely to intersect it. A disadvantage

to this predistortion scheme is that instead of an arbitrarily high resolution at the projection

plane as allowed by bandlimiting constraints, the maximum resolution available is the pixel

width of the input views, which necessarily corresponds to the slit width. Computer images,

however, seldom have arbitrarily high resolution, so that if the smallest pixels capable of

being projected onto the projection screen are about the same width as a stereogram slit,

nothing is lost by using this technique. An added bonus of this resolution limitation is that

the images produced are certain to be bandlimited at a depth at least up to the plane of the

slits because the slit plane is sampled at a rate of one sample per slit.

Rendering recentered views

A straightforward extension of the infinite camera predistortion technique can be applied

to make recentering-camera stereograms: the camera at infinity just has to move further

horizontally to capture an image of all the rays that pass through a slit and strike the now

stationary projection frame. Much calculation is wasted, however, because at extreme

camera positions only a small fraction of the computed image is used. Figure 4.11 shows

the worst case of this waste, when the camera is imaging the last column of the first slit

and only one column of the entire image is used. Another technique is more efficient for

computing recentered stereogram views.



Input images are stacked
to form a volume. The
volume is rotate 90 degrees...

resampled by cutting the
volume from back to front,
to collect the rays that cross
at one slit into one view...

to form the images needed
to expose the slits.

Figure 4.9: Input views from a camera at infinity can be resampled in computer memory to
form predistorted views for exposing the slits of a stereogram.

left input view

right input view

left slit image

right slit image



program rotatevolume

declare parameters
n_screencols (horizontal resolution of each slit's image)
n_slits (number of slits to be exposed)
n_rows (vertical resolution of each slit's image)

declare variables
slice[nscreen-cols] [nslits]

(each row of array holds a row of each input view)
t_slice[n-slits] [n-screen-cols]

for row +- 0 upto njrows { (for every image row)
for input-view <- 0 upto n-screenscols {

(input a row of pixels and put it in a row of slice)
slice[input-view][] +- readrow(row, input-view, nslits);

}
t_slice +- rotateslice(slice);
for output-view <- 0 upto n-slits {

(output each newly formed row to the image for each slit)
writerow(row, output-view, nscreen-cols, tslice[output-view][]);

}
}

function readrow(row, view, number)
(read number pixels from row row of image view)

function writejrow(row, view, number, data)
(write number pixels to row row of image view, using data from data)

function rotate-slice(array)
(rotate the slice array 90 degrees around its center, the same as

transposing the array and then flipping each row)

Figure 4.10: Pseudocode for the volume rotation used in the infinite anamorphic camera

method.



Figure 4.11: The extreme camera view needed to capture the last column of the first slit of

a recentering camera stereogram with a camera at infinity wastes the computation of all but
that slit because no other part of the image is used in any view.

Perspective slicing

A viewer standing behind a stereogram sees segments of many projection screens abutted

together, each projection screen segment seen through one slit. Each slit subtends some

width on the projection plane, a width given by Equation 4.1, where Wit_p, is the width

subtended, Dp,,oj is the viewer's distance to the projection plane, and Dgit is the distance

from the viewer to the slit plane.

Wliitpro = Dp' .W0 it (4.1)

If the viewer moves horizontally, the segment of the projection screen that was visible

through each slit will move out of view at a rate proportional to the viewer's velocity. After

a certain fixed distance, the old segments of the projection screen will have completely

moved out of the slits, and non-overlapping new ones will be visible. One way to generate

the views for the slits of the stereogram is to use a horizontally moving recentering camera



Figure 4.12: The camera geometry used for the perspective slicing predistortion method.

that takes a picture of the projection plane every time the camera has moved this fixed

distance, as given in Equation 4.2.

Dproj
Dcamera = Dpro"- D sts (4.2)

The length of the camera track, WIrack, is the given by Equation 4.3.

Wirack = Dt ± + (nut, - 1)Wslt (4.3)
2 (Dproj - D.9it)

The number of camera views is given by Equation 4.4.

nviews = nsiits + [ sitproj 1 (4.4)

Figure 4.12 shows the capture geometry. The image for one slit is formed by piecing

together all the segments of the projection plane that were subtended by that slit's boundary



L I J J projection plane

Figure 4.13: In perspective slicing, the projection screen for each slit is formed by collecting
the pieces of each camera view that pass through that slit.

in the sequence of input views. In other words, the camera perspective required for a single

slit is approximated from slices of many images captured from a camera at an arbitrary

depth. These slices may span many pixels. Figure 4.13 shows how one slit's image is

composed of slices of many different views. Pseudocode that implements perspective

slicing is shown in Figure 4.14. Nothing assures that a slice boundary will fall on a pixel

boundary when the input images are distributed, so care must be taken to carefully combine

the edges of overlapping slices.

The big advantage of this method is it permits objects near the projection plane to

be rendered at a high resolution. This property is contrast to the infinite camera technique,

which limits the resolution of the entire image field to the width of the stereogram's

slits. As mentioned above, perspective slicing also can reduces the amount of computation,

compared to infinite camera distortion, that is spent rendering parts of a scene that will never

be visible. This savings occurs because input camera always renders only the area of the

recentered projection frame from all camera locations. Unused information is still rendered

to produce the output frames for the slits on the edges of the stereogram, but the percentage

slit plane



program perspectiveslice

declare parameters
w_slit (width of slit)
n_slits (number of slits)
d_proj (distance from camera to proj. screen)
d_slit (distance from camera to slit plane)
pw-proj (pixel width of proj. screen)

w_slitproj <- wslit-(dproj/dslit); (width of slit proj. on proj. plane)

n_slit-projs +- wproj/w-slice; (# slits subtending one proj. screen)

pwslitproj +- pw-proj/n-slit-projs; (pixel width of slit proj.)
n-inputviews +- nslits + n-slit-projs - 1;

(number of input views needed to cover all proj. screens)

for row +- 0 upto njrows {
(input a row from all input views)
for input-view +- 0 upto n-input-views {

indata[input-view][] <- readrow(row, input-view, pw-proj);

}
startview <- 0;
for output-view <- 0 upto n-slits {

input-view <- start-view;
for slit-proj <- 0 upto n-slit-projs {

offset +- slit-proj -pw-slit-proj;
copy(indata[input-view] [], out-row[], offset, pw.sliLproj);
input-view <- input-view + 1;

I
writerow(row, output-view, pw-proj, out-row[]);
startview <- start-view + 1;

}

function copy(src, dst, offset, number)
(copies number pixels from src to dst starting at offsetfrom the

beginning of src and dst)

Figure 4.14: Pseudocode for the perspective slice predistortion method.



of unused data decreases significantly as the number of stereogram slits increases. This fact

saves considerable computation when small, high resolution images with a large number of

small slits are produced. Finally, this method permits a non-anamorphic camera to produce

the input views for a stereogram that requires predistortion, allowing many existing image

creation methods to be incorporated into advanced stereographic displays.

The disadvantages of this method arise from the discrete nature of the slices of

the images. When the slits of the stereogram are very narrow, the pixels on the edges

of the slits may often be cut by a slice boundary, leading to excessive filtering and loss

of spatial resolution. So, this method is not well-suited to cases in which the slit and

projection frame pixel size are approximately the same. Furthermore, much as a stereogram

approximates a wavefront by using pieces of other, different wavefronts, the perspective

slicing method approximates one perspective by using pieces of significantly different

ones. While the net difference in the desired perspective and the approximation is small,

the local, intra-slit differences can be large. The perspective within a slice of an image has

a horizontal perspective corresponding to the input camera's location, not the slit plane's.

This difference makes a perspective-sliced image vulnerable to aliasing artifacts. These

artifacts can be reduced by matching as closely as possible the locations of the slit plane

and the input camera. A slit plane on the other side of the projection plane from the viewer,

which can happen in direct-illuminated two-step holograms, cannot easily be matched with

perspectives from a camera whose viewpoints are easy to calculate. In this case, a camera at

infinity should be used. Whatever the position of the input camera, the exact consequences

of the sampling artifacts caused by perspective slicing have not yet been quantitatively

explored.



Predistortion and two-step stereograms

As parts of this discussion have mentioned, two-step holography offers an increase in

image flexibility and variety when compared to the simple stereogram example of this text.

Two-step holograms let the viewer be positioned at or in front of the slit plane. Such a

stereogram uses a holographic transfer step in which the slit hologram is illuminated with a

phase conjugate illumination source that projects an image of the projection screen out into

space. True phase conjugation is difficult to achieve, though, and improper illumination

during either the transfer or the viewing step can produce an image of the projection

screen where the horizontal and vertical foci of the screen do not fall at the same depth;

that is, the transfer process can introduce astigmatism. Shifts in wavelength between the

light sources used in stereogram mastering, transfering, and viewing can also result in

astigmatism. Similarly, an anamorphic optical element may take the place of the projection

screen in a holographic setup. Predistortion techniques can compensate for the major effects

of an anamorphic projection screen by invoking a generalization of the rules for normal

predistortion.

Guidelines for distortion-free stereograms

The constraints for producing undistorted horizontal parallax only stereograms can be

summarized in the following list. These points better define exactly how the capture,

recording, and viewing geometries must correspond to each other.

e The horizontal and vertical positions of the stereogram's slits and the projection screen

should be found relative to the final viewing geometry, after all optical distortions

have been accounted for.



" The location of the horizontal focus of each slit must correspond to the location of

the camera that captured that slit's projection screen image.

" The area of space imaged by the image capture camera must match the area of the

projection frame with respect to the slit being exposed.

" If the projection screen (or its image) is astigmatic, the position of its horizontal focus

should be used in determining the geometrical relationship between the slit and the

projection screen.

" Aliasing artifacts are minimized by positioning the scene so as to straddle the plane

of the projection screen's horizontal focus.

" The vertical focus of the capture camera must lie at the final viewer's position with

respect to the vertical focus of the projection screen.

" If the final hologram is to be viewed in white light, the projection screen's plane of

vertical focus should coincide with the plane of the hologram in order to minimize

chromatic and source-size blurring.

" HPO stereograms will always suffer from some distortion as the viewer moves away

from the intended view distance, but this distortion can be minimized by positioning

the object near the plane of vertical focus of the projection screen.

Advantages of ULTRAGRAMS

By following these guidelines and using the necessary image predistortion techniques,

stereograms with many interesting properties can be made. For example, while most two-

step stereograms require error-prone phase conjugate illumination, ULTRAGRAMS can be

made in which the image of the slits is behind the plane of the transfer plate, allowing



Figure 4.15: Predistortion allows stereograms to be lit with direct illumination, so the slit
master floats behind the transfer hologram.

the use of a diverging illumination source that closely matches the reference source. The

viewing geometry for this type of stereogram is shown in Figure 4.15.

The ability to position the plane of the stereogram anywhere in space not only increases

the flexibility of the medium, it also permits a tradeoff to be made between spatial resolution

and the size of the stereogram's view zone. If a two-step's master and transfer holograms are

placed close to each other, a viewer can move very far horizontally and vertically and still

be able to see through at least part of the two windows defined by the plates. This increase in

view zone size is shown in Figure 4.16. However, the depth of field of the stereogram, and

thus the maximum spatial resolution possible at any depth plane, is reduced as the slit plane

is positioned closer to the projection plane. From an information content point of view,

the size of the view zone may increase as the planes get closer together, but the amount of

image of slit master
hologram appears
behind transfer

transfer hologram,
illuminated by direct,
or non-conjugate,
illumination
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Figure 4.16: The view zone of a stereogram is defined at the region of space where some
part of the information of the hologram can be seen. If the slit plane of the stereogram is at
the viewer's eye, the view zone is the size of the slit master. Moving the slit plane closer to
the transfer hologram widens the size of the view zone. Not shown is the similar increase
in the vertical size of the view zone.



Figure 4.17: As the slit plane and the projection plane get closer together, the size of the
smallest allowable detail at any a given depth gets larger. This loss of spatial resolution
corresponds to an increase in view zone size.

information captured by the camera and put into the stereogram remains the same. Spatial

resolution is lost by the same factor as horizontal view zone size is gained. The change in

stereographic depth of field is shown in Figure 4.17.

In summary, with proper attention to details of capture and viewing geometries,

stereograms may be created that have a view distance that is independent of the location

of the stereogram's slit plane. Stereograms in which the viewer is not at the plane of the

slits suffer distortion due to the fact the stereogram has parallax in only one direction.

This distortion can be compensated for by generating a sequence of views with horizontal

foci that lie on the slit plane. These images have the inverse distortion to that which the

stereogram introduces, so that their combination presents an undistorted view to the viewer.

The vertical perspective of the camera must match that seen from the eventual viewing

zone. Several ways of producing the correct predistorted images have been presented in



this chapter. A sequence of conventional, undistorted images can be used to generate a

new sequence of distorted ones, so that existing image sequence creation methods can be

used. Finally, the size of the stereogram's view zone and the amount of spatial detail the

stereogram can store are inversely related. The next chapter will present a case-by-case

description of the advanced stereograms produced to date. These stereograms provide

useful examples of the wide applicability of these computer predistortion techniques.



Chapter 5

Practical Examples

The previous sections have outlined a variety of basic and advanced holo-stereographic

concepts. These concepts have emerged from a year and a half of work, the goal of

which was to find practical ways of improving the quality and usefulness of holographic

stereograms. The material in this chapter is a history of advanced, flat format stereography

at the Spatial Imaging Group (MIT Media Laboratory). The name ULTRAGRAM was

coined to describe advanced stereograms that offer significant improvements in viewing

quality and production technology through the use of image predistortion. The research

direction of the group, and of the Media Laboratory in general, is towards improving the

quality of human-computer interaction; naturally then, all of the images used to make

the stereograms described here are computer generated, and all are predistorted using

computational techniques. At this time, no raytracing programs able to produce distorted

images directly as output are used. Such special-purpose programs would require the

reimplementation of all the computer graphics techniques required to produce high quality

images, a dauntingly large task. The use of standard polygonal renderers, with slight

modifications, and a post-rendering predistortion step greatly widens the range of sources



from which image data could come.

The types of ULTRAGRAM images made to date include a wide angle of view, two-

step reflection hologram; a large scale meter-square one-step transmission hologram; and

a small, high-resolution two-step reflection hologram suitable for mass production. The

existence of these holograms is testimony to the fact that computer predistortion of input

views can be done practically and efficiently, even when the images are composed of tens

or hundreds of megabytes of data. The images and the techniques that were used to produce

them are described in historical order.



Phone Test Pattern #1

The Phone Test Pattern was designed not as an end product, but rather as a test of

computer predistortion methods, to examine the holographic consequences of a very small

master-transfer distance, and to see what viewing advantages might come from using the

ULTRAGRAM format. This image was not intended to be a high quality display piece; the

fact that the master and transfer plates were parallel precluded the use of an achromatic

transfer, so that the final image suffers from moderate chromatic blurring.

The views for this stereogram, an image of a telephone handset crossing a grid and

surrounded by wireframe cubes, were computed using a rendering library called Ren-

dermatic, developed by students in the Computer Graphics and Animation Group at the

Media Laboratory. Predistortion of the images was done using the infinite camera model.

Type: two-step transmission
Transfer illumination: phase conjugation, white light
Master size: 300mm wide, 300mm high
Transfer size: 300mm wide, 300mm high
Projection frame size: 300mm wide, 300mm high
Slit width: 1mm
Number of slits: 300
Master-transfer separation distance: 100mm
Resolution of projected images: 480 pixels wide, 480 pixels high
Stereogram-type: simple camera
View Distance: 1 meter

Phone Test Pattern #2

same as Phone Test Pattern #1, except for:
Transfer illumination: direct illumination, white light



However, instead of the camera's horizontal focus being at infinity as required, it was erro-

neously positioned at the view zone distance. The first version, Phone #1, used conventional

phase conjugate illumination of the transfer hologram. Although the diverging illumination

source used to light the hologram did not match the conjugate of the transfer's reference

source, no attempt was made to correct for the distortions that resulted. Phone #2 was

the first stereogram to demonstrate the viability of direct illumination, in which the image

of the slits appear behind the plane of the transfer plate. Test stereograms of both Phone

#1 and Phone #2, while somewhat distorted, were surprisingly achromatic, and exhibited

sufficiently good image quality and widened view zone to encourage the production of

the next image without further theoretical work. Figure 5.1 shows three computer images

used for the Phone stereograms: an unsdistorted image, an image distorted for the phase

conjugate illuminated transfer, and an image distorted for the direct illuminated transfer.

Figure 5.1: Three images of the computer model for Phone Test Pattern. On the left is a
single viewpoint of the undistorted test pattern. The middle image is a predistorted frame
for the Phone #1, where the transfer is illuminated in phase conjugate and the master is
projected into space. On the right is a frame for Phone #2, which use direct illumination
for the transfer.



Cadillac Hubcap and Wheel, MIT Version

The Cadillac Hubcap and Wheel series of stereograms were conceived to show that a

first quality two-step display hologram could be made in the ULTRAGRAM format. All of the

stereograms in this series used the same holographic mastering setup, shown in Figure 5.2.

The images for this series were generated from a computer aided design database

of a Cadillac automobile hubcap and wheel assembly supplied by the General Motors

Design Staff. The spline database was converted to polygons and rendered using the

Rendermatic library. The same predistortion methods used with Phone were used in the

Cadillac Hubcap series, including the finite instead of infinite horizontal camera viewpoint.

The final transfer hologram was a single color Lippmann type reflection hologram in order

to minimize chromatic aberrations produced by the parallel plate transfer geometry. In

Type: two-step reflection
Transfer illumination: direct illumination, white light
Master size: 300mm wide, 200mm high
Transfer size: 250mm wide, 200mm high
Projection frame size: 250mm wide, 200mm high
Slit width: 1mm
Number of slits: 300
Master-transfer separation distance: 100mm
Resolution of projected images: 600 pixels wide, 480 pixels high
Stereogram-type: simple camera
View Distance: 1 meter



Figure 5.2: The holographic table layout used to make the
Cadillac Hubcap series.
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Figure 5.3: Holographic table layout for a direct illumination transfer of an ULTRA-
GRAM master.

Cadillac Hubcap and Wheel, MIT, the wheel was positioned mostly in front of the image

plane and was filled with a reflection of a distinctive view of the MIT campus. The color

of the reflection transfer used in Cadillac Hubcap, MIT was chosen to be close to the

wavelength of the laser used to make it (647nm Krypton) to minimize the geometrical

effects of a wavelength shift. No bandlimiting was applied beyond that provided by the

infinite camera predistortion technique.

The transfer setup for the Cadillac Hubcap stereograms is shown in Figure 5.3. The

first transfers of Cadillac Hubcap, MIT that were produced showed a very noticeable

distortion due to the misplaced horizontal focus of the taking camera. The images appeared



Figure 5.4: When a camera with horizontal focus at the view distance rather than at infinity
is used in infinite camera predistortion, the camera captures rays through each slit that are
not centered around the perpendicular to the slit, but rather around the line that passes
through the slit from the middle camera viewpoint. To correct for this error, the projection
frame must be shifted during the holographic exposure of the master to match the region
that the camera captured.

compressed horizontally by an amount that changed with the depth of the object. The circle

of the hubcap, for example, appeared to be a slightly tall ellipse.

The theoretical origin of this distortion was unknown at this point, so its effects were

emperically compensated for during the holographic exposure by slightly translating the

images horizontally on the projection screen from one view to the next. This translation

partially solved the problem for the following reason, shown pictorially in Figure 5.4. In

the infinite camera model, the view taken from the middle of the camera track contains

rays that pass perpendicularly through the slits after travelling through the middle of each

non-recentered projection frame. If the camera is located instead at a finite distance, only

the middle ray of the image traces through to the middle of its frame. All other rays pass

through the slits at some angle that becomes greater for slits far from the center of the

slit plane (behind projection plane
for directly illuminated images)

Location of the projection screen
as computed by a camera at a finite
distance. Projection frame must
be shifted to this location in
holographic exposure to compensate
for the incorrect camera position.

location of the projection screen
when each slit is exposed

direction of rays captured by the
capture camera

direction from which the rays
captured by the camera are visible
if no correction is performed

camera track and viewer distance



hologram, and the offset between the center of the middle ray and the center of the screen

becomes larger. The computed projection frame for each slit is still centered around the ray

from the center camera view, but the offset of the center ray on the projection plane shifts

the computed projection frame with respect to the physical projection frame. As a result, the

the computed and actual projection frames do not occupy the same region of space. Lens

translation slid each actual projection frame over to the location of the computed projection

frame, thus partially restoring the correspondence between capture and viewing.

Once this distortion was corrected, the image met or exceeded all expectations.

When the transfer hologram was viewed, the fact that the slits of the stereogram appeared

behind the image plane was not noticed by most observers. The transfers were bright and

had about a ninety degree wide field over which some part of the image was visible to

the viewer. The same rendering, distortion, and holographic process was used to create

Cadillac Hubcap and Wheel, Diner, in which the object appeared larger and closer to

the plane of the hologram. The wheel surface reflected a view of the Fell's Point Diner

from the movie Diner, used without permission. Figure 5.5 is a picture of the stereogram.

For the Diner ULTRAGRAMS, a range of different colors, from deep red to golden, were

used for the reflection transfers with no significant geometric distortions introduced. The

Cadillac Hubcap ULTRAGRAMS subjectively seem more real and tangible than conventional

stereograms of similar subjects. The reason for this tangibility is not easily explained.

The Cadillac Hubcap stereograms exhibit a vertical striping artifact that may be due

to aliasing. At first such an artifact may seem unlikely because no part of the object in

either image extends much further from the projection plane that the projection plane-slit

plane distance, and the infinite camera technique guarantees bandlimiting out to at least

the plane of the slits. However, the optical effect produced by the reflecting chrome of the

hubcaps and wheels is that of concave and convex mirror structures, capable of moving

the apparent depth of objects such as the relection map to locations far from the projection

plane. The striping artifacts do not appear attached to the objects or the slits, but to the



Figure 5.5: Cadillac Hubcap and Wheel, Diner.
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projection plane, which supports the aliasing hypothesis. The appearance of this aliasing

artifact is similar to that of an insufficiently anti-aliased computer graphics image. Other

explanations for the artifact have not been ruled out.

Large Chevrolet Wheel

Type: one-step transmission
Transfer illumination: direct illumination, monochromatic (mercury arc)
Size: 1 meter square
Projection frame size: 980mm square
Slit width: 1mm
Number of slits: 1000
Slit-projection screen separation distance: 500mm
Resolution of projected images: 780 pixels square
Stereogram-type: simple camera
View Distance: 2 meters

The next application of advanced stereogram techniques was the production of large

one-step stereograms. This project was intended to demonstrate that large scale images

with arbitrarily large view distances could be produced in a relatively small laboratory.

Other than this work, almost all large scale display stereograms are made using two-step

transfer holography, which requires that the viewer stand at the plane of the master. When

the transfer is made, then, the master and transfer plates must be separated by the intended

view distance. Such a transfer could only be done in a very large, vibration free holography

lab. Furthermore, the proper phase conjugation required for these transfer holograms is

very difficult to achieve and as a result the images are especially prone to distortions when

viewed. A one-step stereogram, on the other hand, requires stability only for the slit being

exposed, and has no difficult transfer step. A one-step stereogram with an image that

crosses the holographic plate is only possible using predistortion techniques.

The holographic exposure apparatus for the one-step ULTRAGRAM is shown in Fig-
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Figure 5.6: The table layout used to expose the large scale ULTRAGRAM.

ure 5.6. Each predistorted image image is projected onto the large rear-projection screen,

which is centered in front of a 1mm high slit machined in an opaque mask. Behind the

slit is a film transport mechanism capable of advancing the 1.1 meter wide film from the

supply roll to the takeup roll in 1mm steps. A vacuum mechanism holds the film stationary

against the slit during exposure. Because the slit and the projection screen remain fixed with

respect to each other, the stereogram follows the simple, non-recentering camera model.

The exposure of all 1000 slits that compose the hologram took approximately twelve hours

to complete, due mostly to long settling times between exposures. When the hologram is

viewed, the projection screen appears to be one-half meter behind the plane of the slits.
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Each slit is visible through an angle of ninety degrees.

The need for direct illumination of the final hologram dictated the use of the most

unusual piece of optics in this system: an optical tower used to translate the stereogram's

reference beam between every slit exposure. The tower's design models the final illumina-

tion of the stereogram. When the stereogram is lit by a point light source above and behind

it, light strikes each slit at a slightly different horizontal angle. This angle must be matched

during each slit's exposure in order to avoid image distortion. The tower translates the

reference source to precisely the same location with respect to the slit as the illumination

source occupies when the slit is lit. The illumination source can then provide exact direct

illumination for all slits simultaneously.

This large scale ULTRAGRAM was the first to correctly implement the infinite camera

capture geometry. The infinite horizontal viewpoint was produced by warping the object's

points to new locations in space that just cancel the normal effects of camera perspective.

Once correctly implemented, the infinite camera technique yielded an undistorted final

image. Two stereograms were produced; both images were of another automobile wheel,

this time from a Chevrolet, with a view of the sign in front of the General Motors Technical

Center reflected by its surface. The first stereogram placed the object almost completely in

front of the plane of the hologram, protruding about one-half meter into space. Figure 5.7 is

a picture of this hologram. This image's most significant shortcoming is that it suffers no-

ticeable aspect ratio changes as the viewer moves closer or further away from the hologram

than the intended two meter view zone distance. This distortion can be seen in Figure 5.8.

However, the realistic, intriguing quality of the aerial image of the hubcap is little short

of astounding. In the second image, most of the hubcap is placed between the plane of

the slits and the projection screen. This stereogram is at least as realistic as the first, but

is not as visually fascinating as the aerial image. The second stereogram does, however,

more closely maintain the correct aspect ratio of the object as the viewer changes positions.

The slit structure on the surface of both images is visible but not intrusive; some slits are
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Figure 5.7: Large Chevrolet Wheel, as seen from the intended view zone, about 2 meters
from the hologram.
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Figure 5.8: Large Chevrolet Wheel, seen from about 8 meters. The image exhibits aspect
ratio distortion when it is not viewed from the correct view distance.
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dimmer than others due to irregularities in holographic exposure. Because the projection

and slit planes are so disparate in the large one-step ULTRAGRAM, illumination is provided

by a monochromatic mercury arc lamp so as to avoid chromatic blur. Work continues on

making one-step white light viewable stereograms, including ones producing deep aerial

images insensitive to changes in viewer location.

Breakfast Attempt, Ultragram Version

Type: two-step reflection
Transfer illumination: direct illumination, white light
Master size: 300mm wide, 200mm high
Transfer size: 100mm wide, 100mm high
Projection frame size: 100mm wide, 100mm high
Slit width: 1mm
Number of slits: 300
Master-transfer separation distance: 250mm
Resolution of projected images: 880 pixels wide, 880 pixels high
Stereogram-type: recentering camera
View Distance: 500mm

The most recent ULTRAGRAM is Breakfast Attempt, Ultragram Version. This stere-

ogram shows a photorealistic computer graphics rendering of the highest quality in a directly

illuminated, high resolution reflection two-step hologram. It was particularly intended to

be suitable for contact copying en masse. The fanciful computer graphic scene in the

hologram, depicting a failed early-morning cooking and serving extravaganza of the Scan-

dinavian persuasion, was designed by two graduate students in the Spatial Imaging Group

and rendered using the Rendermatic computer graphics library. The mastering geometry

for this stereogram is very similar to that used in the Cadillac Hubcap series. The plate

separation was increased to 250mm to retain as much spatial resolution far from the image

plane as possible. While the size of the master hologram was the same as Cadillac Hubcap,

the transfer plate was much smaller (100mm wide by 100mm high). Breakfast Ultra was
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Figure 5.9: Breakfast Attempt, Ultragram Version, recorded on silver halide film.
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the first stereogram to use a recentering camera geometry, with image predistortion done

using the perspective slicing technique. Both the horizontal and the vertical foci of the

input camera were located at the intended view distance of 500mm. The difference in

wavelength between the laser and the intended color of the transfer was taken into account

during predistortion. Recentering was done in the holographic setup using a lens translation

mechanism to move the projection of the image to the correct location with respect to the

slit being exposed.

The success of the perspective slicing predistortion method was evident even before

the final transfer of Breakfast Ultragram was made. The master, when viewed is a

collimated laser beam, projected a tiny, solid looking three-dimensional scene a quarter

meter in front of the stereogram plate. The final transfer image, shown in Figure 5.9,

exhibits no significant distortions and is fairly insensitive to changes in viewer depth.

Although the size of the transfer hologram's view zone was deliberately sacrificed in favor

of improved spatial resolution, all of the image can be seen over a 0.8 meter-wide viewing

zone located 0.5 meters from the hologram, with parts of the image visible over 1.4 meters.

The image exhibits some blurriness, possibly due to poor focus on the projection screen.

As true as with the other ULTRAGRAMS, Breakfast Attempt, Ultra's three dimensionality

was extremely believable. Unfortunately, the image has not yet been mass produced.

The broad gamut of hologram types and sizes to which ULTRAGRAM techniques

have been applied demonstrates their wide applicability to stereography. From large, one-

step transmission holograms to small, wide angle two-step reflection ones, ultragraphic

techniques can reduce the complexity and expense of producting conventional stereogram

formats, and can be used to make new images that are impossible to achieve by any other

means.
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Chapter 6

Conclusion and Future Work

One of the most powerful tools of scientific thinking is analogy: an unknown system can be

better understood by comparing and contrasting its various properties with those of better-

understood systems. Systems cease to be isolated; instead, they fall into general classes

about which sweeping statements can be made. The previous discussion has removed the

holographic stereogram from the isolated context of three-dimensional display and classified

it within the broader scope of discrete and continuous optical systems. The finite width and

number of slit apertures makes the stereogram discrete. As a result of this discreteness,

the holographic stereogram is susceptible to aliasing and sampling artifacts. Because of

the large number of apertures, though, the holographic stereogram behaves in some ways

like a continuous system. For example, horizontal parallax only stereograms experience

image distortions equivalent to continuous HPO displays when the viewer strays from the

intended view distance. Understanding a general class of system is also often easier than

understanding any one specific case, just as understanding a continuous HPO display is

easier than understanding an HPO stereogram.

Once classification has been made, methods that apply to the general class of problems
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can be brought to bear on the specific case. Bandlimiting, for instance, can be used to

eliminate the aliasing artifacts in holographic stereograms, and anamorphic imaging can

correct for problems of astigmatism. While the details of any specific system, such as slit

size or viewer distance, may vary, the problems and solutions that apply to the general

case still hold. Thus, a general holographic stereogram model, free of all but essential

constraints, can be produced by adhering the lessons of the general models of discrete and

anamorphic optical systems. Attention to the correspondence between the pieces of the

model, namely the capture, recording, and viewing geometries, "fine tunes" the general

model to fit specifics such as viewer position, location of the plane of the slits, or required

spatial resolution.

The economy and insight provided by an understanding of both the optical properties

of a specific stereogram and of the relationship of that stereogram to the general model

are now indispensable tools of the Spatial Imaging Group. ULTRAGRAM techniques as

presented here are one aspect of those benefits. Because of them, displays of fundamen-

tally different format and improved quality can be produced in a smaller, less expensive

laboratory. But future work comes not just from the specific ULTRAGRAM techniques but

from extending this conceptual approach to new display geometries.

Some extensions of ULTRAGRAMS are relatively straightforward. The large scale

one-step ULTRAGRAM can be scaled in size to 1 x 3 meters to provide full size holographic

models for designers and engineers. The size of the ULTRAGRAM view zone can be increased

by using larger, more Lambertian projection screens. Improvements need to be made in the

abutting of adjacent stereogram slits when the slit plane is clearly visible. And although the

difficulty of the full-parallax process does not currently outweigh the result, the application

of ULTRAGRAM predistortion to full-parallax stereography is direct.

Some basic research still needs to be done. The advantages and difficulties of

holographic slits with non-rectangular intensity profiles should be explored. Perceptually,
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the eye's tolerance to aliasing artifacts in stereograms and the usefulness of focus in HPO

systems should be used to set lower and upper limits on the number of slits required in

a stereogram. Lastly, an improved understanding of three-dimensional computer graphics

rendering for stereograms may greatly improve the speed with which the many perspective

views needed are generated.

More interesting are the possibilities for new display formats. Work proceeds on edge-

lit stereograms that benefit from ULTRAGRAM distortion correction. Color ULTRAGRAMS are

possible by predistorting each color separation slightly differently, based on the effect of

wavelength-related aberrations. Other research is working to replace the conventional rear-

projection screen in the stereogram exposure apparatus with a large holographic optical

element to increase the efficiency of the exposure process.

The combination of these technologies will make possible a computer peripheral

similar to today's laser printers but capable of printing out white light viewable, three-

dimensional images. Such a device, using three laser diodes and an HOE projection screen

for exposure, could produce full color images that could be edge-lit in a special "walkman-

sized" viewing station, or conventionally lit in normal room light. Such a device will finally

bring the benefits of truly high quality three-dimensional image creation and display to our

dimensionally starved culture.
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Appendix A

Glossary of Terms

holographic stereogram A hologram composed of a series of apertures, each recording

a two-dimensional view. Projectional information of a scene can be recorded in the

two-dimensional views. When displayed, a holographic stereogram forms a discrete

approximation to the original three dimensional scene. In this text, a holographic

stereogram is often called a stereogram for brevity.

one-step hologram A hologram created using a single holographic plate. A one-step

stereogram is a single holographic plate exposed in many slits.

two-step hologram A holographic copy of another hologram. The copy is called a transfer

hologram, and is made from a master hologram, which is made from the object. A

two-step stereogram consists of a holographic transfer of a stereogram master.

horizontal parallax only (HPO) Having true parallax only in the horizontal, and not the

vertical, direction. If a scene is displayed on a HPO display, all horizontal detail in

the scene appears to be located at its true depth, while all vertical detail appears to

lie at the same plane. In an HPO stereogram, all vertical detail lies at the projection
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plane. Such a stereogram is made using a series of long, thin, vertical apertures,

called slits.

full parallax Having parallax in both horizontal and vertical directions. Laser transmission

holograms usually have full parallax. a full parallax stereogram consists of a two-

dimensional array of apertures.

capture geometry The geometrical relationship between camera and subject.

holographic recording geometry The geometrical relationship between a stereogram's

slits and the projection screen when the stereogram is exposed. Details of holographic

transfer, reference and reconstruction beam direction, and laser wavelength may affect

the effective holographic recording geometry.

viewing geometry The geometrical relationship between the viewer and the final holo-

gram. The illumination of the hologram may alter the effective holographic viewing

geometry.

physical camera A mechanical or electronic camera used to take pictures of natural scenes.

Usually made of metal, plastic, and glass.

synthetic camera A computer analog of a physical camera, used to make images of com-

puter databases of three-dimensional objects. Also called a virtual or computer

graphics camera.

scene The group of objects of which a stereogram is an image. A natural scene is a scene

of "real world" object. A synthetic scene is a three-dimensional computer database

captured with a synthetic camera.

object Something in a scene. An object is composed of object points.

object point The smallest three-dimensional detail on the surface of the object.
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image A two-dimensional projection of a three-dimensional object. The image of an object

point is its projection in a two-dimensional view.

view Similar to and often interchangeable with image. A view, or perspective view, is

captured by a camera looking at a scene. A view is seen from a camera position,

also called a viewpoint.

simple camera a camera whose lens axis is fixed with respect to the film plane. Standard

still and cine cameras are simple cameras.

recentering camera A camera whose lens stage can translate with respect to the film plane.

Such a camera can be used to select a window in a scene that will always appear at

the same position on the film plane. A view camera with a translating or "shifting"

lens stage is an example of a recentering camera.

projection screen The physical object onto which the perspective views of a stereogram

are projected. In this thesis, the projection screen is a rear-projection screen. Such a

screen is usually made out of ground-glass or Polacoat. The projection screen lies at

the projection plane.

projection frame The two-dimensional area of the projection plane that is fill by the image

projected when a slit is exposed. The projection frame may be at different locations

for different slit exposures. The depth at which the projection frame itself appears

appears to be located is called the apparent projection frame distance. This depth

need not correspond to the projection plane, but in a recentered camera stereogram

the two do coincide.

projection plane The infinite plane in which the projection screen lies. A stereogram

of a scene forms a wavefront approximation to that scene composed of pieces of

wavefronts emitted from this plane. The holographic projection plane is the plane

of the projection screen in the holographic apparatus. The camera projection plane
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is the plane of the object that corresponds to the the holographic projection plane.

The viewer projection plane is the plane at which the image of the holographic

projection screen is reconstructed when the final hologram is viewed.

simple camera stereogram A stereogram that requires the images produced by a simple

camera to expose its slits. In this type of stereogram, the projection screen is located

directly in front of each slit during exposure. In the perspective images used to expose

this type of stereogram, objects far from the camera remain at a fixed location from

image to image, while objects closer to the camera translate across the camera's field

of view. A correct holographic apparatus for exposing this type of stereogram would

be one that held the projected image and slit fixed and translated the holographic plate

behind the slit.

recentering camera stereogram A stereogram that needs the images from a recentering

camera to expose its slits. The projection frame of this type of stereogram remains

fixed in space relative to the holographic plate and thus translates relative to each

slit during exposure. The projection frame defines a "window" of information at

the apparent projection frame distance that all slits record. This distance usually

corresponds to the projection plane. The recentering camera required to produce the

views for this stereogram type translates its lens stage to keep objects on the camera

projection plane stationary through all perspective views.

continuous system A system represented by a signal of arbitrarily high frequency.

discrete system A system composed of periodic samples of a continuous signal. Discrete

systems are prone to aliasing.

spatial velocity In a stereogram, the rate at which an object point moves through the

sequence of projectional views. All object points have a constant spatial velocity

based on their distance from the apparent projection frame plane.
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spatial frequency A measure of the amount of detail in an image. The higher the spatial

frequency, the more detailed the image, and the smaller the minimum extent of any

features in the image.

depth of field In relation to a lens, the relationship between and the distance of an object

point from the lens' plane of focus and the sharpness of that image on the lens' focal

plane. The image of such a point is called a circle of confusion. Depth of field is

regulated by the effective diameter of the lens.

bandlimiting Removing high frequency information from a signal to avoid aliasing ar-

tifacts. A signal with no such high frequency information is called bandlimited.

Bandlimiting is done using a filtering process.

aliasing An unwanted, periodic artifact that occurs in discrete systems when the rate that

a signal is sampled is not high enough to capture all the signal's information.

ray tracing A technique of optical analysis. Also, a computer graphics technique to

produce projectional images of three-dimensional scenes.

anamorphic camera A camera equipped with a lens whose horizontal and vertical foci

are located at different planes.

infinite anamorphic camera A computer image-distortion method that produces a se-

quence of images with horizontal foci at one plane from another sequence of images

that have horizontal foci at infinity.

orthographic projection An image of scene produced so as not to exhibit any foreshorten-

ing in one or both directions. The effect is that of a viewer an great distance from an

object. A horizontally orthographic projection is used in the infinite anamorphic

camera: the camera produces images of normal perspective projection vertically but

orthographic perspective projection horizontally.
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perspective slicing A computer image-distortion method that produces a sequence of im-

ages with horizontal foci at one plane by combining vertical slices of images from

another sequence with an arbitrary horizontal focus location.

conventional stereogram A holographic stereogram in which the plane of the viewer and

the image of the stereogram's apertures coincide. The images for a conventional

stereogram can be captured using a non-anamorphic camera lens. Sometimes called

a traditional stereogram.

advanced stereogram A holographic stereogram in which the plane of the viewer and the

image of the stereogram's apertures can be located at arbitrary positions with respect

to the plane of the final holographic display. Advanced stereograms are a superset of

conventional stereograms. In general, advanced stereograms require that the camera

that captures the perspective images have an anamorphic lens to compensate for

image distortions produced by the stereogram. Advanced stereograms are also called

ULTRAGRAMS.
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Appendix B

Two extended examples

This appendix will present two examples of ULTRAGRAM creation: one using the infinite

focus anamorphic camera technique, the other using perspective slicing.

Infinite camera

The hologram to be produced is a master hologram for a direct-illuminated, white-light-

viewable transfer. The process is summarized in Figure B.1. The master stereogram is

250mm wide and 200mm high. The slits on the master are 1mm wide; there are thus

250 slits on the master. The master plate appears to be 100mm behind the transfer, so the

projection plane-master separation and the master-transfer separation must both be 100mm.

Assume that collimated light is used to both reference and reconstruct the master hologram.

The projection screen is 300mm wide and 200 mm high. The stereogram uses a simple-

camera geometry, so the projection screen is located directly in front of each slit during

exposure. The raster image projected on the projection screen has a resolution of 768 pixels

horizontally by 512 pixels vertically.
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Figure B.1: The infinite camera ULTRAGRAM creation process.
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Image generation begins as follows. The vertical focus of the computer graphics

camera is located at a distance corresponding to the final view distance, 1 meter from

the projection (and transfer) plane. The scene is centered on the projection plane. The

horizontal focus of the camera is located at infinity. The ratio of the camera track's width

to the camera's distance from the slit plane is equal to the ratio of the projection screen's

width to the screen's distance from the slit plane, in this case 3 to 1. Thus, if a camera with

a horizontally orthographic projection were on a track 1 meter from the slit plane, the track

must be 3 meters wide.

The camera recenters around the master plane as it moves down the track taking

views. A view is captured for every pixel of horizontal resolution of the projection screen

image, in this case 768. The 768 views are spaced equally on the track. The vertical

resolution of the captured views equals the vertical resolution of the projection screen, 512

pixels. The camera captures the entire region of the master stereogram, but the horizontal

resolution of the images equals the number of slits in the master, here 250. The aspect ratio

of the rendered images is not the same as the aspect ratio of the region that they portray (in

other words, the images are anisotropic).

Once all the input images are rendered, they must be predistorted. The predistortion

consists of rotating the volume composed of the input views and resampling them to yield

the set of output views. The rotate-volume code used shown in Figure 4.10 can be used

for this rotation. The output views are then suitable for slit exposure.

Perspective Slicing

This hologram is also a direct illuminated two-step master, but the master plate is designed

to be located 250mm behind a 100mm square transfer plate, which is 250mm from the

viewer. Figure B.2 shows the production process. As in the previous example, the
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Figure B.2: Perspective slicing predistortion.
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master plate consists of 250 1mm slits. This stereogram is of recentering-camera type,

so perspective slicing is used to predistort the images. A image of resolution 1000 pixels

square is displayable on the projection screen. Both the undistorted and distorted images

are rendered at this resolution.

The camera used to produce the input views has both lens foci at the intended view

distance with respect to the capture projection plane, 250mm. The camera recenters its lens

to always frame the area that corresponds to the projection frame. Using Equation 4.3, the

camera track width is found to be 599mm. The number of views that the camera captures

can be found using Equation 4.4; here is it 449. Once again, the camera track is divided

equally among views. After the input images are rendered, the perspective-slice code in

Figure 4.14 may be used to produce the output images.
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