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Abstract

A lumped, linearized analytical dynamic model of a vortex-type
fluid amplifier was developed and the dynamic response for a range
of valve operating conditions was experimentally verified. The
lumped parameter model for the proportional small signal behavior of
a vortex amplifier was developed from a distributed system analysis
of the basic flow field in the vortex chamber, assuming the flow to
be incompressible. The model was developed for conditions of high
swirl in the vortex chamber for which viscous effects are important.
The two dynamic time parameters used in the model are a pure trans-
portation delay associated with the flow propagation of control
signals through the boundary layers, and a first order lag time
constant associated with the changes due to viscous friction in the
region of zero radial flow. The lumped model response was compared
with experimental data taken for a range of valve operating conditions,
and was found to agree quite well. A Fortran computer program was
developed to provide a designer with an initial estimate of a
prototype vortex amplifier dynamic characteristic.
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NOMENCLATURE

Ac total tangential control port area
Ae total exit port
Ab chamber outer periphery area
As total radial supply port area
2r
BLC boundary layer coefficient, ho £ 174
(pu°h )
2u
*
BLC modified boundary layer coefficient, A * BLC
Cd orifice discharge coefficient
f(n) velocity profile function
g(n) velocity profile function
h chamber height
kl, kz,
lumped parameter model gains
k , k
u’ e
Rc linearized control port resistance
Re linearized exit port resistance
Rs linearized supply port resistance
1 ambient pressure
P. control pressure
Pe chamber exit pressure at r = r
Py chamber outer periphery pressure at r = r
Pg supply pressure
4 non-dimensional chamber pressure
Qc total control port flow
Q total exit port flow
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total supply port flow
radius

exit port radius

outer periphery radius

radius at which radial flow in core region
goes to zero

Laplace operator
transport delay time
first order lag time constant

time
non-dimensional times

radial velocity

outer periphery radial velocity
non-dimensional radial velocities
tangential velocity

outer periphery tangential velocity
axial velocity

non-dimensional radial coordinate
axial coordinate

non-dimensional volume
non-dimensional velocity integrals in boundary layer

proportionality constant for dynamic changes

non-dimensional circulation vr/voro
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dimensional circulation vr
difference operator

boundary layer height
non-dimensional boundary layer height
non-dimensional boundary layer shear height
jet mixing ccefficient
non-dimensional axial coordinate
tangential coordinate

swirl number voluo

fluid viscosity

fluid density

viscous shear

non-dimensional viscous shear

circular frequency
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Chapter 1

THE PROBLEM

1.1 Introduction

Pure fluid amplifiers, in which one fluid stream is used to
control one or more other fluid streams with no moving parts, have
been the subject of considerable recent interest (6, 10). They are
inherently insensitive to radiatiom, and have a good potential for
operating in environments with vibration or high temperature without
degradation of performance. They may operate effectively in explosive
atmospheres where there would be danger of sparking from equivalent
electrical components. Their potential reliability is high due to
their simplicity.

In the past few years a number of basic fluid amplifiers have
been developed, including turbulence amplifiers, digital and
proportional beam deflection amplifiers, impact modulators, and
vortex amplifiers (6, 10).

For applications in which it is important to modulate power
ijevel flows, the vortex amplifier is especially attractive because
it is the only fluid amplifier in which total power flow is
modulated. A simple schematic drawing of a vortex valve is shown
in Fig. 1.1. The amplifier contains three fluid ports:

1) A radial supply pert which supplies the main portion

of the flow through the valve.
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SUPPLY

Fig. 1.1 Schematic of Vortex Amplifier
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2) A tangential control port which supplies the flow

which drives the ;ortex.

3) An axial exit port through which all of the flow

leaves the valve.

When there is no tangential control flow, the supply flow
streams across the chamber and out the exit, with the main
restriction to flow provided by the exit port itself. With the
addition of tangential control flow, a vortex is formed in the
chamber, causing a pressure drop due to the centrifugal flow field.
This centrifugally induced pressure drop further restricts the flow,
and at some value of control flow, the pressure drop across the
chamber is sufficient to completely shut off the supply flow; then,
the only flow through the amplifier is the control flow necessary
to maintain the vortex, which is on the order of five to ten percent
of the maximum supply flow with no control flow. A typical steady
state characteristic of the amplifier is shown in Fig. 1.2.

This characteristic shows the total output flow as a function
of the tangential control flow, with both flows normalized by the
maximum output flow which occurs with no tangential flow. As the
tangential flow is increased, there is initially little change in the
outlet flow, since the resistance due to the centrifugal flow field
is small compared to the exit port resistance. Then, there is a
gharp drop in the exit flow, aé the centrifugal flow field resistance
becomes significant, followed by a region of less change as the losses

due to the high tangential velocities decrease the effect of increased
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’Y High swirl -
viscous effects
important

Fig. 1.2 Typical Steady State Flow Characteristic
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tangential flow. At the cutoff point, the total output flow is
equal to the control flow.

Because of its ability to modulate the tétal flow, the vortex
amplifier is useful as a controller for power level fluid control
devices, as well as a signal leved device, and is often referred
to as a vortex valve as well as a vortex amplifier.

Some of its applications have included use as a hydraulic
servovalve stage (17), as a rate gyro (22), and as a rocket thrust
vector controller (19). Several small vortex valves are commer-
cially available, and have been used as fluid level controllers
(13). In many of the referenced applications above and in future
applications, both the steady state and dynamic (transient)
characteristics are important in determining the performance of

the total system in which a valve operates.

1.2 Vortex Amplifier Literature

This section reviews the information available concerning both
steady state and dynamic design of vortex amplifiers.

General vortex flow devices have been of some interest for
some time (9,27), while the study of vortex amplifiers has been
more recent (14,16). Progress has been made on the analytical under-
standing and prediction of the steady state flow conditions and
behavior, so that published information is available to aid in the
design of vortex amplifiers to meet steady state requirements.
Wormley (28) has presented a vortex flow fluid analysis and a method
of predicting part of a steady state response. He provides an

inviscid analysis which agrees well with experimental results for
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the upper portion of the steady state characteristic (see Fig. 1.2)
and also provides an empirical method for predicting the cutoff
point. Because he does not provide a model of the swirling flow
through the exit port, the prediction of the intermediate portion of
the characteristic amounts to an estimate based on intuition and
past experience. However, ﬁe has shown that an intuitive smooth
curve will generally be within 10 - 152 of the experimental curve,
on the same order of accuracy as points explicitly predicted.

Bichara and Orner (2) have presented a method for the
approximate prediction of an entire steady state valve characteristic.
By varying the discharge coefficient of the exit and a friction
coefficient to represent the effect of the viscous shear on the end
walls, they were able to match the experimental results of Ref. (28).
However, their empirical correlation of the friction coefficient
differed by as much as 30% from the friction coefficients actually
used to match the data, and the correlation was based on the flow
conditions at cutoff, which may only be approximately predicted
from Ref. (28). They did not present a comparison of the experimental
data and the theory using the empirical correlation.

Thus, although it must be recognized as an estimate with limited
accuracy, Ref. (28) provides a simple and reasonable method of
predicting the steady state characteristic and is preferable to
Ref. (2).

Less information is available concerning the dynamic
characteristics, but some work has been done. Duff, Foster and
Mitchell (5) have presented one step response trace of a dynamic

vortex response. The vortex valve had only one supply &nd one control
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port, rather than an axisymmetric vortex configuration. Flow
visualization of a step change, starting from a condition with no
swirl, indicated that the response was associated with the change

in size of the two vortices on each side of the supply jet. However,
no general model was proposed for the valve to explain the response.

Knapp (11) has presented both frequency response and step
responge data for a specific valve, but did not specify the
dimensions or flow conditions of the valve, or present a general
model for other conditions.

Several researchers have investigated the dynamics of the
vortex rate sensor (18), which are mainly concerned with low swirl
flow conditions, since the steady state condition is one with no
swirl.

Taplin (25,26) has presented an equivalent electrical circuit
for a vortex valve in several papers. He has also presented
experimental results which indicate the valve may be modelled as
a pure delay and a first order lag, each equal to one-fourth of the
£411 time of the valve, where the fill time is defined to be the
volume of the valve chamber divided by the volume flow rate through
the valve. However, he did not give the details of the valve
construction or the flow conditions, and did not indicate if these
results had been verified for extensive ranges of valve geometry
or flow conditions. Also, he did not relate the parameters of
his equivalent electrical circuit to the geometry of the valve or
the properties of the fluid. The inadequacy of modelling the valve

dynamics with fixed fractions of the fill time will be demonstrated

in this thesis.
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Bell (1) has given a more complete description of valve
geometry and flow conditions for a vortex valve responding to a
step change in control flow. He measured the flow out of the valve
for a change in flow conditions from essentially maximum supply flow
to minimum supply flow. A model consisting of a delay of one-half
the fill time and a first order log of 1.3 fill times was proposed.
Since the consideration of this large signal response is beyond the

scope of this thesis, Bell's model will not be considered further.

1.3 Scope of this Thesis

Since the vortex amplifier has the capability to modulate
power flow, it is potentially useful in fluid power control systems.
However, this control implies that the flcw is to be changed to meet
changing requirements, and for the amplifier to be used to its full
potential, an understanding of the behavior and speed of the
amplifier in meeting changing requirements is necessary.

For a fluid power control system designer, the most convenient
method of gaining an initial estimate of the behavior of several
individual elements connected to provide a complete system is to
combine the lumped, linear transfer functions of the elements.
Therefore, in order to provide a useful tool for fluid circuit
design, this thesis presents a lumped linearized analytical model
of a vortex valve and experimental verification of the dynamic response.

in the work that follows, a lumped parameter model for the
proportional small signal behavior of a vortex amplifier is developed
from an analysis of the basic flow field in the vortex chamber.

In the flow field analysis, the flow in the amplifier is assumed
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incompressible and turbulent. The analysis concentrates on the
proportional region of the amplifier operation and in particular
is developed for conditions of high swirl in the vortex chamber
in which viscous effects are important. The lumped parameter model
is specifically developed for an amplifier operating nominally at
constant supply and exhaust pressures and with changing control
pressure and changing control, supply, and exit flows. The basic
analysis is compared with experimental data taken for a range of
valve operating conditions. A Fortran computer program is provided
go that a designer may gain an-initial estimate of a prototype vortex
amplifier dynamic characteristic.

For some applications, the vortex valve will be used as a
bistable "on-off" valve rather than as a proportional valve. The
prediction of the dynamic response in this type of application is

beyond the scope of this thesis.
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Chapter 2

DISTRIBUTED SYSTEM VORTEX DYNAMIC RESPONSE

2.1 Introduction

In this chapter, the development of an analytical model for the
main region of a vortex amplifier is considered, starting with a
simple inviscid model and then extending consideration to the
complex viscous flow field. This main region of the vortex amplifier
plays a dominant role in the dynamic behavior of a vortex amplifier
and therefore is considered in detail in this chapter.

A schematic drawing of the region under consideration is shown
in Fig. 2.1. The general radial and tangential velocities are
assumed to be axisymmetric, and thus are designated as u(r,y,t) and
v(r,y,t). The axial velccity is designated by w(r,y,t) and is
ccasidered to be small with respect to u ard v , as discussed
by several investigators (15,28).

It is assumed that at the chamber outer periphery the radial
and tangential velocities are uniform and are designated by uo(t)
and vo(t). Since u 1is defined positive outward and u is inward,
u at the cuter periphery is equal to -u .

The ratio of the outer periphery velocities is designated by
A= voluo , and is called the swirl parameter. For A <1 , the

swirl is small and the vortex chamber flow may be characterized as
nearly inviscid, while for large swirl A >> 1, the flow in the

chamber depends very strongly on viscous effects (29).
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Fig. 2.1 Schematic of Main Vortex Region
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In the past, several studies of the flow fields in vortex devices
have been made. Savino and Keshock (23) performed an experimental
study of the steady state velocity distributions in a 12 inch
diameter vortex chamber operating on air. Wormley (29) developed a
model for the steady state flows in the chamber, using the momentum
integral method, which predicted pressure distributions quite
accurately. Rosenweig, Lewellen, and Ross (20) included an approxi-
mation of the effects of the exit region on the main vortex chamber in
a steady state model.

While these studies have provided useful information, they have
considered only steady state behavior and not the dynamic behavior
which is of interest here. Deissler (4) completed a numerical
study of a dynamic model, but he assumed that the effects of the
boundary layers on the end walls were eliminated by suitably rotating
end walls. The important effects of the end wall boundary layers
are included in the following analysis to provide an improved dynamic

model.

2.2 Inviscid Model

Consideration of the inviscid potential vortex can provide some
insight into the vortex flow field, and can furnish a preliminary
basis for the study of the full viscous model.

For inviscid, incompressible flow in the main vortex region,
the radial and tangential velocities reduce to functions only of the

radius and time, u(r,t) and v(r,t) and the axial velocity w is



zero everywhere. Thus, the axisymmetric, unsteady radial and

tangential momentum equations are:

2

du dw v, _1l3p

et Y% T o ar (2.1
ov v , uv

TR TR T (2.2)

The continuity equation is:

ou
r

(2.3)

Hile
"
o

In the case of steady flow, the radial and tangential velocities
become functions only of r , and the continuity and tangential

momentum equations may be solved to give:

o0

u = - r (204)
vOrO

v = = (2.5)

Substituting these velocity equations into the radial momentum

equation gives the pressure gradient as a function of r :

2
dp p(‘¥_ -y du

dr dr
vz uz
= (-7 (2.6)
2 2 2 2
r v r u
o O o ©O0
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Equation (2.6) may be integrated to give

p(v2 + nz)r2
- = L °©_° | 11 ] (2.7)
Py ~ Pe 2 2 2 ¢

This equation shows that for a given fluid, the steady state pressure
drop is a function of u, > v, the radius ratio ro/re , and the
fluid density o .

The transient changes in pressure drop across the valve due
to changes in v, for the case of a constant radial velocity
dietribution may be found by solving Eq. (2.2). Letting Y = vr ,

Eq. (2.2) may be written as

W 4, 4 .o (2.8)

Combining Eqs. (2.4) and (2.8) and using the Laplace operator 8 to

represent time differentiation, the differential equation becomes:

oo dy (2.9)

This equation may be solved by separation of variables to give

the Laplace transform equation:

%- - e °° (2.10)
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Taking the inverse Laplace transform gives the circulation Y as

a function of radius and time:

2 2
r -r

y(r,t) = Yo(t"zz —) (2.11)
o O

This expression for y(r,t) may be interpreted to mean that
the circulation Y at any radius is related to the outer periphery
circulation Y by a pure transportation delay. That is, tge

¢ -r
circulation at any radius r is simply the same as Y was i%-f;—-
o o

2

seconds earlier. The response to a step change in v, at
t=0 4is shown in Fig. 2.2.

Thus the vortex chamber consists of two regions, one containing
the "old" and one the "new" conditions. The total pressure drop is

the sum of the pressure drops in these two regicns, which may be

written as
pu2 r2
2 1 1 2 1 1 1
p, - Pp =75 Yoo (3-77) +¥0u( 2 - 7+ S [ 5-7]
d 0 re td e ro
(2.12)

where Yo2 and Yo 2re the new and old outer periphery circulation
values and T, is the outer radius of the "old" region. For cases of
interest in this study, v, >> u, and the second term on the right
side is negligible.

The time response of the change in pressure drop is shown in
Fig. 2.3 for a tadiﬁ§ ratio re/ro = 0.1. As can be seen, this response

can very nearly bg repgesented by the transportation delay to the exit

-T
0 e
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The conceétual explanation for the concentration of the response
near t = Tl is due to two reinforcing effects. First, since most
of the pressure drop occurs near the exit, the change 1s small until
the new momentum effects reach this region. Secondly, since the
radial velocity is low in the outer portion and becomes higher near
the exit, the change is transported quickly across the region of the
highest pressure drop. Thus, little change in the pressure drop
occurs initially as the change in momentum slowly propagates across
the low-pressure-drop region. The large change in pressure drop
occurs as the change in momentum quickly crosses the high-pressure-
drop region.

This time delay is simply the fill time of the chamber obtained
by dividing the volume of the chamber by the volume flow rate
through it. The fill time has been used in a number of investigationms
to characterize the dynamics of the vortex chamber, as discussed in
Section 1.2. The usefulness of this characterization is discussed
after the development of the viscous model for the chamber and after

experimental results have been presented.

2.3 Viscous Model

In vortex chambers of interest in the present study where
operation under high swirl conditions is considered the effects of
viscosity become important. Near the end walls, the decreased
tangentisl velocities in the boundary layers reduce the centrifugal

force and fluid is accelerated inward by the pressure gradient. By



continuity, the increase in the boundary layer radial velocity above
the core velocity is balanced by a decrease in the core radial velocity.
Depending upon the valve configuration and the operating conditions,
the radial velocity in a portion of the core region may go to zero,
with all of the radial flow eccuring in the boundary layers.

Previous experimental work (28) and the dynamic flow visualization
discussed in Chapt. &4 have shown that once this core velocity reaches
zero at a given radius r* , it remains essentially zero for all r
such that r* >r>r, and all of the radial flow remains in the
boundary layers for r* >r>r, until the exit is reached at T, -

With this physical concept as a guide, a dynamic analysis of
the main vortex region may be made. In the viscous, turbulent, incompressible
case, the radial and tangential velocities are functions of r, y, and
t in the boundary layer, but remain functions only of r and t
in the core region. The axial velocity can be shown to be small (15),
but not zero Y constant, as there must be axial flow into the
boundary layers.

The viscous effects due to radial circulation gradients are
neglected since the radial circulation gradient is very small
compared with the high velocity gradients in the boundary layers.

This assumption is discussed further below. Thus, all the viscous
effects occur in the boundary layers at the wall.

The radial and tangential boundary layers are assumed to be
equal, since the main factor in the development of the radial

boundary layer 1is the decreased velocity in the boundary layer.



The boundary layers

periphery,

are assumed to start from zero at the outer

and are assumed to be jdentical on both end plates

so that the flow is symmetric about the midplane of the chamber.

These conditions are {llustrated in Fig.

2.4 for the four regions

of the valve main chamber.

2.3.1 Steady State Viscous Model

considered.

describing the steady state flow

First the steady state flow conditions in the chamber are

Under the assumptions outlined above, the equations

conditions may be derived for each

of the regions jdentified in Fig. 2.4.

In Region I, the radial and tangential steady state momentum

equations

while the

equations

become:
_.Y_z_+ u . _1l2 (2.13)
oy p or *
IS\ AU ) AR (2.14)
r dy
boundary layer radial and tangential steady state momentum

for Region II become:

2 oT
v o _lop,l_ L
r t V% p or * o oy (2.15)
9T
uv ov. _ 1__t
+ T + w-s; 0 —3; (2.16)
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Fig. 2.4 Division of Valve Regions for Steady State Calculations
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The continuity equation is:

du , u , oW
ctrtey ~ O (2.17)
The boundary conditions are:
at y = 0; u=v=w=0 (2.18)
du _ v
at y = 33 vy = 3y 0 (2.19)
at T=r; U =-u, V= Vo W= 0O, p= P, (2.20)

These equations have been solved in Reference 29 using the
momentum integral method (24). The forms of the velocity profiles

utilized in the solution are as follows:
0<y<é; u=ufn+ u_g(n), v = vE(n)
(2.21)

h
§<y<33 u=Us, v =V

where O 1s the boundary layer height and:

g(0) = O g(l) = 0

f(1) = 1.0

"
o

£(0)
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The integrals of these velocity profiles are represented by

a's as follows:

L)
o = [ £ (mdn
o

1
a, = [ £(n)g(n)dn
(o]

1,
a, = [ g (man (2.22)
o]

1
('14 = ] g(n)dn
(o]

1
[ f£(n)dn
(o]

[
n

For simplicity, the equations are non-dimensionalized as follows:

o= V‘Sr ua us
v T u = -3 u, o= -0
o o
= S y = Yo P (2.23)
h?2 u X T,
- _ Tt - T _
tw 2 ™ 2 2
pu, u_ pug
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The velocity profiles used, based on the experimental data

of Reference 23, are:

f(n) = nll 7 (2.24)

gy = 1.6om M -m? (2.25)

Using the non-dimensional variables of Eq. (2.23) the non-

dimensional differential equations describing the steady state

viscous flow in the chamber are as follows:

Continuity equation:
du

-
—

dr £ =7 dU
fag U+ 0, Uy = U1 g+ [og 8+ (- 9T g % 05
(2.26)

= —(—1-]_:—,-{-)— lag U+ o, SUS + (1-8)u]

Boundary layer radial momentum equation:

2 2 2, d8
—[al u© + ZaZUUs - asU - aaUUs + a3US] T

du
[ T 3 3 _d_l_-]_- -'_ = = S
-{Zal oU + 2a2608 - u56U] Ix [2a260 aﬁau + 2a36Us] e
0.3 22 r? (2.20)
- o [ 0 5? - 205 - a30° + abu’
1 2 8 3" s 5

a0 T n?
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Boundary layer tangential momentum equation:

{a, U+ a, U -al -aU_] £§-+ [a.6 - a 3] av , [a 5 - 3] 325
1 2’s = % 4°s' dx 1 5°7 ax 2° ~ %0 &
3 - - - - (2.28)
- [a,0U + az&ls] & [~,8U - a,8u  + a6 + o U ]
T dx (1-x)
) (l-x)Zro <
'A h tw
Inviscid core radial momentum equation:
2,2
dU " A dP
- U —— - e—— — (2.29)
dx (1—x)3 dx
Inviscid core tangential momentum equation:
ar
U T - 0 (2.30)

To reiterate, the five non-dimensional variables of interest and
their definitions are as follows, and as defined in Eq. 2.23:
1. U - the non-dimensional core radial velocity,- us/uo
2, Us - the non-dimensional boundary layer secondary
velocity peak, - us/uo
3. I' - the non-dimensional circulation associated with
the core tangential velocity, vstlvor°
4. & - the non-dimensional boundary layer height, s/h/2
5. P - the non-dimensional pressure P/ui
In the developed flow regions, III and IV, where all of the
flow is in the boundary layers, the equations are simplified by

setting U equal to zero. In this case, the continuity and tangential
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momentum equations may be combined to give the circulation gradient:

2
2r a,(i-x) _
ar o 4 T (2.31)

ax - " ha, A tw

d is similar to the shear law used by Prandtl

The shear law use

for flow over a flat plate:

2

fpV,
T = (2.32)
' b V.S 1/4
m )
where f 1is an empirical friction factor taken from Ref. (28)
to be 0.021.
Thus, the non-dimensional shears become:
c. ATV
£ £ (2.33)

tw (l-x)(_ vf)lllo

c, UV

1 - f £
v (3 vf)I/“
where
f
Ca
f oh u 1/4
(=)




At the outer periphery, the theoretical values of these non-

dimensional variables are:

§ = 0.0
u, = 0.0

U = 1.0 : (2.34)
I = 1.0
P = %o
p 02

However, for a finite difference integration scheme, marching from
the outer periphery to the exit, the initial zero value of § gives
infinite shear stresses. Thus, the values used for small x , ,001

in the present study, are those given in Reference 21, as follows:

2r Cf\/f 4/5

§ = (18.1-—h—q _F-Tr) (2.35)
U, = 0.686 Ax (2.36)

(1.0 + 0.439 3§ u.)
(1.0 - 0.115 &)

With these equations and starting values, the values of the
variables as functions of x may be found by 1umerical integration.
The full set of equations are used to the point where U = 0 , and

then the reduced set of equations to x = X, .
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The results of Reference 29 show that the solutions of these
equations may be obtained when only two parameters, A and BLC ,
are specified, where

Zto f
BLC = puoh 174 .
o)

Also, the distributions of U and T are essentially dependent only
on the product of A and BLC , designated BLC* , while § and
U are functions of both A and BLC. “

A plot of the distribution of the variables for a typical
combination of X and BLC is shown in Fig. 2.5.

Thus, the steady state flow distribution in a vortex chamber
can be determined. It has been shown (28) that the pressure
distributions corresponding to the flow agrees closely with
experimental data. However, the conceptual model of the dynamic

response requires further development.

2.3.2 Dynamic Viscous Model

In order to gain some insight into the dynamic behavior
of the viscous vortex region, a dynamic flow visualization study was
undertaken. A seven inch diameter chamber with a clear plexiglas
cover was run with water as the fluid.
The visualization technique used was the milk injection method,
as used in Reference 29. A quantity of reconstituted powdered milk

was injected into the vortex valve. After a short period, the ailk
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Fig. 2.5 Typical Steady State Flow Distribution Variables
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had cleared from the areas with radial flow, leaving a spinning
donut of milky fluid. The control flow was then changed, and
motion pictures of the changes were taken.

During the changes, the spinning donut was observed to speed up
or siow down, as expected, and the milkiness remained. This
indicated that the region of zero radial flow remained essentially
intact during the dynamic changes, with the tangential velocity
changes being due to viscous action.

A series of frames from the dynamic visualization motion pictures
is shown in Fig. 2.6. As can be seen there is some disruption
of the outer boundary of the milky region during the change, but that
there is not a marked difference between the initial milkiness and
the final condition.

A sketch of the four regions of the valve to be considered in
formulating a viscous dynamic model of the vortex chamber is shown
in Fig. 2.7, Region I is the portion of the inviscid core where there
is radial flow and angular momentum is conserved. In Region III,
there is no radial flow and the circulation function, representing
the angular momentum, is decreasing. Regions II and IV are the
corresponding boundary layers.

The presence of Region III with no radial flow, resulting from
vigscous effects, modifies the dynamic response predicted by the
inviscid model. Since the major portion of the pressure drop occurs
across Region III, the pressure drop cannot change until the
momentum of the fluid in this region has changed. The dynamic flow

visuglization indicates that the radial flow remains essentially zero
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Fig. 2.6 Dynamic Flow Visualization
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in outer periphery tangential velocity must occur mainly through

viscous action.

step change in Vv,

Thus the chronological response of the vortex chamber to a

, with u, remaining constant, is illustrated

in Fig. 2.8 and is as follows:

1.

The new conditions established at the outer periphery
are propagated through the boundary layer, Region II,
and through the core, Region I, in the developing
region. Because the radial flow is slower in the core
than in the boundary layers, there are three regions
initially.

a) Near the outer periphery, the flow
propagating through both the core and
boundary layer regioms, I and II,
corresponds to the "new' conditions.

b) Farther in, the boundary layer, Region II,
corresponds to the "hew" conditions, but the
core, Region I does not, 80 that the flow
from the core to the B.Lf will tend to decrease
the changes propagating in throigh the boundary
layer.

c) Even farther in, both the B.L. and the
core in all four regions correspond
to the "old" conditioms, as in the inviscid

model.

*

B.L. = boundary layer

e of this region to a change
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Fig. 2.8 Conceptual Dynamic Response
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2. After some time, the conditions propagating into the
B.L.'s in Region IV are a mixture of the "new"
conditions through the boundary layers and the "old"
conditions. Gradually, these conditions will change
until the propagating conditions are entirely new,
both tarough the boundary layers, Region II, and the
core, Region I.

3. As the "new" conditions propagate through the boundary
layers in Region IV, they interact with Region III
through turbulent viscous shear at the interface, to

drive Region III to its new condition.

For this conceptual model, the shear due to the radial circuiation
gradient in the core has been assumed negligible. This assumption 1is
verified in the.final section of this chapter, after solutions have
been found to predict the dynamic response.

In order to calculate a dynamic response based on this conceptual
model, the initial and final steady state equations for a step change
were solved first to provide a set of velocity distributions and boundary
layer dimensions on which to base the dynamic solution. The step
change in v, is assumed to be small, and u, is kept constant. The
chamber is divided into a set of eighty finite elements, forty concentric
rings in one boundary layer on the matching forty rings extending from
the boundary layer to the mid pland, with each element represented by
the values of the variables at the mid-point radius. The nondimensional
time steps used were At uo/r° = 0.0002. This was the minimum number of

elements required to represent the valve with reascnable accuracy, as judged
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by trials with more and less elements. The computer program used
is presented in Appendix A.

The regions considered, and the important effects in each region,
are shown in Fig. 2.9.

Consider first 2 finite element of fluid in the outer region,
Fig. 2.10, extending from the wall to the mid-plane. The values of
v, Us, and E at the boundaries j-1 and j are calculated from
the steady state distributions, as shown below. In the dynamic
case, the tangential velocity at the mid-plane of the core does not
match the maximum tangential velocity in the boundary layer. Therefore,
there are two circulation functions, I and Pc , associated with
these velocities, which are both initially equal to the initial steady
state circulation function. This dynamic tangential velocity distribution
ig shown in Fig. 2.11l. The term "boundary layer" in this discussion of
the dynamic response will refer to the region up to the maximum velocity,
and will be characterized by ghat velocity. The term "core" will refer
to the region between "boundary layers” including the transition region,
and will be characterized by the tangential veloqity at the mid-plane.

The non-dimensional flows El , and 62 may be written as:

G = U0 - x P -Fp | (2.38)

4 = U -x)A -3 : ’ (2.39)
The axial flow 63 is simply the difference betweén the two flows:

a; = 4 -9 (2.40)
The non-dimensional volume of the core fing may be written as

Veg = Q- Sj)(l - xy)hx (2.41)
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The rate of change of circulation within this volume will be

due to two effects, flow propagation, as in the inviscid case, and

viscous action. These are designated respectively as

dr dr l
( dcv ) and ( C' ) D
t dt
pProp. vis.

Thus, the circulation change equation is:

ch! - dI‘ci : . ch )
dt dt' de’
prop. vis.,

(2.42)

The rate of change of circulation within this volume due to

the flow propagation, assuming the fluid in the volume is constantly

vell mixed, may be written as:

q,F . . - (g, +aq)T
( _a%; ) - 1l c,j-1 . 2 3" c,i
prop. cj

(2.43)

The rate of change of momentum in the boundary layer can be

calculated similarly, to give:

( ar, , C Gl - ashy
dt' v
prop. h
uO
where t' = t—
rO

= (ol g tagly ) - Xy )8y,
65 = (aAUs,j + aSUj)(l - xj)sj

(2.44)
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The major change of concern is the change in the circulation
distribution in Region I and III. However, the distribution of
U, U8 , and 5 also change slightly between the initial and final
conditions. In order to take into account these changes, at each
time step and for each element, the U, Us , and § values are
assumed to have changed by the same proportion of their total
change as the circulation changes. Thus, if rji represent the
initial value of the circulation for the jth element, and ij is
the final value, the proportion of the circulation change may be

represented by:

r,-rT
g = L—db (2.45)
Tie - Ty

where B will initially be zero and will approach 1.0 fer long
times. Using the same notation, the value of Uj at any time may
also be written as:

(2.46)

u, = U i + B(U

3 3 3¢ = Yy

and the values of Us and & may be calculated similarly.

As the new conditions propagate through the boundary layer
ahead of the propagation in the core, the circulation difference
causes a turbulent viscous shear which must also be taken into

account. It is assumed that the effects of this viscous shear
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may be approximated by a shear proportional to the square of the

maximum velocity difference;

T, = kp(Avm)z (2.47)

wj

2

= kp(vg p oy, =~ Ve

From the moment of momentum equation, and assuming that the change
in velocity is nearly uniform for an element in the core, the

non-dimensional change of momentum in the core may be written as:

ar (- rolr-r | (2.48)
U '
vis. H(l-&*Xl-x)

where H = 5%- and 31 is the effective shear height. Similarly,
o

the effect of this shear on the boundary layer can be written as:

ar (T -T)|r-rT]|
- - c < (2.49)
vis. H ST(I-x)

The form of the turbulent viscous shear equation, with
ij - pk(Avm)2 , was suggested by wall jet theory, first treated
by Glauert (8). While this work is not directly applicable to
the vortex chamber flows, it does provide an indication of the
form of shear relationship.

Clapert dealt mainly with a jet striking a plane surface and
spreading out radially in a still fluid. He gseparated the flow

into two regions, divided at the péint of maximum velocity. He

postulated that for turbulent flow, the inner flow would be similar
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to a plane turbulent boundary layer, and the outer flow would be
similar to a plane free jet.

Kruka and Eskinazi (12) reported an extensive experimental
work with a plane wall jet issuing from a slot into a parallel
free stream. This work found that the shear stresses in the cuter
flow region were correlated to the square of the velocity difference
Avm between the maximum jet velocity and the free stream velocity.

Other authors (3,7) have treated wall jets with longitudinal
curvature, but none to this author's knowledge have treated trans-
verse curvature. Therefore, the form of the parallel straight
flow shear is used in the present work.

In order to calculate the shear, a simple model of the flow
was postulated. It was assumed that the maximum velocity occurred
at the height of the steady state boundary layer, so that the steady
state and dynamic velocity profiles in the boundary layer are
aimil;r, as shown in Fig. 2.11, As the core region is spun up,
the point of maximum shear will move upward from near the steady
state boundary layer height. For simplicity, it was assumed that
this point of maximum shear designated gr be represented by an
average value of one and one-half times the boundary layer height, E .
The changes due to the shear were assumed to be uniformly distributed
within each element, so that the angular momentum change is the same
as that of an equivalent solid ring driven by the shear torque. This

torque is assumed to be proportional tc the square of the maximum

velocity difference, as suggested by the wall jet literature.
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Thus, the equations for the total changes in circulation in

the developing regions are as follows:

dr ar dr
dat’ de! ac’
prop. vis.
(2.58)
9l 41 - (a, + ?13)I‘c'j . kA(T - rc)lr - rc|
Yes H(1-8 ) (1-%)
dr dr dr
3 _ 4y
st - (@) + (g)
prop. vis.
(2.51)

q3rc’ji+ qarj_1 - qsti, kA(T - rc)lr - rcl
\'/

h HST(I-x)

A single value for the constant k in the shear stress equation

was selected to correlate the complete set of experimental data

discussed in Chapter 4. A different ratio of & and Gr would have
led to a different value of k , but the responses would have been
essentially the same, as can be seen.from Eqs. (2.50) and (2.51).

In the developing region, where the steady state I' ds constant
with x , the shear at the walls is accounted for implicitly through the
radial inward growth of the boundary layer. This effect is represented
in the dynamic case only through the change in boundary layer height
5 proportional to the change in Fj as shown in Eqs. (2.45) and (2.46).
In the developed region, where the core radial velocity has gone to
zero, the loss of momentum due to the shear at the walls must also be
accounted for explicitly, as the value of I' decreases with x . Thus,
in the developed region, the boundary layer circulation

ar
(=)

change has a third component, T

wall
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so that the equation becomes:

dr dr dr dr

-1 - (-

e @y rgh (31) (2.52)
pProp. vis. wall

In the boundary layer, Region IV, the average radial velocity
is u408 . TFrom this, the average amount of non-dimensional time for

a particle of fluid to cross an incremental ring may be calculated

to be:

Ae! = —BX (2.53)

In crossing this ring, the average rate of loss of momentum of a

particle due to the shear at the wall may be calculated as follows:

d -
( a‘r‘;!' ) ] ﬁrv = Pj A rj—l ﬁxv
t wall tj X tj

(2.54)
(I‘j - rj-l)ahus
Ax

The loss of momentum due to the shear at the core boundary is given
by Eq. 2.49, and the gain of momentum of the core is given by
Eq. 2.48. Since, in this region 51 , 62 , and 63 go to zero,

and 54 and 65 go to 1.0, the circulation change equations become:

ar ar K@, -t o|r, -7 .1
Ezgl - (‘EE$1 ) W Hil - cj(1 i ) el (2.55)
vis —'Tj) -xj
ar dr dr ar
& - Eh gD + ) (2.56)
prop. vis. wall

(Cont 'd.)
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- rj-l ~ rj ~ kl(I'j - fc:Illr.‘l " rc:ll (2.56)
vj H 6 (1-x)

(rj-l - rj)EZUQi
Ax

The pressure drop across the chamber as a function of time may

be found from the static equation:

2 2
.g_:- - .._A.._.'_Lj._ (2.57)
(1-x)

for the case of ) > 10 since A2%T'? then is of the order of 100

while U g% 1s of the order of 1 and -‘;—% is of the order of 0.1.

These dynamic equations were programmed for solution with a
Fortran program, run on an IBM 360/65 computer, and listed in
Appendix A. Several typical plots of the change in pressure drop

across the chamber versus non-dimensional time are shown in Fig. 2.12.

2 2
r -r T
o e

2u r
o o

o

is approximated by Tl = o=

If the fill time, Tl - 2“0

then t' = 0.5 represents the fill time as shown by the equivalent
inviscid response. Thiés plot shows that as the viscous effects
become more and more important, the response differs more from the
inviscid response, as a smaller portion of the fluid momentum is
changed by flow transport and more is changed due to viscous actiom.
The term of the Navier-Steher equation (24) which gives the

2

radial shear is ( 2—%- + %-%% - 35 ). It can be shown that this
or 4

Vo¥o 82P 1 ar
becomes —— [ —% - = <=1 . Thus, this term is identically
r ar2 r or
zero for zero radial circulation gradient.

In order to check ths assumption that the dynamic radial
circulation gradient is similar to the static gradient, a plot of the
I' distribution for a series of values of t' 1s shown in Fig.

2.13. This plot shows that the dynamic gradient very closely
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Fig. 2.12 Viscous Vortex Chamber Pressure Step Responses
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parallels the static gradient in the developed region, verifying
that the radial shear may be neglected here as it was in the static
case. In the developing region, the gradient is quite steep. To
verify that the predominant mode of change in this region is due to
transport effects rather than viscous action, a step response was
run with a shear between concentric elements due to the radial
circulation gradient. This shear was of the same form as the shear
between the boundary layer and core, propoertional to the square of
the circulation gradient. The overall step response with this
radial shear is also shown in Fig. 2.12, and the I distributions
are shown in Fig. 2.13. The change in the response is small compared
with changes due to the changes in k , as will be shown in Chapter
4, thus in further work the radial shear term is neglected.

Thus, a model of the dynamic viscous response of the vortex
flow has been developed. This model forms the basis of the develop-
ment of a lumped model to represent the entire vortex amplifier

dynamic response, presented in the next chapter.
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Chapter 3

LUMPED MODEL

3.1 Introduction

In order to complete a dynamic model for the vortex amplifier,
the vortex flow field model developed in Chapter 2 must be combined
with the appropriate models for the inlet and exit ports of the
amplifier and for their interaction with the vortex flow. This
chapter presents the development of a dynamic model for the complete
vortex amplifier.

In designing a vortex valve, the steady state characteristic
may be estimated with reasonable accuracy, using the methods and
graphs of Reference 30. Or, if a valve has already been built, it
is a relatively simple matter to measure the steady state
characteristic. However, as outlined in Chapter 1, there has been
no satisfactory method of predicting the dynamic response, and even
measuring the dynamic response once a valve is built is a complex
and difficult task. Therefore, a method of predicting the dynamic
response using either predicted- or steady state information is
needed.

The design of dynamic fluid power control circuits involves
the interconnec.ion of many elements to form the complete circuit.
The method used for predicting the response of these total systems
during the initial design stages is through the use of linear, lumped

transfer function relationships. Thus, in order to be compatible



with other fluid power control component models, the lumped model
presented in this chapter will be in terms of a linearized dynamic
transfer function.

In general, the linearized dynamic model parameters depend upen
the region of operation on the steady state characteristic, as shown
in Fig. 3.1. This model, developed using either predicted or
measured steady state information, will predict the dynamic parameters
for small signal operation about a given operating point. It thus
will provide a building block for the design of fluid power control
circuits using vortex valves, and basically operating over a small
region of the vortex valve steady state characteristic, such as
might occur in a servomechanism regulation operation.

The prediction of the dynamic response for full range operation,
switching from nearly full flow to nearly cutoff, is beyond the
scope of this thesis. This range of operation would be used in
circuits where the vortex valve acts essentially as a flow switch,
changing between "high" and "low' flow rates.

In the work below, a lumped parameter dynamic model for a
control valve is developed for which all dynamic model parameters
for a given operating point may be determined directly from the
distributed parameter analysis described in Chapter 2., A schematic

drawing of a valve including the variables of interest is shown in

Fig. 3.2.
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Fig. 3.2 Schematic of Vortex Valve with Definition of Variables
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3.2 Inlet Ports

The ideal supply and control ports of a vortex valve are
short, straight passages, so that the velocity profiles are nearly
uniform. Thus, for incompressible flow, these ports may be
represented as quadratic orifices with the following pressure-flow

equations:

2 (3.1

_ s o
Q = ¢ SA —_— (3.2)

where Qc is the control flow and Qs is the supply flow.
For small signal analysis, these equations may be linearized
about an operating point to give incremental linear equations in

terms of equivalent resistances:

Ap, - p,)
q, = ""?if"" (3.3)
Apg - p,)
where
1 an / 1 = QCO
R, ) ap, - Pg) = cghe 7 20(p, - Pg) 2(pe = Po)o




and:
1_=____3.(is____ ,___?39____
Ry a(ps - po) 0 2(ps - Po)o

The second subscript o 1indicates that the quantities are to be
evaluated at the operating point.

Due to the small, short passages, and the assumption of
incompressibility, the effects of inertia and capacitance in these

inlet chambers are assumed negligible.

3.3 Mixing Region

The supply and control flows are ass. :d to mix completely at
the outer periphery, in a period of time which is short compared to
the times associated with the vortex flow field changes. Under
these assumptions, the radial and tangential velocities at r, are
uniform. The radial velocity may be expressed as the total flow
divided by the outer periphery area:

Q. +Q

u, = Efr'?ﬁ (3.5)

The tangential velocity may be derived from consideration of
conservation of momentum. Thus, for lossless mixing, the ideal v,

may be written as:

Qv 02

‘C
¥ Qq AC(QC ¥ Qs) (3.6)
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The mixing loss has been studied previously and may be represented
by a loss coefficient € , as determined empirically in Reference
28. This coefficient is primarily a function of the swirl,
represented by the ideal ratio v:/no , and is shown in Fig. 3.3.

Thus, the tangential velocity expression becomes:

: 2
vV = (3.7)
o AC(Qc + Qs)
and the swirl parameter A may be written as:
v, € Ao Qi

2
o A(Q +Q)

For incompressible flow, the sum of the control and supply flows
is equal to the exit flow Qe . Thus, the linearized equations for

the incremental changes in velocity due to changes in flow may be

written as:

1
By = Tmrmp i = k8% 3.9
2
A - eOZQco AQ “Eogco AQ
Vo A Q c 2 e
c ‘eo Ac Qeo
(3.10)
= kc AQc - keA Qe
where 2
- 1 Kk = 2€o Qco K = eo Qco
u 2 roh c Ac Qeo e A 02
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3.4 Main Vortex Region

Chapter 2 presented a distributed system analysis for the dynamic
response of the main vortex region. This section presents a lumped
system mocdel, in which the values of the dynamic iumped parameters
are determined from the distributed system analysis.
A typical distributed dynamic response from the analysis of
Chapt. 2 is shown in Fig. 3.4. There are two important aspects
of this response which must be represented for any realistic
lumped model. They are:
1) The time delay associated with the fluid transport
of the new conditions, and

2) the response as the viscous action between the boundary
layer and the core drives the spinning donut to its
new state.

These two physical phenomena may be represented in terms of
lumped parameters as a pure transportation delay and as a first order
lag, as shown also in Fig. 3.4. Specifically, in Laplace transform
notation, the response in pressure drop from r to r_ due to a

change in A with u, held constant, may be expressed as:

1
A(po - Pe) Av = 1 + T.s Avo (3.11)

o
Au =0
o

where the total pressure drop response consists of two parts:
A(po - pe) = A(pO - pe) + A(po - pe) (3.12)
Avo Auo

Auo = 0 Avo =0
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a(po " pe)
and where kl represents the steady-state gain v .
0
In the non~dimensional time domain, this response is:
1_mt
) t Tl
Tl
- = - 2 LS. )
A(po pe) A kl(l e ) 8Nt Tl)Avo (3.13)
v
o
Au =0
(o]

where 8%(t' - T'!) 1is the unit step function delayed by a time

1
constant Ti and Ti and Té are the non-dimensional times
T, r T, r
1l o 2 o
-~ and —m™ .
u u
o o

The lumped approximation to the distributed response is shown in
Fig. 3.4, where the values of Ti and Té are determined to match
the distributed responses in the following manner:
1) A tangent is drawn through the point of inflection
of the distributed system response, and Ti is
determined as the zero intercept of the tangent line.

2) The value of T! 1is chosen 8o that the lumped and

2
distributed responses coincide at t' = Ti + Té .
which is the point where the response value is 0.632,
which is 1 - e L.

As can be seen from Fig. 3.4, this lumped model is a reasonable

approximation to the distributed response and as will be shown in

Chapter 4 provides reasonable agreement with the experimental data.

Thus, it was not felt that a more sophisticated approximation

was justified or necessary within the scope of this thesis.
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In the main vortex region for operation with high swirl there
is also a change in pressure drop due to a change in u, - For
incompressible flow, a change in radial flow must occur
instantaneously throughout the chamber. The change in pressure
drop due directly to the changes in radial velocity are negligible.
However, changing u, changes the circulation distribution due to
the different radial momentum at the outer periphery. For instance,
a decrease in u, decreases the region of potential vortex flow,
where the circulation is constant, as shown in Fig. 3.5. The radial
flow is forced into the boundary layers at a larger radius due to
the decreased radial momentum of the fluid introduced at the outer
periphery.

The experimental results discussed in Chap. 4 have shown that
the time required to establish the effects due to this change is
small compared with T2 in all of the cases considered, and
therefore this time is negleczted in this study. Thus, the full

dynamic lumped expression for the main vortex chamber may be written

as:

A(po - pe) = -—-ﬁ-—f'z-; AVO + kZAuO (3.14)

The method of calculating kl and kz will be demonstrated

below.
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3.5 Exit Port

Since the exit port is small compared with the main chamber,

just as for the supply and control ports, and the fluid velocities

are higher than the vortex chamber velocities, this port is also

treated as a static resistance.

AQ

Ape - Apc

R
e

3.6 Total Lumped Model

Thus, the exit port equation is:

(3.15)

For the maximum efficiency in a vortex valve, as shown in

Reference 30, the supply port resistance should be small, so that

its pressure drop is small compared to the pressure drop across the

valve chamber and exit port.

If this resistance is small, as it

should be, then a simplification of the port equations is obtained,

i.e. P,
the case
the flow
AQc
AQe
AQs

assuming

may be assumed constant and equal to Pg - Thus, for

of constant supply and ambient pressures,

equations reduce to:

e
R
c
LPe
R
e

= AQe - AQc

incompressible flow.

Pg

and P, »

(3.16)
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The change in pressure drop across the valve is a function of
the outer periphery velocities as follows:
-I.s

-Ap = ey Avo + sz u (3.17)

The velocity flow relations are given by Eqs. (3.9) and (3.10),
so that the change in chamber pressure drop may be written in terms

of flows as follows:

—Ape = if:ff;;— (kcA Qc - kéA Qe) + kzkuA Qe

(3.18)
= Gl(s)A Q. + G,(s)A Q, = - ReAQe

Thus, the transfer functions for changes in flows at each
valve port due to changes in the control port pressure with the
supply and exit pressures held constant are given in Table 3.1.

The block diagram, which explicitly indicates the relation-
ship between the input control pressure and the output system
flows is shown in Fig. 3.6.

These equations may be solved to cbtain the valve supply and
exit flow responses to a sinusoidal input by letting s + jw in
the equations, as also shown in Table 3.1. A typical frequency
response plot is shown in Fig. 3.7, with the dynamic gains
normalized with respect to the static gains. This analytical
model is compared with the experimental frequency and step response

data in Chap. 4.
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Table 3.1

Laplace Notation

1
R
c

Gl(s) + Gz(s) + Re

Frequency Notation

Rc(Re + Gz(s))

Gl(S)
R‘:(Re + Gz(s))

1l¢c
R co:’.mT1
c
k.k
lc
iy sin w Tl

- k,k cos w T T
e

1 1

1

+ (Re + kzku)

k ke sin w Tl + Tzw(Re + kzku)

xr~

_ (A-C) + §(B-D)
C + 4D
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Thus, a lumped linearized model has been developed which may
be used by a fluid control circuit designer to predict the dynamic
response cf a vortex valve in a circuit. This model has been based
on the two fundamental physical phenomena of the vortex chamber,
the time delay due to the transport effects and the time lag due

to the viscous effects.

3.7 Calculation of k, , k, and R
1 2 — e

The gains k1 R kz » and Re may be calculated by considering
the pressure gradient described by Eq. 2.57 for A > 10 , which may

be written as:

dp r?

(1-x)°>

(3.19)

In Reference 29, it has been shown that the I distribution is
*
essentially a function only of the parameter BLC , so that P/A2

*
is a function only of BLC at any value of x , where:

2r v
%

BLC = —2 ;3 £
o puoh

2u

(3.20)

h 1/4

( )

~ *
The relationship of D/A2 and BLC 1is shown in Fig. 3.8. Thus,
the pressure distribution and specifically the pressure at the
*
exit radius may be found from this graph, once BLC has been

calculated, since

P 2
P,pb " P = 2 (pv,) (3.21)
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Thus, by calculating changes in BLC* for changes in the appropriate
flows and velocities, the changes in pressures and thus the gains
may be calculated.
For the calculation of the gains, it is useful to break the
response up into three parts:
1) The control flow changes, changing the outer periphery
tangential velocity. The change in pressure drop due
to this change, maintaining a constant u, , may be
calculated.
2) The supply flow changes due to the change in control
flow. The amount of this change is determined by
the steady state characteristic, and its effects on the
pressure drop across the valve may also be calculated.
3) The tangential velocity, v, s changes due to the change
in supply flow, which cause another change in the pressure
drop across the vortex chamber.
The gain k1 igs associated with steps 1 and 3, while the gain

k. 1is associated with step 2. Thus, consider the points in Table

2
3.2, which are the end points of these three processes for case D

of Chap. 4.
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Table 3.2
a > 1 b +2+ c +3- d
3 3 3
in in in
17.9 —== 20.5 = 20.5 ——
3 3 3
57.4 - 57.4 in- 43.6 18
sec 8sec sec
in in in in
29.2 T 29.2 == 22.2 S 22.2 S=
in in in in
592 Too 756 o= 756 o= 1022 T
1.208 1.539 2.175 2.935
21.3 16.7 11.1 7.5
.836 psi 1.070 psi 0.711 psi 0.879 psi
. Thus, kl can be calculated as:
o MPo " P (1.070 - 0.836) + (.879 - .711)
! Bv, (756 - 592) + (1022 - 756)
236 + 168 _ 402 4 o0k 1bgsec
430 430 . 3
- Arg =P 0,711 - 1.070 _ .359 - 5.13(10)"2 1bgsec
2 Au 22,2 - 29.2 7.0 = °° 3
(] in
Ap 1b_sec
e 0.043 -3 P
R = : 3.09(10) 0 ————
e Aq, 13.9 3




Chapter 4

EXPERIMENTAL RESULTS

4.1 Objectives of the Experiments

The objectives of the experimental work were to provide guidance
in formulating a dynamic model for the vortex valve and to provide
verification of that model once it had been formulated. To
accomplish these objectives, both step response and small signal
sinusoidal frequency tests were made using low pressure air, along

with the dynamic flow visualization already discuss-1 in Chapter 2.

4.2 Apparatus
The basic experimental vortex amplifier used in this study is

shown disagsembled in Fig. 4.1. It consists of five circular plates
bolted together to form the chamber and its ports. The top plate
contains the ducts to distribute the control ports. The second
plate separates the control flow passages from the valve chamber.
The third and fourth plates form the vortex chamber itself as well
as containing the supply and control ports. The fifth plate contains
the exit port. There is also a sixth plate which fits between the
third and fourth plates to double the height of the chamber.

The diameter of the vortex chamber is 2.5 inches. The supply
ports consist of four slots, each 0.10 inch high by 0.75 inches wide.
The four control ports are each 0.831 inches by 0.079 inches. Two

bottom plates may be used, one with a 0.25 inch diameter exit and the
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Fig. 4.1 Disassembled Vortex Valve
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other with a 0.188 inch diameter exit. The height of the chamber
may be adjusted to either 0.25 inches or 0.50 inches with the
spacer. The outer diameter of the plates is 5 inches.

The two end plates are grooved for O-rings to seal the valve
in a 5 inch clear acrylic tube such that the supply ports mate with
holes in the tube which passes to the supply chamber. The supply
chamber is kept at constant pressure by a pressure regulator. This
arrangement is shown in the schematic drawing, Fig. 4.2.

For the experiments, the control pressure signal was monitored
by a Kistler piezoelectric pressure transducer. The control, supply,
and exit flows were inferred from velocity measurements using Disa
hot-wire probes with a constant temperature anemometer servo. The
flow measurements were obtained by calibrating the output of the
conistant temperature anemometer for static flow conditions of the
valve, and assuming that the dynamic and static velocity profiles
were similar, since the dynamic changes in the flow were small
compared with the quiescent flow, and there was no reverse flow.
This method provides about the only reasonable method for measuring
dynamic flows in the frequency range of interest for this study.

The dynamic input signal to the valve was provided by a flapper
nozzle valve arrangement, shown schematically in Fig. 4.3. The
flapper was a rotating disc, driven by a variable speed D.C. motor,
This apparatus is shown in Fig. 4.4.

By using radial slots on the rotating disé which were slightly
narrower than the nozzle, so that the effective area of the nozzle

was constantly changing, a reasonable sinusoidal pressure wave was
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Fig. 4.4 Signal Generating Apparatus
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generated. Using another disc with the nozzle open for half a
revolution and then closed for the other half of the disc revolution,
the opening and closing times are negligible compared with the open
and closed times, providing a reasonable square wave for step
response tests.

The variable speed D.C. motor had an attached 24:1 gear
reduction unit, so that.the changing from the low to high speed
shaft and using the speed controller, the sinusoidal signal could be

varied over a range of frequencies from 1 cps to over 500 cps.

4.3 Experimental Valve Configurations

As discussed in Chapter 5, the analytical model predicts that
the two major parameters affecting the dynamic time constants are
the internal flow field, as characterized by the parameters A and
BLC, and the ratio of the height to the outer periphery radius.
Thus, several different tests were run to confirm the predicted
effects of these changes.

For the comparison of experimental and theoretical responses,
four specific differept configurations of the experimental vortex
valve are considered.

The first configuration, designated A , is considered the basic
configuration. The significant dimensions and ratios are as follows:

r, = 1.25 in. Ac/Ac = ,356

r, = .094 in, P, = 30 in. H20

h = 0.25 in. A /A = 10.9
s e
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Configuration B has the same physical dimensions as
configuration A , but the supply pressure used was 80 inches of
water, so that the basic flow rate through the valve is higher and
the transport dynamics are faster.

Configuration C has a supply pressui. of 30 inches of water,
as the basic valve does, but the height is 0.50 inches, to verify
the effect of height on the dynamic response.

Configuration D 1is identical with the basic configuration
with the exception of the exit radius, which is 0.25 inches. This
also decreases the Ac/Ae ratio to .20.

The non-dimensional, steady state valve characteristics of
these four configurations are shown in Fig. 4.5. The dynamic data
for one representative operating point will be presented, and these

operating points are also indicated in the figure.

4,4 Calculation of Theoretical Responses

In order to calculate analytical step and frequency responses,
it is necessary to find the dynamic time parameters and the gains
of the valve at the operating point. This section will give a
fuller explanation of the calculation of the gains for case D
discussed briefly in Chapter 3, and will list these parameters for
the other cases.

Consider the two end points of the range of operation indicated
for case D in Fig. 4.5. These are the two end points, a and d, of
Fig. 3.8 and Table 3.2. The two intermediate points, b and c ,

are calculated from these points., Point b is the point which
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corresponds to changing the control flow Qc and the tangential
velocity vo without changing u, and Qe . Point c¢ 1is the
point which corresponds to changing Qe and u, without considering
the effect of Qe in changing v, It should be noted that these
intermediate conditions do not occur in the actual valve, since
all three changes are taking place simultaneously. However, they
are useful conceptual points for the calculation of the gains, as
discussed in Chapter 3.

The gain kl is calculated from the changes from a to b
and from ¢ to d , while the gain k2 is calculated from the change
from b to c¢ . The exit resistance Re is calculated from the

entire change, a to d . The other three gains, kc , k

, and k
e u

may be calculated directly from the difference relationships:

Av
o 756 - 592 164 2
ke " B, T W.5-17.9 © 7.6 - 63 (-0

1022 - 756 266 2
ky =~ i, 57.4 = 43.6 "~ 13.8 - 19.3/in (4.2)
Au
o 7.0 2

The dynamic time constants T1 and T2 are solved by the
computer program of Chapter 3 by considering the change from a to
b . These two non-dimensional times are .181 and .321, which when
dimensionalized by the time factor ;3 = %é%% sec. = .0428 sec.

o

become Tl = ,0078 sec. and '1‘2 = ,0138 sec.
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The gains and time constants for the four cases are shown in

Table 4.1. The gains G and G are the steady state flow
AQ AQ os oe
gains 8 and € . respectively
9 .
'&f; E:

4.5 Step Responses

Once the lumped system parameters had been found, the analytical
step and frequency responses were caiculated. The experimental step
responses of the change in exit flow to a step change in input
control pressure are shown in Fig. 4.6, and the analytical and
experimental step responses are compared in Fig. 4,7,

As can be seen, the analytical and experimental results agree
reasonably well, to the extent possible considering the noisy
experimental response. This noise, which was also observed in steady
state operation, was due to local turbulence in the vicinity of
the hot wire, rather than to overall flow changes. In order to get
a better comparison between analysis and experiment, frequency
responses were taken.

The step response of the entire valve depends upon the two
time constants, Tl and T2 , and upon the steady state gain at the
operating point. The time delay T1 of the vortex flow remains
a time delay in the total vortex valve. The rise time of the vortex
valve response 1is proportional to '1'2 , for a given value of gain.
The steady state gain is a measure of the extent to which supply flow
changes are due to the positive feedback effects of the supply flow

on itself compared with the changes due directly to the control flow
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changes. Thus, a valve with a higher gain will be slower, since
more of the response will be due to the positive feedback effect.
This can be thought of conceptually bﬁ considering increments of
change in flow, each taking about the same time to occur. Thus,
if the initial increment due to the control flow change is a large
portion of the total change, fewer increments due to the supply flow
feedback will be needed, and the response will be faster.

These effects are illustrated in Fig. 4.7. Thus, the responses
of A and B are similar, since the shorter T2 of case B 1is
compensated by the increase in gain. Case C is much slower because

of its much larger T2 , while D is slower because of its higher

gain.

4.6 Frequency Response

In order to eliminate the turbulent noise from the flow measure-
ment of the sinusoidal frequency response, a Fourier decomposition
technique was used.

The basic concept of the Fourier decomposition is shown in
Fig. 4.8. The input signal is sinwt , and coswt 1s also availlable.
The output of the system is represented by a sin (wt + ¢) + w(t),
where w(t) represents the random noise and harmonic frequency output

component. Using geometric identities, the output may be written as

A sin wt + B cos wt + w(t) (4.4)
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where

A = ocos ¢
B =~ asin ¢

The output is multiplied by the original sine and cosine
signals, then integrated and averaged over aa integral number of

cycles of the sinusoid, as follows:

2NT

- sin wt(A sin wt + B cos wt + w(t))dt = A (4.5)
2NT ° 2

. IZN“ cos Wt(A sin wt + B cos wt + w{t))dt = 3 (4.6)
2N“ ° 2 [

From these averages, the amplitude ratio «a may be found as:

o = /a2 + B2 4.7

and the phase shift ¢ 1is simply:

¢ = tan = 2 (4.8)
In practice, the averaging is performed by first order lag
networks with time constants much greater than the period of the
sinusoid.
In the experimental system a third order Butterworth filter
operating at its break frequency, as shown in Fig. 4.9, was used
to provide a sine and cosine which were out of phase with the input

pressure by a constant angle, and which could be used for the Fourier

decomposition.
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The four analytical and experimental frequency responses are
shown in Figs. 4.10 - 4.13. The responses for the supply and exit
flows are shown, each normalized with respect to its steady state
gain. The control flow response is not shown, since for the frequency
range of interest, it essentially followed the control pressure, as
predicted by the analysis. The phase angles are plotted as zero
in the steady state, although since the gain of the valve is negative,
the supply and exit flow changes are opposite in sign to the control
pressure signal.

Consider first the characteristics which are common to all four
of the responses. The exit flow response shows a steadily decreasing
amplitude response, accompanied by a steadily increasing phase lag.
The decreasing amplituce response is due to the constantly decreasing
time available for the spinning donut to change conditions during
each cycle. The increasing phase lag is due to the transportation
delay, which has a phase lag of Tlm .

The supply flow response 1s completely different. Since the
supply resistance is negligible, the supply flow is essentially
just the difference between the exit and control flows. Thus, as
the exit flow changes become small, the supply flow amplitude becomes
equal to the control flow, and opposite in sign. These cdnditions
are represented by an amplitude asymtote equal to the inverse of
the steady state gain, and a phase asymtote of zero degrees. The
peéka and valleys in the supply amplitude response occur as fhe

exit response is in phase or out of phase with the control flow.
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These characteristics are well illustrated by the frequency
response of case A. The major difference between the different
cases, in terms of this study, is the speed of response. This
difference is represented effectively by consideration of the
frequency at which the peak in supply flow response cccurs, which
corresponds to a phase shift of 360° for the exit flow, and a
zero phase shift of the supply flow. For case A, this point falls at
a frequency of about 82 cps. The time constants associated with
this case are Tl equal to just over 9 milliseconds and T2 equal
to just over 23 msec.

For case B, the frequency of the supply flow peak occurs at
about 120 cps, while the time constants are Tl ~ 6 msec and
T2 ~ 14 msec. This faster response is associated with the fact that
the radial flow rate through the valve is 1.6 times faster, while
the operating point on the steady state characteristic and the internal
flow fields are similar to case A. Thus, as would be expected, for
similar operating conditions, the speed of response is essentially
proportional to the flow rate through the valve.

For case C, the height of the valve was doubled, with the
flow rates approximately the same as for case A, so that the outer
periphery radial velocity was one-half that of case A. The steady
state theory predicts that the boundary layers should be about the
same height as for case A, so that the core region is over twice
the height of case A. Thus, T2 would be expected to be longer
because of the increased inertia of the spinning donut, and T1

would also be expected to be longer due to the increased effect of the
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core region on the boundary layeis. The distributed system

response gives T1 S 16 msec and T2 = 45 msec, while the lumped

model gives the supply response peak at about 45 cps. Note that

Tl for case C 1is less than twice the Tl , for case A, which
means it is a smaller fraction of the fill time. The experimental
response indicates that the Tl for case C should be even less than
predicted. This example illustrates one disadvantage of using a fixed
fraction of the £ill time to represent the time constarts, since
changing the height for the same flows changes the fill time
proportionately, but T1 i1s changed less. The exact changes in

T, aad T, cannot be predicted by any simple relationship, but

1 2
may be estimated with the use of the distributed model and computer
program.

For case D, the exit hole of the vortex valve is larger, so
that the basic flow rate is larger, tending to decrease T1 . However,
the spinning donut is smaller, decreasing the effect of the concentra-
tion of the flow in the boundary layers, and tending to increase ’1‘1 .
Compared with case A, Tl is smaller with a value of just under 8
milliseconds, but is larger compared with its fill time. This again
illustrates the inadequacy of using a fixed fraction of the fill time
as the time constant Tl « In this case, the time lag T, is smaller
compared with T1 than in the other cases, also because of the
decreased size and momentum of the spinning donut.

Thus, the effects of changes in operating point and height of
the valve on the lumped model response have been demonstrated

qualitatively, and have been confirmed by experimental results. These

effects are discussed further in Chap. 5, and some quantitative

indications of the effects are given.
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4.7 Choice of Friction Constant K

The numerical value of the friction constant k of Eq. 2.48
used in the distributed system program of Appendix A was chosen as
0.50 to provide a reasonable match with all cf the experimental data.
The effect on Tl due to chauging this constant is small, since the
major factor in determining T1 is the transport time. As expected,

T, 1s changed substantielly by changes in k , since this time

2
constant is associated with the viscous effects. As an example, the
effects of changing k between 0.40 and 0.60 for case A are listed
in Table 4.2. For the range of experimental data considered, the

values of '1‘1 and T2 for k = 0.50 provided the most reasonable

fit.

v r
pOO

The tangential Reynolds number for all the experimental
operating points was greater than 104 » justifying the use of turbulent

shear expressions in the calculation of the friction effects.

4.8 Large Signal Step Response

Although the prediction of large signal dynamic responses,
involving flow changes from nearly meximum to nearly minimum conditions,
is beyond the scope of this thesis, step response experiments were
run for these conditions to gain some insight into the approximate
range of dynamics involved. These step responses of exit flow
changes due to step changes in control pressure are shown in Fig. 4.14
for the four configurations tested. The flow changes are on the order
of ten times the small signal flow changes, but the time delays and
rigse times are only on the order of twice the small signal times. This
indicates that the large signal response could also be modelled by a

pure delay and a first order lag, although the linearized analysis of
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0.40

0.143

0.375
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Table 4.2

0.50

0.147

0.349

0.60

0.151

0.329
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a) Case A b) Cass B

50 msec/em for all responses

Fig. 4.14 Large Signal Step Responses
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Chapters 2 and 3 would not be valid for response prediction. The
large signal dynamic behavior of vortex valves would provide a
possible area of further investigation.

4.9 Frequency Response Sensitivity to Gain and Time Constant Changes

The effects of parameter changes on system response may be
investigated through the use of the techniques of the next chapter
and through use of a computer program to give the frequency response
from the equations of Table 3.1. In order to show the sensitivity
of the response to these changes, several responses have been calculated
for modifications to case A. Case Al is the original case with
T, = 0,009 , T

1 2
decreased by 20% to 0.0075, and for case A3, T2 is also decreased

= 0.0232, and G__ = -1.35. For Case A,, T, is8
oe 2’ 71

by 20% to 0.0186. Finally, for case Ah’ the amplitude of the gain
is increased by 25% to give Goe = -1.69. These responses are shown

in Fig. 4.15, where the cumulative effects of these changes can be

seen.
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Fig. 4.15 Frequency Responses with Gain and Time Constant Changes
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Chapter 5

DYNAMIC VORTEX VALVE DESIGN

5.1 General Dynamic Design

In the design of a vortex valve for a specific application,
there are many criteria by which the valve must be judged, and many
parameters which determine to what extent these criteria will be
met. Some of the criteria for judging the valve may include the
steady state flow requirements, the gain of the valve in a proportional
region, the minimum quiescent flow, the ratio of control and supply
flow at an operating point, and the speed of the dynamic response.
The parameters which affect the steady state performance include the
size of the valve, the control port area to exit port area ratio, the
fluid density and viscosity, and the ratio of the outer periphery
radius to the exit radius. In the vortex flow itself, the velocity
distributions are determined by the two factors, A and BLC ,

v 2ro £

[
discussed in Chap. 3, where A = and BLC o 174
o o] u, h
( TR )
The dynamic time constants, Tl and T, » depend upon the

velocity distributions, and thus are functions of BLC and A .

In addition, since it influences the rz2lationship between the boundary
layer and the spinning core, the parameter H = h/2r° also affects

the time constants. Since the entire spinning core responds essentially
as a unit, as discussed in Chap. 2, the radius ratio does not have

a strong influence on the time constants, as has been verified by

results of the computer program of Appendix A,
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The gains, kl, kz, kc’ ke’ ku and Re are functions of

the steady state characteristic, and must be calculated for any

particular case individually, as discussed in Chapters 3 and 4.
Because of the wide range over which the papameters BLC, A,

and H may differ, 1t is not practicable to present here a complete

set of time constants for all possible conditions, Therefore, for

specific applications, a designer is urged to use the computer

program of Appendix A, However, some insight into the magnitude of

these effects may be gained from the data summazized in Fig, 5.1,

As can be seen, increasing )\, which corresponds to operating further

down the steady state characteristic, with less exit flow, decreases

Tl and increases T2 with respact to the fill time, due to the

increased region of zero radial flow. An increase in BLC has

the same tendency to decrease Tl and increase T2 with respect

to the fill time, Doubling the height of a valve and maintaining

the corresponding flow rates, doubles H, doubles A, and halves

BLC. An example of the effect of doubling the haight is going from

A =20, BLC = 0,050, H = 0,1 to A = 40, BLC = 0,025, H = 0,2,

which shows a decrease in T1 and an increase in T, as the increased

height increases the effect of the core compared with the boundary

layer.

5.2 Example Design

As an example of dynamic considerations in the design of a
vortex valve, consider a valve with Ac/Ae = 0.1 and te/ro = 0,15,
From Ref, (19), the three x'ed points of Fig. 5.2 may be determined
analyzically and an estimate of the characteristic sketched where
in the present case three approximations are sketched to illustrate

the possible variations in the approximation, For a valve with
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an outer radius of 1.0 in. and a height of 0.3 in, the flow at
point A is 84 1n3/sec of air at 1.0 psig supply pressure. Thise
same flow would occur at point B for a valve of 1.26 in. outer
radius and 0,38 in height with the same supply pressure. However,
the dynamic response would be different for the two valves.

The f11ll time for case A would be 20.5 msec while for case
B it would be 41.3 msec. The full comparisons of the operating
conditions for cases A and B and the alternative points are shown in
Teble 5.1. The step responses of the two operating conditions are
shown in Fig. 5.3. This figure illustrates two relationships,
the changes from the A to B points on each characteristic and the
changes from one possible characteristic to the others. The changes
for each particular comparison depend upon the interaction of the
changes due to different Tl , T2 , and gains. Increases in each
of these tend to slow down the step responses. Thus, as can be seen,
the responses at the A points tend to be faster than the B points,
although the quickest B response is close to the slowest A respomse.
The changes in the T's and the gains make the alternate characteristics
slower at both points.

The estimated steady state response gives a good approximation
to the dynamic characteristics, within the limitations of the steady
state theory. For the best estimate of the dynamic characteristics,

an experimental steady state response is probably desirable.
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Table 5.1
A2 B
209 335
.40 .25
.115 .125
-1201 -5005
.220 .115
.390 414
4,5 4.7
8.0 17.1

.116

-4 090

.128

.390

5.3

16.1

<134

-5021

.102

436

4.2

18.0
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This study has considered the small signal dynamic response of
a vortex valve to changes in control pressure, with the supply and
exit pressure held constant. The analysis is valid for incompressible
flows in a valve operating with high swirl conditions, such that
there is a significant pressure drop across the vortex chamber due
to the centrifugal flow field. A method has been presented for the
prediction of the gains and time constants of the dynamic model
from a predicted or measured steady state characteristic. Experimental
step responses and sinusoidal frequency responses have been presented
to verify the analytical model. Thus, this study has presented an
jnitial building block in the design of filuid power control circuits
containing vortex valves as dynamic system components.

The main contribution of this thesis, compared with past work
(1,5,11,25,26), is the prediction of dynamic model parameters based
on the fluid and geometric characteristics of the valve and the

experimental verification of those parameters.

6.2 Recommendations

Although this study represents a significant step in the under-
standing and prediction of the dynamic response of vortex valves,
there are several arees of study which would be useful to refine
and extend the findings of this study.

The first area of proposed further study is working for a

better understanding of the phenomena associated with the exit region
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For this study, this region was represented as a linearized
resistance relating the exit flow and pressure drop. A more complete
representation would probably include separate consideration of
the effects of swirl and axial flow on the exit pressure drop. The
simpler representation used for this study was sufficient since the
changes in exit flow were always associated with changes in the swirl
conditions in the chamber and exit, and because the linearized
resistance effects enter the lumped model transfer function in the
same form as the larger effect of changes in the radial flow on
the chamber pressure drop. However, for cases with non-constant supply
and exit pressures, these effects are not so closely related and it
is felt that a more complete model of the exit flows would be necessary
for reasonable representation of the dynamic behavior.

Another area of further study, mentioned in Chapter 4, is work
on the modelling of the large signal dynamic switching behavior of
the valve. This involves a more complete understadding of the
phenomena involved in the development and elimination of the spinning
donut region, since it changes drastically in.this type of operation.

The third possible area of study is further work on the
prediction of the high gain region of the static characteristic.
In this region, the predominant resistance of the valve is changing
from the exit port resistance to the centrifugal flow field resistance,
and this change tends to be unstable for valves with flows approaching
the axisymmetric assumption of the static analysis. Thus a fuller
understanding of the phenomena associated with this change, which
would also relate to the other two sxeas of study indicated above,

would be desirable.
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These three areas of further study give only an indication of
the rich possibilities for continuing research in the vast and

complex area of vortex flows in general and vortex amplifiers in

particular.
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Appendix A -~ Distributed Dynamic Response Compﬁter Program

The computer program listed on the following pages consists of a
main program and six subroutines which calculate the distributed dynamic
response of a vortex chamber to a step in the outer periphery tangential
velocity v, The equations used are those developed in Chapt. 2.

The first subroutine, DHPCG, is a predictor-corrector subroutine,
only slightly modified from the IBM 360 Scientific Subroutine package
(31) to guarantee that all of the desired outputs are computed. This
program automatically adjusts the integration step size to limit the
maxXximum error, and is used to determine the steady state operating
conditions.

The other five subroutines are called by DHPCG to calculate
the derivatives and output results. DERIV 1 calculates the derivatives
in the outer region, for U greater than zero, and DERIV 2 calculates
the derivatives in the central region where there is no radial flow.
OUTPT1 prints out the vaiues of the variables at the initial segment,
OUTPT2 prints out the values for U greater than zero and signals when
U goes to zero, and OUTPT3 prints the values for the zero radial
flow region.

The main program reads one data card for each step response to
be calculated, with the five inputs being the initial and final

values of A , the value of BLC, the height parameter H , and XMAX

r
equal to the non-dimensional value of 1 - ;E . These parameters
o

are used to calculate the initial and final steady states, using the

equations of Sect. 2.3.1. The initial conditions are then
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re-normalized with respect to the final Vg s which changes the T
vaiues, and then the dynamic equations of Sect. 2.3.2 are solved
for non-dimensional time steps of 0.0002. The fr=ction of the exit
pressure change, PE , is printed at regular intervals, along with
the distributions of I' and FC « When the non-dimensional time

reaches 1, which equals two fill times, the program stops and prints

r r
out the values of TAUl = T1 Eg and TAU2 = T2 ;3 . From these
o o

values, the dimensional time constants may be calculated.
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