
ar
X

iv
:1

90
9.

05
69

4v
1

 [
cs

.I
T

]
 1

2
Se

p
20

19
1

Repeat-Free Codes
Ohad Elishco, Member, IEEE, Ryan Gabrys, Member, IEEE, Eitan Yaakobi, Senior Member, IEEE,

and Muriel Médard, Fellow, IEEE

Abstract

In this paper we consider the problem of encoding data into repeat-free sequences in which sequences are imposed to contain
any k-tuple at most once (for predefined k). First, the capacity and redundancy of the repeat-free constraint are calculated. Then,
an efficient algorithm, which uses a single bit of redundancy, is presented to encode length-n sequences for k “ 2 ` 2 logpnq.
This algorithm is then improved to support any value of k of the form k “ a logpnq, for 1 ă a, while its redundancy is opnq.
We also calculate the capacity of repeat-free sequences when combined with local constraints which are given by a constrained
system, and the capacity of multi-dimensional repeat-free codes.

Index Terms

Information theory, DNA sequences, Error-correcting codes, Constrained coding, capacity, Encoder construction

I. INTRODUCTION

Repeat-free sequences represent a generalization of the well-known De-Bruijn sequences in which every length-k substring

appears exactly once. De-Bruijn sequences have found applications in areas as diverse as cryptography, pseudo-randomness,

and information hiding in wireless communications [1]. However, one potential drawback to adopting De-Bruijn sequences

for representing information is that De-Bruijn sequences have rate at most 1{2. In this work, we show that by relaxing the

condition in which every k-tuple appears exactly once to appear at most once, we can generate codes of asymptotic rate 1 with

efficient encoders and decoders for a variety of parameters.

One motivating application for this work is DNA storage, and, in particular, the reading process of a DNA string. The

reading process of a DNA string is as follows. At first, the long string is fragmented into substrings of a shorter length which

may be read properly. Then, a multiset of all the short strings is obtained in a form of their frequency. Then, the long DNA

string should be reconstructed using only the knowledge of the shorter length substrings.

There are two common lines of work on DNA storage systems. The first assumes that the data is stored in a living organism.

In this case, the major concern is to correct errors which are made by naturally occurring mutations. For analysis of the capacity

of mutation strings, see [2]–[6] and [7]–[11] for coding and algorithms related works. The second line of work focuses on data

storage outside a living organism and is called coding for string reconstruction. The goal of coding for the string reconstruction

problem is to encode arbitrary strings into ones that are uniquely reconstructible. This problem is motivated by the reading

process of DNA-based data storage, where the stored strings are to be reconstructed from information about substrings appearing

in the stored string. This problem motivated a series of papers regarding decoding of sequences from partial information on

their substrings [12]–[20].

In order to ensure unique reconstruction, studies were made on reconstruction of encoded sequences [13], [21], [22]. One

method that guarantees a unique reconstruction is to encode the information sequence to a codeword that does not contain

any k-tuple more than once. For two positive integers k ă n, we say that a length-n word w is a k-repeat free word if every

subword of w of length k appears at most once. It is already known that k-repeat free words are uniquely reconstructible

from their length-r substrings multiset if r ě k ` 1 [23]. Furthermore, an encoding scheme that exploits this property has been

recently proposed in [20]; however, the encoded words are not strictly repeat free. Thus, studying the repeat-free constraint

and designing respective efficient encoding and decoding schemes is still an open research problem, which is the primary focus

of this paper.

Another important characteristic of the k-repeat free sequences is the growth rate of the number of sequences as a function of

the length of the sequence. Arguably, one of the most well known families of k-repeat free sequences are De-Bruijn sequences

of span k which play an important role in this paper. A De-Bruijn sequence of span k is a sequence over a finite alphabet, in

which every k-tuple appears exactly once. It is clear that every De-Bruijn sequence of span k over an alphabet of size q (which

implies that the sequence is of length qk ` k ´ 1) is k-repeat free [24]. For the case of De-Bruijn sequences, a closed formula

for the number of De-Bruijn sequences of length qk ` k ´ 1 exists [1], [24]. Unfortunately, there is no such formula for the

general set of k-repeat free sequences. It is clear that a sequence of length n over an alphabet of size q cannot be k-repeat

free if k ă logq n. However, the size of k-repeat free sequences with k “ a logq n with a ą 1 has not been fully determined.

O. Elishco and M. Médard are with Massachusetts Institute of Technology, Cambridge, MA, 02139 (e-mail: {ohadeli,medard}@mit.edu).
R. Gabrys is with Spawar Systems Center, San Diego, San Diego, CA, 92115 (e-mail: ryan.gabrys@navy.mil).
E. Yaakobi is with the Department of Computer Science, Technion — Israel Institute of Technology, Haifa 32000, Israel (e-mail:

yaakobi@cs.technion.ac.il).
This paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2019), Paris, France.

http://arxiv.org/abs/1909.05694v1

2

Using union bound arguments it is straightforward to show that the growth rate of the number of k-repeat free sequences

is qn when k “ ra logq ns and a ě 2. On the other hand, from the known enumeration results of De-Bruijn sequences [1],

[24] it follows that the growth rate in the binary case is at least 2n{2 for a “ 1. Therefore, it is left to find the growth rate

for 1 ă a ă 2. By carefully calculating the probability that a word has two identical length-k subsequences, we show in this

paper that the growth rate is 2n for all a ą 1.

Motivated by several previous works [20], [25], [26], we address the problem of calculating the capacity of k-repeat free

sequences of length n where k “ a logpnq with a ą 1. We provide an efficient encoding algorithm that encodes into k-repeat

free binary words for k “ 2rlogpnqs ` 2 with only a single redundancy bit. We also extend this algorithm to the setup where

logpnq ă k ă 2 logpnq with asymptotically rate-one algorithm. Both algorithms operate in two phases; in the first phase the

information sequence is compressed into some shorter sequence that satisfies the constraint and afterwards this compressed

sequence is expanded to ensure that the final output is of length n and yet satisfies the constraint. We also study the capacity of

k-repeat free sequences which satisfy local constraints as well. For example, a combination of the k-repeat free constraint and

the no-adjacent-zeros constraint (i.e., the p0, 1q-run-length-limited constraint). Perhaps surprisingly, we show that the k-repeat

free constraint does not impose a rate penalty in either case.

The capacity results are also generalized to the multidimensional case. While the number of binary De-Bruijn sequences of

span k is known, in the multidimensional case, the situation is much more complicated. The analog definition of a De-Bruijn

sequence to a multidimensional scenario is called a De-Bruijn torus. Not only that the number of De-Bruijn tori is not known,

it is not known for which sizes there exists a De-Bruijn torus [27]–[29].

The rest of the paper is organized as follows. In Section II, we present the notation and definitions which are used throughout

the paper together with the definition of k-repeat free sequences. In Section III, we present our first result which asserts that

the capacity of k-repeat free sequences for k “ a logpnq is 1 whenever a ą 1. In Section IV, we present an encoding algorithm

for binary sequences of length n with k “ 2rlogpnqs ` 2 and a single bit of redundancy. Next, an encoding algorithm for

k “ a logpnq with 1 ă a ď 2 is presented in Section V. In Section VI, we calculate the capacity of k-repeat free sequences

which also satisfy local constraints. In Section VII, we generalize the capacity result for d-dimensional k-repeat free arrays.

We conclude in Section VIII.

II. PRELIMINARIES

Let N denote the set of natural numbers. For n P N, we denote by rns the set rns “ t0, 1, . . . , n ´ 1u and by r´ns the set

r´ns “ t´1, ´2, . . . , ´nu. For a set A we use |A| to denote the size of A. If A is a subset of a group with a group operation

‚, and if b is any group member, we define b ‚ A fi tb ‚ a : a P Au.

Example 1. Let A “ t1, 3, 5, 6u Ď Z and let b “ ´1. Then,

A ` b “ t0, 2, 4, 5u , A ¨ b “ t´1, ´3, ´5, ´6u .

l

Throughout the paper, we use Σ to denote a finite alphabet. A word of length n over Σ, w “ pw0, . . . , wn´1q is a sequence

of n symbols from Σ and is defined as a function from rns to Σ. We denote by Σ
n the set of all functions from rns to Σ and

by Σ
˚ “

Ť
nPN

Σ
n. For a word w P Σ

˚, |w| denotes the length of w (i.e., the domain of the function w) and wi “ wpiq is

simply the ith symbol in w.

Definition 2. Let A, B be two sets and let f : A Ñ B be any function. For a subset A1 Ď A, we denote by fA1 : A1 Ñ B the

restriction of f to A1.

Since we consider words as functions, for a word w P Σ
n and for a set A Ď rns, wA denotes the restriction of w to the set

A. In other words, wA is a word created by taking the symbols from w that appear in the positions in A. We say that u is a

subword or subsequence of w if there exists i P N such that wi`r|u|s “ pwi, . . . , wi`|u|´1q “ u. If w, u P Σ
˚ we denote by

wu P Σ
|w|`|u| the concatenation of w and u. We will also use the symbol w ˝ u when we would like to emphasize the distinct

parts. For w P Σ
˚ we write wℓ for the concatenation of w with itself ℓ P N times. Unless otherwise is mentioned, coordinates

of a word w P Σ
˚ are considered modulo |w|. Thus, if w, u P Σ

˚, we have wur|w|s “ w and wur´|u|s “ u.

The main object studied in this paper is a set of words which we call a system. Specifically, we focus on systems which are

defined using global constraints. One of the main characterizations of a system is given by the number of feasible words of

length n. To be more specific, we would like to estimate the rate at which the number of length-n words grows with n. This

value is called the capacity of the system and is defined as follows.

Definition 3. Let L Ď Σ
˚ be a system. The capacity of L is denoted by cappLq and is defined as

cappLq fi lim sup
nÑ8

1

n
log|Σ| |L X Σ

n|.

In case q “ 2 we will sometime simply write log instead of log2.

3

The systems we consider will be defined mostly using constraints on the number of subword appearances. To this end, we

define the notion of empirical frequency.

Definition 4. Let w P Σ
n and k ď n. The empirical frequency of k-tuples in w is denoted by frk

w and is defined as follows. For a

k-tuple, u P Σ
k,

frk
wpuq fi

1

pn ´ k ` 1q

ÿ

mPrn´k`1s
1u

´
wm`rks

¯
,

where 1 denotes the indicator function defined by 1apbq “ 1 if b “ a and 0 otherwise. We will sometimes consider frk
w as a vector

of length |Σ|k or as a probability distribution.

The support of frk
w, denoted by Supppfrk

wq, is the set of all k-tuples which appear in w.

Example 5. Let Σ be the binary alphabet and let w “ p11001010q, v “ p00111010q P Σ
8. For k “ 2, the empirical frequency of

the pairs in w, v is given by fr2
w, fr2

v, respectively. We have that

fr2
wp01q “

2

7
, fr2

wp10q “
3

7
, fr2

wp11q “ fr2
wp00q “

1

7

and

fr2
vp01q “ fr2

vp10q “ fr2
vp11q “

2

7
, fr2

vp00q “
1

7
.

Both w, v have full support, i.e.,

Supppfr2
wq “ Supppfr2

vq “ Σ
2,

but Supppfr5
wq “ t11001, 10010, 00101, 01010u and Supppfr5

vq “ t00111, 01110, 11101, 11010u. l

One of the most important sets of words related to this work is the set of (one-dimensional) De-Bruijn sequences [24]. We

follow the non-cyclic definition of De-Bruijn sequences and for a finite alphabet Σ, and for 1 ď k P N, we say that a word w
is a De-Bruijn word of span k if every k-tuple appears in w exactly once. Note that w must be of length |Σ|k ` k ´ 1 (where

the pk ´ 1q-suffix equals to the pk ´ 1q-prefix), since there are exactly |Σ|k different k-tuples. Using our notation, we define

the following system.

Definition 6. A word w P Σ
˚ is called a De-Bruijn sequence of span k if every k-tuple appears exactly once, i.e., for every

u P Σ
k,

frk
wpuq “

1

|w| ´ k ` 1
.

The De-Bruijn system over the alphabet Σ with |Σ| “ q is denoted by Bq and is defined as the set of all De-Bruijn sequences

(over Σ) of span k for some 1 ď k P N. In a notational form, a De-Bruijn system over Σ is the set

Bq “

"
w P Σ

˚ : Dk P N s.t. @u P Σ
k, frk

wpuq “
1

|w| ´ k ` 1

*
.

Note that by definition, a De-Bruijn system contains all the De-Bruijn sequences of span k, for some k P N. In fact, a De-Bruijn

system contains words of lengths |Σ|k ` k ´ 1 for some k.

The number of binary De-Bruijn sequences of span k is known due to De-Bruijn himself who used the doubling process to

calculate the exact number [24]. Later, his result was generalized to any alphabet [1]. For a finite alphabet Σ with |Σ| “ q,

the number of De-Bruijn sequences of span k is given by

ppq ´ 1q!qqk´1
¨ qqk´1´k.

Using this formula, the capacity of the De-Bruijn system can be calculated as follows.

cappBqq “ lim sup
nÑ8

1

n
logq |Bq X Σ

n|

ď lim sup
kÑ8

1

qk ` k ´ 1
logq

´
ppq ´ 1q!qqk´1

¨ qqk´1´k
¯

“
1

q
plogq pq!qq.

On the other hand, for lengths n ‰ qk ` k ´ 1 for some k, we have that |Bq X Σ
n| “ 0 which implies 1

n logq |Bq X Σ
n| “ ´8.

Hence, cappBqq “ 1
q plogq pq!qq. Note that when q “ 2, cappB2q “ 1{2 but using Stirling’s approximation we obtain that

limqÑ8 cappBqq “ 1.

4

III. CAPACITY OF k-REPEAT FREE SYSTEMS

In this section we introduce the first system we will consider in this work and calculate the capacity of the system. One

may regard this system as a generalization of De-Bruijn systems. Throughout this section and unless stated otherwise, we let

Σ be a fixed alphabet of size q.

Definition 7. A sequence w P Σ
n is said to be k-repeat free (or, interchangeably, weak De-Bruijn of span k) if every k-tuple

appears at most once as a subword in w. The set of length-n k-repeat free sequences is denoted by

Wkpnq fi

"
w P Σ

n : @u P Σ
k, frk

wpuq ď
1

n ´ k ` 1

*
.

For any k, we define the k-repeat free system (weak De-Bruijn system) as Wk “
Ť

nPN
Wkpnq.

Note that if n “ qk ` k ´ 1 then Wkpnq is exactly the set of all De-Bruijn sequences of span k. On the other hand, if

n ą qk ` k ´ 1 then Wkpnq “ H since there are more subwords than k-tuples. This implies that for any fixed k we have

cappWkq “ lim sup
nÑ8

1

n
logq |Wkpnq| “ ´8.

Therefore, a more natural question to ask is how the size |Wkpnq| behaves when k and n grow together. Namely, we are

interested in the set Wkpnq where k ą logpn ´ k ` 1q and is a function of n. We will calculate the capacity of a k-repeat free

system for k “
Y

a logqpnq
]

with a ą 1. Under this scenario, we will also denote Wkpnq as Wapnq and Wk as Wa. That is,

Wapnq “ WY
a logqpnq

]pnq and Wa “
Ť

nPN
Wta logpnqupnq.

The size |Wapnq| will be estimated by a probabilistic approach. Consider the uniform distribution over all length-n sequences,

then |Wapnq| “ |Σ|n ¨ PrpWapnqq. Then, the capacity in this case is given by

cappWaq “ 1 ` lim sup
nÑ8

1

n
logq pPrpWapnqqq . (1)

Using simple union bound arguments, it is possible to show that for a ě 2, cappWaq “ 1. However, in the following theorem

we apply a different method which assures that this capacity result holds for all a ą 1.

Theorem 8. Let Σ be a finite alphabet of size q then for all a ą 1, cappWaq “ 1.

Proof: First note that the capacity is upper bounded by 1 and hence we only need to lower bound the capacity. Let w
be an infinite sequence such that the symbol in each coordinate is chosen uniformly at random over Σ. Note that in order to

estimate |Wapnq|, we may estimate the probability Prpwrns P Wapnqq since Prpwrns P Wapnqq “
|Wapnq|

qn . For 0 ă ℓ P N,

define the following random variable

Xℓ “
ℓkÿ

j“pℓ´1qk`1

j´1ÿ

i“0

1w j`rks
pwi`rksq,

where k “
Y

a logq n
]
. For a fixed j,

řj´1
i“0 1w j`rks

pwi`rksq counts the number of times the jth k-tuple appears in w. We have

that

Pr
´

wrpn`1qks P Wa

¯
“ Pr

˜
nÿ

ℓ“1

Xℓ ă 1

¸
“ 1 ´ Pr

˜
nÿ

ℓ“1

Xℓ ě 1

¸
.

Moreover, for every 0 ă ℓ P N we have that

Pr
´

wrpℓ`1qks P Wa

ˇ̌
ˇ wrℓks P Wa

¯
“ 1 ´ Pr pXℓ ě 1q . (2)

We will now bound the probability PrpXℓ ě 1q as follows.

ErXℓs “
ℓkÿ

j“pℓ´1qk`1

ÿ

iPrjs
Pr

´
wj`rks “ wi`rks

¯

“
ℓkÿ

j“pℓ´1qk`1

ÿ

iPrjs

1

qk
“

1

qk

ℓkÿ

j“pℓ´1qk`1

j

ď
1

qk
pℓk2 ` kq ď

pℓ ` 1qk2

qk
.

5

Using Markov inequality we obtain that PrpXℓ ě 1q ď
pℓ`1qk2

qk . Hence, using (2), we get that

Pr
´

wrpℓ`1qks P Wa

ˇ̌
ˇ wrℓks P Wa

¯
ě 1 ´

pℓ ` 1qk2

qk
.

This implies that

PrpWkpnqq ě

tn{kuź

ℓ“0

ˆ
1 ´

ℓk2

qk

˙
.

Since a ą 1, we get that for n large enough,
´

1 ´ ℓk2

qk

¯
is positive for every ℓ. Taking logarithm and exponent from both sides

of the inequality we have that

PrpWkpnqq ě q

řt n
k u

ℓ“0 logq

ˆ
1´ ℓk2

qk

˙

.

Using the fact that for every x P p0, 1q, logqp1 ´ xq ě ´ x
p1´xq ln q

we deduce

PrpWkpnqq ě q
´ řt n

k u
ℓ“0

ℓk2

pqk´ℓk2q ln q ě q
´p n

k `1q nk

pqk´nkq ln q , (3)

where the last inequality follows by taking the largest argument in the sum n
k ` 1 times. Using k “ ta logq nu and writing

a “ 1 ` ǫ we obtain

PrpWkpnqq ě q
´p n

k `1q a logq n

pnǫ´a logq nq ln q .

Taking logarithm and dividing by n we receive the following inequality

1

n
logqpPrpWkpnqqq ě ´

1

pnǫ ´ a logq nq ln q
´

a logq n

npnǫ ´ 1q ln q
, (4)

which clearly goes to 0 as n Ñ 8. Thus, plugging it in (1), we obtain that cappWaq “ 1 for a ą 1.

Remark 9. Note that using (4), if we write a “ 1 ` ǫ, we can also obtain that the redundancy is of order Opn1´ǫq. This implies

that for k “ 2 logq n, the redundancy is some constant number.

IV. ALGORITHM FOR k “ 2 logpnq ` 2

In this section, we provide a coding algorithm for the binary weak De-Bruijn system with k “ 2 logpnq ` 2, where for

simplicity we assume that n is a power of 2. This will be the basic step towards an algorithm for the case k “ a logpnq with

a ą 1 that will be presented in Section V. First note that according to Remark 9, a ě 2 implies that the redundancy is a

constant. The input is a binary sequence w P Σ
n´1, where in this section Σ “ t0, 1u. The output is a k-repeat-free sequence

w P Wkpnq. We first give a short overview of the algorithm, which is divided into two procedures: elimination and expansion.

Given a sequence w P Σ
n´1, append 101`logpnq to its end. Then, search for identical subsequences of length 2 logpnq ` 2 .

For every such an occurrence, remove one of them (the first one) and encode at the beginning of the sequence the indices of

these two subsequences followed by the bit 0. Note that such an operation reduces the length of the sequence by one, and

therefore this procedure is guaranteed to terminate. The second procedure takes this compressed sequence and decompresses

it into a longer sequence such that the constraint is not violated. At the end, the output is the first n bits of the decompressed

sequence.

Before presenting the algorithm, we need a few more notations. For an integer i P rns, we let bpiq be its binary representation

using logpnq bits. Let w P Σ
n be any word. Recall that for i P N, i ď |w|, wr´is is the length-i suffix of w, i.e., wr´is “

w|w|´i`ris. Moreover, the support of frk
w, Supppfrk

wq, is the set of all k-tuples that appear in w. For a word w P Σ
n and for

m P N we denote by Crmpwq the word of length m created by repeatedly concatenating w to itself and taking the length-m
prefix, i.e., Crmpwq “ pwNqrms. We say that a sequence w P Σ

˚ is ℓ-zero-constrained if there are no all-zeros substrings of

length ℓ. We say that pi, jq (where i ă j) is a k-identical window in w if wi`rks “ wj`rks. If pi, jq is such that for any other

k-identical window at pi1, j1q in w, we have j ď j1, we say that pi, jq is a primal k-identical window. The full details appear in

Algorithm 1.

We now show the correctness of Algorithm 1. Notice that the first while loop ends since after every iteration either the

length of the word w decreases by one (case 1) or its Hamming weight increases (case 2). Moreover, in Step 12, the word

w has no identical length-k windows and has no 0logpnq`1-window besides the one at its end, i.e., the word wr|w|´1s is

plogpnqq-zero-constrained. We start with the following lemma.

6

Algorithm 1 No-Identical Windows Encoding

Input: Sequence w P Σ
n´1

Output: Sequence w P Wkpnq with k “ 2 logpnq ` 2
First procedure (elimination):

1: Set w “ w ˝ 1 ˝ 0logpnq`1 P Σ
n`logpnq`1

2: while pi, jq is a k-identical windows in w or wr|w|´1s is not a logpnq-zero-constrained (check the 1st condition first) do

3: Case 1: (there are identical length-k windows in w)

4: Let pi, jq be a primal k-identical window in w
5: Set w “ wris ˝ wi`k`r|w|´k´is (remove the first length-k repeated window from w)

6: Set w “ 0 ˝ bpiq ˝ bpjq ˝ w (append 0 ˝ bpiq ˝ bpjq to the left of w)

7: Case 2: (wr|w|´1s is not a logpnq-zero-constrained)

8: Let i be the index of the 0logpnq`1-window in w
9: Set w “ wris ˝ wi`k´1`r|w|´i´ks (remove the 0logpnq`1-window from w)

10: Set w “ 1 ˝ bpiq ˝ w (append 1 ˝ bpiq to the left of w)

11: end while

12: if |w| ě n then

13: Return wrns
14: end if

Second procedure (expansion):

15: while |w| ă n do

16: Set

B “ Supp
´

fr
logpnq
w

¯ ď ď

1ďiďlogpnq´1

Crnpwr´isq.

17: Set S “ Σ
logpnqzB and find u P S

18: Set w “ w ˝ u (append u to the right of w)

19: end while

20: Return wrns

Lemma 10. In Step 12, the vector w ends with the sequence 1 ˝ 0logpnq`1.

Proof: For any iteration of the first while loop for which there are two identical windows of length k in w, let i and j be

their indices, where i ă j. We claim that the value of i satisfies i ď |w| ´ 3 logpnq ´ 2 and thus the last logpnq ` 1 bits of

the vector w are not removed. Assume in the contrary that |w| ´ 3 logpnq ´ 2 ă i ă j. Then, the length-k window starting at

position i has a 1 in its p|w| ´ logpnq ´ iq-th position while the length-k window starting at position j has a 0 in this position,

which is a contradiction. It is also readily verified that the sequence 1 ˝ 0logpnq`1 cannot be removed as part of a removal of

a 0logpnq`1-window.

Lemma 11. If the condition in Step 12 holds, then the returned vector is of length n and has no identical windows of length k.

Proof: This lemma follows directly from Lemma 10 and Step 13.

Lemma 12. For every iteration of the second while loop, the set S in Step 17 is not empty.

Proof: Note that the size of the set B is at most p|w| ´ logpnq ` 1q ` plogpnq ´ 1q “ |w| ă n and hence B ‰ Σ
logpnq.

Lemma 13. For every iteration of the second while loop, in Step 18 the new vector w1 “ w ˝ u contains the sequence u exactly

once at its end.

Proof: According to the construction of the set B, the sequence u can appear in w1 “ w ˝ u only as a subsequence

starting at positing j, where |w| ´ logpnq ` 1 ď j ď |w| ´ 1. Assume in contrary that there exists a value j such that

pw1qj`rlogpnqs “ pw ˝ uqj`rlogpnqs “ u. But this implies that u P Crnpwr´isq for some 1 ď i ď logpnq ´ 1 which is a

contradiction to the construction of the set B in Step 16.

Let w0 be the value of the vector w after Step 14 and n0 “ |w0| is its length. Assume that there are ℓ iterations of the

second while loop, so the value of the vector w after Step 19 is given by

w “ w0 ˝ u1 ˝ u2 ˝ ¨ ¨ ¨ ˝ uℓ,

where u1, u2, . . . , uℓ are the vectors which were appended to the right of the vector u at each iteration of the while loop.

Lemma 14. For 1 ď i ď ℓ, the vector wi “ w0 ˝ u1 ˝ u2 ˝ ¨ ¨ ¨ ˝ ui has no identical length-k windows.

7

Proof: We prove the lemma’s statement by induction on the values of i. For the base case, we start with i “ 1 and show

that the vector w1 “ w0 ˝ u1 has no identical length-k windows.

Assume in the contrary that pi, jq is a k-identical window. We only need to consider the cases where at least one of these

two windows overlaps with u1. This implies that the length-k window starting at position j overlaps with u1, that is,

n0 ´ k ` 1 ď j ď n0 ` logpnq ´ k.

In particular, the window pw1qj`rks contains the 0logpnq`1-window at the end of w0. If i ď n0 ´ k, then according to Lemma 10,

pw1qi`rks does not contain a 0logpnq`1-window, which is a contradiction. Thus we only need to consider the case n0 ´ k ď i ă
j ď n ` logpnq ´ k. However, this implies that pw1qj`rks is periodic with period 0 ď j ´ i ď logpnq ´ 1 which is impossible

since it contains the pattern 1 ˝ 0logpnq ` 1.

Next we prove the statement for w2 “ w0 ˝ u1 ˝ u2. According to the induction assumption we only need to consider values

of i and j such that there is an overlap with u2. Hence,

j ď n0 ` 2 logpnq ´ k “ n0 ´ 2,

j ě n0 ` logpnq ´ k ` 1 “ n0 ´ logpnq ´ 1.

In particular, the window pw2qj`rks contains u1 as a subsequence. However, since pw2qj`rks “ pw2qi`rks we get that the

sequence u1 appears one more time in w0 ˝ u1, which is a contradiction to Lemma 13.

Next we assume that the lemma’s statement holds for wi and prove that it holds for wi`1, where 1 ď i ă ℓ. According to

the induction assumption we only need to consider values of i and j such that there is an overlap with ui`1. Hence,

n0 ` i logpnq ´ k ` 1 ď j ď n0 ` pi ` 1q logpnq ´ k.

In particular, the window pwi`1qj`rks starting at index j contains the sequence ui. However, since pwi`1qj`rks “ pwi`1qi`rks
we get that the sequence ui appears one more time in wi, which is a contradiction to Lemma 13.

Theorem 15. Algorithm 1 successfully returns a k-repeat free sequence.

Proof: In case the condition in Step 12 holds then according to Lemma 11, Algorithm 1 returns a sequence with no

identical length-k windows. Otherwise, this claim holds from Lemma 14.

Note that there may be two identical length-k windows which intersect, i.e., pi, jq is a k-identical window with j ´ i ă k.

In this case, Step 5 in the algorithm suggests to remove the first length-k repeated window. This will not cause any problem

since if pi, jq is such a k-identical window, then it implies that wi`rks is a periodic sequence with period j ´ i and as such can

be obtained from the remaining bits. Nevertheless, this should be taken into account in the decoding process that is described

next.

The decoding procedure is relatively simple. Look first for the left most sequence of 1 ˝ 0logpnq`1. According to Algorithm 1,

everything to the right of this sequence was added during the expansion procedure and hence it can be removed. If there is

no such 1 ˝ 0logpnq window, look for the right-most 1. Since the algorithm returns a sequence which is longer by 1 than the

input sequence, the right-most 1 (and the zeros following that 1) is a part of the initial set-up of the algorithm. Next, if the

first symbol is 1, let i be the position indicated by the pwq1`rlogpnqs, i.e., bpiq “ pwq1`rlogpnqs. Delete the first logpnq ` 1 bits

and enter 0logpnq`1 in the ith position. If the first symbol is 0, let i and j be the positions indicated by pwq1`rlogpnqs and by

pwq1`logpnq`rlogpnqs, respectively. Let u “ pwqj´1`rks, delete the first 2 logpnq ` 1 bits, and put u in the ith position. Repeat

this process until obtaining a sequence of length n.

Example 16. Let n “ 32 (k “ 2 logp32q ` 2 “ 12) and

w “ 0100100110110010010011011100110 P Σ
31.

The first step of the algorithm appends 1000000 to the end of w and we obtain

w “ 0100100110110010010011011100110 1000000.

We now look for identical windows of length 12. We see that pwqr12s “ pwq13`r12s, i.e., p0, 13q is a k-identical window. We

eliminate the first 12 bits and we append 0 ˝ bp0qbp13q “ 00000001101 to the left of w. Hence,

w “ 00000001101 0010010011011100110 1000000.

There are no more identical length-k windows in w, but the pattern 000000 appears in w in the 0th position. Thus, we eliminate

the pattern and append 1bp0q “ 100000 to the left, which yields the sequence

w “ 100000 01101 0010010011011100110 1000000.

Again, there is a sequence of 6 zeros starting in position 1 so we delete this pattern and append 1bp1q “ 100001 to the left, so we

get that

w “ 100001 1 1101 0010010011011100110 1000000.

8

Now w has no identical windows of length k and no 0logpnq`1 except the one at the end. Moreover, |w| ě 32 hence the algorithm

output is

w “ 100001 1 1101 0010010011011100110 10.

We now start the decoding process in order to retrieve w from w. First, we look for the left most 1000000 subword in w. Since

there is no such sequence, we look for the right-most 1 and we know that this bit with all the following zeros were added in the

set-up. That is, the last 10 are not part of w. We eliminate those bits and we obtain

pw “ 100001 1 1101 0010010011011100110 P Σ
30.

Since ŵ P Σ
30 we know that there was only one identical pair of length-k windows. The first bit in pw is 1. Thus, we have

i “ bp00001q “ 1. We eliminate the first 6 bits and insert 6 zeros in the first position,

pw “ 1 000000 1101 0010010011011100110.

Again, the first bit is 1 so the next 5 bits indicate the position of the 0. We eliminate the first 6 bits and enter 000000 in the 0th

position to get the word

pw “ 000000 0 1101 0010010011011100110.

We are now having 0 for the first bit and the next 10 bits indicate two positions, i “ 0, j “ 13. We denote

x “ p pwq12`r12s “ 010010011011.

We now eliminate the first 11 bits and put x in the ith position and obtain

pw “ 010010011011 0010010011011100110.

Since pw P Σ
31 we are done. l

V. ALGORITHM FOR k “ a logpnq WITH 1 ă a ă 2

In this section, we consider the case of k “ a logpnq where 1 ă a ă 2. Similarly to Section IV, our coding scheme consists

of two basic procedures: elimination and expansion. For the elimination phase, we compress an input sequence into an output

sequence of length at most n. At every step of the compression, we remove identical windows so that at the end of this step,

the output sequence does not contain any identical windows. For the elimination phase, we rely on an encoding procedure

which is very similar to [20]. The process ensures that the sequence output from our encoder does not contain any all-zeros

substrings of length greater than 2 log logpnq. Throughout this section we assume for simplicity that logpnq and log logpnq
are integers. Taking tlogpnqu , tlog logpnqu will not affect the results.

The expansion phase is the primary difference between the approach outlined here and [20]. The idea behind the expansion

phase is to concatenate a zero-constrained De-Bruijn sequence, which we refer to as v P Σ
˚, with our compressed sequence,

and then insert within v, all-zeros markers of length 4 log logpnq. These markers will be used to distinguish (or to make

different) the length-k windows between v and the compressed sequence. We will explain these ideas in more detail in what

follows.

For m P N, let Smpnq denote the set of all sequences of length n which are p2 log logpmqq-zero constrained, i.e.,

Smpnq “
!

u P Σ
n : fr

2 log logpmq
u p0 . . . 0q “ 0

)
.

Note that Sm “
Ť

nPN
Smpnq is the p0, 2 log logpmqq-RLL constrained system. It is well known (see, for example, [30]) that

limmÑ8 cappSmq “ 1. Moreover, the function log |Smpnq| is subadditive in n which implies, by Fekete’s lemma, that the capac-

ity of Sm is obtained by infnPN
1
n log |Smpnq|. Therefore, there exists a large enough n such that

ˇ̌
ˇS2 log logpnqplogpnq ` 1q

ˇ̌
ˇ ě n

(choose n such that cappS2 log logpnqq is close to 1). Let f : rns Ñ Σ
logpnq`1 be a bijection from rns to S2 log logpnqplogpnq ` 1q,

i.e., the image of f lies in the set of all p2 log logpnqq-zero-constrained sequences.

The elimination encoder Eel, described in Algorithm 2 below, takes as input a sequence w P Σ
n´p4 log logpnq`3q, where

w is p2 log log |w|q-zero-constrained. The output of Eel is a sequence w of length at most n ´ p4 log logpnq ` 3q that is

p2 log log |w|q-zero-constrained and does not contain any repeated windows of length k1 “ logpnq ` 2 log logpnq ` 5.

9

Algorithm 2 Elimination Encoder, Eel

1: Set w “ w
2: while there are identical length-k1 windows in w do

3: Suppose pi, jq is a primal k1-identical window in w
4: Remove the substring of length k1 starting at position j and replace it with the sequence p1, 02 log logpnq, 1, f piq, 1q, so

that

w “ wrjs ˝ p1, 02 log logpnq, 1, f piq, 1q ˝ wtj`k1,j`k1`1,...,|w|´1u

5: end while

6: Return w

Note that since at Step 4 we replace substrings of length k1 with substrings of length k1 ´ 1 “ logpnq ` 2 log logpnq ` 4, so

that each time Step 4 is executed, the length of w is decremented by one. We have the following result, which follows from

[20].

Lemma 17. (c.f., Claim10, [20]) The sequence w has no repeated k1-windows and w can be recovered from w.

In the following, let k1 “ logpnq ` 2 log logpnq ` 5. For simplicity of calculations, we assume that k1 is a prime number,

and we later show that we can relax this assumption since the result may be generalized to non prime numbers using similar

techniques. For our construction, we require the use of Lyndon words and necklaces. For a word w, we say that w is a Lyndon

word if w is (strictly) smaller (with respect to the lexicographic order) than all of its rotations. A necklace of length k is an

equivalence class of sequences of length k. Two sequences w, u are equivalent (or, in the same necklace) if and only if they

are equivalent under rotation, i.e., there exists ℓ such that pw0, w1, . . . , wk´1q “ puℓ, uℓ`1, . . . , uk´1, u0, . . . , uℓ´1q. The next

lemma follows from a well-known result on generating De-Bruijn sequences from Lyndon words [31], [32].

Lemma 18. The lexicographic concatenation of Lyndon words of length k1 which are greater (with respect to the lexicographic

order) than or equal to the string ´
p02 log logpnq´1 ˝ 1qk1

¯
rk1s

generates a sequence of length greater than n which does not contain any repeated windows of length k1 and also is p4 log logpnqq-

zero-constrained.

Before proving the previous lemma, we provide an example, which illustrates the idea behind the construction.

Example 19. Suppose k1 “ 5. Then the Lyndon words of length k1 are:

p0, 0, 0, 0, 0q, p0, 0, 0, 0, 1q, p0, 0, 0, 1, 1q, p0, 0, 1, 0, 1q,

p0, 0, 1, 1, 1q, p0, 1, 0, 1, 1q, p0, 1, 1, 1, 1q, p1, 1, 1, 1, 1q.

Concatenating these words together produces the De-Bruijn sequence

p0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1q

of length 32. The key property to notice here is that the length of the runs of zeros is smaller towards the end of the sequence than

at the beginning. For example, the longest run of zeros (of length 5) appears in the first position and the last 8 bits of the sequence

contains only a single zero. l

We now turn to the proof of Lemma 18.

Proof: It was established that the lexicographic concatenation of Lyndon words generates a De-Bruijn sequence [31], [32],

and so it follows that our approach does not have any repeated windows of length k1. Let w be the string which results by

concatenating Lyndon words greater than or equal to
´

p02 log logpnq´1 ˝ 1qk1
¯

rk1s
as stated in the lemma. We now show w is

p4 log logpnqq-zero-constrained, which implies the statement in the lemma.

First, we recall a simple procedure from [33] which generates all Lyndon words of length k1. Let γ : t0, 1uk1
Ñ t0, 1uk1

be

such that given x P Σ
k1

, γpxq “ y “ py0, y2, . . . , yk1´1q where y “
´

pxrjs ˝ 1qN

¯
rk1s

where j is the largest index such that

xtj,j`1,...,pk1´1qu “ p011 . . . 1q. Let

p0, 0, . . . , 0q, γp0, 0, . . . , 0q, γpγp0, 0, . . . , 0qq, . . .

be a sequence of sequences, and let V denote the result of removing non-necklaces from this sequence. It is known that V
is a lexicographic (increasing) sequence of necklaces [33]. The string w (mentioned two paragraphs above) is the result of

concatenating the sequences (in order) from V.

We show that if any x P V is p2 log logpnqq-zero-constrained, then the longest run of zeros in γpxq is 2 log logpnq ´ 1, which

implies that w does not have any runs of length 4 log logpnq. Assume in the contrary that it does not hold, so that γpxq contains

10

an all-zero substring of length 2 log logpnq. Let j be the largest index that xtj,j`1,...,pk1´1qu “ p011 . . . 1q . Then according to

the procedure from the previous paragraph, the all-zero substring of length 2 log logpnq occurs after index j in γpxq, since

xrjs “ γpxqrjs and γpxqj “ 1. However, this is also not possible since γpxqrk1s comprises of repeated concatenations of xrjs ˝ 1,

and so we arrive at a contradiction to the assumption that x does not contain the all-zeros substring of length 2 log logpnq.

We have left to show that |w| ą n. To see this, note that since k1 is a prime, we can bound the length of the |w| as follows.

|w|
paq
ě

˜
2k1

´ 2

k1 ´ 2k1´2 log logpnq
¸

k1

pbq
“

ˆ
n ¨ plogpnqq2 ¨ 25 ´ 2

logpnq ` 2 log logpnq ` 5
´

nplogpnqq2 ¨ 25

plogpnqq2

˙
¨ k1

“ n25
´

plogpnqq2 ´ logpnq ´ 2 log logpnq ´ 5
¯

´ 2

ě n,

where paq follows since there are exactly 2k1´2
k1 necklaces of length k1 and there are at most 2k1´2 log logpnq words which are

smaller than
´

p02 log logpnq´1 ˝ 1qk1
¯

rk1s
, pbq follows by plugging in the value of k1 and the last inequality holds for large

enough n.

Remark 20. Note that the assumption that k1 is prime affects only the calculation of |w|. For a non prime k1, the calculation of

|w| is more involved (the expression for the number of necklaces is 1
k1

ř
d|k1 µpdq2

k1

d where µ is the möbius function and the

summation is over all divisors of k1). This results in the desired inequality for larger values of n.

Let v1 be the string of length at least n generated from Lemma 18. Let v be the result of inserting the all-zeros substring

of length 4 log logpnq periodically into v1 as follows:

v “
´

v1
rk1s 104 log logpnq1 v1

k1`rk1s 104 log logpnq1 . . . v1
|v1|
k1 ¨pk1´1q`rk1s

¯
. (5)

We have the following lemma.

Lemma 21. Let

ŵ “
´

w, 1, 04 log logpnq`1, 1, v
¯

rns

be the substring of length n which results by concatenating w and v. Then ŵ does not contain any repeated windows of length

k “ logpnq ` 10 log logpnq ` 10 “ k1 ` 8 log logpnq ` 5.

Proof: Suppose, on the contrary, that there is a repeated k-window at pi, jq. The proof is done on a case-by-case basis and

we show that for all options of j ą i, ŵi`rks ‰ ŵj`rks.
If |w| ` 4 log logpnq ` 2 ´ k ď i ď |w| ` 1 or |w| ` 4 log logpnq ` 2 ´ k ď j ď |w| ` 1, then ŵi`rks ‰ ŵj`rks since the

all-zeros substring of length 4 log logpnq ` 1 appears only once in ŵ.

If j ď |w| ` 4 log logpnq ` 3 ´ k, then the result follows immediately from Lemma 17.

If i ą |w| ` 1, then we know that both ŵi`rks and ŵj`rks each contain the substring p1, 04 log logpnq, 1q. Suppose for now

that there is only one occurrence of p1, 04 log logpnq, 1q in ŵi`rks. From (5), we know we can write:

ŵi`rks “
´

ŵpi,1q, 1, 04 log logpnq, 1, ŵpi,2q
¯

.

If |ŵpi,2q| ě 4 log logpnq ` 3, then from (5), we can recover a substring of v1 of length k ´ 4 log logpnq ´ 2 by deleting the

substring p1, 04 log logpnq, 1q from ŵi`rks. Otherwise if |ŵpi,2q| “ t ă 4 log logpnq ` 3, then we can recover a substring of v1

of length k ´ 4 log logpnq ´ 2 ´ p4 log logpnq ` 3 ´ tq “ k1 ` t by first deleting the substring p1, 04 log logpnq, 1q from ŵi`rks
followed by deleting the first 4 log logpnq ` 3 ´ t bits of the resulting string. The only case left to consider is where ŵi`rks
contains two occurrences of the substring p1, 04 log logpnq, 1q. Suppose the first occurrence of the substring p1, 04 log logpnq, 1q
appears in position ℓ where it is clear from (5) that ℓ P t0, 1u. If ℓ “ 1, then we remove the first 4 log logpnq ` 3 bits from

ŵpi,2q followed by the last 4 log logpnq ` 2 bits. Otherwise, if ℓ “ 0 we remove the first 4 log logpnq ` 2 bits from ŵpi,2q

followed by the last 4 log logpnq ` 3 bits to obtain a substring of v1 of length k1 from ŵi`rks.
From the previous paragraph, we know we can recover distinct substrings of length at least k1 from v1 in ŵi`rks and ŵj`rks

provided i ą |w| ` 1. Since these substrings are unique from Lemma 18, it follows that ŵi`rks ‰ ŵj`rks.
We have left to consider the case where j ą |w| ` 1 and i ă |w| ` 4 log logpnq ` 2 ´ k. In this case, there are three

possibilities for ŵi`rks: a) ŵi`rks ends with the substring 04 log logpnq`1, b) ŵi`rks ends with the substring 04 log logpnq, or c)

ŵi`rks does not contain the substring 04 log logpnq. If a) holds, then clearly ŵi`rks ‰ wj`rks, since by assumption j ą |w| ` 1

11

and 04 log logpnq`1 only appears once in ŵ. If b) holds, then from (5), ŵj`rks contains two occurrences 04 log logpnq, and ŵi`rks
only has one occurrence so that ŵi`rks ‰ ŵj`rks. Finally, if c) holds, then ŵi`rks does not contain the substring 04 log logpnq

but ŵj`rks does and so ŵi`rks ‰ ŵj`rks in this case as well.

We now present our main result, which follows from the previous discussion.

Theorem 22. There exists a rate-1 polynomial-time encoder which generates sequences with no-identical k-windows for any

k ą a logpnq where a ą 1.

Proof: The fact that our algorithm has polynomial-time encode complexity follows from the observation that Eel runs in

polynomial time along with the fact that generating a lexicographic ordering of Lyndon words can be accomplished in time

at most Op2k1
q which is polynomial in n. Suppose ŵ “ pw, 1, 04 log logpnq`1, 1, vqn is a codeword from Lemma 21. Then to

recover w from ŵ, we simply remove the suffix p1, 04 log logpnq`1, 1, vq from ŵ, which is the first suffix of ŵ that begins with

the substring p1, 04 log logpnq`1, 1q, to recover w. The result then follows immediately from Lemma 17 since w can be recovered

from w.

Next, we verify the statement on the rate. From Claim 7 in [20], we have that there are at least

˜
n

4
¨
´

1 ´
logpnq

plogpnqq2

¯¸t
n´p4 log logpnq`3q

logpnq u

,

possible input sequences for Algorithm 2 since we can divide up the input sequence of length n ´ p4 log logpnq ` 3q into

blocks of length logpnq that begin and end with the symbol 1, and then constrain each block to have runs of zeros of length

at most 2 log logpnq ´ 1. Then,

lim
nÑ8

1

n
log

˜
n

4
¨
´

1 ´
logpnq

plogpnqq2

¯¸t
n´p4 log logpnq`3q

logpnq u

“ 1,

which completes the proof.

VI. k-REPEAT FREE SEQUENCES WITH COMBINATORIAL CONSTRAINTS

In this section we study the combination of k-repeat free sequences and combinatorial constraints. As mentioned previously,

the number of De-Bruijn sequences of span k can be calculated using several combinatorial methods such as the doubling

process, the BEST theorem, and using shift registers. Unfortunately, calculating the exact number of De-Bruijn sequences

which also satisfy other constraints is not an easy problem [34]. Here, we calculate the capacity of k-repeat free systems with

local constraints. For convenience, throughout this section we restrict Σ to the binary alphabet but the same method can be

used for larger alphabets.

Before stating the main result of this section, we remind the reader some known definitions and basic results on constrained

systems. We follow the lines of [30]. Let G “ pV, E, Lq be a labeled (directed) graph where V is the set of vertices, E is

the set of edges and L : E Ñ Σ is a labeling of the edges. We say that a graph G is deterministic if from every vertex, the

outgoing edges have different labels. For each graph G, we denote by AG the adjacency matrix of G. The adjacency matrix

is a |V| ˆ |V| matrix such that the u, v entry of AG is the number of edges which start at the vertex u and end at v.

A constrained system S Ď Σ
N is the set of all words obtained by reading the labels of paths in a labeled directed graph. If

S is obtained by a graph G, we say that G presents the system S (or G is a presentation of S). A constrained system which is

presented by a graph G is said to be irreducible if G is strongly connected. For a system S, we denote by BnpSq the set of all

length-n blocks that appear in words in S. The language of S is denoted by BpSq “
Ť

nPN
BnpSq. It is well known that every

constrained system can be presented by a deterministic graph [30, Prop. 2.2]. Therefore, we will assume that all presentations

are deterministic. The capacity of a constrained system S is defined as cappSq “ lim supnÑ8
1
n log2 |BnpSq|. The adjacency

matrix is highly related to the capacity of the system. If S is irreducible, the Perron-Frobenius theorem states that AG has a

largest, real, simple eigenvalue λ, with strictly positive left and right eigenvectors. If S is irreducible, it is well known that

cappSq “ log2 λ [30, Th. 3.4].

In this section we are interested in constrained systems which are also repeat free. In other words, if S is a constrained

system, we are interested in the following set of words.

Definition 23. Let S be an irreducible deterministic constrained system with language BpSq and let Wkpnq denote the k-repeat

free sequences. The pS, kq-repeat free system with is defined by the following sets,

XS,kpnq “ tw P Σ
n : w P Wkpnq X BnpSqu .

We define the system XS,k “
Ť

nPN
XS,kpnq.

We are interested in the capacity of the system cappXS,kq, where k “ kpnq grows with n. In order to estimate this capacity

we need the following useful characterization of the capacity of a constrained system given by Markov chains. For a graph

12

G “ pV, Eq, a Markov chain is given by a transition probability matrix P P r0, 1s|V|ˆ|V| such that P ¨ 1 “ 1, where 1 is the all

ones vector. For an edge e P E, we denote by eb the starting vertex of e and by et the terminal vertex, i.e., if e “ pu, vq P E
then eb “ u and et “ v. Thus, from a vertex u, the pu, vq entry of P corresponds to the transition probability from vertex u to

vertex v. If for every u, v P V there exists n P N such that pPnqu,v ą 0 then we say that P is irreducible. For an irreducible

Markov chain P, there is a unique positive stationary vector µT such that µT P “ µT . For a Markov chain P on a graph

G “ pV, Eq with stationary distribution µ, the entropy of the Markov chain is defined as

HpPq “ ´
ÿ

uPV

µu

ÿ

pu,vqPE

Pu,v log2 Pu,v.

We may now state the known relation between the capacity and Markov chains [30, Th. 3.23].

Theorem 24. [30, Th. 3.23] Let S be an irreducible constrained system presented by G with Perron eigenvalue λ. Then

sup
P

HpPq “ log2 λ “ cappSq,

where the supremum is taken over all Markov chains on G.

In order to use Theorem 24, we need to find the entries of P that maximize the entropy. Note that although in Theorem 24

we take supremum over all Markov chains, the set on which we take the supremum is a compact set, which means that the

supremum is in fact a maximum. Moreover, a closer look on the proof of Theorem 24 (as in [30, Th. 3.23]), reveals exactly the

maximizing transition probabilities and the corresponding stationary vector. Indeed, let AG be the adjacency matrix of G and

denote by ηT , ν the normalized left and right eigenvectors of the Perron eigenvalue λ such that ηTν “ 1. Then, the Markov

chain which maximizes the entropy is given by

Pu,v “
pAGqu,vνv

λνu
,

and the corresponding stationary vector is given by µu “ ηT
u νu. This means that all the edges from u to v are prescribed with

the same probability which is
νu{λνv

pAGqu,v
. In the next lemma we show that in a constrained system, the probability of two k-tuples

to be identical is upper bounded by a constant times λ´k.

Lemma 25. Let S be an irreducible constrained system presented by G “ pV, Eq with an entropy maximizing Markov chain P.

Let x P Σ
N be a sequence obtained by reading the labels of a path evolving according to P with the initial state chosen according

to the stationary distribution µ “ pηT
v νvqvPV . Then for every i P N and k P N,

Pr
´

xrks “ xi`rks
¯

ď
|V|d2

λk
,

where d “ maxv,uPV
νv
νu

and λ is the Perron eigenvalue of the adjacency matrix AG.

Proof: Recall that a path γ is a sequence of edges γ “ pe0, . . . , ek´1q such that for every i P rk ´ 1s, et
i “ eb

i`1. First we

note that the probability of a specific path over the graph depends only on the start vertex, end vertex, and the length of the

path. Indeed,

Prppe0, . . . , ek´1qq “ µeb
0

Peb
0,et

0

pAGqeb
0,et

0

Peb
1,et

1

pAGqeb
1,et

1

. . .
Peb

k´1,et
k´1

pAGqeb
k´1,et

k´1

(6)

“ µeb
0

νeb
0

λνet
0

νeb
1

λνet
1

. . .
νeb

k´1

λνet
k´1

paq
“ µeb

0

νeb
0

νet
k´1

1

λk
,

where paq follows since et
i “ eb

i`1. Since the system is irreducible, µ, ν, η are all positive. If we denote by d the value

d “ maxv,uPV
νv
νu

ě 1 we obtain

Prppe0, . . . , ek´1qq ď µeb
0

d

λk
.

For a sequence of edges γ “ pe0, . . . , ek´1q we denote Lpγq fi Lpe0qLpe1q ¨ ¨ ¨ Lpek´1q and denote by γ0 the vertex eb
0. We

denote by Γ the set of all paths and for i P N we denote by Γ
i the set of all paths of length i. Note that for a specific w P Σ

k,

Prpπkpxq “ wq “
ÿ

γPΓ

1wpLpγqq Prpγq ď
ÿ

γPΓ

1wpLpγqqµγ0

d

λk
.

Since the graph is deterministic, if γ “ pe0, . . . , ek´1q is a path with Lpγq “ w then it is the only path with this labeling

which starts at the vertex eb
0. Thus,

Prpxrks “ wq ď
ÿ

vPV

µv
d

λk
ď

d

λk
.

13

Since µ is the stationary probability vector, it is shift invariant, i.e., for w P Σ
k and i P N

Prpxi`rks “ wq “ Prpxrks “ wq.

Assume i P N and write

Pr
´

xrks “ xi`rks
¯

“
ÿ

wPΣi`k

1xrks
pxi`rksq Prpxrk`is “ wq (7)

ď
d

λi`k

ÿ

wPΣi`k

1xrks
pxi`rksq ď

d

λi`k
¨ |BipSq|.

We now need to estimate the value |BipSq|. Note that |BipSq| ď |Γi|. Since ηT , ν are left and right eigenvectors of AG,

respectively, for i P N we may write ÿ

uPV

ÿ

vPV

pAi
Gqu,vνv “ 1 ¨ Ai

G ¨ ν “ λi}ν}1.

Since }ν}1 ď |V| maxvPV tνvu and since @v P V, νv ě minvPV tνvu we obtain

1
T ¨ Ai

G ¨ 1 “
ÿ

uPV

ÿ

vPV

pAi
Gqu,v ď |V|dλi.

Since |Γi| “ 1Ai
G1, plugging it in (7) concludes the proof.

We now state and prove the main result of this section.

Theorem 26. Let S be an irreducible constrained system presented by the graph G with Perron eigenvalue λ. For every n P N let

k “ ta logλpnqu with a ą 1. Then

cappXS,kq “ cappSq.

Proof: We again use probability to calculate the capacity. First, let Pp¨q denote the uniform probability over the length-n

sequences and note that
|XS,kpnq|

2n “ PpXS,kpnqq. Thus, cappXS,kq “ 1 ` lim supnÑ8
1
n log2 PpXS,kpnqq.

First note that XS,kpnq Ď BnpSq which means that cappXS,kpnqq ď cappSq. So we only need to show that cappXS,kpnqq ě
cappSq. Assume that S is presented by a graph G “ pV, E, Lq with Perron eigenvalue λ and an entropy maximizing transition

probability P with left Perron eigenvector ηT and right Perron eigenvector ν normalized such that ηT ¨ ν “ 1. Every sequence

obtained according to P belongs to BpSq. Denote by µ the stationary distribution of P. Let γ “ pe0, e1, . . . q be a path on G
evolving according to P with initial vertex chosen according to µ. Denote by w the sequence obtained by reading the labels

of the path γ, i.e., w fi Lpγq. For ℓ ą 0, define the random variable

Xℓ “
ℓkÿ

j“pℓ´1qk`1

j´1ÿ

i“0

1w j`rks
pwi`rksq.

Taking expectation we obtain

E rXℓs “ E

»
–

ℓkÿ

j“pℓ´1qk`1

j´1ÿ

i“0

1w j`rks
pwi`rksq

fi
fl

paq
ď

ℓkÿ

j“pℓ´1qk`1

j´1ÿ

i“0

|V|d2

λk
ď

|V|d2pℓ ` 1qk2

λk
,

where paq follows since µ is stationary, P is shift invariant and by Lemma 25. Thus, by the Markov inequality we obtain

PrpXℓ ě 1q ď
|V|d2pℓ`1qk2

λk . Plugging in this result yields

Pr pWkpnqq ě

n{kź

ℓ“0

ˆ
1 ´

|V|d2ℓk2

λk

˙
.

For n large enough,
´

1 ´
|V|d2ℓk2

λk

¯
is positive for every ℓ. This holds since |V|d2 is a constant, k “ Oplogpnqq, ℓ is upper

bounded by
`

n
k ` 1

˘
and λ “ na where a ą 1. Taking logarithm and exponent we obtain

Pr pWkpnqq ě λ

řn{k
ℓ“0 logλ

ˆ
1´ |V|d2ℓk2

λk

˙

.

14

For every x P p0, 1q, logλp1 ´ xq ě ´ x
p1´xq ln λ

and thus

Pr pWkpnqq ě λ

řn{k
ℓ“0

|V|d2ℓk2

pλk´|V|d2ℓk2q ln λ ě λ
´p n

k `1q |V|d2nk

pλk´|V|d2nkq ln λ ,

where the last inequality follows by taking the largest argument in the sum n{k ` 1 times. Substituting k “ ta logλpnqu and

writing a “ 1 ` ǫ we obtain

1

n
log2 Pr pWkpnqq ě ´

|V|d2 log2 λ

pnǫ ´ |V|d2a logλ nq ln λ

´
|V|d2a logλ n log2 λ

npnǫ ´ |V|d2a logλ nq ln λ
.

Taking n Ñ 8 we obtain

lim sup
nÑ8

1

n
log2 PrpWkpnqq ě 0. (8)

Next, let P denote the uniform distribution over Σ
n. Note that in order to use the probability argument in order to estimate

|Wkpnq|, we need to use the uniform distribution (indeed, |XS,kpnq| “ |Σ|n ¨ PpXS,kpnqq since P is the uniform distribution).

We have
1

n
log2

ˇ̌
XS,kpnq

ˇ̌
“ 1 `

1

n
log2 P

`
XS,kpnq

˘
.

Now note that the probability denoted by Prp¨q in (8) is not the uniform distribution but a distribution obtained by the Markov

chain P with stationary initial distribution µ. To finish the proof we need to show that for n large enough, Prp¨q is almost

uniform on the set BnpSq. By the definition of XS,kpnq we have that P
`
XS,kpnq

˘
“ P pBnpSqq P pWkpnq | BnpSqq. Hence,

we obtain

1

n
log2

ˇ̌
XS,kpnq

ˇ̌
“ 1 `

1

n
log2 P pBnpSqq `

1

n
log2 P pWkpnq | BnpSqq .

Note that

cappSq “ log2 λ “ 1 ` lim sup
nÑ8

1

n
log2 P pBnpSqq .

Therefore, we have

lim sup
nÑ8

1

n
log2

ˇ̌
XS,kpnq

ˇ̌
“ log2 λ (9)

` lim sup
nÑ8

1

n
log2 P pWkpnq | BnpSqq .

We claim now that

lim sup
nÑ8

1

n
log2 P pWkpnq | BnpSqq “ lim sup

nÑ8

1

n
log2 Pr pWkpnqq . (10)

Showing this will finish the proof since plugging (10) to (9), together with (8) yields

cappXS,kq ě log2 λ “ cappBpSqq.

Note that (10) follows directly from Lemma 25. Indeed,

Pr pWkpnqq “
ÿ

wPWkpnq
Prptwuq ď |Wkpnq X BnpSq|

|V|d2

λn
.

On the other hand, denoting d1 “ minu,vPV
νv
νu

we obtain from (6) that

PrpWkpnqq ě |Wkpnq X BnpSq| min
vPV

µv
d1

λk
.

Thus,

lim sup
nÑ8

1

n
log2 Pr pWkpnqq “ lim sup

nÑ8

1

n
log2 |Wkpnq X BnpSq| ´ log2 λ. (11)

Since P is the uniform probability, we have that P pWkpnq | BnpSqq “
|WkpnqXBnpSq|

|BnpSq| which means that

lim sup
nÑ8

1

n
log2 P pWkpnq | BnpSqq “ lim sup

nÑ8

1

n
log2 |Wkpnq X BnpSq| ´ log2 λ. (12)

15

Combining (11) with (12) we obtain the wanted equality which concludes the proof.

Example 27. In this example we consider the (inverted) p0, 1q-RLL constrained k-repeat free sequences (the constrained system

is denoted by S). Hence, we are interested in sequences for which every k-tuple appears at most once and also there are no

consecutive ones. We define accordingly the set

XS,kpnq “
!

w P Σ
n : fr2

wp11q “ 0 and w P Wkpnq
)

.

We start by considering the adjacency matrix of the p0, 1q-RLL system which is given by

AG “

„
1 1
1 0

.

The Perron eigenvalue is λ “ 1`
?

5
2 and the corresponding eigenvectors are η “ 1?

λ`2

“
λ 1

‰
, ν “ 1?

λ`2

„
λ
1

(note that

λ2 “ λ ` 1). The transition probabilities that maximize the entropy are given by

P “

„
1
λ

1
λ2

1 0

,

with stationary distribution µ “
”

λ`1
λ`2

1
λ`2

ı
. By Lemma 25 we obtain that for every word w P S of length n, Prpwq ď 2λ2

λn . By

Theorem 24 the capacity cappXS,kpnqq “ log2pλq when k “ ta logλpnqu with a ą 1. l

VII. MULTIDIMENSIONAL k-REPEAT FREE PATTERNS

In this section we generalize the capacity results of Section II to the multidimensional case. First, we generalize the relevant

notations. Let N
d be the d-dimensional grid. For a vector v “ pv0, . . . , vd´1q P N

d, we define rvs “ rv0s ˆ rv1s ˆ ¨ ¨ ¨ ˆ rvd´1s.
We also use ei the unit vector of direction i. For n P N, we denote by rnsd the d-dimensional cube of length n, i.e.,

rnsd “ bd´1
i“0 rns. Let w P Σ

rnsd
and let v P rnsd, we denote by wv the symbol located in the v location. We also denote by

Σ
˚d “

Ť
nPN

Σ
rnsd

the set of all d-dimensional finite cubes.

We now define the d-dimensional capacity and the empirical frequency.

Definition 28. Let L Ď Σ
˚d be a system. The capacity of L is denoted by cappLq and is defined as

cappLq fi lim sup
nÑ8

1

nd
log|Σ| |L X Σ

rnsd
|.

For a pattern w P Σ
rnsd

and for a set of coordinates A Ď rnsd, we denote by wA the restriction of w to the set A. We also

denote by |w| the side-length n of w.

Definition 29. Let w P Σ
rnsd

and k ď n. The empirical frequency of k-patterns in w is denoted by frk
w and is defined as follows.

For a k-pattern u P Σ
rksd

,

frk
wpuq fi

1

pn ´ k ` 1qd

ÿ

vPrn´k`1sd

1u

´
wv`rksd

¯
.

For the measure frk
w, the support of frk

w, Supppfrk
wq, is the set of all k-patterns that appear in w.

Example 30. Let Σ be the binary alphabet and let

w1 “

»
——–

0 1 1 0
1 0 0 0
1 0 1 0
1 1 1 1

fi
ffiffifl , w2 “

»
——–

1 1 0 0
1 0 1 0
1 0 0 1
1 1 1 1

fi
ffiffifl .

Let k “ 2 and let

u “

„
1 0
0 1

.

Note that fr2
w1

is the empirical frequency of 2 ˆ 2 matrices in w1. We have that

Supp frk
w1

“

„
0 1
1 0

,

„
1 1
0 0

,

„
1 0
0 0

,

„
1 0
1 0

,

„
0 0
0 1

,

„
0 0
1 0

,

„
1 0
1 1

,

„
0 1
1 1

 +
.

16

Also, frk
w1

puq “ 0 and frk
w2

puq “ 2
9 . l

A d-dimensional De-Bruijn system over the alphabet Σ with |Σ| “ q is denoted by Bd
q and is defined as the set of all

De-Bruijn patterns (over Σ) of span rksd for all k P N. In a notational form, a d-dimensional De-Bruijn system is the set

B
d
q “

"
w P Σ

˚d : Dk P N s.t. @u P Σ
rksd

, frk
wpuq “

1

p|w| ´ k ` 1qn

*
.

In a similar fashion, we define the d-dimensional k-repeat free patterns.

Definition 31. A pattern w P Σ
rnsd

is said to be length-n k-repeat free if every rksd-tuple appears at most once. The set of length

n-length k-repeat free patterns is denoted by

W
d
k pnq fi

"
w P Σ

rnsd
: @u P Σ

rksd
, frk

wpuq ď
1

pn ´ k ` 1qd

*
.

Note that W1
k p|Σ|k ` k ´ 1q is exactly the set of all De-Bruijn sequences of span k. Moreover, if k ă

´
d log|Σ|pn ´ k ` 1q

¯1{d

then it holds that Wd
k pnq “ H. Therefore, we are interested in studying the size of the set Wd

k pnq where k ą
´

d log|Σ|pn ´ k ` 1q
¯1{d

.

Consider the uniform distribution over all d-dimensional patterns of length n, then

|Wd
k pnq| “ |Σ|n

d
¨ Pr

´
W

d
k pnq

¯
.

For a ą 1, we define the d-dimensional k-repeat free system as Wd
a “

Ť
nPN

Wd
k pnq, where k “

Z
a

´
p2d ´ 1q log|Σ| n

¯1{d
^

.

The capacity, in this case, is given by

cappWd
a q “ 1 ` lim sup

nÑ8

1

n
log|Σ| PrpWd

k pnqq. (13)

Our main result in this section is stated in the following theorem, which is a generalization of Theorem 8 for the d-dimensional

case.

Theorem 32. Let Σ be a finite alphabet of size q then for all a ą 1, cappWd
a q “ 1.

Proof: Let w P Σ
N

d
be a random word in which each coordinate is chosen uniformly and independently over Σ. Let

n P N and k “ a logq n (we assume for simplicity that a logq n is an integer). For a number 1 ă ℓ P N we denote by Fkℓ the

d-dimensional cube of length kℓ,

Fkℓ fi
!

v P N
d : }v}8 ď kℓ ´ 1

)
.

We denote by BFkℓ the following set of coordinates

BFkℓ fi Fkℓ`1zFkpℓ´1q`1.

We will use the set BFkpℓ´1q. One may think of BFkpℓ´1q as k-thick boundary which is defined as a union of boundaries

BFkpℓ´1q “
Ť

ℓ

j“1

´
Fkpℓ´2q`1`jzFkpℓ´2q`j

¯
. Assume also that the set BFkpℓ´1q is ordered according to the lexicographic order

and that every summation is in accordance with that order. For a coordinate v P BFkpℓ´1q, we denote by rvsBFkpℓ´1q
the set

rvsBFkpℓ´1q
fi

!
u P BFkpℓ´1q : u ă v

)
where u ă v is with respect to the lexicographic order on BFkpℓ´1q. Define the random

variable

Xℓ “
ÿ

vPBFkpℓ´1q

ÿ

uPrpℓ´2qk`1sdYrvsBFkpℓ´1q

1w
v`rksd

pwu`rksd q.

Note that since BFkpℓ´1q is a k-thick boundary,

|BFkpℓ´1q| “ ppℓ ´ 1qkqd ´ ppℓ ´ 2qkqd ď dkd pℓ ´ 1qd´1 .

Moreover, we have that ˇ̌
ˇrpℓ ´ 2qk ` 1sd Y rvsBFkpℓ´1q

ˇ̌
ˇ ď pℓkqd,

and for every v, u,

E

”
1w

v`rksd
pwu`rksdq

ı
“

1

qkd
.

17

Thus

ErXℓs ď
dkdℓd´1pℓkqd

qkd
“

dk2dℓ2d´1

qkd
.

Applying Markov inequality we obtain PrpXℓ ě 1q ď dk2dℓ2d´1

qkd which implies that

PrpXℓ ă 1q ě 1 ´
dk2dℓ2d´1

qkd
.

Following similar steps as in the proof of Theorem 8 we obtain

Prpwrns P Waq ě

tn{kuź

ℓ“1

˜
1 ´

dk2dℓ2d´1

qkd

¸
.

This, in turn, implies that

Prpwrns P Waq ě q
´p n

k `1q dkn2d´1

pqkd
´dkn2d´1q ln q .

Taking k “ a d

b
p2d ´ 1q logq n with a “ 1 ` ǫ, ǫ ą 0 implies that cap

´
Wd

a

¯
Ñ 1 as n Ñ 8. Note that if d is large enough

so that p1 ` ǫqd ě 2d ´ 1, it is enough to take k “ a logq n with a ą 1 and obtain cap

´
Wd

a

¯
Ñ 1 as n Ñ 8.

VIII. CONCLUSION

In this paper we consider k-repeat free sequences over a general alphabet, which generalize the well-known De-Buijn

sequences. We calculate the capacity of the sequences for k which is a function of the sequence’s length. We also study the

capacity of k-repeat free sequences with local constraints, imposed by a given irreducible constrained system, and the capacity

of d-dimensional k-repeat free patterns. For the binary case, we also provide an efficient encoding and decoding scheme that

achieves the capacity.

As a future work, it will be interesting to find an efficient encoding and decoding scheme for k-repeat free sequences with

local constraints. We believe that it is possible to modify our coding technique and to adjust it to this case. It is also interesting

to find an efficient coding algorithm for the d-dimensional k-repeat free patterns.

REFERENCES

[1] H. Fredricksen, “A survey of full length nonlinear shift register cycle algorithms,” SIAM review, vol. 24, no. 2, pp. 195–221, 1982.
[2] F. Farnoud, M. Schwartz, and J. Bruck, “A stochastic model for genomic interspersed duplication,” in IEEE Int. Symp. Inf. Theory (ISIT). IEEE, 2015,

pp. 904–908.
[3] ——, “The capacity of string-duplication systems,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 811–824, 2016.
[4] O. Elishco, F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of some pólya string models,” in IEEE Int. Symp. Inf. Theory (ISIT). IEEE, 2016,

pp. 270–274.
[5] ——, “The capacity of some pólya string models,” CoRR, vol. abs/1808.06062, 2018. [Online]. Available: http://arxiv.org/abs/1808.06062
[6] H. Lou, F. Farnoud, M. Schwartz, and J. Bruck, “Evolution of k-mer frequencies and entropy in duplication and substitution mutation systems,” arXiv

preprint arXiv:1812.02250, 2018.
[7] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding the confusability of words under tandem repeats,” arXiv preprint arXiv:1707.03956,

2017.
[8] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting codes for data storage in the dna of living organisms,” IEEE Trans. Inf. Theory,

vol. 63, no. 8, pp. 4996–5010, 2017.
[9] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Explicit constructions and prefixing methods,” SIAM Journal on Discrete Mathematics,

vol. 23, no. 4, pp. 2120–2146, 2010.
[10] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Bounds on codes correcting tandem and palindromic duplications,” arXiv preprint arXiv:1707.00052, 2017.
[11] A. Wachter-Zeh, “List decoding of insertions and deletions,” IEEE Trans. Inf. Theory, vol. 64, no. 9, pp. 6297–6304, 2018.
[12] D. Margaritis and S. S. Skiena, “Reconstructing strings from substrings in rounds,” in 36th Annual Symp. Foundations of Computer Science. IEEE,

1995, pp. 613–620.
[13] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for dna sequence profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146, 2016.
[14] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, and P. Stockmeyer, “Reconstruction of sequences,” Discrete Mathematics, vol. 94, no. 3, pp. 209–219,

1991.
[15] A. D. Scott, “Reconstructing sequences,” Discrete Mathematics, vol. 175, no. 1-3, pp. 231–238, 1997.
[16] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing strings from random traces,” in 15th Annual ACM-SIAM Symp. Disc. Algorithms.

Society for Industrial and Applied Mathematics, 2004, pp. 910–918.
[17] M. Dudık and L. J. Schulman, “Reconstruction from subsequences,” Journal of Combinatorial Theory, Series A, vol. 103, no. 2, pp. 337–348, 2003.
[18] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “On reconstructing a string from its substring compositions,” in IEEE Int. Symp. Inf. Theory

(ISIT). IEEE, 2010, pp. 1238–1242.
[19] ——, “String reconstruction from substring compositions,” SIAM Journal on Discrete Mathematics, vol. 29, no. 3, pp. 1340–1371, 2015.
[20] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded sequences from multiset substring spectra,” in IEEE Int. Symp. Inf. Theory (ISIT), 2018,

pp. 2540–2544.
[21] Z. Chang, J. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of dna sequence profiles for practical values of read lengths,” IEEE Trans. Inf. Theory,

vol. 63, no. 11, pp. 7166–7177, 2017.

http://arxiv.org/abs/1808.06062

18

[22] V. I. Levenshtein, “Efficient reconstruction of sequences from their subsequences or supersequences,” J. Combin. Theory Ser. A, vol. 93, no. 2, pp.
310–332, Feb. 2001.

[23] E. Ukkonen, “Approximate string-matching with q-grams and maximal matches,” Theoretical computer science, vol. 92, no. 1, pp. 191–211, 1992.
[24] N. G. D. Bruijn, “A combinatorial problem,” Koninklijke Nederlandse Akademie v. Wetenschappen, vol. 49, no. 49, pp. 758–764, 1946.
[25] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for dna storage,” in IEEE Int. Symp. Inf. Theory (ISIT), 2017, pp. 3115–3119.
[26] ——, “Mutually uncorrelated codes for dna storage,” IEEE Trans. Inf. Theor., vol. 65, no. 6, pp. 3671–3691, 2019.
[27] G. Hurlbert and G. Isaak, “On the de bruijn torus problem,” Journal of Combinatorial Theory, Series A, vol. 64, no. 1, pp. 50–62, 1993.
[28] ——, “New constructions for de bruijn tori,” Designs, Codes and Cryptography, vol. 6, no. 1, pp. 47–56, 1995.
[29] S. Ma, “A note on binary arrays with a certain window property (corresp.),” IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 774–775, 1984.
[30] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding for constrained systems,” Lecture notes, 2001.
[31] H. Fredricksen and I. J. Kessler, “An algorithm for generating necklaces of beads in two colors,” Discrete Math., vol. 61, pp. 181–188, 1986.
[32] E. Moreno, “On the theorem of fredricksen and maiorana about de bruijn sequences,” Advances in Applied Mathematics, vol. 33, no. 2, pp. 413–415,

2004.
[33] F. Ruskey, C. D. Savage, and T. M. Y. Wang, “Generating necklaces,” J. Algorithms, vol. 13, no. 3, pp. 414–430, 1992.
[34] O. Kupferman and G. Vardi, “Eulerian paths with regular constraints,” in mfcs16, ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 58,

2016, pp. 1–62.

	I Introduction
	II Preliminaries
	III Capacity of k-Repeat Free Systems
	IV Algorithm For k=2log(n)+2
	V Algorithm For k=alog(n) with 1<a < 2
	VI k-Repeat Free Sequences With Combinatorial Constraints
	VII Multidimensional k-Repeat Free Patterns
	VIII Conclusion
	References

