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How�does�the�visual�design�of�digital�platforms�impact�user�behavior�and�the�resulting�environment?�A�body�of�
work�suggests�that�introducing�social�signals�to�content�can�increase�both�the�inequality�and�unpredictability�
of�its�success,�but�has�only�been�shown�in�the�context�of�music�listening.�To�further�examine�the�effect�of�social�
in�uence�on�media�popularity,�we�extend�this�research�to�the�context�of�algorithmically-generated�images�
by�re-adapting�Salganik�et�al’s�Music�Lab�experiment.�On�a�digital�platform�where�participants�discover�and�
curate�AI-generated�hybrid�animals,�we�randomly�assign�both�the�knowledge�of�other�participants’�behavior�
and�the�visual�presentation�of�the�information.�We�successfully�replicate�the�Music�Lab’s��ndings�in�the�
context�of�images,�whereby�social�in�uence�leads�to�an�unpredictable�winner-take-all�market.�However,�we�
also��nd�that�social�in�uence�can�lead�to�the�emergence�of�local�cultural�trends�that�diverge�from�the�status�
quo�and�are�ultimately�more�diverse.�We�discuss�the�implications�of�these�results�for�platform�designers�and�
animal�conservation�e�orts.

CCS�Concepts:�•�Human-centered�computing�!�Web-based�interaction;�Empirical�studies�in�collab-
orative�and�social�computing.

Additional�Key�Words�and�Phrases:�platform�design,�social�in�uence,�crowdsourcing
ACM�Reference�Format:
Ziv�Epstein,�Matthew�Groh,�Abhimanyu�Dubey,�and�Alex�Pentland.�2021.�Social� In�uence�Leads�to�the�
Formation�of�Diverse�Local�Trends.�Proc.�ACM�Hum.-Comput.�Interact.�5,�CSCW2,�Article�409�(October�2021),�
18�pages.�https://doi.org/10.1145/3479553

1� INTRODUCTION
The�explosion�of�information�contained�on�modern�online�platforms�requires�users�to�use�heuristics�
to�both�e�ciently�search�through�this�information,�and�to�make�informed�decisions.�One�such�
heuristic�is�the�social�signals�of�how�other�users�have�engaged�with�the�platform.�Social�in�uence�
occurs�when�the�decisions�of�a�user�are�impacted�by�those�of�other�users�[10],�and�has�been�shown�
to�be�a�key�design�dimension�for�contexts�as�varied�as�health�behavior�[9],�political�engagement�
[5]� ,�collective�behavior�[41],�online�book�purchasing�[8],�food�ordering�[30],�and�digital�news�
engagement�[46,�62].�The�ubiquity�of�social�in�uence�suggests�how�crucial�a�factor�it�is�for�platform�
designers�seeking�to�jointly�optimize�for�the�quality�and�diversity�of�content�online�[28].
Perhaps�the�most�in�uential�study�on�how�social�in�uence�and�information�hierarchy�impact�

online�platforms�is�that�of�Salganik�et�al.�[54],�informally�dubbed�the�“Music�Lab”�experiment.�In�
this�study,�the�authors�created�an�“arti�cial�cultural�market,”�where�participants�could�listen�to�
and�download�previously�unknown�songs.�Critically,�some�participants�were�provided�a�layout�
which�displayed�information�about�previous�participant’s�choices,�while�the�others�had�no�such
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knowledge. This experimental design allowed for causal identi�cation of the role of social in�uence
on both an individual’s propensity to download songs, and on the dynamics of the ecosystem as a
whole. In particular, Salganik et al found that introducing social in�uence increased the inequality
of song success, as de�ned by the number of times they were downloaded. This suggests a cascading
“winner take all” phenomenon, whereby social in�uence increased the availability of songs that
were perceived as successful by past participants. They also found that social in�uence increased
the unpredictability of success, as de�ned by the variation in a song’s success across the worlds in
an experimental condition. From these two �ndings, the authors infer that the underlying quality
of a song only partly determines its �nal success: social in�uence causes a snowball e�ect that
results in the emergence of local preferences.
The Music Lab experiment called to attention what is at stake when designing social in�uence

into online platforms, but it remains unclear how to apply its conclusions to the design of modern
social media platforms. For one, the original paper did not specify any mechanism or model to
explain how social in�uence operates [39]. Moreover, it is unclear how the �ndings in the context
of music translate to other forms of media such as images.
In the present paper, we show a conceptual replication of the original Music Lab study in a

context that is fundamentally di�erent from music — the in silico evolution of AI-generated hybrid
animals (which we call “ganimals”) [16]. In particular, we ask if similar patterns of results are
observed in such a di�erent context. This allows us to test the generalizability of the Music Lab to
adjacent contexts (for a full characterization of the similarities and di�erences between the Music
Lab and the present study, see Related Work). To do so, we builtM��� ��� G�������, an online
platform where users could generate and curate their own ganimals. Previous work introduced
this platform as a “casual creator,” and evaluated how its random stimulus approach can e�ciently
search the possibility space of a GAN generator [16]. Rather than focus on the usability of the
platform itself, this work introduces an alternative layout to the “Feed ’Em” page of the system (see
Figure 1), and presents experimental results on the impact of such design interventions in the �eld.

As a collection of images of synthetically generated hybrid animals, ganimals represent a unique
context to study social in�uence. Interpolations of image-based GANs are a new form of media
about which, due to their unfamiliarity, most people have no preconceived notions. In studies of
social in�uence, previous knowledge of the content can introduce a key confound. Since ganimals
are uniformly novel, both because of both the novelty of GAN-technologies, and also the vast
possibility space of potential hybrid animals (see [16] for a characterization of this possibility
space), here we can study social in�uence excluding the potential confounding factor of previous
experience (see Section 2.2 for a full discussion). While the images as a whole are unfamiliar,
the component parts — bodies, faces, eyes, mouths, colors, backgrounds, positioning, etc. — are
well-studied affectively salient features [15, 20, 22]. As such, we hypothesize that the emotional
valence that ganimals induce (falling in the uncanny valley of cute/creepiness) is highly subjective,
and therefore may be subject to social in�uence.

The use of ganimals also allows us to assess how the �ndings of the Music Lab might translate to
the medium of images. Relative to their text-based counterparts, image-based social media is on the
rise (especially during the COVID-19 pandemic) [32, 44, 51]. While images of ganimals of course
differ from images on social media along many important axes, the process of rapidly searching
through troves of emotionally salient and unfamiliar content and unconsciously deciding which
to attend to (and engage with) may mirror some of the cognitive patterns of surfing social media
[6, 12, 49, 61].

A �nal key ingredient of the Ganimals platform is that it allows users to annotate the ganimals
with morphological features. These rich ganimal-level covariates allow us to directly quantify the
diversity and divergence of this online media ecosystem.
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This paper has �ve main contributions. First, we introduce the HCI community to the methods
and results of the Music Lab study, and experiments that build on it. Second, we show a conceptual
replication and generalization of the Music Lab to the entirely different context of images, which
substantially increases the extent to which the HCI community can base theories and built systems
on the original �ndings. Third, we employ morphological embeddings to provide in-depth insight
into both the diversity and divergence of digital ecosystems. Fourth, we introduce a new visual
display layout, called cloud view, which allows us to isolate the mechanistic features of ranked lists
that drive the e�ects. Finally, we discuss how our �ndings and methodologies can be applied by
systems designers to both quantify the emergent outcome of platform designs, and evaluate new
visual layout designs.

2 RELATEDWORK
2.1 Replications in Human Computer Interaction
In response to the growing concern within the HCI community of prioritizing “novelty” over
“consolidation,” the contribution of replications have been re-articulated [24, 25, 29, 48, 65]. Recent
HCI papers have replicated studies from online labor markets (like MTurk and Lucid) on topics
such as misinformation [17], visualization [26, 31], input devices [19], and usable security [52], but
replications of large scale, virality based �eld experiments are more infrequent. By replicating the
Music Lab, we show that such replications are well-scoped and useful for designing new systems.

2.2 Music Lab Experiments
The Music Lab inspired a generation of experiments in arti�cial cultural markets designed to assess
the impact of social in�uence and information design on collective behavior [1, 2, 27, 40, 46, 55].
Some have attempted to decouple social in�uence and item position, which were confounded in the
original experiment [1, 27, 40]. Hogg and Lerman [27] found that the impact of position is twice
that of social in�uence itself. Abeliuk et al. [1] found that ranking positively a�ects unpredictability
more than social in�uence does, and that combining ranking by quality and social in�uence allows
high quality stories to become “blockbusters.”
In a follow-up paper to the Music Lab, Salganik and Watts [55] seeded songs with false and

arbitrary initial signals of popularity, and looked at how those initial signals a�ected the market
equilibrium. They found that while certain songs had a “self-ful�lling prophecy,” the best songs
were able to recover their popularity in the long run. They also found that the initial distortion
of the market information reduced correlations between appeal and popularity, and led to fewer
overall downloads. Building on this work, Shulman et al. [57] found that while it is hard to predict
an item’s �nal popularity, “peaking” at early adopters provides a highly e�ective framework for
predicting future success.
Antenore et al. [2] conducted a Music Lab experiment where they found no evidence of an

e�ect of social in�uence. Critically, their experiment only contained 10 songs to “avoid as much as
possible the interference attributable to choice overload.” The di�erences they observed are due to
the fact that the small number of songs meant every participant could try each and every song, and
did not need to use social signals as a heuristic to “avoid the high cognitive cost of exploration.”
Yet this heuristic is a critical feature of social in�uence, since most markets of interest involve
too many items to try every one (see Section 2.3, below). In addition, their experiment was not a
web-based study and occurred in a computer lab under the direct supervision of the experimenter.
This induced a focused mindset divorced from the actual cognitive context where most cultural
markets occur (e.g. where people are distracted, overwhelmed and must rely on heuristics).
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In contrast, like the Music Lab, our study recruited subjects from the internet via their intrinsic
interest in the subject matter (not a �nancial incentive). We also took precautions to ensure the
content participants saw would be unfamiliar to them (since previous knowledge would introduce
a confound). The original Music Lab experiment went to great lengths to ensure the songs selected
were unknown to subjects, such as restricting to bands that played in less than 10 states, played
less than 15 concerts in the past 30 days, had less than 30k hits on their PureVolume page, and had
not played at the Warped Tour. The authors themselves admit that their restriction criteria are
“ultimately arbitrary.” By focusing on ganimals, we could be sure that the stimulii were inherently
and uniformly unfamiliar without relying on ad hoc restrictions like the Music Lab did.

Our conceptual replication of the Music Lab has several key differences from the original study
that are important to highlight. First and foremost, we focus on the domain of (AI-generated)
images, rather than music. A critical theoretical difference between these mediums is that in the
original Music Lab, participants �rst decided whether they wanted to listen to song based on social
and other signals, whereas in the image context the impression of the media is immediate and
inherently entangled with other signals (see Section 2.3 for a full characterization of this two-stage
process, and how the image context relates). A second difference is we use user-annotated ganimal
morphology to directly assess the divergence and diversity of the media environment. Finally, we
also manipulate the visual display layout in order to isolate the components of ranked lists that
drive the effects.

2.3 A theoretical model for cultural markets
Krumme et al. [39] observe that a market for songs involves a two-stage process: the participant
�rst chooses which song they will listen to, and then after listening, decides whether or not to
download that song. In the �rst stage, the only information the participant has to decide if they
will listen to the song is the name of the song and band, and also the social signals if they are in
the social in�uence condition. Krumme et al. [39] found that social in�uence is only present in
the �rst stage, and that the probability a user downloads a song is conditionally independent to
if they clicked on it [39]. This two-stage model explains the �ndings of Antenore et al. [2]: with
ample time and only 10 songs, participants were able to “try” each and every song and thus social
in�uence did not factor into the “buying” stage. Abeliuk et al. [1] use this formulation to derive a
metric for quality — the conditional probability of downloading a song given that it was sampled —
that they recommend for optimizing.
This “try and buy” model of cultural markets has also been mathematically characterized as a

individual-level heuristic that results in collective Bayesian rationality [38]. In particular, individual
agents locally utilizing a “try and buy” heuristic corresponds to a regret-minimizing solution to a
population-level exploration-exploitation dilemma (e.g. Thompson sampling).
In the context of ganimals, where the content are images, we study only the �rst stage of this

two-stage process. It is appropriate to compare this �rst stage of the process to the Music Lab, since
it is in this stage (not the second) where social in�uence is present.

2.4 �antifying diversity and divergence
A key aspect of social in�uence is its capacity to decrease the diversity of an information environ-
ment [21, 43, 58, 66]. Sunstein [59] has argued that social media has engendered a polarized culture
where people do not seek out new information. The salience of group identity online can impact
the perceived and actual diversity of the resulting ecosystem by fostering an in-group/out-group
mentality [6, 66].
Recent work has shed light on design features that moderate the relationship between social

in�uence and diversity. In the context of music listening, Holtz et al. [28] found that personalized
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recommendation decreased diversity within users, but increased diversity across users. Pescetelli
et al. [50] found that increased diversity increases collective intelligence for large groups (⇡ 25
people) but decreases it for small groups (⇡ 5 people). Lorenz et al. [43] found that social in�uence
undermines the wisdom of the crowd by mitigating the diversity of the crowd’s responses without
improving upon its collective errors.
However, the impact of social in�uence on diversity is understudied in the Music Lab context.

This is because the content in those arti�cial cultural markets does not typically include any
covariates, so the authors focus their analyses only on engagement metadata, such as popularity.
Ganimals, however, are annotated with their morphological characteristics, which in turn allows
us to assess how the experimental conditions a�ect the distribution of these characteristics across
worlds.

2.5 Information design for social influence
A growing body of work within HCI has explored how information design can impact how users
interact with systems [13, 14, 35, 37, 63]. Toth [60] explored the modality of feedback in a group
discussion paradigm, and found that 2D graphics can augment normative and inhibit informational
social in�uence. Hullman et al. [33] showed that social signals affected graphical perception
accuracy in a linear association task. They also demonstrate a cascade pattern, such that initial
inaccurate guesses can erroneously affect the responses of subsequent participants. Romero found
a substantial effect of early respondents in Doodle polls [53], whereby the �rst few respondents of
a poll can dramatically in�uence the behaviors of subsequent respondents. In the context of online
gift giving, Kizilcec et al. [36] found that receiving a gift causes individuals to give more gifts in the
future, and that designing observability into a system made gift-giving more socially acceptable
[36]. Sharma and Cosley [56] introduced a statistical procedure for distinguishing between personal
preferences and social imitation behavior, and �nd that a large majority of user actions re�ect
personal preference rather than copy-in�uence on a music recommendation website. Wijenayake
et al. [64] investigated how design features like user representation, interactivity, and response
visibility impact conformity. They �nd not only main effects in differences in group size, task
objectivity, and perceived self-con�dence, but also interactions between interactivity and response
visibility.
The Music Lab and its follow-ups have primarily focused on linear lists and grids of music

[2, 54, 55] and scienti�c articles [1]. This standard display layout, also employed by social media
platforms as a “newsfeed,” involves scrolling through large lists of content. We maintain the use of
the list, but also introduce a new visual display, inspired by tag clouds and the designers outpost
[37], called “cloud view.” In contrast to the Music Lab’s two experimental conditions (independent
and social in�uence), we cross those conditions with showing the participant either the standard
ranked list view, or the alternative cloud view (see Section 3.1 for more details on the experimental
design). By experimentally varying social in�uence and the type of layout, we can decouple the
relative e�ects of each, which serves two critical purposes. First, it allows us to separate screen
location from popularity information, which were confounded in the original Music Lab experiment
(that is, for the social in�uence condition, the more popular items where both higher in the list,
and designated by their popularity — here, the ecosystem view allows us to disentangle these two
factors). Second, it allows us to see what results are dependent on having to scroll through all the
ganimals individually, versus all of them being presented together.

3 METHODS
M��� ��� G������� is an online platform where individuals can generate and curate “ganimals”
- AI-generated hybrid animals [16]. A schematic for the system is shown in Figure 1. Ganimals
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are generated by blending animal categories in BigGAN [7] in a way that balances exploring new
hybrids, and exploiting existing signals for ganimal quality (see [16] for a characterization of this
algorithm). In the Discover ’Em page, participants could interact with the generated ganimals and
breed their own. Once they found a ganimal they like, they could “discover” it by naming their
ganimal and rating how cute/creepy/realistic/memorable it is on the Name ’Em page.1 Discovered
ganimals appeared in the Feed ’Em page, where users could “feed” (i.e. cast a vote for) the ganimals
they liked the best. Separately, in the Catalogue ’Em page, participants could rate the morphological
traits of the ganimals (see Section 3.3 for more details). Screenshots of and more information about
all of the pages can be found in the Supplementary Materials.

Discover  ‘Em

Morphology Quiz

Name ‘Em Feed ‘Em

Does this ganimal 
have a head?

Does this ganimal 
live underwater?

Is this ganimal bigger
than a housecat?

...
...

Generation
Process

Seed set of 47
ganimals

ratings recycled for ganimal generation process

(view depends on condition)

(BigGAN
+

balancing
algorithm)

How cute?

How memorable? How realistic?

What’s its name?

How creepy?

Where the experiment
takes place

Fig. 1. Schematic of the M��� ��� G������� architecture. Ganimals are generated via BigGAN and a process
that balances exploring new and existing ganimals. Participants can discover and breed ganimals in the
Discover ’Em page, and name and rate their favorites in the Name ’Em page. The experiment took place in
the Feed ’Em page, which also includes 47 seed ganimals. Participants can also characterize ganimals in the
Morphology�iz. Adapted from [16] with permission.

3.1 Experimental Design
The experiment itself took place in the Feed ’Em page. As participants arrived to the platform,
they were randomly assigned to one of four conditions (independent list, independent cloud, social
in�uence list, social in�uence cloud) distinguished solely by the availability of information about
the prior decisions of others, and the visual display of the ganimals in the Feed ’Em page.
In the independent conditions, each ganimal was displayed at the same size, whereas in the

social in�uence conditions, the ganimal’s size was proportional to the number of votes it had from
previous participants, and displayed this number as well as its name (see Figure 2). Therefore,
participants in the social in�uence conditions were provided a signal on the preferences of past
participants, which they could use to make their own decisions. All users could “feed” (i.e. cast a
vote for) the ganimals they liked the best, and the interface included the instructions: “Ganimals
need food to survive. To feed a ganimal, click on its image. To learn more about that ganimal, click
on its name.” For both the independent and social in�uence conditions, whenever a participant
voted on a ganimal, it grew a bit larger. In the list conditions, ganimals are rank ordered and
1these subjective signals are then recycled for future ganimal generation
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displayed by number of votes in a grid which has two columns in desktop view and one column in
mobile view. In the cloud view, ganimals are displayed in a spatial circle pack, with larger ganimals
often (but not always) in the center.

Within each of the four experimental conditions, participants were randomly assigned to one of
four “worlds” (for a total of 16 — see Figure 2), each of which evolved independently of the other
�fteen. In particular, participants only saw ganimals discovered and votes cast by others in their
world, and the ranking (for list view) and visualization (for cloud view) of ganimals was based only
on votes in that world. A randomly chosen “seed set” of 47 ganimals was used to initialize each of
the sixteen worlds (such that all worlds started with the same set of initial ganimals, see Section 1
of the Supplementary Materials for more information).

world
1

world
2

world
3

world
4

world
5

world
6

world
7

world
8

world
9

world
10

world
11

world
12

world
13

world
14

world
15

world
16

world
24

Social InfluenceIndependent

Li
st

 
Vi

ew
C

lo
ud

 
Vi

ew

A) D)

B) C)

Fig. 2. Overview of our experimental design, with (stylized) screenshots of the Feed ’Em page in the four
conditions designated by the le�ers: A) independent list, B) independent cloud, C) social influence cloud, D)
social influence list. There are four worlds for each the experimental conditions.

Irrespective of condition, participants could choose between 60 di�erent ganimals to feed. At
any given time, this set of 60 included 30 of the top voted ganimals in that world, and 30 of the
most recently discovered ganimals in that world. The top rated ganimals were initialized with the
seed set, but at most 30 of the them were shown to the user, and that number was much less once
participants in a given world started voting (i.e. no ganimals with zero votes were displayed after
thirty ganimals were voted on in that world).

3.2 Recruitment, reliability and robustness
From April 26th to June 26th 2020, 44,791 ganimals were generated, 8,547 ganimals were bred, and
743 ganimals were named by a total of 10,657 users. In the Feed ’Em page 2,370 votes were placed
on 434 ganimals by 549 users. Of these 549 users, 18% were on mobile, while 81% where on desktop,
and they predominately hailed from Russia (27%), USA (23%), Ukraine (16%), and Japan (3%). We
did not collect other demographic information.
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Participants were recruited through word of mouth and social media, bolstered by a climate
�ction (cli-�) world-building campaign (learn more here: https://www.youtube.com/watch?v=I-
Fc4nQK_5Q).
A critical part of our experiment was making sure there was no information contamination

between worlds and conditions. We used cookies to ensure that each user would be placed in the
same world if they returned to the website at a later time. To prevent contamination from exposure
to other ganimals after they �rst experience the website (e.g. from elsewhere online), we only
counted votes that occurred within 2 hours of the participants �rst visiting the site. To mitigate the
impact of a few power users, we only counted the �rst 10 votes of each participant, as recorded
through cookies.

We preregistered our primary hypotheses, primary analyses and sample size, which are available
at https://aspredicted.org/65nv7.pdf. 2 Because the experiment received less media attention than
anticipated due to Covid-19, we deviated from our preregistration in several ways. First, we stopped
data collection early, but did not look at any results before doing so (due to the number of monthly
active users, we would never reach 1K people — the number speci�ed by our pre-registration).
Second, this smaller # meant we were unable to block on cohort, since there was only a single
cohort with its own set of worlds. As such, for all our analyses, we report results only for the �rst
cohort, and also do not look at the interaction between treatment arms, as we are underpowered
to do so with only 16 observations. Finally, the limited number of participants also meant that
computing a joint distribution between popularity and a high-dimensional feature embedding for
the diversity measure was under-speci�ed. Therefore, we instead directly compute the entropy of
the morphological traits, which is ultimately a more interpretable metric.

This study was approved by the MIT COUHES committee, and the code/data used can be found
at https://github.com/zivepstein/ganimals_cscw.

3.3 Crowd annotation of ganimal morphology
Participants could also provide information about the morphology of ganimals. We worked with
a professional zoologist to assemble 10 traits that would characterize the variability in possible
ganimals (for the full list of traits, see Table 1). Within the “Morphology Quiz” section, the user
was provided with 16 ganimals for each morphological trait, and was asked to select the ones that
exhibited that trait. For each ganimal, we computed the average response for each morphological

Table 1. Morphological traits used.

Trait name Question Asked Trait name Question Asked
Head Does this ganimal have a head? Size Is this ganimal bigger than a house cat?
Eyes Does this ganimal have eyes? Underwater Does this ganimal live underwater?
Mouth Does this ganimal have a mouth? Feathers Does this ganimal have feathers?
Nose Does this ganimal have a nose? Scales Does this ganimal have scales?
Legs Does this ganimal have legs? Hair Does this ganimal have hair?

trait across responses. With a 1 coded as exhibiting the trait and 0 coded as not, the average response
represents the likelihood or extent to which a given ganimal exhibits a given trait. 14,348 ratings
were provided for 1,250 ganimals by 177 users of theM��� ��� G������� platform (48 of these
raters were also participants in the experiment). Many of these 1,250 ganimals did not appear in the
actual experiment, so we restrict our attention to the 449 ganimals that received at least one vote.
2Pre-registration is a framework that allows researchers to specify which analyses are a priori and which are post hoc. This
strengthens the validity of statistical analyses, and can mitigate publication bias [47].
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Table 2. World-level linear regression predicting inequality.

Estimate Standard Error C-value ?-value

Social In�uence 0.077 0.019 3.981 0.002
Cloud 0.066 0.019 3.379 0.002
Intercept 0.623 0.016 36.9 <0.001

Adjusted A 2 = 0.628, N=16

21% of the 449 ganimals were missing at least one morphological trait (due to limits in data
labeling), and among this subset, there was an average of 6.13/10 non-missing traits. Furthermore,
multiple users often rated the same trait of a given ganimal: among this subset, an average of 2.4
users rated each non-missing trait. We �nd no statistical di�erence in the number of missing traits
across conditions (? = 0.351 for social in�uence, ? = 0.175 for information design).

4 RESULTS
We investigate the role of social in�uence and information design on �ve outcomes: inequality,
unpredictability, diversity, divergence and engagement. As a replication of Salganik et al. [54], we
�nd evidence that social in�uence increases inequality and unpredictability. We also �nd evidence
that social in�uence increases the morphological divergence and diversity of worlds. For each set
of analyses, we focus on the list view results since those are directly comparable to the literature,
but also show the cloud view results for contrast.

4.1 Inequality
To make our results comparable to Salganik et al. [54], we also use the Gini Coe�cient [4] to assess
the concentration of the votes of the ganimals in each world. Figure 3 and Table 2 show the e�ects
of social in�uence and layout on inequality, as measured by the Gini coe�cient. For both the list
and cloud displays, we �nd that worlds with social in�uence exhibit more inequality than the
worlds where participants made independent decisions (? = 0.002, preregistered), which is a direct
replication of the Music Lab experiment.

0.
50

0.
60

0.
70

0.
80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
in

i C
oe

ffi
ci

en
t G

Independent List Social Influence List Independent Cloud Social Influence Cloud

Fig. 3. Inequality of success for independent list (orange le�), social influence list (blue le�), independent
cloud (orange right) and social influence cloud (blue right) worlds, with number corresponding to world.
Dashed line corresponds to the average Gini coe�icient of all worlds within a given condition.

As a preregistered robustness check, we use Fisherian randomization inference (FRI) to compute
an exact ?-value [34]. Fisherian randomization inference is a non-parametric approach to computing
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p-values that does not require modeling assumptions about potential outcomes. To perform FRI,
we create 10,000 permutations of the assigned world treatments, and recompute the t-statistic for
each. We then compute a p-value by assessing the fraction of permutations that yielded t-statistics
larger than the t-statistic observed in the actual data. We �nd that ?�sher < 0.001.
As a posthoc robustness check, we perform bootstrapping at the world level and count the

fraction of bootstrap samples with mean Gini greater for social in�uence than independent. We
�nd that in 100% of the 10,000 bootstrap samples, the mean Gini is greater for social in�uence
worlds than independent worlds.

We also �nd a main e�ect of design, whereby worlds with the cloud display exhibited more
inequality than the worlds with the list display (? = 0.005 for regression and ?�sher = 0.0015,
preregistered, and the mean Gini is greater for cloud view worlds than list view worlds for 100% of
the 10,000 bootstrap samples).

When restricting only to list view worlds, we �nd that social in�uence is signi�cantly associated
with inequality (? = 0.004, posthoc). This suggests a stronger association between social in�uence
and inequality in the list view, where participants rely more heavily on social signals instead of
scrolling through all 60 ganimals (versus cloud view where all are visible and thus social in�uence
is a less important cue).
As additional robustness checks, we reran the main analyses restricting only to ganimals with

one or more vote, and using additional measures of concentration (following the robustness checks
of Salganik et al. [54]) , which are reported in Section 3.1 of the Supplementary Materials. The
results are similar across model speci�cations, except for layout design, where the effect of Cloud
View is not significant for the Her�ndahl index model (this may be because, unlike Gini or the
coef�cient of variation, the Her�ndahl index is correlated with the number of ganimals in a given
world.)

4.2 Unpredictability
To measure the unpredictability of each condition, we follow the Music Lab and compute the
average di�erence in market share for that ganimal between pairs of realizations. The one critical
di�erence in our setup is, unlike the Music Lab, not all ganimals necessarily appear in all worlds.
Thus, we only consider pairs of worlds for which that ganimal actually appeared. In particular, we
�rst compute the market share of votes< ( 9)

8 = E ( 9)8 /Õ✓ E
( 9)
✓ for each ganimal 8 in each world 9 .

Then, we compute the average di�erence in market share for all pairs of worlds 9 and : within
that condition ( , and then average across ganimals to get a unpredictability score D for each pair of
worlds:

D 9,: =
1
#

’
8

’
9 2(

’
:2( :9<:

���< ( 9)
8 �< (:)

8

��� .

This gives us
�4
2
�
= 6 unpredictability scores per condition. To reduce noise in our unpredictability

estimates, we deviated from our preregistration plan in two ways. First, because the vast majority
of engagment was with ganimals not in the seed set (71%), we considered all ganimals, not just
seed ganimals. Second, since many ganimals where not seen and thus could not even be voted on,
we restricted only to ganimals with atleast one vote (see SI Section 3.2 for full justi�cation for these
changes, as well as additional analyses for our original measure).
The left panel of Figure 4 and Table 3 show the e�ects of social in�uence and layout on unpre-

dictability, as measured by the average unpredictability across world pairs. We �nd that worlds
with social in�uence exhibit signi�cantly more unpredictability than the worlds where participants
made independent decisions (? = 0.005, posthoc), but found no e�ect of the cloud layout (? = 0.786).
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Fig. 4. Unpredictability of success for the four conditions, computing using all ganimals with more than one
vote.

Table 3. Linear regression predicting unpredictability.

Estimate Standard Error C-value ?-value

Social In�uence 0.010 0.003 3.112 0.005
Cloud 0.001 0.003 0.275 0.786
Intercept 0.016 0.002 5.831 <0.001

Adjusted A 2 = 0.252, N=24

When restricting only to list view worlds, we �nd a signi�cant association between social in�uence
and unpredictability for all ganimals with more than one vote (? = 0.003). This suggests a stronger
association between social in�uence and unpredictability in the list view, where instead of browsing
all ganimals, participants relied more on social signals.

4.3 Divergence and Diversity
The 48 songs from the original Music Lab experiment did not include a rich set of covariates, so the
authors focused their analyses only on the songs’ popularity. TheM��� ��� G������� platform,
in contrast, allows users to annotate ganimals across 10 morphological traits (see Figure 6 for
the morphology of four exemplary ganimals, and Table 1 for more details). These ganimal-level
covariates allows us to characterize and compare the kind of ganimals that evolved across worlds.
In particular, we focus on the divergence of these features between worlds and the diversity of
these features within worlds.
For each world, we �t a multivariate gaussian with mean ` 9 and covariance ⌃ 9 to the feature

vectors of each ganimal in that world with one or more vote. Thus ` 9 represents the average
morphology of world 9 (e.g. its local trend). We use principal component analysis (PCA) to collapse
these world-level average feature embeddings ` 9 into a 2D space for visualization (o�set such that
the average feature embeddings of the seed ganimals corresponds to the origin). In this 2D space,
the PCA parameters de�ne orthonormal lines for each of the 10 morphological features. The map
of the 16 worlds in this coordinate space, as well as exemplary ganimals, are shown in Figure 5. As
shown, the majority of worlds centered around ganimals with eyes, a nose, a head, and that do not
live underwater. Several worlds (all social in�uence) diverged and are centered around underwater
ganimals without eyes, nose or a head.
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Independent  List Independent  Cloud Social Influence List Social Influence Cloud Seed Set

Fig. 5. Morphological embeddings of the 16 worlds, relative to the morphology of the seed set of ganimals.
Lines correspond to orthonormal projections for each of the 10 morphological features. The morphological
embeddings of four exemplary ganimals is also shown.

Table 4. Linear regressions predicting diversity and divergence. . refers to ?  0.1, ⇤ refers to ?  .05, ⇤⇤ refers
to ?  .01, ⇤⇤⇤ refers to ?  .001. The value in parentheses under each coe�icient is the standard error.

Outcome variable (DV) Divergence (2D Euclidean) Diversity

Social In�uence 0.032⇤ 3.75⇤⇤
(0.014) (1.50)

Cloud 0.008 -1.20
(0.014) (1.50)

Intercept 0.041 ⇤⇤⇤ 4.55⇤⇤⇤
(0.012) (1.32)

N 24 16

Adjusted '2 0.014 0.245

To quantify these visual intuitions, we measure the Euclidean distance between the 2-D points in
Figure 5, and then compute the average distance between pairs of worlds within a given condition.
These results are shown in Table 4. In the additive regression model, we �nd a signi�cant e�ect of
social in�uence on divergence (? = 0.030). We �nd no e�ect for display type (? = 0.568).
As additional robustness checks, we quantify divergence using two additional measures, 10-D

euclidean distance and Fréchet distance, which are reported in Section 3.3 of the Supplemental
Materials. We �nd a marginal (?10⇡ = 0.053) and no effect (? 5 A42⌘4C = 0.607) of social in�uence,
respectively, and a marginal effect of display type in both cases (?10⇡ = 0.095 and ? 5 A42⌘4C = 0.053).
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However, when restricting only to list worlds, we �nd a signi�cant e�ect of social in�uence on
divergence for all three measures (?2⇡ = 0.013, ?10⇡ = 0.021, ? 5 A42⌘4C = 0.021). This suggests that
in the list view, where scrolling through all the ganimals is cumbersome, social in�uence is an
important cue. However in the cloud view, all the ganimals are easily available via a quick scan, so
those worlds have high divergence regardless of social in�uence.
These results suggest that there is dramatic variation in morphology across worlds. But how

does that compare to the variation in morphology within worlds? To answer that question, we
calculate and compare the morphological diversities of each world. To compute the diversity of a
given world 9 , we again use the multivariate gaussians with mean ` 9 and covariance ⌃ 9 �tted to
the feature vectors of each ganimal in that world with one or more vote. Then, we calculate the
entropy of that distribution:

⌘ 9 =
1
2
log det(c4⌃ 9 )). (diversity)
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Fig. 6. Le�: Morphological features of four ganimals: an alligator/basenji hybrid (green), a kite/spider monkey
hybrid (light blue), a hammerhead shark/macaw hybrid (dark blue) and a lynx/meerkat hybrid (brown). Center:
Divergence across conditions, measured using 2-D Euclidean distance. Right: Diversity across conditions,
measured by entropy of the multivariate gaussian fit to each world, with the dashed line corresponding to
the imputed entropy of the seed set.

The average morphological diversity of the four conditions is shown in Figure 6. We �nd that
worlds with social in�uence are more diverse than worlds where participants made independent
decisions (? = 0.02208, ?�sher = 0.0099). We also bootstrap the diversity at the world level, and
�nd that the mean diversity is greater for social in�uence worlds than independent worlds for
99.991% of the 10,000 bootstrap samples. We �nd no di�erence in morphological diversity between
the list and cloud views for the main regression (? = 0.3842), FRI (?�sher = 0.8161), or through
bootstrapping (14.51% of bootstrap samples have more diversity in cloud view conditions than list
view).

4.4 Engagement
We start by assessing the engagement across conditions, which we measured using the total number
of votes each participant cast. We �nd that participants in worlds with the cloud design engaged
with more ganimals than those in the worlds with the list design (? < 0.001, posthoc, ?�sher = 0.
— the left side of Figure 7). We also �nd a main e�ect of social in�uence, whereby participants in
worlds with social in�uence engaged with more ganimals than those in the independent worlds
(? = 0.0182, posthoc, ?�sher = 0.0081). We also look at the position of the votes for each of the
conditions, as shown on the right side of Figure 7. For both the independent and social in�uence list
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Fig. 7. Le�: Number of votes participants casts across conditions. Right: Distribution of the position of votes
across the four conditions: independent list (A), independent cloud (B), social influence list (C) and social
influence cloud (D). A and C show the distribution of votes over order (0 is the at the top of the page, 60 is at
the bo�om), and B and D show heatmaps of user votes. All are colored such that white corresponds to the
most engagement, and purple the least.

Table 5. Linear regression predicting average number of votes for the four conditions, with robust standard
errors clustered on world.

Estimate Standard Error t value p value

Social In�uence 0.738 0.271 2.72 0.0182
Cloud 1.322 0.2608 5.084 <0.001
Intercept 3.208 0.202 15.860 <0.001

A 2 = 0.0427, N=549

views, we see a power law which closely matches the availability plot (Fig 2) from Krumme et al.
[39] and the position bias plot (Fig 7) from Abeliuk et al. [1]. For the independent cloud, we see a
constellation of white and yellow dots scattered uniformly across the cloud view. This stands in
contrast to the social in�uence cloud, where we observe clustering near the center, with satellites
around the periphery. The circle packing algorithm placed most top voted ganimals near the center,
(e.g. see the social in�uence cloud in Figure 2). This explains why worlds in the social in�uence
cloud condition had the highest Gini coe�cient on average: social in�uence induced users to click
on top voted ganimals near the center, further increasing inequality.

5 DISCUSSION
For both inequality and unpredictability, we observed the same pattern observed in the Music Lab,
that social in�uence can increase the inequality and unpredictability of the success of content. The
pattern was the same across the list view conditions which mirrored the original layout, and the
cloud view conditions, which had a different layout. This suggests that the role of social in�uence
in increasing inequality and unpredictability is separable from item position, and generalizes well
to di�erent layout patterns, and contexts with image media. Indeed, the original two-stage process
of the Music Lab may be less relevant to today’s digital platforms, since now images are the primary
content and the primary outcome of interest is engagement with those images. Thus, replicating
the Music Lab results for engagement with images shows that they generalize to modern contexts.
Our results suggest that without social in�uence, many worlds converged towards a singular

set of ganimal features. This status quo contained features that conform with morphological
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conventions of quality (e.g. ganimals with eyes, a head, and dog-like features). Social in�uence,
however, led to the rapid evolution of local cultures that dramatically diverged from this status
quo, and that were ultimately more diverse. Many studies interpret the unpredictability that social
in�uence induces to be a negative externality. Yet we found that this unpredictability corresponds to
exploring novel areas of the possibility space, and led to more diverse and divergent local cultures.
These �ndings stand in contrast to recent results which suggest that social in�uence decreases

diversity, and thus undermines the wisdom of the crowds [43]. It’s important to note that the context
in Lorenz et al. [43] involved objective performance tasks with ground truth, such as geographical
facts and crime statistics. In such objective contexts, divergence from the status quo will “lead the
herd astray” by skewing responses away from the crowd average. But in contexts like ours, where
the popularity of novel cultural objects is inherently subjective, such divergence can actually be a
boon.
The inclusion of the cloud view allowed us to isolate one possible mechanism of how social

in�uence impacts divergence and diversity: the number of ganimals visible at a given time. Since
the list view shows one or two ganimals at a time and requires scrolling to see more, social in�uence
is an e�ective cue for identify ganimals to engage with. In contrast, cloud view shows a large
number of ganimals at a given time. This may explain why cloud view worlds were less diverse
than list view worlds, regardless of social in�uence, since ganimals with morphological features
traditionally associated with popularity could easily grab user’s attention. Indeed, since the size of
the ganimals is so different between the two displays (quite large for list view and quite small for
cloud view), it is hard to compare the two directly. This is one reason we focused primarily on the
list view only, and future work should compare layouts that hold both the image size and number
of images displayed constant across conditions.
Our work has implications for the design of social media platforms. While social in�uence can

lead to a “winner take all” market where smaller actors su�er, it can also lead to the rapid evolution
of unexplored, diverse trends. Designers of social media platforms should use social in�uence
responsibly to foster more heterogeneous notions of quality. In particular, designers must recognize
when divergence is desirable (e.g. fashion or other cultural artifacts) and when it is not (e.g. for
objective facts) and design interfaces that are appropriate to that situation. For instance, in the
case of subjective culture and trends, presenting feedback on the proportion of similar people may
help promote divergence, whereas in situations with objective facts, feedback such as histogram of
other people’s opinion might be more appropriate. In addition, the cloud view represents a new
paradigm for newsfeed design that may be appropriate in contexts where it is desirable to mitigate
social in�uence or the availability bias (such as objective contexts, as in Lorenz et al. [43]).

Our work also has implications for how animal morphology relates to engagement. It has been
shown that people have learned preferences for animal morphology on an evolutionary timescale
and during development [11, 23, 45] and indeed many of the most popular ganimals have mor-
phological traits of common pets like cats and dogs (see panels C and D of Figure 2). However,
our world-level experimental design allows us to decouple the role of visual familiarity/innate
preference and social in�uence in ganimal popularity. Our results suggest that people do indeed
use social in�uence to inform their preferences for animal morphology (at least in the context
of AI-generated hybrid animals) and that social in�uence can lead to the formation of divergent
local preferences. In a world where “charismatic megafauna” — animals that play into those more
conventional evolutionary and developmental preferences (like the Giant Panda) — absorb much of
the public attention and funds for conservation [3, 11, 18, 45], this suggests that social in�uence
may be a powerful mechanism to invigorate attention towards the conservation of animals that do
not have such morphological features, like the Chinese Sturgeon [67] or the blob�sh [42].
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Our work has several important limitations. First, the small number of worlds (4 per condition
= 16) makes conducting statistical inference at the world level challenging. Future work could
provide more precise e�ect sizes with a larger number of worlds (e.g. 50 worlds per condition, as
recommended by Abeliuk et al. [1]). One particular way of achieving this for web-based experiments
that rely on virality for recruitment (as this and the original Music Lab were) is to start with a small,
�xed number of worlds per condition, and dynamically branch newworlds (with the same �xed seed
set) once a max cap of participants in existing worlds has been reached. This would also naturally
allow for cohort blocking to account for variation in outcomes over the course of the experiment’s
run. Another methodological limitation was the fact that we did not collect demographics to
preserve both the privacy and fun of the experience. This lack of user demographics and covariates
prevented us from assessing the representativeness of our users, as well as any heterogeneous
e�ects.
We believe that the approach introduced by the Music Lab — randomization at the world level,

each with its own independently evolving local ecology — o�ers platform designers a rigorous way
to assess how design interventions not only a�ect individual behavior as in standard A/B testing,
but also complex, collective behavior. We hope this work demonstrates that this experimental
paradigm generalizes to outcomes beyond inequality and unpredictability, and in turn can promote
interventions to increase the diversity of information ecosystems.
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