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ABSTRACT

FORCED VIBRATIONS OF CIRCULAR FOUNDATIONS

ON LAYERED MEDIA

by

EDUARDO ADOLFO MARTIN KAUSEL BOLT

Submitted to +the Department of Civil Engineering on January
1974 in partial fulfillment of the requirements for the

degree of Doctor of Science.

The general three dimensional problem of an axisymmetric
footing resting on (or embedded in) a semiinfinite
viscoelastic layered stratum and subjected to arbitrary non-
axisymmetric forced excitations is investigated by means of

finite elements using a consistent energy absorbing boundary.

Ccomparisons are made with known analytical solutions for
special cases involving parametric variations of the relative
dimensions, properties and/or geometry. A general agreement
with the theoretical halfspace solution is found, as well as
with the results obtained from an approximate equivalent

plane strain model.
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List of Symbols

Superscript bar: refers to Fourier expansion about the axis.

Tilde: refers to Fourier transform in time domain (harmonic
variable).

For the sake of notation simplicity, both the superscript
bar and the tilde have been dropped after Sec. 3.5.

Horizontal natural frequency of stratum
Vertical natural frequency of stratum
Lamé constants

Poisson's ratio

Shear modulus

Damping ratio

Attenuation ratio

Participation factors

Wave number

Expansion order in finite elements
Number of discrete layers

= { {4,{1,{5}T Displacement coefficients vector function (3*1)

1]

1

Hankel function of second kind and nth order

Hankel functions matrix defined by eq. 3-33 (3*3)

Diagonal matrix formed with m+1 submatrices HTH
(3(m+1)*3(m+1))

System stiffness matrix
System dynamic stiffness matrix
System mass matrix

{3$Is} Expansion vector (eq. 3-66) for layer (3*3(m+1))
{;L/?z,?e}f Load vector (3x1)

.th

Load vector evaluated at i~ interface (3x1)

{ P, ... P} Layer Toad vector (3(m+1)*1)

Layer load vector contributed by the kth propagation mode
(3(m+1)*1)

Stratum load vector contributed by the kth propagation mode
(3(m+1)*1)



P, Stratum load vector at Waas-Lysmer boundary (32*1)

P System load vector

R Waas-Lysmer boundary dynamic stiffness matrix (38*3%}

U - { 0w, G ST Displacement vector (3*1)

u. Displacements at it interface (3*1)

U, - {‘la--- W.,.} Displacement vector for 1 discrete layer
(3(m+1)*1)

u, Stratum load vector at Waas-Lysmer boundary (32*1)

W Wave equation vector (3*1)

X = {x x, xsir F vector evaluated at ith interface (3*1)

X - ! X(_,: Xiom) Assembly of X. vectors for 1 discrete layer
(3(m+1)*1)

X = { X;} Stratum displacement coefficient vector: modal

shapes obtained from quadratic eigenvalue problem (32*1)
qg, Boundary stress vector (3*1)

T Boundary stress vector contributed by kN mode (3x1)



1.- Introduction:

In recent years, considerable effort has been made by
researchers to obtain analytical or closed form solutions to
the problem of the propagation of waves in soils, generated
by forced vibrations of a circular plate welded to the free
surface of a semi-infinite homogeneous elastic halfspace or
to a stratum. The solution to this problem is of great
interest for its application in geophysics and engineering,
and particularly, for its importance in foundation and

earthquake engineering.

Early analytical solutions were given by Lamb (17), and by
Reissner (26), using greatly simplified boundary conditions.
Further developments were contributed by
Reissner & Sagoci (28), Marguerre (22), Bycroft (5) .,
Awojobi & Grootenhuis (2), and others, and in recent years,
full solutions to the general problem have been reported by
Luco & Westmann (19), Veletsos & Wei (42), among other

authors.

Despite their mathematical elegance, closed form solutions
inherit a major drawback: they apply to ideally elastic,
homogeneous, isotropic halfspaces, an abstraction that seldom

approaches reality. Soils are usually non-homogeneous; their
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properties vary with depth; they are stratified in layers;
and underground water adds further complications to their
physical nature. Thus, the analyst must rely on experimental

or numerical techniques.

In the present dissertation, a numerical method is presented
for the dynamic analysis of axisymmetric foundations resting
on viscoelastic soil layers over rock of inifinite horizontal
extent. The solution constitutes a generalization of a
technique developed recently by Waas & Lysmer (21), (44), and
which is extended for the analysis of axisymmetric systems
(¢e.g. Nuclear power plants) subjected to arbitrary non-
axisymmetric loadings, using the Fourier expansion method

developed by Wilson (51).
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fig.1
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The geometry is idealized by a finite irregular region joined
to a semi-infinite far-field region as shown in Fig. .1 above.
The irregular region is discretized by means of
pseudotridimensional toroidal finite elements of arbitrary
expansion order, having three degrees of freedom per nodal
ring. The far field is represented by a specially designed
consistent energy absorbing boundary, whose dynamic stiffness
matrix is expanded in Fourier series about the axis, as it is
done for the forces and displacements in the finite element
formulation. For the problems that will be considered in
this dissertation, namely translation and rotation of a rigid
circular footing, only the first +two components in the
Fourier series are of interest. The method can, however, be
applied to cases where more than two terms in the series must

be considered.
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2.- Soil properties: complex moduli representation:

For a linearly elastic material, the stress field is related
to the strain field by the generalized Hooke's law

o

= 2"

where is the constitutivity tensor. When a linear

Eiine
viscoelastic material is subjected to time-dependent
variations of stress and strain, the above relation is no
longer valid, but its mutual dependence is generally
represented by 1linear partial differential equations of

arbitrary order, or equivalently, through the convolution

integral
2 &
O:J = G%&Q (X, t”r) “3,%9-' AT (2-2)

where Gy, is referred to as the tensorial relaxation

function. Symbolically, this is often written as

0€pe
G".i = G':iﬂz?, * 2T (2-3)

Detailed discussions are presented in many textbooks, and
will not be repeated here. The foregoing relation between

stress and strain can be visualized as being generated by an
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equivalent network of springs and dashpots duplicating the

mechanical behavior of the material under strain (36), (10).

If the applied stress is sufficiently small so that the
relation between stress and strain is a function of time
alone, and not of the stress magnitude, the principle of
superposition holds, and the connection between convolution

and Fourier transformation can be used:

J; = 2 Giyge Eae (2-4)
where gﬁ&t is the Fourier transform of the relaxation

fuaction, and G% v gﬁ are the (complex) amplitudes of the
frequency dependent stresses and strains. The superscipt
tilde refers to harmonic motion. It follows that alien
frequencies will not be generated when the material is
subjected to an applied load possessing one or more frequency
components, as would be expected if the material were

nonlinear.

If the material is isotropic, only two components G, , G, are
needed to define the relaxation function, and their Fourier

transforms are &, and G, :
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el =~ =~ (2-5)
Gijur, = 5(6,-6,) Sydm + 1 6, (S Gje *+ e Sig)

For this case, the stress strain relation reduces to
Gy = X &y + 26¢, (2-6)

in which the (complex) Lamé constants are related to G,, G, by

(2-7)

Equation (2-6) is identical to that governing linear
elasticity, except that the Lamé constants are substituted by
complex moduli, which are in general functions of frequency.
This equation is frequently written in matrix notation as

g = D¢ (2-8)

where D is the constitutivity matrix, and & , € are the

stress and strain vectors.

solutions tn the wave equation
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GU;,'“ + ()\‘l‘ G) Uj.]L = Y‘}‘ (2-9)

using complex moduli G, » are of the form (10):

. 3
i (t £ [——= ngXg)
v, = Anj e A+26 " (2-10)

- v [—S— ng X
([ " %)

v = C; (2-11)

where n, are the director cosines of the direction of
propagation of the wave, A is a complex constant, and C; is a

vector perpendicular to ng .

The radicals in the exponent in (2—10) and 2-11) can be

expressed as

S A Y ST ’
V' i 26 v, C, (1- ©350) (2-12)
A VR A i L;s) (2-13)
V G C,

in which ¢,, C, can be interpreted as the dilatational and

N
l

S

shear wave velocities, while the attenuation ratios %,, %,
can be related to the logarithmic decrements of these waves

travelling in the damped continuum:



-2T %, & Xg 2(t- Nk e
= c
Uj = nJ- e P
a2y, WX g (p- IAIE
and UJ - CJ ES Qs Cg )
: AR . ar
with 2? = [y} CP , 0’5 = Q. CS

15

(2-14)

(2-15)

Snellt's laws of refraction and reflection are wvalid in the

damped medium only when both attenuation ratios

equal.

For this particular case, the Lamé constants can be expressed

as

Introducing the critical damping ratio P , equations

(2-17) can also be expressed as

(2-16)

(2-17)

(2-18)

(2-19)

(2-16),
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A=A, (1r2ip) (2-20)

G- G (1+2ip) (2-21)

in which A\,, G, , (37 are related to ) , G, ¥ by

>\‘ !4— 3") G. (1" _)_ P
(t+5) ' (e

(2-22)

For moderately dissipative soils, the attenuation ratio ¥ and
the critical damping ratio (5 are almost equal. Also, G‘,’-"G‘

and )\, = X.

In the following sections, the Lamé constants shall be

interpreted in terms of equations (2-20) and (2-21).

For a Voigt-type solid, analogous to a spring~dashpot system
in parallel, the real part of the Lamé constants is
independent of frequency, whereas the imaginary part is
directly proportional to it. For this particular case, the
inverse Fourier transformation yields for the relaxation

function

Gy = Diye wl(t) + Cipee S(t) (2-23)
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where u(t), §(t) are the unit step and Dirac delta functions.

Substitution of (2-8) into (2-2) and integrating yields:

0y = Dy & * Cie € (2-28)

This relation is formally analogous to the familiar

expression
F= kuscl (2-25)

/
1

| 7 R B

fig. 2 -; k
14— A
/ .
7

of the Voigt model. This type of damping is usually referred

to as of the wviscous type.

If the imaginary part of the Lamé constants is also assumed
independent of frequency, an assumption that corresponds to a
linear hysteretic type of damping, a complex relaxation
function is obtained, and no correspondence exists for the
problem in the time domain; that is, hysteretic damping
cannot be expressed in terms of linear diferential equations,
but must be derived instead from considerations about the

average energy dissipation in a hysteresis 1loop over one
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cycle of harmonic motion, which, in general, will also depend
on the amplitude of the applied loads (displacements). This
introduces the problem of the so-called "strain compatible

moduli" of non-linear stress-strain relations.

It is generally accepted that the internal damping in soils
is not of the viscous type. Experimental evidence seems to
indicate for dry or relatively dry granular soils that this
damping is of a hysteretic nature: the stress-strain curve
for a cycle of steady state harmonic loading forms a closed
loop. The damping behavior of cohesive soils and saturated
sands is less clear and appears to be a superposition of both
types of damping, as a result of relative motion between
mineral skeleton and pore fluid on the one hand, and

irreversible sliding between mineral particles on the other.

O—“

my

V4

fig. 3

Best estimates for both types of soils are reported by
whitman (50) as ranging from 3 percent to 8 pexcent for

relatively dry granular soils, and from 5 percent to
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17 percent for clay. For the magnitudes of stress changes
typically found under machine foundations, a damping ratio of
5 percent critical was suggested to account for internal

friction in any soil.

Internal damping is less important for translational motions
(swaying and vertical excitation) than for rotational motions
(rocking, torsion). For the latter, the internal losses in
the soil play a significant role in the response, especially
at resonance. Investigators have shown that about 2/3 of all
the energy 1lost in form of travelling waves (radiation
damping) corresponds to surface waves. For this reason, the
reflection of bodily waves at the base rock in a deep stratum
will not significantly reduce the radiation damping, which
accounts in the translational modes for most of the energy
lost, and internal damping is of secondary importance. 1In
the case of a shallow soil layer resting on a rigid base,
however, the underlying rigid layer impedes the radiation
away from the pressure bulb. This results in a decrease in
the radiation damping, an effect which can be considerable
for some cases. Furthermore, no waves at all can be
propagated in a stratum below certain critical frequencies
(which depend on the depth and physical properties of the
stratum), and hence, no energy can be carried away from the

source, thus eliminating the radiation damping effect. For
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these cases, the proper choice of internal damping is of

critical importance and significantly affects the results of

the analysis.



3.- Theoretical background.

The finite element technique has been applied succesfully in
the stress analysis of many complex structures. Recently,
the method was applied to the structural analysis of solids
of revolution subjected to axisymmetric loads (53) and has
been extended to the case of non-axisymmetric loads (51). 1In
this approach, the problem is divided into a number of
uncoupled two dimensional problems by representing the
unsymmetric loading or displacement pattern by an equivalent
Fourier series about the axis; but the three-dimensional
nature of the problem is preserved, because of the three
degrees of freedom associated with each node (nodal circle or
ring) . Due to the orthogonality of the Fourier series, each
term in the loading series produces a displacement set in the
same Fourier mode as the prescribed loading or displacement
field. If the prescribed loads (displacements) do not vary
too rapidly around the axis, a few terms in the series may be
sufficient for an accurate representation. This
pseudotridimensional analysis offers considerable savings in
storage and computation time, as compared to a full

tridimensional analysis.
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In this study, only the first two modes in the series are
needed, since they suffice to describe the general motion of
a rigid circular plate (foundation) acting on the free
surface of a soil stratum. These are n=0 for vertical and
torsional excitation (axisymmetric modes), and n=1 for
rocking and swaying (plane-symmetric modes) .

3.1.- Displacements and loads:

/U,Fo

u-,Pr

fig. 4

In the cylindrical coordinate system shown above, the

displacements in the radial, vertical and tangential



23

directions are denoted by u, w, e, while the loads in these
directions are denoted by P v Br Pyr respectively. They can

always be expressed in Fourier series by:

el [l
u = g:o( U; cos ne +Uj sin ne) . P gb(‘p,'; Cos ne + P sin ne)
= o= n _n @2 . a . (3-1)
w go( W, cosne + W, sinneg) Pz =Z( Pzy Cos ne + Pz'; sin ne)
nzo
= _ o
0 = L(-0 sin e + T cos o) Po = 2 ( ~Pog sinne + Pga Losne)

fav azo

where the mode amplitudes with subscript s,a are referred to
as the symmetric and antisymmetric displacement (load)
components. For the sake of notation simplicity, the indices

shall be dropped, writing simply

cos np
u = ZL{. Sii Mo
n

v s Zw( o “°) (3-2)
n Sin Nne
_ - 5in ne
v = Z U'( )
- ws he

with similar expressions for the loads. An alternate

notation could be



2h

pest

ine
9% = e

ne

k3

i
]

g

o

(3-3)

but since the modal amplitudes are complex for complex

moduli, the latter notation is not advantageous.

The modal amplitudes (for harmonic loadings) are only
functions of r,z, and do not depend on ©. The minus sign
jntroduced in the sine term for the tangential displacement
(load) has the effect of yielding the same load-displacement
equations (wave equations) for both the symmetric and

antisymmetric components (same stiffness matrix in the finite

element formnlation).

It is convenient to partition the displacement vector into

(3-4)

m Z{\;} [ fﬁ,) -y4, (o)
20 (07

-
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where

I el
Gl

(3-5)
1
The modal displacement vector is then:
E] Q
U - ‘ = W
Wl v (3-6)
2

3.2.- Strain-displacement relations:

The strain-displacement relations expressed in cylindrical

coordinates are

ou
€ = v
u 1 v
Coo = T+ * T 7Te
ow
¢ = 3z
ou dw (3-7)
A SO
sz - 0Z or
.J_A‘i . Dy ...L
fro = r e dr r
oo, 4w
Yoz = Tz t r Je
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Introduction of the displacement expansions (3-2) into the
expressions above yields (commas denote partial diffe-
rentiation) :

- woHe ¢ -
é"f' B Z Eer ( s nes , Err = U

éea = i Eea

s B ra . _L(q _ VIU')
( S ne\ éee r
A=) )
= ¢ oy ne ¢ _ -
b Z e o) | s (3-8)
= I s N O o et
ac Y g (20 L W
X Krl ( Sia nd ) Xf‘Z o Iz

- = ~ 5 nB 3 1 - = -
o5 Gl e {resers)

o0
; u,z)

p _,Z - ( -5n ne) —
oz XQz oo nB , Yoz
As in the case of the displacements, the modal strains §_

L}
Ve
=

'\IE\

fzo
-

Z%, Ezz etc. are a function of only r and z. They can be

written in compact forms as:
€ - AU (3-9)

= - rd < — -~ T - .
where & = {Er(, Eeg. 52,_r sz ’ Xre ’ Xez§ is the modal strain
vector, U =§a,Q,G§T is the modal displacement vector, and A is

the partitioned matrix operator
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b |
or o 1 0
I
A - 0 —g; : 0
R I (319
> o ewlF)
0 L]
|

<
N

It is convenient to partition the strain vector into the in-

plane and out-of-plane components,

_ €.
£ - _ (3-11)
€,
where:
£
_ _ ¢ _
.E, £ E - o (3-12)
o - 2 =
.2 {ze

With this notation, the true strains are:

o
"

2 & (5
Y E (e

(3-13)

m
0
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and the (modal) strain-displacement relations become:

H

A‘\‘\UA * nAnz[l
A U + AU,

3

(3-14)

™
n

2

where the operator matrix A was partitioned consistently into

n
(3-15)

>

F3] 22
Here:
D)
or © 0
| 1
r ° "
[\n4= 0 o l\u -
)z Y
0 d
3z or ©
A 0 J r-ﬂ (1—)
_ r - or \ v
l\m - 1 A\u \ 3
© I3 dz

3.3.- Stress-Strain relations.

The stresses can be expanded in the same way as the strains,

and the modal components are related by
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—

g -DE (3-16)

where D is the constitutivity matrix containing the material
properties. In general, D is a function of the point under
consideration; in the present case, D is restricted to be a
function of r and z only, that is, the material properties

may not change with © (cross-anisotropy).

If, as in the case of the strains, @ is partitioned into

F

e

g - q, g, - (0_;: (3-17)
d, Grz

Tre

61—9

then the true stresses are given by:
0 - £O(20
1 1 5w ne

o - %0 () a1
2

5’: =

For an isotropic material, the constitutivity matrix is given

by:
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AN+ 2 n A A |
A A+ 2 p A |
| D,
! =
D = A A Al |
l
|

(3-19)

where )\ and pm o are the (complex) Lame constants. They are
related to Young's modulus, Poisson's ratio and shear modulus
through:

S 2y
Y = E Q*\O(}“Z”) = 6 2y

4 (3-20)
201+ ¥)

}A:: G = E

The partitioning of this matrix into the submatrices D,, and

D, (dashed lines) is consistent with that of the stresses and

strains, and it follows that:

(3-21)
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3.4.- Wave equation:

The general equations of wave propagation expressed in

cylindrical coordinates are

',)A 26 W, oW,
fw = (X*ZG)T - F T 26 a:

0 ) 0 W -
(v - (e26) 3 - FE () T 22

where
- J (cv) Lor Qu
A = érr ¥ Eeg Ezz - r or + (o e 0Z
1w _ 31)
("Jr = 2 (\"DG oz
(e 2u) i
We = 7 (TZ - or (3-23)
4 rv) dw
Wz = 7 ( or De)
Introducing the modal (Fourier) expansions into the

expressions above, it is obtained for harmonic excitations

(with frequency £ ):
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09T 0 ((gane) =Y [ Oeze) 3R + 2622 cz6 522 ] (0]

sSm ne

- VSLZZ = ( :: :\z) ) Z[(MZG) g;li 26 0% _ 26—?—@(] (wsho>

s\ ne

T o () - Tl eE - e e 26 38 (20)

C ws ng

(3-24)
in which

LW % T o (e |
A = F Y or nT o oz ) A= Z A ( W e )
- n o— 0 2, ~ o 1
We = 3 ( W - 3—2—) ) We = 2 W, ( w5 e
On = | ou _ _QE) = ws ne

e = z ( z or ) We = We ( oW no

_ \ )T i) = (_sm WO
W, = r ( o n ] We. =Z Wz 05 ne

(3-25)

Since these must hold for any arbitrary angle e,

equations

and the modal displacements are independent of e, it follows
that:
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—-fﬂ'za = (>\+26> e + 26 %—QL + 26 337

—oti = (hi26) 5= - 26 252 - 26 1 (3-26)
oSt T = (he26) 2R - 26 %E ¢ 26 G

which shall be called the "modal wave equations". They are
only a function of r and Z, with the parameter
n= 0,1,2,...dependent on the Fourier decomposition of the

loadings or prescribed displacements.

The general solution to this system of partial differential

equations is (34):

W o= iy ¢ l—'{—z. U,

(3-27)
w = W| + WZ + Ws
Vo= U, o+ Vo + U

where the particular solutions 4, , u,, etc. are given by
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=l
1
{
xo
~
I
o s
=

H

- 3-28
A (3-28)

2 -mz +8t
B ;;’; H:.)(glr) ¢

S
]

_mz+ 0t

(2)
- C m «)Ar‘ Hﬂ (QQJ@

&
n

\2) -wmz 4 (SLE

W,e CROH, (&) e

— ) _mz-H:th
U, = ~Cm = H, (pzr €

=
in which H ¢2)(kr) are second Hankel functions of order n

(order of the Fourier component), A, B, C are integration

constants, k is an arbitrary parameter (wave number), and:
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{=: K-t & = %
f (3-29)

- : 2_ 2 _ —.5_1__

m= - p p= "

i:-\/ ¢ _‘_z-\/__?_
Ue A+ 26 Us G

Actually, analogous expressions containing first Hankel
functions H (1) (kr) have been omitted in the particular
solutions given by (3-28), since they correspond, in
combination with the factor euLt , to waves travelling £from

o towards the origin and thus must be disregarded in
accordance with Sommerfeld's radiation principle. (Sources
confined to the vecinity of the origin). For this reason,
the index (2) and the argument (kr) in the Hankel functions,
as well as the factor eixt, will be dropped from now on,
which shall be understood. Adding up the three particular
solutions, and factoring out the Hankel functions, the

general solution can be rewritten as:
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G- @K L EH,
W= f.(2) kH, (3-30)
U= {:l (Z> Df: Hn + {5 (7-) H'n

2)

Where H‘ _ aHn (‘Qir)
n - or

and

()= & (A ™A -m(ce ™)

@)= -L(A €™ A ™) s & (c ™ ¢ e™)

(3-31)
-mZ mzZ
s:s (7-) = B4 € + Boe
Equations (3-30) can be written in matrix notation as
ﬁ - H F (3-32)
where
‘ n 3-33
Hn T H" ( )
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and
g (2)

L@
{3 (Z>

(3-34)

—n
H

correspondingly, the modal wave equations can be expressed

shortly as

W - HL - 0 35

in which the components L, of the L vector are given by

(£, =35

]

L= & (u26)(f-&E) + 6 (F-%E) + pof,

L= Oe20) {10 - %f) + GA(F-R L)+ poh

L= 6(R-%5)r ¢=h
(3-36)
Also, the expression of the strains and stresses in terms of
the functions £, will be needed later. Substituting (3-30)

into (3-8) results ir:
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E—zz= II‘;%H'\
(3-37)
S = [ Mo+ £ 2H, + KRN
gre = Z]C %(H:\’ 'HF")+ ]fs(H:—"F H:.* ‘?;Hv\>
o= [ 2 W+ [ Ho+ RETH,
and with
A= (- %f)&H,
(3-38)

the stresses follow

(3-39)
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l

3.5.- Principle of virtual displacements:

In dynamics, the generalization of the principle of virtual
displacements intc a law of kinetics by use of D'Alambert's
rule is referred to as Hamilton's principle. For non-
conservative systems, the principle states that the work
performed by the applied external 1loads and the inertial
forces during an arbitrary virtual displacement field that is
consistent with the constraints, is equal to the change in
strain energy plus the energy dissipated by internal friction

during that virtual displacement.

Hamilton's principle shall be specialized and adapted for the
specific problem discussed in this dissertation in which the
coordinate system is cylindrical, and the viscoelastic
constants are complex. By applying two Fourier
transformations, one in the time domain, and one in the o

coordinate, the principle of virtual displacements for
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axisymmetric systems subjected to a general harmonic

excitation shall be developed.

A general form of Hamilton's principle in elasticity is

J{ [[f s v =[[f o Co-gudav - [Joucpcdn ot - 0
Y v Se

(3-40)

where §&; is the virtual strain field corresponding to the
displacement field du; which is consistent with the
constraints, and vanishes at the ¢time t, and ¢t,. Se
corresponds to that portion of the boundary where the forces
are prescribed. The term 56% Gh represents the change in
strain energy as well as the energy lost due to internal

friction. Since the prescribed virtual displacements are

arbitrary, a set of displacements can be chosen of the form:

0

Suc(xt) = S¥ (x)-5(0) x= (5, % %)

(3-41)

(Sé“d (Xﬁ;)

5aﬁ0-5&> t st étz

where x stands for the coordinate system, and §(t) is the
Dirac delta function. Substitution in (3-40) and integration

over +he time domain yields
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_m’sei-s Q;; 4V —J:HJG; (be- i) v —ﬂéﬁ; P: dA = o
S

(3-42)
where Uy , b, U; , and Pe are evaluated at the time t.
Alternatively, it is possible to arrive at this result
starting from the equilibrium equations (wave equations) and
the boundary force equations, and conceiving the time
variable to remain constant while the virtual displacements
are applied, that is, the real motion is stopped while the
virtual displacements are performed; however, the inertial
forces must be assumed to persist. In other words, it is
assumed +that +the performance of the virtual displacements

consumes no time (18).

Applying a Fourier transformation (FT) to the equation above,

and defining

G, (@) - FT(G®) b= rr(blo) , febv= FT(%lb)
a; () = FT (u (t)) , st (- FT (UL “‘.)) (3-43)
yields
‘m'csg%d:\‘ CIV“J:[,‘fSL‘IL (EL.{- Vﬂzab>d\’/ _IJ’?&LSJLAA;-O
N (3- )

where the transformed quantities are in general complex.
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For a general viscoelastic material, the stresses 63 are

~

related to the strains ¢; through the relaxation tensor
Ty = 19 Gijap Cq (3-45)
which for an isotropic material has only two independent

components G, A . In vector notation, this was written as

(eg. 2-8)

~

d - DE (3-46)

For real elastic moduli, the stresses will be real and in
phase with the strains and displacements, whereas for complex
moduli, they will be complex and there will be a phase lag

between these two quantities.

An alternate form of equation (3-44) is obtained by

integration by parts, resulting in

H 6% (G5 + By v (L0 AV +ﬂ'5m (5. - o0y ) dA = 0
5 (3-47)

which for arbitrary variations of the virtual displacements

ol yields the body and boundary equilibrium equations.
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Using the stress strain relation (3-45), the term in
parenthesis in the first integral becomes the wave equation,

and

‘[[[5“ wave equat:on) dv +J 5“ - Ky; .,J) dA = 0

(3-48)
a form which shall be useful later on. Switching now from
tensor to matrix notation, and dropping the superscript
tilde, with the implicit understanding that the applied
forces (displacements) are harmonic, equation (3-44) becomes

then

I_UéETo' d “mwf(h st W) dv -ﬂéu’HA -0
Se

(3-49)
The principle of virtual displacements, specialized for the
modal components in the axisymmetric formulation, can be
obtained now expanding the strains, stresses, forces and
displacements as in sections 3.1 through 3.4 in Fourier
series around the axis. For a cylindrically orthotropic
(cross anisotropic) material (D,, =D, =0), integration w/r to

e, with dv= r dr de dz, and using



rz‘“
) S me swmne do = (5..,“ - J..wcsm,)ﬂ'

]

{T‘ for m=n #0

o else

2 M for m=n+o
05 MO wWw5nd AB = (‘Smn + 5m°5u0> “- = {21‘( w m=n=o0
Jo o elee
2%
shmp wsnede = O

<o

yields for the principle of virtual displacements

JJ(«SESTDE_,, * 52: DEJ rdrdz —J]"'Sf(éll: u, +§u: u,) rdrdz =

= H(éﬂ: fs + 5':‘:?;)\’45
Se
or since (535, Sﬂb ) and (553, oU, ) are independent and

arbitrary

‘U SEDE rdrdz -Hgﬁ5u1u rdrdz =J'JUTPMI5

where the indices s, or a and the superscript bar referring

(3-50j)

to the Fourier modal amplitude have been dropped and are

understood. Similarly,
H«SUTWrArAz +ISHT(P-OT,)rd5 = 0 (3-51)

where W=HL (eq. 3-35) are the modal wave equations, and

0, = {%; 0] are the projections of the modal stresses on
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the unit outward boundary normal. Equation (3-51) will be of
advantage over equation (3-50) or (3-49) when using the
principle of virtual displacements to define the eigenvalue
problem for the viscoelastic enexrgy absorbing boundary, since
it will not require a cumbersome integration of product of

the Hankel functions over the coordinate r.

3.6.- Finite element formulation:

fig. 5

In the isoparametric formulation, the displacements are
expanded in the same way as the coordinates. Let @ denote
the expansion vector; the coordinates of a point P can be

then expressed as:
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(3-52)
T
- 92, Z. -z
and using the same expansions for the displacements,
. {a,
T
u- &u U= {s u,- {{a (3-53
’ {v)
where
¢
$ - ?
¢ : (3-54)

is the expansion matrix.

On the other hand, the strains are given in terms of the

displacements:

E- AU

B = A QT = (3-55)
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it follows that

€ -B U«, (3-56)

Substitution into equation (3-50) gives

Z LSUZ{J](BTDB B §Q2¢¢T)U,rd"dz "j@P rds = O

Elements (3 -5 _7)

and from the arbitrariness of the virtual displacements,

(_Ygfm + }C) Uu-=9% (3-58)

where U, P stand now for the total nodal displacement and
load vectors. The total stiffness and mass matrices H,m and

the load vector ? are assembled from the element matrices:

M& = PQCP(PT rdr dz

oS

-

(BDB rdrdz

J (3-59)

PCPP rds

Ke

P,




48

where the index k refers to the k1h element. . Substitution of

o2 ) 8 (5] el
D; nbz) bzz ¢

gives

K, +n K n K,
Kﬁ =
" K K,+ v K, (3-60)

where
K. - J[bD b, cirde
K. - Jfb[D b, rirde
K. - JJ(8D, b+ b D, b,)rdd: w-60
K, - J[bD, b, riree

K, - [J BD, b, rdrde



and

m = J:[Y ¢¢Trdrdz

The integration in each element is carried out by means of
Gaussian quadrature with the dimensionless coordinates %, 7 -
The details of the isoparametrxic formulation will be omitted,
since they are well known and need not be repeated here.
since in the Gaussian quadrature scheme (3x3 points used)
there are no points on the boundary of the elements, no
problems are encountered with the singularity of the
integrand at the symmetry axis (r=0) for those elements

adjacent to it.
3e7— Energz-absorbin -pboundary:

As has been mentioned earlier, the far field region is to be
substituted in the finite element formulation by the dynamic
stiffness matrix of a consistent energy absorbing boundary.

The idea behind this boundary is as follows:

If the core region is removed and substituted by equivalent
distributed forces corresponding to the actual internal
stresses as given by the continuum theory, then the

equilibrium as well as the dynamic behavior of the far field
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region is preserved. since there are no other prescribed
forces acting on this region, the displacements at the
boundary (and in any other point in the far field as well)
are uniquely defined in terms of these ficticious boundary
stresses. Therefore, if these stresses could be related to
the corresponding displacements by means of a dynamic
stiffness function, then the entire far-field could be
substituted by this stiffness function as to the effect of
the far—fieid on the displacement of the core region. On the
other hand, it is always pessible to express the
displacements in the far-field region, and particularly at
the boundary, in terms of eigenfunctions corresponding to the
natural modes of wave propagation in the stratum. The
general solution to the wave propagation problem is given by
equations (3-28), which depend on the integration constants
A, B, C, etc. and on an undetermined parameter k, the wave
number. In an unbounded medium, any value of k, and hence,
any wave length is admissible; for a layered stratum,
however, only a discrete spectrum of wave numbers and
propagation modes can be found that satisfy the given
boundary conditions. Therefore, at any given driving
frequency ) , there exists an infinite but discrete number of
such propagation modes with associated wave numbers k, wiiich
can be found from a transcendental eigenvalue problem

resulting from establishing the continuity of the stresses
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and displacements across the layer interfaces, and the use of
the boundary conditions at the base rock and free surface.
For each of these eigenfunctions, the distribution of the
stresses can be determined in terms of the modal
displacements at the boundary up to a multiplicative
constant, the participation factor of the mode. Combining
these modal stresses as to match the actual (unknown)
distribution of stresses at the boundary, the modal
participation factors can be computed in terms of the
boundary displacements, and from here, the stiffness function

relating boundary stresses to displacements.

The solution of the transcendental eigenvalue problem for the
continuum solution is extremely difficult, and can in general
be found only by search procedures. However, by substituting
the actual dependence of the displacements on the z
coordinate, as given by equations (3-31), by a discrete
expansion consistent with that used for the finite elements
joining  the boundary, it is possible to reduce the
transcendental eigenvalue problem to an algebraic one with
finite number of modes, for which numerical solution methods
are readily available. Ooperating with this discrete
solution, the dynamic stiffness matrix (in place of the
stiffness functions) relating nodal forces to nodal

displacements can be determined and then added to the total
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dynamic stiffness matrix of the core region to form the

dynamic stiffness matrix of the system.

consider a toroidal section of the far-field limited by two
cylindrical surfaces of arbitrary coordinates r and r +1, as

shown in the figure below:

|
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fig. 6

The stratum, as shown above, is discretized in horizontal
layers, the interfaces of which match the nodal joints
(circles) of the finite element mesh in the core region. The
displacements for free harmonic waves in any layer in the

far-field region are given by (equations (3-32)):
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U = HF F f2

) (3-62)

{3

I

where F contains functions of z only (equations (3-31)). Let

the values of these functions at the interfaces be defined by

XL - %z (3-63)

where the index i refers to the interface. consider also any

particular discrete layer:

boundary
—— = —
{ i
I
t
'
,‘ Y - — - — = jth layer
. isl
!
— — —

ie2

fig. 7

The layer vector X, assembled with the elements of the X,

vectors associated with that layer is now defined as follows:
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(X, ).

X G

where m is the order of the finite element expansion joining
the far-field boundary. Rather than using the exact
expressions for the F functions which contain the unknown
integration constants and the eigenvalue k, these functions
are expanded in terms of the nodal values X;, using the same
expansions as for the coordinates and displacements in the

finite element region:

F - NX

where
4
N={311,8:I;"'3W‘I}! I={44i
(3-66)
= {3&IJ§

contains the expansion coefficients g; .

For linear expansion (m=1), the coefficients are §, = {-1,

= #1, and the expansion matrix is
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1-—1 4+vl
N = 1-v, 4+Vl 1 - < Vlé 1 (3-67)
-1 44
For quadratic expansion (m=2), the coefficients are
= 3 1~V 9= 1-92, 9, =:%1(1+1), and the expansion
matrix is
$1(1-1) t-f 31 (9+0)
N- 21 (1) - 21 (1)
| 2
g1l 4 1)
, -js s 4

(3-68)
Form here, it follows that the displacements across the layer
are given by

U = HNX

(3-69)

In particular,

=

U - HX, -

&

(3-70)

g\
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are the nodal displacements, so that

U.

L

U = Nuo U { (3-71)

J ° Ll
tem

The variation in the vertical direction of the displacements

at the finite element - far field boundary, as given by

equation (3-71), is consistent with that of the finite

elements, since the same expansion is used in both cases.

The purpose now is to determine admissible solutions to the
free wave propagation problem using the aproximate
displacement expansions (3—71). The exact expression (3-62)
satisfies the principle of virtual displacements,
equation (3-50) or (3-51) identically, since it is a solution
to the wave equation. In the aproximate solution, defined in
an energy sense, equation (3-69) is substituted into
equation (3-51) (although equation (3-50) is equivalent to
(3-51), the latter is preferable, since it avoids a
cumbersome integration over r ), integrated over the region
(see Fig. 8 below), and required to vanish for arbitrary
virtual displacements SU. Further, one requires that
equilibrium be preserved on the average at any arbitrary
vertical section by applying consistent nodal boundary
forces P, , P; , at r=r, and r=xr +1 as predicted by the

displacement expansion.

e AR B B
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-~y
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NG5 e

o ro+ 1l
fig.8
pefining by S, . ﬁ the vertical boundaries, and by S, the

(discrete) layer interfaces, equation 3-51 can be written as

Z{ﬂduT\J rdrdz +JJuT(P—0',,) rds + Jéﬂf(?-o;),—&b +
5, 5

layers

cJowe-gyas) - o (3-72)
5

consistent nodal forces P , P are applied at each of the

¥

boundaries r, , r, + {, such that the integrals over S,, S,

vanish, obtaining

T{swp- Jaupeds - [swacd ) (-7

layers

and a similar expression, which is not needed, for S, -
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Oon the other hand, there are no external prescribed forces

acting at the layer interfaces, soO that

Z{J éuTWrdrdz - jJLlO',,rals} = 0 (3-74)

layers

Io ro+l

v

I
f
1
t
[
1

A o N

fig.9

________ S,
. R
o] %= S

Ge

Now, for the layer interfaces S,, is given by

C..
g, = & 0.
T,,

(3-75)

where the positive sign corresponds to the face z=z' (S;)s
while the negative sign to the face z=z' (S,). Defining @, to
be the vector with the positive sign, equation (3-74) can be

modified to

YA oww e - [owe

layers

h
rdr } = 0 (3-76)
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Now, it is allways possible to make the transformation

J’Ju 0 cde = ,”‘67- 0;) rdrdz
jI M 3% cdedz +” J(%%T)o; rdrdz  (3-77)

and substituting into (3-76)

([ 38t - Jf 58 i)«

layers

ZI{I‘S“T(\“’— %3)41 - J‘S(%‘%‘T)O’v AZ } rde =0

(3-78)

On the other hand, from (3-37) and (3-39)
G[({,‘\t%{z)H; *_"FH,,{:?:]
O; = [ (X*ZG X%L ] ~1

6 [ (f+ RE)EH, « fhn]
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G (f+&L)
0= H{(20)f -2k

(3-79)
G,

where +the matrix H is the same as the one given by
equation (3-33). The wave equations (3-35), and the boundary

stresses (, can be expressed as

W - HL - HLF

(3-80)
g - HSF
where the operator matrices £ and $ are given by
PR > , )
- K(26) 6 R(W26) % o
2 2 D"
L = -%(x*z@)-}z 02 - K6+ (\26)5 0
o o \’Sf—%z(; + G g;_,_

(3-81)
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62 Gk
S = -Ak ()\+ 26) dz
>
Gz
It follows then, with sd= HN X and F = NX

ZJiI‘SXTNTHTH(L“BDES)NXJZ‘ _[5)5’1—';—|1HrHSNXAz}rar: 0

Layers f

(3-82)

But, N - {m IJ.);

(3-83)



Also,
S
2.5; - 5;' = > X
oZ - ")‘&5’ ()\4'26) 0z%
6

A A+26 o -X
£-5'=&’5f{ ' }_%Z S I
4 G

62

(3-84)

Nl

It is possible now to make the following transformation:

NHH(L-8)N - AN-8)N

NHHSN - HNSN

where the matrix H is given by

" - HH

"HH

(3-85)

(3-86)
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and is formed with m+1 (m=order of F.E. expansion) 3x3
submatrices H'H. Since H is independent of z, substitution

of (3-85) into (3—-82) yields

Z §X {Iﬁrdr} {IN(L-S')NAz - :[NFSNAZ }X = 0

layers r

(3-87)

or defining

/34
J rdr p (3-88)

%

"

Xl

gives

T X | [ NEgN G- N3N} X - o

(3-89)
Since the non-singular matrix § is the same for all layers,

requiring equation (3-89) to vanish for any arbitrary virtual

SX 1eads to the biquadratic eigenvalue problem

(A%Z’f B% « G—SfM)x -0 (3-90)
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or briefly, with C=-0G- SfM (3-91)

(A%z.’_ B%{‘i‘ C)x =0 (3-92)

where the matrices A, B, G, M, are assembled from the layer

submatrices A;, B; G;, Mj, overlapping the corresponding
nodal elements:
A, |
= number of layers
A = Ai (3-93)
= -
|
A,
]
. !
! _ _ _ %7/ this portion not used, since U 0

rock=

The modal shapes X in equation (3-91) above refer now to the

whole stratum:

X - {XL} _ : (3-94)

The submatrices A;, B, etc. involve integration of terms of the

foijTNaz )JJN”NJZ , J'N'TN'AZ)

and therefore, the integrals of {g:%;} , {59}, {1 %4} {4'9"3
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are needed.

a) Linear expansion: using (3-67),

(3-95)

[ 1)
K
—~—~—
co
cQ
[
e
Qo
N
"
N~
\ 1 1 ]
[ —
— -
"

i
co
€ -
e~}
&R
—
Qo
~N
n
e
- -
\
[N >
e

and the layer matrices are

2 (\+26) Nt 26 \
26 G

26 G >
M 26 2 ()+26)




B -:
G =7
Nt:=%%

0 A-6 o 0 -6 9
A-6 0 0 A6 0 0
- -0 - G---0----0-- - é
0 w6 4 o (a6 o
-(we) 0 0 -(x6) o b
O- =<0 --=-0---0----0---0
6 -6 \
N+ 26 (% 26)
G -6
-6 G ?
- (m26) N\ +26
-6 6
2 1 \
2 1
2 1 >
1 2
1 2
1 2

66

(3-96)
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b) Quadratic expansion: using (3-68) ,

o
—A—
(@ <)
O
=
———’
1)
cu|A
f\A« ——
)
oo -

and the layer matrices are

1)
}

(3-97)
4
-4
3



68

0= == 0-=-0---0-~-0----0-- -0-- -0 -0
0 o (9-Y)¢- 0 0 RO 0 (9 +Y)
0 BUE 0 g gy 0 4 (avg- o
01:..O.||- Q naxw..:-o-i..no-..IQ.‘|a 0 ---9
0O 0 (), 0 o 0 0 o (- X2 g
@ G+Av¢\ Q @ 0 0 @ Aw+<w¢ 0
0- -ao--:o--;m__v,--o ----0---0 ---0----p
4 0 @)~ 0 0 Oy o o (9-)¢
© ") o 5 (W) o b 9 o
9 92 o-
9k 92z -
(92%) ¥ Oz+() 2 (92+X)~
57 99}
92 99 7t o7 ® Ly
9z ()2 (97+Y) 9 (97+\) 7 4
g - 92 9k
9- E24 EA

(92+X) - 97 1¥) ¥ (9T1+¢) Y



69

D WD <1 e
© o ~ ' ™
- KT} Ty
~ P AN -
/2 ~— < \ ~ =
—_— m SN—
t =
D <D <t
~ -
D o9 - '
D D
) ~o £ ~ = ~
L ]
Py P —_—
2 S %
~9
[~g] S~—
\ ) o
=
D () O -
oQ < oo ~ -— ~
\ ~ (
D
2 oo D T ~ -
)
O g &)
+ ~
é —~ /_2 e ~N |
| 2 °|° ~—
v‘
. = S T ~ .
r.. ! H_’__—_—/
=3 (0
o™
it i
- -

Examination of the matrices (3-96) or (3—98) shows that they

define two uncoupled eigenvalue problems for k: a quadratic
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one, involving the x,, X, variables (nodal f, , f,), and a
linear one in k2 for the x, (nodal f£,) variable, since the
corresponding terms in the B matrix are zero. These are
called the generalized Rayleigh and Love eigenvalue problems
respectively. The reason for this denomination transpires
from (3-30), where it is seen that £ , £, define (for n=0) a
vertically polarized (Rayleigh) wave, while £, defines a
horizontally polarized (Love) wave. since the eigenvalue
problems for the natural modes of wave propagation are
independent of n, the Fourier expansion number for the #©
coordinate, it follows that any arbitrary 3-dimensional
displacement field in a layered stratum can be expressed as
superposition of Rayleigh and Love waves with wave numbers as
given by the 2-dimensional plane-strain theory, and weighted
with the appropriate participation factors, cos no (sin ne)
factor, and Hankel functions. A further discussion on the
properties of these eigenvalue problems can be found in the

original work by Waas (44).

consider now equation (3-73). For the sake of notation
simplicity, the summation over the layers sign will be

dropped, writing simply

SUP, - [sU'a; rds (3-99)
S

1
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or since S U - SU:NT, ds=dz , r=r1,

T

T T -
(Suo Po = 5u°J’NU:, D8 dl = Suc roINTUV dZ (3-100)
z
and for arbitrary variations of the nodal displacements

h
P - r°jNTUvdZ (3-101)

on the other hand, for each propagation mode with wave number
k and participation factor oy, the stresses at the vwvertical

boundary are qg = ®e U;& and the corresponding nodal forces are
f
r
P& = T o(&.[N 0:& AZ (3"102)

The modal boundary stress vector O’v% is given by

Ter

U’& ~ )0 (3-103)

O}e ﬁ“‘ mode

S, S,
' (

1
A
)
Q
N
fe—— ]
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Also, from (3-37 and (3-39),

" \ Hn |
26 H, -\ K'H, A 26% (M. E) f
Op - -4 ©H.% GkW.  GEH. % f

62w %) o (M- THCRTHIC B

(3-104)
or briefly
0:’* - SF+TF (3-105)
where
26 H, - & M, 26 = (Ho- L H,)
S =- G&H,
©3(K- 240 ol £ W)
0 A&H,
T T GH:‘ © G%H" (3-106)



vow, F =NX , F'= N'X and
g, <(SN + TN')X
Also NG, - N'(SN+ TN)X
-(N'SN + NTNJX

-(NNS+ NNT)X

where the modified § and T matrices are defined as

~
N
~
~
N
N
« T

and are assembled with m+1 submatrices S, T.

Therefore

Py~ = % { [JNNi]S [ JNNAT]X

75

(3-107)

(3-108)

(3-109)

(3-110)

PEERYL pv's
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The values of the integrals INTNJzetc. are assembled with

(3-95) or (3-97) for the linear and quadratic expansions.

on the other hand, the Hankel functions satisfy Bessel's

equation, and hence

Ha = -t Ha- (- () H, S

From here,

N

\
—
o
()
.‘.
>
—
3=

N

0
3

\
1|~
N
(o
—~
o ol
5 _

}
als,
-
s
N

26 H, - A &H,

(3-112)

and

H, = % Hoy = 2 Ha (H,=-H,) (3-118)

"
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it follows that

Dol Wt = - (20K H, - % (& H,, - M,
‘ . ) (3-115)
6 (W - ) = -2 (R m 2RV - KW,
Also,
26 % (-t = - 2628 (% - i)
(3-116)

With these relations, the matrices S,T can be separated into

S-%S+ %S, + S,

3-117
T-AT,+ T, G=117)
in which
2G4\ o
—Hn \
S, - 6 —
d H.
1 —Hn,.( G 2 - Hw-l
n
Si N ‘%% ) Hn * Q 1 Hu
'1 HV‘I—( 2 - Hn
A -4 H,
S - - 2n (wr) G
3 ro" 0 —Hn-l
-1 p Hn

(3-118)
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0 N -H..

- Hh-!

T =T 'G-t:kl -1 0 1 -Hn—l

Defining the modified modal shapes W&, ¢& and the boundary

load vector b&:
(M. :
w‘m ) “H.. " ) w& - {WL&}
H., *3/¢
(3-119)
—Hn-l X,
¢L& - H, k , ¢a= {¢L&}
'Hn-n x; .

P -_{overlapping coresponding elements in the Pa‘s of each

discrete layer }

S

s v T, o Ty 0 and inte-

and expressing §, T, in terms of S,, S,

grating (3-110), gives for PR, :
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P - on{AY & +(D-E*aN)P, & -

bk
—(“—(—"z—"—‘l[_+ nQ)lﬁh B (3-120)

where the matrices A, D, E, N, L, and Q are formed with the
layer matrices A, D, etc. in a similar fashion as in the

eigenvalue problem.

For linear expansion, they are given by:

2(26+)) Y+ 26
26 G
A -k 26 G
N+ 26 2 (%+20)
G 26
G 26
[, 1
(@) 0
_ Gh 2 1
EJ 3"°< A 2
9] e}
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while for quadratic expansion, they are given by

9¢

9

9¢

97

9¢

9%

9¢

VA

Oe)2

©z+) 9

GN )z

9¢

9%

97

h

97+X)h
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The A matrix is the same as the one used in the eigenvalue
problem, while D has the property that
T
B-D+D

(3-123)

where B, is also one of the matrices used in the eigenvalue

problem.

Adding up the contributions of each mode gives for the nodal

displacement vector:

R = ‘E: Fl&

- Yo {AY K (D-EraN)B & « n (5L~ Q)Y )

- o {AYK'+(D-E+aN)OK + n(5 L+ Q)Y )P

(3-124)

where K = {&] and['= {«} are a diagonal matrix and a vector
containing the wave numbers and the modal participation
factors. The modified modal shape matrices VYV, P are formed

as
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V - {th}——{% Wu} | = Gumber of layers

(3-125)

N

$ {¢&3{¢4¢u}

Now, at any particular node i, the displacement vector is
given by (3-70), weighted with the participation factor.

From here,
U, - Zo(&l"'l)(L X = X.(& (3-126)

and the boundary displacement vector is (U = iu;})

u=wr (3-128)

b

where the (3 x3 ) matrix W = {w;} is assembled with the
(3 x3 ) nodal matrices W, . The latter is given, for any

particular node L by:
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t

(Hn (gl.l'.) X4 tot H': (azer") X*,zt;

afs

3

H'\ (ﬁﬂf! r°>x3lz(,| tee :‘—' Hn(% 3&') x3,3f\

'wi. = ﬂan(?\.qu“' &thn(&:ﬂrbx, D + o040 00 v 0 >

20

A TR TR PP A LA SRR N (WAL

32844

{3-128)

In the expression above, the X, are obtained from the modal
matrix defining the quadratic eigenvalue problem
(equation (3—-94)). The row with zeroes followé form the fact
that the Rayleigh and Love wave eigenvalue problems are

uncoupled.
From here, it follows that
-3
f' = 1J ljb : (3-129)

Also, if QR is the dynamic stiffness matrix of the energy

absorbing boundary, then

P - R U, (3-130)
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substitution of (3-129) and (3-130) into (3-124) results in

RU, = {A¥K - (D-EnNJPK (3L QYW U,

and since it must hold for arbitrary u%, it follows finally

R - {AYK [D-E-NOK (5L-Q)Y W

(3-131)
This matrix is symmetric, as the principle of reciprocity
requires, and it relates the nodal forces at the boundary

with the corresponding nodal displacements.

The proof that the matrix is symmetric when n#0 is
cumbersome, and will not be attempted here. The
corresponding proof for the particular case n=0 can be found
in the original work by Waas (44), where use is made of a
special orthogonality condition of the quadratic eigenvalue
problem. In any case, the symmetry was checked in many tests
done with the computer program, and it was found an agreement
of at 1least 7 significant figures (working in double

precision).

Equation (3-130) represents the forces applied at the energy

absorbing boundary when the finite element region is removed.
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The reaction forces acting on the finite element region

follow then from equilibrium considerations:

P_--RU (3-132)
b b

Increasing the size of (3-132) with as many zeroes as
necessary to match the dimensions of the finite element
system equation (3-58), and adding it to the right-hand-side

of the latter equation results in

(efmM-+X)U - P-RU
(-e2m-K-R)U-P (3-133)
or, defining the dynamic stiffness matrix
K, - g2 MK R 150
yields finally

:HAU. = fP (3-135)

which can be solved by the conventional numer ical techniques.
For arbitrary dynamic loadings, it must be solved in the

frequency domain, as the dynamic stiffness matrix is a
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function of the driving frequency. Time histories are then

obtained using the well known Fourier transformation

procedures.

3.8.—- Base Motion:

There exist in structural dynamics well established methods
to determine +the response of a multidegree of freedom
structure to a given support motion, and in particular, to an
earthquake motion. For this analysis to be possible the
loading history must be known. Due to the random nature of
an earthqguake, this motion cannot be established in advance,
but it is possible in some cases to obtain useful results
employing records of both historic and artificially generated
earthquakes. These records can be specified directly as
support motions for structures founded on firm ground (rock)
only when it is reasonable to assume that the system behaves
in cascade, that is, when the response and feedback of the
structure to the ground has a negligible effect on the
primary input. Many structures, however, are founded on
softer soil deposits or stratum over rock, a condition which
substantially alters at the founding level the power spectrum
of the design earthquake assumed to occur at bedrock (which
is usually an eartquake recorded in a geclogically similar

area at the outcrop of rock) as a result of soil
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amplification and filtering. 1In addition, the flexibility of
the soil at the building site must be taken into account in
many cases in orgder to properly evaluate the response of the
structure, which in turn modifies the primary motion of the

soil in the neighborhood of it.

In the present section, the theory will be extended, and the
possibility to determine the response of an axisymmetric
system subjected to a given bedrock (base) motion will be
investigated. This extension will include the effect of the
amplification, filtering, feedback, radiation and flexibility
of the soil layer on which the structure is founded.

4

wave fronts

[
!
[
|
1

fig. "

If the epicenter of the earthquake (source of the motion) is
sufficiently far away from the building site, it is
reasonable to assume that the arriving wave fronts are

cylindric, that is, independent of the vy coordinate, and
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propagate toward the structure in the form of Rayleigh, Love

or other type of plane waves.

A single component of the motion can be represented by

~  i(kx+8%)
Ux = ux €
€ s a ei (‘k)H- ﬂt) (3_135)
d 3
_ i(kx+ab)
U, = Uz € (

in which S is the fregquency, and k the wavenumber of the
wave under consideration. The amplitudes &, , Uy , 4 , are
generally complex, to account for possible phase differences,

and are also functions of the depth z.

A transformation of variables to the cylindrical system gives
for the radial, tangential, and vertical displacements at a

point with coordinates r, e, 2z:

U = Uy ose +u.abme

(3-136)
U = ~U Sine + Uy cose
w o= Up

or substituting (3-135)

L2 gy B



- . i (x4 SLt)
W = (U\x w56 + uasme)e

<
"

(—ﬁx sine + Uy s ) e((&“su:)

o (Rxs SLE)
W= Uu,e

Expansion in Fourier series around the axis gives

o0

Z (ﬁns oo ne «+ ana sin ne)
v = z (‘B'm 5in nd + U’.‘a s ne)
W = z (Wﬂs oy N+ R,-Vle Si‘ﬂ n9>

Multiplication by c¢os me,

sin me, and integration
period yields (with kx

krcos e, ommiting the

factor
1 for n #0, C,, = 1/2 for n

and Clrl =

:0)'

U STy e
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(3-137)

(3-138)

over 1

Sk
v

(
e
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20 . 91
C ~ ~ . L&( wse
"y - ﬂ_—" cobne(u, bose+unsm9)e de

0] . . - tkr woe
na = F S\ wp (u,‘ Lse + uz 5w19>€ 46

g - ~ . -~ {-&rw
Uhng ="CI‘FJ‘SM no <—ux 5\ 6 + Un "Obe>€- o JB

2w .
v - ¢ ~ . ~ wse
Vs = ‘n:"[ Ly ne (—ux Swm O + Uy wee) eL%r 46
o
(3-139)

— - &R wse
wng,: Cn o5 no < uz> e A@

Trans forming these expressions with the aid of the relations

WS B Wb

\

Nl -

( ws (e) ® + 05 (n~n)e)

\

5M e 5o

Nl—

( ws (w-1)© ~ o5 (m;)6>

(3-140)

N~

5 ne wse = (5in (m)e + 5 (vm)e)

ws e MO = ':'2 (’:J(V) (MOG - 5in (w-l) 9)
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and using the integrals (12)

2w
2 > ® " (3-141)
(%]
2%
A .
o Sl‘n me eu.cose 0'9 - O
2%
(o]
L= AL

) Z = comP\Cx

, Jn(2) = Besse] FUnchion

gives for the displacement components:

Up = Co 07 (Jon (Be) - s (%)) T G- {4 "# o

Up, =

= Co 7 ( Juy () + T, (B«))

t

J

- C. (- ( Jn-s (9«) 4 Tupy (%r)) Ux

Fu s G (30 () - 3 (&), (3142
an, = (‘Vl 2 Lh
Wha = QO
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using the
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recurrence relations for the

Bessel functions, and omitting the argument kr:

= |

2
Y
|

Equations (3-142)
particle of

components

-

homogeneous case in which no structure is present on

the stratum

wg = ARGy Uy

n-\

S

and

coordinates r, e,

and the wave amplitudes

in the neighborhood of the origin.

(3-143)

1 h# O
) Ca = { ’
3 n=0

(3-143)

describe the motion of a

z, in terms of +the modal

Ar

u, ., ua, u, for the

top of

Let ¥Y* be the

nodal displacement vector defined be either the symmetric or

antisymmetric

components (which yield uncoupled problems) in

equations (3-142) at the nodes of the boundary joining the
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layered region with the finite element region. Further, let
P* be the consistent nodal forces necessary *to preserve
equilibrium at the boundary when the layered region is
removed. From the knowledge of the displacement pattern, it
is possible to relate these nodal forces to the displacements

by means of the matrix equation:

P*-QY” (3-144)

L1

—.T-—W_————
<
*
n
ae
u
Q sl £
(14

de

r
|
!
1
+

vl e eeiededsd

fig. 12

The exact form of the dynamic stiffness matrix ® depends on
the displacement pattern of the (homogeneous) wave

propagation problem.

Using the relation (3-144), the incident wave can be replaced
in the dynamic equation of the finite element system by the
equivalent set of prescribed forces P* applied at the nodes

of the energy absorbing boundary. The application of the
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specified displacements at the base of the system with the
structure, and the forces P* at the lateral boundary causes
the system to vibrate, generating the presence of the
structure a secondary set of waves which radiate outwards.
The nodal forces necessary to balance these secondary waves

at the FE boundary when the latter is removed are

AP--RIY-Y") = -RY + &Y’

where Y - Y* represents the deviation of the displacements
produced by the secondary wave train, andR is the stiffness
matrix of the far-field as defined in the previous section.
Increasing the size of v*,R, etc, with as many =zeroes as

necessary to match the dimensions of ", X,

(-sEm - K)Y =DY" - RY ~ QY + P -5

(,Sfm + K +R>Y = (QHR,)Y*Jr? (3-146)

and

HKY = (D+R)Y P

(3-147)
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The system dynamic stiffness matrix:!(dis idgntical to the
one defined in the preceeding section, except that now it has
to be modified for the specified support (displacement)
conditions at the base of the core region. Since no
corrective term was allowed for secondary waves travelling
past the base, the radiation damping will entirely be due to
dissipation at the energy absorbing boundary (layer wavesj.
The underlying assumption is that the base rock is much
stiffer than the soil stratum; this is consistent with the
theory developed in the preceeding sections, where the Dbase

rock was assumed infinitely rigid.

since the shear wave velocity in the basal rock is about 1
order of magnitude higher than that of a typical stratum, the
phase velocity of the incoming waves will be rather large,
and the wave number k relatively small, even in the case when
the wave fronts have grazing incidence. For larger incidence
angles, the wave number decreases further, and for normal

incidence, it becomes zero.

The particular case of normal incidence will be analyzed,
since it is the easiest to evaluate, and the most widely used
in soil amplification studies. Theoretically, it is possible
also to examine other cases, and eventually include in the

analysis only the first few modes (low n), as the Bessel
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coefficients decay rapidly with increasing order. In fact,
perhaps the first two fundamental modes (n = o and n = 1)
might be sufficient, since they are the only ones that
involve rigid body translations (rotations) of the foundation
and are therefore able to transmit the motion to the
structure; the higher modes require a deformation of the
(usually rigid) foundation mat, and hence will be filtered
out to a high degree. Larger responses in the fundamental
modes for non-normal incidence could be expected, as it
involves simultaneous motion components in the horizontal and
vertical directions in each fundamental mode. However, the
main difficulties will be in the determination of the free
field (no structure) wave pattern and the corresponding
determination of the Y* vector and P matrix. For this
reason, only the case of an infinitely large phase velocity
will be considered here. For this case, k = O, and equations

(3-142) reduce, in view of

Jn (O> _ ‘SOV\ _ i { -For n=o

o else

to :
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n=o
u"s— Gna = -Uhs = If,u = O &or ama v
< = (3-148)
w\'\b = uz
n= 4
Qy\s = Ux v“s = A\Ix
u"3 = u“ ‘—fﬂa = LLH
(3-149)
Weg = O Wy, =0

that 1is, for n O the base motion is a homogeneous vertical
excitation of amplitude u,, and for n = 1, it corresponds to
a uniform horizontal shaking of amplitude\/0:+a;. Since

there are no preferred directions for these cases, Uy = O can

be assumed.

The expressions for Y*,9 will be determined now for these
two particular cases.

a) vertical excitation (n = O):

The only non-zero wave equation is
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Fw
A
- W = (%+26) 3 (3-150)
where w is the absolute vertical displacement. Using the
(modified) principle of virtual displacements, egquations

(3-76), (3-101), the (reduced) expansion vector N = {gj} and

the boundary stresses

g - (26)w

A

G - O - 5! (3-151)

yields

Z{J Jw[(}wZG)%i;vi + sfyw] rdz —I%(&w(ku@)w')rdz}:o

Layers

(3-152)
| ey
or with W = N Y,j ) Yj - {%;m\ ;) M order o( £Xpansion
T T )
Y [V NN - (26NN Y de = 0
Layers (3-153)

which leads to the matrix equation (dimension (1 + Hna+ N,

1 = number of layers)

(G-2M)Y -0 (3-154)
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where

R
iff_[ {8 4] 4
b
<X+ZG)I {ﬁjg}dl

<
[}

=

<

(3-155)

@
@
Q)

The layer submatrices, Ml' G, are given for linear and
quadratic expansion directly by (3-95), (3-97), except for
the ¢%2 and A+ 2G factors. Equation (3-154) is solved
introducing the support condition at the base Y, = Wk and

eliminating the last row and column of M and G, thus reducing

them to 1 x1 matracies (condensation)

on the other hand, 0, = 0, = )w‘, obtaining for Pﬁ
. %
(contribution of jm layer) = éT“ }

Piam

P; - \’DJ’NTAW‘AZ - T x{JNTN'AZ}Y} D.Y (3-156)

9, - o [l
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which yields for linear and quadratic expansions:

$ . )\Q -1 1 (l\ncar>
¢ Z 4 1 (3-158)
-3 4 -4
D. = ﬁ‘g‘l -4 0 4 (quadra‘tic>
J
4 -4 3 (3-159)

The (unidimensional) displacement vector Y* and load vector
p* are now increased threefold in size, adding the zeroes

corresponding to the r and e components:

[ (o 0
Ya 3 (3-160)




and the 93 matrix can be modified to

) 0
-G o 0
i = T2
0 A 0
-6 o ©
0 )

The addition of the G terms

corresponding force and displacement

comparison of

)
G
0
0
G
)

- A
0

ol
0
0

is
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0
0]
5 (3-161)
0 (linear zx()
0]
0

irrelevant, since the

terms are Zexro.

(3-161) with (3-121) shows that, except for the

(-) sign, the 9 and D matrices are identical.

b) Horizontal exciatation (n

1)

For this case, u = v, w =0

Wave equations:

2
- Q_T u

]
(O
[\
-
™

n

2 ov
-Q."U’ 6-5?;_

(3- 162)
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Boundary stresses:

_ ou (3-163)
O’rz - (7 -O—Z‘
Jez = G %%

Following an entirely analogous procedure as in the case a),

we obtain for ¥Y* = H‘S ( Y. stands for either UuW: or U;)

G-EM)Y'=0 (3-164)

where the G matrix differs from (3-155) in that the factor

N + 2G is replaced by G:

b
G = ¢ J' {9:9,) dz (3-165)

The load displacement relation is for this case

b {o
P -2V, . i%J g

Y = : - : (3-166)

m/ 2

in which the ® is this time identical to D, also in sign.

The results for horizontal and vertical excitation can then

be summarized by
Fe

*%* -
P - - -0 DY, n= o4 (3-167)



104
since equations (3-154) and (3-164) are linear in the
prescribed displacement, it is convenient to compute Y* (Q)
and the system response U Hﬂ for unit base motion, and
weight later the response with the appropriate displacement
factor. U(ﬂ) would represent in this case the transfer
function of the system for unit base motion. The true time
history can be obtained by means of the well knwon inverse

Fourier transformation

Wo- IFT (W () F(2)

where F (%) is the Fourier transform of the earthquake

record.
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3.9.- Summary  of the procedure:

a)

b)

C)

d)

e)

9)

h)

i)

Generate finite element mass and stiffness matrices, and
load vector.

Generate layer matrices.

Form and solve eigenvalue problems for Love and Rayleigh
waves.

Form boundary matrix , and together with the matrices
of the F.E. region, form the dynamic stiffness matrix of
the system.

Modify for support conditicns

solve in the frequency domain

Obtain desired effects (moments, forces, displacements,
etc)

Obtain time history (if desired) with inverse Fourier

transformation.
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4.- Parametric Studies:

The influence of the geometry and material properties of a
viscoelastic stratum on the response of a rigid circular
plate welded to the stratum and subjected to forced harmonic
excitations will be studied in this section. The main
objectives are: to check the applicability and accuracy of
the computer program based on the theory presented in this
dissertation; to present results for cases for which no known
analytical solutions exist; to assess the usefulness of the
halfspace theory in the case of a stratum on top of a rigid
rock base; and to derive simple rules to extrapolate the
values of the soil spring constants for a stratum from the

theoretical values of the halfspace.

only the planesymmetric displacement modes (rocking and
swaying) will be discussed in this section, as the other two,
namely vertical and torsional motion (axisymmetric modes)
have already been presented and discussed in Waas' doctoral
dissertation. The computer program, however, is capable of
handling all four cases. The rigid circular plate was
idealized by a row of (massless) finite elemets of very high

rigidity (106 times higher than that of the stratum).
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consider a massless rigid circular plate welded to a

homogeneous stratum of depth H:

| fig. 13
e g
Fiu
st p— Cs =1
—1\_——@

. g = 1

k—R—

: R =1
H |

. ¥ = 1/3

!

| B = 005

77 ////f/////i/////////////

The plate is subjected to a prescribed harmonic displacement
(rotation) of unit amplitude at the plate-soil interface, and
the force (moment) necessary to preserve equilibrium is
computed with the aid of the program. This resultant 1is
numerically equal to the dynamic (complex) stiffness function

of the soil at that particular driving frequency:

F= Ksu ) for w=4 =§F=K$
M = K'fe . for B4 — M= K,f

The forced horizontal displacement case will be referred to
as swaying (sliding), while the forced rotation about a
horizontal axis will be referred tc as rocking. The rotation

in the former case and the horizontal +translation in the
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latter case were not restrained in order to avoid the
additional complication of cross stiffness terms in the

subgrade stiffness matrix.

It is always possible to write the stiffness functions as

Ko = Ko ( B+ ba,c)(4+ 204,)
(4=

K\f = K\fo(g(z* chcz) (“’ Ztﬁﬁz)

where K_, K, are the real parts of the stiffness functions

in the static case (static "spring constants"), a,6 = SER
5

,¢+ C,s Cc, are the

is

the dimensionless frequency, and k,, k
stiffness and (viscous) damping coefficients (functions of
a_). If the internal dampirg coefficient B is constant
throughout the (homogeneous) stratum, then the hysteretic
damping coefficient ﬁg is identical to it. Unless stated
otherwise, the internal damping in the soil was assumed to be
5 percent critical (G =G ,-(1 + 2:0.051i)),in order to
eliminate the narrow peaks in the response of the undamped
system due to resonance and reflections at the interfaces and

bedrock.

The functions k, c¢ were found with the aid of the program,

ané determined as follows :
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K, = Rel K(a=0)]

]

L1 K(%=0)
2 m K, ] (4-2)

B

>
|

Re [wam] 5 ©= % Inlw@s)

K (2=0) = K, (4+ ZLPQ

Dimensionless analysis was used throughout, and the results

were plotted against the non-dimensional frequencies:

[, = a, = (4-3)
that is, G, = 2T § (4-14)

The halfspace solutions for the static spring constants are

3 GR .
Kso = — swayma
2-v (4-5)
3 .
K&g - 3 GR (ockmj
° 3(1-v)
where G = ¢(C& is the shear modulus of elasticity of the

soil, and Vv its Poisson's ratio; R is the radius of the
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plate. Unless stated otherwise, a Poisson's ratio v = 1/3

was used in the analysis.

4.1.- Effect of the size of the mesh:

Earlier studies on the finite element method applied to
dynamic problems indicate that the size of the largest
element in a system should be smaller than a certain
fraction, usually 1/8 to 1/10, of the shortest wavelength
that is expected to be reasonably reproduced. In the case of
a layered stratum, and particularly for a deep One, it is
often economically unfeasible to cover the whole depth with a
fine mesh, and it becomes necessary to investigate the
possibility of using narrower (longer) elements with
increasing depth, away from a hypothetical dynamic pressure
bulb. At the same time, it is of interest to check the rate
of convergence towards the continuum solution as the mesh is

refined.

a) convexgence:

To evaluate the convercence of the F.E. solution with
decreasing element size, three meshes with a depth ratio

H/R=2 were considered: coarse,regular and fine:
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The results for the three meshes shown above are presented
for swaying in Fig. 16 as a function of the dimensionless

frequency f, . Also, the static values K, , K are plotted

) (J
in fig. 15 below against the reciprocal of the number of
sublayers (size of the element). The approximate execution
times in the IBM 370-155 computer were 1 sec, 10 sec and

100 sec per frequency, respectively.
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It is interesting to notice that the three static solutions
for both rocking and swaying seem to lie in a straight 1line.
This suggests that the continuum solution could be
extrapolated by the intersection of this 1line with the
vertical axis. since a linear expansion was used for the
finite element mesh, the relative error in the displacements
should be proportional to the square of the typical element
size. Stresses and forces are given with less degree of
accuracy: as they depend on the partial derivatives of the
displacements the error for them should be approximately
linear. The spring constants are determined as reaction
forces, and therefore, should converge at an approximate
linear rate towards the continuum solution as the mesh is

refined. The results above are consistent with this
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expectation, and therefore suggest a useful procedure to
determine static continuum solutions with the aid of a coarse
and a regular mesh. This extrapolation procedure is to be

used later in other cases to be studied.

The function k, shows good agreement for all three meshes up
to a frequency of {, = 0.40 (a, =2.5), at which the coarser
mesh starts to diverge substantially from the other two
meshes. This frequency represents a dimensionless shear

|
wavelength A= %% =-ﬁ=-———=2.50 which is about five times the

40

length of the longest element size in the coarse mesh. A
similar result is observed for meshes 2 and 3, which begin to
diverge significantly at a frequency {o = 0.70 —> A, = 1.43
that is, about six times the length of an element in the
regular mesh. The deviation of the coarser meshes with
respect to the more refined solutions consists mainly of two
effects:

- first, a frequency shift is observed, which is partially
due to the shift in the natural frequencies of the stratum as
compu ted .from the associated classical one dimensional
discrete (consistent mass) eigenvalue problem. (The natural

frequencies of the stratum are represented in Fig. 16 by (+)

for horizontal motion, and (1) for vertical motion)
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- second, the amplitudes later start to diverge, and the
functions cease to have significance at higher frequencies

for the more crude meshes, as could be expected.

In addition, the absolute amplitudes of the stiffness
functions are larger for the coarser (stiffer) meshes, as
their static values are higher. This can be corrected by the

extrapolation method mentioned earlier.

It appears, therefore, that the longest element size in the
region of relevance (high strain gradients) should be smaller
than 1/6 of the shortest shear wavelenght expected, a result
which agrees with previous studies on this subject. The
frequency dependent functions k, c, of this "regular" mesh
can then be combined with an extrapolated static spring value
for the continuum solution. This correction is necessary,
since it reduces the stiffness function in its entire
frequency range by about 15 percent, while the deviations in
the frequency dependence of the stiffness coefficients (at
high frequencies) when a relatively coarse mesh is used are

essentially local.
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b) Dynamic pressure bulb

The idea of a dynamic pressure bulb is a generalization of
the concept of pressure bulb as defined in statics in the
study of pressure distributions under footings. It
represents the zone of influence under the plate (footing)
which commands its dynamic response, and beyond which coarser
finite elements may be employed without significantly
affecting the dynamic behavior of the system. It is
desirable, in order to ensure the efficiency and economy of
the F. E. solution, to use larger elements away from the zone

of influence, provided that such a zone exists.

A series of test runs were made to assess the size of the
influence region for both rocking and swaying. The results

are shown in Figs. 19 through 21.

It must be conceded that the coarse meshes used employing
narrow bottom elements (Figs. 17 and 18) constitute an
extreme case, for the slenderness of the bottom elements,
although in most cases it is convenient to use such narrow

elements in very deep strata.

In the case of rocking (figs. 19 and 20), only negligible

differences are noticed throughout the frequency range
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studied (aspect ratio HR= 4), which indicates that the
dynamic pressure bulb is smaller than the diameter of the
plate. However, it should not be concluded from this that it
is permissible to supress completely the lower (long element)
portion, as this results in an increased value for the static
constant, which in turn affects the values of the stiffness
function over the whole frequency range.

l
e— 1 — ! !

p———— T

4 (////////

. 3
I
fig. 17

K,= 454

ROCKING { K =458

K, =476

(7T f/// S s
1

! 1

i | 2
For instance, the static spring constants obtained for
H/R = 4, vV = 1/3 with the fine and economic meshes are U4.54
and .58 respectively, while the corresponding value for

H/R= 2 (fhat is, eliminating the long element) is 4.76, and

the absolute error is 5 times larger. Similar conclusions
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apply also for a Poissons ratio Vv = 0.45, which was also

tested.

on the other hand, swaying does not behave as nicely as
rocking, as inspection of fig. 21 reveals. The dynamic
pressure bulb for this case, if it exists at all, is much
larger than twice the diameter of +the plate (U4 R). The
stiffness coefficent function starts to diverge markedly from
the refined solution at a shear wave length of some 3 to 4
times the 1length of the 1long elements; that is, at a
dimensionless frequency of f, =-§-= %C= %%(1=1ength of long
element) . It is concluded then that the finite element mesh
for swaying should have elements that in the regions of high
strain gradients (near the plate) are smaller than 1/6 to 1/8
the shortest shear wave length of interest, and smaller than
173 to 1s/4 the shortest shear wave length throughout the
finite element region. Possibly, the dynamic pressure bulb
for swaying is some 3 to 4 times the diameter of the plate,
but since the behavior of strata deeper than four diameters
rapidly approaches that of the halfspace (see sec. 4.2), and
the refined mesh for H/R= 8 (4D) is already expensive in
terms of computer execution time, it seems unnecessary to
further pursue the determination of the zone of influence for
strata deeper than H/R=8, for which the halfspace solution

may be used. The dimensions of the pressure bulb will
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certainly be affected by the presence of internal damping,
which decreases the influence of regions away from the plate
by attenuation of the waves generated at the source of the
motion (plate). On the other hand, the static values of the
swaying spring constant are karely affected by the long
elements (which shows that the static pressure bulb is much
smaller than the dynamic one), but again, these long elements
contribute significantly to the total flexibility (stiffness)

of the system, as well as to the dynamic behavior in the low

frequency range. | |
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The first two natural frequencies of the stratum, as computed
with the corresponding discrete (consistent) one dimensional
problem for the three meshes in Fig. 18 show good agreement
between the refined and the economic meshes, while the half-
depth mesh differs in its eigenvalues by a factor of 2,
emphazing the convenience of including the long element in

the finite element mesh.

Oon the other hand, the stiffness coefficient functions tend
at higher frequencies (except for a frequency shift) to the
results of the shallower (half-depth) stratum, that is, with
the long element replaced by rock (see for comparison Fig. 29

in next section).

Ce. Location of the energy absorbing boundary:

In general, one will place the energy absorbing boundary as
close as possible to the core region in order to avoid
unnecessary finite element columns and realize a saving in
computation time. Nevertheless, it 1is of interest to
investigate the effect of adding more element columns to the
finite element mesh, and compare the results with those
obtained without the additional elements. For this purpose,

the following meshes were considered:
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fig 22

Both cases were analyzed for a unit prescribed horizontal

displacement, and the static reaction forces were found to be

K, = 635 K,= 7,00

that is, the second mesh is somewhat stiffer than the first
one. The reason for this can be found in the fact that the
energy absorbing boundary wuses the consistent expansion in
the vertical direction, but the exact expansion in the radial
direction and is thus more flexible. The frequency
dependence, however, was negligibly affected, and both meshes
showed substantially the same response (dashed curve in

Fig. 23).
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This example demonstrates the convenience of locating the
boundary as close as possible, both for computational

efficiency and for accuracy of the results.

t.2.- Influence of the stratum depth:

The depth of the layer, for a given plate dimension,
influences the results for the stiffness function in two
ways:

- first, it determines the value of the static constant, and
therefore, the absolute value of the stiffness function over
the whole frequency range, and

- second, it affects the shape of the stiffness function,
since the dynamic response of the plate is significantly
influenced by the natural modes of vibration of the stratum,

as well as by reflections at the rock-soil interface.

a) Static constant:

consider, as in sec. 4.1, three typical meshes in which the
element sizes follow a converging sequence (fig. 24). Use of

the program yields table 1 of static values.

Employing the method suggested in 4.1 to obtain the

extrapolated values for the continuum solution, the values in
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the table are plotted in Figs. 25 and 26 as a function of the
relative element size, arbitrarily assigning the wvalue 1 to
the coarse mesh. Full dots represent table values, while (o)

are the extrapolated values for the continuum solution.

These extrapolated continuum values are then plotted in
Figs. 27 and 28 as a function of the the stratum depth ratio

R/H using the theoretical halfspace values for R/H=0.

For swaying, the points can very closely be approximately by
straight lines. That these straight 1lines are nearly
parallel implies independance of Poissons's ratio and
provides an easy way of computing the static spring constant
of a stratum from that of the halfspace. For rocking,
however, the curves are not exact straight 1lines, and show
also some dependence on Poisson's ratio. It is not clear why
the curve for y = 0 shonld have the sudden drop (dashed
line) at R/H = 1/8. Previously, it was shown that rocking
has a small pressure bulb and therefore no dramatic changes
can be expected by increasing the depth beyond four
diameters. Probably the reason for the deviation is that for
a low Poissons ratio, the soil is softer and a stronger
bending environment exists near the plate which cannot be
adequately reproduced by elements with 1linear expansion.

Nevertheless, both the relative error and the increase in the
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rocking stiffness with R/H are small, and this stiffness can,
for all practical purposes, be approximated by a straight
line with some average slope, say that for ¥ =1/3, which is

a probable value to be used for dynamic loadings.

It follows then that the stratum constants can be obtained

from the approximate empiric relations

= (4-6

Ksu = Kso (1*'%% = %%5(44'%%) )
= §6R R -

Kee = K'fu (i" z %> - 3(4-v) (“ ‘é T‘i—> (=7

where R; ’ ?@o are the halfspace static stiffnesses. It is
believed that for strata shallower than 1 plate diameter, the
flexibility of the base rock has to be included in the
analysis, and (4-6), (4-=7) will overstimate the static spring

constants.

b) stiffness coefficients:

Examination of Figs. 29 and 30 shows several interesting
features in the frequency dependence of the stiffness
functions. The real part of the stiffness coefficients

behave markedly different for rocking and swaying.
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The former is a relatively smooth curve, for which the depth
of the 1layer exercices 1little influence and approaches
remarkably the analytical halfspace solution after Veletsos
& Wei (42) throughout most of the frequency range studied.
Swaying, however, displays a wavy pattern in which the
valleys occur close to the natural vibration frequencies of
the soil, an effect that becomes pronounced for shallow
strata. Nevertheless, as the depth of the layer is
increased, the amplitudes of the peaks and valleys decrease
rapidly, and for H/R=8 (4 diameters) it already approaches
Veletsos and Wei's halfspace solution. Had the internal
damping been chosen equal to zero, then the stiffness
function would have vanished at each horizontal natural
frequency of the layer, since it would have required no
energy to sustain the stratum oscillating at its natural
translational mode of vibration. No such compatible mode of
vibration of the stratum with the plate exists for rocking,
although for the shallowest geometry shown (1 plate diameter)
the rocking stiffness function has slight critical points at
the vertical natural frequency of the soil. In the
following, the horizontal and vertical natural frequencies of
the stratum shall be abreviated with HNFS and  VNFS

respectively. They are given for a homogeneous stratum by:
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HNFS = :_; (1+ 2%) o k=0423 ... (4-8)
2(4-Y
VNFS = - 29 HNES (4-9)

on the other hand, the imaginary part of the stiffness
functions, which represents an eguivalent viscous damping due
to radiation of energy away from the plate, shows only
negligible differences w/r to the halfspace solution for
rocking, and except for the wavy nature is shallow strata, is
remarkably close to it for swaying. There is one important
difference, however, between the strata and the halfspace
solutions: the former has no radiation damping in the 1low
frequency range, and then rises abruptly at certain critical
frequencies. These critical frequencies correspond to the
first HNFS (swaying) and VNFS (rocking) below which no Love
or Rayleigh waves can be propagated. Therefore, within this
low frequency range, the only damping that limits the motion
of a mass (machine or building) on top of the layer is
provided by the internal energy dissipation. This effect,
which was already pointed out by Arnold et al (1), is
particularly important for large mass ratios over shallow
strata (tall buildings, heavy equipment), for which the
fundamental coupled rocking-swaying frequency is smaller than

the natural vibration frequencies of the soil. To estimate



138
approximately when this will happen, assume that the swaying

frequency is given by

36R
2-y

where k= is the halfspace spring constant, and M is the

mass of the building.
With G=gp¢2 , M= ¢R®b , HNFs={ = {:— , (b = mass ratio)
it follows then

fe 2 M 2
fw T R (Z-V)b
Taking Vv =0k and %2 ~ 10 ;, this reduces to
N B A S
fo R b

N S 2 (_;_Y (4-10)

For instance, if H/R = 2, a mass ratio b > 8 will produce
swaying frequencies smaller than the VNFS of the soil, and
thus, a large response could be expected, depending on the

frequency contents of the excitation. Similar results can be
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obtained for rocking, but taking as a reference frequency the

vertical natural mode of vibration fw =VNFS:

_ ¢ [ ra26 & [Z205%
fe 4y \/ 6 - 71?\/ \-2y

For this case

g - 86> . 8¢GR
r 3(3-v) 3(1-v)
o4 ke

fr= T

For a uniform solid cylinder of mass M , height h and radius

R , the moment of inertia I can be written as

3 = -%' <aspecjf rafio)

so that

1Cr _ XH\/ A-2y
fr TR N 3 (1+ 430)b

which for y =0.4 can be approximated by
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This ratio is less than 1 if

H \2
b > 12 (’f{ (4-11)
5 2
i+ 3 %
Since M = Ys'ﬂ'RZ%-—' fRsb it follows that
b f
b= TXh o 15 §= e (4-12)
R 2.
where § is the density ratio. Assuming (3==§-0J = 0.03 ka)

P = 0.12 ka we obtain for §

S§= 2B = oz25
.12

hence

b= 025T3% ) 3 - L,%

The condition i <1 is then

fr
2
b > 42 (%J _ 42 (’E)l (4-13)
1+ 5 (4 %)2 1+ = b

For a stratum depth H/R=2, the above expression can be solved

by trial and error, obtaining b2 1,19, which in turn implies
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§> 1.5 , that is , h>1.5R, or h >.75D , a case

frequently encountered in practice.

If +the subsoil is saturated with water, it has a high
pPoisson's ratio, and it is likely that the rocking frequency
of the soil-structure system will be smaller than the VNFS,
and therefore, the motion of the mass will be highly
undamped. Experimental data given by Arnold et al (1) for
the rocking mode show that for shallow strata (H/R=0.84) , the

motions are four to six times greater than for the halfspace.

An additional effect which can contribute to large responses
in shallow strata, is related to the natural frequencies of
the stratum with a mass. To illustrate this point, consider
the equation which gives the (non-dimensional) swaying

frequency for a mass M on top of a stratum:

o R (ke LR Kk
fs = M G A M 2T Cq M
Since (eq. 4-6)
38 6R
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it follows that

= =

i
3

o
~

N

\

4

~—

2
Bo- v T b {l
4 2 2 ('4—1&)
(“ +%)
For v="23 , Ru = Y2 this reduces to
2
B o= 65% bfs (4-15)
At the same time k&, must also be a point in the graph

giving the variation of the stiffness coefficient with the
frequency. This provides a graphical method to determine the
swaying frequency of a structure with mass ratio b . Using
the results for the stratum H/R=2 , vV = '3, (> =0.05, the
(non-dimensional) swaying frequencies for this particular
case can be determined as the intersections of equation
(4—15) with the graph of the stiffness function obtained with

the aid of the program:
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fig 31

Several properties of the solution are worth noting:

_-Mass ratios larger than 5 imply swaying frequencies less
than the HNFS. This is consistent with the results found

before using the approximate calculation.

- For mass ratios slightly larger than 2 , and slightly
larger than 1, (dashed lines in Fig. 31) equation 4-15 yields
a parabola which nearly coincides with the stiffness
coefficient curve in the frequency ranges 0.175-0.225 and

0.250 —0.350, respectively. This implies that any frequency
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in these ranges 1is nearly a solution, and therefore, a
natural swaying frequency. From here, it follows that for
these particular mass ratios and within these frequency
intervals the dynamic response will show wide resonant bands.
This is a consequence of the wavy nature of the swaying
stiffness function, an effect that will not show up in the
rocking mode. It is this nature of the swaying problem which
will increase considerably the uncertainty in the
determination of the swaying frequency when using the static
spring constant approach. This is particularly important in
v.gr. machine foundation design when one has to estimate the
resonant frequencies and ensure that the operating frequency
differs from the resonant by a certain specified factor (at

least 1.5)

- The stiffness function shown in Fig. 31 was computed with
an internal damping ratio of 0.05. For smaller damping
ratios (see also next section), there will be a sharp and
narrow valley for the stiffness function at the HNFS (as
suggested by the dashed line), and therefore, there will be a
solution for the swaying mode at this frequency for mass
ratios in the range 1—5/approximately. That is, the natural
frequency of the soil is also a natural swaying frequency, a
result which will considerably increase the response of the

system when subjected to motions with components at this
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frequency. However, this is only true for unrealistically
small internal damping ratios, which are not generally

encountered in practice.

4,3.- Influence of internal damping:

Internal friction in soils is always present to a certain
degree, and as was shown in sec. 2, can be accounted for in
the theory by means of complex elastic moduli. The energy
dissipation produced by this internal friction avoids the
build-up of resonant peaks in the flexibility functions
(valleys in the stiffness functions) and therefore softens
the frequency dependence of the functions, erasing the sharp

peaks and valleys.

Two possible ways of defining the stiffness functions when

internal damping is included in the analysis are:

K" Ke (?{+La°c)(4+ Z'LF,) (4-163a)
and K= K. (& + @.c+2p)) (4-16b)

Both expressions give a valid definition for the stiffness
and damping coefficients, and yield nearly identical results

(ks%, cx€ ) when the damping ratio P is small, say less
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than 0.05. If the principle of correspondence were strictly
valid, then the first expression should give stiffness
coefficients k, c which were independent of the damping ratio
ﬁ. However, this is not the case. Because of the inertial
effects, the results are strongly dependent on the assumed
damping ratio. For this reason, neither of the two
representations provide a better definition. For a
comparison between both representations, see Figs. 32 through

35.

To interpret the term a, c , consider the vibration of a
mass M supported by the rigid plate foundation. The static

spring constant is K, , and the equivalent viscous dashpot is

C.
Then,
K nC
K, a,c, = € —q, ¢ = —
1 ) M M
= Zﬁ,wﬂ

where [, is the viscous damping ratio defined w/r to the

(resonant) frequency w =4ﬁ%% . From here ¢ it follows that

R

wR
qho = C

5
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hence K

]

Ko (& + 2042 Br ) (1+ 2084) (4-17a)

oxr

<
K

Ko (B+ 20 (2= Pot fn)) (4=17b)

and the analogy to a spring dashpot system is obvious;
however, pr is in general a function of the frequency S .
The second expression can be interpreted as the addition of a
wyiscous” and a "hysteretic" dashpot in parallel. However,
since the first representation gives a better approximation
to the halfspace solution, it was preferred throughout this

study.

The stiffness and damping coefficient functions are plotted
in Figs. 32 through 35 for the two loading cases, Wwith
H/R= 2 , VY= 1/3 . Figs. 32 and 33 correspond to the first
representation , while Figs. 34 and 35 depict the second one.
The results are highly dependent on the attenuation ratio Pg
selected, an effect which seems more important for swaying
than for rocking. The influence of the internal damping
ratio on the imaginary part of the rocking stiffness function
(damping coefficient) is negligible , and moderate for

swaying, except when very low damping ratios are considered.
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For very high damping ratios, the frequency response for
either the rocking or swaying function is flat and the

stiffnesses are essentially constant ( 1st representation).

The fact that the obtained stiffness curves are so sensitive
to the assumed internal damping ratio discredits to a 1large
extent the possibility of deriving "damped" halfspace theory
curves by merely multiplying the theoretical undamped
stiffness functions by the factor 1 + 2iP, . Useful results
could be obtained if only low damping ratios , say less than
5 percent , are considered, but then the radiation damping
completely overshadows the internal damping, except in the
low frequency range , and in particular, below the natural
frequencies of vibration of the soil if a stratum is being

considered.

4.4.- Effect of Poisson's ratio:

The dependence of the static stiffnesses in a stratum upon
poisson's ratio was found in sec. 4.2.-a) to be the same as
that of the halfspace for both rocking and swaying, egs.

(4—6) , (u-=7):
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As in the case of the halfspace, the dynamic stiffness
functions are very sensitive to changes in this parameter.
This sensitivity is increased further in the case of a
stratum by the dependence of the vertical natural frequency
of the stratum (VNFS) upon Poisson's ratio, which in turn
affects the 1location of the peaks and valleys in the
stiffness curves. Furthermore , the influence is stronger
for the rocking case than for the swaying case, since the
former generates mainly pressure waves, while the latter

produces mainly shear waves independent of Poisson's ratio.

Referring to Figs. 36 and 37 , it can be seen that the
general nature of the variation of the rocking stiffness
coefficient for the depth ratio H/R=2 is remarkably close to
Veletson & Wei's (42) halfspace solution for the three ratios
studied. For H/R=4 , the agreement improves significantly.
This fact confirms the accuracy of both the numerical method
used, as well as that of the halfspace solution , based on

relaxed boundary conditions.
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To understand better the behavior of the swaying curves, the
(mesh consistent) natural frequencies of vibration have been
jndicated in Fig. 38 for the three Poisson's ratios studied.
The discrepancies between these curves arise mainly at the
VNFS. For Y =1/3 , the 1st VNFS is located midway between

the first and second HNFS .

The agreement between halfspace and stratum solution is not
as close for swaying as it is for rocking. For deeper
strata, and particularly with a slightly larger damping
ratio, say 10 percent , it is expected that the swaying
curves will approach the halfspace solution as was the case

for the ratio =173 studied in sec. 4.2. (Fig. 29 )

Usually, the swaying degree of freedom is unimportant in
soil-structure-interaction problems, except for exceptionally
heavy structures. For this reason , it is believed that the
helfspace solution can be used with good results in many
practical cases, provided that the static stiffnesses are
modified adequately , say , according to the empiric

equations (4—6) and (4-7) .
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4.5.- Effect of embedment:

only in very few instances are structures founded directly on
top of the soil. Usually, they are embedded to a certain
degree , and it becomes necessary to investigate the effect
of this embedment on the dynamic response of a structure
having the rigid plate as foundation mat. The exact
analytical solution for this problem is exceedingly
difficult, if possible at all, due to the complicated

boundary conditions.

fe— M —>

ke R —4
H fig 39

s Ve Vs S S SS

It is generally believed that the embedment increases the
stiffness of the foundation, and hence, that it increases the

natural vibration frequencies of a mass (structure)
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interacting with the foundation soil. This assumption 1is
confirmed by experimental evidence; by approximate
calculations (23), (24); and by numerical solutions (16),
(44) . However, most of the results published so far have
dealt mainly with the response of an emnbedded mass
(structure) rather than a massless plate subjected to a
harmonic dynamic loading. This is unfortunate in the sense
that most of +the effects and details of the embedment are
filtered out of the solution, except for +the shift in the
resonant peak due to the increased static stiffness, and
therefore, a comparison with the halfspace/stratum solution
is obscured. 1In addition, the results given usually are for
soil-structure systems having a relatively low non-
dimensional resonant frequency, in the range where it is
permissible to neglect the frequency dependence of the
stiffness functions. For this reason, it appears desirable
to investigate the frequency dependence of the stiffness
functions for some particular case, and assess the effect of

embedment.
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consider the following cases of rigid plate foundation with

v=1s3, P =5% :

_..ﬁ__———
|
— 1 — !
1 —_-#——_—'
L—-1 —
3 , |
2
' a ! b
I
s dd el //////,{/// S
!
' fig 40 !
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I 3 2 !
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The particular embedment ratio E/R = 1 was chosen because it
represents a case often encountered in the design of nuclear

power-plants.
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The subgrade stiffness matrix relates the external applied

forces to the plate displacements. For the two degrees of

freedom under consideration, this symmetric matrix is:

Km Kn\f wa (&« + qu Cu) Kxxo (%\m * Lqﬂ C‘7~>
P( =

”"n

KW K‘f'f Km (?«;. t Lag Cz(> K‘f‘fo (??zz ¥ qu sz)

It is always possible in the static case to define a point at

a height h above the plate, which can be denoted by center of

stiffness, for which the stiffness matrix has zero cross-

coupling terms. The displacements of this point are

u:u'l" el‘f
P o= ¥
M7
N
A
,LL

fig 41
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Also, the forces are

F and (F) =
M-Fh M

From here it follows that

»

B

Xl
I

=
"

_ Kxx K""
K - =
Kxq 4-18
Koy = K (4-18)
a1, he Kp /Ky (4-19)

For surface foundations, the height h is small, and
Ky = Kgg~ Keg-h = K¢g » that is, the cross coupling term is

small and can usually be neglected.

For dynamic loadings, the ratio h= K*,/Km‘ becomes complex,
although its absolute value remains small , and the
interpretation of the "height" h becomes more difficult. 1If,
as has been done in the previous sections, the rotation
(translation) of the plate is relaxed for the swaying
(rocking) motion, then the following approximate stiffnesses

are obtained:
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K§ = Kxx- K;f /\‘(1{;{ = K$° (&1 + .qu C|> (u"ZOa)
K‘f - K‘f‘f - Kx?:f/Kxx = cho (%’z+ (4, c2> (4-20b)

which for the rocking term gives the same result as (4-18)
above. For the four cases shown in Fig. 40 the static

stiffnesses, uncorrected for mesh size, are:

K axo Kxgo Kiggo Kxo Ke | 0

GR GR 6R 6R GR E
a) H/R=3 5.96 | -0.33 4.61 5.94 4.59 | -0.056
b) H/R=2 6.45 | -0.26 4.77 6.44 4.76 | -0.070
c) No sidewall 9,27 |-0.85 6.U8 9.16 6.40 | -0.092
d) with sidewall 13.84 4.51 }16.65 12.61 |15.18 0.326

Except for the last case, the height of the center of
stiffness is small, and the differences in the stiffnesses
K. K~ and Ky K¢ are negligible for all practical
purposes. “ven when sidewalls are presents, the
modifications in the stiffnesses are relatively moderate.
For this case, however, the effect of the coupling terms
(measured by the height h) can no longer be neglected, unless
the height of the center of stiffness is small in comparison
to the height of the center of gravity of the structure above

the foundation mat.
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From the table above, it becomes apparent that the embedment

increases substantially the static stiffnesses, specially
when rigid sidewalls are part of the foundation system.
However, great care should be observed in extrapolating these
results to practical foundation design, since they are based

on three unrealistic assumptions, namely:

1. The sidewalls are completely rigid (although, this is

not too bad an assumotion for cylindrical walls)

2. The walls are perfectly welded to the soil, being
therefore capable of transmitting both pressures and
tensions. Because of the dead weight of the structure,
the "tensile" stresses below the mat are wusually the
result of decreased compression stresses. Except for
the active pressure of the soil, no such precompression
exists for the backfill which can justify the assumption

of perfect weldment of the sidewalls to the backfill.

3. The lateral soil (backfill) has the same strength and
properties of the foundation soil below the mat (a very

weak assumption, indeed).

As a result of these effects, the static stiffnesses of

case d), and particularly the rocking stiffness , can be
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substantially decreased. In the 1limit, when no sidewall
action is present as in case ¢, the rocking static stiffness
is reduced from a value of 16.65 to 6.48, which is only
slightly higher than the static stiffness for the case H/R=2.
The swaying constant is not decreased in the same proportion

(from 13.84 to 9.27, compared to 6.45 for H/R=2).

Figs. 42 through 45 show the frequency dependence of the
various stiffness and damping coefficients defined. A
comparison of the functions k, with k, , and k,, with k,
shows that they differ only slightly, even for the case with

sidewalls.

For the swaying motion, the curves for the four cases have a
similar variation pattern; in the low frequency range, the
stiffness curves for embedded foundation follow more closely
the behavior of the surface foundation with H/R=3 (total
depth of the stratum) rather than that of H/R=2 (that is,
removing the lateral soil). A similar statement can be made
of the damping coefficients, except that they yield
substantially higher damping values for case d) with
sidewalls. The fact that the damping increases relatively as
well as absolutely, because of the higher static constant,
indicates that for an embedded foundation the complex

stiffness is very high; since the swaying mode plays
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generally a ~inor role in soil-structure interaction problems
(48) , it is expected that this influence will be reduced
further for embedded foundations. This suggests that in most
practical cases, the swaying degree of freedom can be

supressed, except for very heavy masses on soft soil.

Cou v

The rocking stiffness and damping coefficients k, , k,,

c, agree remarkalby well for cases a) , b) and 4) . These

2
results were obtained for a shallow stratum, and it is
therefore expected that the agreement should improve further
for deeper strata. As in the swaying case, the enmbedment
increases significantly the radiation damping. For the case
with no sidewalls, the rocking stiffness coefficient

increases substantially after the 2nd HNFS, but this gain is

offset by a sharp decrease in the damping coefficient.

on the other hand, the rocking stiffness coefficients agree
well with the halfspace solution. Also, for the particular
embedment ratio studied, the height of +the center of
stiffness remained essentially constant at about h=1/3 E ,
as can be observed in Fig. 46 below. Hence, for practical
purposes, it appears that the halfspace solution could be
used changing the static stiffness by some appropriate
method, and making provision for the cross coupling terms by

assuming a certain height h of the center of stiffness above
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the rigid foundation. If an infinitely horizontal spring 1is

assumed, this point has to be taken as center of rotation.

fo

h ]

E

0.5 -

0' v v T T iy
imag

fig 46
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5. — Soil-structure interaction:

Growing attention has been given recently to the problems of
soil-structure interaction and soil amplification as
connected with the design of nuclear power plants, tall
buildings, or vibration sensitive equipment such as radar
structures. At the same time, disagreement and controversy
have increased correspondingly among the experts as to how
these effects should be included and considered in analysis

and design.

Currently, there appear to be three basic methods to deal
with the problem of soil-structure interaction, and they are

based oOn:

a) constant, lumped soil springs and dashpots as given by a
static halfspace analysis, with weighted modal damping

coeficients (33). The analysis is done in the time domain.

b) Frequency dependent stiffness (compliance) functions as
given by the halfspace theory for surface foundations (19),
(42) or approximate theories for embedded foundations (23).

The analysis must be done in the frequency domain.
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c) Numerical methéds, as the one developed in this

dissertation.

The first method seems attractive to the engineer for its
simplicity; it has received wide application, particularly in
preliminary design and approximate calculations. on the
other hand, the numerical methods such as the finite element
method described in this dissertation are ideally suited for
the analysis of complex problems in which the geometry and
material properties are a function of space and time.
Nevertheless, this advantage is gained at the expense of
considerable increases in the cost of computation, which in
many cases will inhibit the analyst to cover a wide range of
design parameters to ensure adequate protection against the

uncertainties inherent to the nature of soils.

since the execution time for a given finite element problem
increases rapidly with the numbe. of degrees of freedom, it
becomes attractive to compare the results of a full 3-
dimensional analysis obtained with the method presented
herein with the more economic "equivalent® 2- dimensional
plane strain model as described by Waas (44). The sense of
the implied equivalence between the two models has to be
carefully defined, as there is, strictly speaking, no such

thing as an equivalent plane model. In the following
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section, the results obtained by the two methods shall be
analyzed and discussed for a particular problem. The plane
strain program PLAXLY written by G. Waas (44) was used for

the 2-D problem.

Both the two and the three dimensional models are based on a
finite element region and a layered region resting on rigid
rock, that is, they are based on the results for an elastic
stratum. For earthquake loadings, this introduces the
controversial question as to where the control motion should
be specified. The simple assumption of 1-dimensional
amplification offers the disadvantage of unrealistically high
resonant peaks at the natural frequencies of the stratum when
the motion is specified at the basal rock, or dubious
deamplification to the foundation level when it is specified
at the free surface. It was shown in Sec. 3.8 that it is
possible to wuse in the analysis 2-dimensional wave
propagation, but this not only increases the difficulties of
the model, but it also raises further questions regarding the
wave types and pattern, incidence angles, etc. In the
present discussion, that controversy shall be avoided,
arbitrarily specifying the motion at the free surface. It
should not be implied from here that the author advocates
this alternative as a sound basis for design. The aim is

merely to compare two approaches to the problem, and in
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particular, to Jjustify or discredit the claim of exactness
attributed to the equivalent plane model. The comparison
shall be made for a +typical containment structure of a
nuclear power plant with the geometry shown in Fig. 47 and

soil properties indicated in Table 2.

TABLE 2

layer specific shear Poisson's shear depth

layer wave below
thickness weight modulus ratio velocily grade

ft Kef Ksf ft/sec ft
1 5 <12 682 0.3 428 2.50
2 5 <12 978 0.3 512 7.50
3 5 .12 1298 0.3 590 12.50
4 5 .12 1550 0.3 645 17.50
5 5 .12 1781 0.3 691 22.50
6 7.5 <12 2033 0.3 738 28.75
1 7.5 <12 2254 0.3 777 36.25
8 7.5 .12 2435 0.3 808 43.75
9 7.5 <12 2682 0.3 848 51.25
10 7.5 .12 2888 0.3 877 58.75
11 7.5 .12 2979 0.3 89u 66.25
12 10. .15 3132 0.48 880 75.00
13 10. .15 3299 0.u8 903 85.00
14 12.5 .15 3467 0.48 926 96. 25

15 12.5 .15 3522 0.48 934 108.75
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8% linear hysteretic damping was used throughout the soil

stratum.

For the structure, the following properties were assumed:

G 200 000 Ksf

v 0.15

¢ = 0.15 Kcf
The structure being fairly rigid, the response at the
foundation level is quite insensitive to slight inaccuracies

in the parameters G and v above. The total mass of the

structure is about 3500 Kslug.

The so0il and the structure were discretized in layers and
finite elements (using linear expansion order), and the mesh
is shown in Fig. 48. The execution time for the 3-D model

was about 20 sec per frequency in an IBM 370-155 computer.

In the 2-D model, the structure was represented by 2 coaxial
columns of lumped masses and springs attached to a massless
rigid foundation with flexible (massless) retaining walls
(Fig. 49) . Masses and stiffnesses were normalized w/r to an
equivalent width b obtained equating the areas of a

rectangular foundation to that of the circular foundation:
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2 Rb =TR2 b= TR2

Also, use is made of symmetry, working with the right half of
the model, and dividing the masses and stif fnesses in the

structural columns by 2.

The retaining walls in the 2-D model correspond to the
embedded portion of the cylindric containment wall. They are
included to properly reproduce the embedment effect. The
actual containment wall, however, deforms mainly due to
shear, while the corresponding 2-D retaining walls will
deform mainly due to bending. This requires the selection of
a ficticious stiffness for these walls in order to achieve a
performance comparable to that of the real 3-D case. For
this purpose, the shear modulus of the wall was adjusted to
give under bending the same displacement at grade as the

cylindric wall under shear for a uniform lateral load.

In order to estimate the natural rocking-swaying frequencies
of the system, the static subgrade stiffnesses were

determined. For the 3-D model, they are:
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K, = 23 10° Kip /ft

- 5 6 -

R, = K- EKs_{ = 249 - 10° Ki/ft
KS‘f = 35 .10° KIP/raA f

R-ur = k“f oKy o owpe - 0? Knio-{:t/raal
K? = 41.107 Kip-ft/rad s

Notice that for an embedment ratio E/R=0.83, the height of
the center of stiffness is h=35.106/ 2.8.10¢ = 12.5 ft, and
h/E=12.5/55 = 0.23. This ratio is significantly smaller than
that for the homogeneous case studied in Sec. 4.5; this
confirms that the weak backfill soil decreases the embedment

effect substantially.

Use of M=3500 Kslug, R=67.5 ft, H=170 ft (H=total height of
the structure), and the approximate value for the moment of

inertia

r-ow (£ %)

gives for the uncoupled frequencies:

f = 3.3 cps rocking

£, = 4.5 cps swaying
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and for the coupled rocking-swaying frequencies, after

solving the 2nd order linear eigenvalue problem,

H
]

2.6 cps

Hh
1]

8 cps

These values are approximate, because of the frequency
dependence of the stiffness functions, the flexibility of the

foundation, and the approximate expressions and values used.

For both the plane and the 3-D problems, the response at the
foundation 1level was determined for a unit prescribed
acceleration at the free surface. The translation
(acceleration) at the base of the structure was taken as that
of the point at the axis; since the foundation mat acts as a
rigid diaphragm, the displacements (accelerations) at the
other points at the mat-soil interface are essentialy
identical. The plate rotation was taken in a first
approximation to be equal to the vertical displacement at the
edge of the mat divided by thne foundation radius; for the 3-D
case in which the actual rigidity of the mat was used, this
will provide a reasonable estimate of the foundation rotation
only in the lower frequency range. For higher frequencies,
an important bending distortion of the mat takes place, as

will be shown.
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Figs. 50 through 55 show the transfer functions for the two
effects studied. Figs. 56 through ¢1 depict the same
effects, but computed with a massless structure. For the
translational modes, the unidimensional amplification
(deamplification w/r to the surface) is also shown. The
natural frequencies of the stratum are indicated by (+) and

(1) for the horizontal and vertical modes.

The agreement between the two models is good for both
translation and rotation, and probably good enough for
practical purposes, if economies in computation costs are a
decisive factor. However, the fact that the translational
response is not very different for the cases with and without
structural mass shows that the soil-structure interaction
effect, at least in what the horizontal displacement is
concerned, is not large. For cases with more interaction
effect, the discrepancies between the two models could become

large.

For +the massless foundation, the absolute value of the
transfer function for the horizontal displacement decays
rapidly with frequency up to the first natural horizontal
frequency of the stratum (£=1.97), and than oscillates about
the deamplified wvalue, influenced by the higher resonant

frequencies of the stratum and the embedment effect. The
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discrepancies between the two models are much larger for the
massless case than for the case with structure. The
differences in the models are erased in the case with mass
probably because the response is controlled mainly by inertia
rather than by stiffness. The rotation is about 1 order of
magnitude smaller than the 1-dimensional pseudorotation
(defined as the average shear distortion between grade and
the foundation level (Fig. 59), although the overall

variation pattern with frequency is strikingly similar.

The addition of the structure modifies to a certain degree
the displacement transfer function, particularly close to the
first coupled rocking-swaying frequency. For higher
frequencies, the inertial effects introduced by the mass of
the structure decrease the response w/r to the massless case.
The rotation (Fig. 53), on the other hand, is completly
modified by the prescence of the structure, as could be
expected, and reaches a peak at the 1st coupled rocking-
swaying frequency. Some discrepancies between the two models
occur at this frequency, which might be due to the
flexibility of the mat in the 3-D model. The relative
importance of this effect can be appreciated from the
foundation displacement configuration, as shown below for a
frequency of 5.75 cps (approximately, the 1st structural

frequency) :
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(]E fig 74

/]

MAT DISTORTION
AT 575 cps

NOTE: SCHEME 1S APPROXIMATE BECAUSE OF  SLIGHT

PHASE DIFFERENCES IN THE NODE DISPLACEMENTS
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possibly, the discrepancies introduced by the mat distortion
could be reduced by an improvement in the 2-D model, working
with a flexible foundation mat and attaching three coaxial

structural columns as in the sheme belows

tig 75

specification at grade of a spectrum compatible artificially
generated earthquake (Figs. 76 through 78 ) with a maximum
acceleration of 0.125 g yields the response curves shown in
Figs. 79 through 2% . The differences in the transfer
functions do not significantly affect the response at

foundation level. However, the differences could affect
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significantly the response at the top of the structure,
because of the discrepancies in the rotation transfer

function.

The results of the comparison between the two models are not
conclusive. The transfer functions as well as the time
histories for the effects studied show in both cases a
similar variation pattern; nevertheless, seemingly minor
differences in the transfer functions could lead in some
instances to large differences in the responses. Further
research, beyond +the scope of this dissertation, is needed,
in which a wider range of parameters is covered. Response
spectra at the different floor levels may provide a better
basis of comparison, and shed more light on the accuracy of
some improved plane model. Also, in view of Fig. 74 showing
the deformation of the mat, it appears desirable to study the
effect of the mat flexibility on the response at the top of

the structure for either of the two models.
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6. Summary-and conclusions:

A numerical method to determine the response of axisymetric
foundations and soil-structure systems to arbitrary non-
axisymetric forced vibrations was developed and applied to
some particular cases. The method is based on finite element
analysis wusing the Fourier expansion technique reported by
Wilson (51), and a generalization of an energy transmitting

boundary developed by Waas and Lysmer {48y, (271).

It was shown that the size of the finite element mesh is
controlled throughout the geometry by the 1length of the
shortest shearwave length of interest. The size of the
dynamic pressure bulb is about one plate diameter for
rocking, and larger than 3 plate diameters for swaying. The
jocation of the Waas-Lysmer boundary affects the results only
slightly, but economies in computation time dictate that it
be placed as close as possible to the axis. Except for very
shallow strata and for 1low internal damping ratios, it is
pelieved that the results of the halfspace theory could be
applied successfully to the case of a stratum, provided that
the static stiffnesses are modified adequately, say,
according to egs. 4.6, Uu4.7. Similar conclusions apply to
embedded foundation, for which an estimate of the location of

the center of stiffness must be made (Or eventually obtained
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from a conventional finite element static analysis) to
determine the cross-coupling terms in the subgrade stiffness
matrix; the location of the center of stiffness can then be
assumed independent of frequency. The results for the
stratum are consistent with those of the halfspace for the
three Poisson's ratios considered. Internal damping plays a
significant role, and the sensitivity of the results to this
parameter cautions against deriving solutions to the damped
halfspace by merely multiplying the stiffness functions by

the complex factor 1+2if.

A comparison was made between the responses predicted by a
three dimensional model and an equivalent plane strain model
of a nuclear power plant founded on a stratum, and subjected
to an earthquake excitation. A reasonable agreement was
found in the results, which might possibly be improved by
modification to the equivalent plane model. Dif ferences in
the mat rotation amplitude warn against generalizing this
conclusion to the responses at other points in the structure,
particularly at the dome. Additional comparisons, possibly
between amplified floor response spectra, should be performed
to assess the accuracy of the plane strain model for a range
of soil parameters. The significant mat distortion found for

the 3-D model indicates the need for more research concerning
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the effect of the foundation flexibility on the structural

response.
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