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ABSTRACT

NON-LINEAR BEHAVIOR OF STEEL FRAMES

by
JOHN ADAMS

Submitted to the Department of Civil Engineering on May 15,
1973, in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

Four analytical models for non-linear frame analysis are
analyzed at the member and frame levels for static loading.
Three of the models are linear models which have been modified
to include the P-Delta effect, the effect of change in geometry
at the joints, and the effect of yielding. The fourth model is
an exact solution that requires no modification to account for
non-linearities. Two of the models are simple models that use
a force criterion to determine whether yielding has occurred.
The other twc models arz complicated models that use a
technique of monitoring fiber stresses and strains at control
crogs-sections throughout a memberxr. The accuracy of 2 exact
model, and the importance of the three non-linear effects is
examined at the member levzl for both the elastic and inelastic
cagse. The predictions of ¢!l four models are compared at both
the member level and the frame level, and the effect of
ylelding is found to be very significant, causing major differ-
ences between the predictions <f the simple and complicated
models under cyclic ivading.
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1.0 INTRODUCTION

In this thesis, four different mathematical modela for the
non-linear elastic analysis of rigid frames are developed and
investigated. Each of the modela includes the three major non-
linear effects, the P-Delta effect, the effect of change in
geometry, and the effect of yielding, although they may do 8o in
different ways. The four models can be divided into two basic
categories, simple models and complicated modelas. 1In the
simple models, the criterion for yielding is a function of the
member forces, in the complicated models it is a function of
the member strains. 1In this study there are two simple modeils,
the Bending Model and the Interacticn Model. As their names
imply, the Bending Model considers only the magnitude of the
moment when determining whether or not yielding has occurred,
while the Interaction Model considers the magnitude of both the
axial load and the bending moment. The remaining two models
are complicated models, the first used by Raymond W. Latona
in 1970, and the second developed in this thesis. Both
complicated models keep track of the member stresses and
strains and are capable of reproducing local yielding, but
the Latona Model is in other respects similar to the simple
models, in that it assumes that a member is a straight line
between joints, while the Complex Model represents an exact
solution that includes member deformations., A detailed
discussion of all the models, and the assumptions made in them,

appears in chapter two.



This thesis is divided into four major parts, a theoret-
ical discussion of each of the models, an elastic member study,
an inelastic member study, and an inelastic frame study. In
each study, the results of the models are compared, and any
differences discussed. In the elastic range, all the models,
with the exception of the Complex Model, are linear models
which have been modified to account for the two elastic non-
linear effects. The success of this modification, and the
relative importance of each effect, is considered in chapter
three. 1In chapter four, the predictions of the various failure
criteria are examined, and in chapter five,-the importance of
these differences in the study of a single bay single story

frame subjected to a cyclic displacement, is discussed.

1.1 Review of Recent Work

This thesis is directly based on a theasis done at the
Massachusettg Institute of Technology by Raymond W. Latona in
1970 (1). In that thesis, he developed a complex mathematical
model which monitored member stresses and strains at a number
of control cross-sections and fibers along the member. This
model, which he calls the Complex Model in his thesis, but
which will be referred to as the Latona Model in this work,
can thus reproduce the reduction in member stiffness cauged by
local yielding as well as axial bending coupling. Latona
showed that one flange fiber was sufficient to model a wide

flange shape correctly, and that the number of web fibers had
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little effect on the initial and final values of member stiff-
nessg but did affect the transition region. He concluded
that the maximum number of web fibers needed was six, but in
this thesis four web fibers are used, since there is little
distinguishable difference in the M-P-¢ curves for four and
six web fibers. He also eoncluded that thirteen contrel cross-
sections were sufficient to correctly reproduce member
stresses and strains, and this is the number of control cross-
sections used in this thesis. After developing this complex
model, Latona compared its predictions with those of two simple
models, the Bending Model and the Interaction Model, mentioned
at the beginning of this chapter. 1In the cases he studied, a
single bay single story and a éingle bay three atory frame
subjected to the El Centro Earthquake, Latona found significant
differences between the predictions of the various models.
Since his thesis contained no real comparison of the three
models under static loading, there was no way to tell whether
these differences were caused by dynamic effecta only, or
whether differences would appear under static lcading as well.
Many mathematical frame models have been developed,
ranging from simple models similar to the Bending and Inter-~
action Models (3, 6, 9, 14), to complicated models that
monitor stresses and strains (1, 7). In addition, models
have been developed that use some specified moment curvature

relationship (8, 12) such as a Ramberg Osgocod Function (4), teo



relate the moment, the curvature, and the axial lecad. In all
these models, the primary concern is an accurate prediction of
the initial collapse load, and the behavior cf the models under
cyclic loading is not examined. Although some experimental
results (2, 13) show that frane resistance increases signif-
icantly on the second cycle of a cyclic locading cycle, there
has been little concern about the ability of the various
mgthematical models to predict this behavior. Thus the models
examined in this thesis represent the two extremes, the simple
models being quite unsophisticated, and the complicated models
being as, or more sophisticated than any yet developed to

gtudy non-linearities in rigid frames.

1.2 Purpose and Scope

The objective of this thesis is to compare the behavior
of the three models in Latona's thesis with a fourth, which
represents the exact solution, and determine whether there are
any significant differences between these models under static
loading. Because the two complicated models, the Latona Model
and the Complex Model, are expensive to use, it is desirable
to deveiop a simple inexpensive model that is capable of
accurately reproducing frame behavier. Clearly the first step
in this procedure is to discover what differences can be
fonnd between the predictions of the simple and complicated = .
models, and if possible, what variables these differences

depend upon. To some extent that has been accomplished in



thie thesis, in that the one major difference between the
simple and complicated models appears toc be a function of
axial load and strain hardening. The precise nature of this
relationship is not yet clear, however, and further study will
be required before it can be determined.

Because the major goal of this thesis is to examine
differences between the models, the Euler Method, rather than
a higher order integration method, is used in the solution
procedure. Clearly any formulation that uses the Euler
Method for the incremental sclution of linear differential
equations, is going to be very sensitive to the size of the
load increment. The results in this thesis reflect this |
problem, but since this solution procedure is used for ail
models, the comparative results are not greatly affected.

There appears to be little difference between the results
given by the Latona Model, and those given by the Complex
Model for a single story single bay frame. 1In the case of
"the single story frame studied by Latona, the predictions of
the two models are practically identical, both giving an
increase in frame resistance that the simple models fail to
show. Thus there is a major difference between the Latona
Model and the simple models in the static case, that would
account for the differences observed by Latona in a dynamic

analysis under base motion.



2.0 THRORETICAL DESCRIPTION OF MODELS

All the models in this stedy use a tangent formulation,
which means that incremental loads are applisd to a gtructure,
the incremental displacements and forces are calculated, and
then added to the previocus displacements and forces to get the
new displacements and forces. Im all cases, the atiffness
method is used to calculate the increwmental displacements from
the applied incremental loads, and the imcremental reactions
are then computed from these displacements. The first three
=models described in this chapter use a linear formulation
which has been modified to include varicus non-linear effects,
while the fourth model uses a more complicated formulation
which includes all the non-linear effects and hence needs no
modification.

There are thrae major non-linear effects, the P-Delta
effect, the effect of change in gecmetry, and the effect of
a change in Young's Modulus. Since this thesis is concerned
only with steel structures, the latter effect is relatively
easy to account for. In this chapter the linear stiffness
formulation is treated firat, and then the modifications to
account for the P-Delta effect and the change in geomstry are
described, since they apply to all the linear models, The
nethod used to account for yielding varies for each model,
and hence is treated along with the basic description of the

model .
-10..



2.1 Derivaticon of the 8tiffness Matyis

7o cbtain the incremsntal force-displacement relatiemnship
consider 2 membar loaded only at its ends, with the forces
and displacements assumed to be as shown below.

Porces
My, I ¥
v f’\% x
Bisplacemente
%2 Va vy
¢
] [AasKS
If the forces ir the member are assumed to act as shown below,
X )4 H
(2 )
7 )
‘A v

then equilibrium gives the following egquations.

P--XA

= -!A*ilx
If the assussption is made that small changes in strain can be
ralated linecarly to small changes2 in the member forces, the

following relationship heolds
AP = ‘11‘“‘ + ‘12"'

AR = azlhw' + azzAv'

vhere

AP = increment in exial force
-11-



A = increment in moment
Ap' = increment in axial strain
Av® = increment in rolatiomal strain
ig y = distance from the centroidal exis to a point
in the cross-section
Yo ©= distence from the centroidal axis te the top
of the crxoss-section
YVp = distance from the centroidal axis to the
botton of the cross-section
bl(y) = width function for the cross-section
E(y) = Tangent Modulus fonction for the cxoss-
section

With these definitions the stiffneas coefficients By3r 2340
8y and 259 become

Y
a5 - //; e (y)bly)dy
b B

Y
2y, = 8y = ﬁb tE(y)bly)ydy

a = [ Yerpnipy?
22 Yb b4 y)y ay

If E(y) = E (Young's Modulus). thea in the elastic casa
a, - = AR, A=area of the member

81228y, =0
8., = EI, I=Foment of Inertia of the membeor

Inversion of the incremental forze-strain equations gives the

strain-force eguations shown ng%ehe next page.



Ay = b&‘lAp + byl

where by Cramers Rule
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since AP = ~AX,
AR = -ANSAY,x
substitution gives
Au' = 'bll.“h + bthA: - bnmn
bv" = =b,,8X, +- by AY,x - jbnA!!A

Intagrating, Au’ orce and Av" twice, mr the length of the
member gives the following displacament-force relationszhips.



L L L
suy = duy - X, j; by, 0% + 0%, ‘L by AY, 2fx - At L by 405

5

bvg' = Ay = Ad, - AX, L byydx + AY, j;

L 9

L L L L
Ava évA + A#A& - AXA L j; (bndx)dx-mfh j; j; (bzzxdx)dx

- L(b dx)d
-A!lff x)dx
A Jo Jo P22

thus

L L L
Mu, - Buy = AX, L by,dx - AY, ]; by ,xdx + AM, jo by 8%

’ L L L
AQA - 60' - AXA L "‘21"‘ - A!A L bzznds: 4 MA }; bzzda

L L
| “'A - Av' + m% > Axa ,’; (L-x)bndx - AYA j; x(L«x)bzzdx

L
4+ AIA/; (L~-x) bzzd:



lat

-
AuA - AuB

k -p
AU® = AvA AvB + LA@R

Ao, - Aog

b

L
£11 j; by 9x

L
£30= - j; b; pxax

‘ L
£.. = [ b,.dx
13 fo 12
L
(o]
L
£,, = -fo X (L=x) b, ,dx
L
£,, -L (L-x) b, ,dx

L
£3, = L by dx

L
£32 "fo xb, dx

-15=
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»mh-1
ar, = |y,
|
¥ith this notation the displacement-force relatienaship
becomes
Cou | (e, £, f33 A%,
bv | = | £33 £33 £33 ¥y
La¢_ %3 fa2 fa3 | | 4% ]

or in matrix potation

;u‘ - AP,

Multiplying both sides by £7) gives

1

AP, = £ °*20® = xAQ®

The equilibrium sguations for the member are

axy = ~AX,

AYB' = -A!A

Ay = AT L - MMy



which can be written

P~ IT - - e -kt

AXy o § 0 5 B,
AYB = e -1 0 d?&
_AHB_ i 0 L -{J bAMAJ
in matrix notation these sguations become
AFB = szPA
RO%?
1 o ¢ ENRES
40* = |0 1 o av, | .} avy

r
y L %d hFQAJ A¢EL

which can be writter in matrix notation as

’ -
AU” = Tlﬂﬂh AUB

ssbetituting this into the force-displacement eguation gives

Agh- RT;AUA - KAUB

and since

A?B = TZAPA

APB - ?3xglbﬂhi';;‘9ﬁgéun
the final incremental force-deformatien relationship looks
like this



or AP = KAU
where K igs the member stiffness matrix. Por the elastic case
K can be derived as follows
1
b1 " &E
1
by2 = BT

b,, = b,, =0

12 21
The non z2aro flexibility coefficients are

L L
f11 "fo by dx = 3w

L L3 3\ 43
£22 = ‘j; x(L-x)b,,dx = ~{v5r ~ ET/" CEI

L LZ L2 LZ
f23 = j; (L-x)b,,dx = ¥ ~ JET * 7¥T

L g2
£32 'L xby dx = ey

L L
£33 'L bgyadx = gF

G oo o

3 2

-5 L

£ = |0 B 3ET
2

. L

R ;



KpaT 5Ty

R )
T 4] ¢}
-1 ¢ 128X § BT
Ko £ 0
ol
o §%1_ ~2B%
- L ]
% 0 o
12BI GBI
(o] R = =K -
L 2| "B
o SEI 4EI
el
_ ]
o ——
-12BI -6RI
O LT F | et TRt
o

The final incremental force~deformation eguations for the

elagtic case are shown oy the next page.
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"Axﬁj B, o B o o] [ouy
8y, o »lfggg %fgi o - éfgi %ﬁ} b,
m |- |o 6:1 L1: S _gf% mrl |
A%y T o o E2 ) o hugy
aYg o -;fgl -%% 0 _11%%_1; -%E-g- bvy

~

The aseembly of ths stzucturs joint stiffness matrix ic
aMliﬂM' by looping throwgh all the membexs, rotating
sach member stiffnees matrix into global coordimates and then
placing Kaa in row A column A, Kap 1n row A column B, Kpp im

row B column A, undx.”i.nmncolmn,

2.2 The P-A Effect
The P-Delta effect, as dsfined in this thesis, is the

necessity for satisfying membor eguilibrium in the deformed
position, 3imos the linear stiffness matrix iz sssembled in
the initial poasition, the additional forces cagged by the
axial lcad moving as the structure moves, are not considercd
in a linecar model uniose the P-Delta effect ig imcluded. The
procedure used in this thesis consists of the following.
Aspume that the member shown below wasz initially oriented

-20-
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aiong A B, and that the arial ferce P is ¢he mamber force
obtained from an analysie in the previeus positien, The
vertical joint digplacements at A ard B are by and Awg
respectively.

In order to satisfy mcaent equilibrium about A the
following eguation must hold true.

P e (A‘vB - Avh’ w BF + (L)

wvhere L = the length of the member

thus
Avh - Avh

Thus tke global fixed eand forces cbtainsd in the
undeformed position, need to be altered by the corrective
forces DFX and DFY shown bslow,



wheze & is the angle betwsen the initisl wmsmber axzxis and the
X axis in the globel coordinate system., Hence if the glcbal
fixed end forces at A and B are FxA, FyA, FxB, and Fyﬁ, they
will be modified as follows.

© rxA - DPX

= Py® + DPY

2:9 gh‘

Fxx© = P~ + DFX

ry® = 7y® - Dry

It is also poesgible to &pply the P-Dslta correction to
the member stiffnees matrix instead of the member end forces.
If the member runs from joint A to joint B, (as shown en the

preceding page) the following egquations must hold.

o 12BI . 6EI _ laer 6EX

Mp + DF = T3 8y + T A4y - T3 A%y ¢ Ty Ay
12BX ,. _ 6EIX 121 ,., _ GBI

Mp = DF = T3 8%y = T3 Ay * T3T AV - T g

L
S8ince '
A%, - AW
DF = ‘“E‘r"'“é Pe= %A‘h - EAVA

the force deformation equations can be written

aY, l3§1 %)AVA %5} a¢, - l£§£ + :)Av + E%} 86y
12E1 12e1 6EI
Ap - ' ::) R e ) " T2 s

.22~




and the corrsttion occurs in ths etiffasse mwtrix rather thas
the mesber forces.

Although the two methods appear identical, the stiffneoe
matriz correctican is im fact superior, becsuse it cavses a
pore rapid amplification as P approaches the buckling lead.
The resgon for this can be resdily seen from the example that
follows, a two member, three jointed beam, with an awial lozd
of P = nAP, and a wvertical load incroment of &F.

8in¢s the axial force in each member is P, the corrective

forecs is
2P8Y = 4PAV
Xy T
| 1 (f crat)
80 Avﬂm A"PT-

if the forca correction method ig used, the only value of AV
available is that of the previcus step, and thus the
relationship becomes
4v_ = L2 ap + PAVn.)
n " TR —p—

Y kT



if the stiffness matrix correction iz used, it is posasible

to uze the current value of Ay since

. 4PAvw
48ET n
-;r AVn = AF 4 i
g0 [_T‘:.EI - 5;::“ bv, = AF
and Av_ = AP
n 48EX _ 4P
3 T

L

Thus the major advantage of the stiffness correction is that
it doesn't lag a step behind, the way the force correction
doee. In practice it turns out that this difference of
one step may lead to a significant discrepancy between the
two methods, depending on the size of the load increment.
It should be noted that in both methods the axial force
in the member is the axial force obtained from the previous
load increment, P, _,, since the axial force for the nth
increment is unknown.

One disadvantage of *he stiffness correction is that
the value of Avn can become negative. This occurs when the
value of %? becomes greater than £§§£. Theoretically this

ghould not occur, since buckling cemes when

ASEI _ 4P
L T"°



and hence ' Par = __TKZBE

L
In practice, however, the fact that a finite lsad lucrenment

is being used, causes the value of ﬁ%% - % to changa frun
L

a very small positive number to a very small negative number

Y T

pissing the zero point. Thus the stiffnsss correction

aethod must be vesd carefully, since onece a valus of 4¥
onss negative, the buskling load has beon excesded, and

the results ere m® loager valid.

"In tha lingar models, tha change ia gecmstry is handlaed
by changing the joint coordimetes at every imorement. Thus

; at every step, the jeiat displacemeats are added ¢o the old
' joint ccordinatez, and a new sat of rotation matrices and

lengths are coaputed for each member. This procedure makes
20 allowancs for mamber curvature, and hemca the only way

to reproduce member deformaticn ie to subdivide a member
into several esgments, since in all the iinear models a
member is assumed to be 2 straight line between joints.

fhus the effect of the change in goosmetry is only comrsidered
for the astructure as & whole, and a0 attespt is made to
consider individual meaber gsometry.

2.4 %The lodel
within the slastic range the bonding meodel ie cempletely

linear and retains precissly the same stiffness matriz for
-25-




sach inoremsnt. At esch incremant tho momonts at both ends
of every member are chetked agaimat the plactic mement for
that member. If eithor of the end moments is grouter than
the plastic moment, the member stiffmess matrix is revised
assuming thet there is a hinge az that end of the mamber,
and ueing the principle of static condensatioa to
acconplish the modification.

The prianciple of static condensatiom states that the
basic stiffnces oguations cen be partitiomed inmto two
goparate sets of equations, ons asaociam with anknown
joint loads and the other with the kaown joint losds. Thus
ths basic stiffnece eguatior

AP = RAU
beconss

A!‘l Rl.l Ey2 Aﬂl
-

where Ar,_ i the columa matrix of umknown joiat loads, Aﬁ'a
is the matrix of keown joint loads, AU, is the displacament
of the joints whose joint loeds are unkiacwn anrd AU, is tha
displscement of the joimts whose joint loads are known. By
patrix meltiplication, the partitioned equationrs cem be
written as follows



A?z > Rzlbﬂl 4 zuauz
b-§ Arz = 0

-1
b0, = = Ryg © KppbUy
280

~1
AP, = K;,A0; = Kyj Bap = Kgp8U,

-1
ARy “'[‘u - K12 E22 “z;‘ a8,

The mt:i.z[un - Kyq xn"" K,,| is the statically
condansed stiffeess matrix end is the ene used in the
bending medel to account for the formation of a plastic
kinge. As an exsmple, suUpPpoOSS the matrix is to bs modified
to accouat for & plastic himge at the 2 ond of the mexber.
The original member stiffness equation would look like this.



there is a hinge at A end, the only known jeint lecad is AMR

wvhich ia zserc.

The partitieoned eguations ere shown below, note that Af

- =
A&A
Ava
buy
A‘ng
Aoy
™

Ei
o
AR
T
[
0
0

>

o)
AVA
‘x.
AVi
ﬂﬂ.

(¥




0 o o o o
ORY J9B1 3BX
¢ I¥ ° =¥ ¥
-1
Kyg Raa  Kpy =[O0 O ©0 © o
L Pl

BRI 3RT BX
°> % © s I

The f£iral modified member stiffness eguation,

Pl - Exn - xn Kzz'l Kn] Ul, ig shown bsiow with sercoes on

the partitioned row and column,

raxﬂ r% o o - o o | ﬂmk-
3BT IBY LT Av

am, o o o o o o Béy

-
AR AB

Axy . 0 ° ¥ 0 o suy
IRT BT IBx

4% ° ¥ ° ° 33 1T |
381 3EX 3BT

4%y j o ¥ ° ° F I by ]

¥he procedure for a plastic hinge at the B end is
similar, except that the matrix is partiticmed around b,
instead of iN,. If & hinge forms at both ands of & member,

=20



the modified atiffnems matrix has only axial stiffness Lerms

as shewn below.

|

AR AE
I 0 (8] T O O
0 0 (o) (0] 0 O
0 0 0 0 (o] 0
Km =
L L
O 0 (o) O O 0
.L_O (6] (0] (o] 0 0__“

In order to prevent the zero elementz in the modified
member stiffness matrices from causing a singularity in the
global stiffness matrix, a small correction facter is added
to each non-axial term in the modified member stiffness
matrix. This correction corresponds tc an elasto-plastic
stress strain law, where the plastic part of the curve has a
finite but small stiffness. In the Bending Model this
stiffness is one-thousandth of the original stiffness,
which means, in effect, that the value of Younyg's Modulus in
the plastic range is one-thousandth of the elastic value,
vhereas in a purely elasto-plastic system Young's Modulus

would be zero in the plastic range.

2.5 The Interaction Model

The Interaction Model is basically similar to the Bending

Model, but the criteria for the formation of a plastic hinge

30~



are different. In the Interactioen Model a plastic hinge is

formaed when

.Bezln |+ lér |m 1.0
P b 4

This formhla corresponds to the A,.I.5.C. interaction
formula, where M is the moment at the end of the member, P
iz the axial forcs in the member, PY i3 area of the wember
multiplied by the yield stress, and Mp iz the plastic momant
for the member.

Iin all other respects the Interaction Model is
identical to the Bending Model. The same bilinear stresa

strain assumptions are used, and the stiffness matrix is

podified to account for a plastic hinge in the aame way.

2.6 The Latona Model

In the Latona Model the assemblage of the stiffness
matrix closely parallels the procedure described at the
beginning of the chapter. The principal assuzmption is that
small changes in displacement can be linearly related to
gmall changes in member forces. 1In order for this to be
true, the member must be analyzed in the undeformed
position, which means that individual member stability is
not considered. It is this assumption that makes it
possible to let Ac = Au’ and A¢' = AV” and write the

equations

-31-



AW = az]_&u' < azzév"

which relate the incremental foreces dirsctly o the inura-
rental displacements.

Rach mamber ie divided wp iato & sories of crosa-
gsections and fibsrs, with the strecses being monitored at
every intersection of a cross-section apd fiber for each
nembor. The first step in the assemblsge of the stiffness
matrix ia the calcalation of the flsxibility coefficients
Byye B o LIS byqy from the fiber dimsnsions and stress state
at each crosg-section. The integration over the cross-
section is accomplished by simply suwmaing over each fiber
for all the fibers in the cross-section. Once the flexi-
bility coefficients have been computed, the nesber flexi-
bility matrix, tn through f”. is computed by swmsairg ths
appropriate flexibility term for each cross-section ovar all
the cross-sectiocns in the member. The member flexibility
matrix, £, is then inverted, to get k, and the member stiff-
nees matrix, X, is formed ueing k, ¥, and Ty The neaber
stiffness matrix is then .rot.aund into glcbal coordinates and
added to the frame stiffness matrix.

After the new joint displacements and forces have baen
computed by the stiffmess method, the inverse of the erigimal
daaberreskee-strain assuaption,

Au’ = b,.4P + b, ,AH
«32=
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LAv® = bZlAP + b, ,AM

22
is used tc calculate the incremental strains Au' and Av® at
each cross-saction. From thege strains, the state of stress,
and hence the value of ¢, can be calculated at the inter-
sectlon of each cross-section and each fiber. This now.
makes 1t possible to recalculate the stiffmess coefficiente
bll' blz' bzl' b22 and the cycle begins again.

In summary, the assumption is made in the Latcna Model
that seall changes in member forces can be lirsarly related
to member strains, and that.the gecmetry of the member im
the deformed position is a straight line. A method of
control cross-sections and fihsrs is used to assemble the
stiffness matrix and monitor the stresses and strains. The
stiffness matrix is reassembled for every load increment and
the cycle is continued until all increments of load have

been applied to the structure.

2.7 The Complex Model
The primary difference between the Latona Mcdel and the

Complex Model is that the gsometrical assumptions made in
the Latona Model are not made in the Complex Model. In the
Complex Model the geometiry of the structure in the deformed
position is comsidered, and hence the rotationz are not
restricted to being small. Thus A¢ ¢ Au® and A¢' ¢ Av®, go
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that the relatisnchip betwesn incremental membsr fercves aed

incremantzl straing must ba written as

and it bscomes comsiderably harder to relate the incrementsl
meaber forcae (AH, AM) to the incremental member defermations
(An, Av) then it was in the other models,

The relaticnship bstween incremantal doformation and
incramental strain can be derived by cemszidsring the memboyr
element, originelly of length dz, shown Balow

By geometry
dn = 8 cos ¢ -~ dx
dv = ds ein ¢
now c-d—!——';“-g-l
80 ds = (1 ¢ ¢) dx
.da

by substitution s &= " (1 ¢ ¢) o8 ¢ -1

v'-%-u-rc) sin ¢



in incremental form these egquationg bhecome
Auv' = Ac cos 6 - (1 + €) ain ¢4d
Av' = Ae 8in ¢ + (1 + €) cos ¢Ad

integrating these equations once gives

x x
Au = Au, + Ae cos ¢ dx -~ (1 + ¢) =in $Adéx
Ao ©

X X
Av = Av, +j Ae sin¢dx+f (1 +¢) cos $A¢dx
(o] (%]

The relationship between end forces and member forces

comeg from the force diagram below

Clearly by geometry

X
xA+p--ucos¢+v;1n¢,wherep=[pdx
o]

X
YA +Q=-Ngin ¢ - V cos ¢, where @ mjr q dx
[+

Multiplying the top equation by cos ¢, the bottom egquation
by sin ¢ and adding gives
N= -(Ih + P) cons 4 - (YA + Q) 8in ¢

Multiplying ths top eguation by sin ¢, the bottom equation
by cos ¢ and adding gives

Ve (X, +P) oin ¢ - (Y, + Q)cos ¢



in incremental form thase eguations become
Au® = Ae cos ¢ = (1 + €) sin ¢4¢
Av' = Ae 8in ¢ + (1 + €) cos $A¢

integrating these equations once gives

X

b4
du + Au, + Ae cos ¢ dx - (1 + £) sin ¢AddAx
A (o} Jo

x ®
Ay = AvA +j Ae gin ¢ dx +f {1 + &) cos ¢éA¢dx
o [s)

The relationship betw=en end forces and member forces

comes from the force diagram below

Clearly by geometry

XA'FP'-NCOIQ'O-V!inO wherepn[pdx

Y, +Q=-Nsin ¢ - V cos ¢, where Q Jr q dx

Multipiying the top equation by cos ¢, the bottom equation
by sin ¢ and adding gives
N = "!ﬁ + P) cos ¢ - (YA + Q) sin ¢

Multiplying the top egquation by sin ¢, the bottom eguation
by cos ¢ and adding gives

Ve (X, +P) 8in ¢ - (Y, + Q)cos ¢



Iin inerementel ferm thase eguatiens bentze
bW = = (4% +4F)c08 ¢ - (AU ea0)aln ¢ %@zawmm ¢ {7, 40l coo @ﬁ Ad

AW = (AX +8P)8in ¢ = (8Y,e50Q)c08 O -e-[@aa-e@)@@a ¢ +(¥, 4B oln é{ﬁ@s@

In the first egusiion the texm in brackets ls eguivalopt
to V and in the seoond eguation the term in brackets iz aguiv-
alent to -E. When this substitvtion ls medo the inceeasntal
aguations kKeceme

AN = <{AX,>AP)cOB ¢ - (8¥ +4Q)8in ¢ ¢ vAé

AV = (83,+4P)ein ¢ -(BY,+AQ)com ¢ ~ M

with ap « [ ap ax, AQ[qu ax
o (+]
where Ap is an imoremantal &xial distributed load and Aq iz am
jincremental transvsrse distributed load.

The inoremental eguation for somant equilib¥ium can bhe
dozived by coasidering the element of _&ongu; ds shown belerr

Y mean

Smaming moments about A gives
4+ v i (maw Bsmonsan=o

..............



& dv de (2 aseumed to bs sero and (L 4+ ) 4z iz substituted
for da the eguation becones
M + ¥ () ¢ ¢€) 82 + a2 dx = 0O

in incremental form this becewmes
A[%+V(1+e)+n}=o

oY

a“;(AH)+Av(1+e)+VAc+Am=0

substituting AV = (AxA+AP) gin ¢ -~ (AYK+AQ) cos ¢ - NA¢

into the equation gives

a‘-’i(Am = N(l+€)A4-VAg-(AX,AP) (L+c)sin ¢ +(AY,+AQ) (L+c)cos ¢ - Am
Since AN = bllAe + b12A¢‘
and g (AM) = & (bybe) + & (by,a6%)

the two equations involving AN are now combined to eliminate

4N and the two equations involwving é% (AM) are combined to
eliminate é; (AM) . Thie relationship, shown on the next page,
involvas the incremental end forces and the incremental displaocse~
ments. Although it is an exceedingly complicated relationghip,
the manipulations that follow make it posaible to express this
relationship in a form very similar to the traditional stiff-

ness golution described at the beginning of this chapter.

-



b X, c08 ¢ AY,a3im ¢
b @ = 1aﬂ¢. + L ae - g - g - &ﬁbcesﬁ - ggginﬁﬁ
i1 11 1i 11 11 11

and by integrating é% (b22A¢') once and solving for Aé°

AG® = o P ;?-hc + L xN(1+s:)A¢ ax - x\ms ax
Bys By, 5,2 b2 .

AX, x AY, x
“5 (l+e)sin ¢ dx + B (l+e)cos ¢ dx
22 o 22 o

x
- Bizdlr [é?(l+e)uin & ~ AQ(l+e)cos ¢ 4 Am] dx
o

Defining
Fl = - ;HM'A- 5!;041
11 11

F2 =

_ APcos ¢ _ AQsin ¢
iy . Bbp

b X
F3 = - (2lae 4 Bl-j [uu-e-e)m - VAe] dx
22 22
0o

X
e = - 5.;_2.[ [AB(LH:):in ¢ - AQ(L+c)cos ¢ + Am| ax
0 .



the increasntal eguaticons bescome

Ax&coo é A!Asin é

Acm-—F—---—-s—--¢P14~ﬂ'2
11 13

o W at, % hoa,
44" = (1¢c)oin ¢éx + 5= {i¢z)coe ¢dg ~ g ¢+ P3 ¢ P4
sz ° 22 22

x % E gy %
8¢ = A, ~ AX (l+c)oin ¢8r + AY (lec)oos 64
SN af ol
o o o '
X 4y % x
-mafs--ofrsaxe:j’ﬂdx
o 22 Jg )

x X
Au = &u, + l cos ¢Ac dx - [ (2+€) win 909 dx
o [~

b3 b4
Av = Av, ein ¢Ac dx + (l+c)coe ¢$49 @x
af, A

In this form the expressions for Ac, 49" and A¢ depend
upon each other, since Ac is a function of Fi, which is inm
turn a function of A¢' and A¢, and both A¢° ard Ad are
functiomsof F3, which is in turn a function of As. In ordor
to solve these rslationships, it is neceesary to use am
incremsntsl formulation where a new set of incremental

strains is acsumad, and then chesked for accuracy. In the
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incremental formulation the cemnstants F1 and P3 become

-b
_"Pay 1 N
F3n 22 En + B;-z-f {N(1+S)A¢n VAe j dx

and the incremental strains bacome

Axhcoa é® AYAain (]

Ae - - - + F1_ + F2
nt+l bll bll n
-AxA AM
. =
Ad n+l " (l+e)sin $dx + j (l+c)cos ¢dx - B—-wa +74

X

“m-l = AQA-AX[ [ (14e)s8in ¢ dx +AY [ Bz—’; {(l+e)coa ¢dx
o (o)

JES‘-’— frs dx+L F4 dx
2

A“m—]. = AuA j cos ¢ Aeml dx L (l+c)min o A¢ dx
o

x .
A'n+1 = AvA +j sin ¢ Aen dx + (l+e) cos ¢ A¢n+1dx
()

By integrating over the length of the member in the expression

for A¢ ¢ Aun+1 and Avn_._l, equations for AQB, AuB and AVB

n+l
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can be found, and it bacomes possible to relate the incre-
mental membaer displacements to the incremental member loads
az follows.

b4 L b4

L
“B'“A"A‘J F‘- (le¢)sin ¢ dx 4-&[5%’-;- (l+e)cos ¢ dx
()

of e s

L L L
: 2
cos sin ¢ cos '
Au.n-AuA- ‘Afo —Fizi dax AYA[ ——%1—9 ax +f Fln cog § dn
o] [s] 3

-f (1+e)sin ¢4¢_ dx +f F2 cos ¢ dx
o (]

L L
Av —Av =A¢£ (l1+ckos ¢dx - Ax{ (1+€kos ¢df f(l-o-e)sin ¢ dx
L b4
+AY{ (l+e)cos Om-[. f—"L (l4clces ¢dx - AM, | (Lie)cos ¢ 1?3‘—
22 22

%
gin ¢Aendx f (l+ckos ¢d{ P3ndx f {1l+e)cos ¢di F4 dx

If
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and

Hi(z) =

[
e [

ﬁ
»

5’]

(1+e)cos ¢ dx

51?

i (l+c)ain ¢ dx

L
-I (14+€e) H1({x) cos ¢ dx
o

L
~{1l+c) H2(x) cos ¢ dx

o\'\

L
(l+c) HO(x) cos ¢ dx

?"Lﬁ

= H1(L)

= -H2(L)



233 a HO(L)

L L
T'A'l -I Flncoa ¢ dx -f {(l+c)ein ¢ Mn dx
() o

L L L

T’Aé aj sin ¢ Acn +f (l+c)coa & dx[ F3ndx
() (5 ©

T . -rrz cos ¢ dx
o

L X
(l+c)cos ¢ dx[ Fé dx
0

F4 dx

'EI _ (l+c)cos ¢ dx
23

Lot

the incremental force displacement equations become

+



In matrix form this becomes

where

multiplying both sides of the equation by K = g1 gives

80

ncw

so if

then

Kiu

B

AXg

8Y

B
AMp

Adu, = TlAu @ -

]
fAPA+'r + T

A A A
1 0 0 B
Tl = (0] 1 /£L(1+e)ccs ¢ dx
o o) 1 )

K'rlAuA -
-AxA - AP
—AYA - AQ

#” L
—AXAL' (l1+e)sin ¢ dx + AYAﬁ (l4e)cos ¢ dx -AMA

- - - '
KTlAuA APA + KT A + KTA

(]
KAuB + KT A + KTA

14€) (AP8in ¢ - AQcos ¢) + M dx + | [N(1+€)Ad - vaeld
[[( ) $ # + [[ )00 - vaglax

=1 0 o
(o] -1 0
' L
- (l+c)sin ¢dx (l+e)cos ¢dx -1
n | °©
APB = TZAPA + TB

-4 4-
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if the effact of the distributed loads &nd monents is
contained in the matrix TB then the following matrix

eguation holds

an [ ]
APB = TzAPA &= TZKTIA"A Tzl{AuB + TZRT A + T2KTA + TB

This now gives a relatlonship between applied forces and
displacements at either end. The required matrices and a
brief summary of the solution procedure appear on the

following pages.

e

2 L
ces“ ¢ 8in $ cos %
—B——dx [ B X (4]
o 11 o 11

L

o

H1l (L) -H2 (L) HO (L)
1 o o 7
'1‘l = 0 1 [L(ld-e)cos ¢ dx
h'0 (o] 1l i
-1 0 0
Tl* = (0] -1 0
-1

wd 5=

L
f = l+e)Hl (x)cos ¢dx j-(l-!-el-u (x)cos ¢dx ﬁ1+e)30(x)coa o dx
() o




T

-

L

L

JP3ndx

-3
- ]
[1'2003063

L
{1¢+c)cos ¢ dx[ PFé ax

|
A

0 -1

L
- (1+c)sin ¢ uf(1+c)m- ¢ dx
_ ) o

) A E ,
f ?lnmn $ 4z -i {(l¢ecdain ¢ A% éx

)
J sin ¢ Aca az +j {l+c)cos ¢ dxn 234“ dx

g s




u ~BP (L) 7
-40Q(L)
L
TB = f [(Iﬂ:) (APgin ¢ -~ AQcos ¢) <+ An] dx 4
()
L
L [reseran - 4] ax
e -

and the matrix eguaticns become

APA KAAAUA + K“AUB + PB?A

APB L] K“AUA + !BaAUB + P!!‘B

vhere £ le x

Kaa = 75Ty
Fgp = ToX
FRF, = KT, ¢ B‘ri
ma = sza + ‘I‘B
With these matricss the solution bscomes quite similer to a

traditional stiffness metheod solution. At ary give imcre=-
ment of load ¢', ¢, ¢, H. and V are known. This makes it



poasible te form the fleznlbility occeffiaients mll’ 512, bggp

and b32 by iategrating over the membsr, and alee the nember
atiffness mstrices ;an' ‘an, KB&, and K. Tho vesters T,
and Tg can be formed and the glokal stiffness matrizn asscabled,
8irnce the fixed end forces depend on :A° wvhich in turn
deopenda on Ac, A¢ and A¢', an iterative solutiem is reguired.
The iteration starte by ascuming a new Ac, 44 and 4¢°' for
each manba:. This makes it posoible to caupute ?a°, PEF, anad
FEP, arfl selve the oquationaEAU* = AP-AQ where AQ is the
vector of fized end forces and AP the veotor of epplied loads.
. From AU it is possibie to cemputes approxzimate member end
fércoc arnd got a2 now estimate of Ac, A6 and A¢t. his
process cortinues until two solutions are within an
acceptable tolerance, at which point the new value of ¢°, ¢,
t, ¥ and V are computed and the whole process is repsated
again,

The Campleox Nodel iz the emly model that includes
nomber atability, Pecause the numerical solutioan is based on
‘an incremental approach, the only simplifying arsumption
mada about deformation is that A4 is small snough to take
it as a differentiszl, and therafore sin 4¢ = 44 and
cos A¢ =1, This ie¢ a safe asoumption as long as the icading
increments are roasonsbly small, and since the accurasy of
any tangeant formuletion depends on the size of the leading
increments anyway, thiz assumption scems entirely justified.
In all other respects, the Complex Nodel is thecretically
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axact, within the limits of any incremental approach, and can

be confidently used as a yardstick against which other medels

can be cowpared.
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3.0 MEMBER STUDY - ELASTIC

In this chapter, the behavior of the Complex Model is
discussed, and the relative importance of the two elaastic non-
linear effects, the P-Delta effect, and the effect of change
in geometry, is examined. Although the Complex Model is the
only model capable of representing member deformations, and
hence member instability, the simple expedient of subdividing
a member into a number of smaller members makes it possible to
reproduce member buckling with the other models as well.,
Because of this, it is possible to use the other models to
check the Complex Model, provided that enough submembexrs
are used in the simpler models. 1In addition, the relative
importance of the various non-linear effects can be evaluated,
since each effect can be included separately in the simple

models.

3.1 Behavior of the Complex Model

Three basic types of loading were examined; an axially
loaded member with small end moments (single curvature), an
axially loaded member with a concentrated vertical lecad in the
center, and an axially loaded member with a prescribed
vertical displacement applied at the center. Only in the
second case were boundary conditions other than hinged ends
considered. In all cases, the member was a Wl4 x 142,

modeled with six fibers and twenty-six sections. A previcus

=-50-



thesis done by Raymond W. Latona has shown that this number of
fibers and croes sections will give results that axe accurate
to within 2%% in both the elastic and inelastic range.

The results of the first type of loading, equal end
moments and an axial load, are shown in Figure 3-1, the lead

incremente and support conditions are shown below.

AM = 10 in-K AM = 10 in°K

Ap=200K
i
L = 252"

The Euler buckling load for this member (PE) is 7786 kips,

and this value is quite close to that given by Figure 3-1.
Figure 3-2 shows the same case, but with the load increments
AP and AM halved. The smaller increments cause the
predicted buckling load to be lower by about 400 kips, which
is precisely what Qould be expected from a tangent formula-
tion, since any error will give a load above the true
solutiocn. B

The results of the second type of loading are shown in
Figures 3-3 through 3-6. Figures 3-3 and 3-4 represent the
results obtained from the case shown below, with the member

length equal to 2%2 inches in 3-3, and 504 inches in 3-4.

AH

4 ¢ AP = .0257 P

E
’A7 L = 252 in or 504 in. i
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Figure 3-1. Graph of v vs P
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Pigure 3-3. Graph of v vs8 P
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Figure 3-4, Graph of v vs8 P
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In both cases, the critical buckling lecad predicted by the
model, approaches the Euler buckling load as AH approaches
zero. Since both the axial leoad and the horizontal load
increase at each increment, even a small value of AH amounts
to an appreciable lcad after thirty or forty increments, and
hence may well have a sizeable effect on member stability.
A precise definition of the buckling leoad is very difficult
for thias type of lecading. There is no clear point of
instability, instead, there is an araa where the stiffness of
the membar is clearly decreasing, an area where it remains
constant (but wvery small), and finally an area of increasing
gstiffness, although by this time the deflection has become
80 great that the structure is more of an arch than & beas.
Thie is only a theoretical difficulty, however, since this
member, if made of conventional steel, would already have
failed inelastically.

Thus the most important parameter for this type of
loading is not a precise definition of the buckling load,
but rather a preciss definition of the amount of deflactien

amplification to be expected as P apprcaches P If the

B
amplification factor A is defined as the ratio of the
actual beam deflection, tc the beam deflection that would
oeccur if only the horizontal lead were present, then the
amplification factor for various ratios of P/PE can be

computed from Figures 3-3 through 3-6.
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In the case of a hinged member, the theoretical midspan
deflection (assuming small deformations) for a member with

an axial load ?» and a horizontal load H is shown below.

KL
v = HL -i_?: -1 K = ..P_.
T 4P KL, 8%1_. EX

Since the deflection at midspan due to the horizontal load

acting alone would be

Ve * T8EI

the amplification factor can be written as follows

v, sin
T 12 2 P
Aa—a_ﬂ _..._.__...- s K _]_:.

In Tables 3-1 and 3-2 the values of A obtained from
Figures 3-3 and 3-4 are compared with the value of A given
by the formula above. 1In all cases the increment of axial

load, AP, is 2.57% of the Euler buckling load.
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Table 3-1

Effect of Varying AH on A for Beam of Figure 3-3

AH
/AP

E .025 .10 .15 Theory

«5 1.92 1.92 1.92 1.98

.75 3.53 3.46 3.45 3.95

.9 7.56 6.65 5.89 .85

Table 3-2

Effect of Varying AH on A for Beam of Figure 3-4

AH
/AP

/P .025 .10 .15 Theory

«5 1.92 1.92 1.92 1.98

.75 3.71 3.55 3.45 3.95

.9 7.90 6.86 6.00 9.85

-58~-



It should be noted that the theoretical predictions in
thdgds tables are based on the ¢raditional linearized theory,
which becomes inaccurate when the deformations cease to be
small. Since the linear theory c:nnot predict the increase in
ctiffness due to the arch effect, the results given in Tables
3-1 and 3-2 appear reasonable. The agreement with the linear-
ized theory is quite good at P = .5 Po» but becomes poorer as

P approaches P Some of this discrepancv is undoubtedly

E.
cauged by the inherent errors in any tangent solution, and
some by &the linear assumptions in the theory. Since the size
of the solution error is directly dependent on the si<e of AP,

the relationship between A and AP is shown in Table 3-3 for

AP
/P'
E
AH/AP is .10, and the length of the beam is % inches.

different ratios of In Table 3-3 belo:., the value of

Table 3-3

Effect of Varyiang AP on A for Beam of Ficuare 3-3

Linear
AP/PE Extrapolation
P/ Columns| Columns
PE . 0257 .0128 .0064 1&2 243 Theory
5 1,92 1.96 1.498 2.01 2,00 1.98
.75 3.46 3.62 3.69 3.78 3.76 3.96
.9 6.65 7.03 7.21 7.41 7.39 %.90




Table 3-3 clearly shcws that A increases as the size of AP
decreas2s, and that the relationship between AA and AP is
esgsentially linear. At P = .5 PE’ the linear extrapolation
agrees quite closely with the linearized theory, but at
higher loads there continues to be a significant discrepancy.
This discrepancy is probably due to error in the theory,
gince the displacements at these loads are no lenger small
enough to justify the linear assumptions made in deriving
the theoretical amplification factor. Thus the predictions
of the Complex Model appear quite good. In areas .ere the
linearized theory is valid, the Complex Model agrees very
closely, in areas where the theory is less valid, the
predictions of the Comple:x Model differ in a way that appears
reasonable.

When the ends of the membear are fixed rather than
pinned, the theoretical amplificai:ion factor (again assuming

small deformations) becomes

In Tables 3-4 and 3-5, the values of A obtained from Figures
3-5 and 3-6 are compared with this theoretical value for

AP = ,0257 PE' and varying ratios of %%.
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Table 3-4

Effect of Varying AH on A for Beam of Figure 3-5

AH/AP
F/
Pp . 025 .10 .15 Theory
-] 1.90 1.93 1.92 1.98
+75 3.51 3.30 3.23 3.95
.90 6.55 5.89 5.44 9.84
Table 3-5

Effect of Varying

AH on A for Beam of Figure 3-6

AH

/ap
¥/
P .025 .10 .15 Theory
5 1,92 1.93 1.91 1,98
.75 3.56 3.50 3.40 3,95
.90 7.25 6.43 5.78 9.84
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These tables show that the amplifications predicted by
the model for the fixed ended case are very similax to those
predicted for the pin ended case. Once again the agreement
with the linear theory is goed in the area where that theory
is vaiid, and where the model differs from the theory, the
variation seems reasonable.

Because the results of Tables 3-4 and 3-5 are so
similar to those of Tables 3-1 and 3-2, it seems reasonable
to assume that the error study done in Table 3-3 would apply
equally well here. It should be noted, that in sll casec
the stiffening caused by the arch effect will increase as
AH increasea. Thus the value of A should decrease as the
ratio of AH/AP increases. This reduction cannot be predicted
by the theory, since the linear assumptions used cause A to be
independent of H. The results from the tables do show this
reduction, however, and show that it becomes significant
after P exceeds «5 Pp.

In the third type of loading, an axial load with a
prescribed vertical displacement, the vertical displacement
was applied to a member with a constant axial load, and also
to a member with an increasing axial lcad. Figure 3-7 shows
the case where the axial load was held constant and
a prescribed displacement was applied at the center. The
graph clearly shows that the axial load has & softening
effect on t;e beﬁm, and thﬁt this effect is increased as the
magnitude of the axial load increases. This effect is not
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quite linear, and a slight stiffening of the beam occurs.
This is caused by the fact that the perturbing forces caused
by the P-Delta effect are not quite linearly related to the
digplacement, and hence do not quite cancel cut the increase
in reaction which is, of course, linearly related to the
displacement.

In the zecond case, both axial load and displacement were
varied, giving the results shown in Pigure 3-8 where the
axial load is graphed ngainst the vertical reaction. It is
interesting to note that buckling occurs when R becomes equal
to zero, and that the maximum value of R iz a functien of the
prescribed displacement. Thus, in this situation, a
decreasing value of R is not an indication of buckling until
the value of R becomes negative.

In summary, three different cases have been examined, and
in each of them the results obtained from the Complex Model
agree with those predicted by theory. In the areas whéere the
theory doesn’t apply, or gives an upper bound, the model
results appear reasonable, and differ from the theery in a
predictable way. The use of a tangent type solution does
cauge an error, which can only be reduced by a smalier

increment of load.

3.2 The Elastic Kon-Linear Bffects

Although member buckling is not considered in the linear
models, buckling of the atructure as a whole is accounted for

by the P-Delta effect and the change in geometry. In this
-66~-
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gsection, ths structure shown belocw will be modeled uging two,
four and eight members, and the results will be compared to
those obtained by the Complex Model.

aH = 20K

5 | A%‘ﬁgp = 200
L = 252 in.

Since both the Interaction Model and the Latona Model give
identical results in the elastic case, only the Latona Modsl
will be specifically discussed, although 2ll results and
conclusions are equally applicable to the Interaction Mocdel.

Figure 3-8 compaﬁe& the results from the Latona Model
with those from the Complex Model. %When eight members are
used in the Latona Model, the results are practically
identical with those given by the Complex Model. When fewer
nenberi are used, the agreement ig not as good, although even
the model with two members is within 15% of the Complex Model.
S8ince it is possible to reproduce the results of the Complex
Model with an eight member Latona Model, the two non-linear
effects can be isclated, and compared with the correct
solution. Pigure 3-9 shows the bahavior of the Latona Mecdel
with only the P-Delta effect, and the Latocna Model with both
the P-Delta effect and the change in gesocmetry. The graph
clearly shows that the results obtained from the Latona
Model, when the P-Delta effect is the only non-linear
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effect considered, are congiderably different from those
obtained when both the P-Delta effect and the change in
geometry are included. This shows that the effact of change
in geometry is as important as the P-Deita effect, and that
both must be included in a modified linear model, if non-

linear behavior is to be accurately represented.

3.3 Summary

The behavior of the Complex Model in the elastic range
has bzen examined, and th~ results given by the model conform
to established theory. The major source of error in the modal
has been shown to be the size of the incremental lcad, a
reduction in increment size, giving a reduction in the magni-
tude of the error. By subdividing the basic member into a
series of submembers, it'has been possible to use the two
modified linear models, the Latona Model and the Interaction
Model, to mcdel buckling as well. It has been shown that a
member divided into eight submembers, and analyzed by a
modified linear model, will give the same results as the
Complex Model, provided that both the P-Delta effect and the
effect of change in geometry are included. 1In such an
analysis it is essential that both non-linear effects be
considered, since neither effect alone gives sufficiently
accurate results. It should be noted that the effect of
member curvature is not reproduced in the modified linear

models, and hence there is no stiffening of the structure at
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large deformations. Since this effect is rarely significant
when inelastic behavior is considered, the lack of it does
not seriously curtail the use of the meodified linear modela on

realiatic structures.
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4,0 MEMBER STUDY - INELASTIC

In this chapter, the third non-linear effect, & change in
the modulus of elasticity due to yielding, is included. Five
different examples are examined, and the behavior of the
various models in each example is discussed. In the firat
two examples no axial load is applied, member deformations are
quite small, and hence the effect of yielding becomes the only
important non-linear effect. In the laat three examples an
axial load is applied and the relative importance of all
three non-linear effects is considered. 1In all cases the
material is assumed to be A36 steel, and the section ias a

Wl4 x 142,

4.1 Inelastic Behavior - ¥Without Axial Load

The first example coneidered is shown below, a fixed

ended beam with a concentrated locad at midspan.

AR = 18

1 Wld x 142
% :
.

252 in.

A
<

Since the moment at both ends and the center is %?, the beamn
should fail when the bsam moment equals the plastic moment for
the beam. In this case, the plastic moment is 9180 in.k so
the beam should fail when H reaches 291k. Pigures 4-1

through 4-4 show the predictions of the four wmodels for this

example.
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The Bending Model and the Interaction Model fall abruptly
aince they develop hinges as soon as the inelastic criteria
are met. The Bending Model gives a very good prediction of
the limiting load, but the Interaction Model is high, since
it meets the criteria of .847 H/Mp = 1, Because of this, the
failure load predicted by the Interaction Model should be 1.18
times as large a&s that predicted by the Bending Model, and
this is precisely what it is. Clearly a smaller lozd
increment would lead to a better prediction for beth wodels,
but the error in the Bending Model is only about 3% and this
certainly seems tolerable.

The Latona Model and the Complex Model both use the
same fiber and section technique to check for yielding, and
thus should give results that are in close agreement. This i
in fact the case, but their behavior is significantly different
from that of the Bending Model. The formation of the failure
mechanism is markedly more gradual, and comes in two parts.
The first part 1s.the formation of a hinge, which starts when
the flange fibers yield, in this case when H = 290*, and ends
when all the fibers at one section have yielded, in this cese
wvhen H = 3aok, Since the three hinges required to cause fail-~
ure all form at the same time in this example, a failure mach-
anism exists when H = 330k. Unlike the Bending and Interaction
Models, each hinge takes several increments te form, and there

are several changes in stiffness before failure, each one

corresponding to the yielding of two symmetrical fibers. It is
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important to note that the spreading of yielding can only be
counted on when a failure mechanism is being developed. It is
perfectly possible for yielding to start and then stop, 1if
there are alternative load paths within the structure. This
phenomenon of spreading of yielding causes significant differ-
ences between the predictions of the Bending and Interaction
Models, and the Latona and Complex Models, especially when the
failure mechanism forms progressively rather than suddenly.

In the second example, shown below, a loading pattern that

causes a progressive failure mechanism is examined.

84 in AH = 10%
aﬁ L Wld x 142ﬂ
. 252 in, it

In theory, the three plastic hinges will form progres-
sively from left to right acrcss the member. The first one

ghould form at the left end at a load of 246k

» the second
one should form at the point of load application at a load of
316k and the third one should form at the right end at a load
of 328k. At this point, a mechanism ie formed and the
structure fails. This theory assumes that a plastic hinge
forms as soon #a3 the moment in the member reaches thé plastic
moment, and that at that point the yielded section has no
further stiffness. This is a common assumption in plastic
design, but it clearly fails to account for any spreading

of yielding. The theory outlined above is precisely the
theory used in the Bending Model, except that the Bending

=70~



Modael is not truly elasto-plastic, and conseguently it should
aleo predict this type of behavior. FPFigure 4-5 shows that this
is in fact the case, the small residuval stiffness after
yielding, and the size of the lcad increment, cause the faii-

k instead of 330k

ure load to be 340 , but the bshavicr conforms
very closely with the plastic theory and the formation of the
three hinges is very clear. The Interaction Model, shown

in Pigure 4-6, behaves in a similar fashion, but because of
the moment multiplier of .847 used in the AISC iateraction
formula, the hinges form at higher loads.

The behavior of the Complex and Latona Models is gquite
different, however, As can be geen frem Figuresd-7 and 4-8,
the first hinge forms at 255 kips, about where plastic.
theory indicates it should, the second hinge starts forming

at 330K

, and after that the bshavior becomas more complicated.
The explanation for this can ba found in the phenomenon of
spreading of ylelding. Instead of a hinge forming at once,

it forms progressively, the ocuter fibers yielding firat and
then the inner fibers, until the entire section is plastic,
Because of this, ths second hinge forms in two separate steps,
wvith the outer fibers yielding first and then the middle
fibers yielding. In FPigure 4-%, the load incresent has baan
reduced to 2.5 kips, and the precise spreading of yielding

is shown in Figure 4-10. With this smaller load increment,

it becomes clear that the hinges all form progressively, and

that the contribution of the inner wab fiber ie relatively

-80-
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Pigure 4-10. Spreading of Yielding for Beam of FPigure 4-9
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grall. A compariscn of Pigqures 4-9 and 4-10 ghows that once
the cuter two fibers have yielded, the member behaves ag if
the entire zection were plastic. Thus the formation of
a hinge appears as two changes in stiffnessa, the firat change
occurring when the flange fibers yield, and the second change
occurring when the outer web fibers yield. If the structure
that remains, after the formation of a hings, ia sufficiently
stiff, this double change of stiffness may not be very
obvicus. In Pigure 4-9, the change ir. stiffness as the first
hinge starts to form is much smaller than the change in stiff-
ness as the second hinge starts, because the remaining
structure is much stiffer in the case of the first hinge.
Since the size of the load increment influences the way
the stresses change, it is clear that the spreading of
yielding will be less accurately represented when a larger
load increment is used. This is why the transition phase for
the first hinge is much less clear in Figures 4-7 and 4-8.
The change in stresses is so large, that both the flange fiber
and the outer web fiber fail at the same increment, whereas
thias does not occur when the locad increment is smaller. The
table on the next page shows how the loads at which each
hinge starts to form vary as the load increment is decreased;
the failure load is defined as the load at which all sections

have become plastic.
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Table 4-1

Relaticnship Between Load Increment and Hinge Formation
in Complex Model

(61ze of Load|] H at Start | H at Start | H at Start H at

Increment |of lst Hingejof 2rd Hinge{of 3rd Hinge| Fallure

10.0 240.0 320.0 360.0 370.0

5.0 235.0 310.0 340.0 350.0

2.5 235.90 307.5 330.0 346.0
Extrapolated 230.0 300.9 320 330

It is intsresting that the reduction im H for a reduction in
increment size is linear for the third hinge and the failure
load, but not for the first two hinges. This is probably due
to the fact that yielding is essentially complete at this
peint, and hence the praecise order in which the fibere
yielded ceases to be important. The table clearly shows that
a reduction in increment size causes a reduction in failure
lecad, although the phenomenon of spreading of yielding is
important for all increment gizes.

Thus the major inelastic difference betweer the Bending
and Intersction Models, and the Latona and Complex Models is
in the way the formation of a plastic hinge i handled. In a
case vhere one hinge will cause failure, or several hingss
form at the same time causing failure, this differeance is
relatively unimportant. Even in a case where several plastic



hinges must form progressively in order to form a mechanism,
this difference is small, and only causes small discrepancies
between the predictions of the models. In all cases, the
8ize of the load increment is important, and a reduction in
load increment may greatly reduce the predicted failure load

of the member, especially in the Latona and Complex Models.

4.2 1Inelastic Behavior - With Axial Load

The addition of axial load greatly complicates the
problem of inelastic behavior. For any significant axial lead,
the Bending Model becomes totally inadequate, since it makes
no provision for the added stress due to the axial load.
Because of thia, the Bending Model will not be discussed in
this section. The other three models should give reasonable
results for this type of loading situation, although the two
modified non-linear models will be limited by the fact that
only two segments are used in the member. The first twe
examples used in this aection illustrate opposite extremes.
The first is a relatively stiff beam column where the
P-Delta effect and the effect of change in geometry are
relatively unimportant; the second is a very slender column
where these two effects are quite important. The loading
conditions for the first example are shown on the next page
and the results for each model are shown in Figures 4-11
through 4-13; in the Latona and Complex Models the spreading

of yielding is also shown (Figures 4-12 and 4-13).
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AH = 2,5%

a; 4w x 142 AP = 25

. 252 in. hr

Since the three plastic hinges necessary to form a
mechanism all form simultaneously, the Interaction Model
remains elastic until the criteria for yielding are met, and
then failes at an axial load of 1050 kips. In the Latona and
Complex Models, the failure is wmore gradual due to the
phenomenon of spreading of yielding. Figures 4-12 and 4-13
show that the results given by the two models are practically
idsntical fer this example. The Complex Model gives a
glightly higher failure load than the Latona Model, and
there are slight differences in the yielding patterns, but
for practical purposes, the models give the same results.

In this exanple, the P-Delta effect and the effect of change
in geometry are far less 1nportant'than the effect of
vielding, and don't sigrificantly affect the behavior of the
nember. As ﬁ result, the inability of the Latona Mecdel to
represent these effects as accurately as the Complex Model is
not important. The yielding mechanisa is very important,
however, as the presence of an axial load causas yielding to
spresd from section to section as wall as frem fiber to fiber,
This spreading of yielding greatly decreases the stiffness of
the member and causes the deflection to increase very rapidly
once yielding starts.
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Thus the »reszence of an axial load makes the failure
mechanisa considerably more complicated, since yielding is not
confined to a small area, dut may well spread throughout the
member. This type of behavisne cannct be accounted for in tha
Intsraction Model, but can be reprasanted by the Latona Model
and ths Complex Model, and both models give essentially
similar resulte for this case.

In the second beam column example, all the non-linear
effects become important, since the member iz extremely
slender, and is pin ended as well. The loading cenditions
for thie case are shown below, and the results for the three
meodels are shown in Pigures 4-14 through 4-16.

AH = ,5%
l Wl4 x 142 AP = 5X
+Bor 1390 in P
q4— -

Once again the Interaction Model predicts an abrupt
failure, since one mechanism is sufficient to cause collapse.
The other two models predict a moze gradual failure, but
this tims their predictions vary siightly. Unlike the first
example, the Interaction Model gives a higher failure load
than the Latona and Complex Models, and the Complex Model i3
somevhat softer than the modified linear medels. Because the
beam column is subdivided into only two members, the modified
linear models cannot reproduce the P-Delta sffect and the

charge in geometry as accurately as the Complex Model. By the
-94- ’
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time yi_lding occurs in this example, the amplification factor
is greater than two and the error caused by using a modified
linear model with only two segments becomes significant.

The differences in the spreading of yielding between the
Complex Model and the Latona Model reflect this error. 1In
the Complex Model, yielding starts one load increment earlier
than in the Latona Model and spreads slightly more rapidly
from section to section. This means thatthe beam column in
the Latona Model is stiffer, just before failure, than its
counterpart in the Complex Model, a result that might be
important if it were part of a structure rather than just an
individual member. It is interesting to note that this
variation in stiffness does not significantly affect the
failure load, and that both models predict failure at a leoad
of 145 kipe, 10 kips below the failure load predicted by the
Interaction Model.

In the third example, a prescribed displacement is
applied te a column with a constant axial load. Two condi-
tions are examined, one where the strain hardening of the
member is .1%, and one where the strain hardening is 3%. For
the purposes of this thesis, % strain hardening will be defined
as the ratio of the tangent stiffness after yielding to the
tangent stiffness before yielding. The loading conditions for
theae_cases are shown on the next page, and the results are
shown in Figures 4-17 through 4-22 for each of the three

models.
«=Qg-
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The graphs clearly show that the slopeof the curve after
failure is a function of both the strain hardeming and the
axial locad. %he nature cf this relationship can bs better

understocd by examining the diagram below.

P

H
2

4__2_
H
2

In order to satisfy equilibrium the following relationship

must hold.

3L
PA"'T-HP

This means that the relationship between H and A can be

expressed as

4M
4PA 48EIA

vhere a is the percént strain hardening. Differentiating H

with respect to A gives

de _ 4 (12Ela _
&, L \"; 7
and it can be seen that the slope after failure is a function
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of both P and a. This approximetion agrees very clesely with
the results given by the Interaction Modsl, while the Latona
and Complex Modela predict higher slopes and non-linear
behavior after yielding, especially in the case of 3% strain
hardening. Since the complicated models are much more
sengitive to the gize of the diaplacement increment than the
Interaction Model, some of this discrepancy may be due to

the size of the load increment, but in all models, the slope
after yielding is clearly a function of both the axial load

and the percent strain hardening.

4.3 Summary

Thus the ability cf each of the models to accurately
represent the behavior of a member iz dependent on the
increment size and the type of loading for that partiéular
member. When an axial locad is present, yielding spreads along
the member as well as through it, and the concept of a plastic
hinge forming at a set location may not be wvalid. O©Of the
three non-linear effects, the spreading of yielding is the
most important, and in most practical cases, a modified
linear model with two aegments can represgent the other
effects sufficiently accurately. The other two effects can
be important, however, and in the case of slender members of
materials with a higher yield point, may well become
significant.
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5.0 FRAME STUDY - INELASTIC

In this chapter several single bay single story frames
are examined in a. attempt to investigate the irportance of
such parameters as axial lecad, ratio of beam plastic moment to
column plastic moment, ratio of girder stiffness to column
stiffness, and the percent of strain hardening. In all
cases, an axial lcad is first applied to the frame which is
then cycled through a series of diaplacement reversals by
prescribing displacements. In the simple models, the values
of the plastic moment are suitably modified, the cclumn
moment being reduced to account for the axial load in the
Bending Model, and the girder moment being reduced to
account for the multiplier of .847 in the Interaction Model.
The chapter is divided jimes two basic sections. The first is
a parametric study involving three different typez of frames
and two different ratios of column axial lcad to colurn
yield load. The frames consist of a frame where the girder
is stiffer and stronger than the cblumn, a frame where the
girder is weaker and more flexible thﬁn the columﬁ,.and a
frame where the girder is stiffer, but weaker, than the
column. In the second section, theeffects of load increment
and percent strain hardening are examined for the single bay
single story frase in Latona's thesis, since this frame
exhibited significant differences between the complicated and
simple models in that thesis.
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5.1 Parametric Study

The framesused in the parametric study have the members
and dimensions shown below. 1In all caseg, the columns are
W8 x 24, and the girders are varied to make the stiffness and
strength ratios work out. The percent strain hardening is
always .1%, and the loading is a prescribed displacement

increment of .1 inches as shown below,

P P
l Girder Varies == Av = ,1 in.

b
(o] N
»
o Qo [> ]
=

i
. 240 in, N

=y

The results for the first case, where the girder is stronger
and stiffer than the column, are shown in Figures 5-1 through
5-8. Figures 5-1 through 5-4 show the results for the four
models when the ratio of axial load to yield load 513 is

Y
.2, Figures 5-5 through 5-8 show the results when gl is

y
.4. As was shown in Chapter 4, the slope of the R-A
curve after a mechanism has developed, is dependent on both
P and the strain hardening percezntage a. In the case of a

single story single bay frame this relationship is

di _2([ 12E1 (1+6y) Igh
i) o
¢

Since a is .001, the slope after a mechanism has formed should
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Figure 5-2. OGraph of R va A
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Figure 3-3. Graph of R vo A
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Figure 5-4.
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Figure 5-8. Graph of H vg A
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be quite close to - 3L in the simple medels, and this is in
fact the case.

When the axial load is relatively swmall, there is very
little difference between the four modelz. The two simple
models ..re definitely trilinear, while the Latona and Complex
Models give a more gradual failure, and a slightly higher
failure load. The Bending Mcdel falls at a slightly higher
load than the Inter ictien Model, since thse Bending Model does
not account for the increased axial force due to frame

sidesway, but in general, all four mecdels give quite similar

results.
This is not the case when gi ig .4, however. The larger

axial load causes a significantychange in the behavior of the
Latonz and Complex Models. fThe bshavior of the simple models
remains quite similar, with the exception of the downward
slope of the R-A curve, which is now twice as large since the
axial load has doubled. The force displacement curve is a
stable loop, howaver, which is no longer true for the Latona
and Complex Models. Instead, these models show an increase in
force at each cycle so that each loop becomes narrower and
higher, although in all other respects, the models behave as
expected, and give quite similar results. Thus this unateady
behavior is the only major difference between the complicated
and simple models for this case, and it is this behavior that
is further explored in the second section of this chaptsr.
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‘The resulte for the second type of frame, where the
girder is weaker and more flexible than the column, are chown
in Figures 5-9 through 5-16 with Pigures 5-9 threough 5-12 being
the results for gi = .2 and Pigures 5-~13 through 5-16 beiny
the results for %5 = ,4., The results for this frame are
very similar to thoag for the first frame, with ne major
difference between the four models for a small axial load, and
a significant difference between the complicated and simple
models for a large axial load. Once acgain the Complex and
Latona Models show an increase in resisgting force at each
eycle, so that the force deformation loop becomes progressively
higher 2nd narrcwer, while the Bending and Interaction Models
de not show this behavior, and the force defermation loop for
these models remains stable for both values of axial load. 1In
all the models, the slope of the R-~A curve after the formation
of a mechaniecm is dependent on the magnitude of the axial load,
and agrees w=2ll with the wvalue of -%? ¢ Rentioned earlier in
this chapter.

In both of the frames examined so far. »lastic hinges
will develop firat at the base of a column. Thus both cases
invoive initiul ceolunn yielding at the botton: of the frame,
regardless of where the second set of himges ¢ :curs at the top.
In the third frame, this situation is avoided by greatly

increasing the column yield strength in the frame of case 1.

This means that the girder is stiffer than the column but
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Figure 5-9. Graph of R vi A
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Figure 5-10. Graph of R vs A
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Figure 5-11. Graph of R vs A
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Pigure 5-12. Graph of R vs A
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Figure 5-14. Graph of R vs A
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Figure 5-16. Graph of R vs A
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weaker, and hence plastic hingeg will develep in the girder
before failure osccurg in either the top of bottom of the
column, In fact, failure never occurs in the column, since
the maxinum displacement of five inches is not sufficient

to cause yielding at the base of either column. The results
for this case are shown in Pigures 5-17 through 5-20 for

5~ = -2 and in Figures 5-21 through 5-24 for o~ = .4. When the
axial locad is small, all the models give similar results. As
usual, the Bending and Interaction Models show an abrupt
transition when the girder fails, while the Latona and Complex
Models show a more gradual transition, but in other respects
the models are quite similar. At a large value of axial load,
however, differences appear, although in all models the force
displacement loops are stable, unlike the previous two cases.
Since the first two cases involve substantial yielding in the
column, and this case does not, it seems reasonable to assume
thaﬁ the increase in resistance observed in the first two
cases is related to spreading of yielding in the column, and
does not occur as long as the column remains elastic.

Because the column yield stress is so high in the third
case, the column load corresponding to gi = ,4 is about half
the frame buckling load (assuming K = 1)¥ This means that
only the restraint offered by the stiff girder keeps the
frame from buckling, and as soon as a hinge forms in the
girder the frame becomes unstable. All the models reflect

this failure by the downward slope of the R-A curve after a
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Figure 5-17. Graph of R vs A
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Pigure 5-19. Graph of P va A
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Pigure 5-20. Graph of R v A
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Pigure 5-21. Graph of R va A
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Filgure 5-22. Graph of R va A
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Figurae 5-23. Graph of R vg A
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Figure 5-24. Graph of R vs A
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plastic hinge has formed in the girder, but this downward slope
iz much steeper in the Complex Model becauze of ite ability to
reproduce member deformations. The effect of member deforma-—
tions on the initial failure load is also significant, the
Complex Model giving & failure load about 1.0% lower than that
of the Latona Model. It is interesting to ncte that in this
case, as in the case of the slender besm column of Chapter 4,
the softening effect caused by outer fibers vielding becones
important, and hence the Latona Meodel predicts a2 lower initial
failure load than the simple models.

Thus the major difference between the modele appears to
occur when a column subjected to a large axial load yields.
The presence of sguch a céhdition does not significantly change
the behavior of the simple models, but in the Latona and
Complex Models, the R-A curve becomes unsteady and the
resistance of the frame appears to increase with sach displace-
ment cycle. There appears to be little difference between the
Bending and Interaction Models, nor does there appear to be any
najof difference between the Latona and Complex Modelas, It
is true that the Complex Model will give different results
froem ths Latona Model whan member deformations are important,
but the predictions of the Latona Model are not greatly in
errer, even in this case, and in the other cases the agreement

between the Complex and Latona Models is extremely good.
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5.2 Latona Frame Study

One of the examples used by Latona in his thesis was a
single bay single story frame with very large axial loads.
Since column yielding in the presence of large axial loads
appears to cause the major differences betwszen the models,
the predictions of the various models for Latona's frame will
be examined in this section. The results given by the four
models for a displacement increment of .1 in. are shown in
Figures 5-25 through 5-28. Once again the simple models show
a steady force displacement loop, while the complicated models
predict one that is unsteady. The frame and its loading is

shown below.

P=214.45 = pm214.4F
1 W24 x 84 lLf
n| T Av
<
#
(=]
-
=
B

. 30 _ft,

Because it has been shown in earlier chapters that the

Latona and Complex Models are very sensitive to the size of the
load increment, the same case was run again using the Complex
Model and a displacement increment of .05 in. Figure 5-29
shows the results for this secend run, and it can be seen that
while there is a small decrease in the force values, the
resistance still increases at each displacement cycle. A

linear extrapolation from Figures 5-28 and 5-29 shows that the
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Figure 5-29. Graph of R va Ay A = .05
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increase in resistance will not vanish as the increment size
goes to zero, and hence this increase representca the real
behavior of the mathematical medel, and not the result of an
overlarge displacement increment.

Figures 5-28 and 5-29 both show that the increase in
registauce for the third cycle is smaller than that for the
second, and it appears that the force deformation loop may sta-
bilize after several cycles. Figure 5-30 shows that this does,
in fact, happen, and that there is very little increase in
resistance between the third and fourth cycles. It should alsc
be noted that the elastic loading and unloading portions ¢f the
loop become slightly stiffer at each cycle, the change in stiff-
nees is slight, but it is definitely present, and it seems to
stabilize also. 1In order to see how the behavior of the loop
is affected by the percent strain hardening, two other runs
have been made with the Latona Model, one for 1.5% strain har-
dening and one for 3% strain hardening. Figures 5-31 and 5-32
show the results of these two runs, and it can be seen that the
phenomenon of increase in resistance still occurs, but that it
occurs in a very different way. In both cages, most of the
increase occurs in the flirst cycle, and the force displacement
loop atabilizes much faster than in the case of .1% strain har-
dening. A comparison of the three graphe also shows that the
slope of the force deformation curve after failure increases

as the strain hardening increases, and also becomes more highly
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Plgure 5-31. Graph ¢f R ve A
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Figure 5-32. Graph ¢f R va A
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nen-linear. This behavior iz very similar to that of the beam
column studied in Chapter 4, and shows that a small change in
percent strain hardening may have a very significant effact on
the formation of the failure mechanism, and the behavior of
the frame after the mechanism has formed,

Since the major difference between the Latona Model and
the simple meodels is the ability of the Latona Model to monitor
the strain history of eacﬁ member, the relationship between the
axial displacement and the prescribed horizontal displacement
needs to be examined. This relationship is ghown in Figures
5-33 through 5-35 for each value of strain hardening. In each
‘case, the axial displacement increases with each displacement
cycle, and each increase is progressively smaller. This type
of behavior does not occur in the simple models, as the axial
displacement returns to its initial value after each cycle.
Such recovery does not occur in the Latona Mcodel, howaver,
and the axial displacement grows with each displacement rever-
sal. A similar effect was noted by Latona in his thesis,
where he found that a beam subjected to cyclic rotaticn and
constant axial lcad had an increasing axial strain.

Comparison of the three curves shows that in each case
the axial displacement decreases during the period when the
frame has not failed, and increases as soon as a failure
mechanism starts to form. The rate of increase of axial
displacement changes, however, becoming pregressively stiffer

at each reversal. This results in a smaller increaze in axial
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displacement at each cycle, until eventially the aituation
atabilizes, and the relationship between axial displacemont

and horizontal displacement becomes very similar to that for
the simple models. Figures 5-33 threugh 5-35 clearly show

that the number of cycles necessary to reach & stable condition
is a function of the percent atrain hardening. In the csse of
3% strain hardening, the curve ie essentially stable after

four displacement cycles, the 1.5% curve ie nearly stable,

and the .1% curve will clearly require several more cycles
before it becomes stable. Although the results shown are for
the Latona Model, they apply equally well %o the Complex Model,
and while the axial displacement shown in Figures 5-33

through 5-35 is the axial displacement of the right hand column
in the frame, the left hand column displacement is esgentially
similar.

In summary, the increase in frame resistance when
yYielding of a column occurs under heavy axial load, appears to
be related to thg relationship between cyclic rotaticon and
axial strain mentioned by Latona. Here, this relatienship is
quite complex, since in each diasplacement cycle the axial
stiffness of the column appears to increase, and the rate of
increase is affectei by the percent strain hardening as well
as by the number of cycles. A comparison of the models shows
that the Latona Mcdel represents this effect as well as the
Complex Model, and that the simple models do not predict this
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increase in axial displacement, bscause they do n@ﬁ kesp
track of the straim history of each meabsar and cannot
reproduce spreading of yielding amnd axlal-bending coupling.

In addition to the single frame study, a run of the three
story single bay frame in Latona's thesis was alsc made. The
loading consisted of verticad lcads and prescribed displace-
ments, the latter being increased linearly at sach story.

The frame, the loads, and the displacement incrementa arc
shown below, and the resuvlits are shown in Figures 5-36 through

5-41 for the Interaction and Latona Models with .1% strain

hardening.
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The columns in this frame are quite heavily leaded, and it can
be sean that the force deformation curves behave differently
for ths two modols. The curves for the Intaraction Modwl are
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Pigura 5-39. Graph of Rel. 8hear v Rel. Diap. - 2nd Story
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Figure 5-40. Graph of Rel. Shear va Rel. Diap. 3rd Story
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Figure 5-41. Graph of Rel. Shear ve Rel. Digp. - 3xd Story
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again steady, while those fer the Latena Mudel show considerable
ungteadinass. Because the forces and digplacements are
relative, and the frame ls three stories, the curves are much
more complicated than they wvere in the earlier cases. The
bagic difference between the simple and complicated models is
still there, however, and it cen be clearly seen that the two
types of models give significantly different results in this
case also. Further investigation will be required, however,
before any definitive conclusions can be made about multistory

frames.
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6.0 CORCLUSION

The four mathematical medels that have heen examined in
this thesis fall into two broad categories, simple models and
coumplicated models. In the simple models, the member strains
and stresses are not considered, and the criterion for
failure is based on the member forces (point hinge model).

In the complicated models, the criterien for failure is based
on the member stresses, which are monitored at many points
throughout the member. Although the two complicated models
are theoretically substantially different, their predictions
for the cases studied in this thesis are remarkably similar.
The fact that the Complex Model takes the deformation of the
member into consideration, while the Latona Model does not,
appears to cause very little discrepancy in the resulte for
practical cases. From this, it seems safe to conclude that
nember deformations are not very significant in a rigid frame,
and they can be safely ignored unless a column is both very
slender and very strong.

It is important to monitor the member stresses and
strains for two reasons. The first reason is the unateady
force-deformation loop discussed in chapter five, which
appears to occur whenever a column that is subjected to a
large axial load yields. Such a failure appears to cause the
axial strain to increase- under cyclic rotation, the rate of
increass being a function of the magnitude of the axial load

and the percent strain hardening after-yiéldinq.- The second
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reason is that the goftening of the member, due to the
spresding of ylelding, and the axial-bending coupling, may
become more important than the effect of non-linear gecmetry in
an individwal member. This can be clearly ssen in the case

of the slender beam column of chapter four, where the fallure
load given by the Latona Model agrees very well with that
predicted by the Complex Model, while the Interaction Model
gives a load that is significantly higher.

In general, the simple models give very similar results,
and usually rredict failure loads that are lower than the
failure loads for the complicated models. Since the compli-
cated models are more sensitive to the size of the load incre-
ment than the simple models, much of this discrepancy can be
eliminated by reducing the lcad increment, but this is, of
course, expensive. In the case of slender members, the
simple models cannot be relied upon to provide a lower bound
for the failure load. In such a case, the reduction in member
stiffneas caused by the spreading of yielding may become very
important, and the inability of the aimple models to take this
effect into account may lead to an overestimation of the
critical load.

Clearly the‘najor difference between the complicated and
simple models is the increase in frame resistance when there
iz a heavy axial load in the columns. Because this increase
in resistance appears to stabilize, and doea so in a way that
is dependent on the percent strain hardening and the

-161-



magnitude of the axial load, it may be pesesible to incorporate
this effect into the simple medels, 1f the precise nature of
the relationship is further investigated. The role of this
type of behavior under dynamic loading ig hard to predict, but
the variation eof stiffness predicted by the simple models will
not be accurate in these cases, and hence dynamic results may
be expected to vary frem the simple to the complicated models.
Thus the basic conclusions of this thesis are that the
increased sophistication and expense of the Complex Model is
only justified when unusually strong and slender structures are
being investigated. In most practical cases, the Latona Model
gives results that are virtually indistinguishable from those
given by the Complex Model. There is a significant discrepancy
between the Latona Model and the two simple models when
yielding occurs in a column subjected to alternating rotation
and a large axial load. It may be possible to eliminate this
discrepancy between the models by including the increase in
resistance in the simple models, but-further study of the
phenomenon is necessary before this can be done. It should
also be noted that gtudies of multistory frames may reveal
further differences between the models, and that these
conclusions only apply to individual members and single story

framesa.
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