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Abstract

Unconventional oil and gas basins have rapidly become expansive and critical energy resource
systems. However, accurately predicting highly variable well production rates remains chal-
lenging, given the typically poor subsurface characterization and complex flow behavior
involved. This creates uncertainty about future resource availability, undermining reliable
economic assessments and good stewardship of the resource.

Production, drilling, and hydraulic fracturing datasets from thousands of wells offer in-
sight into patterns of productivity but are noisy and incomplete. Fully exploiting this infor-
mation is only possible by leveraging contextual knowledge to structure observations. This
thesis provides a novel framework for combining machine learning and probabilistic modeling
with domain knowledge and physics to understand and predict well productivity.

Technology is a constantly evolving driver of productivity that must be captured in fore-
casts. This thesis shows that the immense geological heterogeneity of unconventional basins
can lead to overestimating the role of technology when the best areas are increasingly tar-
geted alongside design improvements. This conflation is remedied using spatial structure to
infer geological productivity as a latent variable. A regression-kriging technique is shown to
effectively disentangle technology from geology-which play roughly equal roles-and reduce
error in initial well productivity predictions by more than a third compared to established
methods.

Long-term production dynamics for unconventional wells are unpredictable and current
forecasting approaches have considerable limitations. Fitted production curve models are
ill-posed and unreliable, but aggregated type-well curves ignore important differences be-
tween wells. This thesis introduces Tikhonov regularization as a way of effectively sharing
information across wells, cutting error in the earliest long-term productivity forecasts in half.
Additionally, a spatiotemporal hierarchical Bayesian approach is developed that incorporates
physical relationships to enhance predictions and interpretability while quantifying and re-
ducing uncertainty. Sampling from this high dimensional model is enabled by designing a
unique Metropolis-Hastings within Gibbs scheme to take advantage of the model's struc-
ture. This novel mechanistic-statistical approach is able to learn and generalize physical
relationships across ensembles of wells with vastly different properties-realistic scenarios
where current techniques generate two to five times as much error-providing an important
and practical advance in better understanding and managing these resources.
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Chapter 1

Introduction

1.1 Background and motivation

The rapid growth of production from unconventional shale and tight resource systems has

turned the United States into the world's leading producer of both natural gas and crude oil.

These resources were long neglected due to the ultra-low permeability of the rocks. However,

attractive production rates were enabled by designing wells that maximize contact with the

reservoir through long horizontal sections combined with massive water-based hydraulic frac-

turing stimulations containing proppant (usually sand particles) to ensure fractures remain

propped open.

Widespread development activity in these fields has been accompanied by concerns for

the enormous environmental footprint of wells, including the acquisition and disposal of

immense volumes of water for hydraulic fracturing and the emissions associated with pro-

duction [53, 13]. Abundant and cheap natural gas from shale resources has drastically altered

the economics of electricity generation in the United States, leading to a shift away from

coal and reduction in carbon dioxide emissions [53]. Nevertheless, substantial debate con-

tinues over construction of new pipelines to transport the burgeoning resource due to the

enduring dependence this locks in for carbon emitting fuels and persistent skepticism about

the long-term economic viability [71].

Already, the economics of the resource have begun to face greater scrutiny as investors

have grown increasingly wary of the capital intensive nature of development combined with
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elusive returns due to unpredictable and highly variable production from wells [77] 1. Al-

though overall production has proved exceptionally resilient and even increased following

price collapses in natural gas and then oil, many wells have turned out to be unprofitable,

under-performing operators' production projections [3, 83]. Behind this sits a fundamental

challenge with the resource: production rates from unconventional oil and gas wells are dif-

ficult to predict, even with wells that appear to be quite similar, and the physical drivers of

well productivity are still poorly understood.

Improving upon the techniques used today to develop forecasts and understand the mech-

anisms of production will unlock tremendous value by more effectively informing decisions

related to the resource's development. The implications of this for the public range from ad-

vancing our understanding of the environmental impact of development to informing energy

policy decisions and massive infrastructure investments. In the private sector, the impact

will be more efficient deployment of capital-the dominant concern for operating companies

today-with a more realistic understanding of production levers enabling further optimiza-

tion of development campaigns and well designs. Additionally, more reliable production

forecasts will allow for better valuation and risk assessment of investments in this area.

1.2 Unconventional production forecasting: challenges and

opportunities

Traditional physics-based reservoir simulations are of limited utility with unconventional oil

and gas wells due to the cost and complexity of characterizing and modeling the complex

subsurface conditions and nanoscale flow behavior [61, 68]. Pore diameters in shale rocks are

of a similar magnitude to the mean free path of molecules, making molecule-wall interactions

non-negligible. It is difficult to characterize the heterogeneous properties of the reservoir

and capture nonlinear behavior due to pressure changes, including desorption and pore size

changes [110]. Additionally, there is immense uncertainty about the placement and properties

'An extensive discussion of the nature of uncertainty and risk in unconventional oil and gas can be
found in my master's thesis: Characterizing Shale Gas and Tight Oil Drilling and Production Performance
Variability [77]
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of the fractures that are key to productivity [49, 1091.

As a result, forecasting by both industry and government today is dominated by data-

driven techniques [105, 93]. However, many of these approaches are unable to adequately

address the geological heterogeneity of unconventional reservoirs and the constantly evolving

technology involved. This nonstationarity makes it difficult to use past performance of older

offset wells as production analogues for new wells developed under vastly different conditions.

Many of the approaches used today also fail to rigorously capture the uncertainty inherent

in available data and convey this in the forecasts being generated. Furthermore, these

approaches are unable to effectively incorporate the wealth of domain knowledge, including

geological and petroleum engineering principles involved in production, and the abundance

of field data from other producing wells.

Data from these unconventional fields is indeed prolific but of a fundamentally different

kind and quality than from the conventional fields that have long been targeted, making

new modeling tools a necessity. Large conventional drilling prospects have typically been

extensively logged and studied prior to development since costs can be immense and the

primary risk is of not finding a petroleum deposit at all 1771. Additionally, because the

physics of conventional production are well understood, there is a strong incentive to acquire

this expensive subsurface information, which can be used in simulations to guide decisions

over the potentially long lifetime of a well. By contrast, the more uncertain physics for

unconventional wells-combined with their relatively quick payback time-makes it more

attractive to put capital into drilling additional wells rather than trying to characterize the

heterogeneous subsurface. Data available for an individual unconventional well is inadequate

on its own to reasonably predict future behavior. It is thus necessary to glean as much as

possible from the extremely noisy and incomplete data of the broader field, which is often

available due to regulator reporting requirements, while enriching this understanding with

more thorough measurements for subsets of wells.

In unconventional oil and gas basins, patterns of productivity are best understood by

viewing the thousands of producing wells as a collection of ongoing small experiments. In-

stead of limiting an analysis to one well or a subset of similar wells, it is important to

systematically share information across all wells to reduce uncertainty and enhance the over-
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all understanding of production dynamics. Given the lack of measurements for some critical

properties of wells, it is also essential to structure data based on prior knowledge in order

to better separate signal from noise and infer latent subsurface conditions from the entire

population. There is considerable interest today in applying machine learning techniques to

data from unconventional fields. The goal of this thesis is a more nuanced approach to this

that strives to also retain interpretability and combine these powerful predictive tools with

rigorous uncertainty quantification, physics and domain knowledge wherever possible.

1.3 Central themes

Within the methodological framework that this thesis provides, there are five central themes,

or guiding philosophies, that should be recognized as critical considerations for modeling

unconventional well productivity more generally. These address fundamental data and mod-

eling issues within this context and are worth highlighting since they make the advantages

of the approach more clear and suggest how insights from this thesis may be adapted to

address slightly different questions about unconventional well productivity. Although the

framework presented in the following chapters is flexible and powerful, the building blocks

identified here suggest how it can best be adapted to the inevitable different datasets and

decisions that arise. Furthermore, these themes help to connect the specific research appli-

cation addressed here to broader principles for data-driven modeling of uncertain complex

physical systems.

The themes are briefly introduced here and will be mentioned again in Chap. 5 to point

out how these interrelated concepts permeate and tie together the different parts of this

thesis.

e Linear regression is simple but effective: Using least squares fits of a linear model

to describe relationships between variables is one of the simplest and most fundamental

techniques for data analysis. Given the noisiness in unconventional oil and gas data

and the need for interpretability to inform operational decisions, this technique should

not be overlooked or underestimated. More complicated machine learning approaches

may be seductive but it is always important to consider whether their complexity is
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warranted for the quality of data available since they can easily overfit noisy data,

leading to poor generalization with new data. The simplicity of linear regression also

makes it easy to combine it with more sophisticated modeling techniques to address

other important aspects of the system.

" Latent variables should not be ignored: Important physical attributes, especially

subsurface properties, are usually unavailable for unconventional wells. This makes it

important to draw on assumed structure for the system, known a priori or evident

across large populations of wells, in order to infer them as latent variables. This can

help to resolve some of the variability in production data, making relationships clearer

and forecasts more accurate.

" Balance the individual and the population using partial-pooling: A common

dilemma with current forecasting techniques is how to group wells for comparison and

analysis. Should wells be treated individually, given their geological and technological

heterogeneity, or as similar enough to be lumped together for analysis? In reality, a

middle ground is often sought by modelers in which data is fully-pooled across a small

subsample of neighboring wells deemed to be sufficiently homogeneous. However, this

introduces an inherent tradeoff: Include only the closest wells and the small sample

size is overwhelmed by the noisiness of the data; group wells too broadly and there is

a risk of missing important differences that can contaminate the analysis. A common

theme throughout this thesis is how partial-pooling of data using spatial structure,

regularization, and hierarchical priors circumvents the drawbacks of all-or-nothing,

completely pooled or unpooled approaches.

" Ill-posedness requires regularization: The most readily available data for pro-

ducing wells is the observed production rates and it is common to attempt to infer

subsurface conditions from this production data. However, this data on its own is

inadequate since it can be explained by different combinations of subsurface parame-

ters. Regularization augments a well's production data with some kind of additional

information, such as production data from other wells in the field, and is essential for

resolving this ambiguity.
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* Uncertainty quantification is essential: In this context, where data is noisy and

relationships can be modeled only very approximately, it is important to characterize

the distribution of uncertainty in predictions. The large variance in unconventional

well productivity means that deterministic estimates can be misleading and a poor

basis for decision-making. Additionally, uncertainty may be asymmetric, as shown

in [77], and risk can be distorted in unpredictable ways by nonlinear system behavior

and aggregation over many wells. Rigorous uncertainty quantification requires treating

quantities as probability distributions which are updated by new information, rather

than as fixed values with some arbitrary range of confidence applied.

1.4 Contribution and overview

The main contribution of this thesis is a novel, data-driven methodology for better quanti-

fying uncertainty and improving the accuracy in production forecasts while also enhancing

understanding about the factors behind productivity. This is accomplished by developing

modeling tools and a framework that allow existing disparate and imperfect sources of data

and domain knowledge, including mechanistic models, to be systematically incorporated into

forecasts. This is a significant advance to the area of unconventional production forecasting

since the crude, heuristic methods currently relied upon are unable to leverage this abundant

information and are less useful and accurate as a result.

Rather than an outright rejection of the forecasting methods currently used, this the-

sis will expose the flawed statistical assumptions of these approaches and demonstrate the

benefits of introducing more sophisticated modeling techniques. The simpler methods cur-

rently used are indeed a form of domain knowledge and by improving and building on them,

this thesis provides a methodology that is more practical and likely to be adopted by other

analysts and forecasters. It also makes clearer the limitations and issues of continuing to

rely on current methodologies. In fact, the ideas in Chap. 2 have already had the desired

impact. Publication of these findings in [74] led to widespread acknowledgment of flaws in

current modeling approaches at the U.S. Energy Information Administration [86, 75] and

adoption of the new recommended technique by industry analysts at, for example, Rystad
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Energy [88].

This contribution is developed in three stages (and chapters) and organized around the

themes discussed in Sect. 1.3. First, in Chap. 2 a highly resolved spatial model for more

accurately predicting initial production rates is developed with a central focus on how to

disentangle the role of technology from that of geology. Next, in Chap. 3 the fundamental

ambiguity associated with forecasting well production over long periods of time is revealed

and regularization is shown to reduce ill-posedness and substantially boost accuracy. Finally,

these ideas are combined in Chap. 4 using a hierarchical Bayesian model that quantifies un-

certainty while providing the essential dose of regularization and capturing the influence of

technology and geology. This basin-level model is able to learn subtle statistical and phys-

ical relationships across thousands of wells and embed this information into a mechanistic

production model that can be used to help manage the increasingly complex challenges of

unconventional development.
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Chapter 2

Disentangling the role of drilling location

from evolving technology 1

New well productivity levels have increased steadily across the major shale gas and tight oil

basins of North America since large-scale development began just over a decade ago. These

gains have come about through a combination of improved well and hydraulic fracturing de-

sign, and a greater concentration of drilling activity in higher quality acreage, the so called

"sweets spots." Accurate assessment of the future potential of shale and tight resources de-

pends on properly disentangling the influence of technology from that of well location and

the associated geology, but this remains a challenge. This chapter describes how regres-

sion analysis of the impact of design choices on well productivity can yield highly erroneous

estimates if spatial dependence is not controlled for at a sufficiently high resolution. Two

regression approaches, the spatial error model and regression-kriging, are advanced as ap-

propriate methods and compared to simpler but widely used regression models with limited

spatial fidelity. A case study in which these methods are applied to a large contemporary well

dataset from the Williston Basin in North Dakota reveals that only about half of the improve-

ment in well productivity is associated with technology changes, but the simpler regression

models substantially overestimate the impact of technology by attributing location-driven

improvement to design changes. Because of the widespread reliance on these less spatially

'This chapter is based on the article Spatial variability of tight oil well productivity and the impact of
technology [74
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resolved regression models, including by the U.S. Energy Information Administration to

project shale gas and tight oil resource potential, the overestimate of technology's role in

well productivity has important implications for future resource availability and economics,

and the development choices of individual operators.

2.1 Introduction

Oil and gas produced from shale and tight rock formations is playing an increasingly impor-

tant role in global and domestic energy markets. Due to increased production of oil from

North Dakota, Texas, and other states, the United States is now considered by some to

be the world's "swing producer," supplanting OPEC in this traditional oil market balancing

role [1]. In North Dakota, which includes the most active part of the Williston tight oil basin,

crude oil production grew from 98 thousand barrels a day (Mbbl/d) in 2005 to 1174 Mbbl/d

a decade later. Additionally, the U.S. power sector has drastically increased its reliance on

domestically produced natural gas, especially from shale [1011. Although these formations

have long been known to contain abundant oil and gas, the "tightness," or low permeability,

of the rock led many to view production from them as not economically viable [54]. However,

commercial rates of production turned out to be possible using long horizontally-drilled wells

combined with hydraulic fracturing-in which fluid and sand is pumped into wells to break

apart rock and create pathways for fluid flow-and this has led to the rapid expansion of

shale gas and tight oil production in the past decade [79, 52, 56].

In recent years there has been a sustained downturn in oil and gas prices, leading to

substantial uncertainty about future levels of production from shale gas and tight oil for-

mations [2]. The future outlook for these resources now depends largely on the capacity

of industry to improve the economics of extraction through higher productivity. Thus far

there have been signs of this happening, with production per drilling rig increasing as the

number of active drilling rigs has fallen precipitously, as shown for the Williston basin in

Fig. 2-1(a) [1021. Although some of this trend can be attributed to more efficient drilling,

much of it is driven by a rise in average new well productivity (Fig. 2-1(b)) [77, 56, 78].

There are two important factors to recognize behind increases in well productivity. First,
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Figure 2-1: Two perspectives on productivity in Williston tight oil basin. (a) Productivity
of drilling rigs, measured as production per active rig (Source: U. S. Energy Information
Administration [102]). (b) Productivity of new wells, measured as mean first year production
of new wells in each fiscal quarter.
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oil and gas operating companies have been scaling up well designs in an effort to increase well

production through greater reservoir access. There has been a shift toward longer lateral

lengths-which tends to mean a greater number of hydraulic fracturing "stages" at which

fractures are initiated from-and larger volumes of both the water-based fracturing fluid

pumped to create fractures and the sand, or proppant, carried by this fluid in order to keep

the fractures "propped" open after water has flowed back [108, 56, 7, 100, 34]. In addition to

this, operating companies have been "high-grading," or focusing their drilling efforts on the

locations in a field with the most favorable geology and highest expected production [46, 57,

21, 89, 100]. Technology-driven improvements to productivity may be transferable to future

wells in all parts of a field but high-grading amounts to simply exploiting the lowest-cost

resource first. To understand changes in resource economics and realistically forecast future

production it is therefore critical to be able to distinguish accurately between the influence

of location and technology choices on well productivity [24, 441.

Multivariate statistical analysis remains an important approach to understanding the

role that technology choices have played on well productivity. There are large datasets of

production and engineering data available, due to the large number of wells that have already

been drilled in these formations [84, 22, 15]. Additionally, there are limitations to physics-

based modeling approaches due to frequently inadequate well-level geological data and the

challenges of simulating fracture propagation and complex flow behavior in low permeability

rock 169, 20]. As a result, multivariate regression modeling has been widely adopted to infer

the impact of technology on tight oil and shale gas well productivity [40, 60, 35, 66, 17, 115,

51, 101, 27, 22, 106].

An important modeling challenge associated with this is how to control for location,

since reservoir quality, and hence well productivity, is spatially dependent. Some authors

have chosen to simply ignore this feature and use nonspatial models, but this makes it unclear

how reliable their results are [40, 60, 35, 66]. At the other end of the spectrum, location

or functions of location can be included as independent variables in a regression model,

using surface trend analysis [27]. Another approach to control for location lies in between

these, and assumes geological homogeneity within a small sample of wells [17, 115, 51], or

within fixed effects regions [101, 27, 22, 1061. For example, the U.S. Energy Information
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Administration (EIA) assumes county-level fixed effects, in which the difference in each

well's productivity from the mean in its county is attributed to the influence of technology.

Implicit in all of these approaches is an assumption that spatial variability can be ne-

glected below some arbitrary scale and this assumption will not overly influence results. How-

ever, important properties in shale and tight reservoirs have been found to vary considerably

over even relatively short distances 120]. Furthermore, the tendency of operating compa-

nies to high-grade drilling activity alongside the scaling up of technology parameters creates

a risk of conflating these impacts and potentially under- or over-estimating the amount of

technological improvement actually made. No study has specifically considered the potential

of different controls for location to influence inference results and it is difficult to compare

estimates between studies since different datasets and assumptions have been used. Studies

that have adopted some controls for location have generally concluded that differences in

well location play an important role on well productivity, but a lack of robust controls for

location has made it difficult to quantify this relationship in the past [51, 27, 112, 47, 106].

In other domains with spatially dependent data, such as ecology, soil science, and urban

energy consumption, regression-kriging and spatial error models have been used to explicitly

incorporate spatial autocorrelation, or the spatial clustering of similar observations, into

estimates [26, 12, 39, 97]. These approaches have not yet been previously used to distinguish

between the influence of location and technology on tight oil and shale gas well productivity.

This chapter will apply these approaches to a large dataset of wells from the Williston tight

oil basin in order to rigorously quantify the impact of changes in technology and location over

a 42 month period. Additionally, three models which appear to be the current standard-a

nonspatial model, fixed effects model, and surface trend analysis model-will be compared

in order to understand how influential the choice of spatial controls in a well productivity

regression model is for estimates. Section 2.2 discusses the data and statistical methods

used in the analysis. The models which are currently use in this area are discussed in

Section 2.2.2 and their potential for biased estimates in Section 2.2.3. The models accounting

for spatial autocorrelation are described in Section 2.2.4. In Section 2.3, the results of the five

different models are compared and discussed, including a comparison of near-term forecasts in

Section 2.3.2 and finally a breakdown of the relative contribution of technology and location
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in Section 2.3.3. Finally, important conclusions are highlighted in Section 2.4.

2.2 Data and Methodology

2.2.1 Data

The data used in this study comes from horizontal wells drilled into either the Middle Bakken

or underlying Three Forks formations in North Dakota during a 42 month period beginning

in 2012. These formations are the primary oil and gas producing layers in the Williston

basin, a large sedimentary depression spanning North Dakota, South Dakota, Montana, and

Saskatchewan [85]. The most productive and actively developed region is near the center of

the basin in north-western North Dakota [141. This is the area used for this study because

of the prolific drilling activity in recent years, and the quality and availability of public

well data with uniform reporting standards. Additionally, there are strong spatial trends in

productivity across this area, with a sweet-spot located generally in Mountrail and McKenzie

counties and diminishing productivity moving outward.

A fully assembled dataset of North Dakota wells for this analysis was obtained from

Drillinginfo, a data provider (web: drillinginfo.com). This well-level data was reported by op-

erating companies to the North Dakota Department of Mineral Resources (web: dmr.nd.gov)

and included monthly production rates, perforated lateral lengths, date of first production,

and drilling location geographic coordinates. Data for the total mass of proppant and vol-

ume of water used for hydraulic fracturing was drawn from Frac Focus (web: fracfocus.org),

a hydraulic fracturing chemical registry with mandatory reporting in 23 states, including

North Dakota. Additionally, structural contour and isopach shapefile maps from the North

Dakota Geological Survey were used to identify well target formation based on reported ver-

tical depth measurement 162, 63]. By combining these data sources, a dataset was compiled

for 3644 wells with complete reporting of well design parameters of interest and at least a

year of production.

The well and hydraulic fracturing design, or technology parameters included in this anal-

ysis were well lateral length, total water, and total proppant. These have been previously
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identified to be among the most influential design variables for well productivity[17, 51,

60, 65, 66, 73, 90, 91, 106, 1151. Some additional operational parameters that have been

identified as relevant to well productivity include the number of hydraulic fracturing stages

and the orientation of the well relative to in situ stress of the formation [52, 85, 89, 7, 91].

However, by the date of the earliest wells analyzed, it is likely that operators had identified

the orientation to drill lateral sections of wells in order to maximize fracture propagation

and most wells would be drilled according to this standard [52, 91]. Stage count is likely to

be strongly predicted by the combination of lateral length, and total water, so it would be

redundant to include along with these other variables [7, 35].

The dependent variable considered in this analysis was the volume of oil produced by a

well during the first year. A well's production rate typically peaks sometime within the first

few months and then begins to decline. The first year of production is thus indicative of both

the height of this peak and how rapidly production declines, making it a good predictor for

the estimated ultimate recovery (EUR), or total volume produced by a well in its decades-

long operating lifetime 169, 61]. It is also a good proxy for the economic value of a well

because in addition to production in later years being substantially lower, future revenue

is subject to a discounting rate and therefore less valuable to investors and oil companies.

The reliance on first year production as a metric for productivity also makes it possible to

neglect the impact of well interference, in which wells drilled too close to each other end up

competing for the same reservoir, thereby reducing production. This behavior is still not well

understood, but it is likely to have a negative impact on well production (and economics) in

many densely-drilled fields, particularly after wells have been produced for many years and

pressure depletion leads to production from reservoir farther away from the well-bore [45, 841.

2.2.2 Multiple linear regression

Three multiple linear regression models were considered, including a completely nonspa-

tial (NS) model, and models controlling for spatial heterogeneity through county-level fixed

effects (FE) and surface trend analysis (STA). For the n observed wells, each model incorpo-

rated Y, an n-by-1 vector of the natural logarithm of first year production and an n-by-(r+1)

design matrix X of predictor variables in which each row corresponds to a well and each
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column to a variable (with an additional column of ones for the intercept). The natural

logarithm was used for production volume both because this is common practice for regres-

sion with variables that are positively skewed and by definition nonnegative, and because

there is in fact a generally lognormal distribution of productivity in shale and tight resource

basins [77]. Although X differs between these models, they all assume a linear relationship

between Y and the predictor variables x1,.. . , xz, which can be represented as

Y~X/3+c(2.1)

E ~ N(0, U2oIn)

where 3 is the (j+1)-by-1 vector of slopes and intercept for this relationship and C is

the n-by-1 vector of residuals, or error terms. Error terms in this model are assumed to

be normally distributed with variance ou2 and uncorrelated with each other (I is an n-by-n

identity matrix). For each model, the sample population (X, Y) was used to estimate the

regression coefficients (7o, #1, . . . , 0,) in order to quantify the strength of the relationships

and estimate E[YlX] for forecasting purposes. This was carried out using ordinary least

squares in R statistical software, in which / is the estimate for 0 that minimizes the residual

sum of squares, calculated by

3 = (XT X)--1 XTY (2.2)

For the NS model, r = 3 and the only predictor variables were lateral length (in kft),

water volume (in MMgal), and proppant mass (in MMlb) 2. This model does not control for

drilling location in any way. The following two models include these same three variables

but include additional predictor variables to control for location.

In the FE model, indicator variables were included in X for nine of the ten counties

present in the data (an indicator for the tenth county would be redundant) and to identify

if the target formation was the Middle Bakken (zero if target was the Three Forks). This

county-level fixed effects model, which has been used by the EIA to estimate trends in well

2 The units adopted are based on oilfield reporting and are also intended to create a well-scaled matrix to
avoid numerical issues.
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productivity, assumes homogeneity within each county and no relationship between adjacent

counties [1011. Any deviation from the mean of a county is attributed to the technology

parameters in the model.

For the STA model, a polynomial surface trend was used to account for the large-scale

spatial variation in productivity. X included second-order polynomial terms for well surface

location, measured in 10' meters east and north from a central point. These predictor

variables were easting, northing, easting2 , northing2 , easting x northing. Although other

polynomial orders could be chosen, this model was justified a priori based on knowledge that

the field contains a centrally-located sweet spot. Other polynomial orders explored did not

substantially alter the results and are not discussed here. Again a target formation indicator

variable was also included to distinguish between the Middle Bakken and Three Forks.

2.2.3 Omitted variable bias and spatial autocorrelation

An important concern in regression modeling is whether 3 is an unbiased estimate of 3. Bias

may result if there are important omitted variables which are correlated with the dependent

variable and one or more independent variables. When this occurs, ordinary least squares

will compensate by over or under-estimating the strength of relationships represented by

coefficients in /. To see this, consider the case where the multiple linear regression model in

Eq. (2.1) for productivity should in fact be

Y = XB3+ ZO + (2.3)

where Z are important omitted variables and 6 are the associated relationships to the

dependent variable. The parameter estimation in Eq. (2.2) then becomes

/3 (XTX)-XT(XB+ Z8 + ) (2.4)

and the conditional expectation of this estimate is

E[13 X] = + (XT X)- 1E[XTZ x]e (2.5)

31



The second term in Eq. (2.5) introduces bias if 6 # 0 (there is some relationship between

Z and Y) and Cov(X, Z) # 0 (there is correlation between variables in X and Z) [641.

Many spatially heterogeneous geological variables, such as permeability and porosity,

are influential on well productivity but lack well-level measurements [54, 69], so there are

in fact omitted variables Z with 6 # 0. Bias will only be introduced if Cov(X, Z) f 0

though, so if the variations in design parameters in X were assigned randomly there would

be no expected correlation. However, the tendency of operating companies to high-grade

activity toward sweet-spots with more favorable geology, alongside improvements to design

parameters means that there may be bias resulting from this confounding. In other words,

because design choices in X are improving over time alongside drilling location choices

yielding more favorable omitted variables in Z, changes in X end up looking more important

than they actually are.

As a result of the spatially varying physical processes depositing and transforming a

reservoir over time, geological properties tend to vary spatially with a high degree of conti-

nuity. In the absence of reliable measurements, location can be used as a proxy for unknown

geological properties and the amount of bias introduced by Cov(X, Z) depends on how ade-

quately spatial trends in productivity have been controlled for in the regression models. The

NS model is likely to have a greater amount of bias then the FE and STA models since these

have some controls in place for location. However, given the different scales of heterogeneity

in these formations, some reservoir properties may be more localized in nature and vary over

length scales too granular for the FE or STA models to control for. For example, operators

may focus drilling efforts on a small area with high productivity due to abundant natural

fractures or learn to avoid a specific area found to have exceptionally low rock porosity.

These spatial patterns may impact multiple locations but will not be reflected in larger-scale

productivity trends spanning different areas of the basin.

Spatial dependence of well productivity which has not been controlled for by other vari-

ables will appear as spatial autocorrelation of model residuals, in which similar error values

have a tendency to be clustered together resulting in a higher degree of correlation between

residuals that are near than those far apart [26]. This is an important consideration when

conducting multivariate or univariate analysis on data that is observed at different spatial
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locations [97]. A standard approach for measuring the amount of spatial autocorrelation in

regression residuals is with Moran's Index I,

I W (Ci - C - (2.6)

which requires specification of an n-by-n spatial weights matrix W (with elements wij)

defining the level of dependence or "connectedness" between data points based on their

proximity [64, 25]. There are different ways of constructing W, depending on the nature of

the data, expected spatial phenomena, and modeling task, but it is often chosen to be sparse,

with nonzero weights applied only for neighbors within some threshold distance or within

the k nearest neighbors of points. In this dataset, wells are irregularly spaced, so it is more

appropriate to use k nearest neighbors than a distance threshold {11]. An inverse distance

weighting was used for the spatial weights matrix, which is a common scheme to account for

rapid spatial decay in autocorrelation of observations. Inverse distance weighting also means

that the exact choice k of nearest neighbors to include in W is relatively unimportant since

more distant points have very small weights. A value of k = 50 was chosen in accordance

with the principle that it is preferable to underspecify rather than overspecify this linkage,

but varying this value had little impact on results [31, 26, 25]. Values in W were also

row-normalized, so that each row sums to one.

The possible values for Moran's I range from -1, which is highly dispersed (negative

autocorrelation), to 1, which is highly clustered (positive autocorrelation), with values near

zero indicating that regression residuals appear spatially random and uncorrelated. It is

important to recognize that the assumptions used for the structure of W are an inexact

representation of actual autocorrelation and will impact the measure of Moran's I. However,

for a given dataset and choice of W, it is a useful metric for comparing the effectiveness

of different regression models at controlling for spatial dependence at the scale represented

in W. The modeling of the spatial weights matrix and measurement of Moran's I was

performed with SPDEP in R.
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2.2.4 Regression models accounting for spatial autocorrelation

Two additional regression formulations were considered-a spatial error model (SEM) and a

regression-kriging (RK) approach-which incorporate spatial autocorrelation into estimates

and have not been previously applied to this topic in literature. SEM was developed in

the spatial econometrics field but has also been applied to urban energy consumption and

ecology [4, 64, 97, 25, 26]. RK, which is also often referred to as universal kriging, krig-

ing with external drift, or feasible generalized least squares (with only slight differences in

formulation), has been applied to a variety of earth science applications, such as soil prop-

erties [80, 39, 33]. These models are based on changing the assumptions in Eq. (2.1) so that

residuals are recognized to be correlated according to a variance-covariance matrix Q, as in

(2.7)

E ~ N(0, Q)

An unbiased estimator / can be obtained under these assumptions by using Q to remove

correlation between observations, which is referred to as generalized least squares, shown in

Eq. (2.8)

/ (XT Q-1 X)-1XT -IY (2.8)

However, the true Q matrix is unknown, so the correlation of residuals must be estimated

alongside estimates of 3. SEM and RK are two common approaches for this.

The spatial error model (SEM) breaks up the error term into a correlated component e

and an uncorrelated error component u, as

Y =X/3+pWe +u
(2.9)

u ~ N(0, or2 1)

where the correlated error term is weighted by the pre-defined spatial weights matrix W
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(here assumed to be inverse distance weighting, as discussed in Section 2.2.3) and a single

parameter p to adjust the scale of autocorrelation [25, 4]. Estimates of p and u2 can be

obtained by optimizing the log-likelihood, leading to an estimate of Q as

n [ - 3W)"(In - W)]- (2.10)

which can then be used in Eq. (2.8) to estimate 3. This approach is discussed in detail

in [64] and was implemented here using the SPDEP package in R. A Monte Carlo approx-

imation of the log-determinant was also used to facilitate the computation, since this has

been found to result in very little loss of accuracy [64].

Regression-kriging (RK) similarly breaks the error term up into a correlated and un-

correlated component, but an iterative process is used to achieve this. RK can be defined

as

Y = X p+ Xe+uY~X/3 Ae~u(2.11)

u ~ N(0, oIn)

where A is referred to as the kriging weights matrix and X3 is often referred to as

the "drift" or mean component [39]. Initially, 3 is estimated using ordinary least squares

(Eq. 2.2) and ignoring the autocorrelation of error, leading to an estimate of the error as

i = Y - X (2.12)

Spatial autocorrelation within i is then measured in terms of semi-variance using

-y(h) =  S (E - Ej) 2  (2.13)
i j;hij=h

which sums over the N pairs of residuals (i, eC) that are spaced h apart (within some

tolerance). This is calculated over various values of h in order to develop an empirical semi-

variogram describing the nature of autocorrelation in s. Parameters of a theoretical semi-

variogram model are then estimated based on this empirical semi-variogram using ordinary
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least squares. The choice of semi-variogram model used here was the exponential model,

defined as

-(h)= T2 + o'[1 - exp(-h/#)] (2.14)

where r2, 02, and # are model parameters [39]. This semi-variogram model is frequently

used in geostatistics for geological properties, and was found to provide a good match to

residual autocorrelation in this analysis [39, 33].

The kriging weights 3 matrix A is obtained from this semi-variogram model (along with

the spatial configuration of observation and prediction locations) in order to minimize error

variance as described in [33]. The autocorrelated error term can now be estimated as

e = As (2.15)

and based on this, a new estimator 3 can be obtained with the autocorrelated error

component removed, as in

(XTX)-lXT(Y - Ae) (2.16)

Using this new /, the procedure described in Eq. (2.12) to Eq. (2.16) can then be repeated

until parameters in the semi-variogram model converge. Here, the process was repeated until

all three parameters in Eq. (2.14) changed less than 0.1% from the previous estimate, which

required three iterations.

RK was carried out using the geoR package in R. Both SEM and RK included the same

design matrix X as STA in order to remove large-scale trends. A summary of the five

regression models in this study can be found in Table 2.1.

2.2.5 Evaluating the results

The regression model dependent variable Y is related to the first year production volume Q
(measured in Mbbl) by Y = log(Q). Exponentiation of predictions of Y to the original scale

3 Simple kriging weights are used (as opposed to ordinary kriging weights) since X has already de-trended
the data.
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NS FE STA SEM RK

Form Y= Y= Y=X3+c Y=X+ Y=
XO+ X3+ C:pWe+u X3+Ae+u

Technology Lateral Lateral Lateral Lateral Lateral
variables in length, length, length, water length, water length, water

X water water volume, volume, volume,
volume, volume, proppant proppant proppant
proppant proppant mass mass mass

mass mass
Additional N/A County Second order Second order Second order
variables in indicators, polynomial of polynomial of polynomial of

X to control formation coordinates, coordinates, coordinates,
for location indicator formation formation formation

indicator indicator indicator
Fitted N/A N/A N/A p 7 0.2

parameters
to control for
spatial auto-
correlation

Decay of N/A N/A N/A Inverse Exponential
spatial auto- distance
correlation weighting,
assumed first 50

neighbors
only

Table 2.1: Summary of the regression models used.

will result in transformation bias though, and it is theoretically necessary to use a confluent

hypergeometric function for all back transformations to the original scale, as discussed in [92].
However, a suitable approximation is to estimate .2 as the mean squared error and use the

approximation

( y*)2)
N (1 (2.17)

Q =exp(Y+8. 2 /2) i=1,...,n

where Y* is the prediction for Y. For the results in this chapter, there was no discernible

difference between this approximation and the hypergeometric transformation. It is beyond
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the scope of this chapter to discuss when bias would be introduced by using the approxima-

tion in Eq. (2.17) rather than the hypergeometric function and this appears to be an area

requiring further research.

In order to compare the prediction accuracy of models to each other and avoid over-

fitting of models to the data, a 10-fold cross validation (CV) was used. This approach

involves randomly dividing the data into 10 equal sized subsets. One at a time, a subset

was held out while the model was fit to the remaining 90% of the data. Accuracy of the

model was then calculated based on predictions for the data that had been held out. As an

additional validation of the models, a hindcasting approach was used, in which only wells

from the first half of the overall time period were used for fitting, and predictions were then

made for all wells from the second half of the overall time period.

As a standard measure of prediction accuracy, the mean absolute scaled error (MASE)

was calculated using,

MASE = - (2.18)
n |i - Y|

where the error of each prediction is scaled by a baseline prediction using simply the

mean of available data Y and these scaled errors are averaged. As such, values less than

one are an improvement over predictions using the mean of the data and zero represents a

perfect prediction. This statistic is a transparent way of understanding a model's success at

making actual predictions [43].

2.3 Results and discussion

2.3.1 Regression model estimates

A summary of selected metrics of performance for each regression model is shown in Ta-

ble 2.2 (additional metrics of model performance are included in supplementary table Si).

A disadvantage of the RK approach is the computational time, which is substantially higher

than other approaches. This is due in part to the lack of sparsity in the weights matrix A

and the need to iterate to convergence. In this analysis, after 3 iterations of the algorithm
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semi-variogram parameters changed less than 0.1%.

NS FE STA SEM RK

Time to run (s) 0.0041 0.00804 0.00828 3.7 478.54
MASE 0.938 0.871 0.815 0.662 0.532

10-fold CV MASE 0.938 0.873 0.816 0.669 0.62
Moran's I (W) 0.512 0.443 0.403 -0.00895 -2.26E-04
Moran's I (A) 0.548 0.482 0.444 0.245 0.102

Table 2.2: Comparison of performance for the regression models. Moran's I was calculated
with both the inverse distance weighted matrix W and the kriging weights matrix A.

Prediction accuracy improves with increasing spatial fidelity of the models, with fairly

poor prediction accuracy by the NS model, which accounts for no spatial heterogeneity, and

the best performance by SEM and RK, which explicitly model autocorrelation. The FE

model is also relatively inaccurate, suggesting that despite differences in average productiv-

ity between counties, spatial heterogeneity within counties is important and missed by this

approach. The improvement between STA and SEM is due to the ability to make use of in-

formation on local patterns provided by spatial autocorrelation and the further improvement

with RK is due to the use of a more flexible and empirical estimate of the variance-covariance

matrix Q. Model predictions from 10-fold CV are compared to actual values in Fig. 2-2 for

four of the models.

Over-fitting of models can be identified when cross-validation and non-cross-validation

predictions differ in accuracy. This was only an issue with RK, where there was a drop in

prediction accuracy under CV. RK still provides the best predictions in 10-fold CV though

so this is more likely indicative of a plateauing in accuracy that can be achieved given the

noisiness of the data being modeled.

Spatial autocorrelation of regression residuals (Moran's I) is substantially reduced by

using the SEM and RK models, which control for this feature. Moran's I was measured with

both the a priori inverse distance weighted matrix W and the kriging weights matrix A

described in Section 2.2.3. The difference in these weights matrices, illustrated in Fig. 2-3

leads to differences in estimates by SEM and RK. From this it can be seen that SEM places a

greater weight on the nearest neighbor but less weight on more distant neighbors. Although

SEM helps to reduce spatial autocorrelation by using an assumed inverse distance weighting
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Figure 2-2: Predicted (with 10-fold cross-validation) and actual values for four of the regres-
sion models. The dashed line indicates a perfect prediction. (a) NS, (b) FE, (c) SEM, (d)
RK.
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Figure 2-3: Comparison of average spatial weights used by SEM (inverse distance weighted)
and RK (exponential semi-variogram model) for each of the nearest 50 neighbors.

scheme, this approach is inexact and the more robust estimate of spatial autocorrelation

achieved with RK appears to be necessary in this context.

Examining the coefficient estimates for lateral length, water volume, and proppant mass

from each regression model reveals that spatial resolution has an impact on how increases

in productivity are attributed to these design choices. As the spatial fidelity of models

increases, lateral length is inferred to have a greater impact and proppant mass a lesser

impact on production volumes. This is a critical insight since lateral length of wells has

leveled out in the Williston basin at around 9,200 ft, but proppant mass and water volumes

are expected to rise to nearly double the levels of 2014 by 2018. This shift is making

wells more environmentally and economically costly but may fail to yield the magnitude of

productivity increase expected by forecasters relying on regression models biased by spatial

autocorrelation.

2.3.2 Forecasting applications

An important application of the regression models is as a predictive tool, particularly for

mean trends in well productivity, as introduced in Fig. 2-1. Each model was used to make
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Figure 2-4: Regression parameter estimates for lateral length, water volume, and proppant
mass by each model with a 95% confidence interval.

predictions of first year production based on the variables from X actually used in wells

and these results were averaged within each quarter in order to estimate this trend in mean

well productivity over time. The results of this are shown in Fig. 2-5 compared to the

actual mean trend in new well productivity over the time period studied. Despite relying

on only a few variables, even the simpler linear regression models are well tuned to reflect

the trend of increasing productivity over time. This is not surprising however, since the

models were fit to the same data they are being compared to here. As a more robust

demonstration of productivity trend forecasting, the regression models were trained with

data only from the first half of the time period and then used to predict production for

all wells. The resulting predicted trends are shown in Fig. 2-6, and there is still a striking

agreement between predicted and actual trends. This suggests that the regression models

have a capacity to make future predictions of well productivity given knowledge of where

drilling will take place and the technology that will be used.

Although the mean productivity trends predicted by all five models are similar for the

time period analyzed, the differences in regression coefficient estimates (Fig. 2-4) lead to

substantially different forecasts when near-term future trends in hydraulic fracturing design

are considered. The EIA and IHS, an energy data consultant, have estimated that by 2018,

the average proppant mass used for wells in the Williston basin will rise to 7.7 MMlb (it

was 5 MMlb in 2015) with water volumes rising proportionally [103]. Using these technology

variables for wells at the locations drilled in the first half of 2015, stark differences become
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Figure 2-7: Forecast of mean first year production for wells drilled in the first half of 2015,
but using design parameters expected for 2018 (based on EIA-IHS report [103]). These

estimates do not reflect any potential changes in drilling locations. The distributions for

each prediction are shown in Table 2.3.

clear between model predictions, as shown in Fig. 2-7. Operating companies have already

experimented with hydraulic fracturing designs of this magnitude and larger in the Williston

basin and they are increasingly shifting designs in this direction, in part based on statistical

analysis of data suggesting substantial scope for improved productivity and economics of

wells. Although it is hard to know what analysis techniques are being used internally by

operating companies, it is likely that in some cases these design decisions are being made

based on regression models failing to control for the endogeneity introduced by high-grading

of drilling activity to the most productive locations. Wells designed based on those models

will overshoot economically optimal quantities of water 'and proppant as a result of this

conflation.

Although the forecasts in Fig. 2-7 reflected no change in drilling locations from 2015, more

granular forecasts can be developed based on where wells will be drilled in the future. Fig. 2-

8 shows a heat map of the RK predicted first year well production for all locations within
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2018 forecast of first year prod. (Mbbl)

Model P25 Median Mean P75

NS 90.7 125.3 129.7 160.4
FE 86.4 121.3 124.8 154.3

STA 85.8 119.5 123.6 153.9
SEM 85.0 117.1 121.5 147.9
RK 76.5 109.9 113.3 139.7

Table 2.3: The distribution of predicted productivity for wells drilled in the first half of 2015
with technology parameters expected in 2018 1103].

the Bakken region of North Dakota, assuming the average technology design parameters

expected by the EIA for 2018 [103]. Others have developed interpolations or gridded heat

maps based on well productivity in oil and gas fields, but the use of RK here improves on this

substantially by controlling for differences in technology and presenting spatial variability in

productivity with a standardized well design [45, 47, 112, 21]. These results could be further

applied to develop more robust supply curves for different economic scenarios or to optimize

design parameters based on location.

2.3.3 Dis-aggregating the productivity trend

One approach to understanding the relative role played by a variable in a multiple regression

model is by holding constant the other parameters in the model while allowing the selected

parameter to vary according to the data [8]. This technique was used to isolate the change

in well productivity associated with changes in drilling location from changes in lateral

length, proppant mass, and water volume over the time period considered. For each well, a

prediction was made based on its location, with other parameters held constant. The result

of this approach for the four spatially-resolved regression models is shown in Fig. 2-9. There

are large differences throughout the time series, particularly between FE and STA compared

to SEM and RK, in the amounts of productivity improvement attributed to changes in

location.

This same approach was carried out to isolate the impact of variation in each design

parameter on well productivity. For each design parameter, location and the other two
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Figure 2-8: Predictions of first year production for locations within the Bakken formation in
North Dakota using design parameters expected for 2018 [1031. The markers represent wells
in the dataset.

design parameters were held constant while the selected design parameter was allowed to

vary according to data. The first quarter of 2015 was compared to the first quarter of 2012

to determine the relative impact of the more productive choices being made after a three

year span. The impacts on productivity associated with location and technology were found

to be roughly even by SEM and RK, but the other models differed considerably.

This again highlights the important difference in how these models control for location

and the bias that can result when these controls are inadequate. The FE model, which misses

sub-county-level sweet spotting is of particular concern since it is used by the EIA to estimate

rates of technological learning for their low and reference case forecasts, yet overestimates

technology improvement by a factor of two (their high resource case assumes an additional 1%

per year "accelerating" of technological learning). Despite having controlled for differences

in location through county-level fixed effects, this approach still ends up attributing nearly

all of the effects of sweet-spotting to technology. This bias has the potential to lead to

unrealistic forecasts of drastically improved well productivity and economics, which are in

fact only an extrapolation of transient effects from the drilling of wells in better locations.
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2.4 Concluding remarks

This chapter analyzed a large contemporary tight oil well dataset from the Williston Basin

in order to quantify the extent to which improvements in well productivity have been as-

sociated with the scaling up of well and hydraulic fracturing designs as opposed to changes

in development location. Using five regression models of increasing spatial resolution it was

demonstrated that the results of analysis aiming to answer this question are highly sensitive

to the statistical techniques used. Unless the chosen modeling approach incorporates high-

resolution spatial dependence a significant bias can be introduced leading to overestimates

of the relative impact of technology on well productivity improvement. This is in line with

statistical theory about omitted variable bias, but has not previously been recognized for

this important energy application. Of particular concern here is the EIA's reliance on a

county-level fixed effects approach to develop recent national production projections since

this model was found to overestimate the role of technology by a factor of two. This may

result in projections that are overly optimistic regarding the future potential of the nation's

unconventional resources.

Results from regression-kriging and a spatial error model-regression approaches that

incorporate high-resolution spatial dependence through spatial autocorrelation-concluded
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that the impact of technology on well productivity has been roughly equivalent to the impact

from the high-grading of drilling locations in the Williston Basin. Crucially, this result means

that if future development requires expansion into acreage outside of existing geologic sweet

spots, half of the well productivity gains achieved in recent years will not be transferable

to these other parts of the basin. Although this specific conclusion cannot yet be directly

extended to the broader set of tight oil and shale gas regions under development today, very

similar trends in terms of productivity gains, technology changes and acreage high-grading

have taken place over the recent past and so the conclusions from the Williston analysis

presented here are likely to be more broadly applicable.
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Chapter 3

The fundamental ambiguity in

mechanistic-statistical production

forecasting

Decline curve analysis (DCA)-the extrapolation of a production curve model fitted to a

well's past production-remains the standard approach for forecasting unconventional oil

and gas production. A scaling curve based on a fractured shale gas reservoir model was

recently proposed as a way of connecting this approach with underlying physics but as

this chapter shows, it actually generates worse predictions than the traditional non-physical

modified Arps curve. DCA is fundamentally an ill-posed inverse problem with the defining

characteristic of model sloppiness, or parameter correlation. Today's unconventional resource

forecasts can be substantially improved by using information from offset wells to reduce

ill-posedness through Tikhonov regularization. This versatile approach nearly matches a

deep neural network approach introduced here, which has practical limitations but offers a

model-neutral benchmark of achievable extrapolation accuracy. There is a natural connection

between regularization and a Bayesian formulation which is also highlighted. This chapter

evaluates long-term forecasting accuracy for these techniques using historic production data

from 4457 Barnett shale wells, and reveals that the overlooked step of regularization is more

critical than choice of model.
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3.1 Introduction

Effectively planning for and managing the development of unconventional oil and gas re-

sources requires accurate production forecasts which remain elusive due to a limited un-

derstanding of the complex physical processes behind production [61, 68, 95]. Many wells

under-perform compared to operators' projections and energy policy decisions are hampered

by the immense uncertainty in the long-term productivity of new wells [3, 83, 104, 481.

Rigorous physics-based models, such as numerical reservoir simulators, are rarely used to

forecast unconventional oil and gas production due to the associated data and modeling costs

as well as the challenge of adequately representing nano-scale flow and fracture properties

[61, 68]. Instead, it is standard to rely on decline curve analysis (DCA), in which a production

curve model with a small number of parameters is matched to historical production rates

using a least squares fit and the resulting curve is extrapolated into the future 1611. The

most widely used DCA model is the Arps curve, which builds on the hyperbolic decline

relationship,

Q(t) =i ,(3.1)
(1+ bDit)

originally introduced in 1945 [5], in which production rate Q(t) at time t is determined by

the parameters Qi, b, and Di. In order to avoid unrealistically high late-life projections

for unconventional wells, a modified Arps curve is used in which the hyperbolic model in

Equation 3.1 is switched to a fixed exponential trend once production decline slows to some

threshold rate, such as 10% annually [95, 105]. Although widely used, DCA with modified

Arps is a heuristic approach and lacks a physical basis with unconventional wells.

In order to better understand shale gas production decline behavior and put DCA on

firmer theoretical ground, Patzek et al. developed a scaling curve model (SCM) based on

one-dimensional gas flow into planar fractures [84]. Remarkably, this physics-based model

could be reduced to two effective "scaling" parameters, M and T, and a recovery factor curve,

or forward model F(-), to describe any Barnett shale well's cumulative production Q(t) at

time t, as in

Q(t) = MF(t/T). (3.2)
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Because physical properties behind the parameters M and T cannot be measured, Patzek et

al. advocated a nonlinear least squares fit to production data, as is standard for DCA. The

SCM will be discussed further in Chap. 4.

There has been a proliferation of production model formulas in recent years-ranging

from purely empirical, like the modified Arps curve, to those that build upon physical theory,

such as the SCM 161, 841. There is ongoing debate about which model is most appropriate

for unconventional wells, as reviewed in [95]. However, as this chapter shows, there is a

glaring shortcoming with the parameter estimation process of DCA more generally, which is

evident in both these representative DCA models and actually worse with the SCM.

DCA forecasting as currently implemented is unreliable due to potentially non-unique

parameter estimates, particularly when the production history is short. This has also been

described as a sensitivity in forecasts to initial parameter seeds in the nonlinear least squares

algorithm [41]. More saliently, this property of non-unique or non-identifiable parameters

makes DCA a classic example of an ill-posed inverse problem which lacks a stable numerical

solution [94, 55, 29]. Consequently, DCA should incorporate regularization, as is typically

used with this class of problems, but this critical step has surprisingly been overlooked in

this context.

Regularization is the process of introducing additional information to reduce the ill-

posedness of an inverse problem. In machine learning, it also helps to avoid over-fitting

by introducing some bias to reduce the overall variance of predictions [55, 10]. Often, this

takes the form of f2 Tikhonov regularization, where a squared penalty on the distance of

parameter estimates 0 from some expected parameter value 00 is added to the objective

function. In statistics, this is often also called ridge regression. For least squares problem,

the loss function L(t, F(t, 0)) being minimized for observations y at times t with forward

model predictions F(t, 0), becomes

L(t, F(t, 0)) =||ly - F(t,0)||2 + A I -0 _ol .01 (3.3)

The f 2-norm is denoted as |H11 and A is a weight hyperparameter controlling parameter

shrinkage toward the mean, which can be tuned to optimize the bias-variance tradeoff and
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ensure model generalizability using cross-validation [55, 29].

When forecasting with limited well production data, it is currently common to avoid

inversion altogether and rely on a type-well curve as a proxy. This is simply an average of

production rates from older wells in the same area [105, 681. Ad hoc approaches may be used

to normalize type-well curves to design metrics (e.g. lateral length) or peak production rate,

but this ignores the impact of variations in geology and evolving development practices on

production dynamics. This is a particular concern as newer wells tend to be drilled much

closer to neighboring wells and have more tightly spaced fracture stages in order to rapidly

drain an area [3, 83]. As shown in Chap. 2, geology is exceptionally heterogeneous at even

small scales in these basins and it is difficult to isolate the impact of constantly evolving

technology on production, making the selection of suitable analogue wells for a type-well

curve a highly fraught task.

The accuracy of these forecasting approaches is quantified using the error in predictions

of 10-year cumulative production for 4457 wells in the Barnett shale. These projections

are made based on the first 6, 12, 24, and 48 months of production. The DCA models

considered here-modified Arps and the SCM-are compared to a static county-based type-

well curve, as established by the US Energy Information Administration (EIA) [1051. The

same data processing and fitting procedure as [84] is followed for the SCM and for modified

Arps the methodology laid out in [105] is used. These DCA models are then fitted with

f2 Tikhonov regularization to understand the benefit this provides. A grid-search with 4-

fold cross-validation is used to tune the regularization parameters A and 00, as described in

[55, 29]. This consists of four rounds of training and testing, in which A and 0 are adjusted

to minimize the root mean squared error (RMSE) within the training data. In each round

of cross-validation, the regularization values obtained from fitting the training wells are then

used with the corresponding test set of wells, which have been set aside, to measure the

regularized models' accuracy at making out-of-sample predictions.

Given the many physical complexities of unconventional oil and gas production, a DCA

model with a small number of parameters considerably oversimplifies production dynamics

resulting in model mis-specification error. To better understand the magnitude of this error

an alternative data-driven extrapolation approach using a deep neural network (DNN) in
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the TensorFlow platform is used. This consists of 4 hidden layers of 15 fully-connected

neurons (with ReLU activation functions), a regression layer outputting 10-year cumulative

production, and an input layer with the number of input neurons determined by the number

of production months used in the forecast. As with Tikhonov hyperparameter tuning, 4-fold

cross-validation is used to separately train and test the DNN.

3.2 Analysis

Prediction accuracy, measured as RMSE across all four rounds of cross-validation test wells,

is shown in Fig. 3-1. Despite its physical derivation, the SCM introduces substantial error

compared to the modified Arps model. By the time 48 months of production data are avail-

able for fitting, the modified Arps model with regularization nearly matches the reliability of

the DNN forecast. The regularized SCM at this point performs slightly worse, but actually

is more accurate at 6 months.

One way to better understand the source of ill-posedness in this inverse problem is by

examining a related property: the sloppiness of the models themselves. This is an intrinsic

property of the models that measures how sensitive they are to parameter changes in certain

directions [98]. Put another way, it is how correlated model parameters are with each

other. In some "stiff" directions of the parameter space, parameter changes will cause drastic

changes in a model's behavior, while in sloppy directions there is very little influence. This

insensitivity leads to parameter estimates that are underidentified since they can vary along

this sloppy direction over large ranges of values while giving similar model responses. This is

a common property of ill-posed problems and makes regularization even more critical when

it is present [29].

Sloppiness is typically measured by examining the curvature of the loss function at a

particular parameter combination. As described in [98], this can be accomplished using the

approximate Hessian H of the loss function at a particular set of parameters, as in

H JTJ (3.4)
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Figure 3-1: A comparison of prediction accuracy for 10-year cumulative production with
different approaches and months of production data.
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Note that since F(.) is a tabulated function, the derivative must be approximated using finite

differences. For the Arps curve, the Jacobian is

[ri  Bri Or1
0Qi aD, Ob

(3.9)

arm arm arm
_ 8Qi OD, Ob J

where
Drm _1 -1 (.0

--- 1=) (3.10)
&Qi 0- (1 + bDitm)(1/b)

and again using the chain rule

Dr 1 -(b+)
-m=-Qit(bDit + 1) b (3.11)

and
Orm Qi(bDit + 1 )1/b) log(bDit + 1) _ -Dit 1)

Ob o- _ b2 b( bDit + 1)_

The eigenvalues of the Hessian indicate how sensitive the model is to parameter changes in

different directions. Sloppiness is defined as the ratio of the largest (stiff direction) eigenvalue

to the smallest (sloppy direction) eigenvalue of this Hessian. In a sloppy model, this ratio is

typically at least 103. The calculated eigenvalue ratio is plotted for each model with typical

parameter values as a function of the number of months m included in the t observations

in Fig. 3.2. This shows that sloppiness is inherent to both of these models and is most

extreme when limited production is available. Even after significant data is available for

fitting, there is still a large amount of parameter correlation. The unevenness with the SCM

is expected since it is a piece-wise tabulated function. It is unsurprising that the ratios are

generally higher with the Arps curve since it has an additional parameter.

The behavior that this describes can also be observed directly in Fig. 3.2, which shows

the loss function associated with fitting the SCM to the first 12 months of production data

for a well without and with regularization. In this context, the sloppiness can be understood

as the fundamental ambiguity between a large SRV being drained slowly (large M and large

T) and a small SRV being drained quickly (small M and small T). These situations are
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Figure 3-2: Sloppiness: The ratio of the largest to smallest eigenvalues of the Hessian for (a)
The SCM and (b) The Arps curve.

indistinguishable based on only production data. Regularization reshapes the space toward

more reliable parameter values.

Figure 3.2 and Fig. 3.2 show two slices of the loss function for the Arps curve applied

to this same well. There is a similar extreme degree of parameter correlation, only in three

dimensions now. Although these parameters are not physically interpretable they describe

a similar kind of ambiguity which can be resolved using regularization to concentrate on a

particular region in the parameter space.

When comparing the forecasting accuracy of these models, it is important to note that

the SCM has two parameters while the modified Arps model has three (and the neural
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network has nearly a thousand due to the dense connections between each layer). This

influences how flexible the models are at fitting data, but here the focus is instead on each

approach's reliability for making extrapolated predictions on out-of-sample test wells; the

cross-validation approach helps avoid overfitting allowing for a fair comparison.

3.3 Discussion

For these representative DCA models, the step of introducing regularization matters more

than model choice itself. This finding overshadows and somewhat trivializes the ongoing

debate about which existing or new DCA model is best. The introduction of a DNN as a

new model-neutral benchmark also provides a useful point of comparison. This approach

has clear drawbacks from a practical forecasting perspective. It lacks interpretability or

any physical meaning and requires abundant production data for training, making it less

useful in new fields. However, the layering of nonlinear activation functions in the DNN

creates effectively infinite functional flexibility while the noise in the representative training

sets serves to adequately regularize the model and prevent overfitting [591. As a result,

it learns the best nonlinear mapping directly from the data, rather than presupposing an

overly simplified model form. It can thus be used to establish the level of error attributable to

underlying noise in the data rather than model mis-specification. With regularization, both

DCA models approach on a similar level of accuracy as the DNN. Once the ill-posedness

of the problem is addressed through regularization, the DCA models are able to predict

production behavior reasonably well with far fewer parameters.

An interesting opportunity for further research is whether the neural network benchmark

can be made more suitable for predictions in situations with less training data. One promising

avenue for this is through transfer learning, in which a model is trained with a large dataset

from one area and then only the final layers of the network are fine tuned with a smaller

dataset in the area being predicted. This allows general knowledge from the larger dataset

to be retained, while the more limited data specific to the prediction task is used to identify

more granular patterns. An example of this is in image recognition, where there might be

many training images of dogs but only a few of a specific breed. Transfer learning allows
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a model to be first generally trained to identify dogs, and then additional layers used to

identify the breed based on more granular features. In this context it could mean training

a model in one extensively developed field to get a general understanding of production

dynamics and then using limited samples in a new field to more rapidly identify patterns

unique to the area.

There is an informative Bayesian perspective to regularization. Type-well curves are

similar to a prior, since they are a static aggregation of field data and cannot be updated

based on production dynamics of a well. DCA is a maximum likelihood estimate, completely

uninformed by other wells in the field. Tikhonov regularization acts as a max a posteriori

estimate, balancing these sources of information [94]. Bayesian modeling has in fact previ-

ously been proposed for quantifying uncertainty in DCA forecasts [32]. However, the findings

here show that the sloppiness and ill-posedness of the likelihood makes this formulation crit-

ical for reliable point estimates too and the prior must be chosen with care. This suggests a

promising direction for future work-hierarchical models that introduce physical information

into DCA as conditional probabilities.

Ill-posed inverse problems are prevalent across many domains, including the biological

and earth sciences [29, 59]. This analysis illustrates the importance of remaining vigilant to

the challenges of forecasting with this class of problems. DCA (along with type-well curves)

is the standard approach for unconventional oil and gas production forecasting today, behind

large-scale resource outlooks and companies' reporting of reserves to investors [105, 93]. A

lack of awareness of the ill-posed nature of DCA and the importance of regularization is

unnecessarily introducing error into these projections and undermining the consequential

decisions they inform.
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Figure 3-3: (a) Strong parameter correlation is apparent in the loss function associated with
fitting the SCM to well production (shown here for the first 12 months of production in
a well). (b) Regularization substantially reshapes the loss function by introducing prior
information, reducing the ill-posedness of the problem.
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Figure 3-5: (a) Strong parameter correlation between b and Qj is apparent in the loss function

associated with fitting the modified Arps curve to well production (shown here for the first 12

months of production in a well). (b) Regularization substantially reshapes the loss function
by introducing prior information, reducing the ill-posedness of the problem.
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Chapter 4

A hierarchical Bayesian approach to

incorporate physical information into

mechanistic-statistical production

forecasting

4.1 Introduction

Unconventional oil and gas development in North America has expanded rapidly over the

past decade. Resource basins now contain thousands of producing wells and many more

undrilled locations, but well productivity varies substantially, making it difficult to forecast

future production levels [50, 61, 76]. Furthermore, evolving extraction techniques continue

to reshape the dynamics of production considerably but current unconventional production

forecasting approaches are unable to account for these physical differences across wells [681.

Unconventional production forecasting today is mostly by statistical rather than mecha-

nistic modeling. Numerical reservoir simulations for unconventional wells are generally too

costly and complex to be widely used, particularly given the challenges of adequately charac-

terizing and modeling nano-scale flow in fractured reservoirs [1101. Instead, well production

forecasts are typically based on a least-squares fit of a parameterized production curve model
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(PCM) to the production rates observed in a well', as discussed in Chap. 3 [68, 95]. The

estimated parameters are assumed to be representative of the conditions governing a well's

flow dynamics and are thus used to extrapolate production into the future. Meanwhile,

production from other wells in the field is ignored despite potentially providing guidance on

future production patterns. When limited production is available for fitting, as with a newer

well, longer production histories from other wells in the field are usually aggregated into a

type-well curve used as a proxy [105, 68]. These offset analogue wells may have significant

physical differences compared to the well of interest but these factors are often ignored or

used only as crude normalization factors for production, neglecting any impact on dynamics.

A significant limitation of these forecasting approaches is the inability to rigorously balance

production information from the well being forecast and other wells in the field while sys-

tematically controlling for physical differences based on other available data. Additionally,

the inability to accurately portray uncertainty in these forecasts is a major hindrance to risk

assessment and decision making today [68].

To address these shortcomings, this chapter introduces a spatial hierarchical Bayesian

approach to better integrate and share information across all wells in a field when construct-

ing production curve forecasts. Bayesian techniques have previously been used to quantify

uncertainty in individual oil and gas well production forecasts by treating PCM parameters

as probability distributions [23, 28, 32, 41, 114]. However, in all of these applications the

prior distribution was either chosen to be uninformative or arbitrarily defined to provide

a good match with historical production data, rather than using it to incorporate physi-

cal data. The main contribution of this chapter is the first Bayesian model for production

that links wells through their shared dependence on underlying subsurface properties and

mechanistic relationships. This kind of hierarchical approach has previously been used in

other applications with noisy observations and known physical processes, including for pale-

oclimate temperature reconstruction from geothermal measurements by [16] and for fishery

biomass dynamics by 172]. It has also been recognized as a particularly advantageous frame-

work for spatial environmental and geophysical problems plagued by uncertainty [9, 111].

In Chap. 3, this was referred to as decline curve analysis (DCA), as the approach is typically called in
industry. In this chapter, it is more appropriate to refer to the PCM directly because the terminology "DCA"
is so strongly associated with least squares fitting.
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As physical differences between unconventional wells have become more pronounced, it is

increasingly important to understand how these differences impact long-term productivity

in order to create reliable forecasts and inform decisions in well designs. Fortunately, this

mechanistic-statistical hierarchical approach offers the potential to infer these relationships

across an entire population of wells, advancing our empirical understanding of well produc-

tion behavior and as a result enabling better forecasts for new, physically different wells.

As a result of the extremely low permeability of unconventional oil and gas reservoirs,

production dynamics are dominated by the properties of the stimulated reservoir volume

(SRV)-the region where hydraulic fracturing has opened conduits in the rock to allow oil

and gas to flow to the well [49, 109]. Pursuit of a larger and enhanced SRV in wells has driven

recent well designs toward longer horizontal producing segments and increased volumes of

water used in hydraulic fracturing [103]. It is because the SRV properties are so uncertain

and cannot be directly observed that mechanistic modeling of production based only on

prior knowledge is infeasible [84]. However, the mechanistic-statistical approach infers these

properties by combining production data with abundant information about technical design

specifications of wells and estimated geological properties which influence this SRV.

To establish a mechanistic relationship between production behavior and the SRV, the

hierarchical model leverages the Scaling Curve Model (SCM), recently developed by [84]

based on the non-dimensionalized solution to a one-dimensional flow problem with planar

fractures as illustrated in Fig. 4-1. This model was introduced in Chap. 3. The cumulative

production Q(t) at time t is parameterized using the nonlinear relationship

Q(t) = M4F(t /T), (4.1)

where F(-) is the forward model or, more specifically, the tabulated solution to the partial

differential equation describing the flow behavior. In this model, wells are assumed to drain

gas only from the SRV region between planar fractures of height H, half-length L, and a

distance of 2d apart. With N, stages in a horizontal well, the total SRV is 4(N, + 1)LHd [841.

The producible mass of gas M depends on the SRV as well as the porosity #, gas saturation
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S9 , and density p as in

M = 4(Ns + 1)LHdqdSgp. (4.2)

Assuming linear flow, the pressure interference time T between fractures is

T-dSgpgCg (4.3)
kSRV

where gas viscosity is pg, gas compressibility is cg, and effective enhanced reservoir per-

meability within the SRV is ksRv. Production declines as a square root of time until this

interference time is reached and then exponentially thereafter. This simplified physical model

neglects desorption and nonlinear flow behavior but captures the dominant mechanisms of

production and provides a good empirical fit to production data for thousands of wells in a

shale gas field, as shown by [84].

The SCM provides a direct theoretical connection between PCM parameters estimated

from production data and the properties and geometry of the SRV. However, the inherent

uncertainty about important subsurface properties in Eq. 4.2 and Eq. 4.3 has thus far made

it difficult to use the SCM to develop production forecasts early in the life of a well. Without

a reliable estimate for the SRV, it is impossible to reach a unique estimate of the parameters

M and T from limited production data. High initial production rates could indicate a large

SRV, but could also plausibly be a result of a much smaller SRV being drained quickly, pre-

cipitating a more rapid drop in production over time [84]. This ambiguity makes forecasting

2L
H

Figure 4-1: Horizontal well and planar fracture geometry assumed in the simplified one-
dimensional flow model. Figure is from [84]
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with the scaling curve an underidentified or ill-posed inverse problem which requires further

information from the field to resolve, something the hierarchical approach is ideally suited

for [30, 67].

The SCM was derived specifically for the physical conditions of the Barnett shale gas field

and is not directly applicable to other fields. The hierarchical approach is flexible though,

and can be adapted to work with other PCMs. A slightly more flexible three-parameter em-

pirical model called the Logistic Growth Model (LGM) captures similar temporal behavior

while maintaining the direct connection to the SRV. The LGM has roots in modeling pop-

ulation growth [107] but can be more generally applied to dynamic systems with saturating

behavior [991. A variant was used by [42] to describe production from entire fields and was

adapted for individual unconventional oil and gas wells by [18] as

Q(t) = .7 (4.4)
V + 0n

The cumulative production Q(t), increases over time t toward a carrying capacity, KC, at a

rate jointly determined by q and v. Although the LGM is not derived from physics like the

SCM, there is a direct analogy between the role of the M and C parameters in defining total

potential production from a well.

In fact, closer comparison of the SCM and LGM shows that they bear remarkable simi-

larities despite very different origins in physical theory and population dynamics. The LGM,

with its three parameters, can easily match the behavior of the SCM, as shown in Fig 4-2

where the LGM has been fit using nonlinear least squares to a realization of the SCM with

typical parameters. Carrying this out across a range of parameters in the SCM and examin-

ing the correspondence between parameters in each model reveals the underlying relationship

between models, shown in Fig. 4.1. For a fixed value of T, there is a linear mapping of M

to KC, where the slope is influenced by T. The parameters q and v have no connection to

M but are related to T through a consistent nonlinear relationship. As Fig. 4.1(b) shows,

an approximation of this nonlinear relationship is T1 /" o -2 with some deviation at lower

values. Understanding the principles that lead a function for population dynamics to

so strongly resemble a partial differential equation governing fractured gas flow behavior is
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Figure 4-2: LGM fit using nonlinear least squares to realization of SCM with typical param-
eters

beyond the scope of this thesis. For the purposes here, it is enough to recognize that the

more flexible LGM provides an adequate representation for mechanistic flow behavior and

is worth considering as an alternative model alongside the SCM.

This chapter provides a general methodology in Sect. 4.2 for mechanistic-statistical pro-

duction forecasting using hierarchical Bayesian formulations of the SCM and LGM. As

with [72], a metropolis-Hastings (MH) within Gibbs sampler is employed to efficiently ap-

proximate the posterior with Markov Chain Monte Carlo (MCMC) samples. This sampling

scheme is described in Sect. 4.2.4 along with steps to take advantage of additional structure

and correlation in the likelihood function when generating MH samples. The model is able

to incorporate additional sources of geological and engineering data for applications in both

a shale gas and tight oil field, as described in Sect. 4.3.1. In Sect. 4.3.2, the interpretability of

the model is shown using marginal distributions of parameters. Additionally, the accuracy of

predictions in two-fold cross-validation is compared to a traditional nonlinear least-squares

forecast and a field averaged type-well curve prediction. By striking a balance between

data from an individual well and its neighbors in a partially-pooled manner, accuracy is

substantially enhanced and the range of uncertainty is narrowed. The error introduced by

approximating the hierarchical model with an empirical Bayesian approach is shown to be

small but increases when the test set of wells is substantially different from the other wells

in the population. Finally, Sect. 4.4 includes some concluding remarks and promising areas

of future work.
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Figure 4-3: Parameter mappings between the SCM and LGM found by fitting the LGM to

realizations of the SCM for different parameter realizations. (a) Mapping of M to C for

different values of T. (b) Mapping of T2 to q'/" for different values of M (lines are on top of

each other because M has no impact).
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4.2 Methods

4.2.1 Least-squares and type-well curves

The standard approach to forecasting with PCMs, including the SCM in Eq. 4.1 and the

LGM in Eq. 4.4, is using a nonlinear least squares algorithm to estimate the parameters that

minimize the total squared mismatch between the PCM and production data, typically ob-

served on a monthly basis [18, 84, 95]. This least-squares minimization has been implemented

using a standard Levenberg-Marquardt algorithm in the Python package lmfit, following the

methodology of [84]. A standard type-well curve approach has also been implemented for

comparison. For this, production time series from offset training wells are aggregated and

the mean is used as a prediction for new wells.

4.2.2 Bayesian Formulation for Production Curve Models

For a particular well i, the least-squares approach is equivalent to assuming Gaussian noise

in the production time series (tim, Qim) for each monthly observation m = 1 ... Mi where

Mi is the total months of production for that well. A least squares estimate then seeks the

PCM parameters-such as {M2 , Ti} when the SCM is used-that maximize the likelihood

distribution for this well's production data. As production is lower bounded by zero, this

assumption is slightly more appropriate when the PCM is first log-transformed, leading to

a likelihood function for a well i of

p({QIm}mti M.,'Ti, {tim}m4,i)

Mi

= ' (log(Qim); log(M) + log (F(tim/Ti)) , o'). (4.5)

for the SCM and

Pf((QiQm~m)i Ci 77i, 1i, { ti+ ) "i

=l N log(QM.); log (Ii) - log +v 1 , o (4.6)
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for the LGM. The notation {Qim}m refers to the set of cumulative production values

(ii IQi2, . . . , QjM2 ) and likewise for {timil To be more concise going forward, these time

series will be written as (ti, Qj). Additionally, K(x; yu, g2 ) is used to denote the probability

density of a value x in a Gaussian distribution with mean y and variance oa.

As the parameters for both the SCM and LGM must be positive values, it can be conve-

nient to work with log-transformed parameters so 64 is used to denote either {log(Ms), log(Ti)}

for the SCM or {log(Cs), log(i), log(vi)} for the LGM. The Bayesian approach to inferring

a well's PCM parameters O6 is to combine the likelihood in Eq. 4.5 or 4.6 with a prior

distribution for 6, according to Bayes' rule. This posterior distribution wr can be written as

r(6|ti, Qi) = p(Qij,t 2)p(6 2 ) (4.7)
p(ti, Qi)

cxi p(Qi|61,ti )p(62 ) (4.8)

where it is often easier to work with the unnormalized proportionality in Eq. 4.8. The

resulting posterior distribution p(62 lt, Qj) defines the probability of any combination of

PCM parameters given the production data and prior distribution. As the posterior is often

intractable, it is standard to use Markov Chain Monte Carlo (MCMC) approaches to generate

samples approximating it. This is discussed in detail in Sect. 4.2.4.

Choosing the prior distribution is an important and nuanced part of Bayesian model-

ing and is useful for introducing other information and beliefs into the probability model.

When there are many model parameters that are potentially related or structurally linked,

this dependence can be captured using hierarchical prior relationships based on conditional

probability [30]. For instance, each individual well i and its associated PCM parameters 6i

can be viewed as being drawn from a common distribution for the entire population of W

producing wells in the unconventional basin or field. Given the challenge of working with

high-dimensional Bayesian models, a less fully-Bayesian approach-typically referred to as

an empirical Bayesian model-is often used to approximate the hierarchical prior based on

an analysis of data from other individuals in the population. The empirical Bayesian ap-

proach is implemented here by assuming independent Gaussian priors on each dimension of

6 with the means and variances based on the empirical distribution of nonlinear least squares
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estimates of O9 for each well (Sect. 4.2.1). As shown in Sect. 4.3.2, this approximation may

be adequate for some situations but it lacks the generalizability and insight offered by the

more fully Bayesian approach developed in the following section.

4.2.3 Hierarchical formulation with Gaussian process

A hierarchical model can be constructed for the W producing wells in a field by recognizing

correlations and dependence between the PCM parameters for each well and other physical

properties. This is developed here for the SCM parameter M but the same formulation

applies to IC in the LGM since it similarly determines the total producible resource for a

well.

The producible mass of gas for a well Mi is determined by both spatially varying geo-

logical properties in the field and design specifications of the well which influence the SRV

geometry in Eq. 4.2. For known geological properties and well design parameters, a linear

relationship to log(Mj) can be assumed, as in

log(M2 ) = x7T3 + Ci, (4.9)

where ei is distributed according to a zero-mean Gaussian distribution, xT is a (P +I 1) row

vector of the p covariates and a 1 for the intercept, and / is the corresponding (P + 1)

column vector of coefficients. Many important underlying geological properties are unknown

but similar for wells that are near each other. This leads to spatial autocorrelation of ei

across wells, which can significantly bias estimates of 3 if ignored, as shown in Chap. 2.

However, utilizing the information contained in this spatial autocorrelation leads to the

powerful predictive technique of Gaussian process regression, or kriging as it is called in

spatial statistics [22, 74]. This spatial autocorrelation can be described using a covariance
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function C, as in

C (si, sig) =Cov [log (M4 ), log (M4gj)] (4.10)

E[(log(M) - x')3)(log(M j) - x3)] (4.11)

O(si - si'), (4.12)

where si C R2 is each well's coordinate location [67]. Following [74], the slightly rough

exponential covariance function

O(si - sei) = y1 exp(- -) (4.13)
Y2

provides an appropriate model for describing the nature of spatial autocorrelation in uncon-

ventional well productivity. This treats the covariance as isotropic, depending only on the

distance h between si and sg. The -y parameters determine the variance and length scale of

the covariance function and 174] described how they can be estimated using a semivariogram

fitting procedure. Here they are taken as known since they are hyperparameters of the prior

that can be reasonably estimated from the nonlinear least squares estimates of log(Mi) [67].

The prior for log(M) can thus be distributed according to the hierarchical prior

log(M2 ) ~g P(xf/3, C(si, s82) + Ou), (4.14)

where the Gaussian process gP is parameterized by the mean trend x7T3 from Eq. 4.9 and

covariance kernel C(si, sg). The parameter or defines the level of shrinkage, or how strongly

values of log(M) should be pulled toward the mean of the Gaussian process.

Treating the value of the Gaussian process at each well in the field as a random vari-

able is computationally burdensome due to the potentially large number of wells in the

field. Instead, a truncated Karhunen-Loeve (KL) expansion can be used to approximate the

Gaussian process 167], as

K

gP(xfT,3, C(si, si)) ~ x#3+ E WkOk (Si)Ak, (4.15)
k=1
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where the stochasticity of the Gaussian process is obtained using independent standard

Gaussian random variables, Wk, as weights for each mode k = 1 ... K. The eigenvalues and

eigenfunctions to the covariance Kernel, Ak and cPk(Si), solve

J C(si, si')pk(si')dsi = Ak pk(si), (4.16)
ID

where ID is the domain containing si. By Mercer's theorem, they also form the orthogonal

decomposition of the covariance kernel:

00

C(si, s,)= Akg(,kSi) 0k(si). (4.17)
n=1

The first N eigenvalues and eigenfunctions of Eq. 4.16 can be found numerically using the

Nystrom method [87]. This has been implemented for KL expansions of covariance kernels

in the MUQ2 open-source software, which is used here (web: muq.mit.edu). Analysis of the

eigenvalues decay indicates the error introduced by truncation of higher order terms, and

N = 40 modes was deemed to be a suitable approximation for the covariance kernels used

here.

It is convenient to recognize that when the covariance kernel and number of modes are

fixed, the values of (pk(Si) Ok can be pre-computed for each location si and the truncated

KL expansion in Eq. 4.15 can be restated as

gP(x13, C(s, s,,)) ~ (T SQ4W23 , (4.18)
j=1

where J = (P+1+N) and C is the J-length column vector combining the P+ 1 dimensional

/ with the N dimensional w, as in CT 3 T WT]. The covariates xi are also combined

with the pre-computed KL modes in (Pk(Si) Ak to form the J x 1 column vector Wi, as in

I=[i, ( Pk (Si) VM)T].

The prior on each of the coefficients j is chosen to be Gaussian

p(Q) =.Af(Q;j p , o). (4.19)
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It is assumed that pj is zero with or = 0.1 for the coefficients corresponding to KL modes.

A more informative prior can be used for the dimensions of ( corresponding to 3 by using

the least squares parameter estimates in Sect. 4.2.1 to estimate these pg. Following the

discussion in Sect. 4.2.2, empirical Gaussian priors are still used for the other log-transformed

parameters in the PCMs, such as for Ti in the SCM:

p(log(Ti)) = (log(Ti); pT, o ). (4.20)

The joint posterior over all W wells is

oc p({(Qi}o(i I {flog(Tr1 )sj} , {log(Ms)} , {ti} )

oc (P(i Iog (Ti), log (A4 ), t)

p(flog( I} {jl- 1f {Sil , (Xil )p(f(l,)P(flog(Ti)} ). (4.21)

for the SCM and is the same for the LGM except log(M2 ) is replaced by log(Ci) and log(Ti)

is replaced by the parameters log(r/s) and log(vi).

4.2.4 Sampling using Metropolis within Gibbs

The hierarchical model's joint posterior in Eq. 4.21 is intractable, as is typical of complex

probabilistic models. A practical approach to inference with such models is to employ a

Markov chain Monte Carlo (MCMC) sampler to generate samples asymptotically approxi-

mating the posterior distribution. The Metropolis-Hastings (MH) algorithm [381 is a general

method for MCMC. For each step n = 1... N, a proposal z' is drawn from a proposal

distribution q(z' Iz()) where z(n) is the current state in the chain. The acceptance ratio is

calculated using the posterior distribution r as

a (z(n) z') = min 1 r(z')q(z() |z') (4.22)
r(z(n))q(z'z(n))J
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and the chain accepts the proposal and advances to z(f+1) = z' with probability a(z(n), z')

or spends longer in the current state, as in Z(n1) = z("), with probability 1 - a(z(n), z').

With a sufficient number of steps N, the stationary distribution of the chain converges to 7

regardless of the initial value at z(0).

Even with the dimensionality reduction enabled by approximating the Gaussian process

with a truncated Karhunen-Loeve expansion, the number of random variables in the hier-

archical model remains very large. For example, with N = 40 modes of the KL expansion

retained, P = 4 regression parameters, and N = 1000 wells, there are 3045 random vari-

ables with the LGM or 2045 for the SCM. This makes generic Metropolis-Hastings sampling

schemes prohibitive and it is essential to exploit the structure of the problem to achieve

more efficient sampling. One approach is using Gibbs sampling for parts of the model with

a structure that allows the full conditional distribution to be derived and sampled from

directly. This is equivalent to using the full-conditional distribution as the proposal distri-

bution in MH leading to an acceptance rate of 1 in Eq. 4.22 [301. For variables where the

full-conditional cannot be derived, MH can be used, leading to the Metropolis within Gibbs

algorithm.

In this problem, Gibbs sampling is used for (j and log(kZC). The full-conditional for each

(j in the SCM is found by retaining only the parts of Eq. 4.21 with conditional dependence

on (j, as in

p (|{ti}i=1 , Qi}j=1 , {iW= ~~Wj , {6f} , {(r j)
CxC p({log(M~)jY {j(fe}j, f{4'}jw)p((j)

= Nr (log(MAe); CT Wi, o-2) NV((j; p, oU) (4.23)

Taking the logarithm of Eq. 4.23, again keeping only the terms involving (j, and collecting
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the (j and (j terms separately gives

log [p({log(MA4)}jj |{(}j_ 1, { I'} 1 )p((j)]

oc I [log(Mi) - (TWi]2 2

M i= io~

1

072AM
Wij log(M2 ) - Z ( qztF2j1 ( - 2i
i=1 1<fsJ Q

1
w 2+M (.
M =1 .

(4.24)

Because the log-conditional posterior dependence on (j matches the quadratic form of a

Gaussian distribution we can identify the Gibbs updated distribution of (j as Gaussian with

precision T as

1
1= (4.25)2 2 + 2

(j M

and mean p( defined by

1/or E_ 1 [Xij log(A4 ) - (fTe if qWij + p( /Or
IkI(j (4.26)

The same derivation applies to the LGM but with log(K ) substituted for log(Mj).

The full conditional for Gibbs updating each log(KU) is

p ( log (Ki)|{ti}I %1, { Qi}I %1, {WTi}I %=1, {log (TOi} 1, {log (Vi)}Ij 1, { (j }]'_1)

(4.27)

Note that log(K3i) is conditionally independent of the LGM parameters for all other wells

in the field: log(KUIC), log(7ij), and log(vji). The log-conditional posterior distribution is
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then

log [p(Qi I log(r/g),log(vi),log(KZi), ti)p(log(Ki)| } _1, {4I'} 1)]

oc [log(Qim) - log(ki) + log 2 - [log(KZ) -- (T i]

o M og + 1) + log(Qim)] + log(KZi)

Q~~ ~ M= 1 v r

- - + 4)log(Ki) 2 . (4.28)

From this, the precision and mean for the Gibbs update of log(C) can be analytically

determined as
1 M. 1 (4.29)
2 = 2 2 2

oQ IC

and

1/o7 [log (rj7/ti + 1) + log(Qm)] + [TI~]/ (4.30
pQ == .m (4.30)

To aid with the efficiency of sampling from the remaining variables, two other techniques

are demonstrated which utilize other structure in the model. For the SCM, it is highly

efficient to take advantage of the high degree of parameter correlation between log(Mj) and

log(Ti) using a standard adaptive Metropolis-Hastings (AMH) algorithm [36]. This AMH

algorithm was similarly employed for inference on individual well PCMs by [114]. The pair

of parameters in 6, for each well i are sampled as a block using a MH bivariate Gaussian

proposal centered at the current state in the chain (n). For the first no steps, a fixed

covariance matrix Co is used. After this, the algorithm learns the scale and orientation for

better proposals based on past samples and generates proposals using the updated (2 x 2)

covariance matrix in

SDCov(6 2 ,),.. O6n) ASDI,(4.31)
C*n = svo( i3 ... ,6") + sDEID,

where ID is the (2 x 2) identity matrix and e is a very small nugget to prevent C* becoming

singular. A standard scaling factor SD= 2.42 /D is calculated based on the dimensionality
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of the proposal D = 2. To further accelerate the AMH algorithm by avoiding large matrix

inversions, a recursive calculation for Eq. 4.31 is used, as suggested by [36].

For the parameters log(li) and log(vi) in the LGM, a different technique is used where

MH samples are proposed using a nearby full conditional distribution that can be derived.

log - 1) log(,q) - v log(t), (4.32)

leading to the slightly different likelihood function for a well i of

p(QilI log(ni), vi, KCi, ti)
=lg log ( - 1 log(ni) - Vi log(tim), o) . (4.33)

When a Gaussian prior is assumed for vi and log(7i) this results in an alternative posterior

distribution that allows for their full conditionals to be calculated. This alternative posterior

distribution is similar but not equivalent to the desired target posterior distribution. As a

result, it can only be used as a good proposal distribution for a metropolis-Hastings step

which accepts or rejects these proposals according to Eq. 4.22, where wr is still the true

posterior distribution in Eq. 4.21 and the alternative posterior distribution

ir (log (Ki), log (ni), Vi I ti, Qi)

OC p (Ci I log (K), log (,i), vi, ti)p (log (Ki))p (log (,i))p (Vi) (4.34)

is used as the proposal distribution q. This approach is similar to an independence sampler

since proposals do not depend on the previous state of the parameter being sampled, however

they do depend on the state of other parameters. It is also similar to a Gibbs sampler but uses

a nearby full-conditional distribution so the acceptance ratio is used to ensure the sampling

is adjusted to match the target. The noise parameter o1 is chosen to be larger than o to
QQ

ensure good coverage of the true posterior.

The proposal distribution for log(,i)' is found by deriving the full conditional for the

alternative posterior distribution which uses the likelihood distribution in Eq. 4.33 and a
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Gaussian prior on log(qi), as in

p (log(7]i)|{ti} 1, {Q} i, 1{'I'i}l, {log(K2i)}iU1, {vj} Y, { }f )

oc p(QiI log(i), vi, log(KU), t )p(log(Tij)).

The associated log-conditional posterior distribution is

log [p(QiI log(T), vi, log(Ci), ti)p(log(7i))]

c - 2a 2y (log (<
Q m=1

oc ( log

- 1) - log(ij) + Vi log(tim)) 2 - [log -2

I__ - 1 + vi log(tim) + log(T)

- - [M + log(,i)2.
2 oT o2

(4.36)

From this, the precision and mean for the Gaussian distribution used to generate proposals

of log(Tli)' are as shown in Eq. 4.37 and Eq. 4.38.

1 M. 11 / =A + 1(4.37)
771Q 7

1/o rn [log (Ki/Qim - 1) + vi log(tim)] + ps/O
(4.38)

Similarly the full conditional distribution for vi' based on the alternative posterior distri-

bution constructed using the alternative likelihood in Eq. 4.33 and a Gaussian prior on vi

is

p (vdlti}&, {Qi} 1, { 2i} , {log(KZi)} Y1 , {log('qi)} 1 , {}f_1)
c p(Qil log(Ti), vi, log(ki), ti)p(Vi).

(4.39)

Note that to make the derivation of this full conditional possible, it is necessary to work

with vi directly, rather than the log-transformation of it. As such, v/ and S2 are used to

denote the prior mean and variance to distinguish these from the hyperparameters of the
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log-transformed distribution. This leads to the log-conditional distribution for vi as

log [p(Qil log(7i), vi, log(K i), ti)p(Vi)]

Oc M 2  log( - 1 - log(n ) + V log(tim) - 2S

2o7_Y i/ 2S2
Q m=1 V

( - [log i - log() log(tim) + Vi

- ( (A7 1[log(tim)]2 ± u/i . (4.40)

From this, proposals for vi' can be drawn from the Gaussian distribution with parameters

2=T1' 1 [ log(tim)] 2 + (4.41)

and
-1/o A I [log (Ii/Qim - 1) - log(Ti,)] log(tim) + O/Sv

-M (4.42)

where the notation S2 and f1 are used to denote the empirical Bayesian variance and mean

hyperparameters for v to distinguish them from the hyperparameters for the Gaussian prior

on log(v).

The entire MH within Gibbs algorithm is outlined in Algorithm 1. Subroutines are

also outlined for the Gibbs update step in Algorithm 2, the MH step using the nearby full

conditional distribution in Algorithm 3, and the adaptive MH step in Algorithm 4.

4.3 Application

In this section, the approach formulated in Sect. 4.2 is applied to two of the most prolific

and longest producing unconventional basins in North America: the Barnett shale gas play

in north Texas and the Bakken tight oil formation in North Dakota. This provides a test

bed for both PCMs since the SCM is a forward model based on the typical conditions in the

Barnett 184] and the more general LGM was previously shown to be appropriate for Bakken
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Algorithm 1 Metropolis-Hastings within Gibbs for hierarchical model

1:
2:

3:

4:

5:

6:

7:
8:

9:

10:

11:

12:

13:

14:

15:

16:

Initialize 6), ... ,)
for n = 1, ... , N do

(n") < - 1) 1 Vi E { 1, . .. , W }
(n") <-l I ,Vj E {1 if .,J

for all j c {1,... J} do
Gibbs update (j (Alg. 2)

end for
for all i E{,.,W} do

if model is LGM then
Gibbs update log(K3i) (analogous to Alg. 2)
Nearby full conditional MH step for log(qi) MH step (Alg. 3)
Nearby full conditional MH step for log(vi) (analogous to Alg. 3)

end if
if model is SCM then

Adaptive MH step for By (Alg. 4)
end if

17: end for
18: end for

Algorithm 2 Gibbs update (j

1: Compute o, (6(n), ((`) using Eq. 4.25

2: Compute pq, (6(n), (&ij) using Eq. 4.26

3: Propose (~ (peg, o )

4: -(n)

Algorithm 3 MH step for log(yi) using nearby full conditional

1: Compute o (K n), n), C(n)) using Eq. 4.37

2: Compute p,,, (K "), v ",(n)) using Eq. 4.38
3: Propose log(i)' ~ G

4: 0 + log (KC,) )(), log ( log(v,) (n)

5 Computta,Q6 (I = tm,Qi) using Eq. 4.8 and Eq. 4.34

6: Generate u ~l2(O, 1)
7: if u < a(O6(n), 6') then

8: log(end )() +- log(if)'
9: end if
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Algorithm 4 Adaptive MH step for 64
1: if n > no then
2: Compute C* using Eq. 4.31
3: else
4: C* = CO
5: end if
6: Propose 0, ~ V(O n), C*)

7: Compute a(__), 6/) =min 1 7(0'I

8: Generate u ~ U(0, 1)

9: if U < a(6("), 0') then

10: O + 0

11: end if

wells [18].

4.3.1 Data

There are unique attributes to the data available for each of these producing regions.

Widespread drilling activity commenced earlier in the Barnett than the Bakken shale so

there are many Barnett wells with longer production histories. As a result, the focus here

is on wells in the Barnett shale with at least ten years of production and on Bakken wells

with at least five years of production. The analysis was confined to part of the Barnett shale

primarily targeting gas (excluding an oilier area) and the middle Bakken formation located

within North Dakota.

Both states require reports to be filed with the the surface and bottomhole location for

wells and the total length of the producing lateral section. The calculated midpoint location

is thus used to approximate the location of a well within the basin. For the Bakken, the

depth of the well is also used since it varies considerably across the basin and is known to

correlate strongly with other important subsurface conditions such as pore-overpressure and

source rock maturity [961. Production data must be reported to the regulator on a monthly

basis in both states, but North Dakota additionally requires the number of producing days in

each month to be reported. Wells often have downtime for maintenance or planned cycling of

wells to meet surface facility constraints, so t was adjusted for these off-days with all Bakken
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Barnett Bakken

Number of wells 1968 1083
Minimum production 10 years 5 years
PCM SCM LGM
64 { log (M4 ), log (Ti)} {log (Ki), log (r/s), log (vi)}
KL modes 40 40

Intercept, hydrocarbon
Intercept, originalpoevlm,dth

Xi ga in pace, pore volume, depth,
egas in place, lateral length, hydraulic

fracturing water volume
Dimensionality 3979 3294

Table 4.1: Data and models for Barnett and Bakken

wells to remove this source of noise. FracFocus (web: fracfocus.org) also collects data on

hydraulic fracturing designs for wells, and the total water used in hydraulic fracturing was

thus available for many Bakken wells. This data for wells in each region was acquired from

the data firm Rystad Energy (web: rystadenergy.com). As with the analysis of [84], wells

with erratic and potentially misleading production behavior resulting from restimulation, in

which the well is hydraulically fractured a second time to revive production, were excluded

from the analysis. Based on this criteria, data from 1968 wells in the Barnett and 1083 wells

in the Bakken could be included here.

In addition to the design properties and locations of wells, some important estimated

geological properties have been pulled from geological maps in literature. [45] constructed

a map of estimated original gas in place (OGIP) across the Barnett shale play using data

from well logs and provided shapefiles for this analysis. Additionally, hydrocarbon pore

volume estimates were obtained for all locations in the Bakken formation from [37], which

had similarly been mapped using log data. These volumetric quantities should be closely

linked to the Mi and Cj parameters governing the total amount of resource accessed by

a well. This makes it ideal prior information to include, along with the technical factors

previously identified, in the covariates xi for the mean trend. Table 4.1 summarizes the data

and models used in the analysis.
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4.3.2 Results

The MCMC simulation was run for 105 steps to allow the chains to adequately explore the

high-dimensional joint posterior. The first 5000 samples of each chain were discarded as

burn-in. To reduce sample autocorrelation and ease the burden of working with such a large

number of samples, this was then thinned so that only every fiftieth sample in each chain

was used. The results for 3 and the first few dimensions of w in the Barnett shale are shown

in Fig. 4-4. Only the second half of the chains are shown in order to make chain movement

easier to distinguish.

le-1
1

0.5 1.0

Step le5

1

0.5 1.0
Step 1e5

le-2
1.0 1

Se 0.8 l
Co.-

0.5 1.0
Step le5

S0.0-

-0.5-

0.5 1.0
Step 1e5

le-1

51.75

15 1.50
1.2 51.

0.5 10

0.5 1.0
Step 1e5

Figure 4-4: MCMC samples of coefficients for regression coefficients, including lateral length
(LATLEN) and first three modes of KL expansion with Barnett wells

One benefit of a Bayesian sampling approach is that the samples generated to approxi-

mate the joint posterior distribution also provide insight into the role of individual variables

in the model. Each individual parameter chain, such as those shown in Fig. 4-4, also gives the

marginal distribution for that parameter. This allows the influence of physical factors such as

the lateral length of wells on long-term productivity to be determined and the uncertainty of

this quantified too. This can be particularly useful for modeling hypothetical scenarios and

exploring different combinations of parameters. Because the hierarchical model considers the

range of parameter uncertainty and other correlations within the data, estimates can differ

substantially from those obtained using linear regression (LR) or regression-kriging (RK) on
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Figure 4-5: Coefficients (mean and 95% confidence or credible intervals) from linear regres-
sion (LR), regression-kriging (RK), and Hierarchical model (HM) with Bakken wells

deterministic least-squares PCM parameter estimates, as shown in Fig. 4.3.2 for properties

in the Bakken shale. This reveals that hydraulic fracturing water volume potentially plays

a more important role and uncertainty is greater for most parameters than suggested by the

less robust methods.

Furthermore, the clear spatial hyperparameters in the model allow for geological produc-

tivity to be mapped across locations, while controlling for other factors. Figure 4-6 shows

the expected long-term well productivity, or more precisely the mean of the marginalized

prior for log(M), mapped across the Barnett shale. Because log(M) is linear on the compo-

nents of 3 and w, this can be constructed using the mean of each C component's marginal

distribution and then multiplying by 1Qj at each location. In order to only map the spa-
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Figure 4-6: Map of wells (markers) and expected long-term well productivity in Barnett field
with Lateral length held to average value

tial components, well design covariates are held constant to their mean values. Figure 4-7

similarly shows the mean of the marginalized prior for log(C) across the Bakken shale.

These marginal distributions provide useful insight into the system but it is important

to also establish the effectiveness of the mechanistic-statistical hierarchical model at making

predictions. A twp-fold cross-validation scheme was used to test the accuracy of the model

at forecasting long-term productivity of wells based on their first year of production. This

involved randomly assigning wells to two groups that alternated roles as training and testing

subsets. The prediction task applied to test wells is illustrated for a typical Barnett well in

Fig. 4-8 and Bakken well in Fig. 4-9. For this well forecast, only the first year of production

was observed and this was used to generate a posterior predictive distribution of future

production, represented in the figures by the posterior predictive mean (PPM) and the 75%

credibility interval. For test set wells, the prior incorporated the marginal distribution for

each ( learned from training wells. The value of the cq noise hyperparameter was set to

ensure the forecast uncertainty captured the empirical uncertainty and the actual cumulative

production fell within the 75% credible interval roughly 75% of the time. Each well's cross-

validated posterior predictive distribution is plotted against actual outcomes for ten-year
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Figure 4-7: Map of wells (markers) and expected long-term well productivity in Bakken field

with design parameters held to average values

cumulative production in the Barnett shale in Fig. 4-10. The same results for five-year

cumulative production in the Bakken are shown in Fig. 4-11. This reveals that there is

much greater uncertainty with forecasts of more productive wells, where small differences in

dynamics-such as the timing of inter-fracture interference-can have dramatic implications

for total production.

In order to compare the accuracy of the hierarchical method to existing deterministic

forecasting techniques, the error was calculated between each well's posterior predictive mean

and actual cumulative production of each well at the chosen reference time (ten years for

Barnett and five years for Bakken). The cross validation error for predictions with a standard

type-well curve approach and nonlinear least squares fit of the PCM to the observed first

year production was also found. Figure 4-12 shows the root mean squared error and average

error over all wells in the Barnett'for each method. The type-well curve and least-squares

SCM in the Barnett shale give a similar RMSE but the least squares estimate systematically

underestimates production. This is because without any kind of regularization, the least-

squares estimate is overfitting the data and gravitating toward small parameter estimates

rather than considering larger parameter values that provide a similarly good match to

the limited observed production data and are also suggested by other training wells to be
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Figure 4-8: Hierarchical model fit to observed production in first year for a Barnett well
giving posterior predictive mean (PPM) and credible intervals for later production

more reasonable. By contrast, the mechanistic-statistical model uses the structure of the

hierarchical prior to place greater probability on parameters that better match the behavior

and physical relationships observed elsewhere in the field. In the Bakken, Fig. 4-13 shows

that least squares with the LGM performs slightly better than the type-well curve although

it has a slight tendency to overestimate production. In both fields, the hierarchical model

performs substantially better in terms of RMSE while also reducing the systematic error of

least-squares predictions.

Another clear advantage of the hierarchical Bayesian approach is that it rigorously quanti-

fies uncertainty and can potentially reduce it by including additional information in forecasts.

Uncertainty with the type-well curve can be characterized by considering the full empirical

distribution of offset training wells. However, this tends to overestimate uncertainty since no

additional information is used to weight the relevance of these offset wells. Figure 4-14 and

Fig. 4-15 show the distributions of 75% credible interval ranges for all wells in the two-fold

cross-validation test compared to the implied 75% confidence interval of the type-well curve.

The random assignment of wells to training and test sets in the cross validation scheme

is a very standard approach for validating a model's predictive capability. However, it masks

an important strength of the mechanistic-statistical approach that becomes clear in a more
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Figure 4-9: Hierarchical model fit to observed production in first year for a Bakken well

giving posterior predictive mean (PPM) and credible intervals for later production

realistic forecasting scenario where wells being forecast do not match the training w ells. To

demonstrate this, two additional validation schemes were developed.

In the first, Bakken wells were divided into a training and test set of wells based on

the volume of hydraulic fracturing water used, as shown in Fig. 4-16. This is intended to

reflect the challenge today of developing forecasts for newer wells that are more intensively

hydraulically fractured than their older peers in the same field, with unclear implications for

production dynamics [109]. Since this test set of wells tend to be more productive than the

rest of the population, the magnitude of error for all methods is greater than in random cross-

validation but the relative changes are informative. Type-well curves particularly suffer in

accuracy and become overly pessimistic because the training wells are no longer comparable

to test wells and tend to be less productive. The hierarchical approach performs well in this

situation, reducing squared error and nearly eliminating any systematic bias in forecasts by

using physical relationships to adjust expectations.

Next, an even starker division was used for training and test wells in the Barnett, as

shown in Fig. 4-18. The shortest 20% of wells were used for training while test wells were

selected to have lateral lengths larger than 90% of wells and estimated OGIP higher than

50% of wells in the overall population. This forecasting scenario is designed to reflect the
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Figure 4-10: Two-fold cross validation results of hierarchical model posterior predictive and
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1200-

n 1000-
7@

800-
C

tn
o 600-
.C-

400-

200-

0-
0 250 560 750 1000 1250

Predicted (thousand barrels)

Figure 4-11: Two-fold cross validation results of hierarchical model posterior predictive and
actual five-year cumulative production for Bakken wells
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Figure 4-12: Root mean squared error (RMSE) and average error for two-fold cross validation
predictions of Barnett wells' ten-year cumulative production
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Figure 4-13: Root mean squared error (RMSE) and average error for two-fold cross validation
predictions of Bakken wells' five-year cumulative production
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Figure 4-14: Distribution of 75% credible interval ranges for Barnett wells' ten-year cumu-
lative production in two-fold cross validation using hierarchical model and range of 75%
confidence with type-well curve
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Figure 4-15: Distribution of 75% credible interval ranges for Bakken wells' five-year cumu-
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confidence with type-well curve
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Figure 4-16: Training and test wells in Bakken shale chosen based on hydraulic fracturing

water volume to test generalizability of mechanistic-statistical relationships in hierarchical

model
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Figure 4-17: Root mean squared error (RMSE) and average error of predicted five-year

cumulative production for Bakken wells with largest stimulations after learning relationship

from much lower-stimulation wells
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Figure 4-18: Training and test wells in Barnett shale chosen based on lateral length and

reservoir quality to test generalizability of mechanistic-statistical relationships in hierarchical

model

common situation early in a field's development, when there are relatively few wells scattered

throughout the field and these are much smaller appraisal wells. Once the best areas in a field

are identified, activity tends to concentrate there as well designs are scaled up to maximize

production from these locations [74]. The results in Fig. 4-19 show that, even with a much

smaller training set of wells and a large gap in the design space, the hierarchical model is able

to effectively generalize mechanistic-statistical relationships and drastically outperform other

simpler methods in its accuracy. Again, the type-well curve systematically underestimates

production in this realistic forecasting scenario.

The mechanistic-statistical hierarchical model is both informative about relationships

in the system and accurate at forecasting. However, an empirical Bayesian approach was

discussed in Sect. 4.2.2 as an approximation that eliminates some complexity and model

hierarchy but still offers the benefits of uncertainty quantification and regularization. The

error that this empirical Bayesian approximation introduces is examined for the different

validation scenarios in Fig. 4-20. The relative change in the RMSE and mean error is shown

scaled to the RMSE of the mechanistic-statistical hierarchical model. Note that a drop

in the relative mean error does not necessarily indicate an improvement since it may lead
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Figure 4-19: Root mean squared error (RMSE) and average error of predicted ten-year

cumulative production for Barnett wells with longest laterals and in highest-quality reservoir

after learning relationships from shortest wells

to greater systematic underestimation. In the unique situation where the training data is

representative of the test data-as with two-fold cross validation-there is very little error

introduced by using the simpler empirical Bayesian formulation. When this is a reasonable

assumption to make, it may be appropriate to rely on the empirical Bayesian approximation.

But when the properties of wells being forecast differ from those available as training data,

as is often the case, the empirical Bayesian formulation becomes unreliable since the prior

is fixed. The mechanistic-statistical approach should be used in these situations since it can

adjust the prior for wells based on their physical properties.

4.4 Conclusions

This chapter demonstrated how physical data and prior knowledge about production behav-

ior can be incorporated into a mechanistic-statistical Bayesian formulation of unconventional

well production. This is a general approach, suitable in both an oil field and a gas field,

and was developed here for both a physics-derived and empirical production model. By

connecting wells in a field using hierarchical priors, the approach substantially improves
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Figure 4-20: Relative change in error by using empirical Bayesian approximation instead of
mechanistic-statistical hierarchical model

forecast accuracy compared to current widely used techniques of nonlinear least squares re-

gression-often called decline curve analysis-and aggregated type-well curves. It is also

better able to characterize and potentially reduce uncertainty.

The fundamental challenge in unconventional production forecasting today is appropri-

ately applying insights from older wells with long production histories to newer wells with

limited production data but known physical differences, due to changes in design and subsur-

face conditions. The mechanistic-statistical approach is ideally suited to this task, since it is

able to learn physical relationships from older wells and use the hierarchical model structure

to generalize this knowledge to wells with fundamentally different properties. This is not

possible with nonhierarchical Bayesian production forecasting approaches that handle each

well individually and are unable to incorporate physical data. Even the empirical Bayesian

approach, discussed in this chapter as a possible approximation, lacks the probabilistic struc-

ture to detect these relationships and is unsuited for the.realistic challenges of production

forecasting today.

In recent years, many companies have experimented with more intensive well designs, such

as larger hydraulic fracturing water volumes to increase SRV and boost production rates [103,

76]. This trend drastically increases the cost and environmental intensity of wells but the

impact on long-term production behavior-and as a result, on well economics-remains
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unclear. This makes it important to identify shifts in production dynamics for these wells

as early as possible in order to inform design decisions for new wells and improve field-

scale forecasts. Past efforts to understand the relationship of PCM parameters to known

attributes of wells, including using kriging estimates in [113] and response surface modeling

in [81], have neglected to consider the immense uncertainty inherent in the PCM parameters

and are thus unreliable. The interpretability of the mechanistic-statistical approach makes

it an important methodological step toward better understanding the drivers of long-term

well productivity in unconventional fields.

The analysis here showed that current forecasting techniques have a tendency in some

cases to systematically under or overestimate long-term well productivity. When applied

across a large region to inform policy and infrastructure investment decisions, this can have

potentially dire societal costs. Underestimation can contribute to inadequate infrastructure

investment, leading to future pipeline bottlenecks and excessive flaring of stranded natural

gas-an environmental bane currently common in the Permian basin of west Texas [82].

Overestimation of future production can lead to wasteful investments in economically dis-

appointing projects and a future energy system that is potentially more expensive, environ-

mentally damaging, and less reliable than anticipated.

It is worthwhile to contrast the use here of PCMs with a constrasting but useful idea in

literature. Principal component analysis has been promoted as an approach for describing

relationships of physical properties with well productivity over time 158]. This approach

finds a lower dimensional subspace that maximizes variance and best represents the data. It

thus provides a useful data reduction technique without assuming any model or structure.

Principal component analysis (PCA) has been applied to production time series using a uni-

form discretization over all data [58], and in an infinite-dimensional setting by approximating

this space using a finite number of basis functions [70]. This functional PCA approach was

additionally combined with kriging of basis coefficients [70], which has similarities to the

orthogonal Karhunen-Loeve representation of the Gaussian process prior used here. Both

of these previous applications of PCA to production data found essentially two dominant

directions though, suggesting a simple parametric PCM is adequate to represent these dy-

namics. By projecting data onto an a priori manifold based on a PCM, rather than a linear
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hyperplane like in PCA, patterns in the data can be more easily recognized and interpreted.

This is especially true when the parameter space is defined by physical attributes, as is the

case with the mechanistic-statistical approach here. PCA is unable to incorporate physics

and domain knowledge and has a tendency to amplify noise without the assistance of these

assumed dynamical relationships. PCA is purely descriptive, whereas the mechanistic rela-

tionships in the hierarchical model allow for generalization or extrapolation onto physically

different data not previously observed, making it very practical for real world forecasting

situations. Additionally, these past implementations of PCA also provided no uncertainty

quantification.

A hierarchical approach is by definition flexible and additional hierarchy should be added

to incorporate richer datasets and provide insight on more specific aspects of production be-

havior. Production was modeled here as either single-stream gas or oil production, based

on the primary targeted resource in each field. However, in reality unconventional well pro-

duction is multi-phase and includes both oil and gas, as well as sizable amounts of water.

Ratios between these fluids evolve over time and are important to production dynamics. A

natural extension of the hierarchical model would be to use three separate PCMs for each

well to represent these fluids, with parameters dependent on shared, well-level priors. This

would provide insight into how these fluid ratios change over time in wells [110]. Additionally,

when data for well flowing pressure is available, more detailed physics models can replace the

PCMs used here. Rate transient analysis is an area that attempts to do this deterministically

today [19], but would be much more appropriately handled in a probabilistic hierarchical

framework given the unresolvable physical uncertainties. Finally, well-to-well production

interference is of growing concern as unconventional fields are drilled more densely and wells

begin to compete with each other for the same resource [45]. The ability of the mechanistic-

statistical approach to infer SRV properties of wells across a field makes it an indispensable

tool in understanding and predicting this detrimental subsurface condition. As these poten-

tial extensions of the approach illustrate, the mechanistic-statistical model in this chapter

provides a powerful and flexible framework that opens up new possibilities for using data to

understand and manage these complex unconventional resources.
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Chapter 5

Conclusion

5.1 Summary

This thesis developed a novel mechanistic-statistical approach to unconventional oil and gas

production forecasting that improves on current approaches by more effectively integrating

well-level data with physics and domain knowledge. This leads to greater accuracy in predic-

tions, insight into the mechanisms driving production, and better model generalizability with

the ability to appropriately adapt behavior observed in older wells to newer ones with phys-

ical differences and a paucity of data. The ultimate approach for this was a spatiotemporal

hierarchical Bayesian model leveraging a fractured shale gas production model in Chap. 4. In

order to develop this approach, some key aspects of modeling well productivity statistically

using coarse public datasets had to first be addressed.

Developing reliable resource forecasts as well as economically optimizing well designs and

development plans depends on the ability to isolate the influence of design improvements

from heterogeneous and often unknown geology. Chapter 2 introduced regression-kriging

as an improved methodology for identifying the amount of productivity improvement as-

sociated with technological changes in wells while controlling for the role of geology. This

technique combines the econometric interpretability of multiple regression for well design

parameters with kriging to infer unknown geological productivity of locations as a latent

Gaussian process. By recognizing and learning from the structured information implicit in

spatial autocorrelation of well productivity, prediction error for over 3000 wells in the Willis-
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ton Basin was reduced by a third and less biased estimates of technology's impact were

obtained. This revealed that, during the period studied, roughly half of productivity im-

provement was driven by changes in where drilling was occurring rather than how wells were

designed, a fact completely missed by the less spatially resolved approach previously relied

on by the U.S. Energy Information Administration [101, 86]. Reducing this bias is critical

to avoid overestimating future well production rates and potentially encouraging wasteful

overly-intensive well designs.

This initial approach focused on predicting the first year of production from a well prior

to being drilled-an important metric for well economics. However, there is also significant

variability in temporal production behavior and it is challenging to predict based on early

production data from a well. Differences in long-term dynamics become important as they are

aggregated over many wells in a basin, making this a critical forecasting task for policymakers

and energy sector decision-makers.

Chapter 3 drew attention to the ill-posed nature of the inverse problem typically used

to forecast long-term production-fitting production curve models (PCMs) to observed pro-

duction data and extrapolating the trend. It is generally recognized that this approach

becomes unreliable when limited production is available, but this chapter provided the first

rigorous account of the inherent model sloppiness behind this and how to address it using

Tikhonov regularization. This strikes a balance between information from the individual

well and patterns seen in the broader population (a form of partial-pooling), providing a

forecast with half the error of the current practice of fully-pooling production data from

physically dissimilar offset wells into an average type-well curve. This approach was imple-

mented with over 4000 wells in the Barnett shale using both the widely used Arps curve

and a scaling curve recently introduced as a physics-based alternative. These models are at

two extremes in the debate over which PCM is most appropriate for shale wells, but this

argument is moot as regularization is shown here to be far more important than choice of

model. Regularization brings the accuracy of these models close to that of a deep neural

network, a model-neutral benchmark introduced here as a novel way of establishing a lower

bound on error by identifying the best nonlinear mapping possible with the data. Both

PCMs combined with regularization approach upon this benchmark using far fewer param-
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eters, reinforcing the point that what PCMs require is not greater parametric complexity

but making better use of available data. Finally, the mechanistic parameters in the scaling

curve provide useful insight into the physical source of forecasting uncertainty: ambiguity

between the amount of resource accessed by a well and how rapidly it is being depleted.

There is a natural connection between Tikhonov regularization and the prior in a Bayesian

framing of the production forecasting problem. Chapter 4 develops this Bayesian approach,

which is both highly interpretable and addresses the important issue of quantifying uncer-

tainty in 'forecasts and relationships. Additionally, hierarchical priors in the model allow

the concepts in Chap. 2 and Chap. 3 to be effectively combined into one spatiotemporal

approach. The parameters in each well's mechanistic production model are conditioned on

physical data (through multiple regression) and on a Gaussian process approximated by a

Karhunen-Loeve expansion-essentially a more formalized version of the regression-kriging

approach from Chap. 2. This partial-pooling honors the production data for each well while

inferring shared relationships across all wells. This allows the regularization that was shown

to be essential in Chap. 3 to be carried out in a way that automatically tunes itself to the

physical differences in wells. The model is very high-dimensional, with between three and

four thousand parameters for implementations here on Barnett shale gas wells and Bakken

tight oil wells. A key practical innovation introduced in this chapter to address this computa-

tional hurdle was a unique Metropolis within Gibbs sampling approach for highly structured

Markov chain Monte Carlo approximation. By embedding structure and domain knowledge

into the problem, the mechanistic-statistical approach reduces uncertainty in forecasts and

gives mean predictions with 50-80% less error than previously possible. The physical basis

also makes this model better able to generalize patterns learned from older well designs to

wells with more intensive designs. This is the first basin-wide spatiotemporal production

model combining physics with statistics and represents a significant advance in the area of

forecasting unconventional oil and gas resources.
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5.2 Future work

This model opens a path for future work addressing some of the most vexing modeling

challenges afflicting unconventional resource development today. The connection in this

model between production rates and stimulated reservoir volume can help provide statistical

insight into how well spacing, geology, and completion design contribute to well-to-well pres-

sure communication, or interference, and "frac-hits" which can sabotage an existing parent

wells production or lead to unexpectedly low production from the new child well[45, 6]. This

is one of the key technical challenges of forecasting production and optimizing field devel-

opment in unconventional oil and gas today; addressing it is beyond the scope of this thesis

but a framework has been created which can introduce the geometric constraints from wells

sited close to each other into production forecasts. Additionally, it is increasingly important

to consider the influence of water, gas, and oil production from a well together. Again,

the hierarchical framework introduced here can very naturally be extended to address this

issue. Separate PCMs can be used to describe each fluid and their behavior linked together

through a common hyperprior. This will provide a more dynamic model for multi-stream

production since these ratios can evolve over time with subsurface changes. As development

of unconventional oil and gas continues, there will likely be many other challenges that arise

which can be addressed by building on this mechanistic-statistical framework.
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