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Algebraic Treatment of the Whitney Conditions

by Roberto Callejas-Bedregal
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Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

[(hesis Advisor: Steven Kieiman

Abstract: In this work, we give an algebraic treatment of the Whitney conditions.

We extend the theory of Whitney stratification to algebraic schemes over an alge-

braically closed field of characteristic zero. Precisely, we prove the following theorem.

Theorem. Let X be an algebraic scheme over an algebraically closed field of char-

acteristic zero. Let Y be a smooth closed subscheme of X. Assume that X admits a

proper closed imbedding into a smooth scheme M and that X —Y contains a smooth,

open dense subscheme of X. Let « : C(X) — X be the conormal scheme of X in M.

Denote by Dy the exceptional divisor of the blow-up of C(X) along «~!(Y) and let

fy : Dy — Y be the induced morphism. Let m (Px (X,z)) denote the multiplicity of

the local polar variety of codimension k of X at x. Then, the following statements

are equivalent.

(2) The pair (X*™,Y) satisfies the Whitney conditions.
(22) For every integer k for 0 &lt; k &lt; dimX— 1, m (Px(X, z)) is independent of

the point z of Y.

(222) The morphism £y : Dy — Y is equidimensional.

(2v) The ideal sheaf J, which define the intersection C(X)N C(Y) in C(X), is



integral in O¢(x) over the ideal 7 which define k~(Y).

(v) Let Dy be an irreducible component of (Dy )req and let V, its image in P(Cy X).
en.

D,=C(V,/Y,P(CyM)]Y)

I'he above theorem was first proved by D. T. Lé and B. Teissier in the context of

complex analytic spaces but their proof uses trancendental methods in an essential
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Chapter 1

Introduction

In his attempt at resolving singularities, Oscar Zariski was led to pose the following

problem. For each complex analytic variety X C C", find a natural stratification

(i.e., a decomposition) of X into smooth closed subvarieties with the following prop-

erty: if H C C" is a smooth hypersurface which avoids the “exceptional points” (i.e.,

the zero-dimensional strata) and cuts all the positive dimensional strata transversally,

then, some suitable process of resolving the singularities of X NH will propagate along

the strata to resolve the singularities of X outside the exceptional points. Hence, by

induction on the dimension, one could resolve almost all the singularities of X. The

remaining step would be to transform the exceptional points into nonexceptional ones.

In short, he was asking for a equisingular stratification of X (i.e., a stratification such

that the singularities in each strata are alike in some strong sense). Precisely, he

asked the following question: “If } is a subvariety of X and if y is a closed point

of Y, what is to be meant by ~aving that X is equisingular at y along Y? We want

a definition, preferably algebraic. which will meet satisfactorily a series of stringent

tests, whether algebraic, algebro-geometric, or (in the complex domain) topological
in nature. By this we mean that whatever property is used in the definition of eq-

uisingularity, that property should be proved to be equivalent to each of a series of

other properties which we intuitively associate with the concept of equisingularity,



and which, together, cover just about everything that one could possibly expect from

a correct definition of that concept. In the definition of equisingularity we must not

ask for too much nor for too little. For instance, it would be too much to require that

r and y have an analytically isomorphic neighborhood, where z is a generic point

of Y. It would be too little to ask only for equimultiplicity, i.e., to ask only that

z and y have the same multiplicity for X” ( [38, introduction]). In particular, “a

convincing theory of equisingularity should agrees with what one would expect from

equisingularity when tested in examples against the behavior of X under a monoidal

transformation centered at Y.”

Branch Loci

A satisfactory theory of equisingularity exists only in the case where X is a hy-

persurface and its singular locus is of codimension 1. Assume that X is imbbeded in an

affine space A". Let 7 : X — A"! be the projection defined by

7(z1y... Tn) = (Z1,...,Tn-1) and let B, be the branch locus of 7. X is equisingu-

lar at y along Y if B, has a simple point at 7(y). The underlying reason why this

case lends itself to a complete treatment is the fact that the concept of equivalent

singularities of algebraic plane curves is well established. In fact, X is equisingular

at y along Y if and only if there exists Y-transversal sections I'; and T'y of X at z

and y respectively (i.e., ['; is a surface of A™ having at z a simple point and such

that T,I', @T,Y = TA"), such that the curves C; := X NI; and C, := X NT

are equivalents (in the sense of their behavior under a monoidal transformation, as

defined in [39], Definitions 2,3 or 4). In fact, O. Zariski proved that this definition

of equisingularity (in the codimension 1 case) satisfies all the desired properties that

one expects. Most importantly, he proved that this definition behaves nicely with

respect to a monoidal transformation [40, VII, page 314]. He also showed that if X

is equisingular at 0 along Y, then X is equimultiple along Y [41, 4.5], and moreover

that X, as an imbedded variety in A™, is topologically equivalent, locally at 0, to the

direct product Co x Y



[n view of his sucess of giving a complete treatment of the concept of equisingular-

ity in the case that X is an imbedded hypersurface of A™ whose singular locus Y has

codimension 1 in X, by the existence of an “equisingular projection” =: X — A™1,

O. Zariski proposed the following general algebraic definition of equisingularity (by
induction on the codimension): If X is an hypersurface of A™ and Y is a closed non-

singular subspace of X then, X is equisingular at the point 0 of Y along Y if there

exists a projection m : A® — A"! such that Ker(dr)NX = 0 (i.e., * maps Y isomor-

phically to Y, C A*™! and 7~!(0) ¢ X) and, the branch locus B, of 7|X, which is a

hypersurface of A™™!, is equisingular at 0 along Y, [42, Definition 3, page 489]. With

this definition of equisingularity, certain statements which are not obvious either be-

come straightforward consequences or can be proved inductively without too much

difficulty. For example, the equisingularity of X at 0 along Y implies the equimul-

tiplicity of X at 0 along Y. Also, that equisingularity is “generically” satisfied (i.e.,

the set of points y € Y such that X is equisingular at y along Y is the complement

of a proper analytic subvariety of Y). More evidence that this is a good definition

of equisingularity is provided by the following theorem of A. N. Varchenko: if X is

equisingular at 0 along Y, then X is topologically isomorphic to Xo x Y, where Xj

is a suitable Y-transversal section of X at 0 [35, Theorem 1]. Nevertheless, a weak-

ness of the definition was revealed in the following example due to J. Briangon and

J. P. Speder: X is the hypersurface of C* defined by

. 6X:28 +’ +tety+2°=0

X is equisingular at the origin along the singular locus Y : z = y = z = 0, but it does

not have a “stable behavior along Y under blowing-up Y” [43, page 14]. Therefore,

Zariski’s definition of equisingularity can not be accepted in the general case.

We deliberately chose the point of view of equisingular projections, because they

are related to polar varieties (in fact, they define the polar variety of codimension 1

in X ), and polar varieties play a key role in the numerical characterization of a new



type of equisingularity, namely, Whitney equisingularity (or differential equisingular-
ity). Whitney equisingularity is the theme of this work.

Whitney Equisingularity

In [37], H. Whitney introduced the following two conditions of regularity on a

triple (X,Y, y), where X C C" is a complex analytic space, Y C X, a non-singular

subspace of X and y € Y with X° := X — Y non-singular.

Condition (a): If for a sequence of points (z;) in X° converging to y, the sequence

(T.,X°} has a limit T in a Grassmannian, then T D T,Y.

Condition (b): If for each sequence of points (z;) in X° converging to y and each

sequence of points (y;) in Y converging to y, the sequence {Z;y;} of secants has a

limit £ and the sequence {T;,X°} has a limit T', then £ CT.

Whitney’s aim was to find sufficient geometric conditions on a pair (X,Y) to

guarantee that X is topologically locally trivial along Y. He gave an example to

show that condition (a) alone is not sufficient for this purpose. Then he proposed

condition (b) and he conjectured this:

If a triple of complex analytic spaces (X,Y,y) satisfies both conditions (a) and

(b), then there exists a Y-transversal section X, ofXat y such that (C",X,y) is

topologically isomorphic to (C™ x Y, X, x Y,y).

This conjecture is now a theorem, known as the Thom-Mather (isotopy) theorem.

Whitney also showed that any complex analytic space X has a “regular” stratification

(or Whitney stratification as it is now known): There exists an analytic stratification

X = UaX,, such that if X, C Xj, then (Xj, X,) satisfies both conditions (a) and

(b). The Thom-Mather theorem indicates the importance of the Whitney conditions:

they can be viewed as an approximation to the ideal concept of equisingularity.

In [14, 5.1], H. Hironaka introduced a modified version of the Whitney conditions,

of intrinsic trancendental nature, in the case when X C C" is a complex analytic space

and YY C X is a nonsingular closed subspace of X. Namely, X is said to satisfy the



strict Whitney condition (a) (with exponent €) at the point 0 € Y if there exists an

open neighborhood U of 0 in X and a positive real number C such that, for every

oint £ € X*™ NU, we havePp

dist(ToY, TX) &lt; Cdist(z,Y)"

Hironaka proved that if (X,Y,0) satisfies the Whitney conditions (a) and (b), then

it satisfies the strict Whitney condition (a) with no precise exponent e [14, 5.2].

The strict Whitney condition (a) with exponent 1 was called Condition (w) by

J. L. Verdier [36, 1.4] and he proved that the condition (w) implies both conditions

(a) and (b) of Whitney [36, 1.5].

The Whitney conditions caught the attention of O. Zariski and he proved that in

the case when X is a hypersurface in C" and Y has codimension 1 in X, then X is

equisingular at y along Y (in Zariski’s sense) if and only if X satisfies both conditions

(a) and (b) at y along Y' [40, 10.3]. In 1970, H. Hironaka proved that if the pair (X,Y)

satisfies the Whitney conditions at the point y of Y', then X is equimultiple along Y

in a neighborhood of y in Y, or equivalently, X is pseudo-normally flat along Y in

a neighborhood of y in Y/, i.e., the projective cone of X along Y is equidimensional

over a neighborhood of y in Y [14].

In the above example of Briancon and Speder, X satisfies the Whitney conditions

along its singular locus Y but, as we pointed out, it is not “stable under blowing-up

Y.” This example says, therefore, that the Whitney conditions are not acceptable as

a definition of equisingularity. Nevertheless, as the work of B. Teissier et al indicates.

they are important per se: they are related with the theory of Tangency and Duality

of projective varieties, as we will describe below.

The Work of Teissier and Others

In the early 1970’s, B. Teissier began working on an algebraic theory of the Whit-

aey conditions. His starting point was the case where X C C" is a hypersurface. In

1973, he found numerical conditions whose “constancy” characterizes the Whitney



conditions. He introduced the sequence of Milnor’s numbers associated with a family

of hypersurfaces parameterized by Y, considering the following setup:

C  Y¥ &lt; C"

+

where r 1s a retraction which admits a section o, such that o(Y) = Y x {0} and

r~1(y) =: X, is an hypersurface of C"™ with isolated singularities. Let

u' Xy, y) = {ut (X,, y) io

Niere

u*(Xy,y) :=inf{u(X, N H,y); H is an (¢ + 1)-plane of ¥ x C" containing Y'}

and where yu denotes the Milnor number of the hypersurface. Teissier, Briancon and

Speder proved the following theorem.

Theorem 1.0.1 ([31]). Let F(y,z1,...,2,) = 0 be the equation defining X and let

fu(2) := F(y,z) be the function which defines the fiber X, of X. If dimY = 1, then

the following statements are equivalent:

(2) (X°,Y) is Whitney regular along Y
(22) u*(Xy,y) is independent ofyin Y.

(2v) e(mu(J(fy))) is independent ofyin 1

In the above theorem J(f,) denotes the Jacobian ideal of f,, and e(m,(J(f,)))

denotes the multiplicity of the ideal m,(J(f,)) in Ox,,,. Condition (2:2) of the above

theorem was introduced by B. Teissier [32] as condition c-cosecant, and it is related

with the idealistic Bertini theorem [32]. The above theorem gives a good converse of

the Thom-Mather theorem in the case where X is a hypersurface with smooth singular



locus: The Whitney conditions hold if X and all of its sections are topologically locally

trivial along its singular locus.

In 1981, B. Teissier generalized the above

with the following one

[ fleorem oy replacing vile 173 sequence

MX i= {my(X,y), my(P(X,y)),...,my(Pur(X,y))}
where d is the dimension of X and m,( P(X, y)) denotes the multiplicity at the point
y of Y of the kth local polar variety Pi(X,y). Teissier, inspired by the work of

Hironaka [13] and the results of Canuto and Speder [3], considered the following

normal-conormal diagram

Ble-1(y)C(X) —— C(X
| x

Bly 7
€

where t = dimY’, where C'(X) is the projectivized conormal space of X in C", where

Y is non-singular, and where Bl4Bdenotestheblow-up of B along A. Set £ := koé.

Teissier proved the following theorem:

Theorem 1.0.2 ([85]). Let X C C" be an integral complex analytic space of dimen-

sion d, and let Y C X be a non-singular subspace ofXsuch that X° := X —"

contains a smooth open dense subscheme. Then the following conditions are equiva-

lent:

(t) The pair (X*™,Y’) satisfies the Whitney conditions at the point 0 of Y.

(12) The pair (X*™Y) satisfies the condition (w) at the point 0 of Y.

(242) The sequence M;X is independent ofyin a neighborhood U of0in Y.
(iv) diméy'(0) = n —t — 2 where &amp;y : Dy — Y is the restriction of£to the

exceptional divisor Dy of Bl ,—1(y)C(X).

In [25], R. MacPherson introduced, in a purely obstructional way, the local Euler

obstruction which plays an important role in his affirmative response to a conjecture



of Deligne and Grothendieck on the existence of Chern classes for singular complex

algebraic varieties (see [25], [16], [22]). In [22], D. T. Lé and B. Teissier proved a

formula for the multiplicity of the local polar varieties, and, with the aid of Gonzales-

Sprinberg’s purely algebraic interpretation of the local Euler obstruction, they showed
that the local Euler obstruction is an alternate sum of the multiplicity of the local

polar variety. Theorem 1.0.2 says that the multiplicity of the local polar varieties are

constant along the strata of a Whitney stratification (i.e., are constructible functions).

Therefore, in view of the existence of Whitney stratifications for complex analytic

spaces [37], Lé and Teissier showed that the local Euler obstruction is a constructible

function. The constructibility of the local Euler obstruction was first proved by

R. MacPherson in [25] and he asked for an algebraic treatment of this matter (see {16]).

In 1988, D. T. Lé and B. Teissier improved the above theorem. They related the

Whitney conditions with the theory of projective duality and, therefore, they were

able to give an explicit method to describe the set of limits of tangent hyperplanes of

X at the point 0 of Y in the case that X satisfies the Whitney conditions at 0 along

Y. Precisely, they proved the following theorem.

Theorem 1.0.3 ([21]) Under the situation of Theorem 1.0.2, the following cond:-

tions are equivalent:

(2) The pair (X*™,Y) satisfies the Whitney conditions at the point 0 of Y.

(17) At every point of k~1(0), the idealTwhich defines the intersection C(X)N C(Y)
is integral in Og (x) over the ideal J which defines k=1(Y) in C(X).

(222) If (Dy)peg = UDqy is the decomposition of the exceptional divisor Dy of
Bl .~1(vyC(X) in its irreducible components and if V, := &amp;'(Da) CY x P77!

then, for each a, the component D, is equal to the relative conormal space of V,

in'Y x P71 and all the fibers of the morphism D, — Y have the same dimension

in a netghborhood of0in Y

(n 5], T. Gaffney generalized Theorem 1.0.1 for 1-parameter families of complete



intersection, with isolated singularities (CIIS). He replaced the p*-invariants of X,
by the polar multiplicities m,(Px(Xy,y)) and the integral closure of an ideal by the

integral closure of a submodule of a free module. He also replaced the multiplicity of

an ideal for the Buchsbaum-Rim multiplicity of a module [2]. The restriction on X

to be a CIIS in T. Gaffney’s result appears only in the use of the Buschsbaum-Rim

multiplicity (see [6]).
In [11, 5.1], J.P. Henry and M. Merle, inspired by the work of Zariski in the

codimension 1 case and the equivalence (¢) &amp; (i222) of Theorem 1.0.2, gave a complete

numerical characterization for Zariski’s equisingularity in the case where X C C" is

a complex analytic space of dimension no larger than 3. They require the constancy

of the following sequences:

(1) The polar multiplicities of X.

(2) The polar multiplicities of F(X) and D(X) where F(X) denotes the cusp

variety of X and D(X) denotes the double fold variety of X [11, 3.1.1;4.1.1].

(3) The polar multiplicities of the singular locus S(X) of X.

(4) The polar multiplicities of the singular locus of S(X).

Although the statements of Theorem 1.0.2 and Theorem 1.0.3, other than

1.0.2(22), are algebro-geometric, the proof of Lé and Teissier use topological meth-

ods in an essential way, as we will explain below.

Some Comments on the Proof of Theorem 1.0.2:

(2) © (12) : This equivalence follows from the work of Hironaka and Verdier, as

discussed above.

(¢) = (212) : The key case of this proof is the case that Y is 1-dimensional. In this

case, the key step is to show that the polar curve P;_1(X,0) is empty. In order to do

so, Teissier proved that if p : C* — C? is a generic projection (i.e., such that define

a generic polar curve of X at 0), then the Kernel of p does not contain any limit of

secants {Z;y;} with =; € P;_;(X,0) and y; € Y ( [33, Lemme-clé. V 1.2.2]; [9]). The
proof of this result is transcendental in nature.

)



(222) = (wv) : The first step is to prove that there exists a generic hyperplane section

H of X containing Y which is transversal to the limits of tangent hyperplanes of X

at 0 and, such that,

my P(X, 2) = m P(X NH, xz).

I'he next step is to proceed by induction on the dimension of X. This part of the

proof is algebraic and was nicely simplified by J. P. Henry and M. Merle [10]

(2v) = (21) : Teissier proved that the function

dist(T, X,Y)
ple) i= dist(z,Y) ’

is bounded in a neighborhood U of 0 in X. Therefore, the pair (X,Y) satisfies the

Condition (w) at the point 0 € Y.

Some Comments on the Proof of Theorem 1.0.3:

(2) © (2t) : A straightforward computation shows that the triple (X,Y, 0) satisfies

(12) if and only if it satisfies condition (w) [21, 1.3.8]. Then, use the fact that

condition (w) is equivalent to the Whitney conditions.

(22) = (222) : This part of the proof is incorrect. Lé and Teissier claim that the cone

Cexync(y)C(X) (of the projectivized conormal of X in C™ along its intersection with
the projectivized conormal of Y) is Lagrangian in C™ x prt by using the principle

of “Lagrangian specialization” [21, 1.2.6] and a projectivized version of [20, 4.4.2]
and [30, Appendix 4]. But, the canonical isomorphism

© : Def (T*M, Ti M) — T*(Def (M,Y)/AY)

constructed in [20, 4.4.2] is not G,, x G,,-equivariant; hence, it does not induce

a morphism fromDef (P(T*M),P(TyM))toP(T*(Def(M,Y)/A')). Otherwise the
proof is correct in spirit.

This Work

[n this work, we give a complete algebraic treatment of the Whitney conditions:

ve extend the theory of Whitney stratifications to the category of algebraic schemes



(i.e., when X is integral, of finite type, and separate over the ground field) over an

algebraically closed field of characteristic zero. The restriction on the characteristic

is due to the use of the algebro-geometric version of Sard’s lemma.

In Chapter II, Section 1, we define the local polar variety of X at z via the Nash

blow-up of X as defined in [33, IV,1]. An important role in the definition of the

local polar varieties is played by Kleiman’s transversality lemma [17] (see Proposi-
tion 2.1.3 ).

In Chapter II, Section 2, we define the conormal scheme of a subscheme of a

smooth variety as in [18, 3]. We also describe the local polar variety of X at z via

the conormal scheme of X as in [33, IV 4] (see Proposition 2.2.2).

In Chapter II, Section 3, we give a formula for the multiplicity of the local polar

variety (see Lemma 2.3.5). The proof of this formula follows the same path as in

the proof of [16, Lemma 2]. A similar description for the multiplicities of the polar

varieties was given by Lé and Teissier [22, 5.1.1].

In Chapter II, Section 4, we give a new proof of Lé and Teissier’s theorem (see

Theorem 2.4.7) that the multiplicities of the local polar varieties of X are constant

along a nonsingular closed subscheme Y of X if and only if the exceptional divisor Dy

of Bl c-1(v)C(X), the blow-up of C(X) along k~*(Y'), is equidimensional over Y. Our

proof is as follows: First, we show the existence of “generic local hyperplane sections”

which satisfies strong local transversality conditions: they are transversal to every

limit of tangent hyperplanes to \" at points of Y (see Lemma 2.4.3). We use those

transversality conditions to prove that the multiplicity of the local polar variety and

the equidimensionality of the exceptional divisor Dy of Bl .-1(yyC(X) over Y behave

nicely with respect to hyperplane sections (see Lemma 2.4.4 and Lemma 2.4.6). The

proof of Lemmma 2.4.4 does not use the Bertini-idealistic theorem as was done by Lé

and Teissier (see [22]). In fact, we only need the emptyness of some polar varieties

to guarantee the existence of generic hyperplane sections H satisfying the following

J



transversality conditions:

C(X,M)NnC(H,M) = 0.

Altogether, this allows us to reduce the proof of Theorem 2.4.7 to the case where Y

is 1-dimensional. In this case, if we assume that Dy is equidimensional over Y, then,

with the aid of the intersection theory [4], we are able to show that our formula for

the multiplicity of the local polar varieties “specializes,” i.e.,

ma(Pe(X,2)) = [ (a).

for some 1-cycle a € Ay(Dy). Therefore, by conservation of numbers [4, 10.2], we

have that the multiplicities of the local polar varieties are constant along Y. The

converse follows from [10, Theorem 1].

In Chapter 111, Section 1, we describe the theory of Lagrangian schemes as devel-

oped by S. Kleiman [18]. The only new result in this section is Lemma 3.1.5, which

states that the natural projection from the absolute projective cotangent scheme to

the relative projective cotangent scheme maps absolute Lagrangian subschemes into
relative ones.

In Chapter III, Section 2, we describe the construction of the deformation to

the normal cone as in [4, 5]. We also state the behavior of the deformation to

the normal cone with the formation of the cotangent bundle as in [20, 4.4.2] and

[30, Appendix 4].

In Chapter I11, Section 3, we describe the theory of integral dependence of ideal

sheaves as developed by M. Lejeune-Jalabert and B. Teissier [23]. We also prove a

result concerning with “specialization of integral dependence” (see Proposition 2.3.7),
which is slightly different from the one proved by B. Teissier in [34, Appendix]: we

drop the condition of finiteness of the scheme defined by the ideal sheaf Z over the

base scheme.

}



In Chapter III, Section 4, we give a set-theoretical definition of the Whitney

conditions as follows (see Definition 2.4.5):

Condition (a): The pair (X*™,Y") satisfies the Whitney condition (a) if

(Dy)rea C P(TY /(TY')?) xy P((ZY (TH)? V)

Condition (b): The pair (X*™,Y) satisfies the Whitney condition (b) if

(Dy )rea C Iy := incidence correspondence of P(Z}! /(Z})?) xy P((TH/ (TH) V)

Our definition of the Whitney conditions agrees with the original one given by Whit-

ney in the complex domain (see [37]): Our definition of condition (a) is equivalent to

the following one. Set-theoretically,

«1 (Y) Cc C(Y, M)

Now, k71(Y) is, set-theoretically, the set of all limits, at points of Y, of “hyperplanes

of M” which are tangent to X*™ and, C(Y, M) parametrizes the “hyperplanes of M”

which contain the tangent space of ¥Y. Thus, the condition x~(Y) Cc C(Y, M) is

equivalent to the original definition of condition (a).

Now, set-theoretically, we have that the schemes Dy and P(CyX) xy «7 }(Y)

have the same irreducible components. A point of P(Cy X) xy £71(Y) is of the form

(y,¢,H), where y € Y, £ € (P(CyX)), and H € x7(y). Thus, £ is a limit, at the

point y of Y, of secant from point of X to points of Y, and H is a limit, at the point

y of Y, of tangent hyperplanes at smooth point of X. Our definition of condition (b)

says that £ € H, which is the original definition of the Whitney condition (b).

With the above definition in mind, we give a new proof of the following theorem

of L.é and Teissier.

Theorem 1.0.4 ([21,2.1.1]). Let X be a d-dimensional integral scheme of finite

type and separate over an algebraically closed ground field K of characteristic zero.



Let Y be a smooth integral proper closed subscheme ofXofdimension t such that,

X® := X —Y contains a smooth open dense subscheme. Assume that X admits a

proper imbedding in a smooth ambient scheme M. Then, the following conditions are

equivalent.
(2) The pair (X,Y) satisfies the Whitney conditions (a) and (b).
(22) The sequence M:(X) is independent of the point z of Y.

(222) The morphism €y : Dy — Y is equidimensional.

(1v) Towmnnox,myOcx.m) € Le-1(v)Oc(x.m)-
(v) Let (Dy),pq denote the scheme Dy with its reduced induced structure. Let

(Dy) peg = UDq be its decomposition in its irreducible component, and let V,, denote

the image of D, in P (ZH /(z¥)?) via k', equipped with the induced reduced closed
subscheme structure. Then, for each a we have that

Dy =C (Vo/Y;P(ZY/(T¥)))]Y)

Our proof is in the following way:

(v) = (2) : This follows from the fact that the relative conormal scheme always

lies in the incidence correspondence.

(221) = (iv) : We prove first, by induction on the dimension of Y, that a condition

like (:v) is generically satisfied on the fibers (see Lemma 3.4.4). Then, since Dy

is equidimensional over Y, we have, by “specialization of integral dependence” (see

Proposition 3.3.7), that (:v) holds (globally).
(tv) = (v) : By using the Hamiltonian isomorphism and Lemma 3.1.5, we prove

that the natural projection

2: {P(TpapgP(T"M))=P(Tpapna”(Y))}=P(T3M)xyP(TyM),

maps P(Cc(x)nc(v)C(X)) into a Y-Lagrangian subscheme of Iy := P(T*(P(Ty M)/Y))
and that the image of a is exactly Iy. Condition (iv) says that a induces a finite



morphism from P(C¢(x)nc(y)C(X)) to Dy. Therefore, Dy is Y-Lagrangian in Iy.
(1) = (v) : From the above discussion and the assumption that Dy is entirely

contained in the incidence-correspondence, we have that a induces a dominant mor-

phism from P(Cc¢(x)nc(v)C(X)) to Dy and, therefore, Dy is Y-Lagrangian in Iy.
(v) = (222) : Notice that in (v) we are not requiring that Dy to be equidimensional

over Y as in Theorem 1.0.3 (u2:2). Therefore this proof is not immediate. First we

reduce to the case when Y is 1-dimensional (by using the fact that the multiplicities

of the polar varieties behave nicely with respect to hyperplane sections and that Con-

dition (222) is equivalent to the equimultiplicity of the polar varieties). Then, since D,

is Y-Lagrangian, we have that D, contains an open dense subscheme which is smooth

over Y (therefore equidimensional over Y') and, since D, is irreducible and Y is 1-

dimensional, we have, by dimension counting, that D, is (globally) equidimensional
over Y

0



Chapter 2

Multiplicities of Polar Varieties

2.1 Polar Varieties and Nash Blow-Up

([33 220)

Setup 2.1.1 Let X be a d-dimensional integral scheme of finite type and separate

over an algebraically closed ground field K. We assume that X admits a proper

imbedding in a smooth ambient scheme M of dimension m, and that the smooth locus

X*™ is dense in X.

We recall the following definition.

Definition 2.1.2 Let S be a ground scheme, and £ be a quasicoherent Os-module.

We define the S-scheme P(E) hy

P(&amp;) := Proj (Sym¢&amp;)

and, in general, we define the S-~cheme Gr™(E) as the S-scheme which represents the

Grassmann functor of locally free quotients of rank n of£.In particular we have that

Gr’ (&amp;) =P /



Consider the X-scheme Gr*(2%). Let X be the unique component of Gr?(Q})
dominating X, and let v : X — X be the induced morphism. By definition of

Gr?(Q2}) we have a locally free quotient Q of v*Q}; its dual is called the Nash Tangent

Bundle and it is denoted by TX.

Under the situation of the Setup 2.1.1, there is a more geometrical construction

of the bundle T'X. The Nash blow-up X may be identified with a closed subscheme

of Gr™ %(,*QLY) where « : X — M is the closed imbedding of X in M. Now

Qem—d *(cy) =X XM Gr™ (QL)M

and, over Gr™~%(Q}Y) we have, by definition, an exact sequence of locally free sheaves

0 * Lop) -S5S-0

where p : Gr™™4(Q})) — M is the structural morphism. The restriction L | X

coincides with TX.

We will define next the local polar variety of X at a closed point z of X via the

Nash blow-up X of X ([33,IV,1]). Let V be an open neighborhood of z in M, on

which we have an étale morphism ¢g : V — A™ with g(z) = 0 ([1,VII,5.8]). Let

U :=V NX. We have, by ([1,1V,1,5.2]), that

9594 |= gpm

Consider the Nash blow-up diagram of X

- X xp Gr 403)

 Zz J

We have that

WU) CUxpGrm 40) = X xy Gr 40) | V) = UxGr™4(A™) = UxGr™4(A™).



Therefore we have the following diagram

(em—d( 4A”

ny

pH
"
i

NP?
U x Gr™%(A™)

~~

where vy :=v | U and where 7p is induced by the projection p;. Let

D:-0CDnp1C...CDg_4s1 C...C Dy CA"

se a complete flag in A™ with codim (D;,A™) = 1. Let

ok(D) := {T € Gr™ 4(A™); dim(T N Dy_g41) &gt; F

be the Schubert variety associated to D. The scheme structure is given as in [4, 14].

This is a subvariety of Gr™ ¢(A™) of codimension .

Proposition 2.1.3 ([33,1V,2]). For each integer k for 0 &lt; k &lt; d there exists an

open dense set Wy of Gri-k+1(A™) such that, for each Dy_g41 in Wi, we have

(1) Set Us™ := UNX*™. Then, v5" (0k(Dak41))Nv~(U™)isschematicallydense
in 75 (0k(Dak+1)), and the former scheme is either empty or has codimension k in

v= HU)
(31) v= Y(2)N 5 (0k(Da—k41)) is either empty or has dimension equal to dim vi(z)— k

Proof LetT := GL (m, K). The action of I" over A™ induces an action on Gr™¢(A™)

and on Gr® *t1(A™). Both actions are related by the equality

w- 0k Dag) = opp» Di_gt1)

vith pu € TI.

 Jd



Clearly v=1(U™) N v5 (0k(Dy—k+1)) 1s either empty or schematically dense in

(7 (0x (Dg_k41))- To compute the dimension of 5" (ok(Ds-k+1)), We observe that

v HU) N(U x 0k(Da-k1)) = 5" (0k(Da-k41))

where the intersection is taken in U x Gr™ ¢(A™).

By Kleiman’s transversality lemma ( [17]), there exists an open dense subgroup

[0 of T such that, if x € T'° then we have that

dim(v='(U) Np - (U x ox(Dak+1)))

= dim(v"H(U) N(U x ox(p~" - Dy_k41)))

= dimv=Y(U) = codim (U x o(u~! + Da—is1); U x Gr™ 4(A™))

—d—-—k.

Therefore, (i) follows from the fact that I' acts transitively on Gr™ #(A™).

The proof of (22) is analogous.

Definition 2.1.4 We define the local polar variety of X at z= with respect to U,

denoted by P.(X,U,z,Dy_k41), by

Po(X,U,z, Da—it1) i= vu(75 (0k(Da-k+1)))

for 0 &lt; k &lt; d —1 and where Dy_sy1 belongs to the open dense set Wj of

Proposition 2.1.3. The scheme structure is the reduced induced structure as a closed

subset of U.

Remark 2.1.5 It follows from Proposition 2.1.3 that

(1) Pe(X,U,z,D4_k41) is a reduced closed subscheme ofUof pure codimension k

or empty.

(42) v5 '(ox(Da—ks1)) coincides set-theoretically with the strict transform of

P.(X,U,z,Dy_g41) via vy.

Xu,



2.2 Polar Varieties and Conormal Scheme

([33]: 14 \

Setup 2.2.1 Use the notation and hypothesis of (2.1.1).

Let « : X — M be the closed imbedding of X in M. Over X*™ there is a surjection

On| Xo: | Xo™ — QL | X°™.

The (projective) conormal scheme of X in M, C(X, M), is defined as

C(X, M) := closure of P((kerneld:|X*™)") in X xa P(Q},).

There is a proper morphism kx : C(X, M) — X which is induced by the first projec-

tion. If no confusion arise, we will denote C'(X, M) by C(X) and xx by «.

Let = be a (closed) point of X. As before, we consider an open neighborhood V

of z in M over which we have an étale morphism g : V — A™. Therefore, we have

that

 | V=g"Q
Now, consider the following diagram

1
Crm,
—F

C(X) C€ X xu PQ)
 mn /

~
)

Let U :=V NX. We have that

—-1pmP = P(Q) U)=U xuU )1(psU Xmkt C

Therefore we have the following diagram

pm

Ary

&lt;~H) C

5

N P2
Ux pm

vd al

¥
J



where Ay 1s induced by p; and where ky 1s induced by px

Proposition 2.2.2 ([83,1V,4.1.1]). For each integer k, 0 &lt; k &lt; d, there exists an

open dense set Vi of GrFtm—4-1 (P™ 7h), the Grassmannian of projective subspaces of
dimension d — k in pnt such that for every L=* in Vi, we have that

(1) Set Us™ := X°*™ NU. Then, A\g'(L*F) nN x1 (U™™) is schematically dense in

A; (LF), and the former scheme is either empty or has pure codimension k+m—d—1

in =H).
(21) k= Nz) N AGLF) is either empty

dims }(z) —(k+m—-d—-1).
(221) The intersection Dy_ky1 in A™ of all hyperplanes of A™ represented by the

10

points of L%~* is a linear subspace of A™ of codimension d—k+1 and Dg_j4, belongs

to Wy, where Wy. is the open dense set of Proposition 2.1.3, and we have that

(kr(AF(L4)))rea = Pe(X,U, 2, Dy_g41)

where (rea means the reduced induced structure.

Proof The proof of (z) and (:¢) are analogous to the proof of 2.1.3.

For the proof of (#12) see the discussion of [33, IV page 433].

Remark 2.2.3 It follows from the above proposition that Aj (L*™*) coincides set-

theoretically with the strict transform of P(X, U, x, Dg_k41) via Ky.

2.3 Multiplicities of Polar Varieties

([22]; [28]; [16]; [11])

Setup 2.3.1 Use the notation and hypothesis of (2.1.1) and denote the algebraic

multiplicity of the local polar variety ofXat x by mq (Pe(X,U,z, Di—k41))

»4



Proposition 2.3.2 ([22,5.1.1}) The multiplicity of the local polar variety ofXat z

1s given by

n2(Pe(X,U,2,Dy_ps1))= (—=1)F / (TX) N {s(v=1(z), X)}e

where s(v='(z),X)denotesthe Segre class of vz) in X.

In particular we have that the multiplicity of the local polar variety Py(X,U, x, Dg_41

is independent of the choice of the open neighborhood U of x in X and of the choice of

the linear subspace Dy_g41 of A™. We will denote this multiplicity by m. (P(X, )).

In 1981, Gonzales-Sprinberg gave a purely algebraic interpretation of the local

Euler obstruction introduced by R. MacPherson (see [7]; [25]). In ([22]), D. T. Lé
and B. Teissier used Gonzales-Sprinberg’s result and Proposition 2.3.2 to obtain the

following description of the local Euler obstruction.

Corollary 2.3.3 ([22,5.1.2]).

Eu,X = S$ (—1)ma(Pu(X, 2)
k=0

where Eu , X denote the local Euler obstruction ofXat x as defined in ([4,4.2.9]). O

The formula of Proposition 2.3.2 was reproved by V.Navarro-Aznar ([28]) in the

context of algebraic schemes (i.e. when X is integral of finite type and separate over

an algebraically closed field of arbitrary characteristic). In this section, with the aide

of intersection theory, we will give an analogous formula for the multiplicity of the

local polar variety, but instead of considering the Nash blow-up we will consider the

conormal scheme.

Lemma 2.3.4 Let S be a scheme and let £ be a locally free sheaf of rank e + 1 over

S. Let

0 -» {=&gt; 78 — Op gl) — WJ



be the tautological sequence of locally free sheaves over P(E) where © : P(E) — S is

the structural morphism. Let a € A.(S). Then,

TT. {
_1)e YsTYNr a) = (=1)fa fj =e

0 otherwise

Proof By linearity we can assume that @ = [V], with v' an irreducible k- dimensional

subscheme of S. Then we have that

c;(K) MN TV] € Akre_j (Pre /

and m.(c;(K) N7*[V]) is supported in V.

Therefore, by counting dimension, we have that

T.
N.[V] ifj=e

K)ynz[V]) =
0 otherwise

Since the degree N can be computed on the fibers of 7, we may assume that &amp;£ is

trivial. In this case, by Whitney sum, we have that

Therefore, N = (—1)¢

el X) = (—=1Y (Op g)(1))

fo]

Over C'(X) we have a tautological locally free sheaf of rank m — 1, constructed as

follows. Let

0—-T — qQ}) — Opi v(1) — 0

be the tautological sequence of locally free sheaves

g: P(Q}Y) = M is the structural morphism.

over P(Q},), where

The restriction of T' to C(X) is a locally free sheaf of rank m — 1, which we denote

)y taut.

Yo!
4



Lemma 2.3.5 ([16, lemma 2]; [11,2.3.1])

nA Pe(X,z)) = (=1)Ftm-d-1 [ cetmed-1 (taut) N {s(~ (2), C(X)) Yksrmod_1

Proof Over X we have an exact sequence of locally free sheaves

0-TX-pQY|X50-50
where p : Gr™~4(Q1Y) — M is the structural morphism. Since

P(Q) CP(pQy | X) = X xx P(:Q}))

we have a natural morpnism

u:P(Q) = P(e)

Since P(Q) is contained in the incidence correspondence of Gr™~%(:*Q},’) and P(:*Q1)")
( [19, 2.1.1]), we have that x maps P(Q) onto C(X).

Let m denote the structural morphism from P(Q) to X. We have a commutative

diagram

2) — (Xx)
|

in which p and v are birational, is proper and 7 is proper and flat morphisms

(see [30, 1.2]). Since P(Q) is contained in the incidence correspondence of Gr™™%( CQ)
and P(:*Q2},") we have that 7*(TX) is a subsheaf of u*(taut). Therefore, we have an

exact sequence of locally free sheaves over P(Q)

0 =» "TX — p*(taut) — p*(taut)/7*7TX — 0

On P(Q) we have a commutative diagram of locally free sheaves

&gt;x.



 mT (TX) -

|
(taut) »— u"(¢"Q|C(X)) —» 4*(Opyguy (DIC(X))

K
pr(taut)/m*(TX) »—m «

and the sequence

0 — p*(taut)/7* (TX) » Q — 1 (Opry | C(X)) = 0 (2.3.5.1)

is the tautological sequence over P(Q).

Since 7 is flat of relative dimension m — d — 1, we have by ([4, 4.2]) that

(so(2),Oh)={s(r7072),PQ)kimots(23.5.2)
By Lemma 2.3.4, applied to the sequence (2.3.5.1), we have that

rei (taut )/7*(TX)) N 7%) = | ty=m-d-1 (2.3.5.3)

for a € A(X).

Therefore we have that

[ cttmeaci (taut) 0 {s(671(2), C(X)) }irmoaor
[cksm—ac(uw(taut))N{s(r=10="(2),P(Q))}esmss

[ek tmean (u*(taut)) 0 7 {s(v=1(2), X)}a

([4,4.2(a)])

(2.3.5.2)

TY ehimeanss (TX) 0 mae (taut) (a-(TX) Nfs (0), ON) (4,320)

= (== fe (TX) 0 {s(v71(2), X) Ji

{—  tm—d=1p (P(X, z))

(2.3.5.3)

2.3.2,

&gt;A



2.4 The Main Theorem

(I

Setup 2.4.1 Use the notation and hypotheses of (2.1.1) and, let Y be a smooth inte-

gral proper closed subscheme ofXof dimension t such that, X° := X — Y contains

a smooth open dense subscheme. From ([1,VII,5.8]) we have that for each closed

point x in Y there exists an open neighborhood V ofxin M and an étale morphism

g:V — A™ such that VNY = g71(A*) and g(z) = 0. Set U := VN X. In particular

we have that Y is regularly imbedded in M of pure codimension m —t ([1,5.13]).

Remark 2.4.2 ([27]). Let A be a commutative ring (with unity) and let I be an ideal

of A. Assume that I is generated by a regular sequence in A. Then, the natural map

from the Symmetric algebra to the Rees algebra

Sym 4(I) := 6p SHI) — br

 Ss an isomorphism.

This remark tell us that, since Y is regularly imbedding in M, the blow-up of M

along Y is isomorphic to the projective bundle associated to Zi where IM denotes,
from now on, the ideal sheaf of Y in M. i.e.,

BlyM:= Proj ((P(ZT¥)?) = P(ZY) := Proj (Sym IZ)
4&gt;0

Furthermore, the exceptional divisor Ey M of Bly M is Y-isomorphic to P(Z¥ /(T¥)?)

and, under this isomorphism the normal sheaf of EyM in BlyM correspond to

Opa ay (—1:
We will consider the following diagram

X xu PIV) xp P(QY) —— Bl c-1v)C(X) = C(X) — X xu PQ)

(2.4.2.1)

X XM P(ZM) ¢ 3]vX

3}



Denote by £ the composition k 0 é&amp;. Let Dy denote the exceptional divisor of

Bl c-1(v)C(X), let {y : Dy — Y be the restriction of£to Dy and, let 0: Y — M

denote the closed imbedding of Y in M. Then, by Remark 2.4.2 and the universal

property of blowing-up, we have the following diagram.

PTY (TY) xy P(e") e—— Dy =~ » 57(¥) — P(o"0})
! &lt; | | yd (2.4.2.2)

PIM IM) ee

The next lemma guarantee the existence of “generic local hyperplane sections”

of M satisfying certain strong transversality conditions with respect to the schemes

X and Y in a neighborhood of a point z of Y. Those conditions will allow us

to describe the behavior of the local polar varieties and of the exceptional divisor

Dy of Bl .-1(yyC(X) under those generic hyperplanes sections (see Lemma 2.4.4 and

Lemma 2.4.6). Altogether will play a key role in the sequel.

Lemma 2.4.3 Consider the diagram and notations of 2.2.1. There exists an open

dense subset W of P™" such that for every H in W we have that

(2) AGH (H) = 0.
(12) C(H,A™)NC(AY, A™) = (), where the intersection 1s considered in A™ x pm!

Proof Let V; be the open dense subset of P™! as in Proposition 2.2.2. Then,

by (2.2.2), we have that for every H in Vy, A\j'(H) = 0.

Let P™ 7"! be the subspace of P™" parametrizing the hyperplanes of A™ con-

taining A! Let
m— x m—t—1W.=vV,n(P" —p )

Since C(A’,A™) = A? x P™ "we have that for every H in W both conditions (2)

and (22) are satisfied.

”,



Lemma 2.4.4 ([33,5.4.3],[28,4.2],(22,4.1.6,4.1.9]). (transversality of polar varieties)
For each integer k with 0 &lt; k &lt; d — 1, there exists an open dense subset of the space

Ij i= {(Dacks1, H); Dagyr C H} C Gré=*+1(A™) x P™7

such that, for every (Dy_g4+1,H)inthat open subset we have that

(3) (Pe(X,U, 2, Day—ppr)AHved=Pe(XNH, UN H', 2, Da_is1)
(22) ma(Pe(X,7)=ma(P(XNH’,7)= mo(Pu(X, U, 2, Dapy1)NH')

where H' := g-\(H) and where (Py(X,U,z, Da_ry1)PH') denotes the closure of

P.(X,U,z,Dy_r1)NU™NH in U.

Proof Let p; : I, — Gr **}(A™) and p, : I; — P™" be the natural projections.

[t follows from ([19, 2.1.1]) that I; is a Grassmannian bundle over pnt

Let W; be the open dense subset of Gr*=**!(A™) of Proposition 2.1.3 and, let

W be the open dense subset of P™™' of Lemma 2.4.3. For each H in W let Wi (H)

denote the open dense subset of p;'(H) as in Proposition 2.1.3. Let

W' = pr! (We) n (J Wi(H)).
HeWw

Since I; is a bundle over pm! we can construct an open dense subset W of I,

contained in W’, such that for every (Dy_g41, H) in W we have that

(a) Pe(X,U,z,Dg_g41) and P(X NH, UN H',z,Dy_j41) define a (generic) polar
variety, where H' := ¢~!(H).

(b) H satisfies the conditions of Lemma 2.4.3

Since the conditions (z) and (it) are local, we may assume that we have a global

étale morphism g : M — A™ such that g(r) = 0 and such that we have a fiber square

diagram
A

3

At s A”

q



By Lemma 2.4.3 we have that

C(H,M)NC(X,M) = 0

CH,M)nC(Y,M) = 0.

(2.4.4.1)

From the exact sequence of locally free sheaves of Ogy,-modules

0 — IM, /(TM)? — Q}

ve have an H'-morphism

p: (H xy PQ) —C(H'\M)) — P(Q}),

which induces an isomorphism

P(X NH) xx C(X, M) 25 C(X NH, H') x xem (X™ 0H).

From (2.4.4.1), we have that the morphism ¢° can be extended to the closure. i.e.,

we have an X N H'-morphism

a: XNH-C(XNH,H

NLere

X NH := closure of C(X,M) xx (X™ NH") in C(X,M).

We consider the following diagram

37 1 pl _ {H) _ Pp pT

“| | [xe
C(X,M) —— XNH—— C(XnH,H)

[xem
— XNnH - TS XnH

Since D4_k4; is contained in H, we have that

[d-k _ closure of p~1(L3*-1) lil pm—1

a

Ww



where LF is the subspace of pm! parametrizing the hyperplanes of A™ containing

Di_r41 and, L3*1! is the subspace of pm? parametrizing the hyperplanes of H

containing D;_x_;. Therefore we have that

Ax (L7H) nN (XH) = 7 (Ax (LF)

(t follows from Proposition 2.2.2 that

cx AP (LEH N(X NH) = P(X, z,Dg_j_1 AH’

kx(q7 Axa (L751) = P(X NH’ 2, Dy_g_1).

This prove (¢). The second equality of (iz) follows from (i) and the first equality

follows from [28, Theorem 4.2].

Lemma 2.4.5 Let N be a smooth scheme and let Z be a pure dimensional closed

subscheme of N. Let Z' be a pure dimensional scheme and let p : Z! — Z be a

proper morphism. Let Fy = {z' € Z'; dimgp~'(p(z’)) &gt; k} and denote by Bx

its image under the morphism p. Assume that By is proper in Z and that p='(By)

is proper in Z'. Let H be a non-singular closed subscheme of N such that H is

dimenstonwise transverse to Z and to every irreducible component of By for every k.

Then, the inverse image ofHNZvia p coincides, set-theoretically, with the closure

of p*((Z — Bx) H) in Z'

Proof It is enough to prove that for every point z of p= (HN Z), dim, p= (HN By) is

strictly smaller than the minimum of the dimension of the non-imbedded irreducible

components of p~!(H NZ) through x. Because, in this case, p~'(HNBy) is nonwhere

dense in p~'(H N Z) and, therefore, p~(H N (Z — By)) is dense in p~'(H N Z).

r'ix an integer k. Ifj&gt; k then p~!(B;) C p~'(Bx). Therefore we have that

j + dim B; &lt; dim F; &lt; dimp™(B;) &lt; dimp™"(Bk)



4)

dim B; &lt; dim p~' (Bx) —

Now, since f is transverse to every irreducible component of B;, we have that

dim(HN B;) =dimB; — h &lt;dimp (By) —j — h

where h 1s the codimension of H in N. Since

D” (HN Be) = J p~' (HN (B; — Bj1))
72k

we have that

dim, p~'(H N By) &lt; dim, p(B) — A

Let (p™'(H N Z)), be a non-imbedded irreducible component of p~1(H N 2)

through z. Then we have that

dim, (p~ (HN Z))s &gt; dim, Z' — h

[herefore we have that

dim,p “(HN By) &lt; dim, p= (Bx) —h
dim, Z' — h

-
~ dim, (p~'(H N Z))4

Lemma 2.4.6 Let H be a smooth closed subscheme M of pure codimension j, which

satisfies the following transversality conditions,

Ci MNCX,M) = 0

CiU.MYNCY,M) = 0

Assume that the morphism £y : Dy — Y is equidimensional. Then, the morphism

fvnr : Dyn — YNH is also equidimensional, where Dy and Dy~g are as in (2.4.2).

1)



Proof We will use the notation of the proof of (2.4.4). Consider the following com-

mutative diagram

Blo ry C(X, M) —— XNH—— Bl, wom C(X NH, H)
ex | | [exan

C(X,M) ——— X0OH- '  +C(XNHH

_XNH - ~
[xn

&gt; XNH

where XNHis the strict transform of XNHviathe morphism£:= kx 0éx, which is

equal to the strict transform of X N H via éxng, and ¢ 1s the morphism constructed

by the universal property of the blow-up.

Since the morphism {y : Dy — Y is equidimensional and C(H, M)NC(Y,M) = 0

we have, by Lemma 2.4.5 applied to the morphism ¢ : Bl c-1(y)C(X, M) — X, that

XNH= Bl c1y)C(X,M) xx (X NH)

Since the morphism gq is induced by the projection

p: (H xp P(Q)) = C(H,M)) — P(Q:)

we have, by a general fact of central projections, that the morphism gq is finite. Since

the morphism § is induced by the projection

{ NH XC(XnH,H) Bl o-1 (yn) C(X N H, H) Srl} Bl c-1(yom)C(X N H, H),

ve have, from the finiteness of ¢, that the morphism § is also finite.

Therefore, we have a finite Y N H-morphism

7: Dv xy (YNH)—Dyng

The conclusion of the lemma follows from the finiteness of the morphism 4.



For each integer k for 0 &lt; k &lt; d — 1, let m;(Pk(X, z)) denote the multiplicity of

a generic local polar variety of codimension k of X at the point z, as in Lemma 2.3.5.

We will denote the sequence of this multiplicities by M}(X). i.e.,

V(X) i= {ma (Po(X, 2); ma( P(X, 2); . os ma(Paar (X, z))}

Theorem 2.4.7 ([33,V,1.2]). The following conditions are equivalents.

(2) The morphism €y : Dy — Y is equidimensional

(it) The sequence M:(X) is independent of the point x in Y

Proof Assume (2). In order to prove that (iz) holds we will reduce to the case

when Y has dimension 1, by showing that there exists a codimension ¢ — 1 nonsin-

gular subscheme G’ of M satisfying the transversality conditions of Lemma 2.4.6.

We will show the existence of G' by proving that the polar variety of codimension

bigger than d — t is empty. Without lost of generality we may assume that there

1s a global étale morphism ¢g : M — A™ satisfying the conditions of Setup (2.4.1).

By [4, 4.2.(a)], we have that

{s(k7(2),C(X))}tm-d-1 = €«{s(Dy (2), Bl o-1(v)C(X)) }etm-d-1

Therefore, by Lemma 2.3.4 and the projection formula, we have that

mz (Pe(X, z)) = (—1)ktm-d-1 [ extmeac1(@ (tut) {s(Dy (2), Bl ams C(X)) btm (2.4.7.1).

Since the morphism £y : Dy — Y is equidimensional. we have that

dimDy(z) =m —-2 —1t

Therefore, since s(Dy(x), Bl .-1(y)C(X)) is supported
and (2.4.7.2) that

mz (FPe(X, z)) = 0 for k ~ Ud —

2.4.7. 1:
-)

in Dy(z), we have by (2.4.7.1)

| Zk. 7.3)



or, equivalently,

Pi(X,z))=0fork&gt;d—1t
Therefore, by the same reasoning as in the proof of Lemma 2.4.3 and Lemma 2.4.4,

we can find a general linear subspace G of A™ of codimension t — 1 such that

mz(Pe(X,2)) = m(P(XNG z)) for 0 &lt;k &lt;0

C(G'M)NC(X,M) = 0

C(G',M)NC(Y,M) = 0

where G' := ¢71(G).

2.4.7.4)

Therefore, by Lemma 2.4.6, we have that the morphism

vac: Dyno — Y NG 2.4 7.5)

Is equidimensional.

Therefore, by (2.4.7.3), (2.4.7.4) and (2.4.7.5), we may assume that Y is 1

dimensional. In this case, consider the following diagram.

D(z) - = + D — Blp)C(X)

Dy (z) _— D-,

0

)
i
[}

where 1 : Bl c-1(y)C(X) — Bl s-1(yyC(X) is the normalization of Bl c-1(yv)C(X) and

D is the inverse image of Dy via 7.

Since éy : Dy — Y is equidimensional and n is a finite morphism, we have that no

irreducible component of D is contained in D(z). Therefore, since Bl iv)C(X) 18
normal, we have that ¢, 7 and « are regular imbeddings of codimension 1. Therefore,

we have an exact sequence of vector bundles on D(z)

) — Np(z)D — Np(z)Bl s-1(v)C(X) -— J*NpBl4-1(v)C(X) — 0.

15



Since Np(z)D is the pullback of NY, which is a trivial line bundle, we have, by

Whitney sum, that

¢(Np(z)Bl x-1(v)C(X)) = c(5*NpBl x-1 11 C(X)) 9 9

where ¢ denotes the total Chern class. Therefore we have that

247.7):

{s(D(z),Bl 11) C(X)) }«

(¢(Np(z)Bl e-1(vyC(X)) = N [D(z)]}4

{e(7*NpBI «-1(v)C(X))™! N [D(z)]}«

= (—1)™=3=k¢,(;*NpBl w-1(7)C(X))m 3% N [D(z)]

= ((=1)™=3-*¢;(NpBl «1 vr) C(X))m=3-+ N [D]).

= ({c(NpBle-1v)C(X))™' N [D]}k41)e

({s(D, Bl x-1v)C(X)) }r41)e

([4,4.1(a)])

2.4.7.6)

(dimension counting)

([4.10.1))

dimension counting)

"4 4.1(a)])

Therefore we have that

(—1)ktm=d=1p (P(X, 2))

[ cktm-aor(&amp;*(tant)) N {s(Dy(z), Bl -1(v)C(X)) brsm—-d—1

[ chameacr (n*€* (taut) N {s(D(z), Bl x-1v)C(X)) }k4m—d-1

[ cksmoaa (ne(taut) N ({s(D, Bl x-1(v)C(X))}smd)

[ (chtmas(n*e*(taut)) A {s(D, Bl oxy C(X)) }ksmoa)e

(2.4.7.1)

([4.4.2(a)])

(2.4.7.7)

([4,10.1])

A



Since { on : D — Y is a proper morphism we have, by conservation of number

( (4, 10.2]) applied to the 1-cycle a in A;(D), where

(Y = Clo fimo] (n*é*taut) N {s(D, Bl x=1(Y)C(X)) }k4m—d;

that mz(Px(X,z)) is independent of the point z in Y. In other words (iz) holds.

Conversely, let z be a closed point of Y, and let Z be an irreducible component

of Dy(z). We have to show that

dimJ &lt;m-"°

Since this 1s a local condition, we may assume that we have a commutative diagram

y J

with g and h étale morphisms such that A(z) = g(z) = 0. Under this assumption we

have the following diagram

1 . pm—t-1 x pm! LS Bl ety) C(X) —— C(X) —— X x "7"

&lt;’

iP ppm-—t- Bly A

We also have that

 nm — 1—d &lt; dime (2) &lt;dime™(Y) &lt;m —2.

The first inequality is due to the theorem of dimension of the fibers of a morphism

and, the last inequality is due to the assumption that Y is properly contained in X.

Therefore we have that

dim(ée(Z))=k+m—4d

for some integer k with 0 &lt; k &lt;d —1

Wb



By Kleiman’s transversality lemma ([17]), we can choose L*~* in the open dense

set Vi of Proposition 2.2.2 such that

dim(é -im(é(Z) NAH(LYF) =0

where A : C(X) — P™ is induced by the projection. Also, we can choose L?* such

that the above intersection lies in the open dense subscheme of é(Z) over which the

morphism é : Z — é(Z) is equidimensional. Therefore we have that

dimé='(e(Z) NA HLF) =dimZ — (k+m—-d—1) (2.4.7.8)

3y Kleiman’s transversality lemma we can choose L¢~* in such a way that

eT ATH(LY%)) = P(X, 2, Dy_k1) (2.4.7.9),

where Dy_j41 1s as in Proposition 2.2.2 and, P(X, 2, Dy_x41) is the strict transform

of P(X, z,Dj_k41) via the morphism¢(see Remark 2.2.3 or [12, 3.2.1]). Therefore
we have that

 TH E(2) NAL) = ZN P(X, 2, Da_i1) (2.4.7.10).

Since Z C Dy(x), we have that

(7 N P(X, ZT, Di_k41 )) C (P(Cy P(X, T, Dg_g41 ))z (2.4.7.11)

Since the sequence Mj;(X) is independent of the point z of Y. we have

(see [24, Theorem 4.(b)]) that the morphism

2: P(Cy P(X,2,Dyk41))—Pe(X,2,Dy_k41)

is equidimensional. Therefore, if P(X, z, Dy_i41) is not empty, we have that

dim(P(Cy P(X,=, Di_r+1)))z =d—-—k—-t—-1.

['herefore we have vlhid

(2.4 Jo. 12)



dim Z

=dimeé~1(é(Z) NAY LER) + (k+m—-d—-1)

= dim(Z N Po (X,z,Dg_r41)) + (k +m—d—- 1)

(2.4.7.8)

(2.4 7.10)

= dim «(ZN P(X, z, Dy_k41)) + (k +m—d—1)

&lt;dim(P(Cy P(X, z,Dg_p41)))z + (k +m —d —1)

44,

(2.4.7.11)

2) 19)
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Chapter 3

Whitney Conditions and

Projective Duality

3.1 Lagrangian Theory

[1 Xi F

Setup 3.1.1 Fiz a base scheme S over an algebraically closed field K, and a smooth

ambient scheme Z of constant relative dimension N &gt; 1. Form the projectivization

of the relative cotangent bundle

{ ¢ -

yy m— FQ)z/s)
and denote its structure map by

p:l—4

The bundle I carries two canonical maps, whose composition

ws+Of(— *S 1(=1)—p Qs — Q, /S

is called the S-contact form (see[18,3.1]).



Definition 3.1.2 Let g: C — [I be an S-map. For any map of Or-modules

. 1
1s . L — Qs

Let ns|C stand for the composition dg o g*ns

ns|C :g"L — g"Qs — QF-

Then C or C/I will be said to satisfy the (twisted first order partial differential)

equation ns = 0 if ns|C vanishes on a S-smooth, dense open subscheme C° of C. If

C satisfies the equation ws = 0 and if C°/S has pure relative dimension N — 1, then

C will be called S-Lagrangian.

Remark 3.1.3 Analogously, we can define the concept of (absolute) Lagrangian as

follows:

Let J := P(Q}Y) and q : J — Z its structural morphism. The bundle J carries

two canonical morphisms, whose composition

w: 05-1) — ¢*0L — Q}

is called the (absolute) contact form.

Let g: C — J be a morphism. For any map of Oj -modules

nL—

let n|C stand for the composition Og o g*n

nC: g*L — g*Q% — QL.

Then C will be said to satisfy the equation n = 0 if the morphism n|C vanishes on a

smooth, dense open subscheme C° of C. IfCsatisfies the equation w = 0 and if C°

has pure dimension equal to dim Z — 1, then, C will be called (absolute) Lagrangian.

i



Example 3.1.4 ([18, Proposition 3.2]). Let f : . — J be an S-map. Let V°

denote the largest open subscheme ofVon which V/S is smooth and on which f is

an immersion; the latter condition means that on V° the Jacobian map

of . fs — Qs

is surjective. Assume that VO is scheme-theoretically dense in V. Then the scheme

C(V/S,Z/S) defined by

C(V/S,Z|S) := closure of P((ker(0f|V°))Y) in V xz I

 Ss S-Lagrangian

Lemma 3.1.5 In the Setup of (3.1.1), assume that the ground field K has charac-

teristic zero. Denote by h: Z — S the structural morphism. From the exact sequence

of Oz-modules
) — AOLs — z — z/s — 0

there 1s a natural projection

0: [P(Q7Y) = P(R*Q5Y)] — P(Q3)s).

Let J := P(Q}") and letwdenotes its contact form (as in Remark3.1.3). Ifg: C — J

satisfies the equation w = 0 (in the sense of Remark 3.1.3), and the image ofCin J

does not meet the center of the projection @, then wp og: C — I is well defined, and

satisfies the equation wg = 0, where I and wg are as in (3.1.1).

Proof If g : C — J satisfies the equation w = 0 then there exists a smooth open

dense subscheme C° of C over which w|C vanishes, where w|C is the composition

DIC gm O05(=1) = ¢g*QY — QF

By generic smoothness ([8, I11,10.7]), we may assume that C° is S-smooth.



Set U := J — P(h*Q5Y). Then, by [8, I1,5.12], we have that

0 Oi(-1) = Oy(-Dlp (3.1 2 !

Since the image of C' under ¢ does not meet P(h*Q24Y), we have a well defined mor-

phism
be fy ’

and. hy (3.1.5.1), we have that

7 0" Or(-1) = ¢*04(-1)

Now, w|C induces a section, which we also denote

g*O0;(1) ® 0, 1.e.,

(3.1.5. 2)

by w,C, of the Og-module

nC € HY (C,g*05(1) ® QL).

Analogously,
ws|C € H(C,q"¢"01(1) © Os).

From the exact sequence of Og-modules

NE —QL,g—0

and from (3.1.5.2), we have a map

a. : H(C,g*04(1) ® Qp) — HO(C, g"¢"01(1) ® Qp/5)

which sends w|C to wg|C.

Since w|C vanishes on C°, wg|C vanishes too.

Definition 3.1.6 We define the relative affine cotangent scheme T*(Z/S) ofZover

S bu

[ (4/8) := Spec (Sym 0%)s)



Let q : T*(Z/S) — Z be the structural morphism. Set T = T*(Z/S). The bundle T

carries two canonical maps, whose composition

YO . Or — 7 ys —- Ors

s called the affine S-contact form on T*(Z/S)

Definition 3.1.7 Let g: C — T be an S-map. For any map of Or-modules

ns: L— QF s

et ng|C stand for the composition (AP0g) o g*n%

ns|C : g"L — 9" Vs — Q%/s

Then C or C/T will be said to satisfy the (twisted p-order partial differential) equa-

tion n% = 0 if n%|C vanishes on a S-smooth, dense open subscheme C° of C. IfC

satisfies the (2-order partial differential) equation das = 0 and if C° has pure relative

dimension N, then C will be called affine S-Lagrangian in T.

Remark 3.1.8 Analoguosly we can define the concept of (absolute) affine Lagrangian

scheme as follows:

Let T*(Z) := Spec(SymQ}V) be the absolute cotangent scheme of Z. Let

: T*(Z) — Z be the structural morphism. Set R = T*(Z). The bundle R car-

ries two canonical maps, whose composition

r

a: Op =r QL — OF

s called the (absolute) affine contact form on T*(Z)

let g: C — R be a morphism. For any map of Ogr-modules

1¥ Lo—8%



let nP|C' stand for the composition (APQg) o g*nP

nP|IC : g"L — ¢g* Qf — QF

Then C or C/R will be said to satisfy the (twisted p-order partial differential) equation

mn? = 0 if n?|C vanishes on a smooth, dense open subscheme C° of C. IfCsatisfies

the (2-order partial differential) equation da = 0 and if C° has pure dimension equal

to dim Z, then C will be called (absolute)afline Lagrangian in R.

Example 3.1.9 Let f : V —

I'v 5(Z]S) defined by
J and V° as in Example 3.1.4. Then the scheme

I'v is\(Z]S) := closure of Spec ((ker(f|VO))Y) in V xz T

s an affine S-Lagrangian subscheme ofT

Notation 3.1.10 Sometimes we will denote the projective cotangent bundle P(Q3/s)

by P(T*(Z/S)) and, the projective conormal scheme C(V/S,Z/S) by P (Ttv)5)(2/9)).

Let 0 : Z — T*(Z/S) be the zero-section imbedding of Z in T*(Z/S). Let

1'(2/8) i= T*(Z/S) — (2). Set T="T" (2/5). Let

mT T_T

be the natural projection, where I = P(Q%)s) as in the Setup 3.1.1. Let g : C — 1

be an S-morphism, let C:= a YT) and let §:0—T be the induced morphism.

Lemma 3.1.11 ([18, 3.6];[29, Proposition 10.1]). Assume that the ground field K
has characteristic zero. Assume that g : C — T is a closed imbedding and that the

image ofCis conic in T (i.e., stable under the action of G,, on T). Denote by P(C)
the image ofCin I. Let V the image of C in Z, equipped with the induced reduced

1 5



closed subscheme structure. Then, the following statements are equivalent.

(2) C is an affine S-Lagrangian subscheme of T.

(11) C = Tiy5(2/5)

(rez) P(C) =C(V/S,Z/S)
(tw) P(C) is a (projective) S-Lagrangian subscheme of I.

Proof The equivalence (z) « (11) follows from [29, Proposition 10.1]. The equiv-
alence (iz) &amp; (2:2) follows from the fact that C is conic. Finally, the equivalence

(1212) © (iv) follows from [18, Corollary 3.6]

3.2 Deformation to the Normal Cone

14

Setup 3.2.1 Let Y be a closed subscheme of a scheme M. Let I be the ideal sheaf

ofYin M. We define the normal cone ofYin M, Ty M, by

I'vM := Spec (BrsoT™/T™H)

We will construct a scheme Def (M,Y), together with a closed imbedding of ¥ x A’

in Def (M,Y), and a flat morphism

p:Def(M,Y) — A

such that the following diagram

a v Ol C Def (M,Y)
D2 \



commutes, and such that

(2) over A* — {0}, p~!(A! — {0}) = M x (A! — {0}) and the imbedding is the

;rivial imbedding
L “(A* — {0}) Cc M x (A* — {0}

(22) over {0}, the divisor p~'(0) is equal to Ty M.

The construction of the scheme Def (M,Y') goes as follows:

Let Bly yoy M x A! be the blow-up of M x A! along Y x {0}. From the sequence

of imbeddings

 x {0} Cc Mx {0} cMxA’

he blow-up M of M along Y is imbedded as a closed subscheme of BlyMx Al
[ et

Def (M,Y) := Bly, (4M x A' = M

“rom the sequence of imbeddings

 x {0}cY xA'cCc M x A’

the blow-up of Y x A! along Y x {0} is imbedded as a closed subscheme of

BlyxoyM x Al. Since Y x {0} is imbedded as a Cartier divisor in ¥ x A, we

have that

Bly «iY x Al =Y x A

I'he exceptional divisor of Bl, ..,,M x A! is

P(TyM &amp; 1) := Proj (@ (az , ri)

The imbedding of Y x {0} in P(TyM&amp;1) is the zero-section imbedding of ¥ in

[vy M followed by the canonical open imbedding of TyMin P(TyM®1)



The divisors P(TyM@ 1) and M intersects in the scheme P(Ty M). Therefore,

‘he imbedding of Y x A! in the blow-up of M x A! along Y x {0} do not intersect

ur

'n otner words, we have an imbedding

V xX Al C Def (M,¥ \

(he morphism p : Def (M,Y) — A! is the restriction of the composition

BlyyioM x A = M x A BA A

0 Def (M,Y).

Proposition 3.2.2 ([20, Proposition4.4.2];(30,Appendiz4]).LetY and X be two
closed subschemes ofasmoothscheme M. There exists canonical isomorphisms over

(1) 0: Def(T*M;TyM) — T* (Def(M,Y)/A")
. * Lx * * 1

(2) ¢: Def(TyM;TyMNTiM) —&gt; Tet x xoy AY) (Def (M,Y)/A')

3.3 Integral Dependence over Ideal Sheaves

[20

Setup 3.3.1 Let Z be a noetherian scheme and let I be a coherent Oz-ideal sheaf

which define a closed subscheme W of Z.

Definition 3.3.2 Let I be an ideal of a noetherian ring A. An element h ofAis

said to be integral over I if it satisfies an integral dependence relation of the form

he +a hl 4a =0, with a; &lt; I for 1 &lt;1-K

IR



The integral closure I ofIis the ideal

[:={z€ A; z is integral over I}

Remark 3.3.3 IfAis a normal ring (i.e., reduced and integrally closed in its field

of fraction), and I is an invertible ideal ofA(i.e., generated by a non-zero divisor

of A), then I = 1.

Definition 3.3.4 Let Z and I as in (3.3.1), we define the integral closure I of the

ideal sheafIas the sheaf associated to the presheaf

UJ — I(U).

T is a quasi-coherent Oz-ideal sheaf

Lemma 3.3.5 (23, Proposition 4.18]). Let Z be a normal scheme and let T be an

invertible O-ideal sheaf. Let D be the Cartier divisor ofZdefinedby the ideal sheaf

I0+ and let D = Uyea Da be the decomposition of D in its irreducible components.

Let h € H%(Z, 0%) then, the following conditions are equivalent.

(1) hOz, C IOz, for every point z of Z.
(21) For every a € A, there exists a point zo € Dy such that hOz, C107,.

Proof Assume (i). Let ¢ € K(Z) be the rational function of Z which generate the

invertible ideal Z=! . h. Consider the polar loci of ¢. i.e., the closed subscheme P, of

7 defined by the coherent O5-ideal sheaf P,, where P, is defined by

D(U,P,) i= {h € T(U,0z); h-(olU) € T(U,03)}.

Clearly P, C D and, hOz, C IOz_ if and only if z ¢ F,. Since Z is normal, we
have that P, is either empty or has codimension 1 in Z. By hypothesis we have that



for each a € A, zo ¢ P, and, since P, C D, we have that P, = { (otherwise every

irreducible component of P, would be an irreducible component of D). Therefore (2)
holds. pry

 .

Lemma 3.3.6 ([23,Theorem2.1]). Let h € H(Z,0z) and let v : Z' — Z be the

normalization of the blow-up Z' ofZalong W. The following conditions are equiva-
lents.

(1) he H*(Z,I)
(i1)hOz C IO

Proof Assume (:). Then, pulling back the integral dependence relation of A in Z
via © we have that

hO3, C T1003,
But, since Z is normal, we have that

[05 =10;
Thus, (72) holds.

Conversely, Z' is Z -isomorphic to Proj (@n&gt;0J") for some coherent ideal sheaf J

of Oz. Since condition (2) is a local condition, we may assume that J is generated by

global sections gy, ..., g,, which are not zero-divisor in O 5. Under this assumptions,

we have that Z’ can be cover by a finite number of open subschemes V; such that
A

Z'|V. = Spec Ox[L, vee gi ony Im]
gi gi gi

(here we use the usual convention that the element under A is ommited). From (i3),

we have that h can be expressed as a polynomial in I with k # 1 (with coefficient in

T). Therefore, by eliminating denominators, we can find an integer n sufficiently big
such that

hr CII"

Thus, (2) holds from [26, Theorem 2.1|
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Proposition 3.3.7 ([3{, Appendiz]). (Specialization of integral dependence). Let
Z be a pure dimensional noetherian scheme and let W be a closed subscheme ofZ

of pure dimension s. Let p : Z' — Z be a proper morphism, where Z' is a pure

dimensional noetherian scheme. Let W' be the inverse image of W in Z', and let

I be the ideal sheaf of W' in Z'. Let Z' be the normalization of the blow-up of Z'

along W' and denoted by T the morphism from Z' to Z'. Denote by D the exceptional

divisor of Z' and assume that the morphism pow: D — W is equidimensional. For

an element h of H*(Z',Oz), the following conditions are equivalents.

(1) h€ H(Z', I).
(22) There exists an open dense subscheme U of W such that for every point y of

J. we have that

Wz) © IO)

(222) There exists an open dense subscheme V of W such that for every point y'

of p~1(V), we have that

hOzy CIO.

Proof Assume (2). Since an integral dependence relation pulls back to an integral

dependence relation, we have that (i7) holds. By definition of the integral closure of

an ideal sheaf, we have that (777) holds trivially.

Next, let D = UD, be the decomposition of D in its irreducible components.

Since Z' is normal, therefore nonsingular in codimension 1, we can find for each D, a

non-empty open subscheme U, of D, such that for every point x of U, we have that

(a) Z’ is nonsingular in z.

(b) po™: Dy — W is smooth at z ([8, Corollary 10.7]).

(¢) The strict transform of the subscheme of Z’ defined by the ideal sheaf AO,



is empty 1n a neighborhood of x.

(d) W is nonsingular at y := p o T(z).

Let (Z1,...,%;) be a local coordinate system for W about y (i.e., (ti,..., ts) gen-

erate the maximal ideal of Ow). From (a) and (b), we have that the s-sections

H. = ( ow)*poT)t,, 1&lt;y ~N

give rise to a local coordinate system

(4! /(yo tu by, oo bag)

for Z" about z such that,

(¢) I0z, = u*Oz,
(H)hOz,=Au=O , with A inversible in Oz,(this follows from (c): the strict

‘ransform of hOz via 7 is defined by AO%; in a neighborhood of z in 7".

Assume (272). We can shrink the open dense subscheme U, of D, such that the

point y = po T(z) lies in U. Since an integral dependence relation pulls back to an

integral dependence relation, we have that

KO, C TOS.

Since Ox; is normal and ZO;_is invertible, we have, by Remark 3.3.3, that

[10%, =1I0%,

['herefore, we have that

Aut Op = hO5,CT05,=I0%, = uO,

and, since A is invertible in 0%; _, we have that b, &gt; a,. Therefore (i) holds in view

of Lemma 3.3.5.

J



Assume (22). We can shrink the open dense subscheme U, of D, such that the

point y = po @(z) lies in V. Since an integral dependence relation pulls back to an

integral dependence relation, we have that

O—hOzy © Z07,, -

, &amp;-

Since.

! aq Os _,&gt; Oz [(t],..., th,u ) vidOZ)
ve nave that Oz, . is regular, hence normal. Now

IO ,0 = uO [(t,..., th, u**)O0%,=0 (3.3.7.2),

—_

hOZ yz = Au 0 (1, I uO

Therefore, by (3.3.7.1), we have that

1%
y }

hOZi ec C I07iy) 2 = I07i,) 2 =0

Since A is invertible in 0%,wehave by (3.3.7.3) that b, &gt; ao. Therefore (2)

holds by (e), (f) and Lemma 3.3.5.

3.4 The Main Results

Setup 3.4.1 Use the notation and hypothesis of (2.4.1) and, recall the diagrams of

(2.4.2.1) and (2.4.2.2).

Lemma 3.4.2 ([20,4.6.13]). Let £ be a locally free Oy -module. Let

V(E) := Spec (Sym¢),

and.

J(EY) := Spec (Sym EY).
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Let 0: Y — V(E) and 0: Y — V(EY) be the zero-section imbeddings. There exists a

canonical Y -isomorphism

F:T*V(E) — T*V(EY)

The isomorphism F satisfies the following properties.

(¢) F identifies T;y\V(E) (resp. I; VEY) to the zero-section of T*V(EY)
resp. T*V(E)).

(1) F identifies T*V(E) xy gy o(Y) (resp. T*V(EV)xygv,oc (Y)) with
V(EY) xy T*Y (resp. V(€) xy T*Y).

(47) If ag (resp. agv) denotes the affine contact form on T*V(E) (resp. T*V(EY))as
in Definition 3.1.6 then,

Fo TY -~vV = dog f - J ¥
3 3

[et

L: TrsmT™M — T*(Ty M)

be the isomorphism induced by the isomorphism 6 of Proposition 3.2.2.

Lemma 3.4.3 ([20,4.7]). There exists a canonical isomorphism of vector bundles

over T*M

H l  * MY — T(T*M)

hE Te

T(T*M) := Spec (Sym QJ.ps).

The isomorphism H induces an isomorphism of vector bundles over Ty M, which we

also denote by H.

A. (Iv M) pb TremT™M



Furthermore, we have a commutative diagram of isomorphisms

~(TeM) “2 TrmTM
7 Il (34237

T*(Tv M)

where F' is the isomorphism of Lemma 3.4.2 associated to the locally free Oy -module
Vv(TM) THY)

Lemma 3.4.4 Let U be an open dense subscheme ofYover which the morphism

fy : Dv —'Y 1s equidimensional. Then, for every point y of U, we have that

Loy annex,M)OcxMy)©IyoMv) €

Proof By induction on the dimension of Y.

[f dimY = 0, then C(Y,M)N C(X,M) = k%'(Y). Therefore, (x) holds trivially.

[n general, since (*) is local, we may assume that there is a (global) étale morphism

g : M — A™ satisfying the conditions of Remark 2.4.1 for a fixed point y of U (i.e.,

with g(y) = 0).

Let H' be a (generic) hyperplane of A™ satisfying the conditions of Lemma 2.4.3,

and let H := g~!(H'). i.e., we have that

CH M)NC(X,M) = 0

CH M)NC(Y,.M) = 0

Choose H' in such a way that H satisfies also the conditions of Lemma 2.4.5 for

the morphism
=

J
&gt; Sry (X,M) — X

,WF



Since ¢ is equidimensional over X® := X — vy’, we have that H also satisfies the

conditions of Lemma 2.4.5 for the morphism

fv + Dv I

Consider the notations and the diagram (2.4.6.1). We have that

XNH=BlyC(X,H) xx (XN H)

Analogously, we have a finite morphism

Gg: C(Y,M) xy (Y NH) — C(Y NH, H).

By Lemma 2.4.6, we have that the morphism

var : Dyan — (YN H)

s equidimensional over U N H. Therefore, by induction hypothesis, we have that

Toy nnm,Hnc(XnH, HOC(XH,H))(y) C Tot vom O©(XnHH)@)

Pulling back this integral dependence relation via the morphism ¢, we obtain an

integral dependence relation

L ninncmnxy vom (fain) = Lr vem gain (3.4.4. 1)

By Lemma 2.4.5, we have that

(X NH) = x3 (X NH)

[herefore, we have that

L imine Myx vv oin © (Xam) = Tox, mncv,m)Oc(x,M)(y)

11d

Lez vom © 5m) = I-1v)Ocx,M)(w)-

Therefore, from (3.4.4.1), we have that (x) holds.
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Definition 3.4.5 (/37]).

(2) We say that the pair (X°™,Y) satisfies the Whitney condition (a) if

(Dy) req CP (TH /(ZY)) xv P (TY /(T¥)?))

(121) We say that the pair (X*™,Y) satisfies the Whitney condition (b) if

(Dy)eqCIy:= incidence correspondence ofP(zd/(1¥)?) and P (@¥ (Ty).

Lemma 3.4.6 ([18,4.2]).

(1) There is a canonical P (Z}/(T})?)-isomorphism (resp. P (TY [(T¥)D)Y)-
isomorphism ) from Iy to the projectivization of the relative cotangent bundle of

PTH/(TH)?) (resp. P (TM /(TH))Y)).
(11) Letw and&amp;denote the contact form of Iy /P (TY /(T}¥)?) and Iy /P (IM /(TH)?)¥)

respectively (see 3.1.1). Then,
ht . v=

Lemma 3.4.7 Assume that the pair (X°™,Y) satisfies the Whitney conditions (a)

and (b). IfHisa nonsingular closed subscheme ofMofcodimensionjwhichsatisfies
the following conditions

(1) The intersection ofHwith ¥ is smooth of dimension ¢ —

2) CH,M)NC(X,M)=10
3) CH,M)nC(Y,M) =.

J

Then, the pair (X N H)*™.Y N H) also satisfies the Whitney conditions (a) and
 )

Proof Consider the following diagram



 YY VH — +» H

Since ¢ and ¢' are regular imbeddings of the same codimension, we have that

C(Y NH, H)=C(Y,M) xy (Y NH)

[herefore, we have that

P Otrommyvon) =(YNH)xyP (Gav) (3.4.6.1)
Consider the diagram (2.4.6.1). Since the morphism

q: XNnH— Bl -1 (yom C(XN H, H)

is finite, and since XNH is the strict transform of X N H via the morphism

£ := kx o éx, which is equal to the strict transform of X NHvia the morphism

£xnH, we have a finite morphism

i: Dy 0 (X NH) — Dyng

which is induced by q. since

Dy N(X NH) C Dy xy (Y NH),

we have, by (3.4.6.1), that Dynpy is contained in the incidence correspondence

Iyag =P (5 nam vem)

In other words, the pair ((X N H)*™,Y N H) satisfies also the Whitney conditions (a)
and (b). 3

Let (Dy),oq denote the scheme Dy with its reduced induced structure. Let

(Dy )ed = UD be its decomposition in its irreducible component, and let V, denote

the image of D, in P (ZH/(z¥)?) via kk’, equipped with the induced reduced closed
subscheme structure.



Theorem 3.4.8 ([21,2.1.1]). Let X be a d-dimensional integral scheme of finite

type and separate over an algebraically closed ground field K of characteristic zero.

Let Y be a smooth integral proper closed subscheme ofXofdimension t such that,

X% := X —Y contains a smooth open dense subscheme. Assume that X admits a

proper imbedding in a smooth ambient scheme M. Then, the following conditions are

equivalent.
(2) The pair (X*™,Y) satisfies the Whitney conditions (a) and (b)
(22) The sequence M;(X) is independent of the point xz ofY
(222) The morphism €y : Dy — Y is equidimensional.

(7) Zewmncx.mOcx,m) C Le-1(v)Oc(x,m)-
(v) For each a we have that

Do = C (VaYiPTY/(T¥))]Y).

Proof The equivalence between (uz) and (i22) was proved in Theorem 2.4.7.

Assume (v). Then, by Lemma 3.4.6, we have that (z) holds.

Assume (2:2). Then, by Lemma 3.4.4 and Proposition 3.3.7, we have that (:v)

nolds.

Next, consider the following commutative diagram of isomorphisms (see Lemma 3.4.3).

r&lt;(TeM) = TrauT*M
JL (3.4.8.1)

T*(Ty M)

We are going to prove first that the image of Try MargmTMinT*(TyM)via(—H)™!
is an affine Lagrangian subscheme of T*(Ty M).

By Proposition 3.2.2, we have that the isomorphism

¥
— tog IM — T*(Ty M)



maps TrymargmTx M isomorphicaly into T7 xTyM. i.e., we have a commutative

diagram

Iremarom Tx M — Tr, xTyM
| (3.4.8.2)

L
TrasmT™M EE T*(Ty M)

On the other hand, from Lemma 3.4.2, we have that the isomorphism F' preserves

the differential of the affine contact forms. 1.e.,

F*(dar,pm)=dartspm

where ar,a(resp. ars) is the affine contact form on T*(Ty M) (resp. T*(Ty M)).
Thus, the isomorphism F~! maps affine Lagrangian subschemes of T*(Ty M) into

affine Lagrangian subschemes of T*(Ty M) (see Remark 3.1.8).

Therefore, since T7 yTyM is an affine Lagrangian subscheme of T*(Ty M), we

have that the image of T7 xTyM in T*(Ty M) via F~! is an affine Lagrangian sub-

scheme of T*(TyM). i.e., it satisfies the equation

dats pm = 0.

Now, from (3.4.8.1) and (3.4.8.2), we have that

FY Tp, xTvM) = (=H) (TromoromTiM)

[herefore,

(— H) "(Trsmarem Tx M) 18 Lagrangian in T*(Ty M) (3.4.8.3)

S10

H T* (Ty M) = TromT™M

is an isomorphism of vector bundles over Ty M, we have that H induces an isomor-

phism, which we also denote by H, of projective bundles over P(Ty M). i.e.,

H PT P(TEM)) = P(Tp gyn P(TM))

3



Since (—H)™'(TrymnrymTxM) is a conic subscheme of T*(TyM), we have, trom

3.4.8.3) and Lemma 3.1.11, that the image of P (Tp rs ayePrsanP (TEM) via

H-! is a (projective) Lagrangian subscheme of P (T*(P(TyM))) in the sense of Re-

mark 3.1.3.

Let = : P(TyM— Y be the structural morphism. From the exact sequence ot

locally free sheaves

— Op M)Y 0) = 1 Qv = Op rua (T2

ve get a morphism

3: [P(T*(P(Ty M))) = P(Tp M) xy P(T*Y)] — P(T* (P(Tp M))/Y).

rom Lemma 3.4.6 (z), we have that

P(T"(P(TyM))]Y) = Iv

where Iy is as in Definition 3.4.5. Therefore, we have that the morphism 3 induces

a» morphism, which we also denote by 3,

3 [P\T*(P(T:M))) — P(ToM) xy P(T*Y)] — Iy (3.4.84

Since Y and M are smooth, we have a sequence of regular imbeddings

P(TeM) 2g} (Y) 5 P(T*M)

where, gq : P(T*M) — M is the structural morphism.

Therefore, we have a sequence of locally free sheaves

. «PT M) AP (T*M)\2 PM), P(T*M)\2 -1(Y) a~1Y) \2v=0Ly[Tir)=Iprons)TPzoar) =Ip zany! TPany) +4

id

3



and, from this sequence, we get a morphism

“¥Y
” -1(y APM), PMP (TpryanPTM)) =P (18.07) — P (20 HEY)

y:

Since,

* P T*M) — » -1 P(T,-: P TM)P (rT HE) ?) = PITY M) xg-1(v) ( a=) P( )
= P(TyM) xy P(Ty M)

We have that the morphism « induces a morphism, which we also denote by «,

 XY

N yA

” ) P (Tr) )| — P(Iy M) xy P(TvM) ~~ (3.485Pp (Tp rg ay P(T M)) — P(TM)

Iy CP(TyM) xy P(Ty M)

and we are going to prove that the image of a is Iy.

From Lemma 3.4.2 (iz), we have that the isomorphism

F:T*(TyM) — T* (Ty M)

identifies TyMxy T*Y with T*(Ty M) xrypm o(Y), where 0 : ¥ — TyM is the

zero-section imbedding.

On the other hand, the isomorphism

= T(: T7(T vy M)—TreyTm1 M

identifies T*(Ty M) X1ypm o(Y) with Trepp! (Y') where, p: T*M — M is the struc-

tural morphism.

Therefore, we have that the isomorphism

H:P(T*(P(1:M))) =&gt; P (Toran P(T"M)

identifies P(Ty M) xy P(T*Y) with P (Tp rang (V)). Therefore, by (3.4.8.4) and
(3.4.8.5), we have a commutative diagram

V/



P (Tez anP(@*20) -P (T5000) —— P(Ty M) xy P(Ty M)
ni

P(T*(P(Ty M))) — P(Ty M) xy P(T*Y)]

(3.4.8.6)

Thus, the image of a is the incidence correspondence Iy.

Since the image of P (Tp aneP smn? TEM) via H~! is a Lagrangian sub-

scheme of P (T*(P(Ty M))), we have, by Lemma 3.1.5, that every irreducible component

~f H-1 P (Trg spas an PTE) which 1s not contained

P(Ty M) xy P(T*Y'), is mapped via (3 into a Y-Lagrangian subscheme of Iy.

Assume (7v). Then, we have a (globally defined) dominat, finite morphism

+P(Tp zo annP ran P (Tx M)) — P (TensirP(T3M))

which is induced by a. In particular, we have that H~! P (Tp zs wy ran PT Mm) |

does not meet the center of the projection 3 and, it is mapped dominantly into

Dy =P (Tip) P(T3 M))

Therefore, Dy is Y-Lagrangian in P(T*((PTyM)/Y)). Hence, (v) holds

‘see [18, 3.6]).

Assume (2). Consider the following commutative diagram of imbeddings

Ti M)NP(TpM) —— x 1(Y) —— P(T3M)

gl |»
Ca HY) —— P(T*M)

3.4



Then, we have that

P (TP ersanPirzanP (TEM) cP (£Tpirgan PTD)
= [PT M) OPT; M)] Xpigs pp) P (Tp zg an,P(T-M))

) 179

P (1 Ter )P(TxM)) CP (fgTr)P(T"M))
= P(f*7Ty)P(T"M))

Therefore, the morphism «a of (3.4.8.5) induces a morphism

B Pp (Tors Pran PEM) —P (FTpgana™ (1) —P (Terr) P(Tx M))
The image of @ is equal to the image of

T= |P (Tory PM) =P (Tprgana™(1)
via a, intersected with P (T-100)P(TEM)).

But, from (3.4.8.6), we know that the image of T via «a is exactly the incidence

correspondence

Iy =P(T*((PTy M)/Y))
Therefore, since Dy = P (Tm1()P(TxM)) is contained in Iy, we have that the

morphism @ is dominant. Therefore, from the discussion bellow (3.4.8.6), we have

that Dy is Y-Lagrangian. i.e., (v) holds.

Assume (v). We are going to prove that (ii) holds. But, first, we will reduce to

the case when Y is 1-dimensional by using the equivalence (17) &lt; (it) and (v) &lt; (7)
of this theorem.

Since condition (v) holds, we have that

 1 (Y ) C P(Ty M)

set-theoretically. In particular, we have that

dink H(z) &lt;m—1— 7



for every point z of Y. Therefore, by Proposition 2.2.2, we have that

Pi(X,z)=0fork&gt;d—-t (3.4.8.7)

Therefore, by the same reasoning as in the proof of Lemma 2.4.3 and Lemma 2.4.4 and

by shrinking M if necessary, we can find a (generic) non singular closed subscheme

H of M of codimension t — 1 such that

(a) H passes through a (specific) point z of

(b) The intersection of Y and H is smooth.

(¢) C(X,M)NC(H,M)=19
(d) C(Y,M)NC(H,M)=10
(e) me(Pe(X,2)) = my (P(X NH,z)) for 0&lt; k&lt;d—t.

Therefore, by Lemma 3.4.7, we have that the pair ((X N H)*,Y N H) satisfies

the Whitney conditions (a) and (b) (here we are using the equivalence (v) &amp; (i)

of this Theorem, which had been already proved) . Thus, in order to prove that

condition (222) holds (which is equivalent to the equimultiplicity of the local polar

varieties in view of Theorem 2.4.7), we may assume, by (3.4.8.7) and (e), that Y has

dimension 1.

In this case, since every irreducible component D,, of (Dy );eq is Y-Lagrangian, we

have that for every a there exists an open dense subscheme D° of D, over which the

morphism

ty : D, —

is smooth (of relative dimension m — 3). In particular, we have that for every a the

morphism

fy oD, —

is dominant. Since Y has dimension 1 and D,, is irreducible, we have that

fv Dy, — 1

is equidimensional. In other words, (7:2) holds.
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