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ABSTRACT

Essay I: "Existence of Equilibrium, Optimality, and the
Aggregate Excess Demand Correspondence in Economies with Externalities."

‘In Essay I we establish, under certain assumptions, the existence
of a (non-cooperative) competitive equilibrium for a wide class of
economies with externalities. The types of externalities covered in
our existence theorem are the usual pure consumption (e.g., inter-
dependent preferences) and pure production externalities, and also
consumption-production (e.g., littering) and production-consumption
(e.g., pollution) externalities. Most of the models of economies
with externalities discussed in the literature fall within the class
of economies covered by the theorem. Our proof of existence of equi-
librium is similar in structure to the proofs of existence of equilibrium
for economies without externalities found in the literature. The
basic technique used in our proof is the use of Kakutani's Theorem to
establish the existence of equilibrium for a compact economy.

We next analyze the relationship between equilibrium and optimal-
ity in economies with externalities, establishing the existence of a
Pareto Optimum using fixed-point arguments. We demonstrate by use of
a separating hyperplane argument that under certain assumptions a .
Pareto Optimum can always be supported by an equilibrium price vector
and a system of lump sum and specific taxes and subsidies, where all
participants face the same net price for 'mon-external' goods. By
examples we demonstrate that a Pareto Optimum cannot generally be
supported by a competitive equilibrium in a model where there are
markets for externalities, because a competitive equilibrium for such
models will usually not exist.

In the last part of Essay I, we analyze the structure of economies
with externalities, showing the (jointly) feasible technology in such
models will usually be non-convex, and establishing the existence and
properties of the aggregate excess demand correspondence for economies
with externalities. A



Essay II: "The Diversification Problem in Portfolio Models."

In Essay II we attempt to give a partial answer to the question
of how much diversification is optimal in choosing a portfolio of
fixed size. The models we consider are the one period mean-variance
criterion and the one period expected utility criterion portfolio
choice models. We attempt to find general conditions on the joint
probability distribution of the asset yields which are sufficient
to ensure that an optimizing risk averse investor will hold a positive
amount of each asset or will hold a positive amount of a particular
asset. The main properties of the joint probability distribution
we consider are non-positive (1ingar) correlation between the asset
yields, and a type of non-positive (non-linear) correlation between
the asset yields proposed by Samuelson, which we call S-Correlation.
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INTRODUCTION

In this eesay we consider a class ofveconomies with external-
ities, establishing under certain assumptions the existence of an
"equilibriumﬁ and a Pareto Optimum, and the'relationship between
the two. By "equlllbrlum" in thls context we mean the c1a531cal
b(non cooperatlve) competltlve equlilbrum concept used in deflnlng
the solution of the usual model ‘without externalltles.‘ What this
means is thet all participantslare price take:s end no side payments
are allowed;_“0f ceutse this_is netzthe‘Only concept of“equilibrium _

N . N . . . *
that has been consxdered for models with externallties. Coz-ls‘e:L

~and
Buchanan for example: argue that side payments between partlclpants
will be a very likely result in a model w1th externalltles. harlty
of course is.a good example of this. ‘However actual examples of
side payments arlslng out of externalltles seem to be few compared
to the many.examples one ' can find 1n-wh1chxthere are no side pay-
ments.. Caeuel'empiricism would also.seem to indicete that actual
‘cases involving side payments are usually-"gpod" externalities,
e.g., therity; public heaith care. These externalities afe_gond in
the sense that meking one}personlﬁette;voff makes (most) other people
better off. -In the case of ptoduction,externelities, the side pay-
ments in the case of "good" externalities are 1ike1y to_mean the
actual merget of firms. For example, in the ciassie appie grewer-i

bee keener illustration, it seems very likely that if the external

* A
References are listed on pJ93



benefits are Significant that the apple groﬁer will go into tﬁe
bée'keeping>business or vice versa. |

That one can find many gxampleé of externalities where there
are no sidg payments does not nécessarily invalidate the Coase
thesis. These might be explained by the costs of a change ;utweigh-
ing the value of the benefits of the change. To what extent we can
accept the Coase4thesis is not clear. This is complicated by the
fact that there is no generally agreed upon c§ncept’of equilibrium
in.a model with side payments except perhaps the core, and economies
with '"bad" externalities dp>not in general have cores;, Thus both the
classical and the Coase analyses of economies with externalitiés»
_each bave serious défecfs. The élassical analysis dogs not #llow
side payments, which certainly are present to some extent in the
real world, while ;he Coase analysis does not provide anbequilibrium
conceét which can be shown to exist for a class'of models which
‘approximate reality.

This essay unfortunately will not attempt a solution of these
problems. Our .much narrower aim is to establisﬁ that the classical
analysis of externalities was not conducted in a vacuum, i.e., that
an equilibrium in the classical sense can be shown to exist for the
types.of models of externaliﬁies the classical analysis considered{
The problem of whether or not an equilibrium would exist in the
various models with externalitiés seems to Have been largely ignored.
One reason for this is that much of the analysis was partial equi-

librium analysis. The'péper by McKenzie® is the only one in the



existence literature which explicitly considers a model with ex-
ternalities. The model he considered was one with only consumption
externalities and assumed a stronger version of convexity of pre-
ferences than is desirable or necessary. This essay encompasses
a much wider class of externalities.

That an equilibrium can be shown to exist for a class of
economies with externalities is probably not surprising. However
this lack of sufprise should perhaps be tempered by the knowledge
that the core does not exist for an interesting class of such
economies. The intuition derived from the treatment of the existence
of equilibrium’problem for models without externalities would iﬁdicate
that enough convexity and continuity assumptions for models with ex-
ternalities would probably establish the existence of a (non-coéperative)
equilibriﬁm. But éertain kinds of continuity and especially convexity
‘assumptions in the context of externalities would be very objectionable.
For examﬁle, the usual assumption that the aggregate production set
for the economy be convex rules out thevclassic_Marshallian example
of industry increasing returns resulting from external economies
between firms which individﬁallf exhibit non-increasing returns.
Also, assuming in the case of consumption externalities that consumers'
preferences are convex in the space of all consumers'’ consumptions
would be objectionable, and would rule out many of the classical models
of consumption externalities. The set of sﬁfficient‘conditions which
yield the existence theorem.in this essay are satisfied by most of

the models of externalities considered in the classical analysis of
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externalities. These sufficient conditions are probably not sig-
nificantly more objectionable than the analogous conditions which
are sufficient for existence in models without externalities.

This essay is made up of three parts. Part Irdescribes the
general model and presents an existence theorem. Part II establishes
the existenée of a Pareto Optimum for the model described in Part I
and analyzeé the relationship between equilibrium and optimality for
the model. Part III analyzes the structure of the model described
in Part I and defines and establishes the existence of the Aégregate

Excess Demand Correspondence for the model.
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PART 1

THE MODEL AND THE EXISTENCE THEOREM

The Model

The class of externalities allowable within the framework of

the model includes most of the types considered in the literature.

These include:

a.

Pure consumption externalities: a consumer's con-

'sumption may affect the preferences and/or the con-

sumption possibilities of other consumers.

Pure production externalities: a producer's production

~activity may affect the production possibilities of

other producers.

Production-consumption externalities: a producer's
production activity may affect the preferences and/or

consumption possibilities of consumers.

Consumption-production externalities: a consumer's
consumption may affect the production possibilities

of producers.

Externalities of type c) or d) have not had much emphasis in the

literature, although those of type c) would seem to be an important

real world phenomenon. We assume that all externalities are identi-

fiable with the set of tradeable goods in the model.

11



As a basis for comparison we shall briefly review the general
equilibrium model found in most of the conventional existence liter-
ature. In that model there are a fixed number of goods numbered
h=1,...,0; a fixed number of consumers numbered i = 1,...,s; and
a fixed number of producers e = 1,...,t.

A consumer, i, is a consumption possibilities set, Xi € Rn,

a set of preferences (z)i defined on Xi, and an initial endowment
wi € R. It is assumed that xt is closed, bounded>from below, and

. . -1 i |
convex; that (2)1 is continuous and convex; and 3 x € X such that

i<t

A producer, e, is a net production possibilities set v® ¢ R".
Y® is assumed to be closed and convex, and O € ve. ye € Y° is a
net input-output vector.

The strategy for the proof of existence is to show:

i) For Xi_and v® compact, the excess demand correspondences
of consumers and the .supply correspondences of producers are upper
semi-continuous (hereafter denoted u.s.c.) and convex-valued.

ii)‘ For Xi and Y° compact existence of equilibrium is estab-
lished.

iii) It is shown under suitable assumptions that the set of
feasible actions is compact.

iv) The original economy is "compactified" by bounding it
by a set yhich contains the set of feasible actions.

v) It is shown that an equilibrium for the compactified

economy is an equilibrium for the original economy.

12



The strategy of our existence proof will parallel i) - v). The

model we consider has:

n goods, h=1,...,n

s consumers, 1 =1,...,s

t producers, e =1,...,t
An action for consumer i is the choise of a consumption vector
xi € R®. An action for producer e ié the choice of an input and
associated‘output vector qe = (qu, qOe) € R2n where‘qu is an -
input vector and qOe an associated output vector. We depart from
the usual treatment of production by disaggregation into inputs
and outputs rather than considering only net outputs. ' The reason
for this is that intermediate goodslwould seem to be important in
conveying externalities. For example, if a coal mine produces an
externality (coal‘dust) which affects a nearby laundry, coal used
as an intermediate good in the production of coal (e.g., burned)
will also have an external effect. Of course the actions of con-
sumer i are limited by his consumption possibilities and the actions
of producer e are limited by his production possibilities, both of
which we shéll defined in the following sections. A set of proposed
) € R(s+2t)n

actions by the participants of the model is denoted (z,y

1
where z = (x ,...,xs) and y = (ql,...,qt).

13
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A-l:"Consumgrs

A consumer, i, has a consumption possibilities correspondence

which for each vector of actions of other consumers and producers
defines the consumption possibilities of i. This correspondence
will be denoted Xi(z,y) where z = (xl,...,xs), y = (ql,...,qt),
Thus Xi: R(s+2t)n > R". Xi(z,y) defines the set of consumptions

for i given (z,y) which allow him to survive.

Assumptions about Xi(z,Y):

1) Xl(z,y) does not depend on xl, and is closed, convex,
uniformly bounded from below, and continuous in (z,y),

for all (z,y) € R(s+2t)n

. (Xi(z,y) is a correspdndencg,
not a function, and thus by continuity we mean both upper
and lower semi-continuous).

2) Each consumef, i, has an initial endowment function;
Wi(z,y), W R(s+2t)n‘+ R® which is continuous in (z,y),

(s+2t)n. 3 w' such

and wi(z,y) >0, for all (z,y) € R
that w (z,y) < w, for all (z,y) and Y(z,y) 3x'(z,y) € X (z,y)

such that % (z,y) << w(z,y).

Comments: That Xi(z,f) is closed, convex and unifqrmly boundgd'from

below, for all (z,y) is the obvious generalization of the assumptions
made about the (fixed) consumption set in the usuai existence problem.
However, the assumption of continuit& of Xi(z,y) is a very strong as-

sumption. Upper semi-continuity of Xl(Z,Y) would be a more acceptable
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assumption, but unfortunately it is not strong enodgh, That wi(z,y)

be uniformly bounded seeﬁs to be a reasonable assumption. As mentioned
in our byief summary of the existence problem for economies with-

out externalities, the usual assumption is that S %" e x* such that

ii << wi. Our assumption in 2) is analogous. We could considerably
weaken the assumption that ii(z,y) << wi(z,y) in a manner analogous

to that of Debreu,4 but only at the cost of a serious loss of clarity

of exposition, and for this reason we will use the stronger assumption.

A consumer, i,.has a preference relation (Z)i defined on
((z,y,p) |z € Rsn, y € thn, p€R'). Here z = (xl,...,xs) is a
vector of all consumers' actions, y = (ql,...,qt)>is a vector of all
producers' actions, and p =(p1,;..,pn) is a price véctor. We allow
consumers' preferences to be defined on prices also since it includes.
a model discussed in thé literature and its inclusion causes no extra

difficulties.

Assumptions about (>);:

(s+2t+1)n

3 () is a complete continuous preorder on R By

continuous we mean the sets:

(s+2t+1)n

{((z,y,p) €R | (z,y,p) &1 (2,5,p)]

and

(s+2t+1)n|(5,?,§) (Z)i (z,y,p)]

(s+2t+1)n

{(ZJY:p) € R

R(s+2t+1)n

‘are closed in , for all (Z,y,p) € R
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1 i-1 i +1
4) Let (z,y,p) = ((x ;---:xl ’ le xi ;"':xé): y,p)

- 1 i-1 _i i+l
and (Z,y,p) =((x",...,x" 7, ¥, x ,...,xs),y,p) be

(s+2t+1l)n

points in R and (z,y,p) C>)i-(2,y,p). Then

k(z,y,p) + (1-x)(z,y,p) (>)i (z,y,p), for all k € (0,1).

Comments: The continui;y of preferences we assume here is analogous
to the continuity of preferences assumption made in the usual case.
It rules out preferences such as lexicographic orderings. With ex;
ternalities however continuity of preferences is probably a somewhat
less reasonable assumption. For example, I may like my brother-in-
law to have more, but I don't like him to have as much as.I do. This
sort of preference structure could be discontinuous. The convexity
assumption in 4) is completely gnalogous to the usual convexity
assumption. vNotice it reﬁuires convexity of preferences only in a

consumer's own consumption, given fixed actions of other participants.

Special Assumption I: 3 non-empty compact convex sets:

zZ;€ Rn, i=1,...,8; Y € RZn, e=1,...,t; such that X' (z,y) € Zgs
6 t : s

for all (z,y) € (X Z.,) x (X Y ). We will denote X Z, by Z
i=t 1 e=t € i=t 1

%
and X Y_ by Y.
e=1 e

Comment: The strategy here is to prove the existence theorem for .
a compact economy. Then we will show the original economy can be
"compactified" in a manner which allows us to show that the equilibrium

of the compactified economy is an equilibrium of the original economy.
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Notation: Let P = {p € Rn|h§1 p,b=1,050p, £ 1, Vh}. We will
" take P to be the set of possible price vectors. Let Z X Y X P = W.
For

z€Z, z-= (xl,...,xs),

i
let z, = x, and
i

i 1 i-1 i+l s
z = (x ,..0,% S D

Definition: Let Bl(z,y,p) = (x ¢ Xl(z,y)lp-xl- wl(z,y) < vl(z,y,p)]

i . . .
where v (z,y,p) is a continuous non-negative real-valued function

on W. Bi(z,y,p) is the budget cor:esgpndgqu fq; éqnsumer i. Ihus
for each (z,y,p) € W, Bi(z,y,p) is the set of possible actions for
consumer i which are both technically and economiqally feasible for
consumer i. vi(z,y,p) will evéntually be shown to be the share of

profits function for consumer i.

Definition: The demand correspondence of consumer i, f:W > Zi is

defined

£ (z,y,p) = (& € B'(z,y,2) | E,y,0) @y (=',y,9),

- - -i
for all z, z' such that z, = X,

z = "z' = iz, and Z{ € Bl(ZJYJP)]'

Theorem I: Under assumptions 1)-4) and Special Assumption 1

i, . . .
£ (z,y,p) is upper semi-continuous and convex valued.



Proof: Under Special Assumption I, W is convex, and therefore
connected. Thus since by 3) (Z)i is complete and continuous on
W, by the theorem of Debreu® 3 a continuous utility function Ut

on W which represents (g)i.
i . . ' :
Lemma 1: B (z,y,p) is a continuous, convex-valued correspondence.

Proof: Since vi(z,y,p) is non-negative, by 2), Bi(z,y,p) is non-
empty, for all (z,y,p) € W.
a) Bi(z,y,p) is u.s.c.: Let (zn,yn,pn):+ (z,y,p),

xi € Bi(zn,yn,pn), for all n and xi-* x*. We must show
that x e Bi(z,y,p). By 1), Xi(z,y) is continuous and
thus x© € Xi(z,y). Suppose p-xi- wi(z,y) > vi(p,y).
Since (zn,yn,pn)'+ (z,y,p) and wi(z,y) and vi(z,y,p)
are continuous, for large n we have pn-xi-wi(;n,yn) >
vi(zn,yn,pn) + € for some € > 0. But we alsé have

i i i i

x > Xx so that for large n we have pn-x: -wl(zn,yn) >
i, n.n n . . s

v (z ,y ,p ). But this is a contradiction of

xire Bl(zn,yn,pn). Therefore x" € Bl(z,y,p) and

Bl(z,y,p) is u.s.c.

b) Bl(z,y,p) is l.s.c.: Let xi € Bi(z,y,p) and

n ._n
(z',y ;Pn)‘* (z,y,p), (zn,yn,pn) € W, for all n. We

must show 3 {x;] such that x; € Bi(zn,yn,pn), for all n

. i i
and xn-+ X .



i)

ii)

iii)
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Suppose p-xl- wl(z,y) <’v1(z,y,p), and x € int Xl(z,y).

In this case by continuity of wl(z,y), vl(z,y,p) and

Xl(z,y), for large n x" e Xl(zn,yn) and pn-xl-wl(zn,yn) <
n._n _n

vl(zn,yn,pn). Thus x~ € B (z",y",p") for large n, and the

necessary sequence is obvious.

Suppose p-X - w(z,y) < v (z,y,p), but x" £ int X' (z,y).
Again, by continuity of wl(z,y) and vl(z,y,p) we have
pn-xl- wl(zn,yn) < vl(zn,yn,pn) + € for some € > 0, for

large n. Since Xl(z,y) is continuous, I a sequence [x;]

such that x: € Xi(zn5yn), for all n and x; > x'. TFor

large n then we have pn-xi -wl(zn,yn) <'v1(zn,yn,pn)_ahd
thus x; € Bl(zn,yn,pn) for large n. Again,the necessary

sequence is now obvious.

Suppose p-xl- wl(z,y) = vl(z,y,p) and x= € int Xl(z,y).

By continuity of Xl(z,y), X" € Xi(zn,yn) for large n.
By 2) and since 0 ¢ P 3 e Xl(z,y) such that

p-il- w (z,y) <0, and thus prE- < p-x'. Again, by con-

‘tinuity of Xl(z,y), 3 a sequence [i;] such that

i; € Xl(zn,yn) for all n and i;-é z*. By continuity of

of wl(z,y) we will thus have pn-i;-wl(zn,yn) < 0 for
large n.

For large n let xi = xi if xi € Bl(zn,yn,Pn) or

P | i i . . -1 i
Cif xT # Bl(zn,yn,pn) let x; be the point in {x:, x)



iv)

such that pn-x:'l- wl(zn,yn) = vl(pn,yn). This is possible
because pnoi:'l -wl(zn,yn) < 0 for large n and
[irll, xl] € Xl(zn,yn) for large n, since Xl(zn,yn) is con-

i, . . i i
vex. X  1is unique because either X =x or

x" 4 Bl(zn,yn,pn) which means pn-xl- wl(zn,yn) > vl(zn,yn,pn)

and since for large n pn-i; -w (z",y") < 0, 3 only one

point x; € (i;, x"} such that pn-ic:'l- wl(zn,yn) =
vl(zn,yn,pn). Clearly x; € Bl(zn,yn,pn)_and since
i .

X
n

-1 -1 i i i
> x and p*x < p*x, we have X X, and the necessary

sequence has been found.

Suppose p-xl-wl(z,y) = vi(z,y,p) and x' # int X' (z,y).
Since Xl(z,y) is continuous I a sequence [x;] such that
x; € Xl(zn,yn), for all n and x:; > x'. By 2) and since
Of P3 % € X (z,y) such that p-% - w (z,y) <O, and

so p+Xx'< p-Xx . Again, by continuity of X' (z,y) 3 a

sequence (i;] such that i; € Xl(zn,yn) for all n and

iri1 » x'. By continuity of w (z,y), we have

n

P i:; -wl(zn,yn) < 0, for large n. For large n let

n_n n

X = xrl1 if xrl1 e B (z",y",p") or if x: £ B ",y ),

n
i , . -i _i
let x be the point in (xn, x ) such that

pn-{§; -wl(zn,yn)] = vl(zn,yn,pn). This is possible

because pn-i:1 -wl(zn,yn) < 0 for large n and

~i

-1 i

_ (xn, xn) c Xi(zn,yn) since Xl(zn,yn) is convex. x_ is

. ~i i i i, n _n n .
because either x_ = x_or x_ Z B (z ,y ,p ), which means

20
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that pn-x;-wi(zn,yn) > vi(zn,yn,pn) and since

pn-i; -wi(zn,yn) < 0 for large n, = only one Q;es{i:, x:}

such that pn.;;. wi(zn,yn) = vty p™. Clearly,

. : . . , .
i i, n _n n -1 -1 i i
x €B (z ,y ,p) and since Xk > %, x *>x7, and

p-ii < p-xi, we have ;i-* xi, and the necessary sequence
~has been found.
We will now prove Theorem I.
‘That fi(2,y,p) is non-empty and compact follows from the com-
péctness of Bi(z,y,p) and the existénée of a continuous utiiity

function Ui on W which represents (Z)i'

Let xl, Xt e fi(z,y,p). Then by the‘conveXity of Bl(z,y,p),

(xl, x5 c:Bi(z,y,p). Let Z be such that Ei € (xi, ) and tz=ty,

Then Z, is attainable for i at (z,y,p) and (Z,y,p) (), (z',y,p)

~1 i[ i
x, "z' =

for z’ such that z£ = z, by 4). Therefore Zi 3 fl(z,y,p),

for all ii € (xl,‘ﬁl), and thus fl(z,y,p) is convex valued.

fl(z;y,p) is u.s.c.: Let (zn,yn,pn)-+ (z,y,p), x;EEfl(zn,yn,pn),

for all n and x;-+ %°. We must establish that %' € fl(z,y,p).
i i i, , i, i |
x~ € B (z,y,p) because B (z,y,p) is continuous. Suppose % ¢ f (z,y,p).

Then 3 z € Z such that ;i € Bi(z,y,p), 'z = 'z, and
U¥(E,y,p) > U?(Z,y,p), where Ei = ii_and 'z = iz. Let z" be such
that z° = x> and 'z"
i n

in - . i . .
z . Then since U (z,y,p) is continuous

and (En,yn,pn)-+ (z,y,p), we have Ul(z,y,p) > Ul(in,yn,pn) + € for

some € > 0, for large n.

Since Bl(z,y,p) is l.s.c. 3 a sequence {;;] such that

E; € Bl(zn,yn,pn) for all n and E;-+ z". Define z" by 52 = §:
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and %En = 12", Then 3" > %. But by continuity of U’ (z,y,p), for
large n, Ul(En,yn,pn) > Ul(En,yn,pn). But this is a contradiction

x: € fl(zn,yn,pn). Therefore x € fi(z,y,p) and £'(z,y,p) is u.s.c.

We have now proved that for compact economies satisfying our
assumptions, consumers' demand correspondences are upper semi-
continuous. It should be noted that this demand correspondence is
different from the demand correspondence defined in models without
externalities because it is defined not only on prices, but also
on the space of other participants actions. What interpretation
to give to tﬁis demand correspondence in any dynamic visualizatiqn
of the model is not clear, the problem being, given a price vector
p, what decides what (z’y) is so that the consumer knows what
fi(z,y,p) is? Many ﬂifferent conceptualizations are ﬁossible here.
More will be said about thié after we consider producers in the

next section.
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A-2: Producers

A producer, e, (e = 1,...,t) has a production possibilities

R(s+2t)n

correspondence Ye: '+’R2n denoted Ye(z,y). A typical

Ie Oe 2n
» 9 )

element of the range of Ye(z,y) is qe = (q € R, e Y®(z,y)

means that if (z,y) represents the actions of all other participants

1
(q¢

then qe = 5 qOe) is technologically feasible input-output com-

bination for producer e. It is assumed that Ye(z,y) does not de-

- o€
pend on Yo = 4 -

Notation: For y = (ql,...,qt), let ye = qe’

e-1 e+l t

e 1
v(q jeeesqd y 9 yree4d )J

y

and

vy = - =
Ye =q q

9e (= ﬁe) is just the net output vector corre5p6nding'to the input-

Oe)_ Similarly define

output combination Yo = q¢ = (qu, q
?e(z;y) = {Qelqe € Ye(z,y)]. Then ?e(z,y) is the net output cor-

respondence of producer e.

Assumptions about Ye(z,Y):

5) 3 a closed convex set Y € R2n such that Ye(z,y) C:Ye,

for all (z,y) € R(s+2t+1)n.

e . v )
6) Y (z,y) is a continuous convex-valued correspondence.

" (This implies Ye(z,y) is closed, for all (z,y)).



(7) oe Ye(z,y), for all (z,y).

Comments: That Ye(z,y) is closed and convex for all (z,y) is
analogous to the usual assumption made about production sets in
the no externalities case. This means that given fixed actions
of other participants, producér e's production possibilities do
not exhibit indivisibilities or increasing returns. This however
is perfectly consistent with aggregate increasing‘returns result-
ing from externalities between producers. 1In this case, hdwever,
it is necessary to interpret a single producer as a firm rather
than as an industry. Our assumption that Ye(z,y) be a continuous
correspondencé‘is very strong, but it is consistent Qith most
treatments of production externalities found in the literature,
where an individual producer ié assumed to have a continuous (and
usually differentiable) production function which has as its argu-

ments the producer's inputs, and the actions of other producers.

Special Assumption II: For Y, defined in Special Assumption I,
Ye(z,y) <Y, for all (z,y) € Z x Y. (Y° is compact and convex

by assumption.)

Definition: The supply correspondence of producer e,re: W-=>Y

is defined

re(z,y,p) = [Ele € Ye(zy?)lp'ae Z'P-ﬁe,

for all qe € Ye(;,y)].

24
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Theorem II: Under assumptions 5) and 6) and Special Assumptions I
and II, r®(z,y,p) is an upper semi-continuous convex valued cor-

respondence.

Proof: That re(z,y,p) is non-empty follows from Special Assumption
II which implies Y°(z,y) is compact. The convexity of r®(z,y,p)

is a result of the convexity of Y°(z,y,p) by 6).

e N . n_n '
r (z,y,p) is u.s.c.: Let (z,y ,pn)-+ (z,y,p), qs ere(zn,y#,pn),
for all n and qi-* qe. We must show that,qe € re(z,y,p). By the

continuity of Y°(z,y), q% € Y°(z,y). Suppose q° # r%(z,y,p). Then

3 3 € Y%(z,y) such that p"ie > p-ﬁe.

Since-Ye(z,y) isbl.s.c., 3 a sequence [ﬁz} such tﬁat ﬁﬁ € Ye(z#,yn),
for all n and i§-+ i°. since q:-+ qe, we have pn.a:'e_p_ae, and
since p-%e > p'ﬁe, for lérge n, we have pn-%ﬁ > pn-ﬁﬁi But this is
a contradiction of qﬁ € re(zn,yn,pn),vfof all n.  Therefore re(g;y,p)

is u.s.c.

Definition: We define the profit function of producer e, We(z,y,p)
as:

e
T(z,y,p) = . = max p-q°

ey (Z:Y)

By Special Assumption II, T (z,y,p) is well defined. (Clearly,

T(z,y,p) is single-valued.)
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The following obvious corollary is stated without proof.
Corollary: Wg(z,y,p) is continuous.

. . . i .
Assumption: Each consumer, i, owns a proportion de of the eth firm.

8 i i '
i§1 deb= 1’ de € [0;1], for all i,e.

Definition: Let vl(z,y,p) used in the definition of Bl(z,y,p)

‘be defined

. t i
»Vl(z)y’P) = 2 d 'WE(ZJY’p)'
e={ € :

By the Corollary, vl(z,y,p) is continuous and by 7) vl(z,y,p) > 0..
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We have now éomﬁletely describéd_cohsumgré, pfqducéfs gﬁdftheif
_5ctibns for a cdmpact economy. We return now to thé pfoblem of how
»we interpfét ;he correSpoﬂdenCes fi(z,y,p) and,;e(z,y,p), LAs
mentioﬁed at the end of the iaSt:éectibn, the ihterprétﬁtion of these
correspoﬁdeﬁces in a dynamic_cohtext‘is-nét cleaf. "In a'étfiqtly '
static framéﬁork ﬁe,migﬁ; visualizejwdlfés‘ aﬁcﬁioneér1¢a11ing‘oﬁt 
. not‘6ﬁ1y prices'but’alséja “refeténée" set of aé;iviﬁies‘(z,y),
Thus the aucﬁibnee; would call out a (z,y,p)'s W. On the basis of
this, consﬁmefs would respond Qith fi(z,y,p) and producers with
re(z,y,p)..?In finding a sqution_(equilibfium) thg‘éuctioneef‘must
find a point in W, (z*,y*,p*) wﬁich has,gzg proéertiéé: |

i)' b2 z:,- Y wi(z*,yf) - 2 ?g S‘O‘,.' o
aﬁd | '- | |

‘14) 2 e £1(z*,y*,p*)  and yte r(z*,y*,p%) .

Thus the #uctioheer,mus;,call out both aﬁ équilibrium pficé veétor'v
and an aésociated set‘of-quilibrium actions. ‘It'isinqt'g; ail gle;f
what the tatonnemént'stability properties of an‘equilibrium'wou1d b¢
in a model with gxtérnalities, | | |

‘In évtruly dynamié ffamewo:k‘things‘are much pore éompli@gted}’
.Oﬁe dynamié characterizatién of the model might be:

t

2t e_fl(zt-l, yt-1

ty - -1 ' .

, p ) where (zt 1, yt l) was the set of actions,
~actual or proposed at time t- 1 by the various participants. How-
Lo t=1 -1 i . !

ever, if (z° ~, y ) are the actual actions at time t -1, this

means (zt-l, yt-l) was techﬁically'feasible, which need not be the



case. Thus tﬁe mechanics of a dynamic model with externalities are
not obvious. This essay will not attempt to solve this problem,

we will only demonstraté that a noﬁ-cooPérative eéuilibrium exists.
However, the dynamic properties of such a model are Véry important
begause many policy-prescriptions come frdm the aﬁalysisvof the
static model with externalitieé, éSpeciallj in the field of Public
Finance. This analysis is eﬁen more suspect becauge of the in-
creased likelihood of multiple equilibria in models with ekternal-

jties. This will be discussed in Part iII of this essay.

28
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B: The Exis;ence Theorem for Compact Economies

In this section assumptions 1)-7) and Special Assumptions I and
II are assumed to hold. We will demonstrate that an equilibrium

exists for economies satisfying these assumptions.

Definition: For (z,y) = ((x 5o .,xs), (ql,...,qt)) € Z X Y
let M: Z X Y > P be defined:
: i i . <« Ae
M(z,y) = {p € Plp [ (x"-w' (2, -23%] 2
p- [ & - (Z,y))) -Z 1, VP € PJl.
The correspondence M(z,y) will be used to demonstrate the existence

of an equilibrium,

Lemma 2: M(z,y) is #n upper semi-comtinuous convex-valued correspoﬁdence.
Proof: M(z,y) is non-empty and convex-valued Because P is compact |
and convex.
M(z,y) is'u.s.c.g’ Let (z",y) > (z,y), p" € M(z",y"), Vn and
pn--> P We must show that p € M(z,y). p € P because P is cldsed.
Suppose p>¢ M(z,y) Then 3 p € P such that p = x -2 w (z,y) -2 19 ] >
p-[= x -2 w (z,y) -3 ﬁ ]. But since (z ,¥ )-—> (z,y) and pn ~>p we
have for large n, p- [Z x -2 wi(zn; S Y ﬁ 1> p e[S x 15w (z ,yn)
- Z ﬂn]. But this is a contradiction of p" € M(z" ¥ ™). Thus M(z,y)

is U.S.C.

Notation: Let f(z,Y;P)

S i
i}={1 f (Z,Y)P)

r(zJY}P) e’_{_1 r (Z)YJP)



30

Definition: Define ®: W = W by &(z,y,p) = £(z,y,p) X r(z,y,p) X M(z,y,p)-
Notice that (z,y,p) € @(z,y,p) means: Ei € fi(z,y,p), Vi, |

ie e r(z,y,p), Ve and p maximizes p-[Zx, -2 wi(z,y)-Z ﬁe] on P.

The mapping ®(z,y,p) is very similar to the mapping ¢ defined by

Debreu.® Our strategy of proof will be quite similar also.

Theorem III. ®&(z,y,p) has a fixed point, (z¥*,y*,p*), and if
p*-[Z‘x*i -3 wi(z*,y*) -2 ﬁ*e] = 0, (z*,y*,p*) is an equilibrium.
Proof: Since f(z,y,p), r(z,y,p), and M(z,y) are U;S.C. and con-
vex valued, ®(z,y,p) is also. Therefore, since W is compact and
convex, by Kakutani's Theorem &(z,y,p) has a fixed point. _
TﬁUS‘a (z*,yf,p*) such that (z*,y*,p*) e‘¢(z*,y*,p*). This
means, by the definition of &(z,y,p), that z* ¢ f(z*,y*,p#),
y* € r°(z*,y*,p*), p* € M(Z*,y*).
i) p* € M(z*,y*) means that
p*o (2wt -3 Wl (%, y%) - 3 4] 3 p.(B k- B wl(ar,yR) - 2 0,
VpeP. .
ii) =z* ¢ f(z*,y*,p*) means that el € Bi(z*,y*,p*), Vi, and

therefore p*-[x*l - wl(Z*,y*)] - Vl(z*,Y*:P*) 0.

A

‘ . _ t : s .
But vl(z*,y*,p*) =2 d: p*-ﬂ*e. From _21 d: 1, we have
e= i=

1
] t i
5, 2, d p*.@r® = pr.

e i g ' .
=1 e=1 1 @ . Therefore p*-[x*"- W (z%,y%) ] - v’ (2%, y%,p¥)

Mer

e=

A =

0, Vi implies p*.[Z x*" - 3w (z*,y*) - ﬁ*?]g 0. (This is just
. Walras' Law.)
h h . c . h
Let p € R be a vector with a one in its htD component and zeros
elsewhere. Then ph € P, h=1,...,n. Since ph € P, Vh, by i) and ii)

" we have
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b x*i -3 wi(z*_,y*) -z 'Q*e < 0.

Therefore we have X+ ¢ fi(z*,y*,p*), Vi and vq*e e ro(z*,y*,p%), Ve
and [Z x*i»- z wi(z*,y*) -2 ﬂ*e] < 0. For (z*,y*,ﬁ*) to be an equi-
libriumrit must be the case that if [Z x*i -2 Wi(z*,y*)- by ﬁ*e]h <0
'then"p§,= O; | i

Suppose p*:[Z w3 wi(z*,y*) -3 94*°] = 0. Then since X p¥, = 1, 
0< Ph. <1, Vh it cannot be the case that [Z > rwi(z*,.y*v) -3 ?l*é]h<o
Vh. Therefore [Z x*i -2 wi(z*,y*) -3 ’d*e]l; = 0 for some k. _Sincé . |
p* € M(z*,y*)‘and pk € P it must be that if [3 x*i-Z wi(z*,y*) -

b a*e]h < 0 then p¥ = 0. '

The assumption that p¥*.[Z x*i -3 wi(z*,y*) -3 ﬁ*e] = 0 need not
in general be saﬁisfied. However, when we conétrucﬁ the existence
argqment for'the original non-c'ompact economy a non-éatiatidn assumption |
will allow us to infer thaﬁ this condition holds.

We hafe now provéd>under certain assumptions‘that én equilibrium

exists for a compact economy.
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C: The "Aftainable" Set

Defiﬁition: We will call the vector (z,y) resource féasible (r.f.)
if S x° -3 wl(z,y) -=14° < 0.

We will call a vector (z,y) technologically feasible (t.f.) if

xi € Xi(z,y),'Vi.and ye e.Ye(z,y);\fé. For a vecfot (z,y) to be
attainable for our model it must be both r.f. and t.f.

In tﬁié section we wiil prove under certain aséﬁmptionsAthat
the set of r.f. actions in our model is bounded. This is a stronger
result thanvqe need, since we need only show that ﬁhe Qet éf aﬁtain-
able actions is bounded. However, it will greatly simplify our argu-
menﬁs to do it tﬁis'way. Our arguments in this section parallel those

of Arrow and Debreu” for an economy without externalities.

Assumptions:
'8) For each e, the Y° as defined in 5) is such that 9% is closed. @°
will be convex by (5) since Y is convex.)

B t re o n
9) Let Y = 21 Y. Then Y N Q& = {0}.
‘ o= ,

10) Y n -9 < {0}.

Comments: That ¥° is‘closed is analogous to the usual assumption that
the (fixed) net output sef of a producer is closed. 10) is the usual
irre;ersibility of production assumptibn. 9) and 10) are probably
much stronger than necessary because Y contains mucﬁnmore than the set

of t.f. net output vectors of the economy.



By 1) the Xi(z,y) are_unifofmly bounded from belowv., Let x be

g such_tha}t X < 0 and xi > X, in € Xi(z,y), Vi. Let Zi= {xie Rn‘xi>; x).
Then )’(i‘(z,y) < Zy, V(z,y), Vi. By 2), for earch i Eizt:ri such that |
Qi(-z,y) < v'vi,\ V(z,y). Since wi(z,y) >0, V(z,.y)’,. hX & Z 0 and

S>3 wi(z,y), V(z,y). Let X o=

Definition .
= [xl € Z.!Ei xj € Z, and ye € Y° such tha't]xi'+ 5 ox3 - @ -
i 3 i
Y° = [ye€ Y |3 x) € Zj and yk € Yk such that 2 xJ - @ -

e 9 - 9% < o).

. e . . R
Since 0 € Y, Ve and w > kX, these sets are non-empty. (X con-
tains the set of r.f. actions for i and Y contains the set of r.f.

net outputs for e.)

Lemma 3: For economies. satisfying 1), 2), 5), 7), 8), 9 Y€ and X* ‘
are bounded, Ve,i. |

" Proof: Y’ is bounded: Suppose ¢ is not bounded. Then 3

sequences [’}’"h], [x:;] k=1,..0,t; 1 = 1,....,s such that

. Ae - s A Ak : i. -
nl})mw ]ynl = o, k§1 ¥, 2 .Z, X, - w, V.

1

. |i;b{].

. i § i - : - - .
Since x- € Z,,Vn, we have x_ > X, Vn. Let sx = v, then
n i n="" 2

£
bX '}"nZv-w,Vn.

n
—

For each n let b" = maxl?hl . For large n we must have p"
k ' : :
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By 5) ¥€ is closed, Ve and by 7), 0 € Y, Ve, thus (1/bn)z}~,z +

(1 - 1/pM-0

(1/bn)?: € Yk for large n, Vk, by convexity of ¥€.

|(1/b»n) . ?EI < 1, for large n by definition of b" and so ((1/b") . ’}‘r:]
is contained in a compact set, Vk. Therefore each sequehce has a
convergent subsequence: {((1/b™). ’)"lr: 1, (1/6™). l}\':p > ’)\'k, Vk and
” N
~ ) ‘A ' - -
since Yk is closed ?k € Qk, Vk. Since k§'1 (1/bn?) . y:]: > (1/bnT’ )+ (v -w)
t k t Ak
"and b™ > = we have k2_31 9 2 0. By 9) we have then that k§1 ¥ = 0.

But then, for any k uék " = -’9k. Since by 5) and 7), O ¢ ?k, Vk

m§k " c ¥ and thus -'}"k ¢ Y. But by 10) this means ’}‘rk = 0, Vk.
A bl oK | - 1y v
But this is not possible because lyn.,' =b?, for some k, np, and

therefore for some k I?:’I = b™® for infinitely many n

Sre . i : . |
- Thus Y is bounded. X is bounded: By definition of X",

Vx' ¢ X' we have % gxl SZ’}"e - § x) + @ for some xJGZJ., ye Yo,
= = AL

But this means

x' *,'.i} x1-5-29%<0 for x e Z xJ ¢ Z5, v¢ e Y.
i p

J .
AL

But this means ¥ is bounded, Ve because 9 € ?'-e, Also, x7 e.Zj, Vi

implies xj' 2> v;:, Vj. Therefore

i

R<x <T9% - (s-Nx+w

A

and % is bounded, Ve and so X' is bounded.

Assumption

11) For any k > 0 let B(k) = [ u ¢ R'| lu | < X, Vh) and for any
. . 2n ) ‘ ae

i >0 let c(j) = {veR thl < j,Vh)}. Then for any G ¢ Y,

G < B(n), IHC R2n such that H < Ye, G ﬁ, and H - C(j) for some j -0.




What this assumption guarantees is that bounded net output sets are
achievable by bounded sets of input-output vectors. Therefore, since

A 40 - -, . 2 e :
Y’ is bounded I a bounded set Y’ such that Y€ contains Y€, _

35
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D: The General Existence Theorem

In this section we finally demonstrate the ex1stence of an
equilibridm for the model constructed in section A. The strategy
of our proof is to compactlfy the economy using the results of
section C which show the set of attainable actions is compact Using
'the results of section B, we shown an equ111br1um exlsts for the
ompactlfled economy and then demonstrate that this equ111br1um is

also an equilibrium for the original economy.

Notation: We will denote' the economy constructed in section A and

satisfying assumptions 1)-11) by the vector: |
[(X (2,y), Z o v (Z,Y), (>) i) (v° (Z,y) Y ), (d )}

where z; is as defined in _s'ection C.

Let K be a cube in R which contains each of the sets )'E e
(defined in section C) in its interior. Since V (z,y) 3% (z,y) such
that x (z,y) <L w (z,y) and 0 ¢ ¥°, Ve, by construction, W’ (z y)e int xt
V (z,y), and thus w (z;y) € int K, V(z,y). Since 0 ¢ Y’e, Ve, O ¢ K.

Let 'ii =z, NK,Vi and ii"(z,y) - Xi(z,y) nK,Vvi,V(z,y. ‘Then
- Zi is non-empty convex and compact, -)?i(z,y) is non-empty convex and

compact, and V(z,y) Ex (z,y) € X (z,y) such that (z y) KL w (z,y)

(z,y) is a cont].nuous convex correspondence and X (z,y) < Z , V(z,y).

By 11) since ¥% N K is a compact set contained in ¥° 3 a bounded

set Ge c Ye 'such that ’?e nNKc ’c‘;e. Let Y be such that Y o G

~

~e . ’
% < ¥®, where ¥¢ is convex and compact. Let Y%(z,y) = Y €(z,y) N ¥




Then »ie(z,y) is continuous, convex, compact and non-empty (by 7)) '
and ¥ (z,y) ?e, V(z,y).
Now define a new economy, E, by
E= (&G, I, vy, @), CCn, ¥, @) .
Then E satisfies assumptions 1)-7) and Spécial Assumptions I and TII.

Assumption:

12) X'(z,y) has no satiation cbnsumptidn, V(z,y),Vi. (This means

A ' e x*(z y) such that (z,y) (®). (z’,y) Vz’ such that ‘Z = 'z’ = 'z
= ’ =/i o2 )

- _i . i . . .

Z2, =X, zi’ € X (z,y)).

1

Theorem IV. The Economy E which satis:fies assump_t;ioﬁs 1)-12‘) has an

equilibrium. | |
Eﬂ_f_: By assumptions 1)-11) and Theorem‘ IIi thé e¢ondmy E has -

an equilibrium if‘the fixed point of @, (z*,y*,p%) .‘has the property

0. Since the fixed point has

that p*.[S x*' - 3 wi(zk,y%) - = q*°]
| | i i, e P N
the property that I x* -3 w (z¥,y%) - 2 q*¥ <0, x* ¢ X, Vi and
q*® ¢ ¥ , Ve. Therefore x* ¢ int K. Suppose p*.[x*" - W (z%,y%)] -
vl(z*,y*,p*) < 0. By 12) there is a point e Xl(z*,y*) such that
x* is preferred to x*' at (z*,y*,p*¥). But since Xl(z,y) and )'El(z‘,y)»

‘ =i i i SR S
are convex, and X (z,y) = X'(z,y) N K, k & + (1- k) x* € X (z,y)
for some k € (0,1) since x*" ¢ int K, and by 4) k il + (1 -k) x* is
preferred to x¥ at (z%,y*,p*), Vk € (0,1). But p*-[(k & + (1-k)x*")-
wl(z*,y#)] -_vl(z*,y*,p*) < 0 for some k € (0,1), and this is a contra-
diction of x* ¢ El(z*,y*,p*). Therefore by assumption 12),

Cpre [k - w2k, y%) ] - v (2%, y%,p¥) = 0, Vi.



By Walras Law, then p*.[Z x*T - 3 wl(z*,y¥) - 3 ﬁ*e] =0
y ) P » ;

so the fixed point (z*,y*,p*) is an equilibrium for E. Since

(z*,y%*,p*) is an’eqﬁilibrium for &:

i)

ii)

iii)

iv)

v)

z* = (x*l,...,x*s) is such that x* ¢ f{']’(z*,y*), Vi.
. i i .

By construction then x* ¢ X (z¥,y*), Vi.-

y* = (q*l,...,q*t) is such that ¢*© ¢ '{'e(z*,y*), Ve.

By construction then q*e € Ye(z*,y*), Ve.

S xxt -3 wl(z*,y*) -2 ’d*e <0, so (z*,y*) is attainable

for E.

e . . R I
y*¥  is profit maximizing in Y (z*,y*). We must show that

e . . R . N
y* is profit maximizing in Ye(z*,y*). As shown earlier,

y*® ¢ int K. Suppose 3 §° ¢ Y°(z*,y*) such that

p*- %e > p*?*e. ?e(Z*,y*) = Ye(z*,y*) N K and Ye(z*,y*)
convex implies k 3¢+ (- K)y*® € YS(z*,y*) N K for some
k € (0,1). But this is not possible because then

e + (1- Ky ¢ T2(z%,y%) and p*. [+ (1-0F*]> p9*®,
which is a contradiction of y*e being profit maximizing
in ?e(z*,y*). Therefore y*e is profit maximizing in
Yé(z*,y*).

x*i is optimal in Bi(z*,y*,p*) n ii(z*,y*). We must show

i, . . i .
that x* is optimal in Bl(z*,y*,p*). As shown earlier,

‘x*" ¢ int K. Suppose 3 % € B (z*,y*,p*) such that %' is
PP » 77, P

preferred to x*% at (z*,y*,p*). ‘Since Bl(z*,Y*;P*) is

convex, k 2 +(1- k) x*1‘ € Bl(z*,y*,p*), V k € (0,1) and

k i1+(1 - k) x*t ¢ K and thus ¢ Bl(z*,y*,p*) N K for some
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k € (0,1). But k iii-(1- k) x*i is preferred to x*i at
(z*,y*,p*), Vk ¢ (0,1). This is a contradiction of et
being optimal in Bi(z*,y*,p*) n ii(z*,y*); Therefore ik
is optimal in Bi(z*,y*,p*).

vi) Since (z*,y*,p*) is an equilibrium for E, if
< x”*i -3 Qi(z*,y*) -2 ﬁ*e)h < 0 then P}, = 0.

Therefore (z*,y*,p*) is an equilibrium for E.
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The following is an example of a two consumer, two producer,

three good economy with externalities.

Notation: x? is consumption of good 1 by Mr. A.
' xg is consumption of good 2 by Mr. B., etc.
w% is the endowment of good 1 of Mr. A, etc.
1® is the endowment of labor of Mr. A, etc.
1 , :
x, 1is the output of good 1 by firm I.
11, . ' .
x; is the input of good 1 used by firm II.
II | i . .
X, 1is the output of good 2 by firm II.
LI is the input of labor used by firm I, etc.
Data:

_ AL ByE A
Ut;llty function of Mr. A: UA( X, 2, xl, 4) = (x;+x)) (x)
Endowment of Mr. A: w? = wg =1

| . I
A 18 -x;, 0gx 1 < 16
L.=~ I
2, X, 2 > 16
, BBBAA IS A, B
Utility fgnctlon of Mr. B: U (x X1,%p3X ) = (x -x; + 6x1) X,
Endowment of Mr. B: w? = wg =1
I II IT I
12 X+ x7, -8 < X, - Xg < 10
B II I '
L = 20», X, - x| < -8
2 It s 100

o]
N
1

__?‘

nv
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Technology of Firm I:

1_ ., ., .11
- = (,1+g x2 )LI

X

Technology of Firm II:

in xII ‘12LII I > 1
ming* o 71 X1 2
X
II
X, _ .
. mlp(x1 , 12LII) s 0 < x £ .

: . \ ,
"This model satisfies assumptions\l)-lZ); To see what is happen-

ing in this example, suppose>thatiproduction of good 1 produCés as a
By-proddct noxious fumes, which have a deléteripus effect anthe health
of consumefs'A and B, reducing the amount of labor they can sell.

These fumes'alsojhave a deléteridus'effect on fhe }aﬁoreré working fér
firm II. The proauctioﬁ of good 2»byffirm'II producéé'as a by-prodhct
ozone; which ﬁegatesito some éxtent the noxious fumes of'firm I fof |
Mr. B and laborers'wofking fof firm iI. Mrf_A' does not live cidse ' 
enough to'fir@ II to receive any bénéfits. ﬁr. A likés Mr._BTs conJ
sumption of good 1 and Mr. B likes increaées iﬁ Mr. A's cqnsumptiqn

of good 1 up to a point (until X

= 3), but dislikes inéreases in'x?
beyond this level.
We will take P, = 1, p2'= P, P = price of 1abof (L). Ihé demand

~ functions of Mr. A and Mr. B for good 1 are:

I, 3 B
%(1+p+pL(18-x1) -%xl-'
x? = if this is non-negative and 0 < x, < 16 .

<

‘0, if negative

\
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AZ A
I X, - 6xl
»2(1+p+p (12 - x] +x )) —
. L 2
x? = if this is non-negativé and -8 < #21-x{ < 1o.

0, if negative

Given these demand functions and the‘produCtion'functions, you can

‘eésily show that an equilibrium for this model is:

p*=3, #f =2

k?* =0, &% =16/3 _x?*.='8, %g* ='8/37
LA*.= 6; LB* =6

SR

I e

‘At this eqdilibrium Mr. A is exefting an external economy on Mr. B

at hls consumptlon level of x (i .e., aU /B > 0) and Mr. B is
* : S
™
ax 1
external dlseconomy on Mr. A, Mr. B, and Firm II through its productlon

having a similar effect on Mr. A ( ) . Firm I is exerting an

(BL /B X1 aLB /3 X1 axII /Bx < 0). Firmi11_isvexerting'an

IT

external economy on Mr. B and Firm I through its prédUction of x,

B* CI*
- (oL »/BxII axI /Bx%I > 0).

As is usually the case when externallties are presenL this equi-
librium is not a Pareto Optimum For example keeping production

levels fixed, Mr. B can benefit both himself and Mr. A by giving.SOme
B* ‘

of x; to Mr. A. Thls is because [bU /B 1 BU /B l] > 0. Pareto

Optlmallty in thls example will be dlscussed in Part II of this essay
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We have now demonstrated the existence of an equilibrium for a
class of economies with externalities. An examination of the models
with externalities found in the literature would find that almost
all of these models satisfy the assumptions of our theorem.

The followiﬁg is an example of a two good, two person pure
exchange economy for which an equilibrium does not exist. The notation

will be the same as in the previous example.

. 1 3
Data; Utility Function of Mr. A: UA = (x?- x?)“ (xg)“
Endowment of Mr. A: w? =4 wé
Utility Function of Mr. B:
(xB - xA2 + 6xA)xB if & > 3 x5
1 1 1 ’ 2=2 72
B
vo= 2 1
B A A, BL . A _s B
(x1 - X + 6x )(x) if X, < vaz

: B
Endowment of Mr. B: wlB =4 =w

In this example Mr. B's preferences are discontinuous (they do
not satisfy assumption 3)). Mr. B's satisfaction derived from con-
suming good 2 is discontinuouslyvreduced if Mr. A's consumption of
good 2 falls below % xg. This type of discontinﬁity of preferenceé
is‘certainly not inconceivable in the presence of consumption ex-
ternalities.

The demand functions for A and B are:
L4 +4p - 3xD) {f this is > 0
i p-3x) , i this is >

0, otherwise



2
», %(4-+4p+-x? - Gx?), if xg 2 xg, and this is > O
B 2 i
L= {-%(4-+4p+-x? - 6x?), if xg <3 xg,_ and this is > 0

\ 0, otherwise

Again we take P, =1, Py = p. An eqdilibrium would be the solution

of either of the two following sets of equations:

I.

i)

ii)

iii)
iv)
v)

II.

i’)

iif)

L(4+bp-3x) , if this is 3 0

xA =
1
0, otherwise
L4+ 4p+ A2-5 A if thi
5 Pt x| xl), if this is > 0O
x> =
0, otherwise
A B
X, +x; = 8
A A _ _ B B
X + PX, =4+ 4p = X + pr»
A B
3
*22% %
%(4 +4p-3x§) > if this is > O
x? = '
0, otherwise
2
%(4'F4p+-x? - GX?) s if this is > 0
xt =

0, otherwise

44



sl A _ 
iii”") Xy + X = 8
. A _ B, B
iv®) X; + px, =4+4p = x,+ px,
v’) X

* *
‘The only solution of I. i)-iv) is p* = 3; x? =0, xg = 16/3;
B¥* B* .. .
X, = 8, X, = 8/3. But this is inconsistent with I. v), so no

solution of I exists.

i < N 3 % A* A*
The only solution of II. i )-iv’) is p* = 2; x; =0, x, =6;
B* B¥ o . '
X, = 8, X, = 2. But this is inconsistent with II. v’), so no so-

lution of II. exists.

Therefore this example has no equilibrium.
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PART II
OPTIMUM

In Part II we will discuss (Pafeto) optimality and the relation-
ship between equilibrium and optimality in the model constructed in
Part I. In the usual model without externalities if consumers' con-
sumption sets and preferences are comvex, an equiliBrium where no con-
sumption is a satiation consumption is a Pareto Optimum (Debreua){
Therefore the set of assumptions sufficient to guarantee existence
of equilibrium plus a non-satiation assumption are sufficient to
guarantee existence of a Pareto Optimum. (These assumptions are much
stronger than necessary.) However with externalities, it is not true
generally that an equilibrium is a Pareto Optimum. We will show though
that as in the non-externalities case, the set of.assumptions sufficient
for existence of a Pareto Optimum is much weaker‘than the set sufficient
for existence of an‘equiiiﬁrium. The main problem in establishing
the existence of an optimum is to show the set of attainable actions is

compact.



A: The Existence of a Pareto Optimum

Let ¥° and 7, be as defined in Part I, section D, and let

s

~ t -~ ~
¥=x Y, %=
e=1 ‘e i=1

Zi' Consider the mapping Y: ZxY~> Z X Y where
. 8 i v . )
¥Y(z,y) = [ix1(x1(z,y))] X [ X1 Ye(z,y)]. Under the assumptions of
) = » e= ) .
‘Part IV is a continuous convex-valued correspondence and ZxVYis

compact and convex. Thus by'Kakuténi‘s theorem ¥ has'a fixed'point.

47

(Notice that we only need X' (z y).and‘Ye(z y) to be upper semi-continuous
‘ ) J . - .

and convex-valued to make this argument.) Let (z%,y*) be a fixed point

of ¥. Then x*" € il(z*,y*),_ Vi and q*© ¢ ?e(z*,y*)', Ve. Since

)a('l(‘z,yb)c_xl(z,y) ; Vi and ?e(z,y) < Y(z,y), Ve, we see that a fixed

point of ¥ is a vector of téchnologically feasible (t.f.) actions.
Let F be the set of fixedApoints of ¥. Then F is the set of t.f.

~actions in E.

Lemma &4: F is ¢0mpaqt;

| 25222:- F'ié clearly bounded. (Z aﬁd ¥ are bounded;) Suppose
F is not closed. Then there exists a sequence {(zn,yn)] such that
(Zn,Yn) 9_(Z,y5{ (in;yﬂ).e Y(zn,y#), Vn but (z,y) £ Y(z,y). But
;his is é contradiction_of ¥ upper semi-céntinuous, .Thus F is closed.

(F will not in general be convex.)

Now consider the mapping &: Z x ¥ » R" where g(z,y)?=z-2 wl(z,y)-‘

. i s . . . . o '
Z §%. since w (z,y) is continuous, Vi t(z,y) is a continuous function, -

and furthermore O is contained in the range of ¢ because wl(z,y) € Zi,
Viand0 € ¥, Ve. Let B = ((z,y) € Z x ¥le(z,y) < 0). Then B is

B N F. Then A

non-empty and compact since & is continuous. Let A-



is the set of attainable actions in E. A is compact since B and F

are. We must show that A is non-empty.

Lemma 5: A is non-empty.

8 i '
X wl(z,o).

Proof: Consider the mapping q: Z - Z where d(z) =X
irooZz _ iz

By the continuity of the wi(z,l),we have that ¢(z) is continuous and
since Z is compact and convex o has a fixed point;f Let z be a fixed
pbint of &. Then (Z,0) € F because O € ?e(z,y), V(z,y) and

wi(z,y) € ii(z,y), V(z,y). Also; (z,0) € B becaﬁse By definition
of a, i£1 wi(i,o) = Z. Thus (2,0) € A. As mentioned earlier, A is

the set of attainable actions for the economy E and as we have shown,

A is non-empty and compact.

Theorem V: The economy E has a Paréto Optimum.

Proof: Under the assumptions on preferences, each consumer, i,
has a continuous utility function Ui(z,y) which represenﬁé his pre-
ferences (;)i- (We drop the assumption that vt depends on prices also
because it is meaninglesé in this context,j

: ‘ [ §
Consider the function B: A - R® where B(z,y) = X Ul(z,y), and
1=

1
the function Y: Rs-§ R, where v (x) is any continuous strictly increaé-
ing function (increasing in each of its arguments). |

Then the function r(g(z,y)] is a continuou# real valued function
on A;.and sinée A is compact, tﬁis function attains its maximum.

Clearly, a maximizer of this function in A is a Pareto Optimum for

the economy E.
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The assumptions we have‘ used to guarantee the existence of an
optimum are stronger than the corresponding assumﬁtions used in the
treatment of the problem for ecﬁnomies without exterﬁalities. For
example, we needed to have the ﬁi(z,y) to be convex, which is not
necessary in the usual case. As indicated earlier, the assumption
we used in shéwing Y has a fixed point‘and F is compact only requires

that il(z,y) and ?e(z,y) are convex and u.s.c.
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B: Optimality and "Equilibrium"

As is well known, a competitive equilibrium with externalities
is not in general a Pareto Optimum. This ariées of course because
individual optimization is not necessary or sufficient for joint op-
timization when the individual objective functions are interrelated.
In some situétions, mainly when there are only good externalitiés,
this lack of optimality of equilibrium can be explained by the absence
of sufficient markets. This is discussed in the paper by Shapley and
Shubik,9 which demonstrates that in a model with only '"good" producfion
externélities, under the usual assumptions the core wiil not be empty.ﬁ
In such a situation if there are markets for externalities a'competitive
equilibrium will‘exist in the model with the added markets and it will
be in the‘ core (and therefore a Pareto Optimum). To see how this would

work, consider the following example.

Data:
Utility function of Mr. A: UA = (x? + x?z)xg
Egdowment of M;. A: ‘w? = 2, wg =6
Utility function of Mr. B; UB = x? kg

>

Endowment of Mr. B: wl =2 = w?

For the usual model where externalities are not traded, the demand
functions for good 1 (with py =1, p, = p) are:

BE
1+3p - x; /2, if >0

0, otherwise
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B

X, = 1+p

The equilibrium for this model will be:

* * * *
p* = 1; x? = 2, xg = 6, xB = 2, xB =2

Now consider a model where the externality (Mr. B's consumption of
good 1) is tradable. 1In this case there is a market for Mr. B's
consumption of good 1 -- i.e., Mr. B sells a new good (his consumptién
- of good 1) to Mr. A. Let pB be the price of this good.

The demand functions for this model come from the solution of

A B

the following problems. (Let Xy be the demand by A for B's con-

sumption of gdod 1.)

2 .
max (x? +A§? )xé subject to _
A A AB AL AL BAB
T B ¥ xl xl px2 P x| = P
‘ max x? xg subject to
- [B B, B
{x];, xg} x; + pX, = 2+2p+ pr];_

The demand functions for this model will be:

x1 =0
xA - 2+6E
2 3p
AxB - 4+122
1 3B
P
Bol*p
1 B
. 1-p
2 =1*p
2 P



The equilibrium for this model will be:

* * * * * *
R A R i

This allocation is a Pareto Optimum and it is in the core since
it is an equilibrium supported by the original income distribution.

This Pareto Optimum can also be supported by a system of lump
sum and specific taxes and subsidies. Let IA and IB be arbitrary

income levels for A and B (p1 = 1). Then the original demand functions

can be written:

2
2 .52, if >0
X -
1
0, otherwise
x? = IB/2

Let S? denote a per unit subsidy on B's consumption of gbod'1 and let
82 be a per unit subsidy on both A and B's consumption of good 2.
s B L. A =B .
Let and T~ denote lump sum taxes on A and B. Let I and I  denote
the values of the endowments of A and B evaluated at the original
equilibrium prices (p* = 1). (I

= 8, g 4) Then in this tax and

subsidy séheme, the demand functions can be written: (for pf==p§==1)
A _A > '

J l——igl- - xB /2, if >0

\

\

| 0, otherwise

52
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A B2/2

+ x =A
2 1 T B2
if ——— -x./2>0
xA= (1-32) 7 2 1
2 =A A
1-T otherwise
(1-s,))°
2
kB= iA-TA
1 B
B T
X, = ——
2(1 - Sz)
* * * *
The Pareto Optimum (x? =0, xg = 4, x? = 4, xg = 4) can be

supported by the original equilibrium prices (p* = 1) and lump sum

taxes and subsidies:

TA* B* B* '
=4 T =-4; with 5 =S5f=0.

Therefore this Pareto Optimal allocation can be supported either
by a set of markets incldding a market for the externality, or by
the original equilibrium prices and a system of lump sum and specific

taxes and subsidies, where the net price paid by each participant for

the '"non-external' good is the same. Later in this section we will
show under certain assumptions that a Pareto>0ptimum in a model with
externalities can always be supported by a suitable system of lump

sum and specific taxes and subsidies, where all participants face the

same net price for non-external goods. It is not true however that

a Pareto Optimum can always be supported by a set of markets including

markets for externalities. To sse'this consider the following example:



Data:
2
(x <P )xA , if xB <5
1 1 2 1 =
Utility function of Mr. A: UA = \ A A 3
| K(xl - 25)x2 ,  if x;/ >S5

Endowment of Mr. A: w? =6, wg =2

Utility function of Mr. B: UB = x? xg
B B
Endowment of Mr. B: w, = 2 = v,

If externalities are not tradable the demand functions for good 1

will be:
B2
*1 B
3+p + 5 if this is < 6+2p and x; 5
A=
1
6+ 2p, otherwise
»x]13- =1l+p

An equilibrium for this model will be

A% B* B* B*
p* =1, X = 6, x; = 2; x, =2, %, = 2.

This of course is not a Pareto Optimal allocation. Fbr example, if
we reduce B's consumption of good 1 to % and increase his consumption
-of.good Z.to 8/3 then he has the same utility as aﬁ the equilibrium.
Bﬁt this reallocafion leaves A with 13/2 of good 1 and 4/3 of good 2
‘giving him a utility level of 17/3 which is bigger than his utility
at the equilibrium.‘

1

Now consider adding a market in the externality. (Let AxB be

the demand of A for B's consumptioﬁ of good 1.) The demand functions

54
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for this situation are the solutions to the following two problems:

A A B3 A B
nax (x1 - X )x2 , for x7 <5

'xA xA A B
1’ *20 %

(x? - 25)x§ 5 for x

subject to xA + pr =6+2p- pB' AxB
1 2 1
: max xB xB subject to xB + pr'- prB =2+2p
: 1 72 1 2 1
{1 =} |
X1 %2
The demand functionlof B for xB is:

1
B . ’
(If po > 0, A pays B for B's con-
B +p .. B |
X, = 1tz if p” <1 sumption of x?; if pB < 0, B pays

A for B's consumption ofbxﬁ.)

The demand function of A for “xP is:

1
Ax? =0, if pB >0
AK? =2, if pP <o
. . B . . . AB B
Obviously, there is no p which will clear the market (i.e. xl==x1).

Thus in this case a set of markets including a market for the exter-

nality does not have an equilibrium.

A*
X

' * %
= 10/7; b =1, x5 = 18/T.

Now consider the allocation x? =17,
This is a Pareto Optimum. Writing the demand functions of A and B

‘as we did in the previous example we have (for pf = pg =1):



2
@ - /2 + <52 X 4 -
r s if <T -T and X1 <5
. ¢ - Sl)
1=X
xl =
A A
I -T .
3 otherwise
1 -8
2
a*- 12 - x> /2
- , if >0
A -
*2
o 0, otherwise
B L.
1 B
‘2(1-51)
B L - T
2 2(1-5s,)
Starting at the original equilibrium we have p* = 1, iA = 8,
iB = 4. The original equilibrium prices (p* = 1) and the following

- system of taxes and subsidies will support the Pareto Optimum alloc-
A* B* B*

, A*
ation (x; =7, %, = 10/7, =, =1, x, = 18/7):
% * * B*
™ < 2977, 1 = w87, s = 32/m9; 8] =-11/7; s3=o0

(In this scheme B receives a lump sum subsidy and pays a specific

tax on his consumption of good 1.)

29/7 + 1.41/7 = 460/7

Total taxes

Total subsidies 8/7 + 7 - 32/49 = 40/7
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B.1: Graphical Depiction of Pareto Optimum

In a two consumer, two good, pure exchange economy we can give
a graphical description of Pareto Optima in a manner analogous to

the graphical analysis of such a model without externalities. We

A B B

have two consumers A and B with utility functions UA(X?, X553 Xy, x2),

B, B B A . -
UB(xl, Xy3 Xi5 x:), and a total resource constraint, iAi-xg = Xy,

1
A B .
x2 + x2 = xz.

of A and B, denoted ﬁA and ﬁB, as
- A A ‘ A A - A o A
UA(xl, x2) = UA(xl, Xp3 Xy- Xy, Xy- xz)

B B -

-B, B B, B B . B
1§} (xl, xz) =U (xl, X3 X, =%, xz-xz)

Under the usual assumptions these utility‘functions will have well
defined indifference cufves; but the indifference curves won't always

be downward sloping of convex. Consider the previous example:

B2, A

UA' (x? - X )x2 , hif x?_g 5
) .(x? - 2$)xg , if x? > 5
W = 6, wg = 2
UB ; x? xg'
w? = wg =2

In this case we have

’[xA - (8 - xA)2 xA‘, if 8--xA <5
A 1 1 1 =
U = .
' A S A . A
Xy - 25]x2 s if 8 - 1 >3

We will define the resource feasible utility functions_
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U =x

=B B x
1

B
2
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The locus in (x?, xg) space of the indifference curve ﬁA = -25 is:

A A A 2.-1
x, = -25[x1 - (8 - xl) ], 1if 8-
(xA > 0)-25[x, - 25].1 if 8--xA > 5
2 = 1 ’ 1
Therefore

22
2501+ 2(8 - ) ][ - (8_-3‘:‘)2]

dxg/dx?|_ =
=% A oq-2
25[x] - 251°%

>

if 8- x? <5

if 8- x? > 5

From this we see that the indifference curve corresponding to

-A

the indifference curves of ﬁA.

U = -25 is positively sloped. The following diagram is a graph of
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I1f we graph the indifference curves of ﬁA and ﬁB in an
Edgeworth box, the (interior) Pareto Optima will be points of
taﬁgency of these two sets of indifference curves. Consider again

: * * * *
the Pareto Optimal point, x? =7, xg = 10/7, x? =1, xg = 18/7.

=A% * -B* *
For this allocation 0* = UA = 60/7, 8" = vB* = 18/7. 1In the
: foilowing Edgeworth box diagram we will depict this Pareto Optimum
and how it is supported by the tax and subsidy system we derived

earlier. Through the Pareto Optimal point we will draw the indif-

ference curves:

1y @

~-B*
UB

60/7 ,
18/7,

2)

3) UA(x?, xg; 1, 18/7)
* .

) UP(x}, x5; 7, 10/7) =18/7, denoted U = 18/7.

Notice that the original endowment point is in the interior of the

. N * .
60/7, denoted vt - 60/7; and

new budget sets of A and B. This is because of the lump sum trans-

fers. The locus of Pareto Optima for x? < 12—5——33 is the line
xA =0
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To get a better understanding of why an equilibrium with added
markets does not exist in this example, let us go back to our first

"example of this section:

UA = (x% + x?z)xg
w? = 2, wg =6
I
w? =2 = w?

In this example we have:’

ik

A A2 A
(x1 + (4-—x1) )x2

= xB xB
I S ]

The (ﬁ) indifference chrves through the‘original endowment_point
are: ﬁA = 36, ﬁB = 4. 1In the following Edgeworth box diagram we will

depict the equilibrium“with a market for the externality (p* = %,

* A% * * * -
pB =2, x? =0, xg = 4, x? = 4, xg = 4). The (U) indifference
, ' —A%* -B* ' .
curves through this point are: " = 64, U~ = 16. The locus of

Pareto optima in the Edgeworth box will be the line x? = 0.
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As we have seen earlier, for pB >0 A's demand for “x

Notice that the original endowment pointé are in the interior
of A and B's budget sets. ‘This is becéuse A and B's eﬁddwments of
good 1 are valued at 1 per unit which is above both.the'priCé of

consuming good 1 for B and the price of Ax? for A. The total cost

‘ito both participants of B's consumption of x? is 1 per unit.

Now let us return to the example in which an equilibrium with

A

a market for the externality does not exist. Let = UA(x?, Xy} 0,0).

A B

is zero.
1 i

. In the following Edgewofth box diégramywe draw somé indifferencé:

curves for ﬁA and'UB. ﬁA-is‘the valid utility function to consider
in a search for an equilibrium since we must have pB >0 (otherwise
A's demand»for"Ax? is infinite). However, we see from'the indif-

ferencevcurves of B that B will never choose x? = 0 in any budget

situation. Thus no equilibrium can exist.
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B.2: Pareto Optimum and Individual Efficiency

It has been pointed out by Murakami and Negishi'® that in a
model wiéh'pure production externalities a Pareto Optimal allocation
could require some producer to operate at an indivi&ually inefficient
production point (i.e., in the interior of his production set). 1In
such a situation the Pareto Optimum cannot be supported by a system
of taxes and subsidies in the usual sénse because in such a situation
an inefficient producer would have to face zero prices. In a model
with only pure production externalities ;he possibiiity of this situ-
ation arising is small (a necessary condition is that the producer
exerts an external economy through all his actually used inputs and
an external diseconomy thréugh‘all his actually produced outputs).

As we shallvéee the probiem becomes much more complicated in a general
model with various kinds of externalities.

Our analysis will parallel that of Murakami ;nd‘Negishi and use
non-lineaf programming as the basic technique. To do this of course
we will have to assume differentiability, etc. We will assumebthat
the Pareto Optimum’can be described as the saddle point of the appro-
priate Kuhn-Tucker Lagrangean.

Ui(z,y) is the utility function of consumer 1i. ﬁe assﬁme that
the ﬁroduction correspondence of the eth producer can be represented
by the implicit equation ge(z,y) < 0. |

A P.0. can be described as the maximizer of the following

problem:
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1
max U (z,y) subject to

{Gy e 2xF

) U(z,y) 2k, A1

2) g°(z,y)

uA

o , Ve

3) 2 xi + % qu -2 wi(z,y) - % qoe <0

We will assume that

(z,y) 20, Y(z,y) € Zx¥.

We formulate the Lagrangean:

1 s . '
L =U (z,y) - iZ=)2 Yi(ki-Ul(Z,y)) - Ze} ?\ege(z,y)

Denote BUl(z,y)/Bqﬁk, etc. by U

ly, denote Bw;/8q§k by (TR E ong awl/ax? by (mj)wi.' The F.0.C.'s

S D [T 4Dt D D,y
W2 Pl T T T "h %Y

i
(Ikj)

h

for the saddle point of L are:

1)

and

ii)

_ o1 2 i ' e
ey T Yakn Y E Tk "‘;:‘”egakj)‘

i=2

: Z

Ik :
qj -L(ij) =0,; k=1,...,t5 j =

1
e

= ' gt

n - :
E. Ph (E(OkJ) l(z,y)) g 0
h=1

W
i h

, and BU}QBX?, etc. by U

ks (Ikj) i
Z Py (? Wh(Z,Y))
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and
Ok . .
q 'L(ij) =0, k =1,...,t 3 j=1,...,n.
1 Ji e
iii L, ..=U, ., + & U, .\ - A N~ P. T
1i1) (mj) (mj) 12;2'1 i (m3) z eB(mj) " P
> E(mj) i
Py wh(z,y) <0
h i o=
and
J. (mJ)_O’ m=1, »8y 1 =1, )
iv) - (z,y) -k;) <0, v, 20,
and T, (k. - Ul(z,y)) =0, 1i=2,...,s.

v) »ge(z,y) <o, ke >0, and Kege(z,y) =0, e=1,

, i ' i Oe,
vi) [Zx;+2q§e-zwl(zyy)-2qe.50, P, 20,
1 e 1 e o

ph'[ ]=0, h=1,...,n.

(These F.0.C.'s are evaluated of course at the P.0. point.)

We shall consider first the model discussed by Murakami and

Cors s i, ' .
Negishi, i.e., U is not dependent on z except for z; and is not

‘ e . i,
dependent on y; g is not dependent on z, and w 1is a constant.

In this case our F.0.C.'s become

r J - )\ e - Ik{_ )\ e _ =
SR P RLTI L  t AR RN RN

ot
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sl _ A e + ok _ e + =
159 -t Py S0 95 [ E ABokgy F Ryl O
1 1.1
U, .. -p. <O v, .y -p.]1 =0
(1) " Py=T xJ[ 131 pJ]
iii’)
i i i .
.y - P. < (U, .y - p.]=
Ti¥i5) " Py S 0 xJ[U(lJ) pJ] 0, A

' 1
1f every good is desirable, U(1j) >0, Vj then Py > 0, Vij.
Assume Py > 0, Vj. Suppose gk(z,Y) < 0, for some k -- then

A. = 0. Then we have

k
1k
Ags . =-p.<0O £ >0
Ek B (1k3) Pj ’ or 4
e ok
) %eg(ij) =p; > 0, for a > 0 .

efk
Ik . e
Thus we see that for g, > O it must be true that A > 0 and g A< 0
» i e (1kj)
for some e -- and for q?k > 0 it must be true that %e > 0 and
e e
.y > 0 for some e. .. < 0 means that producer k exerts an
Blokj) ~ . & B(1kj) P
external economy through his use of good j as an input on producer
e. TFor example, suppose producer e produces Q using u and v as inputs,
and producer k uses b as an,inpﬁt. Then producer e's production
possibilities might be given by: Q@ - au - av - a3b < 0. Similarly
g?ORj) > 0 means that producer k exerts an external diseconomy through
his output of good j on producer e.
Thus we see that if all goods are desirable and if producer k
operates inefficiently at the P.0., it is necessary that for every

input he actually uses he exert through this input an external economy

on some efficient producer, and for every output he actually produces
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he exert an external diseconomy through this output on some efficient

producer.

Now we shall consider the case where there are both consumption
and production externalities
ities. Again we will assume

OQur F.0.C.'s are

i” )

o e
HD -2 B kg * Py

iii”

We see that this case is analogous to the one just considered except

now we cannot so easily assume that Pj > 0, Vj. The necessary con-

-2 AgS. . -,
%; e®(1kj) " Pj

+ 22 TU

but no consumption-production external-

wt is a constant.

A

WA

-, <
(mj) ~Pj£°

T D A
J e
qqk[-z> A

J e

m. 1

XUy *

2

i#1

c - p,]
eB(1ki) T Pj

e
N+t P,
eB(0kj) pJ]

i
U, .
L (mj)

ditions in this case for a producer to operate inefficiently at the

P.0. are:
a)
(p. >0
(pJ )
b)

ood .
g (pJ
producer.
c)

good (p.

]
producer
ducer it

producer.

An actually used input which is also a "desirable' good
must exert an external economy on some efficient producer.
'An actually produced output which is also a '"desirable"

> 0) must exert an external diseconomy on some efficient
An actually used input or produced output which is a '"free"

or if it exerts an external economy on some efficient pro-

must exert an external diseconomy on some other efficient

N

=0

=0

=0

= 0) must either exert no external effects on any efficient
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Of course there are no interesting necessary conditions for a
good to be desirable or "free". A good will be "desirable" if
1 . i
U(mj) > 0 and U( i 2 >0, Vi #1 for some m. (Of course if U (z,y) =
ki,‘Vi.f 1, then 1 and i are interchangeable here.) Obviously,
however, this is not a necessary condition for "desirability". We
shall consider now the general case, described by the F.0.C.'

given in i)-vi). Suppose, again, that producer k operates inef-

ficiently. Then we have:

~ e 1 (1kj) i
D Zheam T Pt iy t G, T Yy * Z L Pl )

#

for q?k >0
~ (Okj) i,
0 3 Nlong) T Ps* Yoy *Z, Tilokn PT (T W)

for q?k >0,

oy 1 i e (mj)
111) .U(mj) + 191 TiU(mj) -Z;' )\eg(mj) Pj +Z ph Z (h)]

for x? >0 .

For the case where ﬁroducer‘k exerts no external effects on any
consumer, we have a situation analogous to that just treated, except
that whether a good is '"'desirable" or "free" is much more complicated.

We see also from ﬁ), that since Pj > 0 it cannot be the case that
through an actually used input, (inefficient) producer k exerts only

external diseconomies on efficient producers and consumers (i.c.,
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< 0), while having a "non-augmenting" effect on consumers'

) 1
j )w;

i
Yz
endowments ((I < 0) of "desirable'" goods. Similarly it cannot
be the case that through an actually produced output inefficient
producer k exerts only external economies on efficient producers
and consumers (U%ij) 2 0), while having an augmenting effect on
consumefé' endowments ((Ojk)wi > 0) of '"desirable" goods.

Another way of stating this is that if good j is '"desirable"
and/or[(inefficient) producer k exerts only diseconomies on consumers
ahd has (only) a "non-augmenting" effect on endowments] through actually
used input q?k, then he must exert an external economy on some efficient
pfoducer thfough q?k. Similarly, if good j is deéirable and/or [in-
efficient producer k éxerts only external economies-qﬁ‘consumers and
has (only) ;n'augﬁenting effecﬁ on endowments] through actually pro-
duced output q?k, then he must exert aﬁ external diseconomy on some
efficient producer thrdugh q?

Of course these conditions are very similar to:tﬁe,original
Murakami-Negishi copditions. If we let

Ikj : e 1 i
0 A = - - . .
6 (,y; T,AP) i NeB(1ki) " V(1ky) 12;41 Y% (1)

(Ikj) i
-z ph( Zl; wh)

Ok .
and define G j(z,y-, Y>A,p) similarly, we can define producer k as

producing a net aggregate external economy at the P.O. (z,¥; v,;N\,p)

through actually used inpuﬁ q?k if'GIkJ(z,y; vsN\,p) < 0; and producer k

as producing a net aggregate external diseconomy at the (z,y; v,A,p)

through actually produced output q?k if G?kj

(z,y; Y'/'P) -0,




Using these definitions we see that a necessary condition for
producer k to operate inefficiently at a P.0. is that he exert a net

aggregate external economy through all actually used '"desirable"

inputs, and a net aggregate external diseconomy through all actually'

produced "desirable' outputs. Unfortunately this is not a very use-
ful necess#ry condition excépt in the case that the producer affects
all participants in the same way through a given good, because other-
wise the direction of the net external effect dependé on the values

of the multipliers.

[ D OO e sm e o s § & 5h hee ¢ oama
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B.3: The Second Optimality Theorem of Welfare Economics for

Economies With Externalities

The Second Optimality Theorem of Welfare Economies for economies
without externalities states that under certain assumptions (con-
vexity, continuity, and non-satiation) a Pareto Optimum can be sup-
ported by an "ordinary" price system (i.e., all participants face
the same prices) with a lump sum redistribution of income, i.e., that
a Pareto Optimum is an equilibrium for a suitable distribution of

income. As is well known, this theorem is not generally true for a

model with externalities. It might be instructive at this point to show

show how the theorem breaks down in the presence of externalities.
Let (z,y) be a P.0. Following the notation of Debreu, let
C X3 : i i, _1i ’ _‘ ’
X;'(z,y) = (x{ € X (2, ](z",y) ;(z,y), for 2" ="z, and z; = x;].
Then by our earlier assumptions, X:i(z,y) is convex. Similarly
e . . . . .
2%(z,y) is convex, Ve. Assume some consumer, i*, is not satiated
| Xy * ’ i :
at (z,y) and let Xi* = {xi € X (z,y)|z%,y) (>)i (z,y), for
’ ? . «Xj X3 A€,
and z], = x;,}. Then the set G = X, + 2 X.' -2 ¥ is convex.
1 i* i* ifi* 1 e
The usual proof at this point observes that in the case of no ex-
' s . '
ternalities the point w = _21 W Z G because (z,y) is a P.0. How-
R 1= : .
ever this is not the case in general in the presence of externalities.
This is because G contains many (inconsistent or inconsistently ranked)
net aggregate consumption vectors. Thus there are points, (z, y) such
LXK ' ~e

-i%* ~-i X; . . e e =i
that X e‘xi*, X €Xil, iAi*andy € Y (z,y) and 25 x -y =

Zwl(z,y), but, (z, y) A (z,y) for some i and/or y°- & Y (Z,¥) for
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some e, or wi(z,y) # w'(z,y) for some i, or x" & X'(z,y) for some i.
As another approach one might define a new set H(z,y) =

= ii - Z‘sel(2,§) (z)i (z,y), Vi and (5,;) (>)i (z,y) for some i,

where 7 = (x1,...,x%), and (z,7) € (if:c1 x1(2,5) x (e§=<1 Y (z,7))].

Of course in this case by the assumption that (z,y) is a P.0. it must
be that % wi(z,§) £ H(z,y), V’(E,;). What goes wrdng here is that the
set H(z,y) will in almost all cases be non-convex,vsd that we cannot
apply the usual separating hyperplane argument. Even in the unlikely
case that H(z,y) is convex so that a set of prices could be found --
these prices would not in general support the P.0. in the usual sense
becéuse H(z,y) restricts consumers and producers td jointly consistent
allocations. Thus at the set of prices found in this manner if con-
sumers and producers are allowed to choose at those prices over the
sets Xi(z,y)5 Ye(z,y) -- not the restriction of thosé sets implied by.
>H(z,y) -- producers and consumers will in general not choose the P.O.
point. More will be said about the non-convexity of H(z,y) in Part I1II
of this essay.

There are some cases in which a P.0. can be supported by a price
system in the usual manner for certain types of externalities. For
example, the paper by Sydney G. Winter, Jr.*! shows that in a model
‘with‘only consumption externalities where everyone's préferences
"agree'" in the sense that if z(z)ii, where iz = ié, then =z (Z)i’ E,
Vi’, the Second Theorem holds (under the ﬁsual assﬁmptions). The

reason for this is that for these special type of preferences and by
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transitivity it is easily shown that 2 wi Z G. Even’in this
special case, however, it is not true in general that a C.E. is a
P.0. The reason for this is that gifts are not permitted in the
usual C.E. model, and so the income distribution will generally

be incorrect. An example of this situation is the first example

of Part II of this essay. It is well known that in a model with
externalities, under certain assumptions a Pareto Optimum can be
supported by a redistribution of income and what I shall call a
quasi-price system. A quasi-price system is a price system where
different participants may face different prices for the same good.
The usual interpretation of a quasi-price system is a price system
with a set of specific taxes and subsidies (specific to both goods
and participants). Under the usual convexity and continuity‘assumptions
and the assumption that no consumer is satiated and all producers
are producing at (individually) efficient production points at the
Pareto Optimum, the demonstration of the existence of a quasi-price
system which supports the P.O. is.almost trivial. (We will say a

quasi-price system supports a P.0O. if all production points are profit

maximizing and all consumption points minimize the cost of preferred

or indifferent consuﬁption points, at the set of quasi-prices). The
reason for thié is that if (z,y) is any (mot necessarily Pareto
Optimal) attainable allocation where each producer's production point
is individually efficient, no consumer is satiated, and the usual
convexity and continuity assumptiqns-ﬁold,(z,y) can be supported by a

quasi-price system. To see this we need only note that by our non-
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satiation assumption, xt £ int x:i(z,y),Vi.and by_ouf efficiency
assumption, ye £ int Ye(z,y), Ve. Since X?i(z,y) énd Ye(z,y) are
convex, Vi,e by the Minkowski Theorem for each i there exists

a (on-trivial) supporting hyperplane for Xxi(z,y) through x,, and
for each e there exists a (non-trivial) supporting hyperplane for
Ye(z,y) through ye. If we denote the hyperplane for consumer i by
pi (pi €.Rn) and the hyperplane for producer e by ﬁe (ﬁe € RZn)

) X (eé p°) is a quasi-price system supporting (z,y).

8
X p.

th P =
en~ (i=1 1

1
Of course all we have done here is find a hyperplane for each con-
sumer whiﬁh supports his (non-thick) indifference curve which con-
tains his consumption point at that point, and a hyperplane for each
producer which supports his production set at his (efficient) pro-
duction pdint.

A somewhat less trivial result holds in the case that (z,y) is

a P.oO. Fof this result we will need the following definition:

Definition: Good h will be said to be a non-external good if no

consumer's consumption of good h has any external effect on any other
consumer or producer (i.e., Xl(z,y) and Wl(Z,Y) are not affected by

. . - !
x; , it A i, (2)i is not affected by x; ) and no producer's use or
production of good h has any external effect on any other producer

Oor consumer.

¥ T m e wm wm - T8 1 mmr s w o mumee e e e e LS S S L S T I



Theorem VI: Let (z,y) be a P.0. and suppose

i) Xx"(z,y) is convex, Vi.

ii) (Z)i is continuous on Z X Y, Vi.

iii) (), is convex in x", Vi.

. e . e , . e

iv) Y (z,y) is convex, Ve, and y ¢ int Y (z,y), Ve.

i, ' R . . .
v) x= is not a satiation consumption for i at (z,y), Vi.

Then 2 a quasi-price system supporting (z,y) which has the property
that if good h is a non- external good, all particpants face the

same price for good h.

Proof: TFirst a comment on v): in the usual (non-externalities)

case we neéd only assume one consumer is not satiated. With ex-
ternalities however this is not enough. What we need v) for is to
guarantee that x, # int X?i(z,y), Vi, and this is not ngcessarily
true if only ome consumer is non-satiated at (z,y) since it is not
necessarily Pareto superior to transfer goods from a satiated con-
sumer to an unsatiated consumer when there are extermalities.

Let any non-external goods be numbered h = 1,...,M. For

78

x € Xl(z,y), x" = (x?,...,x;), let Myt = (xM+1,...,xn)’and let
i i i e e e ., Te Ie 0 0
Xy = (x1,...,xM). For q € Y (z,y), q = ((q1 ERREL ),(q1e,...,qne)),

Me Ie Te Oe Oe
1et. q = ((qM+1,...,qn ), ( ERTEPL N )) and let
e Ie Ie Oe Oe
qM = ((q1 ;---,CIM ))(q1 ;-o-,qM ))- Let
. 5 M-{ tMe S i t ~e\ |
= X = - _ !
Q(z,y) {(= x) x(e};*q) x(iz=; Xy 21 qM)l where

- - - - _1i X3
A0 @ -9, e ¥(zy), Ve and X €X. " (z,y), Vi}
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Q(z,y) is just (i§1 i?i(z,y)) X (e§1 Ye(z,y)) = W(z,y) with the non-
external goods aggregated; By assumptions iii)rand‘iv) ﬁ(z,y) is
convex and therefore é(z,y) is convex also, being the Cartesian
product of sums of convex sets. Clearly (z,y) & W(z,y> but by

ii), (z,y) € closure W(z,y). Furthermore, v = ( X X ) X ( 21 *qe)

i=1
X ( Z xM - Z Q§) I'4 Q(z,y). To see this, since (z,y) is a P.0.,

we have S xt - Z ﬁe =2 wl(z,y). If v e Q(z,y), then there exists
an allocatlon (z,y) such that™ &t = Mxl, Vi and M'q“e = qu, Ve,

where 3 %= - Z < == wl(z,y), and %' ¢ i?i, Vi. But (z,y) is a
technologically feasibie allocation since it only differs from (z,y)
in nonfexternal goods. Thus we have v

(z,¥) (>)i(z,yj, Vi, it e Xi(z,y)‘, Vi, ¢ € Y°(z,y), Ve
and 2 §i -2 %e =2 wi(;,§). But this is a contr;diction of (z,y)
being a P,0. Therefore, v ¢ Q(z,y). Since (z,y) € closure W(z,y),
v € closure Q(z,y). |

By'thé Minkowski Theorem, there is a non-trival hyperplane

through v which separates v from Q(z,y). We will denote this

hyperplane by
M1 M s M.l M.t
P = P ;eee, P 3 P oyevey Py Myyeee, T

P can be chosen (sign-wise) so that v minimizes P-v for v € closure Q(z,y).

Now we need to show that x  minimizes (7, Mpl)- X° for X'e X?i(z,y)
and y° maximizes (, Mﬁle; , M Oe (~Ie ~Oe) for (~Ie ~Oe) e Y© (z,y).
(Notice that (_ale,aOe) = -*aoe.) Suppose for example that

3 x ¢ X*l(z,y) such that (7, Mp ). x1 < (m, Mpl)fxl. But then
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~ _ M~l M 2 Ms M1 Mt =« i ~e .
ve=(x, X ,..0,0xy Lq 0,0 Xy t i§1 Xy - = qM)e clos. Q(z,y)

and P-v < P'v which is a contradiction. Therefore the quasi-price

system

M1 M s M.01 _ M_Ol. M_Tt _ M_Ot
P = ((W, P),---;('"',P)', (TT:P » T, P ))"')(W)P »T, P ))

supports (z,y) and has the stated property. Starting at an initial
equilibrium with prices p* = (pT,...,px) we can attain any Pareto
Optimum which satisfies the assumptions of Theorem.VI by a specific
tax (and subsidy) system where for example the tax on the first peron's
M+ i

consumption of good M +1 is P and a lump sum redistribution

" Pl
of income. Some observations should be made at this point about the
policy implications of Theorem VI. First, lump sum redistributions
of income will generally be necessary to attain any Pareto Optimum.
This is important because it would appear that most policy measures
actually enacted to '"correct" externalities situations involve only
sEecific taxes and subsidies. Our segond observation, which is re-
lated to the first, is that "partial equilibriumﬁ policy measures
designed to "correct' externalities situations will not necessarily
lead to Pareto superior allocations. Also, as we mentioned earlier
in this essay, since the stability properties of equilibria in models
with externalities are completely unknown, even if the correct policy

measure is chosen in some situation, whether or not the measure will

lead to the presumed result is uncertain. -
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PART III

THE STRUCTURE OF THE MODEL AND
THE AGGREGATE EXCESS DEMAND CORRESPONDENCE

In this section we analyze the topological properties of the
set of technologically feasible actions F (defined in Part II) and
define what we shall call the aggregate excess demand cofre3pondence
for an economy with externalities. F is, in a sense, the only "inter-
esting'" set of actions. This is because if a vector of actions
' : i i . e e
(z,y) £ F, then x ¢ X (z,y) for some i, or ¢ £ Y (z,y) for some

e, i.e., (z,y) is not technologically possible. Of course in a

dynamic framework actions not contained in F might well be of inter-

est.
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A: The Strﬁcture of the Model

F is the "compactified“ disaggregatéd consumptiqn-produétion
set for an economy with extefnalities. F of course is different
fromvthe disaggregatéd consumﬁtion-prodﬁction set of an economy
without externalities. In sucﬁ an-economy'this set is jus; a
simple Cartesian production of the convex individual consumption
and production sets. This is not true of F, where different agents'
actions are connected by the jointrfeasibility constraint. F also

is not generally convex.

~ To see this, recall that F is the set of fixed points of the

o~ ~ ~ ~ : B i : Lt . .
‘mapping ¥: Z X Y > 2 X Y, where ¥(z,y) = (X ' (z,y)) x ( X1 ¥%(z,y)).
: i= ; e=

. . . 1 :
Define the 'graph' of il(z,y), Gl, by ¢t = ((z,y) € Z x ?'31 -

i i, o " se, e . e R
x € X (z,y)) and the "graph'" of Y (z,y), G by G = {(z,y) € Zx.Ylye =

e wme '

¢ € ¥(z,m).

The "graph" is analogous to the conventionally defined graph of

a function. For example if f: R > R, the graph of f, Gg =

((x,y) € R2|y = f(x)). The only difference between our 'graph' and

the conventionally defined graph, is that the range of the correspon-.
dence is not in general located in the last coordinate for the “graph".
ecall that F = ((z,y) éi =x €X'(z,y), Viand y,=q €Y (z,y), Vel.
Therefore, F is just the intersection of the '"graphs'" of the ﬁl(z,y)'s

and ?e(z,y)'s, i.e.,

: s -V t V
F=(ﬂ Gl)n(n ce).
i=1 e=1 v
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To see this, let (z,y) € (iﬁa Gi) n (e§1 G%). Then, by definition
oeri and Ge, we have z, = xi € ii(z,y),'vi and Yo = qe € ?g(z,y),
Ve.

Since F is non-empty, this intersection of sets is non-empty.
Now Gi is the "graph“ of a continuous convex-valued correspondencé.
‘Therefore Gi will be compact. However, Gi will not in general be
convex. To see this, consider for exampie the function
f: [0,1] ;;[0:1]) £(x) = x2. f is certainly continuous and convex
valued. But the graph of f{ Gf.= {(x,y)ly = x2] is certainly not
convex. In fact, only if f is Iinear‘will Gf be convex! Therefore
the Gi's and ¢%'s will not generally be convex. But since F is the
intersection of the Gi's and Ge's, F will also generally not be con-
- vex. Thié will also be true of the set of attainable actions,
A= ((z,y) € Flei(z,Y)-Zwi(z,y) -3 ﬁe = 0}. Thus we have éeen that the
underlying technologicélly feasible set of actions of an ecoﬁomy
with externalities will uéually not be convex.‘ One might ask whether
this underlying t.f. set could in some cases afise from a ﬁon-convex
économy_without eXternalities (e.g., increasing returns). The
answer to this is no, Becéuse although the t.f. set of-actionsvof
a non-convex economy will usually bebnon-convex, it will still be
the §imp1e Cartesian produqt of sets, which will not be the base in

an economy with externalities.
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B: The Aggregate Excess Demand Correspondence

Next, we shall establish the existence and properties of what
we shall call the aggregate excess démand correspondence for our
economy. In this exercise we invoke the assumptions of Part I.

Recall the compactified demand corre5ponden;e éf consumer i
is denoted fi(z,y;p) and the compactified supply correspondeﬁce of
producer e is denoted ;e(z,y,p). Consider the correspondence
K: ZxY¥>Z x ¥, where KP(Z,y) = (ié

P 1
Since the assumptions of Part I are in force, fl(z,y,p) is U.S.C.

fi(Z,y,p))'X (e§1 t%(z,y,p)) -

and convex-valued, Vi and ;e(z,y,p) is U.S.C. and convex-valued,
Ve. Therefore Kp(z,y) will be U.S.C. and convex-valued, V p € P,
and by Kakutani's Theorem will have a fixed point; (Z x Y is compact
and convex). Let d(p) be the set of fixed points of Kp; Then d(p)
is the set of consistent demands and supﬁlies at p. To see this,

let (z,y) be a fixed point of KP. This means that

(z,&) e’(ié1 Ei(z,y,p)) X (eif ;e(z,y,p)), i.e., z, = xi,e ?i(z?y,p),
Vi and Yo = q¢ € T(z,y,p), Ve. d(p) therefore is the set ofb |
"stable" demands and supplies at>p in the sense thaﬁ no participant
has any desire to changé his action if d(p) is the set of actions
- at p.

d(p) is a correspondence, d(p): P > Z x Y. Let

x" € £ (z,y,p))

6z (@) = (2,02,

and

Gz, (P) = [(z,y)iye a® € °(z,y,p))



Gfi(p) is just the "graph" of the correspondence fi(z,y,p), where
p is kept fixed; for example if we define a new correspondence,
ki(z,y) = £*(z,y,p), then GEi(p) is just the "graph" of kl(z,y).
p P

To determine the topological properties of d(p) it is useful to

note that
d(p) = (Q Gz (P N (0 G5, (@))

and we can therefore determine the properties of d(p) by deter-

mining the properties of G?i(p) and G~°(p)
r

Lemma: d(p) is an u.s.c. correspondence.

Proof: First we must show Gfi(p) and G;e(p) are u.s.c.: Let

pn - p, pn and p € P, and (zn,yn) € G%i(pn), Vn, and (zn,yn) > (z,y).

We must show that (z,y) €’G§i(p).' (zn,yn) € G%i(pn), Vn implies

(zn,yn) € Zx Y, Vn and 22 = (xH)" E_Ti(zn,yn,pn). But £ (z,y,p)

is u.s.c., and therefore (zn,yn,pn)-+ (z,y,p), and z; =

(x)" e F¢z",y",p™), Vn implies that lim (x)"=z; =x'e Fi(z,y,p)-

Therefore G?i(p) is u.s.c., and in the same manner we can show that

G;,(p) is u.s.c. Since d(p) is the (non-empty) intersection of u.s.c.

correspondences, d(p) is u.s.c. As was shown for the set F, since

d(p) is the intersection of the "graphs'" of correspondences, d(p)
‘will generally not be convex valued.
Lét
D(p) = (= x* - Zul(z,y) - 2 8%,y € ap)

1 1
(x ,...,xs); y=@Q ,--

z

-,qt)1
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Then D(p) may pr0per1y be called the Aggregate Excess Demand Cor-
respondence for the compactified economy E, because D(p) is the set
of consistent aggregate excess demands at p. D(p) is completely
analogous to the aggregate excess demand correspondence defined in
an economy without externalities.

Since d(p) is u.s.c. but not generally convex D(p) will also
have these properties. For the usual general equilibrium model
without externalities treated in the existence literature the
aggregate excess demand correspondence is u.s.c. gﬂg convex. It
is interestiﬁg to note that the properties of D(p) are the same as
the properties of the aggregate excess demand correspondence of a

non-convex economy.

Consider the following example of a 2-person, 2-good pure

exchange economy.

Notation: xﬁ is consumption of good { by Mr. A.
B
X2

is consumption of good 2 by Mr. B, etc.

Data:

A A B B A B.r, A3
Utility function of Mr. A: UA(xl, Xo; X1, X2) = (x3 + x1)" (x2)*

A
Endowment of Mr. A: w; = wé =4

B B A A B A% A _B
Utility function of Mr. B: UB(xl, X2; X1, X2) =(x; - %1 +6x1)x2

Endowment of Mr. B: w, = w

Good 1 is numeraire so py = 1, p2 = p. For points of interior maximum
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A B
(x,, X3 > 0) the demand functions for good 1 are:

A B A B

i) xl=1+p-%x1 (xl,xle)
xAz * 6xA
1) Bo2+2pt o2 G, 120

To get the set of consistent demands at p, we solve i) and ii)
simultaneously. Substituting ii) into i) gives us:

2
x% - 6xﬁ ]

A
X =1+ p-2 [é+'2p + 5

Solving for xﬁ:

3xﬁ - 10xﬁ + 4p + 4 =0,

and solving using the quadratic formula, we have:

10 + /100 - 12(4p+ 4)

iii) x; = 3 (for points of interior

maximum)

Thus, for example, for p = 1, we have the set of consistent

demands
A B
[x1=2; x1=0]
or
A B
[x; = 4/3; x = 8/9]

A A A B B

Denote the excess demands by z;, etc. (Then z3 = X1 - b , zp=xp- by

etc.). Then the excess demand functions are:

iv) z§=p-6-%z£’
AZ A
zy -2z
v) z? =2p-6 + = =
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,Thése excess demand functions are valid only for points of interior

maximum. For example, in iii) consider p = 3. For p = 3 iii) has

no real solutions, i.e., there is no set of consistent demands given

demand functions i) and ii). The problem here is that i) and ii) ar
not valid for p = 3 because the solutions of the consumer maximum
problems are not interior solutions at p = 3.

The "'global" demand functions are:

. (i, ar ee-idzo]
i) xp = A x1 20
’ I 0, otherwise
2 2
o xé - 6x§ xﬁ - 6x§ )
(242p + =52, if 2#2p + =520 |
oy LB ¢ 2 2 - LA
ii’) x = 3 X1
. 0, otherwise
This gives us global versions of iv) and v):
] B . B
A } P- 6--% zy , if p- 6--% zy > -4 ] B v
iV,) Z7 = .212-4
_ ~I-4, otherwise f
2
2 A
. zf + 229 z, + 22z,
2p- 6+ ——5——, if 2p-6+——pF—
A
v’) z? = z1 >

-4, otherwise

'In the following diagram we depict excess demands of A and B
in the following manner:
B A .
z1 (1, 2z1) for example is the excess demand of B for good 1

' ) B A
as a function of z; for p = 1. 2z1(3; z,) is the excess demand of B

e

n
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for good 1 as a function bf z? for p = 3, etc.,vi.e., zf(3; z?) is
the graph of v’) for p = 3.

Points mar ked e are‘points of consistent excess demand for
p = 1. They are the points: (-2,4), (-8/3, -28/9), (-4,0). The
point marked O is the point of consistent excess demand for p = 3.
The line z? + z? = O represents the locus of possible equilibria.
1f [zA(ﬁ; zf), z?] N [zf, zf(ﬁ; zﬁﬂ contains a point on this line for
some 5,‘then p is an equilibrium price. Thus, since the point
marked(:)has this property, p = 3, is an equilibrium, since it is a
point of consistent excess demands for good 1, and the sum of the
excess demands for good 1 is zero. By Walras Law therefore the

excess demand for good 2 will also be zero.
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We see from the diagram that for this example the Aggregate

Excess Demand Correspondence is clearly not convex-valued at p = 1.

For p = 1; zﬁ + zf =TI -6 or | -52/9 1 or [ -4
zg + zg = 6 or 52/9 or 4

Therefore d(p)
. P=1

= {(-6,6), (—52/9, 52/9), (-4, 4))

For 0 < p < 13/12, D(p) will take on three distinct values for>each
p. For p = 13/12, D(p) will take on two distinct values.

For p > 13/12, D(p) will be single valued.

With externalities, the possibility‘of multiple equilibria is

greater. Consider the following example.

Data:

Utility function of Mr. A: (xﬁ + xf)a (xﬁ + xg)l“él where a = 11/40

Endowment of Mr. A: W% = 33/8, wg = 7/8
2
Utility function of Mr. B: (xE - x% + 6xﬁ)xg

Endowment of Mr. B: w? = 0, wg = 10

The demand functions for good 1 for A and B are:

[ (IAA+ ) - x? , if >0 and < o
xﬁ = { o, if <O
) if >
A
{ /2 + 2 ;6?‘1 , if >0 and <1°
X1 = \ o, if <0
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where
™ =338+7/8p, I°=10op.
For p = 1, the set of consistent demands are:

I) X1 = %, xé = 9/2; XJBi = 29/8’ xg = 51/8

II) x5 = 7/2, xB = 3/2; x5 = 5/8, xB = 75/8

Ky
I

Notice that allocations I) and I1I) are both equilibria at p = 1.

Let U? be the utility of Mr. A at allocation I, etc. Then we have:

B 2 B 2
Uy = 51/8)%, v = (75/8)7
_ _ a l-a
Up = U = (33/8)7(87/8) .

Thus although I) and II) are both equilibria at p = 1, II) is
Pareto-superior to I)! This of course could not occur in an economy

without externalities.
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Introduction

There is an old adage which states that "the prudent investor
should diversify his holdings". In this essay we will attempt to
analyze this adage in the context of a one period optimal asset choice
model. The two main variants of this model are the mean-variance
criterion model and the expected utility criterion model. The extent to
which an investor with a mean-variance criterion should diversify can be
quite easily analyzed, and the results are well known. However, as is.
well known; if the grobability family is not restricted to Gaussian or
if the mean-variance utility function is not consistent with maximizihg
the expected value of some quadratic utility function, the mean variance
criterion is suspect since it leads to implausible choices. For this
reason the expected utility criterion would appear to be more reasonable
for a general model although of éourse the expected utility criterion
also has some defects.

Unfortunately, the'expected utility criterion model is much less
robust in the type of qenerél‘theorems it will allow. Most of the known
diversification theorems in the expected utility model are found in the
paper of Samuelson.] This essay presents a mathematical lemma useful

for considering these sorts of problems and attémpts to extend the

Samuelson results.
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A. The Mean-Variance Model

The mean-variance model is defined by the fb1lowing assumptions.

An investor must choose from among n securities, i = 1,},., n in plan-
ning his portfolio for one period. The one period yields of at least
some of the assets are uncertain. p? is the price he must pay for one
unit of the ith security at time t. ~p§+] is the (possibly) unknown

price of the security at time t + 1. It is assumed that the investor
~ knows (or has a ¥%xed estimate of) E(pt+]

i .
E[(P:+]/P§ - ui)(p§+]/p§ - uj)] = oy3- He has an initial wealth of Wy.

/p$) = u; and

His poftfblio optimization problem then becomes:
t+ tH
i XiH]

max U[E{L p ;

1 Xi}. var {Z p
X5} i

subject to ¢ p? xi = "0’ where )(,i is the number of units bought of'the'
i : |

ith security and U is a mean-variance utility function.

By defining new vériables: Zi = p}+]/§§, Ay = p: xi/HO the problem can

now be restated: ,
max U[E{(:Ailf)wo}, var {(zxizi)ﬂol]
{3;1

subjéct to & Ai =1,

Let Uy = /AE((xa;Z,)W0)] and U, = aU/a[var((za;Z; )],
The usual assumptions about U require U; > 0, U, < 0. (If U, > 0 we
‘call the investor a risk lover.) Of course, U, < 0 is consistent with

“the notion of a fprudent“Ainvestor.'
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 Notice that 1f “1 = uj,\/i j and U2 < 0 then the previous problem

becomes:

" min var [(ZA Z. )No]
(A4}

In the remaining ana]ys1s we wil] assume, without loss of generality,

that wo = ].

Zi's has zero wariance.

~ Lemma 1:

.'m1n var (zAiZ ) subject to Iy =

Oy}

the property i; > 0,Vi.

Proof:

We will also assume that no linear combinat1on of the

Suppose TR <0,Vi ?3. Then the problem: |

1 has a solution (A],..., An) with

var (£2y) = €Lz - oy = Eo(2y - )] = 2 FRa IS MR

Subpose the solution (xl,...

. An)‘has the property that x,..., A < 0;

Ag1oec+» Ay 2 0. Then _
)t s ey =g (5 : )
1) LI Aghs0:: =L (T 2A;2:0 AsAs0
i3 I Ty T ‘3 OREA RN
k k- k n ” n | n
= L L AA;0;:+2F% F A I AjAi04 4
11 VI 1 k+1 943 k+‘| kel VI3
-k k- | ' k :
2) ©: *i*j“ij = var (I Aizi) > 0.
R 9
k n :
3) Also, T I Aryoy4q ;»0 sjnce 0130 and Apr-ees A <0,

1 k+l

nv

Meaqs--es Ay 2 0-
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* % A : A + A
Now consider (x],..., xn) =[j0,..., 0, nk+] s nk 2 seees o L ]
~ : I A I A L A
O T
n n n .
Since I Ay = 1, Ay > 1. Llet = ;= b
i=1 k+1 k+1

n

*
var (2 A;Z2;) = ¢ z (x;/b)(2,/b) ..
LI T A

By 2) and 3) and since b > 1,

var (: A:Zi) < var (z Aili). But this is a contradiction of the
i i )

assumption that (3;,..., A;) is a solution. Therefore )y 3 > 0,V1.

Now suppose A] = 0.

Consider (11,,.. ) (e, (1 =€) Apsvees (1 -e) A ) for 0 < ¢ < 1.

Then T A; =]
' 2 n
var [z Aizi] =3z x1 43 = € o +2 g e(1 - ¢) Ajaij
I'II'I.I 2
+ g 3 (1 -¢) *i‘j“ij'
d[ [|]] n nn

Therefore d/de [var [zi.Z =2 z A;03: = 2 L F A:A;0,..

efore ¢ S 3943 7 21 L AAy0

n ' ,

; Ajoii < 0 since A5 2 0 and 044 & 0.
nn n

g g Ailjaij = var (g Aizi) > 0.

Therefore d/de [var [“;Zilll < 0.
: e=0
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\
Since var [zAizi]‘ 0 = var [zxizi]; this means that the variance can
E= .
be decreased by having'x] > 0. Therefore Ay > 0,Vi.

We now have the following diversification theorem for the mean-variance

model.

Theorem 1: If U, < 0, u = u.,Vi, §r0550, 143 and no linear
_combination of the 21 s has zero variance then the solution of the

problem max U[E{zx121}, var {Ix Zi}] subJect to: 11 = 1 has the
{A }

.property that xi > 0,V1.

0f‘course, the practical~usefu1ne55jof this theorem is very limited.
Unfortunate1yvmost securities';yfelds are pesitively correlated.
Empirical studies (e.g., Evans and Archerz) however, indicate that at
least for large portfblio values, significant reduction of variance is |

achieved by ‘considerable d1versif1cation

As we mentioned in the 1ntroduction to this essay, the mean-variance
criterion can lead to implausible choices. Consider the fbl]owing'

‘example.

Let E
v

eXpecfed value of any prospect

variance of any brospecf.
Consider the utility function
U(E, V) E/1+V

~ This utility function has the properties U; >0, U, <O.
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Now consider the following two prospects:
P1: 10 with probability .99
101 with probability .01

o \ _
P2: 10 with probability .98

101 with'probabi1ity .02
E, =1, V, = 81.99; E, =12, V‘2 = 162.34.

For this utility function, P1 is preferred to P2, but this ranking is

completely implausible.

The only famiiy df mean-variance utility functions which will not lead
to such implausibilities are of the form

U(E, V) = aE + b(V + E2). |
The uti]ity function§ in this family are consistent with maximizing the
expected va1ué of a quadratic utility function. Mean-yariance'uti]ity
functions not fn this family lead to implausible decisions because

~variance is not a good measure of risk.

In the previous example it is clear that although V2 > V], P2 is less
risky in some sense than P1. These implausibilities lead us to the

expected utility criterion model.



103

B. The Expected Utility Model

The expected utility model choice problem can be written:

t

max E{U(z p Xi)} subject to & piX; = Wy-
{x } i i
t
‘ Py
Again, by defining Z = p1 / 1, Ay = , this can be rewritten:
W
0

max E{U((ZA Z.)W,)} subject to £ A; = 1.
i*i’"0 i
4}
The usual assumptions about U are u' > 0, v <o. (1f TR 0, we
e
call the investor a risk lover.) U < 0 is consistent with the notion
of a "prudent" investor. In the expected utility model, Theorem 1 is

no ldnger valid as the following example shows.

There are three states of nature possible, A, B and C, and each has a
probability of 1/3 of occurrence. There are two assets, fhe random
yields of which are denoted Z] and ZZ' The value of the asset yields

in each of the states is given in the following table.

A 8 ¢
Z, 5 1 1.5
z, 0 3 0
E{Zy}=1/3° .5+1/3°1+1/3" =1
E(Z,)=1/3°0 +1/3°341/3°0=1
“aqp = 1/3(-1/2)(-1) + 0+ 1/3(1/2)(-1) = 0



104

Thus the asset yields have equal means and zero covariance. For a
mean-variance criterion utility function, by Theorem 1 a positive
amount of each would be held. AssumeH0 = 1, Let U be some utility

function with U' > 0, U" < 0.

E(W(aZy + (1 - 2)Z,)} = 1/3 U(.51) + 1/3 U + 3(1 = 2)) + 1/3 U(1.52)
W} 2 yz6 u'(.5) - 273 U (20 + 3) + 172 0'(1.50) = FO)L

The first order conditions for maximizing E{U}require that F(}) = 0,

for A" the maximizer of E{U}.

F(0) = 1/6 U (0) - 2/3 u'(a) +1/2 U'(0) = 2/3 U (0) - 2/3 U (3)
F(1) = 1/6 U (.5) - 2/3 U (1) + 1/2 U (1.5)

Since U.' < 0, we must have F(0) > 0, and F'(A) < 0,Vx. Thérefbre

A* > 0. Furthermore it is clearly possible to find a concave U such
that F(1) > 0 (e.g.,‘fbr U(x)=log x, F(])v= 0). For U such that
F(1). > 0 the solution requires A* > 1 -~ j.e. -- the investor "shorts"
the second asset. Of course given the nature of the assets this is an
entirely b]ausible solution. Thus Theorem 1 is not valid in the

expected utility model.

It is not even true that if one prospect has a bigger mean and smaller
variance than another prospect that the first is necéSsarilyipreferred

to the second. Consider the following example.
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P] = 0, with probabiIity‘.B
100, with probability .2

P2 = 10, with probability .998
1010, with probability .002
E{P,} = 20 > E{P,} = 12 and var P, = 1600 < var P,.

1

Consider the utility function U(x) = ﬁz;

ECU(P)} = .8 " 0+ .2 " 10 =2
ECU(P,){ = .998 * /T8 + .002/T0TD > 2

- Thus P, is preferred to P, for this utility function.

As we have_seen in the earlier example, in our search for a theorgm
‘analogous to Theorem 1 in the expectéd utility model,.non-posit1vé

- (Pearsonian) correlation between the asset yields will not be a strong
enodgh assumption. Sanue'lson3 showed that if the yields were distributed
independently with equal means then a risk-averting expected utility
maximizer wouldlhold a positive amount of each asset. He then argued
that'sincé going from zero to negatfve correlation in the mean-variance
nndelrmakes everything even better, going from independence to some
stronger.type of negative correlation would have the same result in the
expected Qtiiity model. He proposed a stronger form of negatfve

correlation which we will discuss next.

. Let Z] and‘Z2 be random Variables}with joint density function denoted
dP(z], 22) and joint cumulative distribution function]dénoted P(z1, zz).
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: Let P('lezz) = Prob {Z] $ Z-llzz = 22}.

Definition: Zy will be said to be negatively S-correlated with Z, if
BP(zllzz)/az2 >0, \1(21, 2,). Z] will be said to be positively S-cor-
related with Z] if 3P(ZI|22)/'21 < 0.\/(21. 2,).

Note: The differentiab11ity here is not necessary, -- the definition

applies also for finite differences betueen z2 points with positive
densitx

-For example, consider the following density functions fbr the random

variables 2] and Z2

i) There are_three states of nature.‘A, B and C, eaeh with‘a probability

of occurrence of 1/3.

3=
jo
e

R(zlz): P(10) = 0, P(1[4) = 0, P(1[7) =1
| P(3/0) = 0, P(3]4) =1, P(3|7) =1
P(5|0) = P(5|4) = P(5]7) = 1

Therefore Z, is negatively S-correlated with Z,.
i) dP(z,, 2,) =.z.l +2,, 052 21,

Byl 2 o
P(z]|22) = 0}, dP(21|z2) = [ OJI (Z] + zz)d21] + [ 0/, (Z] + 22)d21]
| = (z%/Z + z]iz)/(llz + zz).



(124 zz) - (21/? + zlzz) 1/2 - 2272
‘aP(z |z ) = A ‘ — 7
_—_z-aza o (1/2 + zz) | o (1/2 *+ z,)

- which is 3 Olb‘ecause 0 ¢ z] s 1.
Therefore Z] i s negatively S-correl ated with Zz}

| 'm) dP(z], 2,) = 2, + llzz, 0 z] <1, . p z2 'b |
where b is such that (b - 1)/2 + log b = l

,,"(Azllzz)",',[- of (2 + ‘/zé?dz1] : [o/ ‘(‘z,»”,,'z)a_z,;
*=h%2+qngnuz+vqh
ar+ 1/2,) * (-z,/zz) - (21/2 + 21/22)("/22) |

P(z, |2,) = ——
_?-z-a_ : N ¢ VA 1/22)

22(1/2 + l/zz)z

which is ¢ 0 because 0 ¢ z, ; 1.
Therefore Z] 1s posi t'lvely S-correlated with Zz

1v) If Z] and z2 are distr'lbuted as bivariate nomal ‘then Z] is
negatively S-corre]ated with z, ifep <0 and Z1 is positively S-

corre‘lated with Z2 ifp 3 0. To see this, recan for the bivariate

" normal

1 -( Z - ) .
P(zllzz) [Z k exp [ )]dZ]

| where b = ll-. + D(dl/?’z)[zz - Uz]-

n7
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T 2k (00, /a,) 2,
Therefore aP(z]]zz)/az2 = -2%51—2323 / (Z1 - b) exp [ ]dZ1
o 01 -0 ‘ . ‘

and the éign of this expression = - sign o because

z : ‘ '
1 - : .
__/( (z; - b) exp [ 1dZ, < 0 for all z; < = because

E(Z,|2,} = b;

The definition of S-correlation is not a symmetric one -- {.e, == 2y

‘may be negatively S-correiated with zz but z2 may not be negatively

. S-corre]ated'with zy. (As we shall see in Letma 5 it is not possib]e
for Z, to be trictlz negativeiy S-correlated with zz. while z, is

positively S-correlated with 2. .) The following example shows that
-correiation is not a symmetric’ ‘property.

There are two states of nature, A and B, with prob {A} = 9/10,
prob {B} = 1/10 The density function for random variables Z] and Z2

is:

~ State A - : © stateB
Z, =5, with probability =1 Z, = 10, with probability = 1
Z, -{3. with probability =1/2 2, =(1, with probability = 1/2

4, with probability = 1/2 = 3, iith probability = 1/6
o ' 4, with probability = 1/3

From this density function we get the cumulative conditionai distribu-

tion functions
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p(zé-§ < 5z, =1)=o

P(z 5117y = 10) =172 | - Py s 5|z, = 3) = 27/28

P(Z, 5 é.|‘z1 =5) = i/z - P(Z, 3 5|z2 '=» 4) =»z,7/2‘9 |

P(Z, 5312 =10) =213 | ”
PN

Na_see frpm‘the définition (using first‘differences betﬁeen zI,points

of positive density) that Zz'is negatively S-correiated with Zi,.but

-‘since P(Z] < 5|Z = 4) - P(Z] < 5|Z2 = 3)<L 0, Z, is not negativeiy
-correiated with Z2 '

" 22 negativeiy S-correlated with Z‘ means that for e > 0,

P(Z2 <:a|z, = b + e) - P(Z2 < aIZ.l =b) >0 (fbr b, € such that b and
b + ¢ are points of positive density for Zz) This means that an
“increase in the‘givenlva]ue of Z, shifts the conditiona1 cumulative

~ distribution P(21|zé) to the left.

Thus neqative S-correlation is p]ausible as a stronqer version of
negative correlation. The shifting of the conditional cumu]ative

, distribution fhnction is depicted in the foi]owing diagram



P(zl )

IR | [

| ) P(Za‘zz’fe)—%

\P(z2,)

|
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To determine the properties of negative S-correlatfon we need the

following mathematical results.

Lemma B: Let ¥, ¢, and v be Riemann-Stieltjes integrable with respect
to P, where dP(Y) is a probability density function of a scalar random
variable, Y, and v is a non-increasing (non-decreasing) function of Y

on [0, =) which has the property’ that v(Y) > 0 for Y > 0. Suppose:

a) Y (0, =) such that ¥(Y) g o(Y) for all ¥ < Y and o(Y) < ¥(Y)
for all Y > Y, and

b) 0/ al\r(Y)v(Y)dP(Y) - f s(Y)¥(Y)dP(Y).
Then‘o/n v(Y)dP(Y) > (s) 0/ v'0(Y)dP(Y)-

ggggf: Suppose v s non-iﬁcreasing.

R o/Y [r(¥) - o(V)IW(Y)dP(Y) < 0

and g f Em = s(Y)W(Y)eP(Y) 3 0, because v(¥) 3 .

Y .
2) —0/ Ee(Y) - o(Y)Iv(Y)dP(Y) = ;f Ce(Y) - a(Y)Iv(Y)dP(Y),

by b).
3) Let v = v(Y) > 0.
Then v(Y) 3 v, for Y < ¥

v
-<1

v(Y) s v, for Y

since v is ndn-increasing.

_ Y -
4) Therefore, -5)( Le(Y) - o(Y)IvdP(Y) ¢ i/( [v(Y) - o(Y)IvdP(Y)
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from 2) and 3).
Therefore o/f” ¥(Y)dP(Y) 2 0// a(Y)drP(Y).
The proof for v non-decreasing is analogous.

Corollary: Let ¥, ¢, and dP be as in Lemma B and suppose P(Y) > 0 for

some Y < ¥ and P(Y') <1 for some Y' > V.

Suppose v(Y) is strictly monotone-decreasing (mohotone-increasing) and

non-negative on (0, =). Suppose:

a') there exists Y (0, =) such that ¥(Y) < &(Y) for all Y (0, Y)
and o(Y) < ¥(Y) for ¥ e(¥, =), v(Y) s o(Y) and

b') 0/ W)V (NP(Y) 3 (g) fq»(Y)v(Y)dP(Y).

Then 0)( w(Y)dP(Y) > (Q) O/( o(Y)dP(Y).
Proof: Suppose v is strictly monotone-decreasing.
1) 0//¥ [y(Y) - Q(Y)]v(Y)qP(Y) <0 and

. ?/ [¥(Y) - o(Y)Iv(Y)dP(Y) > O by the property of P and v 2 0.

2) "‘&/y,[‘*’(” - §(Y)]V(Y)dP(Y):;'-Y- [e(Y) - o(Y)Iv(Y)dP(Y)

by b').

3) Letv = v(Y) > 0.
Then v(Y) > v, Y < Y and v(Y) > v, ¥ > Y.
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Y
4) Then _6// [y(Y) - a(Y) JvdP(Y) < i//“ [w(Y) - s(Y)vdP(Y).

5) Therefore, o/ ¥(Y)dP(Y) > f¢(v)dp(v).

The following diagram depicts ¥, ¢, and v which have the stated

property. By the Corollary, in diagrams a) and b) if

[ v / o(Y)v(Y)dP(Y) then /w(Y)dP(Y) . /p(Y)dP(Y) and in

diagrams c) and d) if
)/;(Y)V(Y)dP(Y) > v(Y)v(Y)dP(Y) then )/;(Y)dP(Y) >)/(;(Y)dP(Y).
The following result is from the paper by Hanoch and Lévy.4

Lemma 3: Let F(x) and G(x) be cumulative distribution functions and
let H(x) be a function which is Riemann-Stieltjes integrable with
respect to F and»G. Let'EF{f} =‘J/f(x)dF(x), etc.

If F(x) s 6(x), for all x and (<) holds for some x, then:
Ec(H(x)} > (<) EgH(x)} ifH' >0 (H' <0).

(Again -- the differentiability is not necessary here. The basic

strategy of the proof is to integrate H(x)[dF(x) - dG(x)] by parts.)

»* .
For the rest of this essay we will assume Z; > 0, which, of course,

is a reasonable assumption since Zi = p¥+]/p§.
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We can now prove the following results.

Let E{lezz} =//’;]dP(z]Izz) -- i.e., the conditional expectation of

Z] given Z2 = Z,.

Lemma_4: If aP(z,]2,)/22, > O.E/(z]. z,), then 3E(Z,|2z,}/3z, < 0.

(The differentiability is not necessary here.)

Proof: E(Zy |25} = [ 2,0P(z]2,).
Let € > 0.

By the assumptions of the Lemma,
P(z,]2,) ¢ P(z][z2 +¢) fore > 0.

Furthermore,-the function U(z]) =2, is monotone-increasing.

Therefore by Lemma 3

/zldP(z]|zz) 2 /z]ﬂP(zllz2 +€),
so that E{Z,|z, + €} - E{Z;]z,} £ 0 for e >0

and the result is proved. (Notice if aP(z]lzz)/az2 < 0, then
3E{zy|z,}/02, >0.)

~ Lemma 5: If Z, is negatively S-correlated with Z, (or vice versa) then

Proof: . 912 =‘/3(z]zzdP(z], zz) -_E{Z]}E{Zz}.

’ :}C{z]zzdP(z], 22) = ){;]E{Zzlz1}dP(z])
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where dP(zl) is the marginal density function of Z]
(dP(z]) = (zzfdP(zl, zz)).
Z] negatively S-correlated with Z2 means

aP(z]lzz)/az2 > 0.

Therefore, by Lemma 4, aE{Zzlz]}/az1 < 0.

Now, using the notation of Lemma B, let v(z]) =21, v(z]) = E{1,},
¢(z]) = E{Zz|z]}, and dP be dP(z]).

Then v is strictly increasing, ¢ is non-ifmcreasing and ¥ is a constant.

/E{Zz|z]}dP(z]) = E{Z,} = /E{zz}dp(zﬂ.

Therefore by the contrapositive of the Corollary to Lemma B we must

have

}(Z]E{zz'z]}dp(z]) g‘)/;lE{Zz}dP(z]) = E{Z1}E{ZZ}.

TherefbredzgrzlzzdP(z], zz) - E{Z]}E{Zz}g 0,
and so0 oy, 5 0. (Notice that if aP(z,]z,)/3z, > 0, then oy, < 0.)

Consider the following example:

There are three states of nature, A, B, and C, each with probability =

1/3.

The valués of random variables Z] and Z2 in each state are given in the

~ following table:
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A B [

Z-I 1 5 3

ZZ ‘ 1 2 3
_ /

P(z]izz): PO1IT) =1
P(1]2) = 0
P(13) = 0

Therefore Z] is not negatively S-correlated with ZZ’ and so negative
S-correlation is a stronger condition than negativév(Pearsonian)

correlation.
We state without proof the following obvious result:

Lemma 6: If aP(i]lzz)/ai2 = 0,\/(21, zz) then Z] and Z, are 1ndependent

random variables.

We now have the apparatus necessary to derive some diversification

theorems..

Theorem 2: If U' >0, U'' <O, E{Z1} =:E{Zz}, and if Z2 is negatively
S-corrglated with Z], or Z] and Z2 are independent, then the solution
of the problem

max EQU(xZy + (1 - A)Z,)}
{1} .

has the property that 0 < x < 1.

Proof: Suppose x > 1.
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The First Order Conditions (F.0.C.) for the problem require:

1) Jj/z1U'(Az] + (1 - A)zz)dP(z], 22) =/£y;2U'(Az] + (1 - A)zz)dP(zl, 22)

Iterating/jntegrals we have:

2) /l7;2U'(A21 + (1 - A)z,)dP(zq, 25)
= )/t/fzzu'(xz1 + (1 _'A)ZEFP(22|Z1HdP(Z1)

where dP(z])-isvthe marginal density of Z,.

Now using the notation of Lemma B, let v(zz) = U'(xz1 + (1 - A)Zz),

¥(z,) = 2,, 8(z;) = E{Z,|2}}, and dP = dP(z,zy).

Then we have ¥(z,) is monotone-increasing, °(22) is constant, and v(z,)
is non-decreasing (v'(zz) = aU'(xz1 + (1 - A)zz)/az2 =

1 - x)U"(Az1 + (1 - 1)22), and U'' <0, 1 -2 50 by assumption).

Furthermore,

)(v(zz)dP(z2|g1) = E{Z,]z;} = //;(zz)dP(zzlz1).

Therefore by the contrapositive of the Corollary B we have:

) gy ) 200 ¢ (1 - 2)z,)dP(z,2;)

uv

(zZ)/E{Zz|ZI}U"(“] + (1 - A);Z)dP(zzlz1)

E{Z, |27 }E(U (azy + (1 - A)Zp) [z}

for all zi.



Iterating the integrals in 1) and substituting 3) into 1) we have:

8 [2E0 236 (2) >/E{22|z1}E{U'lz]}dP(z1)-

‘Again, applying the notation of Lemma B, let v(z]) = E{U'|z1},
¥(z,) = z;, #(2z)) = E{Z,z,}, and dP = dP(z;).

Clearly W(z]) in monotone-increasing and by Lemma 4 ¢(z]) is non-

increasing.

5) a/az][E{U'|21}] = E{AU"|z]} + (?th. a/az][dP(zzjz])],

Since » 3 1 and U'' < 0 by assumption, we have E{AU"IZ]} < 0.

For ¢ > 0, consider

J{U'(AZ] + (1 - 0)z)dP(z,|zy + €) - JU'(azy + (1 - A)zz)dP(izlz])

a/azZ[U'(Az] + (1 - A)zz)] = (1 -Au" >0.

Therefore by Lemma 3

‘[U'dP(zzlz] +¢c) - /U'dP.(zzlz]) <0,

since aP(zzlz])/az] > 0.
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6) Thus a/az1[E{U'|z]}] <0, so v(z]) = E{U'Iz]} is strictly monotone-

decreasing.

7) Furthermore, J/’V(z1)dP(zl) = E{Z]} and//fﬁ(z])dP(z1) = E{Zz}, and

by assumption, E{Z]} = E{Zz}.
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Therefore by the Corollary to Lemma B and 6) and 7) we have:

8) )}rz]E{U'lz]}dP(z]) </)//£{22|21}E{U'|z1}dP(z1).
But this is a contradiction of 4). Therefore A < 1. By a completely

analogous argument we can also show A > 0. Therefore Ae(0, 1).

Corollary: Let (A*,..., A ) be the maximizers of the problem:
zorotliary. 1 n-1

1 n-1
AiZi)} subject to

A; = 1, where U' >0, U'" <0.
j=1 1

, n-
a) max E{U( ¢
EW I B

n-1 n-1

Suppose iz] x;zi is negatively S-correlated with Zn or iz A:Zi and
= ='|

n-1

L

Zn are independent, and E{i :

1:21} < E{Zn}. Then the solution of

the problem:

n n
b) max E{U( £ 1,;Z;)} subject to I A, = 1 has the property that
o i i
{34} i=1 i=1

A, # 0.

n-1
I

" _
5 Aizi = X, and Zn =Y.

Proof: Let

Then by the assumptions of the Corollary and by Theorem 2 we have that
the so]ution of the problem

1) max EQU(AX + (1 - A)Y)}
0y

has the property that A <1, Therefore it cannot be optimal to

“have 3 = 0 since the so1ution of 1) is admissable as a solution of b).
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Of course Theorem 2 and its Corollary are of limited usefulness for
the problem of actual portfolio management. Finding a security which
satisfies the assumptions of the Corollary in any actual situation -
would probably be rare. This could, however, in some cases, be used
to explain the yield of certain securities relative to the yield of
éhe "market”. By this we mean any security which the "market" is
negatively S-correlated with would probably have a yield not signifi-
cantly greatér than the yield of the "market" if expectations of most

participants are approximately the same.
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Definition: Z] will be said to be strongly positively S-correlated
with Z, if Z,; is positively S-correlated with Z, and E{Z,|z,} is a
strictly convex function of z,. (By Lemma 4, E{Z]lzz} is a monotone-

- increasing function of 22.)

—

Example: Let Z,~ U[0, 1] and Tet Z, = 3/2 zf.
Then P{zy|2} =1, if 2, <(3/2)25, 0 g 2, 51

0, otherwise
and E{Z,|z;} =(3/2) z%. Clearly, Z, is positively S-cdri-elated with
Z] and E{Zzlz]} is a strictly convex function of z].ﬁ Therefore Z2
is strongly positively S-correlated with Z].

The theory of warrant pricing presented in the paper by Samuelson and
Merton5 has as one result that the yield on a warrant is strongly

positively S-correlated with its associated stock.

Theorem 3: If U' > 0, U'' <0, E{Z]} = E{Zz} and if Z] is strongly
positively S-correlated with ZZ’ then the solution of the problem

max E{U(AZ] + (1 - A)ZZ)}
{1} ”

has the property that i¢[0, 1].

Proof: Suppose 0 < < 1.

The First Order Conditions for the problem require: -

]))Z)kziu'(121 + (1 - A)zz)dP(z], zz) =‘}/;2U‘(Az] + (1 - x)zZ)dP(z],zz).

Iterating integrals we have:
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2) //z]u'(xz] + (1 - A)zz)dP(z] ,- 7'2) ‘ |
o =/|JZ]U'(AZ-I + (1 - A)zz)dP(zllzz)]dP(z.l).

Using the notation of Lemma B, let v(z]) = U'(J«z1 + (1 - \)z,),
¥(zg) = 2y, o(z)) = E{Z;]2,}, and dP = dP(z,|z,).

Then ¥(z;) is strictly increasing, ¢(z;) is constant, and v(z;) is
non-increasing (v'(z]) = All"(xz] + (1 - A)Zz) < 0 since » > 0 and

u'* <0).

Furthermore, /w(z])dP(z]lzz) = E{Z;|z,} = [ﬁ(z])dP(zllzz).
Therefore by the Corollary to Lemma B we have

3) /z]u'(x;] + (1 = NzpdPlz(z,) ¢ E(Z,|2,)E00" (2,9,

for all Z,.

Iterating the integrals in 1) and substituting 3) into 1) we have:
4)  E(Z;|2))E(U |2,)dP(z,) 3 /zzE{U'Izz}dP(zz).-

Again, applying the 'notatidn of Lemma B, let v(zz) = E{U' IZZ},

¥(z,) = E{Z,|2,}, #(z,) = z,, and dP = dP(z,). By assumption, ¥(z,) is
strictly cpnvex and since f\r(zz)dP(zz) = E{Z.I} = qs(zz)dP(zz) = E(Z,},
3 22 such t“hat \v(zz) < ¢(zz) for z, < 52 anq w(zz) > o(zz) for z, > 52.

5) 3/3z,[E{U*|2,1] = E{(1 - 2)U'* |z} + U a/azz[dp(z,|zz)].’

- Since (1 - 1) 2 0 and U‘A'_ <0, E{(1 -2)U*'} < 0. Furthermore, by
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- Lemma 3, since Z] is positively S-correlated with Z2 and x > 0,
| /{U' 3/925[dP(2,|2,)] 5 0. To see this, consider

,)(U'dP(zllzz te) - ){U'dP(z]Izz), for ¢ > 0.

Since Z, is positively S-correlated with Z,, P(z.'lz2 +e)s P(z,12,),
¥(z), 2,). Also, 3/2z;(U') = U'' 5 0. Therefore, by Lemma 3

Judiziz, + o) - fuerizlzy) 5o,
| 6) Thus. é/azz[E{U‘lzz}] s 0, so v(z,) is non-increasing.

since [ ¥(z,)dP(z,) = E(Z;} = E{Z,} = [ o(z)e(z,)
by the Corollary to Lemma B.

8)',IfE{Zilzz}E{U'Izé}dP(zz) s [ 2E(U'|2,}dP(z,) .

Since it must be the case that either A > 0 or (1 - 1) > 0, 1f x>0
then4) holds with strict inequality which is a contradiction of 8), or
if (1 - 1) > 0, then 8) holds with strict inequality which is a
contradiction of 4).

Therefore A¢[0, 1].

Thus we have provided conditions sufficient for a risk-averting
expected utility maximizer to "short". This contradicts the notion

that a prudent investor would never go "short".

We have Seeﬁ that strengthening the concept of correlation from

~(Pearsonian) linear correlation to (Samuelsonian) non-linear S-correlation
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" gives us some diversification theorems for the expected utility model.
The results, however, are even weaker than the mean-variance modei
results since we do not héve an n-asset theorem. What we are searching
for in the n-asset case is a m1ti-dimensional analogue of the problem
considered by Hanoch and Levy.6 The problem they considered was the

following:

Let F(z) and G(z) be cumulative distribution functions for random
variables X and Y. Under what conditions on F and G will an expected
utility maximizer always prefer X to ¥Y? -- i.e., Under what conditions |
on F and G will we havelf'U(z)dF(z) >///U(z)dG(z) for either [all
Tpossib1e functions U with U' > 0] or [for all possible functions U

with U' > 0 and U'' < 0]? They show that a necessary and suff1cient
condition fbrr/fu(z)dF(z) >l/(U(z)dG(z) for all U such that U' > 0O,

U'* <0 is that |

_gjft [6(z) - F(z)])dz > 0 and G(zo) # F(zo) for some z,.

We can rephrase the n-asset diversification problem in the following

manner:

Let P(z],..., zn) bé the joint cumulative distribution function for
randpm variables Z;,..., zZ. Let A = (A],..., xn), z }i =1, and 1§t
Yl by the (one-dimensional) random variable, YA =3I Aizi' Denote the
cumulative,distribution function of Y, by P,(y). Let

= ((Aseees AT Ay =10y >0, Vi} and let

= ((A]seees AG)|E Ay = 1, and 2y, 5 O for some i'}. The n-asset
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diversification problem can now be restated: Under what conditions on
P(zI,..., z,) will we have that for any A ¢ I” and U such that U' > 0,
U <0, eIt such that fu(y)dPA*(Y) >/U(}')dPx(Y)?

This, of»coursAe, is very similar to the Hanoch and Levy problem, but
much more complicated. Our Theorem 2 is an answer to this problem for
n=2., Forn> 2 it wou'ld be necessary to look at the properties of
dPA(y) which is extremely complicated if the Z;'s are not independent.
0f course, by the Samuelson theorem, one condition on P which works is
that the Z,'s are independent and have equal means. Whether or not
there are other conditions (other than P(z1,..., zn) being a symmetric

function) on P which will work remains an unsolved problem.
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Footnotes

(Bracketed numbers refer to the listing in the Bibliography.)

! (5.
2 [2).
3 [51.
il
° [61.
¢ [3).
7 (51,



[]

2]

(3]
(4]
(5]

(6]
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