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Abstract

Milgram empirically showed that people knowing only connections to their friends could

locate any person in the U.S. in a few steps. Later research showed that social network

topology enables a node aware of its full routing to find an arbitrary target in even fewer

steps. Yet, the success of people in forwarding efficiently knowing only personal connec-

tions is still not fully explained. To study this problem, we emulate it on a real location-based

social network, Gowalla. It provides explicit information about friends and temporal locations

of each user useful for studies of human mobility. Here, we use it to conduct a massive

computational experiment to establish new necessary and sufficient conditions for achieving

social search efficiency. The results demonstrate that only the distribution of friendship

edges and the partial knowledge of friends of friends are essential and sufficient for the effi-

ciency of social search. Surprisingly, the efficiency of the search using the original distribu-

tion of friendship edges is not dependent on how the nodes are distributed into space.

Moreover, the effect of using a limited knowledge that each node possesses about friends of

its friends is strongly nonlinear. We show that gains of such use grow statistically signifi-

cantly only when this knowledge is limited to a small fraction of friends of friends.

Introduction

Social search using Milgram rules has been extensively studied over the last 50 years. Briefly,

the problem involves tasking a person to utilize direct social connections to send a folder to a

target person. The next recipient should be a person who is most likely to increase the proba-

bility of the folder reaching the target. However, to avoid loops, any neighbor who previously

held the folder is excluded from consideration. While there is a diverse body of work on this

topic (see a thorough survey [1], the formulation used most frequently was defined in the ini-

tial Milgram’s small world experiments [2–4]). Milgram’s work was notable for being the first

empirical social experiment in which individuals used only contacts with whom they were on

a first-name basis. We will refer to a social search using the above rules as Milgram social
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search. To make such search replicable, we emulate it on an actual social network, Gowalla in

which information about the temporal locations of each user was available to researchers.

Gowalla enables its users to spread information about location-based activities by check ins at

physical locations that are broadcast to their Gowalla friends. Gowalla friends are connected

by edges to which we refer as friendship edges. These edges define Gowalla communities,

which we detect using a label propagation algorithm for community detection called Label-

Rank [5]. The goal is to conduct experiments that can be repeatedly run with changed parame-

ters for forwarding rules and network topology to shed light on features of the search that are

necessary to ensure efficient social search.

The distribution of the average shortest path lengths in online social networks has been

measured. The majority of people in such networks are closer than six degrees of separation.

Example distances are 4.7 in Facebook [6], 3.7 in Myspace [7], 4.1 in Twitter [8], and so on [9].

Such networks have been described as small world or scale-free [10]. More formal definitions

involve the average distance, diameter, the degree distribution, or their Power Law exponents,

γ [11]. In these networks, there are bridge links that connect distant communities to each

other. The idea of bridges, and furthermore that they are in some capacity weak ties has been

suggested in literature [12], and is the basis for Milgram social search.

The previous research [13] shows that each node selecting the friend to whom to forward

the folder applies one of the three individual criteria. The first criterion is the candidate

friend’s distance to the target person. This is often the only criterion used for forwarding

experiments that are inspired by Milgram’s original experiment [14]. The second is this

friend’s membership in a community to which the target belongs. The third criterion is this

friend’s prominence (degree). Below, we describe a combined strategy that uses the value of a

linear polynomial defined over the all three criteria metrics for selecting the best candidate

friend for forwarding.

An analysis of spatial distribution of friends reveals that in the Gowalla social network

about 35% of friends of an average user are located within a 160 km radius of that user’s loca-

tion [15]. This fraction decreases for friends of friends (we will refer to them as indirect friends
or i-friends in short), but still a significant 20% of i-friends are within the same radius. How-

ever, for higher orders of indirect friendship, their fractions within the same distance drop

below 5%.

Recent analyses of online social interactions confirmed the general conclusion about the

spatial distributions of friends, but found that such distributions significantly differ inside and

outside of metropolitan areas [16]. In general, people tend to interact with those that are geo-

graphically close, and as a result, the probability of social interaction between peers decreases

when the distance between them increases [17]. This motivated the author of reference [18] to

explicitly include this property in the network generator for spatially realistic social networks

[19].

Importance of indirect friends was observed in [20], in which two groups of students were

subject of a study on interactions with i-friends. Hurricane Ike affected one group, but not the

other. Affected students were more likely to connect with i-friends that were in close proximity

than the members of the other group. This suggests that in times of need, users reach beyond

their circle of friends to expand their knowledge base. This observation motivated us to check

if use of nodes’ awareness of i-friends can improve Milgram social search. However, to be real-

istic such use needs to avoid memory overload of each participant of a search. For this reason,

a person is unlikely to know much about friends of each particular friend. So we cannot

assume that that person would know the addresses of i-friends, or be on a first name basis with

them. Thus, if partial knowledge of i-friends of a direct friend indicates that one of them is a

good candidate to forward the folder, the sender can only pass the folder to that friend. After
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receiving the folder, that friend will be able to send it to the proper i-friend. Thus, reaching an

indirect friend is a two-hop process.

To account for the partial knowledge of i-friends, our model uses the parameter κ. It defines

the maximum number of i-friends known to a person through each friend. If the number of

friends that a friend has exceeds κ, then κ known i-friends are chosen uniformly randomly. By

simulations, we establish the optimal value of parameter κ and coefficients for the linear poly-

nomial with three criteria for the selection of the next node in social search.

Finally, we pose two novel questions. The first is how much social search is affected by

changes to κ when forwarding decisions are based on partial knowledge of i-friends. We find

that increasing κ strongly and positively influences the performance of the social search only if

κ is small. The second novel question is how the different ways of distributing friendship

edges, and use of partial knowledge of i-friends influence the Milgram social search. Surpris-

ingly, we find that only the distribution of friendship edges affects efficiency of this search.

Hence, preserving only this distribution and using partial knowledge of i-friends are necessary

and sufficient conditions for efficient social search.

Results

The crucial component of the design of our experiments is creating a realistic model of the cur-

rent sender of the folder making selection of the successor. In reference [13], the authors

experimentally evaluate use of general criteria for these selections. We discuss their results in

the Methods section. Here, we describe how we use these criteria in our model for successor’s

selection.

Whenever a user receives a folder to forward, it computes the following utility score Ui for

every friend i (for brevity, we do not explicitly list argument i, when it is clear from the con-

text):

Ui ¼WD � Dm þWC � Cm þWP � Pm; ð1Þ

where WD, WC, and WP are rational weights in the range [0, 1]. Except for random search in

which all weights are 0, WP = 1 − WC − WD. Normalized distance metric, Dm, denotes the nor-

malized distance between the locations of node i and the target. Community metric, Cm,

defines the normalized size of the community to which both the node i and the target belong.

Prominence metric, Pm, denotes the normalized degree of node i. These metrics are defined in

the Methods section. Then, the user holding the folder sends it to the friend with the highest

score, chosen randomly if there is more than one node with such score.

Using categories of metrics used by users discussed in [13], we define a selection metric

based on these categories. Let Dmax stand for the diameter of the network, and Di denote the

distance from node i to the target. If there is a community to which both the target and the cur-

rent holder of the folder belong, we set Cmax to the size of this community, otherwise Cmax is

set to N, the size of Gowalla network. In our study, Gowalla communities were detected using

a label propagation algorithm named Label rank [5]. Finally, let Pmax denote the largest node

degree in the network, and Pi be the degree of node i. Then, the metric values for node i in Eq

1 are defined as follows:

Dm ¼ 1 �
logðDiÞ

logðDmaxÞ
ð2Þ

Cm ¼ 1 �
logðCmaxÞ

logðNÞ
ð3Þ
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Pm ¼
1

logðPmaxÞ � logðPiÞ þ 1
ð4Þ

For each experiment run on one of the five configurations, we record its success rate of

delivering the folder to the target user. Fig 1 shows the success rate as a function of the maxi-

mum number of i-friends allowed to be known to each node for each of its friends (κ 2 [0,

48]). The thick color plots show boundaries of one standard deviation from the average taken

over 500 runs for each of the five configurations used in the experiments. The first configura-

tion, with all weights equal to zero, randomly chooses a friend to whom to forward a folder

and serves as a baseline. However when κ> 0, even in this case the forwarding node checks if

any of its known i-friends is the target node. If it is, the search ends successfully by forwarding

the folder to the target through the mutual friend of the current folder holder. This, as seen in

the plot, increases the success rate quite significantly compared to pure random forwarding.

The next three configurations are those with the boundary values of weights, which are 1.0 for

one metric, and 0.0 for the remaining two metrics. The fifth configuration of WD = 1/12, WC =

7/24, WP = 5/8 performs the best in the original search. We found the optimal weights by con-

ducting a binary search starting with WD = WC = WP = 1/3, and then varying each weight ini-

tially by Δ of 1/3, and then by halving Δ at each step, while maintaining the sum of all weights

at 1. We use these five configurations to measure the impact of κ on the behavior of the system

over a broad range of search criteria. Starting with the search without i-friends awareness (κ =

0), as κ increases, delivery rate improves, but this trend becomes less pronounced for larger κ.

With the optimal weights WD = 1/12, WC = 7/24, WP = 5/8 and κ = 15 the success rate of

search is 94%. However, increasing κ over 15 barely improves the success rate. It should be

noted that the average number of friends per user is 11.98 friends. Of the total of 75,803 users,

48,844 of them have less than 15 friends but more than one friend, so more than 70% users

Fig 1. Success rates with error bars collected from 500 runsfor each of the five selections of search weights defined

in Eq 1 with different seeds for the random number generator for each of 500 distinct pairs of starting and target

nodes selected to be at least 1,609 km apart. The plots include the baseline random search with all metric weights set

to 0, three searches using a single metric with weight 1, and the search with the metric weights yielding the highest

performance. We plot each rate as a function of the maximum number of i-friends of which a node is aware for each of

its friends. The error bars show the standard error.

https://doi.org/10.1371/journal.pone.0255982.g001
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may benefit from having knowledge of their i-friends. The average number of distinct i-friends

per user is 2,016, but with the limit of κ = 15 imposed, this number drops by order of magni-

tude to 125.3. Another significant result is finding the importance of distribution of friendship

edges. This agrees with a finding from [21] that the efficient Milgram social search requires

geographic based friendship edge distribution. Distributing friendship edges involves two

steps. First, each node randomly but according to the selected distribution, chooses its degrees

d (which means how many friends this node will have) according to an appropriate distribu-

tion. Then, a node selects s times a random friend to connect to by a friendship edge.

To efficiently deal with space distribution of nodes and their friends, we cover the contigu-

ous U.S. territory (i.e., excluding Hawaii and Alaska) by an array of non-overlapping, approxi-

mately equal-size rhomboids with 70 km sides (for simplicity, we refer to them as squares

below). We draw rhomboid sides along meridians and parallels to simplify translation of geo-

graphical coordinates into positions in a rhomboid and vice versa. Initially, we cover the U.S.

territory with 1,860 rhomboids, many of which have no Gowalla users inside them. We remove

rhomboids without Gowalla users, and only process in experiments the remaining 850

rhomboids.

When studying empirical complex networks with structures and properties that evolve nat-

urally, it is often challenging to understand which elements of a structure are essential to the

observed dynamics and properties. To address this challenge, an approach was developed of

shuffling nodes, edges, and time sequences of dynamic events, and then simulating resulting

process dynamics to test if the properties or features of interest are preserved. For example, the

authors of reference [22] study what properties are necessary for evolution of a network to end

in a scale-free network. The authors demonstrated that both growth and preferential attach-

ment are necessary for such evolution. In reference [23], the authors attempt to predict the

timings of scientists publishing their most cited paper from the sequence of the author’s all

publications. The question arose if there are detectable changes in citation to the scientist’s

papers at time leading up to, or following the publication of the highest cited paper. To test it,

the authors shuffled the sequences of publications of all scientists. The shuffled sequences were

similar to the original ones, answering the question negatively. The authors of reference [24]

study how scientists change the focus of their research over time. The authors performed three

shuffling experiments to test three properties of sequences of publications. For brevity, we

described a test of recency. Shuffling the order of publication sequences resulted in disappear-

ance of recency. This proved that selecting next topic researchers are more likely to return the

most recent ones rather than older ones. This is a property that shuffling easily destroys. Fol-

lowing these lines of experimenting, we use shuffling connectivity and geographical locations

of nodes in Gowalla network to test which distributions of friendship to edges and nodes into

space preserve or disturb efficiency of social search.

To quantify how the distribution of Gowalla users over space influences social search, we

use eight distributions of nodes into space. The original Gowalla distribution constitutes the

baseline. The next method is random distribution, which assigns a location to each Gowalla

user by first selecting a rhomboid uniformly randomly, and then choosing two orthogonal

coordinates within it for placement of the user. We generated 10 samples with this distribu-

tion. The last six distributions combine one of the three distributions of nodes to rhomboids

with one of two methods for embedding individual nodes into the space of each rhomboid.

The first three are respectively exponential, normal and Zipf distributions, each with the mean

of the rhomboid population in the original data. The normal distribution uses the variance of

rhomboid population in the original Gowalla network. The Zipf distribution starts with the

largest Gowalla user population in a single rhomboid of 10, 700, which yields the closest total

population to the total number of Gowalla users. Again, we generated 10 samples for each
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distribution. The first individual node embedding into space is geographic, which places users

in the given rhomboid using positions occupied by real users in one of the original rhomboids

whose population is close to the given rhomboid population. The second one embeds the indi-

vidual users uniformly randomly into the rhomboid space. We generated 10 samples of each

distribution resulting in 100 samples for each considered distribution.

To measure the influence of choice of distribution of friendship edges on the results, we use

the following five methods for assigning node degrees to Gowalla users. The first is the original

friendship edge distribution used as a benchmark. The second uses the random distribution

preserving degree/range of friends while randomizing friendships. To achieve that, each node

swaps edges with its neighbors in the same rhomboid with friends in the same range of dis-

tances to those nodes. The random uniform friendship edge distribution generates an Erdős–

Rényi random graph, which has the same node average degree as the original Gowalla network

does. We generate 10 samples of this distribution. The last two distributions assign each node

a degree according to the exponential and Power Law distributions with the mean degree of

the original graph. In addition, the Power Law uses the node degree exponent γ = 1.49 of the

original Gowalla graph, and the range of node degrees selected to closely match the total num-

ber of generated nodes with the number of nodes in the original Gowalla network. Then, we

use the created degree sequences to generate sample friendship graphs with these distributions.

We generated 10 samples of each distribution resulting in 100 samples for each case of the con-

sidered friendship edge distributions. We ran each created sample 10 times and averaged the

results. Then, we implemented and ran the elch’s [25], two-tailed, t-test to check whether or

not the differences in performance are statistically significant, and we report the results below.

Success rate and awareness of i-friends

Even with limited awareness of i-friends, the spatial distribution of nodes did not really matter

for the success rate of the Milgram social search Fig 2(a). In contrast, the distribution of friends

has a major impact on success rate. The original set of friendships achieved the highest success

rate that, surprisingly, is independent of the way nodes are distributed over the space. The suc-

cess rate with partial awareness of i-friends for κ = 15 is statistically significantly higher than

the success rate with κ = 0 (no knowledge of i-friends) and all other friendship edge distribu-

tions (P-value = 0.0005). The distant second is the random friendship edge distribution pre-

serving the degree and the ranges of distances from friends of each node, whose success rate is

not statistically significantly higher for this distribution combined with κ = 0 (P-

value = 0.2481), but it is statistically significantly higher for the remaining tested methods of

friendship edges distributions (P-value� 0.0005). The remaining three methods of distributing

friendship edges achieve much lower success rates. Accordingly, their success rates without

knowledge of i-friends are even lower and since they drop below 10%, they are not shown.

The overall conclusion is that the distribution of friendship edges and use of i-friends are

important, while the spatial distributions of nodes are not. The success rate achieved on the

original Gowalla network with the i-friends awareness was 94%, so higher than the 77.8% rate

achieved without it. The difference is significant from the perspective of the failure rate, which

is 6% in the first case but 22.2%, so over three times higher than in the first case.

Path stretch and levels of i-friends’ awareness

The stretch of the shortest distance between nodes n1, n2 is defined as

sn1;n2
¼ �dðn1; n2Þ=dsðn1; n2Þ, where �d is the average distance traveled and ds is the length of the

shortest path. As explained below, if a transfer to an i-friend is used, it adds two steps to ds

because two hops are required to pass the folder from the current folder to the i-friend. Thus,
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the closer the stretch is to 1 the more efficient the search is. As Fig 2(b) shows, stretch is the

lowest for the original set of friends. The distant second is the random friendship edge distri-

bution preserving for each node the degree and the ranges of distances from friends. For the

remaining three types of random friendship edge distributions, exponential, uniform and

Power Law, the stretch drastically increases.

The lowest stretch achieved with the i-friends awareness is 1.82 with original friendship

edge distribution, lower than the 2.72 stretch observed in experiments without such awareness.

In the first case, the stretch includes about 94% of all paths while in the second 77.8% paths,

since there are 16.2% more paths on which the second case failed. To fairly compare the

stretches between these two cases, we compute a stretch with the i-friends awareness only in

cases in which search without i-friends awareness succeeded. This adjustment drops the

Fig 2. (a-b) show plots with error bars of success rates (a) and stretches (b) achieved with partial knowledge of i-

friends under the different distributions of friendship edges as a function of various distributions of nodes into space.

Plots represent the results of running 10 samples of each distribution resulting in 100 samples for each case of the

considered friendship edge distributions. Each of these samples was executed 10 times and averaged results plotted.

Each friendship edge distribution has a unique color assigned to its plots and two best performing distributions have

also plots of their stretches achieved without knowledge of i-friends marked with the dashed line. We describe all

distributions of friendship to edges and nodes into space in the text. Plots for runs with awareness of i-friends were

computed using kappa limit of the number of i-friends set to 15, which, if needed, are uniformly randomly chosen

from i-friends for each friend of the sender. The error bars were in the range of [0.002, 0.039] for success rates (a) and

in the range of [0.07, 1.61] for stretches (b).

https://doi.org/10.1371/journal.pone.0255982.g002
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stretch to 1.59, showing the great improvement over forwarding without the i-friends

awareness.

In conclusion, when i-friends awareness is used, the distribution of nodes does not affect

the stretch, but the friendship edge assignment does.

Like in Fig 2(a) we also show the stretch with and without i-friends awareness for the sec-

ond best performing distribution of friendship edges that again is the original and the random

preserving nodes’ degree and ranges of distance to their friends. The stretch of the original

friendship edge distribution with κ = 15 is statistically significantly lower then that of this dis-

tribution with kappa = 0 (P-value = 0.0051), and the remaining friendship distributions (P-

value� 0.0005). Similarly, the stretch of the second in performance random friendship edge

distribution preserving the degree and the ranges of distances from friends of each node is not

statistically significantly higher for this distribution combined with κ = 0 (P-value = 0.5038),

but it is statistically significantly higher for the remaining tested methods of friendship edges

distributions (P-value� 0.0053).

Methods

The data for building Gowalla social network used here was originally collected by some of the

authors using publicly accessible Gowalla’s API for a study of the location-based social net-

works [26]. All collected data were anonymized according to the protocol approved by the RPI

Institutional Review Board (IRB). At the time of collection, Gowalla was a global network with

users primarily located in the United States and Sweden, and contained 154,557 users (nodes)

and 1,139,110 friendship edges distributed according to the Power Law with node degree

exponent γ� 1.51.

Since there are large differences between numbers of Gowalla users and populations in

countries outside of the United States, here we analyze only data for users located in the U.S.

To ensure connectivity, we only consider the giant component of the analyzed network that

comprises 75,803 users and 454,350 friendship edges, with the node Power Law degree expo-

nent γ� 1.49. In Fig 3, we plot the degree distribution for the giant component of a network

comprised of Gowalla users located in the U.S.

For each run of social search emulation, we randomly uniformly select the starting user and

the target user, which are at least 1,609 km apart, and then execute a Milgram social search for

Fig 3. The degree distribution for the giant component of a network with 75,803 Gowalla users located in the U.S.,

454,350 friendship edges, and γ� 1.49.

https://doi.org/10.1371/journal.pone.0255982.g003
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up to 50 hops. In each hop, the user currently sending the folder selects one friend as the next

recipient. The search ends successfully when the target receives the folder.

As mentioned above, in reference [13], the authors evaluate several criteria for selecting the

node to whom to forward the folder. This reference identified nine such criteria, of which we

skipped two: others, which mainly includes the target nodes and continue the chain, which is

difficult to categorize. We group the remaining seven criteria into three categories of nodes: (i)

nodes that are the closest distances from the target, (ii) nodes with the highest degrees, and

(iii) nodes belonging to the community to which the target node also belongs. The first cate-

gory includes geography used by 35% of chains, traveled to the target’s location employed by

14% of chains, and family originated from the target’s location used by 11% of chains. Hence,

60% of chains used category distance of which 25% used i-friends’ awareness. Just 8% of chains

used category prominence that includes only one criterion: lots of friends. Finally, 9% of chains

used work, 8% of chains used similar profession and 4% of chains used similar education,

which are all members of the third category. Thus, 21% of chains used this category. Interest-

ingly, 56% of successful chains used the distance during the first four steps of search. Later, its

use in steps 5-7 dropped to 29%. In contrast, 57% of successful chains used community sharing

in steps 5-7. Earlier, its use in steps 1-4 was just 28%. The prominence usage was low in suc-

cessful chains, with 7% usage in early steps and 6% in later steps. The authors did not discuss

reasons for low usage of prominence in their experiments. The possible culprit might be lim-

ited knowledge of the degrees of the neighbors in the studied network. Email networks typi-

cally do not make the sender aware of the recipient’s degree. Another interesting point is that

criteria traveled to the target’s location and family originated from the target’s location actually

select friends based on awareness that these nodes are likely to have some friends in the target’s

location. The use of such indirect awareness of this type of i-friends in the real experiments

shows that some participants of this experiment intuitively recognized the value of awareness

of i-friends. Thus, some people engaged in real Milgram social search have already used the i-

friends awareness as postulated here. Our contribution is to elevate such awareness to an

explicit criterion of choice comparable to distance, prominence or shared community and to

demonstrate the improvement that such awareness yields. This approach has been used to

improve design of routing protocols for delay networks [27] and most recently for IOT [28].

All values κ from 0 to 48 with step 3, and all combinations of (WD, WC, WP) 2 {(0, 0, 0), (1,

0, 0), (0, 1, 0), (0, 0, 1), (1/12, 7/24, 15/24)} are used in a set of computational experiments. For

each of them, we select uniformly randomly 500 pairs of starting and target nodes under the

condition that they are at least 1,609 km apart.

We average the results for each pair of users over 500 runs. Selecting i-friends, we use the

principle of coordinated execution [29], which ensures that for a given set of weights WD, WC,

WP, every node selects the same i-friends in each experiment repetition. The coordinated exe-

cution was also used for experiments in which the same weights were used but with different κ
values. As a result, each set of i-friends selected with large κ value contains all i-friends selected

with smaller κ values. In short, for the given graph, let F(κ) denote a set of i-friends selected

with κ, and let κ1� κ2 hold, then F(κ1)� F(κ2). This ensures fair comparison of results with

different values of κ.

Discussion

Since U.S. metropolitan areas are populated by a large fraction of the U.S. total population,

large concentrations of Gowalla users also reside there. Table 1 shows strong correlations

between populations of the Gowalla users and the inhabitants of the U.S. metropolitan areas.

Yet, there are some differences. There are up to 11% more Gowalla users in several
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metropolitan areas (e.g., Austin and San Antonio, San Francisco and San Jose) than their share

of the U.S. population. However, there are a few areas underrepresented that way with a small

deficit, reaching at most about 2% of the population.

This conclusion is based on analysis of Table 2 that shows the fraction of friendships and

indirect friendships (i-friends) whose geographical separation is within a given distance range,

as well as the fraction of communities within a given average distance range of their members.

The data demonstrates that distributions of communities, friends and i-friends over space are

unique, providing complementary ways for reaching targets.

Over half (52.8%) of friendships are within 200 km range from a user, the same distance

constraint would not cover many of the communities in the network (only 34.1% of them are

covered) or i-friends (just 9.7% of those are covered). On the other hand, over half (50.6%) of

i-friends are within the far range, from 1,600 to 6,400 km, while for communities, over half of

their members (55.5% exactly) are in the middle range from 200 km to 3,200 km. These statis-

tics show that the three metrics for making decisions at a given node have complementary

information about the nodes at different ranges of distances from that node. For example, the

main difference between spatial distribution of friends and i-friends is that only about 47.2%

of friends are located at a distance of 200 km or more while nearly twice as large percentage,

90.3% to be exact, of i-friends are there.

It is important to consider how much information people can retain about friends of their

friends, and how human memory limitations affect social search. The first question arises

because of the sheer size of the sets of i-friends. The average Gowalla user has 12 friends, but

2,016 distinct i-friends, which is due to prominent users, with as many as 8,000 friends, being

more accessible through the use of i-friends. To address this concern, for each friend we limit

to 15 the number of i-friends which are, if needed, uniformly randomly chosen from friends of

this friend. This reduces the average number of friends of all friends of which a person is aware

by order of magnitude, to 125.3, still not a small number. Fortunately, each of the metrics used

in social search needs only very limited knowledge about any chosen friend of a friend. For

Table 1. Percentages of Gowalla users and the populations of metropolitan areas in the United States.

No. Name Percentage of U.S. population Percentage of Gowalla Users Difference

1 Baltimore-Washington DC 2.46 2.93 -0.47

2 Los Angeles 7.42 1.22 6.21

3 Dallas-Fort Worth 6.97 2.18 4.79

4 Austin and San Antonio 12.71 0.97 11.74

5 Seattle-Tacoma-Belly 2.06 1.17 0.89

6 New York City 4.25 6.30 -2.05

7 Boston 1.55 1.48 0.06

8 Houston 2.04 2.04 0.01

9 San Francisco and San Jose 7.75 1.44 6.31

10 Chicago 1.89 3.00 -1.12

11 Philadelphia 1.01 1.90 -0.89

12 Salt Lake City 1.14 0.36 0.78

13 Portland 1.19 0.74 0.46

14 Denver 1.35 0.88 0.47

15 Atlanta 1.60 1.98 -0.37

16 Oklahoma City 1.82 0.41 1.40

17 Orlando 2.77 0.73 2.04

https://doi.org/10.1371/journal.pone.0255982.t001
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distance, it is sufficient for a person to know something about travel destinations or past resi-

dences of each friend, especially if those are distant or unusual places. Likewise, for communi-

ties, it is reasonable to assume that a person knows the friend’s attributes such as profession,

interests, hobbies, and, thus, can associate some friends of this friend with an appropriate com-

munity. In case of prominence, it is likely that a friend occasionally mentions some notable or

prominent friends, the existence of which the listener will remember more vividly than when

ordinary friends are mentioned.

Such limited awareness of i-friends allows the node with a folder to send it to a friend of

whose friends the sender is aware have a high chance to be the best choice for reaching the tar-

get. We estimate that the amount of such knowledge about a friend of that friend is at most 5%

of the amount of information about the corresponding friend. With the average of 15 i-friends

per friend, the amount of such information about all i-friends is less than the amount of infor-

mation held about each direct friend.

To demonstrate how the awareness of i-friends improves search, we analyze its impact on

search metrics. We start with the distance. Let the distance from the node n holding the folder

to the target, t, be r km. An annulus defined by two circles with radii of 3r/2 and r/2, centered

at node n has the area of 2πr2. The circle centered at node t of radius r/2 and area πr2/4 con-

tains all nodes that are distant at most r/2 from the target and it contains on average 1/8 of all

nodes in the considered annulus. A randomly chosen point in this circle has an average dis-

tance to the target of r/3. With the average number of friends of a node being 12, the cumula-

tive fraction of friends counted from the most distant annulus to the closer ones to the current

folder sender is at least 2/3. For the annulus with an outer distance of 25 km, the expect num-

ber of noode inside the circle around the target is at least according to Table 2. Thus, The

expected reduction of the distance to target in a single step is 500 km.

The average distance between the starting and target node is 2,642 km. At this distance, the

target is between two last circles, the inner circle with a radius of 1,600 km and the outer circle

with a radius of 3,200 km. The corresponding annulus contains 36.4% of all i-friends. With an

average number of 125.3 i-friends for the node currently holding the folder, the expected

Table 2. Distributions of fractions of friends, i-friends and communities over the ranges of distances from nodes. The second column shows the fractions of friends at

each distance range, computed by summing the numbers of friends in each range for each individual user and then dividing the result by the total number of friends of all

users. The third column shows fractions computed as ratios of sums of the numbers of i-friends of each user at each distance range to the total number of i-friends for all

users. The fourth column shows fractions of members of communities of each individual user at each distance range listed, computed as the sum of these numbers divided

by the total number of members of all relevant communities. Fifth, sixth and seventh columns list cumulative values from the second, third and fourth column,

respectively.

Range Percentage of Cumulative Percentage of

(km) Friends i-friends Communities Friends i-friends Communities

� 6.25 18.6 2.6 14.0 18.6 2.6 14.0

6.25–12.5 8.6 1.3 4.3 27.2 3.9 18.3

12.5–25 10.3 1.7 5.5 37.6 5.6 23.9

25–50 7.6 1.5 4.6 45.2 7.1 28.5

50–100 3.9 1.0 2.6 49.0 8.1 31.1

100–200 3.8 1.6 3.1 52.8 9.7 34.1

200–400 6.4 6.0 6.8 59.2 15.7 40.9

400–800 6.4 8.8 8.2 65.6 24.5 49.1

800–1600 11.8 23.8 17.2 77.4 48.3 66.4

1600–3200 14.8 36.4 23.3 92.2 84.7 89.7

3200–6400 7.5 14.2 10.0 99.8 98.9 99.7

https://doi.org/10.1371/journal.pone.0255982.t002
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number of i-friends is 5.7 in the circle of 940 km from the target. Thus, the expected distance

of the closest i-friend to the target in this circle is 210 km. It takes on average more than three

steps to get so close to the target using direct friends’ knowledge, while using i-friends, one

operation with the cost of two steps suffices. Hence, a fraction of i-friends needed to have at

least one i-friend inside the circle around the target has to exceed 8/125.3 = 6.4%, which is

smaller than the fraction that the most distant annulus contains. Thus, the average reduction

of the distance to target in this case is at least 3,200 km, achieved in two steps; the first step

sends the folder to a friend and the second directs the folder to the appropriate i-friend.

Hence, the gain of the distance towards target using partial i-friends awareness is over three

times larger than using knowledge of direct friends.

For the community metric, the average number of communities to which a node belongs is

nearly for two reasons. First, the algorithm that we used to find Gowalla communities assigns

each node to at most one community. Second, the majority of nodes are members of a com-

munity. In Gowalla, the average number of communities that can be reached via direct friends

is 6.8 in a step and 13.6 in two. For communities reachable using i-friends of which nodes are

aware, this number grows to 47.4 in two steps, so about 3.5 times more communities than

reachable just by friends.

In the case of prominence, we distinguish between prominent nodes, which are those

whose node degrees rank at the top 1% of all nodes, and the non-prominent nodes that do not

satisfy this condition. There are 758 prominent nodes in Gowalla network, each with a degree

of at least 122. We naturally exclude those nodes from analysis as they have many friends so

they are unlikely to use i-friends’ prominence for search. So if all direct friends of the current

folder sender are non-prominent, we established that they will have on average 19.3 direct

friends of which 4.4 will be prominent. However in such a case, using i-friends of which the

sender is aware, this number grows to 75.2 i-friends of which 15.4 are prominent, which

amounts to a 3.5 times increase in knowledge of prominent nodes.

Looking at the results of the social search simulations run on the original Gowalla network,

we can make some interesting observations. The results of social search conducted in the origi-

nal Gowalla network, 60% of the hops used direct friends and significant 40% used i-friends. It

is also important to note that even though we allow for up to 15 i-friends for each friend, an

average of only 3.5 i-friends are actually used. We will call a metric dominating in a forwarding

decision, if it is the largest component of the total score of the selected node. When using direct

friends, the distance metric dominated in 0.3% of hops, the community metric in 22.7% of

hops, and the prominence metric in 77.0% of hops. When using i-friends, the distance metric

dominated 0.6% of hops, the community metric 30.1% of hops, and the prominence metric

69.3% of hops.

When a sender directs the folder to a friend intended for its friend, the recipient follows

this intention in 74% of the cases. In 22% of the cases, the recipient sends the folder to a friend

who has a friend best fitting to get the folder to target. In the remaining 4% of the cases, the

folder ends up at the direct friend of the recipient different from the intended one.

Conclusions

We make two contributions to understanding Milgram social search efficiency. First, we

strengthen the result presented in reference [13] that geographical friendship edge distribution

is sufficient to make the Milgram social search efficient. Using massive computational experi-

ments, we demonstrate that the distribution of friendship edges and use of partial knowledge

of i-friends are both necessary and sufficient conditions for social search efficiency.
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The second contribution is a discovery that awareness of the sender’s i-friends is very bene-

ficial for social search. It extends the information base of the sender about connections beyond

the direct links to the sender’s friends. It also improves the user’s ability to identify friends

whose friends have information independent from one held by the sender’s direct friends. Fur-

thermore, increasing such awareness when it is small brings significant improvement to social

search efficiency. This approach has been used to improve design of routing protocols for

delay networks [27] and most recently for IOT [28].
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