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Abstract

In this thesis, I analyze the economics of three different contracting problems. The first
chapter considers the contracting problem facing multiple principals, each of whom de-
sires t0 contract with the same agent. If the agent has private information regarding his
gains from the contracting activity and the con‘racting activities in the principal-agent
relationships are substitutable (complementary), the principals will typically extract less
{more) information rents in total and induce less (more) productive iaefficiency in the
contracting equilibrium than if there were a single principal contracting over the same
activities. This analysis is subsequently applied to various environments, including joint
ventures, exclusive-dealing relationships, and regulation between conflicting governmen-
tal agencies.

The second chapter considers the potential use of liquidated damage clauses under
asymmetric information. Courts typically allow parties to stipulate the damages each
will pay the other in event of breach, providing that such liquidated damage terms do
not greatly exceed actual losses. This restriction acts as a ceiling, however, as courts
generally enforce terms that are equal to or below actual losses. This anomaly can be
explained when bargaining occurs under asymmetric information. Here, the liquidated
damage clause serves a dual role, both promoting efficient breach and signaling a party's
valuation of trade. I show that it is always optimal for parties to set damages at or below
valuation, thereby providing a consistent theory for the covrts’ asymmetric treatment of
contractaal damages: When damages are significantly below actual losses, courts may
plausibly maintain the presumption that the contract is the result of rational bargaining.
But when damages exceed losses, they must consider the likelihood of other elements
such as mistake and fraud.

The final chapter examines the problem of procurement and second sourcing. When
the government procures an item, ideally it would like to pay no more than the minimum
possible cost. But in practice the government does not know all of the technological
possibilities, even if it could perfectly audit most incurred costs. As a consequence,
suppliers who know they have superior technology can earn extra profits — commonly
known as "information rents”. A standard way to reduce information rents is to use
competitive sealed-bid tenders, which in effect award the contract to the best producer
at the second-best bidder’s break-even cost. One problem with the preceding method

2



is that only one source may be technically qualified to bid. If government wants more
competition, it must “generate” it through licensing or some other form of technology
transfer. Conventional cost analysis wisdom asserts that transfer is merited if and only if
the second source’s direct costs plus the costs of transfer are less than the first source’s
direct costs. Chapter 3 :':ows that technology transfer offers an additional potential
gain: reduction of information rents. To provide appropriate incentives, technology
should perhaps be transferred even when the second source is less efiicient than the
first. Additionally, when developer moral hazard exists with respect to investments in
cost-reducing technology, the optimal auction will make the developer’s success in the
auction more sensitive to the developing firm’s announced costs.

Thesis Supervisor: Jean Tirole
Title: Professor of Economics
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Introduction

The ’theory of business’ leads a life of obstruction, because theorists do not
see the business, and the men of business will not reason out the theories.

— Walter Bagehot

A contract is nothing more than an enforceable agreement between iwo or more
parties regarding some activity by which they are ail affected. This broad definition is
perhaps too encompassing to be descriptive; indeed, contracts govern most economic
activity. Even two agents who agree to trade at a price set by a marketplace Walrasian
auctioneer are contractual partners.

Contracts, however, are potentially much more interesting than simple marketplace
activity in at least two dimensions. First, contractual activity may involve agreements
made at dates which are not simultaneous with the economic activity under consideration.
For example, investments may be sunk or outside opportunities may arise after contracts
are written, but before money is exchanged. Additionally, information regarding an
agent’s effort or type may appear after the contract is signed. Second, the terms of
contracts may be written by one or both parties rather than an anonymons marketplace.
For example, sellers may offer prices to buyers which exceed marginal cost and buyers
may demand prices below their valuation. In this respect, the study of economic contracts
which differ from simple marketplace transactions has considerable interest. This study
is largely what economists have in mind when they refer to contract theory.

If we wish to construct a “theory of business” that is a reflection of the real world,
we are naturally compelied to examine contractual relationships. Buyers frequently in-
teract with sellers in a setting unlike an impersonal marketplace. Relationships within

organizations as well as between firms often involve a few rational agents making eco-
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nomic arrangements among themselves. Even regulation of business enterprise by the
government can be thought of as a contractual relationship between agent and principal.

The three essays in this thesis are examples of the application and extension of
contract theory to help understand real economic problems. The first essay considers the
contracting problem facing multiple principals, eachh of whom desires to contract with the
same agent. If the agent has private information regarding his gains from the contracting
activity and the contracting activities in the principal-agent relationships are substitutable
(complementary), the principals will typically extract less (more) information rents in
total and induce less (more) productive inefficiency in the contracting equilibrium than
if there were a single principal contracting over the same activities. I apply this analysis
to various environments, including joint ventures, exclusive-dealing relationships, and
regulation between conflicting governmental agencies.

The second essay considers the potential use of liquidated damage clauses under
asymmetric information between buyers and sellers in contracts. Courts typically allow
parties to stipulate the damages each will pay the other in event of breach, providing that
such liquidated damage terms do not greatly exceed actual losses. This restriction acts
as a ceiling, however, as courts generally enforce terms that are equal to or below actual
losses. Bargaining under asymmetric information can explain this anomaly. Here, the
liquidated damage clause serves a dual role, both promoting efficient breach and signaling
a party’s vaination of trade. I show that it is always optimal for parties to set damages
at or below valuation, thereby providing a consistent theory for the courts’ asymmetric
treatment of contractual damages: When damages are significantly below actual losses,
courts may plausibly maintain the presumption that the contract is the result of rational
bargaining. But when damages exceed losses, they must consider the likelihood of other
elements such as mistake and fraud.

The third essay examines the problemn of procurement and second sourcing by the
government. When the government procures an item, ideally it would like to pay no more
than the minimum possible cost. But in practice the government does not know all of
the technological possibilities, even if it could perfectly audit most incurred costs. As a

consequence, suppliers who know they have superior technology can earn extra profits —
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commonly known as “information rents”. One standard way to reduce information rents
is to use competitive sealed-bid tenders, which in effect award the contract to the best
producer at the second-best bidder’s break-even cost. One problem with the preceding
method is that only one source may be technically qualified to bid. If government
wants more competition, it must “generate” it through licensing or some other form of
technology transfer. Conventional cost analysis wisdom asserts that transfer is merited
if and only if the second source’s direct costs plus the costs of transfer are less than
the first source’s direct costs. The third essay shows that technology transfer offers
an additional potential gain: reduction of information rents. To provide appropriate
incentives, technology should perhaps be transferred even when the second source is less
efficient than the first. Additionally, when developer moral hazard exists with respect to
investments in cost-reducing technology, the optimal auction will make the developer’s
success in the auction more sensitive to the developing firm’s announced costs.

It is my hope that the reader will find that these three essays succeed in furthering

our knowledge of both the theory and practice of contracts.
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Chapter 1

Mechanism Design Under Common

Agency

“The question is,” said Humpty Dumpty, ‘which is to be master that’s all.’

— Lewis Carroll

1.1 Imtroduction

Mechanism design has proven to be a fertile area of research for the economist studying
the role of information in economic exchange. Since the methodology was first developed
by Mirrlees [1971], it has been applied to numerous contexts. Theorists have subsequently
extended the use of mechanism design to problems with multi-dimensional type spaces?,
multiple agents?, and informed principals.® But to date, we know very little about the
problem of mechanism design with multiple principals and a single agent — what has
been termed the problem of common agency.?

Common agency contracting under adverse selection is ubiquitous. Wherever hidden

information and some degree of competition among principals exists for a set of agents,

1See Rochet[1985], Laffont, Maskin, and Rochet [1987], and McAfee and McMillan [1988].

2See Myerson[1981], Demski, Sappington [1984], Demski, Sappington, and Spiller [1988], and Ma,
Moore, and Tumbull [1988].

3See Myerson[1983], and Maskin and Tirole [1990a,1990b].

4David Martimort [1991] has independently studied many of the issues in this paper and obtained
similar conclusicns.
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we will generally find an environment where mechanism design under common agency
is appropriate. Often the assumption that a single principal completely controls the

contracting environment with an agent is not realistic as the following examp!es illustrate:

Multiple regulators. Several agencies may have authority to promulgate regula-
tions affecting a single agent. To the extent that each regulator (principal) wishes
to extract the agent’s information rents, an analysis of mechanism design under

common agency is appropriate.®

e Common Marketing Agency. Manufacturers frequently choose to use the same
marketing agency for their wares. Such agencies typically have private information

about marketing and distribution costs, as well as their effort levels.®

o Price discrimination. Duopolists selling differentiated products to the same con-
sumers may find it optimal to employ second-degree price discrimination, but must

take into account the effect of their rival’s nonlinear screening contract.’

o Exclusive Supply Contracts and Joint Ventures. Firms may decide to form joint
ventures with one another to create an exclusive input supplier for members of
the venture. In one sense¢, a joint venture allows firms to coordinate their sep-
arate contracts into a single cooperative contrar* with an agent. In the absence
of a joint venture (or altematively an exclusive supply contract) the firms may

non-cooperatively contract with the same agent and fail to take into account the

SRelated research by Baron [1985] considers a Stackelberg game of regulating a public utility with
emission abatement regulation by the EPA (the leader) and rate regulation by a local public utility com-
mission (the follower). This paper extends Baron's approach to a large class of simultaneous contracting
games.

8This situation was originally considered by Bemnheim and Whinsion [1985] in an environment of
moral hazard. A more general treatment of common agency under conditions of moral hazard is found
in Bemheim and Whinston| 1986]. Recent work by Villas-Boas [1990] examines the information costs of
firms using the same advertising agency, wheie an agent may tell the “secrets” of one principai to the other.
Neither, however, considers adverse selection with common agency. Gal-Or [1989] has also examined a
special case of common agency between two principals using the same marketing agent where the utility
the agent derives from the relationship with one of the principals is independent of the contract with the
other principal. Tnis case is briefly considered in Section 2.3.

"Competition with nonlinear tariffs was considered by Oren, et al. [1983], but in a mot. limited
framework where players are restricted to taking the choices of the agent from the rival principal’s contract
as given.
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externalities which they impose on one another. An analysis of commen agency

illuminates some of the benefits of joint ventures and exclusive supply contracts.®

¢ Franchise Contracts. Franchisoss frequently contract with nonexclusive franchisees,
such as automobile dealerships, which have contracts with multiple franchisors. The
nature of the equilibriuin contracts in the nonexclusive environment sheds !ight on

the benefits of exclusive control.

e State and Federal Taxation. Following Mirrlees [1971], an obvious extension of the
optimal theory of taxation would consider the effects of two principals (State and
Federal revenue departments), each attempting to minimize ¢he distortion introduced

by its taxation while maximizing its own objective.

Following the work of Bemheim and Whinston [1986] on common agency under
moral hazard, we note that environments with common agency can either be delegated
or intrinsic. Under delegated common agency, the choice of contractual relationship is
delegated to the agent who can choose whether to contract with both, one, or none of
the principals. This is a natural setting for examining such phenomena as second degree
price discrimination by duopolists, where the consumer ultimately decides from whom
to purchase. Alternatively, when commeon agency is intrinsic, the agent’s choice is more
limited: the agent can choose only between contracting with both principals or contracting
with reither. A common example of such a setting is industrial regulation by multiple
regulators. The regulated firm’s only choice beside regulation is to leave the market and
forego profits altogether.

The distinction between these two environments is less important when the contracting
activities of the two principals are complementary in terms of the common agent’s utility:
In any equilibrium where the agent finds it attractive to contract exclusively with either
principal, the agent will find it desirable to contract with both. Although this is not the

case when the activities are substitutes, we choose to focus on intrinsic common agency

8Related models which have examined organizational and market structures from a common agency
perspective with moral hazard are Braverman and Stiglitz [1982], which considers sharecroppers responsible
to both landlords and creditors, and Stiglitz [1985], which considers corporate managers as agents to both
stockholders and corporate creditors.
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as a first step toward a more general theory on common agency under adverse selection.
Nonetheless, as the applications in this paper demonstrate, a large set of interesting
economic questions are addressable within this class of models.

The main focus of this paper is twofold. First, we develop techniques for studying
common agency contracts with mechanism design. Second, using these new tools, we
consider some of the economic ramifications of a common agency setting. Section 2 of
this paper introduces a general model of contracting under common agency, and proceeds
by characterizing the contracts for two benchmarks: the cooperative (or single principal)
solution and the case of contractual independence (where the agent’s marginal utility
derived from the contract with one principal is unaffected by the contract with the other).

Two fundamental problems are encountered when one attempts to apply traditional
mechanism design tools to commen agency problems in absence of contractual inde-
pendence. First, the simple characterization of incentive compatibility and participation
constraints used in single principal contracts is no longer available. Instead, we find a
more complicated analog in our two-principal setting ‘when we consider common agency
implementability in Section 3. With two principals, each of whom observes only the
report meant for her, we require more than that the agent finds it incentive compatible to
report truthfully to principal : given he reports truthfully to principal j: It must also be
the case that lying to both principals (with perhaps differing reports) is not beneficial to
the agent. A significant contribution of this research is to explicitly characterize the set of
commonly implementable contracts. Second, when searching for a Nash equilibrium in
contiacts among principals, one cannot invoke the revelation principle without exercising
care. Each principal will typically find it rational to attempt to induce the agent to report
falsely to a rival and thereby extract a larger share of the agent’s information rents. Of
course in equilibrium, all contracts are incentive compatible so that such attempts are
useless, but their possibility imposes constraints on the set of equilibrium contracts. This
problem is also taken up in Section 3.

Section 4 analyzes the set of pure-strategy differentiable Nash equilibria in the contract
game for the cases of contract complements. Section 5 analogously considers equilibria

with contract substitutes. We find that the presence of common agency results in cach
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principal creating a contractual externality. When the contracting activities are comple-
mentary, equilibria in the simultaneous contracting game have each principal introducing
too much distortion in an effort to extract rents from the agent. With substitutes, the
reverse typically occurs and too little distortion is introduced from each principal’s point
of view. The results are in accord with our notions of Nash equilibria in prices between
competing duopolists in a differentiated product maiket. When the goods for sale are
complements, each duopolist prices excessively relative to the monopoly solution; when
the goods are substitutes, each duopolist sets prices closer to marginal cost, introducing
a smaller distortion. In Section 6 several applications of common agency contracting in
environments of adverse selection are presented as a motivation to the preceding analysis.

Sertion 7 concludes.

1.2 The Model

1.2.1 The Contracting Framework

For simplicity we consider a contracting environment with two principals, : = 1,2, and
one agent. Although our model is quite general, for exposition we take each principal 1 as
a potential purchaser of some good, z;, which the agent produces. The agent has private
information, or type, # in some compact set @, which we take to be the interval @ = (4, §).
Furthermore, it is common knowledge amony the principals that @ is distributed according
to the differentiable density function f(#), where f(8) > 0, V0 € O, with corresponding
cumulative distribution function F'(6), and with 1—"—,5 nonincreasing in §. Without loss of
generality, we consider direct revelation mechanisms in which the agent announces his
type to each principal separately, although as indicated care must be taken in this regard
when considering deviations by each principal from the equilibrium.

We assume that each principal observes only the report meant for her, and denote
the reports for each principal as 6, and 0,, respectively. Various motivations exist to
justify this approach. First, antitrust laws might deal harshly with collusive activities to

coordinate contracts and reports from the agent, particularly given our results in Section
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5 regardiny the potential anticompetitive effects of such coordination. Second, even if
principals could jointly observe the agent’s report, the possibility of secret side contracts
between each principal and the agent before the agent’s type is announced may render
such joint observations useless.® Finally, at least in the regulatory context, it may be
legally impossible for one agency to contract on the decision variable of another, even
though it may be publicly observed (e.g., the local public utility commission cannot make
allowed rates of return an arbitrary function of pollution abatement and the EPA cannot
choose levels of allowable pollution as a function of local rate making).

Each principal chooses an allocation or contract, y;(-), which consists of a decision,
z;(-), that belongs to a compact, convex, nonempty subset X C R, , and a monetary
transfer, ¢;(-), paid by the principal to the agent: y;(6;) = {x:(6:),t:(6;)}. We suppose the
decision choice of each principal’s contract is one-dimensional to simplify the analysis
although, as in Guesnerie and Laffont [1984], it is possible to generalize the results to
choices over vectors of decisions.

The principals have von Neumann-Morgenstern utility functions that are given by
Vi(z1,23,t), ¢ = 1,2, which are thrice continuously differentiable, decreasing in t;, and
have partial derivatives up to the third order which are uniformly beunded on any given
compact subset of X'? x R,. Initially, we let V' depend upon z; as in the case where
each principal ¢ buys inputs z; from the agent and sells them in the same downstream
product market.

We have chosen to model each principal’s utility as a function only of the two contract
variables and the transfer to the agent. The agent’s type does not affect the principal’s
welfare. It is straightforward to make each principal’s utility a function of § as well as a:,
and z,, although the assumptions used in this paper must be modified to ensure concavity
in the principal’s problem and monotonicity in the resulting menus of allocations. Such
an extension would be appropriate, for example, in the multiple regulators context. In

such circumstances, each regulator may place some weight on the agent’s welfare (e.g., a

9If, however, the side contracts are negotiated under asymmetric information, a role may nonetheless
exist for common contracts. See the work of Caillaud, Jullien, and Picard [1990], which shows in a multi-
principal and multi-agent framework that if secret contracts are feasible, initial contracts may be uscful
when asymmetric infor.nation exists during side contract negotiation.
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public utility’s profits may have a positive weight of less than one attached to it), which
renders principal ¢’s payoff a function of ©,,z,, #, and #; as well. Nonetheless, we
make the simplifying assumption for ease in exposition. Because each principal’s utility
depends upon both z; and z,, the contract between the agent and one of the principals will
directly affect the well being of the other principal. More interestingly, to the extent that
U,,z, # 0, one principal’s contract will affect the agent’s marginal utility, and therefore
indirectly affect the cost of contracting with the other principal. Later in this paper we
will make a further simplification that each V* is independent of z; in order to focus on
this second affect.

We assume the agent has a von Neumann-Morgenstern utility function given by
U(zy,x2,t + £2,0),

which is also thrice continuously differentiable, strictly increasing in aggregate transfers,
t; + t5, and has uniformly bounded partial derivatives up to the third order on any given
compact subset of X2 x . We also suppose there are no fixed costs of production by
the agent: U(0,0,0,6) = 0.

We normalize the agent’s outside opportunities to zero and assume that the principals
have all of the bargaining power and simultaneously offer take-it-or-leave-it contracts.
Because we analyze intrinsic agency, we suppose that the agent is forced eiiher to accept
both contracts or to refuse to contract with both principals.

Given a contract pair, {y(8)} = {1:(;), yg(ég)}é“_ee‘iz.l'z, we can represent an agent’s

indirect utility as a function of reports and type by
U(éhéh 0) = U(wl(él)vw2(é2)v tl(él) + tZ(é2)v 0)’

which we will frequently use when no confusion should result. Additionally, subscripts
denote partial derivatives with respect to direct arguments and primes denote derivatives

with respect to a single argument at all points where such derivatives exist.
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1.2.2 The Cooperative Benchmark

As a comparison, we initially consider the situation where both principals choose contracts
that depend upon a single report by the agent and that maximize their joint utilities !°
{The reader familiar with the theory of mechanism design may wish to skip to Section
2.3.] Alternatively, we can think of the situation as one of a single principal that contracts
over both activities of the agent. As a consequence, we can restrict ourselves to a simple
mechanisms y(§) = {t(6), z,(8), z2(6)}, where 4 is the single report by the agent. Given
an allocation, we may denote the agent’s utility as a function of type and report by
U(8,6) = U(z,(8), z5(8),t(4),0).

Definition 1 A decision function, = : © — X'?, is implementable if there exists a transfer

function t(-) such that the contract satisfies the incentive compatibility (IC) constraint:
U(wl(o)’w2(0)’t(0)’0) 2 U(ml(é)aw2(é),t(é),0)s \/(0,(3) € 0%

A contract is feasible if the decision function is implementable, and the transfers addi-

tionally satisfy the participation (or individual rationality) constraint:
U(z1(9), z2(9),t(9),8) > 0, VO € O.

Throughout this paper we will restrict ourselves to continuous decision functions
which have piecewise continuous first derivatives (i.e., are piecewise C''). Following the
methodology in Mirrlees [1971] we may characterize the set of feasible mechanisms in
the following two theorems.!! Although the results of Theorems 1 and 2 are standard,
we present them in the Appendix for completeness and comparison with the proofs used

in characterizing implementability and feasibility under common agency.

10In the general case where U is not linear in transfers, we may look for a Pareto optimum such that
AV 4 (1 -2)V? is maximized for some weight, \. When U is quasi-linear we may consider the simple
sum of the principals’ payoffs. Here we focus on the latter.

11This section closely follows the development in Guesnerie and Laffont [1984]. For anosher exposition,
combined with a more recent review of the literature, see Fudenberg and Tirole [1991, chapter 7).
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Theorem 1 (Necessary Conditions.) A piecewise C* decision function is implementable

only if
2

Ut(wla m2at30)t’(0) == Z Ur.‘(mla m2at10)m:(o), (1'1)

i=1

and

6 (Uzl(ml, T2, t, 9)

' 3 Uz,(ml,wg,t,ﬂ)
80 \ Uy(zy,2,,t,0) ) =(6) + a0 (

8) > )
U(z1, 22, ¢,0) ) =l8) 2 0, (1.2)

for any 0 such that z; = z;(0), t = t(0) are differentiable at 6, which is the case except

at a finite number of points. In addition, an allocation is feasible only if
U(z1(8), z2(8),t(8),8) > 0. (1.3)

Before proceeding with the sufficiency theorem, we make two assumptions.

Assumption 1 Constant sign of the marginal rate of substitution. On the relevant domain
of z1, x2, ¢, and 0, 5 (%‘%) > 0, 1 = 1,2. Additionally, the agent's utility

increases in 8 : Ug(zq,x2,t,0) > 0,Vzy,z,,¢, 8.

Assumption 2 Boundary behavior of U(.). For any (z1,x2,t,0) € X% x R x O, there

exists a K > 0 such that

2

Uq, (21(0), z2(0),¢,8) Uza(‘”l(”)’wz(e),t',(’)] dx;(8)

\ < K[t - ¢,
U(=i(0), 5x(0),6,8) ~ Ud(er(0), 2ol0),5,8) | ~df ““ Ie=#1

i=1
uniformly in x, x2, and 0, where ||| = sup |p(9)|.
6€0

Assumption A.l is the well known Spence-Mirrlees single-crossing condition; this
partial derivative exists because U is C? and strictly increasing in ¢. Without loss of gen-
erality, we assume the signs are positive. The condition that the agent’s utility increases
in @ is natural in most economic environments where the marginal rate of substitution
between activity and transfer is positive. We take A.1 as given throughout this paper.

Assumption A.2 is a Lipschitz condition which assures us that the marginal rates of
substitution between decisions and transfers do not increase too fast when the transfer
increases. With preferences that are linear in transfers, this condition is trivially satisfied.

We now state the sufficiency theorem.
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Theorem 2 (Sufficient Conditions.) Given assumptions A.1-A.2, any piecewise C'' deci-
sion profile for which zi(0) > 0, V0 € O, 1 =1,2, is implementabie by a transfer function
satisfying (1.1). Furthermore, given that a piecewise C' allocation satisfies condition

(1.3), the allocation is also feasible.

The traditional approach to mechanism design takes (1.1) and (1.3) above and chooses
a mechanism which maximizes the principal’s utility. It is then checked that the resulting
mechanism is monotone. In the event that it is not, an algorithm such as that in Guesnerie
and Laffont [1984] is employed which monotonizes the decision functions in an optimal
manner. In the present case of cooperative contracts, we may proceed accordingly. First,
however, for tractability in the principals’ optimization problem, we make additional

assumptions regarding the contracting environment.

Assumption 3 (a) Agent’s preferences are quasi-linear: U(z,,x2,t,0) = U(z1,z2,0)+t.
(b) Principals’ preferences are quasi-linear: Vi(zy,x2,t;) = V{1, 22) — ¢;.

(c) The range of allowable decision functions, X, is the interval (0,%|, where (Z,%) is
greater than any (z,,x;) € arg max {Zl(:cl, z2,0) + Vi(z, wz)},for i = 1,2 and greater
than any (z,,x;) € arg max {I,l(ml,:cz,ﬁ) + VY (z1,22) + 1)2(:1:1,:1:2)}.

Assumption 4 Concavity and monotonicity.
(a) The following function (the principals’ virtual surplus) is globally strictly concave in

z, and v, and for all 0 attains an interior maximum over X'*:

V(zy, 22) + Vi(2y, 23) + U(z1,22,0) — 1:f(%()-g—)-lzlg(:1:1, T2,8);

additionally, Uge(z1, z2,0) < 0.
(b) For 1 = 1,2, and for any x,,x,,0,

[Viies + Visey + U - L;,—%o—)u,,m,a] e (1- -;5(1—}—(%(7’?)» - -1—‘7%9%,“] -

[valzjmj + v:ijwj + Usjzj — }':fgg)glum,'z,'O] lum,-a (1 - Edé (1}(1:)()0))) - 1}{;()0)11::.-00] 2 0.

Although assumption A.3(a)-(b) is strong, it allows us to get to the heart of the

issues of adverse selection under common agency without introducing additional technical
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assumptions. Nonetheless, it should be clear to the reader how one proceeds when
preferences are not quasi-linear. In our context of two principals buying products from
a single supplier (agent), U represents the costs of production and is negative, while ¢
represents revenues from the principals. A.3(c) additionally requires that the principals
are not specifically prevented from implementing the first-best level of activity.

A.4(a) assumes that the principals’ incomplete-information problem is well-behaved.
This assumption is met whenever the full-information optimum is globally strictly concave
(as is the case in many economic problems) and the uncertainty of € is relatively small.
In the absence of A.4(a), it is possible that comer solutions as weli as random schemes
may be desirable. The condition that Ug9 < 0 ensures that at the optimum, the expression
in A.4(a) is increasing in 4.

Unless a particular economic environment is considered, assumption A.4(b) is not
naturally satisfied. A.4(b) (in combination with A.1, A.3, and A.4(a)) requires that the
unconstrained solution to the principals’ incomplete information problem have increasing
decision functions. This simplifies our task considerably, as we do not have to consider
such issues as bunching. Sufficient (but not necessary) conditions for A.4(b) to hold are
Uz96 < 0 and U, -,9 > 0. Section 6 provides motivating economic applications that
satisfy A.4(b).

Given the additional assumptions A.3-A.4, we can now state the solution to the

principals’ cooperative contracting problem.

Proposition 1 Given assumptions A.3 and A.4, the contract which maximizes the sum of

the principals’ utilities has decision functions which satisfy V0 € [0},0),i = 1,2

1-F(6
V,l,.,(:cl,wz) + V:'.(wl,mz) +Um,.(m1,:c2,0) = —-}-(—0(5—221“0(.’!,‘1,:82,0), (14)

and V6 € [6,6), z,(0) = 0, where 8 is defined by

Vi(21(67), z2(67)) + V(21 (8]), ©2(87)) + U(1(6] ), (67, 67)

1—F(8)
£(9)

Up(1(87), 22(67), ;) = 0,
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if the resulting 97 > 8, and 0} = 0 otherwise. Moreover, the transfer function in the

optimal contract satisfies V8 € ©.

40) = [ Ualzr(s),1(s),9)ds — Uar(8), 22(8), ). (15)

The proof of the proposition is standard and provided in the appendix. Proposition 1
indicates that the contracted levels of z; are below the efficient level for all § < 8. The
intuition behind the result is straightforward. The principals contract for levels of z; for
a given # such that the marginal expected efficiency gain from raising the level of x;,
ie. (Vi + V2 +U,)f(0), is equal to the marginal loss of rents which must be given
to agents with types better than @ to induce incentive compatibility, i.e. U,,9[1 — F(8)].
Of course, when the principals have unaligned preferences (i.e., neither principal cares
about maximizing the joint surplus) and the contracts are chosen noncooperatively, this
result is fundamentally altered.

In the noncooperative contracting game in which the principals have different prefer-
ences for contracting activities, the presence of externalities alters the result in Proposition
1. Two channels exist for the transmission of externalities. First, when V7 depends on z;,
principal ¢ will not take into account V7 when maximizing her payoffs and may choose z;
inefficiently from the point of view of maximizing joint surplus. We examine this effect
in the following section. The second channel which exists even if V7 is independent of
;, is both more interesting and more subtle. To the extent that U, ., # 0, the contract of
one principal may change the marginal disutility to the agent from the other principal’s
contracting activity, thereby affecting the equilibrium contracts offered by each principal.

The examination of this second channel is undertaken in the remainder of this paper.

1.2.3 The Noncooperative Benchmark with Contractual Independence

We now depart from the earlier analysis where we assumed that the two principals could
coordinate contracts with the agent, and where each principal leamed of both reports.
Instead we suppose a common agency environment where each principal may condition

her contract only upon the report meant for her that is sent by the agent. Each principal’s
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mechanism, y;(-) = {zi(-},t:(-)}, is a function only of §;. Such a representaiion is
equivalent to the nonlinear tariff contract where ¢; = ¢;(z;), and ¢; is independent of z;.

Under full-information, a set of equilibrium contracts which maximizes the principals’
joint surplus exists where each principal makes the agent the residual claimant for her
profit, thereby internalizing the externalities the principals would otherwise impose upon
one another. When information is private, we must again address the issue of incentive
compatibility.

As before, given a pair of contracts and our assumption of quasi-linear payofts, we

can denote the utility of an agent with type § who makes reports 6; to principal i as
U(6y,0,,0) = U(z1(6,),2(82),0) + t1(8;) + t2(6,).

With this definition, we can define incentive compatibility for the common agency con-

tracting environment.

Definition 2 A pair of decision functions, {z1(-),z2(-)}, where z; : ® — X, is com-
monly implementable if there exists a transfer function t;(-) : © — R for each principal
such that the pair of contracts satisfies the common incentive compativility (CIC) con-
straint:

U(010a0) 2> U(é1,92,0), V(él,éZ)o) € @3'

A pair of contracts, y : 0% — X? x R2, is commonly feasible if the decision functions
are implementable, and the transfers satisfy the participation (or individual rationality)
constraint:

U(6,6,6) >0, V8 c 0.

For completeness we consider the simple case of contractual independence in agent’s
utility as a benchmark. When the agent’s utility from contracting with one principal is
independent of the contracting activity with the other (i.e., U, = 0 for all z,,z,,0),
the equilibrium of the common agency contracting game is readily calculated. With
contractual independence, we abstract away from concemns imposed by global incentive

compatibility which manifest themselves whenever the agent can make two different
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reports — one to each principal. This benchmark, however, is intriguing as it highlights
the strategic interactions which result from our assumption of intrinsic agency and the
contracting requirement of individual rationality.

Because the activities are independent from the agent’s viewpoint when U, ., = 0
and A.3(a) holds, Theorems 1 and 2 still apply with only slight modifications in their

statements.

Theorem 1° (Necessary Conditions.) Suppose U,,., = 0. A piecewise C* decision

function is implementable only if

t:(8) = —Us, (21, 22,0)2i(8),

and z!(8) > O, for any 0 such that z; = z;(9), t = t;(0) are differentiable at 0, which is

the case except at a finite number of points. In addition, an allocation is feasible only if

U(z1(8), z2(0),8) + t1(8) + t2(8) > 0.

Theorem 2’ (Sufficient Conditions.) Suppose that U, ., = 0. Any piecewise C* decision
function, x;, for which z(6) > 0, is implementable by a transfer function, t(-), satisfying
the differential equation in Theorem 1' above. Furthermore, given that a piecewise C*
allocation satisfies condition the necessary individual rationality condition in Theorem I1’,

the allocation is also feasible.

The proofs follow those from Theorems 1 and 2. Note, however, that the necessary
individual rationality condition in Theorem 1’ requires principal :’s contract to satisfy
a global participation constraint. This in an artifact of our intrinsic agency framework.
With delegated agency, this condition would be replaced with the participation constraint
specific to principal i: U(xz1(6),z2(9),8) + t:(0) > U(0,z2(8),0). With intrinsic agency,
however, we have the possibility that one principal may pay less than her implicit share

for the agent’s production. This will have an affect on the characterization of equilibrium
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contracts.
To proceed with our examination of the contractual independeice equilibrium, we

modify A.4 as follows:

Assumption 4’ Concavity. (a) In addition to A.4(a) holding, the following function
(principal i’s virtual surplus) is globally strictly concave in z;, and for all z; and 0

attains an interior maximum over X :

. 1-F(6
V’(ml, :232) + U(ml, (82,0) - —-—-f—.(—é—gluo(wl, (02,0).
(b) For all ©1,22,8,1=1,2, j # 1,
i y ; 1 F(0)
¥ (21,22,0) = P(1,22,0) | Vs, (21, 2) + Usioi(21,22,0) — —f—(a-)—-um.-o(ml,mz,())

- ¢£(m17m2’0)v£1w2($1’w2) 2 0’
where

1/,1'(2,1,:1:2,0) = l—_}-{-})ﬂ)—uﬂog(wl,mzﬂ) - [1 — ;—0- (—1-:];—{‘6-()9)] Uz 6(z1,2,0).

(c) For all y,z5,0 and i = 1,2, j # 1,

17 j d (1-F ~F
(v;,.--1 Fu,,,,.) 2 +[1 (—T—)]u--lf Ugg > 0,

f det O 4o\

where () is the Hessian of the expression in A4’(a).

A.4 has been modified in three ways in order to deal with the strategic interactions
induced by the externalities inherent in the principal’s payoffs. First, concavity is assumed
over an individual principal’s objective function. Second, in A.4’(b) conditions related
to concavity have been assumed to ensure that z;(6) > 0. These latter conditions are

satisfied if, for example, U,,¢9 < 0 and V3

2,2, 18 NOt too negative relative to V, . +Us,.,; in

this sense, A.4’(b) is akin to sufficient concavity of the full information collective surplus.
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Third, A.4’(c) effectively requires that principal 1's virtual profits be nondecreasing in 6.
The condition is satisfied, for example, whenever Upy < 0 and any negative extemality
bom by principal : from z; is smail oi. tt margin compared to the informatic:i rents

paid to the agent. With A.4’ satisfied, we can now state our result.

Proposition 2 Given assumption A4’ and Uy, =0, VY, 23,9, any pure-strategy Nash

equilibrium in the simultaneous contracting game satisfies /0 € (0}, 0)

- 1-- F(6 . .
v;‘(x17$2) +ua:.-(xl,r!'0’ = —f-(jé%ur|’(m1,.’82’0)' 1 = 1’2’ (I‘G)

and for all § € [8,0?),z:(8) = 0, where 6! is defined by

Viea(87),2a(87)) + Uaa(65). 7365, 7) = o Dl (80),22(07),80) + 1(67) =0,

if the resulting 8; > 8, and 0; = 0 otherwise. Moreover, the transfer function in the

optimal contrac: satisfies V8 € (6, 8)
0
ti(0) = jo, Uz, (1(8), Ta(s), s)zi(s)ds — U(x1(8]), z2(67),07) — t;(67), (1.7)

and t,(0) = 0 for cil § € [9,0}).

The proof is analogous to that of Proposition 1 and is discussed in the Appendix.
Two principals simultanecusly maximize their payoffs. Depending upon the relationship
between the principals’ payoffs, the resulting contracts can either require greater or lesser
contracting activity. If V;J, < 0, a principal’s contract introduces a negative externality,
and production is greater under common agency than under the cooperative contract.
The opposite conclusion holds for V:;j >> 0. This resuli is related to the work of Gal-Or
[1989], who argues that common agency may impose a cost on the principals in a common
marketing relationship. Increased sales of one principal’s product by a marketing agent
hurts the second principal through reductions in demand.

An additional difference with the result in Proposition 1 invelves the nature of the

cutoff types, 6. Because intrinsic agency requires that each principal’s contract satisfy
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global participation, it is possible that multiple equilibria exist. Supposing that principal
i pays only a small fraction of U(z1(8),z2(8),8), principal j may find it worthwhile
to contract only with § > 7. That is, it may be too costly for principal j to pay the
difference in order to satisfy the global participation constraint for < @J‘.. Consequently,
the equiiibrium share, «;, of U(xz,(8),z2(8),8) that principal : pays may be required to
lie inside a subinteival of [0,1] in order for all types to be contracted. We can say more

about the nature of such shares as the following corollary suggests.

Corolilary 1 Suppose each principal’s contribution to the joint surplus is positive at §

for a pair of decision functions ., x, which satisfy (1.6) above: i.c.,

1~ F(6)

Vi(w1(8),22(8)) + U(=:(8),0,8) - —75

uG(;B;(_Q),O,Q) 2 0.

Then there exists t,,i, such that ©,,z, is a Nask equilibrium and 0} = 0 for + = 1,2.

Proof: For 0! = §, it must be that

1 - F(6)

Vi(z1(8), z2(8)) + oulh (z1(8), 2(8),8) — 7(0)

ua(zl(g)a zZ(Q)vQ) 2 O,

for ¢ = 1,2. Since #4(0,0,8) =0 and U,,., =0, U(z1(8),x2(8),8) = U(x:1(8),0,8) +
u(O,wz(Q),Q). Setﬁng a; = U(z,-(Q),O,Q)/U(ml(ﬂ),mg(ﬂ),ﬁ), and

6(0) = [ Uei(oa(o),2a(s), 9)el(o)ds - eith(21(0), 5(0),0),

we satisfy the required condition for : = 1, 2. 0

The proof uses an o; set equal to the ratio of principal :’s production cost to the total
production cost so as to obtain full contacting by both principals. In fact, an interval for

«; defined by

U(zr, 22,0) + V7 (21, 22) — I}Foo Us(z1, 2, 0) L}‘(%@”O(xhwz,o) ~ V(21,22
U(ml,:cg,@) ’ —I,((:cl,:cg,0)
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exists at each € such that, for all o; contained in the interval, all types of agent greater
than # are contracted with by the principals. Any «o; which lies in the interval defined at
8 will support the Nash equilibrium given by (1.6) and 8} = §.

In order to more fully understand the ramifications of common agency in contexts
of adverse selection, we now focus our attention to the more subtle problem of non-

independent contracting activities.

1.3 Incentive Constraints under Common Agency

1.3.1 Implementable and Feasible Contracts

As in Section 2.3, vie suppose a common agency environment where each principal may
condition Ler contract only upon the report meant for her: a principal’s mechanism,
{i(6:)} = {=:(6;), t;(é,-)}éi ceo» May depend only upon d;. In this Section we characterize
a set of necessary and sufficient conditions for common incentive compatibility and
participation when U, ., # 0, but for simplicity we assume no externalities between the
principals’ payoffs (i.e., v;'j = 0). Because each principal’s contract can only depend
upon 4;, the necessary and sufficient conditions will be stronger than in (1.1)-(1.3) above.
With conditions similar to (1.1)-(1.3), we can only guarantee that an agent will not make
consistent reports, é, = ,, that differ from 6. Stronger conditions must be satisfied to
guarantee in addition that the agent will not gain from making inconsistent lies.

We proceed with two theorems analogous to the necessity and sufficiency theorems

presented in Section 2.

Theorem 3 (Necessary Conditions.) A pair of piecewise C* decision functions are com-

monly implementable only if, for + = 1,2,
U;.(8,6,0) =0, (1.8)

Us.0(6,0,8) + Us 4,(6,6,6) > 0, (1.9)
Up,o(8,0,0)U4,4(8,0,6) + Up 4. (6,6,8) (Uy, 5(8,0,0) + Uy, (6,6,6)) >0,  (1.10)
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for any z;(0), t;(6), 6 € O such that z; is differentiable at 8. In addition, a pair of

piecewise C* contracts is commonly feasible only if
U(,8,6) > 0. (1.11)

Proof: As in Theorem 1, using a Taylor expansion and revealed preference, it can
be shown that piecewise C' decision functions imply that transfer functions are also
piecewise C'!.

A necessary condition for maximization by the agent is the satisfaction of first-order
and local second-order conditicas at §;, = §, = 6, at all points of differentiability. This
implies

U (0,6,6) =0, i = 1,2,
Uéié‘(o,o,g) <0,:1=1,2,
2
Udlél(a’a’o)Uézd:(O’o’o) - (Ul’ldz(o’o’o)) >0,

V8 € (8,8). The first expression is (1.8) above. Totally differentiating this expression
with respect to 0 yields Uy ;.(4,0,0) + Uy 4(0.9,0) + U 4,(0,6,0) = 0, i = 1,2, which
allows us equivalently to express the local second-order conditions (the second and third

expressions above) as (1.9) and (1.10).!? Finally, feasibility implies (1.11) trivially. O

Using the implication of quasi-linearity that i{, = 1, we can equivalently state (1.8)-

(1.10) in simpler form.

Coroliary 2 A pair of piecewise C! decision functions are commonly implementable only
if
t:(o) = —uzi(xlvmho)m;(e)» i= 1,2, (1-12)

Uz, zy (1,22, 0)21(0)25(0) + Ue,6(z1,22,0)zi(8) > 0,1 = 1,2, (1.13)

12Becanse z; is piecewise C!, we know that U , exists everywhere but at a finite set of points.
Additionally, with A.3, Uy 4 = Up e, (21, z,,ﬂ)z'l(()ﬁz; (6) which also exists everywhere but at a finite
set of points. Thus, a Taylor expansion of Uy around 0 yields the existence of Uyj,o, at all but a finite

number of points.
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uzlal(wﬂm’l(o)x;(o) + utxwzm,l(a)m;(a) [ux|9w'l(0) + ux,om;(o)] 2 0. (114)

for any z,(8),t:(9),0 € O such that z; is differentiable at 6, where the arguments of U

are understood to be z,(0),z2(0),86.

In what follows, it will be useful to distinguish between two cases of contractual
spillovers: contractual complements and substitutes. i,,., > 0 corresponds to the case
where the agent’s activities are contract complements, while U, ., < 0 corresponds to
the case of contract substitutes.

Following Theorem 3, we can say something about the characteristics of comumonly

implementable contracts.

Corollary 3 If tie contracting activities are complements, a pair of piecewise (' de-
cision functions are commonly implementable only if each principal’s decision function

has a nonnegative derivative at al! points of differentiability.

Proof: Suppose otherwise. Suppose without loss of generality that only =, is decreasing

over some interval of ©, while z, is nondecreasing. By U, ., > 0, (1.13) is violated.

1Z3
Suppose instead that each z; is decreasing over some interval of ©. (1.9) implies that

Uz oy iy > —Uz 9. (1.14) implies that

uzxouwzowllmlz - uﬂ:lom'l (uﬂuoz’l -+ Um,oa:;) >0,

which contradicts our assumption that X,,¢ > 0. 0

When the contracting activities are substitutes, the analysis is slightly more compli-
cated. The necessary conditions in Theorem 3 are insufficient to prove that both decision
functions are monotonicaily increasing. Instead, it is possible that one schedule may be
decreasing if the other is sufficiently increasing. We can only be certain at this point that
both functions may not be decreasing over the same interval. We will find in Section 5,
however, that under some simplifying conditions on preferences and the distribution of

0 both decision functions will be increasing in equilibrium.
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The corollary makes clear that in a common agency environment with compiements,
a cost may exist from the principals nct being able to pool their monotonicity constraints.
In the cooperative contract regime, (2) indicates that it is possible that one decision func-
tion decreases over a range provided that the other increases sufficiently to compensate.
Because of the complexity of analyzing the costs of monotonicity constraints on principals
under common agency, we do not consider the issue explicitly in this paper, but instead
focus attention on environments where the initial cooperative contract is nondecreasing
in each argument over ©.

In order to prove sufficiency in the common agency setting, we will need a mod-
ification of assumption A.2 to hold, or alternatively, we can assume A.3 holds for the
remainder of this paper. We choose to do the latter.’®> We are now prepared to provide

an equivalent condition for common implementability and feasibility.

Theorem 4 Any pair of piecewise C! decision functions is commonly implementable if
and only if‘v’(él,ég,0) € o3

Aﬁz Lél Uéléz(t, 8,0)dtds + /;éz [9 (Uﬁnéz(t’s’t) + Ué,o(t"”t)) dtds

+/05, f‘o (Us,5,(5,t,8) + Uy o3, 8, 1)) dtds < 0, (1.15)

and (1.8) [equivalently, (1.12)] is satisfied. In addition, if and only if (1.11) holds, the

contract pair is commonly feasible.

Proof: Following an identical argument to that in the proof of Theorem 2, quasi-linearity
guarantees the existence of transfer functions which satisfy (1.12) at all points where
z;(9) is differentiable. See Hurewicz [1958, Ch. 2, Theorem 12].

To prove incentive compatibility, we suppose to the contrary that there exists some

13Such a modification would require for any (z,t;,0) € X? x R x ©, there exists a K > 0 such that

I /Ua‘(zl(O),tz(e),tl +t2,0) _ U.‘(zl(ﬂ),c;(o),t', +t'2,0)) d::;(é))
\ e, (21(6), 23(6), 11 + £2,0) ~ U, (21(6), 22(6). 1} +15,8) )

2
.
|s K3 1 - 41l
j=1

uniformly in z,, =3, and 6, where ||¢|| = sup |¢(6)].
fce
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(6y,6,,0) € ©3 such that U(6,,8,,0) — U(8,9,8) > 0. This implies
U(éhého) - U(ého’g) + U(él’oye) - U(o)ovg) > 0.
Integrating we obtain
ég N 61
/0 U52(01,s,0)ds+/0 Uy (3,8,8)ds > 0.

(1.8) impiies that Uy (s,s,s) = 0 Vs € (¢,8), i = 1,2, and so
& .
/0 [(Us, (81,,8)  Us, (8,5,8)) + (Up, (8,5,8) — Up (3, 3,5))] ds

by
+/0 (U, (3,6,6) — Uy (s,3,3)) ds > 0.

Integrating again yields
6, 16, 6, 9
L[ va(to,0)dtds + [7 [ (Upg,(8,5,8) + Up,olt,5,1) dtda

Y
+fo / (U6, (818:8) + Up, o3, £,1)) dtds > 0,

which contradicts our initial assumption.
Given (1.8) and A.1, we know the agent’s utility is nondecreasing in §. Together
with (1.11) this implies that the participation constraint of the agent is satisfied and the

contract pair is feasible. O

The condition in (1.15) illustrates the additional problems involved in common agency
contract design. Under the cooperative contract, providing the contract functions are
monotone, the sufficient condition for incentive compatibility is ¢/, > 0. This is the
Spence-Mirrlees single-crossing property: better types find it marginally cheaper to pro-
vide z;. Under common agency, our first instinct is to suppose that some generalized
form of the single-crossing property is sufficient. For example, taking «;(-) as given,

the single-crossing analog in the common agency setting is Ue,¢ + Uz, 25(0) > 0. If
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principal : can be assured that principal j’s contract is always incentive compatible (for
example, principal j actually observes @), then this is sufficient, as (1.15) indicates. For
instance, take §, = 8 and 4, # ¢. Then only the second term of (i.15) matters, which
must be negative if our generalized single-crossing property holds. But even if this gen-
eral single-crossing property is true for both contracts, the first term in (1.15) may still
be positive when §, # 8 # 0,. In particular, if U,,., < 0 and §; < 8 < §;, or if Uy, ., > 0
and either él,éz > 6 or (31,92 < 4, the first term may be sufficiently positive to violate
the condition in (1.15).

Unfortunately, unlike the simple monotonicity conditions in the cooperaiive contract-
ing environment, our global incentive compatibility condition under common agency is
complicated. With assnmptions restricting the magnitude and sign of various third par-
tial derivatives, however, we can find sufficient conditions for the satisfaction of (1.15).

Technically, by restricting the change of U, ., when evaluated at different points in the

122
domain of @ x X2, we can verify (1.15) by using more convenient limits of integration.
In our analysis of common agency, the complements case is the simplest to examine as
there is an easily discemnible set of conditions which are sufficient for the validity of

(1.15).

Theorem 5 Let U,., > 0 and Uy, -,0 < 0 for all x,,z2,0. Then any pair of piecewise

C? contracts for which z!(8) > 0 and (1.12) are satisfied is commonly implementable.

The proof of the theorem is provided in the appendix. Providing that the contracts
which we analyze in the complements contracting game have nondecreasing decision
functions, the simple condition that ., ., does not increase in 8 is sufficient for incentive
compatibility.

Incentive compatibility with substitutes is more difficult to characterize. tieie, we
shall also make use of restrictions on U,, »,,, but we shall use slightly stronger restrictions

to obtain a characterization theorem.

Theorem 6 Ler U..,., < 0 and suppose the cross-partial derivatives of U are constant

(i.e., U,lz,(ml,mz,ﬂ) = U2, Ll,,g(:cl, 332,0) = U9, and uz,a(wl,.'tz,O) = uga). Then the
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necessary conditions in (1.12)-(1.14) are sufficient for common implementability if , and

x2 are nondecreasing.

The proof for this theorem is also provided in the appendix. Note that the above
conditions on U;,.,¢ in both theorems are not necessary for incentive compatibility and
are only used for convenience. To the extent that an agent’s utility (e.g., production
function, etc.) is satisfactorily approximated by a second-order Taylor expansion, we
may rest content with the above simplifications. If not, utility functions with higher
order terms may be dealt with by a direct check on the integral conditions contained in

(1.18).

1.3.2 Strategic Revelation Effects

‘We now turn to an examination of the conditions for Nash equilibrium in contracts in the
principal’s contracting game. We initially note that each principal will typically attempt
to induce the agent to report falsely to her rival and thereby extract a larger share of
the agent’s information rents. In equilibrium, all contracts are incentive compatible so
that such attempts are useless, but their possibility imposes constraints on the set of
equilibrium contracts.

If instead of studying direct-revelation mechanisms we analyzed nonlinear (tax) sched-
ules, t; : X — R, the rent-competition effect can be thought of as follows. Principai
1 may decide to change her nonlinear schedule in such a way so as to induce a type-6
agent to choose a contract pair, {z5,,}, from Principal 2 meant for type-8’, — a choice
which Principal 2 had not originally intended. In this manner, Principal 1 may act as
an accomplice in helping the agent retain additional information rents from Principal 2.
Some of these additional rents are, in turn, extracted by Principal 1's new contract.

If we wish to use the direct revelation mechanism design methodology in the common
agency setting, we must introduce additional constructions. Suppose that the decision

functions are continuous and U is strictly concave in reports so that we may define the
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following functions:*
él[é279"31(')’z'l(')’t't(')’tZ(')] = arg I‘[).;}.)(U(e',éz,e),

82001, 0|z1(-), z2(+), t1(+), ta(+)] = arg max U(4,,9',9).

Note the functional dependence of each §; on the mechanisms offered to the agent. Hold-
ing Principal 2’s contract fir=d, a change in Principal 1’s contract wi'l affect the report

of the agent to Principal 2. For notational ease, we will at times write §,[0
92[0|31(0)], since agent preferences are quasi-linear; with such notation it is understood
that the offering principal’s contract is incentive compatible (i.e., 8, = 6 in the first case,
and §, = 0 in the second case). Of course, each function depends on all elements of
both contracts even though notationally we have only explicitly recognized dependence
on the offering firm’s decision function.

In our direct-revelation Nash equilibrium contracting environment, each principal
chooses her contract offer taking the offer of her rival as fixed. When maximizing over
decision functions, the principal also considers the effect of her contract on the agent’s
choice from her rival’s contract.

In equilibrium all contracts are incentive compatible and we can characterize the effect

of a change in one principal’s contract on the reports of the agent to the other principal.

Theorem 7 In any pure-strategy differentiable Nash equilibrium, V,,0, € (8,8) with

x; strictly increasing

OO U (2106, 25(60),0) | [Ueso((0),25(6),0) + oy (24(0),25(0),0)24(0)]

If z/(6) = 0, then %t — 0.

Proof: Suppose that {x,,z,,t;,t;} is a piecewise C? pure-strategy Nash equilibrium.
q

Then we know that the agent’s first-order condition (1.12) holds for each principal’s

14The continuity of the decision functions is implied by the strict concavity of each principal’s pointwise
objective function together with a few technical assumptions, which we take up in the next two sections.
For now, however, we take continuity as given.
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contract for all but a finite set of §. Fix firm 1’s contract and consider the effect of a
change in firm 2’s menu. A necessary condition for 6, to be chosen by the agent given

his true type is @ and principal 2 contracts with the type-8 agent for z,(9) is that

a

t(01) = Uz, (z1(01),2(8), 0)2}(61)-
From (1.12), this condition becomes
(uzn(wl(él)’wZ(g)’o) - uzl(zl(él)aw;(él),él)) w;(él) =0,

where principal 1 expects principal 2 to offer z§(6) in her contract with the agent.
If =, strictly increases in #, the bracketed expression must be equal to zero. Totally

differentiating this expression with respect to z,(#) and 6, yields

Uy, oy (21(01), z2(0), 0)d, =
[uzxwl (ml(él )’ m;(él )’ él)mll(él) —~Uz\z, (wl(él )? m2(0)’ 0)“’,1(91 )+
Usiea(21(81), 25(61), 81)25 (1) + Us,o(1(61), 25(81), 61)] .

In a pure-strategy Nash equilibrium, z,(6) = z5(8) and, without loss of generality, the
agent tells the truth to each principal so we evaluate this total differential at §, = 6, = 6.
Simplification immediately results in the expression of the theorem. When x;(8) is con-

stant, a local change in z, can have no effect on él, and so 8’;2' = 0. 3

The expressions in Theorem 7 represent the marginal effect that an increase in one
principal’s contract menu has on the revelation of the agent to the principal’s rival.
By characterizing the effects of one contract on the incentive compatibility of another,
the expression in Theorem 7 will greatly facilitate our search for Nash equilibria in
the contract game. One caveat, however, must be made. The validity of Theorem 7
is restricted to the interior of ®. As a consequence, each principal must additionally
consider whether there is a gain to inducing the agent to choose the comer contract from

her rival’s offer. In a Nash equilibrium, a principal must not find it beneficial to create

39



bunching at the comer of her rival’s contract, where the agent’s first-order conditions
may not hold with equality. With complements, this will not be a concem; in the case
of substitutes, we will require an additional assumption.

Theorem 7 implies that if (1.15) holds and the decision functions are increasing,
then the sign of the report function’s derivative is the same as the sign of U,,.,. In
an equilibrium with complementary goods, an increase in the contracted activity by one
principal will result in an increase in the activity of the other by inducing the revelation
of a higher type. The reverse is true when the goods are substitutes. Consequently,

examining the cases of complements and substitutes separately is in order.

1.4 Analysis of Equilibria with Contract Complements

By decision complements we mean that i/,,,., > 0 for all values of z,,z, and 6. That is,
an increase in z, raises the marginal value (or lowers the marginal cost) of an increase in
z,. Situations in which the agent’s technology possesses economies of scope or positive
spillovers (e.g., learning by doing) are cases where an analysis of contract complements
is appropriate. We will need an additional technical requirement before we present a

partial characterization of the pure strategy Nash equilibrium contracts set.

Assumption 4’ The following function is globally strictly concave and has an interior
maximum over z; for i=1,2,¥8 € © and for x;(0),t;(8):

1— F(6) 0U(=i, =,(0;0]=:]), 0)

Vi:) + Uz, 5(6(8:)), 8) — + t5(0;[6]4)),

£(8) 6
8&,’ 6|, U, e 8’5,‘ 8l 8&,’ O|zi] (Unyeqo; )
where alz!ﬂ = 7 T, and am[,al“ = a[xlﬂ (T(ﬁji‘," + u,lzz,j:c;.) . In addition,

we restrict t; > 0, and assume that Vi(z;) + U(zy,z2,0) — 1‘7%9119(3:1,3:2,0) > 0 and
Ugg(z1,22,0) < 0 for all § € O and for all z,,z, € X2

Assumption 4” is a modification of A.4(a) which guarantees us that each principal’s

maximization program will be pointwise concave in z; and involve some positive trade
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with the agent. Consequently, our concems with 8 in Section 2 will not arise. Even
a zero contribution (negative transfers are not allowed) by principal : will not result in
principal j refusing to serve some types in 0.} A.4” may have to be checked ex post,
as the condition depends upon the signs and magnitudes of third-order partial derivatives
and the decision functions’ derivative which in turn depend endogenously on the choice
of z; by each principal. The assumption, however, is met whenever the full-information
maximization program is sufficiently concave and the degree of uncertainty about § is
smail. Alternatively, it is also sufficient if the agent’s utility function is quadratic in =,
and z,.

We are now prepared to obtain results for equilibrium existence and characterization.

Proposition 3 Suppose the contracting activities are complements, A.4” is satisfied, and
Uz, 2,9 < 0. Furthermore, suppose a pair of decision functions exists which satisfies the

following system of differential equaticns such that zi(-) > 0, Vay,2,,0 € O:

1-F(8)

Unio + Ueyo's(0)Uoye, (uz,,+uz,m,w;(o))“‘]_ (1.16)

Given our suppositions, these decision functions constitute a pure-strategy differentiable
Nash equilibrium of the common agency contracting game. In such a case, the transfer

functions satisfy for i = 1,2,

(o) = [ DD )i b ah(ma(@,2a(@),0), (117

for some o; such that a; + oy = 1.

The proof is presented in the appendix. Unfortunately, we cannot generally show that
a nondecreasing solution to the differential equations will exist. Additionally, when such
solutions do exist it is quite possible that multiple equilibria arise — differing in both

contract levels and transfers— as in Theorem 8 below. We can, however, indicate simple

15 As in Bemheim-Whinston [1986], we wish to focus on equilibria in which positive activity by the agent
occurs. As a consequence of intrinsic agency, a Nash equilibrium always exists in which both principals
offer contracts which induce non-participation by the agent. We ignore this equilibria in the analysis which
follows.
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circumstances in which we will indeed have pure strategy differential equilibria.

Theorem 8 In a symmetric contracting game where V' = V2 and U(s,t,0) = U(t,s,0),
Vs,t, and where, for all z1,%3,0, (Us,ei0 + Uzyz36) < 0, Uzyzg0 < 0, and Uy, < 0, a

continuum of symmetric differentiable Nash equiiibria exist.

The proof is in the appendix. The conditions on the third derivatives of U are
sufficient, but not necessary. They merely simplify the analysis in the proof. In the case
of symmetric equilibria in symmetric games, there is one equilibrium which is Pareto
superior from the principals’ viewpoint.1® It is the contract whose contractual offering
for @ is equal to z;°"(§), the contractual offering to the lowest type under the cooperative
solution. This contract introduces the least distortion from the cooperative contracts. As
we shall see, this contract is also the one most preferred by the agent.

In general, solving for the differential equations in (1.16) is not always straightforward
and may require the use of numerical methods. Nonetheless, we can say something about
the properties of equilibria which satisfy the differential equations in (1.16) with two

corollaries to Proposition 3.

Corollary 4 Suppose that A.4’(a) holds. The equilibrium contracts in the common
agency game with complementary activities have the property that V0, z:(8) < z{°"(9),

where z;°*(0) is the contract offered by principal i in the cooperative contracting game.
Proof: Define £;°{z;(6),0) as the solution to

1- F(8)

K'(@1,22,0) = V2, (2:) +Usi(1,22,0) =

ua:.'O(ml-y T2, ‘9) =0,

which is uniquely defined given the condition on strict concavity in A.4’'(a). Thus

z{°F(0) = &;°(;>"(0),6). With nondecreasing contracts, Theorem 3 implies that the

16There is actually an infinite number of such equilibria, but all share identical decision functions; they
differ only in transfers via the choice of a;. Such a distinction is of minimal economic interest, and so we
loosely refer to this situation as one with a unique equilibrium.

42



right hand side of (1.16} is positive, and so &;°(=;(8),60) > x;(8). If contracts are
symmetric, we are done. Suppose the contracts are not syminetric and that the Corollary
is false. That is,

&1°77(22(0),0) > z,(0) > =777(9).

- crop L
Complementarity implies %‘5,-_ > 0, and so it is alsc the case that

£57(21(0),6) 2 22(0) 2 25°7(0).

Because z;(0) > z;°"(0), it must be that K*(z;,z;7,0) < 0. By (1.16), we know that
K'( z;,z;,0) > 0. Thus, by continvity and the mean-value theorem, there exists an &;
such that K¥(z,,%;,0) = 0, where &; € (z5™", z;]. Similarly, there exists a #; € (z°*”, z,
" such that Ki(z;,%;,0) = 0. We can as a consequence define continuous mappings,
¢ (2P, 5] — (277, =), for i = 1,2, and nence by Brouwer’s Theorem there exists a
fixed point that lies in {z1°7, ;] x (»3°F, x4}, such that K1(%,,%,,0) = K*(#:,%,,0) = 0.
But by A.4’, there ig a unique fixed point which satisfies the first-order conditions for a

coope. .tive contract, and that fixed point differs from z*°?(4). 0

Corollary § Borh principals and the agent weakly prefer the cooperative contract relative

to the outcome in the common agency environment.

Proof: The fact that the two principals are weakly worse off is a trivial implicaiion of
the noncooperative setting. To understand the agent’s demise, note that the agent’s utility

is given by
. f au(ml(")7x2(3):")
v() = ./g 00

Because li,,;¢ > 0, the integrand above must be less under common agency than under

ds + U(8).

the cooperative contract (given our result in Corollary 4). |

Corollary 4 indicates that the distortions introduced by each principal are greater in
the common agency environment. The explanation is straightforward. Equation (1.16)

has an additional information rent distortion on the right hand side that is not present in
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the cooperative contract of Section 2.2. This term represents the rent effect introduced
by competition among principals. First, note that there still is no distortion for the
agent with type 6. Second, since U;,., > 0, the economic activities of the agent are
complements, and the distortion introduced by the principals increases. The dependence
of the rent effect on the economic nature of the agent’s activities is intuitive: In the case
of complements, a principal will decrease its exchange of z; with the agent to attempt to
decrease the agent’s exchange of x; with its rival contractor as this allows principal : to
elicit truth telling more cheaply from the agent. Of course, in equilibrium each principal
attempts to extract as much rent as possible with the result that the competition for the
agent’s activity decreases the agent’s information rents.

The right hand side of (1.4) in Proposition 1 reflects the effect of =; on the infra-
marginal rents which must be paid to all types greater than #. The right hand side of
(1.16) in Proposition 3 also reflects the effect of z; on :he inframarginal rents, but the
existence of a strategic complementarity adds to /. and increases the rents which must
be paid for an increase of z;. That is, an increase in z; directly increases the agent’s in-
framarginal rents through ¢, but it also indirectly increases rents by raising the choice
of z; by the agent, which in turn raises Uy still further. Hence, in equilibrium the level
of z; is correspondingly lower than in the cooperative case.

Corollary 5 presents another interesting result under common agency with contract
complements — all parties are worse off. Common agency makes information rent re-
duction by each principal more profitable on the margin, which in turn hurts the agent.
The conclusion is analogous to the familiar result with product differentiated duopolists
competing in prices: when products are complements, each duopolist charges a price in
excess of the monopoly price and consumers are hanmed by the presence of competition.
In our case, ihe existence of asymmetric information (together with the possibility of se-
cret contracting) prevents the three parties from eliminating the externalities which they
impose upon one another.

The work of Laffont and Tircle [1990] on privitization is related to this point. Their
model examines the costs and benefits of government ownership of a firm compared to

the regulated environment where both the government and stockholders offer managers
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noncooperative contracts. The benefits of regulation over public ownership are better
incentives for managers to make investments in the finn because the lack of government
ownership is a form of commitment not to appropriate managerial inputs. On the other
hand, the effect of common agency is tc produce less powerful incentive schemes for
cost-reducing effort with greater distortions from efficiency. In Laffont-Tirole, however,
only one activity by the agent is contractible and there is conflict between the objectives
of the government and the stockholders. Teo understand the intuition of their results
regarding the costs of common agency with a single contractible good, consider the case
where U, ., (%1, 22,0) — oo (ie., U(xy,,,0) is approximated by a Leontief function).
In such a case, there is effectively one contractual activity and the right hand side of
(1.16) approaches 2U,o. With a single activity under common agency, the resulting
distortion from the first-best full information case increases two-fold in absence of payoff
dependencies between the principals’ objectives.

A. final remark about the relationship between intrinsic and delegated agency is in
order. When contracting activities are complements, in equilibrium it will never be the
case that the agent prefers to contract with only one principal rather than both. As a
consequence, there is no loss in generality in examining the case of intrinsic agency for
this class of models. With decision complements, it is never profitable for one principal to
offer a contract that induces the agent to deal exclusively with her, leaving her copetitor
without any trade. With complements, we do not have to consider the constraints which

an induced exclusive dealing contract would impose on the equilibrium contracts.

1.5 Analysis of Equilibria with Contract Substitutes

Decisions are substitutes when U, ., < 0 for all =; and 6. As was the case with our
discussion of complements, we do not directly prove the general existence of equilibrium
decision contracts which satisfy (1.15). Rather, we make a weaker proposition regarding
the characteristics of such functions when they exist in our simple differentiable setting.

Even this is problematic, however, as our previous use of the first-order approach by

principal : when considering the effect of her contract on the agent’s report to principal
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J is questionable without further assumptions. Specifically, it is arguable that principal 1
may find it worthwhile to induce an agent in some interval of © to always choose the
comer contract from principal j’s menu (i.e., report cither § or 8 to principal j). If, for
example, principal i’s ideal offer of =; for the agent choosing z; = x;(8) from principal
J’ menu is such that the first-order condition for the agent choosing z; is slack, principal
¢ might prefer to induce comer choices by the agent. Such an offer by the principal is
not discovered using the first-order approach in her maximization program because the
set of incentive compatible allocations may not be a subset of those satisfying the agent’s
first-order condition for § and 4. This was not a concem in the case of complements
where the first-order condition of the agent always binds in an optimal contract. With

substitutes, the following assumption is sufficient to remove the probiem.

Assumption 5 For all z1,z4,%,,%,,90,

(1 - % (l}%ﬁ)) Uzyp(z1,21,0) — lﬁ%?uz,aa(xnwz,e) 5 UerolZr,23,0)
v:wl(zl) + uz,zl(mh T2, 0) - %Frg)uz,zgd(zh T2, 0) B uﬂ!w:(iltxho),

(1 - % (I'F g )) Uz,(1,21,0) —_lﬁ%;)uz,aa(wn z2,0) S Us,o(2y,%2,0)
V2, (22) + Usey (21,2, 0) — 50 MUeey0(21,22,8)  — Useiza(21,22,6)

Roughly speaking, A.5 requires that the joint surplus of principal : and the agent is
sufficiently concave relative to the substitution term, U, .,, and third-order terms are not
sufficiently large in absolute value. Following the analysis in Section 4, we can now

state the following Proposition.

Proposition 4 Suppose U,,., < 0, A4” and A.5 are satisfied. Furthermore, suppose
suppose U has constant cross-partials, and suppose that a pair of piecewise C'* decision
functions exists which satisfies (1.15) and the following system of differential equations,

Vzl,w2,0 € @, 2 = 1,2,

Vi (23) + Us, = 1_}(%& Unio + Usyo')(8)erer (Ueyo +L(,,‘,,x:-(0))—1]. (1.18)

Given our suppositions, these decision functions constitute a pure-strategy Nash equilib-
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rium in the contracting game. Additionally, the transfer functions satisfy for i = 1,2,

w(o) = [ DD i b otz @200, (119

for some a; such that a; + oy = 1.

The proof essentially follows Proposition 3 except that we concem ourselves with the
possibility that one principal may desire to induce bunching on the comer of her rival’s
contract. This problem is taken up in the Appendix.

Equation (1.18) has an additional information rent distortion on the right hand side that
is not present in the cooperative contract of Section 2.2, which represents the rent effect
introduced by competition among principals. There still is no distortion for the agent
with type 8, and since the economic activities of the agent are substitutes, the distortion
introduced by the principals decreases. A principal will increase her exchange of z; with
the agent to decrease the agent’s exchange of z; with her rival as this allows principal :
to elicit truth telling more cheaply from the agent. In equilibrium each principal attempts
to extract more rents on the margin with the result that the total sum of the extracted
information rents is reduced together with an increase in productive efficiency.

The righthand side of (1.18) in Proposition 4 reflects the effect of z; on the infra-
marginal rents. Additionally, the existence of a strategic substitutability affords principal
i the opportunity to reduce the: rents which must be paid to the agent by decreasing = ;.
An increase in z; directly increases the agent’s inframarginal rents through i g, but it
also indirectly decreases rents by lowering the choice of z; by the agent, which in turn
lowers 4.

When both the preferences and the equilibrium contracts in Proposition 4 are sym-
metric, the equilibrium common agency contract lies almost everywhere above the co-
operative contract due to the informational externalities which each principal imposes
upon the other. Each principal prefers to offer a more powerful incentive structure to
the agent to reduce the agent’s activity with her rival and thereby reduce information
rents. In equilibrium, the principals offer sufficiently efficient contracts so that on the

margin nothing is gained by reducing a rival’s activity with the agent. When contracts
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are not symmetric, the nature of the distortions from the efficient level is more difficult

to ascertain. Along these lines, we have the following corollary.

Corollary 6 The commonly implementable contract pair in the pure-strategy contract

substitutes equilibrium defined by (1.18), if it exists, must necessarily have
z:(6) € [2°7(=;(6),0), =i’ (2;(6),6)], 8,

where z;°°"(z;(8), 0) is the cooperative contract solution by principal © when facing z;(-),
and where =2f(z;(0),0) is the efficient full-information contract solution by principal i
given z;(-). Furthermore, providing that for all values of ,z,%,,%,,0 the following

conditions hold:

V;pl(wla“’he) + Uy, (T1,22,0) uzxmﬁ(xl,z?vo)l-ﬁ‘ v S Uzy0(T1,T2,0)

- , (1.20
uﬂ!lz:(mlva’ 0) - ux;zga(wl,wz, 0)1_F é - zzo(ml’ L2, 0) ( )

- ~-F(6
U,lg(azl,mg,O) > I'(mxa(mhmhe) - uzxzzﬂ(ml,m'he)%} (121)

uzzo(il’ T2, 0) B Vﬁ,:,(wl, T2, 0) + uzﬂ:(zl’ T2, 0) - uz:z;O(xl, T2, 0)1:1%})9 ’
then the agent is always weakly better off (and the principals are always weakly worse

off) with common agency relative to the cooperative solution.

Proof: The principals are necessarily weakly worse off compared to the cooperative

contract. By (1.9) in Theorem 3, we know that

uzjouzw:w,'i(o) <0,
Uzjo + Uz, z,zi(0)

which in turn implies that V; (z;) + Uz, -- 1—}’{3()21113,.9 < 0, and so x; is chosen above

the cooperative levels given z;: z;(8) > ={°"(z;(6),0). By (1.10) in Theorem 3, we
know that the righthand side of (1.18) must be nonnegative for all 8, and so «; is chosen
inefficiently low given the choice of ;. That is, z;(#) < z¢//(z;(6), 9).

The agent’s rents from the contracting relationship are given by

U(6) = /: OU(ml(s;,ozg(s),s)ds +U0).
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Because U, > 0, a higher level of contracting activity leads to a larger integrand and
hence greater rents for the agent. To see that tlie agent is at least weakly worse off with
the cooperative contract, consider as a reference point in X% the cooperative contract
for a given 0: {z°7(8), x5 ""(0)}. The agent’s indifference curve through this point has
slope §2 = —32%. The functions z5°(z3,0) and z5™P(z,,0) also pass through this

o8

. . oy e 0y ~U 1-F Uy eg ~Ugy o405
point, but with slopes of — '“L; -7 L L. d —5—1 ':L:’ 7 —, Iespec-
£y oq nll:O"?" l,l:+ L L] £330 7

tively. As a consequence of our assumptions, the set of all {z;,z,} which lic above the

curves z;°"(z;,6) are preferred by the agent compared to the cooperative equilibrium. )

Although the set of all allocations that are Pareto superior (as judged by both principals
and the agent) is a convex set supported by the agent’s indifference curve and therefore
weakly preferred by the agent, we cannot say that the common agency contracts lie in
this convex set. It may be that when preferences and equilibria are not symmetric and
the degree of substitution between z, and =, is high, that an equilibrium exists outside
this set. As the degree of substitution approaches zero, however, the common agency
contracts must become efficient relative to the cooperative equilibrium.

We still have not proven that common agency equilibria as given by (1.18) actually
exist. If, however, we are content with second-order approximations to preferences, and
if the underlying uncertainty about type is generated by a process whose hazard rate
can be approximated by a linear function, we can make considerably stronger statements
about the contracting equilibrium, as we can analytically solve for the contracts given by

(1.18). First, we posit the following definition.

Definition 3 We say that a random process belongs to the class of linear inverse hazard
rate distributions (LIHRD) if f(8) = 2(8 -- 037 - 8)F

A probability distribution that belongs to such a class has a hazard rate given by
ﬁ"}? (8 —8). Such a family of probability functions contains the uniform distribution

(y = 1), as well as arbitrarily close approximations to any exponential distribution.!”

17An exponential function defined by parameter 3 over [0, 00) can be approximated ir the linear inverse
hazard rate family by choosing § = 0 and letting ¥ — 0, § — oo while maintaining v8 = 3. The resulting
inverse hazard rate is 3.
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We can now state our result for quadratic preferences.

Theorem 9 Suppose that the distribution of 0 belongs to the LIHRD class with v > 0,

the preferences of the principals and the agent are quadratic, and

vi. . T T uz
oz T iTi Z 2(1_}_7) -0’

1,7 = 1,2 1.22
u‘nc, Uz,'o 1, 9 &y ( )

then there exists a unique linear pure-strategy Nash equilibrium in the common agency
game {z5°(-), =5°(-)} such that the agent is weakly better off and the principals are weakly

worse off than under the optimal cooperative contruct.

The result is provided in the Appendix.

1.6 Applications

As we have indicated, many contracting environments are confourided by the presence
of common agency. When two or more principals find themselves contracting with the
same agent, they generally find themselves worse off because of their failure to cooperate
and offer a coordinated set of agency contracts. Understanding the nature of these costs
is a requisite first step in our understanding of complex common agency arrangements.
We have included here two short analyses of economic problems which involve some
form or common agency. The treatinents are necessarily incomplete, focusing essentially
on the cost aspects of common agency, but they illuminate the broad themes contained
in this paper. The first economic problem we address is determining the gains from
internalizing transactions to eliminate the costs of common agency in market situations.
We examine two manifestations of this concem: the gains to downstream manufacturers
from coordination of contracts when dealing with a single input supplier, and the benefits
to a firn from using an internal sales force rather than contracting with an independent
agency. In a second problem area, we consider the situation of two regulators with
imperfectly aligned preferences and ask the welfare question of who gains and who loses

from fragmented regulatory authority.
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1.6.1 Internal versus External Organization

For the purposes of discussion, we refer to exclusive-agent contracts as inferral con-
tracting arrangements; in contrast, we say common agency transactions are market-based
or external arrangements. Internal arrangements are contracts where the parties to the
agreement can prevent external forces (such as other principals) from interfering with
their relationship. External arrangements are characterized by the absence of such pro-
tections. For exposition, we consider joint ventures between firms for the supply of inputs
and in-house employees (as opposed to outside wzents) as two examples of relationships
designed to overcome the externalities of common agency. We recognize that a joint
venture is neither necessary nor sufficient for cooperative contracting, and in-house labor
is neither necessary nor sufficient for exclusive dealing contracts. Although cooperation
could arguably be accomplished through simple contracts between the principals, the
existence of additional legal obligations and duties to one another imposed by a joint
venture may provide a more effective organization. Similarly, the employee relationship
may be a more effective form of intemal contracting. Masten (1988), for instance, has
emphasized that the legal treatment of employment contracts by courts provides more
authority to employers over their employees than a firm could ordinarily have over an
independent contractor.'®

Much has been written on the question of when firms prefer such restricted internal
relationships (jeint ventures, exclusive long-term contracting, intemal labor markets, etc.)
to unrestricied external transactions. Williamson [1985] indicates gains from intemal re-
lationships exist when investment is important but capable of being expropriated in a
transient market relationship and internal arrangements can prevent such opportunism.
On the other hand, Williamson notes that such organizational form is plagued with in-
ternal contracting costs, bureaucracies, etc., which result in low-powered incentives, in

comparison to the market. Williamson concludes that internalization of market activities

18We do not wish to make too much of these institutional differences between various alternative orga-
nizational forms. If one takes the view that any particular organization is simply a set of “standardized
contracts” and is distinguished from other organizatione only by the terms of those contracts, the interest-
ing questions focus on the costs and benefits of the various possible contraciual terms. Cur analysis can
thought of as an examination of the economic costs and benefits of exclusive-agent versus common-agent
terms.
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occurs when the benefits exceed these costs.

As we shall see below, Williamson’s claim that internal contracts are less powerful
than market schemes is consistent with common agency under contract substitutes. If
effort or productivity of an agent is not observable and the agent’s activities are partially
substitutable between the two principals’ projects, market-based (i.e., extemal) transac-
tions will be associated with high-powered incentives; exclusive-agent contracts will be
associated with low-powered incentives. But here the low-powered intemal incentives
are not the cost of internal organization, but rather the benefit. Without the influence of
another principal’s contract, the principal will take advantage of low-powered schemes
which are more profitable. It is the presence of excessively powerful market-based
schemes that drives the choice to intemalize transactions. With complements, we find
the implication for the power of schemes is reversed. Market-based transactions are
low-powered relative to the internal contracts which would be offered. This affords us
a test to determine the importance of a common agency theory of internal transactions.
A comparison of the schemes from internal and external relationships across firms with

varying degrees of economies of scope and scale would be telling in this regard.

Economies of Scope and Contract Complements

Consider a very simple model of a vertical supplier relationship where economies of
scope exist in input supply. Two downstream manufacturers, : = 1,2, must each contract
for a differentiated input, =;, which has a constant marginal benefit to manufacture :’s

profit of unity. That is, each firm’s (principal’s) preferences can be summarized as
V‘(:c;) = z; — i,

for : = 1,2, where ¢; is the payment to the supplier. The suppiier’s (agent’s) preferences
exhibit complementarity in production: there are economies of scope available in the

production of z, and z,. For example we suppose

U(z1,22,0) = —(F — 0)[2? + 22 — az;z,),
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where & € {4, 8], 8 has cumulative distribution function F(8), 9 > # and a is a measure
for the economies of scope. For concreteness, let [§,6] = [0,1] and F(4) = 6 (i.e., 0 is
uniformly distributed on [0, 1]), and let & = 1 and ¥ = 2. Then following Propositions
1 and 3 we can derive the optimal contracts under full-information, = //(8), incomplete
information with cooperation, z;°”(8), and incomplete information with common agency,

z%(8).

Result 1 The first-best contract and the cooperative contract are given by the following,

respectively:
. 1
ziff(o ) = 5_0’
1

a:f°°p(0) = '3———50-.

The Pareto-dominating common agency equilibrium is defined by the following differential

equation
dzi*(6) _ _=zi%(8) [1— (3 — 20)=*(6)
dd 2-0 |1—(4-360)x(9)

with z5°(8) = 1/3.

These contracts are illustrated in Figure 1. Here, common agency introduces more varia-
tion in the decision variables, although the quantity/quality spectrum remains unchanged
under the Pareto superior equilibrium contract.

Now consider the decision to intemalize the supply transaction. Suppose that principal
1 is already committed to contracting with the agent because of the high cost of altemativc
arrangements. Principal 2, however, has a choice: she can contract with the same agent,
or setup her own input supplier with whom she will exclusively contract. Under the
latter internal contracting relationship with an exclusive agent, the agent’s preferences
are given by

U =t; +U(z1,%2,0) = t; — (I — 0)[z? — afz;,

where 3 € [0, 3] measures the degree to which the principal can capture the scope
economies through intemal production. If 3 = 1, the principal can convert all of the

economies of scope which existed in the common agency framework to economies in
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FIGURE 1: CONTRACTUAL RELATIONSHIPS WITH COMPLEMENTARY PRODUCTION
- - - » Full-Information Contract
---- Cooperative Contract
—— Non-Cooperative Contract
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producing =, alone. Alternatively, one can think of  as the degree to which spillovers
continue to occur between two internalized vertical relationships. The unknown marginal
cost parameters of each agent are assumed to be independently distribnted. We have the

following result.

Result 2 There exists a value of B* € (0,% such that the manager will prefer to inter-

nalize production whenever 3 > 3*.

The result follows from Proposition 3. In the symmetric model under study, # = 1
corresponds to the principal obtaining the same level of profits as in the cooperative
contracting case. Because there are positive losses associated with common agency in
our model, profits under the internalized organization must be greater. Because profits

are increasing and continuous in 3, we have the result.

Contract Substitutes

Related to this work is that of Holmstrom and Milgrom [1990] who consider a similar
question: When does a manager find it desirable to use an internal sales force rather
than an independent contractor to sell her products? Assuming that internal sales forces
can be monitored so as to prevent an agent from working for two principals (while an
independent agent cannot), they argue that the independent agent’s option of exerting
effort selling another firm’s products may make an internal sales force more desirable.®
An interal force can be expected to expend a minimal amount of time on the firm’s
own sales; an independent sales force must be given high-powered incentive schemes to
induce the correct level of effort. Their theories regarding the optimal job-task design are
closely related to this work on adverse selection. Common agency applied to corporate
organization can be thought of as a special case of activity desigr for an agent; the choice
is whether to allow the agent two activities (common agency) or only one (exclusive

dealing). With adverse selection and substitutes, the common agency story told here

19 Again, for exposition we have supposed that a firm cannot write an exclusive-dealing contract with
an independent agent. Altematively, we could define agents with exclusive employment contracts to be
intemnal employees and agents with unrestricted contracts to be independent agents without affecting our
analysis.
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reaches similar conclusions: It may be desirable to exclude the agent from the market
in order to allow lower-powered, more profitable contracts. This story, as well as that
of Holmstrom and Milgrom, is consistent with the empirical work by Anderson and
Schmittlein [1984]. They find that uncestainty caused by difficulty in equitably measuring
individual performance among sales people in the electronics industry is statistically
significant in explaining the extent of vertical integration with a firm’s sales force.

We now consider a related model which addresses the question: When does a firm
find it optimal to use an internal sales force if sales effort is substitutable across the
principals’ product lines and the productivity of the sales force is private information.
Specifically, we consider the case of common agency under adverse selection and moral
hazard using a model similar to that in Laffont and Tirole [1986] but with two principals.

Consider a production environment with two risk-neutral firms (principals) and a risk-
neutral sales person (agent). The question at issue is the magnitude of the gain that a
firm will obtain from intemalizing its sales force rather than contracting with a common
agent.

The sales force sells units, z; and z,, for each firm, which are a function of an
intrinsic productivity parameter of the agent, 6, and the agent’s effort, e;: z; = 0 + e;.
The agent’s cost of effort is convex and quadratic, and efforts are substitutes: (eq,ez) =
%'l,l:nef + %gbzzeg + i2e1e2, Where 1, > 0, 992 > 0, and 3, > 0. 8 is distributed
uniformly on [0, 1].

The payoffs of the two firms are Vi(z;,t;) = viz; — ¢, ¢ = 1,2, whexe ¢; is the
transfer paid to the employee for the sales of z;, and v; is the per unit profit a firm
eamns on each sale. The firms do not compete on the product market. Their only
interactions are through a common agent’s marginal costs. Substituting out the agent’s
effort from his utility function using the sales function results in agent’s payoffs that
are U(zy,z2,11,t2,0) = t1 + t2 — (21 — 0,2, — 8). With this cost, the full-information

efficient contract would set

e?ff(ﬂ) = _ g = Vi — "/’12”;"
‘ ' P — i

56



In a joint venture, firms can coordinate und offer one contract to the supplier whick
cptimally trades off production distortions against information rent reduction. Following

Proposition 1 in Section 2.2, the solution to the joint venture contiact is easily derived.

Result 3 The optimal joint venture contract for a common sales force has ¢;°*(8) =

2P(0) — 0 = e (8) - (1-98),i=1,2, Vo€ [0,1].

In order to compare the costs and benefits between usicg a common agent and using
one's own sales force, we need to be precise about the nature of the substitutes under
the internal arrangemzant where one firm uses its own agent exclusively. There are two
possible benefits from exclusive agency. First, if firm 1 hired its own exclusive sales
force and the agent’s cost function remained unchanged, there would be a reduction in
sales costs driven by z, = 0. Second, and more interestingly, more information rents
are extracted from the agent absent common agency. In corder to focus on the second
point, we assume that when a firin employs 1ts own agency, the cests of selling the
principal’s product ars still negatively affected by the level of sales activity undestaken
by the other principal’s agent. The only change in the environments is that principal
¢+ cannot influence agent j's report to principal j through the rhoice of her contraci.
Consequently, the cooperative outcome is identiczl to the outcorne when fimns decide o
train and employ their own sales force.

When an independent sales force is commonly contracted with by both principals,

Theorem 9 provides the following result.?°

Result 4 There exists a unique linear pure-strategy Nash eouilibrivm in the common

agency contract game.

A comparison of the (lifferent contracting environments is provided in Figure 2 when
parameter valucs are ¥y, = 3, P2 = 3, P12 = %, v; = 1.5, and »; = 5. Firm | contracts
for a higher level of sales due to its higher per unit profits. Here, because efforts are

substitutes, sales are distorted downward more under the internal contracting environment

30We assume thas ¥y /v12 > 4(%ii -+ ¥12)/ (%5 + yua) for i, j = 1,2, 8o as to satisfy the conditions of
Theorem 9.
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than under common agency. This distertion, however, is profit maximizing for the firms.

High-powered contracts are less profitable.

FIGURE 2. INTERNAL VERSUS EXTERNAL SALES FORCE.
-+ Full-Information Contracts
---- Joint VCn‘“IC/'ﬂ‘CmE Sales Force Contracts

——— Independent Sales Force Contracts
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Now suppose more realistically that there are startup costs, I, to training and employ-
ing a sales force. Such costs must be completely bom by the firm with an internal sales
force, but are shared by both cooperative and noncooperative common-agency principals.
Let 7=, n{°°?, and n§® be the profits, excluding setup costs, associated with an exclusive
sales force, joint venture (i c., cooperative arrangement), and common agent (i.e., nonco-

COQ

operative arrangement), respectively. We know that #°” = 7f* > #xf, When, however,
setup costs are such that 0 < I < (77 — n*), the cooperative arrangement is preferred,
followed by an exclusive salec force, and then the non-cooperative common agency re-

lationship. As a consequence, when costs are low, even though principals prefer to share
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the fixed cost associated with a sales force, they would prefer to expend the extra costs

necessary to isolate their agents from their contracting rival when they cannot cooperate.

1.6.2 Multiple Regulators

Consider the problem of two regulatory agencies, each having power to regulate some
aspect of an agent’s (e.g., a public utility’s) operation. This environment is the rule
rather than the exception when it comes to administrative law in the United States.
Nevertheless, this problem has received little study. Cne noteworthy exception is the work
of Baron [1985]. Baron considers the problem of the dual regulators. In his example, the
Environmental Protection Agency (EPA) regulates the level of poilution which a public
utility produces and a loca: Public Utility Commission (PUC) sets rates and production
levels for, say, electricity. The EPA has the ability to move first, promulgating some
regulation before the PUC has an opportunity to set rates. We consider a simplified
version of the same problem, but with simultaneous contracts.

Let z; be the level of pollution abatement which the firm achieves. The EPA has

simple preferences:

VEPA(2y) = Vay - b,

Analogously, the PUC has preferences in accord with local consumers who essentially
are unaffected by the utility’s pollution (e.g., a coal plant produces acid rain which has

no effect on local consumers).

VPUC(2y) = Jz7 — ta.

We could, of course, make the preferences of the EPA and the PUC each a function of
the firm'’s profits as well (i.e., make them partially accountable to industry), but we have
not done this so as to keep the preferences completely independent.

It is natural to assume that the marginal cost of reducing pollution increases with
the level of output. In this case, the contract activities are substitutes. Specifically,

let the agent’s preferences be like those of the supplier in Section 6.1.2. The agent's
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final production of =; is e; + %0, where § is some unknown cost-reducing productivity
parameter. We assume that 6 is uniformly distributed on [1,2]. The agent’s preferences
are

1
U=t 4+t +U(zy,22,0) =t + t; — ‘2‘(131 + z — )%,
Following Propositions 1 and 4,2! we have 2 simple results.
Result 5 In a cooperative regulatory regime, x; are chosen to saiisfy

%m;*—(x1+m2-—0)--(1—0)=0.
Result 6 In a symmetric equilibrium with fragmented regulation, the EPA and the local
PUC choose each z; in excess of what they would choose with coordinated regulation
(i.e., with joint preferences of V(z1,22) = (/1 + /2 — t). They each choose x; to
satisfy
dei(8) Lot — (214 25— 0)—(1-0)
b 1t o o 0)—2(1-6)

2%

This is illustrated in Figure 3. Common agency reduces the distortion in the decision
variables which coordinated regulators would otherwise implement. This has several
interesting implications for the problem we are examining. First, local consumers and
the national constituency for the EPA are worse off. This is due to the costs of common
agency. Second, both the firm and environmentalists are better off from the high-powered
incentive schemes. The firm enjoys more information rents; environmentalists (who we
suppose prefer less pollution than the EPA’s constituency, perhaps because they pay less
taxes) enjoy a more efficient (i.e. lower) level of pollution. This perverse alliance
corresponds to that in Laffont-Tirole {1989] whezre low-powered incentive schemes result
from regulatory capture by environmentalists and the regulated firm. In that case both
parties gain from collusive arrangements with the regulator to hide information about the

firm’s costs.

21A.5 for Proposition 4 is actually violated in this example. Nonetheless, a numerical examination of
the equilibrium contracts reveals that the sufficient coidition of #,(z;,6) > =;°(g;,6), for all 8, which
is used in the proof to Proposition 4, is met. A.5 is merely a simpler sufficient condition (not necessary)
to guarantee that the inequality holds.
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FIGURE 3: THE EFFECTS OF MULTIPLE REGULATORS
»+ -+ Full Information Regulation
- -- - Coordinated Regulation
~——— Fragmented Regulation
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1.7 Conclusion and Further Remarks

Common agency is as prevalent as a lay person’s reading of the term would imply. The
main focus of this paper has been to develop a theory of techniques to study common
agency and to consider the economic effects of common agency on contractual relation-
ships. We have shown that in such environments, if the agent has private information
regarding his gains from the contracting activity and the contracting activities in each
possible principal-agent relationship are substitutable (complementary), the principals will
typically extract less (more) information rents in total and induce less (more) productive
inefficiency in the contracting equilibrium than if there were a single principal contracting
over the same activities.

The underlying theme of the results presented is that common agency entails costs
for the principals. These costs, in tum, can help explain many economic phenomena
which we observe. Additionally, as the analysis on substitutes has suggested, common
agency may result in high-powered contracts which extract very litile of the agent’s
information rents. Since typical contracting environments have multiple principals, when
the contracting activities are substitutes we should expect to see little use of distortionary
contracting to reduce information rents. Consequently, even though an environment might
be ideal for selection contracts, such contracts may not be observed due to competition.
In identical environments with a single principal (e.g., intemnal organization of a firm),
we would expect such contracting schemes. The fact that we do not see many selection
contracts may be evidence of healthy competition rather than an oversight by individuals

in the marketplace.
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Appendix

Proof of Theorem 1: First we show that incentive compatibility implies that t(8) is piccewise
Cl. By revealed preference

U0+ 08,0 + A8) — U(0 + A8,8) > U(0 + AB,8 + A8) — U(8,6) > U(6,6 + Ab) — U(6,06).

Dividing by A > 0 and taking limits as A9 — 0 yields %8 = Uy(zy,22,¢,6). Thus,
incentive compatibility implies that the total differential of U(6, 6) exists everywhere. We can
use a Taylor expansion at all but a finite number of points and write

U0+ A8,0 + AG) —U(6,0) = U, (21,22 t,0)zi(0)A8 + Uy, (21,22, ¢, 8)z}(0)A6
t(6 + Af) - ¢(6)
A9

+ Uy(z1,22,t,6) A + O(A6?),

for all A@. Dividing by A@ we have

18 + A8) — (6) _ U(6+ 80,6+ A6) —U(6,6)
A9 - AD

The limit on the righthand side exists everywhere but at a finite set of points given the piecewise
continuity of z!(8), and thus ¢(.) is itself piecewise C*.

A necessary condition for maximization by the agent is the satisfaction of first-order and local
second-order conditions at § = 0, at all points of differentiability:

Uz, 21(8) — U, 25(0) — O(AS).

U;(6,6) =0,

Us3(0,6) <0,

VY6 € O. The first expression immediately gives us (1.1) above. Totally differentiating this
expression with respect to 8 yields Ug;(8,0) + Uyy(6,0) = 0, which allows us alternatively to
express the local second-order condition as

Uéo(01 0) 2 Oa
at all points of differentiability. Equivalently,
Un:;@(zh T2, t, 0)3,1(0) + Umgﬂ(xlo T2, t7 0)3’2(0) -+ Ut(zl, T2, ta 0)t'(0) Z 0’

for all but a finite set of 6 in ©. Using (1.1) to eliminate t'(f) and simplifying yields (1.2).
Finally, feasibility implies (1.3) by definition. 0

Preof of Theorem 2: We proceed by showing that there exists a function ¢(-) satisfying (1.1).
Because z; is piecewise (', there exists a finite set of intervals of ® on which (U, /U,)=!
is defined and continuous. Piecewise continuity and the boundedness of z; allows us to take
the closure of these intervals and extend the function over each of these compact subsets of O.
Fellowing Hurewicz [1958, Ch. 1, Theorem 12}, A.2 and U € C? implies the existence of a
solution which satisfies (1.1} over each of the open intervals, and thus at ali points where z; is
differentiable.

To prove that the resulting contracts are globally incentive compatible, suppose otherwise. Let
9 # 0 be the optimal report for an agent of type 6. By revealed preference, U(6,8) - U(9,6) > 0.
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Equivalently,
é
/ Uy(3,0)ds > 0.
]

Using the fact that (1.1) holds everywheze except at a finite number of points yields

6 6 ,o
/; (Ué(s, 0) — Uy(s,s)) ds = /; [ Ujo(s, t)dtds > 0.

But A.1, together with the assumption of monotonic decision functions, guarantees that U 50(0, 0) >
0, which implies that the preference inequality is violated and we obtain a contradiction. Thus,
the contracts are commonly implementable.

Given (1.1) and A.1, the agent’s utility is nondecreasing in 6. Therefore, (1.3) is sufficient
for participation by the agent and the contracts are feasible. O

Proof of Proposition 1: Following Mirrlees [1971], we use the agent’s indirect utility function:
U(0) = U(z1(8), z2(9),t(8)). Incentive compatibility implies (1.1) which allows us to write

"]
U(9) = /o Us(z1(s), 22(3), )ds + U(8).

A.3(a) implies that ¢(0) = U(8) — U{z1(8), z2(0),0), and so A.3(b) implies that the sum of the
principals’ utilities equals

V(21(6), 22(8)) + Vi(21(9), 22(8)) + U(z1(8), z2(9), 0) / Uo(z1(3), z2(8), 8)ds

That is, the principals’ joint surplus equals the total gains from trade less information rents which
accrue to the agent. Note that partial integration yields

1-F(6)
£(6)

From Theorem 2 and A.1, we know that incentive compatibility and agent participation is satis-
fied if (1.1), (1.3) and monotonicity hold. We have already used (1.1) to substitute out transfers
from the maximization problem. Once we obtain the optimal decision functions, we use (1.1)
to determine the transfer function, which exists by A.2. This yields (1.5) in the Proposition.
It is clear that the maximization of principals’ utility requires that (1.3) be binding; it is never
profitable to leave information rents to the lowest type agent. Ignoring monotonicity and bound-
ary considerations (i.e., #; € X'), the principals’ relaxed problem reduces to maximizing the
expectation of their joint virtual utility

/ / Up(21(3), z2(s), 5) f(6)dsd8 = / L=F0) 0 (21(8), 22(6), 6)£(8)d8

1-F(6)
f(9)

Because the integrand is continuous over a compact set X', a solution exists for each §. Maximiz-
ing the integrand pointwise in 8 yields (1.4) V0 € [8?,6), and ;(8) = 0 V0 € [0, 6;). A4 implies
that the integrand is globally concave in z;, and so the first-order conditions are sufficient. Note
that the joint virtual utility evaluated at (1.4) is increasing in & because Ugy < 0 (A.4).

Vi(21(6), 22(6)) + V*(21(6), 22(6)) + U(21(6), 22(6), ) ~ Us(21(8), 22(8), 6).



Svppose 6} < 03. Then 85 is chosen to satisfy

1- F(63
V{21, 23) + U(2,22,63) — —-—g———z—)Ug(a:l,zz,H;) = (.
£(63)
This completely defines z; over ©. We now choose 8} to satisfy
Vi(z1,0) + U(z1,0,08) — o)1z 0,60 = 0.
£(61)

This completely determines z; over ©. A similar exercise is used when §; > 6;. In either case,
the choice of 6} satisfy the conditions of the Proposition.

We now check that the monotonicity and boundary conditions are satisfied. Totally differen-
tiating (1.4), together with A.4, imply that each z; is nondecreasing in 8, thereby satisfying (1.2).
Because each z; is nondecreasing in 6, A.4(b) implies that the maximum value of each z; is in
X. O

Proof of Proposition 2: (Sketch) Proposition 2 follows from the arguments used in Proposition
1, with the exception of proving monotonicity of z; the existence of a single pair of cutoff types,
7. Supposing that z,, z; satisfy (1.6) over [6],8)], we need to show that z/(6) > 0 and that a
cutoff point, 67, exists such that if and only if @ > 6} are principal i’s profits nonnegative.

(1.6) provides a system of two equations that define z,, ;. Totally differentiating this system
with respect to z;, z,, and 6, and using Cramer’s rule to solve for z}(8) yields z:(6) > 0 in light
of A.4’(b). Furthermore, given the condition in A.4’(c) which requires

1-F

: oo 1—F
Ve, — ""f_')uh:zj(o) -7

principal i’s objective function increases in 6. 0O

d (1-F
Ugg + [1—@-(—-?—-)]%20’

Proof of Theorem 5: Following Theorem 4, it is sufficient to show that (1.15) is satisfied for
any pair of nondecreasing decision functions. That is,

- b 18
AGy,6,,0) = /0 ’ /0  Usyey (3,1, 0)2) (3)2h(t)dsdt

-+

6 o )
/a / Usyas (511, )2 (3)25(2) + Usyé (3,1, £)4 (5] deds
g 10
+ /0 f s,z (31 6 8)24(8)2(E) + Us,0(s,t, 8)(t)] dadt < 0,
t
¥(6,,0,,0) € O3, Note that we can decompose the first double integral:
6 16, , , 6, py+Be , ,
/0 j; Uz, z, (8,8, 0)z1(8)25(t)dsdt = j; /; Uz, 2, (8, t, 0)z1(8)z5(t)dtds

62 lil ! !
+ /0 /a Up, oy (5,8, 0)2) (8)2h(t)dsdt,

65



where 3 = g::—:, and v = 6(1 — 3). Thus,

L. Y )
A(61,6,,) fo / Usyaa (3, s 2(2) — Unyng (3, £, 8)24(£) + Us,6(3, £, )] 4 ()deds
6, 16
+ /; ‘/c- (Uzy2,(3: 1, 8)21(8) — Uzyzq (8,2, 0)2(8) + Uzyo(3, 8, 8)] 25(t)dsdt
9y py+Bs 6y L’jl
+ / / Up,a (3,1, 8)2!(s)2h(t)dtds + / / Uz, oy (3,1, 8)2) (0)2b(t)dsdt.
é s é t
Integrating yields
" Y t
A(6,,6,,0) = / / {Ll,,lg(s,t,t)-k/Uzlzzo(s,t,u)z'z(t)du} zi(s)dtds
[} I] 6
53 [} 8
+ / / {u,,,(s,t,s)+ / Un,oro(3: 2, u)z'l(s)du} 2h(¢)dsdt
0 Ji )
61 pr+Bs b3 ‘—31
4 / / Up o (3, 8, 0)2, ()2 (¢)deds + / / Up, o (3, t, 0)2!, (8)h(t)dadt.
0 I} [} t
But note that we can combine the last two terms to obtain
. ag 6 t
A(br,6,,0) = /‘9 / {u,,e(,«,t,t)+ /e Umlz,a(s,t,u)zg(t)du} 2! (s)dtds
]
é) 6 ¢ s
+ / / {Uzzo(s,t,s)-f-/ Ll,lzzg(a,t,u)z;(a)du} zo(t)dsdt
¢ Jt 0
§2 61 , ,
+ / Uy, z, (3, 8, 0)2} (8)ah(t)deds.
1 &

Given our assumptions about monotonicity and i ., ».,¢, it is siraightforward to verify that each of
the three terms in A are necessarily nonpositive. Thus (1.15) is satisfied and the pair of contracts
is commonly implementable. 0

Proof of Theorem 6: Following Theorem 4, it is sufficient to show that (1.15) is satisfied under
the conditions on I/ providing that the necessary conditions in (1.13)-(1.14) are satisfied and each
z; is nondecreasing. That is, we take as given for all

u19 + u1225(0) > 0,

ug9 + uy221(0) > 0,
u1gtizg + u12(w1927 () + uzez3(6)) > 0.

First, note that (1.15) can be simplified under our conditions on monotonicity and U:

52 51 él 6
/0 /a uyzy(8)zs(t)dtds + /‘; /[ulga:'l(s)z:'z(t)+uwa:'1(a)]dtd.s

Y]
b [ Turssh(0)2() + aozh(0)] dsde < 0.
t
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Using (1.14), "
w1923 (8) + u1229(8)z5(t) > _u12u_20'z’1(t)z'1(3)’

and
Uzg
uzexy(t) + urazi(s)zy(t) > —ulz-——-u;z'z(t)z;(a).

Using the fact that u;» < 0, it is sufficient for (1.15) that

/ 52/ 2} (8)z5(t)dtds — / / =021 (t)z} (s)dtds ~ / / uw='J"z(t)mz(-9)dw">0

Consider the three terms independently. After simplification,

6,
/ / 2! (s)zh(t)dtds = [21(6;) — z1(8))[22(8;) — z2(9)),

j‘ / uw 2 (t)zl(s)dtd«‘! = _--—-[:!:1(01) - 231(0)]2

/0’ j 2 '(t)ﬂ’z (s)dsdi = ——[22(02) - z2(0)]".
The sum of these expressions forms a binomial which can be simplified to yield
{uw[%‘l(él) —~ 21(6)] — uz[22(62) - zz(”)]}z > 0.
Thus, {1.15) holds. 0
Proof of Proposition 3: Again we use the agent’s indirect utility function:
U(0) = U(z1(8), z2(0),0) + t1(0) + t2(0).

Incentive compatibility implies (1.12), which allows us to write

U(6) = ‘/;0 8Ll(a:1(3),a:2(s),s)ds +U(0).

a0

A.3 implies that t1(0) + t2(0) = U(8) - U{z1(0),22(0),0). We first analyze the probiem
of Principat 1. A.3(b) implies that her gain from an incentive compatible exchange (but not
necessarily an exchange which is incentive compatible for her rival’s contract) is

Vi(21(6)) + U(z1(6), 22(62l0le1(6)), 6) - [ ’ lzr(oh 2l Ololer(o)) )

+t2(6,(6]21(6)]) - U(8),

providing that 6, € (9, 6).
Principal 1’s surplus equals the total gains from trade in z, less information rents which
accrue to the agent plus the agent’s compensation from principal 2. Partial integration allows us
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to conclude

/ /0 AU (z1(s), zzg;z[ﬂ”l( 0:2) £0Vdsdo =

71— F(8) U(z:(0), 22(6:(6121(0)]),0)
[ f(9) a6

From Theorem 5 we know that incentive compatibility and agent participation are satisfied pro-
vided that (1.i2), and monotonicity hold. We have already used (1.12) to substitute out transfers
from the maximization problem. Once we obtain the opiimal decision functions, we use (1.12)
to determine the transfer function.

£(0)de.

/;{ V3(21(8)) + U=1(8), 22(8s 0121(0)]), 6)

1-}{;()0) dU(z1(6), ”25:02[0|31(0)])’ 9) + t2(6,[0]21(8)]) - U(Q)} f(6)do

By A.4”, the solution to the relaxed program can be found by differentiating the integrand
pointwise in  and setting the result equal to zero yielding (1.16) if we can be certain that principal
1 finds it optimal that §, € (8,9), for ali 8 € (9, 6).

To see that bunching at § is not optimal for principal 1, consider the functions z;°"(z,,0)
and #,(z,,0). The first function is defined as the valuz of z; which principal 1 would prefer to
choose if principal 2 always offered 2, = z2(@). The second is the maximum value of z; which
principal 1 can offer to agent 6 in order to induce the agent to choose the {z,(6), =,} allocation. If
z3°%(z4,0) > #1(z,,9), then the constraint facing the principal who wishes to induce bunching
at § must be binding. If it binds, the first-order condition of the agent is satisfied, and the
program above which uses the first-order approach is valid. To see that the sufficient inequality
above holds, note that at § it must be the case (since U, ., > 0) that 2]°P(z,,0) > #:1(z,,0).
Furthermore, under our assumptions in A.4”, z;°°" is increasing in @ while £, is decreasing in
0. Thus, the desired inequality holds. A smxlar argument establishes that with complements,
bunching is never optimal at 6.

Given that a nondecreasing soluticn to (1.16) exists, our assumption that ., 2,0 < 0 implies
that the contracts are commonly implementable. A.4” implies that an «; exists such that it is
optimal for all @ to be served by each priacipal. Providing that the transfers are chosen as in the
Proposition, the contracts are globally incentive compatible and individually rational. O

Proof of Theorem 8: The proof follows directly from Proposition 3, except that we must
additionally show that a continuum of symmetric, nondecreasing solutions to the differential
equations in (1.16) exists. Define s(z,6) = V,(z) + U:(z, z,0) and define the surface

D = {z,0/6 € [,0), N(z,9) > 0,D(z,0) < 0},

where N(z,0) = s(z,0) — 5080y (<, ,0) and D(z,0) -+ s(z,0) - 21:‘(“"glua(c z,0). Our
assumptions on U imply that there is a unique z for each € such that N(z,0) = 0 this point lies
in D, and so the latter is nonempty. Funhcrmore, our assumptions imply that D < 0, and that
along the curve defined by N(z,0) = 0 we have 4% 9% > 0. As a consequence, we have the curve
given by N lying above the curve given by D(z,8) = 0 over the domain of ©, with the former
having positive slope everywhere.
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Manipulating the differential equation given in Proposition 3 and using symwmetry implies
that
_ Uzp(z,2,6) N(z,6)
Uz, 2,(z,7,0) D(z,6)

Thus, if a differeatial equation exists in D, it necessarily has the desired monotonicity property.
Choose any point in D and consider its direction of movement. It cannot cross the N(z,0)
locus from below, as the derivative in the reighborhood of N is 0 and the locus N has strictly
positive slope. It cannot cross the D locus from above as ' — 400 as z approaches D and
the locus of points satisfying D has finite slope. Thus, any point in 7 remains in D; and more-
over, in any neighborhood, z’ lccally satisfies a Lipschitz condition. Following Hurewicz (1958,
Chapter 2, Theorem 12], a global differential equation exists which satisfies the equation in
Proposition 3. Additicnally, such an equation exists for any initial point in the half-open interval
D(¢) = {=,9|N(z,8) > 0,D(z,6) < 0}. We thus have a continuum of nondecreasing soiutions.
O

z'(0) =

Proof (Sketch) of Proposition 4: Proposition 4 follows from the analysis of Proposition 3,
except in so far as we must check that A.5 is sufficient for corner bunching to be suboptimal.

First, note that buncking will never occur at 8. If principal 1 chooses to induce bunching
by the agent on Principal 2’s contract, the higher level of induced z, will result in both more
information rents being paid to the agent by Principal 1, as well as reduced profits from lower
purchases from the agent.

Second, consider bunching at §. As in the proof to Proposition 3, it is sufficient to show
that 27°%(z,,0) < &,(z,,0), where £,(2,,0) is now the minimum value of z, which principal
1 can offer to agent 8 in order to induce the agent to choose the {z1(8), z,} allocation. In such
a case the constraint facing the principal who wishes to induce bunching at & must be binding.
If it binds, the first-order condition of the agent is satisfied, and the program above which uses
the first-order approach is valid. To see that the sufficient inequality above holds, note that at §
it must be that (since Uz, ,, < 0) 21°"(z,,98) < £1(z3,8). Furthermore, under cur assumptions
in A.5, 2]°% is increasing at a slower rate in 6 than is £,. Thus, the desired inequality holds. O

Proof of Theorem 9: Define the quadratic preferences as follows:

. . 1 )
Vi(z;) = vy + vizi + Eviﬂ?al =1,2,

U(zy,22,0) = uo + (w1 + w160)21 + (u2 + u200)22 + ur2z122 + “—;-mf + 1222233

We look for linear solutions of the form z; = Ef-f f_ Ai(@ — 6), where iff ! is the efficient
allocation given that @ = @. From Theorem 6 and Proposition 4, we need only show that of the
linear solutions to (1.18), there is a unique pair {A;, A2} such that each \; > 0 and (1.13)-(1.14)
are satisfied (i.e., \; < —}:{% and ujguzg + u1z(u10A; + uzgAz) > 0).

Substituting the candidate linear solutions into (1.18) and simplifying yields, for i = 1, 2,

v; + vi(TTT — Mi(0 - 0)) + wi + w0 + mz(i;ff - (0 - 0)) + ui(FH - M@ -0))

- u'g)\'uu
=v(6-6 o+ —L 2% ),
04! )(ua+ujo+uul,-)

This expression must hold for any 6.
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First, note that if some \; = 0, the above expression cannot be true. For example, A\; = 0
impiies that Ay = —Z—-g—, but then the optimal choice for A\; # 0. Hence, no fixed point can
contain a zero component and we can treat A; as a nonzero number. Second, note that since the
above expression must hold true for all 8, a necessary and sufficient condition for {A, A2} is
that the coefficients of  sum to zero. That is, for = 1,2,

— (ujo + ur2Ai)(uio + ur2A; + (vii + wiiJAi) = Y(u1u20 + ur2(u10A1 + u2gr2)).  (1.23)

(1.23) provides a system of 2 quadratic equations in 2 unknowns. The solution to such a problem,
if one exists, may have up to four possible roots. Solving (1.23) for A, as a function of A,,
we obtain two functions representing the two roots from the quadratic formula: A7 (A2) and
A (Az2). We can obtain similar functions for A\;. The four possible roots correspond to the
four possible fixed points which may exist with these functions. Two of these solutions have
zero components, {(0, —31¢), (—332,0)}, and result because we rightly assumed ); > 0 whcn
we simplified (1.18). The two remaining candidates consist of the fixed points in (A7, ;) an

(AF,AF). It is straightforward to verify that the latier pair of functions map to a set which
violates (1.13)-(1.14). We must show that (AT, A7) has a fixed point with the desired properties.

An examination of (A7, A7) indicates that

ATERATG): o, —ﬂl x[0, —ﬂ - [0, -(1+7)—————-——] [0, —(147)—22—),

v+ u V22 + U2z
and such a function is continuous. By assumption, the range is contained in the domain, and so
we may apply Brouwer’s theorem to establish the existence of & fixed point. Such a soluticn
satisties (1.13)-(1.14) and so it is incentive compatible. Moreover, it is straightforward to check
that the fixed point consists of a strictly positive solution.

Next, we must check that a principal does not find it desirable to induce bunching at the
corner of her rival’s contract. By assumption, the conditions of A.5 are met, so bunching at a
comer is not optimal.

Finally, we must show that the agent prefers the common agency environment, and the prin-
cipals prefer the cooperative outcome. This follows from Coroliary 6. O
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Chapter 2

The Economics of Liquidated Damage
Clauses in Contractual Environments

with Private Information

Nowhere is the baneful effect of the division into specialisms more evident
than in the two oldest of these disciplines, economics and law. ... [Tlhe
rules of just conduct which the lawyer studies serve a kind of order of the
character of which the lawyer is largely ignorant; and this order is studied
chiefly by the economist who in tum is similarly ignorant of the character of
the rules of conduct on which the order that he studies rests.

- F. A. Hayek
When you go to buy, don’t show your silver.

— Chinese Proverb

2.1 Introduction

Economists have long recognized that agreements freely entered into by all effected
parties with full information and cognizance of the terms of trade necessarily improve
social welfare in the traditional Pareio sense. It comes as no surprise that economists

look at the law with skepticism whenever courts invalidate mutually agreed upon terms
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within a contract. Nonetheless, courts have routinely decided to invalidate contractually
stipulated damages for breach of contract (commonly known as liquidated damages) when
such damages are “unreasonably large” relative to actual o: expected losses, but not those
that are unreasonably small.! Even the courts themselves often do not know why they

do what they do.

[T]he ablest of judges have declared that they felt themselves embarrassed
in ascertaining the principle on which the decisions [distinguishing penalties
from liquidated damages] were founded. Cotheal v. Talmadge, 9 N.Y. 551,
553 (1854).

The invalidation of excessive stipulated damage clauses is difficult to justify eco-
nomically. Liquidated damage clauses promote efficiency in contractual relationships
by reducing the litigation and judicial costs which accompany breach, by providing the
correct incentives for a breaching party, and by optimally allocating risk.? Most impor-
tantly, stipulation of damages by the parties rather than by judicial determination allows
parties to efficiently utilize their superior information which frequently courts can only
imperfectly access.

The courts have had difficulty motivating the invalidation of excessive stipulated

damage clauses as penalties. One theory often presented by legal scholars posits that

1See, Uniform Commercial Code, §§2-302(1), 2-718(1), and the Restatement of Contracts (Second),
§§208, 356. The U.C.C., §2-718(1) maintains:

Damages for breach by either party may be liquidated in the agreement but only at an amount
which is reasonable in the light of the anticipated or actual harm caused by the breach, the
difficulties of proof of loss, and the inconvenience or nonfeasibility of otherwise obtaining an
adequate remedy. A term fixing unreasonsbly large liquidated damages is veid as a penalty.

The Restatement of Contracts (Second), §356(1), similarly maintains:

Damages for breach by either party may be liquidated in the agreement but only for an
amount that is reasonable in the light of the anticipated or actual loss catised by the breach
and the difficulties of the proof of loss. A term fixing unreasonably large liquidated damages
is unenforceable on grounds of public policy as a penalty.

3 Shavell [1980] analyzes the use of damage remedies to provide incentives for efficient breach. Although
Shavell does not erplicitly entertain the idea of stipulated damages, his analysis is closely related. in
complementary work, Polinsky {1983] has shown that in some instances it is efiicient from a risk-allocation
viewpoint to contruct for stipulated damages in excess of the actual loss from breach. Such conditions
require, among other things, that the buyer should bear secme of the price risk introduced from third-pasty,
breach-inducing offers. Rea [1984, p.154), however, has argued that these conditions are rare.
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legal remedies for breach of contract serve only to compensate and never to punish.®
Such a principle has economic merit. We ordinarily want parties to breach contracts
when it is economically efficient that they do so. By making the promisor more than
compensate the loss incurred from his nonperformance, the contract induces a suboptimal
level of breach.

Unfortunately, this simple explanation falls short on two points. First, why would
rational individuals agree to such a contract when there exists another contract that sets
damages at the value of performance which makes both parties better off? Second, why
do the courts fail to extend this operating principle to situations of under-compensatory
stipulated damage agreements which produce a super-optimal level of breach?

Many courts and legal scholars answer the first question by arguing that excessive
liquidated damages are presumptive evidence of a contractual failure such as fraud or mu-
tual mistake. Arguably, courts view excessive damages as evidence that at least one party
has wrongly agreed to a contract that is not Pareto improving,* and respond by striking
such clauses. But this does not explain why the court does not also strike extremely low
liquidated damage clauses which presumably are also the product of contractual failures.
We are left with an anomaly.

This paper provides an explanation for the lack of legal symmetry: While excessive
damages may arguably suggest a contractual failure, undercompensatory damages are

the likely result of the rational decision of two individuals bargaining in an environ-

8Famsworth [1982, p.896] has indicated in his treatise on contract law such a principle of compensation:

If ... the stipulated sum is significantly larger than the amount required to compensate thie
injured party for his loss, the stipulation may have a quite different advantage to him — an
in terrorem effect on the other party that will deter breach by compelling him to perform.
Enforcement of such a provision would allow the parties to depart from the fundamental
principle that the law’s goal on breach of contract is not to deter breach by compelling the
promisor to perform, but rather to redress breach by compensating the promisee. It is this
departure that is proscribed when a court characterizes such a provision as a penalty.

4 Aghion-Bolton [1987] provide an additional story. Two individuals may desire to sign a contract
which assigns excessive liquidated damages for breach so as to foreclose entry by another supplier. Of
course, these damages are socially inefficient. In a related paper, Diamond-Maskin [1979] consider the joint
problems of breach and search for new trading partners. They find that because an individual who breaches
can get his new partner to share the burden of the liquidated damage he pays to his old partner, a pair
of pariners in a contract exerts some monopoly power over potential partners, thereby making liquidated
damages supercompensatory.
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ment where each possesses private information about the exchange. Because the low
damages do not necessarily represent a contractual failure but can realistically reflect a
jointly benzficial contract arrived at under the constraints of asymmetric information, le-
gal institutions are arguably correct in enforcing such terms unless there exists other hard
evidence of contraciual failures such as fraud or mutual mistake. This essay’s principle
thesis maintains that when each party to a contract possesses private information whose
disclosure would adversely affect its position in the contractual bargaining, rationally
calculated liquidated damages will be set at under-compensatory levels.

Current economic analysis of liquidated damage clauses has been limited to symmet-
rically informed parties. In many contractual situations, however, the assumption that
parties entered into the contract without private information is not palatable. When such
asymmetries in information are present, the liquidated damage clause takes on dual roles:
(i) providing incentives for efficient breach, and (ii) efficiently screening among differ-
ent types of buyers and sellers. Specifically, this paper demonstrates that when parties
have asymmetric information, stipulated damages may be used to communicate valuable
information at the pre-contractual stage. As such, the loss from insufficient or excessive
breach may be offset by informational gains. In fact, in the typical buyer-seller contract
where each party has private information, stipulated damages will almost always fall
short of actual losses from the breach.

This paper examines the buyer-seller relationship, although its results appear much
more general. We assume that the buyer has private information regarding the value of
the product to herself, and that the seller has private information regarding alternative
markets where the product may be sold absent a sale to the present buyer. The contrac-
tual framework is modeled in Section 2. In Section 3 we examine various bargaining
situations. In section 3.1, we analyze the consequences of placing all of the bargaining
power in the hands of the buyer; in Section 3.2, we assume all of the bargaining power
resides with the seller.’ Later, in Section 3.3, we examine what an efficient arbitrator

would assign as stipulated damages. In both one-sided bargaining and the arbitration sce-

SPlacing all o the bargaining power in the hands of one party manifests itself as the opportunity of the
party to write a contract and make a teke-it-or-leave-it offer to the other.
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narios, we find that there is no role for excessive stipulations, but there is a positive role
for under-compensatory terms. Indeed, under-compensatory terms occur with probability
one. These terms provide a valuable method for both parties to signal to the other their
private information, increasing the gains from trade.

Section 4 examines the policy question of whether a perfectly informed court would
generally improve matters by requiring that all stipulated damages be exactly compen-
sating. We find that under plausible conditions, even a perfectly informed court can be
a menace to the parties’ contract and to social welfare if it naively imposes a require-
ment that liquidated damages equal actual value, ex post. There is a direct benefit and
a direct cost from judicial intervention. Eliminating the agents’ abilities to set liquidated
damages below valuation reduces inefficient breach of contract. If { = v, the seller will
breach only if it is efficient to do so. Unfortunately, such a restriction on liquidated dam-
ages also restricts the offerer to contracts which set a single price. This restriction may
lead to buyer-designed contracts which only induce trade with iow-opportunity sellers,
and seller-designed contracts which only induce trade with high-value buyers. Conse-
quently, some individuals may be foreclosed from trade, leaving unrealized gains from
the exchange. These results are analogous to the social planner’s decision of whether to
allow second-degree price discrimination in the context of monopoly pricing. Section 5

summarizes and concludes.

2.2 The Contractual Framework

We examine the contractual relationship between a buyer and a seller, where third-party
offers for the seller’s services may induce breach after an agreement has been reached.
The buyer and seller recognize this possibility and bargain both over price and a damage
stipulation which the seller agrees to pay the buyer in event of non-performance.®

The buyer (she) and a seller (he) contract to trade a single good at date 1. After

contracting, the buyer cannot find other sellers (e.g., the buyer makes relation-specific

8The character of the resulis remain unchanged if one considers instead that the buyer may breach after
finding an altemative product. In this alternative, both parties negotiate damages which the buyer will
compensate the seller for the lost transaction. The issue of robustness is briefly discussed in Section 7.
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investments or her outside opportunities disappear) but the seller’s opportunism is con-
strained by the non-performance damage terms of the contract. At date 2 a third-party
offer is made to the seller for his wares. The seller can either accept the third-party’s
offer and pay the buyer the stipulated damages, or deliver the product to the buyer.

The buyer has valuation, v, distributed according to the continuous, positive density
function, f(-), on [v,¥], with cumulative distibution, F(-). Only the buyer knows v,
although its distribution is common knowledge. The third-party’s offer for the szlier’s
product is equal to 6 + ¢, where § is known by the seller at date 1, and ¢ is an unknown
outside valuation shock at date 2. 4 is distributed according to the continuous, positive
density function, g(#) on (g, 8], with cumulative distribution, G(8), such that 7 > 4 (i.e.,
there are gains from trade with some probability). Only the seller knows 6, although
its distribution is common knowledge. € is distributed according to the continuous,
positive density function, h(e), on [, €], with cumulative distribution, H(e).” Neither
party observes ¢ at date 1, and only the seller observes € at date 2. The expected value of
€ is zero, thereby making 6 an unbiased estimate at date 1 of the altemnative market at date
2. Additionally, it is common knowledge that the seller’s costs are to be zero, although
zero costs is without loss of generality. Absent any contract offer, the seller expects
to make 6. The buyer’s outside opportunities have been normalized to zero. Finally, I

lFu

assume that is nonincreasing in v, 9&’% is nondecreasing in 4, and payoffs are not

discounted.

"To ensure the global concavity of each of the several maximization programs in this paper, we assume
that for all # and for ali £ € {6 +¢,6 + €,

h(t - 6) > h'(t — 6)[v — ¢),

h(€ —8) > h'(L — 6)[v — ¢ — G((:))]’
h(( ~ 0) > hl(t - 9)[0 ! f(lz)(v)]'
~ "t —0)v — _G(O)_l_}?(v)
h(€¢ - 6) > h'(t - 6)[ ¢ 0 73 !

These conditions are made for tractability; a weaker (but more complicated) set of conditions would also
suffice. In any case, if h is 2 uniform distribution, these conditions are trivially satisfied. Additionally,
we further assume that the support of ¢ is sufficiently large so as to eliminate comer solution problems.
The latter condition is also for simplicity and would be satisfied, for example, if F(v), G(6), and H(¢) are
uniform distributions and ¢ < min{g,v+8 — 26,2~ 8 —~T}and e > T — 4.
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The contract consists of a binary decision to agree to trade, § (§ = 1 if there is an
agreement to trade, § = 0, otherwise), a price, p, paid at the time of signing, and a
stipulated damage payment of ¢ to be paid at date 2 in the event of the supplier’s breach
after a decision to trade has been made. Thus, a contract outcome is given by {4, p, ¢}.
As is standard, we restrict our attention to deterministic, piecewise C'! contracts. For
now, we assume that only the contract and the existence of breach is observable by the
court. Later in Section 4 we relax this assumption to determine if a perfectly informed,
but myopic, court could always improve contracting among the parties.

Given ¢, the supplier will breach whenever 0 4 ¢ > ¢, and perform otherwise. Thus,
the probability of performance is H(¢ — 6) and the probability of breach is 1 — H(¢ — ).

The net profit of the supplier from a contract, {4, p, £}, is
1r-(6?)=6(p+/e [0+e—€]dH(e)—0) ,
-9

where the second term in the parentheses represents the expected gain from breach when
the outside opportunity is lucrative, and the third term in parentheses is the seller’s
opportunity cost in agreeing to a contract (i.e., the lost expected profit, §). The profit of
the buyer is

7(v,80) = 6 [vH({ —8) + €1 — H(¢ - 8)] — p].

I consider three different contracting scenarios to provide a range of environments
for analysis. First, the buyer may propose the contract to the seller, and the seller may
accept or reject it. Second, the seller may propose the contract, and the buyer may accept
or reject it. Finally, an uninformed third party may design a contract which maximizes
the joint surplus from trade between the parties.

Before considering each case in the following sections, we consider the full-information
benchmark solutions for comparisons: In all three cases, the optimal full-information con-

tract involves trade (i.e., § = 1) if and only if

(v —8)H(v — 0) + ‘/;(o +e—v)dH(e) >0,
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and in such case, { = v. The above expression represents the expected gains from trade
given that £ = v. The first term is the expected gain under performance of the exchange;
the second term is the option value of the outside opportunity that is available to the
seller whenever 6 + ¢ > v.

If the buyer has all of the bargaining power, the buyer’s optimal strategy is to max-
imize her profits subject to the seller’s acceptance of the conditions (i.e., 7* > 0). Sub-
stituting for p and simplifying yields the following program for the solution of § and
e

%?ﬁ(uﬂe—w+q1—Hu_an—o+llw+e—emﬂu0. (2.1)

The necessary first-order condition is £ = v. Given our assumptions on h(e), this is also
sufficient. § = 1 whenever (2.1) is positive at £ = v. The contract price offered by the
buyer is

p=0— [ (04 c—v)dH(). (2.2)

Similarly, if the seller has all of the bargaining power, the seller’s optimal strategy is to
maximize his profits, subject to the buyer’s acceptance of terms (i.e., # > 0). Substituting

for p and simplifying yields
rrm.xé (vH(Z — @)+l —-H(-8)]—-6+ /1_0(0 +€— L’)dH(e)) .

which is identical to the buyer’s program above for the choice of § and ¢. Thus, we
again find { = v. Note, however, the price paid by the buyer to the seller under this
scheme is p = v, which extracts all of the buyer’s rent. Finally, if an uninformed arbiter
proposes a contract for the parties, the arbiter will maximize the expected gains from

trade by choosing ¢ to maximize the collective surplus

/:/U{(v — 6)H(t - 9) l: 6aI.H(e)} dF(v)dG(8). (2.3)

Again, the solution is to set ¢ = v. The third party then chooses a price to split the gains
from trade with p € [0 — JE (0 + e —v)dH(e), v]. It is not surprising that the optimal

full-information contract under trade specifies £ = v for each contracting environment,
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since this condition guarantees that breach occurs if and only if it is efficient.

When information is not public, the resulting contract typically has ¢ # v. Instead,
¢ will depend upon v and @ in a manner which will elicit a party’s private information
by creating distortions from efficient breach. The precise relationship between ¢, v, and
6 will depend fundamentally on the contractual context: Buyer power, Seller power, or

Third-party Arbitration.

2.3 Contracting Environments

2.3.1 The Buyer’s Optimal Contract

Because the buyer does not know the seller’s expected outside opportunity, 8, she must
take into account the effect of the liquidated damage clause on the seller’s gains from
trade. If ¢ is set arbitrarily high, it will effectively lock the seller out of the alternative
market; a low ¢ preserves the cption value of breach, which in turn is an increasing
function of 6. For seller’s with high 8’s, this will require a higher price to offset the
loss in opportunity. Recognizing this relationship, the buyer can effectively use the
damage clause to screen among different types of sellers much in the same way that a
price-discriminating monopolist screens among different consumers by offering multiple
quantity-price packages. The buyer will offer a menu of contracts, from which the seller
chooses the one most profitable given his 8.8 That is, the buyer may offer a continuum of
contracts to the seller represented by a function p(¢). Following the Revelation Principle
(see e.g., Myerson {1985] or Fudenberg-Tirole [1991]), we reparameterize according to
the seller’s outside opportunity, 8, as =(6) = {6(6),p(60),£€(8)}. Accordingly, we may
solve for the buyer’s optimal choice of z= for every 6, subject to each seller type finding

it optimal to choose the contract designed for his type.

8The choice of contract by the buyer may possibly reveal information about the buyer's type, v, to the
seller. There is no problem with mechanism design by informed principal in thds case, however, as the
seller’s utility is independent of v, and the buyer has no action to take which could indirectly affect the
seller’s utility.
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The buyer’s expected profit from any mechanism z(-) is

w(w) = [ 8(0) {vH(UO) ~ 0) + (O)[1 ~ HUO) ~0) ~ p(O)}dG(6).  (2.4)

She maximizes this subject to two sets of constraints: the seller must be willing to sign
the contract (i.e, not make a loss from trade) and the seller must select the contract
designed for his type.

Define 7*(4|9) as the profit to a seller with outside opportunity 8, who selects the
contract designed for a seller of type 4. That is,

(618) = 5(9) (p(o)+ / {8+ e~ LO)H(e) - ) (2.5)

The buyer’s first constraint requires that every seller’s truthful selection must yield non-
negative profits. Thus,
7*(6]6) > ¢ (2.6)

for all @, which represents the individual rationality (IR) or paticipation constraint.
Second, every seller must select the correct contraci from the menu. These incentive

compatibility (IC) constraints require
x°(6|6) > =*(4]9), V8, 6. (2.7)

The IR and IC constraints in (2.6) and (2.7) are intractable in their present form so we fol-
low the standard procedure of replacing them with the significantly simpler representation

in Lemma 1.

Lemma 1 The mechanism {p(0),€(8)} satisfies the IR and IC constraints if

(8) = =*() +[ 8V H(€() — t)dt, (2.8)
©*(6) > 0, (2.9)
5(0)H(L(6) — 8) > 6(8')H(E(8') — 8),Y6' > 6. (2.10)
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In addition, (2.8) and (2.9) are necessary conditions for IR and IC.

The proof is standard and provided in the Appendix. Intuitively, the lemma follows
from the envelope theorem: Assuming truthful selection is optimal for the seller, totally
differentiating (2.5) results in dL}}Iﬂl = —H(£(6)—0). Integrating this derivative produces
(2.8) and (2.9). The condition in (2.10) is a second-order condition for truthful selection.

With this simplification, we proceed by substituting (2.8)-(2.9) into the buyer’s ob-
jective, (2.4). Equating (2.8) with 7°(8|8) and solving for §(8)p(6) yields

50)p(8) =6~ [ 6O)0+e~ 8)H() / t)H(€(t) — t)dt. (2.11)

Recognizing that the buyer will optimally set 7°(8) = 0, taking the expectation of §(¢)p(6)

over #, and integrating by parts yields

3 3 0 3 G(0)
/g 5(0)p(8)dG(8) = /g 5(0) {o - fm)_o(o = UONAH(e) + H(UO) - ) } dG(8).
(2.12)
Substituting this expression into the buyer’s objective function yields the unconstrained
problem
(6)
max | 6(0){( (9)) (€(8) — +/ edH(e) } G6),  (2.13)

which may be solved by maximizing ¢ pointwise over § and checking that the solution

satisfies (2.10). This program yields the following Propesition.

Proposition 1 The optimal menu of contracts, {6(8),p(8),€(8)}, for the buyer consists

of a contract with £(0) = v — &L, p(0) such that (2.11) is satisfied, and 6(8) such that

1 Véelg,6%)
0 V6 e (6,0

where 0* is either the unique value of 6 € [8,8) such that the integrand in (2.13) is zero,

if such a value exists, or 8* = 8 otherwise.
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Proof: Ignoring the decision to trade, pointwise maximization of (2.13) yields the ex-
pression for ¢(6), which is monotonically decreasing. (Given our assumptions on H,
F, and G, this pointwise optimization program is concave in {. (2.11) provides us with
p(6) such that IC and IR are satisfied if the monotonicity condition in (2.10) is satisfied.
Pointwise maximization of é(#) yields § = 1 whenever the integrand in (2.13) is non-
negative. Given our assumptions on the inverse hazard rate, the integrand in (2.13) is
strictly decreasing in 6, which implies that 6(8) is decreasing in 6 and that there is at
most one value of  such that the integrand in (2.13) is exactly zero; thus §* is unique.
Consequently, the monotonicity condition in (2.9) are satisfied and so the mechanism is

IC and IR. O

As the Proposition indicates, the actual buyer loss from breach, v, almost always
exceeds the amount of stipulated damages in the optimal contract when the buyer has all

of the bargaining power.

2.3.2 The Seller’s Optimal Contract

-

Because the seller does not know the buyer’s valuation of the gor ° he must take into
account the effect of the liquidated damage clause on protecting the buyer’s value. If
{ is set arbitrarily low, it will allow the selier to breach and use the altemative market
whenever ¢ is favorable, thereby imposing a loss of » on the buyer. For buyers with
high v’s, this will produce a lower reserve price due to the lower likelihood that the
value of the bargain will accrue. Recognizing this, the seller can effectively use the
stipulated damage clause to select among the different types of buyers just as the buyer
was previously shown to select among sellers.

The seller may offer a menu of contracts like that in the previous section and allow

the buyer to choose the one most profitable given her v. In this case, th= menu can be

represented by either the function p(¢) or the parametric triplet y(v) = {6(v), p(v), {(v)}.
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The seller’s expected profit frorn any mechanism y(-) is

r'(0) = /:;5(1)) {p{v) + /:u)_o(ﬂ + € - f(v))dH(c) - 0} dF(v). (2.14)

He maximizes this subject to the buyer’s JR and IC constraints, analogous to the Buyer's
problem above. In this section for simplicity we also assume that 8 is observed by the
buyer.®

Define 7b(d|v) by
7P (blv) = vH({(D) ~ 8) + €(d)[1 — H(¢(D) — 8)) — p(),

which represents the profit to a seller with ourtside opportunity v who selects the contract
designed for a seller of type ©. Analogously to the buyer-contract case, the IR and IC
constraints are, respectively,

*(vlv) 2 0,
rb(vlv) > rb(d|v),

for all v and . Again, as in the buyer-designed contract, the above two sets of constraints

are difficult to work with but can be greatly simplified, as in Lenima 2.

Lemma 2 The mechanism {6(v),p(v), {(v)} satisfies the buyer's IR and IC constraints

if

(v) = 7*(v) + / §(v)H(£(t) — 0)dt, (2.15)
() >0, (2.16)
S{(v)H({(v) — 8) > §(v')H(L(v') - 8),Vv,v". (2.17)

®Because the buyer's eapected retums from trade depend negatively on 6, the seller might otherwise
attempt to siomal to the buyer that 8 is in fact low by making a contractual offer which only low-8 sellers
would find profitable .0 make. The general problem of mechanism design by an informed principal has
veen studied by Maski -Tirole [1990]. Rather than assuming 6 is known by the buyer, an altemative way
to avoid the informed-principal problem is by assuming that all sellers offer the same contract (i.c., they
collectively pool), 8 is sufficiently large that all types of sellers find it optimal to contract with the buyer
(i.e., in terms of Proposition 2, v* = v), and any seller who offers a different contract than the expected
pooled contract is assumed to be a high-type 8 by the buyer. Because the equilibrium contracts derived in
Proporition 2 are independent of 0, this forms a Bayesian-Nash equilibrium.
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In addition, (2.15)-(2.16) are necessary conditions for IR and IC.

The proof is provided in the Appendix and again is an application of a the enve-
lope theorem. With this simplification, we proceed by substituting (2.15)-(2.16) into the

seller’s objective, (2.14). Equating (2.15) with w®(v|v) and solving for é(vjp(v) yields

§(0)plv) = vH(E(v) = ) + (o)1 — H(e(v) - 0)] — 7°(2) = [ 8(u)H(((t) - O)dt.

v

Recognizing that the seller will optimally set 7®(v) =: 0, taking the expectation of (v )p(v)

over v, and integrating by paris, produces

[ s(@po)dr(v) =

v ) - F(v
/u §(v) {vH(Z(v) —8) + {(v)[l - H({(v) ~ )] — H({(v) ~ 0)1—]7(—;5—)} dF(v).
- (2.18)

Substituting this expression into the buyer’s objective function yields the unconstrained

problem
v 1 - F(v) ) ‘ :
u}f}x/; 5(v){(v—0— W) H({v)—-0)+ “v)_osdH(c)} dF(v). (2.19)

This problem may be solved by maximizing ¢ pointwise over v, and checking that
the resulting solution satisfies (2.17). The resulting expressions provide Proposition 2.

As the Proposition indicates, { is again almost always below actual loss.

Proposition 2 The optimal menu of contracts, {§(v),p(v),€(»)}, for the seller sets

l{(v) =v— 17"’('})3) and p(v) such that (2.18) hoids atove. Additionally, the seller chooses,

§(v) = I Yve (3]
0 Vve [y,

where v* is either the unique value of v € (v, 7| such that the integrand in (2.19) is zero,

if such a value exists, or v* = v otherwise.
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Proof: Ignoring the decision to trade, pointwise maximization of (2.19) yields the ex-
pression for ¢(v), which is monotonically increasing. (Given our assumptions on I, (v,
and H, the pointwise optimization program is concave in £.) (2.18) provides us with
p(v) such that IC and IR are satisfied if the pionotonicity condition in (2.17) is satis-
fied. Pointwise maximization of é(v) yields 6 = 1 whenever the integrand in (2.19) is
nonnegative. Given our assumptions on the inverse hazard rate, the integrand in (2.19)
is strictly increasing in v, which implies that §(v) is decreasing in v and that there is at
most one value of v such that the integrand in (2.19) is exactly zero; thus v is unique.
Consequently, the monotcaicity conditions in (2.17) are satisfied and so the mechanism

is IC and IR. i1

2.3.3 Brokered Contracts

Rather than place all of the bargaining power i:i the hands of one agent, we now consider
the resulting contract where both agents delegate the contractual terms to a third-party
(e.g., a broker or arbiter) who knows neither v nor 6.!° This broker is concermned only
with maximizing the total gains from trade when each party knows only its own private
information.!! Before, when one party had full contractual power, that party traded off
breach inefficiencies against increased rent extraction. Under such a skewed bargaining
environment, { never exceeds v in the optimal coniract. We now find that even when a
broker is employed, the optimal contract never involves excessive stipulated damages.
The problem facing the broker is to maximize the joint gains from trade by designing
a menu of contracts. The contracts may depend upon both § and v. We can think of the

menu as an offer of a menu of menus to the buyer, one of which the buyer selects. From

1%In this section, we return to our assumi-tion that the buyer does not observe 6.

'TAs a motivation, one might suppose that certain institutions evolve which maximize the joint gains
from trade between agents from an ex ante point of view, and agents use these institutions in order to
avoiding signaling adverse information to one another, although this motivation is admittedly very loose.
An altemative motivation has the buyer and seller contracting ex ante, before they leam their private
information, but subject to a limited liability constraint where either party can legally walk away from the
contract once private information is learned if losses are sufficiently great. This latter explanation may be
realistic in the requirements contracting context.
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the selected menu, the seller is allowed to choose the final contract. Altematively, we
may parameterize this family of contracts by (8, v), and envision the contract as a direct
revelation mechanism where each party announces his or her private information and the
broker selects the appropriate contract according to z(8,v) = {6(8,v),p(8,7),£(8,v)}.
Because there is two-sided asymmetric information, the traditional techniques need
to be be augmented slightly; we follow Myerson-Satterthwaite [1983] in this regard.'?
Lemma 3 is a direct extension of Lemmas 1 and 2 and characterizes the set of all contracts
which are incentive compatible and individually rational for both parties. Proposition 3

provides the solution of the broker’s problem.

Lemma 3 The mechanism {6(8,v),p(68,v),€(8,v)} satisfies IR and IC constraints if and

only if _
x*(8) = /U{w‘(y,v)+ /:5(0,1»)51(((3,1,)_ .s)ds}dF(v), (2.20)
(v) :/0{nb(e,y)+/Ué((),v)H(t’(o,t)~—())dt}dG(&), (2.21)
m*(8) > 0, (2.22)
*(v) >0, (2.23)

/ 5(8,v)H(E(6,v) — )dF(v) < /5(0’ v)H((8',v) — 0)dF(v),¥0 > 8, (2.24)

/oé(ﬂ,v)H(é’(O,v)— )d('(0)>/ 5(6,0')H(€(8,v') — 0)dC(0),¥v > v'.  (2.25)

Alternatively, there exisis a function p(8,v) such that {(6.v) is IC and IR if and only if
(2.24) and (2.25) hold, and

C1=F)\ [, GO) o
f/“ 7o) ) (0 g(o))]m“”’) )

+ / edH(e)}dF(v)dG(ﬂ) > 0.
{6,v)-8
(2.26)

12A150 see Williams [1987) for a fuller treatment and extension of Myerson-Satterthwaite's model,
Williams characterizes the efficient locus of contracts, depending upon the weights attached to the buyer
and seller’s utility.
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The proof of Lemma 3 follows from Lemmas | and 2 and is contaired in the Ap-
pendix.
With this Lemma, w: may write the arbitrator’s problem as maximizing the expected

profit of each party subject to (2.26) above. That is

6 v 7
umx/ﬁ [ 6(0,1»){(1) ~ 0)H(£(8,v) "GH/M,.,)_@ edH(e)}dF(v)dG(O), (2.27)

subject to (2.26). Let #£(8, v be the Lagrange multiplier for (2.26). We multiply y by é
without loss of generality as the IC and IR constraints do not bind when § = 0. Bringing

the constraint into the integral of (2.27) and simplifying yields

[ [ +;L)5(0,v){[(v - - (0 G(”’)] H(l(6,0) - 0)

L+p \ f(v) g(9)

+/' }dF(v)dG(o). (2.28)
(8,v)-0
The functions § and ¢ which maximize this integral may be found by maximizing the

expression for § and ¢ pointwise in 4 and v, and cliecking that the solutior: satisfies (2.24)

and (2.25). The solution results in the following Proposition.

Proposition 3 The optimal contracts for the arbitrated buyer-seller relationship consists

of
00,v) = v — (1 - F(v) G(o))
’ 1+p f(v) g(6) )’

where u > 0, and with

8 1 V6,v, s.t. (2.28) is nonnegarive
V) =
0 otherwise.

Additionally, p > 0 if

//{[( 1—5;11)) (0+-§((0i)))}H(v~0)+‘/;:edH(e)}dF(u)dG(()) ~ 0

Proof: Maximizing the above expression over § and ¢ pointwise in  and v yields 6(8, v)
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and ¢(6,v). These in turn provide for the construction of p(#,v) that satisfies (2.20)-
(2.21). ¢ is nonnegative, and therefore {(8,v) is nondecreasing in v and nonincreasing in
8. Moreover, at the optimum, (2.28) is increasing in v and decreasing in §, implying that
6(8,v) is nondecreasing in v and nonincreasing in §. Hence, (2.24)-(2.25) are satisfied
and the mechanism is IC and IR. To prove that 1 >> 0 under the integral condition above,
suppose to the contrary that 4 = 0. Then ¢(8,v) = v, and by our hypothesis, (2.26) must

fail, indicating that u > 0. ()

Proposition 3 demonstrates that stipulated damages do not exceed the actual loss from
breach of contract and are strictly less than actual loss whenever the expected gains from
trade are less than the expected information rents for almost all §. Because the arbitration
contract yields greater combined gains from trade than either the buyer-contract or the

seller-contract, our earlier resulits are robust to the distribution of bargaining power.

2.4 Welfare Implications and Policy Conclusions

We have seen that the existence of private information by coniracting parties in a wide
range of bargaining environments introduces the likelihood that liquidated damages will
be beiow the actual losses caused by breach. Using liquidated damages to select among
different types of economic agents is, in a sense, second-degree price discrimination where
the monopolist offers price-damage, rather than price-quantity, bundles. The question then
arises as to whether public policy should require that all damages for breach of contract
equal the true losses incurred, providing such information about losses is available to the
court after the breach. It is arguable that any intervention would be precarious at best,
especially given our limitations of knowledge about the actual contracting conditions
between parties.

To consider the issue of judicial intervention, we posit the strongest possible assump-
tion in favor of activism to determine the most optimistic assessment: assume that courts
can perfectly determine actual losses from breach ex post. That is, assume v becomes

known to the court and to both parties at date 2 in the event of breach. With this as-
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sumption, 1 seek to answer the question of whether the court should require { = v in ali
breached contracts. For realism, further assume that parties cannot base their contract
price on the judicial determination of v; otherwise, the court would become nothing more
than an auditing agency for private contracts. That is, observed v can only be used to
determine ¢.

There is a benefit and a cost from judicial intervention: Eliminating the agents’
abilities to set liquidated damages below valuation reduces inefficient breach of contract,
but may foreclose some buyers and sellers from efficient trade.

If there were only two possible types of buyers and sellers, and assuming the offerer
would chose to serve only part of the market if it were permissible to choose ( # v,
then judicial intervention always produces inefficiencies. To see this, note that when the
offeree is of a good type (i.e., high-value buyer or low-opportunity seller), liquidated
damages are set at actual value. Consequently, for good types there is no inefficiency
with or without judicial intervention. When the offerees are of bad type (i.e., low-value
buyers or high-opportunity sellers), offerers will set inefficient damage levels when given
the option. But while the terms are inefficient, individual rationality implies both parties
are better off trading than not trading. Judicial interveation that prevents the use of
under-compensatory damages must therefore decrease social welfare.

When a continuum of types of buyers and sellers exist, the analysis is more difficult.
Consider the problem facing the buyer with all of the bargaining power who is constrained
to set { = v, ex post, in all offered contracts. If she sets the contract price low, only
very low 0-type sellers will accept the terms, but she will make a larger profit on those
contracts where such a sale is made. If she sets the price high, her terms will be accepted
by most sellers, but her gains from actual trade will be lower. The problem facing her
is much the same as that facing a monopolist setting one price: higher prices result in

fewer sales but greater profits per sale. Her maximization problem is simply,

m’i,\.x(‘l’ - p)G(8(p)),

where 6(p) is defined as the highest 8-type seller who would be willing to buy at price
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p, and is given implicitly by (2.2). Each buyer will set a different price depending on
her type v, just as a monopolist’s prices vary with marginal cost. Because (2.2) implies
that 1/6'(p) = H(v — 8(p)), maximization reveals that the optimal constrained-contract
price is implicitly givenby p = v — H(v — 9(})))%;%), which defines p*(v). Using (2.2)
again allows us to define §*(v) as the thresnold type of seller who chooses not to sell
at the buyer’s o.fered price of p*(v). All sellers with types lower than 6°(v) sell to the
buyer at buyer’s asking price of p*(v). That is, 8*(v) is defined by
G(6°)

(v i W) H(v-6")+ /v_a. edH(e) = 0.

Consider now the seller’s problem when the seller has all of the bargaining power.
Because of the constraint that £ = v, the seller’s maximization problem is to choose p to

solve

max / (p + '/?0(0 te— v)dH(e)) dF(v) + /,, 84F(v).
P v- v

Maximization reveals that the seller’s optimal constrained-contract price , satisfies

1 - F(p)

P=0t =

- /:_,(0 + e — p)dH(e).

We can analogously define v*(#) as the threshold valuation by a buyer such that no
purchase is made. Any buyer with a higher value buys; a buyer with lower value sells.

Thus, v*(6) is defined by

1 - F(v*)
f(v*)

vt =0+ / (8 4 € — v*)dH(e).

ve -6

The changes in social welfare due to judicial intervention are represented by the
following two expressions. The first equation represents the welfare gain from judicial
intervention under buyer-designed contracts.
G(9)

5(6) [(v _0)H (v _6- —-—) + /:_0_2 edH(e)] dG/(8)dF(v)

]
bd _
AW™ = / 2(0).

6*(v)

92



+ /UU/:‘(") [(v — ) (H(u _0)-H (v —6- ﬂ%)) - /"'0 ] edH(e)] dG(0)dF(v).
’ (2.29)

AW = _ /v'(ﬁ)é(v) [(v B O)H (v — 9 - l_—__lz_gv_)

edH(c)] dF(v)dG(6)

) * [’io‘:i%fl

+ /:/:m [(v -0 (-0 -1 (s-0-257)) - /:_ﬁz ‘dH(G)] et

(2.30)
The former equation represents the welfare gain from judicial intervention under buyer-
designed contracts. The latter equation represents the gain under seller-designed contracts.
In each equation, the first term in brackets represents the loss from reduced trade; the
second term represents the gain from more efficient breach. The centrai question is under
what general conditions are these equations either positive (i.e., judicial intervention is
good) or negative (i.e., judicial intervention is bad). Unfortunately, there are no clear
general conditions. Rather, the sign of the equations depends fundamentally on the
distributions of v, #, and ¢. Furthermore, it should be noted that these results depend
upon the optimistic assumption that the courts know perfectly the value of loss If courts

make errors, the above loss in welfare may be even greater.!3

2.5 Extensions and Conclusicns

The modeling approach taken in this paper was to assume that the seller may breach with
some probability and that the buyer’s valuation needed protection from such behavior.
Altemnatively, we could have chosen an alternative framework where the buyer breaches
with some probability and the seller’s sunk production costs need to be protected. In this
case, we obtain similar results: liquidated damages never exceed the seller’s production
costs and frequently fail to protect the seller’s investment fully. In this sense our expla-
nation regarding the asymmetric treatment of liquidated damage clauses by the courts is

robust.

13The courts determination of value does not enter the expressions linearly, and so even an unbiased
estimate by the court introduces additional nonlinear effects.
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This paper has demonstrated that when information of contracting parties is private,
liquidated damage clauses serve a dual role of promoting efficient breach and increasing
the likelihood of trade. Furthermore, even if the judicial system had perfect information,
intervention in the form of prohibiting under-compensatory damages does not necessar-
ily improve social welfare. This may explain why courts have not found it necessary
to invalidate under-compensatory damage clauses, but have continued to strike over-
compensatory clauses. The former may be the result of a belief that bargaining parties
made rational choices, while the latter may be best explained as a belief that excessive

damage clauses are symptomatic of contractual failure.
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Appendix
Proof of Lemma 1:

Necessity of (2.8) and (2.9):
Incentive compatibility and the definition of 7 *(#|f) implies

- . §)-4
(68) > m(88) + 8(d) [ /l:;:; edH(e)

+ [e(B) - 61H(4(d) - 0) — [e(8) — D) H(¢(6) - )] .

Integrating by parts and simplifying yields

. . n Wh-§
x°(0]6) > x*(68) = =*(8lf) /M)_e §(6)dH (e),

Similarly, =*(4|6) > 7*(6|8)+ J§ 6(8) H(€(8)—t)dt. Thus, combining the inequalities,
we obtain

- /:6(0)H(t’(0) — t)dt > n*(9|0) — x*(6|9) > _/; S(0)H((6) — t)at.  (2.31)

Take 0 > §, without loss of generality, divide (2.31) above by (8 — ), and take the limit
as § — 6. This yields
*(819)
dé
By (2.31), n*(8) is monotonic, and therefore Riemann-integrable, and so we may char-
acterize the seller’s profits as

= --8(0)H(¢(6) - 0). (2.32)

*(0]0) = 7*(0) = *(8) + fo F&(t)H(((t) _t)dt, (2.33)

which is (2.8). Finally, since 7*(6) is decreasing in @ from (2.33), individual rationality
implies that 7*(#) > 0. This is (2.9).

Sufficiency of (2.8)-(2.10): _

Substituting (2.8) into (2.7) implies x*(8) > @ for all 8; this Ais individual rationality. To
prove incentive compatibility, note that the definition of = *(6|0) implies

A o 6 o
w*(81) = 7*(6]8) + /; §(6)H((0) — t)dt.
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But (2.8) implies that

- 7 o . & . .
7r'(0)+_/; 5(t)H(t’(t)—t)dt+/é S(t)H(L(t) — t)dt =w'(0|0)+/; §(O)H(L(8) — t)dt.
Applying (2.8) again yields

x*(0]6) = 7*(4]6) + /;[5(1})11(«@) —t) — §(t)H(&(t) — t))dt.

By (2.10), the integral above integral is nonnegative which implies 7*(6(9) > n*(4(6).
Hence, {6(6),p(0),¢€(8)} is incentive compatible. a

Proof of Lemma 2:
Necessity of (2.15)-(2.16):
Incentive compatibility and the definition of 7%(v|v) implies

7¥(v|v) > 7b(d|v) = 7(]D) + /: §(0)(v — D) H(E(d) — 6)dG(8).

Similarly, _
]
5 (0[9) = w(v]v) + /g §(v)(d — v)H(E(v) — 0)dG(9).

Thus, combining the inequalities, we obtain
é é
/ §(v)(v —9)H(£(v) — 8)dG(8) > *(v|v)—n¥(5]5) > / 8(5)(v — ) H(£(3) - 8)dG(8).
2 [
(2.24)
Take v > ¥, without loss of generality, divide (2.34) above by (v — 7), and take the limit
as v — v. This yields

7b(vlv §
: (ﬁ,,' ) - /: §(v)H({(v) — 0)dG(8). (2.35)

By (2.35), 7*(v) is monotonic and therefore Riemann-integrable. Hence, we may char-
acterize the buyer’s profits as

A
r(v]v) = 7*(v) = 7%(v) +/e / 5(¢)H(£(t) — 0)dtdG(9), (2.36)

which is (2.15). Finally, since 7(v) is monotonic, individual rationality implies that
wb(v) > 0. This is (2.16).

Sufficiency of (2.15)-(2.17):
Sabstituting (2.16) into (2.15) implies w%{w) > 0 for all v; this is individual retionality.
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To prove incentive compatibility, note that the definition of w%(%|v) implies

)
b (9]9) = 7¥(d) = xb(d|v) — /0 §(0)(v — D) H(L(D) — 0)dG(9).

But (21) implies that

Yy +// £V (€(¢) — 0)dtdG( o,+// H(((t) — 0)dtdG(8),

= rb(dlv) + /: 8(8)(v — 9)H(E(3) — 8)dC(/th).

Applying (2.15) again yields

() = 7¥(d]v) + /: /0”[5(13)(11(8(6) — 8) — 8(¢)H(L(t) — 6]dtdG(8).

By (2.17), the double integral above is nonnegative, which implies 7(v|v) > nb(d|v).
Hence, {6(v),p(v), é(v)} is incentive compatible. 0

Proof of Lemma 3:

Following Lemmas 1 and 2, (2.20)-(2.25) are both necessary and sufficient for incen-
tive compatibility and individual rationality. Additionally, (2.20)-(2.23), imply (2.26). To
see that (2.24)-(2.26) are sufficient for incentive compatibility and individual rationality,
we construct p(9,v) such that §(6,v) and ¢(8,v) are IC and IR.

First note that because we have restricted ourselves to piecewise C'! contracts, 6(€,v)
is well defined and é4(8,v) = 0 at all but at a finite number of points. From the envelope
theorem, incentive compatibility requires that p must satisfy

ps(8,v) = [1 — H(£(6,v) — 0)]Ls(8,v), (2.37)

pu(eav) = [(v - I(O,v))h(l(ﬂ,v) - 0) + [1 - H(l((),v) - 0)”&(01”)) (2-38)

whenever §(6,v) = 1. If the constructed price function satisfies these two partial differen-
tial equations, we know from Lemmas 1 and 2 that the monotonicity conditions expressed
in (2.24)-(2.25) are sufficient for incentive compatibility. One possible construction of p
has p(#,v) such that 7(v) = 0. That is,

H({(0,v) - 0) + €(6,0)[1 — H({(8,2) - 6)] = p(6.2).

Define,

p(6,v) =

e

9/ {[t = €(s, )] h(E(s,t) — 8) + [L — H(E(s,t) — 8)]} bu(s, t)dtdG(3)

* /0 " {wH(U(s,0) ~ 0) + [1 = H(ls,2) = 9)]¢(5,2)} dG(s)
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_ /F :[1 — H(l(s,t) — s))ts(s, t)dsdF(¢)

; G(s)
g(s)

The first two expressions represent the expectation over 6 of the integral p,(6,v) and
the endpoint p(#,v). The second pair of expressions are zero in expectation. It is
straightforward to check that (2.37)-(2.38) above are satisfied by this price function, and so
the mechanism is incentive compatible. Moreover, (2.26) implies that 7%(v) + 7*(8) > 0.
And since p was constructed so that 7®(v = 0), the mechanism is individually rational.
O

_ fu" :{[1—H(f(s,t)—s)]lg(s,t) }dG(s)dF(t).
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Chapter 3

Information Expropriation and Moral

Hazard in Optimal Auctions

Thrift should be the guiding principle in our government expenditure.
— Mao Tse-Tung

The buyer needs a hundred eyes, the seller not one.

— Gevrge Herbert

3.1 Introduction

In principal-agent environments, “information” rents frequently accrue to agents as a re-
sult of their private information. Economists often speak of reducing information rents
in these environments through a variety of revelation mechanisms and related devices.
One such device is the audit. The decision to audit agents’ reports is based upon the
fundamental trade off between the costs incurred from auditing and the gains obtained
through reduced information rents. This paper considers a related mechanism for reduc-
ing information rents: the transfer of information-inherent “property” from one agent to
another. This transfer device, like the audit, involves a similar trade off, but achieves

rent reductions by expropriating the agent’s hidden information — transferring part of it

100



to a competing agent with a lower informational stake in the property. Such an expropri-
ation of information is accomplished by transferring property in which the information
is embodied. Providing that an alternative agent has the ability to utilize the asset, such
a transfer has the potential for reducing the principal’s acquisition costs.

Transferring information is not always possible. For example, in the traditional
private-values auction the seller cannot transfer the subjective valuation of an object
from one bidder to another. However, in many contexts the transfer of information is
a real possibility because such information is embodied in tangible assets. As an illus-
tration of the gains from expropriation of informadon, this paper develops at length the
usefulness of technology transfer in the government procurement context — specifically,
in the defense industry.! The commitment to transfer, under pre-specified conditions, a
defense project from the initial developer to another manufacturer (second source) can
be an effective cost-saving strategy for the government.

This mechanism differs from the traditional auction approach which would consider
a second source as a bidder with its own cost; in such a case, the optimal auction is
straightforward, and may involve handicapping the developer in the auction for produc-
tion. Here, we assume that while the second source can produce the desired product
according to some privately known, independently distributed cost, it can also produce
the object using the developer’s technology, with the result that its final cost depends less
on its own cost structure and more on the developer’s private information. This additional
option of transferring (or licensing) the developer’s technology to the second source may
allow the government to reduce its acquisition costs. This paper contributes to auction
and contract theory by considering the extent to which the transfer of information-inherent
technology reduces information rents in various environments.

This paper begins by examining a simple model in which a tradeoff exists between
transfer costs and information rent reductions. In particular, in Sections 2 and 3, I
consider the situation of full-commitment power by the buyer in the absence of moral

hazard problems by the agents, but where all contracts are constrained to be ex post

1 Gansler {1989] provides an interesting overview of many of the more salient issues involved in defense
procurement.
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individually rational.? The model consists of one buyer (the government) and two sellers
(a developer and a second source). The government has three procurement altematives:
choose the developer to produce, choose the second source to produce using ber own
technology, or choose the second source to produce using technology transferred from
the developer. At the contracting stage all parties have symmetric information, and the
government commits to specific rules for an auction it will later conduct. The sellers
determine their costs and bid accordingly; the rules establish who will produce and how
much each seller will receive as a function of the bids.

A rule which optimally utilizes technology transfers induces both the developer and
the second source to report their costs truthfully for less information rent. Intuitively, the
existence of a second source allows the buyer to compete away some of the information
rents via an auction, where the licensing opticn can be thought of as the addition of
an extra seller. Although this additional bidder may have higher costs, it also has less
of an informational stake in the transferred technology; if the production costs using
the transferred technology are less related to the second source’s own costs a2id more
related to the developer’s costs, her requisite information rent for truth-telling will be
significantly lowered. Consequently, informational gains from technology transfer exist.?

Although a policy of transferring information-laden technology may reduce rents, we
might suspect such a policy would have perverse effects upon the developer’s initial
incentive to invest. In particular, it is plausible that such a policy would reduce the
developer’s investment in minimizing the project’s subsequent cost of production if the
buyer can be expected to exercise the option of second-sourcing and partially transfer
the developer’s efforts. In Section 4, this paper endogenizes the developer’s investment
decision and derives the optimal auction in the moral hazard environment. There it is
assumed that the developer makes an investment which improves the random distribution
of the project’s production cost. The results indicate that the solution to the moral hazard

problem entails a change in the probability of choosing production by the developer as

2 Also known as limited liability in the contracts literature. See Sappington [1983).

3The idea of transferring the information-inherent component of one agent to another so as to reduce
information rents is not entirely new to the literature. Riordan-Sappington [1989], for example, make use
of such transfers in their examination of defense procurement second-sourcing.
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a functicn of the project’s reported production cost using the developer’s technology.
Licensing is implemented more frequently when the developer’s announced cost is high
than when moral hazard considerations are absent.

“The policy ramifications of this paper are twofold. First, this paper demonstrates how
a commitment to transferring technology for some bids may reduce expected procurement
costs, even when moral hazard is present. Secend, this paper provides a caveat for the
current empirical practice of evaluating the gains trom licensing by comparing the cost
of production after a technology transfer with the estimated cost of production by the
developer. Such a comparison ignores the ex ante gains in reduced information rents
which result from the government’s commitment tc breakout technology for bad bids
and it ignores the costs of reduced incentives for initial development.

The above framework, although specialized tc the procurement setting, is quite gen-
eral. Following Laffont-Tirole [1988], we may also consider managerial takeover in this
framework. We may suppose in period ! the incumbent managerial team secures profit
for its stockholders following a particular profit plan. In period 2, a raider appears who
may be employed to takeover the current management tearn and either institute its own
profit strategies, or continue with its predecessors’ plans (i.e., plans are transferable).

The analytical approach taken in this paper is that of direct mechanism design for
multiple agents under limited liability. In section 2, the model is fully deveioped and its
underlying assumptions are motivated. In section 3, the solution for the optimal contract
is developed and Section 4 extends the model by considering morai hazard possibilities

by the primary source. Section 5 concludes.

3.2 The Model!

We present a model of a risk-neutral buyer with full-commitment ability and two risk-
neutral sellers who are subject only to limited-liability. For exposition, we initially
consider the problem of a buyer (the government) who must procure an item from two
potential sellers (firms). The government desires to procure a single object at the lowest

possible cost. It proposes a take-it-or-leave-it contract to both sellers: the primary seller
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(firm 1) and the secondary seller (firm 2). The contract commits the buyer to deal with
the sellers in a pre-specified manner after the sellers have announced their costs, and
must guarantee both sellers non-negative income. Each firm either accepts or rejects the
contract. Following their decision, they discover their production costs. The government
does not observe costs either ex ante or ex post.* After learning their costs, firms make
announcements (i.e., “bids”) to the government, who chooses which firm will produce; in
the case that the second source is chosen, the government additionally chooses whether
or not to transfer the developer’s technology. We assume the government’s valuation
is sufficiently large that it always chooses to procure the item. Mohetary payments are
made in accordance with the initial contract.

We may think of the contract that the buyer offers as a commitment to use a specific
auction mechanism. In this way, we analyze the problem of choosing the optimal contract
as one of optimal auction design. In particular, we will consider truthful revelation
mechanisms, using techniques similar to those found in Myerson [1981].

Each firm’s cost, ¢;, is independently distributed according to the continuous proba-
bility density, fi(c;) > 0, on a compact set which we take to be [0,1] without loss of
generality. F(c;) is the corresponding cumuiative distribution function, and we make the
common regularity assumption that %'(:—')2 is nondecreasing in c;.

The assumption that a firm draws its cost from a distribution can be motivated as the
exogenous design of a prototype by defense contractors. Engineers and scientists develop
a prototype to meet specific form, fit and function requirements of the government. It
is only after the design has been chosen that costs are determined. In this sense, the
cost is exogenous. Although we take such draws of cost as exogenous and costless to
the firm, we could alternatively assume that the detennination of cost entails some fixed
amount to build a prototype, prepare a bid, etc. Providing that this amount is small, the
government would be willing to pay the known development costs up front to secure the

firms’ participation in the auction.

4Laffont-Tirole [1986] and McAfee-McMillan [1986] consider contexts where the govemnment can
observe costs ex post, but is unable to observe the firms’ effort levels. The approach taken here differs
from theirs because cost remains unobservable, but similar gains from technology trangfers could be realized
under alternative models with contractible costs.
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The total cost to firm 2 of producing with firm 1’s technology, i.e. the total cost of
production under licensing, is given by the function £(c1, c2), which includes the cost of
transfer, if any. We will further assume that 8—‘(99;;&2 = {5, a constant; that is, {(c;,c,)
is linear in ¢,. This implies the second source’s marginal cost effect on the licensed
production is independent of the developer’s cost, allowing us to separate the information
effects trom each other. We also assume that 1 > ¢, > 0 and Mg_z;_cal < 1. Consequently,
the second source has less informational stake in the transferred technology than its own
technology.

The cost distributions and ¢ are common knowledge to the buyer and the sellers. We

will often consider a particular situation with linear licensing costs.
lec1ye2) = Aey + (1= ANez + v, (3.1)

for 1 > A > 0. With linear licensing costs, a proportion A of technology is transferable
to firm 2 for a fixed transfer cost 4. In the exireme case of perfectly and costlessly
transferable technology we have {(c;,c;) = ¢;.

Finally, based upon cost reports, the government chooses from one of three possible
production altematives: (i) primary production; (ii) secondary production; and (iii), tech-
nology transfer or licensing (i.e., secondary production with technology transfer). For
tractability, we do not include the logical fourth possibility of transferring technology
from the secondary firm to the primary firm.

It is important to note that in this framework, seller 2 can be required to produce
using seller 1’s technology, even when it is inferior to seller 2’s own technology. In the
defense procurement context, this assumption is plausible. The government requires firm
2 to produce fimm 1’s design rather than its own. Because designs are easily verifiable,
this production decision can be enforced. If this is not feasible because the buyer cannot
observe which technology is being used, the optimal contract will must take into account
additional constraints in general, but the character of the auction remains similar.

Along with the production decision, the government determines payments to each firm

based upon their cost reports. A crucial constraint is that the government must guarantee
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non-negative profits for both producers for all possible realizations of cost: No policy
can be enforced ex post which would unduly harm a truthful defense company. Here we
assume that no firm can be forced to accept a loss. This translates into an ex post profit
constraint, below which the government cannot legally force either the developer or the
second source. This limited-liability constraint prevents the government from effectively
buying the project from the sellers for the expected minimum cost of the production
among them. |

This assumption is justified for several reasons. First, the assumption approximates a
firm that is extremely risk averse beyond a certain level of losses. Given that managers
are sensitive to excessive losses, it is plausible that the firms’ behavior may be risk neutral
over a moderate range but risk averse for dramatic losses. Additionally, from a purely
descriptive perspective it is doubtful that the government could force a defense company
to continue production when it suffers excessively large losses. Boards of Contracts
Appeal (BCAs), the neutral tribunals which have jurisdiction over government contract
disputes, frequently grant equitable adjustments to contracts which impose excessive
sacrifices upon firms. To this extent, a limit exists to the losses which a contractor can
be forced to bear.

We do not allow the primary agent’s payoffs to depend upon any ex post discoveries
made by the secondary agent after a transfer. If the buyer could do this, the first best
solution would be approximated by employing the secondary agent with an arbitrarily
small probability to check the truth-telling of the primary agent, and then punishing the
primary agent sufficiently hard whenever untruthful reports occur. This paper considers
the more subtle issue involved when payments cannot be conditioned on an ex post report
of another agent. Such a restriction appears realistic in the defense procurement context;
otherwise we would have 1o allow a time delay (perhaps years) between the auction and
the agent’s action (e.g., defense production) before enough evidence could be marshaled
to levy a punishment against the primary agent.

Although the model we consider has only one production stage, this is without loss of
generality. Consider a model in which the developer is the only potential producer at the

first stage, so the government must buy from developer at the highest plausible cost. No
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information is revealed to the buyer. In stage 2 the second source appears as competition,
and the timing is as before. Thus, the model we are examining is readily extendible to
a two-stage production model. We can cast defense procurement as a process where a
developer initially produces the object, and later a second source appears to compete. The
govemment has the option of continuing to buy from the developer, letting the second
source produce its own version of the project, or transferring the developer’s technology

to the second source to produce.

3.3 The Optimal Contract

In this moedel, the buyer commits to deal with the sellers in a predetermined manner after
learning their reported costs. Using these reports, the buyer determines who produces the
object, whether technology is transferred, and how much each firm shall be paid. The
Revelation Principle states that without loss of generality, we may restrict our attention
to direct revelation mechanisms. The class of mechanisms which we will consider is
given by M = {{p,-(cl,cz)}g;g, {t.'(cl,cz)}j:f}, where, for given reported costs, p; is
the probability that production alternative : is chosen by the buyer, and ¢; is the transfer
to firm 5. The production alternatives, : = 0, 1, 2, correspond to licensed production, firm
1 (developer) production, and firm 2 (second source with own technology) production,

respectively.

3.3.1 The First Best

Before examining the optimal contract under limited liability and asymmetric information,
we note the properties of the full-information contract. Under the full information contract

(i) the most efficient form of production is chosen:

_ 1 if l(cl,c2) < min{CuCz}o
po(erye2) = { 0 otherwise,

1 if ¢y < min{ecy,l(cy,c2)},
pl(clch) ={ 0 oth;rwise’ { 2 ( 1y 2)}
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1 if ¢ < min{ey, €(c1,¢2)},
Pz(chcz):{ 0 otherwise; fenfen enl

(it) the buyer pays the producer realized cost:

a fpi(a,e2) =1,
nlene) ={ &

Ca if p2(c1,e2) = 1,
ta(c1,c2) = €leryca) if po(er,c2) =1,
0 otherwise;

(iii) the firms make zero profit.

Because there is ful! information, the limited-liability constraint is not binding, as zero
profits may be guaranteed for all outcomes. The firms will be willing to accept the above
contract, and the buyer obtains the object at minimum (in this case, actual) cost. Any
contract yielding a lower expected price must necessarily violate individual rationality.
Note that if £(c;,c2) > min{c;, ¢z} for all ¢;,c,, then licensing is never optimal under
full-information. We will see below that even when licensing would never be optimal
under full-information, licensing may be a desirable strategy by the buyer in environments

of asymmetric information.

3.3.2 Asymmetric Information and Limited Liability

The ability to commit will be important when sellers have private information about costs
because, ex post, the government often will not desire to use the possibly inefficient
licensed second source. By committing ex ante to license for some given cost reports,
the govemment may reduce the expected costs of purchase.

Under the assumption that the other firm is truthful, payoffs to each firm as a function

of reported and true costs are

T1(é1, caler) = t1(é1,¢2) — p(é1,¢2)en,

721y E2]€2) = ta(cr, é2) — p2(c1,&2)c2 — poler, &2)€(cry c2),

where " denotes the reported type. Because neither firm knows the others cost when it
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must make its report, it is useful to consider the expected payoffs for each firm:

m(éiler) = _/01 {t1(é1 ¢2) — p1(é1, c2)er } dFs(ca2), (3.2)

1
m(&zlez) = /0 {t2(c1, &) — pa(c1,é2)c2 — po(cr, é2)l(cr, c2)} dFy(cy), (3.3)

The mechanism-design problem facing the buyer is given below as program P1:

1 1
mAn/o /0 {tl(Cl,Cz) + tz(cl, Cz)} dFl(Cl)ng(Cg) (34)
subject to
mi(ejles) 2 mi(&5le;), Ve &, (3.5)
7;(c1, c2cj) > 0,Veq, o (3.6)

The objective function is the expected value of the payments paid by the government for
the procurement. This is minimized subject to constraints (3.5) and (3.6). Constraints
in (3.5) ensure Bayesian truth-telling. Constraints in (3.6) represent the limited-liability
constraints for all states of nature; note that this is not an expectation over payments, but
actual payment.

Following Mirrlees [1971], Myerson [1981], et al., we simplify the truth-telling and
limited-liability constraints, and incorporate them into the objective function to ascertain

the nature of the optimal auction to obtain our first result.

Propositien 1 The set of {pi(c1,c2)}i=3 which solve P1 is the same as that which solves
program P2 below using point-wise minimization over the space of probability distribu-

tions on the production alternatives:

min c Fi() c Fy(e) ¢, C EZ.(C_Z)
P0sP1,P2 {Pl [ 1+ fl(Cl)] + p2 [ 2+ fz(cz)] + Po [l( 1) 2) + lz fz(Cz)] } . (37)

Proof: see Appendix.

Note that when £(c;, ¢c2) = ¢2, the Proposition reduces to the standard auction result
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which may involve handicapping if the cost distributions differ. To see the mechanics of
this solution to the optimai auction, define the following variables as the virtual costs of

each production alternative:

Ji(a,e2) = o+ -fll(gcc—ll)la
Jz(cl’ CZ) = c+ 2((2:))7

Fz Ca
.]0(01,02) = 3(01,02) + fzﬁ—g-‘;)z.

Thas, the solution to P2 amounts to selecting the alternative with the minimum virtual-
cost. It will also be useful for a graphical analysis to define the following state-space
partition over the set of all possible realizations of cost, where Q0 is the set of (c;, ;)

such that alternative 7 has the lowest virtual cost. That is,

(e1,¢2) € Q° & Jo(ea,c2) min{Ji(e1, ¢2), J2(c1, ¢2)},
min{Jo(Cl, 82),J2(Chcz)},
min{Jo{c1, ¢2), J1(c1, €2)}

and J1(01,C2) 74 Jg(cl,Cg).

(01,62) € Ql =14 Jl(Cl,Cg)

IN AN A

(C]_,Cz) € QZ = Jo(Cl,Cz)

The following Corollary flows directly from the definitions and the optimization of P2 in

Proposition 1.
Corollary 1 The optimal auction consists of setting p;(c1,cz) = 1 iff (e1,¢2) € Q.

The sets 2°, 2}, and 2, represent cost realizations where licensing, developer production,
and second-source production are chosen, respectively. Note that it is never strongly
optimal to randomize between alternatives. The payments which implement the choices

in P2 are determined using standard techniques.

Proposition 2 Optimal payments which correspond to the solution of P2 are given by

1
ti(ciyc2) = /px(cl,cz)dcl + p1(e1, e2)er, (3.8)
3
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1
t2(C1,C2) = f [pO(cl, 02)62 + pz(cl,C2)] dCz
€2

+p2(c1,¢2)ea 4+ polery c2)l(ery c2). 39

Proof: See Appendix.

Note that in all but the worst states, the above payment scheme pays positive rents

to the firm chosen to produce, while the other firm receives nothing.

3.3.3 The Value of Technology Transfers

The commitment to use technology transfers under some cost reslizations reduces ex
ante information rents by relaxing firm 2’s incentive compatibility constraints. Firm 2
can “less easily” say that it has high costs, because the buyer can always transfer firm
1’s technology for it to produce.

To understand the intuition behind the optimal auction, consider the following polar
case: {(c1,cz) = ¢1. That is, firm 1’s technology is completely and costlessly transferred
under licensing to firm 2. For symmetry in this case, also assume technology can be
transferred from firm 2 to firm 1, completely and costlessly. Now a buyer may offer the
following contract to extract fully the rent: If ¢; < c,, transfer firm 1’s technology to
firm 2 and have firm 2 produce the project using firm 1’s technology for payment c,; if
¢, > ca, vice versa. Under this scheme, neither firm has an incentive to lie and the buyer
completely extracts the information rents. Moreover, this scheme does not require firms
to know each others costs at the time of bidding.

Returning to our one-way technology transfer environment, transfers of technology
under the optimal contract are ex ante optimal whenever (c;,c;) € 2°. An interesting
question regards the determination of this region. Essentially the buyer trades off the
costs of inefficient licensing against the gain in reduced information rents. This is easily

seen in the following Proposition.

Proposition 3 The ex ance expected gain to the buyer from a policy of optimal licensing
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is given by

Fi(a1) _ Fy(ez) . . ~ Fy(es) ) )
/‘;o (fl(cl) ¢, fz(cz)) dFy(c;)dF( 2)+/ng(l KZ)fz(Cz) dF;(c1)dF2(cp)

— /n g (e, ¢3) — 1) dFy(c1)dFa(cz) — /n g (Ucr, c2) — e2) dFy(c1)dFy(c2),

where Q3 is the licensing region where alternative i would have been chosen if licensing

were not available; i.e., where J, < J; < J_;.

Proof: The result follows from noting that the gain from licensing is the expected re-
duction in virtual cost from licensing over a standard optimal auction without technology
transfer. Since chosen virtual costs are only changed over (2°, we take expectations over

this space. The expression immediately follows. O

The Proposition identifies two effects. The first two terms represent the gain to the
byer from information rent reductions. The last two terms represent the cost ineffi-
ciencies to the buyer rrom deciding on an inefficient production technique. The optimal
contract can be reformulated as one in which 2° maximizes the sum of the terms. If no
Q29 exists such that the sum is positive, the optimal contract does not entail licensing for

any realization of costs. This suggests a Corollary.

Corollary 2 Ifé(c1,c2) = Aey+H(1—A)ea+, A € (0,1), and the sellers’ cost distributions
are symmetric on [c,¢), then an optimal auction will transfer technology with positive
probability if

A > vf(2).
If costs are distributed uniformly on (¢,¢|, then the optirmal contract will utilize transfers

fAMc—c) >y

This result is in contrast to the result in Riordan-Sappington [1989] who find in their
model without limited-liability constraints and without commitment that second sourcing

is rarely optimal. Because Riordan-Sappington do not assume limited-liability, the firms
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compete away expected information rents at the initial symmetric information stage, so
there is no information-rent problem. The gains from technology transfer in their model
do not derive from reductions in information rents, but from production enhancement:
the government introduces less distortion in its decision of whether to produce at all if
a second source exists as an alternative. This latter effect is absent in the present model
because we have assumed for tractability that the government always procures the cbject
— otherwise, we would find an additional positive term in Proposition 3, providing another

gain to technology transfers.

3.3.4 An Example

Consider the following linear cost model with uniform distributions on [0,1]. That is, let
Fi(c;) = ¢iyi = 1,2, and let £(cy,¢2) = Aer + (1 — A)ez + . Thus the virtual costs are
given by

Ji(er,02) = 2¢4,
Jz(Cl,Cz) = 2C2,

Jo(ci,e2) = Aer +2(1 — Nea + 7.

For the initial case, we make the further simplifying assumptions that A = 3 and y = 0.
The optimal partition over [0,1] is graphed in Figure 1 as the projection of the minimum
virtual cost onto the cost space.

The diagram indicates that when cost reports are relatively close, licensing is chosen.
Intuitively, if the cost reports are relatively close, the licensing cost does not differ
significantly from either the developer or second source production, so there is little cost
inefficiency from licensing. If firm 2 has a relatively low cost, it is expensive for the
buyer to make the second source use the inefficient licensed technology rather than its
own. Similarly, if firm | has a relatively low cost, it is productively inefficient to license
technology to firm 2, since finn 1 is a superior producer. As costs become close, the
losses in production inefficiencies shrink to zero and are offset by the gains from reduced

information rents.
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FIGURE 1. OPTIMAL AUCTION: ) = },7 = 0.
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We would expect the introduction of a fixed cost for transfer to increase the productive
inefficiencies associated with licensing, and consequently the state space associated with

licensing to shrink. To see the effect of a transfer cost, consider fixed licensing costs of

7= %

FIGURE 2. OPTIMAL AUCTION: A = 1,7 =

D=

2 2 %

2

The licensing region has decreased substantially. As Corollary 2 predicts, if {(c;, c2) =
Acr + (1 — A)ez + v and costs are symmetrically and uniformly distributed on [0,1], then
there is no gain to licensing when y > ). As v increases to ) = 1, the optimal licensing
area shrinks to zero. More generally, Proposition 3 indicates that an increase in {(c,, ¢;)
(holding ¢, c,, and ¢, fixed) will reduce the probability of licensing and, if the increase is
sufficiently large, will eliminate its use altogether; mathematically, the costs of licensing

(the latter terms in Proposition 3) increase while the benefits (the former terms) remain
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unchanged.

As indicated, the above analysis has clear applications to the problems of procurement
and the question of whether the govemnment should second source a project by transfer-
ring the technology. The analysis suggests that technology transfer might reduce the
govemment bill ex ante if appropriately administered. It should be recognized, however,
that to the extent that firm (e.g., the developer) may directly affect the transferability of its
technology by expending effort in idiosyncratic design. we might expect that firms may
engage in wasteful investment to increase transfer costs, and thus licensing will become
a less viable altemative. If this is a possibility, a policy of technology transfer must be
carefully evaluated.

3.4 Moral Hazard

We naturally expect that in some situations where the initial agent (the developer) must
make unobservable investments in reducing the marginal cost, c,, of the final product,
a policy of expropriating information via technology transfer would induce significant
moral hazard. If the buyer can freely transfer the design to a second source to produce,
the primary agent may have less incentive to reduce the marginal cost of production.

Consequently, an examination of the moral hazard dimension seems particularly relevant.

3.4.1 The Problem of Moral Hazard

This section extends the previous analysis by incorporating moral hazard on the part of
the primary agent. We model this extension by assuming that the primary agent (the
developer) may make cost-reducing investments. Here we consider only two production
choices for simplicity: The buyer may decide to purchase from either the developer or
the licensed second source (using the developer’s technology). The question we ask is
whether the buyer will find it optimal to favor the developer for cost-reducing investments
in the award of the production contract, and if so, how?

As before, the approach we take is one of full-commitment by the buyer and limited-

liability constraints for the sellers. Initially, the buyer proposes a contract to the two
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sellers which is accepted if it guarantees each nonnegative profit in all states of nature.
Following the offer the developer chooses cost-reducing investment, e. This investment
stochastically shifts (in a first-order sense) the distribution of the developer’s production
costs, ¢;, and thereby improves the licensed cost of production as well. After investments
have been made, costs of production are drawn by each finn from known distributions,
with each firm’s actual cost being observed only by that individual firm. The sellers then
report their costs to the government. The government follows the agreed-upon contract
and awards the production decision and payments conditional on the project’s valuation
and the cost announcements.

The resulting optimal contract is found to be a variation of the classical optimal
auction design which awards production to the most favorable virtual type. Under moral
hazard, we find that the developer’s virtual type has an additional term which decreases
in production cost in a manner closely akin to the sharing rule in Holmstrom [1979]. This
suggests that in the stochastic cost-investment model, we would expect a discriminating
auction to be utilized which may additionally favor the developer depending upon the

resulting cost realizations.

3.4.2 The Mode!l with Moral Hazard

The cost to firm 2 of producing with firm 1’s technology is as before. The cumulative
distribution function for the developer’s cost is now given by F'i(c;|e), and it is assumed
that y%—‘;—‘-lﬂ > 0; that is, effort leads to a first-order stochastic improvement in the
distribution on costs. For tractability, we will assume F(c, |e) satisfies the Concave Dis-
tribution Function Condition (CDFC): F, ., = ﬂ%{;_x_lgl < 0 for all e, c,. This condition
assures us that the first-order approach to the principal-agent problem is valid.®

The cost to the developer for value-enhancing effort is given by 1(e), where 1:(e) is

A Monotone Likelihood Ratio Condition (MLRP) is usually required in pure moral hazard settings in
addition to CDFC in order to assure that the agent’s payoffs are monotonic in outicome. See Grossman-
Hart [1983), Rogerson [1985] for proofs of this proposition. [We use concavity in digtributions rather
than convexity as in Grossman-Hart, because higher costs are considered undesirable in our model.] With
adverse selection, incentive compatibility requires that x(c,) be nonincreasing, and so we do not need a
MLRP condition for sufficiency in the first-order approach. We may, however, have to solve the buyer's
program subject to monotonicity of 7 in costs.
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increasing, strictly convex, 1"'(e} > 0, ¥(0) = ¥'(0) = ¥"(0) = 0, and (1) = oo.
Finally, based upon cost reports the government chooses from one of two possible
production altematives: (i) licensed production; or (ii) developer production. Along with
the production decision, the govemment determines payments to each firm based upon
their cost reports. Again the crucial constraint is that the government must guarantee

non-negative profits for both producers for all possible realizations of cost.

3.43 The Optimal Contract under Moral Hazard

The class of mechanisms considered is given by M’ = {{p,-(cl, c2) 1=, {ti(en, Cz)}j:f}o
analogous to before. The production altematives, : = 0,1, correspond to licensed pro-

duction and developer production, respectively.

The Choice of Investment. Consider first the investment decision. Given the assump-

tions regarding the distribution of costs, the developer’s choice of effort solves

//wl(cl,cz)dF(Cz)dFl(Clle)" Y(e).

36[0 1]

We can more simply characterize the solution to this program in the following Result.

Result 1 The necessary and sufficient condition of the solution to the agent's effort
decision is

Flac(clle) = (e
/ / {Pl(cl,cz) filale) }dF1(01|e)dF2(Cz) = 1'(e), (3.10)

where e subscripts denote partial derivatives with respect to e.

Proof: The first-order condition for the solution is

/: /01 m1(c1y €2) fre(crle)derdFy(c,) — '(e) = 0. (3.11)

A sufficient condition for a maximum is that

[ [ mesnen) e edesdFy(en) - 9(e) < 0,
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for all e. Integrating this expression by parts, and noting that Lemma 1 from the Appendix
(used in the proof of Proposition 1) implies 2"—‘5—"1'21 = —p1(c1, ¢2), yields an equivalent

condition,

1 1 1
/0 [m1(c1y €2) Frce(cle)]} dFy(cz) + /0 /0 pr(cr, €2) Frce(cr]e)derdFy(cs) — $(e) < 0.

CDFC and the strict convexity of (e) assures us that the second-order condition for a

maximum holds, thus (3.11) is both necessary and sufficient. Integrating by parts yields:

_31r1 c1,¢2) Fie(erle) cle c2) — P'(e) =
/ '/ 0cy fi(ale )dFl( 1le)dFz(c;) — ¢'(e) = 0.

Substituting in the incentive compatibility condition from Lemma 1 in the Appendix and

we get the desired result. a

General Solution to the Contracting Problem. Having characterized the effort cho-
sen by the developer for a given contract we compute the buyer’s optimal contract in
the presence of moral hazard. To do so we simply append to the buyer’s problem the
additional condition from in Result 1 to endogenize the investment decision. Call this
program P3, and let u represent the Lagrange multiplier associated with the investment
constraint. Proposition 4 below provides the equivalence of P3 with a point-wise mini-

mization problem. Proposition 5 further characterizes the optimal contract.

Proposition 4 Assume that %ﬁiﬁl? is nondecreasing in c,, %{ﬂﬁ is nonincreasing in
e, and Fy..(c:|0) = (%‘-}:—l‘%) = 0. The set of {pi(c1,c2)}iZ) which solves P3 is the

same as that which solves

. F1(01|é) Fl.e(cllé) ] o c Fy(ca)
T {” ‘ [”“L Al TH Rl | T [‘( : ’)”’fz(cz)]}

using point-wise maximization, where é is the buyer's expectation of firm 1's effort (which
is correct in equilibrium) and i > 0. The level of effort, €, induced by the buyer satisfies
(3.10), and p and é jointly satisfy
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{/ / plcr,c2) (Fl'"(clle)) fi(er|é)derdFy(cy) — 1/;"(@,)}

fi(alé)
+/ _/ pl(CI,CZ) (?1((;31:8))) fi(e1|€)dFy(c2)
/ / 21’!(01, Cz)J\Cl,Q ] f1,e(c1]€)der1dFy(e2), (3.12)

where Jy(c1,¢2) = ¢1 + i‘ o+ pF} otey and Jo(e1,¢2) = €(cayc2) + fz?—’(%f))-

Proof: See Appendix.

The assumptions for the Proposition regarding the monotonicity of %ﬁ in ¢, and %
in e are satisfied if e has more effect on reducing higher cost levels and the developer
cannot increase information rents (i.e., the inverse hazard rate) by increasing investment.
Following the above Proposition, transfers are constructed to satisfy the limited liability

constraint as below.
Proposition 5 A set of transfers corresponding to the optimal contract are given by

b(ena) = [ mleneda(e) + men,ala +4(9),

1 .
tz(cl,cg) = /?z(cncz)lzdpl(cﬂé)+P2(C1,C’t)£(chc2)-
(]

Proof: Follows from Proposition 4. 0

The solution to the principal’s problem has the same nature as the optimal auction
without moral hazard, except that the state-space partition over firm production has been
changed in an important way — it now depends more intricately upon the realization of

the developer’s cost. Consider the developer’s virtual cost to the buyer:

Fi(cile) + Fie(c1le)

Ji(en,e2) = + fieile) 2 fileile)

There is an additional term in the virtual cost that was not present before which is very
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similar to the optimal sharing rule in Holmstrom [1979]. This new term represents an
additional reward for cost reduction that the developer receives through departures from
bidding parity in the auction for production. This additional term serves to increase the
sensitivity of the developer’s virtual cost by increasing the marginal effect of a reduction
in ¢; and thereby increasing p;(c;). Furthermore, we know that the moral hazard term
F, ./ fi: must be nonpositive, indicating that the developer is favored in the auction. Of
course, the buyer realizes the developer did not shirk under the optimal scheme, but
nevertheless the buyer must commit to “over” reward the developer for low costs if she
wishes to maximize surplus from an ex ante point of view.

The additional term in the virtual cost of the developer reflects the interdependence
of the moral hazard and adverse selection problems in this model. Rewards for low costs
are accomplished by appropriately tilting the incentive scheme. Unlike Holmstrom, in
our case rewards are made by changing the probability of winning the auction rather than

through lump-sum payments.

3.5 Conclusions

The immediate implications of the above analysis suggest that a committed policy of
technology transfer is a useful device for reducing information rents. Moreover, the role
of transfer is more than simple monitoring. No information of the primary agent needs to
be known by a secondary agent for such a transfer to yicld benefits for a principal. The
policy implications suggest it may be optimal to swiich to a possibly inefficient agent in
order to reduce ex ante rents. Finally, any empirical test of such behavior must carefully
evaluate the strategic effects upon the agents, or it is possible that an optimal transfer
policy will appear wasteful.

In the context of managerial incentives, Scharfstein [1988] examines the disciplinary
role of a corporate raider who is informed of the firm’s true value, and finds such an
informed raider both induces incumbent managers to work harder and reduces their infor-
mation rents. His model is closely analogous to this paper in that the firm value (known

by the incumbent managers) transfers completely to the raider if there is a takeover. This
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paper demonsirates that while a raider is more effective in reducing information rents
if she knows the incumbent’s information, there is nonetheless a positive role for unin-
formed raiders in reducing information rents. There is no requirement that the alternative
agent have any ex ante knowledge of the primary agent’s cost realization for information
rents to be reduced.

When investment concems are present, the optimal auction will favor the developer
depending upon cost realizations. As in the pure adverse selection environment, empirical
tests of supplier switching under an optimal regime with moral hazard concerns may also
yield negative results. One must be very careful to evaluate a policy of source switching
from an ex ante perspective where its true usefulness may be better understood.

Related to this work is that of Riordan-Sappington [1989]. They consider a model of
effort-enhanced vulue, in their no-commitment, unlimited-liability environment. Because
the buyer cannot commit, the developer can expect the buyer to behave opportunistically
after investment is sunk. Under this framework, the inability to commit not to use a
second source leads to inefficient investment in most plausible cases. If commitment
were possible, the government could promise to purchase the product at a price equal to
its valuation and let the potential sellers bid away the expected information rents ex ante
in the competition for the development contract at the symmetric information stage. In
this paper, the limited-liability constraint implies any gain from information rent reduction
is a direct gain to the buyer. The tradeoffs involved are very different.

Laffont-Tirole [1988] also consider a dynamic adverse selection-moral hazard frame-
work. They find that if investment is completely transferable from the developer to the
second source, the buyer would do best to commit to favor the developer at the com-
petition for determining the producer. The results are similar in that bidding parity is

disposed of to provide incentives for value-enhancing, transferable investment.
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Appendix

Proof of Propgsitions 1 and 2: The proof of Proposition 1 proceeds with three Lemmas.
Lemma 1 establishes necessary and sufficient conditions for truth-telling (3.5) and interim
individual rationality (IIR), a weaker constraint than (3.6); the IIR constraint is given by:

wj(cjle;) 2 0,Vej,5 — 1,2,

Lemma 2 establishes that the modified program of minimizing (3.4) over these new con-
ditions is equivalent to solving P2 point-wise. Finally, Lemma 3 shows that « particular
solution to the modified program is “equivalent” to the solution of P1.

For notat >nal convenience, we will sometimes denote a function which has had ex-
pectations taken over one argument, as a function of only the single remaining argument.

Eg., p(a) = foy pi(er, ¢2)dFy(ez).

Lemma 1 Incentive compatibility (IC) and interim individual rationality (IIR) hold if
and only if

1
m(erler) = m(1]1) +/ pi(c1)dey, (3.13)
1
Ta(c2|e2) = ma(1[1) +f [p2(c2) + po(c2)ts] deo, (3.14)
pi(e1) 2 (), Ve, > e, (3.15)
p2(cz) + po(c2)z > pa(cz) + po(cy)la, Vey > e, (3.16)
m(1[1) 20, (3.17)
ma(1]1) > 0. (3.18)
Proof:
Necessity.

Consider firm 1. IC and the definition of 7,(é;|c;) implies
mi(efer) 2 m(éfer) = m(éifér) — pr(é)(er — &),
Rearranging and reversing the roles of ¢; and ¢, yields
—pi(ar)(er — é1) 2 mer|er) — mi(érlér) 2 —pr(é)(er — é1).

(3.15) follows immediately. Without loss of generality, take c¢; > ¢, divide by (¢; — é;),
and take the limit as ¢; — ¢, to obtain

dﬂ'l(Cl'Cl) _
dC1 - —pl(cl)'

Since m(¢;) is montonic, it is Riemann integrable, thus
1
mi(eiler) = m1(1]1) +/ pi1(c1)de;.
(4]
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Hence (3.13) is implied. Finally, IR clearly implies (3.17). A similar series of arguments
establishes the necessity of (3.14),(3.16), and (3.18) for firm 2.

Sufficiency.
Consider firm 1. By definition of m1(é,|c;), we have

m1(é1]é1) = m1(é1]er) — pr(é)(é — a1).

Condition (3.13) implies

n(1i1) + [ pa(s)ds = m(@iler) = m(&)(e - 1)

or alternatively,

1 Ccy
m1(1]1) +f p1(s)ds +fe pi(8)ds = mi(éi]er) — pr(é)(é1 — ).
c1 1
Simplifying, we have

mi(erler) = m(aler) = pa(En)(E — ) = [ pals)ds,

<1

mi(eler) = mi(éiler) + /: (P1(é1) — pa(3)) ds.

1
But by condition (3.15), the integral is non-negative, giving us incentive compatibility
for firm 1. A similar series of arguments establishes the incentive compatibility for firm
2 using (3.14),(3.16), and (3.18).
Individual Rationality follows immediately for both firms from conditions (3.13)-
(3.14) and (3.17)-(3.18). O

Lemma 2 The set of {pi(c1,c2)}: which solves the modified IIR prog~am is the same as
that which solves P2 below using point-wise minimization over {p;};.

Proof: The modified program is formally given by
1 p1
H‘kin/o‘ '/‘; {tl(cl, 62) + tg(cl, C2)} dFl(Cl )ng(Cz)

subject to IC and IIR.
Substituting out £;(c;, c2) in the objective function yields as the minimand

r oM _ )
/o ./o {”1(01,02) T Wz(ch 02) + Pl(Cl, Cz)Cl

+pa(c1,2)c2 + po(cr, c2)l(c1, €2)} dFi(e1)dFy(ca).
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We can simplify this expression by noting

/: /01 wj(e1y c2)dFi(c1)dFa(cz)

1 1 8r(er,
= [ {mteanei- [ 2o r ),

= /1 {w,-(l,c_,-) - /1 awjf;:j’ ) F":((Z:)dF,-(c,-)} dF_j(c_;),

- - [ [ {3”’;;’”” “”}dﬂ(cl)m(cz).

fJ\ J)

By (3.13),(3.14),(3.17), and (3.18), it is clear that to minimize the buyer’s costs, 7:(1|1) =
0, for j = 1,2. Now, we substitute the above expression and use (3.13)-(2.14) to simplify
to obtain the following objective function:

F L e e 3085) e (o4 555)

s

We want to minimize this subject to conditions (3.15)-(3.16). Once done, we can sub-
stitute the resulting p;(c1, ¢;) into 7;(c1, c2) and the incentive compatibility conditions to
obtain the required optimal payments. Rather than minimize subject to the monotonicity
constraints, we will ignore them for now, and check our solution for their satisfaction.

Choosing the optimal p;(c;,c;) while ignoring the monotonicity constraints for the
above integrand amounts to point-wise minimization of the bracketed, expression over
{pi}i.

To complete the Lemma, we must show the monotonicity conditions (3.15)-(3.16)
hold. It is sufficient for monotonicity that p,(c,, c;) is non-increasing in c;, and that both
p2(c1,¢2) and po(cy, c;) are non-increasing in c;. Given ¢; < 1, and given our assump-
tions regarding the cost distributions, this is indeed the case. O

+po(c1, c2) (l(cl, cz) + l’z

Finally, we show a solution to the relaxed IIR problem satisfies limited liability.

Lemma 3 The following payments implement the optimal {pi(c1,c2)}: for the relaxed
IIR program and satisfy the limited liability constraints:

ti(er,c2) =

1
[ pi(s)ds + pi(er, ca)e,
c1

1
tiese) = [ {pa(s) +po(s)a} do
+ pz(cl,cz)cz + Po(CnCz)f(Cl,Cz)-

Proof: Substituting the above payments into (3.13) and (3.14) in the text demonstrates
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the payments maintain incentive compatibility by Lemma 1. Also, the payments clearly
meet the limited liability constraint, as the integrals in the above expressions are never
negative for any cost realization. Finally, there do not exist any other payments with
lower expected value to the buyer. This last point is evident from Lemma 2. O

Proposition 2 in the text follows direcily from Lemma 3.

Note: There are altemative payment schemes which are also solve P2 but fail the
limited-liability constraint. For example,

. 1
ti(cr,c2) = /0 t1{c1, c2)dFy(c2),
3 1
tacryc) = j; ta(c1, c2)dFi(cr).

These payments implement the optimal scheme, have the same incentive effect, and meet
the IR constraint with equality, but they fail the limited-liability constraints. Incentives
and IIR are unchanged, because taking expectations has no effect on risk-neutral parties.
However, iaking expectations over the previous payments will succeed in leaving some
realizations of nature with negative payoffs, violating limited liability.

Furthermore, there is another payment scheme which meets the limited liability con-
straints, but unlike the scheme in Lemma A, gives each firm positive payoffs in almost
every state, even when the firm is not chosen to produce. Consider the following:

1 p
biener) = [ [ pi(a)dsdFa(er) + palessenden,

S 1 1
tenncs) = [ [ {pale) + po(s)Ae} dsdFi(er)
+  pa(cr, e2)ez + po(er, e2)(cr, c2)-

Proof of Proposition 4: The moral hazard problem amounts to minimizir:g iiic expected
cost of the buyer’s expected payments, subject to the investment constraint given in
(3.10). We can now summarize the new program as P3.

min [ [ {}1: pilesy ea)di(ery ) — ¢(e)} dFy(cle)dFy(es),  (3.19)

1=0

subject monotonicity in p;(c;) and py(cz) and to (3.10), where the f.-(cl,02) are the
virtual types for the moral hazard problem as defined in the text. As before, we ignore
the monotonicity constraints and check that our solution satisfies them.

Given our assumption that ${1) = oo, we know by (3.10) that e < 1. Let u be the
Lagrange multiplier associated with the constraint in (3.10) and suppose for the moment
that ¢ > 0. Minimizing the Lagrangian taking the optimal choice of p;(c;, ;) as given,
effort is chosen such that either (3.12) is satisfied or e = 0. By our assumptions on F'
and 1, the marginal benefit from e is positive at e = 0, and so we know e € (0,1) and
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(3.12) hoids.

Now, given that e is optimally set at é and given the value of i > 0, we may solve for
the optimal p;(c;.c;). Bringing the investment constraint within the objective function
yields

1
‘/(;1 ‘/ol {;p;(ChCz)j;(ch Cz)} dF](Cllé)dFQ(Cg) -— ,m/)'(é) — g/)(é)

But the solution to the minimum of this expression is identical as the pointwise r.nimum

of
R Fl(cllé) Fl.,(v|é) Fg(Cg)
YR R ol RN (GO R
The problem is therefore as is in the Propositicn. Providing that x> 0, the virtual
costs are appropriately monotone in costs so as to satisfy the additional monotonicity
constraints.

Finally, we must check that ¢ > 0. Suppose that u < 0 ard let e* be the choice of
effort by the developer given p. The developer will maximize its profits, not taking into
account the positive extemnality effort has on reducing licensed costs. Note that reduced
costs make ¢; — {(c, c;) decrease, and therefore produces a negative effect on developer
profits. And given that the inverse hazard rate is decreasing in effort, the buyer will
always prefer more effort than the developer will be willing to invest. Thus, ths marginal
benefit of e will be positive, and (3.12) implies that j;» > 0, yielding a contradiction. [
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