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Abstract

The Digital Agriculture in Africa project [44] aims to unlock the agricultural poten-
tial in Africa and help farmers improve their crop productivity by enabling them to
make more precise and timely decisions about crop management via better predic-
tion tools. The absence of large, comprehensive, and structured agricultural data,
however, limits the performance of these predictions. To address this problem, we
propose a Data Platform that aggregates data from a variety of publicly available
resources, processes them into reusable data formats, and augments the sparse data
via synthetic data generation tools.

In this thesis, we focus on the synthetic generation of agricultural yield data via
the WOFOST (WOrld FOod STudies) [20] crop simulation model. Through our
validation, calibration, and uncertainty quantification steps, we seek to answer the
following question: How can we reliably generate yield data for different regions of
the world using simulation models?

Due to unavailability of large agricultural data from Africa, we chose to make use
of data from the United States for the validation and calibration steps. Our em-
pirical findings from the validation step demonstrated that the off-the-shelf usage of
the WOFOST model, which was originally developed in Europe, may not be suit-
able for the agricultural studies in the United States, when the input parameters
are not precise and accurate. This insight led us to perform the calibration step,
where we discovered that the performance of the WOFOST model can be improved
by estimating the correct crop parameters using evolutionary algorithms. Through
our uncertainty quantification step, we shortlisted a number of input parameters that
the model seems most sensitive to and developed a simpler but more tractable and
effective model to WOFOST that has an analytical solution. Finally, we provided a
quantitative analysis of how the uncertainty from the input parameters propagates
through our proposed model to the generated data.
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Chapter 1

Introduction

1.1 Motivation

Agriculture lies at the heart of Africa’s economy. According to the World Economic

Form, agriculture constitutes almost a quarter of the gross domestic product (GDP)

all across the continent [17]. Even though Africa holds 60% of the world’s arable

land, it is able to generate only 10% of the global agricultural output [12]. Given the

discrepancy between its agricultural potential and its current agricultural produc-

tion, there is a strong need to develop and implement efficient farming techniques, to

invest in capital to support agribusiness enterprises, and to encourage technological

innovation in agricultural mechanization.

Digital Agriculture in Africa project, a research collaboration at the MIT Institute

for Data, Systems, and Society (IDSS), aims to address this challenge with data.

The project aims to unlock the agricultural potential in Africa and help farmers

increase their productions by enabling them to make more precise and timely deci-

sions about planting, harvesting, irrigation, and fertilization through better prediction

tools. Data-driven precision agriculture has shown to improve yield, reduce cost and

ensure sustainability; however, there is not enough granular (at the farm level) data

to drive these predictions due to the high cost of manual data collection [37].
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One approach to tackle the data scarcity problem in Africa would be to study farming

and the impact of agricultural interventions with limited data from technologically

advanced farms where there is more data availability. Then this learning can then

be translated to predict the value of intervention in under-performing farms. Thus,

one of the goals of this research collaboration is to create a platform for sharing data

and risk among invested parties, from farmers and lenders to insurers and equipment

manufacturers to fertilizer companies [29, 44].

Figure 1-1: Data Platform diagram

The Data Platform, shown in Figure 1-1, consists of two components that are in a

continuous feedback loop: “Raw data” and ”Simulation and Predictive Models”. The

first component includes farm data (e.g., weather, fertilization, irrigation practices),

farmer data (e.g., credit history, demographics), and economic data (e.g., pricing of

commodities, supply and demand). The second component includes plant models

such as WOFOST, economic models, and other models that learn efficiently from

data. With this positive feedback between the two components of the Data Plat-

form, predictive models perform better as more raw data is available and with better
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predictive models we can generate more reliable synthetic data that would help per-

formance of the predictive models. This work pertains to the raw farm data and

predictive plant models (left side of Figure 1-1) of the Data Platform.

1.2 Related Work

The Data Platform of the Digital Agriculture in Africa project, consisting of raw

data and predictive models, aims to generate crop yields in different regions of the

world, especially in sub-Saharan Africa to be understand and quantify the impact of

crop management. In this work, we use a plant-based simulation model to generate

crop yield data. We focus on using a well-known simulation model in the agriculture

community: WOFOST (WOrld FOod STudies) [20], due to its ability to simulate the

impact of weather and crop management on growth and development of crops.

Developed and maintained by Wageningen University & Research [20, 34, 48], WOFOST

is a mechanistic simulation model for the quantitative analysis of the growth and pro-

duction of annual field crops. It has been used by many researchers over the world

and has been applied for many crops over a large range of climatic and management

conditions [20]. It is one of the key components of the European MARS (Monitoring

Agricultural Resources) Crop Yield Forecasting System (MCYFS) [33], which is a

tool to monitor crop growth development, evaluate short-term effects of anomalous

meteorological events, and provide monthly forecasts of crop yield and production

[32]. The regional application of the WOFOST model within the MCYFS has been

used for climate change impact assessments [13, 41] and yield gap analysis [15, 16]. It

is also used to estimate the untapped crop production potential on existing farmland

based on current climate and available soil and water resources in the Global Yield

Gap Atlas (GYGA) [4].

The WOFOST model can be used to calculate crop production, biomass, and water

use for a given location provided knowledge about crop, weather, soil, and manage-
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ment of the farm, such as fertilization amounts and dates, irrigation amounts and

dates, sowing date and harvest date. In this work, we use WOFOST to calculate the

weight of the crop’s storage organs at the end of the growing season. We use this

weight as a proxy for the crop yield.

Implementation of the WOFOST model is shown in the schematic overview in Figure

1-2 which is obtained from the WOFOST manual [20]. This overview shows the major

processes implemented in WOFOST and how they interact with each other.

Figure 1-2: Schematic overview of the major processes implemented in WOFOST and
their linkages

The WOFOST model calculates yield in two production settings: potential yield

and attainable yield. Potential yield is obtained under optimal soil conditions (i.e.,

efficient water and nutrients for the plant), and attainable yield is obtained under

water-limited and nutrient-limited conditions. However, production reducing factors

such as pests, weeds, diseases, and pollutants, are not taken into account in neither

of these production settings.
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Throughout this work, we keep in mind the limitations of the WOFOST model and

mitigate them whenever possible. One important limitation of this model is that its

outputs may not be reliable in extreme climate conditions, such as drought or flood-

ing. Another one is that the model is deterministic, meaning that it outputs only one

value. Because it does not provide confidence intervals or error rates of the results, it

is very difficult to assess the quality of its results. Obtaining confidence intervals and

error rates for the WOFOST model is a challenging work because there is no database

of field experiments with exact sowing date, exact cultivar, exact farm management

data to compute error margins.

Another challenge for using the WOFOST model globally and implementing a sys-

tem similar to the MCYFS [33] in different regions of the world, such as sub-Saharan

Africa, is the difficulty of modeling different behaviors of the farmers. One example

is that farmers sow a large variety of crops and switch cultivars very often. Different

sowing strategies could be implemented in the WOFOST model; however it is another

challenge to obtain data about exact cultivars used in farms because farmers might

not be willing to share this information with their competitors. Most crop parameter

files used today [1] are from years before 2000, hence the WOFOST model does not

take it into consideration improvements in technology, such as hybrid seed, improved

genetics, microbial soil amendments, etc.

Scarcity of farm level data seriously limits the use of WOFOST as a predictive tool

[48]. Many of the environmental data used pertain to average conditions and do not

allow the evaluation of the effects of their erratic nature and of extreme conditions.

The data constraint is also a problem for the further development of the model be-

cause complete and detailed datasets are needed for model validation. Such datasets

may be either measured experimental data or data generated by more detailed and

validated models; however, only a few datasets appear to be available.
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1.3 Our Contributions and Thesis Outline

Through this work, we provide a framework for the Data Platform that facilitates the

integration of new farm data to the platform and the generation of reliable data using

simulation models. More precisely, we implement the infrastructure for maintaining

a database of agricultural data and augmenting this database by generating synthetic

data using simulation models. We collect and process raw farm data from various data

resource and process into one data matrix to input to the WOFOST simulation model.

As we will witness in the upcoming chapters, assessing the quality of the synthetic

data is a crucial part of this work. Thus, we first validate the results of the WOFOST

model by comparing the simulated data to the ground truth yield data. Motivated

by the results of the validation and we then calibrate the input parameters of the

model by using evolutionary algorithms, a gradient-free optimization method.

Even though calibration improves performance of the model, uncertainties remain

as major obstacles for the predictive capability and reliability of the simulation mod-

els. In order to find stable solutions across a wide range of inputs, and to make better

decisions at a known level of confidence, it is necessary to quantify the uncertainty.

With uncertainty quantification methods, such as Monte Carlo simulations and per-

turbation analysis, we identify the input parameters that the WOFOST model is most

sensitive to and analyze how the uncertainty propagates through the system of crop

growth. For the latter approach, we develop an alternative model to WOFOST that

describes the dynamic system of crop growth, which has a simple, analytical form

that makes error propagation possible.

The remainder of this thesis is organized as follows. Chapter 2 explains the data

generation procedure by detailing the input data needed for the simulation, our data

resources and how we process the data into data matrices that can be stored in the

Data Platform, as well as how to use the software package to run the WOFOST model.
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Chapter 3 talks about the validation of the WOFOST model using all the available

data from the United States and presents results analyzing several statistics on the

gap between simulated and true yield. Chapter 4 explains our calibration method for

the application of WOFOST in different regions of the world and shows the impact of

calibration on the generated yield data. Chapter 5 discusses two methods to quantify

the uncertainty in the model output: sensitivity analysis, and perturbation analysis.

Finally, Chapter 6 summarizes our work and discusses future work.
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Chapter 2

Data Collection and Generation

Our work focuses on the agricultural data part of the Data Platform. As a first step to

tackle the problem of data sparsity, we propose to generate synthetic crop yield data

using simulation models of plant growth based on physical and chemical processes.

In this chapter, we explain the data generation methods with the WOFOST crop

growth simulation model. We first describe the input parameters to the model. Then

we explain how we gather and process data for the input parameters from different

resources for each type of input. After explaining the creation of the data matrix

and how to run the simulation with the processed data, we end this chapter with a

discussion about the data constraints of the WOFOST model.

2.1 Input Parameters of WOFOST

Simulating crop growth with WOFOST requires first defining the farm and the crop

as inputs to the model. The farm is defined by its soil and site characteristics, the

weather conditions throughout the growing season, and the farm management (e.g.

sowing date, harvest date, irrigation and fertilization). The crop is defined by the seed

properties used in the farm. If we think of the WOFOST model as a multi-variable

function 𝑓(·) and its simulated yield output as 𝑌𝑤, we can then express the entire

relation as follows:

𝑌𝑤 = 𝑓(𝑐, 𝑠, 𝑣, 𝑥, 𝑧) (2.1)

19



where 𝑐 denotes the crop characteristics, 𝑠 the soil characteristics, 𝑣 the site charac-

teristics, 𝑥 the agromanagement, and 𝑧 the weather conditions. The inputs to the

WOFOST model, namely 𝑐, 𝑠, 𝑥, and 𝑧, are all defined by more than 78 parameters

in total: 52 crop parameters, 13 soil parameters, 8 weather parameters, and 5+ agro-

management parameters.

Crop parameters describe the initial weight of the organ, phenological properties

(the rate of appearance of vegetative and reproductive organs), maintenance respira-

tion rate, death rate of leaves, water use, assimilation rate of the plant, conversion

efficiency of assimilates into biomass, among other things. Soil parameters describe

the physical soil characteristics such as soil water retention, hydraulic conductivity,

soil workability, and soil minerals. The site parameters provide ancillary parameters

that are not related to the crop or the soil. Examples include the initial conditions

of the water balance, such as the initial soil moisture content (WAV) and the initial

surface storage (SSI), maximum surface storage (SSMAX), and the atmospheric CO2

concentration (CO2). Agromanagement parameters are the sowing date, emergence

date, maturity date, harvest date, the amounts and dates of irrigation, the amounts

and dates of fertilization. Weather parameters are obtained from daily meteorological

data during the growing season, and describe the radiation (sunshine), air tempera-

ture, rainfall (precipitation), air humidity and wind speed. Further details about the

input parameters can be found in Appendix 3 of the WOFOST manual [20].

2.2 Data Collection and Processing

In order to generate realistic crop yield data with the WOFOST simulation model,

we need to collect real data for the inputs that describe the the crop characteristics,

soil characteristics, weather conditions, and agromanagement from different public

databases, such as USDA NASS [8], ISRIC-World Soil Information [14], and NASA

Power [6]. We process the data to be in the format WOFOST requires and later

with the process data we create a reusable data matrix of the WOFOST inputs.
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By inputting the this data matrix, we could then run simulations to generate crop

yield data. In this section, we explain our data resources and our methods of data

processing.1

2.2.1 Yield Data

Crop yield is a measurement of the amount/weight of the crop grown per unit area of

land. It is typically measured by kilograms per hectare (kg/ha) or bushels per acre

(bsh/ac). The US Department of Agriculture (USDA) takes samples and estimates of

crop yields for nearly two-dozen crops in the country and makes its agricultural data

available at the Quick Stats Database [8]. This database is a comprehensive tool for

accessing agricultural data published by the USDA National Agricultural Statistics

Service (NASS) and allows the user to customize a query by commodity, location, or

time period. Data can be manipulated and exported as an Excel file. Quick Stats

contains official published aggregate estimates related to US agricultural production.

The regional scale of the data varies from country level to state level to county level.

For selected states, the data includes the total crops and cropping practices for each

county, as well as breakouts for irrigated and non-irrigated practices for many crops.

The data files contain planted and harvested area, yield per acre, and production.

We use the USDA NASS Quick Stats Database to obtain county level crop yield

data and state level crop calendar data. Note that the yield data from the US is in

unit bushels/acre (bu/ac). We convert it to metric units for yield: tons/hectare or

kilograms/hectare (kg/ha) using the conversion rates from [10]. For corn, 1 bu/ac is

equal to 62.77 kg/ha, for wheat and soybean 1 bu/ac is equal to 67.25 kg/ha. We

extract yield data from the database for two reasons: (1) to aggregate granular yield

data for the Data Platform (2) to use it as ground truth yield values for validation

(Chapter 3) and calibration (Chapter 4) of the WOFOST model.

1GitHub repository wofost_data [2] contains the raw and processed data as well as the scripts
for data collection and processing.
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2.2.2 Crop Data

Crop characteristics depend on the specific seed used in the given farm. Because the

seed varies widely by region, farm, and year, it is difficult to find real data for the

crop parameters of WOFOST. Hence, we use the default crop parameters provided

by [1] which contains the parameter sets for 22 crops, including, but not limited to,

barley, chickpea, cassava, maize, wheat, sugarbeet, rice. The parameters are stored

in a data serialization format YAML, and and within each YAML file, different crop eco-

types and crop varieties can be defined. To accommodate the definition of different

crop varieties in one file, the parameter files have been organized in a clear structure.

An example YAML file for the crop barley is shown in Figure 2-1.

Figure 2-1: Example YAML file containing the crop parameters for barley.

Since we use the crop parameters from [1], the crop data does not require any pro-

cessing. Let us note that these default crop parameters were developed by experts

in Europe and might not be applicable to seeds in different regions in sub-Saharan

Africa or the United States. We discuss mitigation methods for calibrating crops for

different regions without expert knowledge in Section 4.
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2.2.3 Soil Data

To find realistic soil properties, we used the ISRIC-Wise30sec dataset from ISRIC-

World Soil Information [14], which is the host of the World Data Center for Soils

(WDC-Soils). This dataset includes about 21,000 soil profiles described in 19 soil

variables. Due to the difficulty of finding real values for all the WOFOST soil param-

eters, we use default values for the parameters SMTAB, CRAIRC, CONTAB, RDMSOL

and replace the values for the parameters SMW, SMFCF, K0, SOPE, KSUB with the

values we obtained by processing soil data from the ISRIC-Wise30sec dataset. To

calculate these five parameters we used different sources: [26] for SMW , [40] for SMFCF,

[35] for SOPE and [27] for K0.

Figure 2-2: Example soil parameters for medium fine soil
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An example set of soil parameters are shown in Figure 2-2. Parameters shown in

grey are from the default soil file and the parameters shown in blue are updated

using the ISRIC-Wise30sec dataset.

2.2.4 Site Data

Due to the difficulty of finding the exact measurements for the site parameters at each

farm, we use default values for the site parameters. Required site parameters are the

atmospheric CO2 concentration (CO2) and the initial soil moisture content (WAV) to

run the simulation and we use default values of CO2 = 360 and WAV= 100 in all of all

the simulation runs.

2.2.5 Weather Data

For the weather data, we use the gridded data provided by National Aeronautics

and Space Administration - Prediction of World Wide Energy Resources (NASA-

POWER) [6]. NASA POWER database presents a global coverage of complete

weather data at horizontal resolution of 1 degree latitude–longitude (about 100 km).

Assessment of the NASA POWER database [39] also found that it is a useful database

to investigate the impacts of climatic variability on crop yield throughout the years

with reasonable confidence, once its complete long-term database is freely available.

We chose this database to obtain weather data because of its resolution and simplicity

of querying the weather for a given pair of coordinates.

We note that daily weather data can be incomplete because some weather stations

may not provide continuous 24-hour reporting. We use a simple imputation method:

Linear interpolation between the available data. For example, if the weather data is

missing for the date 4/15/2020 to 4/18/2020, we can use data from 4/14/2020 and

4/19/2020 to fill in the missing values using linear interpolation. It would, however,

be dangerous to linearly interpolate for longer periods of time, since the weather can
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change erratically. Hence, we use this linear interpolation method for missing values

only up to seven days. For simplicity, we ignore data from a growing season if it

still contains missing values after the linear interpolation method described. Because

precipitation can be too erratic, it should not interpolated but rather set to zero when

missing.

It is also possible to derive the missing values in a different way. For instance, data

from a weather station in the vicinity or the long term daily averages from the same

station can be used. Note that this imputation method however is not implemented

in our work. GYGA Protocol for Weather Data [11] also outlines a step-by-step

procedure for imputation of weather data.

2.2.6 Agromanagement Data

To find the agromanagement parameters sowing date, emergence date, and harvest

date, we utilize the crop calendar data from USDA NASS [8]. This data is provided

at the state-level and on an annual basis. Due to the difficulty of finding irrigation

and fertilization data, we assume no irrigation and no fertilization for our simulations.

Depending on the type of yield data (irrigated vs. non-irrigated), we use different

production settings (potential vs. water-limited).

This entails that when we are simulating for regions where we have irrigated yield

data, we assume optimal irrigation; so, the model is in the potential yield setting.

When we are simulating for regions with non-irrigated yield data, we assume zero irri-

gation; so, we do not include any irrigation action in the agromanagement parameters

and run the model in the water-limited setting. When using data from the United

States, we also assume optimal fertilization; therefore, we do not run simulations in

the nutrient-limited setting. When there is fertilization data available, the dates and

amounts of fertilization should be included in the agromanagement parameters and

the model should be run the nutrient-limited setting.
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Figure 2-3: Example YAML file for agromanagement parameters

Figure 2-3 shows an example YAML file for the agromanagement parameters. CropCalendar

field defines the crop name, variety, and important dates for the growing season.

TimedEvents field defines the irrigation and fertilization dates and amounts. StateEvents

field can be used to define irrigation and fertilization patterns using state variables

such as development stage DVS, or soil moisture SM compared to using predetermined

dates as in TimedEvents.

2.3 Data Matrix

We bring together all the aforementioned data in one matrix for ease of use and stor-

age. Figure 2-4 demonstrates the data matrix we created from the crop, soil, site,

weather and agromanagement, as well as the true yield data from the data resources

explained in Section 2.2. Each row in this multidimensional matrix corresponds to

26



a location, denoted as Farm 1 ... Farm N. Different colors illustrate the types of

data: crop, soil, site, weather, agromanagement, and true yield data. Each column

corresponds to an input parameter and each cell contains the value of the parameter

for the given farm.

Figure 2-4: Representation of the data matrix for the WOFOST input parameters
and true yield data

In order to combine different types of data, further data processing is necessary.

While the soil data includes a set of coordinates where a certain soil profile is present,

the yield data only contains the county and state names, no coordinates. We find the

coordinates for the county centers and use it as the county coordinates. Then we find

the closest (minimum Euclidean distance) soil profile to the county coordinates using

a 𝑘-𝑑 tree consisting of soil profile coordinates for quick nearest-neighbor lookup [38].

Once we find the soil profiles for each county, we use query the weather data for the

county coordinates. Next, we explain how we run the simulation using the prepared

data matrix.
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2.4 Running the Simulation Model

PCSE (Python Crop Simulation Environment) [21] is a Python package for building

crop simulation models developed in Wageningen (Netherlands). PCSE provides the

environment to implement crop simulation models, the tools for reading ancillary

data (weather, soil, agromanagement) and the components for simulating biophysical

processes such as phenology, respiration and evapotranspiration. PCSE includes im-

plementations of the WOFOST and Lintul3 crop simulation models, and we use its

WOFOST implementation in this work.

We run the simulation by first creating a parameter object with all input param-

eters and then starting the simulation engine. Running a year long simulation for a

given location takes about a few seconds. When the simulation run is complete, with

the get_summary_output() method on the WOFOST object we can output some fi-

nal results such as the emergence (DOE), anthesis (DOA), maturity (DOM), harvest (DOH)

dates, total biomass (TAGP), weight of roots (TWRT), leaves (TWLV), stem (TWST), and

storage organs (TWSO), maximum LAI (LAIMAX), etc. We can also retrieve the time

series of daily simulation output using the get_output() method such as the time

series for weights, leaf area index, etc. as shown in Figure 2-5. For yield simulation,

retrieving weight of the storage organs (TWSO) is all that is necessary.

Figure 2-5: Examples of WOFOST outputs as time-series
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2.5 Discussion

Even though we chose a well-studied crop, corn, and a region with publicly available

data, the US, we could not find real-world data for all the input parameters of the

model. Thus, the large number of input parameters of WOFOST make it difficult

to apply it directly in different regions of the world where exact measurements from

the fields are not easy to obtain, such as in sub-Saharan Africa. This challenge of

finding real-world data for the input parameters reemphasizes the need for the Data

Platform where raw data from different regions and from different stakeholders can

be aggregated. We also make a note that the soil parameters we derive from the

ISRIC soil database needs to be verified with some ground truth data because the

derivation formulas were gathered from various sources and may not be accurate.
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Chapter 3

Validation

Understanding the quality of the generated data is crucial especially when the data

is used in precision agriculture and decision-making algorithms to assist the public

and the government officials with agricultural interventions and policy-making. To

that end, we assess the performance of WOFOST by juxtaposing its simulated results

with the true yield data. We compare the simulated yield data in the United States

to the crop yield data obtained from USDA NASS [8]. For this comparison to be

meaningful and reliable, we assume that the crops with yield data from USDA NASS

contains no limitations to crop growth by nutrients and no yield reductions due to

weeds, pests, or diseases because the WOFOST simulation model does not include

these external factors. We think these assumptions hold true in many regions in the

US for some crops, such as corn and wheat, hence we focus on these crops.

3.1 Methodology

As shown in Figure 3-1, validation workflow starts with aggregation and processing

of raw data (as described in Chapter 2). We run the simulation for each data point

separately for one growing season and generate simulated yield data. By comparing

the simulated yield to the true yield data, we achieve validation results as we present

in Section 3.2
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Figure 3-1: Validation overflow

For validation, we generate the yield data by running WOFOST in two different

settings: (1) potential yield setting for irrigated crops and (2) water-limited yield

setting for rain-fed (non-irrigated) crops.

Potential Production

Potential production represents the production ceiling for a given crop when grown

in a given area under specific weather conditions. It is determined by the crop’s pho-

tosynthesis response to CO2 and the temperature, and solar radiation regimes during

the growing season [20]. In practice, this ceiling can only be reached with application

of high amounts of fertilizers and irrigation, and thorough pest and weed control.

In addition, there should be no losses caused by traffic or grazing, and there should

be no damage to the crop by wind, hail, and frosts. Because potential yield is also

determined by crop properties, yield potential varies over crop varieties and can be

increased by breeding. In the WOFOST model, potential yield depends on the choice

of crop variety, sowing date and weather data.

For counties that grow irrigated crops, we choose the potential production setting

due to unavailability of data for irrigation and fertilization patterns. Given the high

production rates of corn in the US, we assume optimal irrigation and fertilization by

farmers. Therefore, by running the simulation in the potential production setting we

only see the effect of crop variety, crop calendar and weather conditions on the yield.
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Water-Limited Production

By taking into account the reductions by water and nutrients, WOFOST includes

two attainable production levels: water-limited and nutrient-limited (or water and

nutrient limited). At the attainable production level, the yield of the crop is limited

by the availability of water or nutrients during the growing season. The water-limited

yield represents the maximum yield that can be obtained under rain-fed conditions

but with optimal nutrient supply [20].

The nutrient limited production corresponds to a situation where water is not limited

but the nutrients in the soil are insufficient to cover the crop’s demands. Examples

to nutrient insufficiency include when the soil does not contain enough Nitrogen, and

when part of the fertilizer applied is lost through leaching, volatilization or denitrifi-

cation.

Out of water-limited, nutrient-limited, and water-nutrient-limited production set-

tings, we choose the water-limited setting for the non-irrigated crops, mainly because

of the observation that there is no irrigation or fertilization data available that can

be used as an input to the simulation as agromanagement data. For the yield data

that is reported as non-irrigated in the US, we assume that farmers performed no

irrigation but optimal fertilization; therefore, we do not include the limitation of the

nutrients.

After running the simulations in the given production settings, we validate the results

of the WOFOST model by comparing the simulation output TWSO (total weight of

storage organs), denoted as 𝑌𝑤, to the true yield data, denoted as 𝑌𝑡, for irrigated and

non-irrigated crops from USDA NASS database. We analyze certain statistics of the

difference between the true yield and the simulated yield, 𝑌𝑡 − 𝑌𝑤, which is referred

to as the yield gap, 𝑌gap, hereinafter.
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3.1.1 Data

Currently, the US is the largest corn producer in the world, with approximately 96

million acres of land reserved for corn production [43]. Because of the high production

of corn and data collection efforts of the USDA, there is a plethora of corn data coming

from many states in the US; hence, we chose to use corn yield data from the US for

validation of WOFOST results.

Irrigated Yield Data

Irrigated corn yield data size has 15265 (county, year) pairs from year 1944 to 2020 for

counties in states Delaware, Colorado, Kansas, Nebraska, Texas, South Dakota, New

Mexico, North Dakota, Oklahoma, Wyoming, Montana, and Idaho. Because there is

no weather data available before 1990 [6], we only consider the yield data after 1990.

We further remove data points that have yield zero because zero, in this content,

indicates that the county did not plant any crops or that the data was missing. After

the removal of zero yield values, the data size becomes 5924. We further remove data

points for where the weather data contains too many missing values (viz., for more

than 7 consecutive days). With all the removals, the final data size becomes 4875.

Figures 3-2 and 3-3 summarize the distribution of the raw yield data for irrigated

corn.

(a) Histogram of yield values (b) Histogram of year values

Figure 3-2: Distribution of irrigated yield data
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Figure 3-2a shows the distribution of the yield values in the irrigated corn yield data.

We observe that the yield values are mostly around 10 ton/ha. Figure 3-2b shows the

distribution of the year values in the irrigated corn yield data. We observe that there

are less data points available after 2008 in the dataset. This does not mean that the

country has been getting less corn yield, it just shows the availability of reported data.

Figure 3-3a shows the geographical distribution of the available data on a choro-

pleth map at the county level. We observe that there is some data available from

the states Delaware, Colorado, Kansas, Nebraska, Texas, South Dakota, and North

Dakota. Figure 3-3b is a zoomed-in version of Figure 3-3a for easier inspection. Note

that the zoomed in image does not include the state of Delaware.

(a) Map of mean yield for irrigated corn

(b) Zoomed-in map

Figure 3-3: Map of yield data averaged over years for irrigated corn
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Non-irrigated Yield Data

Non-irrigated corn yield data size has 13609 (county, year) pairs from 1944 to 2020

for the states of Delaware, Colorado, Kansas, Nebraska, Texas, South Dakota, North

Dakota, Oklahoma, Wyoming, New Mexico, and Montana. Since there is no weather

data available before 1990 [6], we only consider the yield data after 1990. Then, the

non-irrigated yield data size becomes 5848 and we lose the data points from Montana.

We also remove the data points that have too many missing values in the weather

data and end up with a data size of 2226 with data from states Colorado, Kansas,

Nebraska, and Texas. Figure 3-4 summarizes the distribution of the raw yield data.

From Figure 3-4, we observe that the non-irrigated yield data volume is much smaller

(a) Histogram of yield values (b) Histogram of year values

Figure 3-4: Distribution of non-irrigated yield data

than the irrigated yield data. We also observe that the true yield for non-irrigated

corn is around 5 ton/ha, whereas the irrigated corn yield distribution was centered

around 10 ton/ha. This observation makes sense because irrigation is an intervention

that is known to help the growth of the crop and thus explains the increase in yield.

From Figure 3-5 we observe that the non-irrigated yield data is from only 117 counties,

most of which are in the states Kansas and Nebraska.
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(a) Map of mean yield for non-irrigated corn (b) Zoomed-in map

Figure 3-5: Map of yield data averaged over years for non-irrigated corn

3.2 Results

After generating yield data using the WOFOST simulation at all data points available

in the US as explained in Section 3.1.1, we compare the simulated data to the true

yield data based on the following metrics:

• Distributions of yield gap 𝑌gap = 𝑌𝑡 − 𝑌𝑤 and percentage error 𝑌pct = 𝑌gap
𝑌𝑡

,

measuring how far the simulated yield 𝑌𝑤 is from the true yield 𝑌𝑡,

• Time series of yield gap and percentage error averaged over counties for each

year,

• Maps of yield gap and percentage error averaged over years for each county,

• 𝑅2 (coefficient of determination), and p-value for the correlation between

– simulated yield and true yield, and

– mean yield gap (averaged over counties) and year.

3.2.1 Irrigated Yield Results

Let’s first take a look at the distributions of the yield gap and percentage error as

shown in Figure 3-6. In the left plot, we observe that the yield gap distribution is

centered near zero with mean 0.01 ton/ha and standard deviation 3.57 ton/ha. Close
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to zero mean of yield gap indicates that the WOFOST model simulated the yield

close to the true yield on average. However the standard deviation of the yield gap is

quite large, indicating that the WOFOST model is not very consistent. Percentage

error distribution is also centered near zero with mean -0.03 and standard deviation

0.41. Again standard deviation of 41% indicates quite a large error for the simulation

model.

(a) Histogram of yield gap (b) Histogram of percentage error

Figure 3-6: Histogram of yield gap and percentage error between the true and simu-
lated yield for irrigated corn

The bar plot in Figure 3-7 shows the time series of simulated yield and true yield

averaged over counties. Height of each bar indicates the average of all data points in

a given year. Blue bar indicates the true yield and orange line indicates the simulated

yield values in ton/ha. Note that this plot does not show the yield trend in the US

over the years since the number and the location of available data points are different

for each year. We observe in this plot that on average the simulated yield is in the

same order of magnitude as the true yield; however they do not have the same trend

in time.

Figure 3-8 shows the yield gap and percentage error averaged over counties for each

year. We observe that the yield gap and percentage error are mostly negative before

year 1996 and mostly positive after year 2003. This indicates that the WOFOST
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Figure 3-7: Simulated yield compared to true yield (averaged over counties) for irri-
gated corn

model underestimates the yield in earlier years while overestimating it in more recent

years. Years 1997 and 2013 have close to zero yield gap and percentage error. Years

1999 and 2001 also have pretty low yield gap and percentage error. This means that

the simulation model comes very close to the reality in predicting the yield in some

years, which gives hope that the WOFOST results are not completely random.

(a) Yield gap

(b) Percentage error

Figure 3-8: Yield gap and percentage error as time series averaged over years for
irrigated corn data
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Next, we look at the trend of mean yield gap over the years to try to understand

our observations from Figure 3-8. Figure 3-15 shows the scatter plot of mean yield

gap (averaged over counties) vs. year, meaning that each point in the plot represents

the average of all data points in a given year. As the regression line indicates, we ob-

serve a positive trend of the yield gap over the years with 𝑅2 = 0.473 and p-value = 0.

𝑅2 is not too low (>0.3), thus there is some effect of year in the yield gap; however

it is also not very high (<0.5), thus the effect of year in the yield gap is only weak.

This significant but weak relationship between the mean yield gap and year makes

us also wonder about whether yield gap has a relationship with geographical location.

Figure 3-9: Scatter plot of mean yield gap (averaged over counties) vs. year

Figure 3-10 shows the geographical distributions of the yield gap and percentage error

results on a county-level choropleth map of the United States. The colors indicate

the yield gap and percentage error averaged over years for each county. Zoomed-

in images of the maps are also included on the right to allow for closer inspection

of the results. In the map, dark blue color indicates counties where the yield gap

is on average negative, meaning that the WOFOST model overestimates the yield.

Bright green and yellow color indicate the counties where the yield gap is on average
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(a) Yield gap map

(b) Zoomed-in map

(c) Percentage error map

(d) Zoomed-in map

Figure 3-10: Maps summarizing the yield gap and percentage error of the simulated
yield compared to true yield for irrigated corn data

positive, meaning that the WOFOST model underestimates the yield. Blueish green

and greenish blue colors indicate that the yield gap is close to zero, meaning that
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the WOFOST model on average closely estimates the yield. We further observe that

counties in the southern border of South Dakota with Nebraska are colored in yellow;

hence, the the WOFOST model underestimates the most in this region (more than 8

ton/ha yield gap and more than 80% error). Other parts of South Dakota and most

of North Dakota, the WOFOST model seems to get close results to the true yield

while underestimating a little (less than 2 ton/ha yield gap and less than 20% error).

The dark blue colored counties are mostly in the southeast region of Kansas, and in

a few counties in Texas and in Nebraska, where the WOFOST model overestimates

by a lot (more than 6 ton/ha yield gap and more than 60% error).

Next, we investigate whether the simulated yield has a linear relationship with the

true yield. Figure 3-11 shows the scatter plot of simulated yield vs. true yield using

all the data points from the irrigated corn dataset. 𝑅2 = 0.014 and the p-value = 0

indicating that there is no strong correlation between the simulated and the true

yield. Dashed blue line with slope 1 shows the regression line that we would expect

if the WOFOST model accurately simulated the yield. In order to understand the

lack of strong relation between the simulated and true yield, we color the scatter plot

by the state the data points belong. We observe that most of the data points that

belong to the South Dakota have simulated yield close to zero, hinting at a possible

issue with the input parameter values for counties in South Dakota.
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Figure 3-11: Scatter plot of simulated vs. true yield for all irrigated corn data (colored
by state)
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3.2.2 Non-irrigated Yield Results

We validate the results of the WOFOST simulation model for the non-irrigated corn

data the same way we did for the irrigated corn data in Section 3.2.1. Here, the

results are generated by running the simulation in the potential production setting

compared to the water-limited setting used for the irrigated corn data.

Figure 3-12 shows the distributions of the yield gap and percentage error. We observe

that the yield gap distribution is centered to the right of zero with mean 0.99 ton/ha

and standard deviation 2.87 ton/ha. The positive mean indicates that the WOFOST

model in the potential production setting underestimates the yield on average. The

standard deviation of the yield gap is less than that of the standard deviation for

the irrigated yield data; however it is still quite large considering the yield values

are less for the non-irrigated data than those for the irrigated data. Percentage error

distribution is centered to the right of zero, with mean 0.02 and standard deviation

0.62. Standard deviation of the percentage error is larger than that of the irrigated

yield (41%) and this large standard deviation indicates that the simulated yield re-

sults vary a lot.

(a) Histogram of yield gap (b) Histogram of percentage error

Figure 3-12: Histogram of yield gap and percentage error between the true and sim-
ulated yield for non-irrigated corn
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Time series of simulated yield and true yield averaged over counties is shown in

Figure 3-13. Again, note that this plot does not show the yield trend in the US over

the years since the number and the location of available data points are different for

each year. Blue bar indicates the true yield and orange line indicates the simulated

yield values in ton/ha. This bar plot shows that true and simulated yield do not follow

the same trend in time. We also observe that the difference between the simulated

and true yield is much larger in certain years such as 1992, 1993, 1994, 2004, 2016

and 2017.

Figure 3-13: Simulated yield compared to true yield (averaged over counties) for
non-irrigated corn

Figure 3-14 shows the yield gap and percentage error averaged over counties for each

year. Similar to the observation for the irrigated yield data, the difference between

true yield and simulated yield changes with year. The WOFOST model again over-

estimates in earlier years and underestimates in more recent years. We observe that

the yield gap and percentage error are mostly negative before year 1997 (compared

to 1996 for irrigated yield) and mostly positive after year 2011 (compared to 2003

for irrigated yield). Years 2008, 2013 and 2014 have close to zero yield gap and per-

centage errors. Years 1991, 1995, 1998 and 2000 also have pretty low yield gap and

percentage error. This means that the simulation model in the potential yield setting

also comes very close to the reality in predicting the yield in some years, which again

gives hope that the WOFOST results are not completely random. We also observe
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very high percentage errors in certain years, such as 1992 (close to 70%) and 1993

(close to 100%). These high errors also indicate that the simulated yield data in the

potential setting can be very unreliable in certain years.

(a) Yield gap

(b) Percentage error

Figure 3-14: Yield gap and percentage error as time series averaged over years for
non-irrigated corn data

We, again, find the trend of mean yield gap over the years to try to understand dif-

ferences in yield gap over years. Figure 3-15 shows the scatter plot of mean yield gap

(averaged over counties) vs. year. The regression line indicates a positive trend of the

yield gap over the years with 𝑅2 = 0.393 and p-value = 0. Similar to the irrigated

yield results, we see a significant but weak relationship between the mean yield gap

and year.

We also inspect the geographical distributions of the yield gap and percentage error

results on a county-level choropleth map, shown in Figure 3-16. The colors indicate

the yield gap and percentage error averaged over years for each county. Zoomed-in

images of the maps are again included on the right to allow for closer inspection of the
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Figure 3-15: Scatter plot of mean yield gap (averaged over counties) vs. year

results. We observe that the WOFOST model underestimates the most in one county

on the north-west of Texas (more than 4 ton/ha of yield gap and more than 80% of

error) while most of the underestimated counties are located in the south-east region

Nebraska (more than 3 ton/ha of yield gap and more than 60% of error). These maps

show that the difference between simulated and true yield also has a geographical

dependence.

To see whether the simulated yield has a linear relationship with the true yield,

we plot the true yield and the simulated yield using all the data points from the

non-irrigated corn dataset as shown in Figure 3-17. 𝑅2 = 0.375 and the p-value = 0

indicate that there is a week correlation between the simulated and the true yield

(larger than that of the irrigated corn with 𝑅2 = 0.014). Dashed blue line with slope

1 shows the regression line that we would expect if the WOFOST model accurately

simulated the yield. By coloring the scatter plot by the state the data points belong

to, we also observe that all states have a similar trajectory. Nebraska seems to have

the largest variation in simulated yield.
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(a) Yield gap map (b) Zoomed in map

(c) Percentage error map (d) Zoomed in map

Figure 3-16: Maps summarizing the yield gap and percentage error of the simulated
yield compared to true yield for non-irrigated corn data

3.3 Discussion

One important takeaway from the validation results for both irrigated and non-

irrigated corn yield is the weak relationship between the mean yield gap and year

for both irrigated and non-irrigated yield data. Another takeaway is that the dif-

ference between true yield and simulated yield also varies with geographic location.

These differences could be due to different crop varieties used by farmers, accuracy

of weather data, and/or accuracy of the soil data. The trend in mean yield gap could

also be due to technological advancements in agriculture throughout years, such as
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Figure 3-17: Scatter plot of simulated vs. true yield for all non-irrigated corn data
(colored by state)

seed technology. Because we do not have any available data for the specific crop

varieties used in a given county at a given year, we use constant crop parameters.

However, crop cultivars show great variance from farm to farm and from year to year.

In the validation simulations, our model does not capture the genetic differences be-

tween cultivars used in different locations because we use only one crop variety for

all the counties and years. Observed trend in yield gap throughout the years and the

geographical distribution of the error could be explained on the grounds of genetic

differences of cultivars used in different counties and in different years. Thus, the

for more meaningful results, the crop parameters of the WOFOST model should be

calibrated for a region and a year.
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Chapter 4

Calibration

The previous chapter has illustrated that an off-the-shelf usage of the WOFOST

model to simulate yield in a new region does not generate reliable results. Because

the regional application of WOFOST strongly depends on the values of crop param-

eters [18], using default crop parameters that developed for the seeds used in Europe

40 years ago is not a reliable method.

Cultivars can vary in their characteristics, such as their requirements for reaching

maturity or flowering, their response to heat, cold, drought, and their ability to

resist specific diseases and pests. Cultivars change region to region, climate to cli-

mate, country to country, due to environmental factors and local seed technologies.

Hence, crop parameters are typically calibrated based on location-specific observa-

tions and optimized for areas with relatively homogeneous conditions [49]. Previous

work [9, 19, 22] require experimental data for at least two years to calibrate crop

parameters. However, the cost of data collection and lack of experimental data from

many regions, especially regions in sub-Saharan Africa, make the calibration with

observational data rather difficult.

To evaluate the crop simulation results of WOFOST at potential and water-limited

production settings in the absence of observed data [22] developed a procedure, simi-

lar to that of the Global Yield Gap Atlas [9], checking the plausibility and consistency
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of the WOFOST simulation results. This procedure requires an expert in agriculture

evaluating visual maps of WOFOST outputs, such as mid-season and end-season leaf

area index (LAI), yield, harvest index, and flowering and maturity dates. Since this

calibration procedure requires domain knowledge and is tedious for the purpose of

yield prediction, we propose a simpler approach.

In this work, for reliable estimation of yields at regional and farm scale, we develop a

methodology to calibrate crop parameters with available yield data. In Section 4.1 we

explain our formulation for the calibration objective and our optimization method. In

Section 4.1.4 we detail our implementation of the optimization method and in Section

4.2 we present the results of the calibration.

4.1 Methodology

With calibration, our objective is to find the model parameters that generate outputs

that are in well-alignment with the real-world data. Since we have no direct observa-

tion of the reality, that is, the specific crop seed used on the field, we use yield as a

proxy.

Let us define the parameters that we want to calibrate as the vector 𝜃. We for-

mulate the objective function 𝐽𝑦𝑖𝑒𝑙𝑑(𝜃) as the mean squared error (MSE) between the

true yield 𝑌𝐴 and the simulated yield 𝑌𝑊 :

𝐽𝑦𝑖𝑒𝑙𝑑(𝜃) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑌𝐴(𝑖)− 𝑌𝑊 (𝑖; 𝜃))2, (4.1)

where 𝜃 is the vector with parameters to calibrate, 𝑌𝐴 is the true yield, 𝑌𝑊 is the

simulated yield, 𝑖 ∈ 𝒟 is a data point defined by a (location, year) pair in dataset 𝒟,

and 𝑁 = |𝒟|. This objective function describes the distance between the simulated

and true yield according to the dataset 𝒟. Therefore, we minimize the objection

function 4.1 to find the optimal parameters that are most descriptive of the data.
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Following subsections further define the calibration objective function, by first ex-

plaining the choice of parameters to calibrate, i.e. the vector 𝜃 in Section 4.1.1. Then

we discuss the criteria for choosing a dataset D for the calibration task in Section 4.1.2,

and in Section 4.1.3 explain in detail our method of solving the optimization problem.

4.1.1 Parameter Selection for Calibration

Because WOFOST is a complex model controlled by 52 crop parameters, we first in-

vestigate which of these parameters are the most important for calibration. Previous

work [22, 19] developed calibration procedures for the phenological development of

the model. Phenological development describes successive stages that a crop passes

through. In the WOFOST model these stages are expressed in degree-days and de-

fined by two parameters: TSUM1 and TSUM2. The TSUM1 parameter defines the number

of degree-days for the emergence-anthesis period. The TSUM2 parameter defines the

number of degree-days for the anthesis-maturity period [20]. These two parameters

describe the crop seed variety. Hence for the purpose of finding the parameter values

that best describe the crop variety used in a region, we choose these two param-

eters for the calibration objective. We define 𝜃 = [𝜃0, 𝜃1], where 𝜃0 = TSUM1 and

𝜃1 = TSUM2.

4.1.2 Data

With calibration, we are trying to find the parameters that best explain the available

yield data in a region, therefore choosing the dataset 𝒟 to calibrate on is an important

task. Data points 𝑖 ∈ 𝒟 in the objective function 4.1 are defined by a (location, time)

pair, therefore choosing the dataset 𝒟 correspond to making assumptions about the

regional scale and the time scale of seed (crop variety) changes.

Our first assumption is on the regional scale of the dataset 𝒟. Realistically seeds

(crop variety) used in each farm can be different from each other. Crop testing data
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from [5] demonstrates that there can be more than 50 different seed types (crop vari-

eties) used in a given county in Iowa. This is because each farmer has access to, and

prefers, different types of seeds for their fields. Therefore, the most realistic regional

scale for calibration would be at the farm-level, or a region that is known to use same

crop variety. Since farm-level data is difficult to obtain, and since the most granular

yield data we have is at the county level, we assume that farmers in a given county

use similar seeds (so that we calibrate the crop parameters at a county-level). With

the assumption that the counties in a given state from the US Corn Belt states are

similar to each other, we use data points from all the counties of a given state. This

assumption is necessary since the only available data for crop calendars are at the

state-level.

Our second assumption is on the time scale of the dataset 𝒟. Data from USDA

NASS [8] demonstrates that the US corn grain yields have steadily increased since

the late 1930s [36]—and more than half of the yield gains are attributed to genetic

improvements achieved by plant breeders [24]. We need to take into account the crop

variety changes amongst years for a more realistic and reliable simulation. Since crop

varieties are switched out after 4-5 years in the Corn Belt, we choose a sliding window

size of 4 years for the calibration dataset.

To summarize our assumptions, the regional scale for the calibration dataset is statewide

county yield data and the time-scale is 4 years. This means that to calibrate crop pa-

rameters for a county for a given year, we use yield data of the previous 4 years from

all counties in the given state. In Section 4.2, we show the results of the calibration

on our dataset.

4.1.3 Evolutionary Algorithms

Because the objective function does not have an explicit derivative and it is not easy

to compute the gradient numerically, gradient-based optimization algorithms cannot

be deployed to find the optimal parameters that minimize the objective function. As

54



a gradient-free (stochastic) optimization method, we decided to use the evolutionary

algorithms, which are inspired by the principle of Darwinian natural selection.

Figure 4-1: Evolutionary algorithm diagram

Evolutionary algorithms generate many possible solutions for a problem and then

evaluate how well the solutions solve the problem using a given fitness function. The

fittest solutions procreate with some randomness. Figure 4-1 provides a high-level

summary of the evolutionary algorithms.

A typical evolutionary algorithm requires a genetic representation of the solution

domain, and a fitness function to evaluate the solution. First, an initial population

consisting of candidate solutions—that is, individuals with varying genes—is created.

The fitness function is then used to evaluate each individual solution. The individu-

55



als with lowest fitness scores are then removed from the population. If the stopping

criteria is met, the algorithm terminates and outputs the fittest individuals so far.

If not, however, the selected individuals (also called, survivors) from the remaining

population crossover. During crossover, mutations can happen, albeit with a low

probability. After crossover and mutation, the new population consists of the older

generation with the best fitness and their offspring. The algorithm continues this

fitness evaluation and generation of new populations until the stopping criteria is

finally met. Stopping criteria could be that a solution that minimizes the objective

function is found, or that a fixed number of generations has been reached, or that the

highest ranking solution’s fitness has reached a plateau such that successive iterations

no longer produce necessarily better results, or a combination thereof.

In the setting of crop parameter calibration, our goal is to find the 𝜃 that best explains

the data; hence, we use the 𝜃 vector as our gene representation for the evolutionary

algorithm, as illustrated in Figure 4-2.

Figure 4-2: Gene representation of crop parameters for the evolutionary algorithm

4.1.4 Implementation

We implement the evolutionary algorithm using the DEAP software package, which is

an evolutionary computation framework that works with multiprocessing mechanisms

such as multiprocessing and SCOOP [25]. We formulate the genetic representation for

our problem as 𝜃 = [TSUM1, TSUM2] and the fitness function as the objection function

4.1. Another advantage of using an evolutionary algorithm is that it does not contain

many hyperparameters to tune. The only hyperparameters are the population size

and the number of generations. We chose the stopping criteria to be the number of

generations reaching the set threshold of 15, because we observed that running the

algorithm for 15 generations was sufficient enough to have a convergence. We choose
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a initial population size of 10, five of which are pre-determined “good” candidates and

the other five are randomly generated. “Good” candidates are the five varieties of

corn defined in [1] which correspond to pairs of values for (TSUM1, TSUM2).

4.2 Results

Considering the regional and time scale explained in Section 4.1.2, we tested our cali-

bration method on the corn yield data from counties in one single state. According to

the USDA NASS data, four states that had produced over one billion bushels of corn

in 2020 are Iowa, Illinois, Nebraska, and Minnesota [8]. Iowa was the state with the

most corn production [42]. Because it is one of the states in the US Corn Belt and

dominates corn production in the US, we chose Iowa to test our calibration method.

Figure 4-3 shows a map of the true corn yield average by county in Iowa from years

1990 to 2019. On the map, darker green indicates more yield and lighter green indi-

cates less yield while white indicates no data.

Figure 4-3: True corn yield average by county in Iowa (1990-2019)

Figure 4-4 shows the calibration results where columns TSUM1 and TSUM2 show the

optimal crop parameters determined by the evolutionary algorithm using yield data

from all the counties of years indicated by the Training Years column. Calibration

is done for the year given in the Test Year column using data from the Training

Years column. Column Train MSE is the final mean squared error on the training
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set achieved by the values given in TSUM1 and TSUM2 columns. Notice that in this

table, some rows contain less than four training years. This is because there was no

available data for some years in the previous four years of the test year.

Figure 4-4: Calibration results for maize in Iowa

Figure 4-5 shows the maps of yield gap before and after calibration. Color scale

of the two plots are the same. In these maps, color yellow indicates a high and pos-

itive yield gap whereas dark blue indicates a high and negative yield gap. Colors in

between green and blue indicate yield gaps close to zero. We used the same color

scale for both maps to show the effect of calibration. On the left map, which shows

the yield gap before calibration, we observe that the difference between true yield

and simulated yield varies over regions widely. However, with calibration, the yield

gap became more uniform around the state as shown on the right map. Inspecting

the color differences between the pre-calibration and post-calibration maps, we also

observe that the yield gap and the percentage error values were halved after the cal-
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ibration. Thus, we can say that the calibration of the crop parameters improved the

quality of the simulated yield data.

(a) pre-calibration (b) post-calibration

Figure 4-5: Maps of yield gap in Iowa by county for corn

Figure 4-6 also demonstrates the similar calibration effect on the percentage error

(which is calculated as the difference between true yield and simulated yield divided

by the true yield).

(a) pre-calibration (b) post-calibration

Figure 4-6: Maps of percentage error in Iowa by county corn

4.3 Discussion

With calibration, our objective was to find the model parameters that generate yield

data that are in well-alignment with the real-world yield data. We formulated this

calibration task as minimizing the mean squared error between simulated yield and

the true yield. Using the gradient-free optimization method evolutionary algorithms,

we calibrated the parameters of a given year by minimizing the mean squared error

of the yield gap for the previous four years in all counties in the state. Using a sliding
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window of size four, we found the optimal crop parameters for each year that are most

likely to produce the true yield data from Iowa. We observed that the calibration

significantly reduced the gap between the simulated and true yield in all the counties,

but not to zero. We chose the time scale of the data set to use for optimization to be

four years, however it would valuable to run the calibration with a data set of time

scale ∈ 2, 3, 4, 5 years and compare the MSEs and the optimal parameters for each

time scale.

Another choice we made with the data set was the regional scale. We chose the

entire state as the regional scale of the data, however crop varieties differ from county

to county. If we were to use larger time scale for the data, we could use smaller re-

gional scale such as county. It would also make sense to use ecoregions as the regional

scale. Ecoregions denote areas of general similarity in ecosystems and in the type,

quality, and quantity of environmental resources. An ecoregion is identified through

patterns and composition of both biological and physical characteristics, including

geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology.

Further evaluation of the calibration method could be possible by comparing the

ground truth values for the crop parameters in certain counties or states to the op-

timal values found by the evolutionary algorithm. However, we could not find any

available data for corn parameters TSUM1 and TSUM2.
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Chapter 5

Uncertainty Quantification

It is essential that the consumers of the present data, including, but not limited to,

farmers, stakeholders, and governments, understand and appreciate the significance

and the limitations of the data proposed in the Data Platform. Let us consider a

farm, for instance. When we input its weather for the entire crop calendar, the crop

the farmer is using, the characteristics of the soil, farmer’s irrigation and fertilization

pattern to WOFOST, the simulation model outputs a single number as the simulated

yield at the end of the crop season. How much can the farmer trust this number?

What if the farmer was mistaken about the exact type of seed he was using? What

if they could not to not irrigate on the exact date they planned to?

The Data Platform should provide information about how much the actual yield can

deviate from the simulated yield due to variations in the inputs of the model. Hence,

the main goal of uncertainty quantification work is to identify the sources of yield

uncertainty. Our approach is to statistically vary the input parameters of WOFOST

through sensitivity analysis, and to analytically propagate uncertainty from inputs to

outputs in the dynamical system of plant growth, to shortlist a handful of parameters

that essentially control the crop yield prediction.

This chapter presents these two methods for obtaining confidence intervals for the out-

put of the simulation model. Section 5.1 discusses the sensitivity analysis approach,
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and Section 5.2 presents our simplified model for plant growth (an approximate model

to WOFOST) and results of error propagation on our model.

5.1 Sensitivity Analysis

For sensitivity analysis of the input parameters, we use the Sobol method [45], which is

intended to determine how much of the variability in model output is dependent upon

each of the input parameters, either upon a single parameter or upon an interaction

between different parameters Sobol method computes sensitivity indices by Monte

Carlo (or quasi-Monte Carlo) methods, which are used for estimating the influence

of individual variables or groups of variables on the model output. Sobol sensitivity

analysis is not intended to identify the cause of the input variability. It just indicates

what impact and to what extent it will have on model output. The Sobol sensitivity

index is defined as follows:

𝑆𝑖 =
Var(E[𝑌 |𝑄𝑖])

Var(𝑌 )
(5.1)

where, E[𝑌 |𝑄𝑖] denotes the expected value of the output 𝑌 when parameter𝑄𝑖 is fixed.

The first order sensitivity index tells us the expected reduction in the variance of the

model when we fix parameter 𝑄𝑖. The sum of the first order Sobol sensitivity indices

can not exceed one [28]. The total Sobol sensitivity index 𝑆𝑇 𝑖 includes the sensitivity

of both first order effects as well as the sensitivity due to interactions (covariance)

between a given parameter 𝑄𝑖 and all other parameters [31]. It is defined as:

𝑆𝑇 𝑖 = 1− Var(E[𝑌 |𝑄−𝑖])

Var(𝑌 )
(5.2)

where 𝑄−𝑖 denotes all parameters except 𝑄𝑖. The sum of the total Sobol sensitivity

indices is equal to or greater than one [28]. If no higher order interactions are present,

the sum of both the first and total order Sobol indices are equal to one.

To compute the Sobol sensitivity indices, we use SALib (Sensitivity Analysis Library

in Python) [7]. We first generate 1000 equally distanced samples for each parameter
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𝑄𝑖. We chose the number of samples to be 1000 because higher values provide better

estimates of sensitivity even though they increase computation time. Then, by using

the Saltelli sampler [3] to we generate a number of combinations of parameter values.

One limitation of this method is that it is only applicable for the scalar parameters

in WOFOST, which also has a number of tabular parameters defined as a function

of development stage or temperature. The sensitivity of these tabular parameters

cannot be properly analyzed with this approach. We omit the sensitivity analysis for

weather parameters because because weather parameters are all in the form of vectors

containing time-series weather data for the entire growing season. We also omit the

sensitivity analysis of soil parameters because the simulation throws errors when a

combination of soil parameters do not work well together.

5.1.1 Sensitivity Indices of Crop Parameters

Figure 5-1 shows the sensitivity indices for the scalar crop parameters of WOFOST.

We used 1000 equally distanced samples in the range specified in the WOFOST man-

ual [20] for each scalar parameter. We didn’t include tabular parameters to not

complicate the analysis. In the plot, blue bars indicate the first order sensitivity in-

dices and the orange bars indicate the total order sensitivity indices. We can interpret

the sensitivity indices in Figure 5-1 as how much of the variance in the model output

each parameter is responsible for. Parameters such as Q10, CFET, RML, RMR, PERDL,

have zero first order and total order sensitivity indices, therefore variations of these

parameters result in comparatively small variations in the final model output. On

the other hand, parameters SPAN, TSUM1, CVO and TBASE have high sensitivity indices

compared to all the other parameters, therefore we can say that a change in these

parameters lead to a more dramatic change in the model output.

Next we calculate the second order sensitivities to see the effect of varying two param-

eters 𝑄𝑖 and 𝑄𝑗 simultaneously, additional to the effect of their individual variations.

Figure 5-2 shows that the second order sensitivities are close to zero for all parameter

pairs. This indicates that the fractional contribution of parameter interactions to the
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Figure 5-1: Sensitivity indices for scalar crop parameters

Figure 5-2: Second order sensitivity indices for scalar crop parameters

output variance are not significant.
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5.2 Perturbation analysis

To quantify the uncertainty of the output of the simulation model, our second ap-

proach is to analytically propagate error through the dynamical system of the plant

growth that the simulation model describes. One challenge is that the dynamics of

plant growth described by the WOFOST model is very complex, therefore perturba-

tion to the system is not possible to solve analytically. Because WOFOST is setup

as a simulation model, there is no explicit analytical solution that can be written

from the rate equations. In this section, we first explain the exact system WOFOST

model describes in Section 5.2.2 and then we propose a simplification to the model

in Section 5.2.3 that we can write an analytical solution to. Finally, we present the

methodology and results for the perturbation on the simplified model in Section 5.2.7.

5.2.1 Notation

Notation we use for the rest of the chapter can be summarized as follows.

• WOFOST assumes the plant has four organs and we use 𝑖 ∈ [1, 2, 3, 4] to indicate

the plant organ, 𝑖 = 1 corresponding to the root, 𝑖 = 2 to the leaves, 𝑖 = 3 to

the stem, and 𝑖 = 4 to the storage organs.

• 𝑡 ∈ [0, ..., 𝑇 ] indicates time and is measured in days. 𝑡 = 0 corresponds to the

day the simulation is started at.

• We use capital letters to indicate state variables, which are the total plant

weight 𝑊 , total plant assimilation rate 𝐴(𝑡,𝑊 ), total plant respiration rate

𝑅(𝑡,𝑊 ), the unit assimilation rate 𝑈(𝑡,𝑊 ), etc. This means that the capital

letters indicate dependency to the plant weight 𝑊 .

• We use lowercase letters to indicate known functions of time, e.g. 𝑐(𝑡), 𝑧(𝑡).

• We use Greek letters to indicate input parameters to the model, e.g. the parti-

tioning factor 𝜋𝑖(𝑡), 𝜉𝑖.
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5.2.2 WOFOST model for plant growth

Disclaimer: This section summarizes our understanding of the WOFOST model.

Please refer to the WOFOST manual [20] by de Wit et al. for the original equations.

The WOFOST model is defined by the total plant growth rate equation:

𝜕𝑊

𝜕𝑡
= 𝑐(𝑡)(𝑔(𝑡)𝐴(𝑡,𝑊 )−𝑅(𝑡,𝑊 )), (5.3)

where 𝜕𝑊
𝜕𝑡

is the growth rate of the entire plant, i.e. change in total weight of the

plant, 𝑐(𝑡) is the conversion efficiency factor of assimilates, 𝑔(𝑡) is the reduction factor

due to plant transpiration (i.e. a function of soil moisture), 𝐴(𝑡,𝑊 ) is the total plant

assimilation rate and 𝑅(𝑡,𝑊 ) is the total plant respiration rate.

The sum of the weight of the organs are equal to the total weight of the plant and

the rate of change of weight of each organ 𝜕𝑊𝑖

𝜕𝑡
is directly proportional to the rate of

change of total weight of the plant 𝜕𝑊
𝜕𝑡

:

𝑊 (𝑡) =
4∑︁

𝑖=1

𝑊𝑖(𝑡) (5.4)

𝜕𝑊𝑖

𝜕𝑡
= 𝜋𝑖(𝑡)

𝜕𝑊

𝜕𝑡
, (5.5)

Respiration rate 𝑅(𝑡,𝑊 ) is a measure of the loss to the plant breathing and can be

expressed as follows:

𝑅(𝑡,𝑊 ) = 𝑏(𝑡)
4∑︁

𝑖=1

𝜁𝑖𝑊𝑖(𝑡) (5.6)

𝑏(𝑡) = 𝜑
𝜏𝑡−𝜏𝑟

10 (5.7)

where 𝜏𝑡 is the (average) temperature on day 𝑡, 𝜏𝑟 = 25∘𝐶 is the reference tempera-

ture, and 𝜑 is a scalar crop parameter, 𝜁𝑖 is the maintenance coefficient of organ 𝑖.
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The conversion efficiency factor of assimilates 𝑐(𝑡) is a known function of time and

crop parameters:

𝑐(𝑡) =

(︃
𝜋1(𝑡)

𝜉1
+ (1− 𝜋1(𝑡))

4∑︁
𝑖=2

𝜋𝑖(𝑡)

𝜉𝑖

)︃−1

, (5.8)

where 𝜉𝑖 are scalar crop parameters, and 𝜋𝑖(𝑡) are tabular crop parameters. 𝜋𝑖 de-

pends on the development stage of the crop 𝑑(𝑡, 𝜏), which describes whether the plant

is emerging, flowering, reached maturity, etc. Development stage 𝑑(𝑡, 𝜏) is a known

function of temperature from day 0 to 𝑡 (indicated as 𝜏 = [𝜏0, ..., 𝜏𝑡]), and omitted in

this section for brevity.

Assimilation rate is a measure of the photosynthetic efficiency of the plant and it

describes the rate of glucose (C6H12O6) produced in the following chemical equation.

6CO2 + 6H2O+ (energy) −−→ C6H12O6 + 6O2 (5.9)

Assimilation rate of the plant is an average over the day D, and along the canopy

C. Averages are calculated using the 3-point Gaussian integration method, i.e. three

points (hours) during the day (ℎ ∈ [−1, 0, 1]) and three points (levels) on the canopy

(𝑙 ∈ [−1, 0, 1]).

𝐴(𝑡,𝑊 ) = 𝛿(𝑡)

∫︁
𝐷

𝐿(𝑡,𝑊 )

∫︁
𝐶

𝑈(𝑡,𝑊, 𝑙, ℎ) 𝑑𝑙 𝑑ℎ (5.10)

where 𝛿(𝑡) is the daylength obtained from daily weather data and 𝐿(𝑡,𝑊 ) is the leaf

area index.

Leaf area index (LAI) is a measure for the total area of leaves of the plant per unit

ground area and it’s unitless. WOFOST model describes 𝐿(𝑡,𝑊 ) in two different

forms, depending on the growth stage of the plant. 𝐿𝑒𝑥𝑝(𝑡) describes the exponential

growth stage and 𝐿𝑠𝑐 describes the source-limited growth stage.

𝜕𝐿𝑒𝑥𝑝

𝜕𝑡
= 𝜆(𝑡) 𝜏𝑒 𝐿𝑒𝑥𝑝(𝑡), (5.11)
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where 𝜆(𝑡) is the maximum relative increase of LAI, 𝜏𝑒𝑓𝑓 is the daily effective temper-

ature (i.e. the number of degrees above the base temperature 𝜏𝑏𝑎𝑠𝑒 which is a scalar

crop parameter).
𝜕𝐿𝑠𝑐

𝜕𝑡
= 𝜇(𝑡)

𝜕𝑊2

𝜕𝑡
, (5.12)

where 𝜇(𝑡) is the specific leaf area, the ratio of leaf area to leaf dry mass, and 𝑊2 is

the weight of leaves.

𝑈(𝑡,𝑊 ) is the assimilation rate per unit leaf area, referred to as the net assimila-

tion rate (NAR) in the literature [23], [30], [46]. WOFOST model calculates the

NAR 𝑈(𝑡,𝑊 ) as a weighted average of the assimilation by sunlit leaves 𝑈𝑠𝑙(𝑡) and the

assimilation by shaded leaves 𝑈𝑠ℎ(𝑡,𝑊 ) [47]. The weights are the fraction of sunlit

leaves 𝑧(𝑡) and shaded leaves (1− 𝑧(𝑡)).

𝑈(𝑡,𝑊, 𝑙, ℎ) = 𝑧(𝑡, 𝑙)𝑈𝑠𝑙(𝑡,𝑊, 𝑙, ℎ) + (1− 𝑧(𝑡, 𝑙))𝑈𝑠ℎ(𝑡,𝑊, 𝑙, ℎ) (5.13)

𝑧(𝑡, 𝑙) = 𝑒−𝜅𝑑𝑟,𝑏𝑙𝐿𝑙(𝑡,𝑊 ) (5.14)

𝐿𝑙(𝑡,𝑊 ) = (0.5 + 𝑙
√
0.15)𝐿(𝑡) ∀ 𝑙 ∈ [−1, 0, 1] , (5.15)

where 𝐿𝑙(𝑡,𝑊 ) is the leaf area index on the level 𝑙 of the canopy.

Unit assimilation rates 𝑈𝑠𝑙(𝑡,𝑊 ) and 𝑈𝑠ℎ(𝑡,𝑊 ) are calculated using the light ab-

sorbed by sunlit leaves 𝐼𝑠𝑙(𝑡, 𝑙, ℎ) and by shaded leaves 𝐼𝑠ℎ(𝑡, 𝑙, ℎ).

𝑈𝑠ℎ(𝑡,𝑊, 𝑙, ℎ) = 𝛼(𝑡) (1− 𝑒−
𝜖(𝑡) 𝐼𝑠ℎ(𝑡,𝑙,ℎ)

𝛼(𝑡) ) (5.16)

𝑈𝑠𝑙(𝑡,𝑊, 𝑙, ℎ) = 𝛼(𝑡)

⎛⎝1− (𝛼(𝑡)− 𝑈𝑠ℎ(𝑡,𝑊 ))
1− 𝑒−

𝜖(𝑡) 𝐼𝑠𝑙(𝑡,𝑙,ℎ)

𝛼(𝑡)

𝜖(𝑡) 𝐼𝑠𝑙(𝑡, 𝑙, ℎ)

⎞⎠ , (5.17)

where 𝛼(𝑡) is the maximum assimilation rate, 𝜖(𝑡) is the initial light use efficiency,

both of which are tabular crop parameters.
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The light absorbed by sunlit and shaded leaves are calculated as follows:

𝐼𝑠𝑙(𝑡, 𝑙, ℎ) = 𝐼𝑠𝑙(𝑡, ℎ) =
(1− 𝜎) 𝐼0,𝑑𝑟(𝑡, ℎ)

sin 𝛽
(5.18)

𝐼𝑠ℎ(𝑡, 𝑙, ℎ) = 𝐼𝑎,𝑑𝑓 (𝑡, 𝑙, ℎ) + 𝐼𝑎,𝑑𝑟,𝑡(𝑡, 𝑙, ℎ)− 𝐼𝑎,𝑑𝑟,𝑑𝑟(𝑡, 𝑙, ℎ), (5.19)

where 𝐼0,𝑑𝑟 is the direct part of the photosynthetically active radiation (PAR) flux at

the top of the canopy at point ℎ during the day, 𝑠𝑖𝑔𝑚𝑎 is the scattering coefficient,

and 𝛽 is the solar elevation. 𝐼𝑎,·(𝑡, 𝑙, ℎ) indicates the absorbed PAR at point 𝑙 on the

canopy and at hour ℎ during the day. 𝐼𝑎,𝑑𝑓 for the diffuse flux, 𝐼𝑎,𝑑𝑟,𝑡 is for the total

direct flux and 𝐼𝑎,𝑑𝑟,𝑏𝑙 is for the direct flux on non-reflective (‘black’) leaves.

Intensity of the aforementioned types of radiation is calculated as follows:

𝐼𝑎,𝑑𝑓 (𝑡, 𝑙, ℎ) = 𝜅𝑑𝑓 (1− 𝜌)𝐼0,𝑑𝑓 (𝑡, ℎ) 𝑒
−𝜅𝑑𝑓𝐿𝑙(𝑡,𝑊 ) (5.20)

𝐼𝑎,𝑑𝑟,𝑡(𝑡, 𝑙, ℎ) = 𝜅𝑑𝑟,𝑡(1− 𝜌)𝐼0,𝑑𝑟(𝑡, ℎ) 𝑒
−𝜅𝑑𝑟,𝑡𝐿𝑙(𝑡,𝑊 ) (5.21)

𝐼𝑎,𝑑𝑟,𝑡𝑏𝑙(𝑡, 𝑙, ℎ) = 𝜅𝑑𝑟,𝑏𝑙(1− 𝜎)𝐼0,𝑑𝑟(𝑡, ℎ) 𝑒
−𝜅𝑑𝑟,𝑏𝑙𝐿𝑙(𝑡,𝑊 ) (5.22)

where 𝐼0,𝑑𝑓 (𝑡, ℎ) is the diffuse part of PAR flux, 𝜅 is the extinction coefficient for the

specified PAR flux, and 𝜌 is the reflection coefficient of the canopy. 𝐼0,𝑑𝑟 and 𝐼0,𝑑𝑓

are derived quantities by the astro module of WOFOST from the daily weather data.

We omit other information about the WOFOST model because our work focuses on

the mentioned equations only. Further detail can be found in the Wofost system

description [20].

Bringing all these equations together we can write the system of equations for the
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WOFOST model as follows:

𝜕𝑊

𝜕𝑡
= 𝑐(𝑡)(𝑔(𝑡)𝐴(𝑡,𝑊 )−𝑅(𝑡,𝑊 )) (5.23)

𝑅(𝑡,𝑊 ) = 𝑏(𝑡)
4∑︁

𝑖=1

𝜁𝑖𝑊𝑖(𝑡) (5.24)

𝐴(𝑡,𝑊 ) = 𝛿(𝑡)𝐿(𝑡,𝑊 )

∫︁
𝐷

∫︁
𝐶

𝑈(𝑡,𝑊, 𝑙, ℎ) 𝑑𝑙 𝑑ℎ (5.25)

𝑈(𝑡,𝑊, 𝑙, ℎ) = 𝑧(𝑡, 𝑙)𝑈𝑠𝑙(𝑡,𝑊, 𝑙, ℎ) + (1− 𝑧(𝑡, 𝑙))𝑈𝑠ℎ(𝑡,𝑊, 𝑙, ℎ) (5.26)

𝑈𝑠ℎ(𝑡,𝑊, 𝑙, ℎ) = 𝛼(𝑡) (1− 𝑒−
𝜖(𝑡) 𝐼𝑠ℎ(𝑡,𝑙,ℎ)

𝛼(𝑡) ) (5.27)

𝑈𝑠𝑙(𝑡,𝑊, 𝑙, ℎ) = 𝛼(𝑡)

⎛⎝1− (𝛼(𝑡)− 𝑈𝑠ℎ(𝑡,𝑊 ))
1− 𝑒−

𝜖(𝑡) 𝐼𝑠𝑙(𝑡,𝑙,ℎ)

𝛼(𝑡)

𝜖(𝑡) 𝐼𝑠𝑙(𝑡, 𝑙, ℎ)

⎞⎠ (5.28)

𝑧(𝑡, 𝑙) = 𝑒−𝜅𝑑𝑟,𝑏𝑙𝐿𝑙(𝑡,𝑊 ) (5.29)

𝐿𝑙(𝑡,𝑊 ) = (0.5 + 𝑙
√
0.15)𝐿(𝑡) ∀ 𝑙 ∈ [−1, 0, 1] (5.30)

5.2.3 Simplified model for plant growth

As shown in the previous section, the WOFOST crop growth model describes a com-

plex dynamical system that we cannot analyze the perturbations on. With a few

assumptions and linear approximations to the many exponential functions in the sys-

tem, the system can be simplified. In this section we describe the assumptions and

approximations we make and show that the results obtained with the simplified model

is close enough to the results of the WOFOST simulation model.

Assumptions

• Instead of the averaging over the day and the canopy with the 3-point Gaussian

integration method, we take one point in the day and one level on the canopy

is a proxy for the plant growth. Hence we can rewrite the following expressions
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without the 𝑙 and ℎ variables and the integrals over day and canopy.

𝐼0,𝑑𝑟(𝑡, ℎ) = 𝐼0,𝑑𝑟(𝑡, ℎ = 0) = 𝐼0,𝑑𝑟(𝑡) (5.31)

𝐼𝑠𝑙(𝑡, ℎ) = 𝐼𝑠𝑙(𝑡, ℎ = 0) = 𝐼𝑠𝑙(𝑡) (5.32)

𝐼𝑎,𝑑𝑓 (𝑡, 𝑙, ℎ) = 𝐼𝑎,𝑑𝑓 (𝑡, 𝑙 = 0, ℎ = 0) = 𝐼𝑎,𝑑𝑓 (𝑡) (5.33)

𝐼𝑎,𝑑𝑟,𝑡(𝑡, 𝑙, ℎ) = 𝐼𝑎,𝑑𝑟,𝑡(𝑡, 𝑙 = 0, ℎ = 0) = 𝐼𝑎,𝑑𝑟,𝑡(𝑡) (5.34)

𝐼𝑎,𝑑𝑟,𝑑𝑟(𝑡, 𝑙, ℎ) = 𝐼𝑎,𝑑𝑟,𝑑𝑟(𝑡, 𝑙 = 0, ℎ = 0) = 𝐼𝑎,𝑑𝑟,𝑑𝑟(𝑡) (5.35)

𝐼𝑠ℎ(𝑡, 𝑙, ℎ) = 𝐼𝑠ℎ(𝑡, 𝑙 = 0, ℎ = 0) = 𝐼𝑠ℎ(𝑡) (5.36)

𝐿𝑙(𝑡,𝑊 ) = 𝐿𝑙=0(𝑡) =
𝐿(𝑡,𝑊 )

2
(5.37)

𝑈(𝑡,𝑊, 𝑙, ℎ) = 𝑈(𝑡,𝑊, 𝑙 = 0, ℎ = 0) = 𝑈(𝑡,𝑊 ) (5.38)

𝐴(𝑡,𝑊 ) = 𝛿(𝑡)𝐿(𝑡,𝑊 )𝑈(𝑡,𝑊 ) (5.39)

• We assume in the middle of the plant 𝑙 = 0, fraction of sunlit and shaded

leaves are equal to each other, hence the fraction of sunlit leaves is constant and

Equation 5.14 becomes:

𝑧(𝑡, 𝑙 = 0) = 𝑧 =
1

2
(5.40)

• We only use the source-limited growth expression Equation 5.12 for the leaf

area index rate and rewrite it in the following form:

𝐿(𝑡,𝑊 ) = 𝐿𝑠𝑐(𝑡,𝑊 ) (5.41)
𝜕𝐿𝑠𝑐

𝜕𝑡
= 𝜇(𝑡)

𝜕𝑊2

𝜕𝑡
(5.42)

𝐿𝑠𝑐(𝑡) = 𝜇(𝑡)𝑊2(𝑡)−
∫︁ 𝑡

0

𝜕𝜇

𝜕𝑡′
𝑊2(𝑡

′)𝑑𝑡′ (5.43)

≈ 𝜇(𝑡)𝑊2(𝑡) (5.44)

We can make the approximation on the last line because the second term is

negligible due to 𝜕𝜇
𝜕𝑡′

being close to zero.
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• By integrating the differential equation 5.5, we can express 𝑊𝑖(𝑡) as follows:

𝜕𝑊𝑖

𝜕𝑡
= 𝜋𝑖(𝑡)

𝜕𝑊

𝜕𝑡
(5.45)

𝑊𝑖(𝑡) = 𝜋𝑖(𝑡)𝑊 (𝑡)−
∫︁ 𝑡

0

𝜕𝜋𝑖

𝜕𝑡′
𝑊 (𝑡′)𝑑𝑡′ (5.46)

Now we assume that the integral term can be expressed as 𝜂𝑖(𝑡) which is a

numerical correction to 𝜋𝑖(𝑡).

𝜋*
𝑖 (𝑡) = 𝜋𝑖(𝑡)− 𝜂𝑖(𝑡) (5.47)

𝑊𝑖(𝑡) ≈ 𝜋*
𝑖 (𝑡)𝑊 (𝑡) (5.48)

This assumption in Equation 5.48 is necessary to be able to write an analytical

solution to Equation 5.3. Hence we estimate 𝜂𝑖(𝑡) numerically from a random

run of WOFOST simulation.

• We approximate the NAR for shaded leaves by using the linear approximation

for the exponential function near 𝐼𝑠ℎ(𝑡,𝑊 ) = 0. Equation 5.16 becomes:

𝑈𝑠ℎ(𝑡,𝑊 ) = 𝛼(𝑡) (1− 𝑒−
𝜖(𝑡) 𝐼𝑠ℎ(𝑡)

𝛼(𝑡) ) (5.49)

≈ 𝜖(𝑡) 𝐼𝑠ℎ(𝑡,𝑊 ) (5.50)

We then assume that the radiation absorbed by shaded leaves 𝐼𝑠ℎ(𝑡,𝑊 ) is equal

to the radiation absorbed from diffuse radiation 𝐼𝑎,𝑑𝑓 , meaning that we ignore

the direct radiation component. This assumption makes sense because we are

already taking into account the direct part of the PAR for the sunlit leaves.

With the assumption 𝑙 = 0, we wrote 𝐿𝑙(𝑡,𝑊 ) = 𝐿(𝑡)
2

, then Equation 5.19

becomes:

𝐼𝑠ℎ(𝑡,𝑊 ) ≈ 𝐼𝑎,𝑑𝑓 (𝑡) = 𝜅𝑑𝑓 (1− 𝜌)𝐼0,𝑑𝑓 (𝑡) 𝑒
−

𝜅𝑑𝑓 𝐿(𝑡,𝑊 )

2 (5.51)

Let 𝑎 = −𝜅𝑑𝑓

2
, 𝑥 = 𝐿(𝑡,𝑊 ) and 𝑓(𝑥) = 𝑒𝑎𝑥. Using the first two terms of the
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Taylor series let’s approximate 𝑓(𝑥).

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥− 𝑥0)

= 𝑓(𝑥0)− 𝑓 ′(𝑥0)𝑥0 + 𝑓 ′(𝑥0)𝑥

= 𝑐0 + 𝑐1

where

𝑓(𝑥0) = 𝑒𝑎 𝑥0 and 𝑓 ′(𝑥0) = 𝑎 𝑒𝑎 𝑥0

𝑐0 = 𝑓(𝑥0)− 𝑥0𝑓
′(𝑥0) = 𝑒𝑎 𝑥0 − 𝑥0 𝑎 𝑒

𝑎 𝑥0

= 𝑒−
𝜅𝑑𝑓
2

𝑥0 +
𝜅𝑑𝑓

2
𝑥0 𝑒

−
𝜅𝑑𝑓
2

𝑥0

𝑐1 = 𝑓 ′(𝑥0) = 𝑎 𝑒𝑎 𝑥0

= −𝜅𝑑𝑓

2
𝑒−

𝜅𝑑𝑓
2

𝑥0

Then, we can rewrite 5.51 as follows:

𝐼𝑠ℎ(𝑡,𝑊 ) ≈ 𝜅𝑑𝑓 (1− 𝜌)𝐼0,𝑑𝑓 (𝑡) (𝑐0 + 𝑐1𝐿(𝑡,𝑊 )) (5.52)

= 𝑘(𝑡)(𝑐0 + 𝑐1𝐿(𝑡,𝑊 )) (5.53)

𝑘(𝑡) = 𝜅𝑑𝑓 (1− 𝜌)𝐼0,𝑑𝑓 (𝑡) (5.54)

• We ignore the 𝑈𝑠ℎ(𝑡,𝑊 ) term in Equation 5.17 and 𝑈𝑠𝑙(𝑡,𝑊 ) loses its depen-

dency on 𝑊 , therefore we switch to the lowercase notation 𝑢𝑠𝑙(𝑡) and rewrite it

as follows:

𝑢𝑠𝑙(𝑡) = 𝛼(𝑡)

⎛⎝1− (𝛼(𝑡))
1− 𝑒−

𝜖(𝑡) 𝐼𝑠𝑙(𝑡)

𝛼(𝑡)

𝜖(𝑡) 𝐼𝑠𝑙(𝑡)

⎞⎠ (5.55)

𝐼𝑠𝑙(𝑡) =
(1− 𝜎) 𝐼0,𝑑𝑟(𝑡)

sin 𝛽
(5.56)

𝑈𝑠𝑙(𝑡) is now just a known function of crop parameters and weather input 𝐼0,𝑑𝑟(𝑡).
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• By plugging the approximation for 𝑊𝑖(𝑡) from Equation 5.48 into Equation 5.6,

we can rewrite the respiration rate 𝑅(𝑡,𝑊 ) as follows:

𝑅(𝑡,𝑊 ) = 𝑏(𝑡)
4∑︁

𝑖=1

𝜁𝑖 𝜋
*
𝑖 (𝑡)𝑊 (𝑡) (5.57)

= 𝑟(𝑡)𝑊 (𝑡) (5.58)

𝑟(𝑡) = 𝑏(𝑡)
4∑︁

𝑖=1

𝜁𝑖 𝜋
*
𝑖 (𝑡) (5.59)

Given the list of assumptions and approximations we make to simplify the WOFOST

model, we can now write the new system of equations for the Simple Model.

5.2.4 System of Equations for the Simple Model

Bringing together all the assumptions and Equations 5.31 - 5.57, we can rewrite the

system of equations that describe the dynamics of plant growth as follows:

𝜕𝑊

𝜕𝑡
= 𝑐(𝑡)(𝑔(𝑡)𝐴(𝑡,𝑊 )−𝑅(𝑡,𝑊 )) (5.60)

𝑅(𝑡,𝑊 ) ≈ 𝑟(𝑡)𝑊 (𝑡) (5.61)

𝐴(𝑡,𝑊 ) ≈ 𝛿(𝑡)𝐿(𝑡,𝑊 )𝑈(𝑡,𝑊 ) (5.62)

𝑈(𝑡,𝑊 ) ≈ 𝑧 𝑢𝑠𝑙(𝑡) + (1− 𝑧)𝑈𝑠ℎ(𝑡,𝑊 ) (5.63)

𝑈𝑠ℎ(𝑡,𝑊 ) ≈ 𝜖(𝑡) 𝐼𝑠ℎ(𝑡,𝑊 ) (5.64)

𝐼𝑠ℎ(𝑡,𝑊 ) ≈ 𝑘(𝑡)(𝑐0 + 𝑐1𝐿(𝑡,𝑊 )) (5.65)

𝐿(𝑡,𝑊 ) ≈ 𝜇(𝑡)𝑊2(𝑡) (5.66)

𝑊2(𝑡) ≈ 𝜋*
2(𝑡)𝑊 (𝑡) (5.67)

In one line, we can write:

𝜕𝑊

𝜕𝑡
= 𝑐(𝑡) (𝑔(𝑡) (𝛿(𝑡)𝜇(𝑡)𝜋*

2(𝑡)𝑊 (𝑡) (𝑧 𝑢𝑠𝑙(𝑡) + (1− 𝑧) 𝜖(𝑡)𝑘(𝑡)(𝑐0 + 𝑐1𝜇(𝑡)𝜋
*
2(𝑡)𝑊 (𝑡))))− 𝑟(𝑡)𝑊 (𝑡))
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Rearranging we get:
𝜕𝑊

𝜕𝑡
= 𝑝(𝑡)𝑊 (𝑡) + 𝑞(𝑡)𝑊 2(𝑡) (5.68)

where

𝑝(𝑡) = 𝑐(𝑡)𝑔(𝑡)𝛿(𝑡)𝜇(𝑡)𝜋*
2(𝑡) (𝑧𝑢𝑠𝑙(𝑡) + (1− 𝑧)𝜖(𝑡)𝑘(𝑡)𝑐0)− 𝑐(𝑡)𝑟(𝑡) (5.69)

𝑞(𝑡) = 𝑐(𝑡)𝑔(𝑡)𝛿(𝑡)𝜇2(𝑡)(𝜋*
2)

2(𝑡)(1− 𝑧)𝜖(𝑡)𝑘(𝑡)𝑐1 (5.70)

Simple model described by Equation 5.68 is an approximation to the WOFOST model

described in Equations 5.23 - 5.30. Again, we made all the assumptions and approx-

imations explained in this section with the goal of finding an analytical solution to

the rate equation for plant growth. Next we calculate this solution.

5.2.5 Analytical Solution

By taking the integral with respect to time on each side of Equation 5.68 we get:

∫︁ 𝑡

0

𝜕𝑊

𝜕𝑡
𝑑𝑡 =

∫︁ 𝑡

0

(𝑝(𝑡)𝑊 (𝑡) + 𝑞(𝑡)𝑊 2(𝑡))𝑑𝑡 (5.71)

𝑊 (𝑡) =
𝑒
∫︀ 𝑡
0 𝑝(𝑡′)𝑑𝑡′

𝐶0 −
∫︀ 𝑡

0
𝑒
∫︀ 𝑧
0 𝑝(𝑧′)𝑑𝑧′𝑞(𝑧)𝑑𝑧

(5.72)

where 𝐶0 =
1
𝑊0

and 𝑊0 is a crop parameter describing the initial weight of the plant.

Next, we compare results we get using the solution to the simple model against the

results of the WOFOST simulation model.

5.2.6 Results

To compare Simple Model to the WOFOST model, we ran the WOFOST simulation

in the potential yield setting for the crop maize and a random county in Iowa for the

year 2000 as it was one of the years with complete weather data. We computed the

coefficients 𝑝(𝑡) and 𝑞(𝑡) in Equation 5.72 with the time-series data of crop parameters

and weather obtained from the WOFOST simulation. We plotted the progression of

the total dry matter weight 𝑊 (𝑡) from the emergence of the plant (day 0) to the day
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it was harvested.

Figure 5-3: Comparison of total dry matter weight

Figure 5-3 shows the simple model’s solution for the total plant weight (orange) com-

pared to the total weight evolution obtained from the WOFOST simulation model

(blue). We observe that the Simple Model’s solution is close to the WOFOST’s sim-

ulation when the plant it very young and it starts underestimating compared to the

WOFOST model starting around day 10. This gap is mostly due to the underestima-

tion of the leaf area index (LAI) which is computed from the total weight of leaves

𝑊2(𝑡). Note that the discrepancy between the models is not constant because the

errors caused by different assumptions are not constant in time.

Figure 5-4 shows the partitioning of the dry matter weight to the plant organs.

Dashed lines indicate the results achieved by the simple model and solid lines in-

dicate the WOFOST model’s results. Blue lines indicate the weight of the roots,

green the leaves, magenta the stem and the red the storage organs. We see that the

Simple model consistently underestimates the weight of roots and leaves compared

to the WOFOST model. Even though it starts by underestimating the weight of the

stem too, it gets very close the WOFOST model by the maturity stage of the plant.
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Figure 5-4: Comparison of plant organ weights

The weight of storage organs is the quantity we’re interested in the most since it

corresponds to the crop yield. We see that both the Simple model and the WOFOST

model have zero weight for the storage organs the plant gets more mature. Later

the Simple model overestimates and then underestimates compared to the WOFOST

model. At the end of the growing season, the weight of storage organs, i.e. the yield,

is estimated to be slightly lower than what the WOFOST model simulates.

To reiterate, the goal of developing the Simple model is to have a system close to

the WOFOST model but easier to analyze than the exact WOFOST model. With

the Simple model, now we can quantify the uncertainty by finding how much the

system can deviate from the optimal trajectory due to inputs of the model, such as

weather, crop characteristics, soil characteristics, etc.

5.2.7 Uncertainty Propagation

We propagate uncertainty from input parameters through the system described by

the Simple Model in Equation 5.68. We start by propagating uncertainties in 𝑞(𝑡) and

𝑝(𝑡) because they are derived from many input parameters as expressed in Equations

5.69 and 5.70. This means that our goal is to calculate the uncertainty in weight of
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the total plant 𝑊 (𝑡) given the uncertainties in 𝑞(𝑡) and 𝑝(𝑡) using Equation 5.72. We

denote uncertainty in a given quantity 𝑄 as 𝛿𝑄. Uncertainty in 𝑊 (𝑡) is denoted as

𝛿𝑊 , uncertainty in 𝑝(𝑡) denoted as 𝛿𝑝 and uncertainty in 𝑞(𝑡) denoted as 𝛿𝑞.

Suppose we know 𝑝(𝑡) with uncertainty 𝛿𝑝 and 𝑞(𝑡) is known with high confidence,

i.e. 𝛿𝑞 = 0. We can calculate the uncertainty 𝛿𝑊 as follows:

Let 𝐼 =
∫︀ 𝑧

0
𝑝(𝑧′)𝑑𝑧′ =

∑︀𝑧
𝑧′=0 𝑝(𝑧

′). This equality also holds because 𝑧′ is a discrete

variable as it represents days. Then,

𝛿𝐼 = 𝛿𝑝
√
𝑧 (5.73)

Let 𝐹 = 𝑒𝐼 , then

𝛿𝐹 = |𝑒𝛿𝐼 | |𝛿𝐼| = |𝑒𝛿𝑝
√
𝑧| |𝛿𝑝

√
𝑧| (5.74)

Let 𝑀 = 𝐹𝑞(𝑧), then

𝛿𝑀 = |𝑞(𝑧)|𝛿𝐹 = |𝑞(𝑧)| |𝑒𝛿𝑝
√
𝑧| |𝛿𝑝

√
𝑧| (5.75)

Let 𝑆 =
∫︀ 𝑡

0
𝑀𝑑𝑧 =

∑︀𝑡
𝑧=0, then

(𝛿𝑆)2 =
𝑡∑︁

𝑧=0

(𝛿𝑀)2 =
𝑡∑︁

𝑧=0

(︁
|𝑞(𝑧)| |𝑒𝛿𝑝

√
𝑧| |𝛿𝑝

√
𝑧|
)︁2

(5.76)

𝛿𝑆 =

⎯⎸⎸⎷ 𝑡∑︁
𝑧=0

(︀
|𝑞(𝑧)| |𝑒𝛿𝑝

√
𝑧| |𝛿𝑝

√
𝑧|
)︀2 (5.77)

Using the above definitions, we can express Equation 5.72 as:

𝑊 (𝑡) =
𝐹 (𝑡)

𝐶0 − 𝑆(𝑡)
(5.78)

Then the fractional uncertainty in 𝑊 (𝑡) can be written as:

𝛿𝑊

|𝑊 |
=

√︃(︂
𝛿𝐹

𝐹

)︂2

+

(︂
𝛿𝑆

𝑆

)︂2

− 2𝜎𝑆,𝐹 , (5.79)
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where 𝜎𝑆,𝐹 is the covariance of 𝑆 and 𝐹 , which can be calculated using 𝑝(𝑡) and 𝑞(𝑡)

from Equations 5.69 and 5.70.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Our Empirical Findings

In this thesis, we set out to answer the question: How can we reliably generate yield

data for different regions of the world using simulation models? To answer this ques-

tion, we used the WOFOST crop simulation model to generate yield data and assessed

the reliability of the generated data through validation, calibration and uncertainty

quantification of the model.

Motivated by applications of the WOFOST model in the European Monitoring Agri-

cultural Resources Crop Yield Forecasting System (MCYFS) [33], we first investigated

its applicability in different regions of the world, such as the US. Due to the ample

availability of yield data for the corn crop in the US, we used county-level annual corn

yield data for the validation of the WOFOST model. In order to run the simulation

in each county, we aggregated real-world data from various data sources to be given

as the inputs parameters of the model. These data sources describing the crop char-

acteristics, soil characteristics, weather conditions, sowing dates, and harvest dates

varied in their formats and completeness. We processed these different types of data

from different sources for each county and formatted as one data matrix that can be

given as an input to the WOFOST simulation.
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After constructing the data matrix for counties and years that we had corn yield data

for, we generated yield data by running the WOFOST simulation model for each

county in the US for the growing season each year. In order to validate the results

of the model, we compared the simulated yield to the true yield data. While we ob-

served the WOFOST model simulated yields close to the true yield in some years and

counties, there were still some years and counties with large yield gaps. Investigating

the inconsistency of WOFOST, we observed a weak but significant positive trend in

the mean yield gap and the percentage error throughout the years. Inspecting the

yield and percentage error on county level maps, we also observed some geographical

correlations. We hypothesized that these correlations could be due to the inaccuracy

of some of the input parameters. Because we did not have any available data for the

specific crop varieties used in a given county at a given year, we used constant crop

parameters. The fact is that crop cultivars show great variance from farm to farm

and from year to year. Thus, we needed to calibrate the crop parameters of the model

match the reality more closely.

With calibration, our objective was to find the model parameters that generate yield

data that are in well-alignment with the real-world yield data. We formulated this

calibration task as minimizing the mean squared error between simulated yield and

the true yield. Using the gradient-free optimization method evolutionary algorithms,

we found the crop parameters that are most likely to produce the true yield data

from Iowa. We observed that the calibration significantly reduced the gap between

the simulated and true yield throughout the state and reduced the variations of yield

gaps amongst counties.

In this work, we further captured the problem of assessing the quality of the simu-

lated data due to the deterministic nature of the WOFOST model. We provided two

approaches to quantify the uncertainty of the WOFOST outputs: Monte-Carlo based

sensitivity analysis and error propagation through an alternative model to WOFOST.

We developed this alternative model to achieve a simple analytical equation for the
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plant growth dynamics, because it was intractable to analyze the uncertainty using

the complex system the WOFOST model describes.

6.2 Future Work

6.2.1 Data Collection and Generation

Finding soil, crop, weather, and yield data from different regions of the world—

especially from the sub-Saharan regions of Africa—and aggregating them in the Data

Platform is an important next step in the Digital Agriculture in Africa project. Find-

ing data from field experiments in farms instead of counties would be another valuable

contribution to the Data Platform, because a county is a much larger region than farm

and data from different farms in a county can show great variance. Due to the limited

scope of this thesis, we could focus only on the corn data; however, there are plenty of

data for crops, such as wheat, barley, and soybean in the USDA NASS database, and

generating data matrices for different crops and running simulations for these crops

would be another important contribution to the field.

6.2.2 Validation

Validation was our first step towards understanding understanding the quality of

WOFOST simulated yield data. Our empirical findings about the yield gap and

percentage error of corn in the US were surprising and led us to the calibration work.

It would be interesting to repeat the validation process for a crop other than corn,

such as wheat and soybean, to see whether our observations with the other crops

would be similar to those with the corn data. To have maximize the number of data

points, we evaluated the validation metrics on multiple states. Future work could

investigate the metrics on a state-by-state basis to obtain new insights about the

variance of the yield gap and percentage error.
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6.2.3 Calibration

For calibration, we chose the gene representation 𝜃 = [TSUM1, TSUM2], because these

are the two parameters that are different between cultivars and that are used by pre-

vious work for calibration. Sensitivity indices in Figure 5-1 can be used to determine

other candidates to include in the gene representation, 𝜃, for the evolutionary algo-

rithm used in calibration. Parameters with higher sensitivity indices, such as SPAN,

TDWI, CVO and TBASE, can be included as well as the TSUM1 and TSUM2 parameters.

Another useful future work might be to measure how well the calibrated parameters

for the state of Iowa transfers to other states in the Corn Belt, such as Illinois.

6.2.4 Uncertainty Quantification

While developing the alternative model to WOFOST (the Simple Model), we only

compared the progression of the weights in the WOFOST model to the Simple Model

at a given location and year. Future work could generate yield data using the Simple

Model for all the counties and years, like we did in Chapter 3 for validation. Similar to

Figures 3-11 and 3-17, plotting the yield generated by the Simple Model against the

true yield could show whether the error of the Simple Model is similar to that of the

WOFOST model. Another important future work would be to learn the parameters

𝑝(𝑡) and 𝑞(𝑡) with enough data, or some other parameters that are easier to mea-

sure than the large number of WOFOST parameters to make it easier to accurately

measure inputs to the model and to reduce input uncertainty.
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