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Abstract
Recent work has developed a theory of motion-planning gadgets, which are a useful
tool for proving hardness for a variety of problems that can be thought of in terms of
an agent navigating a dynamic environment. We introduce formal objects represent-
ing motion-planning gadgets, which we call gizmos, and ask which gizmos simulate
each other—simulations between gizmos yield reductions between natural decision
problems, so this has consequences for complexity.

We define several classes of gizmos, and prove that they are closed under simula-
tion: gizmos with some property cannot simulate gizmos without it. For several of
these classes, we also find a gizmo which can simulate every gizmo in the class; this is
analogous to completeness for a complexity class. We consider gizmo simulation and
prove unsimulability and universality in two restricted settings: planar simulation,
where the simulation must embed in the plane without crossings, and input/output
simulation, which is a model for fully deterministic settings. We mostly focus on
simulations with finitely many gizmos and gizmos with finitely many states (called
regular), but many of our results carry over to more exotic infinite gizmos.
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Chapter 1

Introduction

1.1 History of gadgets

There is a long tradition of structuring reductions, typically those in hardness proofs,
around ‘gadgets.’ Informally, a gadget in such a reduction is a local component cor-
responding to a portion of the input; the output instance is constructed by replacing
each part of the input with the appropriate gadget. For instance, reductions from
3SAT often consist of ‘clause gadgets’ and ‘variable gadgets’ [Hol81, GLN14, JG79].

Szabó [Sza09] attributes the use of gadgets in reductions to Tutte [Tut54], who uses
a local replacement to reduce finding 𝑓 -factors of graphs to the special case of finding
perfect matchings. This graph-theoretic type of gadget has been studied in detail: for
instance, Loebl [Loe93] gives a characterization of exactly the degree constraints which
can be enforced with gadgets in reductions from a generalization of finding 𝑓 -factors
to the problem of partitioning a graph into edges and designated triangles. Trevisan et
al. [TSSW00] consider a more general class of gadgets in reductions between constraint
satisfaction problems, and demonstrate a powerful way to understand the limits of
these gadgets based on linear programming. They prove bounds on the efficiency of
gadgets in hardness of approximation reductions, and use computer search to achieve
many of these bounds.

Much of the work involving gadgets, and particularly the study of gadgets them-
selves, has focused on the kinds of gadgets used for reductions between constraint
satisfaction problems. In particular, these gadgets are generally useful only for re-
ductions between problems in NP. However, there are also plenty of hardness proofs
for PSPACE and other classes which are based around gadgets in a similar way
[ADGV15, DDHO03, FG87, HS04]. The general strategy for proving hardness has
two parts: first build some gadgets in the problem of interest, and then use these
gadgets to construct an instance of a known-hard problem.

In 2018, Demaine, Grosof, et al. [DGLR18] introduced a notion of ‘gadget’ for
another broad class of problems: motion planning problems. In a motion planning
problem, an ‘agent’ must navigate an environment which changes in response to the
agent’s actions. This kind of problem is too dynamic for constraint-satisfaction-style
gadgets to apply, and often naturally lives in PSPACE. A motion-planning gadget
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has some ‘states,’ some ‘locations,’ and some ‘transitions,’ which say that the agent
is allowed to move from one location to another while switching the state from one
to another.1 Understanding these gadgets can simplify many hardness proofs, by
preemptively performing the step of showing that navigating the gadgets is hard. All
that needs to be done to prove a problem related to motion planning hard is the
construction of a known-hard set of gadgets.

For instance, Demaine et al. [DDHO03] build four simple gadgets in a block-
pushing problem, and then show that these gadgets suffice for NP-hardness through
a fairly involved reduction from 3-coloring graphs. However, it turns out that one of
the four gadgets alone is sufficient for NP-hardness [ABD+20]. Holzer and Schwoon
[HS04] build a gadget they call a ‘catalyst chamber’ and some auxiliary gadgets in the
game Atomix, and use these to simulate finite automata. However, the catalyst cham-
ber can easily be used to build a gadget called ‘symmetric self-closing doors’ or ‘mis-
matched dicrumblers’ (see Figure 2-5), which alone is PSPACE-complete [ABD+20].2
This example is also interesting because in Atomix, the player can make moves any-
where in the game; it does not have an ‘agent’ in the sense of motion-planinng gad-
gets. The reduction forces some amount of locality which allows Atomix to simulate
a motion-planning agent.

Since Demaine, Grosof, et al.’s work in 2018 [DGLR18], there has been signifi-
cant progress in understanding the complexity of motion-planning gadgets. Demaine,
Hendrickson, and Lynch [DHL20] characterized the complexity of multiple decision
problems for two large classes of gadgets. Ani, Demaine, et al. [ADHL20] considered a
fully determinstic gadget model, and proved hardness of many gadgets within it. Ani,
Bosboom, et al. [ABD+20] showed additional gadgets PSPACE- and NP-complete,
particularly in planar settings. Jayson Lynch’s thesis [Lyn20] synthesizes many of
these results and extends them in a handful of ways.

While the work on motion-planning gadgets has primarily focused on proving
hardness, another natural question to ask is when gadgets can ‘simulate’ each other.
Simulation is relevant even one is interested only in complexity, since a simulation
between gadgets immediately gives a reduction between the corresponding decision
problems. Several prior papers [ABD+20, ADHL20, DHL20] have proven nontrivial
results about gadget simulation, which we describe in Section 2.4.

1.2 Outline of this thesis
Gadget simulation is interesting enough to warrant its own investigation, independent
of its original motivation in complexity theory. The goal of this work is to study the
natural question:

Question 1.1. When is it possible to build some gadget out of copies of some other
gadget?

1We describe motion-planning gadgets in more detail in Chapter 2
2This proof also applies to Ricochet Robots, which has independently been shown to be NP-

hard [EK06], and perhaps other games with similar mechanics, such as Pete’s Pike, which is also
PSPACE-complete [Mey16].
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Before we can begin to answer this question, we need to say what it means to
build a gadget out of other gadgets; this is gadget simulation, which has not been
defined carefully before. Our approach involves first defining gadgets in a completely
new way.

In Chapter 2, we define gadgets and gadget-related terminology as they have been
defined in past work: as state machines. The only new contribution in this chapter is
the definition of a family of decision problems we call ‘targeted (set) reconfiguration.’

In Chapter 3, we define the objects we will study, called ‘gizmos.’ Gizmos are a
formal representation of gadgets which more easily yield a natural notion of simula-
tion than the traditional state machines. As discussed in detail in Sections 3.1 and
3.5, gizmos are only applicable in the context of one-player targeted set reconfigura-
tion, which includes one-player reachability as a special case. An important special
class of gizmos, called ‘prefix-closed’ gizmos, capture one-player reachability. Another
important special class, called ‘regular’ gizmos, capture gadgets with finitely many
states.

In the remaining sections, we consider primarily regular prefix-closed gizmos. Our
overarching goal is to determine when regular prefix-closed gizmos simulate other
regular prefix-closed gizmos.

In Chapter 4, we prove several negative results. That is, we prove that various
classes of gizmos are ‘closed under simulation,’ meaning gizmos in the class cannot
simulate gizmos outside the class. The classes we consider include one infinite family
of closed gizmo classes, called ‘implication properties,’ and a few other closed classes.
Prefix-closed is an implication property, and thus prefix-closed gizmos are closed un-
der simulation; this justifies studying specifically simulations between prefix-closed
gizmos. Regular gizmos are also closed under simulation, provided we require simu-
lations to use only finitely many gizmos. Several of our classes correspond to natural
classes of gadgets which have been defined in past work [DGLR18, DHL20, Lyn20].

In Chapter 5, we prove several general positive results. These take the form of
showing that a specific small set of (regular, prefix-closed) gizmos simulates every
regular prefix-closed gizmo in some class.

In Chapter 6, we consider simulations which are allowed to have infinitely many
gizmos, and nonregular gizmos, which are allowed to have infinitely many states.
Several of our closure and universality results carry over to this situation.

Finally, in Chapter 7, we pose many remaining open problems and potential av-
enues to explore which are not covered by this thesis.

1.3 Summary of results
Here we collect and organize most of the results in this thesis, since they are spread
across many sections.
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Closed under?

Class Def. Arb. sim. Trav. Universal gadget Arb?

Implication properties 4.5

34.6
All (prefix-closed) 3.9 34.2 Door 5.8 36.3

𝑋 =⇒ 𝑋𝑋 &
𝑋𝑌 =⇒ 𝑌 𝑋

35.17 Mutually closing
diodes 5.19

Unchanging 5.20
35.21

Diode 5.23 36.5

𝑋 =⇒ 𝑋−1

unchanging Wire 5.24 36.6

Reversible 6.7 36.8 73.26 2-toggle 5.10 36.10

Strictly bounded 4.11 74.17 34.12 Ordered
dicrumblers 5.14

Weakly bounded 4.14 74.17 34.15 Brittle door 5.15

Balanced 4.18 74.20 34.21

Figure 1-1: Table of gizmo classes. All classes listed are closed under finite simulation.
“Def.” points to the definition of each class. “Arb. sim.” and “Trav.” stand for arbi-
trary simulation and traversals. “Universal gadget” describes a set of gizmos—one
representing each state of the gadget—which is universal for the regular prefix-closed
gizmos in the class. “Arb?” indicates results that extend to arbitrary simulation
and nonregular gizmos, which is only meaningful for classes closed under arbitrary
simulation. We include references to the relevant results.
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R
eversible
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W
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Balanced Univ. Arb?
1-toggle 2-1 3 3 3 3

Dicrumbler 2-2 3 3 3 3

Door 2-3 5.8 3

Self-closing door 2-4 5.9 3

Mism. dicrumb.s 2-5 5.9 3

2-toggle 2-6 3 3 3 5.10 3

Tripwire-lock 2-7 3 3 3 5.11 3

Locking 2-toggle 2-8 3 3 3 3

Ord. dicrumb.s 2-9 3 3 3 5.14
Brittle door 2-10 3 5.15

Mut. cl. diodes 2-11 3 3 3 3 5.19
Diode 2-12 3 3 3 3 3 5.23 3

Wire 2-13 3 3 3 3 3 3 3 3 3 5.24 3

Figure 1-2: Table of gadgets. A check indicates that every (prefix-closed) gizmo
corresponding to a state of the gadget with full target set satisfies the column’s
property. Each column is closed under simulation: a gadget can only simulate gadgets
with at least as many checks as it. “Univ.” indicates that the gadget is universal for
the class defined by all of its checks, and “Arb?” indicates the universality results
which extend to arbitrary simulation and nonregular gizmos. All gizmos here are
prefix-closed and regular.
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Chapter 2

Traditional description of
motion-planning gadgets

We now present motion-planning gadgets as they have been considered in previous
work [AAD+20, ABD+20, ADHL20, DGLR18, DHL20, Lyn20]. In Chapter 3 we will
introduce a new, more formal, description.

A gadget consists of some states, some locations, and some transitions of the form
(𝑠, 𝑙) → (𝑠′, 𝑙′) where 𝑠 and 𝑠′ are states and 𝑙 and 𝑙′ are locations. Generally there
are finitely many states and locations. The transition (𝑠, 𝑙)→ (𝑠′, 𝑙′) is taken to mean
that when the gadget is in state 𝑠, the agent can enter at 𝑙, leave at 𝑙′, and put the
gadget in state 𝑠′.

A gadget can be conveniently described by drawing a state diagram, which shows
the transitions available in each state labeled with the state they go to. For instance,
Figure 2-1 shows a state diagram for a gadget called the 1-toggle, introduced by
Demaine, Grosof, et al. [DGLR18]. The 1-toggle has two locations and two states,
numbered 1 and 2. In each state, the gadget can be traversed in one direction to
switch to the other state. More explicitly, if we call the locations 𝐴 and 𝐵, the 1-
toggle has transitions (1, 𝐴)→ (2, 𝐵) and (2, 𝐵)→ (1, 𝐴). This can be thought of as
a directed tunnel which flips direction every time it is traversed.

Gadgets are combined into systems or networks by placing copies of them near
each other and connecting the locations. Different prior papers [DGLR18, DHL20]
have described the process of connecting locations in different but equivalent ways.
We then imagine an agent, or sometimes multiple agents, moving around this network
of gadgets. When an agent arrives at a gadget, it can make a transition through the
gadget, changing its state. This is an abstraction for various problems involving agents

2
1

1
2

Figure 2-1: A state diagram for the 1-toggle.
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1
2

2

Figure 2-2: A state diagram for the directed crumbler.

navigating a dynamic environment; we ignore the details of the environment and only
consider what motions are allowed and how they change the abstract state. Prior
work on gadgets [AAD+20, ABD+20, ADHL20, DGLR18, DHL20, Lyn20, ADG+21],
as well as related work which does not explicitly use the motion-planning gadget
framework [ADGV15, Vig14, DVW16, DDHO03, HS04], includes many applications
of problems which can be understood in this abstraction.

Often, particularly for applications in two dimensions, it is worthwhile to consider
planar networks of gadgets. A network of gadgets is planar if it can be drawn in the
plane without crossing; equivalently, when an appropriate graph constructed from the
network is planar (see Demaine, Hendrickson, and Lynch [DHL20] or Lynch [Lyn20]
for details).

2.1 Examples of gadgets
We will now meet a cast of gadgets, many of which were introduced in prior work
[DGLR18, DHL20, ABD+20]. We have already seen the 1-toggle (Figure 2-1). Most
of the gadgets here are on tunnels, meaning the locations can be partitioned into pairs
{𝑎𝑖, 𝑏𝑖}𝑖 called tunnels such that every transition is between 𝑎𝑖 and 𝑏𝑖 for some 𝑖.

When we draw gadgets elsewhere in this thesis, we will say which gadgets those
shown are if it is at all ambiguous. For some gadgets, we use special notation or
colors to indicate the gadget type and state.

The directed crumbler or dicrumbler, whose state diagram is shown in Figure 2-2,
has 2 locations and 2 states. It has a directed tunnel, which ‘crumbles’ when used.

The door, whose state diagram is shown in Figure 2-3, has 6 locations and 2 states.
There are three directed tunnels, called the open, close, and door tunnels from top to
bottom. The open and close tunnels are always available, and the door is available
in state 1. Traversing the open tunnel opens the door by switching to state 1, and
traversing the close tunnel closes the door by switching to state 2.

The self-closing door, whose state diagram is shown in Figure 2-4, has 3 locations
and 2 states. The bottom tunnel, called the door, is directed and available only in
state 1, and switches to state 2 when traversed (hence ‘self-closing’). The top location
is the button, and it can be visited to reset the state to 1, reopening the door.

The mismatched dicrumblers, whose state diagram is shown in Figure 2-5, has 4 lo-
cations and 2 states. The agent must alternate which tunnels it takes, and each tunnel
is directed. This gadget is composed of two dicrumblers, which are ‘mismatched’ in
that they have opposite state. The mismatched dicrumblers is called the ‘symmetric
self-closing door’ by Ani, Bosboom, et al. [ABD+20].
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1

1

1

2

1

2

Figure 2-3: A state diagram for the door.

1

2

2
1

Figure 2-4: A state diagram for the self-closing door.

1
2

2

1

Figure 2-5: A state diagram for the mismatched dicrumblers.
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1

2

2
12

1

Figure 2-6: A state diagram for the 2-toggle.

1
2

1

2
1

Figure 2-7: A state diagram for the tripwire-lock.

The 2-toggle, whose state diagram is shown in Figure 2-6, has 4 locations and
2 states. It can be thought of as two 1-toggles sharing a state: traversing either
1-toggle flips them both. Explicitly, if the locations are labeled 𝐴 through 𝐷, it has
transitions (1, 𝐴)→ (2, 𝐵), (1, 𝐶)→ (2, 𝐷), (2, 𝐵)→ (1, 𝐴), and (2, 𝐷)→ (1, 𝐶). In
the remaining examples we will not list the transitions explicitly, and trust the reader
to be able to generate them from the state diagram.

The tripwire-lock, whose state diagram is shown in Figure 2-7, also has 4 locations
and 2 states. The top tunnel, called the tripwire, is always traversable and toggles
the state of the gadget whenever it is traversed. The bottom tunnel, called the lock,
is traversable in both directions, or open, in state 1, but not traversable, or closed, in
state 2. We will generally omit the arrows when drawing the tripwire-lock; the state
is indicated by the presence or absence of an X on the lock.

The locking 2-toggle, whose state diagram is shown in Figure 2-8, has 4 locations
and 2 states. It is similar to a 2-toggle, except that after traversing a tunnel, the
agent must come back across the same tunnel—the other tunnel is closed until this
happens.

The ordered dicrumblers, whose state diagram is shown in Figure 2-9, has 4 loca-
tions and 2 states. The top tunnel can be traversed, and then the bottom tunnel, and
then there are no legal transitions. This is like the mismatched dicrumblers except
that it can only be used twice.

The brittle door, whose state diagram is shown in Figure 2-10, has 6 locations and
3 states. It can be thought of as a door which is destroyed the first time the door is
traversed. We use the same names for the tunnels as in the door.

The mutually closing diodes, whose state diagram is shown in Figure 2-11, has 4

18
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32

2

1

3

1

Figure 2-8: A state diagram for the locking 2-toggle.

1
2

2

3

3

Figure 2-9: A state diagram for the ordered dicrumblers.

2

1

3

2

2 3

Figure 2-10: A state diagram for the brittle door.
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1
2

2

3

2
3

3

Figure 2-11: A state diagram for the mutually closing diodes.

1
1

Figure 2-12: A state diagram for the diode.

locations and 3 states. Either directed tunnel can be traversed freely, but once one is
traversed the other cannot be.

The diode, whose state diagram is shown in Figure 2-12, has 2 locations and 1
state. It can be traversed in only one direction.

The wire, whose state diagram is shown in Figure 2-13, has 2 locations and 1
state, and can be traversed freely. The wire is almost a trivial gadget, and can be
constructed in almost every situation where gadgets are applied. It will be a useful
example to understand our formalization of gadgets.

2.2 Gadget decision problems
We now introduce several decision problems related to gadgets which have been con-
sidered. These decision problems have been studied with the goal of finding reductions
to problems outside of gadgets, so they are chosen to be convenient to reduce from.
All of these decision problems are parameterized by set of gadgets 𝑆, which is usually
finite and often a singleton.

The simplest decision problem, and the one our formalization is intended for, is
(one-player) reachability. Reachability with 𝑆 asks: given a network of gadgets from
𝑆 and a specified start location and target location, can an agent get from the start
location to the target location?

1
11

Figure 2-13: A state diagram for the wire.
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Reachability is the natural gadget decision problem to reduce from for any problem
involving trying to reach a location. This is the decision problem that has been the
focus of all prior work on gadgets [AAD+20, ABD+20, ADHL20, DGLR18, DHL20,
Lyn20].

Reconfiguration with 𝑆 asks: given a network of gadgets from 𝑆, a start location,
and a target configuration consisting of a specified state for each gadget in the network,
can an agent at the start location put all gadgets simultaneously in their target states?
Lynch [Lyn20] determines the complexity of reconfiguration for several gadgets.

We introduce a few variations on reconfiguration. Targeted reconfiguration with
𝑆 asks: given a network of gadgets from 𝑆, a start location, a target location, and a
target configuration, can an agent at the start location reach the target location and
leave the network in the target configuration? This is essentially solving reachability
and reconfiguration at the same time. For many gadgets, targeted reconfiguration
is not significantly different from reconfiguration, and in particular most complexity
results for reconfiguration (including all from Lynch [Lyn20]) apply equally to targeted
reconfiguration.

Set reconfiguration and targeted set reconfiguration generalize reconfiguration and
targeted reconfiguration. Instead of specifying a single state for each gadget in the
network, the problem gives a target set of states for each gadget, and asks whether
the agent can reach any configuration where each gadget is in a state in its target set.
If each target set is a singleton, this is equivalent to the non-set decision problem. If
each gadget’s target set contains all states of the gadget, targeted set reconfiguration
is equivalent to reachability.

2-player reachability with 𝑆 asks: given a network of gadgets from 𝑆, a start
location for each of White and Black, and a target location for each of White and
Black, can White win the following game? Starting with White, the two players
alternate making a single transition in the network. A player wins when they reach
their target location. The complexity of 2-player reachability is studied by Demaine,
Hendrickson, and Lynch [DHL20].

Team imperfect information reachability is similar to 2-player reachability, but
there are multiple players on the same team, and players only know the states of
gadgets they can reach. See Demaine, Hendrickson, and Lynch [DHL20] or Lynch
[Lyn20] for a full definition.

It is also common to consider these decision problems when restricted to planar
networks of gadgets. We abbreviate these restricted decision problems as e.g. planar
(one-player) reachability.

2.3 Gadget properties
In this section, we define some properties of gadgets which have been studied in prior
work.

A gadget is reversible if every transition can be undone; that is, whenever there
is a transition (𝑠, 𝑙)→ (𝑠′, 𝑙′), there is also a transition (𝑠′, 𝑙′)→ (𝑠, 𝑙).

A gadget is deterministic if for every state 𝑠 and location 𝑙, there is at most one
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transition of the form (𝑠, 𝑙)→ (𝑠′, 𝑙′). Reversible deterministic gadgets are studied in
several previous papers [DGLR18, DHL20, Lyn20].

A gadget is DAG if the directed graph (called the state graph) whose vertices are
states of the gadget and which has an edge 𝑠→ 𝑠′ for each transition (𝑠, 𝑙)→ (𝑠′, 𝑙′) is
acyclic. DAG gadgets are studied by Demaine, Hendrickson, and Lynch [DHL20], and
multiple generalizations of DAG gadgets (‘LDAG’ and ‘eventually static’ gadgets) are
studied by Lynch [Lyn20].

A gadget is on tunnels if its locations can be matched into tunnels where transi-
tions never go between tunnels (this was defined in 2.1). Most of the gadgets in prior
work have been tunnel gadgets, since they are often the easiest to work with.

A gadget is monotonically opening if its traversability never decreases: that is, if
(𝑠, 𝑙) → (·, 𝑙′) is legal and (𝑠, ·) → (𝑠′, ·) is legal, then there is some legal transition
(𝑠′, 𝑙)→ (·, 𝑙′).3

A gadget is monotonically closing if its traversability never increases: that is, if
(𝑠′, 𝑙) → (·, 𝑙′) is legal and (𝑠, ·) → (𝑠′, ·) is legal, then there is some legal transition
(𝑠, 𝑙)→ (·, 𝑙′).

A gadget is unchanging if it is both monotonically opening and monotonically
closing; this typically makes for fairly boring gadgets. Lynch [Lyn20] introduced and
studied monotonically opening, monotonically closing, and unchanging gadgets.

Once we have a formal notion of gadgets, we will introduce definitions analogous to
several of these properties in Chapters 4 and 5. Our formalism will not have a notion
of deterministic gadgets; in some sense nondeterministic gadgets will be converted to
equivalent deterministic gadgets (see Section 3.5.3). Of the other properties listed, all
but on tunnels and monotonically opening and closing are closed under simulation,
so they are of interest in this thesis.

2.4 Gadget simulation
Consider how an agent can navigate the network of gadgets in Figure 2-14, consisting
of tripwire-locks (Figure 2-7) and 1-toggles (Figure 2-1).

The agent cannot enter at 𝐻 or 𝑇 because the locks are closed. If it enters at
𝐴, all it can do (other than exiting at 𝐴 with nothing changed) is cross the 1-toggle
𝐸 → 𝐹 , go around the loop, and return across the same 1-toggle. This flips the state
of all four tripwire-locks; now the agent can exit at 𝐻, but the locks at 𝐴 and 𝑀 are
closed. All other nontrivial movements through this network are similar.

One can see that this network then behaves exactly like a 2-toggle (Figure 2-6). In
the configuration shown, the agent can traverse 𝐴 → 𝐻 or 𝑀 → 𝑇 , flipping all four
tripwire-locks in either case. Then the agent can traverse 𝐻 → 𝐴 or 𝑇 →𝑀 , flipping
the tripwire-locks back. These correspond to states 1 and 2 of the 2-toggle. Because
of this equivalence, it is natural to say that the tripwire-lock and 1-toggle ‘simulate’
a 2-toggle. In fact, the tripwire-lock simulates a 1-toggle,4 so the tripwire-lock alone

3We use · an arbitrary and irrelevant value.
4Connect one end of the tripwire to one end of the lock, to send the agent through both tunnels

in series.
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Figure 2-14: A simulation of a 2-toggle using tripwire-locks and 1-toggles, based on
Figure 16 from Demaine, Grosof, et al. [DGLR18]. Gadgets’ locations are labeled.

simulates a 2-toggle.
The goal of this thesis is to formalize and investigate this notion of simulation. In

prior work [ABD+20, ADHL20, DGLR18, DHL20], gadget simulation has been con-
sidered, but never fully defined. We discuss in Chapter 3 some difficulties in defining
simulation, justifying the decision not to do so. In any case, those papers were primar-
ily interested in complexity, and all of their simulations have the properties related
to reductions that they need. Our formalization will include all of the simulations in
those papers, except for Ani, Demaine, et al. [ADHL20], which requires a different
model of simulation.

Demaine, Grosof, et al. [DGLR18] shows that several 2-state 4-location reversible
deterministic gadgets, including the 2-toggle and tripwire-lock, all simulate each other.
This is true even in planar simulations, for every planar embedding of the gadgets in
question. This thesis also showed that reversible gadgets can only simulate reversible
gadgets (informally, without precisely defining reversible).5

Demaine, Hendrickson, and Lynch [DHL20] shows that every interacting6 re-
versible deterministic gadget on tunnels simulates a locking 2-toggle. This is true even

5Demaine, Grosof, et al. [DGLR18] also prove that ‘any system of gadgets composed of two
deterministic reversible gadgets is deterministic and reversible.’ This is not true in our formalization:
their notion of ‘system of gadgets’ only allows locations to be connected in a (partial) matching,
and connecting more than two locations requires an additional (nondeterministic) gadget called the
‘branching hallway.’ Our formalization allows connecting locations freely.

6Meaning some traversal on one tunnel changes the traversabality of a different tunnel.
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in planar simulation, and moreover every planar embedding of the locking 2-toggle
can be simulated. They also prove the relatively simple fact that every nontrivial
DAG gadget simulates either a directed or an undirected single-use tunnel—what we
would call the dicrumbler or crumbler.

Ani, Demaine, et al. [ADHL20] shows that every so-called ‘unbounded output-
disjoint deterministic 2-state input/output gadget with multiple nontrivial inputs’
simulates every so-called ‘deterministic input/output gadget.’ This was the first uni-
versality result in gadget simulation, meaning a result that some gadget simulates ev-
ery gadget in some infinite class. This result uses a slightly different model of motion
planning than the one we consider here—in particular, theirs is fully deterministic—
and formalizing these simulations is beyond the scope of this thesis.

Finally, Ani, Bosboom, et al. [ABD+20] shows that each of several gadgets, in-
cluding the door, the mismatched dicrumblers, and the self-closing door, can simulate
every gadget. This is true even in planar simulations, for every planar embedding
except for one, called ‘OTtocC.’

Both of these universality results from Ani, Demaine, et al. [ADHL20] and Ani,
Bosboom, et al. [ABD+20] rely on the assumption that the gadget being simulated
has finitely many states. In our formalization, we call such gadgets regular (see
Section 3.6). The latter result holds in our formalization when restricted to regular
gadgets, and we will present a more formal proof in Section 5.2.
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Chapter 3

Formalization of gadget simulation

3.1 Multiple notions of simulation

In different contexts, different understandings of ‘simulation’ are appropriate. For in-
stance, consider a gadget with an optional opening; that is, an agent walking through
the gadget can choose whether to open some other tunnel or leave it closed. In
one-player reachability, the player has no reason to choose not to open the tunnel,
so we can assume they always open it. For one-player reachability, it is reasonable
to consider this as a simple simulation of a similar gadget where opening is not op-
tional; more generally, we can ignore any ways the player may make things worse
for themselves. On the other hand, for multiplayer decision problems, it may well
be advantageous to choose not to open a tunnel, since one’s opponent may benefit
from the tunnel being open. Thus in multiplayer contexts we would not consider the
optional opening gadget to simulate the forced opening gadget.

In this thesis, our focus is primarily on simulations in the context of one-player
reachability, and our formal notion of gadgets is designed for this context. Our for-
malization actually captures simulations in the more general context of one-player
targeted set reconfiguration. To leave open the option of introducing alternative for-
malizations for other contexts, and since our formal objects do not exactly correspond
to gadgets,7 we call these formal objects gizmos.

It is likely that our definition can be adapted to apply to situations such as mul-
tiplayer games and untargeted reconfiguration with relatively small changes. For
multiplayer, we likely need to consider an appropriate notion of ‘quantified traversal
sequences’ instead of traversal sequences. For reconfiguration, a difficulty arises where
the agent may end inside a simulation of a gadget, though we do not allow the agent
to end inside a gadget; targeted reconfiguration avoids this by specifying the location
the agent must end. Studying simulation in these contexts is beyond the scope of this
thesis.

7They correspond more closely, but not exactly, to states of gadgets.
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3.2 Desirable properties
In order to motivate our definition of gizmos, we discuss some properties we would like
them to have. Some of these considerations are similar to those faced by Bosboom in
designing a representation of gadgets for an automated search for simulations [Bos20].

3.2.1 Simulations beget reductions
Gizmos are intended to represent gadgets in the context of one-player reachability
problems. The question of whether a player can navigate a network of gadgets to reach
a target location will become, in the language of gizmos, the question of whether the
gizmo constructed by a particular simulation (corresponding to the gadget network)
has a particular traversal (from the start location to the target location).

We have not yet defined gizmos and simulation, but we would like to use the
following definition of targeted set reconfiguration. It turns out that the machinery
of simulations gives a concise way to define this decision problem. A ‘gizmo on {𝑠, 𝑡}’
will mean a gizmo with two locations 𝑠 and 𝑡.

Definition 3.1. For a finite8 set 𝑆 of gizmos, targeted set reconfiguration with 𝑆 is
the following decision problem: Given a simulation of a gizmo on {𝑠, 𝑡} from 𝑆, does
the simulated gizmo allow the traversal 𝑠→ 𝑡?

The input to targeted set reconfiguration with 𝑆 is given by specifying which of
the finitely many gizmos from 𝑆 each gizmo in the simulation is a copy of; this takes
constant space per gizmo for fixed 𝑆.

Each gizmo will encode the legal transitions, the initial state, and the target set of
states for the gadget it represents. Reachability is simply targeted set reconfiguration
where each target set is the entire set of states. This is a special case of the decision
problem where we allow only gizmos with target set, which we call prefix-closed for
reasons which will become clear.

The motivation for studying simulations is as a tool for finding reductions. Thus
we demand our definition satisfy the following lemma.

Lemma 3.2. Let 𝑆 and 𝑆 ′ be finite sets of gizmos, and suppose 𝑆 simulates each
gizmo in 𝑆 ′. Then there is a logarithmic-space reduction from targeted set reconfigu-
ration with 𝑆 ′ to targeted set reconfiguration with 𝑆.

If all of the gizmos in 𝑆 and 𝑆 ′ are prefix-closed, then this is a reduction between
reachability problems.

Note that the reduction goes the opposite direction of the simulations. Intuitively,
the reduction is to replace each gizmo in 𝑆 ′ with its simulation using gizmos from 𝑆.

If one were to define formal objects analogous to gizmos to study other decision
problems related to gadgets (e.g. multiplayer games, untargeted reconfiguration), the
formal objects should satisfy an analog of Lemma 3.2 for the decision problem in
question.

8One can consider targeted set reconfiguration with an infinite set of gizmos, but it requires a
way to describe arbitrary gizmos in the set.
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3.2.2 Ignore irrelevant differences

One guiding principle in designing our definition is that we would like to ignore differ-
ences between gadgets which are irrelevant in the context of one-player reachability.
That is, if replacing an instance of 𝐺 with an instance of 𝐺′ never changes the answer
to a reachability problem, we would like to consider 𝐺 and 𝐺′ to be equivalent. If one
simulates 𝐺 with some gadgets, we would like to say that they have also simulated
𝐺′, at least for the purposes of one-player reachability. This notion of equivalence is
obviously different when one considers other decision problems. Ultimately, gadgets
which are equivalent in this sense will be represented by the same gizmo.

One-player incentives. One type of irrelevant difference is optional opening, as
discussed in Section 3.1, and more generally ‘one-player incentives’: whenever a gad-
get has a transtion which is never required to solve a reachability problem, we can
ignore it. The gadget is equivalent to a version of the gadget without that transition.

Self-loops. In the self-closing door (Figure 2-4), the button to set the state to 1 is
only available in state 2. Consider a modified version of this gadget where we add
a transition that allows the player to press the button while in state 1, which does
not change the state. Perhaps our gadget came from an application which includes
an actual button an agent can press, and they can press the button regardless of the
door’s openness. We should consider this gadget equivalent to the original self-closing
door, since the new self-loop transition is useless.

This can be thought of as an instance of one-player incentives, but it is also
something more specific: adding ‘self-loop’ transitions of the form (𝑠, 𝑙)→ (𝑠, 𝑙) does
not meaningfully change a gadget. In particular, if we can simulate a gadget, except
that our simulation also allows the agent to enter, do nothing, and exit at the same
location, we want to consider this a valid simulation. To keep gizmo equality simple,
it will be most convenient to assume our gadgets always have all self-loops, and this
will be built into the definition of gizmos.

Transitivity. Consider the gadget whose state diagram is shown in Figure 3-1.
From state 1, the agent can enter at 𝐴, move to 𝐵 switching to state 2, and then
immediately move to 𝐶 switching to state 3. Consider also a modified version of
this gadget where we add a transition (1, 𝐴) → (3, 𝐶), allowing the path described
to occur in a single transition. This gadget is equivalent, since the same transition
could be achieved through a combination of two transitions. Similarly we could
introduce without meaningfully changing the gadget the transitions (2, 𝐵) → (3, 𝐷)
and (1, 𝐴)→ (3, 𝐷).

Similarly to for self-loops, it will be most convenient to assume that all of our
gadgets already have these transitions, and this will be built into our definition of
gizmos. We call this property ‘transitive closure’: if there are transitions (𝑠1, 𝑙1) →
(𝑠2, 𝑙2)→ (𝑠3, 𝑙3), then there is also (𝑠1, 𝑙1)→ (𝑠3, 𝑙3).
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Figure 3-1: A state diagram for a gadget demonstrating transitive closure, with loca-
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Figure 3-2: A state diagram for the doubly covered 1-toggle.

3.2.3 Reversible is closed
As shown by Demaine, Grosof, et al. [DGLR18], reversible gadgets are closed under
simulations. We would like this to be the case in our formalization.

Consider the doubly covered 1-toggle, whose state diagram is shown in Figure 3-2.
The doubly covered 1-toggle is much like a 1-toggle, except that it only returns to its
initial state after being traversed twice in each direction.

The doubly covered 1-toggle is equivalent to the (ordinary) 1-toggle for the pur-
poses of reachability. This is analogous to (in fact, a special case of) a regular language
which is recognized by multiple DFAs. The legal movements are the same, but are
represented by states of gadgets differently.

We would like to say that, in the context of reachability, the 1-toggle simulates
the doubly covered 1-toggle. However, the doubly covered 1-toggle is not reversible as
defined above: it contains the transition (1, 𝐴)→ (2, 𝐵) but not (2, 𝐵)→ (1, 𝐴).9 It
seems, then, that reversible gadgets are not closed under simulation. Either our defi-
nition of reversibility is wrong (and the doubly covered 1-toggle is actually reversible),
or our notion of simulation is wrong (and the 1-toggle actually cannot simulate the
doubly covered 1-toggle).

Our stance will be that the 1-toggle can simulate the doubly covered 1-toggle, and
the doubly covered 1-toggle is reversible. In fact, the doubly covered 1-toggle will be
represented by precisely the same gizmo as the 1-toggle.10

To resolve this difficulty using the description of gadgets in terms of states—
9The transitive closure of the doubly covered 1-toggle does contain (2, 𝐵)→ (1, 𝐴); one can easily

construct more complicated examples where this would not be true.
10This is true specifically for the gizmos representing this gadgets with full target set. The gizmo

representing the doubly covered 1-toggle with a different target set, such as the set containing only
state 1, does not represent the 1-toggle with any target set, and in fact cannot be simulated by
1-toggles and should not be considered reversible.
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essentially finite automata—one would have to perform some kind of NFA minimiza-
tion in order to determine whether two gadgets are equivalent. This is the approach
taken by Bosboom [Bos20]. Our definition of gizmos avoids this by directly saying
which motions are legal, instead of going through finite automata. This is analogous
(actually equivalent; see Section 3.6) to considering languages instead of the NFAs
that recognize them.

3.3 The definition

3.3.1 Gizmos
The idea is for a gizmo to be described by the set of legal sequences of traversal that
can be made. In the following 𝐿 and 𝐿′ are sets, representing the set of locations of
a gadget.

Definition 3.3. A traversal on 𝐿 is a pair of elements 𝑎, 𝑏 ∈ 𝐿, written 𝑎 → 𝑏. We
write 𝒯 (𝐿) = 𝐿× 𝐿 for the set of traversals on 𝐿.

Definition 3.4. A traversal sequence on 𝐿 is a sequence of traversals on 𝐿. If 𝑋 and
𝑌 are traversal sequences on 𝐿, we write their concatenation 𝑋𝑌 . We write explicit
traversal sequences using brackets, such as [𝑎 → 𝑏, 𝑐 → 𝑑]. We denote the set of
traversal sequences on 𝐿 by 𝒯 (𝐿)*.

Definition 3.5. A function 𝑓 : 𝐿 → 𝐿′ induces functions 𝑓∘ : 𝒯 (𝐿) → 𝒯 (𝐿′) and
𝑓 *

∘ : 𝒯 (𝐿)* → 𝒯 (𝐿′)*, by

𝑓∘ : 𝑎→ 𝑏 ↦→ 𝑓(𝑎)→ 𝑓(𝑏)
𝑓 *

∘ : [𝑡1, . . . , 𝑡𝑛] ↦→ [𝑓∘(𝑡1), . . . , 𝑓∘(𝑡𝑛)].

Clearly ·∘ and ·*∘ are (covariant) functors.11

Definition 3.6. A gizmo on a set 𝐿 is a set of traversal sequences 𝐺 ⊂ 𝒯 (𝐿)* such
that (for all 𝑋, 𝑌 ∈ 𝒯 (𝐿)*, 𝑎, 𝑏, 𝑐 ∈ 𝐿)

1. 𝐺 is transitively closed: if 𝑋[𝑎→ 𝑏, 𝑏→ 𝑐]𝑌 ∈ 𝐺, then 𝑋[𝑎→ 𝑐]𝑌 ∈ 𝐺.

2. 𝐺 is closed under insertion of self-loops: if 𝑋𝑌 ∈ 𝐺, then 𝑋[𝑎→ 𝑎]𝑌 ∈ 𝐺.

If 𝐺 is a gizmo on 𝐿, we write locs 𝐺 = 𝐿.

These conditions are clearly suggested by the discussion in Section 3.2.2. It is
interesting that these two properties are all that is needed for a set of traversal
sequences to make sense as the legal actions an agent could take that leave a gadget
in a state in its target set.

11That is, (𝑓 ∘ 𝑔)∘ = 𝑓∘ ∘ 𝑔∘, and similarly for ·*∘.
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Definition 3.7. Two gizmos 𝐺 and 𝐺′ are isomorphic, and we write 𝐺 ∼= 𝐺′, if there
is a bijection 𝑓 : locs 𝐺 → locs 𝐺′ such that for all 𝑋 ∈ 𝒯 (locs 𝐺)*, 𝑋 ∈ 𝐺 if and
only if 𝑓 *

∘ (𝑋) ∈ 𝐺′. Such a bijection is called an isomorphism.

Isomorphic gizmos are the same except that their locations are labeled differently;
all interesting properties of gizmos are preserved by isomorphism.

Definition 3.8. Let 𝐺 be a gizmo on 𝐿, and 𝑋 ∈ 𝒯 (𝐿)*. Then 𝐺 after 𝑋 is the set
of traversal sequences

𝐺[𝑋] = {𝑌 | 𝑋𝑌 ∈ 𝐺} ⊂ 𝒯 (𝐿)* .

𝐺 after 𝑋 represents the state a gadget changes to after traversing 𝑋; see Propo-
sition 3.16.

Definition 3.9. A gizmo 𝐺 is prefix-closed if for every 𝑋𝑌 ∈ 𝐺, also 𝑋 ∈ 𝐺.

An agent navigating a network of gadgets changes the gizmos corresponding to
those gadgets with every traversal: moving from 𝑎 to 𝑏 replaces a gizmo 𝐺 with
𝐺[[𝑎→ 𝑏]]. The empty sequence [ ] ∈ 𝐺[𝑋], or equivalently 𝑋 ∈ 𝐺, means that after
traversing the sequence 𝑋, the gizmo 𝐺 is ‘happy’: if this is true for every gizmo and
the agent is at the target location, the targeted set reconfiguration problem is solved.
A prefix-closed gizmo 𝐺 is one which never goes from being ‘sad’ to being ‘happy’—
formally, for any sequence 𝑋, if [ ] /∈ 𝐺[𝑋] then 𝐺[𝑋] = ∅, and the empty gizmo will
never be satisfied. One can think of the states of a gizmo 𝐺 as the nonempty reachable
gizmos 𝐺[𝑋] (an empty gizmo representing something illegal having happened), so
prefix-closed gizmos represent gadgets with every reachable state in the target set.
We will show in Section 4.1 that prefix-closed gizmos are closed under simulation,
which is expected: if we do not care what state gadgets end in, we should not care
what state the gadgets they simulate end in either.

Let us translate some gadgets into this formalism. The legal traversal sequences
for state 1 of the 1-toggle (Figure 2-1), with locations 𝐴 and 𝐵, include [ ], [𝐴→ 𝐵],
[𝐴 → 𝐵, 𝐵 → 𝐴], and [𝐴 → 𝐵, 𝐴 → 𝐴, 𝐵 → 𝐵, 𝐵 → 𝐴, 𝐵 → 𝐵]. Note in
particular that we can freely insert 𝐴 → 𝐴 and 𝐵 → 𝐵 because of condition 3 in
Definition 3.6. We can precisely describe the gizmo corresponding to this state with
target set containing both states, which is the set of all legal traversal sequences,
with a regular expression, using 𝐴, 𝐵, →, and ← as shorthand for 𝐴 → 𝐴, 𝐵 → 𝐵,
𝐴→ 𝐵, and 𝐵 → 𝐴, respectively:12

((𝐴|𝐵)*→(𝐴|𝐵)*←)*(𝐴|𝐵)*(→|𝜀)(𝐴|𝐵)*.

Describing the gizmo explicitly in this way quickly becomes cumbersome. It is
more convenient to describe it as the minimal prefix-closed gizmo containing (→←)*,
and let closure under prefixes and insertion of self-loops handle the rest. There is
always a unique minimal gizmo and minimal prefix-closed gizmo on a set of locations
containing some set of traversal sequences: it is the set of sequences obtainable from

12See Section 3.6 for more on the connection to regular languages.
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sequences in the given set by inserting self-loops, applying transitive contractions,
and, for prefix-closed, taking prefixes.

There are two other nontrivial gizmos13 corresponding to state 1 of the 1-toggle,
with different target sets. If the target set contains just state 1, we have the minimal
gizmo containing (→←)*; unlike the gizmo for the full target set, this does not contain
[→]. If the target set contains just state 2, we have the minimal gizmo containing
(→←)*→.

The gizmos for state 2 of the 1-toggle are different; for instance the gizmo for the
full target set includes [𝐵 → 𝐴] but not [𝐴→ 𝐵]. However, this is equivalent to the
gizmo for state 1 with full target set if we turn the 1-toggle around; formally, these
gizmos are isomorphic by swapping 𝐴 and 𝐵.

State 1 of the 2-toggle (Figure 2-6) with full target set is the minimal prefix-
closed gizmo containing ((𝐴→ 𝐵 | 𝐶 → 𝐷)(𝐵 → 𝐴 | 𝐷 → 𝐶))*, if we label locations
appropriately. State 2 of the 2-toggle (also with full target set) is isomorphic to state
1 under 𝐴↔ 𝐵, 𝐶 ↔ 𝐷.

Unless otherwise specified, when we define a gizmo from a gadget and a state, we
mean for the target set to be the entire set of states, and in particular the gizmo is
prefix-closed.

For one more example, state 1 of the tripwire-lock (Figure 2-7) is the minimal
prefix-closed gizmo containing

((𝐴→ 𝐵 | 𝐵 → 𝐴)(𝐴→ 𝐵 | 𝐵 → 𝐴) | 𝐶 → 𝐷 | 𝐷 → 𝐶)*.

State 2 of the tripwire-lock is not isomorphic to state 1;14 it is the minimal prefix-
closed gizmo containing

((𝐴→ 𝐵 | 𝐵 → 𝐴)(𝐶 → 𝐷 | 𝐷 → 𝐶)*(𝐴→ 𝐵 | 𝐵 → 𝐴))*.

3.3.2 Simulations
We now move on to defining simulations between gizmos. We think of gadget simula-
tions as being done in three steps: first, put some gadgets next to each other. Second,
connect some locations. Finally, designate which locations are to be ‘ports’ of the
simulation accessible from outside. We first define our notion for putting gadgets
next to each other.

Definition 3.10. Let 𝐼 be an index set, and suppose 𝐺𝑖 is a gizmo for each 𝑖 ∈ 𝐼. The
tensor product of 𝐺𝑖, denoted

⨂︁
𝑖∈𝐼

𝐺𝑖, is the set of traversal sequences 𝑋 on
⨆︁
𝑖∈𝐼

locs 𝐺𝑖
15

such that
13And the empty gizmo, where the target set is empty.
14You can see this by noting that state 1 contains eight length-1 traversal sequences (𝐴 ↔ 𝐵,

𝐶 ↔ 𝐷, and 4 self-loops) while state 2 contains only six (the same ones except for 𝐶 ↔ 𝐷).
15
⨆︁

denotes disjoint union: formally,
⨆︁
𝑖∈𝐼

𝑆𝑖 = {(𝑖, 𝑥) | 𝑖 ∈ 𝐼, 𝑥 ∈ 𝑆𝑖}, which is isomorphic to
⋃︁
𝑖∈𝐼

𝑆𝑖

when 𝑆𝑖 are disjoint. For convenience, we generally treat (𝑖, 𝑥) ∈
⨆︁
𝑖∈𝐼

𝑆𝑖 and 𝑥 ∈ 𝑆𝑖 as equal.
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1. For each traversal 𝑎→ 𝑏 in 𝑋, both locations are on the same multiplicand: for
some 𝑖, we have 𝑎, 𝑏 ∈ locs 𝐺𝑖.

2. For each 𝑖 ∈ 𝐼, the restriction 𝑋|locs 𝐺𝑖
, i.e the sequence of traversals in 𝑋 which

only use locations in locs 𝐺𝑖, is in 𝐺𝑖.

We say that 𝑋 is an interleaving of 𝑋|locs 𝐺𝑖
.

The tensor product represents putting the gadgets 𝐺𝑖 next to each other, and
allowing the agent to make traversals on them in any order. It may be easier to think
about the situation when |𝐼| = 2, where we have

𝐺⊗𝐻 = {𝑋1𝑌1 · · ·𝑋𝑛𝑌𝑛 | 𝑋1 · · ·𝑋𝑛 ∈ 𝐺, 𝑌1 · · ·𝑌𝑛 ∈ 𝐻}.

While we could use this formula to define tensor products, using the unbiased
definition above allows us to simplify proofs that would otherwise use induction on
the number of gizmos, and to have the option of discussing simulations involving
infinitely many gizmos.

Next, we define a notion for connecting locations of a gadget.

Definition 3.11. Let 𝐺 be a gizmo, and let ∼ be an equivalence relation on locs 𝐺.
The quotient 𝐺/∼ is the transitive closure of the set {𝜋∼

*
∘(𝑋) | 𝑋 ∈ 𝐺} of traversal se-

quences on locs(𝐺)/∼, where 𝜋∼ : locs 𝐺→ locs 𝐺/∼ is the projection to equivalence
classes induced by ∼.

By transitive closure, we mean the smallest superset which is transitively closed
as defined in Definition 3.6.

The quotient 𝐺/∼ represents the gadget formed by connecting locations of 𝐺
which are related by∼. We need to take transitive closure because connected locations
may allow traversal sequences to be contracted: if 𝑋[𝑎→ 𝑏, 𝑐→ 𝑑]𝑌 ∈ 𝐺 and 𝑏 ∼ 𝑐,
the transitive closure induces a new traversal sequence 𝑋[𝑎→ 𝑑]𝑌 in 𝐺/∼.

We can describe the quotient in a slightly different way, which will be more con-
venient for many proofs.

Definition 3.12. Let 𝑋 and 𝑌 be traversal sequences on 𝐿. We say that 𝑌 is a
transitive contraction of 𝑋, and write 𝑋  𝑌 , if we can obtain 𝑌 from 𝑋 by a
sequence of local replacements of the form [𝑎→ 𝑏, 𝑏→ 𝑐] ↦→ [𝑎→ 𝑐]. Formally,  is
the minimal reflexive transitive relation with 𝑋[𝑎→ 𝑏, 𝑏→ 𝑐]𝑌  𝑋[𝑎→ 𝑐]𝑌 .

Clearly the transitive closure of a set 𝑆 of traversal sequences is

{𝑌 | 𝑋 ∈ 𝑆, 𝑋  𝑌 }.

Thus we have another description of the quotient:

Proposition 3.13. Suppose 𝐺 is a gizmo and ∼ is an equivalence relation on locs 𝐺.
Then for any traversal sequence 𝑋, 𝑋 ∈ 𝐺/∼ if and only if 𝜋∼

*
∘(𝑌 )  𝑋 for some

𝑌 ∈ 𝐺.
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Finally, we define a notion for specifying accessible ports of a gadget.

Definition 3.14. Let 𝐺 be a gizmo, and let 𝐿 ⊂ locs 𝐺. The subgizmo 𝐺|𝐿 is
𝐺 ∩ 𝒯 (𝐿)*.

The subgizmo 𝐺|𝐿 represents the gadget formed by ignoring all the locations in 𝐺
except for those in 𝐿. Think of 𝐿 as indicating the ‘ports’ of a simulation, and only
those locations are accessible to the outside world.

Definition 3.15. Let 𝑆 be a set of gizmos, and let 𝐺 be a gizmo. Then 𝑆 arbitrarily
simulates 𝐺 if there is a collection of gizmos 𝐺𝑖 ∈ 𝑆 indexed by a set 𝐼, an equivalence

relation ∼ on
⨆︁
𝑖∈𝐼

locs 𝐺𝑖, and a set 𝐿 ⊂
⨆︁
𝑖∈𝐼

locs 𝐺𝑖

⧸︃
∼, such that

𝐺 ∼=
⨂︁
𝑖∈𝐼

𝐺𝑖

⧸︃
∼
⃒⃒⃒⃒
⃒
𝐿

.

Such a combination (𝐼, {𝐺𝑖}𝑖∈𝐼 ,∼, 𝐿) is called an arbitrary simulation of 𝐺 from
𝑆. We say that 𝐺 is arbitrarily simulable from 𝑆 if such a simulation exists, and
arbitrarily unsimulable from 𝑆 otherwise.

A finite simulation is one where 𝐼 is finite, and we say finitely simulable, etc. We
also use simulation, simulable, etc. to refer to this finite version.

When 𝑆 = {𝐺′} is a singleton, we will often say simply that 𝐺′ simulates 𝐺.

Note that our definition of simulation allows for simulations which use multiple
different gizmos. Usually when one is interested in a finding a simulation, 𝑆 is a finite
set, and often a singleton. Since gizmos represent individual states of a gadget, often
𝑆 is taken to contain a gizmo for each such state.

To illustrate our definition of simulation, we will translate the simulation in Fig-
ure 2-14 into the formalism. The (prefix-closed) gizmos we are using are

𝑆 = {1-toggle, open tripwire-lock, closed tripwire-lock}

(recall that the two states of the 1-toggle are isomorphic, so there is no reason to
specify which one). The index set 𝐼 has 6 elements, and there are two 𝐺𝑖s which
are each element of 𝑆. The tensor product is a gizmo (see Proposition 3.17) with 20
locations labeled 𝐴 through 𝑇 and 64 states (since each of the 6 components has two
states; see Section 3.6 for the correct notion of ‘state’).

Next we take a quotient to connect locations. In this case, we have 𝐵 ∼ 𝐸 ∼ 𝐺,
𝐷 ∼ 𝐹 ∼ 𝐼, 𝐶 ∼ 𝐾, 𝐽 ∼ 𝑅, 𝐿 ∼ 𝑂 ∼ 𝑄, and 𝑁 ∼ 𝑃 ∼ 𝑆. We use a letter to denote
its equivalence class. This gizmo (see Proposition 3.18) has 9 locations, corresponding
to the connected regions outside of gadgets in the network, and still has 64 states.
It includes traversal sequences such as [𝐴 → 𝐸], [𝐸 → 𝐹 ], [𝐴 → 𝐸, 𝐸 → 𝐹 ],
[𝐴 → 𝐹 ] (because of transitivity), and [𝐴 → 𝐻, 𝑇 → 𝑀 ], but not [𝐴 → 𝑀 ] or
[𝐹 → 𝐶, 𝑃 → 𝑂, 𝐸 → 𝐴].

Finally, we take the subset 𝐿 = {𝐴, 𝐻, 𝑀, 𝑇} of locations representing the ‘ports’
of the simulation. The resulting subgizmo (see Proposition 3.19) includes e.g. [𝐴→
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𝐻, 𝑇 →𝑀 ] but not [𝐴→𝑀 ]. It can be verified that this gizmo is isomorphic to the
2-toggle.

With our definition of simulation in hand, we can refine Question 1.1 into a more
well-defined question:

Question 3.1. For a set 𝑆 of gizmos and a gizmo 𝐺, when does 𝑆 simulate 𝐺?

Since we are primarily interested in reachability, which corresponds to prefix-closed
gizmos, our goal is to answer this special case:

Question 3.2. For a set 𝑆 of prefix-closed gizmos and a prefix-closed gizmo 𝐺, when
does 𝑆 simulate 𝐺?

3.4 Basic properties
In this section we prove several basic properties of gizmos which one expects should
hold if our definitions are reasonable. Most of them are straightforward to prove.

Proposition 3.16. Let 𝐺 be a gizmo on 𝐿, and 𝑋, 𝑌 ∈ 𝒯 (𝐿).

1. 𝐺[𝑋] is a gizmo.

2. 𝐺[𝑋][𝑌 ] = 𝐺[𝑋𝑌 ]

3. If 𝐺 is prefix-closed, then 𝐺[𝑋] is prefix-closed.

Proof. These are all straightforward.

1. We must show 𝐺[𝑋] = {𝑌 | 𝑋𝑌 ∈ 𝐺} is transitive and has self-loops. For
transitivity,

𝑌 [𝑎→ 𝑏, 𝑏→ 𝑐]𝑍 ∈ 𝐺[𝑋] ⇐⇒ 𝑋𝑌 [𝑎→ 𝑏, 𝑏→ 𝑐]𝑍 ∈ 𝐺

=⇒ 𝑋𝑌 [𝑎→ 𝑐]𝑍 ∈ 𝐺 ⇐⇒ 𝑌 [𝑎→ 𝑐]𝑍 ∈ 𝐺[𝑋].

For self-loops,

𝑌 𝑍 ∈ 𝐺[𝑋] ⇐⇒ 𝑋𝑌 𝑍 ∈ 𝐺

=⇒ 𝑋𝑌 [𝑎→ 𝑎]𝑍 ∈ 𝐺 ⇐⇒ 𝑌 [𝑎→ 𝑎]𝑍 ∈ 𝐺[𝑋].

2. 𝑍 ∈ 𝐺[𝑋][𝑌 ] ⇐⇒ 𝑌 𝑍 ∈ 𝐺[𝑋] ⇐⇒ 𝑋𝑌 𝑍 ∈ 𝐺 ⇐⇒ 𝑍 ∈ 𝐺[𝑋𝑌 ].

3. We have 𝑌 𝑍 ∈ 𝐺 =⇒ 𝑌 ∈ 𝐺, so

𝑌 𝑍 ∈ 𝐺[𝑋] ⇐⇒ 𝑋𝑌 𝑍 ∈ 𝐺 =⇒ 𝑋𝑌 ∈ 𝐺 ⇐⇒ 𝑌 ∈ 𝐺[𝑋].

Proposition 3.17. Suppose 𝐺𝑖 is a gizmo for every 𝑖 ∈ 𝐼. Then
⨂︁
𝑖∈𝐼

𝐺𝑖 is a gizmo.
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Proof. For transitivity, suppose 𝑋[𝑎 → 𝑏, 𝑏 → 𝑐]𝑌 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖. Then for some 𝑖, 𝑖′ ∈ 𝐼,

we have 𝑎, 𝑏 ∈ locs 𝐺𝑖 and 𝑏, 𝑐 ∈ locs 𝐺𝑖′ . So 𝑖 = 𝑖′ and locs 𝐺𝑖 contains all three
locations. Thus each traversal in 𝑋[𝑎 → 𝑐]𝑌 is on a single multiplicand. The
restriction (𝑋[𝑎 → 𝑏, 𝑏 → 𝑐]𝑌 )|locs 𝐺𝑖

= 𝑋locs 𝐺𝑖
[𝑎 → 𝑏, 𝑏 → 𝑐]𝑌locs 𝐺𝑖

∈ 𝐺𝑖, so
𝑋locs 𝐺𝑖

[𝑎 → 𝑐]𝑌locs 𝐺𝑖
= (𝑋[𝑎 → 𝑐]𝑌 )|locs 𝐺𝑖

∈ 𝐺𝑖. The other restrictions do not
change when we contract [𝑎→ 𝑏, 𝑏→ 𝑐]. Hence 𝑋[𝑎→ 𝑐]𝑌 ∈

⨂︁
𝑖∈𝐼

𝐺𝑖.

For self-loops, suppose 𝑋𝑌 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖 and 𝑎 ∈ locs 𝐺𝑖. Then 𝑋locs 𝐺𝑖
𝑌locs 𝐺𝑖

∈ 𝐺𝑖,

so 𝑋locs 𝐺𝑖
[𝑎 → 𝑎]𝑌locs 𝐺𝑖

∈ 𝐺𝑖, and other restrictions do not change upon inserting
𝑎→ 𝑎. The only new traversal 𝑎→ 𝑎 is on locs 𝐺𝑖, so 𝑋[𝑎→ 𝑎]𝑌 ∈

⨂︁
𝑖∈𝐼

𝐺𝑖.

Proposition 3.18. Let 𝐺 be a gizmo and ∼ be an equivalence relation on locs 𝐺.
Then 𝐺/∼ is a gizmo.

Proof. Transitivity is immediate from the definition of 𝐺/∼. For self-loops, suppose
𝑋𝑌 ∈ 𝐺/∼ and [𝑎] ∈ locs 𝐺/∼. Then 𝑋𝑌 is a transitive contraction of 𝜋∼

*
∘(𝑍) for

some 𝑍 ∈ 𝐺. We can decompose 𝑍 as 𝑍 = 𝑋 ′𝑌 ′ where 𝜋∼
*
∘(𝑋 ′) 𝑋 and 𝜋∼

*
∘(𝑌 ′) 

𝑌 . Since 𝐺 is a gizmo, 𝑋 ′[𝑎 → 𝑎]𝑌 ′ ∈ 𝐺. But 𝜋∼
*
∘(𝑋 ′[𝑎 → 𝑎]𝑌 ′)  𝑋[[𝑎] → [𝑎]]𝑌 ,

so we have 𝑋[[𝑎]→ [𝑎]]𝑌 ∈ 𝐺/∼.

Proposition 3.19. Let 𝐺 be a gizmo and 𝐿 ⊂ locs 𝐺. Then 𝐺|𝐿 is a gizmo.

Proof. If 𝑋[𝑎 → 𝑏, 𝑏 → 𝑐]𝑌 ∈ 𝐺|𝐿, then 𝑋[𝑎 → 𝑏, 𝑏 → 𝑐]𝑌 ∈ 𝐺, so 𝑋[𝑎 → 𝑐]𝑌 ∈ 𝐺.
But all the locations in 𝑋[𝑎→ 𝑐]𝑌 are in 𝐿, so 𝑋[𝑎→ 𝑐]𝑌 ∈ 𝐺|𝐿. Next, if 𝑋𝑌 ∈ 𝐺|𝐿
and 𝑎 ∈ 𝐿, then 𝑋[𝑎 → 𝑎]𝑌 ∈ 𝐺 and again all locations are in 𝐿, so 𝑋[𝑎 → 𝑎]𝑌 ∈
𝐺|𝐿.

Propositions 3.17 through 3.19 are crucial properties of our definitions of tensor
product, quotient, and subgizmo.

Proposition 3.20. Let 𝐼 be an index set, 𝐺𝑖 and 𝐺 be gizmos, ∼ be an equivalence
relation on locs 𝐺, 𝐿 ⊂ locs 𝐺, and 𝑋 be a traversal sequence on the appropriate set.
Then the ‘after 𝑋’ operation interacts with the other operations we defined in the
following ways:

1. If
(︃⨂︁

𝑖∈𝐼

𝐺𝑖

)︃
[𝑋] is nonempty, then

(︃⨂︁
𝑖∈𝐼

𝐺𝑖

)︃
[𝑋] =

⨂︁
𝑖∈𝐼

(𝐺𝑖[𝑋|locs 𝐺𝑖
]).

2. (𝐺/∼)[𝑋] =
⋃︁

̃︀𝑋∈𝒯(locs 𝐺)*

𝜋∼*
∘( ̃︀𝑋) 𝑋

𝐺[̃︁𝑋]/∼

3. (𝐺|𝐿)[𝑋] = 𝐺[𝑋]|𝐿.

Proof. Let 𝑌 be a traversal sequence on the appropriate set.
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1. Each traversal in 𝑋 must be on a single multiplicand. If this is not also true of
𝑌 , then 𝑌 is in neither gizmo. Otherwise,

𝑌 ∈
(︃⨂︁

𝑖∈𝐼

𝐺𝑖

)︃
[𝑋] ⇐⇒ 𝑋𝑌 ∈

⨂︁
𝑖∈𝐼

𝐺𝑖

⇐⇒ ∀𝑖 ∈ 𝐼 : (𝑋𝑌 )|locs 𝐺𝑖
∈ 𝐺𝑖

⇐⇒ ∀𝑖 ∈ 𝐼 : 𝑌 |locs 𝐺𝑖
∈ 𝐺𝑖[𝑋|locs 𝐺𝑖

]
⇐⇒ 𝑌 ∈

⨂︁
𝑖∈𝐼

(𝐺𝑖[𝑋|locs 𝐺𝑖
]).

2. The union comes from the fact that there may be many traversal sequences in 𝐺
corresponding to 𝑋, and (𝐺/∼)[𝑋] is the superposition of all states reachable
by such sequences. Formally:

𝑌 ∈ (𝐺/∼)[𝑋] ⇐⇒ 𝑋𝑌 ∈ 𝐺/∼
⇐⇒ ∃̃︂𝑋𝑌 ∈ 𝐺 : 𝜋∼

*
∘( ̃︂𝑋𝑌 ) 𝑋𝑌

⇐⇒ ∃̃︁𝑋, ̃︀𝑌 : ̃︁𝑋 ̃︀𝑌 ∈ 𝐺 & 𝜋∼
*
∘(̃︁𝑋) 𝑋 & 𝜋∼

*
∘( ̃︀𝑌 ) 𝑌

⇐⇒ ∃̃︁𝑋 : 𝜋∼
*
∘(̃︁𝑋) 𝑋 & 𝑌 ∈ 𝐺[̃︁𝑋]/∼

⇐⇒ 𝑌 ∈
⋃︁

̃︀𝑋∈𝒯(locs 𝐺)*

𝜋∼*
∘( ̃︀𝑋) 𝑋

𝐺[̃︁𝑋]/∼.

3. A sequence 𝑌 ∈ 𝒯 (𝐿)* is in each gizmo if and only if 𝑋𝑌 ∈ 𝐺, since both 𝑋
and 𝑌 are on 𝐿.

Proposition 3.21. Let 𝐼 and {𝐻𝑖}𝑖∈𝐼 be index sets; 𝐺, {𝐺𝑖}𝑖∈𝐼 , and {𝐺𝑖ℎ}𝑖∈𝐼,ℎ∈𝐻𝑖

be gizmos; ∼, ∼′, and ∼𝑖 be equivalence relations on appropriate sets; and 𝐿, 𝐿′, and
𝐿𝑖 be appropriate sets. Tensor product, quotient, and subgizmo obey the following
identities:

1.
⨂︁
𝑖∈𝐼

⨂︁
ℎ∈𝐻𝑖

𝐺𝑖ℎ
∼=

⨂︁
(𝑖,ℎ)∈

⨆︀
𝑖∈𝐼

𝐻𝑖

𝐺𝑖ℎ

2. 𝐺/∼/∼′ ∼= 𝐺/(∼′ ∘ ∼)

3. 𝐺|𝐿|𝐿′ = 𝐺|𝐿′

4.
⨂︁
𝑖∈𝐼

𝐺𝑖/∼𝑖
∼=
⨂︁
𝑖∈𝐼

𝐺𝑖

⧸︃⨆︁
𝑖∈𝐼

∼𝑖

5.
⨂︁
𝑖∈𝐼

𝐺𝑖|𝐿𝑖
=
⨂︁
𝑖∈𝐼

𝐺𝑖

⃒⃒⃒⃒
⃒⨆︀
𝑖∈𝐼

𝐿𝑖
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Here the composition (∼′ ∘ ∼) of equivalence relations is the equivalence relation
where 𝑎 (∼′ ∘ ∼) 𝑏 whenever [𝑎]∼ ∼′ [𝑏]∼, where [𝑥]∼ is the ∼-equivalence class of
𝑥; equivalently up to isomorphism, 𝜋(∼′∘∼) = 𝜋∼′ ∘ 𝜋∼. The disjoint union

⨆︁
𝑖∈𝐼

∼𝑖 of

equivalence relations ∼𝑖 on 𝐴𝑖 is the natural equivalence relation on
⨆︁
𝑖∈𝐼

𝐴𝑖.

For tensor products of only two gizmos, identities 1, 4, and 5 can be written

𝐺1 ⊗ (𝐺2 ⊗𝐺3) ∼= (𝐺1 ⊗𝐺2)⊗𝐺3

𝐺/∼⊗𝐺/∼′ ∼= (𝐺⊗𝐺′)/(∼ ⊔ ∼′)
𝐺|𝑗 ⊗𝐺|𝑗′ ∼= (𝐺⊗𝐺′)|𝑗⊔𝑗′ .

Proof. The isomorphisms are the obvious bijections between location sets.

1. Whether a traversal has both locations on the same 𝐺𝑖ℎ is clearly equivalent
for both sides. Let 𝑋 be a traversal sequence on

⨆︁
𝑖∈𝐼,ℎ∈𝐻𝑖

locs 𝐺𝑖ℎ in which every

traversal is on a single gizmo. Then

𝑋 ∈
⨂︁
𝑖∈𝐼

⨂︁
ℎ∈𝐻𝑖

𝐺𝑖ℎ ⇐⇒ ∀𝑖 ∈ 𝐼 : 𝑋

⃒⃒⃒⃒
⃒⃒ ⨆︀
ℎ∈𝐻𝑖

locs 𝐺𝑖ℎ
∈
⨂︁

ℎ∈𝐻𝑖

𝐺𝑖ℎ

⇐⇒ ∀𝑖 ∈ 𝐼, ℎ ∈ 𝐻𝑖 :
⎛⎝𝑋

⃒⃒⃒⃒
⃒⃒ ⨆︀
ℎ∈𝐻𝑖

locs 𝐺𝑖ℎ

⎞⎠ ⃒⃒⃒
locs 𝐺𝑖ℎ

∈ 𝐺𝑖ℎ

⇐⇒ ∀𝑖 ∈ 𝐼, ℎ ∈ 𝐻𝑖 : 𝑋|locs 𝐺𝑖ℎ
∈ 𝐺𝑖ℎ

⇐⇒ 𝑋 ∈
⨂︁

(𝑖,ℎ)∈
⨆︀
𝑖∈𝐼

𝐻𝑖

𝐺𝑖ℎ.

2. Suppose 𝑋 ∈ 𝐺/∼/∼′. Then 𝜋∼′
*
∘(𝑌 )  𝑋 for some 𝑌 ∈ 𝐺/∼. But then

𝜋∼
*
∘(𝑍)  𝑌 for some 𝑍 ∈ 𝐺. So we have 𝜋∼′

*
∘(𝜋∼

*
∘(𝑍))  𝜋∼′

*
∘(𝑌 )  𝑋.

Under the isomorphism between locs 𝐺/∼/∼′ and locs 𝐺/(∼′ ∘ ∼), we have
𝜋(∼′∘∼))𝑍) 𝑋, so 𝑋 ∈ 𝐺/(∼′ ∘ ∼).
Conversely, suppose 𝑋 ∈ 𝐺/(∼′ ∘ ∼). Then 𝜋(∼′∘∼)(𝑍)  𝑋 for some 𝑍 ∈ 𝐺.
Then we can take 𝑌 = 𝜋∼

*
∘(𝑍) ∈ 𝐺/∼, and up to the same isomorphism

𝜋∼′
*
∘(𝑌 ) 𝑋, so 𝑋 ∈ 𝐺/∼/∼′.

3. For 𝐺|𝐿|𝐿′ to be defined, 𝐿′ ⊂ 𝐿, so 𝐺|𝐿|𝐿′ = 𝐺∩𝒯 (𝐿)*∩𝒯 (𝐿′)* = 𝐺∩𝒯 (𝐿′)* =
𝐺|𝐿′ .

4. Whether both locations of a traversal are on the same multiplicand is clearly
equivalent on both sides, since ∼𝑖 is confined to locs 𝐺𝑖.
Take 𝑋 ∈

⨂︁
𝑖∈𝐼

𝐺𝑖/∼𝑖, so 𝑋|locs 𝐺𝑖/∼𝑖
∈ 𝐺𝑖/∼𝑖. But then 𝜋∼𝑖

*
∘(𝑌𝑖)  𝑋|locs 𝐺𝑖/∼𝑖

for some 𝑌𝑖 ∈ 𝐺𝑖. Let ̃︁𝑋 ∈ 𝒯 (︃⨆︁
𝑖∈𝐼

locs 𝐺𝑖

)︃*

be the interleaving of 𝑌𝑖 correspond-
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ing to 𝑋 (thought of as an interleaving of 𝑋|locs 𝐺𝑖/∼𝑖
). Then ̃︁𝑋 ∈⨂︁

𝑖∈𝐼

𝐺𝑖, and

𝜋⨆︀
𝑖∈𝐼

∼𝑖

*

∘

(︁̃︁𝑋)︁ 𝑋, so 𝑋 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖

⧸︃(︃⨆︁
𝑖∈𝐼

∼𝑖

)︃
.

Conversely, take 𝑋 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖

⧸︃(︃⨆︁
𝑖∈𝐼

∼𝑖

)︃
, so we have 𝜋⨆︀

𝑖∈𝐼

∼𝑖

*

∘

(︁̃︁𝑋)︁ 𝑋 for some

̃︁𝑋 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖. Each contraction occurs between traversals on the same multi-

plicand, so they can all be performed on each ̃︁𝑋|locs 𝐺𝑖
separately. That is,

𝜋∼𝑖

*
∘(̃︁𝑋|locs 𝐺𝑖

) 𝑋|locs 𝐺𝑖/∼𝑖
, so 𝑋|locs 𝐺𝑖/∼𝑖

∈ 𝐺𝑖/∼𝑖, and hence 𝑋 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖/∼𝑖.

5. Once again, it is clearly equivalent on both sides whether the locations of a
traversal come from the same gizmo. Conditioned on this being true for a

traversal sequence 𝑋 ∈ 𝒯
(︃⨆︁

𝑖∈𝐼

𝐿𝑖

)︃*

,

𝑋 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖|𝐿𝑖
⇐⇒ ∀𝑖 ∈ 𝐼 : 𝑋|𝐿𝑖

∈ 𝐺𝑖|𝐿𝑖

⇐⇒ ∀𝑖 ∈ 𝐼 : 𝑋|locs 𝐺𝑖
∈ 𝐺𝑖|𝐿𝑖

⇐⇒ ∀𝑖 ∈ 𝐼 : 𝑋|locs 𝐺𝑖
∈ 𝐺𝑖

⇐⇒ 𝑋 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖

⇐⇒ 𝑋 ∈
⨂︁
𝑖∈𝐼

𝐺𝑖

⃒⃒⃒⃒
⃒⨆︀
𝑖∈𝐼

𝐿𝑖

.

Note that we use the fact that 𝑋 is on
⨆︁
𝑖∈𝐼

𝐿𝑖.

Our final identity is a bit more complicated.

Proposition 3.22. Let 𝐺 be a gizmo, 𝐿 ⊂ locs 𝐺, and ∼ be an equivalence relation
on 𝐿. Then

𝐺|𝐿/∼ = 𝐺/(∼ ∪ =)|𝐿/∼,

where (∼ ∪ =) is the extension of ∼ to an equivalence relation on locs 𝐺, meaning
𝑎 (∼ ∪ =) 𝑏 if 𝑎 ∼ 𝑏 or 𝑎 = 𝑏.

Proof. Suppose 𝑋 ∈ 𝐺|𝐿/∼. Then 𝜋∼
*
∘(𝑌 )  𝑋 for some 𝑌 ∈ 𝐺|𝐿. Then we have

𝑌 ∈ 𝐺, and 𝜋∼
*
∘(𝑌 ) = 𝜋(∼∪=)

*
∘(𝑌 ), so 𝑋 ∈ 𝐺/(∼ ∪ =). Since 𝑋 is on 𝐿/∼, also

𝑋 ∈ 𝐺/(∼ ∪ =)|𝐿/∼.
Now suppose 𝑋 ∈ 𝐺/(∼ ∪ =)|𝐿/∼, and think of 𝑋 as a traversal sequence on

locs 𝐺/(∼ ∪ =). Then 𝜋(∼∪=)
*
∘(𝑌 )  𝑋 for some 𝑌 ∈ 𝐺. Suppose a traversal in

38



𝑌 has a location 𝑎 not in 𝐿. Then this location must be contracted away in the
conversion to 𝑋, so the appropriate location 𝑏 in an adjacent traversal in 𝑌 must be
in the same equivalence class under (∼ ∪ =) as 𝑎. But the only nontrivial relations
are between elements of 𝐿, so 𝑎 = 𝑏 and this transitive contraction can be performed
in 𝑌 before taking the quotient (since 𝐺 is transitive). Hence, by taking 𝑌 to have
minimal length, we can assume 𝑌 is on 𝐿. Thus 𝑌 ∈ 𝐺|𝐿, and 𝑋 is a transitive
contraction of 𝜋∼

*
∘(𝑌 ), so 𝑋 ∈ 𝐺|𝐿/∼.

Simulations are transitive in the natural sense.

Lemma 3.23. Let 𝑆 and 𝑆 ′ be sets of gizmos, and let 𝐺 be a gizmo. Suppose 𝑆
finitely (resp. arbitrarily) simulates each gizmo in 𝑆 ′, and 𝑆 ′ finitely (resp. arbitrarily)
simulates 𝐺. Then 𝑆 finitely (resp. arbitrarily) simulates 𝐺.

Proof. Since 𝑆 ′ simulates 𝐺, we have 𝐺 ∼=
⨂︁
𝑖∈𝐼

𝐺𝑖/∼|𝐿 with 𝐺𝑖 ∈ 𝑆 ′, ∼ an equivalence

relation on
⨆︁
𝑖∈𝐼

locs 𝐺𝑖, and 𝐿 ⊂
⨆︁
𝑖∈𝐼

locs 𝐺𝑖

⧸︃
∼. For each 𝑖 ∈ 𝐼, since 𝑆 simulates 𝐺𝑖,

we have 𝐺𝑖
∼=
⨂︁

ℎ∈𝐻𝑖

𝐺𝑖ℎ/∼𝑖|𝐿𝑖
with 𝐺𝑖ℎ ∈ 𝑆. For sanity, assume 𝐿𝑖 = locs 𝐺𝑖 and these

isomorphisms are the identity; otherwise we would need to adjust ∼ and 𝐿 according
to the isomorphisms. We proceed algebraically using Propositions 3.21 and 3.22:

𝐺 ∼=
⨂︁
𝑖∈𝐼

𝐺𝑖

⧸︃
∼
⃒⃒⃒⃒
⃒
𝐿

∼=
⨂︁
𝑖∈𝐼

⎛⎝⨂︁
ℎ∈𝐻𝑖

𝐺𝑖ℎ/∼𝑖|𝐿𝑖

⎞⎠⧸︃∼
⃒⃒⃒⃒
⃒⃒
𝐿

∼=
⨂︁
𝑖∈𝐼

⎛⎝⨂︁
ℎ∈𝐻𝑖

𝐺𝑖ℎ/∼𝑖

⎞⎠⃒⃒⃒⃒⃒⃒⨆︀
𝑖∈𝐼

𝐿𝑖

⧸︃
∼

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝐿

∼=
⨂︁
𝑖∈𝐼

⎛⎝⨂︁
ℎ∈𝐻𝑖

𝐺𝑖ℎ/∼𝑖

⎞⎠⧸︃ (∼ ∪ =)

⃒⃒⃒⃒
⃒⃒ ⨆︀

𝑖∈𝐼

𝐿𝑖

⧸︂
∼

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝐿

∼=
⨂︁
𝑖∈𝐼

⎛⎝⨂︁
ℎ∈𝐻𝑖

𝐺𝑖ℎ/∼𝑖

⎞⎠⧸︃ (∼ ∪ =)

⃒⃒⃒⃒
⃒⃒
𝐿

∼=
⨂︁
𝑖∈𝐼

⨂︁
ℎ∈𝐻𝑖

𝐺𝑖ℎ

⧸︃⨆︁
𝑖∈𝐼

∼𝑖

⧸︃
(∼ ∪ =)

⃒⃒⃒⃒
⃒⃒
𝐿

∼=
⨂︁

(𝑖,ℎ)∈
⨆︀

𝐼

𝐺𝑖ℎ

⧸︃⨆︁
𝑖∈𝐼

∼𝑖

⧸︃
(∼ ∪ =)

⃒⃒⃒⃒
⃒⃒⃒
𝐿
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∼=
⨂︁

(𝑖,ℎ)∈
⨆︀

𝐼

𝐺𝑖ℎ

⧸︃(︃
(∼ ∪ =) ∘

⨆︁
𝑖∈𝐼

∼𝑖

)︃ ⃒⃒⃒⃒
⃒⃒⃒
𝐿

.

For the finite simulation case, if 𝐼 and 𝐻𝑖 are all finite, then so is
⨆︁

𝐼 = {(𝑖, ℎ) | 𝑖 ∈
𝐼, ℎ ∈ 𝐻𝑖}.

Corollary 3.24. Let 𝑆 be a set of gizmos. For both finite and arbitrary simulation,
with 𝐼 finite in the case of finite simulation:

1. If 𝑆 simulates 𝐺𝑖 for 𝑖 ∈ 𝐼, then 𝑆 simulates
⨂︁
𝑖∈𝐼

𝐺𝑖.

2. If 𝑆 simulates 𝐺, then 𝑆 simulates 𝐺/∼.

3. If 𝑆 simulates 𝐺, then 𝑆 simulates 𝐺|𝐿.

Proof. These follow from Lemma 3.23 by making some components of simulations
trivial:

1. {𝐺𝑖}𝑖∈𝐼 simulates
⨂︁
𝑖∈𝐼

𝐺𝑖, by taking ∼ to be equality and 𝐿 =
⋃︁
𝑖∈𝐼

locs 𝐺𝑖.

2. 𝐺 simulates 𝐺/∼, by taking 𝐼 = {0}, 𝐺0 = 𝐺, and 𝐿 = locs 𝐺/∼.

3. 𝐺 simulates 𝐺|𝐿, by taking 𝐼 = {0}, 𝐺0 = 𝐺, and ∼ to be equality.

Here we use the fact that 𝐺,
⨂︁

𝑖∈{1}
𝐺, 𝐺/=, and 𝐺|locs 𝐺 are all isomorphic, and tensor

product, quotient, and subgizmo preserve isomorphism.

Lemma 3.2—that simulations yield logarithmic-space reductions between targeted
set reconfiguration problems—now follows easily.

Proof of Lemma 3.2. We have finite sets 𝑆 and 𝑆 ′ of gizmos, a simulation of each
gizmo in 𝑆 ′ from 𝑆, and a simulation of an unknown gizmo on {𝑠, 𝑡} from 𝑆 ′; we wish
to construct a simulation of the same gizmo from 𝑆.16

This is exactly the simulation provided by Lemma 3.23. It must be noted that
this simulation can be constructed in logarithmic space, since 𝑆 and 𝑆 ′ are finite and
thus the simulations of the gizmos in 𝑆 ′ from 𝑆 have constant size.

Definition 3.25. A set 𝑆 of gizmos is closed under (finite) simulation if whenever 𝑆
(finitely) simulates a gizmo 𝐺, 𝐺 ∈ 𝑆.

𝑆 is closed under abitrary simulation if whenever 𝑆 arbitrarily simulates a gizmo
𝐺, 𝐺 ∈ 𝑆.

16The lemma only requires that the gizmo we simulate has the same opinion about the legality of
[𝑠→ 𝑡], but it is no harder to construct exactly the same gizmo.
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3.5 Consequences of our definition
In this section, we discuss some of the less intuitive consequences of our definitions
of gizmo and simulation. Some of these consequences seem to inevitably result from
formalizing gadgets, and some are the result of choices we made when crafting our
definition.

3.5.1 Specific to one-player targeted set reconfiguration
As discussed in Section 3.1, different notion of simulation are relevant in different con-
texts. Gizmos themselves only make sense in the context of one-player targeted set
reconfiguration. For situations such as multiplayer games or (untargeted) reconfigu-
ration, one would need a new type of object distinct from gizmos. We are specifically
interested in the more narrow context of one-player reachability, which prefix-closed
gizmos are appropriate for.

3.5.2 Reductions not from simulations
We have defined simulation such that a simulation between gizmos yields a reduc-
tion between the corresponding targeted set reconfiguration problems (Lemma 3.2).
However, there can be reductions between these problems which do not come from
simulations. From a certain point of view, this is obvious: for instance, reachability
with the 2-toggle (Figure 2-6) is PSPACE-complete [DGLR18], so there is a reduction
from reachability with the door (Figure 2-3) to reachability with the 2-toggle. But
the 2-toggle is reversible and thus cannot simulate the door (Theorem 4.6).

However, there are also reductions between reachability problems which have the
same flavor as simulations between gadgets, but are not quite simulations. For in-
stance, consider the notion of ‘verified’ gadgets from Lynch [Lyn20]. To simulate a
verified version of a gadget 𝐺, you simulate a gadget with the same locations as 𝐺
and an additional tunnel, such that the added tunnel is only available if 𝐺 was used
correctly. The verified gadget may have additional transitions, but using them must
close the added tunnel. It is reasonable to describe this as a form of simulation, but
does not fit our definition. Perhaps one could define a broader notion of simulation
between gizmos which allows for this case.

3.5.3 Determinization
When described as state machines, there is a natural notion of deterministic gadgets.
This notion does not at all translate to gizmos: gizmos only care about the legal
sequences that can be made. If the player is able to nondeterministically choose the
state of a gadget when making a traversal, the gadget can be thought of as being in a
‘superposition’ state: it may be in any of the states that could have been chosen, and
‘collapses’ to one of them when the agent makes another traversal which was only
legal in one such state.
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Figure 3-3: An NCL edge built out of locking 2-toggles; Figure 7a in Demaine, Hen-
drickson, and Lynch [DHL20]. Used here as an example of a nondeterministic gadget.

For instance, consider the NCL edge built out of locking 2-toggles (Figure 2-8)
from Demaine, Hendrickson, and Lynch [DHL20], shown in Figure 3-3. If the agent
enters at the left, it can choose to either immediately exit or go around the loop
and then exit. In terms of state machines, we would say that (1, 𝐿) → (2, 𝐿) and
(1, 𝐿) → (1, 𝐿) are both legal traversals, where 𝐿 is the left location and the states
are named 1 and 2. Which of these paths is taken controls which of the other two
tunnels—let us call them 𝐴→ 𝐵 and 𝐶 → 𝐷—is available. After traversing 𝐿→ 𝐿,
think of the gadget as being in a superposition of both of these states, with both
tunnels open. If one of the tunnels is used, the state collapses to the state in which
that tunnel was legal.

As a gizmo 𝐺, this allows the sequences [𝐿 → 𝐿, 𝐴 → 𝐵, 𝐵 → 𝐴] and [𝐿 →
𝐿, 𝐶 → 𝐷, 𝐷 → 𝐶], but not [𝐿 → 𝐿, 𝐴 → 𝐵, 𝐵 → 𝐴, 𝐶 → 𝐷]. The gizmo corre-
sponding to the superposition state 𝐺[[𝐿→ 𝐿]] is not reversible:17 taking the tunnel
𝐴→ 𝐵 collapses the state, and even after returning 𝐵 → 𝐴, 𝐶 → 𝐷 has closed. How-
ever, the initial gizmo 𝐺 is reversible, since it is simulated by the reversible locking
2-toggle. Thus we have the following surprising fact:

Lemma 3.26. Reversible gizmos are not closed under making traversals. That is,
even if 𝐺 is reversible and 𝑋 ∈ 𝐺, 𝐺[𝑋] may not be reversible.

In general, superpositions can result when merging locations to form a quotient
gizmo. If we want our gizmos to always have a ‘definite’ state, then the states of 𝐺/∼
are really subsets of the states of 𝐺, representing the states 𝐺 could be in depending
which path was taken through 𝐺 among paths indistinguishable in 𝐺/∼.

3.5.4 Representations of gizmos
We do not have a universal way to describe gizmos, along the lines of state diagrams.
In particular, finite state diagrams cannot describe all gizmos; see Section 3.6. More-
over, there are uncountably many gizmos even with just 2 locations,18 and any finite

17See Section 4.2 for the precise definition of reversible gizmo.
18For any infinite sequence on {𝐴 → 𝐵, 𝐵 → 𝐴}, there is a distinct gizmo which allows exactly

the prefixes of the sequence with self-loops inserted.

42



convention can describe at most countably many of them. Fortunately, we are almost
exclusively interesting in gizmos which can be represented by finite state diagrams
(again, see Section 3.6), of which there are countably many.

3.5.5 Unreachable states
One could consider a gadget which has four locations and four states: the first two
states behave like the 2-toggle, and the last two states behave like the mismatched
dicrumblers. Consider the gizmo corresponding to the first state of this gadget. This
gizmo is exactly state 1 of the 2-toggle. Gizmos only know about legal traversal se-
quences, and thus cannot detect states which can never be reached. If one is interested
in simulations using this four-state gadget, it would be best to allow any of its states
to be used; thus 𝑆 would consist of four gizmos (only two up to isomorphism). More
generally, one needs to distinguish between the situation in which a single gizmo is
being used for simulations, and the situation in which a gizmo corresponding to each
state of a gadget is being used.

3.5.6 Identical ports in simulations
Consider a gadget similar to the 1-toggle (Figure 2-1), but with one location dupli-
cated. That is, in state 1 the traversals 𝐴 → 𝐶 and 𝐵 → 𝐶 both switch to state
2, and in state 2 the traversals 𝐶 → 𝐴 and 𝐶 → 𝐵 both switch to state 1. The
gizmo corresponding to state 1 trivially simulates the 1-toggle by merging 𝐴 and 𝐵,
or by discarding either of 𝐴 and 𝐵. It seems reasonable to say that the 1-toggle also
simulates this 3-location gizmo: just connect 𝐴 and 𝐵 to one end of a 1-toggle and
𝐶 to the other. However, this simulation is not valid, and more generally, one can-
not simply connect multiple ‘ports’ of a simulated gizmo to the same location in the
simulation. This is because our notion of connecting locations, the quotient gizmo,
identifies the locations rather than leaving two locations with free traversals between
them, and because our notion of subgizmo simply takes a subset of locations. If, for
instance, we had instead defined subgizmo using an arbitrary ‘port-labeling’ function,
we could make identical ports.

Often when one would like to have identical ports, it is possible to create them,
such as by adding a wire (Figure 2-13) to the simulation and using each location of
the wire as a port. One advantage of not allowing simulations to freely duplicate
ports in this way is that it becomes easier to define ‘balanced’ gizmos, which we do
in Section 4.5: under our definition, the gadget described above is not balanced, so
we can prove that the 1-toggle cannot simulate it.

3.6 Regular gizmos
The definition of gizmos allows for gizmos that are exotic infinite sets, not arising
from a gadget which can be drawn with a finite state diagram. To prevent this, we
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introduce a notion of regular gizmos, exactly analogous to regular languages. Most
gizmos we consider are regular.

Observe that a state diagram of a gadget can be thought of as describing a finite
automaton on the language of traversals, which accepts exactly the legal traversal
sequences.

Definition 3.27. A gizmo 𝐺 is regular if locs 𝐺 is finite and 𝐺 is regular when
considered as a language over 𝒯 (locs 𝐺).

We can think of regular gizmos as those corresponding to gadgets with finitely
many states. The collection of states reachable from a gizmo 𝐺 is {𝐺[𝑋] | 𝑋 ∈
𝒯 (locs 𝐺)*}.

In the NFAs we consider, we do not allow transitions on the empty string 𝜀. All
of our DFAs and NFAs will have alphabet 𝒯 (𝐿) for some location set 𝐿. We use
ℒ(𝐷) to express the language recognized by an automaton 𝐷. We use the notation
𝑡 : 𝑠→ 𝑠′ to say that an NFA or DFA has a transition from state 𝑠 to 𝑠′ when reading
symbol 𝑡; since 𝑡 is a traversal, this often looks like 𝑎→ 𝑏 : 𝑠→ 𝑠′.

Lemma 3.28. Let 𝐺 be a gizmo with finitely many locations. Then 𝐺 is regular if
and only if {𝐺[𝑋] | 𝑋 ∈ 𝒯 (locs 𝐺)*} is finite.

This is exactly a specialization of the Myhill-Nerode theorem [Ner58]. We provide
a proof for completeness.

Proof. Suppose 𝐺 is regular, so there is a DFA 𝐷 which recognizes 𝐺. If two traversal
sequences 𝑋, 𝑌 on locs 𝐺 put 𝐷 in the same state, then 𝐺[𝑋] = 𝐺[𝑌 ]:

𝑍 ∈ 𝐺[𝑋] ⇐⇒ 𝐷 accepts 𝑋𝑍 ⇐⇒ 𝐷 accepts 𝑌 𝑍 ⇐⇒ 𝑍 ∈ 𝐺[𝑌 ].

Since 𝐷 has finitely many states, there are finitely many options for 𝐺[𝑋].
Now suppose 𝑇 = {𝐺[𝑋] | 𝑋 ∈ 𝒯 (locs 𝐺)*} is finite. We construct a DFA on

𝒯 (locs 𝐺) with states 𝑇 . For each 𝐺′ ∈ 𝑇 and 𝑎 → 𝑏 ∈ 𝒯 (locs 𝐺), the DFA has a
transition 𝑎 → 𝑏 : 𝐺′ → 𝐺′[[𝑎 → 𝑏]]. We set each state 𝐺′ to accept if and only if
[ ] ∈ 𝐺′. The result of feeding 𝑋 into this DFA starting in state 𝐺 is 𝐺[𝑋], which is
accepting if and only if 𝑋 ∈ 𝐺. So the DFA recognizes 𝐺, and thus 𝐺 is regular.

Regular prefix-closed gizmos are recognized by an NFA with a specific structure,
which we will take advantage of in Chapter 5.

Lemma 3.29. If 𝐺 is a nonempty regular prefix-closed gizmo, 𝐺 is recognized by an
NFA where every state is accepting.

Proof. Begin with the DFA constructed by the proof of Lemma 3.28, which has one
state for each reachable state 𝐺[𝑋]. Since 𝐺 is prefix-closed, if 𝐺[𝑋] is nonempty
then [ ] ∈ 𝐺[𝑋]. In particular, the only rejecting state is the empty gizmo ∅, and all
transitions from ∅ stay there. Remove this rejecting state and all transitions to it to
obtain the desired NFA.
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This makes more explicit the relationship between prefix-closed gizmos and gad-
gets with full target set (for reachability): the only way the NFA can reject is by
making an illegal traversal, and then there is no way to fix it. The operation of re-
moving the rejecting state is simple enough that it preserves all of the other properties
of NFAs we consider. Hereafter, all NFAs we discuss for prefix-closed gizmos have all
accepting states.

Theorem 3.30. Regular gizmos are closed under finite simulation.

Proof. We consider each operation in simulation, and construct an NFA for the re-
sulting gizmo using NFAs for the input gizmos. The correctness of each NFA follows
immediately from the definitions of the operations.

• Let 𝐼 be a finite set and suppose 𝐷𝑖 is an NFA recognizing 𝐺𝑖 for each 𝑖 ∈ 𝐼.
We build a product DFA whose states are tuples containing a state of each 𝐷𝑖.
For each transition 𝑎 → 𝑏 : 𝑠 → 𝑠′ of 𝐷𝑖, we include a transition 𝑎 → 𝑏 :
(. . . , 𝑠, . . . )→ (. . . , 𝑠′, . . . ). A state (𝑠𝑖)𝑖∈𝐼 is accepting if each 𝑠𝑖 is.

• Suppose 𝐷 recognizes 𝐺 and ∼ is an equivalent relation on locs 𝐺. We build
an NFA for 𝐺/∼ in two steps. First, change the alphabet to 𝒯 (locs 𝐺/∼) by
replacing label 𝑡 of a transition with 𝜋∼∘(𝑡). Then ensure transitive closure:
whenever there are transitions 𝑎 → 𝑏 : 𝑠1 → 𝑠2 and 𝑏 → 𝑐 : 𝑠2 → 𝑠3, add a
transition 𝑎→ 𝑐 : 𝑠1 → 𝑠3.

• Suppose 𝐷 recognizes 𝐺 and 𝐿 ⊂ locs 𝐺. To build an NFA for 𝐺|𝐿, simply
remove all transition for traversals not in 𝐿 from 𝐷.

If we start with all DFAs, only the quotient can result in an NFA. This reflects
that quotients result in superpositions, as discussed in Section 3.5.3.

Lemma 3.31. Regular gizmos are not closed under arbitrary simulation.

Proof. Let 𝐺 be the gizmo corresponding to state 1 of the ordered dicrumblers (Fig-
ure 2-9); clearly 𝐺 is regular. We name the four locations of 𝐺 with letters 𝐴 through
𝐷 such that [𝐴→ 𝐵, 𝐶 → 𝐷] ∈ 𝐺. Let

𝑋 = [𝑋0, 𝑋1, . . . ] = [𝑥0 → 𝑦0, 𝑥1 → 𝑦1, . . . ]

be a nonconstant infinite sequence on {𝐴 → 𝐵, 𝐶 → 𝐷}. We will show that 𝐺 can
arbitrarily simulate the minimal gizmo 𝐺𝑋 on {𝐴, 𝐵, 𝐶, 𝐷} containing every prefix
of 𝑋. This minimal gizmo contains exactly the prefixes of 𝑋 with self-loops inserted.

First, we will use 𝐺 to arbitrarily simulate a gizmo 𝐺∞ with countably many
locations {𝐴𝑖, 𝐵𝑖}𝑖∈N, which is the minimal gizmo containing every sequence [𝐴0 →
𝐵0, . . . , 𝐴𝑛 → 𝐵𝑛]. Think of 𝐺∞ as having an infinite sequence of directed tunnels,
which must be traversed in order.

To simulate 𝐺∞ using 𝐺, first take 𝐼 = N, and 𝐺𝑖 = 𝐺 for all 𝑖. We will describe
a location of

⨂︁
𝑖∈N

𝐺𝑖 using subscripts; e.g. 𝐴0 is the copy of location 𝐴 in 𝐺0. Let
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A0 B0

D0C0 A1 B1

D1C1 A2 B2

D2C2

Figure 3-4: The arbitrary simulation of 𝐺∞ using ordered dicrumblers. This pattern
continues infinitely. The only nontrivial sequences of traversals that can be made is
[𝐴0 → 𝐵0, 𝐶0 → 𝐵1, 𝐶1 → 𝐵2, 𝐶2 → 𝐵3, . . . ].

𝐷𝑖 ∼ 𝐴𝑖+1 for all 𝑖, and let

𝐿 = {𝐵𝑖 | 𝑖 ∈ N} ∪ {𝐶𝑖 | 𝑖 ∈ N} ∪ {𝐴0}.

Then
⨂︁
𝑖∈N

𝐺𝑖

⧸︃
∼

⃒⃒⃒⃒
⃒⃒
𝐿

∼= 𝐺∞, where the isomorphism sends 𝐴0 ↦→ 𝐴0, 𝐶𝑖 ↦→ 𝐴𝑖+1, and

𝐵𝑖 ↦→ 𝐵𝑖. This simulation is shown in Figure 3-4.
Next we use 𝐺∞ to simulate 𝐺𝑋 . This is relatively simple: set 𝐴𝑖 ∼ 𝐴𝑗 and

𝐵𝑖 ∼ 𝐵𝑗 when 𝑋𝑖 = 𝑋𝑗. The resulting quotient has four locations because 𝑋 is
nonconstant; and the isomorphism will be given by [𝐴𝑖] ↦→ 𝑥𝑖, [𝐵𝑖] ↦→ 𝑦𝑖. This merges
the infinitely many tunnels in 𝐺∞ down to the two tunnels in 𝐺𝑋 , such that the
𝑖th tunnel becomes the tunnel that is supposed to be used on the 𝑖th (non self-loop)
traversal. Thus we have 𝐺∞/∼ = 𝐺𝑋 , and hence 𝐺 arbitrarily simulates 𝐺𝑋 .

By Lemma 3.28, 𝐺𝑋 is regular if and only if 𝑋 is eventually periodic. Taking
𝑋 to be any sequence which is not eventually periodic, we have that 𝐺 arbitrarily
simulates a nonregular gizmo.

We will often discuss both traversals and transitions, which may be easy terms
to confuse. A traversal looks like 𝑎 → 𝑏, and is a member of the alphabet on of our
gizmos or NFAs uses. A transition is meaningless for a gizmo on its own; it has the
form 𝑡 : 𝑠→ 𝑠′ for a traversal 𝑡, and describes how an NFA can change state. For an
NFA that recognizes a gizmo, there may be several transitions corresponding to the
same traversal.
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Chapter 4

Unsimulability

In this chapter, we prove several results implying that some gizmos cannot simulate
other gizmos. These take the form of showing that a class 𝒞 of gizmos is closed under
simulation, and sometimes closed under arbitrary simulation. Such a result provides
a negative answer to Question 3.1 when 𝑆 ⊂ 𝒞 and 𝐺 /∈ 𝒞. We have already seen one
result of this form: Theorem 3.30, that regular gizmos are closed under simulation.

First, we will show that an infinite family of gizmo classes, defined by “implication
properties,” are each closed under arbitrary simulations. In particular, this family
includes the prefix-closed gizmos. Then we will see several gizmo classes which, like
regular gizmos, are closed under finite simulation but not arbitrary simulation.

While we are primarily interested in simulations between regular prefix-closed giz-
mos, most of the results in this chapter apply to non-prefix-closed gizmos. Similarly,
many of our results apply even to nonregular gizmos and arbitrary simulations.

To prove that a class 𝒞 of gizmos is closed under simulations, we must show that
performing each of the operations in a simulation—tensor product, quotient, sub-
gizmo, and isomorphism—on gizmos in 𝒞 yields a gizmo also in 𝒞. That isomorphism
preserves 𝒞 will always be trivial since our definitions of gizmo classes are invariant
under isomorphism. When proving 𝒞 is closed under finite simulation, we need only
consider finite tensor products, but for arbitrary simulations we must allow arbitrary
tensor products.

Beyond closure under simulation, another property of gizmo classes that is some-
times relevant is whether gizmos stay in the class after making traversals.

Definition 4.1. A gizmo class 𝒞 is closed under traversals if for every 𝐺 ∈ 𝒞 and
𝑋 ∈ 𝒯 (locs 𝐺)*, also 𝐺[𝑋] ∈ 𝒞.

We already saw in Section 3.5.3 that a gizmo class which—as we will soon show—
is closed under simulations need not be closed under traversals. But many classes
closed under simulation also happen to be closed under traversals.

Lemma 4.2. Prefix-closed gizmos are closed under traversals.

Proof. Let 𝐺 be a prefix-closed gizmo, and let 𝑋 be a traversal sequence on locs 𝐺.
Then 𝑌 𝑍 ∈ 𝐺[𝑋] =⇒ 𝑋𝑌 𝑍 ∈ 𝐺 =⇒ 𝑋𝑌 ∈ 𝐺 =⇒ 𝑌 ∈ 𝐺[𝑋], so 𝐺[𝑋] is
prefix-closed.
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Lemma 4.3. Regular gizmos are closed under traversals.

Proof. If a DFA 𝐷 recognizes 𝐺, then the DFA which is 𝐷 with start state changed
to the state resulting from feeding 𝑋 into 𝐷 recognizes 𝐺[𝑋].

To show a class is closed under traversals it suffices to consider the case when 𝑋
consists of a single traversal; the general case follows by induction.

4.1 Implication properties
Our first results in this chapter concern an infinite family of gizmo classes. This is
a natural generalization of properties like prefix-closed, which can be expressed in a
particular convenient form. The infinite family is based on the crucial facts about
these properties that are used to prove that they are closed under simulations, so we
are able to prove a much more general result.

Definition 4.4. Let 𝑋 = [𝑎1 → 𝑏1, . . . , 𝑎𝑛 → 𝑏𝑛] be a traversal sequence on 𝐿. Its
reverse 𝑋−1 is the traversal sequence [𝑏𝑛 → 𝑎𝑛, . . . , 𝑏1 → 𝑎𝑛] on 𝐿.

The reverse is intuitively the traversal sequence resulting from walking through
𝑋 backwards.

Definition 4.5. Let Σ be a finite set of variables. A traversal formula is a finite
sequence of variables and their formal inverses, such as 𝑋𝑋−1𝑌 or 𝑋𝑋 (which we
abbreviate 𝑋2) if 𝑋, 𝑌 ∈ Σ. For a gizmo 𝐺, a variable assignment is a function Σ→
𝒯 (locs 𝐺)*. The evaluation 𝑓 [𝑡] of a traversal formula 𝑡 under a variable assigment 𝑓
is the traversal sequence obtained by replacing each variable in the formula with its
assignment, interpreting inverse as the reverse sequence and concatenating. A set 𝑆
of traversal formulas is simple if each element of Σ appears exactly once in exactly one
element of 𝑆, and no inverses appear in elements of 𝑆. For a simple set 𝑆 of traversal
formulas and a traversal formula 𝑥, the implication property 𝑆 =⇒ 𝑥 is the following
statement about a gizmo 𝐺: for any variable assignment for 𝐺, if the evaluation of
each element of 𝑆 is in 𝐺, then the evaluation of 𝑥 is in 𝐺. An implication property
defines a class of gizmos, namely the gizmos for which 𝑆 =⇒ 𝑥 is true.

We generally write 𝑆 as a comma-separated list, without braces. For instance,
the implication property 𝑋𝑌 =⇒ 𝑋 says of a gizmo 𝐺 that whenever 𝑋𝑌 ∈ 𝐺,
also 𝑋 ∈ 𝐺. This is exactly the statement that 𝐺 is prefix-closed, so the prefix-closed
gizmos are described by 𝑋𝑌 =⇒ 𝑋.

We often use implication properties as adjectives, using brackets for readability.
For instance, a ‘[𝑋 =⇒ 𝑋−1] gizmo’ is a gizmo satisfying 𝑋 =⇒ 𝑋−1.

The hypothesis that 𝑆 is simple is necessary for the resulting class to be closed.
For instance, the mismatched dicrumblers (2-5) satisfies 𝑋𝑋 =⇒ 𝑋𝑋𝑋, which is
not an implication property since 𝑋 appears twice in 𝑋𝑌 𝑋. But as we will see in
Corollary 5.9, the mismatched dicrumblers simulates every regular gizmo, including
ones which do not satisfy 𝑋𝑋 =⇒ 𝑋𝑋𝑋.
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it is important to note that the variables in an implication property can stand
for arbitrary traversal sequences, not just single traversals. This means implication
properties are quite strong, and checking whether a specific gizmo satisfies one is not
trivial.

For an implication property 𝑆 =⇒ 𝑥, we can assume without loss of generality
that 𝑆 is finite: finitely many variables (counting inverses) appear in 𝑥, and each
appears it only one element of 𝑆. Take the finite set 𝑆 ′ ⊂ 𝑆 of traversal formulas in
𝑆 containing a variable that appears in 𝑥, and remove all variables in Σ which only
appear in elements of 𝑆 ∖ 𝑆 ′. Then 𝑆 ′ =⇒ 𝑥 is equivalent to 𝑆 =⇒ 𝑥.19

Theorem 4.6. For any implication property 𝑆 =⇒ 𝑥, the class of gizmos satisfying
𝑆 =⇒ 𝑥 is closed under arbitrary simulation.

Proof. We consider each operation in simulation.

• Let 𝐼 be an arbitrary index set, and suppose each 𝐺𝑖 satisfies 𝑆 =⇒ 𝑥 for
𝑖 ∈ 𝐼. Let 𝐺 =

⨂︁
𝑖∈𝐼

𝐺𝑖. Consider a variable assignment 𝑓 : Σ→ 𝒯 (locs 𝐺)*, and

assume the evaluation under 𝑓 of each element of 𝑆 is in 𝐺. For each 𝑖 ∈ 𝐼, there
is an induced variable assignment 𝑓𝑖 : Σ→ 𝒯 (locs 𝐺𝑖)* with 𝑓𝑖 : 𝑋 ↦→ 𝑓(𝑋)|𝐺𝑖

.
For 𝑋 ∈ Σ, since 𝑆 is simple, 𝑋 appears in some 𝑡 ∈ 𝑆. So 𝑓 [𝑡] contains 𝑓(𝑋)
as a substring and is in 𝐺, so each traversal in 𝑓(𝑋) is on a single 𝐺𝑖. Thus
for any traversal formula 𝑡, 𝑓 [𝑡] is an interleaving of 𝑓𝑖[𝑡], and in particular
𝑓𝑖[𝑡] = 𝑓 [𝑡]|𝐺𝑖

.
For each 𝑡 ∈ 𝑆 and 𝑖 ∈ 𝐼, since 𝑓 [𝑡] ∈ 𝐺, we have 𝑓𝑖[𝑡] ∈ 𝐺𝑖. But 𝐺𝑖 satisfies
𝑆 =⇒ 𝑥, so 𝑓𝑖[𝑥] ∈ 𝐺𝑖. Since 𝑓 [𝑥] is an interleaving of 𝑓𝑖[𝑥], we have 𝑓 [𝑥] ∈ 𝐺.

• Suppose 𝐺 satisfies 𝑆 =⇒ 𝑥 and ∼ is an equivalence relation on locs 𝐺. Let
𝑓 : Σ → 𝒯 (locs 𝐺/∼)* be a variable assignment such that for every 𝑡 ∈ 𝑆,
𝑓 [𝑡] ∈ 𝐺/∼. So 𝜋∼

*
∘(𝑋𝑡)  𝑓 [𝑡] for some 𝑋𝑡 ∈ 𝐺, and we can decompose 𝑋𝑡

into sequences leading to the evaluations of individual variables in 𝑓 [𝑡]. Since
each variable in Σ appears exactly once in some 𝑡 ∈ 𝑆, this gives a variable
assignment ̃︀𝑓 : Σ → 𝒯 (locs 𝐺)* such that ̃︀𝑓 [𝑡] = 𝑋𝑡 ∈ 𝐺 for each 𝑡 ∈ 𝑆, and
𝜋∼

*
∘( ̃︀𝑓(𝑋))  𝑓(𝑋) for each 𝑋 ∈ Σ. Thus 𝜋∼

*
∘( ̃︀𝑓 [𝑡])  𝑓 [𝑡] for any traversal

formula 𝑡. Since 𝐺 satisfies 𝑆 =⇒ 𝑥, ̃︀𝑓 [𝑥] ∈ 𝐺, but then 𝑓 [𝑥] ∈ 𝐺/∼.

• Suppose 𝐺 satisfies 𝑆 =⇒ 𝑥 and 𝐿 ⊂ locs 𝐺. Let 𝑓 : Σ→ 𝒯 (𝐿)* be a variable
assignment such that for every 𝑡 ∈ 𝑆, 𝑓 [𝑡] ∈ 𝐺|𝐿. Then 𝑓 [𝑡] ∈ 𝐺, so 𝑓 [𝑥] ∈ 𝐺,
and since 𝑓 [𝑥] is on 𝐿 also 𝑓 [𝑥] ∈ 𝐺|𝐿.

Here is a more intuitive but less careful argument for this theorem: suppose we
have a network of gadgets all satisfying 𝑆 =⇒ 𝑥 and an assignment 𝑓 of variables
to paths through the network, where the concatenation of these paths 𝑓 [𝑡] is legal for

19This fails only for the trivial case with the empty gizmo and an implication property of the form
𝑆 =⇒ [ ].
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each 𝑡 ∈ 𝑆. If we restrict to any particular gadget, the restricted path 𝑓 [𝑡]|𝐺𝑖
= 𝑓𝑖[𝑡] is

still legal, so by hypothesis the path 𝑓𝑖[𝑥] is legal for that gadget. But then the path
𝑓 [𝑥] corresponding to 𝑥 is legal according to every gadget, so it is legal over all. The
assumption that 𝑆 is simple is needed to obtain a unique assignment for each variable:
if 𝑋 appears multiple times in 𝑆, the different occurrences might represent different
paths through the network, and we would not obtain consistent variable assignments
for the individual gadgets.

Since prefix-closed gizmos are exactly [𝑋𝑌 =⇒ 𝑋] gizmos, we have an immediate
corollary:

Corollary 4.7. Prefix-closed gizmos are closed under arbitrary simulation.

This fact helps justify considering simulation specifically between prefix-closed
gizmos. If some class 𝒞 of prefix-closed gizmos is closed within prefix-closed gizmos,
meaning it cannot simulate any prefix-closed gizmos outside 𝒞, then it is also closed
for general gizmos.

If we interpret prefix-closed gizmos as representing gadgets for reachability (as
opposed to targeted set reconfiguration), then it seems obvious that prefix-closed
gizmos should be closed under simulation: if none of the gadgets available care what
state they end in, how could we possibly simulate a gadget which does care?

Some gizmo classes defined by implication properties, including prefix-closed giz-
mos (Lemma 4.2), are closed under traversals, while others, including gizmos satisfy-
ing 𝑋, 𝑌 =⇒ 𝑋𝑋−1𝑌 (see Lemma 3.26), are not.

4.2 Reversible gizmos
Next, we consider the class of gizmos corresponding to reversible gadgets [Lyn20,
DHL20, DGLR18].

Definition 4.8. An NFA with alphabet 𝒯 (𝐿) is reversible if for every transition
𝑎→ 𝑏 : 𝑠→ 𝑠′, there is a reverse transition 𝑏→ 𝑎 : 𝑠′ → 𝑠.20 A gizmo is reversible if
it is recognized by a reversible NFA.

This definition is essentially the same as earlier definitions of reversible gadgets,
except that we more clearly distinguish between gizmos and NFAs. This definition
has the issue that it can be hard to tell if a given gizmo is reversible, since only
some of the many NFAs recognizing a gizmo might be reversible; see the discussion
in Section 3.5.3. In particular, after making a traversal, the NFA may transition to
multiple states, resulting in a nonreversible gizmo; see Lemma 3.26.

We would prefer to have a definition which does not rely on NFAs, but finding
one has proven difficult. it is easy to show that any reversible gizmo satisfies the
implication properties 𝑋, 𝑌 =⇒ 𝑋𝑋−1𝑌 and 𝑋𝑌 𝑍 =⇒ 𝑋𝑌 𝑌 −1𝑌 𝑍. Can we go
the other way?

20Reversible NFAs are unrelated to the more widely studied reversible DFAs, where there are never
multiple transitions for the same symbol leading into a state. Reversible DFAs are more related to
the reverse-deterministic gadgets of Lynch [Lyn20], which do not correspond a class of gizmos.
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Conjecture 4.9. Every regular gizmo satisfying both 𝑋, 𝑌 =⇒ 𝑋𝑋−1𝑌 and
𝑋𝑌 𝑍 =⇒ 𝑋𝑌 𝑌 −1𝑌 𝑍 is recognized by a reversible NFA.

This would be useful even restricted to prefix-closed gizmos. Since we do not know
how to describe reversible gizmos in terms of implication properties, we must prove
closure under simulation separately.

Theorem 4.10. Reversible gizmos are closed under simulation.

Proof. It suffices to show that each NFA operation described in the proof of Theo-
rem 3.30 preserves reversibility of NFAs, since these operations correspond to simula-
tion by the recognized gizmos. Inspecting each case, it is clear that if the input NFAs
are reversible, than the resulting NFA will be as well. One way to see this is that if
we replace each →, in both traversals and state transitions, with ↔, the operations
act the same on reversible NFAs.

Reversibility, like an implication property, is intuitively ‘local,’ and thus we expect
it to be preserved by arbitrary simulation as well. However, this fails because we have
required reversible gizmos to be recognized by NFAs, so any nontrivial infinite tensor
product of reversible gizmos will not be reversible (or regular). To fix this, we can
consider instead automata which are allowed to have infinitely many states, which
we do in Chapter 6. This is an additional reason it would be preferable to have an
alternative definition of reversible.

4.3 Strictly bounded gizmos
Our next classes are defined by bounding the number of ‘interesting’ traversals we
can make. This corresponds to DAG or LDAG gadgets [DHL20, Lyn20], depending
on what we mean by ‘interesting.’ These classes will turn out to be closed under finite
but not arbitrary simulation, since the bound for a tensor product becomes infinite
when there are infinitely many multiplicands.

Definition 4.11. A gizmo 𝐺 is strictly bounded by a number 𝑛 if every traversal
sequence 𝑋 ∈ 𝐺 contains at most 𝑛 traversals other than self-loops 𝑎→ 𝑎.

A gizmo is strictly bounded if it is strictly bounded by any number.

Lemma 4.12. Strictly bounded gizmos are closed under traversals.

Proof. If 𝐺 is strictly bounded by 𝑛 and 𝑌 ∈ 𝐺[𝑋], then 𝑋𝑌 has at most 𝑛 non-
self-loop traversals, but 𝑌 cannot have more such traversals than 𝑋𝑌 ; thus 𝐺[𝑋] is
strictly bounded by 𝑛.

Strictly bounded gizmos correspond to DAG gadgets [DHL20, Lyn20].

Theorem 4.13. Strictly bounded gizmos are closed under simulation.

Proof. We consider each operation in simulation.
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• Let 𝐼 be a finite set, and suppose 𝐺𝑖 is strictly bounded by 𝑛𝑖 for each 𝑖 ∈ 𝐼.
Let 𝑋 ∈ ⊗𝑖∈𝐼𝐺𝑖. Each non-self-loop traversal in 𝑋 corresponds to exactly one
non-self-loop traversal in some 𝑋|locs 𝐺𝑖

. But 𝑋|locs 𝐺𝑖
∈ 𝐺𝑖 has at most 𝑛𝑖 such

traversals, so 𝑋 has at most
∑︁
𝑖∈𝐼

𝑛𝑖 traversals other than self-loops. Thus ⊗𝑖∈𝐼𝐺𝑖

is strictly bounded by
∑︁
𝑖∈𝐼

𝑛𝑖.

• Suppose 𝐺 is strictly bounded by 𝑛, and let ∼ be an equivalence relation on
locs 𝐺. Let 𝑋 ∈ 𝐺/∼. Then there is some ̃︁𝑋 ∈ 𝐺 with 𝜋∼

*
∘(̃︁𝑋)  𝑋. By

assumption, ̃︁𝑋 has at most 𝑛 non-self-loop traversals. Since 𝜋∼∘ preserves self-
loops, 𝜋∼

*
∘(̃︁𝑋) also has at most 𝑛 non-self-loop traversals. Transitive contraction

cannot increase the number of non-self-loop traversals, so 𝑋 also has at most 𝑛
of them. So 𝐺/∼ is strictly bounded by 𝑛.

• Suppose 𝐺 is strictly bounded by 𝑛, and 𝐿 ⊂ locs 𝐺. Any 𝑋 ∈ 𝐺|𝐿 is also in
𝐺, and hence has at most 𝑛 traversals other than self-loops.

4.4 Weakly bounded gizmos
The key characteristic of the LDAG gadgets defined by Lynch [Lyn20] is that they
can change state boundedly many times. Unfortunately for us, changing state is not
a natural notion for gizmos, and in fact some gizmos corresponding to LDAG gadgets
can change state arbitrarily many times, in the sense that 𝐺[𝑋𝑌 ] = 𝐺 ̸= 𝐺[𝑥]. For
instance, let 𝐺 be the minimal gizmo containing (𝐴|𝐵)*𝐴𝐶 where the letters are
disjoint traversals; this gizmo describes an LDAG gadget, but 𝐺[𝐴𝐵] = 𝐺 ̸= 𝐺[𝐴].

It seems that defining gizmos corresponding to LDAG gadgets directly would
require another layer of abstraction, to keep track of which traversals are considered
‘state-changing.’ Instead, we resort to state machines, using essentially the same
definition as Lynch [Lyn20].

Definition 4.14. An NFA is weakly acyclic if it has no cycles containing multiple
states. A gizmo is weakly bounded if it is recognized by an acyclic NFA.

We say ‘weakly’ since we allow loops on single states, and there is a stricter notion
which defines NFAs which describe strictly bounded gizmos (see Lemma 5.12).

For the example gizmo containing (𝐴|𝐵)*𝐴𝐶, there is a weakly acyclic NFA with
three states and transitions 𝐴, 𝐵 : 1 → 1, 𝐴 : 1 → 2, and 𝐶 : 2 → 3. The apparent
state changing when fed 𝐴𝐵 is a superposition which is entered and then collapsed,
which can occur arbitrarily many times despite each path having bounded length
(ignoring loops).

We will show in Corollary 5.13 that strictly bounded gizmos are also weakly
bounded.

Lemma 4.15. Weakly bounded gizmos are closed under traversals.
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Proof. If 𝐺 is recognized by a weakly acyclic NFA 𝐷, we can construct a weakly
acyclic NFA for 𝐺[𝑋] as follows. Let 𝑆 be the set of states 𝐷 can end in when fed
𝑋. We add a new state 𝑆 representing the superpositions of all states in 𝑆. For each
𝑠 ∈ 𝑆 and transition 𝑡 : 𝑠→ 𝑠′, we have a transition 𝑡 : 𝑆 → 𝑠′. The start state is 𝑆,
which is accepting if any 𝑠 ∈ 𝑆 is. The original NFA is weakly acyclic and there are
no transitions to 𝑆, so the new NFA is weakly acyclic.

Because our definition is based on state machines, many of the same issues arise
as for reversible gizmos when we attempt to adapt to arbitrary simulation. However,
in this case it is not as much of a problem: since LDAG and weakly bounded are
fundamentally about finiteness, LDAG gadgets are not naturally closed under infinite
simulations. In fact, Theorem 6.13 shows that weakly bounded gizmos can arbitrarily
simulate all (prefix-closed) gizmos.

Theorem 4.16. Weakly bounded gizmos are closed under simulation.

Proof. Each operation in the proof of Theorem 3.30 preserves weakly acyclic NFAs.

Lemma 4.17. Weakly and strictly bounded gizmos are not closed under arbitrary
simulation.

Proof. Consider the arbitrary simulation from Lemma 3.31. Take 𝑋 = [𝐴→ 𝐵, 𝐶 →
𝐷]∞ to alternate between the two traversals. Then 𝐺𝑋 is the mismatched dicrumblers
(Figure 2-5). So we have a simulation from the ordered dicrumblers, which is both
weakly and strictly bounded, to the mismatched dicrumblers, which is neither.

4.5 Balanced gizmos
Our next gizmo class distinguishes the 2-toggle (Figure 2-6) from the locking 2-toggle
(Figure 2-8). Both are reversible, and it is easy to simulate a locking 2-toggle with
2-toggles (by protecting each tunnel with a 1-toggle), but not the other way around.
We will see that the locking 2-toggle is balanced but the 2-toggle is not, so it is
impossible to simulate the 2-toggle with locking 2-toggles. Intuitively, the relevant
property of the locking 2-toggle is that if the agent enters some location, it must
exit that location before it enters it again. Balanced gizmos make this explicit, and
allow any constant number of consecutive entrances to ‘build up’ before they need
corresponding exits.

Definition 4.18. For a location set 𝐿, let 𝑋 ∈ 𝒯 (𝐿)*, and 𝑎 ∈ 𝐿. The deficit def𝑎 𝑋
at 𝑎 in 𝑋 in the net number of times 𝑎 is entered; that is, the number of traversals
in 𝑋 of the form 𝑎 → · minus the number of the form · → 𝑎. The total deficit of 𝑋
is the sum of the absolute deficits at each location def 𝑋 =

∑︁
𝑎∈𝐿

| def𝑎 𝑋|.

A gizmo 𝐺 is balanced if its maximum total deficit max
𝑋∈𝐺

def 𝑋 is finite.

For gizmos with finitely many locations, it is equivalent to say that the absolute
deficit | def𝑎 𝑋| at each location is bounded.
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Theorem 4.19. Balanced gizmos are closed under simulation.

Proof. We consider each operation in simulation.

• Let 𝐼 be a finite set, and suppose 𝐺𝑖 has maximum total deficit 𝑛𝑖 for each
𝑖 ∈ 𝐼. Consider a traversal sequence 𝑋 ∈

⨂︁
𝑖∈𝐼

𝐺𝑖. Then 𝑋|locs 𝐺𝑖
∈ 𝐺𝑖, so

def 𝑋 =
∑︁
𝑖∈𝐼

def 𝑋|locs 𝐺𝑖
≤
∑︁
𝑖∈𝐼

𝑛𝑖.

Hence
⨂︁
𝑖∈𝐼

𝐺𝑖 has maximum total deficit at most
∑︁
𝑖∈𝐼

𝑛𝑖, which is finite.

• Suppose 𝐺 has maximum total deficit 𝑛, and let ∼ be an equivalence relation
on locs 𝐺. Contracting [𝑎→ 𝑏][𝑏→ 𝑐] [𝑎→ 𝑐] removes one entrance and one
exit at 𝑏, which does not change the deficit at 𝑏. Thus if 𝑋  𝑌 , def 𝑋 = def 𝑌 .
Let 𝑋 ∈ 𝐺/∼, so 𝜋∼

*
∘(𝑌 )  𝑋 for some 𝑌 ∈ 𝐺. Then def 𝑋 = def 𝜋∼

*
∘(𝑌 ) ≤

def 𝑌 ≤ 𝑛 by the triangle inequality, so 𝐺/∼ has maximum total deficit at most
𝑛.

• Suppose 𝐺 has maximum total deficit 𝑛 and 𝐿 ⊂ locs 𝐺. If 𝑋 ∈ 𝐺|𝐿, then
𝑋 ∈ 𝐺 so def 𝑋 ≤ 𝑛. Thus 𝐺|𝐿 has maximum total deficit at most 𝑛.

Lemma 4.20. Balanced gizmos are not closed under arbitrary simulation.

Proof. We can use exactly the same counterexample as for bounded gizmos, in the
proof of Lemma 4.17. The ordered dicrumblers is balanced, with maximum total
deficit 4, but the mismatched dicrumblers is not.

Lemma 4.21. Balanced gizmos are closed under traversals.

Proof. Suppose 𝐺 is a balanced gizmo with maximum total deficit 𝑘. Let 𝑋 be a
traversal sequence on locs 𝐺. We claim 𝐺[𝑋] has maximum total deficit at most
𝑘 + def 𝑋, and thus 𝐺[𝑋] is balanced.

Let 𝑌 ∈ 𝐺[𝑋]. Then 𝑋𝑌 ∈ 𝐺, so def 𝑋𝑌 ≤ 𝑘. Clearly def𝑎 𝑌 = def𝑎 𝑋𝑌 −
def𝑎 𝑋, so by the triangle inequality and summing over the locations on 𝐺, we have
def 𝑌 ≤ def 𝑋𝑌 + def 𝑋 ≤ 𝑘 + def 𝑋.
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Chapter 5

Universal simulation

In this chapter, we provide positive answers to many instances of Question 3.2. All
gizmos we consider in this chapter are prefix-closed, regular, and nonempty. Among
prefix-closed gizmos, nonempty gizmos are those satisfying ∅ =⇒ [ ], so nonempty
prefix-closed gizmos are closed under arbitrary simulation. We will show, for several
classes 𝒞, that a specific small set 𝑆 of gizmos simulates every nonempty regular
prefix-closed gizmo in 𝒞. Note that if 𝒞 is closed under finite simulation, which it
will be in each of our results, then so is the set of regular prefix-closed gizmos in 𝒞.
If in addition 𝑆 ⊂ 𝒞, which again will be the case for us, we exactly characterize
the gizmos which can be simulated by 𝑆: they are precisely the nonempty regular
prefix-closed gizmos in 𝒞. Thus we are able to answer every instance of Question 3.2
a particular value of 𝑆.

Definition 5.1. A set 𝑆 of gizmos is universal for a class 𝒞 of gizmos if 𝑆 simulates
every nonempty gizmo in 𝒞. Similarly, 𝑆 is arbitrarily universal if 𝑆 arbitrarily
simulates every element of 𝒞.

We avoid empty gizmos because they would otherwise be an uninteresting tech-
nical detail in each of our universality results. Empty gizmos are boring; there is
only one empty gizmo on each set of locations, and there is little to say about simu-
lations of empty gizmos. We shall say what there is: it is easy to show that empty
gizmos and and gizmos containing [ ] are each closed under arbitrarily simulation.
Any gizmo 𝐺 not containing [ ] simulates (𝐺⊗𝐺)|locs 𝐺×{0}, which is the empty gizmo
on locs 𝐺 × {0}. The empty gizmo with one location can simulate any finite empty
gizmo and arbitrarily simulate any empty gizmo.

We often say that a gadget is universal for a class to mean that the set of gizmos
corresponding to the states of that gadget is universal. If 𝑆 is finite, then the tensor
product

⨂︁
𝑆 of the gizmos in 𝑆 can be simulated by 𝑆 and can simulate each element

of 𝑆, so
⨂︁

𝑆 alone is universal as well. Thus, unless we aim to minimize our universal
gizmos, finding any finite universal set is as good as finding a single universal gizmo.
All of the universal sets in our results will be small and contain only relatively simple,
“natural” gizmos.

Universality is very closely analogous to the notion of hardness for a complexity
class in complexity theory; we have replaced classes of decision problems with classes
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of gizmos, and reductions with simulations.21 One of the crucial facts in complexity
theory—that reductions preserve hardness—also has an analog for gizmos.

Lemma 5.2. Suppose a set 𝑆 is (resp. arbitrarily) universal for a class 𝒞, and
another set 𝑆 ′ (resp. arbitrarily) simulates every gizmo in 𝑆. Then 𝑆 ′ is also (resp.
arbitrarily) universal for 𝒞.

Proof. This follows from transitivity of simulation: if 𝐻 ∈ 𝒞, then 𝑆 simulates 𝐻, so
𝑆 ′ also simulates 𝐻.

As in complexity theory, once we know of one universal set 𝑆 of gizmos for a
class, it is easy to find more by simply showing they simulate each gizmo in 𝑆. For
instance, we will prove (Theorem 5.8) that the door (Figure 2-3) is universal for
prefix-closed regular gizmos; the mismatched dicrumblers (Figure 2-5) simulates the
door [ABD+20], so it is also universal for prefix-closed regular gizmos.

While this chapter considers only finite simulation, all of the discussion above
applies equally well to arbitrary simulation. In Chapter 6, we adapt some of the
results in this chapter to arbitrary simulation; generally this involves removing the
assumption the assumption that gizmos are regular, since regular gizmos are only
closed under finite simulation.

We begin with some abstract results in Section 5.1 which will help to prove our
simulations correct. In the remaining subsections, we prove several universality re-
sults, in roughly decreasing order of the power of the gizmo classes involved.

5.1 How to verify simulations
Before we prove specific universality results, we will develop a bit of theory which
makes it easier to discuss and prove correctness of simulations.

Definition 5.3. Let 𝑆 = (𝐼, {𝐺𝑖}𝑖∈𝐼 ,∼, 𝐿) be a simulation. Let 𝐺⊗ =
⨂︁
𝑖∈𝐼

𝐺𝑖 and

𝐺 = 𝐺⊗/∼|𝐿, so 𝐺 is the simulated gizmo. A basis for 𝑆 is a set ℬ ⊂ 𝒯 (locs 𝐺⊗)* of
traversal sequences such that

1. For each 𝑋 ∈ 𝐺, there is a sequence 𝐵1, . . . , 𝐵𝑘 of elements of ℬ and a traversal
sequence ̃︁𝑋 such that 𝐵1 · · ·𝐵𝑘 ∈ 𝐺⊗, we can construct ̃︁𝑋 by inserting self-loops
into 𝐵1 · · ·𝐵𝑘, and 𝜋∼

*
∘(̃︁𝑋) 𝑋.

2. For each 𝐵 ∈ ℬ, for some 𝑎, 𝑏 ∈ 𝐿, 𝜋∼
*
∘(𝐵) [𝑎→ 𝑏].

3. For each 𝐵 = [𝑎1 → 𝑏1, . . . , 𝑎𝑘 → 𝑏𝑘] ∈ ℬ, the only locations in 𝜋∼
*
∘(𝐵) which

are in 𝐿 are the very first and last, namely [𝑎1] and [𝑏𝑘].

21Formally, these both define preorders, and a complete problem or universal gizmo is precisely a
maximum element of a downwards-closed subset of the preorder.
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An internal state of 𝑆 is a state of 𝐺⊗, i.e. a nonempty gizmo of the form 𝐺⊗[𝑋].
An internal state is reachable if it can be written as 𝐺⊗[𝐵1 · · ·𝐵𝑘] for 𝐵1, . . . , 𝐵𝑘 ∈ ℬ.

The induced NFA22 𝐷ℬ has for states the reachable internal states, alphabet 𝒯 (𝐿),
and a transition 𝑎→ 𝑏 : 𝑠→ 𝑠′ if there is some 𝐵 ∈ ℬ with 𝑠[𝐵] = 𝑠′ and 𝜋∼

*
∘(𝐵) 

[𝑎→ 𝑏]. A state 𝐺⊗[𝑋] is accepting if [ ] ∈ 𝐺⊗[𝑋]. The starting state is 𝐺⊗.

A basis is supposed to capture all the nontrivial paths the agent might need to
take through the simulation. For the example simulation in Figure 2-14, one basis
contains

[𝐴→ 𝐵, 𝐸 → 𝐹, 𝐼 → 𝐽, 𝑅→ 𝑄, 𝐿→ 𝐾, 𝐶 → 𝐷, 𝐹 → 𝐸, 𝐺→ 𝐻],
[𝑀 → 𝑁, 𝑃 → 𝑂, 𝐿→ 𝐾, 𝐶 → 𝐷, 𝐼 → 𝐽, 𝑅→ 𝑄, 𝑂 → 𝑃, 𝑆 → 𝑇 ],

and the reverses of these two sequences.
The NFA induced by a basis is an abstract description of how the basis paths

behave and interact. This abstraction makes it easier to reason about simulations,
particularly since the simulated gizmo is entirely determined by 𝐷ℬ:

Theorem 5.4. Let ℬ be a basis for a simulation (𝐼, {𝐺𝑖}𝑖∈𝐼 ,∼, 𝐿). Then the simu-
lated gizmo

⨂︁
𝑖∈𝐼

𝐺𝑖/∼|𝐿 is the minimal gizmo containing ℒ(𝐷ℬ).

Proof. We write 𝐺⊗ =
⨂︁
𝑖∈𝐼

𝐺𝑖 and 𝐺 = 𝐺⊗/∼|𝐿. We first prove a characterization of

ℒ(𝐷ℬ):

Lemma 5.5. For any 𝑋 = [𝑎1 → 𝑏1, . . . , 𝑎𝑘 → 𝑏𝑘] ∈ 𝒯 (𝐿)* and reachable inter-
nal state 𝐺′

⊗, 𝐷ℬ accepts 𝑋 starting at state 𝐺′
⊗ if and only if there is a sequence

𝐵1, . . . , 𝐵𝑘 ∈ B such that 𝐵1 · · ·𝐵𝑘 ∈ 𝐺′
⊗ and for each 𝑖, 𝜋∼

*
∘(𝐵𝑖) [𝑎𝑖 → 𝑏𝑖].

Proof. This only relies on the definition of 𝐷ℬ; we do not even need the fact that ℬ
is a basis. We proceed by induction on 𝑋. For 𝑋 = [ ], 𝑘 = 0, so the only possible
sequence 𝐵𝑖 is empty. By construction, 𝐷ℬ accepts [ ] starting at 𝐺′

⊗ if and only if
𝐺′

⊗ is an accepting state if and only if [ ] ∈ 𝐺′
⊗.

Let 𝑋 = [𝑎1 → 𝑏1, . . . , 𝑎𝑘 → 𝑏𝑘] = [𝑎1 → 𝑏1]𝑋 ′. Suppose 𝐷ℬ accepts 𝑋 starting
at 𝐺′

⊗. Then for some internal state 𝐺′′
⊗, 𝐷ℬ has a transition 𝑎→ 𝑏 : 𝐺′

⊗ → 𝐺′′
⊗ and

𝐷ℬ accepts 𝑋 ′ starting from 𝐺′′
⊗. This transition means there is some 𝐵1 ∈ ℬ with

𝐺′
⊗[𝐵1] = 𝐺′′

⊗ and 𝜋∼
*
∘(𝐵1) [𝑎1 → 𝑏1]. By inductive hypothesis, there is a sequence

𝐵2, . . . , 𝐵𝑘 ∈ ℬ where 𝐵2 · · ·𝐵𝑘 ∈ 𝐺′′
⊗ and 𝜋∼

*
∘(𝐵𝑖)  [𝑎𝑖 → 𝑏𝑖] for 𝑖 ≥ 2. But then

𝐵1, . . . , 𝐵𝑘 is the desired sequence.
Conversely, suppose 𝐵1, . . . , 𝐵𝑘 satisfy the hypothesis. Consider the reachable

internal state 𝐺′′
⊗ = 𝐺′

⊗[𝐵1]. We know 𝐵2 · · ·𝐵𝑘 ∈ 𝐺′′
⊗, and for each 𝑖 ≥ 2, 𝜋∼

*
∘(𝐵𝑖) 

[𝑎𝑖 → 𝑏𝑖]. So by inductive hypothesis 𝐷ℬ accepts 𝑋 ′ starting at 𝐺′′
⊗. But by the

definition of 𝐷ℬ, it has a transition 𝑎1 → 𝑏1 : 𝐺′
⊗ → 𝐺′′

⊗, so 𝐷ℬ accepts 𝑋 starting at
𝐺′

⊗.
22If there are infinitely many reachable internal states or locations, this does not define an NFA,

but an ‘arbitrary NFA’ (see Chapter 6). In this chapter it will always be an NFA.
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We will show that if 𝐷ℬ accepts 𝑋 (from the start state 𝐺⊗), then 𝑋 is in 𝐺,
and if 𝑋 is in 𝐺, then 𝑋 can be constructed from some sequence which 𝐷ℬ accepts
by inserting self-loops and performing transitive contractions. This is exactly the
condition for 𝑋 to be in the minimal gizmo containing ℒ(𝐷ℬ). Together these two
claims suffice to prove the theorem.

Suppose 𝐷ℬ accepts 𝑋. Lemma 5.5 gives us a sequence 𝐵1, . . . , 𝐵𝑘 with each
𝐵𝑖 ∈ 𝐺⊗ and 𝜋∼

*
∘(𝐵1 · · ·𝐵𝑘)  𝑋. Thus 𝑋 ∈ 𝐺⊗/∼, and since 𝑋 is on 𝐿, also

𝑋 ∈ 𝐺.
Now let 𝑋 ∈ 𝐺. Since ℬ is a basis, there is a sequence 𝐵1, . . . , 𝐵𝑘 ∈ ℬ and a

traversal sequence ̃︁𝑋 such that 𝐵1 · · ·𝐵𝑘 ∈ 𝐺⊗, we can construct ̃︁𝑋 be inserting
self-loops into 𝐵1 · · ·𝐵𝑘, and 𝜋∼

*
∘(̃︁𝑋) 𝑋.

Since ℬ is a basis, we have 𝑎𝑖 and 𝑏𝑖 such that 𝜋∼
*
∘(𝐵𝑖) [𝑎𝑖 → 𝑏𝑖]. By Lemma 5.5,

𝐷ℬ accepts 𝑋 ′ = [𝑎1 → 𝑏1, . . . , 𝑎𝑘 → 𝑏𝑘]. We will show that 𝑋 can be constructed
from 𝑋 ′ by inserting self-loops and performing transitive contractions.

Consider the sequence of contractions realizing 𝜋∼
*
∘(̃︁𝑋)  𝑋. Since 𝑋 is on 𝐿,

every location in 𝜋∼
*
∘(̃︁𝑋) not in 𝐿 must be contracted away, and thus is adjacent to

the same location in the next or previous traversal. In particular, since ℬ is a basis,
all locations internal to each 𝐵𝑖 must be contracted away. Transitive contractions
commute, so we may assume we perform these contractions first. Specifically: first, if
there are extra self-loops inserted inside some 𝐵𝑖, contract them with either adjacent
traversal. Now the sequence has the form ∙𝐵1 ∙ · · · ∙ 𝐵𝑘∙, where each ∙ consists of
self-loops. We can now safely contract each 𝐵𝑖 to [𝑎𝑖 → 𝑏𝑖]. Hence 𝜋∼

*
∘(̃︁𝑋)  𝑋

factors through 𝜋∼
*
∘(̃︁𝑋) ∙[𝑎𝑖 → 𝑏𝑖] ∙ · · · ∙ [𝑎𝑘 → 𝑏𝑘]∙ 𝑋, where each ∙ consists of

self-loops. Call this intermediate traversal sequence 𝑌 . Then we have shown that we
can insert self-loops into 𝑋 ′ to obtain 𝑌 , and perform transitive contractions in 𝑌 to
obtain 𝑋, as desired.

Corollary 5.6. If ℒ(𝐷ℬ) is a gizmo,
⨂︁
𝑖∈𝐼

𝐺𝑖/∼|𝐿 = ℒ(𝐷ℬ).

Finally, we have a lemma which will help with proving that a set of sequences is
a basis.

Lemma 5.7. Suppose 𝐺 is a gizmo, ∼ an equivalence relation on locs 𝐺, and 𝐿 ⊂
locs 𝐺/∼. Then for any 𝑋 ∈ 𝐺/∼|𝐿, there is a sequence ̃︁𝑋 ∈ 𝐺 with 𝜋∼

*
∘(̃︁𝑋)  𝑋,

such that each segment of ̃︁𝑋 which contracts to a single traversal in 𝑋 cannot be tran-
sitively contracted before applying 𝜋∼, meaning it contains no consecutive traversals
of the form [𝑎→ 𝑏, 𝑏→ 𝑐].

If, for some location 𝑎 ∈ locs 𝐺, we have 𝐺[𝑌 [𝑎 → 𝑎]] = 𝐺[𝑌 ] for all 𝑌 , then we
can additionally stipulate that each such segment of ̃︁𝑋 which has length more than 1
does not contain 𝑎→ 𝑎.

Proof. Begin with the minimum-length ̃︁𝑋 ∈ 𝐺 with 𝜋∼
*
∘(̃︁𝑋)  𝑋. Consider each

segment of ̃︁𝑋 which contracts to a single traversal separately. All locations in the
segment except for the very first and last must be transitively contracted. Suppose
a segment contains [𝑎 → 𝑏, 𝑏 → 𝑐], and let ̃︁𝑋 ′ be the sequence with these traversals
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replace by [𝑎→ 𝑐]. Since transitive contractions commute, we can assume the corre-
sponding [𝑏] (after applying 𝜋∼) is contracted first. Then after this contraction the
sequence is exactly 𝜋∼

*
∘(̃︁𝑋 ′), so 𝜋∼

*
∘(̃︁𝑋 ′) 𝑋. This violates our assumption that ̃︁𝑋

has minimum length.
Suppose 𝐺[𝑌 [𝑎 → 𝑎]] = 𝐺[𝑌 ] for all 𝑌 , and a segment contains [𝑎 → 𝑎, 𝑏 → 𝑐]

(or symmetrically [𝑐 → 𝑏, 𝑎 → 𝑎]). Let ̃︁𝑋 ′ be the sequence obtained by removing
𝑎 → 𝑎. Since all internal locations are contracted, we must have 𝑎 ∼ 𝑏. Assume
this contraction happens first; the resulting portion of the sequence is [[𝑎] → [𝑐]] =
[[𝑏] → [𝑐]], so the resulting sequence is again 𝜋∼

*
∘(̃︁𝑋 ′), and similarly we violate the

minimum-length assumption.

Our universality results will generally follow the following structure, to show that
𝑆 is universal for 𝒞:

1. Show that every gizmo 𝐺 in 𝒞 is recognized by an NFA 𝐷 with a particular
property.

2. Construct a simulation using 𝑆 based on 𝐷, using the particular property.

3. Describe a basis ℬ for the simulation, and show that 𝐷ℬ ∼= 𝐷.

4. By Corollary 5.6, the simulated gizmo is isomorphic to 𝐺.
For clarity, we treat gizmo isomorphisms as equality, and in particular we do not
distinguish between the locations of 𝐺 and the locations of the simulated gizmo,
which are technically equivalence classes of the locations of the gizmos in the tensor
product.

One may wonder why we do not define gizmo classes in terms of finite automata in
the first place, since we show automaton-based characterizations anyway on our way
to proving universality results, and automaton-based definitions would more directly
align with definitions in prior work on gadgets. Here are three reasons we prefer to
use definitions which do not require automata when possible, all related to the fact
that the objects we are actually interested in are the sets of legal traversal sequences,
not the automata which recognize them:

1. It is often easier to prove closure under simulation, and especially under arbi-
trary simulation, for gizmo classes defined ‘internally.’ Implication properties
(Section 4.1) are a superb example of this. However, this elegance comes at the
cost of having to prove connections to NFAs to unify closure and universality
results, and in some cases it is not hard to show that a class of NFAs is closed
under the operations corresponding to simulation of the gizmos they recognize
(see Theorem 3.30).

2. A gizmo is typically recognized by many different NFAs, not all of which will
have the property in question; see for instance the discussion in Section 3.5.3.
A significant part of the motivation for the definition of gizmos is to stop distin-
guishing gadgets which behave identically but are described by different state
machines. Definitions beginning ‘there exists an NFA such that’ obscure the
properties of the more fundamental set of legal sequences.
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3. To usefully apply automaton-based definitions to nonregular gizmos, we would
need to allow the automata to have infinitely many states. We do this in
Chapter 6 to achieve universality results, but it adds a layer of complication
with more details to check.

In Section 4.2, we begrudgingly defined reversible gizmos in terms of NFAs, but only
because we are not aware of a more direct definition.

5.2 All gizmos
Our first universality result concerns all regular prefix-closed gizmos. The ‘nice’ NFAs
for regular prefix-closed gizmos are simply those with no rejecting states.

Theorem 5.8. The door gadget (Figure 2-3) is universal for regular prefix-closed
gizmos.

Recall that when we say the door gadget simulates something, we mean the two
gizmos representing the states of the door gadget simulate it. A version of Theorem 5.8
is proved by Ani, Bosboom, et al. [ABD+20], and that proof can be adapted to gizmos.
We will present a somewhat different proof, which follows the structure described in
Section 5.1, and can more easily be adapted to the case of arbitrary simulation, as
we do in Chapter 6.

Proof. We name the locations on the door 𝑂, 𝑜, 𝐶, 𝑐, 𝑇 , and 𝑡 as in Ani, Bosboom,
et al. [ABD+20]: these stand for ‘open,’ ‘close,’ and ‘traverse,’ corresponding to the
green, red, and blue tunnels in Figure 2-3. Capital letters represent entrances and
lowercase letters represent exits. So the closed state is represented by the minimal
prefix-closed gizmo containing ((𝐶 → 𝑐 | 𝑂 → 𝑜)* 𝑂 → 𝑜 (𝑂 → 𝑜 | 𝑇 → 𝑡)*)*.

Let 𝐺 be a nonempty regular prefix-closed gizmo. By Lemma 3.29, 𝐺 is recognized
by an NFA 𝐷 with only accepting states.

Suppose 𝐺 has 𝑛 locations, and 𝐷 has 𝑘 states 𝑠1, . . . , 𝑠𝑘, starting state 𝑠1, and
𝑚 ≤ 𝑘2𝑛2 transitions. Then we will simulate 𝐺 using 𝑘 +2𝑚 doors, labeled 𝑖 for each
state 𝑠𝑖, and (𝑎 → 𝑏, 𝑖 → 𝑗) and (𝑎 → 𝑏, 𝑖 → 𝑗)′ for each transition 𝑎 → 𝑏 : 𝑠𝑖 → 𝑠𝑗.
Door 1 is open, and all others are closed. We use subscripts to indicate the copy of
the door a location belongs to.

Informally, door 𝑖 will be open exactly when the simulated version of 𝐺 is in state
𝑖. We will build a path for each transition 𝑎 → 𝑏 : 𝑠𝑖 → 𝑠𝑗 that lets the agent enter
at 𝑎, close door 𝑖, open door 𝑗, and exit at 𝑏, but only when the simulated 𝐺 was
initially in state 𝑖.

First, we identify 𝑡𝑖 ∼ 𝐶𝑖 for each 𝑖.
For each transition 𝑎 → 𝑏 : 𝑠𝑖 → 𝑠𝑗, we identify 𝑜(𝑎→𝑏,𝑖→𝑗) ∼ 𝑇𝑖, 𝑐𝑖 ∼ 𝑇(𝑎→𝑏,𝑖→𝑗),

𝑡(𝑎→𝑏,𝑖→𝑗) ∼ 𝐶(𝑎→𝑏,𝑖→𝑗), 𝑐(𝑎→𝑏,𝑖→𝑗) ∼ 𝑂(𝑎→𝑏,𝑖→𝑗)′ , 𝑜(𝑎→𝑏,𝑖→𝑗)′ ∼ 𝑂𝑗, 𝑜𝑗 ∼ 𝑇(𝑎→𝑏,𝑖→𝑗)′ , and
𝑡(𝑎→𝑏,𝑖→𝑗)′ ∼ 𝐶(𝑎→𝑏,𝑖→𝑗)′ .

Next, for each location 𝑎 ∈ locs 𝐺, we identify all locations of the form 𝑂(·,𝑎→·) or
𝑐(·,·→𝑎)′ into a single location which will correspond to 𝑎. We take the subgizmo on
this locations, and claim that this gives an isomorphism to 𝐺.
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Figure 5-1: How to simulate an arbitrary regular prefix-closed gizmo using doors,
showing the four doors involved in implementing a single transition 𝑎→ 𝑏 : 𝑠𝑖 → 𝑠𝑗.

The portion of our simulation corresponding to a single transition is shown in
Figure 5-1. The two doors (𝑎 → 𝑏, 𝑖 → 𝑗) and (𝑎 → 𝑏, 𝑖 → 𝑗)′ are used to prevent
‘leaking’: the agent can only exit along the traverse and close tunnels of (𝑎→ 𝑏, 𝑖→
𝑗)′ if it crossed the same open tunnel, which requires using the traverse and close
tunnels of (𝑎 → 𝑏, 𝑖 → 𝑗), so the agent must have entered on the open tunnel of
(𝑎→ 𝑏, 𝑖→ 𝑗). This has the effect of ‘duplicating’ the tunnels on doors 𝑖 and 𝑗, since
each copy of this construction provides an independent way the agent can traverse
those tunnels.

To show that this is a simulation of 𝐺, we will show that the simulated gizmo
is recognized by the same NFA 𝐷, by giving a basis and proving that the induced
NFA is isomorphic to 𝐷. Then Corollary 5.6 proves that our simulation is correct.
Let 𝐺𝑖

⊗ be the tensor product of the doors in our simulation with door 𝑖 open and
all others closed, and let 𝐺𝑖 be the gizmo our simulation constructs when we make
door 𝑖 open and all others closed. Then the alleged simulation of 𝐺 simulates 𝐺1,
and 𝐺𝑖 = 𝐺𝑖

⊗/∼.
By construction, the only nontrivial paths through the simulation have the form

𝑎 ∼ 𝑂(𝑎→𝑏,𝑖→𝑗) → 𝑜(𝑎→𝑏,𝑖→𝑗) ∼ 𝑇 𝑖 → 𝑡𝑖 ∼ 𝐶𝑖 → 𝑐𝑖 ∼ 𝑇(𝑎→𝑏,𝑖→𝑗) → 𝑡(𝑎→𝑏,𝑖→𝑗)

∼ 𝐶(𝑎→𝑏,𝑖→𝑗) → 𝐶(𝑎→𝑏,𝑖→𝑗) ∼ 𝑂(𝑎→𝑏,𝑖→𝑗)′ → 𝑜(𝑎→𝑏,𝑖→𝑗)′ ∼ 𝑂𝑗 → 𝑜𝑗
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∼ 𝑇(𝑎→𝑏,𝑖→𝑗)′ → 𝑡(𝑎→𝑏,𝑖→𝑗)′ ∼ 𝐶(𝑎→𝑏,𝑖→𝑗)′ → 𝑐(𝑎→𝑏,𝑖→𝑗)′ ∼ 𝑏

for some transition 𝑎→ 𝑏 : 𝑠𝑖 → 𝑠𝑗. This is the obvious path through Figure 5-1. We
call such a path a transition path and denote it by 𝐵𝑎→𝑏

𝑖→𝑗 . Specifically, 𝐵𝑎→𝑏
𝑖→𝑗 is the

sequence of traversals (but not ∼ relations) above, which is a traversal sequence on
locs 𝐺⊗. Take ℬ to be the set containing 𝐵𝑎→𝑏

𝑖→𝑗 for each transition 𝑎→ 𝑏 : 𝑠𝑖 → 𝑠𝑗. We
will show that ℬ is a basis, and then than 𝐷ℬ ∼= 𝐷. For a transition 𝑎→ 𝑏 : 𝑠𝑖 → 𝑠𝑗,
clearly 𝐺𝑖

⊗[𝐵𝑎→𝑏
𝑖→𝑗 ] = 𝐺𝑗

⊗, so the reachable internal states are the 𝐺𝑖
⊗ and possibly the

empty gizmo.
The second and third properties of a basis are immediate from our definition of

𝐵𝑎→𝑏
𝑖→𝑗 . To prove the first property, let 𝑋 ∈ 𝐺1. Then there is a ̃︁𝑋 ∈ 𝐺1

⊗ with
𝜋∼

*
∘(̃︁𝑋)  𝑋. Self-loops never affect the traversability of the door, so the sequencẽ︁𝑋 ′ obtained by removing all self-loops from 𝑋 is also in 𝐺1

⊗.
We claim that if for any 𝑖 and any 𝑌 ∈ 𝐺𝑖

⊗, if 𝜋∼
*
∘(𝑌 ) 𝑍 ∈ 𝐺𝑖 and 𝑌 contains

no self-loops, then 𝑌 is a concatenation of transition paths. To prove this carefully,
we consider the first nine traversals in 𝑌 = [𝑎1 → 𝑏1, . . . , 𝑎9 → 𝑏9]𝑌 ′, show that they
are a transition path, and induct on 𝑌 ′. Since 𝜋∼

*
∘(𝑌 )  𝑍 ∈ 𝐺𝑖, the equivalence

class of the first entrance [𝑎1] is a location of 𝐺, so 𝑎1 has one of the forms 𝑂(·,𝑎→·)
or 𝑐(·,·→𝑎)′ . Only the former starts a non-self-loop traversal, so 𝑎1 → 𝑏1 is the open
tunnel on door (𝑖′, 𝑎→ 𝑏) for some 𝑖′ and 𝑏. Then 𝑏1 must be contracted, so 𝑎2 = 𝑏1.
The only location related to 𝑎2 by ∼ which starts a non-self-loop traversal is 𝑇𝑖′ , so
𝑎2 → 𝑏2 is the traverse tunnel on door 𝑖′. Moreover, this traversal is only legal if door
𝑖′ is open, so 𝑖′ = 𝑖. Continuing in this fashion, 𝑎3 → 𝑏3 is the close tunnel on door 𝑖,
and 𝑎4 → 𝑏4 must be the traverse tunnel on some door (𝑖, →̇)̇, but the only open one
is (𝑎→ 𝑏, 𝑖→ 𝑗) which we just opened. The remaining five traversals are similar, and
must complete the transition path 𝐵𝑎→𝑏

𝑖→𝑗 . Now the equivalence class of 𝑏9 is a location
of 𝐺, so we cannot argue that 𝑏9 must be contracted. But we have shown that the
first nine traversals of 𝑌 are a transition path 𝐵𝑎→𝑏

𝑖→𝑗 , and after traversing them the
state is 𝐺𝑖

⊗[𝐵𝑎→𝑏
𝑖→𝑗 ] = 𝐺𝑗

⊗, so by induction 𝑌 consists entirely of transition paths.
In particular, ̃︁𝑋 ′ consists entirely of transition paths. So we can write it as̃︁𝑋 ′ = 𝐵1 . . . 𝐵𝑘 ∈ 𝐺1

⊗ for 𝐵𝑖 ∈ ℬ. By the definition of ̃︁𝑋 ′, we can construct ̃︁𝑋 by
inserting self-loops into 𝐵1 . . . 𝐵𝑘. Thus 𝐵𝑖 and ̃︁𝑋 are a witness to the first property
of a basis.

Now we show that 𝐷ℬ ∼= 𝐷. The (nonempty) states of 𝐷ℬ are 𝐺𝑖
⊗, which corre-

sponds to state 𝑠𝑖 of 𝐷. There is a transition 𝑎 → 𝑏 : 𝐺𝑖
⊗ → 𝐺𝑗

⊗ exactly when there
is a 𝐵 ∈ ℬ with 𝐺𝑖

⊗[𝐵] = 𝐺𝑗
⊗ and 𝜋∼

*
∘(𝐵) [𝑎→ 𝑏], but then 𝐵 must be 𝐵𝑎→𝑏

𝑖→𝑗 . So
such a 𝐵 exists if and only if we built a path for it in the simulation, which we did
for exactly the transitions 𝑎 → 𝑏 : 𝑠𝑖 → 𝑠𝑗 in 𝐷. Since [ ] is legal in both the open
and closed door, [ ] ∈ 𝐺𝑖

⊗, so every state of 𝐷ℬ is accepting; this is also true of 𝐷 by
assumption.

Corollary 5.9. The mismatched dicrumblers (Figure 2-5) and the self-closing door
(Figure 2-4) are each universal for regular prefix-closed gizmos.

Proof. This follows from Theorem 5.8 using Lemma 5.2, since Ani, Bosboom, et al.
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[ABD+20] showed that each of these gadgets can simulate the door.

5.3 Reversible gizmos
Because our definition of reversible gizmos is based on NFAs, the first step of our
framework for universality is a tautology. We just need to build, and prove correct,
simulations based on reversible NFAs.
Theorem 5.10. The 2-toggle (Figure 2-6) is universal for (regular) reversible prefix-
closed gizmos.

Whether we need to restrict to regular gizmos depends on whether we use NFAs
or ANFAs to define reversible gizmos.

Proof. We call the states of the 2-toggle ‘left’ and ‘right’ indicating the direction each
tunnel can currently be traversed. We label the locations 𝐿, ℓ, 𝑅, and 𝑟, where the
letter indicates the side at the capitalization indicates the tunnel. In particular, in
the left state 𝑅 → 𝐿 and 𝑟 → ℓ are traversable, and in the right state 𝐿 → 𝑅 and
ℓ → 𝑟 are. The 1-toggle is the subgizmo of the 2-toggle on {𝐿, 𝑅}, so we can use
1-toggles in our simulation.

Let 𝐺 be a prefix-closed gizmo which is recognized by a reversible NFA 𝐷 with
starting state 𝑠0. For a state 𝑠 of 𝐷, let 𝐺𝑠

⊗ be the tensor product of:
• For each state 𝑠 of 𝐷, a 1-toggle labeled 𝑠.

• For each pair transition 𝑎→ 𝑏 : 𝑠→ 𝑠′ of 𝐷, a 2-toggle labeled (𝑎→ 𝑏, 𝑠→ 𝑠′).
Each 1-toggle is the left state except for the one labeled 𝑠, and every 2-toggle is

the left state.
The 1-toggles will encode the the state of 𝐷 by having exactly one in the right

state. The 2-toggles will prevent leaking when walking through the simulation. A pair
of inverse transitions 𝑎↔ 𝑏 : 𝑠↔ 𝑠′ is implemented together using both corresponding
2-toggles. For the trivial pair 𝑎 ↔ 𝑎 : 𝑠 ↔ 𝑠, there is only one corresponding 2-
toggle, so the construction will look different but our description is the same; the
corresponding path through 𝐺⊗ will transitively contract to a self-loop.

Now we connect locations as shown in Figure 5-2. More specifically, for each
transition 𝑎→ 𝑏 : 𝑠→ 𝑠′, we relate:

• 𝐿(𝑎→𝑏,𝑠→𝑠′) ∼ 𝐿𝑠

• 𝑅(𝑎→𝑏,𝑠→𝑠′) ∼ 𝑅𝑠

• 𝑟(𝑎→𝑏,𝑠→𝑠′) ∼ 𝑟(𝑏→𝑎,𝑠′→𝑠).
Finally, for each location 𝑎 on 𝐺, we merge all locations of the form ℓ(𝑎→·,·→·)

into a single location which corresponds 𝑎. Let 𝐺𝑠 be the subgizmo on 𝐺𝑠
⊗ on these

locations. We will show that 𝐺𝑠0 ∼= 𝐺.
The obvious path from 𝑎 to 𝑏 in Figure 5-2 corresponds to the transition 𝑎→ 𝑏 :

𝑠 → 𝑠′. Let 𝐵𝑎→𝑏
𝑠→𝑠′ be this traversal sequence on 𝐺𝑠0

⊗ . To prove correctness, we must
show that the set of these paths ℬ is a basis:
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Figure 5-2: Our simulation of an arbitrary regular reversible prefix-closed gizmo using
2-toggles, showing the component involved in the transitions 𝑎↔ 𝑏 : 𝑠↔ 𝑠′.
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1. Consider a sequence 𝑋 ∈ 𝐺𝑠0 , and use the ̃︁𝑋 ∈ 𝐺𝑠0
⊗ provided by Lemma 5.7.

Consider a segment of ̃︁𝑋 which contracts to a single traversal in 𝑋. Unless the
segment is a single self-loop traversal, it contains no self-loops or contractible
locations. The segment must begin and end at location ℓ on some 2-toggle. If
it starts at ℓ(𝑎→𝑏,𝑠→𝑠′), the first traversal must be ℓ(𝑎→𝑏,𝑠→𝑠′) → 𝐿(𝑎→𝑏,𝑠→𝑠′), and
continuing the first six traversals must be 𝐵𝑎→𝑏

𝑠→𝑠′ . By induction, the segment in
either a single self-loop or the concatenation of basis elements.

2. We have 𝜋∼
*
∘(𝐵𝑎→𝑏

𝑠→𝑠′) [𝑎→ 𝑏].

3. The locations in the subgizmo are ℓ on some 2-toggle, and non of these is an
internal location in 𝐵𝑎→𝑏

𝑠→𝑠′ .

Now all that remains is showing that 𝐷ℬ is isomorphic to 𝐷. For each transition
𝑎→ 𝑏 : 𝑠→ 𝑠′ in 𝐷, we have 𝐺𝑠

⊗[𝐵𝑎→𝑏
𝑠→𝑠′ ] = 𝐺𝑠′

⊗, since the path traverses both relevant
1-toggles and resets every 2-toggle it uses. The sequence 𝐵𝑎→𝑏

𝑠→𝑠′ is only legal when the
𝑠 1-toggle is in the right state, which occurs only in 𝐺𝑠

⊗. So the nonempty reachable
internal states (starting from 𝐺𝑠0

⊗ ) are 𝐺𝑠
⊗, and 𝐷 and 𝐷ℬ are isomorphic under the

bijection 𝑠 ↦→ 𝐺𝑠
⊗.

Corollary 5.11. The tripwire-lock (Figure 2-7) is universal for (regular) reversible
prefix-closed gizmos.

Proof. As shown by Demaine, Grosof, et al. [DGLR18] (and our example in Figure 2-
14), the tripwire-lock simulates the 2-toggle.

5.4 Strictly bounded gizmos
Next we consider bounded gizmos, which have a reasonably simple characterization
in terms of NFAs.

Lemma 5.12. Every nonempty strictly bounded gizmo with finitely many locations
is recognized by an NFA which has no cycles, other than those consisting entirely of
transitions corresponding to self-loops of the form 𝑎→ 𝑎 : 𝑠→ 𝑠. In particular, every
strictly bounded gizmo with finitely many locations is regular.

We call such an NFA acyclic. Other than the self-loops, the underlying directed
graph is a DAG; this is the source of the name for DAG gadgets [DHL20, Lyn20]
corresponding to our strictly bounded gizmos. Because gizmos are closed under in-
sertion of self-loops, every NFA recognizing a nontrivial strictly bounded gizmo will
have these trivial cycles.

Proof. Suppose 𝐺 is nonempty, strictly bounded by 𝑛 and has finitely many locations.
We first show that 𝐺 is regular by constructing a NFA 𝐷 recognizing it, and then
show 𝐷 is acyclic.

We define 𝐷 in such a way that it could have infinitely many states, but then
show that since 𝐺 is strictly bounded, 𝐷 is finite. We define 𝐷 as in Lemma 3.28,
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and later in Lemma 6.1: the states of 𝐷 are the nonempty gizmos 𝐺[𝑋], the starting
state is 𝐺 and 𝐺′ accepts if [ ] ∈ 𝐺′ (we need 𝐺 to be nonempty so that we have a
state). There is a transition 𝑡 : 𝐺′ → 𝑋[𝑡] for each 𝑋 and 𝑡. Clearly 𝐷 recognizes 𝐺.
We say a transition in 𝐷 of the form 𝑎→ 𝑎 : 𝑠→ 𝑠 is trivial.

Suppose for contradiction that 𝐷 has infinitely many states. Consider the directed
graph whose edges are the nontrivial transitions of 𝐷. Since 𝐺 has finite locations,
each vertex has boundedly many outgoing edges. Then by König’s lemma, since every
vertex is reachable from 𝐺, there is an infinite path starting at 𝐺. Let 𝑋 = [𝑡1, 𝑡2, . . . ]
be the infinite sequence of traversals which make 𝐷 follow this path, and let 𝑋𝑖 =
[𝑡1, . . . , 𝑡𝑖] be the prefix of length 𝑖. Since the states of 𝐷 are nonempty, for each 𝑖
there is a 𝑌𝑖 with 𝑋𝑖𝑌𝑖 ∈ 𝐺, so 𝑋𝑖 contains at most 𝑛 non-self-loop traversals. Then
𝑋 also contains at most 𝑛 non-self-loop traversals.

Let 𝑡𝑚 be the last non-self-loop traversal in 𝑋, which exists since there are at
most 𝑛 of them. For 𝑖 ≥ 𝑚, 𝑡𝑖+1 is a self-loop. Since the graph used to find an
infinite path has only nontrivial transitions, 𝑡𝑖+1 must correspond to a state-changing
transition: 𝐺[𝑋𝑖] ̸= 𝐺[𝑋𝑖+1] for 𝑖 ≥ 𝑚. Since gizmos are closed under self-loops,
moreover 𝐺[𝑋𝑖] ( 𝐺[𝑋𝑖+1]. Let 𝑌𝑖 ∈ 𝐺[𝑋𝑖+1] ∖𝐺[𝑋𝑖] for each 𝑖. Since 𝑌𝑖 has at most
𝑛 non-self-loop traversals, there must be infinitely many with the same number of
non-self-loop traversals. Call their indices 𝑖1, 𝑖2, . . . .

By Higman’s lemma [Hig52], there are some 𝑗 < 𝑘 such that 𝑌𝑖𝑗
is a subsequence

of 𝑌𝑖𝑘
. Since 𝑌𝑖𝑗

and 𝑌𝑖𝑘
have the same number of non-self-loop traversals, we can

construct 𝑌𝑖𝑘
by inserting self-loops into 𝑌𝑖𝑗

. So 𝑌𝑖𝑘
∈ 𝐺[𝑋𝑖𝑗+1]. But since 𝐺[𝑋𝑖] ⊂

𝐺[𝑋𝑖+1] for all 𝑖 ≥ 𝑚 and 𝑖 < 𝑖𝑗 + 1 ≤ 𝑖𝑘, also 𝑌𝑖𝑘
∈ 𝐺[𝑋𝑖𝑘

]. But we chose 𝑌𝑖𝑘
to not

be in 𝐺[𝑋𝑖𝑘
], so we have our contradiction: hence 𝐷 has finitely many states and is

actually a DFA.
We have actually shown that 𝐷 satisfies the stronger property of having no infinite

paths of nontrivial transitions. In particular, it has no cycles of nontrivial transitions.
We can remove any trivial transitions from any cycle with at least one nontrivial
transition to make a cycle with only nontrivial transitions. Thus 𝐷 has no cycles
other than those consisting entirely of trivial transitions, as desired.

Clearly acyclic NFAs are also weakly acyclic, so we can explain the names ‘strictly
bounded’ and ‘weakly bounded’:

Corollary 5.13. Every strictly bounded gizmo is weakly bounded.

Theorem 5.14. The ordered dicrumblers (Figure 2-9) is universal for strictly
bounded prefix-closed gizmos with finitely many locations.

Proof. We label the locations of the ordered dicrumblers so that it is the minimal
prefix-closed gizmo containing [𝐴→ 𝐵, 𝐶 → 𝐷].

Let 𝐺 be a strictly bounded prefix-closed gizmo, and let 𝐷 be an acyclic NFA
provided by Lemma 5.12. We define trivial transitions as in Lemma 5.12. Our
simulation will use

• An ordered dicrumblers labeled 𝑠 for each state 𝑠 of 𝐷
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• Two ordered dicrumblers labeled (𝑎 → 𝑏, 𝑠 → 𝑠′) and (𝑎 → 𝑏, 𝑠′)′ for each
nontrivial transition 𝑎→ 𝑏 : 𝑠→ 𝑠′

• An ordered dicrumblers labeled 𝑎 for each location 𝑎 of 𝐺.

For a set 𝑈 of labels and a state 𝑠 /∈ 𝑈 , let 𝐺𝑈,𝑠
⊗ be the tensor product of these ordered

dicrumblers all in state 1, except that the one labeled 𝑠 is in state 2 and each with a
label in 𝑈 is in state 2.

At a high level, the idea is that the gizmos labeled with states encode the state
of 𝐷: in 𝐺𝑈,𝑠

⊗ , the current state is 𝑠, and 𝑈 contains the previously visited states
and the gizmos implementing previously used transitions. At any time, exactly one
gizmo will be in state 2 to represent the current state, and gizmos in state 3 have
been consumed and will not be needed again. The gizmos labeled with transitions
will prevent leaking when implementing transitions. A transition 𝑎 → 𝑏 : 𝑠 → 𝑠′

should change gizmo 𝑠 from state 2 to 3, and change gizmo 𝑠′ from state 1 to 2. The
gizmos labeled with locations are simply to ensure every location in 𝐺 has at least one
preimage under 𝜋∼, and thus exists in the simulated gizmo—this is only necessary
when a location is used by no transition in 𝐷.23

One transition’s worth of our simulation is shown in Figure 5-3. Formally, for
each nontrivial transition 𝑎→ 𝑏 : 𝑠′, we identify:

• 𝐵(𝑎→𝑏,𝑠→𝑠′) ∼ 𝐶𝑠

• 𝐷𝑠 ∼ 𝐶(𝑎→𝑏,𝑠→𝑠′)

• 𝐷(𝑎→𝑏,𝑠→𝑠′) ∼ 𝐴(𝑎→𝑏,𝑠→𝑠′)′

• 𝐵(𝑎→𝑏,𝑠→𝑠′)′ ∼ 𝐴𝑠′

• 𝐵𝑠′ ∼ 𝐷(𝑎→𝑏,𝑠→𝑠′)′ .

Finally, for each 𝑎 ∈ locs 𝐺, we identify all locations of the form 𝐴(𝑎→·,·→·) or
𝐷(·→𝑎,·→·)′ into a single location which we identify with 𝑎. Let 𝐺𝑈,𝑠 be the subgizmo
of 𝐺𝑈,𝑠

⊗ /∼ on these locations. We will show that for appropriate 𝑈 , the language
recognized by 𝐷 starting from 𝑠 is 𝐺𝑈,𝑠, and in particular the language recognized
from the starting state 𝑠0 is 𝐺∅,𝑠0 ∼= 𝐺.

Let 𝐵𝑎→𝑏
𝑠→𝑠′ be the obvious path from 𝑎 to 𝑏 through Figure 5-3. For trivial tran-

sitions, let 𝐵𝑎→𝑎
𝑠→𝑠 = [𝐷𝑎 → 𝐷𝑎]. Suppose none of 𝑠, 𝑠′, (𝑎 → 𝑏, 𝑠 → 𝑠′), and

(𝑎 → 𝑏, 𝑠 → 𝑠′)′ is in 𝑈 , so gizmo 𝑠 is in state 2 and the others are in state 1 in
𝐺𝑈,𝑠. Then by design, 𝐺𝑈,𝑠

⊗ [𝐵𝑎→𝑏
𝑠→𝑠′ ] = 𝐺

𝑈∪{𝑠,(𝑎→𝑏,𝑠→𝑠′),(𝑎→𝑏,𝑠→𝑠′)′},𝑠′

⊗ . If any of those
labels is in 𝑈 , then 𝐺𝑈,𝑠

⊗ [𝐵𝑎→𝑏
𝑠→𝑠′ ] = ∅. Similarly to our previous universality proofs, the

set ℬ of 𝐵𝑎→𝑏
𝑠→𝑠′ is a basis. By induction, the reachable internal states (from 𝐺∅,𝑠0

⊗ ) are
all 𝐺𝑈,𝑠

⊗ with 𝑠 /∈ 𝑈 (but not all states of this form are necessarily reachable).
Now it suffices to show that 𝐷ℬ recognizes the same language as 𝐷. These NFAs

are not isomorphic, since states 𝐷ℬ encode the entire history in 𝐷, but this history will
23We do not need this for other universality proofs since those NFAs include self-loop traversals,

which are guaranteed to exist.
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Figure 5-3: Our simulation of an arbitrary strictly bounded prefix-closed gizmo using
ordered dicrumblers, showing the component involved in the nontrivial transition
𝑎→ 𝑏 : 𝑠→ 𝑠′.
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not affect what is allowed for the future. Both NFAs have a transition 𝑎→ 𝑎 : 𝑠→ 𝑠
for all 𝑎 and 𝑠, and no other transition 𝑎→ 𝑏 : 𝑠→ 𝑠. So we can consider only paths
that do not use these trivial transitions, and both NFAs will allow freely inserting
self-loops. The nontrivial transitions in 𝐷ℬ are 𝑎 → 𝑏 : 𝐺𝑈,𝑠

⊗ → 𝐺
𝑈∪{𝑠},𝑠′

⊗ for each
nontrivial transition 𝑎→ 𝑏 : 𝑠→ 𝑠′ of 𝐷 and 𝑈 not containing 𝑠, 𝑠′, (𝑎→ 𝑏, 𝑠→ 𝑠′),
or (𝑎→ 𝑏, 𝑠→ 𝑠′)′.

Suppose 𝐷 has a path [𝑎1 → 𝑏1, . . . , 𝑎𝑘 → 𝑏𝑘] : 𝑠0 → · · · → 𝑠𝑘 of nontrivial
transitions. Let the set of gizmos consumed before traversal 𝑖 be

𝑈𝑖 = {𝑠𝑗, (𝑎𝑗+1 → 𝑏𝑗+1, 𝑠𝑗 → 𝑠𝑗+1), (𝑎𝑗+1 → 𝑏𝑗+1, 𝑠𝑗 → 𝑠𝑗+1)′ | 𝑗 < 𝑖}.

Since 𝐷 is acyclic, the path does not repeat any states or transitions, so none of
𝑠𝑖, (𝑎𝑖+1 → 𝑏𝑗+1, 𝑠𝑖 → 𝑠𝑖+1), and (𝑎𝑖+1 → 𝑏𝑗+1, 𝑠𝑖 → 𝑠𝑖+1)′ is in 𝑈𝑗 for 𝑗 ≥ 𝑖.
So 𝐷ℬ has the path [𝑡1, . . . , 𝑡𝑘] : 𝐺𝑈0,𝑠0

⊗ → · · · → 𝐺𝑈𝑘,𝑠𝑘
⊗ . Thus ℒ(𝐷) ⊂ ℒ(𝐷ℬ).

Conversely, suppose 𝐷ℬ has a path [𝑡1, . . . , 𝑡𝑘] : 𝐺𝑈0,𝑠0
⊗ → · · · → 𝐺𝑈𝑘,𝑠𝑘

⊗ of nontrivial
transitions with 𝑈0 = ∅. Then we can ignore the 𝑈𝑖, and 𝐷 has the corresponding
path [𝑡1, . . . , 𝑡𝑘] : 𝑠0 . . . , 𝑠𝑘, so ℒ(𝐷ℬ) ⊂ ℒ(𝐷).

5.5 Weakly bounded gizmos
Our definition of weakly bounded provides a characterization of weakly bounded
gizmos in terms of NFAs. We need to construct simulations based on weakly acyclic
NFAs.

Theorem 5.15. The brittle door (Figure 2-10) is universal for weakly bounded prefix-
closed gizmos.

Proof. We label the locations of the brittle door the same way we label those of the
door. The simulation will be similar to the one in Theorem 5.14, except that we need
to account for state-preserving transitions.

Let 𝐺 be a weakly bounded gizmo, recognized by a weakly acyclic NFA 𝐷. Our
simulation will use

• A brittle door 𝑠 for each state 𝑠 of 𝑑

• A brittle door (𝑠, 𝑎→ 𝑏) for each state-preserving transition 𝑎→ 𝑏 : 𝑠→ 𝑠

• Two brittle doors (𝑎 → 𝑏, 𝑠 → 𝑠′) and (𝑎 → 𝑏, 𝑠 → 𝑠′)′ for each state-changing
traversal 𝑎→ 𝑏 : 𝑠→ 𝑠′ with 𝑠 ̸= 𝑠′

We will use gizmos 𝑠 and (𝑠, 𝑎 → 𝑏) to encode the state, (𝑎 → 𝑏, 𝑠 → 𝑠′) and
(𝑎 → 𝑏, 𝑠 → 𝑠′)′ to support state-changing traversals, and (𝑠, 𝑎 → 𝑏) also to support
state-preserving traversals. For a set of labels 𝑈 and a state 𝑠 /∈ 𝑈 with each (𝑠, 𝑎→
𝑏) /∈ 𝑈 , let 𝐺𝑈,𝑠

⊗ be the tensor product of these brittle doors all in state 1, except that
𝑠 and (𝑠, 𝑎→ 𝑏) are in state 2, and each gizmo with label in 𝑈 is in state 3.
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Figure 5-4: The component implementing the state-changing transition 𝑎→ 𝑏 : 𝑠→ 𝑠′

in our simulation of an arbitrary weakly bounded prefix-closed gizmo using brittle
doors.
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Now we identify locations as shown in Figure 5-4. Formally, for each state 𝑠, let
the state-preserving transitions 𝑎→ 𝑏 : 𝑠→ 𝑠 be 𝑡1 through 𝑡𝑘, and identify

• 𝑐𝑠 ∼ 𝐶(𝑠,𝑡1)

• For each 𝑖 < 𝑘, 𝑐(𝑠,𝑡𝑖) ∼ 𝐶(𝑠,𝑡𝑖+1)

• For each 𝑖 < 𝑘, 𝑜(𝑠,𝑡𝑖+1) ∼ 𝑂(𝑠,𝑖)

• 𝑜(𝑠,𝑡1) ∼ 𝑂𝑠.

Then, for each state-changing transition 𝑎 → 𝑏 : 𝑠 → 𝑠′, suppose the state pre-
serving transitions on 𝑠 and 𝑠′ are 𝑡1 through 𝑡𝑘 and 𝑡′

1 through 𝑡′
𝑘′ , respectively.

Identify:

• 𝑜(𝑎→𝑏,𝑠→𝑠′) ∼ 𝐶𝑠

• 𝑐(𝑠,𝑡𝑘) ∼ 𝐶(𝑎→𝑏,𝑠→𝑠′)

• 𝑐(𝑎→𝑏,𝑠→𝑠′) ∼ 𝑂(𝑎→𝑏,𝑠→𝑠′)′

• 𝑜(𝑎→𝑏,𝑠→𝑠′)′ ∼ 𝑂(𝑠,𝑡′
𝑘′ )

• 𝑜𝑠′ ∼ 𝐶(𝑎→ 𝑏, 𝑠→ 𝑠′).

If 𝑘 = 0, use 𝑐𝑠 instead of 𝑐(𝑠,𝑡𝑘), and similarly for 𝑘′.
Finally, merge and identify with 𝑎 ∈ locs 𝐺 all locations of the forms

• 𝑂(𝑎→·,·→·)

• 𝑐(·→𝑎,·→·)

• 𝑇(·,𝑎→·𝑐)

• 𝑡(·,·→𝑎𝑐).

Let 𝐺𝑈,𝑠 be the subgizmo of 𝐺𝑈,𝑠
⊗ on these locations. If 𝑠0 is the starting state of 𝐷,

we will show that 𝐷 recognizes 𝐺∅,𝑠0 , so 𝐺∅,𝑠0 ∼= 𝐺.
The idea is that we implement state-changing transitions the same way as in

Theorem 5.14, except that we open and close additional doors when setting the state.
A state-preserving transition 𝑎→ 𝑏 : 𝑠→ 𝑠 is implemented by the traverse tunnel on
gizmo (𝑠, 𝑎→ 𝑏). The state 𝐺𝑈,𝑠

⊗ represents state 𝑠 of 𝐷 for appropriate 𝑈 : the gizmos
𝑠 and (𝑠, 𝑎→ 𝑏) which represent state 𝑠 are all open, and only gizmos for states and
transitions which have been used previously and thus will not be used again are in
𝑈 . Gizmo 𝑠 is included to ensure there is at least one gizmo representing state 𝑠,
to ensure the path through Figure 5-4 is only traversable in states representing 𝑠,
though this is only needed in trivial cases.

To prove correctness, let 𝐵𝑎→𝑏
𝑠→𝑠′ be the obvious path from 𝑎 to 𝑏 through Figure 5-4

for each state-changing transition 𝑎 → 𝑏 : 𝑠 → 𝑠′ (note that its length depends on
𝑘 and 𝑘′), and let 𝐵𝑎→𝑏

𝑠→𝑠 = [𝑇(𝑠,𝑎→𝑏) → 𝑡(𝑠,𝑎→𝑏)] for each state-preserving transition
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𝑎→ 𝑏 : 𝑠→ 𝑠. By design, for a state-changing transition 𝑎→ 𝑏 : 𝑠→ 𝑠′, if none of 𝑠,
(𝑠, 𝑡𝑖), 𝑠′, (𝑠′, 𝑡𝑗), (𝑎→ 𝑏, 𝑠→ 𝑠′), and (𝑎→ 𝑏, 𝑠→ 𝑠′)′ is in 𝑈 , then

𝐺𝑈,𝑠
⊗ [𝐵𝑎→𝑏

𝑠→𝑠′ ] = 𝐺
𝑈∪{𝑠,(𝑠,𝑡𝑖),(𝑎→𝑏,𝑠→𝑠′),(𝑎→𝑏,𝑠→𝑠′)′},𝑠′

⊗ .

For a state-preserving transition 𝑎 → 𝑏 : 𝑠 → 𝑠, if (𝑠, 𝑎 → 𝑏) is not in 𝑈 , then
𝐺𝑈,𝑠

⊗ [𝐵𝑎→𝑏
𝑠→𝑠 ] = 𝐺𝑈,𝑠

⊗ .
As in Theorem 5.14, these form a basis ℬ. The reachable states all have the form

𝐺𝑈,𝑠
⊗ , with start state 𝐺∅,𝑠0

⊗ . The transitions of 𝐷ℬ are described by the equations
above.

It suffices to show that 𝐷 and 𝐷ℬ recognize the same language. This follows much
like in Theorem 5.14:

Suppose 𝐷 has a path [𝑡1, . . . , 𝑡𝑘] : 𝑠0 → · · · → 𝑠𝑘. We describe a path in 𝐷ℬ by
defining 𝑈𝑖 recursively, beginning with 𝑈0 = ∅. If 𝑡𝑖 is state-preserving, let 𝑈𝑖 = 𝑈𝑖−1.
If 𝑡𝑖 is state-changing, let 𝑈𝑖 = 𝑈𝑖−1 ∪ {𝑠𝑖−1, (𝑠𝑖−1, 𝑡𝑗), (𝑡𝑖, 𝑠𝑖 → 𝑠𝑖+1), (𝑡𝑖, 𝑠𝑖 → 𝑠𝑖+1)′};
we are simply adding the brittle doors consumed by the 𝑖th transition. Since 𝐷 has
no cycles containing multiple states, there is never a state-changing transition from
𝑠 and then later a transition to 𝑠, and no state-changing transition is used multiple
times. Thus 𝑈𝑖−1 contains no label of a gizmo needed for 𝐵𝑡𝑖

𝑠𝑖−1→𝑠𝑖
, so 𝐷ℬ has the

path [𝑡1, . . . , 𝑡𝑘] : 𝐺𝑈0,𝑠0
⊗ → · · · → 𝐺𝑈𝑘,𝑠𝑘

⊗ .
Conversely, if 𝐷ℬ has the path [𝑡1, . . . , 𝑡𝑘] : 𝐺𝑈0,𝑠0

⊗ → · · · → 𝐺𝑈𝑘,𝑠𝑘
⊗ with 𝑈0 = ∅,

then 𝐷 has the path [𝑡1, . . . , 𝑇𝑘 : 𝑠0 → · · · → 𝑠𝑘].

5.6 [𝑋 =⇒ 𝑋𝑋 ] [𝑋𝑌 =⇒ 𝑌 𝑋 ] gizmos
This class of gizmos, and the classes discussed in the remainder of this chapter, are
simple enough to characterize that we will not need the machinery of Section 5.1.
Instead, our last few universality results follow this simpler template:

• Show that a gizmo in the class is determined by some relatively simple property.

• Simulate a gizmo which shares that property with a given gizmo in the class.

• By the characterization, the given gizmo is isomorphic to the simulated gizmo.

What it takes to determine a gizmo will of course depend on the class under
consideration. For [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] gizmos, we have the following
characterization.

Lemma 5.16. Let 𝐺 be a [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] prefix-closed gizmo. Suppose
𝑋 and 𝑌 are traversal sequences on locs 𝐺, and the set of traversals in 𝑋 is the same
as the set of traversals in 𝑌 . Then 𝑋 ∈ 𝐺 if and only if 𝑌 ∈ 𝐺.

Proof. Since they have the same sets of traversals, it is possible to transform 𝑋 into
𝑌 (and vice-versa) through reordering traversals, copying traversals, and removing
duplicate traversals. Thus it suffices to show that performing a single one of these
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operations preserves membership in 𝐺. Moreover, we can assume each reordering
operation simply swaps consecutive traversals, and (taking advantage of reordering)
copied traversals are placed at and duplicates are removed from the end of the se-
quence. So it suffices to show that 𝐺 satisfies

𝐴𝐵𝐶𝐷 ∈ 𝐺 =⇒ 𝐴𝐶𝐵𝐷 ∈ 𝐺

𝐴𝐵𝐶 ∈ 𝐺 =⇒ 𝐴𝐵𝐶𝐵 ∈ 𝐺

𝐴𝐵𝐶𝐵 ∈ 𝐺 =⇒ 𝐴𝐵𝐶 ∈ 𝐺

for any traversal sequences 𝐴, 𝐵, 𝐶, and 𝐷, corresponding to reordering, copying, and
removing duplicates, respectively. The first two happen to be implication properties.

First, we prove the useful intermediate that 𝐴𝐵𝐶 ∈ 𝐺 =⇒ 𝐴𝐶 ∈ 𝐺:

𝐴𝐵𝐶 ∈ 𝐺 =⇒ 𝐶𝐴𝐵 ∈ 𝐺 =⇒ 𝐶𝐴 ∈ 𝐺 =⇒ 𝐴𝐶 ∈ 𝐺.

Hereafter we will omit ‘∈ 𝐺’ in implication chains like this. The third property above
is trivial since 𝐺 is prefix-closed. We now prove the other two:

𝐴𝐵𝐶𝐷 =⇒ 𝐴𝐵𝐶𝐷𝐴𝐵𝐶𝐷 =⇒ 𝐴𝐶𝐷𝐴𝐵𝐶𝐷 =⇒ 𝐴𝐶𝐵𝐶𝐷 =⇒ 𝐴𝐶𝐵𝐷

𝐴𝐵𝐶 =⇒ 𝐴𝐵𝐶𝐴𝐵𝐶 =⇒ 𝐴𝐵𝐶𝐵𝐶 =⇒ 𝐴𝐵𝐶𝐵.

We say a set 𝑆 of traversals is good for a [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] prefix-
closed gizmo if a traversal sequence containing exactly the traversals in 𝑆 is allowed.
Lemma 5.16 says goodness does not depend on the choice of traversal sequence, and
in particular the gizmo is determined by its good sets. It follows that every such
gizmo with finitely many locations is regular.

Corollary 5.17. [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] prefix-closed gizmos are closed under
traversals.

Proof. Let 𝐺 be such a gizmo and 𝑋 be a traversal sequence. Let 𝑆 be the set of
traversals in 𝑆. Then 𝑌 ∈ 𝐺[𝑋] exactly when the set of traversals in 𝑋𝑌 is good for
𝐺. This set is 𝑆 ∪ 𝑇 , where 𝑇 is the set of traversals in 𝑌 . Thus whether 𝑌 ∈ 𝐺[𝑋]
is determined by 𝑇 . Then the converse of Lemma 5.16, which is immediate since
union is idempotent and commutative, implies that 𝐺[𝑋] satisfies 𝑋 =⇒ 𝑋𝑋 and
𝑋𝑌 =⇒ 𝑌 𝑋.

On the other hand, neither 𝑋 =⇒ 𝑋𝑋 nor 𝑋𝑌 =⇒ 𝑌 𝑋 alone defines a class
closed under traversals, even among prefix-closed gizmos.

Self-loops in good sets will be inconvenient, so we intend to ignore them. Specifi-
cally, whether a set of traversals is good does not depend on which self-loops it has:
by prefix-closure, subsets of good sets are always good, so removing self-loops pre-
serves goodness. Conversely, since gizmos are closed under insertion of self-loops,
adding self-loops preserves goodness. Thus we have the following refinement, which
is important enough to be called a corollary:
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Corollary 5.18. A [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] prefix-closed gizmo is determined
by its good sets of non-self-loop traversals.

Now we can finally prove the universality result of this section.

Theorem 5.19. The initial state of the mutually closing diodes (Figure 2-11) is
universal for [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] prefix-closed gizmos with finitely many
locations.

Proof. Let 𝐺 be a nonempty such gizmo with 𝑛 locations. Suppose 𝐺 has 𝑘 good

sets, labeled 𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑘. Our simulation of 𝐺 will use
(︃

𝑘∑︁
𝑖=1
|𝑆𝑖|

)︃2

−
𝑘∑︁

𝑖=1

(︁
|𝑆𝑖|2

)︁
copies of the mutually closing diodes and ∼𝑘

𝑖=1 |𝑆𝑖| copies of the diode—note that we
can easily simulate a diode by taking the subgizmo on a single tunnel. This is one
copy of the mutually closing diodes for each pair of traversals in unequal good sets.

For each 𝑖 ̸= 𝑖′ and traversals 𝑡 ∈ 𝑆𝑖 and 𝑡′ ∈ 𝑖′, we include a copy of the mutually
closing diodes labeled (𝑖, 𝑡, 𝑖′, 𝑡′). For each 𝑖 and 𝑡 ∈ 𝑆𝑖, we include a copy of the diode
labeled (𝑖, 𝑡). Let 𝐺⊗ be the tensor product of these gizmos. We partition the tunnels
of all of these gizmos into paths which are connected in series: for each 𝑖 and 𝑡 ∈ 𝑆𝑖,
connect the diode (𝑖, 𝑡), the first tunnel of each gizmo labeled (𝑖, 𝑡, ·, ·), and the second
tunnel of each gizmo labeled (·, ·, 𝑖, 𝑡). The order of the tunnels in the path does not
matter. The idea is for each path to close all paths from other good sets, so that the
agent can only use paths from a single good set.

Finally, for each location 𝑎 ∈ locs 𝐺, merge the start of each path corresponding
to a traversal 𝑎 → · in a good set and the end of each path corresponding to · → 𝑎.
The resulting location corresponds to 𝑎; let 𝐺′ be the subgizmo on these locations.

To show that 𝐺 = 𝐺′, we argue that they have the same good sets. Suppose a set
𝑆 is good for 𝐺. Then if each traversal 𝑡𝑖 is in 𝑆, the concatenation of paths through
𝐺⊗ corresponding to 𝑡𝑖 ∈ 𝑆 is in 𝐺⊗, since none of these paths use different tunnels
on the same mutually closing diodes. Thus [𝑡0, . . . , 𝑡𝑚] ∈ 𝐺′, so 𝑆 is good for 𝐺′.

Conversely, suppose 𝑆 is good for 𝐺′ and does not contain self-loops. Let 𝑋
contain exactly the traversals in 𝑆, so 𝑋 ∈ 𝐺′. Then there is some ̃︁𝑋 ∈ 𝐺⊗ with
𝜋∼

*
∘(̃︁𝑋)  𝑋. Any self-loop in ̃︁𝑋 must be contracted away, so we can assumẽ︁𝑋 contains no self-loops, and thus is a concatenation of the paths we built in the

simulation (that is, these paths are a basis). By construction, it is never legal in 𝐺⊗
to traverse two such paths from different good sets for 𝐺, so the paths comprising ̃︁𝑋
come from traversals in the same good set. Let 𝑌 be the sequence of these traversals;
then we have 𝜋∼

*
∘(̃︁𝑋)  𝑌  𝑋. But since each traversal in 𝑌 is in the same good

set, 𝑌 ∈ 𝐺, so 𝑋 ∈ 𝐺. Hence 𝑆 is also good for 𝐺.
Our simulation is somewhat wasteful: to make it simpler to describe, we use twice

as many copies of the mutually closing diodes as needed, and the diodes serve only
to prevent paths from being traversal backwards, which is only relevant when 𝐺 has
only one good set.
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5.7 Unchanging gizmos
We are now reaching some rather weak classes of gizmos.

Definition 5.20. A prefix-closed gizmo is unchanging if it satisfies both implication
properties 𝑋𝑌 =⇒ 𝑌 and 𝑋, 𝑌 =⇒ 𝑋𝑌 .

Together the two implication properties say that 𝐺 = 𝐺[𝑋] whenever 𝑋 ∈ 𝐺;
since 𝐺 is also prefix-closed, 𝐺[𝑋] is always either 𝐺 or empty. Unchanging prefix-
closed gizmos correspond to the unchanging gadgets from Lynch [Lyn20]. Since each
implication property defines a closed class, and unchanging gizmos are the intersec-
tion of two of them, unchanging gizmos are closed under arbitrary simulation. The
combination of the three implication properties defining unchanging prefix-closed giz-
mos has a simple description: 𝑋𝑌 is allowed if and only if both 𝑋 and 𝑌 individually
are.

We first show that a nonempty unchanging prefix-closed gizmo is determined by
the single traversals it allows, and then use this to prove universality.

Lemma 5.21. Unchanging prefix-closed gizmos are closed under traversals.

Proof. Suppose 𝐺 is unchanging and prefix-closed, and consider a traversal sequence
𝑍. By Lemma 4.2, 𝐺[𝑍] is prefix-closed. We must show it also satisfies 𝑋𝑌 =⇒ 𝑌
and 𝑋, 𝑌 =⇒ 𝑋𝑌 . For the former, if 𝑍𝑋𝑌 ∈ 𝐺, then 𝑍, 𝑋, and 𝑌 are each in 𝐺,
so 𝑍𝑌 ∈ 𝐺. For the latter, if 𝑍𝑋 and 𝑍𝑌 are in 𝐺, then so are 𝑍, 𝑋, and 𝑌 , so
𝑍𝑋𝑌 ∈ 𝐺.

Lemma 5.22. If 𝐺 is a nonempty unchanging prefix-closed gizmo, then a traversal
sequence 𝑋 = [𝑡1, . . . , 𝑡𝑘] is in 𝐺 if and only if [𝑡𝑖] ∈ 𝐺 for each 𝑖.

Proof. For the forwards direction, since 𝐺 is prefix-closed [𝑡1, . . . , 𝑡𝑖] ∈ 𝐺 and then
since 𝐺 satisfies 𝑋𝑌 =⇒ 𝑌 , [𝑡𝑖] ∈ 𝐺.

For the reverse direction, we induct on 𝑘, and essentially use the nice structure
mentioned above. When 𝑘 = 0 the claim is that [ ] ∈ 𝐺, which follows from 𝐺 being
nonempty and prefix-closed. Assume 𝑘 > 0 and [𝑡𝑖] ∈ 𝐺 for each 1 ≤ 𝑖 ≤ 𝑘. Consider
the gizmo 𝐺[[𝑡1]]: it is nonempty since [𝑡1] ∈ 𝐺 and unchanging and prefix-closed by
Lemma 5.21. Since 𝐺 satisfies 𝑋, 𝑌 =⇒ 𝑋𝑌 , for each 𝑖 we have [𝑡𝑖] ∈ 𝐺[[𝑡1]]. So
by inductive hypothesis on 𝐺[[𝑡1]], we have [𝑡2, . . . , 𝑡𝑘] ∈ 𝐺[[𝑡1]], and thus 𝑋 ∈ 𝐺 as
desired.

Theorem 5.23. The diode (Figure 2-12) is universal for unchanging prefix-closed
gizmos with finitely many locations.

This universality result implies all unchanging prefix-closed gizmos with finitely
many locations are regular; it is not hard to prove this directly. Gizmos with finitely
many locations are trivially closed under finite but not arbitrary simulation.

Proof. We call the input and output of the diode 𝐼 and 𝑂, so the diode is the minimal
prefix-closed gizmo containing (𝐼 → 𝑂)*.
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Let 𝐺 be a nonempty unchanging prefix-closed gizmo with finitely many locations.
Our simulation of 𝐺 will have a diode labeled with each traversal 𝑡 for which [𝑡] ∈ 𝐺.
For each 𝑎 ∈ locs 𝐺, we identify all locations of the form 𝐼𝑎→· or 𝑂·→𝑎 into a single
location, which we identify with 𝑎. Let 𝐺⊗ be the tensor product of the diodes and
𝐺′ be the resulting simulated gizmo. We wish to show that 𝐺 = 𝐺′.

Lemma 5.22 tells us that a nonempty prefix-closed gizmo is determined by its
traversal sequences of length one. So it suffices to prove that for any single traversal
𝑡, [𝑡] ∈ 𝐺 if and only if [𝑡] ∈ 𝐺′.

If [𝑡] ∈ 𝐺, notice that [𝐼𝑡 → 𝑂𝑡] ∈ 𝐺⊗ and 𝜋∼∘(𝐼𝑡 → 𝑂𝑡) = 𝑡. Thus [𝑡] ∈ 𝐺′. This
is easy because we specifically included a diode to support 𝑡.

Conversely, suppose [𝑡] ∈ 𝐺′. Then there is some ̃︁𝑋 ∈ 𝐺⊗ with 𝜋∼
*
∘(̃︁𝑋)  [𝑡].

Each traversal in ̃︁𝑋 is either a self-loop or crosses a diode, and thus each traversal in
𝜋∼

*
∘(̃︁𝑋) is in 𝐺. By Lemma 5.22, 𝜋∼

*
∘(̃︁𝑋) ∈ 𝐺. Since 𝐺 is a gizmo and 𝜋∼

*
∘(̃︁𝑋) [𝑡],

also [𝑡] ∈ 𝐺.

5.8 [𝑋 =⇒ 𝑋−1] unchanging gizmos
This class is even weaker than unchanging gizmos, and is the subject of our final
universality result.

Theorem 5.24. The wire (Figure 2-13) is universal for [𝑋 =⇒ 𝑋−1] unchanging
prefix-closed gizmos with finitely many locations.

Proof. The gizmos in question satisfy four implication properties:

𝑋, 𝑌 =⇒ 𝑋𝑌 ; 𝑋𝑌 =⇒ 𝑋; 𝑋𝑌 =⇒ 𝑌 ; 𝑋 =⇒ 𝑋−1.

Note in particular that if [𝑎→ 𝑏] is allowed by such a gizmo, then so is [𝑏→ 𝑎].
Our proof is very similar to the proof of Theorem 5.23, but using wires instead

of diodes. We call the locations of the wire 𝐼 and 𝑂, so the wire in the minimal
prefix-closed gizmo containing (𝐼 → 𝑂|𝑂 → 𝐼)*.

Let 𝐺 be a nonempty [𝑋 =⇒ 𝑋−1] unchanging prefix-closed gizmo. Our simu-
lation has a wire labeled 𝑎↔ 𝑏 for each pair of opposite traversals 𝑎→ 𝑏 and 𝑏→ 𝑎
with [𝑎 → 𝑏] and [𝑏 → 𝑎] both in 𝐺; this is equivalent to either one being in 𝐺.
For each 𝑎 ∈ locs 𝐺, we identify all locations of the form 𝐼𝑎↔· or 𝑂·↔𝑎 into a single
location, which we identify with 𝑎. Let 𝐺⊗ be the tensor product of the wires and 𝐺′

be the resulting simulated gizmo.
To show that 𝐺 = 𝐺′, by Lemma 5.22 it suffices to show that they agree on

length-one traversal sequences. If [𝑎 → 𝑏] ∈ 𝐺, then there is a wire labeled either
𝑎↔ 𝑏 or 𝑏↔ 𝑎. Then [𝐼𝑎↔𝑏 → 𝑂𝑎↔𝑏] or [𝑂𝑏↔𝑎 → 𝐼𝑏↔𝑎], respectively, is a witness for
[𝑎→ 𝑏] ∈ 𝐺′.

Conversely, suppose [𝑡] ∈ 𝐺′. Then there is some ̃︁𝑋 ∈ 𝐺⊗ with 𝜋∼
*
∘(̃︁𝑋) [𝑎→ 𝑏].

Each traversal in ̃︁𝑋 is either a self-loop or is one direction of 𝐼𝑎′↔𝑏′ ↔ 𝑂𝑎′↔𝑏′ across
some wire. So each traversal in 𝜋∼

*
∘(̃︁𝑋) is either a self-loop or one direction of 𝑎′ ↔ 𝑏′,

and in either case is in 𝐺. By Lemma 5.22, 𝜋∼
*
∘(̃︁𝑋) ∈ 𝐺, so [𝑡] ∈ 𝐺.
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Chapter 6

Arbitrary simulation

In this chapter, we consider arbitrary simulations, and adapt some of our results for
finite simulations to this case. When proving closure under simulation in Chapter 4,
we noted which classes are even closed under arbitrary simulation. In particular,
classes defined by implication properties are closed under simulation (Theorem 4.6),
and all other classes of gizmos we considered are not, with the possible exception of
reversible gizmos we discuss below.

Universality results are more complicated to adapt to arbitrary simulation. If
we know, for some small set of gizmos 𝑆 and some class 𝒞 closed under arbitrary
simulation, that 𝑆 is universal for the regular gizmos in 𝒞, then we would like to
show that 𝑆 is arbitrarily universal for 𝒞. This is not always true—for example,
if every gizmo in 𝒞 is regular—but it is suggestive. In particular: for each of our
universality results for a class closed under arbitrary simulation, is it still true if we
remove “regular” and and replace “universal” with “arbitrarily universal”?

Several of our universality results are based on NFAs for gizmos. For nonregular
gizmos, we need to consider automata like NFAs except that they are allowed to have
an infinite alphabet and infinitely many states. Despite the oxymoron, we call these
arbitrary NFAs, or ANFAs. When they are deterministic (meaning they have exactly
one transition for each state and symbol), we call them arbitrary DFAs, or ADFAs.
ADFAs are sufficient to capture any gizmo, or indeed any language:

Lemma 6.1. Any language 𝐿 on Σ is recognized by an ADFA.

Proof. For a sequence 𝑋 ∈ Σ*, let 𝐿[𝑋] = {𝑌 | 𝑋𝑌 ∈ 𝐿} (as with gizmos). Construct
the ADFA which has states {𝐿[𝑋] | 𝑋 ∈ Σ*} and a transition 𝑎 : 𝑠 → 𝑠[𝑎]. This
ADFA recognizes 𝐿 as in the proof of Lemma 3.28.

Then, following exactly Lemma 3.29, we have

Lemma 6.2. If 𝐺 is a nonempty prefix-closed gizmo, 𝐺 is recognized by an ANFA
where every state is accepting.

The results of Section 5.1 do not assume that the gizmos involved are regular,
provided we acknowledge that 𝐷ℬ is actually an ANFA. So we can use the same
framework for proving universality results, but with “NFA” replaced by “ANFA.”
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Note that we do, however, rely on the assumption that traversal sequences are finite
(such as when inducting on them), but this is not affected by arbitrary simulation.

Now we can check that that specific universality results still hold for arbitrary
simulation. In particular, by simply inserting (the appropriate form of) ‘arbitrary’
in the appropriate locations in the proofs of their counterparts24 from Chapter 5, we
have the following results:

Theorem 6.3 (cf. Theorem 5.8). The door gadget (Figure 2-3) is arbitrarily universal
for prefix-closed gizmos.

Corollary 6.4 (cf. Corollary 5.9). The mismatched dicrumblers (Figure 2-5) and the
self-closing door (Figure 2-4) are each arbitrarily universal for prefix-closed gizmos.

Theorem 6.5 (cf. Theorem 5.23). The diode (Figure 2-12) is arbitrarily universal
for unchanging prefix-closed gizmos.

Theorem 6.6 (cf. Theorem 5.24). The wire (Figure 2-13) is arbitrarily universal for
reversible unchanging prefix-closed gizmos.

For these last two, all that we gain by allowing arbitrary simulation is gizmos with
infinitely many locations.

Not all of our universality results generalize like this, even for classes closed under
arbitrary simulation. We examine those that do not more carefully.

6.1 Reversible gizmos
By a quirk of Definition 4.8, all reversible gizmos as defined are regular. But re-
versibility is at heart a property that can hold for nonregular gizmos, so we adapt
our definition to use ANFAs:

Definition 6.7. An ANFA with alphabet 𝒯 (𝐿) is reversible if for every transition
𝑎 → 𝑏 : 𝑠 → 𝑠′, there is a reverse transition 𝑏 → 𝑎 : 𝑠′ → 𝑠.A gizmo is reversible if it
is recognized by a reversible ANFA.

With this new definition, closure under arbitrary simulation follows just as before.

Theorem 6.8 (cf. Theorem 4.10). Reversible gizmos are closed under arbitrary sim-
ulation.

We can extend Conjecture 4.9 to include nonregular gizmos. Again this would be
interesting even if only for prefix-closed gizmos.

Conjecture 6.9. Every gizmo satisfying both 𝑋, 𝑌 =⇒ 𝑋𝑋−1𝑌 and 𝑋𝑌 𝑍 =⇒
𝑋𝑌 𝑌 −1𝑌 𝑍 is recognized by a reversible ANFA.

Now our universality results for reversible gizmos adapts with no issues.
24Also replace references to other results with their arbitrary counterparts, and in some cases

remove “with finitely many locations.”
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Theorem 6.10 (cf. Theorem 5.10). The 2-toggle (Figure 2-6) is arbitrarily universal
for reversible prefix-closed gizmos.

Corollary 6.11 (cf. Corollary 5.11). The tripwire-lock (Figure 2-7) is arbitrarily
universal for reversible prefix-closed gizmos.

6.2 Bounded gizmos
Strictly bounded and weakly bounded gizmos have largely the same considerations
here. Both classes are not closed under arbitrary simulation, so we should not expect
a universality result for bounded gizmos. But we can say something else interesting:
every gizmo is ‘strictly bounded by ∞.’

Lemma 6.12. Any language 𝐿 on Σ is recognized by an acyclic ADFA.

Proof. This requires a different, even more naive, approach to proving Lemma 6.1.
We construct an ADFA 𝐷 whose states are strings in Σ*. A state 𝑋 accepts if 𝑋 ∈ 𝐿,
and the start state is the empty string. We have a transition 𝑡 : 𝑋 → 𝑋𝑡 for each
𝑡 ∈ Σ.

Clearly after being fed 𝑋, 𝐷 is in state 𝑋, so it recognizes 𝐿. It is acyclic because
paths only make the state a longer string.

Now adapting our universality result for strictly bounded gizmos to arbitrary
simulation yields the following theorem.

Theorem 6.13 (cf. Theorem thm:ordered dicrumblers universal strictly bounded).
The ordered dicrumblers (Figure 2-9) is arbitrarily universal for prefix-closed gizmos.

We can simulate all gizmos, not just the strictly bounded ones. It follows that
the brittle door is also arbitrarily universal for prefix-closed gizmos. An alternative
way to prove Theorem 6.13 is to use the fact that we have already arbitrarily sim-
ulated mismatched dicrumblers using ordered dicrumblers (Lemma 4.17), and then
use Corollary 6.4.

6.3 [𝑋 =⇒ 𝑋𝑋 ] [𝑋𝑌 =⇒ 𝑌 𝑋 ] gizmos
Adapting our universality result for [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] gizmos fails for a
more interesting reason. Our simulation in Theorem 5.19 involves a path through a
series of tunnels whose length depends

For a cardinal 𝜅, let the 𝜅-closing diodes be the gizmo with 𝜅 tunnels 𝐴𝑖 → 𝐵𝑖,
which is the minimal prefix-closed gizmo containing (𝐴𝑖 → 𝐵𝑖)* for each 𝑖. Think
of it as 𝜅 diodes, any one of which closes all the others. In particular, the mutually
closing diodes (Figure 2-11) is the 2-closing diodes, and Theorem 5.19 implies that
the mutually closing diodes simulatios the 𝜅-closing diodes for any finite 𝜅.

For countable 𝜅 = ℵ0, it is possible with some cleverness to simulate the ℵ0-closing
diodes. To avoid infinite-length paths, one can instead have finite paths of arbitrary
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length; the path corresponding to 𝐴𝑖 → 𝐵𝑖 has length 𝑂(𝑖)25. It likely follows that
the mutually closing diodes can simulate any [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] prefix-
closed gizmo with countably many locations. For uncountable 𝜅, this does not seem
to be possible. We seem be able to achieve only locally finite ‘fanout,’ and thus only
countably many locations can be a finite distance away. It would be interesting to
prove this more carefully.

The universality proofs of Ani, Bosboom, et al. [ABD+20] and Ani, Demaine, et
al. [ADHL20] (the latter requires a slightly different notion of simulation) would also
fail to adapt to arbitrary simulation and nonregular gizmos for the same reason—they
set the state using paths that pass through a tunnel for each state of the simulated
gadget, which would become infinitely long. The first, that doors are universal, can be
fixed, as we have done in Theorem 6.3. The latter, that the set-up/set-down/switch is
universal for input-output gadgets (using a notion of simulation appropriate to these
gadgets), seems to face more fundamental issues similar to those just discussed.

25In particular, length 2𝑖 is attainable for 𝑖 = 1, 2, . . . .
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Chapter 7

Future directions

We have defined a formal notion corresponding to the simulation of motion-planning
gadgets studied in previous work [AAD+20, ABD+20, ADHL20, DGLR18, DHL20,
Lyn20], and proved a handful of both positive and negative results about the existence
of simulations. Each of our results is a partial answer to Question 3.2, which is itself
a special case of Question 3.1. In particular, each of our universality results exactly
characterizes the gizmos which a specific small set of gizmos can simulate. A far-
reaching goal would be to obtain a complete answer to Question 3.1, but there is a
lot more work left to do if we are to fully understand gadget simulation, both within
our formalism and beyond it.

7.1 Questions from this work
First, we collect specific questions brought up elsewhere in this thesis.

• Conjecture 4.9: is every regular gizmo satisfying 𝑋, 𝑌 =⇒ 𝑋𝑋−1𝑌 and
𝑋𝑌 𝑍 =⇒ 𝑋𝑌 𝑌 −1𝑌 𝑍 recognized by a reversible NFA? We can extend to
nonregular gizmos and NFAs (Conjecture 6.9) or restrict to prefix-closed gizmos.

• Can we define weakly bounded gizmos (Definition 4.14) without resorting to
NFAs?

• Can the mutually closing diodes arbitrarily simulate every [𝑋 =⇒ 𝑋𝑋]
[𝑋𝑌 =⇒ 𝑌 𝑋] prefix-closed gizmo with countably many locations (Sec-
tion 6.3)? Can it arbitrarily simulate the 𝜅-closing diodes for uncountable 𝜅,
or any meaningfully uncountable [𝑋 =⇒ 𝑋𝑋] [𝑋𝑌 =⇒ 𝑌 𝑋] prefix-closed
gizmo?

7.2 Within the system
Next we pose several problems about gizmo simulation as we have defined it, which
would contribute to answering Question 3.1.
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• Can we find universal sets of gizmos for other closed classes we have defined?
Our method for proving universality seems to work fairly generally, so likely
without too much trouble we can adapt to additional classes. One challenge
is showing equivalences between natural definitions which do not involve NFAs
and characterizations in terms of NFAs with nice properties. In particular, a
reasonable candidate for universality for bounded gizmos would be something
like the minimal prefix-closed gizmo containing (𝐴→ 𝐵, 𝐶 → 𝐷, 𝐵 → 𝐴, 𝐷 →
𝐶)*, and the locking 2-toggle is a natural candidate for bounded reversible
gizmos.

• It would be particularly exciting to prove infinitely many universality results to
match our infinite family of closed classes. Can we find a universal set for any
implication property? Perhaps it helps to impose a further constraint on the
implication property, such as that it has only one antecedent.

• What other interesting classes of gizmos are closed under simulation? Can they
be described in terms of implication properties, or another infinite family of
closed properties? Can we find universal sets of gizmos for them?

• One approach to characterizing simulability is to define, for each gizmo 𝐺, the
class 𝒞𝐺 of gizmos which 𝐺 simulates. This is trivially closed under simulation,
and 𝐺 is universal. If we consider a family of gizmos, such as those which have
2 locations and (are recognized by an NFA with) at most 2 states, it may be
tractable to determine which of these gizmos simulate each other, defining a
preorder on them and determining which 𝒞𝐺 are equal. This may in turn lead
to insights toward a more direct characterization of 𝒞𝐺 for specific gizmos.

• What about universality for classes of gizmos that are not prefix-closed? For
instance, can we adapt Theorem 5.8 to show that the set containing all gizmos
corresponding to the door gadget, in different states and with different target
sets, is universal for regular gizmos?

• What can we say about relationships between gizmo classes? In complexity
theory, people care about results like BPP ⊂ ΣP

2 , but in this thesis we have
largely ignored inclusions between gizmo classes like this (with some exceptions,
such as Corollary 5.13). Just as in complexity theory and completeness, one
way to prove such results is using universality; for instance, since the mutually
closing diodes is weakly bounded, Theorem 5.19 implies every [𝑋 =⇒ 𝑋𝑋]
[𝑋𝑌 =⇒ 𝑌 𝑋] prefix-closed gizmo with finitely many locations is weakly
bounded.

• What are the applications to complexity theory? Gadgets were invented for
proving hardness, so studying them should give insight into complexity theory.
Sometimes there are upper bounds corresponding to closed classes of gizmos;
for instance, we claim without proof that targeted set reconfiguration with any
finite set of weakly bounded gizmos is in NP. Universality has limited use for
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proving hardness: it helps find simulations of gadgets one might need in a hard-
ness proof, but it only resolves the complexity of one decision problem. We
would like more results that go in the other direction, showing that any gad-
get with some properties can simulate a known-hard gadget. We know of two
results of this form (which can easily be adapted to gizmos) from Demaine,
Hendrickson, and Lynch [DHL20]: that every interacting tunnels reversible de-
terministic gadget simulates a locking 2-toggle, and that every nontrivial DAG
(i.e. strictly bounded) gadget simulates either a crumbler or a dicrumbler.

7.3 Outside the system
Finally, we pose several problems about gadget simulation which are not specifically
about gizmos. These are situations outside the limited scope of targeted set recon-
figuration which gizmos are appropriate for. Each of these situations would require a
new notion of simulation, and possibly a new notion of gadgets when gizmos are not
sufficient. These appear to vary in difficulty from being resolved by a minor modifi-
cation to gizmo simulation, to requiring a brand new formalism which likely needs to
be significantly more complicated than gizmos.

Planarity. What are the right definitions of planar gizmos and planar simulations,
and which of our results can be adapted to them? When is there a simulation
but not a planar simulation? Prior work has extensively considered gadgets
in planar environments [DGLR18, DHL20, ADGV15, HS04, Lyn20, DVW16,
AAD+20, Vig14, ADG+21], so there are already a lot of known simulations
and this would help solidify an important part of the motion-planning gadgets
framework. Bosboom’s thesis [Bos20] offers one approach: a planar gizmo would
come with a cyclic ordering of its locations, and planar gizmo operations would
need to respect this cyclic order.

Reconfiguration. Gizmos are able to handle targeted reconfiguration, but not re-
configuration when the agent is allowed to end anywhere. Can we define a notion
of simulation which preserves hardness of reconfiguration problems? The diffi-
culty arises when the agent ends inside a simulation; we would likely need to
make sure that it is impossible to win the reconfiguration problem while inside
a simulation.

Verified gadgets. As discussed in Section 3.5.2, there are structures built out of
gadgets that seem like, but are not exactly, simulations. A limited notion of
these, called verified gadgets, is considered by Lynch [Lyn20]. Can we define a
notion of verified gadgets, or a more general type of simulation-like relationship,
in terms of gizmos?

Input/output gadgets. Input/output gadgets, studied by Ani, Demaine, et al.
[ADHL20], are the gadget framework’s answer for fully deterministic situations,
like a train following tracks according to the behavior of switches. Can we
describe this situation using something like gizmos?
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1-toggle-protected. 1-toggle-protected motion planning is when instead of con-
necting our gadgets with freely usable wires, we can only connect them with
1-toggles. This model is used by Akitaya et al. [ADG+21] to prove PSPACE-
hardness for problems where traversing a wire requires moving a resource across
it, so wires are naturally balanced. 1-toggle-protected motion planning seems
applicable to any situation like that; what can we say about simulations with
this constraint?

No branching hallways. To generalize both input/output gadgets and 1-toggle-
protected motion planning, what if we change how we are allowed to connect
locations? Our notion of simulations allows arbitrary connections, which you
might call ‘branching hallway-protected’ (except that branching hallways can
only connect countably many locations). If we do not allow arbitrary con-
nections, the natural operation seems to be connecting and removing pairs of
locations. To reintroduce merging many locations, we can allow the branching
hallway in our simulations.26 But when we ‘connect’ two locations, it does not
need to be with a wire—it could be with a 1-toggle for 1-toggle-protected motion
planning. Input/output gadgets can be thought of in terms of ‘diode-protected’
motion planning. Can we say anything in general about this kind of model?

Multiple robots. Often, such as in the situations considered by Holzer and Schwoon
[HS04] and Akitaya et al. [ADG+21], an agent is allowed to control several
‘robots’ in disparate locations. To use the gadget framework, one must ensure
that only one robot is ‘active’ at a time, so that there is effectively a since agent
navigate the system. To define simulation for this situation, it seems that we
need to allow multiple robots to be ‘inside’ a gadget at the same time, so the
traversal sequences making up gizmos are not sufficient.

Multiplayer. Multiplayer games on systems of gadgets have been studied before
[DHL20], and naturally describe many situations with multiple agents with
conflicting goals. There are several issues that arise, and a full theory of mul-
tiplayer gadget simulation would need to address all of them. In addition to
the issues that arise by having multiple navigators in the system of gadgets
described above, here are some of them:

One-player incentives. We need to know not just which sequences are legal,
but when one player can choose to make a sequence stop being legal. This
is related the the one-player incentives discussed in Section 3.2.2. By anal-
ogy with the difference between 1-player SAT and 2-player QBF, it seems
we need to replace traversal sequences with some notion of ‘quantified’
traversal sequences, possibly decorating each traversal with either ∀ or ∃.

Superposition. Somewhat similarly, for one-player motion planning the agent
can always know in advance what they will need to do, and thus choose
the correct state of a gadget whenever the gizmo representing it would

26In fact, the motion-planing gadget framework has been described this way [DGLR18].
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enter a superposition. In multiplayer, which traversals a player will want
available can depend on what the other player does, which can depend on
which state of the superposition was chosen.

Timing. Hardness proofs for multiplayer games using the gadget framework
need to worry about how long it takes players to do things. The sections
of Demaine, Hendrickson, and Lynch [DHL20] on multiplayer problems
spend a lot of time building complicated timer gadgets and ensuring that
paths are just the right length to prevent each player from ‘cheating.’ Mul-
tiplayer simulation would need to consider how long it takes to traverse a
simulation, and be robust to (or prevent) the other player from entering
the simulation during this interval.

Visibility. If we want to consider games with imperfect information, such as
those considered by Demaine, Hendrickson, and Lynch [DHL20], we need
to define what information each player gets. We need some map from the
location of a player to the set of states a gadget might be in given the
information they can see at that location. How does such a map transform
under the operations of simulation?
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