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Abstract

Extreme weather is an increasingly critical threat to infrastructure systems. This
thesis develops a stochastic modeling and decision-making framework for proactive
resource allocation and response strategies to improve the resilience of electric power
infrastructure in the wake of severe weather events. The framework is based on a
physically-based, probabilistic risk assessment approach to estimating the weather-
induced damage, and accounts for power flow constraints in designing response actions
within electricity distribution networks.

Firstly, we formulate an asymmetric hurricane wind field model that is applicable
to forecasting and large-scale ensemble simulation. The hurricane wind field model
incorporates low-wavenumber asymmetries, and its parameters are estimated using a
Constrained Nonlinear Least Squares problem. Inclusion of asymmetries in the model
improves the accuracy of wind risk assessment in the hurricane eye wall, where wind
velocities are maximized.

Secondly, the wind field forecasts are used as inputs to a probabilistic model for
damage estimation in infrastructure systems. The novelty of this damage model is
that it accounts for the spatial variability in damage estimates resulting from the hur-
ricane wind field and forecast uncertainty in the hurricane’s temporal evolution. We
demonstrate that our model is capable of accurately predicting outage rates resulting
from damage to the electrical grid following Hurricane Michael.

Thirdly, we develop a computational approach for optimal resource allocation and
multi-step response operations. Using a two-stage stochastic mixed-integer formu-
lation, we model the strategic deployment of distributed energy resources (DERs)
ahead of a storm’s landing, and the joint operation of islanded microgrids and repair
of damaged components in the post-storm stage. The failure scenarios in this formu-
lation are drawn from our physically-based damage model. The key challenge here is
that the size of the optimization problem increases super-linearly with the network
size. To address this computational bottleneck, we develop three solution approaches
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based on L-shaped Benders decomposition. These approaches incorporate the net-
work structure and power flow constraints to derive more effective Benders cuts. We
evaluate the scalability of these approaches on benchmark networks, and show that
they are useful in evaluating the resiliency improvements due to optimal DER allo-
cation and response strategies under various resource constraints.

Thesis Supervisor: Saurabh Amin
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

Extreme weather is becoming an increasingly critical threat to electrical grids [77].

Weather-induced disruptions, which contribute to about 44% of outage events in the

U.S. power grid and cost between $20 and $55 billion annually [11], are becoming

more challenging to handle due to the increasing frequency of stronger hurricanes

induced by global warming [31]. According to recent findings in a November 2018

Nature article, climate simulations of hurricanes indicate that if little is done to curb

greenhouse gas emissions and the world warms by 3-4∘C this century, then hurricane

rainfall will increase up to a third while wind speed will be boosted by as much as 25

knots [69, 79]. The increasingly destructive potential of hurricanes was highlighted in

2017 when the U.S. struggled to handle the aftermath of Hurricanes Harvey, Irma, and

Maria. For instance, Hurricane Irma disrupted power supply for 7 million households

and businesses in Florida as the storm plowed through the state [22]. Hurricane Maria

left more than 1 million residents without power in Puerto Rico, many suffering from

prolonged month-long delays in restoration of power [94].

Hurricanes are not the only weather-related threat to the reliable operation of

electrical grids. In 2021, only days after the writing of this thesis had commenced, a

series of severe winter storms significantly derailed the operation of the electric grid

in Texas. Because extremely cold weather is rare in Texas (temperatures dropped

as low as -2∘F / -19∘C at Dallas-Fort Worth International Airport), the local power

equipment is not properly reinforced to survive extended periods of low temperatures
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[21, 28]. Both natural gas power generation facilities and wind turbines suffered from

equipment malfunctions, leading to widespread outages. By February 17, the third

day of outages, over 2 million Texan power customers were without power [109, 49].

This catastrophe is a reminder that power grids’ aging or inadequate infrastructure is

an enormous vulnerability to extreme weather events, which are expected to become

more frequent as a result of climate change.1

Meanwhile, the rapid evolution of the power grid into a “smart grid” provides gov-

ernment agencies and utilities increased flexibility in pre-storm and real-time decision-

making to minimize grid damage induced by hurricanes. Unlike a traditional central-

ized grid, the smart grid incorporates distributed energy resources (DERs) in the

form of portable microgrids, localized renewable energy, storage devices, and electric

vehicles. DERs permit portions of electricity distribution networks (DNs) to obtain

power even if DNs are disconnected from bulk generators due to weather-induced

damages [19, 1, 41]. In particular, DERs are useful for supplying power to criti-

cal loads (e.g. police stations, hospitals) during disasters. Furthermore, smart grid

technologies introduce flexibility by permitting multi-directional power flows (unlike

single-direction flows in traditional grids) and information flows provided by sensing

and control infrastructure, such that the power grid can quickly respond to compo-

nent failures and appropriately re-route power in real time [87]. Overall, smart grids

are crucial in achieving a more reliable, secure, and sustainable supply of energy,

including enabling the deployment of clean energy technologies.

Despite these advancements, the current smart grids are not sufficiently hurricane-

resilient. For example, Florida Power & Light (FPL), the largest electricity provider

in the state, invested $3 billion in smart technologies such as sophisticated sensors

and automated switches in 2013 [99]. FLP was able to mitigate many outages during

Hurricanes Matthew and Hermine in 2016. However, Hurricane Irma in 2017 left

as many as 15 million people in the state without electricity and the FPL with “a

very, very lengthy restoration, arguably the longest and most complex in U.S. his-

1Furthermore, the winter storm lead not only to power shortages, but also to days-long water
shortages.
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tory” [81]. Restoration of Puerto Rico’s grid following Hurricane Maria took even

longer, with many residents suffering from prolonged months-long delays in power

restoration [94]. Why does it take so long? Smart grid technologies for sensing and

control enable faster localization of damage, but crews still need to travel to dam-

age sites for inspection and repair, a process that frequently takes multiple days.

The repair process is further delayed if we lack sufficient tools to forecast hurricane

winds, which affect flooding and debris-induced damage. A rich body of literature

relates to power network repair optimization [103, 93]. However, the difficulties in

power restoration following these recent storms point to the importance of alternative

generation resources while centralized power supplies are unavailable and the grid is

under repair.

In this thesis, we develop an integrated decisions-based modeling framework for

optimizing resilience of electricity networks to extreme weather events. Resilience

enhancement strategies for infrastructural systems can be broadly classifed in two

main categories: (i) long-term planning for infrastructural adaptability; and (ii) days

or weeks-ahead and post-disaster operational planning [78]. In the context of elec-

tric power infrastructure, infrastructural upgrades and hardening include enforcing

distribution lines; building protective enclosures for equipment such as substations;

installing underground distribution lines that will be less affected by adverse weather;

and vegetation management. However, in this thesis, we focus on proactive and post-

disaster operational planning for electric power infrastructure. Such strategies include

establishing an inventory of emergency resources; strategically allocating distributed

energy resources (DERs) in distribution networks; damage localization; crew dispatch;

and repair of damaged infrastructural assets.

The rest of this section is partitioned as follows. In Section 1.1, we discuss elec-

tric power infrastructure, smart microgrids, and existing approaches for response and

repair pertaining to power grids in the literature. In Section 1.2, we discuss hurri-

cane wind risk assessment, including modeling of wind-induced damage. In Section

1.3, we introduce the concepts of risk and resilience, and describe how they relate

to our defined research objectives. In Section 1.4, we discuss how the models and
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decision-based tools developed in this thesis contribute towards addressing our re-

search objectives. Finally, in Section 1.5, we provide an outline of the subsequent

chapters.

1.1 Optimal Response in Electric Power Grids

1.1.1 Components of Electric Power Infrastructure

Figure 1-1: Major parts of power system. Figure shows (from left to right) conven-
tional sources of energy, bulk power plants, transmission towers, distribution poles,
and electricity consumers (smart buildings, industries, hospitals, universities).

The operation of the power grid consists of five major parts: fuel supply, power

generation, transmission, distribution and consumption. Fuel supply may be pro-

vided by fossil fuels (i.e., coal, oil, natural gas), uranium, or renewable sources (i.e.,

hydroelectric, wind, solar). Power generation is typically provided by bulk power

plants, and the power is dispatched to the high-voltage transmission system. Energy

is transitioned from the high-voltage transmission system to the low-voltage distri-

bution system via a substation. The distribution system provides power to the end

users, which include households and businesses.

All parts of the power grid are susceptible to damage resulting from hurricane-

related threats. For example, the prolonged outages in Puerto Rico resulting from

Hurricane Maria (2017) were primarily due to damaged transmission lines and utility

poles [23, 38]. In contrast, the 2021 Texas power crisis primarily resulted from dis-

ruptions to natural gas pipelines and power plants [21, 80], i.e., fuel supply and power
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generation. Although each of these major parts need to be operationally resilient for

the grid to function effectively, we limit the scope of our research to the resiliency

assessment of the distribution networks; about 90% of outages occur in electricity

distribution networks (DNs) [11].

Electricity network components can be adversely affected by security failures,

which are carried out by malicious adversaries (i.e., cyber-hackers); or reliability fail-

ures, which are the result of adverse natural conditions such as disruptive weather

(i.e., hurricanes, heat waves, wildfires, and snowstorms). This thesis focuses on quan-

tifying the resilience of electric power infrastructure to hurricane wind fields. We

note that other hurricane-induced threats, such as storm surge or rainfall, can also

be disruptive to infrastructure systems [62].

1.1.2 DERs and Microgrids

Integration of Distributed Energy Resources or DERs (see 1-2) into microgrids within

DNs can be particularly useful in improving post-hurricane grid resilience.

Figure 1-2: Examples of Distributed Energy Resources.

Figure 1-2 provides a few examples of relevant DERs. They include synchronous

generators that are powered by diesel or natural gas, which have ratings that vary

from 1 kilowatt to several megawatts [24]; a typical energy content for such generators
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is ∼70 MWh. Energy may also be generated by small-scale wind turbines or solar

panels that are installed on top of the buildings of homes or local businesses. Electric

vehicles may provide energy due their energy storage capability and bidirectional

charging flexibility [41]. In addition, truck-mounted utility generators are useful in

providing mobile sources of power, and are particularly useful when applied to repairs

or public works. These generators have smaller capacities, typically up to 15 kilowatts

[7].

The inclusion of DERs in the power grid, including local generators and storage

devices, permits the operation of microgrids. A microgrid is an aggregation of a

number of technologies that, together, enable the partial, occasional or complete

independent generation, regulation and supply of electricity within a relatively small

geographic area. The microgrid can either operate connected to the bulk grid or

as an island. Islands frequently form in electric power infrastructure as a result of

hurricane-induced asset failures; allocation of DERs within an island results in a

microgrid island. Once repairs commence, the islands increase in size over time and

eventually merge. Over the course of this process, the system operator needs to make

decisions regarding the operation of the DERs. A “smart microgrid” is predominantly

powered by renewable energy sources [97].

By placing DERs in DNs, sources of power are closer to the demand nodes, which

results in lower transmission and distribution losses [95]. In addition, they can also

be used as contingency reserves which can be dispatched during contingencies [104].

1.1.3 Proactive Response and Repair in DNs

The idea of DER allocation in microgrids has received attention in recent litera-

ture [20, 59, 86, 41]. Chen et al. [20] considered remote control of DER-powered

microgrids, using a distributed multiagent coordination scheme. Lei et. al. [59, 60]

studied the allocation, routing, and scheduling of mobile power sources using a two-

stage optimization framework. Gao et al. discussed a stochastic program for the allo-

cation of diesel oil, batteries, and electric buses as generation resources [41]. Sedzro et

al. [86] formulated a problem for allocation of mobile and fixed distributed generators,
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in order to form microgrids in radial and/or meshed topologies. Kim and Dvorkin [50]

considered allocation and routing of electrochemical energy storage units. However,

these previous approaches do not consider resource allocation in the context of dam-

age uncertainty and dynamic repair of damaged network components. This limitation

can result in suboptimal utilization of DER resources. Furthermore, to fully exploit

the potential of DER-enabled microgrids during and after hurricanes, the system

operator needs to jointly optimize their efforts in resource allocation and response

(network repair) actions to reduce prolonged outages and economic losses.

One way to account for pre- and post-storm decisions, while incorporating dam-

age uncertainty, is to formulate two-stage stochastic optimization problems [88]. Ac-

counting for damage uncertainty in resource allocation can significantly increase the

computational complexity of the associated optimization problems. If we consider

damage scenarios as vectors of binary variables, which indicate whether or not each

infrastructure asset has failed, then the number of possible damage scenarios increases

exponentially with the number of assets. Solution approaches to solve the two-stage

programs include Benders decomposition [4], column-and-constraint generation [60],

and progressive hedging [50].

As a brief summary, an effective DER allocation scheme should consider (i) the

effect of post-storm network restoration on the cost due to loss-of-service (outages)

and (ii) the effect of damage uncertainties. However, inclusion of uncertainties poses a

computational challenge in two-stage optimization. In this thesis, we aim to address

the abovementioned modeling challenges, as well as formulate solution approaches

that remedy the issue of computational feasibility. Furthermore, adequate modeling

of damage uncertainties requires the formulation of an appropriate hurricane wind

risk assessment framework.

1.2 Hurricane Risk Assessment

Models of hurricanes for risk assessment should capture the hurricane track and wind

velocities (intensity or wind field), as well as quantify the uncertainty in the forecasts.
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Hurricane risk assessment approaches may be used for the purpose of (i) forecasting

or nowcasting and (ii) long-term risk assessment. For both purposes, simulation of

an “ensemble” of hurricanes is desirable. In forecasting or nowcasting, one considers

an incoming hurricane that is expected to make landfall in 1-3 days. Under this

scenario, the objective is to predict the hurricane wind field velocities over the course

of these days, using a large ensemble of hurricane track and intensity forecasts as

well as a suitable wind field model. Ensemble-based approaches can account for the

highly non-deterministic nature of the hurricane track’s temporal evolution. In long-

term risk assessment, large-scale ensemble simulation is used to generate an ensemble

of synthetic hurricane tracks, and then to predict the time-varying wind field at

points along the track. Ensemble simulation can assume an embedded large-scale

atmospheric environment, and is thus suitable to analyzing how hurricane activity is

dependent on changes in climate.

1.2.1 Hurricane Track and Intensity:

Well-known synthetic track generation models combine both physical and statistical

modeling approaches [13, 106, 34] and use historical hurricane ‘best track’ data as

input. In the forecasting or nowcasting setting, hurricane track forecasts are typically

provided by the National Hurricane Center (NHC) hour/days ahead of the hurricane’s

forecasted landfall (see Figure 1-3a). Forecasts provide estimated future locations of

the hurricane eye (center) at discrete time steps (3-6 hour intervals are typical). The

NHC forecast also includes strictly climatological track uncertainty estimates in the

form of a “cone of uncertainty”, which surrounds the forecasted track and represents

the probable trajectories that the hurricane may take.2 In recent history, the realized

hurricane track fell within the cone about 60-70% of the time [14]. This suggests that

the temporal evolution of the hurricane track is highly uncertain. However, ensemble

prediction systems have the potential to significantly improve probabilistic forecasts

2To form the cone of uncertainty, one estimates the uncertainty in the forecasted track location
at each discrete time step. The uncertainty at a time step is represented by a circle that surrounds
the forecasted track location associated with this time. The union of the circles is the cone of
uncertainty, and the cone shape reflects increasing uncertainty with time.
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of hurricanes by accounting for real-time uncertainties [67, 43, 61] (see Figure 1-3b).

(a) (b)

Figure 1-3: (a) – Example of a National Hurricane Center (NHC) track forecast for
Hurricane Sandy (adapted from [14]), with the “cone of uncertainty”. (b) – Example
of an ensemble track forecast given by Forecasts of Hurricanes using Large-Ensemble
Outputs [61]. The colors indicate the “strike probability”, or the likelihood that the
hurricane track would fall in the denoted spatial location.

Maximum wind intensity estimates along the tracks are provided by models such

as the Coupled Hurricane Intensity Prediction System (CHIPS) [33] or FAST intensity

simulator [32].

1.2.2 Hurricane Wind Field:

Given a hurricane track and intensity, one can deduce wind velocities at arbitrary

locations that may be affected by the storm, as given by a surface wind field.3 Wind

field models typically account for two sources of variability in wind velocities: (i) radial

variability, i.e., with respect to distance from the storm center; and (ii) azimuthal

variability, i.e., with respect to angle (azimuth) measured from a defined reference

direction (typically the storm translation direction).

Axisymmetric (“mean field”) models account only for radial variability in wind

velocities [105, 30, 107, 113, 47, 48, 18]; see Figure 1-4. These models typical contain

the following parameters: maximum intensity Vm; radius of maximum winds Rm,

which determines the radial distance at which velocity is maximized; and a set of

shape parameters that determine the rate of wind velocity decay with respect to

radial distance.
3Most wind field models estimate 1- or 10-minute sustained winds.
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Figure 1-4: Demonstration of radial variability in the hurricane wind field. The
radial wind profile is given by the parametric Holland 1980 model [47] under various
values of the radius of maximum winds Rm (left) or of the shape parameter B (right).
(Vm, Rm) = (50 m/s, 30 km) for the dashed curve on the left plot and for all curves
on the right plot.

Figure 1-5: Demonstration of azimuthal variability in the hurricane wind field. Left :
Example of an axisymmetric wind field (radial variability). Right : Example of an
asymmetric wind field (radial and azimuthal variability). Note that the velocity
contours form perfect circles in the axisymmetric wind field, but not in the asymmetric
wind field.
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In reality, however, hurricane wind fields tend to be asymmetric (include significant

azimuthal variability). Not accounting for this inherent asymmetry can negatively

affect hurricane risk assessment of aboveground infrastructure components such as

electric distribution lines, whose failure probabilities depend on local surface wind

intensities [118, 3]; see Figure 1-5. In fact, the difference between the highest and

lowest velocities around the radius of maximum winds can readily be around 10 m/s

[100]. The relationships of asymmetries to environmental inputs were studied in [115],

[100], [108], and [53]. While asymmetric wind field models exist in the literature

[115, 15], most are not directly applicable forecasting and ensemble simulation, as

opposed to only hindcasting.

In this thesis, we will frequently apply Forecasts of Hurricanes using Large-Ensemble

Outputs (FHLO), which quantifies the forecast uncertainty of a hurricane by generat-

ing probabilistic forecasts with a three-component framework: 1) a track model that

generates synthetic tracks from the hurricane tracks of an ensemble numerical weather

prediction (NWP) model, 2) an intensity model that predicts the intensity along each

synthetic track, and 3) a hurricane wind field model that estimates the time-varying

two-dimensional surface wind field [61]. The resulting forecast is represented by an

ensemble of 𝑂(103) randomly-generated hurricanes. We employ FHLO because it is

computationally inexpensive, while still reliable and accurate in its probabilistic wind

forecasts.

1.2.3 Probabilistic Damage Modeling

Given forecasts or estimates of a hurricane’s temporally-evolving wind field, one can

then predict or estimate the damage, loss-of-service, and/or cost due to the wind

velocities. Hurricane winds result in infrastructural damage, which in turn result in

loss-of-service (outages) within the power grid. Total cost can be calculated using the

loss-of-service measurements (see Section 1.3).

The Federal Emergency Management Agency’s Hazus Program provides stan-

dardized tools and data for estimating risk from earthquakes, floods, tsunamis, and

hurricanes. Hazus models, which are packaged in software distributed as a GIS-based
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desktop application, combine expertise from many disciplines to create actionable

risk information that increases community resilience. The Hazus Hurricane model

[70] specifically addresses hurricane winds, rainfall rates, and storm surge, and is

aimed at primarily estimating debris-based structural damage and financial losses.

With regards to hurricane wind modeling, Hazus incorporates a model of surface

roughness to account for the effect of land topology on the hurricane winds, in order

to consider how landfall impacts the wind field. In addition, Hazus considers the

effect of hurricanes on tree blowdown, which can in turn damage buildings.

The Hazus models do not directly address damage to electric power infrastructural

assets. Failures of overhead infrastructural assets are dependent on hurricane wind

characteristics such as local wind speed, direction, and duration, which are functions

of the hurricane track and intensity. About 90% of outages occur in electricity distri-

bution networks (DNs) [11], particularly due to the toppling of electricity distribution

lines and poles. Indeed, previous works model the wind-induced failure of distribu-

tion lines using Poisson process models [8, 3, 116, 55]. These studies suggest that

the failure rate is a quadratic or exponential function of the wind velocity. However,

these studies did not evaluate the spatial variability in estimated Poisson failure rates

due to the physical structure of the hurricane wind field, even though hurricane wind

velocities vary significantly with space and time. Furthermore, they do not consider

the considerable temporal uncertainty that typically characterizes hurricane track

forecasts.

While the Hazus models for windborne debris and structural damage might be

indirectly useful in our study, they are not applicable to estimating loss-of-service

(outages) in electric power infrastructure. This is because the level of service depends

on the network topology, which is subject to physical laws and managed by system

operators. Thus damage in itself is not a direct predictor of loss-of-service. Regarding

effects of network topology, damage to a critical component (i.e., substation) might

result in longer and more widespread outages than damage to a downstream overhead

distribution line. Regarding effects of physical laws, damage of infrastructural assets

will alter the power flows in the network, leading to potential violations of voltage
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bounds that would result in further outages.

Generalized linear or additive regression models are commonly used to predict

outages [63, 64, 45] in electric power infrastructure, as a function of inputs related to

the hurricane’s physical structure and the local environment. These inputs include

not only the hurricane wind velocities, but also soil moisture anomalies, precipitation,

land cover, and other considerations. Data regarding the power system – such as the

number of transformers, poles, overhead lines, underground lines, and customers – are

also included as inputs. However, these models do not predict locations of damage

as a function of the hurricane winds and environmental inputs. Thus, they provide

limited insight on the physical effect of the hurricane on the infrastructural assets.

This in turn impedes damage localization and repair operations [58]. Furthermore,

faster recovery requires effective pre-storm resource allocation, warehouse selection,

and vehicle fleet routing, which benefit significantly from accurate damage predictions

[103]. Slow damage localization and system repair result in an increased time duration

during which the infrastructure fails to adequately provide service to end-users.

At this point, we have discussed the existing work in strategic, operational decision-

making and hurricane risk assessment. Next, we more precisely define risk. We also

introduce a modeling and decisions framework pertaining to risk quantification and

minimization, which motivates our research contributions.

1.3 Defining Risk and Infrastructural Resilience

1.3.1 Risk and Resilience

Our research objective is to develop a framework for strategic operational decision-

making (proactive resource allocation and network response) to minimize risk in elec-

tric power infrastructure. The risk (expected cost) in response to an adverse event is

defined as follows:

Risk (expected cost) =
∑︁
𝑠∈𝒮′

P(𝑠)× C(𝑠), (1.1)
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where 𝒮 ′ is the set of possible infrastructural damage scenarios that may result

due to the adverse event (hurricane wind field), P(𝑠) is the probability of a scenario 𝑠,

and C(𝑠) is the cost associated with scenario 𝑠. To estimate the damage probabilities

P(𝑠), one needs to understand how the hurricane wind field physically impacts assets

in electric power infrastructure. Furthermore, one should be able to quantify the

uncertainty in the wind field, as well as the uncertainty in how the wind field impacts

the infrastructure. The costs C(𝑠) should be dependent on not only the damage

scenario 𝑠, but also the network properties such as topology and physical constraints.

Now, we define the key research questions that will be addressed in the thesis:

1. How does one obtain probabilistic estimates of damage, given by P(𝑠), ∀𝑠 ∈ 𝒮 ′?

2. How does one quantify the cost associated with hurricane-induced damage, given

by C(𝑠), ∀𝑠 ∈ 𝒮 ′?

3. How does one make decisions pre- and post-hurricane, in order to minimize risk?

Next, we more specifically discuss the concept of resilience, and how it relates to

risk. Generally speaking, the resilience of a system is defined as “its ability to prepare

and plan for, absorb, recover from, and more successfully adapt to adverse events”

[102].

Figure 1-6: System performance under various infrastructural response capabilities.

In this context, we can define the resilience of a system to an adverse event using

the time-varying system performance (see Figure 1-6). The nominal system perfor-
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mance is 100% (i.e., the system is fully able to meet service its associated demand).

After an adverse event, the system performance likely degrades due to disturbances

or infrastructural damage. Then the system performance increases over time due to

network recovery and repair. Eventually, the full network functionality is restored

and the system performance returns to its nominal value of 100%. Note that if an

adverse event is sufficiently disruptive and the network is inadequately prepared, the

damage could be so severe such that the system performance never returns to its

nominal value.

The degree of post-disaster system performance degradation, as well as the rate

of recovery of the system performance, depend on conditions such as: efficacy of

pre-disaster planning and resource allocation; efficiency of damage localization; and

efficiency of network repair. Decisions that affect these conditions are dependent on

the accuracy of probabilistic hurricane damage estimates, which in turn depend on

the hurricane forecast. The potential variability in system performance is illustrated

by the green, blue, and red curves in Figure 1-6.

The system’s resilience in response to an adverse event can be defined as the

system performance integrated over time. By selecting decisions that minimize the

risk (expected cost), we also maximize the expected resilience of the system to the

adverse event.

1.3.2 Generalized Modeling and Decisions Framework

Figure 1-7: Framework of models and decisions addressed in the thesis.

Figure 1-7 provides an overview of the modeling and decisions framework that we

formulate in this thesis. The hurricane model and infrastructural damage model are
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used to estimate the damage probabilities P(𝑠). The cost function C(𝑠) is depen-

dent on the damage scenario 𝑠, the network properties, pre-storm decisions regarding

resource allocation, and post-storm decisions regarding network restoration and mi-

crogrid operation. Our objective is to select pre- and post-storm decisions which

minimize the risk (expected cost) due to the hurricane event.

Hurricane Risk Assessment:

Hurricane wind field forecast:

A suitable risk assessment approach should capture the stochastic nature of hurri-

cane arrival, landfall location, and intensity. More specifically, typical approaches to

hurricane wind risk assessment rely on capturing two aspects of hurricane structure:

(1) track, or trajectory of the storm from its formation over the ocean to dissipa-

tion over land; and (2) wind velocities at various points along the track, modeled by

either a single intensity measurement (e.g., maximum sustained 10 m wind speed)

or a surface wind field. The hurricane wind velocity is frequently estimated using

the maximum intensity measurement or rating on the Saffir-Simpson hurricane wind

scale (SSHWS). However for risk assessment of large-scale infrastructure systems, the

impact of spatially heterogeneous wind velocities must be suitably captured. Thus, a

reliable model of the whole surface wind field is desirable. The surface wind field at a

given time is represented by wind velocities at a set of geographical locations. We are

interested in how the wind field evolves with time over the course of the hurricane’s

lifetime. Furthermore, uncertainties in hurricane track forecasts can be accounted for

using ensemble forecasting techniques.

Infrastructure damage model and cost function:

We are interested in probabilistic, spatially-varying estimates of damage in the

infrastructure system. The damage estimate at a given location in the infrastructure

system is dependent on the local time history of the hurricane wind velocity, which

is given by the hurricane wind field forecast.4 Given a damage estimate, one then

quantifies the infrastructure system’s loss-of-service induced by the damage. In the

4Other considerations such as soil cover and tree density have also been shown to be relevant to
modeling of infrastructural damage, but here we consider the isolated effect of winds.
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specific case of electric power infrastructure, loss-of-service can be defined by out-

ages. The outages depend not only on the locations of damage, but also on the

network topology, physical constraints, and operational constraints which determine

the network’s restoration rate. The cost C(𝑠) due to damage scenario 𝑠 can then be

defined as the total network loss-of-service integrated over time. Alternatively, one

can define the cost as the incurred financial cost resulting from the network’s loss-of-

service, using an appropriate financial loss model. The relationship between damage,

loss-of-service, and financial loss is illustrated in Figure 1-8.

Figure 1-8: Framework for modeling the cost function C(𝑠) as a function of damage
given by 𝑠.

Resilient Operations: Effective operational decision-making can decrease the

loss-of-service resulting from hurricane-induced damage. We consider both Stage I

(pre-storm) decisions as well as Stage II (post-storm decisions).

Stage I (pre-storm) decisions: A subset of these decisions can relate to days- or

weeks-ahead pre-storm resource allocation and planning, which include resource stock-

piling, distributed energy resources (DER) allocation, and crew allocation. These

decisions should depend on the expected incurred cost resulting from infrastructural

damage or loss-of-service (see Eq. 1.1). Computing the expected cost depends on the

uncertainties in the damage estimates, specifically the probabilities of various dam-

age scenarios given by P(𝑠) and the associated costs C(𝑠). The cost C(𝑠) depends on

the Stage II (post-storm) decisions taken, and ideally should be minimized by opti-

mal selection of the Stage II decisions. In this work, we primarily focus on resource

allocation decisions in Stage I.

Stage II (post-storm) decisions: Given a realized damage scenario and set of pre-

storm decisions, one then selects post-storm decisions related to network restoration

which minimize the cost. Network restoration consists of localizing infrastructural
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damage, repairing damaged assets, and re-allocation of resources that have been

placed in the network prior to the disaster. The pre-storm placement of DERs per-

mits operation of microgrid islands in portions of the electric power infrastructure.

As the network is gradually restored, the topology of the islands changes due to their

growth and eventual merging. With each period of restoration, the optimal power

flows in the microgrid islands need to be re-computed.

1.4 Our Contributions

In this thesis, we develop a decisions-based modeling framework for optimizing re-

silience of electricity networks to extreme weather events. Our contributions lie at

the nexus of two primary areas of research (see Figure 1-9): strategic and operational

decision-making (discussed in Section 1.1) and hurricane risk assessment (discussed

in Section 1.2). Regarding hurricane risk assessment, we formulate a probabilistic,

physically-based modeling approach for estimating risk (expected damage) in infras-

tructure systems due to hurricanes. Regarding decision-making, we devise a modeling

and solution approach based on two-stage stochastic optimization, for resource allo-

cation and repair in electricity networks that are disrupted by hurricanes. As such,

this work is among the first to study optimal resource allocation and proactive re-

sponse pertaining to post-hurricane repair and operation of microgrids, informed by

physically-based hurricane risk assessment.

Our approach for damage estimation in infrastructure systems consists of two

components: (i) hurricane wind field modeling for forecasting and ensemble simula-

tion applications and (ii) probabilistic estimation of spatially-varying damage using

wind field inputs. We devise a wind field model that incorporates low-wavenumber

asymmetries to model azimuthal variability in wind velocities. Using a constrained

nonlinear least squares (CNLS) approach to estimate model parameters, we demon-

strate that our model performs better than a standard benchmark in the literature.

Then, we devise a probabilistic modeling approach for damage estimates. The ap-

proach incorporates uncertainty in wind velocities with “Forecasts for Hurricanes usi-

40



Figure 1-9: Venn diagram of research contributions in hurricane risk assessment as
well as strategic and operational decision-making. Our contributions integrate both
areas of research.

ing large Ensemble Outputs” (FHLO) [61], and spatial variability of damage estimates

using a Nonhomogeneous Poisson Process (NHPP) model. We apply our approach to

prediction of outage rates in historical hurricanes.

Our approach for resource allocation and repair in electricity networks considers

pre-storm (Stage I) resource allocation decisions and post-storm (Stage II) decisions

regarding network restoration and multi-master microgrid operation over a multi-

period timeframe. We formulate a two-stage stochastic mixed integer linear program

(SMIP2) in order to optimally select decisions. Importantly, the Stage II decisions

are dependent on uncertainties in locations of infrastructural damage, which can

be estimated using our NHPP damage model. This approach is novel in that it

incorporates uncertainties based on the hurricane’s physical structure, but this model

feature poses a computational scalability challenge. To handle this issue, we develop

algorithmic solution approaches based on L-shaped Benders decomposition (LBD),

to ensure that resource allocation problems can be solved for distribution networks

of a realistic size. We compare the three approaches (LBD-Greedy, LBD-DIC, and

NBD) in the thesis.
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Figure 1-10: Summary of the contributions.

1.4.1 Modeling Storm-Induced Infrastructural Damage

Modeling of Asymmetric Hurricane Wind Fields:

For hurricane risk assessment of large-scale infrastructure systems, we construct a

physically-informed hurricane wind field model, in order to suitably capture the im-

pact of spatially heterogeneous wind velocities. The model’s velocity outputs may be

used to produce probabilistic estimates of infrastructural damage. In particular, we

formulate a model of the hurricane gradient wind field; one can then use a boundary

layer model for the gradient-to-surface wind conversion. The proposed approach cap-

tures the wind field for the purpose of (i) forecasting or nowcasting and (ii) large-scale

ensemble simulation. In this thesis, we include brief remarks on how our estimated

wind field model can be applied for simulating wind fields in a statistically generated

ensemble.

Some previous works have also introduced asymmetries into an existing mean field

model by considering that the mean field parameter(s) vary with azimuth. In particu-

lar, [115] introduce a real-time nowcasting asymmetric model, but that model cannot

be readily used to simulate a wind field ensemble. [100] and [108] quantify asymme-

tries in storms using the semispectral approach, but their focus is on hindcasting and

they do not explicitly parameterize asymmetries in wind field models.

Wind Field Model: We formulate an asymmetric wind field that is an extension

of the mean field model of Holland 2010 [48]. The wind field model extends the

previous work [115, 100, 108, 53] by modeling wind field asymmetries as a function
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of environmental inputs, specifically by parametric incorporation of asymmetries into

established models for mean field estimation.

To account for radial variability in the wind field (which we denote as the “mean

field”), our model includes the following parameters: maximum intensity; radius of

maximum winds, or the radial distance at which velocity is maximized; and a set of

shape parameters that determines the decay of wind velocities with radial distance.

To account for azimuthal variability (asymmetries) in the wind field, the model’s

maximum intensity parameter is set to be a harmonic function of the azimuthal

angle. The azimuthal variability is given by two wavenumber-1 asymmetries, which

correspond to the environmental inputs of storm translation and environmental shear.

Each wavenumber-1 asymmetry is quantified in terms of an amplitude and phase,

which are affine functions of the corresponding environmental input.

Parameter Estimation: The parameters that model the amplitudes and phases

in the asymmetry correction are estimated by solving a constrained, nonlinear least

squares (CNLS) problem. Solving this problem entails minimizing the sum of squared

errors between velocity estimates and historical storm data for the region between

the storm center and a pre-decided ‘cutoff’ radius in the storm’s outer region. The

method can jointly estimate the amplitude and phase parameters while accounting

for the nonlinearity of the asymmetric wind field model and parameter constraints.

While we consider the Holland mean field model here due to its relative simplicity,

the proposed CNLS formulation can be adapted to other mean field models such as

[30] and [18].

Model Estimation and Evaluation: For the purposes of model estimation and

evaluation, we use two sources of wind field data [82, 112]. We consider several wind

field models which differ in terms of the asymmetries included in the wind field, and

estimate the parameters using the CNLS procedure for each model. For the purpose

of evaluating the models, we consider three metrics: cross-validation error, Bayesian

Information Criterion (to penalize overfitting), and mean squared error on held-out

test data.

A typical state-of-the-art means of modeling hurricane asymmetry (azimuthal vari-
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ability) is to add the storm translation vector to the wind field. We demonstrate that

our wind field model incorporating low-wavenumber asymmetries performs better

than the benchmark wind field with storm translation vector, using the evaluation

metrics that we select. Adding the storm translation vector to our asymmetric wind

field model further improves the model’s estimation performance. In addition, inclu-

sion of the wavenumber-1 asymmetry resulting from translation results in a greater

decrease in modeling error than does inclusion of the wavenumber-1 shear-induced

asymmetry. Overall, the CNLS estimation method can handle the inherently nonlin-

ear wind field model in a flexible manner; thus, it is well suited to capture the radial

variability in the hurricane wind field’s asymmetry.

Probabilistic Modeling of Infrastructural Damage:

We formulate a probabilistic modeling approach for obtaining spatially-varying

estimates of damage in infrastructure systems. More specifically, our approach is

applicable to the estimation of probabilities of damage scenarios given by P(𝑠), for

all possible scenarios 𝑠 ∈ 𝒮 ′. We are interested in obtaining a probabilistic damage

estimate in each defined spatial location 𝑔 ∈ 𝒢, where 𝒢 denotes the set of spatial

locations of interest. Then, a scenario is defined as 𝑠 = {𝑠𝑔}𝑔∈𝒢 where 𝑠𝑔 is the

number of failures in location 𝑔.

Using damage estimates, one can predict the loss-of-service in the infrastructure

system (i.e., outages in electric power infrastructure). For networked infrastructure

systems, the loss-of-service depends on the network topology as well as the locations

of damage. Then, given certain assumptions regarding the rate of damage localization

and repair within the system, one can calculate the incurred cost (i.e., financial cost)

as a function of the loss-of-service.

Modeling Approach: Our modeling approach for probabilistic damage estimation is

used to estimate a probability distribution over the number of damaged infrastructural

assets in each location 𝑔 ∈ 𝒢. The probability of 𝑠𝑔 asset failures in location 𝑔 is

denoted by Pr(𝑠𝑔). Then, the probability of a scenario 𝑠 = {𝑠𝑔}𝑔∈𝒢 is given by:

P(𝑠) =
∏︁
𝑔∈𝒢

Pr(𝑠𝑔). (1.2)

44



The approach accounts for both hurricane forecast uncertainty and spatial vari-

ability of wind velocities. To represent the impact of uncertainty in the hurricane

track’s temporal evolution, we employ “Forecasts of Hurricanes using Large-Ensemble

Outputs” (FHLO), which produces 1000-member forecast track and intensity ensem-

bles [61]. It is particularly suitable for our approach because its ensemble members

are computationally inexpensive to produce, in comparison to using typical ensemble

numerical weather prediction (NWP) systems [96, 71]. In addition, FHLO is designed

to readily scale with advancements in the physics, resolution, and size of ensemble

numerical weather prediction models, which have the ability to improve hurricane

intensity forecasts.

Using the probabilistic wind forecast given by FHLO as input, we employ a

physically-based Nonhomogeneous Poisson Process (NHPP) model [8, 118, 3, 116]

that outputs spatially-varying probability distributions of the extent of damage (num-

ber of asset failures). The distribution is parameterized by a failure rate (expected

number of failed assets), which varies spatially to reflect the radial and azimuthal vari-

ations in hurricane wind velocities. The failure rate at a given location is dependent

on the local time history of the hurricane wind velocity. More specifically, we con-

sider that the failure rate per unit time is small and constant below a defined critical

velocity threshold, which governs the wind velocity threshold above which hurricane

winds are sufficiently intense to impact the infrastructure assets. Above this critical

threshold, the failure rate per unit time increases quadratically with wind velocity.

Analysis : We analyze how NHPP-estimated spatial extent and variability of dam-

age depend on hurricane intensity and size, as well as the inclusion of wind field asym-

metries. To analyze the spatial extent of damage, we introduce the so-called “critical

zone”, the geographical region that suffers from hurricane wind-induced damage. One

way to define the boundaries of the critical zone is to use the critical velocity param-

eter in the NHPP model, whose value is dependent on the physical properties of the

assets. Furthermore, we analyze variations in failure rates within the critical zone,

which are significant and would not be captured by a model that does not account

for spatial variability in damage estimates.
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Next, we study how incorporating the forecast uncertainty as given by FHLO af-

fects the NHPP model damage estimates in the cases of Hurricanes Hermine (2016)

and Michael (2018). In particular, we show that not incorporating forecast uncer-

tainty can result in underestimated failure rates and spatial extent of damage (i.e.,

critical zone). This in turn can lead to ineffective damage localization and inaccurate

estimates of cost due to system loss-of-service. Furthermore, we show that utilizing

FHLO results in higher estimated probabilities for scenarios associated with a large

number of damaged assets (i.e., longer tails in the probability distributions). Our

results highlight the limitations of using deterministic damage estimates, which do

not account for uncertainties in hurricane track forecasts, to quantify the severity and

spatial extent of damage.

Application to Outage Prediction: We apply our modeling approach to the predic-

tion of outages (i.e., loss-of-service) in electric power infrastructure due to Hurricane

Michael. We consider the electric power grid, because North American power grids

typically contain a large number of overhead assets (i.e., poles, distribution lines). Us-

ing our approach, we demonstrate a statistically significant relationship between out-

ages and damage estimates by considering county-wide outage statistics in Northern

Florida. In addition, we show in the case of Hurricane Michael that the relationship

between outages and hurricane velocities is well-represented by an S-shaped curve.

This result suggests that outage prediction could be improved using physically-based

and uncertainty-aware damage estimation.

The application of our modeling approach to outage prediction is a step forward

in quantifying the cost C(𝑠) associated with loss-of-service resulting from damage

scenario 𝑠. Future work on loss-of-service modeling could also account for network

topology, operational constraints, and repair strategies, following our discussion in

Section 1.3.2.

Finally, we provide brief insights into how hurricane intensity and size impact

total damage and resulting financial losses.
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1.4.2 Resource Allocation and Repair in Networks

Our objective is to develop a modeling framework that (i) accounts for the likely

locations of infrastructural asset failures for damage assessment; and (ii) enables the

design of pre-storm resource allocation strategies as well as post-storm repair opera-

tions. To address these challenges, we formulate a two-stage stochastic optimization

problem. The problem involves selecting decisions in Stage I (pre-storm) and Stage

II (post-storm) which minimize the expected cost incurred by the system operator

due to the hurricane-induced damage.

In this work, we focus on decision-making for electricity distribution networks

(DNs), where about 90% of outages occur [11] and Distributed Energy Resources

(DERs) can be allocated to permit power supply to loads even when the bulk supply

from central generation is disrupted.

Modeling Approach:

In our optimization problem formulation, we consider strategic placement of DERs

at a subset of DN nodes in the pre-storm stage, given the uncertainty in locations of

infrastructural asset failures and the resulting outages and lost load for a particular

storm. These DERs can then be used to sustain microgrids in the post-storm stage

(Stage II), when the asset repair operations are being completed and the connection

to bulk supply is being restored. A key aspect of our formulation is that we allow

for the partial DN operation in situations when the bulk power supply is no longer

available, and it is beneficial to operationalize microgrids during the recovery period.

More specifically, our two-stage stochastic mixed-integer problem considers the

DER placement decisions in Stage I (pre-storm), and a multi-period repair problem

with DER dispatch within each microgrid in Stage II (post-storm). The objective is

to minimize the sum of the cost incurred in DER allocation and the expected cost of

unmet demand during the time period of repair and recovery operations. Figure 1-11

summarizes the order of events and decisions in our formulation.

For a given DER allocation (placement) and a realization of DN component disrup-

tions, Stage II is a multi-period problem in which asset repair schedules and dispatch
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within each microgrid are jointly determined. From a practical viewpoint, each pe-

riod can be viewed as one work shift of the repair crews and the number of repairs

per period is constrained. In the 0th period, the subnetworks formed as a result

of disruptions start to operate as microgrids using the available DER supply. In the

subsequent time periods, damaged lines are repaired, permitting connections between

smaller microgrids to progressively form larger microgrids. In the last time period,

the DN is connected back to the main grid, and normal operation is restored. We also

allow for the flexibility of DER re-allocation in the post-storm stage, as the network

repair progresses, to serve loads without access to power.

Failure
prediction

(P)

Storm
forecast

Allocation (𝑎)

Storm
landing

Damage (𝑠)

Storm
passing Network repair

Resource re-allocation (𝑦)

DER Dispatch (𝑥)
𝑘 = 1 𝑘 = K

Restoration
complete

Figure 1-11: Timeline of events and operator decisions. P denotes the probability
distribution over failure scenarios; 𝑎 the DER allocation decisions taken before the
storm hits; 𝑠 a specific realization of the uncertainty; 𝑟 𝑠 the network restoration
schedule; 𝑥𝑠 the aggregated network state variables. The line repair and dispatch
decisions are made over periods 𝑘 = 0, 1, · · · ,K.

The total cost incurred due to the hurricane-induced damage, as a function of

DER allocation 𝑎 and damage scenario 𝑠, can be written as:

C (𝑎, 𝑠) = JI(𝑎) + JII (𝑎, 𝑠) , (1.3)

where JI(𝑎) is the Stage I (pre-storm) cost of DER allocation and JII (𝑎, 𝑠) is the Stage

II (post-storm) cost of loss-of-service (i.e., lost demand due to outages). Then, the

expected cost under a DER allocation 𝑎 is:

𝑔(𝑎) =
∑︁
𝑠∈𝒮′

P(𝑠) C (𝑎, 𝑠)

= JI(𝑎) +
∑︁
𝑠∈𝒮′

P(𝑠) JII (𝑎, 𝑠)

= JI(𝑎) + E𝑠∼𝒫 [JII (𝑎, 𝑠)]

(1.4)
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We formulate the problem of pre-storm resource allocation under uncertainty

and post-storm network restoration as a two-stage stochastic mixed-integer program

(SMIP2). By solving (SMIP2), we aim to obtain a DER allocation 𝑎 which mini-

mizes the expected cost 𝑔(𝑎), under resource, operational, and physical constraints.

SMIP2 can be rewritten in a Deterministic Equivalent Formulation (DEF) which is

a mixed-integer program (MIP) with copies of Stage II variables for each scenario.

Resource Allocation Model (Stage I): In the pre-storm stage (Stage I), two sets of

decisions are considered: (i) which DN nodes should be developed as DN sites and

(ii) to which DN nodes should available DERs be allocated. A subset of nodes are

considered suitable for site development. Before a DER can be allocated to a DN

node, the operator needs to develop a site at that node to ensure a safe and reliable

integration with the DN. After developing the sites, the operator allocates the DERs

(i.e., synchronous or photovoltaic generators) amongst the available developed sets.

It is important to note that the DER resource constraint (number of available DERs)

significantly affects the post-damage system performance of the DN. Furthermore, a

subset of DERs are mobile, which suggests that they can be re-allocated after the

hurricane passes as needed.

DN Restoration Model (Stage II): After the hurricane has passed, the system

operator makes decisions regarding DN restoration over a multi-period horizon given

by 𝑘 = 1, · · · ,K. Crucially, the Stage II problem relies on an estimate of the total

number of time periods needed for full recovery, which we discuss in our modeling

formulation. The first set of restoration decisions pertain to repairs of damaged

infrastructural assets in the DN. For the purposes of this work, we focus on damaged

distribution lines, which connect the various nodes in the DN. The second set of

restoration decisions pertain to re-allocation of movable DERs in the DN, in order to

more optimally supply loads when line repairs permit increased connectivity between

the loads and available DERs. The system operator can also develop new sites as

necessary, to which the movable DERs can be re-allocated.

Microgrid Model with Multi-Master DER Operation (Stage II): At each period, the

system operator must decide how to optimally supply power within the islanded mi-
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crogrids that form as a result of hurricane damage, DER placement, and period-wise

repairs. We formulate a microgrid model that permits multi-master DER operation,

in which multiple simultaneously share the responsibility of providing voltage and/or

frequency regulation in a single microgrid. This model considers DER dispatch, load

disconnection due to violation of physical constraints (i.e., voltage bounds), and power

flow. In particular, we also utilize a novel model of linear power flow (LinDistFlow)

for a microgrid island with parallel operation of multiple DER inverters [90].

Solution Approach and Algorithms:

The two-stage stochastic mixed-integer program (SMIP2) is computationally chal-

lenging to solve, because the problem size increases at a superlinear rate with respect

to the network size and resource constraints. Firstly, the number of possible damage

scenarios increases exponentially with the network size, which renders simple enumer-

ation of scenarios infeasible when the network size is sufficiently large. To handle this

issue, we use the sample average approximation (SAA) method [2] to solve (SMIP2).

Secondly, the number of feasible DER allocations increases exponentially with the

number of available DERs. Hence it is inefficient to solve (SMIP2) by calculating

the total cost under every feasible allocation. In our work, we propose more efficient

approaches based on L-shaped Benders decomposition (LBD), which is widely applied

to solve two-stage stochastic programs. LBD typically alternates between a master

problem and sub-problem(s) at each iteration. More specifically, at a given iteration,

the master problem outputs a feasible DER allocation that is then used as input

to solve the sub-problem(s). The sub-problem solution(s) at each iteration would

be used to generate optimality (Benders) cut(s) that are added back to the master

problem. The algorithm converges when a defined convergence criterion is met or the

master problem is rendered infeasible by the cuts (i.e., all DER allocations have been

eliminated from the feasible set).

In the formulation of LBD-based solution approaches, we identified three main

challenges related to implementation and scalability. First, LBD is typically applica-

ble when the recourse (Stage II) problem is convex, but the Stage II mixed-integer
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linear programs in (SMIP2) are discontinuous and non-convex. Second, the number

of integer variables in the Stage II problems increases quadratically with the network

size, which poses a scalability challenge. These two challenges complicate the process

of efficiently solving the Stage II problems. Third, LBD convergence could be slow

(as measured by number of iterations).

We now proceed to discuss contributions related to our three formulated ap-

proaches: LBD-Greedy, LBD-DIC, and NBD. In our discussion, we focus on the

LBD challenges identified above.

L-shaped Benders Decomposition with Greedy Approach (LBD-Greedy): The first

feature of this method, which motivates the method’s name, is the “greedy approach”

we employ to solve the Stage II recourse problems. In the greedy approach, we

obtain a greedy solution to the recourse problem using a period-wise decomposition.

This greedy solution is used to decrease the computational time needed to solve

the recourse problem by serving as a warm start. The second feature is a two-step

process to obtain the Benders cut at each iteration. More specifically, for each recourse

problem, we solve the MILP and then fix the integer variables in order to solve the

resultant linear program. The algorithm terminates when the Benders cuts render

the master problem infeasible. We demonstrate that LBD-Greedy is more efficient in

solving (SMIP2) than simple enumeration of all feasible DER allocations. However,

despite our usage of the greedy approach, the recourse problems are MILPs and still

expensive to solve when we increase the network size.

L-shaped Benders Decomposition with Dual Integer Cuts (LBD-DIC): This method

involves solving linear program (LP) relaxations to the Stage II recourse problems,

in order to form the Benders cuts at each iteration. Because we do not solve the full

Stage II MILPs, there is gap in the estimated recourse objectives given by the LP

relaxation and the full MILP. To address this limitation, we formulate a “dual integer

cut”, an optimality cut formed by leveraging values of Stage II integer variables that

estimated using the properties in our model formulation. The algorithm terminates

when the difference between the lower bound (estimated using solutions to the master

problem) and a defined “relaxation” upper bound is sufficiently small. While solving
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LP relaxations to the Stage II MILPs is more efficient than solving the full MILPs,

the convergence of LBD-DIC can still be slow when the number of available DERs is

large.

Nested Benders Decomposition (NBD) is similar to LBD-DIC, with the exception

that a “nested” approach is employed to solve the Stage II recourse problems. In

the nested approach, we decompose the recourse problem by period. We obtain a

feasible solution to the recourse problem by solving the period-wise problems from

first to last period (“forward pass”). Then, we solve the period-wise problems from

last to first period (“backward pass”). The solutions to the backward pass are used

to form the Benders cuts in the master problem. Importantly, the backward pass

solutions provide cost-to-go approximations, which are lower bound estimates of the

costs associated with each scenario-wise Stage II recourse problem. We demonstrate

that the cost-to-go approximations strengthen the Benders cuts and typically ensure

faster algorithm convergence, as compared to LBD-DIC.

1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces the asymmetric

wind field model and associated parameter estimation method, which are applica-

ble to forecasting and ensemble simulation. Chapter 3 introduces our modeling ap-

proach for probabilistic damage estimation in infrastructure systems. Importantly,

we analyze the effect of forecast uncertainty and spatial variability on the damage

estimates, and apply the approach to outage estimation in electric power infrastruc-

ture. In Chapter 4, we formulate the two-stage stochastic optimization problem

(SMIP2) for resource allocation in electricity distribution networks, to minimize the

cost of hurricane-induced damage. Chapter 5 discusses solution approaches based

on L-shaped Benders decomposition to efficiently solve (SMIP2). In Chapter 6, we

conclude the thesis by summarizing the contributions and introducing several future

directions.
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Chapter 2

Modeling of Asymmetric Hurricane

Surface Wind Fields

Hurricane risk assessment typically involves modeling of storm tracks, wind fields,

and occurrence frequency [111]. A common approach to risk assessment is to sim-

ulate an ensemble of storms, in order to capture the stochastic nature of hurricane

arrival, landfall location, and intensity. This simulation-based approach relies on cap-

turing two aspects of hurricane structure: (1) track, or trajectory of the storm from

its formation over the ocean to dissipation over land; and (2) wind velocities at var-

ious points along the track, modeled by either a single intensity measurement (e.g.,

maximum sustained 10 m wind speed) or a surface wind field. For risk assessment

of large-scale infrastructure systems, the impact of spatially heterogeneous wind ve-

locities must be suitably captured. Thus, a reliable model of the whole surface wind

field is desirable.

This section focuses on constructing a physically-informed model of the hurricane

gradient wind field; one can then use a boundary layer model for the gradient-to-

surface wind conversion. Well-known gradient wind field models are estimated from

deterministic axisymmetric models, which we refer to as mean field (MF) models. In

reality, however, hurricane wind fields tend to be asymmetric. Not accounting for this

inherent asymmetry can negatively affect hurricane risk assessment of aboveground

infrastructure components such as electric distribution lines, whose failure probabil-
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ities depend on local surface wind intensities [118, 3]. We formulate an asymmetric

wind field model that is an extension of the mean field model of Holland et al., 2010

[48] in that the model’s maximum intensity parameter is set to be a harmonic function

of the azimuthal angle.

The work detailed in this chapter has been published in [15]. In Section 2.1, we

provide a full model description. In Section 2.2, we discuss our model parameter

estimation approach based on a Constrained Nonlinear Least Squares (CNLS) for-

mulation. In Section 2.3, we present the setup for estimation and evaluation of the

asymmetric wind field model, using multiple sources of hurricane wind data. In Sec-

tion 2.4, we discuss the performance of this model, and highlight some observations

about the relationship between asymmetries and environmental inputs. In Section

2.5, we briefly discuss how the model can be useful in wind field simulation along

tracks in a statistically-generated ensemble. Section 2.6 summarizes the results and

proposes future directions of study.

2.1 Hurricane Wind Field Model

2.1.1 Mean field model

Given a simulated track produced from a track generation model, the Holland et al.,

2010 model [48] can be used to estimate the mean tangential wind at points along

the track:

𝑣(𝑟) = Vm

(︂(︁Rm

𝑟

)︁B
exp

(︁
1−

(︁Rm

𝑟

)︁B)︁)︂S(𝑟)

(2.1)

where

S(𝑟) =

⎧⎪⎨⎪⎩ 0.5, 𝑟 ≤ Rm

0.5 + (𝑟 − Rm)
S𝑛−0.5
𝑟𝑛−Rm

, 𝑟 > Rm.

(2.2)

The model relates the gradient wind velocity 𝑣 (m s−1) to the radial distance from

the storm center 𝑟 (km). Model parameters are: maximum velocity Vm, radius of

maximum wind Rm, shape parameter B governing wind decay rate from the storm

center, and scaling parameter S to adjust the profile shape. The parameter S is fixed
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to 0.5 at radius 𝑟 ≤ Rm and varies linearly with 𝑟 for 𝑟 > Rm. In the function for

radius 𝑟 > Rm, S𝑛 is taken to be the value of S at which the estimated Holland

velocity 𝑣(𝑟) is equal to a wind velocity observation in the storm periphery at radius

𝑟𝑛.

The Holland et al., 2010 model reduces to the original Holland 1980 model [47],

when S is fixed as 0.5 at all values of radius 𝑟. The original model tends to overesti-

mate the wind’s decay with radial distance; thus, it underestimates the wind velocities

in the storm’s outer regions [114]. The revised 2010 model uses the radially-varying

scaling parameter S in order to partially rectify these limitations.

For the purpose of modeling asymmetry in the wind field, we empirically estimate

the mean field parameters for each snapshot. A snapshot is a depiction of the hur-

ricane wind field at a point in time. We estimate the maximum wind intensity Vm

by averaging the velocity data points in the vicinity of the radius of maximum winds

Rm (i.e., 0.9Rm-1.2Rm). Consequently, Vm is effectively the azimuthally-averaged

maximum intensity. The parameter Rm for each snapshot is taken to be the value of

radius 𝑟 at which the maximum velocity in the snapshot occurs. Then, the remaining

parameters B and S in Eq. 2.1 are chosen for each snapshot to best fit the data. In

particular, we search over discrete values of B in the range 0.5-4; for each value of

B, we take 𝑟𝑛 to be the maximum 𝑟 in the snapshot, and obtain S as a function of

𝑟 using Equation 2.2. The B and S that minimize the absolute difference between

the snapshot wind data and the Holland model estimates are chosen as the empirical

model parameters for that snapshot. We note that while [47] suggests that B be

selected from the range of 1-2.5, we consider a wider range of B to ensure that the es-

timated mean field best fits the data. Hereafter, the empirically-estimated maximum

intensity parameter for the mean field is referred to as V̄m, whereas Vm refers to the

maximum intensity as a function of azimuth, i.e., the asymmetry model discussed in

Section 2.1.2.
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2.1.2 Asymmetry model

Before presenting our asymmetry model based on the Holland mean field model, we

first summarize some of the previous approaches to model asymmetry in wind fields.

One way to account for the asymmetry is by setting Rm in the Holland model to

be a polynomial function of the azimuthal angle [115]. This approach is shown to

produce more accurate real-time forecasts than mean field models. Estimation of the

function parameters requires forecasted values of storm wind velocities (radial extent

of 34-, 50-, and 64-knot winds), which can be obtained from the National Hurricane

Center (NHC) tropical cyclone forecasts. However, such detailed information on wind

velocities is not available as input in simulation applications; thus the approach by

[115] is not applicable for simulation of a representative wind field ensemble. A more

closely-related work is by [100] – hereafter referred to as U14 – who model asymmetry

by representing Vm as an azimuthally-varying harmonic function. Specifically in

U14, Vm is parameterized by the wavenumber-0 mean field maximum velocity, and

the wavenumber-1 asymmetric amplitude and phase. Then, the linear relationships

between the wavenumber-1 parameters (amplitude and phase) and environmental

inputs (storm translation speed and wind shear) at Rm are estimated. It is well-

recognized that the main environmental inputs contributing to asymmetry are storm

translation and wind shear [89].

We represent Vm as a harmonic function in which the amplitude(s) and phase(s)

are parameterized by storm translation Vtr and shear Vsh, which are available, time-

dependent inputs. Hereafter, we add subscripts 𝑡𝑟 for translation and 𝑠ℎ for wind

shear to azimuth 𝜆, amplitude A, and phase 𝜑. Specifically, 𝜆tr (resp. 𝜆sh) is the

azimuth defined clockwise from the translation (resp. shear) direction, while Atr, 𝜑tr

(resp. Ash, 𝜑sh) define the asymmetry induced by translation (resp. shear). We model

the maximum intensity Vm as the following harmonic function:

Vm(𝜆tr, 𝜆sh; V̄m,Vtr,Vsh) = V̄m +Atr(Vtr) cos[𝜆tr − 𝜑tr(Vtr)]

+ Ash(Vsh) cos[𝜆sh − 𝜑sh(Vsh)],
(2.3)
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to express the maximum intensity as a function of the variables (azimuths 𝜆tr and

𝜆sh) and model inputs (V̄m, Vtr, and Vsh). The parameter V̄m, which is the estimated

maximum intensity in the mean field model, is the wavenumber-0 component in the

formulation.

In Eq. 2.3, the amplitudes and phases of the asymmetries are modeled as affine

functions of translation and shear:

Atr(Vtr) = 𝑥
(0)
tr,A + 𝑥

(1)
tr,AVtr (2.4a)

𝜑tr(Vtr) = 𝑥
(0)
tr,𝜑 + 𝑥

(1)
tr,𝜑Vtr (2.4b)

Ash(Vsh) = 𝑥
(0)
sh,A + 𝑥

(1)
sh,AVsh (2.4c)

𝜑sh(Vsh) = 𝑥
(0)
sh,𝜑 + 𝑥

(1)
sh,𝜑Vsh. (2.4d)

The values of the estimated amplitudes are constrained to be strictly non-negative:

Atr(Vtr) ≥ 0; Ash(Vsh) ≥ 0, (2.5)

where Atr(Vtr) and Ash(Vsh) are given by Eq. 2.4a (resp. Eq. 2.4c). Furthermore,

the values of the estimated phases are constrained to be within a range that spans

2𝜋:

b𝜑,tr ≤ 𝜑tr(Vtr) ≤ b𝜑,tr + 2𝜋; b𝜑,sh ≤ 𝜑sh(Vsh) ≤ b𝜑,sh + 2𝜋, (2.6)

where 𝜑tr(Vtr) and 𝜑sh(Vsh) are given by Eq. 2.4b (resp. Eq. 2.4d). The parameters

b𝜑,tr and b𝜑,sh are the lower bounds of the ranges for translation (resp. shear); thus

the respective ranges for the phases are [b𝜑,tr, b𝜑,tr + 2𝜋] and [b𝜑,sh, b𝜑,sh + 2𝜋].

In summary, the complete wind field model is defined by the mean field model

(Eq. 2.1-2.2), the asymmetry model (Eq. 2.3-2.4), and the constraints (Eq. 2.5-2.6).

The asymmetry model involves a total of 8 unknowns (parameters) – 4 to capture

translation effects and 4 to capture shear effects.

Another way to account for the effect of translation would be to add the storm

translation vector to the wind field [85, 107]. The maximum velocity under equal ra-

dius when the storm translation vector is added to the mean field occurs at exactly 90∘
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clockwise of the translation direction, where the storm motion and cyclostrophic wind

direction are aligned. However, U14 found that if the translation-induced asymmetry

is modeled as a wavenumber-1 component, the azimuth corresponding to the maxi-

mum velocity (i.e., phase 𝜑tr) varies linearly with translation speed. To ensure that

the model-estimated and observationally-based asymmetries are aligned, we model

the asymmetry owing to translation as a wavenumber-1 component with tunable pa-

rameters xtr. In Section 2.1.3, we discuss how our asymmetry model is extended to

include the translation vector in addition to wavenumber-1 asymmetries.

2.1.3 Combined wind field model

To present the combined mean field and asymmetry model, we denote the 8 un-

knowns (parameters) in Section 2.1.2 as xtr = (𝑥
(0)
tr,A, 𝑥

(1)
tr,A, 𝑥

(0)
tr,𝜑, 𝑥

(1)
tr,𝜑) and xsh =

(𝑥
(0)
sh,A, 𝑥

(1)
sh,A, 𝑥

(0)
sh,𝜑, 𝑥

(1)
sh,𝜑). The full vector of unknowns is denoted as x = (xtr,xsh).

We can re-write the combined wind field model as a function of the unknowns

x, variables (radial distance 𝑟 as well as azimuthal angles 𝜆tr and 𝜆sh), and input

parameters to the mean field and asymmetry models. In the mean field model, velocity

𝑣 was expressed as a function of the radius 𝑟 (Eq. 2.1-2.2) and parameterized by

empirically-estimated Holland parameters V̄m, Rm, B, and S(𝑟). Furthermore, in the

asymmetry model, the maximum intensity parameter Vm in Eq. 2.1 was expressed

as a function of azimuths 𝜆tr and 𝜆sh, and parameterized by translation Vtr, wind

shear Vsh, and the input parameter V̄m (Eq. 2.3-2.4). To summarize, the mean

field is affected by the radius 𝑟 and Holland parameters S(𝑟) = (Rm,B, S(𝑟)); and

the asymmetry model is affected by the azimuthal angles 𝜆 = (𝜆tr, 𝜆sh), Holland

parameter V̄m, and environmental inputs u = (Vtr,Vsh).

With a slight abuse of notation, we use 𝑣(𝑟,𝜆; S(𝑟), V̄m,u; x) to refer to the

velocity function. We use this notation to emphasize that the velocity is a function of

variables 𝑟 and 𝜆; model inputs S(𝑟), V̄m, and u; and unknown parameters x. Then,

we can write:

𝑣(𝑟,𝜆; S(𝑟), V̄m,u; x) = Vm(𝜆; V̄m,u; x) Y(𝑟; S(𝑟)) (2.7)
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where

Vm(𝜆; V̄m,u; x) = V̄m + Atr(Vtr; xtr,A) cos[𝜆tr − 𝜑tr(Vtr; xtr,𝜑)] +

Ash(Vsh; xsh,A) cos[𝜆sh − 𝜑sh(Vsh; xsh,𝜑)],
(2.8a)

Y(𝑟; S(𝑟)) =

(︂(︁Rm

𝑟

)︁B
exp

(︁
1−

(︁Rm

𝑟

)︁B)︁)︂S(𝑟)

. (2.8b)

Here, xtr,A = (𝑥
(0)
tr,A, 𝑥

(1)
tr,A), xtr,𝜑 = (𝑥

(0)
tr,𝜑, 𝑥

(1)
tr,𝜑), xsh,A = (𝑥

(0)
sh,A, 𝑥

(1)
sh,A), and xsh,𝜑 =

(𝑥
(0)
sh,𝜑, 𝑥

(1)
sh,𝜑). Equation 2.7 can be rewritten as follows, to express the wind field

model as the sum of the mean field winds and the asymmetries owing to translation

and shear:

𝑣(𝑟,𝜆; S(𝑟), V̄m,u; x) = VMF +Vm,tr(𝜆tr; Vtr; xtr) Y(𝑟; S(𝑟))

+ Vm,sh(𝜆sh; Vsh; xsh) Y(𝑟; S(𝑟))
(2.9)

where

VMF = V̄m Y(𝑟; S(𝑟)) (2.10a)

Vm,tr(𝜆tr; Vtr; xtr) = Atr(Vtr; xtr,A) cos[𝜆tr − 𝜑tr(Vtr; xtr,𝜑)] (2.10b)

Vm,sh(𝜆sh; Vsh; xsh) = Ash(Vsh; xsh,A) cos[𝜆sh − 𝜑sh(Vsh; xsh,𝜑)]. (2.10c)

Here, VMF denotes the mean field, Vm,tr(𝜆tr; Vtr; xtr) the asymmetry owing to trans-

lation, and Vm,sh(𝜆sh; Vsh; xsh) the asymmetry owing to shear. The estimated wind

field velocities are one-minute sustained winds.

To obtain a simpler wind field model that considers only asymmetry owing to the

translation vector, one can just perform vector addition of the mean field and transla-

tion vector. The resultant asymmetric winds are referred to as VMF+TV.1 To obtain a

model that considers both the translation vector and wavenumber-1 asymmetries, the

terms Vm,tr(𝜆tr; Vtr; xtr)Y(𝑟; S(𝑟)) and Vm,sh(𝜆sh; Vsh; xsh)Y(𝑟; S(𝑟)) are added

to VMF+TV. In Section 2.4, we evaluate the effects of wavenumber-1 asymmetries and

1The velocities VMF+TV are dependent on the storm translation magnitude Vtr and direction
𝜃𝑡𝑟, in addition to V̄m, 𝑟, S(𝑟), and the azimuthal angle.
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Figure 2-1: Examples of hurricane tracks, interpolated using HURDAT data (left).
An example of HWind velocity data (blue) from one snapshot and a best-fit Holland
mean field estimate (red) as a function of radius.

the translation vector on the model performance.

2.1.4 Data

We use data on hurricane tracks and wind field snapshots for parameter estimation

(see Figure 2-1 for plots of example tracks and snapshots). The National Hurri-

cane Centers HURricane DATabases (HURDAT-2) is used for track locations of past

storms [56], which provide data every six hours on the storm’s location and maximum

sustained wind speed. The wind field data include: (1) the Hurricane Research Di-

vision HWind radial structure database [82]; and (2) output from the Pennsylvania

State University (PSU) Weather Research and Forecasting model (WRF)-based en-

semble Kalman filter (EnKF) data assimilation system [112]. These data sets contain

surface (∼10m) wind velocity estimates obtained by processing direct observations

through statistical models, data assimilation, and objective analyses. Although we

use surface wind field data to estimate parameters of a gradient wind field model,

[84] showed that the speed of surface winds is the same as that of the gradient wind

in an axisymmetric, steady-state storm over the sea.

A subset of the wind field data is used for estimation of the asymmetric wind field

model parameters, and the resulting model is evaluated by comparing to the remaining

data. Only HWind snapshots were used for estimating model parameters. HWind
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snapshots are one-minute sustained winds, derived by assimilation and processing of

in-situ and remotely-sensed observations. The snapshots are given at a typical interval

of 3 hours and horizontal grid spacing of 6 km. Naturally, one would expect that

the estimated parameters and asymmetry model are affected by the HWind data’s

inherent biases and variability. Total variability among observations at a particular

radius ranges from 7% near the eyewall to about 15% in storm outer regions. There is

a roughly 10% positive bias in wind speeds around the eyewall, and this bias decreases

with 𝑟 [27].

Both HWind and WRF data are used for evaluation of the estimated wind field

model, mainly because WRF data are only available for two of the storms studied

here (Katrina and Sandy) and thus not sufficient for parameter estimation. The

WRF snapshots are instantaneous wind estimates produced by assimilating obser-

vations (e.g., airborne Doppler radar velocity data) into the convection-permitting

WRF EnKF analysis. These snapshots are more fine-grained than HWind snapshots,

occur at an interval of 30 minutes (Sandy) or 1 hour (Katrina), and have horizontal

grid spacing of around 3 km over an approximately 1700×1700 km region (Katrina)

or 900×900 km region (Sandy). The intensity of simulated WRF storms is sensitive

to the model’s air-sea surface flux parameterization scheme [42]. In addition, WRF

data for an ensemble of storms display large forecast track divergence due to uncer-

tainties in environmental flow [73]. These sensitivities affect the comparative model

performance of WRF and HWind data, which is reported in Section 5c. We converted

the WRF data to one-minute sustained winds following Equation 1 from [54].

2.2 Parameter Estimation

This section details the constrained nonlinear least squares (CNLS) optimization

problem for parameter estimation of the asymmetric wind field model. The goal of a

standard CNLS problem is to select unknown parameters x that minimize an objec-

tive function 𝑓(x) while also satisfying predefined constraints that capture allowable

bounds on the parameters. Specifically, 𝑓(x) = 1
2

∑︀N
𝑖=1 𝑒

2
𝑖 (x) for N data points, where
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𝑒𝑖(x) is the residual at data point 𝑖. Commonly-used optimization solvers rely on the

gradient and Hessian of the objective function to iteratively obtain estimates of the

parameters until the objective function is minimized or the number of iterations is

exceeded. The objective, gradient, and Hessian for a CNLS problem with unknown

vector x of length M are expressed as:

𝑓(x) =
1

2

N∑︁
𝑖=1

𝑒2𝑖 (x)

∇𝑓(x) = 𝐽(x)⊤𝑒(x)

∇2𝑓(x) = 𝐽(x)⊤𝐽(x) +
N∑︁
𝑖=1

𝑒𝑖(x)∇2𝑒𝑖(x)

(2.11)

where the N × M matrix 𝐽(x) is the Jacobian, whose terms are derivatives of the

residuals with respect to x. In general, one can express the equality and inequality

constraints as follows:
𝑔𝑘(x) = 𝑐𝑘, 𝑘 = {1, ..., 𝐾}

ℎ𝑙(x) ≥ 𝑑𝑙, 𝑙 = {1, ..., 𝐿},
(2.12)

where 𝑔𝑘(·) and ℎ𝑙(·) are linear functions of x, while 𝑐𝑘 and 𝑑𝑙 are constants.

We now specify the objective of the CNLS problem for the purpose of estimating

the wind field model introduced in Section 2.1. Recall that the unknowns in CNLS

are the 8 parameters in Eq. 2.3-2.4. The objective is to minimize the sum of squared

residuals. For the 𝑖-th data point, the residual between the observed velocity 𝑣𝑖

and model-estimated velocity 𝑣𝑖 is 𝑒𝑖(x) = 𝑣𝑖 − 𝑣𝑖, in which 𝑣𝑖 is assigned the value

of the velocity function (Eq. 2.7 or 2.9) evaluated for the 𝑖-th data point. Note

that we replace 𝑣MF with 𝑣MF+TV if the translation vector is included in the model.

Henceforth, 𝑡 denotes a snapshot and 𝑡(𝑖) the snapshot index corresponding to data

point 𝑖. Consider that there are T snapshots and N𝑡 velocity measurements per

snapshot 𝑡. Thus, the total number of data points N is given by
∑︀

𝑡N𝑡. The CNLS

62



problem for estimating the optimal parameter vector is written as:

Minimize
x

𝑓(x) =
1

2

N∑︁
𝑖=1

𝑒2𝑖 (x) =
1

2

N∑︁
𝑖=1

(︁
𝑣𝑖 − 𝑣𝑖(𝑟𝑖,𝜆𝑖; S𝑖(𝑟𝑖), V̄m,𝑡(𝑖),u𝑡(𝑖); x)

)︁2
,

(2.13)

subject to the constraints given by Eq. 2.5-2.6 for each snapshot 𝑡, which restrict

the range of allowable values that the unknown parameters x may take. The indices

of data points are dropped hereafter for notational simplicity. While we consider

the Holland mean field model here due to its relative simplicity, the proposed CNLS

formulation can be adapted to other mean field models.

Parameter estimates are obtained using the MATLAB interior point constrained

nonlinear solver, which takes an initial parameter vector x and iteratively updates

it to minimize the objective. We use the following fmincon options: interior-point

algorithm, user-supplied gradient and Hessian, and maximum number of iterations

set to 100.2 See Section 2.7 (Appendix A) for the gradient and Hessian derivations

that are supplied to the solver.

2.3 Experimental Design

This section covers data preparation, CNLS parameter estimation, and model evalu-

ation.

2.3.1 Preparation of data

Storm track and wind field data are required for estimation of the wind field model (see

Section 22.1.4). This study uses HURDAT tracks from Hurricanes Andrew (1992), Is-

abel (2003), Dennis (2005), Katrina (2005), Wilma (2005), Irene (2011), Isaac (2012),

Sandy (2012), and Ingrid (2013). HWind data are obtained for all storms and WRF

data for Katrina and Sandy, to represent the wind field. The Sandy WRF data used

here are 10 members of the 60-member ensemble forecast [73]. All 10 ensemble mem-

bers had relatively accurate landfall locations (track error of 233.8 km averaged over
2Further details regarding the interior point algorithm can be found in [75].
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a time window of 6 hours before and after landing). The Katrina WRF data used

are from a single ensemble member [42], as other WRF simulations of Katrina were

run on different air-sea flux parameterization schemes. In total, two Katrina ‘storms’

(one HWind and one WRF) and 11 Sandy ‘storms’ (one HWind and 10 WRF) are

used in this study. As a proxy for excluding times at which storms have undergone

extratropical transition, snapshots at a latitude greater than 35∘N are not included

in the data set.

The wind shear for all snapshots is calculated using Global Forecast System (GFS)

operational analyses, which are given at ∼ 1∘ resolution. The first step in calculating

the wind shear is to subtract an estimate of the hurricane vortex streamfunction [40]

from the GFS wind field, in order to isolate the environmental winds. Then, the

mean environmental winds at heights of 850 and 250 hPa are calculated by averaging

over a 200 km radius around the storm center, and the 850-250-hPa-wind shear vector

(magnitude Vsh and direction 𝜃sh) is obtained by vector subtraction of the two means.

We use the GFS analyses because these data provide a more fine-grained estimation

of the wind shear. However, for comparison purposes, we discuss model performance

using wind shear from both the GFS analyses and Statistical Hurricane Intensity

Prediction Scheme (SHIPS) database [26] in Section 2.4.

Next, we interpolate the HURDAT track positions to half-hour intervals using a

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) [18]. The storm trans-

lation vector (magnitude Vtr and direction 𝜃tr) is calculated using the interpolated

storm center positions. Then, the wind shear vector is interpolated to half-hour in-

tervals using PCHIP. The interpolated Vtr and Vsh are used as inputs to the CNLS

problem.

Then, velocity data are locally averaged, because there are more data points at

larger values of radius 𝑟 in both HWind and WRF snapshots. To prepare for local av-

eraging, the azimuths 𝜆tr and 𝜆sh are calculated for all data points as angles clockwise

from 𝜃tr and 𝜃sh, respectively. Then, velocity data from each snapshot are binned in

𝑟 − 𝜆tr space, and the velocity data in each bin are averaged. These locally-averaged

velocities 𝑣 (∼800-900 per snapshot), as well as the radii 𝑟 and azimuths 𝜆tr and 𝜆sh
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corresponding to the bins, are used as inputs to CNLS. As a result of local averaging,

the velocity inputs to CNLS are equally distributed across the entire range of 𝑟. The

final step is to estimate the Holland parameters S(𝑟) and V̄m.

A remaining issue to address is that the asymmetry varies radially, but the am-

plitudes and phases in Equation 2.3 are not parameterized by radius 𝑟. It is difficult

to model amplitudes and phases as a function of 𝑟 using simple parametric forms.

Instead, we only use velocities corresponding to radii less than a cut-off radius Rcut

as input for parameter estimation and evaluation, removing the need to parameter-

ize asymmetry as a function of 𝑟. The radius Rcut is defined as max(min(𝑟15, 300),

min(𝑟0.75V̄m
, 300)) where 𝑟15 denotes the radius at which the mean field velocity is 15 m

s−1 and 𝑟0.75V̄m
denotes the radius at which the mean field velocity is 0.75V̄m. The ra-

dius 𝑟15 is a conservative practical cut-off for hurricane risk analysis of above-ground

infrastructure components, such as overhead electricity lines and poles.3 However,

for snapshots with low maximum intensity parameter V̄m, a cut-off of 𝑟15 would omit

most of the data points in the snapshot. Thus, we also ensure that radial regions of

the storm with mean field velocity greater than 0.75V̄m are included, regardless of

whether or not 𝑟0.75V̄m
is greater than 𝑟15. Finally, Rcut is less than 300 km to ensure

that peripheral storm regions are not included.

2.3.2 Parameter estimation

Four CNLS-estimated asymmetric models with wavenumber-1 asymmetries are esti-

mated. These asymmetric models are compared to the two benchmark models: mean

field and mean field plus translation vector (see Table 2.1 for the complete list of six

models considered).

Parameter initializations for solving the CNLS problem are obtained following a

two-step approach. First, we empirically estimate the translation- and shear-relative

3Specifically, according to a model estimated using historical storm data that includes wind data
from hurricanes, tropical depressions, and tropical storms [116], electricity distribution lines are
expected to fail at a frequency that increases quadratically with wind speed above 20 m s−1 and
much less likely to fail below 20 m s−1. Another cut-off value might be appropriate in other contexts,
such as thunderstorms or storm surge.

65



Table 2.1: List of six wind field models evaluated. The asymmetric models are clas-
sified as Vtr models (consider only translation) or Vtr + Vsh models (consider both
translation and shear). Furthermore, the model names containing the terms ‘TV’
denote the inclusion of the translation vector and ‘WVN-1’ the wavenumber-1 com-
ponent(s) owing to translation and/or shear. The mean field and Vtr (TV) models
serve as benchmark models; all other models have unknown parameters to be esti-
mated using the CNLS method.

Model Translation effects Shear effects

Mean field — —

Vtr models

Vtr (TV) Translation vector —
Vtr (WVN-1) WVN-1 —

Vtr (TV+WVN-1) Trans. vector, WVN-1 —

Vtr +Vsh models

Vtr (TV) + Vsh (WVN-1) Translation vector WVN-1
Vtr (TV+WVN-1) + Vsh (WVN-1) Trans. vector, WVN-1 WVN-1

wavenumber-1 amplitude and phase at the radius of maximum winds for each snap-

shot. Then we simply use the unconstrained least squares method to estimate x, in

which the estimated amplitudes and phases are the inputs. The resulting value of x

is taken as the initial parameter vector for the CNLS problem.

Snapshots from Hurricanes Andrew, Dennis, Ingrid, Isaac, Sandy and Wilma (all

HWind data) are used to train the models. In addition, a few storms are set aside

as held-out test data for evaluation of the models: Irene (HWind), Isabel (HWind),

Katrina (HWind, WRF), and Sandy (HWind, WRF). The training-test split of the

data is made (Table 2.2) so that the selected training storms are heterogeneous in:

geographical track coverage (including land coverage), time of occurrence (month and

year), and maximum intensity.4

4Note that HWind snapshots of Hurricane Sandy have been split across the training and test
sets. The radial extent of Sandy (HWind) is unusually large at northerly latitudes compared to
the other HWind storms studied here, so HWind snapshots of Sandy are split among training and
testing data to account for this feature of storm structure in parameter estimation.
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Table 2.2: Key characteristics of storms used for training and testing. The latitude
range is the range covered by the snapshots, not the actual range traveled by the
storm. Maximum intensity metrics are obtained from HURDAT data and given in
knots. All storms use HWind, except for two test storms labeled as WRF.

Training Set Max. intensity Latitude range (∘N) Time No. snapshots

Andrew 150 25.38, 25.64 Aug ‘92 4
Dennis 130 15.77, 31.15 Jul ‘05 28
Ingrid 75 19.11, 23.79 Sept ’13 12
Isaac 70 14.70, 29.91 Aug-Sept ’12 41
Sandy 100 13.58, 39.76 Oct-Nov ‘12 21
Wilma 160 15.68, 28.51 Oct ‘05 30

Test Set

Irene 105 15.08, 41.80 Aug ’11 27
Isabel 145 21.30, 33.95 Sept ’03 27

Katrina 175 24.30, 25.99 Aug ’05 16
Katrina (WRF) 175 24.40, 38.34 Aug ’05 120

Sandy 100 13.58, 37.02 Oct-Nov ‘12 20
Sandy (WRF) 100 24.66, 41.86 Oct-Nov ‘12 256

2.3.3 Evaluation of model performance

We report three performance metrics as a measure of model performance: cross-

validation error (CVE), Bayesian Information Criterion (BIC), and mean squared

error (MSE) on the test data.

The cross-validation error is obtained from a 𝑘-fold cross-validation procedure. To

perform 𝑘-fold cross-validation, we partition the set of training snapshots into 𝑘 = 5

subsets (folds). Then, five sets of data are formed, in which each set consists of the

training data with one fold of snapshots omitted. For each set of data, we obtain the

mean squared error on the omitted fold using the model estimated with the entire

training set. The cross-validation error of a model is equal to the mean squared

error averaged over the five folds. This process of parameter estimation followed by

evaluation on the held-out fold is conducted for each of the six models.

The Bayesian Information Criterion is a metric that rewards a model’s goodness

of fit, but also includes an overfitting penalty that is an increasing function of the
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number of parameters [10] - see Section 2.3.3 (Appendix B) for further details. One

can assess the relative likelihoods of two models by using their BIC. Then, the models’

MSEs evaluated on the held-out test data are intended to validate the expected model

performance suggested by the CVE and BIC.

2.4 Results

This section discusses the CNLS-estimated parameters of the asymmetric wind field

models, then compares the performance of the models. See Tables 2.3-2.4 for the

CNLS parameter estimates.

Table 2.3: Parameter estimates of the CNLS-estimated models for the wavenumber-1
asymmetry owing to storm translation. The parameters in boldface indicate statistical
significance. For models including the effects of shear, parameters are given for GFS
(‘G’) and SHIPS (‘S’).

Model 𝑥̂
(0)
tr,A 𝑥̂

(1)
tr,A 𝑥̂

(0)
tr,𝜑 𝑥̂

(1)
tr,𝜑

Vtr (WVN-1) 1.17± 0.25 0.40± 0.04 123.9± 4.3 −1.7± 0.5

Vtr (TV+WVN-1) −0.58± 0.23 0.82± 0.03 −126.8± 3.2 2.6± 0.4

Vtr (TV) G — — — —
+ Vsh (WVN-1) S — — — —

Vtr (TV+WVN-1) G −0.59± 0.23 0.82± 0.04 −127.1± 3.2 2.7± 0.4
+ Vsh (WVN-1) S −0.55± 0.21 0.77± 0.04 −150.8± 4.7 5.8± 0.6

2.4.1 Parameter estimates of Vtr models

Here, we discuss the parameter estimates of two CNLS-estimated models that incor-

porate asymmetry owing to translation: Vtr (WVN-1) model – asymmetry modeled

as the wavenumber-1 (WVN-1) component; and Vtr (TV+WVN-1) model – asymme-

try modeled as the translation vector (TV) and the wavenumber-1 component. We

compare these models to the Vtr (TV) benchmark model – asymmetry modeled as

only the translation vector added to the mean field.
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Table 2.4: Parameter estimates of the CNLS-estimated models for the wavenumber-
1 asymmetry owing to wind shear. The parameters in boldface indicate statistical
significance. For models including the effects of shear, parameters are given for GFS
(‘G’) and SHIPS (‘S’).

Model 𝑥̂
(𝑗,0)
sh,A 𝑥̂

(𝑗,1)
sh,A 𝑥̂

(𝑗,0)
sh,𝜑 𝑥̂

(𝑗,1)
sh,𝜑

Vtr (WVN-1) — — — —

Vtr (TV+WVN-1) — — — —

Vtr (TV) G 1.32± 0.20 0.00±0.02 −148.9± 8.5 10.9± 0.8
+ Vsh (WVN-1) S 1.01± 0.19 −0.03± 0.02 -2.3±13.6 −8.9± 1.9

Vtr (TV+WVN-1) G -0.01±0.18 0.08± 0.02 6.1±22.0 −9.9± 1.6
+ Vsh (WVN-1) S -0.01±0.17 0.11± 0.02 6.1±12.7 −8.7± 1.0

The parameters x̂tr of the Vtr (WVN-1) model demonstrate a statistically signifi-

cant (> 95% confidence) linear relationship between translation speed Vtr and both

amplitude Atr and phase 𝜑tr. The key difference between the Vtr (TV) model and the

Vtr (WVN-1) model is the azimuth corresponding to the maximum intensity. In the

Vtr (TV) model, the maximum velocity under equal radius occurs at 90∘ clockwise of

the translation direction, as was discussed in Section 2.1. In the Vtr (WVN-1 model),

the maximum velocity under equal radius occurs slightly clockwise of 90∘, because of

the hurricane inflow component.

The key difference between our result and U14’s result is that we find a signifi-

cant downwind storm-motion-relative phase rotation with increasing translation speed

(i.e., the slope parameter 𝑥̂(1)tr,𝜑 < 0). In contrast, U14 find an upwind phase rotation

(𝑥̂(1)tr,𝜑 > 0). This discrepancy can be attributed to different parameter estimation

methods. U14 use unconstrained least squares to estimate xtr, in which the inputs

are empirically-estimated wavenumber-1 amplitudes and phases at the radius of max-

imum winds. In contrast, the inputs for CNLS are observed velocities that lie within

the cutoff radius Rcut. Indeed, we find a significant upwind storm-motion-relative

phase rotation with translation speed (𝑥̂(1)tr,𝜑 = 3.4∘) when applying U14’s procedure.

The parameters of the Vtr (TV+WVN-1) model also demonstrate a significant
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relationship between translation speed and both amplitude and phase. In this model,

the wavenumber-1 parameters x̂tr estimate the residual asymmetry owing to transla-

tion that remains after the translation vector has been added to the mean field. The

phase associated with this residual asymmetry is more than 90∘ counterclockwise

from the translation direction (𝑥̂(0)tr,𝜑 = −126.8∘) and rotates upwind with increasing

translation speed (𝑥̂(1)tr,𝜑 > 0).

2.4.2 Parameter estimates of Vtr +Vsh models

Two CNLS-estimated models with translation- and shear-induced asymmetries (‘Vtr+

Vsh models’) are discussed here: Vtr (TV) + Vsh (WVN-1) model – asymmetry mod-

eled as the translation vector (TV) and wavenumber-1 component owing to shear;

and Vtr (TV+WVN-1) + Vsh (WVN-1) model – asymmetry modeled as the transla-

tion vector and wavenumber-1 component owing to both translation and shear. The

parameters x̂sh of both models demonstrate a significant linear relationship between

shear magnitude and both amplitude Ash and phase 𝜑sh.

The phase parameters x̂sh,𝜑 estimated using SHIPS data demonstrate that the

phase rotates downwind from downshear to left of shear with increasing shear mag-

nitude (𝑥̂(1)sh,𝜑 < 0 for both models). This result is in agreement with that of U14,

who also used SHIPS data. However, in contrast to our approach, U14 subtract only

the estimated wavenumber-1 asymmetry owing to translation from the storm winds,

before estimating the wavenumber-1 asymmetry owing to shear. They did not con-

sider the translation vector because the wind data they used did not provide the wind

direction.

The parameters of the Vtr (TV+WVN-1) + Vsh (WVN-1) model using GFS also

indicate a downwind rotation of the phase from downshear to left of shear. However,

the parameters of the Vtr (TV) + Vsh (WVN-1) model instead indicate that the phase

rotates upwind (𝑥̂(1)sh,𝜑 > 0), from upshear left (−180∘ < 𝜑
(𝑗)
sh < −90∘) to downshear

left (−90∘ < 𝜑
(𝑗)
sh < 0∘). A previous study also found that the asymmetry owing to

shear tends to be downshear left or upshear left, but they used SHIPS data rather

than GFS data [53].
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The final key observation is that the wavenumber-1 asymmetry owing to shear

is smaller in the Vtr (TV+WVN-1) + Vsh (WVN-1) model than in the Vtr (TV) +

Vsh (WVN-1) model. In particular, in the Vtr (TV+WVN-1) + Vsh (WVN-1) model,

the intercept term 𝑥̂
(0)
sh,A is not statistically significant and the slope term 𝑥̂

(1)
sh,A < 0.2.

This result indicates that when both the wavenumber-1 component and translation

vector are used to model asymmetry owing to translation, the resultant wavenumber-1

asymmetry owing to shear becomes smaller.

2.4.3 Model performance and selection

Now, we compare the performance of the wind field models listed in Table 2.1. The

first performance metric discussed is the cross-validation error (CVE) of the models

(see Table 2.5). The models ordered from lowest to highest cross-validation error are:

Vtr (TV+WVN-1) + Vsh (WVN-1), Vtr (TV+WVN-1), Vtr (TV) + Vsh (WVN-1),

Vtr (TV), Vtr (WVN-1), and mean field. Thus, the model with the lowest CVE is the

Vtr (TV+WVN-1) + Vsh (WVN-1) model – asymmetry modeled as the translation

vector and wavenumber-1 asymmetries owing to both translation and shear.

Three key observations are evident from the cross-validation results. First, ad-

dition of wavenumber-1 asymmetries to the wind field model predictably lowers the

cross-validation error by decreasing the variance of the residuals. Second, the bench-

mark Vtr (TV) model has a lower cross-validation error than the Vtr (WVN-1) model.

The main reason why the Vtr (TV) model is better-performing is that its mean resid-

ual is 0.9 lower than that of the mean field (indicating a smaller model bias). Third,

for the GFS data, the difference in cross-validation error is small when comparing the

Vtr (TV) + Vsh (WVN-1) model to the Vtr (TV) model, or the Vtr (TV+WVN-1)

+ Vsh (WVN-1) model to the Vtr (TV+WVN-1) model. Thus, adding shear-induced

asymmetry only marginally decreases the cross-validation error when using the GFS

data.

The second metric discussed is the Bayesian information criterion (BIC). A lower

BIC indicates a better model. The Vtr (TV+WVN-1) + Vsh (WVN-1) model has the

lowest BIC, followed by the Vtr (TV+WVN-1) model. Wind field models with more
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Table 2.5: Performance of models measured in terms of cross-validation error (CVE)
and mean squared error (MSE) on test storms. The CVE and MSE of models in-
cluding asymmetry owing to shear are given for GFS (‘G’) and SHIPS (‘S’). The
best-performing model under each metric is in boldface. MSE results for Sandy
WRF are given as averaged MSE across 10 ensemble members. ‘Ir’ is Irene, ‘Is’ is
Isabel, ‘K’ is Katrina, ‘S’ is Sandy.

Model CVE MSE (Test Storms)

HWind WRF

Ir Is K S K S

Mean field 33.2 33.6 32.9 8.9 31.4 64.7 65.4

Vtr (WVN-1) 29.5 24.0 29.4 10.8 28.7 74.3 54.2

Vtr (TV) 25.9 23.7 28.4 16.7 32.9 75.3 126.9

Vtr (TV+WVN-1) 20.0 25.7 26.2 11.6 25.3 72.1 77.7

Vtr (TV) G 25.7 23.6 28.0 18.5 33.2 77.4 124.0
+ Vsh (WVN-1) S 21.4 15.7 28.9 17.1 23.6 95.2 92.2

Vtr (TV+WVN-1) G 19.9 26.2 26.1 11.6 24.9 71.0 77.4
+ Vsh (WVN-1) S 17.2 16.7 25.9 11.4 16.8 95.2 90.7

parameters have lower BIC values: as the number of parameters increases, the penalty

term for overfitting in the BIC grows at a slower rate compared to the decrease in the

objective. The penalty term grows relatively slowly because the number of velocity

data points N is much larger than the number of parameters M in our model.5

Next, we discuss the performance of the models on the HWind test data as mea-

sured by mean squared error (see Table 2.5). The models with the lowest mean

squared error under both GFS and SHIPS are: Vtr (TV) + Vsh (WVN-1) for Irene,

Vtr (TV+WVN-1) + Vsh (WVN-1) for Isabel and Sandy, and the mean field for

Katrina. Thus, the best-performing models on all storms except Katrina include

asymmetry owing to both translation and shear. Specifically, the Vtr (TV+WVN-

1) + Vsh (WVN-1) model has the lowest mean squared error averaged over the four

HWind test storms. Figures 2-2 – 2-3 demonstrate how the mean squared error varies

5The wind field estimation error among physically-neighboring locations may be correlated, which
results in the ‘effective’ number of data points being smaller than N.
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over time for each storm.

Figure 2-2: Performance of the mean field and Vtr models on HWind testing storms,
in terms of mean squared error (MSE).

Figures 2-4 – 2-7 compare the CNLS- and empirically-estimated amplitudes and

phases at the radius of maximum winds. The figures demonstrate that the mean field

is the best for Katrina, because the estimated relationships between the phases and

environmental inputs did not accurately estimate the phases of the Katrina snapshots.

In addition, the CNLS-estimated amplitudes tend to be smaller than the empirical

amplitudes. This is because wavenumber-1 asymmetries at the radius of maximum

winds and other radii can differ; thus CNLS-estimated amplitudes are smaller in

order to decrease inaccuracies in velocity estimates introduced by radial variations in

asymmetry.

Finally, we discuss the mean squared error of the models on the WRF test data.

Because the wind field models are trained using HWind data, test performance on

WRF storms is worse than on HWind storms. Models estimated using HWind velocity

data are not able to capture the greater azimuthal variability in wind velocities present
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Figure 2-3: Performance of the Vtr (TV) model and Vtr + Vsh models on HWind
testing storms and using GFS data for shear, in terms of mean squared error (MSE).

Figure 2-4: Wavenumber-1 amplitudes and phases owing to translation (Atr and 𝜑tr,
respectively) for HWind testing storms, as estimated by the Vtr (WVN-1) model.
Empirically-estimated amplitudes and phases at the radius of maximum winds are
also plotted for comparison purposes.
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Figure 2-5: As in Figure 2-4, but as estimated by the Vtr (TV+WVN-1) model.

Figure 2-6: Wavenumber-1 amplitudes and phases owing to shear (Ash and 𝜑sh, re-
spectively) for HWind testing storms and GFS data, as estimated by the Vtr (TV) +
Vsh (WVN-1) model. Empirically-estimated amplitudes and phases at the radius of
maximum winds are also plotted for comparison purposes.
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Figure 2-7: As in Figure 2-6, but as estimated by the Vtr (TV+WVN-1) + Vsh

(WVN-1) model.

in the WRF data. Converting the WRF data to one-minute sustained winds, as was

discussed in Section 2.1.4, did not noticeably change the velocities. The azimuthal

variability is reflected in the empirical asymmetric amplitudes Atr and Ash estimated

at the radius of maximum winds. The HWind amplitudes for Katrina (resp. Sandy)

using GFS data are: Atr = 3.13 (4.20) and Ash = 2.65 (2.12). In contrast, the WRF

amplitudes for Katrina (resp. Sandy) using GFS data are: Atr = 7.08 (5.10) and Ash

= 4.44 (10.73).

The results suggest that the best model is the Vtr (TV+WVN-1) + Vsh (WVN-1)

model. However, the CVEs of the models including wavenumber-1 owing to shear

are only marginally better than those of models that do not include shear. For this

reason, we perform one-way analysis of variance (ANOVA) as a measure of whether

the differences in performance between two models are significant.6 According to the

one-way ANOVA, there is not a significant difference in performance between the Vtr

(TV+WVN-1) + Vsh (WVN-1) and Vtr (TV+WVN-1) models, which is evident in the

very similar wind fields estimated by these two models in Figure 2-8. Similarly, there

6Here, the one-way ANOVA tests whether there is a statistically significant difference between
the mean residuals of two different models.
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is not a significant performance difference between the Vtr (TV) + Vsh (WVN-1) and

Vtr (TV) models. Parameter estimation using a larger training set and/or evaluating

the parameters on more test storms would permit a more definitive conclusion on the

effect of shear on asymmetry.

2.5 Application of Model to Wind Field Simulation

Given an ensemble consisting of a large number (typically > 103) of synthetic storm

tracks, the asymmetric surface wind field can be simulated at points along each track

using the model proposed in this paper. Storm tracks can be generated using the

method proposed in [34]. After gradient wind fields are simulated along the tracks

using our model, a suitable boundary layer model such as the model proposed by

[107] may be used to convert the gradient winds to surface winds.

To simulate the mean field winds along each track would require estimation of

the Holland parameters. The parameters V̄m and Rm can be estimated using coupled

intensity models [33, 32]. The parameter B can be estimated as a function of the

central pressure difference and Vm, as suggested by [48]. The parameter S(𝑟) can be

estimated as a function of 𝑟0, the outer radius at which wind velocity is zero. Finally,

a lognormal distribution is recommended for drawing the radius 𝑟0 [35, 25].

To simulate the asymmetries in the wind field along the track, one can use the

estimated Vtr (TV+WVN-1) + Vsh (WVN-1) model in Table 2.3-2.4.7 Then, the

asymmetries can be simulated provided that the storm translation and wind shear

inputs are available. To further improve estimation of asymmetries, one can set the

amplitudes and phases to be a function of the asymmetries at a previous time step,

as well as the shear and translation at the current time. Our model can be suitably

extended to account for the dependence of asymmetry on the wind field at previous

times.

7This is the best-performing model, as discussed in Section 2.4.3. We elect to use the model
estimated using GFS because the wind shear obtained using GFS analyses with vortex inversion is
a more accurate estimate than using SHIPS.
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Figure 2-8: Visualization of 2D gradient wind field estimation. The plots show the
estimated wind field of Hurricane Sandy on October 25 at 16:30 using the following
models: mean field (upper left), Vtr (WVN-1) model (upper right), Vtr (TV) model
(middle left), Vtr (TV+WVN-1) model (middle right), Vtr (TV) + Vsh (WVN-1)
model (lower left), and Vtr (TV+WVN-1) + Vsh (WVN-1) model (lower right). The
plots show the translation vector (white) and shear vector (red), with the length of
the vectors indicating their relative magnitudes.

78



2.6 Summary

We proposed an asymmetric wind field model for the purpose of wind field estima-

tion along hurricane tracks. Our model incorporates wavenumber-1 asymmetries as a

function of storm translation speed and wind shear, modulating maximum intensity

Vm in the Holland equation. To obtain parameter estimates for our model, we for-

mulate a constrained, nonlinear least-squares (CNLS) optimization problem in which

the objective function is the sum of squared errors between model-estimated and

observationally-based velocity values.

The main contribution of our work is a systematic approach to asymmetric hurri-

cane wind field estimation for the purpose of simulating the wind field along statistically-

generated tracks in an ensemble. We fit a parametric model to past hurricane velocity

wind fields and use environmental variables to estimate asymmetry. Specifically, our

asymmetry model captures the wavenumber-1 asymmetric structure with or without

incluson of the translation vector in the model. Below we summarize our key findings:

• Inclusion of the translation vector in the wind field affects the wavenumber-1

asymmetry owing to translation. If the translation vector is not added to the

winds, the wavenumber-1 phase occurs slightly more than 90∘ clockwise of the

translation direction and rotates downwind with increasing translation speed.

If the translation vector is added, the wavenumber-1 component estimates the

residual asymmetry that remains in the wind field. The phase of this residual

asymmetry occurs slightly more than 90∘ counterclockwise of the translation

direction and rotates upwind with increasing translation speed.

• When using SHIPS data, the wavenumber-1 shear-relative phase rotates down-

wind from downshear to left of shear with increasing shear magnitude. When

using GFS data, the phase rotates from downshear to left of shear with increas-

ing shear magnitude if the wavenumber-1 component owing to translation is

included, but rotates upwind from upshear left to downshear left with increas-

ing shear magnitude otherwise. The asymmetry owing to shear is substantially

smaller when the wavenumber-1 asymmetry owing to translation is included.
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• To determine the best model, we evaluate models using the cross-validation

error, Bayesian information criterion, and mean squared error on test storms

as metrics. The procedure suggests that the best-performing model is the Vtr

(TV+WVN-1) + Vsh (WVN-1) model, which accounts for the translation vector

as well as wavenumber-1 asymmetries owing to translation and shear. However,

omission of the wavenumber-1 component owing to shear from this model only

marginally decreases the model performance. Additional data for estimation

would permit us to generate more conclusive results on asymmetry owing to

shear.

• Model performance is relatively weak on WRF data, because all the models

are trained using HWind data. Since WRF velocity data are instantaneous

winds, WRF snapshots have greater azimuthal variability that is not captured

by models estimated using HWind data. Additional WRF storms would allow

us to draw more decisive conclusions on the effect of using HWind vs. WRF

snapshots in parameter estimation.

2.7 Appendix A: Objective Function – Jacobian and

Hessian

Recall in Section 2.2 that to minimize the CNLS objective 𝑓(x), we supply the gra-

dient ∇𝑓(x) and Hessian ∇2𝑓(x) to the solver (see Equation 2.11). These deriva-

tives require the residual vector 𝑒(x), Jacobian 𝐽(x), and second derivative of the

residuals ∇2𝑒(x). The residual vector 𝑒(x) was defined for the wind field model

in Section 2.2. The Jacobian for velocity data point 𝑖, ∇𝑒𝑖(x), is one row of 𝐽(x)

and given as (𝐽𝑖(xtr)
⊤, 𝐽𝑖(xsh)

⊤)⊤, where 𝐽𝑖(xtr) = (𝐽𝑖(xtr,A)
⊤, 𝐽𝑖(xtr,𝜑)

⊤)⊤ and
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𝐽𝑖(xsh) = (𝐽𝑖(xsh,A)
⊤, 𝐽𝑖(xsh,𝜑)

⊤)⊤. Furthermore:

𝐽𝑖(xtr,A) =− Y𝑖 · cos[𝜆tr,𝑖 − 𝜑tr(Vtr,𝑡(𝑖); xtr,𝜑)] · 𝑑𝑡𝑟,𝑡(𝑖)

𝐽𝑖(xtr,𝜑) =− Y𝑖 · Atr(Vtr,𝑡(𝑖); xtr,A) · sin[𝜆tr,𝑖 − 𝜑tr(Vtr,𝑡(𝑖); xtr,𝜑)] · 𝑑𝑡𝑟,𝑡(𝑖)

𝐽𝑖(xsh,A) =− Y𝑖 · cos[𝜆sh,𝑖 − 𝜑sh(Vsh,𝑡(𝑖); xsh,𝜑)] · 𝑑𝑠ℎ,𝑡(𝑖)

𝐽𝑖(xsh,𝜑) =− Y𝑖 · Ash(Vsh,𝑡(𝑖); xsh,A) · sin[𝜆sh,𝑖 − 𝜑sh(Vsh,𝑡(𝑖); xsh,𝜑)] · 𝑑𝑠ℎ,𝑡(𝑖)

(2.14)

where 𝑑𝑡𝑟,𝑡(𝑖) = (1, Vtr,𝑡(𝑖))
⊤, 𝑑𝑠ℎ,𝑡(𝑖) = (1, Vsh,𝑡(𝑖))

⊤ and Y𝑖 is used to denote Y𝑖(𝑟𝑖,S𝑖(𝑟𝑖)),

or the mean field component for data point 𝑖. The second-derivatives of the residuals

are given as:

∇2𝑒𝑖(x) =

⎛⎝𝜕2𝑒𝑖(x)

𝜕x2
𝑡𝑟

0

0 𝜕2𝑒𝑖(x)

𝜕x2
sh

⎞⎠ (2.15)

where

𝜕2𝑒𝑖(x)

𝜕x2
𝑡𝑟

=

⎛⎝ 0 𝜕2𝑒𝑖(x)
𝜕xtr,A𝜕xtr,𝜑(︁

𝜕2𝑒𝑖(x)
𝜕xtr,A𝜕xtr,𝜑

)︁⊤
𝜕2𝑒𝑖(x)

𝜕x2
𝑡𝑟,𝜑

⎞⎠ , (2.16)

and

𝜕2𝑒𝑖(x)

𝜕x2
sh

=

⎛⎝ 0 𝜕2𝑒𝑖(x)
𝜕xsh,A𝜕xsh,𝜑(︁

𝜕2𝑒𝑖(x)
𝜕xsh,A𝜕xsh,𝜑

)︁⊤
𝜕2𝑒𝑖(x)

𝜕x2
sh,𝜑

⎞⎠ . (2.17)

Furthermore:

𝜕2𝑒𝑖(x)

𝜕xtr,A𝜕xtr,𝜑

= − Y𝑖 · sin[𝜆tr,𝑖 − 𝜑tr(Vtr,𝑡(𝑖); xtr,𝜑)] ·
(︂
𝑑𝑡𝑟,𝑡(𝑖)

)︂⊤(︂
𝑑𝑡𝑟,𝑡(𝑖)

)︂
𝜕2𝑒𝑖(x)

𝜕x2
tr,𝜑

= Y𝑖 · Atr(Vtr,𝑡(𝑖); xtr,A)

· cos[𝜆tr,𝑖 − 𝜑tr(Vtr,𝑡(𝑖); xtr,𝜑)] ·
(︂
𝑑𝑡𝑟,𝑡(𝑖)

)︂⊤(︂
𝑑𝑡𝑟,𝑡(𝑖)

)︂
,

(2.18)

and
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𝜕2𝑒𝑖(x)

𝜕xsh,A𝜕xsh,𝜑

= − Y𝑖 · sin[𝜆sh,𝑖 − 𝜑sh(Vsh,𝑡(𝑖); xsh,𝜑)] ·
(︂
𝑑𝑠ℎ,𝑡(𝑖)

)︂⊤(︂
𝑑𝑠ℎ,𝑡(𝑖)

)︂
𝜕2𝑒𝑖(x)

𝜕x2
sh,𝜑

= Y𝑖 · Ash(Vsh,𝑡(𝑖); xsh,A) · cos[𝜆sh,𝑖 − 𝜑sh(Vsh,𝑡(𝑖); xsh,𝜑)]

·
(︂
𝑑𝑠ℎ,𝑡(𝑖)

)︂⊤(︂
𝑑𝑠ℎ,𝑡(𝑖)

)︂
.

(2.19)

2.8 Appendix B: Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is defined as:

BIC = −2 ln(𝐿̂) + ln(N)M (2.20)

where 𝐿̂ is the maximum likelihood of the model, N is the number of data points,

and M is the number of model parameters. A lower value of the BIC corresponds to

a higher-quality model.

The sum of squared residuals is the metric minimized using the CNLS method

(Equation 2.11), but computing the BIC requires the model’s maximum likelihood.

Thus we estimate ln(𝐿̂) to be the maximum log-likelihood of a Gaussian model, for

which the estimation error at each data point 𝑖 is independently distributed with

mean 𝑒𝑖(x) and variance 𝜎̂2:

ln(𝐿̂) = −N

2
ln(2𝜋𝜎̂2)− 1

2𝜎̂2

N∑︁
𝑖=1

𝑒2𝑖 (x̂). (2.21)

The parameter 𝜎̂ is the empirical standard deviation of the residuals. The BIC is

computed for each model and the minimum BIC is denoted as BIC. Then, the final

metric reported is the probability of each model 𝑚 divided by the probability of the

best-performing model, given by exp(−0.5(BIC𝑚−BIC)). See [10] for further details.
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Chapter 3

Probabilistic Modeling of

Storm-Induced Damage in

Infrastructure Systems

In this section, we develop a modeling approach for probabilistic estimation of hur-

ricane wind-induced damage to overhead infrastructural assets. Our approach aims

to bridge a gap that exists between hurricane models and forecasting methods [67,

43, 61, 105, 30, 107, 47, 18, 115, 15, 33, 32] on one hand, and probabilistic models

for prediction of damages or outages [63, 64, 45, 8, 118, 3, 116] on the other. In

particular, our modeling approach captures real-time hurricane forecast uncertainties

as well as the inherent spatial variability of hurricane wind velocities.

To represent the impact of uncertainty in the forecasted hurricane track’s tem-

poral evolution, we employ “Forecasts of Hurricanes using Large-Ensemble Outputs”

(FHLO), which produces 1000-member forecast track and intensity ensembles [61].

FHLO is particularly suitable for our approach because its ensemble members are

computationally inexpensive to produce, in comparison to using typical ensemble nu-

merical weather prediction (NWP) systems [96, 71]. Using the probabilistic wind

forecast given by FHLO as input, we employ a physically-based Nonhomogeneous

Poisson Process (NHPP) model [8, 118, 3, 116] that outputs spatially-varying prob-

ability distributions of the extent of damage (number of asset failures). The distri-
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bution is parameterized by a failure rate (expected number of failed assets), which

varies spatially to reflect the radial and azimuthal variations in hurricane wind veloc-

ities. The failure rate at a given location is dependent on the local time history of

the hurricane wind velocity.

The contributions in this section are detailed in our recent submission to Risk

Analysis. In Section 3.1, we discuss our modeling approach for probabilistic dam-

age estimation. In Section 3.2, we analyze how NHPP-estimated spatial extent and

variability of damage depend on hurricane intensity and size, as well as the inclusion

of wind field asymmetries. In Section 3.3, we study how incorporating the forecast

uncertainty as given by FHLO affects the NHPP model damage estimates in the cases

of Hurricanes Hermine (2016) and Michael (2018). Section 3.4 applies our modeling

approach to the prediction of outages (i.e., loss-of-service) in electric power infras-

tructure due to Hurricane Michael. In Section 3.5, we provide brief insights into

how hurricane intensity and size impact total damage and resulting financial losses.

Finally, we provide concluding remarks in Section 3.6.

3.1 Modeling Approach

In this section, we develop a probabilistic model for estimating spatially-varying dam-

age to overhead assets in infrastructure systems. To evaluate damage due to hurricane

winds, we estimate a probability distribution over the number of failed assets in each

defined two-dimensional spatial region 𝑔 ∈ 𝒢. In our approach, the location-specific

probability distribution is dependent on the hurricane surface wind field velocities,

which are forecasted at each location 𝑔 ∈ 𝒢 and time 𝑡 ∈ 𝒯 . The set of times 𝒯

encompasses discrete time steps between the initial forecast time 𝑡0 and final fore-

cast time 𝑡f , where forecast duration T = 𝑡f − 𝑡0. The times are equally spaced and

separated by a time interval of Δ𝑡.

We use H = {𝑣𝑔,𝑡}𝑔∈𝒢,𝑡∈𝒯 to denote the hurricane wind field as a random field,

where 𝑣𝑔,𝑡 defines the velocity at location 𝑔 and time 𝑡. Furthermore, H𝑔 = {𝑣𝑔,𝑡}𝑡∈𝒯
denotes the velocities corresponding to location 𝑔, and H𝑡 = {𝑣𝑔,𝑡}𝑔∈𝒢 the velocities
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corresponding to time 𝑡. Henceforth, we will use the notation H̃ to denote a specific

instance of a hurricane wind field, which can be appropriately subscripted using 𝑔

and 𝑡.

The probabilistic hurricane surface wind field forecast is given by Forecasts of Hur-

ricanes using Large-Ensemble Outputs (FHLO), which we discuss in Section 3.1.1.

Using a surface wind field forecast (FHLO) as input, we estimate probability dis-

tributions of damage (number of failed assets) within the infrastructure system by

employing the nonhomogeneous Poisson Process (NHPP) model (Section 3.1.2). We

discuss an NHPP model for hurricane wind-induced failures of overhead assets in elec-

tricity infrastructure (see Section 3.1.3), which we use in the remainder of this article.

Finally, we discuss how the NHPP model outlined in Section 3.1.3 can be integrated

with FHLO, in order to account for forecast uncertainties in damage estimates (see

Section 3.1.4).

3.1.1 Forecasts of Hurricanes using Large-Ensemble Outputs

(FHLO)

Forecasts of Hurricanes using Large-Ensemble Outputs (FHLO) is a physically-based

model framework developed by Lin, Emanuel, and Vigh [61], which generates prob-

abilistic forecasts of the hurricane wind field. Specifically, FHLO is used to produce

probability distributions of wind velocity at fixed locations in space, using a three-

component framework: 1) a track model that bootstraps 1,000 synthetic tracks from

the much smaller number of forecast hurricane tracks from an ensemble numerical

weather prediction model; 2) an intensity model that predicts the maximum wind

speed along each synthetic track; and 3) a parametric wind field model that esti-

mates the time-varying two-dimensional surface wind field along each synthetic track

given the position and intensity of the storm. We useℋ = {H̃(𝑖)}∀𝑖∈{1,...,H} to refer to a

hurricane ensemble obtained from FHLO: the ensemble consists of H = 1, 000 ensem-

ble members, where each member is indexed by 𝑖 and denoted by H̃(𝑖) = {𝑣(𝑖)𝑔,𝑡}𝑔∈𝒢,𝑡∈𝒯 .

The empirical probability of the wind field H̃(𝑖) is 1/H.
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FHLO assumes an initialization time at which the forecast begins, typically 1-3

days before the hurricane is projected to make landfall. Randomness in hurricane

tracks and wind velocities stems from forecast uncertainty in the hurricane track

evolution, dynamic and thermodynamic environments, and initial conditions. The

probabilistic intensity forecasts given by FHLO are comparable in accuracy to those

of HWRF, an advanced numerical weather prediction model, but also far less com-

putationally intensive to produce.

3.1.2 Nonhomogeneous Poisson Process (NHPP) Model

We now focus on generating probabilistic, spatially-varying estimates of damage, us-

ing a hurricane wind field H̃ as input. For each spatial location 𝑔 ∈ 𝒢, we aim to

compute a probability distribution over the number of damaged assets in 𝑔 accumu-

lated over the set of times 𝑡 ∈ 𝒯 .

To compute the probability distributions, we employ a Nonhomogeneous Poisson

Process (NHPP) model. The Poisson process is appropriate not only because it

models a countable response variable (number of asset failures), but also because its

resulting probability distribution is right-skewed. Occurrences of a large number of

infrastructural asset failures in a day are atypical, and usually only occur as a result

of severe disruptions such as high-intensity hurricanes [118]. This is appropriately

modeled by a right-skewed distribution, in which the probability of large numbers

of failures is small. A Poisson process is nonhomogeneous if the rate of failures is

time-dependent. We choose a nonhomogeneous Poisson process model because in

our model, infrastructural asset failures are dependent on the time-varying hurricane

wind velocities. On the other hand, a homogeneous Poisson process assumes an asset

failure rate that is constant with time.

Here, the NHPP model is used to estimate the Poisson intensities 𝜆𝑔,𝑡 for locations

𝑔 ∈ 𝒢 and at times 𝑡 ∈ 𝒯 . The Poisson intensity is the expected number of failures

per unit time, normalized by the asset density. For instance, if we are modeling failure

of overhead electricity distribution lines, then the asset density is given by the length

(km) of lines. More broadly, asset density could also be represented as an area or
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volume, depending on the asset in question.

We model the Poisson intensity 𝜆𝑔,𝑡 to be a function of the velocity 𝑣𝑔,𝑡; the

parametric form of the function depends on the infrastructure system and asset type

in question. The Poisson intensities 𝜆𝑔,𝑡𝑣𝑔,𝑡) for 𝑡 ∈ 𝒯 can be used to compute the

failure rate Λ𝑔, the expected number of failures in 𝑔 accumulated over the hurricane’s

lifetime and normalized by the asset density:

Λ𝑔(H𝑔) =
∑︁
𝑡∈𝒯

𝜆𝑔,𝑡(𝑣𝑔,𝑡) Δ𝑡, (3.1)

where Δ𝑡 is the time spacing between each time 𝑡 ∈ 𝒯 . A typical measure of Δ𝑡 is

one hour.

Both the Poisson intensity and failure rate are measures of expected damage when

the number of assets per location can be treated as a large number (infinite). Under

this assumption, the probability that there are 𝑠𝑔 failures in location 𝑔, normalized

by asset density, is given by the Poisson distribution:

Pr(𝑠𝑔 | Λ𝑔) =
Λ
𝑠𝑔
𝑔

𝑠𝑔!
exp(−Λ𝑔), (3.2)

where Λ𝑔, the failure rate, is also referred to as the Poisson parameter.

If the asset density 𝑙𝑔 in 𝑔 is known, then the corresponding “total” failure rate is

𝑙𝑔Λ𝑔. If we wish to obtain the distribution over the total number of failures (rather

than normalized failures) in a location 𝑔, we use 𝑙𝑔Λ𝑔 as the Poisson parameter in

place of Λ𝑔. In the example of electricity distribution lines, Λ𝑔 would be the expected

number of failures per kilometer of distribution lines and 𝑙𝑔 is the length of distribution

lines in kilometers within location 𝑔.

In reality, the number of assets per location is finite and varies across locations.

If there are a finite number of assets 𝑆𝑔 in a location 𝑔, then the distribution over the

total number of failed assets must be modified accordingly:

Pr(𝑠𝑔 | 𝑙𝑔Λ𝑔) =

⎧⎪⎨⎪⎩
(𝑙𝑔Λ𝑔)

𝑠𝑔

𝑠𝑔 !
exp(−𝑙𝑔Λ𝑔), for 𝑠𝑔 < 𝑆𝑔

1− exp(−𝑙𝑔Λ𝑔)
∑︀𝑆𝑔−1

𝑥=0

(𝑙𝑔Λ𝑔)
𝑥

𝑥!
, for 𝑠𝑔 = 𝑆𝑔

⎫⎪⎬⎪⎭ (3.3)
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Hereafter, we refer to the distribution given by Eq. 3.3 as incorporating “satu-

ration” in the number of failures. Under this distribution, the expected number of

failures E[𝑠𝑔] normalized by asset density is not given by 𝑆𝑔Λ𝑔, but rather by:

E[𝑠𝑔] =

𝑆𝑔∑︁
𝑥=0

𝑥 Pr(𝑠𝑔 = 𝑥)

=

𝑆𝑔−1∑︁
𝑥=0

𝑥
(𝑙𝑔Λ𝑔)

𝑥

𝑥!
exp(−𝑙𝑔Λ𝑔)

+ 𝑆𝑔

[︃
1− exp(−𝑙𝑔Λ𝑔)

𝑆𝑔−1∑︁
𝑥=0

(𝑙𝑔Λ𝑔)
𝑥

𝑥!

]︃

= 𝑙𝑔Λ𝑔 exp(−𝑙𝑔Λ𝑔)
𝑆𝑔−1∑︁
𝑥=1

(𝑙𝑔Λ𝑔)
𝑥−1

(𝑥− 1)!

+ 𝑆𝑔

[︃
1− exp(−𝑙𝑔Λ𝑔)

𝑆𝑔−1∑︁
𝑥=0

(𝑙𝑔Λ𝑔)
𝑥

𝑥!

]︃
,

(3.4)

where Pr(𝑠𝑔 = 𝑥) is the probability of 𝑥 events as given by the Poisson distribution

in Eq. 3.3. Fig. 3-1 demonstrates how incorporating saturation affects the expected

number of failures E[𝑠𝑔] in a location 𝑔, following Eq. 3.4. Notice that E[𝑠𝑔] asymp-

totically approaches 𝑆, the total number of assets in 𝑔. In this case we consider a

location with 𝑆𝑔 = 30 distribution lines (3 kilometers of lines in the location, where

each line has a length of 100 meters).

Figure 3-1: Expected number of failures E[𝑠𝑔] given by Eq. 3.4 vs. failure rate Λ𝑔.
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3.1.3 NHPP Model for Failure of Overhead Power Infrastruc-

ture Assets

In the remainder of this work, we focus on an application of the NHPP model to hurri-

cane wind-induced failures of overhead infrastructure assets in electricity distribution

systems. In particular, failures of electricity distribution lines are a frequent cause of

outages in electricity power systems [11]. Line failures typical result from downing

of supporting poles or toppling by nearby trees. A standard means of modeling the

Poisson intensity is to use a quadratic function [8, 3, 116], which reflects the fact that

the pressure exerted on trees and poles is a function of the wind velocity squared. On

the other hand, a previous study suggests that the number of outages as a function

of wind velocity is best described by an exponential relationship [55]. Both quadratic

and exponential models suggest that the Poisson intensity increases at a superlinear

rate with respect to the wind velocity.1

For this work, we focus on a quadratic model for Poisson intensity 𝜆𝑔,𝑡, the ex-

pected number of failures per hour and kilometer of assets (i.e., distribution lines):

𝜆𝑔,𝑡(𝑣𝑔,𝑡) =

⎧⎪⎪⎨⎪⎪⎩
(︃
1 + 𝛼

(︁(︁
𝑣𝑔,𝑡
Vcrit

)︁2
− 1
)︁)︃

𝜆norm, if 𝑣𝑔,𝑡 ≥ Vcrit

𝜆norm, if 𝑣𝑔,𝑡 < Vcrit.

(3.5)

The model’s key physically-based feature is the quadratic relationship between 𝜆𝑔,𝑡

and 𝑣𝑔,𝑡 when 𝑣𝑔,𝑡 is greater than the so-called critical velocity Vcrit. For velocities

below Vcrit, the infrastructure system only suffers from a fixed nominal failure rate of

𝜆norm.2 The parameter 𝛼 is a scaling parameter that controls for the increase in failure

rate with velocities above Vcrit. All three model parameters (Vcrit, 𝜆norm, and 𝛼) are

dependent on the asset type and properties (i.e., height, age, material composition).

1Other considerations such as precipitation and soil cover have also been shown to be relevant to
modeling of failures and outages, but we focus solely on the variability of Poisson intensities due to
the hurricane wind velocities.

2Literature has suggested that Vcrit is 8 m/s, when using historical Swedish weather data in
which velocities did not exceed 20 m/s [3], In contrast, Vcrit was estimated to be 20.6 m/s when
using velocities from historical hurricanes up to Category 2 intensity on the Saffir-Simpson scale
[116].
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For the remainder of this article, we use the following parameter values (adapted from

[116]): Vcrit = 20.6 m/s, 𝛼 = 4175.6, and 𝜆norm = 3.5× 10−5 failures/hr/km.

The equation can be rewritten accordingly, to separate the constant term and

velocity-dependent term:

𝜆𝑔,𝑡(𝑣𝑔,𝑡) = 𝜆norm(1− 𝛼) + 𝜆norm𝛼𝑓
2(𝑣𝑔,𝑡), (3.6)

where

𝑓(𝑣𝑔,𝑡) =
max(Vcrit, 𝑣𝑔,𝑡)

Vcrit

. (3.7)

Using Eq. 3.1, the failure rate Λ𝑔 for all 𝑔 ∈ 𝒢 is given by:

Λ𝑔(H𝑔) = 𝜆normT(1− 𝛼) + 𝜆norm𝛼Δ𝑡
∑︁
𝑡∈𝒯

𝑓 2(𝑣𝑔,𝑡). (3.8)

Previous applications of the presented quadratic model [118, 3, 116] did not eval-

uate the spatial variability in estimated Poisson failure rates due to the physical

structure of the hurricane wind field, even though hurricane wind velocities vary sig-

nificantly with space and time. In contrast, our approach incorporates spatiotemporal

variabilities in winds to estimate the Poisson failure rates. We are also readily able

to replace the quadratic model with an exponential model for the Poisson intensity

within the modeling approach. Furthermore, it is worth noting that our estimated

failure rates use wind velocity inputs at one-hour intervals, as opposed to intervals

of 3+ hours in the abovementioned applications of the quadratic model. In Section

3.2, we study the dependence of failure rates on variations in the hurricane wind field

velocities.

3.1.4 Integrating FHLO and NHPP Model

We discuss how to incorporate hurricane forecast uncertainty, as given by FHLO,

in estimating the failure rates and failure distributions using the quadratic NHPP

model in Section 3.1.3. In contrast, previous works [118, 3, 116] did not incorporate

hurricane forecast uncertainties in failure rate estimation, in addition to not analyzing
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how failure rates are affected by wind velocity variability.

Consider a hurricane ensemble ℋ obtained from FHLO. We define the expected

velocity 𝑣𝑔,𝑡 in location 𝑔 at time 𝑡:

𝑣𝑔,𝑡 = E[𝑣𝑔,𝑡] =
1

H

H∑︁
𝑖=1

𝑣
(𝑖)
𝑔,𝑡, (3.9)

in which 𝑣(𝑖)𝑔,𝑡 is the velocity in grid 𝑔 at time 𝑡, for ensemble member 𝑖. For notational

convenience, we use E[H𝑔] to denote {𝑣𝑔,𝑡}𝑡∈𝒯 and E[H] to denote {𝑣𝑔,𝑡}𝑔∈𝒢,𝑡∈𝒯 .

One can consider two ways to incorporate FHLO in estimating failure rates:

• Failure Rate 1 (FR-1): the failure rate as a function of the ensemble-averaged

wind velocities, denoted by Λ𝑔(E[H𝑔]). Using Eq. 3.1, FR-1 for a location 𝑔

can be written as:
Λ𝑔(E[H𝑔]) =

∑︁
𝑡∈𝒯

𝜆𝑔,𝑡(𝑣𝑔,𝑡)Δ𝑡. (3.10)

Then, using Eq. 3.8, FR-1 under the quadratic NHPP model can be written as:

Λ𝑔(E[H𝑔]) = 𝜆normT(1− 𝛼) + 𝜆norm𝛼Δ𝑡
∑︁
𝑡∈𝒯

𝑓 2(𝑣𝑔,𝑡). (3.11)

• Failure Rate 2 (FR-2): the ensemble-averaged failure rate, denoted by E[Λ𝑔(H𝑔)].

Using Eq. 3.1, FR-2 for a location 𝑔 can be written as:

E[Λ𝑔(H𝑔)] =
1

H

H∑︁
𝑖=1

Λ𝑔(H̃
(𝑖)
𝑔 )

=
1

H

H∑︁
𝑖=1

∑︁
𝑡∈𝒯

𝜆𝑔,𝑡(𝑣
(𝑖)
𝑔,𝑡)Δ𝑡.

(3.12)
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Then, using Eq. 3.8, FR-2 under the quadratic NHPP model can be written as:

E[Λ𝑔(H𝑔)] = 𝜆normT(1− 𝛼) + 𝜆norm𝛼Δ𝑡
1

H

H∑︁
𝑖=1

∑︁
𝑡∈𝒯

𝑓 2(𝑣
(𝑖)
𝑔,𝑡)

= 𝜆normT(1− 𝛼) + 𝜆norm𝛼Δ𝑡
∑︁
𝑡∈𝒯

1

H

H∑︁
𝑖=1

𝑓 2(𝑣
(𝑖)
𝑔,𝑡),

= 𝜆normT(1− 𝛼) + 𝜆norm𝛼Δ𝑡
∑︁
𝑡∈𝒯

E[𝑓 2(𝑣𝑔,𝑡)].

(3.13)

Obtaining FR-2 requires computing the failure rate for each ensemble member.

Thus FR-2 more completely incorporates the uncertainty in the hurricane wind field

represented by the ensemble members, in comparison to FR-1. In this article, we

compute both FR-1 and FR-2, to demonstrate how more exhaustive incorporation of

uncertainty from FHLO in the case of FR-2 affects the failure rate estimates. More

specifically, we prove that FR-2 is greater than or equal to FR-1:

Proposition 3.1.1. For a location 𝑔 and wind velocities H𝑔, the following holds for

the failure rate Λ𝑔:

E[Λ𝑔(H𝑔)] ≥ Λ𝑔(E[H𝑔]) (3.14)

Proof. First, we show that the following inequality holds:

E[𝑓 2(𝑣𝑔,𝑡)] ≥ 𝑓 2(𝑣𝑔,𝑡). (3.15)

To do so, we restate the term 𝑓 2(𝑣𝑔,𝑡) following Eq. 3.6:

𝑓 2(𝑣𝑔,𝑡) =

⎧⎨⎩ 1, for 𝑣𝑔,𝑡 < Vcrit(︁
𝑣𝑔,𝑡
Vcrit

)︁2
, for 𝑣𝑔,𝑡 ≥ Vcrit

⎫⎬⎭ (3.16)

We can note from Eq. 3.16 that:

𝑣2𝑔,𝑡
V2

crit

≥ 𝑓 2(𝑣𝑔,𝑡). (3.17)

Because 𝑓(𝑣𝑔,𝑡) = max(Vcrit, 𝑣𝑔,𝑡)/Vcrit, it follows that 𝑓(𝑣𝑔,𝑡) ≥ 𝑣𝑔,𝑡/Vcrit and
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𝑓(𝑣𝑔,𝑡) ≥ 1. Then, we obtain the following:

E[𝑓 2(𝑣𝑔,𝑡)] ≥
E[𝑣2𝑔,𝑡]
V2

crit

≥
𝑣2𝑔,𝑡
V2

crit

(3.18)

The right-hand inequality in Eq. 3.18 is a consequence of Jensen’s inequality, noting

that 𝑣2𝑔,𝑡 is a quadratic function and therefore convex.

From Eq. 3.17-3.18, we conclude that Eq. 3.15 holds. Using Eq. 3.11 and 3.13,

we arrive at Eq. 3.14.

In 3.3.1, we estimate FR-1 and FR-2 for historical hurricanes, and discuss the

implications of Proposition 3.1.1 on the failure rate estimates.

Next we define two estimates of the failure distribution in a location 𝑔, which

incorporate FHLO. In defining the distribution estimates, we assume a very large

(infinite) number of assets, in order to focus on the relationship between wind ve-

locities and the failure distributions rather than the effect of infrastructure-specific

characteristics (i.e., number of assets).

Let Pr(𝑠𝑔 | 𝑥) refer to the Poisson distribution given by 3.2, which determines the

number of failures 𝑠𝑔 in location 𝑔 under Poisson parameter 𝑥. Then, the distribution

estimates are given as follows:

• Failure Distribution A (FD-A) is given by Pr(𝑠𝑔 | E[Λ𝑔(H𝑔)]), i.e., the

Poisson distribution with the ensemble-averaged failure rate (FR-2) as the dis-

tribution’s Poisson parameter.

• Failure Distribution B (FD-B) is an ensemble-averaged distribution ob-

tained as follows: First, for each ensemble member 𝑖, we obtain a Poisson

distribution which uses Λ
(𝑖)
𝑔 = Λ𝑔(H̃

(𝑖)
𝑔 ) as the Poisson parameter. Then, the

probability that there are 𝑠𝑔 failures in grid 𝑔 is given by:

Pr(𝑠𝑔) =
1

H

H∑︁
𝑖=1

Pr(𝑠𝑔 | Λ(𝑖)
𝑔 ) (3.19)

i.e., we consider that the distribution given by parameter Λ
(𝑖)
𝑔 for ensemble

member 𝑖 occurs with probability 1/H. This is a valid probability distribution
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because the probability mass owing to each ensemble member is 1/H and there

are H ensemble members.

By definition, the expected number of failures under both models is equivalent.

However, FD-B more completely incorporates the uncertainty in the wind field rep-

resented by the ensemble members, because it is calculated by using the ensemble

member-specific Poisson distributions. In 3.3.2, we compare FD-A vs. FD-B when

computed using historical hurricane wind fields, in order to demonstrate how the more

complete incorporation of uncertainty in FD-B affects the probabilities of high-failure

scenarios.

3.2 Analyzing Spatial Variability of Damage

As we have discussed in the previous section, our probabilistic modeling approach

accounts for spatial variability and forecast uncertainty in the damage estimates. In

this section, we analyze how spatial variability in NHPP-estimated failure rates is

dependent on key hurricane wind field parameters such as hurricane intensity, size,

and asymmetries. We assume a deterministic hurricane track (i.e., no uncertainty

in the hurricane’s track evolution). This permits us to isolate the dependency of

damage on the hurricane wind field’s physical structure. In Section 3.3, we assess

how forecast uncertainty given by FHLO affects the computed failure rates and failure

distributions.

For our analysis in this section, we consider a simple axisymmetric hurricane

(see Section 3.2.1). We quantify the spatial extent of damage, as measured by what

we define as the ‘critical zone’ (see Section 3.2.2), the geographical region in which

failure rates exceed a defined threshold. Finally, we analyze how varying hurricane

parameters including asymmetries affect the critical zone area and asset density-

normalized failure rates (see Sections 3.2.3 – 3.2.4).
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3.2.1 Simple hurricane

We consider a simple, stylized axisymmetric model in which the hurricane track de-

terministically moves in a straight line from a defined initial (genesis) point xh0 to final

(lysis) point xhf . In addition, the hurricane (or more specifically, the hurricane cen-

ter/eye) travels at a constant rate given by Vtr, the hurricane translation speed. For a

time duration 𝑡 after hurricane genesis, the hurricane track location is xh𝑡 = xh0 +Vtr𝑡.

The parameters xh0, xhf , and Vtr are length-2 vectors, to separately model the hurri-

cane’s north-south and east-west movement.

Given the hurricane track, we estimate the wind field H̃ = {𝑣𝑔,𝑡}𝑔∈𝒢,𝑡∈𝒯 , which

consists of velocities defined at grids 𝑔 ∈ 𝒢 and times 𝑡 ∈ 𝒯 . Here, 𝒯 = {𝑡0, ..., 𝑡f},

where hurricane genesis occurs at time 𝑡0 in location xh0 and dissipates at time 𝑡f in

location xhf . We assume that the wind field at a time 𝑡, defined as H̃𝑡 = {𝑣𝑔,𝑡}𝑔∈𝒢, is

given by the Holland 1980 model [47]:

𝑣𝑔,𝑡(𝑟𝑔,𝑡) = Vm

(︁Rm

𝑟𝑔,𝑡

)︁B/2
exp

(︃
1

2

(︁
1−

(︁Rm

𝑟𝑔,𝑡

)︁B)︁)︃
, (3.20)

where 𝑟𝑔,𝑡 =
⃦⃦
x𝑔 − xh𝑡

⃦⃦
2

(L2 norm) and x𝑔 denotes the centre-point of grid 𝑔. For

the purposes of this section, we assume that the Holland parameters remain constant

for the duration of the storm and B = 1.3

3.2.2 Effect of hurricane parameters on critical zone

We now define the so-called hurricane “critical zone”, which is a measure of the spatial

extent of hurricane-induced damage:

Definition 3.2.1. Consider a hurricane wind field H̃𝑡 at time 𝑡 for which the max-

imum intensity Vm(𝑡) ≥ Vthres, where Vthres is a defined threshold velocity. Then

the critical zone of H̃𝑡 consists of all spatial locations 𝑔 ∈ 𝒢 for which (1) radius

𝑟𝑔,𝑡 < Rm(𝑡); or (2) 𝑟𝑔,𝑡 ≥ Rm(𝑡) and 𝑣𝑔,𝑡 ≥ Vthres, where Rm(𝑡) is the radius of

maximum winds at time 𝑡. Furthermore, the critical zone of the entire wind field H̃

consists of the union of the critical zones for the time-specific wind fields H̃𝑡 , ∀𝑡 ∈ 𝒯 .
3Typically B is between 1 and 2.5.
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If the maximum intensity Vm(𝑡) < Vthres at time 𝑡, then the wind field H̃𝑡 does

not have a critical zone.

If a wind field H̃𝑡 at time 𝑡 is axisymmetric, then the wind velocity 𝑣𝑔,𝑡 is only

dependent on radial distance 𝑟𝑔,𝑡 and we can define a so-called “critical radius”:

Definition 3.2.2. Assume that for an axisymmetric hurricane wind field H̃𝑡 at time

𝑡, Vm(𝑡) ≥ Vthres. Then, the critical radius Rcrit(Vthres, 𝑡) is defined as a radius

𝑟 ≥ Rm at which the velocity 𝑣 = Vthres. The wind field does not have a critical

radius if Vm(𝑡) < Vthres.

According to Definitions 3.2.1-3.2.2, the critical zone of an axisymmetric wind

field H̃𝑡 consists of all spatial locations 𝑔 for which the radius 𝑟𝑔,𝑡 is less than the

defined critical radius Rcrit(Vthres, 𝑡). We now present a simple result, under the

restriction that we consider the simple, stylized axisymmetric hurricane model:

Lemma 3.2.3. Assume that a hurricane has a straight-line track and constant trans-

lation speed Vtr. Furthermore, the hurricane has a Holland wind field given by Eq.

3.20 with constant Holland parameters, maximum intensity Vm ≥ Vthres, and a defined

critical radius Rcrit(Vthres) (with a slight abuse of notation, Vm and Rcrit are constant

with time and thus not a function of 𝑡). Then, the critical zone of a hurricane wind

field H̃ forms an obround with area Acrit given by:

Acrit = 2Rcrit(Vthres)T ‖Vtr‖2 + 𝜋[Rcrit(Vthres)]
2, (3.21)

where T is the hurricane lifetime, the obround’s rectangle length T ‖Vtr‖2 is the dis-

tance covered by the hurricane track, and the rectangle width is given by two times

the critical radius Rcrit(Vthres). The first half-circle at one end of the obround corre-

sponds to one-half of the critical zone area for the hurricane at genesis. The second

half-circle at the other end corresponds to one-half of the critical zone area for the

hurricane at lysis.

For the remainder of the paper, we will focus on the quadratic NHPP model and

set Vthres = Vcrit, where Vcrit is the model’s critical velocity parameter. This case
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is particularly important, because the Poisson intensity is equal to 𝜆norm when the

hurricane velocity is below Vcrit. Under this specific model, we present a further

result:

Proposition 3.2.4. For the quadratic NHPP model given by Eq. 3.5 and the param-

eter Vthres = Vcrit, the failure rate Λ𝑔 > 𝜆normT if and only if a spatial location 𝑔 falls

in the critical zone of an axisymmetric hurricane H̃ with duration T.

Proof. If location 𝑔 is not in the critical zone of H̃, then the Poisson intensity 𝜆𝑔,𝑡 =

𝜆norm at all times 𝑡 ∈ 𝒯 and thus Λ𝑔 = 𝜆normT. If 𝑔 is in the critical zone of H̃, then

the velocity 𝑣𝑔,𝑡 > Vcrit for at least one time 𝑡 ∈ 𝒯 (following Definitions 3.2.1-3.2.2).

Since velocity 𝑣𝑔,𝑡 exceeds Vcrit, we have 𝜆𝑔,𝑡 > 𝜆norm and from Eq. 3.8, we conclude

that Λ𝑔 > 𝜆normT.

3.2.3 Effect of hurricane parameters on critical zone

Now we demonstrate how the critical radius Rcrit and critical zone area Acrit vary

with the hurricane parameters Vm and Rm, using the simple hurricane outlined in

Section 3.2.1. Because of the Holland model’s inherent nonlinearity, it is difficult to

analytically determine Rcrit as a function of the Holland parameters. However, we

can obtain an approximate estimate of Rcrit by first defining the ‘normalized’ critical

radius 𝑟⋆norm:

𝑟⋆norm =
Rcrit

Rm

. (3.22)

Because Eq. 3.22 suggests that Rcrit varies linearly with Rm, we consider a function

of the following form for Rcrit:

Rcrit(Vm, Rm) =

⎧⎨⎩
0 Vm < Vcrit (3.23a)

𝑎1Rm

(︁ Vm

Vcrit

)︁𝑎2
Vm ≥ Vcrit. (3.23b)

We obtain Eq. 3.23a by noting that Rcrit/Rm = 0 when Vm < Vcrit. We obtain

Eq. 3.23b by observing that Rcrit/Rm = 1 for Vm = Vcrit and increases with Vm for

Vm > Vcrit.
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Using Lemma 3.2.3, we arrive at an equation for the critical zone area Acrit as a

function of Rm and Vm, when Vm ≥ Vcrit:

Acrit(Vm, Rm) = 2RcritT ‖Vtr‖2 + 𝜋Rcrit
2

= 2T ‖Vtr‖2 𝑎1Rm

(︂
Vm

Vcrit

)︂𝑎2
+ 𝜋𝑎21R

2
m

(︂
Vm

Vcrit

)︂2𝑎2

= 𝑏1Rm

(︂
Vm

Vcrit

)︂𝑎2
+ 𝑏2R

2
m

(︂
Vm

Vcrit

)︂2𝑎2

,

(3.24)

where 𝑏1 = 2T ‖Vtr‖2 𝑎1 and 𝑏2 = 𝜋𝑎21. The complete defined parametric function for

Acrit is as follows:

Acrit(Vm, Rm) =

⎧⎨⎩
0 Vm < Vcrit (3.25a)

𝑏1Rm

(︁ Vm

Vcrit

)︁𝑎2
+ 𝑏2R

2
m

(︁ Vm

Vcrit

)︁2𝑎2
Vm ≥ Vcrit. (3.25b)

For purposes of estimating the parameters 𝑎1 and 𝑎2, we calculate the critical

radius numerically for hurricanes with values of Rm between 20 and 50 km (step size

of 1 km) and Vm between 21 and 80 m/s (step size of 1 m/s). These hurricanes have

a straight-line track moving northward with a lifetime T = 121 and translation speed

‖Vtr‖2 = 3 m s−1. Then, we take the logarithm of Eq. 3.23b and use the least-squares

method to estimate the parameters relating Vm and Rm to the critical radius. The

resulting parameters, 𝑎1 = 1.84 and 𝑎2 = 2.32, are statistically significant with 95%

confidence (see Figure 3-2).

Figure 3-3 illustrates how the critical zone area, as well as failure rates within the

critical zone, depend on the hurricane’s maximum intensity Vm. The critical zone

areas for the hurricanes in Figure 3-3 are: 2.27×105 km2 (Tropical Storm), 7.31×105

km2 (Category 1), and 1.36×106 km2 (Category 2). Moreover, the failure rates vary

more significantly with radial distance within the critical zone if the maximum in-

tensity is higher. The maximum asset density-normalized failure rate achieved in the

critical zone is the following for each storm: 0.6 failures/km (Tropical Storm), 5.7

failures/km (Category 1), and 12.9 failures/km (Category 2). As a benchmark, the
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Figure 3-2: Numerically-computed critical radius Rcrit (left) and critical zone area
Acrit (right), as a function of Vm for fixed values of Rm. Best-fit polynomial functions
are included for each curve in both plots, given by the dotted blue lines.

failure rate threshold for a location 𝑔 belonging in the critical zone, 𝜆normT, is equal to

0.0042 failures/km. The average asset density-normalized failure rate in the critical

zone is given by the following for each storm: 0.3 failures/km (Tropical Storm), 2.2

failures/km (Category 1), and 4.3 failures/km (Category 2).

Figure 3-4 illustrates the dependency of the critical zone and failure rates on the

hurricane’s radius of maximum winds Rm, a conventional indicator of hurricane size.

The critical zone areas for the hurricanes in Figure 3-4 are: 4.50×105 km2 (Rm = 20

km), 7.31×105 km2 (Rm = 30 km), and 1.05×106 km2 (Rm = 40 km). Both the

critical zone area and maximum failure rate achieved increase at a slower rate with

respect to Rm, in comparison to Vm. The maximum asset density-normalized failure

rate achieved in the critical zone is the following for each storm: 3.8 failures/km

(Rm = 20 km), 5.7 failures/km (Rm = 30 km), and 7.6 failures/km (Rm = 40 km).

The average asset density-normalized failure rate in the critical zone is given by the

following for each storm: 1.5 failures/km (Rm = 20 km), 2.2 failures/km (Rm = 30

km), and 2.9 failures/km (Rm = 40 km).

The results in Figures 3-2 – 3-4 are applicable under a straight-line hurricane

track and an axisymmetric Holland wind field with time-constant Holland parameters.

Once these conditions are relaxed, the critical zone area and variability in failure rates

would differ. For instance, hurricane maximum intensity Vm is time-varying, and
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Figure 3-3: Spatially-varying failure rates as a function of a hurricane wind field,
under different maximum intensities Vm. An axisymmetric Holland wind field with
time-constant Holland parameters is used (see Section 3.2.1). Parameters are: Vtr ≈ 3
m s−1, Rm = 30 km, B = 1. The choices of Vm are 25 m s−1 (left), 37 m s−1 (center),
and 46 m s−1 (right), corresponding respectively to tropical storm, Category I, and
Category II on the Saffir-Simpson scale. The obround in each subfigure indicates the
critical zone, and failure rates are given as failures per kilometer of infrastructure
assets.
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Figure 3-4: As in Figure 3-3, but for different values of the radius of maximum winds
Rm, with Vm fixed to 37 m s−1.
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usually lower at the beginning and end of the hurricane’s lifetime. Furthermore, the

Holland wind field considered here only includes one shape parameter, but additional

shape parameters would affect the decay in wind velocities with radial distance; the

updated Holland 2010 model [48] includes more shape parameters. The Holland

model also does not account for wind field asymmetries, which we will consider in the

following subsection.

3.2.4 Effect of hurricane asymmetries

So far we considered axisymmetric wind fields, in which the hurricane velocities are

equivalent at equiradial distances from the storm center. Now we discuss how intro-

ducing asymmetries to the wind field would alter the critical zone and failure rates.

Asymmetries refer to variability in velocities with respect to the azimuthal angle,

which is measured as degrees clockwise from a defined reference direction (typically

the storm translation direction) [100, 15]. Figure 3-5 demonstrates how an axisym-

metric wind field (i.e., without asymmetries) differs from an asymmetric wind field.

Figure 3-5: Example of an estimated axisymmetric wind field (left) and asymmetric
wind field (right), adapted from [15]. The plots show the storm translation vector
(white) and wind shear vector (red), with the length of the vectors indicating their
relative magnitudes.

To analyze the effect of asymmetries on the damage estimates, we introduce an

asymmetry to the Holland wind field by adding the storm-translation vector to the

winds. Figure 3-6 demonstrates how the critical zone and failure rates are altered
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when the storm-translation vector is added to the axisymmetric wind field. The

maximum velocity under equal radius occurs at exactly 90∘ clockwise of the transla-

tion direction, where the storm motion and cyclostrophic wind direction are aligned.

This is reflected in Figure 3-6, where the storm is translating northward and the

maximum failure rates occur in a wall east of the storm track. The critical zones no

longer display the obround shapes suggested by Eq. 3.21.

The critical zone area differs when comparing axisymmetric and asymmetric hur-

ricanes. For the hurricanes that include asymmetry due to the storm-translation

vector in Figure 3-6, the corresponding critical zone areas are: 2.47×105 km2 (Trop-

ical Storm), 7.89×105 km2 (Category 1), and 1.18×106 km2 (Category 2). Adding

the storm-translation vector results in a greater critical zone area for the Tropical

Storm and Category 1 hurricane, but not for the Category 2 hurricane. However, the

sum of the failure rates is greater under the asymmetric hurricanes regardless of the

hurricane intensity. The average asset density-normalized failure rate in the critical

zone is given by the following for each storm: 0.5 failures/km (Tropical Storm), 2.3

failures/km (Category 1), and 5.4 failures/km (Category 2).

Compared to axisymmetric hurricanes, the critical zones in Figure 3-6 have higher

maximum failure rates because of the high wind velocities occurring east of the storm

track. The maximum failure rates corresponding to Figure 3-6 are: 1.2 failures/km

(Tropical Storm), 6.7 failures/km (Category 1), and 14.4 failures/km (Category 2).

When comparing these statistics to the maximum failure rates for the axisymmetric

hurricanes in Figure 3-3, it is evident that the discrepancy in maximum failure rate

between the axisymmetric and asymmetric hurricanes increases with maximum inten-

sity Vm. This suggests that not accounting for asymmetries in hurricane wind field

forecasts can lead to significant underestimation of failure rates due to high-intensity

hurricanes.
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Figure 3-6: As in Figure 3-3, but under inclusion of asymmetry due to the storm-
translation vector.
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3.3 Analyzing Effect of Forecast Uncertainty on Dam-

age

In this section, we assess how forecast uncertainty affects the probabilistic estimates

of infrastructure damage, using wind field forecasts given by FHLO for Hurricanes

Hermine and Michael. We analyze the effect of forecast uncertainty on estimated

failure rates (FR-1 vs. FR-2) in Section 3.3.1. Then we analyze the effect of forecast

uncertainty on probability distributions over the number of failures (FD-A vs. FD-B)

in Section 3.3.2.

For computation of both FR-1 and FR-2 in this section, we obtain the asset

density-normalized failure rate for each grid, then multiple it by the asset density.

Specifically, we assume that each spatial grid has an asset density of 𝑙𝑔 = 7.08 km of

overhead infrastructure assets.4

3.3.1 Effect of forecast uncertainty on failure rates

Recall that in Section 3.1.4, we proved FR-2 is greater than or equal to FR-1 when

using the quadratic NHPP model to estimate failure rates. We discuss implications

of this result on the failure rates for Hermine (2016) and Michael (2018), hurricanes

which made landfall in northwestern Florida. These two hurricanes are considered

because they have different intensities: Hermine is Category 1, whereas Michael is

Category 5. The differences between FR-1 and FR-2 could vary depending on the

hurricane intensity.

Analysis for Hurricane Hermine: Figure 3-7 plots Hermine’s wind field H̃ and

corresponding Poisson intensities 𝜆𝑔,𝑡 at six designated times 𝑡, for a single ensemble

member. Note the hurricane’s northeasterly movement, which is consistent with

the hurricane’s historical track. We calculate failure rates (FR-1 and FR-2) for a

geographical region consisting of 0.1∘× 0.1∘ grids within the latitude range 29.70∘N

4We considered The City of Tallahassee Utilities. They have 1,800 km of distribution lines over
255 km2, averaging to 7.08 km of line/km2 area [74]. We assume each location 𝑔 has an area of 1
km2.
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to 30.69∘N and longitude range 83.21∘W to 85.20∘W. This region has as approximate

north-south length of 110 km and east-west length of 192 km.

Figure 3-7: Plot of Hurricane Hermine wind velocities (top row) and correspond-
ing Poisson intensities (bottom row) for a single ensemble member. Each of the six
columns corresponds to a specific time, given in Coordinated Universal Time (UTC).

Figure 3-8 plots Hurricane Hermine’s ensemble-averaged wind field given by E[H]

= {𝑣𝑔,𝑡}𝑔∈𝒢,𝑡∈𝒯 . The velocity contours are much smoother after averaging, and the

majority of the geographical region does not contain significant velocity exceedances

above the critical velocity parameter Vcrit. More specifically, critical velocity ex-

ceedances within E[H] occur for only six out of the 121 times for which the wind field

forecast is available. We will discuss how the ‘smoothing’ of velocity contours in the

ensemble-averaged wind field affect failure rate estimates given by FR-1.

Figure 3-8: Plot of Hurricane Hermine’s velocities averaged across all ensemble mem-
bers.

Figure 3-9 demonstrates how the spatially-varying failure rates are dependent on

the choice of failure rate estimate (FR-1 or FR-2). When using FR-1 as the failure rate

estimate, only 20.9% of the considered geographical region (4,414 km2) falls within

the critical zone. In contrast, 100% of the considered geographical region falls within
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the critical zone when using FR-2. Furthermore, the region-averaged failure rate is

0.12 failures/kilometer of assets for FR-1 and 3.34 for FR-2. This suggests that failure

rates are, on average, more than 28 times higher under FR-2. The main reason for

this discrepancy is that supercritical velocities are averaged out if FR-1 is used. The

same would be expected for other Tropical Storms or Category 1 hurricanes in which

the maximum intensity is not significantly higher than the critical threshold Vcrit. On

the other hand, FR-2 considers the individual ensemble member wind fields in failure

rate estimation. In this sense, FR-2 is more realistic, as the supercritical velocities in

the ensemble member wind fields are accounted for in failure rate estimation.

Figure 3-9: Plot of failure rates given by FR-1 (left) and FR-2 (right) for Hurricane
Hermine.

Analysis for Hurricane Michael: Figures 3-10 – 3-12 demonstrate how the

failure rates given by FR-1 and FR-2 differ for Hurricane Michael (2018). We calcu-

late failure rates (FR-1 and FR-2) for a geographical region consisting of 0.1∘× 0.1∘

grids within the latitude range 29.60∘N to 32.20∘N and longitude range 83.40∘W to

86.50∘W. This region has as approximate north-south length of 289 km and east-west

length of 300 km.

Similar to Hermine, Michael made landfall in northwestern Florida. However,

Michael was a more intense, Category 5 hurricane that reached peak maximum in-

tensities of around 70 m/s. This is reflected in the higher velocities and estimated

Poisson intensities in Figure 3-10. Critical velocity exceedances in the ensemble-

averaged wind field E[H] occur at 26 out of the 121 times for which the wind field
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forecast from FHLO is available (Figure 3-11). This indicates that the ensemble-

averaged wind field contains more frequent and significant exceedances of the critical

velocity, in comparison to Hermine. Estimates of FR-1 are consequently much higher

than for Hermine, as demonstrated in the left-hand plot of Figure 3-12.

When using FR-1 as the failure rate estimate, 60.3% of the considered geographical

region (52,303 km2) falls within the critical zone. For FR-2, 96.3% of the region

(83,492 km2) falls within the critical zone. The region-averaged failure rate is 2.69

failures/kilometer of assets for FR-1 and 4.48 for FR-2, which implies that the average

failure rate is 1.67 times higher under FR-2. The difference between FR-1 and FR-2

is less pronounced than for Hermine, because Michael is a high-intensity hurricane

and hence a more significant portion of the geographical region falls in the critical

zone under FR-1.

Figure 3-10: Plot of Hurricane Michael wind velocities (top row) and correspond-
ing Poisson intensities (bottom row) for a single ensemble member. Each of the six
columns corresponds to a specific time, given in Coordinated Universal Time (UTC).

Figure 3-11: Plot of Hurricane Michael’s velocities averaged across all ensemble mem-
bers.
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Figure 3-12: Plot of failure rates given by FR-1 (left) and FR-2 (right) for Hurricane
Michael.

3.3.2 Effect of forecast uncertainty on failure distributions

In this subsection, we analyze how the spatially-varying probability distribution over

the number of failures differs depending on the distribution of choice (FD-A vs. FD-

B). We will show that FD-A tends to underestimate the probabilities of high-failure

scenarios, in comparison to FD-B, using wind field data from FHLO for Hermine and

Michael. Specifically for both hurricanes, the probabilities of high-failure scenarios

are many times higher when using FD-B in place of FD-A. This insight has significant

implications for risk estimation, particularly in the case of high-intensity hurricanes

such as Michael.

Analysis for Hurricane Hermine: Figure 3-13 demonstrates how FD-A and

FD-B differ for Hurricane Hermine at a few select locations. These locations are

selected because they differ in terms of minimum radial distance to the storm center

achieved during the hurricane’s lifetime. Because Hermine is a Category 1 hurricane,

there are relatively few exceedances of the critical velocity, and thus the probabilities

peak at 1-2 failures in the case of FD-A. As is typical for the Poisson distribution,

FD-A is right-skewed. However, FD-B is even more right-skewed: the probability is

maximum at zero failures and decreases with increasing number of failures. Further-

more, FD-B has a more pronounced tail than FD-A. Specifically, the 95% percentiles

for number of failures under FD-A are given as follows (for the locations from left to

right in Figure 3-13): 4, 6, 7, 7. In contrast, the 95% percentiles under FD-B are:
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12, 12, 13, 15. Amongst the four locations, it is anywhere between 4.6 and 80 times

more likely to have nine or more failures when using FD-B in place of FD-A. The

difference in the probability of 9+ failures, as given by FD-A vs. FD-B, is greater for

locations that are farther from the storm track. This suggests that FD-A particularly

underestimates the probabilities of high-damage outcomes for locations in the storm

periphery.

Figure 3-13: Illustration of how the probability distribution over number of failures
depends on the selected failure distribution (FD-A vs. FD-B) for Hurricane Hermine.
Top row : contour plot of spatially-varying failure rates given by FR-2 or E[Λ𝑔(H𝑔)],
with four locations 𝑔 for analysis marked by the black dots. Middle row : Histogram
of ensemble member failure rates Λ

(𝑖)
𝑔 at the four identified locations. Bottom row :

Corresponding probability distributions over number of failures.

Analysis for Hurricane Michael: Figure 3-14 demonstrates how FD-A and

FD-B differ for Hurricane Michael. Because Michael is significantly more intense than

Hermine, the distributions have more pronounced tails, particularly at locations closer

to the hurricane eye (towards the right in Figure 3-14). Both the failure histograms

and probability distributions for locations closer to the hurricane eye display smaller
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right-skewedness, reflecting an increased likelihood of high-damage scenarios as a

result of the hurricane intensity.

As in the case of Hermine, FD-B has a more pronounced tail than FD-A.The 95%

percentiles for number of failures under FD-A are given as follows (for the locations

from left to right in Figure 3-14): 7, 15, 20, 18. In contrast, the 95% percentiles under

FD-B are: 16, 23, 25, 24.

Figure 3-14: As in Figure 3-13, but for Hurricane Michael.

3.4 Predicting Outages in Historical Hurricanes

A lack of accurate damage predictions can impede estimates of loss-of-service within

infrastructure systems. Improved estimation of loss-of-service is desirable in esti-

mating hurricane-induced risk on the infrastructure system, as well as in informing

proactive strategies to maintain post-disaster infrastructural functionality. In Sec-

tions 3.2-3.3, we focused on the spatial variability in NHPP estimates of probabilistic

damage and effects of forecast uncertainty given by FHLO. In this section, we con-
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sider the relationship between damage and loss-of-service. Specifically, we analyze the

accuracy of estimated NHPP failure rates in predicting loss-of-service within electric

power infrastructure resulting from Hurricane Michael. For electricity networks, we

consider that loss-of-service is given by outages, or loss of electrical power network

supply to customers. The failure rates (FR-2) are estimated using wind field forecasts

given by FHLO as input (see Section 3.1.4).

We discuss the computational setup in Section 3.4.1: the application of FHLO and

NHPP, the selected geographical region of interest, and the outage data employed.

Our analysis focuses on the northwestern Florida region (including the Tallahassee

urban area), where Hurricane Michael made landfall. In Section 3.4.2, we analyze

the accuracy of estimated failure rates in predicting outages. In Section 3.4.3, we

formulate regression models to predict outages, and demonstrate that a statistically

significant relationship exists between the estimated failure rates and outage rates.

3.4.1 Computational Setup

The probabilistic wind field forecast for Michael is given by a 1,000-member ensem-

ble forecast using FHLO. For each ensemble member, the velocity is forecasted at

locations within the latitude range 29.3∘N to 32.2∘N and longitude range 82.6∘W to

88.7∘W, with 0.1∘× 0.1∘ grid spacing. The forecast is initialized on October 9, 2018

at 12Z (Coordinated Universal Time). This time corresponds with around 7:00am

Central Daylight Time (CDT), which is about 1.5 days before Michael made landfall

near Mexico Beach, Florida.

We obtain outage data from the Florida Division of Emergency Management

[83]. Our analysis focuses on October 10-12, the days during and immediately af-

ter Michael’s landfall in Florida. On these three days, outage data is available at six

different times given in Central Daylight Time (CDT): October 10, 15:40; October 10,

16:35; October 10, 19:50; October 11, 19:40; October 11, 22:00; and October 12, 23:05.

At each time, the outages are measured by number of households without power in

each county. The total number of households and geographical area associated with

each county are also included in the data. Using this data, one can compute the total
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number of outages per county, the percentage of households experiencing outages, as

well as percentage or number of households with outages normalized by area. We

focus on outages in the counties of Northern Florida (particularly the Tallahassee

area).

To compare outages to failure rates (FR-2), we first estimate the failure rates in

each county on an hourly basis using the quadratic NHPP model (Section 3.1.3). This

requires computing the Poisson intensity 𝜆(𝑖)𝑔,𝑡 using Eq. 3.5 in each 0.1∘× 0.1∘ grid 𝑔,

at each hour 𝑡, and for each ensemble member 𝑖. For a grid 𝑔, the ensemble-averaged

failure rate Λ𝑔(𝑡
′) at a given time 𝑡′ ≤ 𝑡f (where 𝑡f corresponds to Oct. 14 at 12Z, the

last time for which FHLO is available) is given by:

Λ𝑔(𝑡
′) =

1

H

H∑︁
𝑖=1

𝑡′∑︁
𝑡=𝑡0

𝜆
(𝑖)
𝑔,𝑡. (3.26)

This summation is similar to Eq. 3.1, except that the summation is taken over

𝑡 ∈ {𝑡0, ..., 𝑡′} rather than 𝑡 ∈ 𝒯 where 𝒯 = {𝑡0, ..., 𝑡f}. These failure rates are

expected to be increasing with time 𝑡′, reflecting accumulated exposure of the electric

power infrastructure to hurricane winds over time. Then, we map the grid-wise failure

rates to county-wise failure rates. To do so, we assign a grid to a county, if the majority

of the grid’s spatial area is occupied by said county. We obtain the county-wise failure

rate by averaging the grid-wise failure rates corresponding to the county.

We also define the ensemble-averaged “cumulative velocity” at a time 𝑡′ and for

grid 𝑔 as follows:

𝒱𝑔(𝑡′) =
1

H

H∑︁
𝑖=1

𝑡′∑︁
𝑡=𝑡0

𝑣
(𝑖)
𝑔,𝑡, (3.27)

i.e., it is the ensemble-averaged sum of the grid-specific velocities over all measurement

times from 𝑡0 to 𝑡′. We will use the cumulative velocity as a predictor of the outage

rate in Section 3.4.3. Next we compute county-wise cumulative velocities, using the

same procedure that we applied to the failure rates. After obtaining the county-

wise failure rates and cumulative velocities in Northern Florida, we can analyze the

strength of these inputs as predictors of the outage data.
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3.4.2 Outage and Failure Rates due to Hurricane Michael

In Figure 3-15, we plot the outage rates (number of outages per 100 households) and

asset density-normalized failure rates (FR-2) in Northern Florida at four different

times. Failure rates are calculated using Figure 3.26. Figure 3-15a plots the outages

and failure rates about three hours after Hurricane Michael made landfall in Florida.

In contrast, Figure 3-15d shows the results nearly 33 hours after landfall. Generally

speaking, high failure rates correspond to high outage rates (and vice versa). More

specifically, the highest outage and failure rates mostly occur in the geographical

region between Panama City and Tallahassee. The counties with high outages rates

mostly fall in the critical zone of the hurricane, which corresponds to the counties

where the failure rates are higher (denoted by light blue, green, orange or yellow

colors), as opposed to sub-critical regions corresponding to dark blue.

In Figure 3-15c – 3-15d, which correspond to October 11, nearly 100% of house-

holds suffer from outages in a few of the counties (mostly between Panama City and

Tallahassee). However, failure rates differ noticeably across these counties. This illus-

trates ‘saturation’ of the outage rate at 100% when the failure rate is sufficiently high,

due to a finite number of assets in the infrastructure system, which we accounted for

in the probability distribution given by Eq. 3.3 in Section 3.1.2. The variability in

failure rates within this region may also result due to the network topology of dis-

tribution feeders in the power infrastructure. For example, if a substation within a

distribution feeder is disrupted, then power supply to all downstream loads will be

interrupted. As another example, failure of a critical asset in the power infrastructure

can cause multiple outages, whereas failure of non-critical assets may not cause any

outage if the network is able to survive in the presence of these failures.

One would expect higher correlation between failure rate and outage rate if FHLO

for Hurricane Michael were more accurate in forecasting landfall location. Because

FHLO was initialized over a day before landfall, discrepancy between the forecasted

and observed landfall location is expected. This is reflected in the estimated failure

rates using FHLO. The highest estimated failure rates occur in Gulf County, whereas
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Hurricane Michael made landfall in Bay County, which is directly to the west of

Gulf County. The discrepancy between forecasted and observed landfall location is

expected to decrease if FHLO is initialized closer to the observed landfall time.5

(a) October 10, 16:35 (b) October 10, 19:50

(c) October 11, 19:40 (d) October 11, 22:00

Figure 3-15: Comparison of outage rates and failure rates (FR-2) in Northern Florida
for Hurricane Michael, at four different times after landfall. The outage rate for each
county is given by outages per 100 households. The failure rate in each county at
a given time is obtained by accumulating Poisson intensities estimated using FHLO
from 10/9/2018 at 12Z (7:00am in Florida) to the time in question.

5On another note, the post-landfall hurricane maximum intensity forecast given by FHLO was
lower than the observed intensity.
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3.4.3 Outage Prediction via Regression Models

We estimate regression models that relate outage rate (outages per 100 households) to

one of two inputs: failure rate (FR-2, Eq. 3.26) or cumulative velocity (Eq. 3.27). The

cumulative velocity is employed in order to analyze the extent to which the critical

velocity Vcrit affects the outage prediction. According to the quadratic model, Poisson

intensities are small and constant for velocities below Vcrit. Thus we hypothesize that

failure rates remain insignificant below a certain cumulative velocity threshold, which

translates to near-zero outage rates. Our goal is to evaluate this hypothesis using the

empirical observations of outages.

To assess the strength of cumulative velocities and failure rates as predictors of

outage rates, we estimate binomial regression models (BRMs), a specific type of

generalized linear model (GLM). In particular, the BRM gives the probability over

number of successes out of a set of Bernoulli trials. In our case, a “success” is an

outage and the number of “trials” is given by the number of households in a given

county. We estimate a BRM for each input (cumulative velocity or failure rate)

and at each time for which outage data is available. Figure 3-16 (resp. 3-17) plots

the outage rate vs. cumulative velocity (resp. failure rate) at four different times;

estimated binomial regression models are included in the plots. For more details

regarding implementation of the BRM, please see Section 3.7 (Appendix A).

We find that cumulative velocity is a statistically significant predictor (p-value

less than 0.05) at all considered times except October 12, 23:05 (about 58 hours after

landfall), and failure rate is a statistically significant predictor at all times. The

cumulative velocity-outage rate relationship is not statistically significant on October

12, 23:05, because it has been over two days since Hurricane Michael made landfall

in Northern Florida. Over the course of this time, Michael traveled northward; there

was ample time for utilities to repair damage and restore electricity service. This

suggests that cumulative velocity alone would not be a sufficient predictor of outages

at this time, because spatially-varying repair rates become increasingly important

with time.
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(a) October 10, 16:35 (b) October 10, 19:50

(c) October 11, 19:40 (d) October 11, 22:00

Figure 3-16: Scatterplots of outages vs. cumulative velocity in Northern Florida for
Hurricane Michael, at four different times, accompanied by corresponding estimated
binomial regression models. Outages are measured by households without power. The
cumulative velocity in a county at a given time is obtained by accumulating velocities
estimated using FHLO from 12Z (7:00 in Florida) to the time in question, and then
taking the cumulative velocity averaged across all 0.01∘×0.01∘ grids in the county.
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(a) October 10, 16:35 (b) October 10, 19:50

(c) October 11, 19:40 (d) October 11, 22:00

Figure 3-17: As in Figure 17, but for outages vs. failure rates.
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We observe from the figures that the relationship between outage rate and cumu-

lative velocity could be approximately represented by an S-shaped curve. The outage

rate is near-zero and roughly constant for cumulative velocities below a certain thresh-

old. Once this cumulative velocity threshold is passed, we observe a rapid increase

in the outage rate with cumulative velocity, because of the quadratic relationship

between Poisson intensity and velocity above Vcrit. Then once the cumulative veloc-

ity becomes sufficiently high, the outage rate approaches 100%, i.e., saturation has

occurred. The lower end of the S-shaped curve suggests that empirical observations

regarding outages are consistent with the inclusion of the critical velocity parameter

in the NHPP model. In summary, the binomial regression model is able to account

for the impact of the critical velocity on the outage rates, as well as the saturation of

outage rates at 100%.

In the plots of outage rate vs. failure rate, a large number of counties have low

failure rates and thus are bunched in the left-hand side of the plots. This results

in a shortening of the lower end of the “S”, and thus the S-shaped curve is not as

apparent in the plots of the outage rate vs. failure rate. These counties with low

failure rates may exhibit significant variability in cumulative velocity, but they have

few exceedances above Vcrit and thus the variations in velocities are not reflected in

the failure rates.

Not surprisingly, there are some outliers in Figures 17-18. For example, the point

in the upper left hand corner of Figures 3-17c – 3-17d corresponds to Holmes county.

This county has the smallest area of all 37 counties we considered in this study as well

as a low population density (ranks in the bottom quartile among Florida counties)

[9], which can explain why it had a particularly high percentage of outages.

3.5 Modeling Damage and Financial Losses

In this section, we estimate parametric models that relate total hurricane-induced

damage and financial losses in an infrastructure system to key storm parameters.

In particular, we consider the storm intensity parameter Vm and size parameter
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Rm (see Section 3.2.1). The parametric models are estimated using the quadratic

nonhomogeneous Poisson process (NHPP) model detailed in Section 3.1.3, to demon-

strate simple power law relationships between damage, financial losses, and hurricane

parameters. In Section 3.5.1, we discuss the estimated model that relates total in-

frastructural damage to Vm and Rm; in Section 3.5.2, we do the same for financial

losses. Further details related to the parametric models are included in Sections

3.8-3.9 (Appendix B-C).

We note that in order to isolate the relationship between damage, financial losses,

and hurricane parameters, we do not employ FHLO in this section. To use FHLO for

estimating parametric models of total damage and losses, we would need to obtain

wind field ensembles from a large number of historical hurricanes. Naturally, the

computational expense of calculating failure rates from all the ensembles would be

high. Furthermore, hurricane intensity and size will vary temporally in FHLO, which

would make estimating the parametric functions less straightforward. However it

would also be possible to repeat the exercise we conduct in this section using FHLO.

For the purpose of estimating the parametric models, we assume that hurricanes

have the same characteristics as were defined in Section 3.2.1; that is, we assume the

hurricane moves in a straight line at a constant translation speed; the hurricane wind

field is given by the Holland model; and the Holland parameters (Vm, Rm, B) stay

constant during the hurricane lifetime.

3.5.1 Damage Dependency on Hurricane Intensity and Size

We now estimate a parametric function that relates the total expected damage Λtotal

to the hurricane intensity Vm and size Rm. The total expected damage (per unit length

of assets) is measured by the sum of the failure rates over all grids, i.e., Λtotal =
∑︀

𝑔 Λ𝑔.

Using Eq. 3.8 to calculate Λ𝑔, the total expected damage is given by:

Λtotal = |𝒢|𝜆normT + 𝜆norm𝛼
∑︁
𝑔∈𝒢𝑐

∑︁
𝑡∈𝒯𝑐,𝑔

(︁
𝑓 2(𝑣𝑔,𝑡)− 1

)︁
Δ𝑡, (3.28)
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where 𝒢𝑐 denotes the set of grids inside the critical zone and 𝒯𝑐,𝑔 denotes the set of

times for which 𝑣𝑔,𝑡 ≥ Vcrit. The first term in Eq. 3.28 denotes the value of Λtotal under

nominal conditions; the second term denotes the increase in Λtotal due to hurricane

winds exceeding the critical velocity Vcrit. The full derivation of Eq. 3.28 is given in

Section 3.8.1 (Appendix B).

Due to the highly nonlinear nature of the Holland model, it is not convenient to use

Eq. 3.28 for relating total expected damage Λtotal to Vm and Rm. Instead we formulate

a parametric function for Λtotal which accounts for two important considerations.

First, the total expected damage depends on the area of the critical zone Acrit, which

is represented by 𝒢𝑐 in Eq. 3.28 and can be estimated using Eq. 3.25a in Section 3.2.2.

Second, we account for the critical velocity Vcrit, because damage in regions with

subcritical winds corresponds to nominal (no-hurricane) damage and is independent

of hurricane velocities in the quadratic NHPP model. We define a new function to

incorporate this consideration:

𝑔(Vm) =
max(Vcrit,Vm)− Vcrit

Vcrit

(3.29)

The function 𝑔(Vm) = 0 if Vm ≤ Vcrit, and increases linearly with Vm otherwise.

Using the critical zone area calculated following Eq. 3.25a, we formulate a para-

metric function that relates total expected damage to Rm and 𝑔(Vm). We find that

the total expected damage is roughly proportional to R2
m and [𝑔(Vm)]

2.3, as opposed

to the quadratic relationship between location-specific failure rate and velocity in Eq.

3.5. When Vm ≥ Vcrit, this power law relationship can be expressed as:

Λtotal(Vm,Rm) ∼ O
(︀
R2

m(Vm − Vcrit)
2.3
)︀
. (3.30)

This relationship is suggested by the estimated parametric function for Λtotal(Vm,Rm):

Λtotal(Vm,Rm) = 𝑐1 + 𝑐2Rm[𝑔(Vm)]
1.1 + 𝑐3R

2
m[𝑔(Vm)]

2.3 − 𝑐4Rm𝑔(Vm). (3.31)

The parametric function and its parameter values are discussed in further detail in
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Section 3.8.2 (Appendix B). Note that Eq. 3.31 does not account for finiteness in

the total number of assets, and thus the total expected damage Λtotal continues to

increase even when Vm reaches very high values.

Figure 3-18: Normalized expected damage Λ̄total as a function of Vm for fixed values
of Rm. The estimated parametric function using Eq. 3.31 is denoted by the white
dotted lines. The numerically-computed values of Λ̄total are given by the dark-colored
lines (see Section 3.8.2 in Appendix B for details).

In Figure 3-18, we plot the expected normalized damage Λ̄total = Λtotal/|𝒢| vs.

maximum intensity Vm, which is accompanied by parametric fits given by Eq. 3.31.

Now we compute expected normalized damage Λ̄total under the assumption of

finiteness in the number of assets. Figure 3-19 illustrates the expected normalized

damage in a typical rural area that has about 𝑆𝑔 = 6.5 distribution lines in each

spatial location 𝑔 ∈ 𝒢.6 The plots of Λ̄total vs. Vm in the left-hand figure feature an

S-shaped curve that is similar to what we observed in Figure 17, under Rm = 30,

40, or 50 km. For Rm = 20 km, the S shape is less pronounced, but the expected

normalized damage still asymptotically approaches 𝑆 = 6.5 with sufficiently high Vm.

In the right-hand plot of damage vs. Rm and Vm, a large portion of the contour plot
6We considered Talquin Electric Cooperative in Northwestern Florida. They have about 4,400 km

of distribution lines, which provide coverage for about 6700 km2, averaging to 0.65 km of line/km2

area [92]. Under the assumption that a distribution line is on average 100 meters in length, this
averages to 6.5 lines/km2 area. We assume that each spatial location 𝑔 has an area of 1 km2.
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Figure 3-19: Expected normalized damage Λ̄total in a typical rural area, under the
saturation model. Left : Λ̄total vs. Vm, under four different values of Rm. Right : Λ̄total

as a function of both Vm and Rm.

has a value of 6.5, indicating the saturation.

Figure 3-20: As in Figure 3-19, but for a typical urban area.

In Figure 3-20, we plot Λ̄total in a typical urban area that has about 71 lines per

km2 of area.7 Once again, we see S-shaped curves as we did in the rural area, as well

as large regions of saturation in the right-hand plot.

7We considered The City of Tallahassee Utilities. They have 1,800 km of distribution lines over
255 km2, averaging to 7.08 km of line/km2 area [74]. This averages to about 71 distribution lines
per grid.

123



3.5.2 Financial Loss Dependency on Hurricane Intensity and

Size

Finally, we formulate a parametric function that relates the total expected financial

losses Ltotal to the hurricane parameters Rm and 𝑔(Vm). We can write the total

expected financial losses as:

Ltotal =
∑︁
𝑔∈𝒢

L𝑔(𝑠𝑔), (3.32)

where L𝑔(𝑠𝑔) is the loss in location 𝑔 as a function of the number of failures 𝑠𝑔.

To determine the relationship between L𝑔 and 𝑠𝑔, we assume that we have an

estimate of the financial loss per failed asset per unit time, and that the estimate

is constant with time and for all assets. This estimate permits us to compute the

financial loss L𝑔,𝑘 in each location 𝑔 at a given time 𝑘 after repairs have commenced.

Then we estimate L𝑔 by integrating L𝑔,𝑘 over time up to a defined time horizon,

at which repairs are assumed to be complete. Because the damaged assets in an

infrastructure system are repaired over an extended period of time, certain assets

may not be repaired for awhile and thus L𝑔 is expected to be a nonlinear function of

damage 𝑠𝑔. Under a repair schedule dictated by the network repair model detailed in

Section 3.9.1 (Appendix C), L𝑔,𝑘 (resp. L𝑔) scales linearly (resp. quadratically) with

the number of failures 𝑠𝑔.

We use the network repair model to derive an analytical model of total expected

financial losses:

Ltotal =
1

2

L𝑓
Y

(︃
|𝒢|(𝜆normT)

2 + 2𝜆2norm𝛼T
∑︁
𝑔∈𝒢𝑢

∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡

+ (𝜆norm𝛼)
2
∑︁
𝑔∈𝒢𝑢

(︂ ∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡

)︂2
)︃ (3.33)

Follow Eq. 3.33, the total financial loss under nominal (no-hurricane) conditions

is given by

Ltotal,nom =
1

2

L𝑓
Y
|𝒢|(𝜆normT)

2. (3.34)
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The remaining terms in Eq. 3.33 denote the increase in Ltotal due to hurri-

cane winds exceeding the critical velocity. In particular, the term (𝜆norm𝛼)
2
∑︀

𝑔∈𝒢𝑢(︀∑︀
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡) − 1

)︀
Δ𝑡
)︀2 indicates that the location-specific financial loss scales

with the wind velocity to the 4th power within the critical zone. The derivation of

Eq. 3.33 is detailed in Section 3.9.2 of Appendix C.

In order to formulate a parametric model that relates total expected financial loss

to Rm and 𝑔(Vm), we consider the parametric model for damage in Section 3.5.1 and

the network repair model in Section 3.9.1 of Appendix C. Because of the quadratic

relationship between location-specific financial loss and number of damages, we expect

that the polynomial orders associated with Rm and 𝑔(Vm) for Ltotal are greater than

those for expected damage Λtotal. Specifically, when Vm ≥ Vcrit, we find that the

relationship between total expected financial loss Ltotal and hurricane parameters can

be expressed as:

Ltotal(Vm,Rm) ∼ O
(︀
R3

m(Vm − Vcrit)
4.8
)︀
. (3.35)

This relationship is suggested by the estimated parametric function for Ltotal:

Ltotal(Vm,Rm) = 𝑑1Rm[𝑔(Vm)]
1.6 + 𝑑2R

2
m[𝑔(Vm)]

3.2 + 𝑑3R
3
m[𝑔(Vm)]

4.8

+ 𝑑4R
2
m[𝑔(Vm)]

1.8 + 𝑑5R
3
m[𝑔(Vm)]

1.8 + 𝑑6R
3
m[𝑔(Vm)]

3.5
(3.36)

The parametric function and its parameter values are discussed in further detail in

Section 3.9.3 of Appendix C. As was the case for total expected damage, we assume

that the total number of assets is infinite.

In Figure 3-21, we plot the expected normalized financial losses L̄total = Ltotal/|𝒢|

versus maximum intensity Vm, which is accompanied by parametric fits given by Eq.

3.36.

Previous work by William D. Nordhaus [76] has suggested that total hurricane-

induced financial losses are roughly a function of Vm to the 8-th power. In contrast,

we estimate the relationship between total financial losses and 𝑔(Vm), rather than Vm.

This accounts for our expectation of insignificant damage below the critical velocity

Vcrit, which we showed is in agreement with empirical observations in Section 3.4. By

using 𝑔(Vm) as a predictor, we estimate that total losses are roughly proportional to
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Figure 3-21: Normalized expected loss as a function of Vm for fixed values of Rm. The
estimated parametric function using Eq. 3.36 is denoted by the white dotted lines.
The numerically-computed values of L̄total are given by the dark-colored lines.

Vm −Vcrit to the 4.8-th power, when Vm ≥ Vcrit. In contrast, when we used Vm as a

predictor, we found that losses were proportional to Vm to the 7.8-th power.

Unlike Nordhaus, we can also incorporate ‘saturation’ into the damage and finan-

cial loss estimation. This would entail using Eq. 3.4 for the purpose of numerically

computing the total expected damage. Then, we could estimate sigmoid functions

that relate total damage and financial losses to the storm parameters Vm and Rm.

3.6 Concluding remarks

In this section, we introduced a modeling approach for probabilistic estimation of

hurricane wind-induced damage to infrastructural assets. Our approach uses a Non-

homogeneous Poisson Process (NHPP) model to estimate spatially-varying probabil-

ity distributions of damage as a function of the hurricane wind field velocities. The

NHPP model is applied to failures of overhead assets in electricity distribution sys-

tems, and features a quadratic relationship between the Poisson intensity and wind

velocity above a defined critical velocity threshold. In order to incorporate hurricane
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forecast uncertainty in estimation of the damage distributions, we use wind field en-

sembles given by Forecasts of Hurricanes using Large-Ensemble Outputs (FHLO) as

inputs into the NHPP model.

The NHPP model’s critical velocity parameter motivates us to define the “critical

zone”, a measure of the spatial extent of hurricane-induced damage. Using a sim-

ple, stylized model of the hurricane that incorporates the axisymmetric Holland wind

field model, we demonstrate how the critical zone and failure rates are dependent on

hurricane intensity, size, and asymmetries. Furthermore, we show that not incorpo-

rating hurricane forecast uncertainty given by FHLO results in underestimation of

failure rates, and assess the degree of underestimation under two hurricanes of differ-

ent intensities (Hermine and Michael). In addition, we empirically demonstrate that

improperly estimating probability distributions of damage results in underestimation

of high-damage scenarios. These findings suggest that forecast uncertainty plays a

critical role in estimation of hurricane-induced damage.

Our modeling approach is able to accurately predict outages resulting from Hur-

ricane Michael. By fitting binomial regression models (BRMs), we demonstrate that

failure rate and cumulative velocity are statistically significant predictors of the out-

age rate. The fitted BRMs also demonstrate that empirical observations are reflective

of the critical velocity parameter in the NHPP model, and that the outage rates satu-

rate at 100% once failure rates are sufficiently high. Finally, we fit simple parametric

models that relate total damage and financial losses to key hurricane parameters

(intensity and size). Under a simple, stylized hurricane model, we show that total

damage is proportional to intensity (resp. size) to the 2.3-th (resp. 2-th) power, and

that total financial losses is proportional to intensity (resp. size) to the 4.8-th (resp.

3-rd) power.

Future work on this topic will focus on the joint effects of damage and network

topology on infrastructure system loss-of-service. Network topology determines con-

nectivity between the service producers and end-users, as well as the criticality of

various infrastructure assets, such that damage of more critical assets results in an

especially significant loss-of-service. It is also worth noting that this work focuses
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on hurricane winds, rather than other relevant physically-based threats induced by

hurricanes. These threats, such as storm surge and rainfall, can also cause substantial

damage to infrastructure systems.

A second avenue of future work is to apply improved damage and loss-of-service

estimates to the design of proactive (pre-storm) strategies that minimize hurricane

wind-induced risk on infrastructure systems. Accurate estimation of spatially-varying

damage minimizes risk by not only improving the optimality of proactive strategies,

but also by increasing the efficiency of damage localization and repair. For instance, a

plethora of works address optimal proactive allocation of distributed energy resources

(DERs) [41, 86, 16, 17] in distribution feeders of electric power infrastructure; our

work is readily applicable to the proposed methods in these works.

3.7 Appendix A: Binomial Regression Model

The binomial regression model (BRM) is a specific type of generalized linear model

(GLM), which is a generalization of ordinary linear regression models that allows

for response variables to have non-Gaussian error distribution models. In the BRM,

model inputs are used to estimate the probability associated with a Bernoulli trial.

Then, this probability estimate is used as a parameter in the binomial distribution,

which provides probabilities over the number of outages given a specified number

of Bernoulli trials (number of households). The model inputs we consider are the

cumulative velocity 𝒱 or failure rate Λ.

The binomial distribution is stated as follows for our problem:

Pr(𝑜𝑐,𝑡 | x𝑐,𝑡) =

(︂
𝑛ℎ𝑐
𝑜𝑐,𝑡

)︂
(𝜋𝑐,𝑡)

𝑜𝑐,𝑡(1− 𝜋𝑐,𝑡)𝑛ℎ𝑐−𝑜𝑐,𝑡 (3.37)

which predicts the probability that 𝑜𝑐,𝑡 households suffer from outages at time 𝑡 and

county 𝑐, given the input x𝑐,𝑡, single-household outage probability 𝜋𝑐,𝑡, and number of

households 𝑛ℎ𝑐. The probability 𝜋𝑐,𝑡 is determined using a generalized linear model
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(GLM) equation:

𝑔(𝜋𝑐,𝑡 | x𝑐,𝑡) = 𝛽
(x,𝑡)
0 + 𝛽

(x,𝑡)
1 x𝑐,𝑡, (3.38)

where x𝑐,𝑡 is given by the failure rate Λ𝑐,𝑡 or cumulative velocity 𝒱𝑐,𝑡 calculated at

time 𝑡, and 𝑔(·) is given by the logistic (logit) linking function:

𝑔(𝜋𝑐,𝑡) = ln
(︁ 𝜋𝑐,𝑡
1− 𝜋𝑐,𝑡

)︁
. (3.39)

Our goal is to estimate the coefficients of the GLM equation, 𝛽(x,𝑡)
0 and 𝛽

(x,𝑡)
1 , under

each choice of input x (failure rate or cumulative velocity) and at each time 𝑡. In

order to estimate the coefficients, we use the MATLAB function glmfit.

3.8 Appendix B: Parametric Damage Models

3.8.1 Analytical Solution for Total Damage

For the purpose of formulating an equation for total expected damage, let 𝒢𝑐 denote

the set of grids that lie inside the critical zone and 𝒢𝑢 = 𝒢 ∖ 𝒢𝑐 the set of grids

outside the critical zone. Furthermore, we assume that velocities are measured at a

discrete set of times 𝒯 . For a grid 𝑔, 𝒯𝑐,𝑔 is the set of times for which 𝑣𝑔,𝑡 ≥ Vcrit

and 𝒯𝑢,𝑔 = 𝒯 ∖ 𝒯𝑐,𝑔 is the set of times for which 𝑣𝑔,𝑡 < Vcrit. We define T𝑐,𝑔 to be the

total duration of time during which 𝑣𝑔,𝑡 ≥ Vcrit and T𝑢,𝑔 = T − T𝑐,𝑔 to be the total

duration of time during which 𝑣𝑔,𝑡 < Vcrit.

Then the expected damage in a region (per unit of length of assets) is given by

Λtotal:
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Λtotal =
∑︁
𝑔∈𝒢

Λ𝑔

=
∑︁
𝑔∈𝒢

[︁
𝜆normT(1− 𝛼) + 𝜆norm𝛼Δ𝑡

∑︁
𝑡∈𝒯

𝑓 2(𝑣𝑔,𝑡)
]︁

= |𝒢|𝜆normT(1− 𝛼) + 𝜆norm𝛼Δ𝑡
∑︁
𝑔∈𝒢

∑︁
𝑡∈𝒯

𝑓 2(𝑣𝑔,𝑡)

= |𝒢|𝜆normT(1− 𝛼) + 𝜆norm𝛼
∑︁
𝑔∈𝒢

(︂
T𝑢,𝑔 +

∑︁
𝑡∈𝒯𝑐,𝑔

Δ𝑡𝑓 2(𝑣𝑔,𝑡)

)︂
= |𝒢|𝜆normT(1− 𝛼) + 𝜆norm𝛼

∑︁
𝑔∈𝒢

(︂
T +

∑︁
𝑡∈𝒯𝑐,𝑔

(︁
𝑓 2(𝑣𝑔,𝑡)− 1

)︁
Δ𝑡

)︂
= |𝒢|𝜆normT + 𝜆norm𝛼

∑︁
𝑔∈𝒢𝑐

∑︁
𝑡∈𝒯𝑐,𝑔

(︁
𝑓 2(𝑣𝑔,𝑡)− 1

)︁
Δ𝑡.

(3.40)

3.8.2 Formulation of Parametric Model for Total Damage

To formulate a parametric model for damage, we need to account for the critical

velocity Vcrit and critical zone area, as discussed in Section 3.5.1. Regarding the

critical zone area, we note that velocity increases with radius 𝑟 for 𝑟 ≤ Rm, and then

decreases with 𝑟 for 𝑟 > Rm. Consequently, the region of the hurricane surrounding

the hurricane center (eye) contains subcritical velocities. However, this region is

part of the critical zone as defined in Section 3.2.2, and thus we need to form a

parametric model that corrects for this. Let us consider the following parametric

damage function:

Λ̄total(Vm,Rm) = Λtotal,nom + Λtotal,crit(Vm,Rm)− Λtotal,inner(Vm,Rm), (3.41)

where expected normalized damage Λ̄total = Λtotal/|𝒢| refers to the expected number

of failures per grid per unit length of assets, and:

Λtotal,nom = 𝑐1

Λtotal,crit(Vm,Rm) = 𝑐2Rm[𝑔(Vm)]
𝑝1 + 𝑐3R

2
m[𝑔(Vm)]

2𝑝1

Λtotal,inner(Vm,Rm) = 𝑐4Rm[𝑔(Vm)]
𝑝2 + 𝑐5R

2
m[𝑔(Vm)]

2𝑝2 ,

(3.42)
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where Λtotal,nom = 𝑐1 is the intercept term; Λtotal,crit(Vm,Rm) is an estimate of dam-

age due to velocity exceedances in the critical zone; and Λtotal,inner(Vm,Rm) corrects

for the inner hurricane region with subcritical velocities. Λtotal,crit(Vm,Rm) contains

two terms – the first term is a linear function of Rm and the second is a quadratic

function of Rm, which is reflective of Eq. 3.24. Likewise, the first and second terms

of Λtotal,crit(Vm,Rm) are respectively functions of [𝑔(Vm)]
𝑝1 and [𝑔(Vm)]

2𝑝1 . The term

Λtotal,inner(Vm,Rm) has the same structure as Λtotal,crit(Vm,Rm). If we wish to obtain

the total expected damage Λtotal, we simply multiply all estimated coefficients (𝑐1, 𝑐2,

𝑐3, 𝑐4, 𝑐5) by |𝒢|.

For purposes of estimating Eq. 3.41, we numerically compute expected damage to

overhead assets in electricity infrastructure systems, using the NHPP model with the

following parameters: 𝜆norm = 3.5×10−5 failures/hr/km, 𝛼 = 4175.6, and Vcrit = 20.6

m/s [116]. We assume a hurricane of duration T = 24 hr and consider a geographical

region consisting of |𝒢| = 1, 000 grids. The expected damage is calculated under

values of Rm between 20 and 50 km (step size of 1 km) and Vm between 21 and 80

m/s (step size of 1 m/s). Then to estimate Eq. 3.41, we consider values of 𝑝1 between

1 and 1.5, and values of 𝑝2 between -0.5 and 0.5. For each combination of 𝑝1 and

𝑝2, we estimate the parameters 𝑐1, 𝑐2, 𝑐3, 𝑐4, and 𝑐5 using the least squares method.

The best-fitting polynomials are 𝑝1 = 1.13 and 𝑝2 = 0.00, i.e., no dependency of

Λtotal,inner(Vm,Rm) on 𝑔(Vm). All coefficients except 𝑐5 are statistically significant, so

we omit the second term of Λtotal,inner(Vm,Rm) from the final parametric equation.

The accompanying best-fitting coefficients are: 𝑐1 = −0.265, 𝑐2 = 0.007, 𝑐3 = 0.002,

𝑐4 = −0.009.

Based on the estimated parameters, Λ̄total is roughly proportional to 𝑔(Vm) to the

2.26-th power.
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3.9 Appendix C: Parametric Loss Models

3.9.1 Network Repair Model

We assume that the financial loss L𝑔,𝑘 in a location (grid) 𝑔 at a given time 𝑘 scales

linearly with the number of failures:

L𝑔,𝑘 = L𝑓𝑘𝑙𝑔,𝑘, (3.43)

where L𝑓 is the estimated financial loss per failed asset per unit time and 𝑘𝑙𝑔,𝑘 is the

number of failures remaining in grid 𝑔 at time 𝑘. There are 𝑠𝑔 failures at time 𝑘 = 0

(after the passing of the hurricane), i.e., we assume all failures have occurred by the

time the hurricane passes. Due to repairs, 𝑘𝑙𝑔,𝑘 ≤ 𝑠𝑔 at all times 𝑘 > 0.

In addition, we assume that each grid 𝑔 has a constant repair rate Y (i.e., Y assets

are repaired per unit time). Thus the number of failures remaining to be repaired

decreases linearly with time by the rate Y, such that the amount of time needed to

repair all failures in a grid is given by K𝑔 = 𝑠𝑔/Y:

𝑘𝑙𝑔,𝑘 =

⎧⎪⎨⎪⎩ 𝑠𝑔 − Y𝑘 for 0 ≤ 𝑘 ≤ K𝑔

0 for 𝑘 > K𝑔.

(3.44)

Under this model, the total loss accrued in grid 𝑔 is given by:

L𝑔 =

∫︁ K𝑔

𝑘=0

L𝑓𝑘𝑙𝑔,𝑘𝑑𝑘

= L𝑓

∫︁ 𝑘=K𝑔

𝑘=0

(𝑠𝑔 − Y𝑘)𝑑𝑘

=
1

2

L𝑓
Y
𝑠2𝑔,

(3.45)

which indicates that the total loss L𝑔 scales quadratically with number of failures 𝑠𝑔.

The model we employ here does not consider the effect of network topology on

financial losses (in the case of a networked infrastructure system). A more sophis-

ticated model would consider that financial loss incurred at a given time depends
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more specifically on the loss-of-service in the infrastructure system, rather than the

number of damages. The loss-of-service depends on the locations of the damage, as

well as the topological properties if the infrastructure system is networked. A relevant

example would be an electricity distribution network. After a hurricane passes, some

distribution lines that connect bulk power supplies to end users are damaged, and

thus a subset of the end users cannot receive electricity. The distribution lines are

then repaired, with the repair rate constrained by the available resources and repair

crew capacity. At each time period, a financial loss is incurred, which corresponds to

the cost of repair and the cost of electricity demand not met. Generally speaking, we

expect that this financial loss will decrease with each set of repairs, after which more

end users receive electricity due to reconnection of loads to bulk power supplies.
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3.9.2 Formulation of Analytical Model for Total Financial Losses

The total expected financial loss (per unit of length of assets) is given by:

Ltotal =
1

2

L𝑓
Y

∑︁
𝑔∈𝒢

𝑠2𝑔

=
1

2

L𝑓
Y

∑︁
𝑔∈𝒢

Λ2
𝑔

=
1

2

L𝑓
Y

∑︁
𝑔∈𝒢

[︃
𝜆normT(1− 𝛼) + 𝜆norm𝛼

(︂
T𝑢,𝑔 +

∑︁
𝑡∈𝒯𝑐,𝑔

𝑓 2(𝑣𝑔,𝑡)Δ𝑡

)︂]︃2

=
1

2

L𝑓
Y

∑︁
𝑔∈𝒢

[︃
𝜆normT(1− 𝛼) + 𝜆norm𝛼

(︂
T +

∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡

)︂]︃2

=
1

2

L𝑓
Y

∑︁
𝑔∈𝒢

[︃
𝜆normT + 𝜆norm𝛼

∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡

]︃2

=
1

2

L𝑓
Y
|𝒢𝑢|(𝜆normT)

2 +
1

2

L𝑓
Y

∑︁
𝑔∈𝒢𝑢

[︃
𝜆normT + 𝜆norm𝛼

∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡

]︃2

=
1

2

L𝑓
Y

(︃
|𝒢|(𝜆normT)

2 +
∑︁
𝑔∈𝒢𝑢

[︃
2𝜆2norm𝛼T

∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡 +

(𝜆norm𝛼)
2

(︂ ∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡

)︂2
]︃)︃

=
1

2

L𝑓
Y

(︃
|𝒢|(𝜆normT)

2 + 2𝜆2norm𝛼T
∑︁
𝑔∈𝒢𝑢

∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡 +

(𝜆norm𝛼)
2
∑︁
𝑔∈𝒢𝑢

(︂ ∑︁
𝑡∈𝒯𝑐,𝑔

(︀
𝑓 2(𝑣𝑔,𝑡)− 1

)︀
Δ𝑡

)︂2
)︃

(3.46)

3.9.3 Formulation of Parametric Model for Total Financial

Losses

In order to formulate a parametric model for total financial loss given by Ltotal, we

consider the parametric model for damage given by Eq. 3.41 and the network re-

pair model in Section 3.9.1. Specifically, Eq. 3.41 states that total damage Λtotal ∼
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O(R2
m𝑔(Vm)

2𝑐) where 𝑐 is an arbitrary constant, and Section 3.9.1 suggests that fi-

nancial loss is a quadratic function of damage.

Then, let’s consider the following parametric financial loss function:

L̄total(Vm,Rm) = 𝑑1 + 𝑑2Rm[𝑔(Vm)]
𝑞1 + 𝑑3R

2
m[𝑔(Vm)]

2𝑞1 + 𝑑4R
3
m[𝑔(Vm)]

3𝑞1

+ 𝑑5R
4
m[𝑔(Vm)]

4𝑞1 + 𝑑6R
2
m[𝑔(Vm)]

𝑞2 + 𝑑7R
3
m[𝑔(Vm)]

𝑞2

+ 𝑑8R
3
m[𝑔(Vm)]

2𝑞2 + 𝑑9R
4
m[𝑔(Vm)]

2𝑞2

+ 𝑑10Rm + 𝑑11R
2
m + 𝑑12R

3
m + 𝑑13R

4
m

(3.47)

where total expected normalized financial loss L̄total = Ltotal/|𝒢| refers to the

expected financial loss per grid per unit length of assets. We obtain Eq. 3.47 by

taking the square of the function for total expected normalized damage given by Eq.

3.41 and summing like terms in the resultant expression.

For purposes of estimating Eq. 3.47, we numerically compute expected financial

loss using the NHPP parameters, hurricane duration parameters, and geographical

region size given in Section 3.8.2. The expected financial loss is calculated under

values of Rm between 20 and 50 km (step size of 1 km) and Vm between 21 and 80

m/s (step size of 1 m/s). Then to estimate Eq. 3.47, we consider values of 𝑞1 between

1.2 and 1.4 and 𝑞2 between 0 and 2. For each considered set of values 𝑞1 and 𝑞2, we

estimate the parameters 𝑑1 – 𝑑13 using the least squares method. The best-fitting

polynomial degrees are 𝑞1 = 1.59 and 𝑞2 = 1.77. For these polynomial degrees, the

statistically significant coefficients are: 𝑑2 = 0.021, 𝑑3 = 1.91×10−4, 𝑑4 = 4.71×10−5,

𝑑6 = −0.001, 𝑑7 = 5.01 × 10−5, 𝑑8 = 3.34 × 10−4. With a slight abuse of notation,

the parameters 𝑑2, 𝑑3, 𝑑4, 𝑑6, 𝑑7, 𝑑8 respectively correspond to parameters 𝑑1, 𝑑2, 𝑑3,

𝑑4, 𝑑5, 𝑑6 in Section 3.5.2.

Based on the estimated parameters, L̄total is roughly proportional to 𝑔(Vm) to the

4.77-th power.
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Chapter 4

Resource Allocation and Response in

Electricity Distribution Networks

Operational, days-ahead strategies for enhancing electric power infrastructure re-

silience in the face of extreme weather are imperative. In particular, strategic pre-

storm planning and efficient response are crucial in order to prevent prolonged delays

in restoring power supply following high-intensity hurricane events. Distributed en-

ergy resources (DERs) have the potential utility to maintain power supply to critical

consumers following hurricanes, while damage is being localized and repaired. How-

ever, effective pre-storm DER allocation is dependent on (i) a model that enables

consideration of pre-storm resource allocation strategies as well as post-storm repair

operations; and (ii) accurate forecasts of the locations of damage, which increase the

efficiency of damage localization and repair.

In this section, we summarize an integrated modeling approach for improving re-

silience in DNs against hurricanes (or more broadly, tropical storms). We consider

both proactive pre-storm planning decisions (DER allocation), and post-storm re-

sponse actions such as microgrid formation, component repairs, and DER dispatch.

Importantly, the pre-storm DER allocation decisions are dependent on uncertainties

in component failures. In our model, we allow for the flexibility of DER re-allocation

in the post-storm stage, as the network repair progresses, to serve loads without access

to power. We formulate the problem of pre-storm resource allocation under uncer-
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tainty and post-storm network restoration as a two-stage stochastic mixed-integer

program (SMIP2). SMIP2 can be rewritten in a Deterministic Equivalent Formula-

tion (DEF) which is a mixed-integer program (MIP) with copies of Stage II variables

for each scenario.

We provide a generic formulation of the two-stage stochastic mixed-integer pro-

gram (SMIP2) regarding decisions for network resilience to hurricane-induced dam-

age in Section 4.1. In Section 4.2, we formulate physically-based models for resource

allocation, network restoration, and multi-master operation of islanded microgrids.

In Section 4.3, we discuss a few stylized network examples that illustrate the novel

features of our modeling approach. In Section 4.4, we provide a few computational

experiments that illustrate the effect of model constraints and parameters on network

system performance. Finally, we conclude our discussion in Section 4.5.

4.1 Stochastic Programming Formulation

We consider a radial DN facing risk of storm-induced disruptions. The DN is denoted

as 𝒢 = (𝒩 ∪ {0}, ℰ), where 0 is the substation node, 𝒩 the set of nodes, and ℰ the

set of edges. In our model, the operator anticipates that the storm events can cause

the failure of DN components (lines), and proactively plans for a set of pre-defined

line failure scenarios.1 We assume that after the storm passes, the uncertainty in line

failures is fully realized, and the nominal connectivity of loads with the bulk power

source is disrupted. Then, the restoration phase commences, during which the DERs

are activated to support power supply to loads within the resulting microgrids formed

due to failures.

Ahead of a storm, the operator is given a subset of DN nodes 𝒰 ⊆ 𝒩 where

DERs can be potentially allocated. The operator selects nodes in 𝒰 to be developed

into sites, at which DERs can be installed and integrated with the DN. We primarily

focus on natural gas and diesel generators with capacity between 10 kW to 5 MW

with a total energy content of up to 72 MWh [24, 37]. We denote by 𝒟 the set of

1In general, failed components can also include DN nodes or other DN equipment.
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DERs available to the operator. We also consider that a subset 𝒟m ⊆ 𝒟 are mobile

DERs (i.e. they can be reallocated to DER sites during the post-storm restoration

phase). The set of remaining DERs denoted by 𝒟f = 𝒟∖𝒟m consist of fixed DERs

(i.e., once allocated in Stage I, these DERs cannot be reallocated to a different site

during restoration).

In the restoration phase, the operator implements a line repair schedule. Addi-

tionally, she can also choose to develop additional DER sites, and is able to reallocate

mobile DERs among the developed sites. As the line repairs progress, the DERs can

support the formation of larger microgrids by allowing more loads to be energized.

Naturally, in our two-stage decision framework, these post-storm scenario-specific

restoration actions are accounted for in the pre-storm planning.

In this section, we first present a generic Deterministic Equivalent Formulation

(DEF) of our two-stage stochastic program (Section 4.1.1), with multi-period restora-

tion in the second stage (Section 4.1.2). Then, we discuss the details of our distribu-

tion network component failure model (Section 4.1.3), which is based on the modeling

approach detailed in 3. We conclude with a description of how we select scenarios,

which represent realizations of component failures, to use in implementing the two-

stage stochastic program (Section 4.1.4).

4.1.1 Two-Stage Mixed-Integer Program (SMIP2)

We formulate the two-stage mixed-integer program (SMIP2) as:

min
𝑎

𝑔(𝑎) := JI(𝑎) + E𝑠∼𝒫 [JII (𝑎, 𝑠)],

s.t. A1𝑎 ≥ 𝑏,

𝑎 ∈ {0, 1}𝑁1

(SMIP2)

where 𝑎 is an 𝑁1-dimensional binary vector that denotes the Stage I resource alloca-

tion strategy, and A1𝑎 ≥ 𝑏 denotes linear constraints that strategy 𝑎 must satisfy.

The set 𝒜 := {𝑎 ∈ {0, 1}𝑁1 | A1𝑎 ≥ 𝑏} denotes the set of feasible Stage I strategies.

Additionally, JI(𝑎) := 𝑐⊤1 𝑎 denotes the Stage I cost; 𝒮 ′ the set of component failure
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scenarios; 𝑠 ∈ 𝒮 ′ a specific scenario represented by a length-|ℰ| vector, in which

𝑠𝑒 = 1 if edge 𝑒 is failed and 0 otherwise; and 𝒫 the distribution from which 𝑠 is

drawn. For a fixed allocation-scenario pair (𝑎, 𝑠) ∈ 𝒜 × 𝒮 ′, we denote by JII(𝑎, 𝑠)

the optimal value of the Stage II recourse problem. Here, E𝑠∼𝒫 [JII (𝑎, 𝑠)] denotes the

expected Stage II cost under allocation 𝑎.

The deterministic equivalent formulation (DEF) [17] of (SMIP2) can be stated as

follows:

min
𝑎

𝑔(𝑎,𝒮 ′) := JI(𝑎) +
∑︁
𝑠∈𝒮′

P(𝑠) JII (𝑎, 𝑠) ,

s.t. A1𝑎 ≥ 𝑏,

𝑎 ∈ {0, 1}𝑁1

(DEF)

where the probability of scenario 𝑠 is denoted by P(𝑠), and thus
∑︀

𝑠∈𝒮′ P(𝑠) JII (𝑎, 𝑠)

denotes the expected Stage II cost under allocation 𝑎.

4.1.2 Stage II recourse problem

Next, we discuss formulation of the Stage II recourse problems, which provide the

optimal objective values corresponding to JII (𝑎, 𝑠) in (SMIP2) and (DEF). Consider

a multi-period horizon 𝒦 = {1, · · · ,K}. Here, each period can be viewed as a

work shift of the repair crew. The decision variables in each period involve repairing

damaged lines, developing new DER sites, reallocating DERs, and restoring power

supply to loads. We formulate the Stage II problem as a multi-period mixed-binary

linear program (MILP):
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REC(𝑎, 𝑠) : JII (𝑎, 𝑠) = min
𝑥𝑠,𝑟 𝑠

∑︁
𝑘∈𝒦

(︁
JII

R(𝜌
𝑘𝑠) + JII

L (𝜒
𝑘𝑠)
)︁

s.t. B2𝑟
𝑠 + B3𝑥

𝑠 ≥ h − F𝑎

𝜌𝑘𝑠 ∈ {0, 1}𝑁2 ∀ 𝑘 ∈ 𝒦

𝜒𝑘𝑠 ∈ R𝑁3 ∀ 𝑘 ∈ 𝒦

𝜒𝑘𝑠𝑖 ∈ {0, 1} ∀ 𝑖 ∈ ℐ3, 𝑘 ∈ 𝒦

(S2)

where 𝜌𝑘𝑠 ∈ {0, 1}𝑁2 denote DN restoration actions (line repairs, site development,

and DER reallocation); 𝜒𝑘𝑠 ∈ R𝑁3 the mixed-binary network state variables; ℐ3 ⊆

{1, 2, · · · , 𝑁3} the set of indices corresponding to the binary network state variables;

𝑟 𝑠 = [𝜌𝑘𝑠]𝑘∈𝒦 the scenario-specific restoration strategy; 𝑥𝑠 = [𝜒𝑘𝑠]𝑘∈𝒦 the network

state variables for the multiple periods; JII
R(𝜌

𝑘𝑠) the cost of network restoration

𝜌𝑘𝑠; JII
L (𝜒

𝑘𝑠) the cost of unmet demand associated with network state 𝜒𝑘𝑠; h ∈

R𝑁4 is a vector of length 𝑁4; and B2𝑟
𝑠 + B3𝑥

𝑠 ≥ h − F𝑎 the system of mixed-

integer linear constraints on the Stage II decision variables. We hereafter refer to the

linear programming relaxation of Problem REC(𝑎, 𝑠) as REC(𝑎, 𝑠), and the dual of

REC(𝑎, 𝑠) as D-REC(𝑎, 𝑠).

4.1.3 Probabilistic Failure Model

We adapt our modeling approach in Chapter 3 in order to estimate the probabilities

P(𝑠) for each scenario 𝑠 ∈ 𝒮 ′. For the purposes of this section, 𝑠 is defined as a length-

|ℰ| vector, in which 𝑠𝑒 = 1 if edge 𝑒 has failed and 0 otherwise. Using the NHPP

model detailed in Chapter 3, we estimate the failure probability of each distribution

line in the distribution network. This requires partitioning the distribution network

area into spatial locations (grids), as discussed in Section 3.1 of Chapter 3, and

determining the length of each distribution line in each location. We refer the reader

to our work [16] in which we describe our approach for estimating P(𝑠), which uses

an adapted NHPP model to estimate failure probabilities of individual lines.

Note that our examples in this chapter focus on distribution networks with number

141



of nodes N up to 118. Such networks tend to not be larger than a few km2 in terms

of total area. Thus, the spatial variability in probabilistic damage estimates that

we incorporate in the NHPP model of Chapter 3 is less relevant in this chapter. If

we consider a collection of distribution networks that form a larger electric power

infrastructure, then spatial variability begins to more significantly affect estimated

failure probabilities.

4.1.4 Scenario Selection

The set of all possible failure scenarios is of size |2ℰ| = 2N, i.e., the number of possible

scenarios increases exponentially with the network size. This renders enumerating

all scenarios infeasible when the network size is sufficiently large. By applying the

Sample Average Approximation (SAA) method, one can obtain a random sample 𝒮

of scenarios such that 𝒮 ⊂ 𝒮 ′ and the weights P(𝑠) are considered to be equal to

1/|𝒮| ∀ 𝑠 ∈ 𝒮 [2]. The SAA to (DEF) can be written as follows:

min
𝑎

JI(𝑎) +
1

|𝒮|
∑︁
𝑠∈𝒮

JII (𝑎, 𝑠) ,

s.t. A1𝑎 ≥ 𝑏,

𝑎 ∈ {0, 1}𝑁1

(SAA)

Another way to obtain a subset of scenarios 𝒮 ⊂ 𝒮 ′ is to use a scenario reduction

method [29, 46], which involves selecting a representative sample of scenarios.

4.2 Modeling Formulation

In this section, we discuss the formulation of models corresponding to the cost param-

eters, constraints, and variables in the deterministic equivalent formulation (DEF) of

the two-stage stochastic program, as well as the Stage II recourse problems REC(𝑎, 𝑠).

First, we discuss the associated model of resource allocation, which corresponds to the

decisions represented by first-stage variables 𝑎 (Section 4.2.1). Next, we discuss the

multi-period DN restoration model, which corresponds to the second-stage variables
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𝑟 𝑠, ∀𝑠 ∈ 𝒮 (Section 4.2.2). Finally we discuss the model of multi-master microgrid

operation, which corresponds to the second-stage variables 𝑥𝑠, ∀𝑠 ∈ 𝒮 (Section 4.2.3).

4.2.1 Resource allocation model

In Stage I, the operator selects a subset of nodes for allocating DERs from set 𝒟.

Before a DER can be allocated to a DN node, the operator needs to develop the site

at that node to ensure a safe and reliable integration with the DN. Developing a DER

site entails land or space acquisition (which may be temporary), building enclosures,

and/or physically secure platforms [44, 36]. The site location is also determined by

access to fuel supplies. After developing the sites, the operator allocates the DERs

to the developed sites.

Let 𝑎 := (𝑢,𝑤) denote the joint Stage I strategy – site development (𝑢) and DER

allocation (𝑤) – in (DEF). Then, we can define the set of feasible Stage I strategies

as 𝒜 := {(𝑢,𝑤) ∈ {0, 1}𝒰 ×{0, 1}𝒰×𝒟 | 4.1𝑎−4.1𝑐 hold}. A feasible Stage I strategy

satisfies the following constraints:

𝑤𝑖𝑑 ≤ 𝑢𝑖 ∀ 𝑑 ∈ 𝒟, 𝑖 ∈ 𝒰 (4.1a)∑︀
𝑖∈𝒰 𝑤𝑖𝑑 ≤ 1 ∀ 𝑑 ∈ 𝒟 (4.1b)∑︀

𝑖∈𝒰 ,𝑑∈𝒟 𝑤𝑖𝑑 ≤ G, (4.1c)

where (4.1a) models that a DER can be allocated only to a site that has been devel-

oped; (4.1b) states that a DER can be allocated to at most one site; and (4.1c) models

the budget constraint; the operator can allocate at most G ≤ |𝒟| total number of

DERs.

For 𝑎 ∈ 𝒜, we define the operator’s Stage I cost as the sum of cost of site

development and the cost of DER allocation, i.e.,

JI(𝑎) =
∑︀

𝑖∈𝒰

(︁
WSD

𝑖 𝑢𝑖 +
∑︀

𝑑∈𝒟 WDA
𝑖𝑑 𝑤𝑖𝑑

)︁
,

where WSD
𝑖 denotes the cost of developing a DER site at node 𝑖 and WDA

𝑖𝑑 denotes
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the cost of allocating DER 𝑑 to site 𝑖.

The ratings of DERs (e.g. synchronous generators that run on diesel or natural

gas, or photovoltaic generators [44, 36, 1]) vary from 1 kilowatt to several megawatts

[24], so placement of DERs by size is a relevant question. For simplicity, we assume

in our study that the DERs are homogeneous, i.e. all have the same rating.

4.2.2 A multi-period DN restoration model

After the storm passes, the operator begins the DN restoration, which includes

scheduling repair of damaged lines. Additionally, the operator can develop more

sites and/or reallocate the mobile DERs. We consider that the post-storm restora-

tive actions are scheduled between periods 𝑘 = 1 and 𝑘 = K.

Choosing parameter K: The parameter K is an estimate of the maximum of

two quantities: (i) number of periods needed to repair all failed lines and the time, and

(ii) time to restore the bulk power supply from the transmission network. However,

for a straightforward comparison between different scenarios, we assume K = |ℰ|+2.

This is not a restrictive assumption because if the repairs finish at period 𝑘 < K, the

network state will remain unchanged until period 𝑘 = K, in which the normal DN

operation is fully restored. In general, the bulk power supply can be supplied to the

partially restored DN. However, for the sake of simplicity, we assume that the bulk

power supply is resumed at period 𝑘 = K.

As mentioned before, the DN is disconnected from the main grid at period 𝑘 = 1.

The subnetworks resulting from component failures can be operated as microgrids. A

subnetwork is considered an operational microgrid, if there exists at least one DER

allocated to it, and the total capacity of the DERs in the subnetwork is such that at

least one load can be operated. As the line repairs are completed in subsequent peri-

ods, the operational microgrids gradually increase in size and/or are merged together

to form larger microgrids.

Maximum number of lines actually repaired: Let Y𝑘 denote the maximum

number of lines that can be repaired in period 𝑘. We assume that in each time period,
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if there is a failed component and repair capacity is available, then the component

must be repaired. We model this by introducing a parameter Y𝑘𝑠 to denote the actual

number of lines repaired in period 𝑘. The parameter Y𝑘𝑠 depends on the scenario 𝑠

as follows:

Y𝑘𝑠 = min
(︁
max

(︁
0,
∑︀

𝑒 𝑠𝑒 −
∑︀𝑘−1

𝑘′=1Y
𝑘′
)︁
,Y

𝑘
)︁
.

Thus, Y𝑘𝑠 denotes the minimum value between Y
𝑘 and the number of lines that are

unrepaired in period 𝑘 for scenario 𝑠.

Line repair model: Let 𝜅𝑘𝑠𝑒 = 0 denote that the line 𝑒 ∈ ℰ is operational in

period 𝑘 and scenario 𝑠; 𝜅𝑘𝑠𝑒 = 1 otherwise. Also, let ℓ𝑘𝑠𝑒 = 1 denote that line 𝑒 ∈ ℰ

is repaired in period 𝑘 and scenario 𝑠; 𝜅𝑘𝑠𝑒 = 1 otherwise. Then, we can formulate

our constraints on the line repair actions as follows (∀ 𝑠 ∈ 𝒮):

ℓ𝑘𝑠𝑒 = 0 ∀ 𝑒 ∈ ℰ𝑠, 𝑘 = 1 (4.2a)∑︀
𝑒∈ℰ𝑠 ℓ𝑘𝑠𝑒 = Y𝑘𝑠 ∀ 𝑘 ∈ 𝒦 ∖K (4.2b)

ℓ𝑘𝑠𝑒 = 1 ∀ 𝑒 ∈ ℰ𝑠, 𝑒− = 0, 𝑘 = K (4.2c)∑︀K
𝑘=0 ℓ

𝑘𝑠
𝑒 = 1 ∀ 𝑒 ∈ ℰ𝑠 (4.2d)

𝜅𝑘𝑠𝑒 = 𝜅𝑘−1𝑠
𝑒 − ℓ𝑘𝑠𝑒 ∀ 𝑒 ∈ ℰ𝑠, 𝑘 ∈ 𝒦∖{1}, 𝑘′ = 𝑘 − 1. (4.2e)

Here, (4.2a) models that repairs are not carried out in 𝑘 = 1, i.e., repairs begin

from 𝑘 = 2; (4.2b) reflects that Y𝑘𝑠 number of lines are repaired in period 𝑘 ∈

{1, ...,K− 1}; (4.2c) means that the bulk power supply is restored and connected to

the DN at K, where 𝑒− = 0 denotes that line 𝑒 connects the DN to the substation

node 02; (4.2d) ensures a line can be repaired at most once; and (4.2e) states that

a line is operational in period 𝑘 if it was operational in the previous period 𝑘 − 1, or

if it is repaired in period 𝑘.

Post-storm site development and DER reallocation model: For period 𝑘

2Our model can be extended to allow early reconnection back to the main grid even before DN
repairs are completed, as shown in [90].
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and scenario 𝑠, we define the Stage II restoration actions 𝜌𝑘𝑠 in REC(𝑎, 𝑠) as follows:

𝜌𝑘𝑠 :=
(︀
[ℓ𝑘𝑠𝑒 ]𝑒∈ℰ , [𝜇

𝑘𝑠
𝑖 ]𝑖∈𝒰 , [𝜔

𝑘𝑠
𝑖𝑑 ]𝑖∈𝒰 ,𝑑∈𝒟, [𝜛

𝑘𝑠
𝑖𝑗𝑑]𝑖,𝑗∈𝒰 ,𝑑∈𝒟

)︀
,

where 𝜇𝑘𝑠𝑖 = 1 denotes if node 𝑖 ∈ 𝒰 is developed in period 𝑘 and scenario 𝑠

(otherwise, 𝜇𝑘𝑠𝑖 = 0); 𝜔𝑘𝑠𝑖𝑑 = 1 if DER 𝑑 is allocated to node 𝑖 ∈ 𝒰 in period 𝑘 and

scenario 𝑠 (otherwise, 𝜔𝑘𝑠𝑖𝑑 = 0); and 𝜛𝑘𝑠
𝑖𝑗𝑑 = 1 if the mobile DER 𝑑 ∈ 𝒟m previously

allocated to node 𝑖 ∈ 𝒰 is reallocated to node 𝑗 ∈ 𝒰 in period 𝑘 and scenario

𝑠 (otherwise, 𝜛𝑘𝑠
𝑖𝑗𝑑 = 0).3 Then, we formulate the constraints on the operator’s

decisions regarding the development of more sites and reallocation of mobile DERs

among the developed sites as follows (∀ 𝑠 ∈ 𝒮):

𝜇𝑘𝑠𝑖 = 𝑢𝑖 ∀ 𝑖 ∈ 𝒰 , 𝑘 = 1 (4.3a)

𝜇𝑘𝑠𝑖 ≤ 𝜇𝑘−1𝑠
𝑖 ∀ 𝑖 ∈ 𝒰 , 𝑘 ∈ 𝒦∖{1} (4.3b)

𝜔𝑘𝑠𝑖𝑑 = 𝑤𝑖𝑑 ∀ 𝑑 ∈ 𝒟f, 𝑖 ∈ 𝒰 , 𝑘 ∈ 𝒦 (4.3c)

𝜔 1𝑠
𝑖𝑑 = 𝑤𝑖𝑑 ∀ 𝑑 ∈ 𝒟m, 𝑖 ∈ 𝒰 (4.3d)

𝜔𝑘𝑠𝑖𝑑 =
∑︀

𝑗∈𝒰 𝜛
𝑘𝑠
𝑖𝑗𝑑 ∀ 𝑑 ∈ 𝒟m, 𝑖 ∈ 𝒰 , 𝑘 ∈ 𝒦∖{1} (4.3e)

𝜔𝑘𝑠𝑖𝑑 ≤ 𝜇𝑘𝑠𝑖 ∀ 𝑑 ∈ 𝒟, 𝑖 ∈ 𝒰 (4.3f)∑︀
𝑖∈𝒰 𝜔𝑘𝑠𝑖𝑑 ≥

∑︀
𝑖∈𝒰 𝜔 𝑘−1𝑠

𝑖𝑑 ∀ 𝑑 ∈ 𝒟m, 𝑘 ∈ 𝒦 (4.3g)∑︀
𝑖∈𝒰 𝜔𝑘𝑠𝑖𝑑 ≤ 1 ∀ 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦 (4.3h)∑︀

𝑑∈𝒟 𝜔𝑘𝑠𝑖𝑑 pg𝑑 ≤ O𝑖 ∀ 𝑖 ∈ 𝒰 , 𝑘 ∈ 𝒦 (4.3i)∑︀
𝑖∈𝒰 ,𝑑∈𝒟 𝜔𝑘𝑠𝑖𝑑 ≤ G ∀ 𝑘 ∈ 𝒦. (4.3j)

Here, (4.3a) implies that new sites can be developed from period 𝑘 = 1; (4.3b) states

that all developed sites remain operational throughout the restoration process; (4.3c)

implies that fixed DERs cannot be reallocated to other sites; (4.3d) states that the

mobile DERs can only be reallocated after 𝑘 = 0; (4.3e) implies that a mobile DER

is located at site 𝑖 only if it is either already placed at the site 𝑖 in a previous period

3For simplicity, we do not consider meshed topologies and the network reconfiguration capabilities
as in [20, 86]. However, our model may be extended to include these operator response capabilities.
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or transferred from an another site; (4.3f) implies that a DER can only be allocated

to a developed site; (4.3g) models that a DER allocated at a certain period remains

allocated in the DN;4 (4.3h) models that a DER can only be allocated to exactly one

site; (4.3i) implies that the total maximum output of DERs at site 𝑖 cannot exceed

the maximum power output value O𝑖 for the site 𝑖;5 and (4.3j) implies that at most

G DERs can be used at any point of time.

For convenience, we also define restoration action for 𝑘 = 0 based on the Stage I

allocation strategy 𝑎 as follows:

𝜌 0𝑠 := ([0]𝑒∈ℰ , [𝑢𝑖]𝑖∈𝒰 , [𝑤𝑖𝑑]𝑖∈𝒰 ,𝑑∈𝒟, [0]𝑖,𝑗∈𝒰 ,𝑑∈𝒟) .

Here, 𝜌 0𝑠 is a fixed action which does not depend on the scenario.

Thus, we can define the set ℛ𝑘 of feasible network restoration action in period 𝑘

for failure scenario 𝑠 based on the restoration action in the previous period as follows:

ℛ𝑘(𝜌𝑘−1𝑠) := {𝜌𝑘𝑠 | (4.2a)− (4.2e), (4.3a)− (4.3j) hold} ∀ 𝑘 ∈ 𝒦.

Finally, for a period 𝑘 ∈ {1, ...,K}, we define the operator cost incurred during

network restoration as the sum of cost of post-storm site development and DER

reallocation, i.e.,

JII
R(𝜌

𝑘𝑠, 𝜌𝑘−1𝑠) =
∑︁
𝑖∈𝒰

WSD
𝑖

(︀
𝜇𝑘𝑠𝑖 − 𝜇𝑘−1𝑠

𝑖

)︀
+
∑︁
𝑑∈𝒟m

∑︁
𝑖∈𝒰

∑︁
(𝑗∈𝒰 : 𝑗 ̸=𝑖)

WDT
𝑖𝑗 𝜛𝑘𝑠

𝑖𝑗𝑑,

where WDT
𝑖𝑗 denotes the cost of transporting a mobile DER from site 𝑖 to site 𝑗. If

WDT
𝑖𝑖 = 0 denotes that there is no cost if the DER is not reallocated. A positive

value for WDT
𝑖𝑖 > 0 can be used to model maintenance cost of DER at site 𝑖.

4In our model, we assume that the DERs can stay connected to the DN even while supplying no
output power.

5In practice, the maximum power output O𝑖 parameter for site 𝑖 may depend upon several factors
such as the space available, the line capacity of lines connected at site 𝑖, and the actions taken to
develop site at node 𝑖.
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4.2.3 Microgrid model with multi-master DER operation

We now describe our novel model for multi-master operation [66, 72] of microgrids,

which includes models for DERs, loads, and power flows within the DN. In multi-

master operation, multiple DERs share the responsibility of providing voltage regula-

tion in a single microgrid. On the other hand, in single-master operation, only one of

the DERs (typically the one with the largest capacity) provides voltage regulation.6

Our model is flexible in that it permits both single- and multi-master operation of

DERs within the microgrid(s).

DER model: We consider that in each period, the DERs are redispatched to

satisfy new operating constraints resulting from line repairs and DER reallocations

enabling the energizing of additional loads. The following constraints characterize

our DER model (∀ 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦, 𝑠 ∈ 𝒮):

0 ≤ 𝑝𝑔𝑘𝑠𝑖𝑑 ≤ 𝜔𝑘𝑠𝑖𝑑 pg𝑑 ∀ 𝑖 ∈ 𝒰 (4.4a)

|𝑞𝑔𝑘𝑠𝑖𝑑 | ≤ 𝜂𝑑𝑝𝑔
𝑘𝑠
𝑖𝑑 ∀ 𝑖 ∈ 𝒰 (4.4b)

𝑝𝑔𝑘𝑠𝑖𝑑 = 𝑞𝑔𝑘𝑠𝑖𝑑 = 0 ∀ 𝑖 ∈ 𝒩∖𝒰 (4.4c)

|v𝑘𝑠𝑖 − (vref
𝑑 −mq𝑑𝑞𝑔

𝑘𝑠
𝑖𝑑 )| ≤ (1− 𝜔𝑘𝑠𝑖𝑑 )L ∀ 𝑖 ∈ 𝒰 , 𝑘 ̸= K. (4.4d)

Eq. 4.4a implies that if a DER 𝑑 is allocated to a site 𝑖, then the active power

contribution of the DER is non-negative and upper bounded by its capacity pg𝑑,

otherwise it is 0; (4.4b) models that the magnitude of reactive power output of the

DER can be at most 𝜂𝑑 of its active power output, where 𝜂𝑑 is the tan arccos of

the minimum power factor7 [98, 90]; (4.4c) ensures that the active and reactive power

contributions of a DER to non-DER site nodes are zero; and (4.4d) models the voltage

droop control equation [66], which depends on whether or not a DER is allocated at

6In an autonomous microgrid, the master DERs are also responsible for frequency regulation.
In our model, we do not consider frequency regulation for simplicity. However, our model can
be extended to consider frequency regulation by considering the voltage-source inverter control
models [66].

7Typically, the DERs are setup such that the minimum power factor 𝜂𝑑 = 0.95.
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site 𝑖 (L is a large constant).8 Note that (4.4d) captures the key feature of the model,

which is that multiple DERs can energize a microgrid by providing voltage regulation.

We consider that every allocated DER is large enough (> 10 kW active power rating)

to contribute to voltage regulation. However, this assumption can be relaxed by

dropping (4.4d) for those DERs that do not provide voltage regulation.

Turbine-based DERs such as diesel generators are AC power sources, so they can

contribute to voltage regulation via in-built excitation systems that utilize automatic

voltage regulators [68]. In contrast, DERs such as batteries or photo-voltaic genera-

tors are DC power sources, which are connected to the DN via inverters. Such DERs

can contribute to voltage regulation if their inverters are set in the voltage source

inverter (VSI) control mode [65].

It is also worth noting that in our model, each DER within an island contributes

to the voltage regulation of the microgrid island, simultaneously with other DERs

in the same island [6]. A suitable extension of our model can also allow some of

the DERs to operate in the PQ control mode, in which both the DERs’ active and

reactive power supply is fixed. One simple scheme to address this extension is to

consider that the largest DG in the island operates in PV mode and the rest in PQ

mode. The largest DG would be the substation when the island is in grid-connected

mode [91]. Moreover, since the DERs can contribute to frequency regulation of the

islanded microgrid, our model can also be extended to consider the frequency droop

control equations.

Load model: The constraints governing our load model are as follows (∀ 𝑘 ∈

𝒦, 𝑠 ∈ 𝒮):

𝛼𝑘𝑠𝑖 ≥ vc𝑖 − v𝑘𝑠𝑖 , 𝛼𝑘𝑠𝑖 ≥ v𝑘𝑠𝑖 − vc𝑖 ∀ 𝑖 ∈ 𝒩 (4.5a)

𝛽 𝑘𝑠𝑖 ≥ (1− 𝛼𝑘𝑠𝑖 )𝛽
𝑖
, 𝛽 𝑘𝑠𝑖 ≤ (1− 𝛼𝑘𝑠𝑖 ) ∀ 𝑖 ∈ 𝒩 (4.5b)

Here, (4.5a) ensures that the load remains connected only if the voltage bounds are

8At period K, the DN is connected to the bulk power supply and the “stiff” AC system of the
bulk power grid determines the terminal voltage of the DERs. Hence, the voltage droop equation
does not apply at period K.
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satisfied; and (4.5b) implies that if a load 𝑖 is connected, the fraction of its demand

satisfied must lie in the interval [𝛽
𝑖
, 1].

Power flow model: We model the power flows within the DN using the LinDis-

tFlow model [90] (∀ 𝑠 ∈ 𝒮):

𝑝𝑘𝑠𝑖 = 𝛽 𝑘𝑠𝑖 pc𝑖 −
∑︀

𝑑∈𝒟 𝑝𝑔
𝑘𝑠
𝑖𝑑 ∀ 𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦 (4.6a)

𝑞𝑘𝑠𝑖 = 𝛽 𝑘𝑠𝑖 qc𝑖 −
∑︀

𝑑∈𝒟 𝑞𝑔
𝑘𝑠
𝑖𝑑 ∀ 𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦 (4.6b)

𝑃 𝑘𝑠
𝑒 =

∑︀
𝑙:𝑙−=𝑒+ 𝑃

𝑘𝑠
𝑙 + 𝑝𝑘𝑠𝑒+ ∀ 𝑒 ∈ ℰ, 𝑘 ∈ 𝒦 (4.6c)

𝑄𝑘𝑠
𝑒 =

∑︀
𝑙:𝑙−=𝑒+ 𝑄

𝑘𝑠
𝑙 + 𝑞𝑘𝑠𝑒+ ∀ 𝑒 ∈ ℰ, 𝑘 ∈ 𝒦 (4.6d)

|𝑃 𝑘𝑠
𝑒 | ≤ (1− 𝜅𝑘𝑠𝑒 )L ∀ 𝑒 ∈ ℰ, 𝑘 ∈ 𝒦 (4.6e)

|𝑄𝑘𝑠
𝑒 | ≤ (1− 𝜅𝑘𝑠𝑒 )L ∀ 𝑒 ∈ ℰ, 𝑘 ∈ 𝒦 (4.6f)

L𝜅𝑘𝑠𝑒 ≥ |v𝑘𝑠𝑒+ − (v𝑘𝑠𝑒− − 2(r𝑒𝑃 𝑘𝑠
𝑒 + x𝑒𝑄𝑘𝑠

𝑒 ))| ∀ 𝑒 ∈ ℰ, 𝑘 ∈ 𝒦 (4.6g)

v𝑘𝑠𝑖 = vnom ∀ 𝑖 = 0, 𝑘 = K. (4.6h)

Eqs. (4.6a)-(4.6b) determine the net active and reactive power consumed at the nodes.

Eqs. (4.6c)-(4.6d) determine the resulting active and reactive power flows on the lines.

Eqs. (4.6e)-(4.6f) ensure no power flows on the failed lines until they are repaired.

Similarly, (4.6g) ensures that the voltage drop constraint along a line 𝑒 (between

‘from’ node 𝑒− and ‘to’ node 𝑒+) is enforced only if 𝑒 is operational. Finally, (4.6h)

ensures that the substation voltage is equal to the nominal voltage when the DN is

connected back to the main grid at 𝑘 = K.

Now, we define the network state variable for scenario 𝑠 and period 𝑘 as follows:

𝜒𝑘𝑠 :=
(︀
(𝑝𝑔𝑘𝑠𝑖𝑑 )𝑖∈𝒩,𝑑∈𝒟, (𝑞𝑔

𝑘𝑠
𝑖𝑑 )𝑖∈𝒩,𝑑∈𝒟, (𝛽

𝑘𝑠
𝑖 )𝑖∈𝒩 , (𝛼

𝑘𝑠
𝑖 )𝑖∈𝒩 , (𝑝

𝑘𝑠
𝑖 )𝑖∈𝒩 , (𝑞

𝑘𝑠
𝑖 )𝑖∈𝒩 ,

(𝑃 𝑘𝑠
𝑒 )𝑒∈ℰ , (𝑄

𝑘𝑠
𝑒 )𝑒∈ℰ , (v

𝑘𝑠
𝑖 )𝑖∈𝒩

)︀
.

Then, under the restoration action 𝜌𝑘𝑠, the set of feasible network states is defined as

𝒳 𝑘
(︀
𝜌𝑘𝑠
)︀
:= {𝜒𝑘𝑠 | (4.4a) − (4.4d), (4.5a) − (4.5b), (4.6a) − (4.6h) hold}. The sets(︀

𝒳 𝑘
)︀
𝑘∈𝒦 and

(︀
ℛ𝑘
)︀
𝑘∈𝒦 collectively define the system of inequalities B2𝑟

𝑠 + B3𝑥
𝑠 ≥
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h − F𝑎 and the binary constraints in REC(𝑎, 𝑠).

For period 𝑘 ∈ 𝒦, we define the cost of unmet demand as the sum of two costs:

JII
L (𝜒

𝑘𝑠) =
∑︁
𝑖∈𝒩

(︀
(WLS

𝑖 −WLC
𝑖 )𝛼𝑘𝑠𝑖 + WLC

𝑖 (1− 𝛽 𝑘𝑠𝑖 )
)︀
,

where the first term denotes the cost of load shedding and the second term denotes

the cost of load control.

Finally, combining the Stage I and Stage II decision variables, we can rewrite the

DEF problem (DEF) as follows:

min
𝑎,𝑅,𝑋

JI(𝑎) +
1

|𝒮|
∑︁
𝑠∈𝒮

∑︁
𝑘∈𝒦

(︀
JII

R(𝜌
𝑘𝑠) + JII

L (𝜒
𝑘𝑠)
)︀

s.t. 𝑎 ∈ 𝒜

𝜌𝑘𝑠 ∈ ℛ𝑘(𝜌𝑘−1𝑠) ∀ 𝑘 ∈ 𝒦, 𝑠 ∈ 𝒮

𝜒𝑘𝑠 ∈ 𝒳 𝑘
(︀
𝜌𝑘𝑠
)︀

∀ 𝑘 ∈ 𝒦, 𝑠 ∈ 𝒮,

(DEF)

where 𝑅 := [𝑟 𝑠]𝑠∈𝒮 denotes the collection of restoration strategies, and 𝑋 := [𝑥𝑠]𝑠∈𝒮

denotes the collection of microgrid operations combined over all the scenarios in 𝒮.

Thus, the operator’s goal is to minimize the sum of Stage I cost and the expected

Stage II cost by choosing both a pre-storm resource allocation, as well as a post-storm

strategy for DN restoration and microgrid operations.

4.3 Illustrative Examples

4.3.1 Example No. 1

Figure 4-1 provides an illustration of various aspects of our formulation. In Figure

4-1a, the DN is in nominal operating conditions, i.e., each node is connected to the

grid and no load control is exercised.

Suppose that the utility has resources to develop one DER site in Stage I. Further

suppose that due to the power flow constraints (4.6c)-(4.6d) and voltage drop con-
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Figure 4-1: The subfigures show (a) nominal DN (white nodes indicate no load con-
trol), (b) pre-storm DER allocation based on storm forecast (blue node denotes DER
allocation, red lines illustrate a disruption scenario), (c) microgrid islands (dotted lines
indicate failed lines, black nodes denote the loads that are completely unserved), (d)
partial line repairs enable partial load restoration (light gray nodes), (e) line repairs
completed leading to more load restoration, although with even more load control
than before (dark gray nodes), and finally (f) reconnection to main grid and restora-
tion of nominal performance.
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straints (4.6g), transmitting power across more than two lines results in voltage bound

violations. Hence, from any site location, the DERs will be able to meet the demand

of nodes which are at most two hops away from the site. For example, a DER placed

at node H can only supply power to nodes A, G, and H, such that {A,B,G,H} form

the largest connected island. Hence, placing a site at node A can immediately serve

demand of 4 loads. However, if we take into account the line repairs, the maximum

number of loads that can be reconnected to the DN (after repairs) is eight if the site

is developed at node D. Thus, allocating the DER to node D is optimal because it

maximizes number of loads served, though only two loads are served during the first

period.

In Figure 4-1c, we see that a failure scenario has been realized for period 𝑘 = 0

where the set of failed lines ℰ𝑠 include lines (B,C), (D,E), (D,I), and (D,K). The loss

of bulk power supply is represented by the DN’s disconnection from the substation,

i.e. (0,A) ∈ ℰ𝑠. Since the demand at just two nodes (C, D) is met in the first

period, no load control is necessary (i.e. 𝛼𝑘𝑠𝑖 = 0, 𝛽 𝑘𝑠𝑖 = 1 ∀ 𝑖 ∈ {C,D}; and

𝛼𝑘𝑠𝑖 = 1, ∀ 𝑖 ∈ 𝒩∖{C,D}).

Next, we schedule line repairs under the constraint Y = 2, i.e. at most two

lines can be repaired in each period. Looking at the most number of loads that can

be reconnected, the lines (D,E) and (D,I) should be repaired in the period 𝑘 = 1

(ℓ𝑘𝑠𝑒 = 1 if 𝑒 ∈ {(D,E), (D,I)}), and lines (D,K) and (B,C) should be repaired in

the period 𝑘 = 2 (ℓ𝑘𝑠𝑒 = 1 if 𝑒 ∈ {(D,K), (B,C)}). Following this schedule, nodes

E, F, I, J are connected while 𝑘 = 1 (see Figure 4-1d). The DER power supply

is enough to serve only partial demand at these nodes (𝛼𝑘𝑠𝑖 = 0 and 𝛽 𝑘𝑠𝑖 < 1 for

𝑖 ∈ {C,D,E,F,I,J}). The loads at nodes B, C and K are reconnected while 𝑘 = 2

due to further line repairs (see Figure 4-1e), and a greater portion of demand can be

met (𝛽𝑘,𝑠𝑖 > 𝛽𝑘−1,𝑠
𝑖 for 𝑖 ∈ {C,D,E,F,I,J}). Due to power flow constraints, the loads

at nodes A, G, and H cannot be reconnected until the complete network is restored.

Finally, when the DN is reconnected to main grid (ℓ𝑘𝑠𝑒 = 1 for 𝑒 =(0,A) and 𝑘 = K)

the nominal operation of the DN is fully restored (see Figure 4-1f).
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4.3.2 Example No. 2

In this section, we introduce an illustrative example to discuss how failure uncertainty,

repair scheduling and power flow constraints affect the DER allocation (see Figure

4-2).

0

1

2

3

4

(a)

S1

S2

S3

(b)

A1

A2

A3

(c)

A1,S1

𝑘 = 0

A1,S2

A1,S3

A2,S3

(d)

𝑘 = 1

(e)

𝑘 = 2

(f)

𝑘 = 3

(g)

Figure 4-2: The subfigures show (a) nominal DN, (b) considered scenarios with failed
lines shown by dotted lines (c) three potential DER allocations, (d) network topology
after the storm, and (e)-(g) network restoration. Greater load control is indicated by
a darker (grayer) node.
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N
od

es
𝑖 WSD

𝑖 pc𝑖 qc𝑖 𝛽𝑖 WLS
𝑖 WLC

𝑖 Useful Jload
𝑖 or V𝑖 values for some (𝛼𝑖, 𝛽𝑖) inputs

1 300 0 0 0 0 0 N/A
2 0 0.9 0.3 1/3 1000 450 Jload

2 (1, 0) = 1000,V2(0, 2/3) = 850,V2(0, 1/3) = 700
3 0 0.6 0.2 1/2 900 300 Jload

3 (1, 0) = 900,V3(0, 1/2) = 750
4 300 0.3 0.1 1 650 0 Jload

4 (1, 0) = 650

Ed
ge

s

𝑒 r𝑒 x𝑒

D
ER

s

pg𝑑 qg𝑑 vref
𝑑

{0, 1} 0.1 0.2 0.6 0.2 1.05{1, 2} 0.1 0.2
{1, 3} 0.1 0.2 0.3 0.1 1.05{1, 4} 0.1 0.2 Sc

en
ar

io
s 𝑠 P(𝑠) 𝑠{0,1} 𝑠{1,2} 𝑠{1,3} 𝑠{1,4}

S1 1/3 1 0 1 1
S2 1/3 0 1 1 1
S3 1/3 1 1 1 1

Table 4.1: Parameters of the example 4-node network.

The voltage bounds for each node 𝑖 are v𝑖 = 0.95 and v𝑖 = 1.05 (see parameters

in Table 4.1). The considered failure scenarios are shown in Figure 4-2b and three

of 16 feasible allocations in Figure 4-2c, where the DER with larger (resp. smaller)

capacity is shown in green (resp. blue).

First, we argue that the optimal allocation without considering line repairs, as is

the case in [86, 20], is to allocate DERs to nodes 2 and 3 (allocation A2). Based on

the costs of load shedding, the operator’s load preference is in the order 2 ≻ 3 ≻ 4.

Even if the power consumed by each load is adjusted to be identical at 0.3 + 0.1j by

exercising load control (𝛽2 = 1/3, 𝛽3 = 1/2, 𝛽4 = 1), the value in operating loads 2,

3 and 4 is 700, 750, and 650, respectively; see Table 4.1. If the operator were forced

to shed one of three loads, then the operator would be best off shedding load at node

4. Thus without considering repairs, the optimal allocation is to allocate DERs at

nodes 2 and 3, and it does not matter which DER is allocated to which node between

2 and 3. However, we show that this allocation is suboptimal.

Second, we show how the power flow constraints influence DER allocation. If

for some line 𝑒, 𝑃𝑒 = 0.3, 𝑄𝑒 = 0.1, then 2(r𝑒𝑃𝑒 + x𝑒𝑄𝑒) = 0.1, i.e., the voltage

drop along that line equals 0.1. This constrains the amount of power that can flow

along any line. If no DER is allocated to node 1, then the three loads cannot be

simultaneously energized even after load control because of voltage bound violations.

For e.g., if 𝑢2 = 𝑢3 = 1, 𝑤21 = 1, and 𝑤32 = 1 (such an allocation may be considered

since there is no cost for developing sites at nodes 2 and 3), then for all three loads
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𝑎 JI(𝑎) 𝑠
Stage II cost in period 𝑘 JII(𝑎, 𝑠) 𝑔(𝑎)

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

A1 200
S1 1000 450 450 450 2350

3050S2 1050 450 450 450 2400
S3 1900 1000 450 450 3800

A3 100
S1 950 450 450 450 2300

3233S2 1550 950 450 450 3400
S3 1850 950 450 450 3700

Table 4.2: Costs in different periods for allocations A1 and A3, and scenarios S1, S2,
and S3. The costs under A2 is a constant of 950 for each period, and each scenario,
thereby resulting in total expected loss of 3800.

to be energized, power from the larger DER at node 2 must travel to node 4. This

would result in a voltage drop of 0.2 between nodes 2 and 4, and a voltage bound

violation. Thus, the larger of the two DERs, i.e. DER 1, should be allocated at node

1 for all three loads to be energized. Hence, under allocation A2, load 4 cannot be

re-energized in any scenario.

Third, we show how the uncertainty in scenarios influence the DER allocation.

The summary of the operator costs in various stages under considered allocation

strategies and scenarios is shown in Table 4.2. Note that A1 has the lowest total

expected cost, i.e. A1 is the optimal strategy. Also, under A1 the smaller DER would

be allocated to node 4. This is somewhat counterintuitive in the sense that the DERs

are allocated to costly nodes (i.e. larger WSD
𝑖 values), and in case of node 1, allocated

to a node without a load. This can be understood by noting that the line {1, 4} fails

in all scenarios. On the other hand, under allocation A3, the load at node 4 will have

to be shed for two time periods in first two scenarios, and for three time periods in

the third scenario. Hence, A3 is clearly a suboptimal allocation.

4.4 Computational Studies

To implement the SAA solution approach, we utilize the mixed integer program (MIP)

optimization model in JuliaPro. Solutions are obtained using the Gurobi solver.
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4.4.1 Computational Setup

For this section, we use a modified IEEE 12-node test feeder, which has number

of sites |𝒰| = 4. The distribution test feeders are placed in the Miami-Dade area of

Florida, and we assume that the distribution feeders are damaged by a reconstruction

of wind velocities for Hurricane Katrina (2005). We assume that the edges connecting

nodes are ∼1 km apart.

We estimate the probability distribution P(𝑠) following Section 4.1.3. For the

hurricane track forecast, we use the historical track of Hurricane Katrina provided

by National Hurricane Centers hurricane databases (HURDAT-2) [56]. For the hur-

ricane wind field forecast, we assume that the wind field is given by the Holland

1980 model [47]. To calibrate the Holland model parameters, we use the wind field

data of Hurricane Katrina given by the Hurricane Research Division hurricane sur-

face wind analysis system (H*Wind, now Risk Management Solutions, Inc., (RMS)

HWind) radial structure database [82]. Then, the parameters are calibrated follow-

ing the approach outlined in [15]. Using the calibrated Holland model, we forecast

the hurricane wind velocities at one-hour intervals and for each 0.01∘×0.01∘ spatial

grid within the latitude range 25.63∘N – 25.92∘N and longitude range 80.13∘W –

80.37∘W. Finally we compute P(𝑠) by using the NHPP model [117], with the esti-

mated Holland wind velocities as input and model parameter selections from [116].

The computed probability distribution is used to obtain a scenario set 𝒮 via Sample

Average Approximation (SAA).

To produce wind field forecasts, we consider two different tracks of a Category 1

storm to account for expected uncertainty in the storm trajectory. The storm tracks

we used (hereafter referred to as Track 1 and Track 2) differ primarily in that the

storm eye wall (region of maximum winds) is farther away from the DN for Track 2,

and thus the wind velocities in the DN are lower compared to the case with Track

1. We use synthetic values for the Holland parameters (Vm, Rm, B) to produce

predictions of velocities using the Holland 1980 model [47].

Next, we discuss the cost parameters related to DEF. We assume site development
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cost WSD
𝑖 = 1, 000 , ∀ 𝑖 ∈ 𝒰 ; DER allocation cost WDA

𝑖𝑑 = 0, ∀ 𝑖 ∈ 𝒰 , 𝑑 ∈ 𝒟; and

DER reallocation cost WDT
𝑖𝑗 = 0, ∀ 𝑖, 𝑗 ∈ 𝒰 . The cost of load shedding WLS

𝑖 = 1, 000

and cost of load control WLC
𝑖 = 100, for all nodes 𝑖 with a load. We assume that the

12-node test feeder has 6 nodes with one load each.

Next, we discuss parameters related to formulation of the constraints in DEF. For

the constraint parameters related to the DERs, we assume the following parameter

values: mq𝑑 = 0.1, vref
𝑑 = 1.0 ∀ 𝑑 ∈ 𝒟. The total capacity of available DERs

is chosen to be 80% of the total demand in the network. We set voltage bounds

vc𝑖 = 0.9 and vc𝑖 = 1.1, ∀ 𝑖 ∈ 𝒩; maximum active and reactive power consumed

pc𝑖 = 1.25/N and qc𝑖 = pc𝑖/3, ∀ 𝑖 ∈ 𝒩; resistances r𝑒 = 0.01, ∀ 𝑒 ∈ ℰ; and

reactances x𝑒 = 2.0, ∀ 𝑒 ∈ ℰ. We enforce that for each node 𝑖 with a load, the

minimum fraction of demand met must be 𝛽
𝑖
= 0.5. Finally, we set the nominal

voltage vnom = 1.0.

Failure probability Size of islands

Mean Min Max Med. Min Max

Track 1 0.63 0.56 0.75 1.58 1.08 4.20

Track 2 0.26 0.21 0.34 3.22 2.11 5.61

Table 4.3: Mean, minimum, and maximum failure probabilities of distribution lines
(left side) and median, minimum, and maximum island size (right side) for the two
tracks.

We generate a total of 𝑆=1,000 failure scenarios to examine distributions in fre-

quency of failures and number/size of islands. The quadratic relationship between

Poisson intensity and velocity in the NHPP model (see Section 3.1.3) results in a sig-

nificant increase in probability of failures and decrease in island size if the test feeder

is subject to higher storm velocities (see Table 4.3).9 An average of 5.96 failures occur

per scenario in Track 1, while only 2.88 failures occur per scenario in Track 2 (see

Figure 4-3a). The smaller median island size under Track 1 corresponds with a larger

number of islands (see Figure 4-3b).
9Category 2-5 storms have a larger radial region of high winds, and we can expect much higher

failure probabilities in such cases. In contrast, under mild storms with the tropical storm rating,
Poisson intensities are uniformly 𝜆norm, and the failure probability is < 0.001.
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(a) (b)

Figure 4-3: (a) – Empirical probability of number of line failures; (b) – Number
of islands formed. A total of 1,000 failure scenarios are simulated to produce the
histograms.

4.4.2 System Performance

System performance at a period 𝑘 is defined as the average percentage difference

between the cost of unmet demand and the total cost of complete load shedding,

averaged over the sampled scenarios 𝑠 and as a function of the optimal first-stage

solution of each scenario. For period 𝑘 ∈ 𝒦, we define the system performance 𝒫𝑘

as follows:

𝒫𝑘 =
∑︁
𝑠∈𝒮

P(𝑠)× 100

(︃
1− JII

L (𝜒
𝑘𝑠⋆)∑︀

𝑖∈𝒩 WLS
𝑖

)︃
, (4.7)

where 𝑥𝑠⋆ := [𝜒𝑘𝑠
⋆
]𝑘∈𝒦 denotes the optimal microgrid operation corresponding to

JII(𝑎, 𝑠). Note that system performance decreases with increasing cost of unmet

demand, and is at a maximum of 100% when the demand is fully met.

4.4.3 Effect of Resource Constraints

To evaluate the system performance under different resource constraints, we vary

G (number of available DERs) and Y (maximum number of lines repaired in each

period). The system performance as a function of 𝑘 under different values of G and Y

for two storm tracks is shown in Figure 4-4. Since there are more failures on average

in the DN under Track 1, the system performance at 𝑘 = 0 is lower than for Track 2.
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(a) Track 1 (b) Track 2

Figure 4-4: Average system performance of the DN under the two track scenarios,
varying G while setting Y = 1 (top row) and varying Y while setting G = 1 (bottom
row).
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If G > 0, even networks with high failure probabilities will be able to meet

a portion of demand given a nonzero DER budget – the network repair time will

simply be longer. Increasing Y noticeably decreases the average time required to

repair the network (return to system performance that is close to 100%) under both

track scenarios. Increasing G ensures that a larger portion of system demand is met

while line repairs are not yet completed.

4.4.4 Effect of Cost Parameters

Next, we evaluate how cost parameters affect the optimal solution to DEF (see Figure

4-5). Recall that the first-stage cost is the sum of the site development cost WSD and

resource allocation costs WDA (see Eq. 4.2.1). Recall that the second-stage cost is

given by the cost of site development WSD, reallocation WDT, load shedding WLS,

and load control WLC (see Eq. 4.2.2-4.2.3). We examine how the allocations 𝑎̂ and

associated cost 𝑔(𝑎̂,𝒮) vary with WSD (Stage I), while fixing WLC and WLS. In the

analysis, we assume that WDA, WDT, and WSD (Stage II) are zero.

(a) (b)

Figure 4-5: (a) – Normalized total cost 𝑔(𝑎̂,𝒮)/WLS vs. the ratio of site development
and load shedding costs WSD/WLS. The plot is divided into three regimes based on
WSD/WLS, to indicate that the number of sites developed decreases with increasing
WLS. (b) – System performance under the three regimes. We use the following
parameters on a 12-node network and using LBD-Greedy: G = 3 (all fixed DERs),
Y = 2, S = 10.

When the site development cost WSD, the optimal first-stage solution minimizes
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the Stage II cost. In Figure 4-5a, when the site development cost parameter (WSD)

is 0, in the optimal allocation three sites are developed. Now, if WSD increases by a

small value Δ, then the expected total cost increases by 3Δ (see Section 4.2.1). As

WSD further increases, it becomes less costly to two develop just two sites. Now,

for a small increase Δ in WSD, the total cost increases by only 2Δ. The number

of sites developed will continue to drop as WSD increases further. Eventually, no

sites are developed when WSD is sufficiently large. Figure 4-5a highlights the cost

regimes corresponding to these differing solutions. Figure 4-5b demonstrates that

system performance predictably worsens with decreasing number of sites developed.

4.4.5 Benefits of Mobile DERs

We next investigate the benefits of utilizing a combination of fixed and mobile DERs,

as opposed to using only fixed DERs. To measure the benefit, we compare the system

performance and total cost of various DER constraints given by G, |𝒟f|, and |𝒟m|.

Figure 4-6: Benefit of using mobile DERs for a 12-node network with total number of
available DERs G = 2 and number of scenarios S = 5. We consider the case of two
fixed DERs (|𝒟f| = 2, |𝒟m| = 0) or one fixed DER + one mobile DER (|𝒟f| = 1,
|𝒟m| = 1), under two values of the repair rate Y.

Figure 4-6 demonstrates the effect of using mobile DERs on the system perfor-

mance 𝒫𝑘. The benefit of mobile DERs is realized starting at period 𝑘 = 2, when the

DERs can begin to move around. This is because microgrid islands expand in size

(and eventually merge) with the repairs. Thus at each period, the locations of DERs

that would maximize the demand met in the network may change, in which case the

movable DER is re-allocated accordingly. Starting around period 𝑘 = 5, the benefit
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of re-allocating the mobile DER is limited because connectivity is restored between

most loads and the available DERs in the scenarios considered. Therefore the system

performance under the cases of two fixed DERs or one fixed + one mobile DER is

similar in the later periods.

4.5 Concluding remarks

This work presents a modeling approach to the integrated pre-storm resource alloca-

tion and post-storm repair and dispatch problem for improving resilience of electric-

ity distribution networks against storms. The problem is formulated as a two-stage

stochastic mixed-integer program (SMIP2). The program considers pre-storm alloca-

tion of distributed energy resources (DERs); as well as post-storm network restoration

(resource re-allocation and component repairs) and multi-master operation of islanded

microgrids over a multi-period timeframe. Furthermore, the model handles uncertain-

ties in the locations of component failures by using a nonhomogeneous Poisson process

(NHPP) model (see Chapter 3) to generate the component failure scenarios. Hence,

the optimal resource allocations are dependent on damage uncertainties, which in turn

are dependent on the physical structure and temporal evolution of the hurricane.

In order to assess network resilience to the hurricane under various resource al-

location strategies, we define a period-wise system performance metric. We analyze

the effect of resource constraints, cost parameters, and inclusion of mobile DERs on

the system performance.
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Chapter 5

Solution Approaches for Stochastic

Resource Allocation

The two-stage stochastic mixed-integer program (SMIP2) outlined in Chapter 4 is

computationally challenging to solve. Typically, linear programs with integer vari-

ables are solved using branch-and-bound (B&B) algorithms. B&B algorithms re-

quire significant time to solve programs, in comparison to solving linear programs

that include only continuous variables, which are typically solved using the simplex

method. Furthermore, as noted in Chapter 4, the number of possible damage scenar-

ios increases exponentially with the network size. This necessitates scenario selection

approaches to decrease the size of the MILP, and motivated us to use the Sample

Average Approximation (SAA) method.

Even solving (SAA) can be computationally expensive. A naive approach to solve

(SAA) is to solve the recourse problems REC(𝑎, 𝑠) under every possible resource allo-

cation strategy. This is inefficient because the number of feasible pre-storm resource

allocations increases exponentially with the DER resource constraint. Furthermore,

the number of binary variables in the recourse problem REC(𝑎, 𝑠) increases quadrat-

ically with the network size. In this section, we propose more efficient approaches

based on L-shaped Benders decomposition (LBD), which can output a suitable solu-

tion to the two-stage program by potentially considering a smaller number of Stage I

strategies.
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In Section 5.1, we provide a generic overview of the L-shaped Benders decom-

position (LBD) solution approach, and discuss the primary ways in which LBD ap-

proaches may differ. In Section 5.2, we formulate the LBD with Greedy Approach

(LBD-Greedy). In Section 5.3, we formulate the LBD with Dual Integer Cuts (LBD-

DIC) approach. Our last approach that we formulate is the Nested Benders Decom-

position (NBD) approach, which we discuss in Section 5.4. We compare the solution

approaches in terms of convergence and solution accuracy, and make concluding re-

marks in Section 5.5.

5.1 Overview of L-shaped Benders Decomposition

In this section, we provide a generic overview of the L-shaped Benders Decomposition

(LBD) solution approach [12] for solving two-stage stochastic optimization problems.

In the LBD approach, we decompose the two-stage problem into a master problem (for

the Stage I allocation problem) and the subproblems (S2). Then, we alternately solve

the master problem and subproblems (S2) in an iterative manner, until a defined

termination criteria is met and/or the number of maximum iterations is exceeded.

The motivation for using LBD-based approaches is to solve (DEF) in a manner that

is more efficient than simple enumeration of all first-stage strategies 𝑎 ∈ 𝒜, followed

by solving subproblems under each first-stage strategy 𝑎.

We denote an iteration of our method by 𝑙. Then, the generic master problem in

the 𝑙th iteration is defined as follows:

̂︀𝑎 𝑙 = argmin
𝑎

JMP(𝑎)

s.t. 𝑎 ∈ 𝒜,

Benders cut(𝑗) ∀ 𝑗 ∈ 𝒥𝑙

(5.1)

where 𝒥𝑙 = {0, · · · , 𝑙 − 1} denotes the set of completed iterations. For the initial

(0th) iteration, the master problem contains only the Stage I feasibility constraints

(𝑎 ∈ 𝒜), and no Benders cuts or trivial cuts. At each iteration, solving Eq. (5.1)
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yields a feasible solution ̂︀𝑎 𝑙, which is then used to parameterize the scenario-wise

subproblem (S2) with 𝑎 = ̂︀𝑎 𝑙 as fixed. These scenario-wise subproblems can be

solved independently of each other because no constraint of (S2) involves variables

from more than one scenario subproblem. The solution to the Stage II problem is

used to generate an optimality cut which is then added to the master problem for the

next iteration 𝑙 + 1.

In the classical LBD method, the optimality cut is referred to as the Benders cut.

The classical LBD method has been widely used in the context of Stochastic Linear

programs. However, its major limitation is that it requires the Stage II problem to

be a convex program, in which case the Benders cut is formed using the optimal

solutions to the dual subproblems. However, the subproblems given by REC(𝑎, 𝑠)

are MILPs which are discontinuous and non-convex. The three solution approaches

that we devise (LBD-Greedy, LBD-DIC, and NBD) differ in the means by which we

generate the optimality cuts.

The optimality cuts are used to constrain the set of feasible first-stage resource al-

locations 𝒜, or to provide updates to lower and upper bounds on the overall two-stage

problem objective. The algorithm terminates when a defined convergence criterion

(based on the upper and lower bounds) is met, and/or all solutions 𝑎 ∈ 𝒜 have been

eliminated by the Benders cuts.

In summary, the three solution approaches we consider (LBD-Greedy, LBD-DIC,

and NBD) differ primarily in terms of: optimality cut formulation, master problem

formulation, and algorithm termination criteria. We now proceed to discuss the first

approach formulated, LBD with Greedy Approach (LBD-Greedy).

5.2 LBD with Greedy Approach

In this section, we outline an approach that is referred to as “L-shaped Benders

Decomposition with Greedy Approach” (LBD-Greedy). The approach is named after

the “greedy approach” [17] we employ for solving the Stage II scenario-wise problems

given by REC(𝑎, 𝑠).
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The master problem for the 𝑙𝑡ℎ iteration in our LBD-Greedy method as follows:

(MP1) min
𝑎∈𝒜

JI(𝑎) (5.2a)

s.t. BC-Greedy(𝑗) ∀ 𝑗 ∈ 𝒥𝑙 (5.2b)

TC(𝑗) ∀ 𝑗 ∈ 𝒥𝑙, (5.2c)

where the master problem objective JMP(𝑎) = JI(𝑎), BC-Greedy(𝑗) denotes the Ben-

ders (optimality) cut formed at iteration 𝑗, and TC(𝑗) denotes the so-called “trivial

cut” formed at iteration 𝑗. We will subsequently discuss the formulation of the Ben-

ders and trivial cuts.

As discussed in Section 5.1, formulation of the Benders cut requires the Stage II

problem to be a convex program, but the subproblems given by REC(𝑎, 𝑠) are MILPs

which are discontinuous and non-convex. Therefore, generating the optimality cut in

LBD-Greedy involves two sub-steps. First, we solve the MILP REC(𝑎, 𝑠). Then, we

use the optimal binary values in the solution of REC(𝑎, 𝑠) to fix the binary variables

in REC(𝑎, 𝑠), and solve the REC(𝑎, 𝑠) to generate the Benders cut.

Solving the multi-period subproblem REC(𝑎, 𝑠) can be computationally challeng-

ing because the number of binary variables in REC(𝑎, 𝑠) increases quadratically with

the network size. Thus we propose a “greedy approach” as a heuristic to speed up

solving of the MILP REC(𝑎, 𝑠). This approach entails decomposing REC(𝑎, 𝑠) into

period-wise subsubproblems; obtaining a greedy, feasible Stage II solution using the

subsubproblem solutions; and using the greedy solution as a warm-start solution for

solving the complete subproblem REC(𝑎, 𝑠).

5.2.1 Formation of Benders and trivial cuts

The generation of Benders cuts at each iteration of the LBD-Greedy method requires

two steps. In the first step, we solve REC(̂︀𝑎 𝑙, 𝑠) to compute the optimal values of

(𝑟 𝑠, 𝑥𝑠) in the 𝑙𝑡ℎ iteration, which we denote as (̂︀𝑟 𝑠𝑙, ̂︀𝑥𝑠𝑙). Let the variables (𝑟 𝑠, 𝑥𝑠)

be partitioned into three types of variables: binary variables 𝛿 𝑠, continuous non-slack
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variables 𝜉 𝑠, and slack variables 𝜎 𝑠. The dimensions of these variables are as follows:

𝛿 𝑠 ∈ {0, 1}𝑁𝑠
5 where 𝑁 𝑠

5 = K𝑁2+ |ℐ3| Similarly, let the matrix [B2 B3] be partitioned

along the columns as [𝐵4 𝐵5 I], where the columns in 𝐵4 (resp. 𝐵5) correspond to the

binary (resp. continuous non-slack) variables, and I is an identity matrix. Then, we

fix the values of binary variables in the optimal solution to REC(𝑎, 𝑠), which results

in a linear program stated as follows:

LP2(𝑙, 𝑠) : JII
D(𝑙, 𝑠) + min

𝜉 𝑠,𝜎 𝑠

∑︁
𝑘∈𝒦

∑︁
𝑖∈𝒩

−WLC
𝑖 𝛽 𝑘𝑠𝑖

s.t. 𝐵5𝜉
𝑠 + 𝜎 𝑠 = ̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠)
𝜎 𝑠 ≥ 0

where ̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) denotes the coefficient vector of the dual problem, and is defined as:

̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) = h − F̂︀𝑎 𝑙 −𝐵4
̂︀𝛿 𝑠𝑙,

and JII
D(𝑙, 𝑠) denotes the sum of the cost terms involving only the binary variables,

and is defined as:

JII
D(𝑙, 𝑠) =

∑︁
𝑘∈𝒦

(︁
JII

R(𝜌
𝑘𝑠𝑙) +

∑︁
𝑖∈𝒩

(︀
(WLS

𝑖 −WLC
𝑖 )𝛼𝑘𝑠𝑙𝑖 + WLC

𝑖

)︀)︁
.

In the second step, we solve the dual of LP2(𝑙, 𝑠), which we refer to as D-LP2(𝑙, 𝑠).

Let an optimal solution of D-LP2(𝑙, 𝑠) be denoted by ̂︀𝜆𝑠𝑙 ∈ R𝑁4 . Then, the Benders

cut is given as follows:

BC-Greedy(𝑙) : JI(𝑎𝑙) +
1

|𝒮|
∑︁
𝑠∈𝒮

(︁
JII

D(𝑙, 𝑠) + (̃︀h(𝑎, 𝑙, 𝑠))⊤̂︀𝜆𝑠𝑙)︁ ≤ 𝑔(̂︀𝑎 𝑙,𝒮)− 𝜖,
(5.3)

where ̃︀h(𝑎, 𝑙, 𝑠) is a vector of expressions of Stage I variables given by

̃︀h(𝑎, 𝑙, 𝑠) = h − F𝑎−𝐵4
̂︀𝛿 𝑠𝑙,

and 𝜖 is a small positive number (say 10−6). Note that ̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) is different from
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̃︀h(𝑎, 𝑙, 𝑠) because the former is a vector of constants, whereas the latter is a vector of

expressions in Stage I variable 𝑎.

The cut BC-Greedy(𝑙) renders ̂︀𝑎 𝑙 infeasible. Suppose for contradiction that ̂︀𝑎 𝑙
is not eliminated. Also suppose that we did not add the trivial cut in iteration 𝑙.

Then, in the next iteration, solving the master problem will again result in the same

optimal solution ̂︀𝑎 𝑙. Then, using ̂︀𝑎 𝑙 as a parameter for the Stage II subproblems will

result in the same left hand side in Eq. (5.3) as in the previous iteration, which is

equivalent to 𝑔(̂︀𝑎 𝑙,𝒮). This violates the cut given by Eq. (5.3). However, the off-the-

shelf solver may sometimes not be able to numerically compute the optimal variables

with enough accuracy to guarantee the elimination of ̂︀𝑎 𝑙. This can stall the progress

of our algorithm, so we also add the trivial cut to guarantee the elimination of ̂︀𝑎 𝑙.
The trivial cut, which is added at each iteration 𝑙 + 1 to ensure that the first-stage

solution ̂︀𝑎 𝑙 corresponding to iteration 𝑙 is limited, is given by:

𝑁1∑︁
𝑘=1

̂︀𝑎 𝑙𝑘𝑎𝑘 + (1− ̂︀𝑎 𝑙𝑘)(1− 𝑎𝑘) ≤ 𝑁1 − 1,

where index 𝑘 ∈ {1, ..., 𝑁1} is used to denote the 𝑘-th first stage variable.

5.2.2 Greedy Approach for Stage II subproblems

Now we discuss the greedy approach used to solve the scenario-wise subproblems given

by REC(̂︀𝑎 𝑙, 𝑠). The subproblems each consist of𝒪(NK) binary variables. Solving each

scenario-wise subproblem using a branch-and-bound algorithm can potentially result

in 𝒪(2NK) computational time complexity. Our greedy approach finds a feasible solu-

tion to REC(̂︀𝑎 𝑙, 𝑠) which can be used as a warm-start solution for solving REC(̂︀𝑎 𝑙, 𝑠).
As a result, the corresponding objective value of the warm-start solution can be used

as an upper bound, which prunes the branch-and-bound tree.

The greedy approach involves determining the optimal restoration action and

microgrid control that minimizes the operator loss at each period, sequentially from

the first to the last period. Given the Stage I allocation ̂︀𝑎 𝑙 and the scenario 𝑠, we can

obtain the restoration action ̂︀𝜌 0𝑠 for the zeroth period 𝑘 = 0.

170



At each period 𝑘, the solutions 𝜌𝑘𝑠 and 𝜒𝑘𝑠 myopically minimize the associated

period-wise cost JII
R(𝜌

𝑘𝑠) + JII
L (𝜒

𝑘𝑠). The constraints on the restorative actions 𝜌𝑘𝑠 at

period 𝑘 depend on the line operational state 𝜅𝑘−1𝑠 and site development state 𝜇𝑘−1𝑠

at period 𝑘−1. Then, for fixed (𝑎, 𝑠) and 𝑘 = 1, · · · ,K, we solve the following MILP:

Φ𝑘(̂︀𝜌 𝑘−1𝑠) = min
𝜌𝑘𝑠,𝜒𝑘𝑠

JII
R(𝜌

𝑘𝑠) + JII
L (𝜒

𝑘𝑠)

s.t. 𝜌𝑘𝑠 ∈ ℛ𝑘(̂︀𝜌 𝑘−1𝑠)

𝜒𝑘𝑠 ∈ 𝒳 𝑘
(︀
𝜌𝑘𝑠
)︀
.

(5.4)

Thus, we add the following cut to REC(̂︀𝑎 𝑙, 𝑠):
K∑︁
𝑘=1

(︁
JII

R(𝜌
𝑘𝑠) + JII

L (𝜒
𝑘𝑠)
)︁
≤

K∑︁
𝑘=1

(︁
JII

R(̂︀𝜌𝑘𝑠) + JII
L (̂︀𝜒𝑘𝑠))︁. (5.5)

Also, the sum of the solutions to the greedy problem, Φ(̂︀𝑎 𝑙) = JI(̂︀𝑎 𝑙) +∑︀
𝑠∈𝒮 P(𝑠)

∑︀K
𝑘=1 Φ𝑘(̂︀𝜌 𝑘−1𝑠) is an upper bound to the optimal objective value JII(̂︀𝑎 𝑙, 𝑠)

corresponding to REC(̂︀𝑎 𝑙, 𝑠). In summary, the greedy heuristic consists of K smaller

MILP problems with 𝒪(N) binary variables each, and a greedy solution can be com-

puted in 𝒪(K2N) time.

5.2.3 Description of the algorithm

Algorithm 1 provides an in-depth overview of our LBD-Greedy method. At the start

of Algorithm 1, an upper bound variable 𝑍 to (DEF) is initialized to ∞. At the

completion of iteration 𝑙, we update the current upper bound 𝑍 if it is greater than

the overall loss 𝑔(̂︀𝑎 𝑙,𝒮) of the strategy ̂︀𝑎 𝑙. The algorithm terminates if one obtains

a solution with an associated loss less than or equal to 𝐿target, a threshold loss which

is acceptable to the operator. Otherwise, the algorithm continues until either the

iteration limit is reached or the master problem is rendered infeasible by the Benders

cuts and trivial cuts. The objective value associated with the solution to (DEF) is

given by the value of 𝑔(̂︀𝑎best,𝒮) where ̂︀𝑎best is the strategy returned at the termination

of Algorithm 1. Since we eliminate at least one Stage I solution in each iteration due
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to the trivial cuts and there are finite number of allocation strategies in set 𝒜, LBD-

Greedy is guaranteed to terminate. However, the Benders cut is considered likely to

eliminate more than one Stage I strategy at each iteration. That means the LBD-

Greedy method is likely to converge in a smaller number of iterations than the total

number of Stage I strategies |𝒜|.

Algorithm 1 Modified LBD method with Greedy Approach
1: Input: Iteration limit 𝑙

2: Output: ̂︀𝑎best ◁ Optimal resource allocation strategy
3: Set 𝑍 ← ∞, 𝑙 ← 0

4: For 𝑙 = 0, solve master problem (5.2) to compute ̂︀𝑎0
5: while ̂︀𝑎 𝑙 is not null and 𝑙 < 𝑙 do ◁ Problem (5.2) is feasible
6: if 𝑍 ≤ 𝐿target then return ̂︀𝑎 𝑙 ◁ Overall loss is acceptable
7: Initialize cut Ψ ← JI(̂︀𝑎 𝑙)
8: for 𝑠 ∈ 𝒮 do
9: Use greedy approach to compute a greedy solution to REC(̂︀𝑎 𝑙, 𝑠)

10: Use greedy solution to add (5.5) to REC(̂︀𝑎 𝑙, 𝑠); get optimal solution (̂︀𝑟 𝑠𝑙, ̂︀𝑥𝑠𝑙)
11: Partition (̂︀𝑟 𝑠𝑙, ̂︀𝑥𝑠𝑙) into discrete, continuous, and slack variables (̂︀𝛿 𝑠𝑙, ̂︀𝜉 𝑠𝑙, ̂︀𝜎 𝑠𝑙)
12: Use ̂︀𝑎 𝑙 and ̂︀𝛿 𝑠𝑙 to obtain LP2(𝑙, 𝑠), compute ̂︀𝜆𝑠𝑙 by solving its dual D-LP2(𝑙, 𝑠)
13: Ψ ← Ψ+ 1

|𝒮|

(︁
JII
D(𝑙, 𝑠) + (̃︀h(𝑎, 𝑙, 𝑠))⊤̂︀𝜆𝑠𝑙)︁

14: end for
15: Add Benders cut(𝑙) Ψ and trivial cut(𝑙) to the master problem (5.2)
16: if 𝑔(̂︀𝑎 𝑙,𝒮) < 𝑍 then 𝑍 ← 𝑔(̂︀𝑎 𝑙,𝒮), ̂︀𝑎best ← ̂︀𝑎 𝑙
17: Update 𝑙 ← 𝑙 + 1

18: Compute ̂︀𝑎 𝑙 by solving the master problem (5.2)
19: end while
20: return ̂︀𝑎best ◁ Strategy with lowest overall loss

5.2.4 Computational Experiments

We discuss computational experiments that involve solving (DEF) using the LBD-

Greedy solution approach. The experiments are conducted using a modified IEEE

36-node distribution test feeder. In this network, 12 out of 36 randomly-chosen nodes

have one load each. We otherwise use the same parameters as in Section 4.4 of

Chapter 4.

System Performance Evaluation:
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We compare the system performance of solutions obtained using four approaches:

(1) Simple enumeration (SE): best solution from the set of feasible allocations ob-

tained by simple enumeration; (2) the solution to LBD with Greedy Approach (LBD-

Greedy); (3) ‘Best of Random Allocations’ (BoRA): the best solution from a set of

randomly-sampled allocations; and (4) ‘Single Allocation’ (SA): one pre-determined

allocation such that the DERs have an even spatial distribution across the DN.

Figure 5-1: Average system performance of the 36-node DN under allocations given
by four solution approaches: LBD-Greedy, SE, BoRA, and SA. We use the following
parameters: G = 3 (all fixed DERs), Y = 2, and S = 10. The sample is obtained
using the scenario reduction method.

Figure 5-1 demonstrates how system performance 𝒫𝑘 (computed using (4.7))

evolves over the set of periods under the four approaches. Before the storm occurs,

the network is in nominal operation and 𝒫𝑘 = 100%. After the storm (𝑘 = 0), 𝒫𝑘 is

at a minimum, and improves in subsequent periods with each set of line repairs. Once

all the damaged lines are repaired, 𝒫𝑘 is almost (but not fully) restored. Finally, 𝒫𝑘

returns to 100% following reconnection of the DN to the bulk power grid at 𝑘 = K.

As expected, LBD-Greedy and SE have equivalent system performance at all periods

and outperform the other methods.

Evaluation of Greedy Approach:

Since the Stage II subproblem REC(𝑎, 𝑠) is a minimization problem, the solution

computed by the greedy approach will provide an upper bound to the optimal value

of REC(𝑎, 𝑠). In Figure 5-2, we compare the system performance of the optimal and

greedy solutions under two different scenarios and varying values of Y. The results for
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Scenario 1 demonstrate that the greedy solution exactly matches the optimal solution.

For Scenario 2, the greedy solution is suboptimal, however the difference in system

performance from that of optimal solution is small. Although the system performance

for a greedy solution is higher than that of the optimal solution (see bottom right plot

in Figure 5-2) at 𝑘 = 2, the total expected cost under will be higher in the former

case.

Figure 5-2: System performance under two failure scenarios for two cases. Case 1:
G = 1,Y = 2 (top row), and Case 2: G = 1,Y = 3 (bottom row).

A smaller difference between the system performance of the optimal and greedy

solutions corresponds to a tighter upper bound. In Scenario 1, the greedy upper bound

ensures that the greedy solution is the only feasible solution, because the greedy and

optimal solutions are the same. In Scenario 2, the greedy upper bound renders a large

number of line repair schedules infeasible, but multiple feasible schedules remain.

5.3 LBD with Dual Integer Cuts

Here, we propose a novel solution approach, which we refer to as “L-shaped Benders

Decomposition with Dual Integer Cuts (LBD-DIC).” Our motivation for formulating
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the LBD-DIC approach is the computational expense associated with solving the

Stage II subproblems REC(𝑎, 𝑠). Although the greedy approach in the LBD-Greedy

method reduces the computational time required to solve REC(𝑎, 𝑠), computing the

greedy solution still requires 𝒪(K2N) computational time.

Similar to the LBD-Greedy approach, the LBD-DIC approach iterates between a

master problem and a subproblem for each scenario 𝑠 ∈ 𝒮. However, the LBD-DIC

differs from the LBD-Greedy in two main aspects: 1) In LBD-Greedy, we solve the

MILP REC(𝑎, 𝑠) using the greedy warm-start solution, fix the binary variable values,

and then solve the resulting LP to obtain the Benders cut. In LBD-DIC, we solve the

LP relaxation REC(𝑎, 𝑠) to obtain the optimality cut. 2) The LBD-DIC generates

optimality cuts (referred to as Dual Integer Cuts [110]) by leveraging the product

of the reduced costs of the Stage II variables and the optimal values of the Stage

II variables. Moreover, the main feature of dual integer cuts is that it leverages the

properties of the formulation to lower bound the optimal values of Stage II variables

by the Stage I variables. Our main contribution in the LBD-DIC method is that we

have derived the dual integer cuts based on the power flow constraints. The resulting

dual integer cuts require less computational expense to generate than the optimality

cuts in LBD-Greedy because LBD-DIC involves solving D-REC(𝑎, 𝑠).

In the LBD-DIC method, we formulate the master problem as follows:

(MP2)
(︁̂︀𝑎 𝑙, (̂︀𝜃 𝑠𝑙)𝑠∈𝒮)︁ := argmin

𝑎∈𝒜,(𝜃 𝑠)𝑠∈𝒮

JMP(𝑎) := JI(𝑎) +
1

S

∑︁
𝑠∈𝒮

𝜃 𝑠 (5.6a)

s.t. 𝜃 𝑠 ≥
¯
𝑔(𝑎, 𝑠) ∀ 𝑠 ∈ 𝒮 (5.6b)

𝜃 𝑠 ≥ 0 ∀ 𝑠 ∈ 𝒮, (5.6c)

where
¯
𝑔(𝑎, 𝑠) is an expression in Stage I variable such that

¯
𝑔(̂︀𝑎 𝑙, 𝑠) is a lower bound to

the variable 𝜃 𝑠. In particular, if
¯
𝑔(𝑎, 𝑠) is equal to 𝑔(𝑎, 𝑠), then the optimal solution

of the master problem (MP2) (𝑎⋆, (𝜃𝑠⋆)𝑠∈𝒮) provides an optimal Stage I allocation

strategy 𝑎⋆ for problem (DEF).

LBD-DIC begins with initializing a lower bound 𝑍 and a “relaxation” upper bound
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̃︀𝑍 for the objective value associated with (DEF). In each iteration 𝑙, the algorithm

first solves the master problem (MP2) with the resource constraints 𝑎 ∈ 𝒜 and the

optimality cuts obtained in the previous iterations. Since, in each iteration, we obtain

a stronger relaxation of the master problem, the objective value of (MP2) can only

improve or stay the same. An optimal solution
(︁̂︀𝑎 𝑙, (̂︀𝜃 𝑠𝑙)𝑠∈𝒮)︁ to the master problem

(MP2) is used to parameterize the sub-problem REC(𝑎, 𝑠) for each scenario 𝑠 ∈ 𝒮. If

a sub-problem admits a feasible solution, we add an optimality cut (5.6b) to (MP2);

otherwise we add a feasibility cut. However, in our model, there always exist a feasible

solution to REC(𝑎, 𝑠) for every (𝑎, 𝑠) ∈ 𝒜 × 𝒮. Therefore, we do not need to add

feasibility cuts. At each iteration, we also update the “relaxation” upper bound ̃︀𝑍
as: ̃︀𝑍 ← min{ ̃︀𝑍, 𝑔(̂︀𝑎 𝑙,𝒮)}. Note that ̃︀𝑍 is not necessarily an upper bound to the

objective associated with (DEF). However, we still use it to control the algorithm’s

convergence: the algorithm terminates when the percentage difference between 𝑍 and̃︀𝑍 is sufficiently small (e.g. 1%).

The main difficulty in solving the master problem (MP2) arises from approximat-

ing the Stage II cost
¯
𝑔(𝑎, 𝑠) in (5.6b). In Section 5.3.1, we present our results to lower

bound 𝑔(𝑎, 𝑠), and address how we generate optimality cuts to resolve the difficulty

of estimating the Stage II cost
¯
𝑔(𝑎, 𝑠). In Section 5.3.2, we present our results for

strengthening the so-called “relaxation” upper bound estimates at each iteration. In

Section 5.3.3, we describe the LBD-DIC algorithm in full detail. Finally, Section 5.3.4

discusses the associated computational experiments.

5.3.1 Dual Integer cuts

The main element of the LBD-DIC approach is the dual integer cut [110], which is an

optimality cut used to approximate the Stage II cost in (5.6b) of (MP2). To derive

our the dual integer cut, we first present our theoretical results.

To begin, we restate a result of [110] which states that the optimal value of an

REC(𝑎, 𝑠) is equal to the sum of (i) a feasible solution of D-REC(𝑎, 𝑠) and the dual

cost vector, and (ii) the product-sum of optimal solutions of the MILP and the cor-

responding reduced cost of the primal variables of the LP.
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Let ̂︀𝑎 𝑙 be a feasible solution of (MP2), and ̂︀𝜆𝑠𝑙 be a feasible solution of D-REC(̂︀𝑎 𝑙, 𝑠)
in scenario 𝑠 ∈ 𝒮. Let also (𝛿𝑠⋆, 𝜉𝑠⋆, 𝜎𝑠⋆) denote the optimal solutions of REC(𝑎, 𝑠)

in scenario 𝑠 ∈ 𝒮 with respect to 𝑎 ∈ 𝒜. For a primal variable 𝜐 in the Problem

REC(̂︀𝑎 𝑙, 𝑠), let Γ(𝜐) denote the reduced cost of 𝜐 with respect to ̂︀𝜆𝑠𝑙.
Then, the optimal value of REC(̂︀𝑎 𝑙, 𝑠) in scenario 𝑠 satisfies:

𝑔(̂︀𝑎 𝑙, 𝑠) = ̂︀𝜆𝑠𝑙̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) + 𝛿𝑠⋆Γ(𝛿 𝑠) + 𝜉𝑠⋆Γ(𝜉 𝑠) + 𝜎𝑠⋆Γ(𝜎 𝑠). (5.7)

Recall that the traditional Benders cut valid for 2-stage programs is of the form

𝜃 𝑠 ≥ ̂︀𝜆𝑠𝑙̃︀h(𝑎, 𝑙, 𝑠). However, (5.7) cannot be used yet to compute the Stage II cost

𝑔(̂︀𝑎 𝑙, 𝑠) because we do not know the optimal solution (𝛿𝑠⋆, 𝜉𝑠⋆, 𝜎𝑠⋆) of REC(̂︀𝑎 𝑙, 𝑠).
Hence, we now proceed to devise a strictly positive lower bound for the terms in

(5.7) corresponding to (𝛿𝑠⋆, 𝜉𝑠⋆, 𝜎𝑠⋆), which would give us an optimality cut strictly

stronger than the traditional Benders cut. The lower bound for 𝑔(𝑎, 𝑠) is formulated

using the Stage I variables only, such that we do not need to know the optimal solution

(𝛿𝑠⋆, 𝜉𝑠⋆, 𝜎𝑠⋆).

As a first step towards deriving the lower bound, we expand the product terms

𝛿𝑠⋆Γ(𝛿 𝑠) and 𝜉𝑠⋆Γ(𝜉 𝑠) in (5.7), and simplify the resulting expression. The final result

from these operations is stated in the following proposition. For the sake of simplicity

and clarity, we consider the case of |𝒟m| = 0, i.e. DERs cannot be reallocated in the

Stage II.

Proposition 5.3.1. Let ̂︀𝑎 𝑙 = (̂︀𝑢𝑙, ̂︀𝑤𝑙) be a feasible solution of (5.6). Let ̂︀𝜆𝑠𝑙 be the

optimal solution of D-REC(̂︀𝑎, 𝑠) in scenario 𝑠, and ̃︀h(̂︀𝑎, 𝑙, 𝑠) the corresponding dual

cost vector. Let 𝑝𝑔 𝑘𝑠⋆, ℓ𝑘𝑠⋆, 𝛼𝑘𝑠⋆, 𝜇𝑘𝑠⋆, and 𝜔 𝑘𝑠⋆ denote the optimal values of the

variables 𝑝𝑔𝑘𝑠, ℓ𝑘𝑠, 𝛼𝑘𝑠, 𝜇𝑘𝑠, and 𝜔𝑘𝑠 of REC(𝑎, 𝑠) in scenario 𝑠 and period 𝑘 with

respect to ̂︀𝑎 ∈ 𝒜. Let Γ(𝑝𝑔𝑘𝑠), Γ(ℓ𝑘𝑠), Γ(𝛼𝑘𝑠), Γ(𝜇𝑘𝑠), Γ(𝜔𝑘𝑠) ≥ 0 be the reduced

costs associated with the primal variables of REC(̂︀𝑎, 𝑠), with respect to ̂︀𝜆𝑠𝑙. Finally,

let Γ(𝜇𝑘𝑠), Γ(𝜔𝑘𝑠) ≥ 0 be the reduced costs with respect to the dual solution ̂︀𝜆𝑠𝑙 for

scenario 𝑠 at period 𝑘.

If ̂︀𝜆𝑠𝑙 is a feasible solution of D-REC(̂︀𝑎 𝑙, 𝑠) in scenario 𝑠, then the optimal value
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of REC(𝑎, 𝑠) in scenario 𝑠 satisfies:

𝑔(̂︀𝑎 𝑙, 𝑠) ≥ ̂︀𝜆𝑠𝑙̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) +∑︁
𝑘∈𝒦

(︁
ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠) + 𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) + ̂︀𝑢𝑙Γ(𝜇𝑘𝑠)
+ ̂︀𝑤𝑙Γ(𝜔𝑘𝑠) + 𝑝𝑔 𝑘𝑠⋆Γ(𝑝𝑔𝑘𝑠)

)︁
,

(5.8)

where

ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠) :=
∑︁
𝑒∈ℰ𝑠

ℓ𝑘𝑠⋆𝑒 Γ(ℓ𝑘𝑠𝑒 ), ̂︀𝑢𝑙Γ(𝜇𝑘𝑠) :=
∑︁
𝑖∈𝒰

̂︀𝑢𝑙𝑖Γ(𝜇𝑘𝑠𝑖 ),

𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) :=
∑︁
𝑖∈𝒩

𝛼𝑘𝑠⋆𝑖 Γ(𝛼𝑘𝑠𝑖 ), ̂︀𝑤𝑙Γ(𝜔𝑘𝑠) :=
∑︁
𝑖∈𝒰

∑︁
𝑑∈𝒟

̂︀𝑤𝑙𝑖𝑑Γ(𝜔𝑘𝑠𝑖𝑑 ),
𝑝𝑔 𝑘𝑠⋆Γ(𝑝𝑔𝑘𝑠) :=

∑︁
𝑖∈𝒰

∑︁
𝑑∈𝒟

𝑝𝑔 𝑘𝑠⋆𝑖𝑑 Γ(𝑝𝑔𝑘𝑠𝑖𝑑 ).

(5.9)

Proof. We first note that using (5.7), we can write:

𝑔(̂︀𝑎 𝑙, 𝑠) = 𝜆𝑠̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) + 𝛿𝑠⋆Γ(𝛿 𝑠) + 𝜉𝑠⋆Γ(𝜉 𝑠) + 𝜎𝑠⋆Γ(𝜎 𝑠), (5.10)

where 𝛿𝑠⋆ = {ℓ𝑘𝑠⋆, 𝜇𝑘𝑠⋆, 𝜔 𝑘𝑠⋆, 𝛼𝑘𝑠⋆}𝑘∈𝒦 denote the optimal values for discrete variables,

𝜉𝑠⋆ = {𝑝𝑔 𝑘𝑠⋆, 𝑞𝑔 𝑘𝑠⋆, 𝛽 𝑘𝑠⋆, 𝑝𝑘𝑠⋆, 𝑞 𝑘𝑠⋆, 𝑃 𝑘𝑠⋆, 𝑄𝑘𝑠⋆, v𝑘𝑠⋆}𝑘∈𝒦 denote the optimal values

for continuous variables, and 𝜎𝑠⋆ the optimal values for slack variables.

The product term 𝜎𝑠⋆Γ(𝜎 𝑠) is lower bounded by 0. Thus, we can write:

𝑔(̂︀𝑎 𝑙, 𝑠) ≥ ̂︀𝜆𝑠𝑙̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) + 𝛿𝑠⋆Γ(𝛿 𝑠) + 𝜉𝑠⋆Γ(𝜉 𝑠). (5.11)

Second, we consider the term 𝜉𝑠⋆Γ(𝜉 𝑠). A subset of these Stage II continuous

variables namely 𝑞𝑔𝑘𝑠, 𝛽 𝑘𝑠, 𝑝𝑘𝑠, 𝑞𝑘𝑠, 𝑃 𝑘𝑠, 𝑄𝑘𝑠, and v𝑘𝑠 – are free variables, i.e., they

can take both positive and negative values. The reduced costs corresponding to free

variables are zero. Therefore, those product terms are also equal to 0. Thus, we can
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write:

𝜉𝑠⋆Γ(𝜉 𝑠) =
∑︁
𝑘∈𝒦

(︁
𝑝𝑔 𝑘𝑠⋆Γ(𝑝𝑔𝑘𝑠) + 𝑞𝑔 𝑘𝑠⋆Γ(𝑞𝑔𝑘𝑠) + 𝛽 𝑘𝑠⋆Γ(𝛽 𝑘𝑠) + 𝑝𝑘𝑠⋆Γ(𝑝𝑘𝑠)

+ 𝑞 𝑘𝑠⋆Γ(𝑞𝑘𝑠) + 𝑃 𝑘𝑠⋆Γ(𝑃 𝑘𝑠) +𝑄𝑘𝑠⋆Γ(𝑄𝑘𝑠) + v𝑘𝑠⋆Γ(v𝑘𝑠)
)︁

=
∑︁
𝑘∈𝒦

(︁
𝑝𝑔 𝑘𝑠⋆Γ(𝑝𝑔𝑘𝑠)

)︁
.

(5.12)

Third, we expand the term 𝛿𝑠⋆Γ(𝛿 𝑠) as follows:

𝛿𝑠⋆Γ(𝛿 𝑠) =
∑︁
𝑘∈𝒦

(︁
ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠) + 𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) + 𝜇𝑘𝑠⋆Γ(𝜇𝑘𝑠) + 𝜔 𝑘𝑠⋆Γ(𝜔𝑘𝑠)

)︁
. (5.13)

Using (5.13), we arrive at the following result regarding 𝑔(̂︀𝑎 𝑙, 𝑠):
𝑔(̂︀𝑎 𝑙, 𝑠) ≥ 𝜆𝑠̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠)+∑︁

𝑘∈𝒦

(︁
ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠) + 𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) + 𝜇𝑘𝑠⋆Γ(𝜇𝑘𝑠)

+ 𝜔 𝑘𝑠⋆Γ(𝜔𝑘𝑠) + 𝑝𝑔 𝑘𝑠⋆Γ(𝑝𝑔𝑘𝑠)
)︁
.

(5.14)

Since DER reallocation is not allowed, then 𝜇𝑘𝑠⋆ = ̂︀𝑢𝑙 and 𝜔 𝑘𝑠⋆ = ̂︀𝑤𝑙 ∀ 𝑘 ∈ 𝒦.

In this case, we obtain:

𝛿𝑠⋆Γ(𝛿 𝑠) =
∑︁
𝑘∈𝒦

(︁
ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠) + 𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) + 𝑢Γ(𝜇𝑘𝑠) + 𝑤Γ(𝜔𝑘𝑠)

)︁
. (5.15)

Finally, we can simplify (5.8) by using (5.11)–(5.15).

Note that if reallocation is allowed, then (5.14) holds instead of (5.8).

To compute the right-hand-side of (5.8), we still need the optimal values of the

active DER power contribution variables 𝑝𝑔 𝑘𝑠⋆, load shedding variables 𝛼𝑘𝑠⋆, and

restoration variables ℓ𝑘𝑠⋆. In the following proposition, we describe how to obtain

lower bounds for 𝛼𝑘𝑠⋆ without solving REC(𝑎, 𝑠). The lower bounds are derived

based on the existence of paths which connect loads to DER sources at developed

sites.

Proposition 5.3.2. Consider a fixed Stage I strategy ̂︀𝑎 𝑙 = (̂︀𝑢𝑙, ̂︀𝑤𝑙), scenario 𝑠 ∈ 𝒮,
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period 𝑘 ∈ 𝒦∖{K}, and a load at node 𝑖 ∈ 𝒩. For every site 𝑗 ∈ 𝒰 , if either the site

𝑗 is not developed or at least one DN line along the path connecting node 𝑖 to site 𝑗

has failed, then the load at node 𝑖 cannot be energized, i.e.,

𝛼𝑘𝑠⋆𝑖 ≥
∏︁
𝑗∈𝒰

[︁
1− ̂︀𝑢𝑙𝑗 ∏︁

𝑒∈𝒫𝑖𝑗

(︀
1− 𝜅𝑘𝑠⋆𝑒

)︀]︁
. (5.16)

Proof. When a load at node 𝑖 is connected and energized, it consumes a positive

amount of active power. Therefore, by the active power conservation equation (4.6c),

either the bulk power or some DER must act as a source of power to energize the

load at node 𝑖. Now for period 𝑘 < K, the DN is not connected to bulk power supply

(4.2c). Thus, the bulk power cannot act as a source for the load.

For a site 𝑗 ∈ 𝒰 , if either the site 𝑗 is not developed or some line along the path

connecting the node 𝑖 to site 𝑗 has failed, then the load at node 𝑖 cannot receive power

from the site 𝑗. We can mathematically represent this condition as
[︁
1−̂︀𝑢𝑙𝑗∏︀𝑒∈𝒫𝑖𝑗

(︀
1−

𝜅𝑘𝑠𝑒
)︀]︁

= 1. If this holds for every site 𝑗 ∈ 𝒰 , then the load at node 𝑖 cannot receive

power from any of the DERs. This concludes the proof for (5.16).

This is obtained by leveraging the power flow properties, which bound the Stage

II variables 𝛿𝑠⋆ as a function of the Stage I variables given by 𝑎. For the last two

terms, we note that they are lower bounded by 0. However, we show that we can

obtain a stronger lower bound for the last two terms, by solving an MILP which has

lesser number of binary variables than REC(𝑎, 𝑠).

In our next result, we use (5.7) and Propositions 5.3.1-5.3.2 to derive an optimality

cut for (5.6b).

Theorem 5.3.3. Let ̂︀𝑎 𝑙 = (̂︀𝑢𝑙, ̂︀𝑤𝑙) be a feasible solution of the master problem (5.6)

and ̂︀𝜆𝑠𝑙 be the optimal solution of D-REC(̂︀𝑎 𝑙, 𝑠) in scenario 𝑠. Let Γ(𝛼 1𝑠
𝑖 ) ≥ 0 denote

the reduced cost associated with 𝛼𝑘𝑠𝑖 with respect to ̂︀𝜆𝑠𝑙, in scenario 𝑠 for period 𝑘 = 1

and node 𝑖. Let Γ(𝜇𝑘𝑠),Γ(𝜔𝑘𝑠) ≥ 0 be the reduced costs of 𝜇𝑘𝑠 and 𝜔𝑘𝑠 with respect

to ̂︀𝜆𝑠𝑙, in scenario 𝑠 for period 𝑘. Then, a valid cut is given by:
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𝜃 𝑠 ≥ ̂︀𝜆𝑠𝑙̃︀h(𝑎, 𝑙, 𝑠) +∑︁
𝑘∈𝒦

(︁
𝑢Γ(𝜇𝑘𝑠) + 𝑤Γ(𝜔𝑘𝑠)

)︁
+
∑︁
𝑖∈𝒩

Γ(𝛼 1𝑠
𝑖 )

∏︁
𝑗∈𝒰

[︁
1− ̂︀𝑢𝑙𝑗 ∏︁

𝑒∈𝒫𝑖𝑗

(︀
1− 𝑠𝑒

)︀]︁
.

(5.17)

Proof. First, we note that the desired optimality cut in the master problem (5.6) is

of the form 𝜃 𝑠 ≥ 𝑔(𝑎, 𝑠).

Using Prop. 5.3.1, we get

𝑔(̂︀𝑎 𝑙, 𝑠) ≥ ̂︀𝜆𝑠𝑙̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠)+∑︁
𝑘∈𝒦

(︁
ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠) + 𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) + ̂︀𝑢𝑙Γ(𝜇𝑘𝑠)

+ ̂︀𝑤𝑙Γ(𝜔𝑘𝑠) + 𝑝𝑔 𝑘𝑠⋆Γ(𝑝𝑔𝑘𝑠)
)︁
.

(5.18)

Here, 𝑝𝑔 𝑘𝑠⋆Γ(𝑝𝑔𝑘𝑠) ≥ 0 because of non-negativity of 𝑝𝑔 𝑘𝑠⋆ and Γ(𝑝𝑔𝑘𝑠), and ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠)

is lower bounded by 0 because of non-negativity of ℓ𝑘𝑠 and Γ(ℓ𝑘𝑠). Furthermore,

∑︁
𝑘∈𝒦

𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) = 𝛼1𝑠⋆Γ(𝛼 1𝑠) +
∑︁

𝑘∈𝒦∖{1}

𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠)

≥ 𝛼1𝑠⋆Γ(𝛼 1𝑠)

≥
∏︁
𝑗∈𝒰

[︁
1− ̂︀𝑢𝑙𝑗 ∏︁

𝑒∈𝒫𝑖𝑗

(︀
1− 𝜅1𝑠⋆

𝑒

)︀]︁
=
∏︁
𝑗∈𝒰

[︁
1− ̂︀𝑢𝑙𝑗 ∏︁

𝑒∈𝒫𝑖𝑗

(︀
1− 𝑠𝑒

)︀]︁
,

(5.19)

where the first inequality holds because of non-negativity of 𝛼𝑘𝑠⋆ and Γ(𝛼𝑘𝑠), the

second inequality holds because of Prop. 5.3.1 and Prop. 5.3.2, and the last equality

holds because the operational state of a line 𝑒 ∈ ℰ at the time period 𝑘 = 1 is given

by 𝜅1𝑠⋆
𝑒 = 𝑠𝑒 .

Note that we do not consider the values of the load shedding variables 𝛼𝑘𝑠⋆ for

periods 𝑘 > 1. This is because 𝛼𝑘𝑠⋆ are also dependent on the line restoration

variables ℓ𝑘𝑠⋆ in (4.2e), and line repairs start only after 𝑘 = 1. Therefore, we cannot

determine a lower-bound on values of 𝛼𝑘𝑠⋆ for 𝑘 > 1 based on Stage I variables alone.

As discussed earlier, the optimality cut (5.17) in Theorem 5.3.3 is a stronger
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cut than the traditional Benders cut. Now, solving the large-scale Stage II problem

REC(𝑎, 𝑠) will yield the strongest optimality cut for (5.6b), i.e., 𝜃 𝑠 ≥ 𝑔(𝑎, 𝑠), since the

optimal values of REC(𝑎, 𝑠) can be directly used. However, as stated earlier, solving

REC(𝑎, 𝑠) is computationally challenging due to the presence of a large number of

binary variables. Therefore, we next describe an another MILP with fewer number

of binary variables than REC(𝑎, 𝑠) that can help provide a cut stronger than (5.17)

but weaker than 𝜃 𝑠 ≥ 𝑔(𝑎, 𝑠).

5.3.2 Estimating the relaxation upper bound

In [110], the authors use a convergence criterion which involves the percentage dif-

ference between a lower bound (denoted by 𝑍) and a “relaxation upper bound” (de-

noted as ̃︀𝑍) falling below a certain threshold. The lower bound is simply computed

as 𝑍 = JMP(̂︀𝑎 𝑙). Now, solving the large-scale Stage II problem REC(𝑎, 𝑠) will

yield an upper bound to REC(𝑎, 𝑠). However, as stated earlier, solving REC(𝑎, 𝑠)

is computationally expensive due to the presence of a large number of binary vari-

ables. Therefore, the authors in [110] instead compute a “relaxation upper bound”

as ̃︀𝑍 = JI(̂︀𝑎 𝑙) + 1
S

∑︀
𝑠∈𝒮 𝑔(̂︀𝑎 𝑙, 𝑠), where 𝑔(̂︀𝑎 𝑙, 𝑠) is the optimal value of REC(̂︀𝑎 𝑙, 𝑠).

This relaxation upper bound is used as a proxy to the actual upper bound. However,

having a better proxy for the upper bound will likely help improve the optimality

of the solution. Therefore, we next propose a different method for estimating the

relaxation upper bound by solving an another MILP with fewer number of binary

variables than (S2).

Consider a fixed allocation ̂︀𝑎 𝑙 = (̂︀𝑢𝑙, ̂︀𝑤𝑙) and a feasible solution ̂︀𝜆𝑠𝑙 of the problem

D-REC(̂︀𝑎 𝑙, 𝑠). For each node 𝑖 ∈ 𝒩, site 𝑗 ∈ 𝒰 , period 𝑘 ∈ 𝒦, and scenario 𝑠 ∈ 𝒮,

we define a continuous variable 𝜚𝑘𝑠𝑖𝑗 , such that 𝜚𝑘𝑠𝑖𝑗 = 1 indicates that the load at node

𝑖 cannot be energized by a DER at site 𝑗; 𝜚𝑘𝑠𝑖𝑗 = 0 otherwise. We also denote by 𝜙𝑘𝑠𝑖
the continuous variables denoting the relaxation of the binary variables 𝛼𝑘𝑠𝑖 . Recall

from Prop. 5.3.2 that if 𝜚𝑘𝑠𝑖𝑗 = 1 ∀ 𝑗 ∈ 𝒰 , then 𝛼𝑘𝑠𝑖 = 1 because the load is not

energized by any DER. We present the following linear constraints (∀ 𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦):
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𝜚𝑘𝑠𝑖𝑗 ≥ 1− ̂︀𝑢𝑙𝑗 ∀ 𝑗 ∈ 𝒰 , 𝑘 < K (5.20a)

𝜚𝑘𝑠𝑖𝑗 ≥ 𝜅𝑘𝑠𝑒 ∀ 𝑗 ∈ 𝒰 , 𝑒 ∈ 𝒫𝑖𝑗
⋂︁
ℰ𝑠, 𝑘 < K (5.20b)

𝜙𝑘𝑠𝑖 ≥ 1−
∑︁
𝑗∈𝒰

(︀
1− 𝜚𝑘𝑠𝑖𝑗

)︀
∀ 𝑘 < K (5.20c)

Here, (5.20a) and (5.20b) model that a load cannot be energized from a site 𝑗 if the

site 𝑗 is not developed; and/or there exists one failed (unrepaired) line along the

path connecting node 𝑖 to site 𝑗. Lastly, (5.20c) states that load at node 𝑖 cannot

be energized if there is no site that can supply power to the load. By virtue of the

constraints (5.20a) and (5.20b) the continuous variable 𝜚𝑘𝑠𝑖𝑗 can only take values 0 or

1.

Then, given a first-stage solution ̂︀𝑎 𝑙 and scenario 𝑠, we formulate the following

MILP:

JRC (︀̂︀𝑎 𝑙, 𝑠)︀ := min
∑︁

𝑘∈𝒦∖{K}

(︁∑︁
𝑖∈𝒩

𝜙𝑘𝑠𝑖 Γ(𝛼𝑘𝑠𝑖 ) +
∑︁
𝑒∈ℰ

ℓ𝑘𝑠𝑒 Γ(ℓ𝑘𝑠𝑒 )
)︁

s.t. (4.2), (5.20)

ℓ𝑘𝑠𝑒 ∈ {0, 1} ∀ 𝑒 ∈ ℰ, 𝑘 ∈ 𝒦

0 ≤ 𝜙𝑘𝑠𝑖 ≤ 1 ∀ 𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦∖{K}

0 ≤ 𝜚𝑘𝑠𝑖𝑗 ≤ 1 ∀ 𝑖 ∈ 𝒩, 𝑗 ∈ 𝒰 , 𝑘 ∈ 𝒦∖{K}.

(SMILP)

The decision variables of this MILP include the binary restoration variables ℓ𝑘𝑠𝑒 ,

and relaxed continuous variables 𝜚𝑘𝑠𝑖𝑗 and 𝜙𝑘𝑠𝑖 . Now, consider an optimal solution

of REC(𝑎, 𝑠). In this solution, the values of the restoration strategy and load connec-

tivity variables form a feasible solution of (SMILP). Therefore, the optimal value of

(SMILP) will provide a non-negative lower bound for the terms
∑︀

𝑘∈𝒦∖{K}
(︀
ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠)+

𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠)
)︀

in (5.19), where (ℓ𝑘𝑠⋆, 𝛼𝑘𝑠⋆) are part of the optimal solution of REC(𝑎, 𝑠).
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In particular, we can use the following as an estimate for the relaxation upper bound:

̃︀𝑍 = 𝑔(̂︀𝑎 𝑙, 𝑠) +∑︁
𝑠∈𝒮

JRC (︀̂︀𝑎 𝑙, 𝑠)︀ = ̂︀𝜆𝑠𝑙̃︀h(̂︀𝑎 𝑙, 𝑙, 𝑠) +∑︁
𝑠∈𝒮

JRC (︀̂︀𝑎 𝑙, 𝑠)︀ . (5.21)

The problem (SMILP) does not have binary variables corresponding to the load

connectivity variables. Thus, it has lesser number of binary variables than that in

(S2). Also, the total number of variables and constraints in (SMILP) are also sig-

nificantly lesser than (S2). Typically, ℓ𝑘𝑠⋆Γ(ℓ𝑘𝑠) + 𝛼𝑘𝑠⋆Γ(𝛼𝑘𝑠) > JRC (︀𝑎𝑙, 𝑠)︀, because

the solution to (SMILP) does not account for load shedding due to voltage bound

violations. Thus solving (SMILP) is computationally cheaper but also less accurate,

in comparison to solving (S2).

The above formulation assumes no re-allocation of the DERs. If re-allocation is

permitted, then (SMILP) can be modified accordingly, which would include: adding

cost terms corresponding to 𝜇𝑘𝑠𝑖 , 𝜔𝑘𝑠𝑖𝑑 , 𝜛𝑘𝑠
𝑖𝑗𝑑, ∀ 𝑖 ∈ 𝒩, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒦, 𝑑 ∈ 𝒟 to the

objective; as well as the constraints given by (4.2).

5.3.3 Description of the algorithm

Algorithm 2 provides an overview of the LBD-DIC method.

Algorithm 2 LBD with Dual Integer Cuts

1: Set ̃︀𝑍 ← ∞, 𝑍 ← 10−6, 𝑙 = 0

2: while
̃︀𝑍−𝑍
𝑍

> 𝜖 do
3: Compute ̂︀𝑎 𝑙 by solving the master problem (MP2)
4: Set 𝑍 ← JMP(̂︀𝑎 𝑙)
5: for 𝑠 ∈ 𝒮 do
6: Compute ̂︀𝜆𝑠𝑙 by solving D-REC(̂︀𝑎 𝑙, 𝑠)
7: Compute 𝑔(̂︀𝑎 𝑙, 𝑠) by solving (SMILP)
8: Add optimality cut (5.21) to the master problem (5.6)
9: end for

10: ̃︀𝑍 ← min( ̃︀𝑍, 𝑔(̂︀𝑎 𝑙,𝒮))
11: Update 𝑙 ← 𝑙 + 1

12: end while
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At each iteration, we solve D-REC(̂︀𝑎 𝑙, 𝑠) for each scenario 𝑠 to derive the opti-

mality cut for Algorithm 2. After solving D-REC(̂︀𝑎 𝑙, 𝑠), we use the dual solution̂︀𝜆𝑠𝑙 ∀ 𝑠 ∈ 𝒮 to obtain a dual integer cut. This cut is added to the master problem

(MP2). Additionally, in order to obtain an optimality cut stronger than the dual in-

teger cut, we also propose solving an another MILP given by (SMILP). The optimal

solutions to D-REC(̂︀𝑎 𝑙, 𝑠) and (SMILP) help generate a valid optimality cut that is

added to the master problem (MP2). The number of binary variables in (SMILP)

are relatively lesser than that in REC(𝑎, 𝑠). Hence, as we show in Section 5.3.4, this

approach significantly decrease the required computation time associated with solving

sub-problems.

5.3.4 Computational Experiments

We discuss computational experiments that involve solving (DEF) using the LBD-DIC

solution approach. The experiments are conducted using a modified IEEE 12-node

distribution test feeder. We use the same parameters as in Section 4.4 of Chapter 4.

We first investigate the convergence of LBD-DIC with the dual integer cut (see

Section 5.3.1), and compare it to the traditional Benders cut. Then we examine the

effect of using (SMILP) in order to calculate the “relaxation” upper bound ̃︀𝑍.

Figure 5-3: Convergence of LBD-DIC. We use the following parameters: G = 3 (all
fixed DERs), Y = 1, and S = 5. Left : Lower bound 𝑍 and “relaxation” upper
bound ̃︀𝑍, normalized by the minimum value of ̃︀𝑍 achieved. Right : Convergence gap
( ̃︀𝑍 − 𝑍)/𝑍.

Figure 5-3 shows the lower bound, upper bound, and convergence gap ( ̃︀𝑍 −𝑍)/𝑍
for test instance ID I_GF3_GM0_S12. Convergence occurs at iteration 𝑙 = 53. In
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comparison, the number of feasible Stage I DER allocation strategies 𝑎 is (|𝒰|+1)G =

125. To arrive at this value, we consider that each generator can be placed in any

site 𝑖 ∈ 𝒰 , or is not placed at all. Thus for a single DER, the number of possible

DER-to-site pairings is (|𝒰|+1). We take this to the power of G, the total number of

DERs that can be allocated. Thus for this test instance, LBD-DIC is able to converge

in less iterations than would be required under a simple brute-force enumeration of

all possible allocation strategies. We find this to be true in most test instances, with

the benefit being more evident as the DER budget G increases.

Figure 5-4: Effect of dual integer cut and (SMILP) on convergence of LBD-DIC. We
assume the same parameters as in Figure 5-3. Left : Lower bound 𝑍 as a function
of iteration 𝑙, using the Benders cut or dual integer cut in (5.17). Right : Relaxation
upper bound ̃︀𝑍 using (SMILP) (black) vs. ̃︀𝑍 without contribution from (SMILP)
(blue) and 𝑍 (dotted black).

Figure 5-4 shows the lower bound 𝑍 with dual integer cuts and the traditional

Benders cuts. Note that the dual integer cuts noticeably outperform the Benders cuts

by improving the lower bound 𝑍. In addition, the figure shows the “relaxation” upper

bound ̃︀𝑍 with and without solving (SMILP), and compares the “relaxation” upper

bound to the exact upper bound 𝑍. Solving Eq. SMILP improves estimation of the

relaxation upper bound ̃︀𝑍, to the extent that the “relaxation” upper bound is nearly

equivalent to the exact upper bound at most iterations. Note that we considered the

smaller 12-node network for this simulation, which permits us to solve the Stage II

MILPs without time-out.

So far, we have described two methods, namely LBD-Greedy and LBD-DIC, in

which we generate optimality cut for the master problem using the solution to com-

plete Stage II problem. In the next section, we describe our approach based on
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Nested Benders Decomposition method in which we generate optimality cuts for the

period-wise subsubproblems.

5.4 Nested Benders Decomposition

In this section, we describe our solution approach based on Nested Benders Decom-

position (NBD) method [5, 57]. This method was initially proposed in the context of

multi-stage linear stochastic programs [5], which involves stage-wise temporal decom-

position. In [57], the NBD method is used in the context of deterministic multi-period

MILP models, by performing a temporal decomposition. In our approach, we solve

for our 2-stage multi-period mixed-integer program by performing a temporal decom-

position across the two stages as well as the multiple periods of Stage II.

In the NBD method, we generate the Benders cuts using a forward-and-backward

pass approach that requires a period-wise decomposition of REC(𝑎, 𝑠). To facilitate

the understanding of the algorithm, we first describe how the multi-period problem

REC(𝑎, 𝑠) is decomposed by period in Section 5.4.1. Then, we introduce a concise

notation to represent the period-wise decomposed MILPs, and use this notation to

describe the NBD method in Section 5.4.2.

5.4.1 Decomposition by time period

In our formulation (DEF), the constraints that depend on more than one time period

are equations (4.2d), (4.2e), (4.3a), and (4.3g). Therefore, these constraints need to

be reformulated in order to be solve the period-wise problems separately. For this

purpose, we duplicate the binary linking variables 𝜅𝑘𝑠𝑒 , 𝜇𝑘𝑠𝑖 , and 𝜔𝑘𝑠𝑖𝑑 with continuous

variables 𝜅𝑘𝑠,prev
𝑒 , 𝜇𝑘𝑠,prev

𝑖 , and 𝜔𝑘𝑠,prev
𝑖𝑑 respectively.

Note that (4.2d) and (4.2e) are equivalent to and can be substituted by the fol-

lowing constraints:

𝜅𝑘𝑠𝑒 ≤ 𝜅𝑘−1,𝑠
𝑒 ∀ 𝑘 ∈ 𝒦 ∖ {1}, 𝑒 ∈ ℰ𝑠 (5.22a)∑︀

𝑒∈ℰ𝑠 𝜅
𝑘𝑠
𝑒 =

∑︀
𝑒∈ℰ𝑠 𝜅

𝑘−1,𝑠
𝑒 − Y𝑘 ∀ 𝑘 ∈ 𝒦 ∖ {1}, 𝑒 ∈ ℰ𝑠, (5.22b)
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where (5.22a) models that after a failed line is repaired it remains operational, and

(5.22b) models that in each period the number of failed lines reduces by the number

of lines repaired, i.e. Y𝑘. We reformulate (5.22a) and (5.22b) as follows:

𝜅𝑘𝑠𝑒 ≤ 𝜅𝑘𝑠,prev
𝑒 ∀ 𝑒 ∈ ℰ𝑠, 𝑘 ∈ 𝒦 (5.23a)∑︀

𝑒∈ℰ𝑠 𝜅
𝑘𝑠
𝑒 =

∑︀
𝑒∈ℰ𝑠 𝜅

𝑘𝑠,prev
𝑒 − Y𝑘 ∀ 𝑒 ∈ ℰ𝑠, 𝑘 ∈ 𝒦 (5.23b)

𝜅𝑘𝑠,prev
𝑒 = ̂︀𝜅𝑘−1,𝑠

𝑒 ← 𝜆𝑘𝑠,line
𝑒 ∀ 𝑒 ∈ ℰ𝑠, 𝑘 ∈ 𝒦 ∖ {1}

(5.23c)

𝜅𝑘𝑠,prev
𝑒 = 𝑠𝑒 ← 𝜆𝑘𝑠,line

𝑒 ∀ 𝑒 ∈ ℰ𝑠, 𝑘 = 1 (5.23d)

Here, 𝜅𝑘𝑠,prev
𝑒 is a duplicated continuous variable representing ̂︀𝜅𝑘−1,𝑠

𝑒 , and ̂︀𝜅𝑘−1,𝑠
𝑒 is the

solution of 𝜅𝑘,𝑠𝑒 at time period 𝑘 − 1 for 𝑘 > 1, which is fixed when solving for time

period 𝑘. The Lagrange multiplier 𝜆𝑘𝑠,line
𝑒 of (5.23c) and (5.23d) is unrestricted in

sign.

Similarly, we reformulate (4.3a) as follows:

𝜇𝑘𝑠𝑖 ≥ 𝜇𝑘𝑠,prev
𝑖 ∀ 𝑖 ∈ 𝒰 , 𝑘 ∈ 𝒦 (5.24a)

𝜇𝑘𝑠,prev
𝑖 = ̂︀𝜇𝑘−1,𝑠

𝑖 ← 𝜆𝑘𝑠,site𝑖 ∀ 𝑖 ∈ 𝒰 , 𝑘 ∈ 𝒦 ∖ {1} (5.24b)

𝜇𝑘𝑠,prev
𝑖 = ̂︀𝑢𝑖 ← 𝜆𝑘𝑠,site𝑖 ∀ 𝑖 ∈ 𝒰 , 𝑘 = 1. (5.24c)

Here, 𝜇𝑘𝑠,prev
𝑖 is a duplicated continuous variable representing 𝜇𝑘−1,𝑠

𝑖 , and ̂︀𝜇𝑘−1,𝑠
𝑖 is the

solution for variable 𝜇𝑘𝑠𝑖 or 𝑢𝑖 in period 𝑘−1, which are fixed when solving for period

𝑘. The Lagrange multiplier 𝜆𝑘𝑠,site𝑒 in (5.24b) and (5.24c) is unrestricted in sign.

Also, constraint (4.3g) can be replaced by following constraints:

∑︀
𝑖∈𝒰 𝜔

𝑘𝑠
𝑖𝑑 ≥

∑︀
𝑖∈𝒰 𝜔

𝑘𝑠,prev
𝑖𝑑 ∀ 𝑖 ∈ 𝒰 , 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦 ∖ {1} (5.25a)

𝜔𝑘𝑠,prev
𝑖𝑑 = ̂︀𝜔𝑘−1,𝑠

𝑖𝑑 ← 𝜆𝑘𝑠,der
𝑖𝑑 ∀ 𝑖 ∈ 𝒰 , 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦 ∖ {1} (5.25b)

𝜔𝑘𝑠,prev
𝑖𝑑 = ̂︀𝑤𝑖𝑑 ← 𝜆𝑘𝑠,der

𝑖𝑑 ∀ 𝑖 ∈ 𝒰 , 𝑑 ∈ 𝒟, 𝑘 = 1. (5.25c)

Here, 𝜔𝑘𝑠,prev
𝑖𝑑 is a duplicated continuous variable representing 𝜔𝑘−1,𝑠

𝑖𝑑 , and ̂︀𝜔𝑘−1,𝑠
𝑖 is the
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solution for variable 𝜔𝑘𝑠𝑖𝑑 at period 𝑘−1 or 𝑤𝑖𝑑 in Stage I, which are fixed when solving

for period 𝑘. The Lagrange multiplier 𝜆𝑘𝑠,der
𝑖𝑑 in (5.25b) and (5.25c) is unrestricted in

sign.

Now, the master problem at iteration 𝑙 can be succinctly defined as follows:

min
𝑎∈𝒜

JI(𝑎) +
1

S

∑︁
𝑠∈𝒮

𝜃 𝑠 (5.26a)

s.t. 𝜃 𝑠 ≥ ̂︀Φ𝑘𝑠𝑗 +
∑︁
𝑖∈𝒰

̂︀𝜆𝑘𝑠,site𝑖,𝑗 (̂︀𝑢𝑖 − 𝑢𝑖) +∑︁
𝑖∈𝒰

∑︁
𝑑∈𝒟

̂︀𝜆𝑘𝑠,der
𝑖𝑑,𝑗 ( ̂︀𝑤𝑖𝑑 − 𝑤𝑖𝑑) ∀ 𝑗 ∈ 𝒥 𝑙, 𝑠 ∈ 𝒮, 𝑘 = 1

(5.26b)

𝜃 𝑠 ≥ 0, ∀ 𝑠 ∈ 𝒮, (5.26c)

where (5.26b) denotes the optimality cut given by scenario 𝑠 and iteration 𝑗, and 𝜃 𝑠

denotes an under-approximation to the Stage II cost associated with Stage I strategy

𝑎 and scenario 𝑠.

Furthermore, the objective function for each time period is solved independently,

and incorporates the cuts for future cost that are added in following iterations. These

cuts project the problem onto the subspace defined by the linking variables. Thus we

replace the period-wise objective from REC(𝑎, 𝑠) with the following:

min Φ𝑘𝑠 = Φ𝑘𝑠
res + Φ𝑘𝑠

load + 𝜓𝑘𝑠

𝜓𝑘𝑠 ≥ ̂︀Φ𝑘+1,𝑠𝑗 +
∑︁
𝑒∈ℰ𝑠

̂︀𝜆𝑘+1,𝑠,line
𝑒,𝑗

(︀̂︀𝜅𝑘𝑠𝑒 − 𝜅𝑘𝑠,prev
𝑒

)︀
+
∑︁
𝑖∈𝒰

̂︀𝜆𝑘+1,𝑠,site
𝑖,𝑗

(︁̂︀𝜇𝑘𝑠𝑖 − 𝜇𝑘𝑠,prev
𝑖

)︁
+
∑︁
𝑖∈𝒰

∑︁
𝑑∈𝒟

̂︀𝜆𝑘+1,𝑠,der
𝑖𝑑,𝑗

(︁̂︀𝜔𝑘𝑠𝑖𝑑 − 𝜔𝑘𝑠,prev
𝑖𝑑

)︁
∀ 𝑗 ∈ 𝒥𝑙,

Master problem for the NBD method: Now, the master problem at iteration 𝑙 can

be restated as follows:

(MP3) ΦMP,𝑙(𝜐𝑙) = min
𝑎,𝑢,𝑤

JI(𝑎) + 𝜐𝑙(̂︀𝑢𝑙, ̂︀𝑤𝑙) (5.27a)

𝑎 ∈ 𝒜 (5.27b)
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where JI(𝑎) is the objective function for the master problem, and 𝜐𝑙(̂︀𝑢𝑙, ̂︀𝑤𝑙) is a cost-

to-go function that approximates the expected Stage II cost over all the scenarios.

The value for cost-to-go function will be calculated in the Backward pass of iteration

𝑙, by using the ̂︀𝑢𝑙, ̂︀𝑤𝑙 values obtained in the Forward pass 𝑙.

The cost-to-go function for the master problem 𝜐𝑙(·) is represented as:

𝜐𝑙(̂︀𝑢𝑙, ̂︀𝑤𝑙) = min
𝑎,𝑢,𝑤,𝜃 𝑠

1

S

∑︁
𝑠∈𝒮

𝜃 𝑠

s.t. 𝜃 𝑠 ≥ ̂︀Φ𝑘𝑠𝑗 +
∑︀

𝑖∈𝒰 𝜆
𝑘𝑠,site
𝑖,𝑗 (̂︀𝑢𝑖 − 𝑢𝑖)

+
∑︀

𝑖∈𝒰 ,𝑑∈𝒟 𝜆
𝑘𝑠,der
𝑖𝑑,𝑗 ( ̂︀𝑤𝑖𝑑 − 𝑤𝑖𝑑) ∀ 𝑗 ∈ 𝒥 𝑙, 𝑠 ∈ 𝒮, 𝑘 = 1

𝑎 ∈ 𝒜,

(5.28)

where ̂︀Φ𝑘𝑠𝑗 is the optimal value for period 𝑘 = 1, 𝜆𝑘𝑠,site𝑖,𝑗 and 𝜆𝑘𝑠,der
𝑖𝑑,𝑗 are the Lagrange

multipliers for the equality constraints (5.24b) and (5.25b), respectively. The optimal

value and the Lagrange multipliers are obtained in the Backward Pass of iteration 𝑗.

Also, (̂︀𝑢𝑙, ̂︀𝑤𝑙) is the solution for (𝑢,𝑤) obtained by solving the master problem (5.27)

in the Forward Pass of iteration 𝑙, and fixed in the following Backward Pass.

Subproblems after period- and scenario-wise decomposition: For a given period

𝑘 ∈ 𝒦 and iteration 𝑙, we write the MILP concisely as follows:

Φ𝑘𝑠𝑙(̂︀𝜁𝑘−1,𝑠𝑙, 𝜑𝑘𝑠𝑙) = min
𝜁 𝑘𝑠,𝜏 𝑘𝑠,𝜈 𝑘𝑠

𝑓𝑘𝑠(𝜁 𝑘𝑠, 𝜏 𝑘𝑠) + 𝜑𝑘𝑠𝑙(̂︀𝜁 𝑘𝑠𝑙) (5.29a)

s.t. 𝜈 𝑘𝑠 = ̂︀𝜁𝑘−1,𝑠𝑙 : (𝜆𝑘𝑠) (5.29b)

(𝜁 𝑘𝑠, 𝜏 𝑘𝑠, 𝜈 𝑘𝑠) ∈ 𝒵𝑘𝑠, (5.29c)

where 𝜈 𝑘𝑠 = (𝜇𝑘𝑠,prev, 𝜔𝑘𝑠,prev, 𝜅𝑘𝑠,prev),

̂︀𝜁𝑘−1,𝑠𝑙 =

⎧⎪⎨⎪⎩ (̂︀𝜇𝑘−1,𝑠𝑙, ̂︀𝜔𝑘−1,𝑠𝑙, ̂︀𝜅𝑘−1,𝑠𝑙) if 𝑘 > 1

(̂︀𝑢𝑙, ̂︀𝑤𝑙, 𝑠) otherwise.
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The feasible region 𝒵𝑘𝑠 is a mixed-integer set given by

𝒵𝑘𝑠 =
{︁
(𝜁 𝑘𝑠, 𝜏 𝑘𝑠, 𝜈 𝑘𝑠) | (4.3c)− (4.3j), (4.4a)− (4.6h), (5.23), (5.24), (5.25)

}︁
.

(5.30)

The components of the problem (5.29) are as follows: Let 𝜁 𝑘𝑠 represent the linking

variables, which are binary variables linking two time periods; 𝜈 𝑘𝑠 the duplicated state

variables, which are continuous variables; 𝜏 𝑘𝑠 the local variables, i.e. all the other

variables which are not listed above. These are mixed-integer variables. ̂︀𝜁𝑘−1,𝑠𝑙 is the

system state at the start of period 𝑘 in scenario 𝑠 of iteration 𝑙, i.e. the solution for

𝜁 𝑘𝑠𝑙 obtained in the previous period of the Forward Pass. 𝑓𝑘𝑠(𝜁 𝑘𝑠, 𝜏 𝑘𝑠) is the objective

function in terms of the state and local variables, 𝜁 𝑘𝑠, 𝜏 𝑘𝑠, respectively.

The cost-to-go function 𝜑𝑘𝑠𝑙(·) is represented as:

𝜑𝑘𝑠𝑙(̂︀𝜁 𝑘𝑠𝑙) = min
𝜁 𝑘𝑠,𝜓𝑘𝑠

𝜓𝑘𝑠

s.t. 𝜓𝑘𝑠 ≥ ̂︀Φ𝑘+1,𝑗 + ̂︀𝜆𝑘+1,𝑠𝑗(̂︀𝜁𝑘𝑠𝑗 − 𝜁 𝑘𝑠) ∀ 𝑗 ∈ 𝒥 𝑙

(5.31)

where ̂︀Φ𝑘+1,𝑗 is the optimal value for period 𝑘 + 1, ̂︀𝜆𝑘+1,𝑠𝑗 is the Lagrange multiplier

for the equality constraint, both obtained in the Backward Pass of iteration 𝑗, such

that 𝜆𝑘𝑠𝑗 = (𝜆𝑘𝑠𝑗,line, 𝜆𝑘𝑠𝑗,site, 𝜆𝑘𝑠𝑗,der). Also, ̂︀𝜁𝑘𝑠𝑗 is the solution for 𝜁 𝑘𝑠 obtained in

the Forward Pass of iteration 𝑗, and fixed in the following Backward Pass.

5.4.2 Description of the algorithm

The Nested Benders Decomposition algorithm involves decomposing the two-stage

problem as master problem and subproblem, then further decomposing the subprob-

lem per time period, and finally solving these problems iteratively in a forward-and-

backward fashion. The Forward Pass yields a feasible upper bound 𝑍, while the

Backward Pass generates cuts from the LP relaxations of the subproblems and pro-

vides a lower bound 𝑍. New cuts are added in the Backward Pass of each iteration

𝑙 and kept in the following Forward Pass. Similar to LBD-II, the lower bound 𝑍

191



(upper bound 𝑍) to the optimal solution of NBD is initialized to 10−6 (resp. ∞).

The algorithm terminates when the normalized difference (𝑍 − 𝑍)/𝑍 is less than a

threshold 𝜖.

Algorithm 3 Nested Benders Decomposition
1: Set 𝑍 ← ∞, 𝑍 ← 10−6, 𝑙 = 0
2: while (𝑍 − 𝑍)/𝑍 > 𝜖 do
3: Compute ̂︀𝑎𝑙 by solving master problem (5.27)
4: for 𝑠 ∈ 𝒮 do
5: for 𝑘 = 1, · · · ,K do ◁ Forward pass
6: Solve for subproblem (5.29) to compute (̂︀𝜁 𝑘𝑠𝑙, ̂︀𝜏 𝑘𝑠𝑙, ̂︀𝜈 𝑘𝑠𝑙)
7: end for ◁ Update upper bound
8: for 𝑘 = K− 1,K− 2, · · · , 0 do ◁ Backward pass
9: Use ̂︀Φ𝑘+1,𝑠𝑙, ̂︀𝜆𝑘+1,𝑠𝑙 to solve (5.31) and compute cost-to-go values

10: end for
11: end for
12: Use ̂︀Φ0,𝑠𝑙, ̂︀𝜆0,𝑠𝑙 to solve (5.28) and compute cost-to-go values for (5.27)
13: Update upper bound 𝑍 using (5.32)
14: Update 𝑙 ← 𝑙 + 1
15: Set 𝑍 ← JMP(̂︀𝑎𝑙) + 1

S

∑︀
𝑠∈𝒮
∑︀K

𝑘=0Φ
𝑘𝑠 − ̂︀𝜓𝑘𝑠 ◁ Update lower bound

16: end while

Forward Pass:

The purpose of the Forward Pass is to generate a feasible solution to the full

problem. First, we obtain a feasible solution for the master problem. Then, we

implement that solution for the subproblem with period 𝑘 = 0 for each scenario 𝑠.

Then, for each scenario 𝑠, we obtain optimal solutions, which are then considered

as fixed parameters for the subsequent period. Therefore, the forward pass involves

solving a relaxed master problem and then the period-wise problems sequentially,

using the solution from previous subproblem.

Since the problem is assumed to have complete continuous recourse, which means

that for any value of linking variable and local binary variables, there are values for

the local continuous variables such that the solution is feasible.

The upper bound 𝑍𝑙 in the iteration 𝑙 is calculated in the Forward Pass as follows:

𝑍𝑙 =

(︃
JI(̂︀𝑎𝑙)− 1

K

∑︁
𝑠∈𝒮

̂︀𝜃𝑠)︃+
1

S

∑︁
𝑠∈𝒮

K∑︁
𝑘=1

(︁̂︀Φ𝑘𝑠𝑙 − ̂︀𝜓𝑘𝑠𝑙)︁ ∀ 𝑙. (5.32)
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Note that the weighted sum of the optimal values of the problems solved in the forward

pass, JI(̂︀𝑎𝑙)) and ̂︀Φ𝑘𝑠𝑙, ̂︀Φ𝑘𝑠𝑙, minus the cost-to-go functions, ̂︀𝜃𝑠 and ̂︀𝜓𝑘𝑠𝑙, yields a valid

upper bound, because when the master problem and the Stage II subproblems are

solved in a myopic fashion, without relaxing any constraint or integrality, we obtain

a full solution that is feasible for the entire MILP problem.

Backward Pass:

After the completion of the Forward Pass by solving the master problem and

the subproblems for all the time periods, the next step is the Backward Pass used

to generate cuts. This step consists of solving the period-wise subproblems from

the last to the first period followed so that the solutions of future periods can be

used to generate cuts to provide approximations of the cost-to-go functions. These

are cumulative cuts which are specific for each period, i.e., they are added at each

iteration 𝑙 whenever a Backward Pass subproblem for period 𝑘 is solved. These cuts

are also retained in the formulation of the Forward Pass. Note that the fixed variables

stored in the Forward Pass, ̂︀𝜁, are also used in the Backward Pass.

The lower bound 𝑍 𝑙 is calculated in the Backward Pass as follows:

𝑍 𝑙 = ̂︀ΦMP,𝑙. (5.33)

We argue that the optimal value, ΦMP,, for the Stage I master problem is a lower

bound to the total cost since it only has a subset of the original constraints of the

complete MILP problem.

Below, we provide a discussion for the cuts corresponding to the period-wise sub-

problem, as the cut for the master problem can be obtained in a similar fashion.

If the recourse problem were convex and solved by Nested Benders Decomposition,

the objective value and the Lagrange Multiplier of equality constraint (5.29b) would

be enough to generate the Benders cut:

𝜃𝑘𝑠 ≥ ̂︀Φ𝑘+1,𝑗 + ̂︀𝜆𝑘𝑠(̂︀𝜁 𝑘𝑠 − 𝜁 𝑘𝑠) (5.34)
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However, the subproblems have binary variables due to which the Benders cut can-

not be generated directly. To provide a valid cut, the subproblems first need to be

convexified using linear or Lagrangian relaxations. The cuts generated by the relaxed

problems are Benders and Lagrangean cuts, respectively. An another type of cut is

the strengthened Benders cut [119] is also valid for the Backward Pass problems.

The choice of cuts impact the computational performance of the algorithm. Some

cuts may be tighter and more/less computationally expensive to generate. We de-

scribe the cuts as below:

Benders Cut. The Benders cut is exactly like (5.34), but the optimal value and

the multipliers for the complicating equalities are obtained from the solution of linear

relaxation. Thus, the cut generated is as follows:

𝜃𝑘𝑠 ≥ ̂︀Φ𝑘+1,𝑗
LP + ̂︀𝜆𝑘𝑠(̂︀𝜁 𝑘𝑠 − 𝜁 𝑘𝑠) (5.35)

This is the weakest of the possible cuts. However, it can be quickly computed. It

is expected to perform well, if the LP relaxation of the subproblem is tight, and

the optimal value of the LP relaxation is closer to the optimal value of the MILP.

However, this is not true in our problem. Therefore, the algorithm does not have

guaranteed finite convergence since there can be a duality gap.

Lagrangean cut. The MILP subproblem 𝑃 𝑘𝑠𝑙 can also be convexified using the La-

grangean relaxation, which yields the convex hull of the noncomplicating constraints.

The Lagrangean relaxation 𝐿𝑘𝑠𝑙 of the MILP 𝑃 𝑘𝑠𝑙 is given as follows:

𝐿𝑘𝑠𝑙 : Φ𝑘𝑠
LR(
̂︀𝜆𝑘𝑠𝑙, ̂︀𝜁𝑘−1,𝑠𝑙, 𝜑𝑘𝑠𝑙) = min

𝜁 𝑘𝑠,𝜏 𝑘𝑠,𝜈 𝑘𝑠
𝑓𝑘𝑠(𝜁 𝑘𝑠, 𝜏 𝑘𝑠) + 𝜑𝑘𝑠𝑙(̂︀𝜁 𝑘𝑠𝑙) + ̂︀𝜆𝑘𝑠⊤(̂︀𝜁𝑘−1,𝑠𝑙 − 𝜈 𝑘𝑠)

s.t. (𝜁 𝑘𝑠, 𝜏 𝑘𝑠, 𝜈 𝑘𝑠) ∈ 𝒵𝑘𝑠

(5.36)

The closer the Lagrange multipliers are to their optimal value, the tighter approx-

imation is, and the stronger the cuts generated by these multipliers. The optimal
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Lagrange multipliers, 𝜆̄𝑘𝑠𝑙, are obtained by the maximization problem:

Φ𝑘𝑠
LD(
̂︀𝜁𝑘−1,𝑠𝑙, 𝜑𝑘𝑠𝑙) = max

𝜆𝑘𝑠𝑙
̂︀Φ𝑘𝑠

LR(
̂︀𝜆𝑘𝑠𝑙, ̂︀𝜁𝑘−1,𝑠𝑙, 𝜑𝑘𝑠𝑙) (5.37)

The Lagrangean cut uses the coefficients obtained by solving the Lagrangian dual

(5.37), as follows:

𝜃𝑘𝑠 ≥ Φ𝑘+1,𝑗
LR + 𝜆̄𝑘𝑠(̂︀𝜁 𝑘𝑠 − 𝜁 𝑘𝑠) (5.38)

However, the maximization problem (5.38) can be computationally expensive. One

way to solve (5.38) would be to use the Lagrange multiplier optimization algorithm

using the subgradient method [39].

Strengthened Benders cut: Depending on the structure of the problem, the Ben-

ders cuts can be weak and the Lagrangean cuts can take a long time to compute. As

proposed in [119], the Strengthened Benders cut is a compromise between the Benders

and Lagrangean cuts. The method to generate Strengthened Benders cut is similar

to that of the Lagrangean cut, but does not use the subgradient method to improve

the multipliers. Instead, it uses the coefficients from the first Lagrangian relaxation

solved after the initialization of the multipliers using LP relaxation as follows:

𝜃𝑘𝑠 ≥ Φ𝑘+1,𝑗
LR + ̂︀𝜆𝑘𝑠(̂︀𝜁 𝑘𝑠 − 𝜁 𝑘𝑠). (5.39)

These cuts are at least as tight as the Benders cut, but usually less computationally

expensive than the Lagrangean cuts. We refer the reader to [57] for the definitions and

the proofs of the validity of the Benders cut, Lagrangean cut, and the Stengthened

Benders cut.

5.4.3 Comparison of LBD-DIC and NBD

Finally, we analyze differences in the convergence of the LBD-DIC and NBD ap-

proaches. The experiments are conducted using a modified IEEE 12-node distribution

test feeder. We use the same parameters as in Section 4.4 of Chapter 4.

Figure 5-5 shows the lower bound and upper bound under the LBD-DIC and NBD
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Figure 5-5: Convergence of LBD-DIC and NBD: evolution of lower bound 𝑍 and
“relaxation” upper bound ̃︀𝑍 for LBD-DIC, compared with evolution of lower bound
𝑍 and upper bound 𝑍 for NBD. Lower and upper bounds are normalized by the
minimum value of ̃︀𝑍 achieved under LBD-DIC. We use the following parameter values:
G = 3 (all fixed DERs), Y = 1, and S = 5.

approaches. Convergence requires only 𝑙 = 11 iterations under NBD, in comparison

to 𝑙 = 53 iterations under LBD-DIC. This is because the NBD lower bound esti-

mates are strengthened by the inclusion of the cost-to-go under-approximation in the

Benders cut. In comparison, there is no cost-to-go term in the dual integer cut of

LBD-DIC. Regarding the upper bound, it is evident that the NBD upper bound esti-

mates 𝑍 are greater in value than the LBD-DIC “relaxation” upper bound estimates̃︀𝑍 at most iterations. This is because the “relaxation” upper bound estimate ̃︀𝑍 is an

under-approximation, as updates to ̃︀𝑍 are obtained from solutions to D-REC(𝑎, 𝑠)

and (SMILP). In comparison, the updates to 𝑍 in the case of NBD are obtained

using upper bounds to the optimal objectives of the Stage II recourse problems.

5.5 Summary and Discussion

In this section, we discussed solution approaches based on L-shaped Benders De-

composition (LBD), in order to efficiently solve (DEF) to the two-stage stochastic

mixed-integer program (SMIP2) proposed in Section 4. In particular, we formulate

the following approaches: LBD with Greedy Approach (LBD-Greedy), LBD with

Dual Integer Cuts (LBD-DIC), and Nested Benders Decomposition (NBD). These
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approaches differ in terms of master problem formulation, optimality (Benders) cut

formulation, and termination criteria. While discussing the approaches, we compare

the solution accuracy and computational time associated with these approaches.

5.5.1 Summary of Solution Approaches

The LBD-Greedy method is named after the greedy approach used to solve the Stage

II recourse problems, which are mixed-integer linear programs and thus computa-

tionally expensive to solve. LBD-Greedy involves a two-step process to obtain the

Benders cut at each iteration, by first solving the full Stage II recourse MILPs and

then solving linear programs formed by fixing the integer variables in the Stage II

MILPs. LBD-Greedy is an improvement over the brute-force “simple enumeration”

approach that involves exhaustively considering every feasible Stage I resource allo-

cation strategies, but the algorithm termination relies on iteration-wise elimination of

the Stage I strategies and is thus slow. Solving the Stage II recourse problems, even

while using the greedy approach, becomes expensive when the network size becomes

sufficiently large.

The limitations of the LBD-Greedy method motivate us to develop LBD with Dual

Integer Cuts (LBD-DIC). The LBD-DIC method involves forming Benders cut(s) at

each iteration by solving LP relaxations to the Stage II recourse problems. The

algorithm terminates when the convergence gap, or difference between defined lower

and upper bounds, is sufficiently small. We derive “dual integer cuts” which result in

strengthened lower bound estimates, as compared to traditional Benders cuts. LBD-

DIC typically has faster termination (by convergence) in comparison to LBD-Greedy,

and obtaining solutions to the Stage II problems using the LP relaxations is less

expensive. However, this comes at a slight sacrifice in terms of optimality of the

solutions to (DEF).

We formulate our final solution approach, Nested Benders Decomposition (NBD),

with the motivation of further speedening the process of obtaining solutions to the

Stage II recourse problems. In order to solve the Stage II recourse problems, we

employ a period-wise decomposition of the problem and use a forward-and-backward
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pass approach. Using this approach, we are able to solve the recourse problems in

much less time than if we solve LP relaxations (as in LBD-DIC), when networks

are sufficiently large. Furthermore, the cost-to-go approximations in NBD typically

assure faster algorithm termination by convergence, in comparison to LBD-DIC.

5.5.2 Discussion on Scalability

Overall, NBD is the most computationally efficient strategy, whereas LBD-Greedy

is the least efficient. On the other hand, LBD-Greedy performs best in terms of

solution accuracy. However, we consider problem scalability to be a key priority

(i.e., ability of the solution approach to handle networks with >100 nodes). Utilities

or system operators need to make operational decisions within the span of several

hours, such that they can prepare accordingly for network damage in advance of an

incoming hurricane. From this point-of-view, NBD is the most desirable solution

approach, in that it is readily able to solve (SMIP2) for 118-node network instances

in comparison to the other approaches . Furthermore, NBD is most easily able to

accommodate extensions to the two-stage stochastic program. For example, one may

be interested in incorporating multi-stage pre-storm resource allocation decisions, or

damage localization decisions prior to infrastructural component repairs.

The 118-node network instance can be considered a realistic distribution network

of a smaller size. Consequently, additional computational innovations would be de-

sirable to e nsure that NBD (or a similar solution approach) may be feasibly applied

to networks that have several hundred or >1,000 nodes. A significant computational

expense associated with solving (DEF) comes from the power flow and voltage bound

constraints detailed in Chapter 4. If these constraints are relaxed, then the solution

approaches proposed here could be feasibly applied to larger networks.

In an electric power infrastructure, there are typically multiple distribution net-

works connected along a single transmission backbone. Thus, a realistic resource

allocation problem would require solving (DEF) separately for each distribution net-

work. The solutions to these problems would provide implications regarding resource

allocation and network response for the broader transmission network. Furthermore,
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when the broader power infrastructure is considered, the effect of spatial variability in

hurricane wind velocities on damages and resource allocations is more evident. This

would naturally integrate the results presented in Chapter 3 with Chapters 4-5.

Consideration of realistic-scale networks also permits analysis of how microgrid

islands evolve due to repairs. For instance, the microgrid islands could form multiple

decentralized clusters that grow and eventually merge after a sufficient number of

repairs. On the other hand, it might also be possible that the repairs form a large

“backbone” that eventually grows to encompass the remaining nodes. The microgrid

evolution process was illustrated in Figures 4-1 – 4-2, but only simple networks were

considered here and thus the insights are limited.
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Chapter 6

Conclusions and Ongoing Work

6.1 Thesis Summary

In this thesis, we have addressed the challenge of resource allocation and response

strategies for infrastructural network resilience to extreme weather events. Specifi-

cally, we formulated a modeling and decisions approach for operationally-based strate-

gies that enhance electric power infrastructure resilience to hurricane winds.

In Chapter 1, we defined risk and infrastructural resilience within the context of

our problem, and stated that our objective is to minimize risk (maximize resilience).

Then, we presented a generalized modeling and decisions framework to address this

objective. The framework incorporates a hurricane model; probabilistic model of in-

frastructural damage; and decisions concerning pre-storm resource allocation as well

as post-storm restoration and response. We identify key gaps in the literature that

addresses our objective: the necessity of incorporating physically-based hurricane

models in probabilistic damage etsimation, of incorporating uncertainties in infras-

tructural damage when making operational decisions for infrastructural systems, and

of models for joint pre- and post-disruption decision-making. We summarize our

contributions, which aim to address the gaps in satisfying our research objective.

In Chapter 2, we formulate a parametric model of the asymmetric hurricane wind

field. This model can be suitably coupled with existing hurricane track models for

the purposes of nowcasting, forecasting, and large-scale ensemble simulation. Most
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namely, the model incorporates low-wavenumber asymmetries into the maximum in-

tensity parameter of an axisymmetric wind field model. Model parameters are esti-

mated by solving a constrained, nonlinear least squares (CNLS) problem that mini-

mizes the sum of squared residuals between wind field intensities of historical storms

and model-estimated winds. The CNLS method can handle the inherently nonlinear

wind field model in a flexible manner; thus, it is well suited to capture the radial

variability in the hurricane wind field’s asymmetry. We demonstrate that our model

outperforms a typical benchmark model of the asymmetric wind field.

In Chapter 3, we introduce a modeling approach for probabilistic estimation of

hurricane wind-induced damage to infrastructural assets. In the approach, we employ

a Nonhomogeneous Poisson Process (NHPP) model for estimating spatially-varying

probability distributions of damage as a function of hurricane wind field velocities.

Specifically, we consider a physically-based, quadratic NHPP model for failures of

overhead assets in electricity distribution systems. The wind field velocities are pro-

vided by Forecasts of Hurricanes using Large-Ensemble Outputs (FHLO), a frame-

work for generating probabilistic hurricane forecasts. We use FHLO in conjunction

with the NHPP model, such that the hurricane forecast uncertainties represented by

FHLO are accounted for in estimating the probability distributions. Furthermore,

we evaluate the spatial variability and extent of hurricane damage under key wind

field parameters (intensity, size, and asymmetries). By applying our approach to pre-

diction of power outages (loss-of-service) in northwestern Florida due to Hurricane

Michael (2018), we demonstrate a statistically significant relationship between outage

rate and failure rate. We conclude with the formulation of parametric models that

relate total damage and financial losses to the hurricane parameters of intensity and

size.

In Chapter 4, we develop an integrated approach for strategic, operational decision-

making in electricity distribution networks (DNs). This approach considers a pre-

storm Distributed Energy Resources (DER) allocation problem under the uncertainty

of failure scenarios as well as a post-storm dispatch problem in islanded microgrids

during the multi-period restoration of the network. Network restoration includes

202



repair of failed infrastructural assets and re-allocation of DERs within the DN to

optimally meet demand due to the growth and eventually reconnection of islands as

a result of asset repairs. We formulate a two-stage stochastic mixed-integer linear

program (SMIP2), whose objective is to minimize cost by selecting optimal pre- and

post-storm decisions. The chapter concludes with discussions of how the system per-

formance is dependent on resource constraints, cost parameters, and the inclusion of

mobile DERs.

In Chapter 5, we formulate solution approaches based on L-shaped Benders De-

composition (LBD) to solve (SMIP2), in order to address the scalability challenge in-

troduced by uncertainties in infrastructural asset failures. Our formulated approaches

– LBD-Greedy, LBD-DIC, and Nested BD – differ in terms of the formulation of the

master problem, optimality (Benders) cuts, and algorithm termination. We demon-

strate that our solution approaches outperform the brute-force approach based on

simple enumeration of possible resource allocations. Furthermore, although the op-

timality (Benders) cuts formulated for typical LBD-based approaches require convex

and continuous recourse problems, our solution approaches include appropriate for-

mulations of Benders cuts that handle the discontinuous and non-convex recourse

problems in (SMIP2). In particular, we derive strengthened “dual integer cuts” for

the LBD-DIC approach, which outperform classical Benders cuts in terms of algorithm

convergence. We compare the scalability of the three approaches, and demonstrate

that Nested BD is most suitable to solving (SMIP2) under distribution networks of

realistic sizes.

6.2 Ongoing and Future Work

The work in this thesis can be potentially extended in several directions. With re-

gards to solution approaches for the two-stage stochastic mixed integer linear program

(SMIP2) posed in Chapter 4, we consider scenario reduction for problem scalability

(Section 6.2.1) and optimality gap estimates for solution evaluation (Section 6.2.2).

Then, we discuss briefly how distributed monitoring and control as well as analysis
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of spatial scales would affect (SMIP2) in Section 6.2.3. In Section 6.2.4, we discuss

integration of decision-making for dual-layer networks consist of electricity (service)

networks and transportation networks. In Section 6.2.5, we apply network science

approaches by examining how the stability of networks would affect loss-of-function

arising from natural disturbances.

6.2.1 Scenario Reduction

The accuracy of solutions to approximations of the two-stage problem (SMIP2) de-

pends on the selected sample 𝒮 ⊂ 𝒮 ′. We can use scenario reduction to strategically

select a more representative subset in place of a randomly-sampled subset. Thus,

scenario reduction permits us to obtain a more accurate solution to (SMIP2) under

fixed S = |𝒮|.

The scenario reduction approach takes the distribution 𝒫 and set 𝒮 ′ as input,

then outputs a distribution 𝒫sr over a selected subset 𝒮. The objective of scenario

reduction is to minimize the Kantorovich distance between 𝒫 and 𝒫sr. In this sense,

the subset 𝒮 with probabilities defined by 𝒫sr is the most accurate approximation

of the damage uncertainty. We define the Kantorovich distance 𝐷(𝒫 ,𝒫sr) as the

weighted sum of the distances from all scenarios in 𝒮 ′ to their closest scenario within

the selected subset 𝒮:

𝐷(𝒫 ,𝒫sr) =
∑︁
𝑠′∈𝒮′

P(𝑠′)min
𝑠∈𝒮

Δ1(𝑠, 𝑠
′), (6.1)

where Δ1(𝑠, 𝑠
′) =

∑︀
𝑒∈ℰ |𝑠𝑒 − 𝑠′𝑒| denotes a symmetric distance between 𝑠 and

𝑠′ using the L1-norm. As a notational clarification, 𝒫 and 𝒫sr refer to probability

distributions, whereas P(𝑠) and Psr(𝑠) refer to the probabilities of a given scenario 𝑠

under these distributions.

To solve the scenario reduction problem, we cast it as an integer program known

as the uncapacitated 𝑝-location problem [110]. Even for moderately-sized networks

(N = 36), the number of scenarios is huge |𝒮 ′| > 109. Hence, we first randomly

sample a subset 𝒮(𝑅) ⊂ 𝒮 ′ using 𝒫 , and then use 𝒮(𝑅) as an input to the uncapacitated
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𝑝-location problem.

Scenario reduction modifies the solutions to (SMIP2) in two ways. First, the

approximate objective of (SMIP2) is re-defined such that the expected Stage II cost

is the sum of the costs JII (𝑎, 𝑠) weighted by the probabilities Psr(𝑠):

𝑔(𝑎) ≈ JI(𝑎) +
∑︁
𝑠∈𝒮

Psr(𝑠) JII (𝑎, 𝑠) . (6.2)

Second, the set of failure scenarios used as input to the LBD-based solution ap-

proaches is obtained from scenario reduction after the initial random sampling.

6.2.2 Optimality Gap Estimation

When one reduces the number of scenarios considered using either Sample Average

Approximation (SAA) or scenario reduction, the resultant two-stage program provides

an approximate solution to (SMIP2). Consequently, the optimal value and solution

of the approximate problem may differ from the optimal value and solution of the

original (SMIP2) problem. To evaluate the accuracy of approximate solutions, one

needs to compute optimality gap estimates. If 𝑣⋆ is the optimal value of (SMIP2), then

for a solution 𝑎⋆ to the approximate problem, the optimality gap is simply 𝑔(𝑎⋆)−𝑣⋆.

If 𝑎⋆ is the optimal solution of (SMIP2), then the optimality gap is zero.

Let us consider optimality gap estimation under the SAA method. Our estimation

of the optimality gap is based on [52]. To estimate 𝑣⋆, we obtain M samples each with

S scenarios. For each 𝑚 = 1, · · · ,M, we solve an SAA problem with sample 𝒮𝑚. Let

𝑎𝑚 be the optimal solution and 𝑣𝑚S be the corresponding objective. An estimator of

𝑣⋆ is given by 𝑣MS =
∑︀M

𝑚=1 𝑣
𝑚
S . Let 𝒜M

S := {𝑎1, · · · , 𝑎M} be the set of solutions.

To estimate 𝑔(𝑎⋆), we choose Sb >> S, and then obtain a sample 𝒮b ⊂ 𝒮 ′ such

that Sb := |𝒮b|. The estimated value of the objective for a first stage decision 𝑎 is:

𝑔Sb(𝑎) := JI(𝑎) +
1

Sb

∑︁
𝑠∈𝒮

JII (𝑎, 𝑠) . (6.3)

Then, the optimal first-stage solution is chosen from the set of solutions to be

the one with the lowest objective value, i.e, 𝑎⋆ = argmin𝑎∈𝒜M
S
𝑔Sb(𝑎). An unbiased
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estimator of 𝑔(𝑎⋆) is given by 𝑔Sb(𝑎⋆).

Since 𝑔(𝑎⋆) and 𝑣⋆ are estimated using random samples, the estimated optimality

gap is a random variable which would have some variance. Therefore, an optimality

gap estimator which takes accuracy into account is chosen as:

𝑔Sb(𝑎
⋆)− 𝑣MS + 𝑧𝛼

√︂
Var(𝑔Sb(𝑎⋆))

Sb
+

Var(𝑣MS )

M
, (6.4)

where Var(𝑔Sb(𝑎⋆)) denotes the sample variance of the Stage II cost, Var(𝑣MS ) the

sample variance of the objectives 𝑣𝑚S , and 𝑧𝛼 the cumulative distribution function

of the standard normal distribution. We set 𝑧𝛼 = 1.96 to obtain a 95% confidence

interval.

(a) (b)

Figure 6-1: (a) – Optimality gap estimates for the 36-node DN as a function of S,
under fixed M = 20 and Sb = 10, 000. (b) – Estimates varying M under fixed S = 60
and Sb = 10, 000. “OG” is the optimality gap estimate and “OG+CI” is the estimate
with the 95% confidence interval.

In Figure 6-1a, we plot the optimality gap as a function of sample size S. The

optimality gap is normalized by the estimator 𝑣MS , and is thus interpreted as a per-

centage deviation from the estimate of the true objective. We also plot the 95%

confidence interval corresponding to the estimate. The optimality gap predictably

tends to decrease with increasing S. In Figure 6-1b, we plot the optimality gap as a

function of number of samples M. Both the confidence interval and optimality gap

tend to decrease with increasing M. This implies that solving more instances of SAA

will produce greater confidence in the optimality of DER allocation.
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In order to explain the trends in Figure 6-1, we separate the optimality gap esti-

mator into its components:

(︀
𝑔Sb(𝑎

⋆)− 𝑔(𝑎⋆)
)︀
+
(︀
𝑔(𝑎⋆)− 𝑣⋆

)︀
+
(︀
𝑣⋆ − 𝑣MS

)︀
+ 𝑧𝛼

√︂
Var(𝑔Sb(𝑎⋆))

Sb
+

Var(𝑣MS )

M
. (6.5)

The first term has an expected value of 0, because E[𝑔Sb(𝑎⋆)] = 𝑔(𝑎⋆). The

variance of this term decreases with increasing Sb. The second term is the true

optimality gap. The third term has a positive bias because E[𝑣MS ] ≤ 𝑣⋆. The variance

of this term decreases with increasing M, and the bias decreases with increasing S.

These properties are evident in the decreasing width of the confidence interval with

increasing M and the decreasing optimality gap with increasing S, respectively. The

fourth term is the confidence interval.

6.2.3 Extensions to Resource Allocation and Response for Elec-

tricity Networks

One can readily incorporate distributed monitoring and control systems into the mod-

els discussed in Chapter 4. This specifically entails utilization of analytics derived

from sensor and Internet of Things (IoT) data, in order to inform real-time state

estimation and network repair. Distributed monitoring and control – as opposed to

centralized network control – increases the efficiency of response and repair decisions

in the face of disruptions. I will also integrate models of distributed generators that

produce power from renewable energy sources. To do so, I consider literature on op-

timal renewable energy dispatch that addresses the intermittency and stochasticity

of renewables. Integration of renewable energy sources will lead to a power grid that

is both environmentally sustainable and more resilient to disruptions.

In addition, I am interested in more closely integrating my work on resource allo-

cation and repair with my models for infrastructural damage, to consider the impact

of spatial scales on resource allocation. Hurricanes typically have a radius greater

than 400 km, which necessitates decision-making for power systems that can span

counties or districts. Such systems include bulk generators; high-voltage transmis-
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sion networks that deliver power from bulk generators; and distribution networks

that connect transmission networks to end users. My current stochastic optimiza-

tion approach is tailored to decision-making at the level of distribution networks, but

the approach is readily extendable to consider larger spatial scales and transmission

network topologies. Consideration of damage estimation and decision-making at the

spatial scale of hurricanes maximizes the impact of my models, such as when federal

agencies must decide how to optimally allocate resources across states in advance of

an incoming disaster.

6.2.4 Response of Service Networks Following Hurricanes

I will continue to research post-hurricane response and recovery strategies in infras-

tructure networks, which improve the ability of crisis managers to make operationally-

informed decisions. Effective response is conducive to more rapid recovery, thus min-

imizing network service disruptions following natural disasters. I focus on strategies

for damage localization and repair, by considering optimal crew routing schedules.

Consequently, this work necessitates modeling of storm-induced transportation net-

work disruptions, which affect the connectivity between resource depots, crews, and

damage sites. To this end, I will model the electricity and transportation network

as a dual-layer network [101], and integrate my models of electricity network damage

with models of storm-induced disruptions on transportation paths. I will focus on

how network recovery rates and optimal response strategies are affected by hurricane

forecast accuracy, as estimated using our approach detailed in Chapter 3. In addition,

I will integrate work on the application of small unmanned aerial systems (sUAS) to

network exploration and damage isolation [58].

6.2.5 Stability of Critical Infrastructure Networks

The network topology, which determines connectivity between nodes (i.e., supply and

demand locations in a power network), has an impact on the network’s loss-of-function

following a disturbance. This suggests that networks can be designed or configured to
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be more resilient to natural disasters. For instance, if a path between an energy supply

node and demand node is disrupted, the demand is more likely to be met if alternative

paths exist and remain functional. More formally, the proportion of nodes that remain

connected to the network despite disruptions is defined as the network’s stability.

In my postdoctoral position, I will study how resilience of electricity networks and

dual-layer service-transport networks (see Sec. 6.2.4) depends on network topology,

in addition to the damage forecasts as discussed in Chapter 3. To do so, I will

apply fundamental work on the stability of single- and dual-layer networks [51]. This

provides insights on optimal network topologies, which inform strategies for network

design and/or re-configuration to improve resilience.
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