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by

Luke Qi
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Bachelor of Science in Physics

Abstract

Trapped ions are a promising candidate for quantum computation. As experi-
ments with ions increase in size and complexity, a trap array-based architecture
for an ion trap with many independent zones provides a path towards large-scale
integration. A crucial element in the operation of a trap array is the ability to
split, move and recombine chains of ions on diabatic timescales and without in-
curring excessive decoherence of information stored in ion qubits. In this thesis,
I investigate whether ion transport and splitting can be realistically integrated in
the future quantum processor and what the requirements are to achieve this.

I discuss my end-to-end numerical simulation pipeline of the ion shuttling
process. Using these simulation tools, I investigate the leading theories for ion
transport and splitting, based on Shortcuts-to-Adiabaticity principles, and extend
these methods into two central criteria for optimal ion shuttling. I present a novel
method for optimizing the voltage controls to achieve optimal ion shuttling, that
use accurate models of the digital-to-analog converters, amplifiers, and low-pass
filters of our ion trapping system.

I demonstrate fast and robust transport of 40Ca on our custom-designed sur-
face electrode trap and share spectroscopy data taken during the first ever attempt
at optimal splitting. I then outline the necessary steps to achieve fast splitting with
less than 1 quanta of excitation. It is my hope that the theories, software, and ex-
perimental results presented in this thesis demonstrate the feasibility of optimal
ion transport and splitting in state-of-the-art, scalabale surface traps and become
a standard for future ion shuttling experiments.

Thesis Supervisor: Isaac L. Chuang
Title: Professor of Physics and Electrical Engineering

Thesis Supervisor: John Chiaverini
Title: MIT Lincoln Laboratory Technical Staff
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Chapter 1

Introduction

Quantum computation with trapped-ions has achieved numerous milestones over

the past decades [6, 12]. Single-qubit rotations [9, 25, 2, 20], two-qubit gates [2, 20,

1], qubit state preparation [14] and readout [47] have all been demonstrated with

fidelities that approach or exceed the high threshold for fault tolerant quantum

computing [49]. Additionally, the long coherence times achievable with trapped-

ions has allowed them to be a front-running physical qubit candidate in the Noisy

Intermediate-Scale Quantum (NISQ) regime [59, 35, 79].

Scaling the current quantum systems beyond the NISQ regime of 50-100 noisy

qubits remains a formidable engineering challenge. In trapped-ion systems, mul-

tiple ions in a single chain (or crystal) will interact with one another via the

Coulomb force. These interactions can lead to experimental challenges as one

tries to increase the number of ions in a single chain. Longer ion crystals are

harder to control, resulting in a higher rate of decrystallization and increased sen-

sitivity to environmental noise. Furthermore, addressing each ion qubit in a long

chain requires an optical system with a complexity that scales unfavorably with

the number of qubits. Lastly, long ion chains exhibit tightly packed frequency

modes that can lead to crosstalk errors on unaddressed qubits. Quantum gates

mediated by the Coulomb interaction must be performed slower on longer chains

to avoid these crosstalk errors.

A proposed solution towards scalability that addresses the aforementioned
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challenges takes advantage of a crucial concept in the development of classical

technologies: modularity. Rather than increasing the size of a single ion chain,

one may choose to use multiple smaller chains that can communicate quantum

information to one another [33, 80]. This modular architecture would increase

the number of possible quantum gates while keeping the largest ion chain at a

manageable size. A drawback to a modular trapped-ion quantum processor is the

time required to communicate between ion chains. Any time spent on transferring

quantum information decreases the time available for quantum gates before the

qubit states decohere. Thus to fully reap the benefits of modularity, one must

implement a communication scheme that is reliable and fast, compared to the

speed of typical two-qubit gates (∼30 µs) [12].

Multiple methods have been developed for transferring quantum information

between ions, including the use of photonic links, lattice arrays, and ion shuttling

operations [46, 13, 62]. Ion shuttling operations have gained traction over the past

decade and have been experimentally implemented to varying degrees of success,

as I will discuss in section 1.2. I define a "shuttling" operation as controlling the

motion of trapped-ions along a specified trajectory using time-dependent electric

fields. Multiple operations fall under the category of shuttling, as I will explain

in section 1.2.1.

This thesis will tackle some of the outstanding questions in ion shuttling re-

search: What are the most optimal methods for shuttling ions in state-of-the-art

ion traps? What are the required specifications on our hardware to perform op-

timal shuttling? In a practical setting with a scalable trap architecture, is there a

way to seamlessly integrate shuttling operations in large-scale quantum comput-

ing algorithms?

1.1 Ion Array Trap Architecture

One type of ion trap that has demonstrated potential for large-scale quantum

computing is the ion array trap or Quantum Charge-Coupled Device (QCCD),
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Figure 1-1: An illustration of the ion array trap originally from [33]. The seg-
mented electrodes can be controlled to transport ion chains from one region to
the next. Some ion qubits may be stored in the "memory region" while others can
be transported into the "interaction region" to be used in a quantum gate.

shown in Fig 1-1 [33, 80]. The ion array trap/QCCD consists of radio frequency

(rf) electrodes that confine ions in two (radial) dimensions, and segmented "DC"

electrodes that provides confinement in the third (axial) direction. The trap elec-

trodes produce potentials that are most often harmonic in the three confinement

directions, although more complex, anharmonic potentials have been used and

will be discussed in this thesis. The DC electrodes can be individually controlled

to produce time-varying electric potentials that move ions along the axial direc-

tion (drawn as lanes in diagram 1-1). "Waveforms" is the accepted term to de-

scribe the time-dependent voltages that are applied to the DC electrodes, and will

be used frequently throughout this thesis. The physics of ion motion in this trap

architecture will be discussed more thoroughly in Chapter 2.

This ion trap array profitably allows for small ion chains to exist in sepa-

rated regions, which can each be specialized for a specific task. These tasks may

comprise the various parts of a quantum algorithm, including ion loading, single-

qubit rotations, two-qubit gates, memory storage, and state readout.
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1.2 Ion Shuttling

A qubit is typically encoded in the electronic or spin states of a trapped-ion, which

are generally decoupled from its motional state. This is not true, however, during

most two-qubit entangling gates, where the motional states of the ions acts as

a bus to transmit quantum information. Otherwise, during non-gate times, ion

qubits can be physically transported from one register to the next without losing

its quantum information [62].

Although the qubit is protected during shuttling operations, there are still con-

straints to consider when performing shuttling operations. First, we require that

the shuttling operation adds minimal excitation to the ion qubit’s motional state

because the fidelity of any subsequent gate decreases with ion qubit temperature.

One could potentially remove the ion qubit’s excitation by shuttling it along with

an ancilla ion1 to sympathetically cool the qubit after shuttling. Sympathetic cool-

ing requires the ancilla ion to be of a different species, so the laser frequencies

will not interact with the qubit ion, but the motion between the two ions is shared

and cooled together. The downside to this strategy is that sympathetic cooling is

a slow process (on the order of ms), which greatly sacrifices time that could be

spent performing quantum gates.

This leads to the second constraint on shuttling, which asserts that the time

required to perform shuttling operations should be negligible compared to gate

times, for the reasons discussed previously. These heat and time constraints end

up intertwined in most trapped-ion systems. Ions naturally become excited over

time due to the electric field noise from electronics and other anomalous surface

effects [65, 10]. Therefore with long shuttling operation times, the ion qubit will

experience more motional excitation from the ion trap, violating the first con-

straint.

Conversely, longer shuttling times typically means the electric potential varies

slower in time. In this case, the change in the ion qubit’s Hamiltonian falls under

1an ion that does not encode any quantum information
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the adiabatic regime, T dλ
dt � λ [71], in other words λ varies only slightly during a

period T of motion. An ion qubit is highly likely to remain in the same eigenstate

after an adiabatic change, ∆H, in the Hamiltonian, so if the qubit starts with no

motional excitation before shuttling, it is likely to end with no motional excitation.

However, shuttling time in the adiabatic regime is many multiples of the ion’s

motional period (which is usually around 1 µs in typical ion traps) and places the

total operation time comparable to ion gate times. Faster-than-adiabatic shuttling

that do not excite the ions is possible, and must be accomplished delicately and

with precise control over the changes in the ion qubit’s Hamiltonian2.

These trade-offs between fast and cold shuttling are quite necessary to con-

sider when engineering shuttling protocols with realistic system parameters. The

most optimal shuttling operations do not excite the ion qubits and can be per-

formed as fast as possible, given the specifications of the electronic control sys-

tem.

1.2.1 Primitive Operations

There are only a few basic shuttling operations that are crucial for achieving mod-

ular trapped-ion quantum computation. These are the ability to transport ions

from one chain to another, join and remove ions from a chain, and reorder the

ions within a chain.

1.2.1.1 Transport

The most common method for transporting an ion is to move the harmonic po-

tential along the axial direction with individually-controlled DC electrodes [27].

Typically one would also like to keep the curvature of the harmonic potential in

the axial direction constant throughout the transport operation. Curvature is de-

fined as the second derivative of the potential along a specified axis; ions placed

in a potential with axial curvature α, will experience a frequency of oscillation in

2methods to achieve faster-than-adiabatic shuttling will be discussed in chapter 4
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the axial direction, ω0, given by,

φ(y) = α(y− q0)
2 =

1
2

m
q

ω2
0(y− q0)

2 (1.1)

ω0 =

√
2qα

m
(1.2)

where φ is the electric potential in the axial direction (ŷ will be the axial direction

in this thesis), q0 is the location of the potential minimum, and q, m are the charge

and mass of the ion, respectively.

To vary the harmonic potential, one can simply change the location of the

potential minimum, q0, as a function of time. The trajectory, q0(t), is called a

transport "profile"—an infinite number of profiles are possible, both only a subset

are worth considering. Certain profiles lead to less ion excitation during adiabatic

transport times, while others can lead to no excitation at very specific transport

times in the faster-than-adiabatic regime.

Although we can prescribe any profile we desire, there is no guarantee that we

can perfectly achieve this potential on realistic ion trap. We can only apply finite

voltages to a finite set of segmented electrodes, which vary in shape and layout

from one ion trap to the next. Therefore it is important to consider profiles that

not only lead to fast and cold ion transport, but are also robust against deviations

from the desired trajectory.

1.2.1.2 Splitting and Merging

Splitting an ion chain canonically requires a fourth order potential [31],

φ(y) = αy2 + βy4 (1.3)

where the coefficients α and β are implicit functions of time. One can start with

a purely harmonic potential (β = 0), start decreasing α while increasing β until a

"critical point" is reached, in which α = 0 and the ions are confined by the quartic

coefficient only. Afterwards α may become to be negative to effectively act as a
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Figure 1-2: Start of the
split. α ≥ 0, β = 0

Figure 1-3: The critical
point. α = 0, β ≥ 0

Figure 1-4: End of the split.
α ≤ 0, β ≥ 0

wedge to force the ion chain apart. This process is shown in Figs 1-2,1-3,1-4.

A splitting "profile" can thus be achieved by cleverly engineering the coeffi-

cient trajectories, α(t) and β(t). Similar considerations of imperfect voltage con-

trols discussed for ion transport also exist for ion splitting. Most notably, a large

quartic coefficient may prove to be very difficult to achieve on certain trap archi-

tectures [50]. Furthermore, the axial confinement that ion crystals experience in a

quartic well is significantly reduced compared to a quadratic well [26], and thus

a large β value is needed at the critical point to keep the axial confinement high3.

Due to these reasons, it is considerably more difficult to keep the ion con-

finement constant during a splitting operation than it is during transport. These

added challenges are reflected in the state-of-the-art experimental demonstrations

(Table 1.1), where cold, diabatic transport has been achieved, but splitting below

1 quanta of energy and faster than 50 µs remains an open challenge.

Merging of ion crystals can be achieved by reversing the splitting profile.

1.2.1.3 Reordering

While I will not investigate the reordering of ion crystals in this thesis, this is still a

beneficial operation to increase the connectivity in a future trapped-ion quantum

processor.

Multiple methods exist for reordering an ion chain, all of which have been

demonstrated experimentally. The first method is to rotate the ion crystal in a

plane, temporarily bringing the crystal out of the axial direction [73, 77, 55, 58].

3it is advantageous to keep the axial confinement high, as will be explained in chapter 4.
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A second method is to transport ions through a junction and changing the order

in which one transports the ions back [80, 6]. Finally, in particular situations

where higher levels of motional excitation are acceptable, one can rotate an chain

of mixed-species ions by increasing the confinement along the crystal axis, and

thereby squeezing the various ion species different amounts, creating a new shape

that one can relax back into a linear crystal [8].

The above methods are all considered shuttling operations, however one can

also reorder the qubits encoded in an ion crystal without physically shuttling the

ions by performing a SWAP operation [69].

1.2.2 State-of-the-Art Experiments

Leading trapped-ion groups have experimentally demonstrated ion shuttling op-

erations to various degrees of success. Ion transport, arguably the most straight-

forward of the basic primitive operations, has been well executed at fast speeds

with low motional excitation. The more complex operations of splitting, trans-

port through junction, and ion crystal rotation, has been successfully performed

at slower speeds. Shuttling operations have not only been demonstrated in isola-

tion, but they have also been incorporated within quantum algorithms.

1.2.2.1 Shuttling Demonstrations

A full overview of experimental shuttling demonstrations can be found in Ta-

ble 1.1. Most of the basic primitive operations have been implemented with low-

mass ions. This is partly because lighter ions, such as 9Be+ and 40Ca+, are able

to be trapped with smaller voltages than heavier ions due to their high charge-to-

mass ratio [7, 32]. Linear transport has been demonstrated on diabatic time scales

with very low heat gain. Splitting, however, has only been achieved on adiabatic

time scales, with single digit quanta gain. Ion chain reordering has found the

most success through crystal rotation, with low heat gain achieved on fast adia-

batic timescales [67]. Transport through junctions has been accomplished, but the
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Experiment Operation(s) Species Group Time (µs) Heat (quanta)

Shuttling
Primitives

Transport
40Ca Mainz [76] 3.6 0.1
9Be NIST [7] 8 0.1

Splitting
9Be–9Be NIST [7] 55 2

40Ca–40Ca Mainz [63] 80 4.16

Ion Chain
Reordering

Rotation
40Ca–40Ca Mainz [29] 42 0.05
40Ca–40Ca Innsbruck [73] 25 (0.6, 3.9)

X-Junction
9Be NIST [6] 350 0.1

9Be–9Be NIST [5] 1000 1.7

CNOT Gate
Teleportation

Transport,
Split/Join

9Be, 24Mg NIST [78] 2980 —
171Yb, 133Ba Honeywell [58] 3000-5000 <2

Table 1.1: State of the art experimental demonstrations of ion shuttling operations.

speed of the transport was limited by the heating of the ion from the update noise

of the digital-to-analog converter [5, 6].

Some open shuttling problems include, but are not limited to, diabatic splitting

of ion chains with less than 1 quanta gained, and the splitting/joining of mixed-

species ions. Lastly, diabatic transport of mixed-species ion chains has yet to be

experimentally demonstrated, although there have been theoretical investigations

into this problem [51].

1.2.2.2 Quantum Algorithms

Recently, ion trapping experimental groups have been able demonstrate quan-

tum algorithms using ion qubits trapped in a segmented electrode array. NIST

and Honeywell Quantum Solutions were each able to combine single- and two-

qubit gates, along with fast transport and splitting, to execute a quantum cir-

cuit that teleports a CNOT gate with high fidelity [78, 58]. Schmidt-Kaler’s

group at the University of Mainz used shuttling operations to create an long-lived

Greenberger-Horne-Zeilinger state [30]. Average shuttling operations in these al-

gorithms took hundreds of microseconds and required sympathetic cooling to
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the ground state, adding a time overhead of a couple miliseconds. While these

results show the feasibility of the ion array trap paradigm in a future proces-

sor, more work needs to be done to achieve cold, fast, and also robust shuttling

operations.

1.3 This Work

The main focus of my thesis is aimed at achieving optimal and robust ion trans-

port and ion chain splitting on surface electrode traps4. Many of the shuttling

operations detailed in section 1.2.2 used a multi-layered Paul trap, and it still re-

mains an open challenge to split an ion crystal with less than 1 quanta of heat gain

with operation times that approach the diabatic regime (∼10 µs). Ion transport

and splitting comprise the majority of the shuttling operations in the recent quan-

tum algorithm demonstrations in the NISQ era. Therefore, gaining the ability to

perform optimal transport and splitting operations on modern surface electrode

Paul traps paves the way for current trapped-ion quantum computers to achieve

more quantum gate operations within a single quantum algorithm, thereby in-

creasing the computational power of these NISQ devices. To this end I present a

comprehensive simulation pipeline that takes into account previously overlooked

system characterizations (e.g. sampling rate of our digital-to-analog converters),

a method for optimizing voltage commands, and an analysis of the feasibility of

achieving shuttling profiles on surface electrode traps using leading theories for

optimal shuttling (e.g. Shortcuts-to-Adiabaticity).

Chapter 2 will introduce the theory of ion trapping and ion motion in rf Paul

traps. Chapter 3 will discuss my numerical simulations of the ion shuttling pro-

cess in detail. I will also describe the heuristics that I have found useful in solving

for voltage waveforms. Chapter 4 will detail the theory behind fast and cold ion

transport and splitting. Shortcuts-to-adiabaticity (STA) techniques and Fourier

analysis will be discussed in detail. I will also describe my new method for gen-

4Paul traps, as well as surface electrode traps, will be discussed in the next chapter.
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erating splitting profiles that extends the STA method to allow for a wider family

of trajectories. Chapter 5 will detail my method to predistort our system’s elec-

trode filtering in order to gain stronger control over our electrode waveforms.

Finally, in Chapter 6 I will discuss the ion motion data taken on ion traps to

demonstrate the feasibility of our approach. It is my hope that this thesis should

serve as a starting reference for new methods of experimentally achieving robust

diabatic transport and splitting on surface electrode traps.

1.3.1 Contributions and Publications

My main contributions centers around developing full numerical simulations of

the entire shuttling process. These simulation tools have allowed me to begin

implementing shuttling operations based on shortcut-to-adiabaticity principles.

Through a collaboration with Prof. Gonzalo Muga’s theory group, we have begun

investigations into STA solutions that are robust against system imperfections.

Using my numerical tools, I have re-framed the shuttling problem into a spectral

content analysis and developed a new approach to achieve cold, diabatic splitting.

I have developed heuristics for voltage solving on our new trap architecture.

Experimentally, I have developed ion transport waveforms using STA protocols

that use a novel method for optimizing control electrode voltages.

It is incredibly important to note that the design of the MaxBeta trap 2-4 was

optimized and laid out by Mr. Jules Stuart. The high-voltage amplifier was de-

signed and built by Mr. Jules Stuart, and the ion trapping and data collection on

the MaxBeta trap, presented in chapter 6 was also done by Mr. Jules Stuart.

Some of the work in this thesis has been published in the following article(s):

1. Qi, L., Chiaverini, J., Espinós, H., Palmero, M., & Gonzalo Muga, J. (2021).

Fast and robust particle shuttling for quantum science and technology. arXiv

e-prints, arXiv-2104. [60]
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Chapter 2

Trapping Ions

Trapped-ion systems allow for some excellent studies of physics [4]. Ion traps can

confine anywhere from single ions to large ion clouds for periods of seconds to

multiple days, depending on the trap architecture. Ions confined in a trap may

naturally reside far from nearby electrodes (on the order of hundreds of microns),

allowing them to be well isolated from unwanted electrical forces. The dynamics

of ions in various confining traps has been well-known and trap architectures have

been developed and applied in various technologies, such as mass spectrometers,

since the mid 1900s.

Samuel Earnshaw proved in 1842 that charged particles are unable to be held

in stationary equilibrium in 3D using static electric forces alone [18]. This re-

sult can be most readily seen using Gauss’s law in free space, which states the

divergence of the electric field must vanish when there are no electric sources,

∇ · ~E = 0 = ∇ · (−∇Φst) (2.1)

where Φst is an electric potential resulting from static electric fields alone.

One can hope that the static electric potential is confining in all three spatial

directions, and model each direction as a harmonic potential with frequency ωi,
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Φst(~r) =
m
2q

(
ω2

xx2 + ω2
yy2 + ω2

z z2
)

(2.2)

Unfortunately, we quickly see from the Laplacian operator in (2.1) that Φst can

only be confining in at most two directions and must be anti-confining in at least

one direction,

∇2Φst =
m
q

(
ω2

x + ω2
y + ω2

z

)
= 0 (2.3)

Confinement in the third direction is still possible, however, and requires either

static magnetic fields or oscillating electric fields, which has been well developed

as Penning traps and Paul traps, respectively. This thesis will only focus on Paul

traps, and introduce a more specific 2D version used in many quantum computing

experiments, known as a surface electrode trap.

2.1 RF Paul Traps

Paul traps, named after Nobel laureate Wolfgang Paul [57], confine ions us-

ing radio-frequency electric fields. The earliest rf Paul traps were based on a

quadrupole electrode configuration (Fig 2-1), with an oscillating rf voltage ap-

plied on two of the electrodes (rf electrodes) and the other two held at rf-ground

(control electrodes). Over the course of a single oscillation period, the rf elec-

trodes will switch between a higher and lower potential compared to the control

electrodes, and thus the ion will experience confinement in a different direction.

Intuitively, the ion can be analogously related to a marble on a saddle. A

marble sitting on a saddle landscape that is concave in one direction and convex

in another will roll down in the anti-confining direction under the force of gravity.

If the saddle landscape rotates at a suitable frequency to prevent the marble from

falling too far in the anti-confining direction, the marble can actually be held in

equilibrium at the saddle point.
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Figure 2-1: A diagram of a quadrupole trap adapted from [4]. (a) An oscillating
voltage is applied to the rf electrodes while the other two are held at rf ground.
The ion is located near the center of the trap, where the resulting electric field is
zero (rf null). The field lines show the ion is confined in the radial (x̂, ẑ) directions.
(b) The four electrodes can be extended as rods in the axial (ŷ) direction. The
rf ground can be segmented and a DC voltage can be applied, providing axial
confinement to the two ions.

Similar physics allows ions to be confined in a quadrupole trap, however there

are stability criteria on the voltage amplitude and frequency of the rf electrodes.

Ions with smaller mass-to-charge ratios will experience a greater acceleration at

the same voltage and thus require a higher oscillation frequency on the rf elec-

trodes to remain stable. A full treatment of the dynamics of this Floquet (peri-

odically driven) system has been well developed using Mathieu equations [44].

Solving these equations allows one to understand the complete ion motion in a

quadrupole trap and is useful for determining the necessary parameters for stable

ion trapping.

While the general Mathieu treatment leads to complete solutions of ion dy-

namics in Paul traps, we can simplify the problem using adiabatic approxima-

tions that are valid in a typical well-controlled quantum computing experiment.

The adiabatic approximation holds when ions are stably confined near the center

of the trap where there is no field, known as the "rf null" 2-1. The rf electrodes
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produce a field that oscillates at an appropriate frequency to ensure the ion does

not move much during a single period. At any single point in time, the rf field

strength varies over the length scale of the entire trap, but is roughly constant over

the short distance scales of the ion’s motion. We can then treat the oscillating rf

electrodes as inducing a ponderomotive force. The resulting oscillating potential

can be treated as a static "pseudopotential".

We start the derivation of the pseudopotential with the well-known electric

potential of the quadrupole trap shown in Fig 2-1 [28].

Φrf(~r, t) =
κ

2

(
1 +

z2 − x2

R2

)
Vrf cos Ωrft (2.4)

where Vrf and Ωrf are the voltage amplitude and frequency on the rf electrodes, R

is the distance from the quadrupole center to the electrodes, and κ is a geometric

factor that depends on the shape and positioning of the electrodes. Note that I am

only considering the radial directions of the trap, x̂ and ẑ. The spatial and time

dependence of the potential can be separated into Φ̃rf(~r) cos Ωrft.

Through the Lorentz force law we obtain that the ion experiences the following

acceleration,

~̈r = − q
m
∇Φ̃rf(~r) cos Ωrft =

q
m
~Erf(~r) cos Ωrft (2.5)

where ~Erf(~r) is the rf electric field.

In a stable trapping configuration, the motion of the ion stays near the center

of the trap, |~r|, while the spatial dependence of the rf electric field varies on the

order of the trap size, R. Since |~r| � R we can divide the motion into small and

large length scales, and fast and slow time scales,

~r =~rs +~rµ (2.6)

~̈r = ~̈rs +~̈rµ =
q
m
~Erf(~rs +~rµ) cos Ωrft (2.7)

where ~rs is the slow, large amplitude (secular) motion and ~rµ is the fast, small
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amplitude (mirco)motion1. By definition |~rµ| � |~rs|, and over the course of a

single rf period the secular motion varies slowly, |~̈rs| � |~̈rµ|.

We can thus Taylor expand the electric field around~rs,

~Erf(~rs +~rµ) ≈ ~Erf(~rs) +~rµ∇~Erf(~rs) (2.8)

which we can plug back into eq (2.7) to obtain the following ion acceleration,

~̈rs +~̈rµ =
q
m

(
~Erf(~rs) +~rµ∇~Erf(~rs)

)
cos Ωrft (2.9)

In our adiabatic approximation we can safely say that ~̈rµ dominates the L.H.S.

and ~Erf(~rs) dominates the R.H.S. allowing us to split eq (2.17) into the following

two contributions,

~̈rµ =
q
m
~Erf(~rs) cos Ωrft (2.10)

~̈rs =
q
m
~rµ∇~Erf(~rs) cos Ωrft (2.11)

~Erf(~rs) essentially remains constant over one rf period, and we can time inte-

grate eq (2.10) to obtain,

~rµ = − q
mΩ2

rf

~Erf(~rs) cos Ωrft (2.12)

which we plug back into eq (2.11) to obtain the following secular acceleration,

~̈rs = −
q2

m2Ω2
rf

~Erf(~rs)∇~Erf(~rs) cos2 Ωrft

= − q2

2m2Ω2
rf
∇~E2

rf(~rs) cos2 Ωrft (2.13)

〈~̈rs〉 = −
q2

4m2Ω2
rf
∇~E2

rf(~rs) (2.14)

1secular motion and micromotion are the accepted terms and will be discussed in more detail
later in this chapter
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where we time-averaged over the rf period in the last step to get rid of the time

dependence.

The time-averaged secular acceleration in (2.14) results from the standard pon-

deromotive force of oscillating electromagnetic fields. The electric potential gra-

dient to create this ponderomotive force is what we call our pseuodopotential,

Φps(~r) =
q

4mΩ2
rf

~E2
rf(~rs) (2.15)

Finally we can use the rf potential of a four-rod quadrupole trap we defined at

the beginning of this section (2.4) to obtain the pseudopotential of the quadrupole

in terms of rf voltage amplitude and rf frequency,

Φps(~r) =
qκ2V2

rf
4mΩ2

rfR
4

(
x2 + z2

)
(2.16)

Remarkably, we overcome Earnshaw’s theorem and created a potential that

is confining both the radial directions, x̂ and ẑ. Modeling the pseudopotential

in terms of a standard harmonic oscillator in the radial directions results in the

following harmonic frequency,

ωrf =
κqVrf√

2mR2Ωrf
(2.17)

We can now set the full electric potential as the sum of the pseuodopotential

and static potentials, and also introduce the Hessian matrix of the energy poten-

tial, defined as a matrix of second derivatives,

Φtot(~r) = Φst(~r) + Φps(~r), H ≡ q


∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

Φ(~r) (2.18)

Recall that the second derivatives are often referred to as the "curvature" of the

potential. For any arbitrary electric potential, one can discretize the values in
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3D space and numerically calculate the Hessian matrix. The eigenvalues, λi, of

the Hessian matrix can be used to find the principle frequencies, ωi =
√

λi/m,

while the corresponding eigenvectors point in the direction of the principal axes

of motion.

In our case, the full Hessian matrix can be expressed as follows,

Htot = m


ω2

rf + ω2
x 0 0

0 ω2
y 0

0 0 ω2
rf + ω2

z

 (2.19)

where the oscillating rf potential provides confinement in the radial (x̂ and

ẑ) directions with a curvature of mω2
rf, and the static potential provides

positive confinement in the axial (ŷ) direction and may be anti-confining in

either of the radial directions.

As long as the pseudopotential curvature is larger than all the anti-confining

force from the static potential, then the ion is confined in all three directions. For

common trapped-ion quantum computing experiments, the axial frequency is on

the order of 100 kHz to 1 MHz and the radial frequencies are typically 5-7 times

larger.

The complete Hamiltonian of the ion in a rf Paul trap can now be described as

Ĥ =
p̂2

2m
+

1
2

m
[(

ω2
rf + ω2

x

)
x̂2 + ω2

yŷ2 +
(

ω2
rf + ω2

z

)
ẑ2
]

(2.20)

2.1.1 Surface Electrode Trap

One can imagine taking the quadrupole ion trap we analyzed in the previous

section and unfolding the electrodes onto a single plane (Fig 2-2). Ions are still

trapped in the radial directions by the rf potential and are localized near the rf

null, which is now approximately tens-to-hundreds of microns above the trap

surface.
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Figure 2-2: A schematic of the quadrupole trap being unfolded into a surface trap,
adapted from [4]. The rf null is now above the plane of the trap. The rf ground
electrodes can be segmented along the axial direction (into the page).

Surface Paul traps behave with the same physics as quadrupole Paul traps,

but due to their broken symmetry, there is no longer a clean analytical derivation

for the radio-frequency potential analogous to (2.4). For the plethora of possi-

ble surface electrode shapes and configurations, it is generally quite difficult to

analytically solve for the resulting electric potential. Therefore it is convenient

and accurate to use well-developed numerical simulations and boundary element

methods as will be explained more in section 3.1.

Despite lacking an analytical description, there are many advantages to using

a surface trap architecture with segmented electrodes. The core advantage is

the ability to fabricate surface traps with state-of-the-art lithographic techniques.

This has drastically improved scalability of ion traps because manufacturing with

industrial lithographic processes and CMOS foundries is highly repeatable and

has been well developed for the world’s electronics. Another advantage of surface

traps is that they have a smaller form factor, allowing for complex and customized

electrode geometries. It is much easier for an ion trapper to fabricate an electrode

array of trapping sites that could be used for parallel quantum operations using

a surface trap architecture. Finally, there is ongoing work to integrate optical and

electronic devices directly on-chip, with the hopes of matching the technology

requirements to control more ion qubits [70, 68].

While surface electrode traps opens the door for new engineering innovations,
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there are some technical challenges worth mentioning here. The first is that the

trap depth (how much energy an ion can gain before breaking out of the trap) of

surface architectures are generally lower than 3D ion traps. This means that ions

are more susceptible to background gas collisions and external noise sources2.

Furthermore, compared to 3D quadrupole traps, the validity of the pseudopoten-

tial approximation on surface traps breaks down closer to the rf null and there

are greater anharmonicities of trapping potentials. The fundamental reason for

lower trap depths and greater anharmonicities is due to the fact that electrodes

in a surface trap are constrained to lie in a single plane. These challenges are not

deal-breakers, however, and can often be accounted for with careful simulations

of trapped-ion experiments on surface traps.

Figure 2-3: An diagram of the Standard Lincoln Trap. Each electrode has a name
and corresponding number. The pitch of the DC electrodes 2–8, and 13–19 is
120 µm. Electrodes 10 and 11 serve to finely adjust the orientation of the ion’s
principle directions. ŷ is the axial direction.

The DC electrodes of surface traps can be "inner segmented", meaning they lie

between the rf electrodes, or "outer segmented", they lie outside the rf electrodes.

2although placing the trap in a cryogenic environment and high vacuum helps reduce ion
heating
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The Standard Lincoln Trap, shown in Fig 2-3, is an outer segmented trap, while

the MaxBeta Trap, Fig 2-4, is an inner segmented trap. Ions are located closer to

the DC electrodes on inner segmented traps, which means they are more sensitive

to voltages applied on the electrodes. While this allows for large axial trapping

potentials, the ions may be more sensitive to electric field noise. The MaxBeta

Trap was optimally designed to be able to produce a large quartic confinement,

which I will show to be useful for splitting ion chains [50].

Figure 2-4: A diagram of the MaxBeta trap. Same coordinate system as the SLT 2-
3. Position y = 0 µm is right between electrodes S10 and N10. 45 µm pitch on
the smaller electrodes, and 74 µm on the larger electrodes. The rf electrodes lie
on the outside of the DC electrodes. Electrodes S22, S23, S24, S25 serve to tilt the
ion’s principle directions.

2.2 Motional Dynamics

We see from (2.6) in the previous section that the motion of an ion in a rf Paul

trap can be split into two components: a small amplitude, fast oscillation at the

rf frequency (known as micromotion), and a larger amplitude, slow oscillation

resulting from time-averaging the rf potential (known as secular motion).

2.2.1 Micromotion

Let us briefly discuss micromotion, which can often be neglected in most trapped-

ion quantum computing experiments, because it is in best interest of experimen-
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talists to calibrate the trap to minimize the ion’s micromotion. This process of

micromotion compensation requires a precise cancellation of any stray fields that

can force the ions away from the rf null [3]. The amplitude of the ion’s micro-

motion grows with the distance away from the rf null. As the micromotion am-

plitude grows, the pseudopotential approximation breaks down, since the ion no

longer experiences a spatially-constant force during a rf period. If the amplitude

continues to grow, the ion will no longer satisfy the stability criteria predicted

from the Mathieu equation, and can escape the trap. Thus, it is advantageous to

compensate for micromotion at the start of any trapped-ion operation.

2.2.2 Secular Motion

When micromotion is well compensated, the resulting secular motion essentially

behaves as a standard quantum harmonic oscillator, with angular frequencies

given by the curvature in (2.19). The following form for a harmonic oscillator

Hamiltonian and energy spectrum is very well known,

Ĥ = ∑
i

(
p̂2

i
2m

+
1
2

mω2
i q̂2

i

)
, En = h̄ω

(
n +

1
2

)
(2.21)

where n an integer representing number of excited states above the ground state.

Since the energy spectrum is an equally-spaced ladder with separation h̄ω, we

can conveniently work with the quantum states corresponding to each rung, |n〉.

These set of states form a complete basis for the harmonic oscillator Hamiltonian

and are known as Fock states.

We can introduce creation and annihilation operators that step from one Fock

state to the next,

â =

√
mω

2h̄

(
q̂ +

i
mω

p̂
)

, â† =

√
mω

2h̄

(
q̂− i

mω
p̂
)

(2.22)
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which act on the Fock basis in the following way,

â |n〉 =
√

n |n− 1〉 , â† |n〉 =
√

n + 1 |n + 1〉 , â |0〉 = 0 (2.23)

There are a few states beyond the Fock state that are worth mentioning. The

first is a coherent state. These states arise when the ground-state harmonic oscilla-

tor wavefunction is displaced from the trap minimum, described by the following

displacement operator,

D̂(α) = exp
(

αâ† − α∗ â
)

, |α〉 = D̂(α) |n = 0〉 (2.24)

where α is a complex number representing the location of the coherent state |α〉

in (q, p)-phase space.

A coherent state is said to be most similar to a classical state because the

position and momentum expectation values evolve as a classical particle would

under a harmonic oscillator with frequency ω. We can thus describe the quantum

dynamics of coherent states using the simpler language of classical mechanics. A

coherent state is a delicate balance of Fock states, however, and the probability of

measuring a coherent state in any single Fock state, Pn = | 〈n|α〉 |2, is given by a

Poisson distribution with mean value n̄ = |α|2,

|α〉 = ∑
n

αn
√

n!
e−|α|

2/2 |n〉 , Pn =
|α|2n

n!
e−|α|

2
(2.25)

The second state worth mentioning is a thermal state, which is an incoherent

distribution of Fock states. An ion tends to fall into a thermal state after many

random excitations from various noise sources; in other words the ion "heats up".

We can say the ion is in equilibrium with a thermal reservoir at temperature T

and will follow a Boltzmann distribution over the Fock states,

Pn =
e−βEn

Z
=

e−βh̄ω(n+ 1
2)

Z
(2.26)
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where β = 1/kBT, kB is the Boltzmann constant, and Z is the partition function

over all Fock states:

Z =
∞

∑
n=0

e−βh̄ω(n+ 1
2) =

e−βh̄ω/2

1− e−βh̄ω
(2.27)

which simplifies (2.26) to,

Pn = e−βh̄ωn
(

1− e−βh̄ω
)
=

n̄n

(n̄ + 1)n+1 (2.28)

where n̄ is the average number state given by,

n̄ =
∞

∑
n=0

nPn =
1

eβh̄ω − 1
(2.29)

Finally, squeezed states are also interesting quantum states that have a vari-

ance of one variable reduced below the Heisenberg uncertainty limit, while the

variance of the conjugate variable is expanded. I will not be using squeezed states

in this thesis but they are being investigated in the context of continuous variable

quantum computing with trapped-ions [45].

2.2.3 Normal Modes

So far we have only considered the dynamics of a single ion in an externally

applied potential. To analyze a chain of N-ions in a Paul trap, we must also take

into account their Coulomb interactions with all the other ions in the chain. For

the j-th ion in the chain, we can write the Hamiltonian as follows,

Ĥj =
p2

j

2mj
+ Φtot(~rj) +

1
4πε0

∑
i 6=j

qiqj

|~ri −~rj|
(2.30)

where Φtot is the sum of static and pseudopotentials in the Paul trap (2.18). This

gives us a new effective potential for each ion that includes all N − 1 Coulomb

interactions,

Φ(j)
eff = Φtot(~rj) +

1
4πε0

∑
i 6=j

qiqj

|~ri −~rj|
(2.31)
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Analytically solving for all N Hamiltonians is quite difficult but we can work

in the limit of small oscillations around the chain equilibrium. In this limit, all

N ions are close to their effective potential minimum. The gradient of effective

potential on each ion vanishes and the effective potential is approximately har-

monic, allowing us to define our Hessian curvature matrix as we did in (2.19),

except this time H is a 3N × 3N matrix. If N is large, we might be inclined to

numerically determine each effective potential, Φ(j)
eff , populate the Hessian matrix,

and numerically find the eigenvalues and eigenvectors.

For N ions, there will be N modes in each principal direction for a total of

Nmode = 3N modes. Note that we are free to analyze each principal direction

individually, with the axial mode being the simplest choice because ion crystals

are usually linear in the axial direction. For two identical ions, the two axial modes

are typically called the "COM" and "stretch" modes. In an axial harmonic potential

with frequency ω0, the two mode frequencies are ωCOM = ω0 and ωstr =
√

3ω0.

Analytical calculation for longer ion chains become more intense, but has been

done for a three-ion mixed-species chain [11]. In general, numerical simulations

are significantly simpler.

2.3 Electrical Controls

The electrical control system provides proper voltages to our electrodes and con-

sists of a combination of custom-built electronics and commercially available

hardware.

Voltages applied to the DC electrodes provide the electrostatic confinement in

the axial direction. The Advanced Real-Time Infrastructure for Quantum physics

(ARTIQ) hardware system developed by M-Labs provide the gate control signals

to our digital-to-analog converters (DACs). Currently, our system runs M-Labs’s

Sinara 5632 DAC, affectionately named "Fastino", which has 32 16-bit channels

with an update rate of 2Mbps. The Fastino outputs a voltage range of ±10 V,

with a settling time of 1 µs, and a slew rate of 17 V/µs.
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The next stage after the Fastino is a custom-built high-voltage amplifier with

a DC gain of 4 and a cutoff frequency around 1 MHz with a roll-off of around

27 dB per decade3. The high-voltage amplifier is designed around the LTC6090-5

op-amp which has a 21 V/µs slew rate.

After the x4 amplification, the voltage signals are sent through two low-pass

filter stages. We low-pass filter our control electronics to avoid high frequency

electrical noise that can induce motional excitation to the ion. A recent stan-

dard for an acceptable noise level at the ion’s secular frequency is less than 1

nV/
√

Hz [68]. The first stage is a third-order Butterworth PI filter with a cutoff

frequency of 100 kHz. The second stage occurs after routing to an Octagon board

and is a simple RC filter with a cutoff of 89 kHz.

Figure 2-5: A schematic of the rf amplification circuitry, created by Mr. Jules
Stuart.

The voltage control system to the rf electrodes is shown in Fig 2-5. The rf signal

source is provided by a digital synthesizer, which then gets amplified and sent to

the rf resonator for large amplification before getting sent to the rf electrodes on

the trap. We typically drive our rf electrodes at 50 MHz and 70 V to trap 40Ca

ions.

3designed and sent for manufacturing by Mr. Jules Stuart
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Chapter 3

Numerical Simulation Pipeline

We model each step of an ion shuttling experiment using numerical simulation

tools written in Python and SPICE [48].

Figure 3-1: An diagram of the ion motion experiment process. The gold boxes
denote the input and output of our system. We care about finding the best voltage
inputs to shuttle ions optimally.

The boxes in Fig 3-1 denote the physical steps of shuttling ions while the

arrows denote our software tools to model each stage. Our electrode controls

start with our input digital-to-analog converters (DACs), which gets low pass fil-

tered and amplified by our electrode circuitry, resulting in an electrode voltage

response. We simulate this response using an integration software package LT-

Spice. The electrode voltages on our surface trap then generates an electrostatic

potential the depends on the size and shape of each electrode. We use our cus-

tom written potential solver called Ion Trap Voltage Generation (ITVG) to solve

for 3D potential from electrode voltages and vice versa. Finally, I have written
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an differential equation solver using the Python packages NumPy and SciPy that

can solve for the ion’s dynamics in a time-dependent electric potential [24, 74].

3.1 Modelling the Surface Electrode Trap

A crucial component to simulating the time-dependent 3D potentials on an sur-

face electrode trap is creating an accurate model of the trap electrodes. Typically,

one is interested in the unit potentials of each electrode—in other words, what

is resulting 3D electric potential after applying 1V to a single electrode while

grounding all the other electrodes? Because our ion traps have length scales of

hundreds of microns to millimeters and there are a finite number of electrodes,

it is convenient to discretize the electrostatic unit potential φ̃i(~r) into a 3D grid,

which we save as a "grid file".

There are multiple methods to accurately simulate these grid files, including

proprietary multiphysics software such as COMSOL, boundary element methods,

and the Biot-Savart law for electrostatics [71]. These methods do indeed lead to

comparable unit potentials if done carefully. Mr. Jules Stuart used finite element

methods in COMSOL to simulate the grid files for both the Standard Lincoln Trap

and the MaxBeta trap, which have been depicted in 2-3, 2-4. I should note that

the process of solving for unit potentials, φ̃i(~r), on the DC electrodes must also

be extended to the rf electrodes, φ̃rf(~r), because the geometry of surface traps no

longer allow a clean analytical solution for the rf potential (2.4).

The rf potential now is the product of the rf voltage and the rf unit potential,

Φrf(~r, t) = Vrf φ̃rf(~r) (3.1)

Apply the pseudopotential approximation for a general rf potential (2.15) leads

to the following rf pseudopotential,

Φps(~r) =
q

4mΩ2
rf
(Vrf ∇φ̃rf(~r))

2 (3.2)
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Once all the trap electrode grid files have been created, solving for the total

applied potential is simply a superposition of the static electrode grid files plus

the pseudopotential from the rf electrode grid file (3.2),

Φtot(~r, t) =
N

∑
i

Vi(t) φ̃i(~r) + Φps(~r) (3.3)

where Vi(t) is the voltage on the i-th electrode, and N total DC electrodes.

Note that the time dependence of our total applied potential (3.3) comes not

from the rf electrodes, but from the changing voltages applied to the DC elec-

trodes. The set of electrode voltages Vi(t) are called "waveforms" and they must

be delicately choreographed to perform optimal ion shuttling operations.

3.2 Solving for Voltage Waveforms

In ion shuttling experiments, we typically start with a carefully designed elec-

trostatic potential Φtot(~r, t)1 and work backwards to solve for suitable electrode

waveforms Vi(t) to achieve such a potential. The process of solving for N wave-

forms from a single target potential is an ill-posed inverse problem as there is no

guarantee of a unique optimal solution. To narrow down this inverse problem one

can add constraints and assumptions, in a process called regularization, to reflect

what we observe experimentally, such as electrode voltage bounds and waveform

smoothness.

We can formulate the constraints and degrees of freedom into the language of

matrices. It is convenient to define a voltage vector and unit potential vector as

such,

1Techniques for designing optimal shuttling protocols will be discussed in chapter 4
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VT ≡
[
V1(t) V2(t) . . . VN(t)

]
(3.4)

φT ≡
[
φ̃1(~r) φ̃2(~r) . . . φ̃N(~r)

]
(3.5)

It follows that the electrostatic part of the total applied potential is the dot

product of our voltage and unit potential vectors

Φst(~r, t) = φT · V (3.6)

φ is well known from our trap electrode simulations but it is difficult to solve

for voltages V as (3.6) is currently underdetermined—there is one target potential

Φtot(~r, t) but N degrees of freedom in V . To better constrain our inverse problem,

we may Taylor expand our desired electric potential around some defined expan-

sion point, ~r0. While we can expand the applied potential at any point near the

trap, it is convenient to do so at the rf null.

Once we have chosen a suitable expansion point, we may begin writing down

the Taylor coefficients of our target potential Φtot. Let us declare, without loss of

generality, that our expansion point is also the location of the confined ion. In this

case, the ion should experience zero electric force and the three first derivatives

of our potential, Φtot, should be zero,

∇Φtot(~r0)
.
= 0 (3.7)

where we have used .
= to denote a constrained equality, rather that a natural

equality resulting from physics.

Next, we may constrain the nine second derivatives of the Hessian matrix (2.18).

However, only six of those constrains are independent because the second deriva-

tives of the potential commute (i.e. ∂2

∂x∂y = ∂2

∂y∂x ). Since the Hessian matrix is

populated with second derivatives of x̂, ŷ, and ẑ, there is an implicit coordinate

system defined in which to evaluate these derivatives. If one chooses to constrain
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the off-diagonal derivatives to be zero, as such,

H(~r0)
.
= m


ω̃2

x 0 0

0 ω̃2
y 0

0 0 ω̃2
z

 (3.8)

then the principle axes that confine the ion are aligned with the coordinate system

of the Hessian.

If one wanted to confine the ion along different principle axes (e.g. to rotate

the ion’s radial directions by some defined tilt angle), they may simply constrain

the off-diagonal derivatives to the proper non-zero value. The Hessian matrix can

always be diagonalized to find the curvatures (eigenvalues) and principle axes

(eigenvectors).

Higher order derivatives of the potential can also be constrained2, and in gen-

eral the only limit to the number of constraints is the number of degrees of free-

dom in our system, which is set by the number of electrodes whose voltages we

can vary. In order to conveniently formulate all these derivatives into a single,

k× 1, constraint vector, C, we must introduce an operator to take the derivatives

we want to constrain,

PT ≡
[

∂
∂x

∂
∂y

∂
∂z

∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y2
∂2

∂y∂z
∂2

∂z2 . . .
]

(3.9)

where P is a k × 1 vector, and k represents the number of desired constraints.

To get the contribution of every electrode potential to each constraint, we must

apply the derivatives in P (3.9) to the unit potentials (3.5) and multiply by the

electrode voltage (3.4). Our constrain vector is the sum of all electrode contribu-

tions for each derivative constraint. We can formalize this using the following

outer product with our unit potential vector (3.5),

2it will be advantageous to do so in the case of splitting, as we shall see in 4.2
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P ⊗φT(~r0) =



∂φ̃1(~r0)
∂x

∂φ̃2(~r0)
∂x . . .

∂φ̃1(~r0)
∂y

∂φ̃1(~r0)
∂y . . .

...
... . . .


(3.10)

where the tensor product leads to a k×N matrix and all derivatives are evaluated

at the expansion point,~r0.

Finally, our constraint vector is the sum of all the derivative contributions from

the DC electrodes and the rf electrodes (3.2),

(
P ⊗φT(~r0)

)
· V + PΦps(~r0) = C (3.11)

Equation (3.11) is the ultimate formalism of the inverse problem. P , φT, and

Φps are well known, and C is defined by the experimentalist to according to their

desired target potential, Φtot(~r, t). We must now invert the problem to solve for

the waveforms V .

There are two closely related methods for solving this formulation of the in-

verse problem: singular value decomposition (SVD) and linear least-squares opti-

mization (LLS). While the SVD method applied on a perfectly-matched problem

(number of constraints equals the degrees of freedom) may result in voltage sets

that exactly achieve the target potential, additional constraints such as voltage

limits are unable to be included.

While SVD attempts to be an exact process, it can easily be "poorly condi-

tioned". LLS seeks to find a locally optimum V that minimizes the error in C.

Because this method is attempting to minimize a cost function, LLS allows the

user to add constraints that are more practical rather than necessitated by physics,

but can greatly improve the resulting waveforms. Such extra constraints includes

voltages stay within a specified bound (we are limited to ±40 V by our elec-

tronics), voltages vary smoothly for nearby trapping positions, voltages are not

extraneously large, and a weighting factor to bring out the importance of select
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constraints (e.g. axial frequency ωy). Although we are usually guaranteed to get a

reasonable voltage set using the LLS method, it is not guaranteed that the voltage

set is the globally optimal set to achieve the target potential. It may be a locally

optimal set given the constraints we have decided to implement in our cost func-

tion. Therefore it is important to run simulations of the waveforms through the

rest of my numerical pipeline to understand the errors in the resulting potential

Φtot.

With all these considerations LLS has been the preferred voltage solving method

in this thesis.

3.2.1 Ion Trap Voltage Generation

The formulation above is implemented numerically in Python in our Ion Trap

Voltage Generation (ITVG) script. At its very core, ITVG maps between electrode

voltages and electrostatic potential in both the forwards (V 7→ Φtot) direction

according to (3.3), and backwards (Φtot 7→ V ) direction according to (3.11).

3.2.1.1 Calculating Potentials

In the forwards direction, one can simply superpose electrode voltages with unit

potentials according to (3.3) to obtain the full electrostatic potential in position

space. It is worth noting however that the resolution of the electrostatic potential

is limited by the resolution of the system’s grid files since we can calculate the

full potential only at the positions that we’ve modeled the electrode potentials.

Usually the electrostatic potential does not vary faster than the grid file resolution

so it is safe to spline interpolate between the calculated positions.

A second method of calculating the full potential in the forwards direction

is to use the coefficient formalism (3.11) but solve for C given V , rather than

inverting the problem3. Often times in ion shuttling experiments, one prefers to

describe the full potential by the trajectory of a selected subset of coefficients in

3I call this the "forward ITVG" method
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Figure 3-2: A harmonic potential on the
MaxBeta trap at 186.5 µm. Grid file res-
olution is 1 µm. A quadratic potential
is taylor fitted (red) on the potential cal-
culated with superposition (blue dots).
The potential is also calculated through
coefficient expansion, with great agree-
ment.

Figure 3-3: A double well potential cen-
tered at 186.5 µm. The superposed po-
tential (blue dots) and coefficient expan-
sion potential (dashed green) differ fur-
ther from the expansion point. The co-
efficients from forward ITVG and taylor
fitting the superposed potential (dashed
red) differ by 12%.

parameter space4. Thus this method has the advantage of directly solving for

potential coefficients and allows one to avoid numerical interpolation.

However this coefficient expansion method also has a disadvantage of being

sensitive to the expansion point. Taylor expansions work well locally to a given

point but becomes less accurate further out. This usually is not an issue with

harmonic potentials, where the ion are located near the potential minimum, but

becomes a consideration with anharmonic potentials such as those used in split-

ting ion chains. The splitting potential shown in Fig 1-4 can be described by a

fourth order potential at the center of the ion chain. As the potential becomes a

double well and the ions are split apart, the accuracy of the Taylor expansion suf-

fers and the ions can experience a potential that is different from our simulation.

We can compare these two potential solving methods for a single harmonic

well and a quartic, double well configuration shown in Figs 3-2, 3-3. For both

potentials, the expansion point for the coefficient potential solver was at an axial

position y = 186.5 µm. In the single harmonic potential 3-2, the discretized po-

tential and the coefficient expansion potential are equivalent. In the double well

4The trajectories of potential coefficients are typically referred to as a "protocol" or "profile"
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potential 3-3, the agreement is strong near the expansion point but starts to fall

off around 15 µm away.

Choosing between these two potential solving methods make no difference

when calculating transport potentials because purely harmonic potentials can be

expanded at the potential minimum, where the ions are localized. However, this

choice will have an impact on calculating splitting potentials. As ions in a double

well configuration become more separated from the expansion point, the coeffi-

cients from forward ITVG become less accurate in describing the potential near

the actual positions of the ion. To more accurately solve for the electric potential

during a split, I recommend using the superposition method and spline interpo-

lating between the points of calculated potential.

3.2.1.2 Calculating Voltages

For the backwards problem, ITVG uses linear least-squares optimization to solve

the inverse matrix equation (3.11). More specifically, ITVG implements a Sequen-

tial Least Squares Programming (SLSQP) algorithm written in SciPy [34]. There

are two main considerations when solving for voltages, which are especially im-

portant for shuttling waveforms that should be smooth throughout the trap: hy-

perparameters and heuristics.

Hyperparameters are additional, tunable inputs to improve the performance

of the optimization cycle. A summary of hyperparameters and their functions

can be seen in Table 3.1. All the hyperaparameters and heuristics in this section

are implemented specifically in ITVG.

Since the inverse problem of determining voltages is ill-posed, there may be

multiple voltage sets that generate an equally desirable potential. If the optimizer

has a difficult time choosing between these degenerate solutions, the resulting

waveform may look like it is jumping between two possible solution sets, shown

in 3-4. I have found that the eps and ftol values have a large effect on resulting

waveforms. Decreasing eps allows for a finer search in voltage space. SLSQP

sequentially changes each component of V by the eps value and evaluates the

57



Name Typical Value Function

eps 1×10−12 Step size used for numerical approximation of the Jacobian.

ftol 1×10−27 Precision goal for the value of f in the stopping criterion.

bounds ±40 Search space bounds (limited by our system’s voltage range).

norm np.ones(k) A weighting vector for the k constraints.

fit_range (5, 10, 5) · 1×10−6 (x, y, z) range for calculating the potential coefficients.

Table 3.1: A summary of hyperparameters for voltage solving.

resulting cost function to determine gradients using finite differences. The gra-

dients of each component are then used to update the voltage V values and the

process iterates again. This is a standard practice of gradient descent algorithms.

Increasing or decreasing the ftol parameter by a few orders of magnitude may

help choose one degenerate set over the other.

Figure 3-4: Transport waveforms on the SLT. The voltages ocassionally hop be-
tween two solution sets that have similar cost function values.

The weighting of constraints, norm, is by default a k × 1 unit vector and gets

multiplied by the constraint error in the cost function evaluation. We are free

to change specific components of the weighting vector to increase or decrease
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their relative importance. I have found that weighting the axial coefficients ∂
∂y

and ∂2

∂y2 by 10 or 100 has helped nail down the axial confinement of the transport

potentials.

Finally, ITVG uses a fit range parameter to calculate derivative matrix (3.10).

Decreasing this parameter allows for a more accurate potential calculation near

the expansion point, while increasing the parameter allows the potential to be less

accurate locally, but more accurate over a longer spatial range.

Heuristics are the ways in which we set up our optimization problem. We may

choose to initialize the starting point of the SLSQP algorithm with the previously

calculated voltage set (by setting independence to True). This is a decent assump-

tion for shuttling waveforms where we expect electric potentials that are close to

each other in space to be created by similar voltages.

For constrained inverse problems, the best performance occurs when we are

perfectly constrained the number of constrains is close to the number of degrees

of freedom. We have the option of choosing both the constraints on our potentials

and the electrodes that will be supplying the potential. I have found the best

results from when the number of constraints is equal to or slightly larger than the

number of free electrodes (slightly overdetermined regime). We may choose the

free electrodes to be the ones closest to the ion’s position along the trap.

All these hyperparameters and heuristics require a moderate amount of trial

and error to perform. In general solving for waveforms has many approaches

and a tight loop to evaluate the resulting waveforms in simulations—or even in

experiments if possible—leads to faster feedback and a better understanding of

optimal waveforms.

3.3 Electrode Circuit Simulation

Another stage of the simulation pipeline is the simulation of the electrode cir-

cuitry, shown as the first leg in Fig 3-1. This stage is essential because the low

pass filtering on the ion trap system distorts inputs such that the electrode volt-
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ages V is no longer what we apply. Our simulation is done in LTSpice using a

model for the Fastino and the high-voltage amplifier designed by Mr. Jules Stu-

art. Our inputs are discrete voltage steps on our DACs, which are modelled as

piece-wise linear functions.

It is quite important to be able to invert this filtering process in order to find

the proper voltage inputs to achieve a target V . The process for this inversion

is called "predistortion" and is detailed in chapter 5. Especially with fast input

waveforms, it is important to have an accurate model of the filtering amplification

in order to confidently predistort voltages. We have collected data to accurately

determine our amplifier and filtering system, and will be discussed in section 6.1.

Figure 3-5: An example of a time-domain simulation of electrode filtering with
LTSpice. The input signal is shown as piece-wise linear discrete step function
(blue). The circuit output is shown in orange. The dashed black line shows a
target waveform for this electrode.

3.4 ODE Solver

Finally, the last stage of the simulation pipeline is a classical ion trajectory sim-

ulator. I wrote in Python an initial value problem solver that can determine the

trajectory of multiple ions in a time-dependent electric potential. This solver uses
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the Runge-Kutta method of order 5 [17] to integrate the following equation of

motion,

ÿi =
qi

mi

[
− ∂

∂y
Φtot +

1
4πε0

∑
j 6=i

qj

|yj − yi|3
(yj − yi)

]
(3.12)

where yi, qi, mi are the axial position, charge, and mass of the i-th ion, and Φtot is

is given by (3.3). Note that my simulation uses the pseudopotential approximation

for Φtot and does not take into account the radial modes. This means I only solve

for the dynamics of the ion’s secular motion in the axial direction, an example of

which is shown in Fig 3-6.

Figure 3-6: Simulation of the trajectory of 88Sr under a harmonic oscillator mov-
ing with protocol shown in dashed black. Ion position relative to the potential
minimum shown in blue and uses the right-hand y-axis scale. The ion’s motion
during the "heat calculation window" is used to determine the motional excitation
after transport

Also note that this calculation is a classical treatment of the ion’s dynamics. It

has been accepted throughout literature that the classical and quantum dynamics

in time-dependent shuttling Hamiltonians are the same [27, 60]. We care about

the motional excitation of the ions after shuttling operations, and thus we can

quote the classical energy gained after shuttling by analyzing the ion’s oscillation
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at the end of shuttling,

n̄h̄ω(T) =
1
2

mω(T)2A2 (3.13)

where n̄ is the excitation of the ion in the quanta of harmonic oscillator ener-

gies, ω(T) is the axial frequency at the end of transport, and A is the amplitude

of oscillation. For shuttling operations on a N-ion chain, there may be N axial

modes that are excited. To determine the motional excitation of any single mode,

I Fourier transform the ion’s ending motion, bandpass filter around the mode

frequency, Fourier transform back to the time domain, and apply (3.13) on the

resulting mode oscillation.

I actually implement two types of simulation that use different methods for

calculating Φtot(y, t). The first method uses a Taylor expansion for Φtot(y), with

coefficients that are spline interpolated in time and calculated using "forward

ITVG". This assumes an analytical form of Φtot(y). The second method uses

Φtot(y) calculated by superpositions of electrode voltages, which I then spline in-

terpolate along the axial direction as well as in time. This method is better suited

for handling non-harmonic potentials, like those found in splitting operatinos.

Both methods use a central difference formula to calculate ∂
∂y Φtot. My ODE solver

allows us to analyze arbitrary potentials, find the dynamics of ion chains of arbi-

trary length and species, and serve as a baseline for ion motion experiments.

My numerical tools also allow one to calculate dynamics for which analytical

solutions are difficult to find. One example is motional dynamics of long ion

chains. Analytically calculating the normal modes for N-ions is difficult in general

but using numerical integration and Fourier transformations it becomes a breeze.

The three mode frequencies in the axial direction have been analytically solved

for a linear chain consisting of 43Ca–86Sr–43Ca5 [11]. The in-phase, stretch, and

alternating modes are 1.209×, 2.449×, and 2.818× the frequency of the middle
86Sr ion.

To numerically simulate this system, I calculate the potential curvature needed

5This choice of ion species was somewhat arbitrary. I wanted to choose a chain not often seen
experimentally.
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to keep 86Sr confined at 1 MHz, according to,

∂2

∂y2 Φtot = α =
mω2

0
2q

(3.14)

Once α is determined, I place the three ions in a harmonic potential given by,

Φtot = αy2 (3.15)

and minimize the total energy of the three ions to find their equilibrium position.

I shift the ions away from the equilibrium position by a few percent and then run

my ODE solver. I then Fourier transform the resulting motion, shown in Fig 3-7.

Figure 3-7: An FFT of the 43Ca ion located an a harmonic potential and interacting
with a 43Ca and 86Sr ions.

The location of the peaks occur at 1.208 MHz, 2.449 MHz, 2.818 MHz, which

is within 1 kHz of the analytically calculated frequencies. While my integration

can be painlessly extended to longer ion chains, it is not so obvious how to scale

analytical solutions.
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Chapter 4

Optimal Ion Shuttling

There are an infinite number of trajectories by which an ion trapper could vary a

time-dependent electric field, but in this chapter I present theories to find trajec-

tories that lead to optimal ion shuttling.

In the most basic sense, optimal shuttling operations are fast and cold. Shut-

tling operations should not excite the motional state of the ion qubit to protect the

fidelities of subsequent quantum gates. Operations that add more than a single

quanta of motional energy will require laser cooling, which is slow and can de-

stroy the ion’s qubit if performed incorrectly. We would like shuttling operations

to be as fast as possible, but our speed is limited by the update rate of our volt-

age input system (2 Mbps). The axial frequency of ions in surface electrode traps

is comparable with the frequency of an average digital-to-analog converter (∼1

MHz). Thus, shuttling operations that use a few update rates will lead to times of

just a few oscillation periods, well within the diabatic regime of the ion. We can

more rigorously declare that optimal shuttling operations are to be performed by

a few voltage commands while not exciting the motion of ions.

The theory for optimal ion transport and splitting has been well laid out. How-

ever, robustness against electric field noise, electrode filtering, and anharmonic

trapping potentials must also be a consideration when implementing optimal

shuttling techniques on surface traps.
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4.1 Transport Profiles

We now begin designing the transport profiles, q0(t), introduced earlier (1.1). Al-

though the classical and quantum dynamics of ion motion under certain transport

protocols has been well developed, numerical simulations allow for the evaluation

and optimization of any arbitrary profile [27, 64, 61]. Without loss of generality

we can analyze transport from 0 to d with a transport time of T and thus constrain

the ends of transport.

q0(t ≤ 0) = 0, q0(t ≥ T) = d (4.1)

Common transport protocols include linear, sinusoidal, hyperbolic tangent,

which are formulated in (4.2a), (4.2b), (4.2c) respectively.

q0(t) = d
t
T

(4.2a)

q0(t) =
d
2

(
1− cos

(
π

t
T

))
(4.2b)

q0(t) =
d
2

tanh
(

N 2t−T
T + tanh N

)
tanh N

(4.2c)

where N is a parameter that controls how smooth the beginning and ends

of transport are. The larger the N value, the more the acceleration is con-

centrated in the middle of transport. These profiles are shown in Fig 4-1.

We observe from Fig 4-1 that linear and sinusoidal transport have acceleration

kicks at the beginning and end of transport, while most of the acceleration for the

hyperbolic tangent transport occurs in the middle. It is possible to take advan-

tage of the acceleration kicks by perfectly timing the transport time such that the

ending kick removes the motional excitation incurred from the starting kick. This

happens at every odd half-periods of the harmonic trap period,

T =
2π

ω0

(
n +

1
2

)
(4.3)
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Figure 4-1: Various transport profiles plotted in black. Acceleration determined
using numerical derivatives, plotted in red and using the right-hand scale.

where n is a natural number. Indeed, we observe periodic transport times where

linear and sinusoidal transport leads to low motional excitation 4-2.

While taking advantage of this "kicking effect" to achieve cold transport on fast

timescales has been experimentally demonstrated [76, 32], it requires precision

timing on the order of the trap frequency in order to be implemented robustly.

As seen in Fig 4-2, missing the timing by half a trap period, which can be on the

order of 500 ns, can be disastrous for the ion.

Of the transport profiles detailed above (4.2), the hyperbolic tangent is the only

profile thus far that has zero acceleration kicks at the ends of transport. Since

the acceleration is smooth throughout transport, tanh reliably reaches a motional

excitation below 1 quanta without any dips at the fastest time scales 4-2. This

suggests that the smoothness of the acceleration profile is important for achieving

cold transport without being overly sensitive to timing.

It is a helpful reminder that while we analyze transport profiles in one dimen-

sion, the potential is actually harmonic along the axial direction. We can more

concretely visualize the time-dependent potential changes during ion transport
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Figure 4-2: Motional excitation calculated by determining the classical energy of
the ion’s motion at the end of transport. The trajectory of 88Sr in a rigid 1.2 MHz
trap under the various transport profiles is calculated with my ODE solver.

by plotting both the time and spatial dependence of the potential in Fig 4-3.

4.1.1 Shortcuts-to-Adiabaticity

Within the past decade, a new formalism has been developed to cleverly con-

trol quantum systems and achieve adiabatic dynamics on diabatic timescales [22].

There are a family of techniques that fall under the scope of STA methods to

design these special control trajectories. While STA concepts extend beyond the

quantum world and into any system with adiabatic regime, there has been exten-

sive literature on applying STA techniques for shuttling ions [56].

One specific technique used for transporting trapped-ions uses Invariant-Based

Inverse Engineering, which centers around dynamical invariants of the ion’s time-

dependent Hamiltonian. The eigenstates of the dynamical invariant are related to

the solutions of the Schrödinger equation for time-dependent Hamiltonians [36].

In general, finding solutions to the time-dependent Schrödinger equation (TDSE)

may prove to be difficult, whereas finding the eigenstates to dynamical invariants
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Figure 4-3: A 3D representation of the tanh transport profile. The electric potential
(V) is plotted along the z axis. ŷ-position and time plotted in the x and y axis.
This particular transport is from 0 µm to 120 µm.

is a simpler task.

For a time-dependent harmonic oscillator, there exists a well known invariant

operator that is quadratic in momentum [37, 16]. This Lewis dynamical invariant

has the following form,

Î(t) =
1

2m
[ρ( p̂−mȧ−mρ̇(q̂− a)]2 +

1
2

mω2
0

(
q̂− a

ρ

)2

+ U
[

q̂− a
ρ

]
(4.4)

where p̂, q̂ are the position, momentum operators, U is an arbitrary function of its

argument, ρ and a are functions of time, and ω0 is a constant harmonic frequency.

The operator Î(t) is an invariant for the following general harmonic Hamiltonian
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in 1D,

Ĥ(t) =
p̂2

2m
+ V(q̂, t) (4.5)

V(q̂, t) = −F(t)q̂ +
1
2

mω2(t)q̂2 +
1

ρ(t)2 U
[

q̂− a(t)
ρ(t)

]
(4.6)

where ρ, a, ω, and F are function of time that satisfy the following auxiliary

equations [37],

ρ̈ + ω2(t)ρ =
ω2

0
ρ3 (4.7)

ä + ω2(t)a = F(t)/m (4.8)

By construction the invariant operator does not change over time, and thus the

time-dependent Hamiltonian and corresponding invariant satisfy,

d Î(t)
dt
≡ ∂ Î(t)

∂t
+

1
ih̄
[
Î(t), Ĥ(t)

]
= 0 (4.9)

(4.9) can be combined with Ehrenfest’s theorem [23] to derive that the ex-

pectation value of the invariant across any solution, ψ(t), of the TDSE remains

constant throughout transport,

d
dt
〈ψ(t)| Î|ψ(t)〉 = 0 (4.10)

We may choose to expand the time-dependent Hamiltonian wavefunction,

ψ(t), in the basis of the eigenstates ψn of Î,

ψ(q̂, t) = ∑
n

cnψn(q̂, t) (4.11)

where cn are complex coefficients, Îψn = λnψn, and λn are time-independent

eigenvalues.

Combining (4.10) and (4.11), we see that the coefficients, cn, are actually con-

stant in time, which allows us to solve the TDSE using eigenstates of the invari-
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ant operator. These eigenstates are well-known and can be easier to solve than

the general solution to the TDSE, ψ(t). The eigenstates, ψn, have the following

form [16],

ψn(q̂, t) =
1
√

ρ
φn

(
q̂− a

ρ

)
, σ ≡ q̂− a

ρ
(4.12)[

− h̄2

2m
∂2

∂σ2 +
1
2

mω2
0σ2 + U(σ)

]
φn = λnφn (4.13)

where ρ, a, U are the same variables from (4.4), (4.5), (4.6)1.

Remarkably we have found a relation between wavefunctions of the time-

dependent transport Hamiltonian and solutions, φn of the stationary Schrödinger

equation in σ space. While we have the tools to solve general harmonic Hamil-

tonian problems, most ion transport Hamiltonians are "rigid", meaning that the

potential curvature remains constant throughout transport. This simplifies our

auxiliary equations considerably.

In the case of rigid transport along a profile, q0(t), our auxiliary functions

become,

ω(t) = ω0, U = 0, ρ = 1, F(t) = mω2
0q0(t) (4.14)

ä + ω2
0(a− q0(t)) = 0 (4.15)

ψn(q̂, t) = φn (q̂− a(t)) , λn = En = (n + 1/2)h̄ω0 (4.16)

where a(t) has remarkably become equivalent to the classical trajectory under

Newton’s second law in (4.15). Using these values, the transport Hamiltonian (4.5)

and dynamical invariant (4.4) of the ion during rigid transport simply reduce to,

Ĥ(t) =
p̂2

2m
+

1
2

mω2
0 (q̂− q0(t))

2 (4.17)

Î(t) =
( p̂−mȧ(t))

2m
+

1
2

mω2
0 (q̂− a(t))2 (4.18)

1I have chosen to neglect the phase factor of ψn in (4.12)
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The most straightforward way to ensure that the wavefunction of the transport

Hamiltonian at the intial and final times are equal is to have the wavefunction

coincide with an eigenvector, ψn, of the invariant operator. This is equivalent to

ensuring that Ĥ(t) and Î(t) commute at the boundary times, tb = {0, T},

[
Ĥ(tb), Î(tb)

]
= 0 (4.19)

From (4.17) and (4.18), we see that commutation is guaranteed when ȧ(t) = 0

and a(t) = q0(t). Physically, this means transport with no excitation requires

the ion’s classical position to coincide with the potential minimum and the ion’s

classical velocity to be zero at the ends of transport.

A slew of boundary conditions on the ion’s classical trajectory may now arise

from enforcing commutation. Once the classical trajectory, a(t), has been identi-

fied, we use (4.15) to solve for the transport profile, q0(t) = ä(t)/ω2
0 + a(t).

a(0) = q0(0) = 0, ȧ(0) = 0, ä(0) = 0 (4.20)

a(T) = q0(T) = d, ȧ(T) = 0, ä(T) = 0 (4.21)

There are many possible of choices for a(t) and q0(t) that satisfy these bound-

ary conditions. It is helpful to work with trajectory ansatzes that have some

degrees of freedom, such as polynomials, a(s)/d = ∑n bnsn, or trigonometric

functions, a(s)/d = cn cos πns, where s = t/T [72, 41, 38].

The following three trajectories are among the STA protocols that I have inves-

tigated and can also be found in the following works [54, 51, 38].
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q0(t) = d

[
60s− 180s2 + 120s3

Tω2
0

+ 10s3 + 15s4 + 6s5

]
(4.22)

q0(t) = d

[
2520s3 − 12600s4 + 22680s5 − 17640s6 + 5040s7

Tω2
0

+ 126s5 − 420s6 + 540s7 − 315s8 + 70s9

] (4.23)

q0(t) = d

[
1
2
+

(
− 9

16
+ 2b3 + 5b4

)
cos πs

+
1

16
(1− 48b3 − 96b4) cos 3πs

+ b3 cos 5πs + b4 cos 7πs

] (4.24)

where s = t
T , b3 = −49(3T2ω2

0−25π2)(T2ω2
0−25π2)

6144T4ω4
0

, b4 =
5(3T2ω2

0−49π2)(T2ω2
0−49π)

6144T4ω4
0

.

These three protocols (4.22), (4.23), (4.24) are shown in Fig 4-4 and are labeled

as "5th order", "9th order", and "trig", respectively. These ansatzes represent only

a small fraction of the possible STA trajectories. The freedom to choose STA tra-

jectories allows one to find trajectories that will best be implemented in a surface

trap.

One important consideration that can help narrow down the possibilities of

STA profiles is robustness. Optimal transport trajectories should also be robust

against realistic trap errors, such as variations in trap position, q0(t), and trap

frequency, ω(t).

4.1.2 Fourier Excitation

We now have a strong understanding of the characteristics that lead to optimal

ion transport. As exemplified by the tanh profile, smoothly varying trajectories,

especially near the ends of transport, leads to cold transport that is also robust

to the operation time. Under the STA framework, zero motional excitation after
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Figure 4-4: Profiles in time of various STA trajectories and hyperbolic tangent.

Figure 4-5: Same excitation plot as Fig 4-2 but with more simulated STA trajecto-
ries. The quantized excitation from all three STA protocols is synonymous with
zero.

transport can be guaranteed by inverse engineering profiles that satisfy a special

set of boundary conditions. These trajectories, if perfectly implemented, will lead
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to no motional excitation even at very fast transport times.

While we understand how the choice of q0(t) excites the ion during transport,

what about the choice of axial frequency ω0? Are there optimal values of ω0

and do these values depend on the specific choice of trajectory?2. To answer this

question we reconsider ion transport as a driven, stationary harmonic oscillator,

rather than a moving harmonic oscillator, by transforming coordinates from the

laboratory frame to the frame of the harmonic minimum. Since the harmonic

minimum undergoes an acceleration q̈0(t), this frame is not inertial and thus the

ions will experience a driving force.

To derive this driving term, we can rewrite our transport Hamiltonian (4.17)

using the classical equation of motion for ions in a harmonic trap (4.15). The ion’s

harmonic motion in a rigid trap is proportional to e−iω0t and thus the accelera-

tion of the trap minimum is given by q̈0(t) = −(ä + ω2
0a). We then rewrite the

transport Hamiltonian as,

Ĥ(t) =
p2

2m
+

1
2

mω2
0q2 + mq̈0q (4.25)

which looks like a normal harmonic oscillator Hamiltonian but with an additional

inertial force, Finertial(t) = −mq̈0(t). Therefore, an ion in the harmonic potential

reference frame experience a driving force that is proportional to the acceleration

of the transport profile. As is well-known with driven harmonic systems, the ion

will become excited if the inertial driving force is resonant with the trap frequency,

ω0.

To analyze the spectral components of this driving force for several well-

known transport profiles, I plot the Fourier Transform (FFT) of each profile’s

acceleration as I vary the transport time. The "spectrograms" of each profile is

plotted with transport time (µs) along the x-axis and FFT frequency (Hz) along

the y-axis, Figs 4-6, 4-7, 4-8, 4-9. The log magnitude of each profile’s FFT is indi-

cated by the heat bar to the right. Note that while the transport profiles, q0(t), for

2keep in mind that we are only focusing on rigid transport, where ω0 is constant
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sin and tanh transport are independent of the choice of axial frequency, ω0, the

STA protocol in (4.23) actually depends on the axial frequency, which I asserted

to be 1.2 MHz in my simulations.

Figure 4-6: STA 9th order polynomial. Figure 4-7: Sinusoidal transport

Figure 4-8: Linear transport Figure 4-9: Hyperbolic tangent, N = 5

From spectrogram of STA transport, we can immediately notice a horizontal

notch right at the ion’s axial frequency 4-6. This means that the inertial force

the ion experiences will not resonantly excite the ion’s motion, no matter the

transport time. Next, we observe that the magnitude of the spectrogram of sin

and linear transport is quite large at 1.2 MHz but occasionally dips at certain

transport times 4-7 4-8. The magnitude of the frequency content for tanh, N = 5
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transport remains quite large at 1.2 MHz until the transport time reaches around

11 µs, after which the magnitude dips significantly and stays down 4-9.

We can take a horizontal "slice" of each transport protocol’s spectrogram at the

ion’s axial frequency. For every transport time along the x-axis, we plot the log

magnitude of the FFT component at 1.2 MHz in Fig 4-10.

Figure 4-10: Slice of spectrograms at the 1.2 MHz axial frequency.

Notice how well plot 4-10 corresponds with the motional excitation plot in 4-2,

implying that there exists a correlation between the spectral density of the driving

force at the ion’s trap frequency and the motional excitation after transport. While

this correlation is purely qualitative, it suggests the excitation after transport is

proportional to the trap acceleration at the axial frequency,

n̄ ∝
∫ T

0
e−iω0tq̈0(t)dt (4.26)

where n̄ is the quantized motional energy gained by the ion after transport. We

can actually compare this relation to analytical calculations of rigid transport us-
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ing generating functions and propagators [27],

n̄(T) =
m

2h̄ω0

(
ω2

0ξ(T, 0)2 + ξ̇(T, 0)2
)

(4.27a)

ξ(T, 0) = − 1
ω0

∫ T

0
sin
(
ω0(T − t′)

)
q̈0(t′)dt′ (4.27b)

ξ̇(T, 0) = −
∫ T

0
cos
(
ω0(T − t′)

)
q̈0(t′)dt′ (4.27c)

where ξ is defined as the classical position of the ion relative to the moving po-

tential minimum. ξ and ξ̇ can be seen as the convolution of the trap acceleration

with sin and cos, resulting in n̄(T) being proportional to the Fourier Transform of

the trap acceleration squared, q̈2
0(t).

Using this spectrogram perspective, we can now understand how our choice

of axial frequency ω0 affects transport results. For example, if we wanted to

transport an ion with a tanh, N = 5 protocol (Fig 4-9) over 10 µs, we should

confine the ion at a frequency of at least 1.5 MHz. Confining the ion at less than

1 MHz, would land us in a yellow region instead, and we would expect the ion

to be greatly excited. Assuming we are able to perfectly achieve the transport

profile q0(t) on our surface traps, these spectrograms can inform our choice of

both transport time, T, and axial frequency, ω0.

Furthermore, keeping the Fourier picture in mind can also help us in design-

ing transport protocols, q0(t). We saw previously that smoother choices of q0(t),

such as tanh, leads to hot transport at fast transport times, but consistently cold

transport after an intermediate transport time. This cutoff transport time signifies

the transition from the diabatic to adiabatic regime. Because the trap acceleration

varies smoothly for tanh (compared to the acceleration kicks in the linear and

sin profile), the spectral density of the trap acceleration remains localized around

frequencies corresponding to the transport time (1/T). Conversely, transport pro-

files with discontinuous trap accelerations will have higher frequency harmonics,

leading to a spectral density spaced out over a wider frequency range, with inter-

spersed frequency regions that have little spectral content.
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Note also, that all the STA transport protocols (4.22), (4.23), (4.24), utilize the

axial frequency ω0 in the profile. This is not a coincidence, as these protocols are

specially designed to cancel any trap acceleration at the axial frequency for all

possible transport times.

For rigid ion transport in general, the larger the axial frequency, the less the

ion’s motion will get excited for a given trap acceleration, q0(t). This is consistent

with the criteria for adiabatic changes, 1
ω2

dω
dt � 1. The higher the trap frequency,

the less the potential will change during a single trap period, and thereby the

onset of adiabaticity will appear faster.

We have now seen that optimal transport can be done with STA protocols at

arbitrarily fast speeds (not considering the speed limits of our ion trap control

system). The higher the axial frequency ω0 and the more rigid it is during trans-

port will allow one to transport ions faster while being confident that they will

gain minimal excitation. Although it is advantageous to transport at as high of an

axial frequency as possible given the surface trap’s voltage bounds and electrode

layout, too high of an axial frequency can actually weaken the radial confinement.

4.2 Splitting Profiles

Using the quartic axial potential to split an ion chain, as described in (1.3), we can

now engineer profiles for our control coefficients, α(t) and β(t). The dynamics for

two ions in a fourth-order potential has been well known [26]. We can describe

the 1D Hamiltonian in the axial (ŷ) direction as follows,

H =
p2

y

2m
+ V(y, t) (4.28)

V(y, t) = q
(

α(t)y2 + β(t)y4
)
= qφ(y, t) (4.29)

where q and m are the charge and mass of the ion, respectively. Note that we have

constructed the electric potential φ to be symmetric in the axial direction. This is

not always true, as there can exist some surface charges on the trap electrodes
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that add a stray field: φ(y) = γy + αy2 + βy4. However, the anharmonicity due to

a cubic term in the potential can be safely neglected due to small contribution in

surface traps [31].

For two ions of the same mass and charge, the equilibrium positions in a

symmetric (γ = 0) quartic potential are y = ±d/2, where, d, the separation of the

two ions, is given by,

βd5 + 2αd3 =
q

2πε0
(4.30)

Note that α, β, and d are all implicit functions of time, and q is the charge

of the ion species.

In a two-ion chain, there will be two normal modes in the axial direction: a

symmetric, center of mass oscillation and antisymmetric, stretch oscillation. The

COM and stretch frequencies, ω1(t) and ω2(t), are given by,

ω2
1 =

q
m

(
2α + 3βd2

)
(4.31)

ω2
2 = ω2

1 (1 + ε̃) (4.32)

where ε̃ = q2

πε0mω2
1d3 .

Intuitively, the COM frequency results from locally approximating the quartic

electric potential φ(y) with a harmonic potential. The stretch frequency is larger

than the COM frequency by a factor of
√

1 + ε̃, where ε̃ is the ratio of the Coulomb

force to a harmonic restoring force with frequency ω1.

We can analyze the mode frequencies in the three cases of interest (1-2, 1-3,

1-4). In a purely harmonic well, α > 0; β = 0; ε̃ = 2; and ω2 =
√

3ω1, consistent

with the discussion in 2.2.3.

At the critical point α = 0; β > 0; ε̃ = 2/3; the ions are separated by a distance,

dcp =

(
q

2πε0β

)1/5

(4.33)
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Figure 4-11: A typical splitting profile from [31]. Motional excitation from split-
ting (red), thermal excitation from electric field noise (blue), and total energy
transfer (black). The top right inset shows the axial frequency (black) and heating
rate (red) during transport.

and the COM frequency is,

ω1 cp =

(
q

2πε0

)0.2

(β)0.3
(

3q
m

)0.5

∝ β0.3 (4.34)

From (4.34) we can see that the frequency at the critical point scales unfavorably

with β. Thus a much larger β value is needed to keep the COM frequency at

typical axial frequencies levels (∼1 MHz).

Finally, in a double well configuration 1-4, when the two ions are sufficiently

separated such that the Coulomb interaction is negligible, ε̃ � 1. The two mode

frequencies are both about equal to the oscillation frequency of a single ion in

either trap, ω1 ≈ ω2.

In summary, there are four parameters of interest during a splitting operation:

α(t), β(t), d(t), and ω1(t), with their relationships given by (4.30), (4.31), (4.32).

In a typical splitting experiment, one chooses an appropriate trajectory for the
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separation of two ions, d(t) [31]. Because the axial mode frequencies naturally

drop near the critical point, it is advantageous to slow down voltage changes

to avoid diabatically exciting the ions in the weak confinement. The maximum

quartic confinement βmax at the critical point is determined by the voltages that

can be applied to the electrodes, as well as the electrode size, layout, and distance

away from the ions. Voltages are then smoothly changed from the critical point

configuration to a double well (α < 0), where the ions are sufficiently separated.

Since the axial frequencies change during splitting, we are no longer in the

regime of rigid shuttling operations, as in the case of transport. As seen in Fig 4-

11, the motional excitation for splits faster than 40 µs would actually bring the

ions out of the Lamb-Dicke regime. The drop in axial frequency near the critical

point dramatically increases the heating rate. Ions during slower splitting times

are subjected to more thermal excitation from trap effects. Thus fast splitting

below 1 quanta has proven to be quite difficult on surface electrode traps.

4.2.1 Shortcuts-to-Adiabaticity

Invariant-Based Inverse Engineering has also been applied to the problem of fast

ion crystal splitting [53]. The splitting Hamiltonian (4.28) was transformed into

coordinates of the dynamical normal modes q±, p± corresponding the same fre-

quencies Ω− = ω1, Ω+ = ω2 in (4.31), (4.32) [39].

The Hamiltonian under these coordinates can be written as the sum of the

Hamiltonian in each normal mode, H = H+ + H−. The two Hamiltonians have a

dynamical invariant of the form [53],

I± =
1
2
[
ρ±(p± − ẋ± − ρ̇±(q± − x±)

]2
+

1
2

Ω2
±(0)

(
q± − x±

p±

)2

(4.35)
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where the auxiliary functions ρ± and x+ satisfy,

ρ̈± + Ω2
±ρ± =

Ω2
±(0)
ρ3
±

(4.36)

ẍ+ + Ω2
+x+ = −

√
m
2

d̈ (4.37)

Note that x± are the normal mode centers in the dynamical mode coordinates q±,

p±. By symmetry, x− = 0.

Analogous to STA transport, ensuring that the splitting Hamiltonian com-

mutes with the dynamical invariants lead to the following set of 14 boundary

conditions at the boundary times tb = {0, T},

ρ±(0) = 1, ρ±(T) =

√
Ω±(0)
Ω±(T)

, (4.38)

ρ̇±(tb) = ρ̈±(tb) =
...
ρ±(tb) =

....
ρ ±(tb) = 0, (4.39)

x+(tb) = ẋ+(tb) = 0 (4.40)

A 9th- and 11th-degree polynomial ansatz is used for ρ− and ρ+. To satisfy

these boundary conditions, the coefficients of ρ± depend only on the ratio of the

starting to ending axial mode frequencies
√

Ω±(0)
Ω±(T)

.

We start the split with a single well: Ω−(0) = ω0 and Ω+(0) =
√

3ω0. We end

the split by choosing an target separation distance and determining the modes fre-

quencies based on (4.31), (4.32). Note that we constrain the final COM frequency

to be the same as the starting COM frequency, Ω−(T) = ω0. This is crucial as

it allows us to solve for splitting profiles that keep a constant COM frequency

throughout the operation.

Once we have fixed our target mode frequencies at the initial and final times

of the split operation, we solve for the auxiliary function ρ±(t) throughout the

entire split. From this we obtain the mode frequencies throughout the entire split,

Ω±(t) according to the auxiliary function (4.36).

When the two axial mode frequencies are fully determined, we can rearrange
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the relationships in (4.30), (4.31), (4.32) to obtain the following relations,

d(t) =

(
q

mπε0(ω2
2 −ω2

1)

)1/3

(4.41)

α(t) =
1
8

m
(

3ω2
2 − 5ω2

1

)
(4.42)

β(t) =
q

2πε0d5(t)
− 2α(t)

d2(t)
(4.43)

The α, β, ω1, and ω2 parameters for this STA split are plotted in 4-12.

Figure 4-12: STA splitting profile with a flat COM frequency (solid red). The
stretch frequency (dashed red) starts off at

√
3 and ramps down to almost be

equal to the COM frequency. The quadratic, α, coefficient ramps down to -0.5 its
initial value (blue). The quartic, β, term reaches a maximum value at the critical
point (orange).

Note that in order to achieve STA splitting we must be able to create a large

enough beta value on our trap to provide the necessary axial frequency at the

critical point. According to (4.34), to trap two 40Ca ions at 1.3 MHz during the

critical point, we need a β value of 2×10−7 V/m4, which is just what the MaxBeta

trap can provide with a ±40 V range applied to the electrodes. By comparison,

the maximum β achievable on the SLT trap with a ±40 V range is 4×10−10 V/m4,
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Figure 4-13: Motional excitation in quanta of the common mode oscillation af-
ter two types of splitting profiles. Thermal heating from the trap has not been
simulated.

Figure 4-14: Axial frequency modes during the two methods of splitting.

which results in a 200 kHz axial frequency of two 40Ca ions.

I’ve simulated both the traditional splitting method3 and STA splitting method

3I call this the "Kaufmann" method
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with realistic parameters for three different ion species: 133Ba, 88Sr, and 40Ca.

I plot the motional excitation in the common mode as a function of splitting

time in Fig 4-13. Since the Kaufmann splitting method we analyzed for an outer

segmented trap, which has a lower maximum β value compared to inner seg-

mented electrodes, the motional excitation and axial frequency from the Kauf-

mann method is labelled as "Outer Seg" in 4-13, 4-14.

We can see that heavier ions consistently become more excited after the split,

most likely due to the lower confinement from the same applied voltages. With

the traditional splitting method, 40Ca reaches an excitation below 1 quanta at

around 25 µs. Note that this is faster than the 48 µs simulated in 4-11 because my

voltage bounds were ±40 V while the bounds in [31] were ±10 V.

I also plot the simulated axial frequency modes for a single splitting operation

of 88Sr in 4-14. With these considerations, we can conclude that inner segmented

electrode traps are more suited to achieve optimal ion splitting. Note how the

COM frequency stays constant for an STA split. This proves to be advantageous

as we shall see in the next section.

4.2.2 Fourier Excitation

In the case of STA splitting, where the common mode frequency of the two ions

stays constant during the split, we may use the same spectral analysis that I dis-

cussed previously for transport operations. When the COM mode stays flat at

ω1 = ω0, we can consider the operation to be "rigid" with respect to the COM

frequency.

Analogously, I plot FFT the acceleration of a single ion’s position d̈0(t)/2 dur-

ing the splitting operation as a function of splitting time. The spectrogram shown

in 4-15 shows the magnitude of the ion’s acceleration at various split times and

frequencies. The axial confinement scales inversely with the mass of the ion,

ω ∝
√

1/m, and thus a 1.2 MHz COM frqeuency for 40Ca leads to a 800 kHz and

658 kHz confinement for 88Sr and 133Ba, respectively.
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Figure 4-15: Spectrogram of STA splitting. The common mode frequency is set to
be 1.2 MHz for 40Ca, and scales inversely with the mass for higher-mass ions.

Figure 4-16: Slice of the STA splitting spectrogram at the various axial frequencies
corresponding to the ion’s mass.

Taking a horizontal slice of the spectrogram at those three frequencies leads to

the plot in 4-16. Note that the sharp dip for each ion species occurs at the same
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Figure 4-17: Simulation of two 40Ca ions with my splitting profile. d(t) is given by
an STA solution (4.23). The ions get separated ×10 their starting distance. Note
how the ions follow an STA profile during the 5 µs split.

splitting times as the simulation based on the ion motional dynamics 4-13. While

the agreement is again purely qualitative, this points to the fact that lighter mass

ions are easier to split [7, 63] and the capability to create a high β confinement

with the surface electrode trap may lead to colder and faster split operations. This

Fourier analysis of splitting only exists for "rigid" splitting and will not work for

the traditional splitting method where the axial frequencies change over time.

We may actually take advantage of what we have learned from STA transport

and apply it to STA splitting. The previous method for achieving STA splitting

protocols imposed boundary conditions on auxiliary functions, and then solving

for the control parameters α(t), β(t), leading to a unique separation profile d(t)

with a spectrogram 4-15.

It would be more advantageous if we instead first constrain d(t) to be an opti-

mal transport profile, such as (4.23), and constrain the common mode frequency

to be constant, ω1(t) = ω0. We can then solve for the stretch mode frequency

according to (4.32). Once we have both our mode frequencies as a function of

time, we can solve for the control parameters using (4.42), (4.43).
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Figure 4-18: Comparisons of my splitting profile with the same two in Fig 4-13.
The quanta plotted is the excitation in the common mode.

An example of the ion’s trajectory during my splitting protocol is simulated

and shown in Fig 4-17. The total split time was 5 µs with the COM frequency

held at 1.2 MHz. At the maximum beta configuration, β = 1.56×10−7 for this

axial frequency. This value of maximum beta confinement is achievable in our

MaxBeta trap.

The motional excitation from my split is simulated for the same three ion

species and varied over split time. This is plotted together with the excitation

in 4-13 to obtain the following excitation plot, Fig 4-17. This suggests that if we

are able to perfectly find the voltage waveforms to achieve such a splitting profile,

we can split even 133Ba below 1 quanta in under 10 µs.

The spectrogram for this split will be the same as Fig 4-9 because my imple-

mentation of d(t) follows the 9th order STA polynomial for ion transport (4.23).

Note that with my paradigm, other possible separation distance profiles are pos-

sible. The main difference now is that we are operating under "rigid" splitting,

where we can keep the COM frequency at a constant value.

This is a new technique for designing optimal splitting protocols for two ions
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that combines STA techniques with Fourier analysis. Experimental success is thus

predicted to be contingent on precision of electrode controls and a trap geometry

that can provide a large β value.

4.3 Robustness

In designing optimal shuttling protocols, robustness to systematic errors must

be considered since the ion shuttling process is open loop and lacks real-time

feedback. Because of this, our best estimates for how the system will behave

for any given voltage waveform comes from simulations with as accurate models

as possible. For example, our method for predistorting waveforms, detailed in

Chapter 5, uses a SPICE model of our electrode filtering in the cost function,

and there is no guarantee of the accuracy of the SPICE model without making

measurements of the system itself.

While the open-loop system makes predistortion challenging, we may find

target protocols that do not require as tightly-bounded voltage waveforms. Such

a protocol is said to be robust with respect to a certain deviation. The deviations

in ion shuttling experiments can be categorized as positional errors, δq, or trap

frequency errors, δω. These errors can in general be time-independent or time-

dependent.

It turns out that the excitation sensitivity to positional errors in the transport

trajectory δq(t) can only be mitigated by decreasing the magnitude of the error

and/or decreasing the transport time [43]. In other words, there are no choices of

trajectories within the family of STA solutions that will be less sensitive to errors in

the trajectory itself. However, at a high enough trap frequency, under the Fourier

picture, any additional trap position errors δq will add an extra driving force

proportional to d2

dt2 δq. As long as the spectral density of the trap position error

has no frequency components that is resonant with the ion’s axial frequency, the

additional excitation should be minimal. This can be more confidently guaranteed

when the trap frequency ω0 is high.
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Figure 4-19: Transporting a single 88Sr ion with the polynomial STA (4.23) and the
trigonometric STA (4.24). The correct axial frequency for transport is 1.2 MHz, but
transport with a frequency of 1.0 MHz has also been simulated.

In the case of time-independent trap frequency errors, there are various pro-

tocols within the family of STA trajectories that are robust. Such examples are the

N-point protocols and trigonometric ansatz detailed here [81, 40, 42, 43, 21, 41, 38].

Note that there is no free lunch, however. By choosing a protocol that is more ro-

bust to time-independent trap frequency errors, the trajectory of the protocol may

have oscillations that make them more difficult to implement. The transient ex-

citation of the ions under this trajectory may actually be larger as well. In other

words there are always trade-offs to consider when designing these robust proto-

cols [60].

The trigonometric STA transport profile in (4.24) has been shown to be more

robust to a time-independent trap frequency error than the polynomial ansatzes.

This robustness can be seen numerically in Fig 4-19. The polynomial and trigonom-

etry ansatz were solved with a target trap frequency of 1.2 MHz, and when 88Sr

was transport at that trap frequency, we do observe essentially no motional exci-

tation for all transport times. However, if we introduce a 200 kHz trap frequency
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offset, so we are now transporting 88Sr with the same profile but trapped at 1.0

MHz instead, we see much more motional excitation. However, for the trigono-

metric STA profile, the excitation is consistently lower starting at around 5 µs.

For the case of a time-dependent trap frequency error, δω(t), it is not well

known how to analytically find shuttling protocols that are robust. This problem

is even more complex when there are both time-dependent trap frequency errors

and positional errors. Thus, finding trajectories that are robust to time-dependent

trap frequency errors is an open research question in the field of robust quantum

particle shuttling.

4.3.1 Experimental Non-Idealities

In trapped-ion systems, we may typically see both trap position and trap fre-

quency errors that arise from a variety of sources. The first type of noise source re-

sults from imperfect voltage controls. If predistortion is not perfect, the resulting

waveforms can lead to both time-dependent trap frequency errors and positional

errors. Also, there can be errors that arise from solving for voltage waveforms as

detailed in section 3.2.1.2. In general it is not yet known if any arbitrary shuttling

profile has exact waveform solutions and even so, it is not guarenteed that those

waveforms can be sufficiently predistorted and applied to the trap. However, us-

ing waveform solving techniques and the predistortion method in Chapters 3 and

5, we may try our best to find close to optimal waveforms which would mitigate

the trap position and trap frequency errors from imperfect controls.

Perhaps more concerning, are the other sources of noise that we have less con-

trol over. For example, the trap frequency may vary across a surface trap by more

than 5%, due to local trap imperfections, patches of charged insulator or adsor-

bate, and/or stray fields [60]. Furthermore, gain and calibration errors in our

DACs, as well as some crosstalk effects between different channels on the hard-

ware system can also contribute to both trap position and trap frequency errors.

It may be difficult to "predistort" for these errors because, unlike with the circuit

92



filtering, these noise characteristics are only estimated and may change over time.

Therefore, our trap frequency may end up varying during the shuttling operation

even with perfectly predistorted waveforms. We can numerically simulate these

voltage errors with my numerical pipeline using estimates for gain, calibration

offset, and crosstalk effects, but ultimately the best probe on these errors is the

ion itself.

To summarize, we can optimize our voltage inputs to reduce the trap position

and trap frequency errors as much as possible. However there will still be unac-

counted effects from surface charging to crosstalk errors that will introduce some

nonzero amount of trap position and trap frequency errors. While it is possible

to design shuttling protocols that are robust to time-independent trap frequency

errors, it is impossible to be robust against trap position errors. The only ways to

reduce the sensitivity to trap position errors, is to perform the shuttling operation

at a faster speed and/or increase the trap frequency. However, this might not be

experimentally possible without introducing more trap position or trap frequency

errors.

Future work remains to be done towards quantifying the bounds on the con-

tribution of surface noises to trap position and frequency errors using known

characteristics of modern surface electrode traps.

4.4 Summary

This chapter has presented state-of-the-art theories validated by simulations for

optimal shuttling operations. A Fourier analysis perspective has been detailed

that helps crystallize the core requirement for shuttling operations to be optimal:

a tight and rigid axial confinement.

For ion transport, it is experimentally easier to meet both the tight and rigid

trapping requirements. The inner segmented layout of our MaxBeta trap allows

for 40Ca to be easily trapped at 4 MHz with an 8 V control range. Ensuring rigid-

ity during transport is less straightforward, and requires precise simulation of
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electric potentials during the operation. Ultimately, one may choose to accurately

model the electrode circuitry and use my predistortion method detailed in the

next chapter to optimize the voltage inputs.

For ion splitting, both the tight and rigid requirements are more challenging

to satisfy. As will be discussed in Chapter 6, our work on the MaxBeta trap is a

first step towards tight and rigid splitting.

Robustness shuttling trajectories may help relax the tight and rigid require-

ments. While the requirement for tight confinement is largely dependent on the

surface trap layout, the rigid requirement requires strong voltage controls. The

design of shuttling trajectories that are robust to trap frequency errors—especially

time-dependent trap frequency errors—may help ease the need for precise voltage

controls and is an active area of investigation.
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Chapter 5

Voltage Optimization

While finding optimal control potentials is one challenge, actually implementing

them on our surface traps is a separate challenge. Due to our system filtering,

we have imperfect control over electrode voltages. Diabatic shuttling times on the

order of 1-10 µs require voltage waveforms that must vary on the order of 100 kHz

- 1 MHz, which is beyond the low pass filter cutoff. Therefore I will demonstrate

the need for predistortion and outline my method in this chapter.

Using the methods described in the previous chapter, we have identified candi-

date profiles for optimal ion transport and ion shuttling. We solve for the voltage

waveforms we should apply to our MaxBeta trap in order to achieve these optimal

protocols, shown in 5-1, 5-2.

We can predict the waveform distortion by our electrode circuitry using time-

domain simulations with SPICE. The naïve method for waveform generation is

to sample the target waveform at the update rate limited by our DAC. Running

the DAC input through our SPICE simulator, we are able to see the distorted

waveforms and compare with the targeted waveform 5-3.

The digital input from our digital-to-analog converter is modelled as a piece-

wise linear voltage source, with a slew rate and update rate shown in Fig 5-

3. While the electrode output is quite delayed, the shape of the waveform also

becomes distorted. There are also small oscillations towards the end of the analog

output.
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Figure 5-1: Ion transport waveforms on the MaxBeta trap. Transporting 40Ca
according to an STA polynomial protocol (4.23), over a distance of 45 µm in 15 µs.
The axial frequency is 4 MHz.

We can imagine that the optimal inputs to achieve the target waveforms will

have to occur before the waveforms. To account for the low-pass filtering, we

expect to have to drive our inputs with larger voltages than the target waveforms.

Because we have limited resolution on our inputs (16-bit 0-5V), there are a large

but finite number of possible voltage inputs to the electrodes. Furthermore we

are able to create a cost function by quantifying the error, ε resulting from the

distortion using a sum of squares difference

ε =
∫ T

0
|Vi(t)− V̂i(t)|2dt (5.1)

where Vi(t) and V̂i(t) are our achieved and target waveforms, and T is the shut-

tling operation time.

This allows us to transform the problem of finding optimal voltage controls

into a global search over a large parameter space. With 216 possible voltage levels

per inputs, x inputs per waveform, and N electrode waveforms per shuttling op-
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Figure 5-2: Splitting waveforms on the MaxBeta trap. Splitting two 40Ca according
to my developed method in chapter 4. d(t) according to (4.23), COM frequency
of 1.2 MHz. Final ion separation of 90 µm.

Figure 5-3: DAC input voltages modelled with a piece-wise linear function (blue).
Analog output simulated with SPICE (orange). The target waveform is what we
want to apply to the trap electrodes (dashed black).
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eration, searching over the entire input space quickly becomes computationally

expensive. One SPICE simulation takes around 2 seconds, so 216 SPICE simu-

lations will take 36 hours. A more sophisticated method for predistortion is to

analyze waveforms in the frequency domain.

5.1 Spectral Content of Voltage Waveforms

The Fourier transform of voltage waveforms allows one to observe the required

frequencies in achieve such a waveform. Waveforms with extensive high fre-

quency content will naturally be distorted more than lower frequency waveforms.

In the diabatic transport voltages 5-1, only four electrodes change: S13, N8,

S13, N9. The rest are held constant at 8 V. I allowed only these four electrodes to

change because they were the closest to the ion’s position and I only constrained

six coefficients:
[

∂
∂x , d

dy , ∂
∂z , ∂2

∂y2 , ∂2

∂x∂y , ∂2

∂y∂z

]
.

The Fourier transform of the four electrode waveforms is shown in 5-4. The

inputs to the system had a update rate of 800ns, with 5 total inputs, the target

waveforms lasted 4 µs. The y-axis is the magnitude of the FFT on a dB scale. The

waveforms reach a value of -20 dB as low as 150 kHz.

For lower frequency waveforms, filtering may effectively just time delay the

waveform, while maintaining the overall shape. There is a greater need for pre-

distortion when our filtering changes the shape of our waveform.

By naïvely sampling our target waveforms, we can see unequal distortion. The

shape of the output waveforms for electrodes N8 and S12 are more distorted than

electrodes N9 and S13. This is because of the dip in the target waveforms of elec-

trodes N8 and N9. Note that all the electrode outputs seem to be delayed in time

by similar amounts, suggesting that the various target waveforms undergo simi-

lar group delay effects from our electrode circuitry. Also note that since the target

waveforms 5-1 are symmetric in time (electrode N8 and S12 are time-inverses, as

are N9 and S13), the naively sampled waveforms can be run forward and back-

wards.
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Figure 5-4: Spectral content of diabatic transport voltages. The total transport
time is 4 µs.

Figure 5-5: Naively sampled voltages. DAC update rate of 1000ns.
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Figure 5-6: Schematic of our circuitry in LTSpice. Our DAC inputs are modelled
as piecewise linear functions applied at "Vinput". The stages "End of Fastino"
and "End of HVamp" and labeled. The voltage output at "ION" is our expected
electrode voltage.

5.2 Deconvolution

We have a comprehensive of our system’s circuitry 5-6, and thus we should be

able to find close to optimal inputs to achieve the target waveforms. I simulate a

step response of our circuit by applying a 0 V to 1 V input from our DAC model.

The derivative of the output step response is the impulse response of our circuit,

shown in 5-7.

Figure 5-7: Impulse response of our electrode circuitry.
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Figure 5-8: Magnitude of the transfer
function

Figure 5-9: Phase of the transfer func-
tion. Phase delay: φ

f . Group delay: dφ
d f

I then calculate the FFT of the impulse response, to get the system’s transfer

function. The magnitude of the transfer function is shown in 5-8 and the phase

delay and group delay are shown in 5-9. The transfer function calculated from

the impulse has been compared with the transfer function obtained from a SPICE

.AC analysis, with great agreement.

Using our electrode circuit transfer function, shown in 5-8, we can deconvolve

the spectra of our target waveform Y( f ) with our system transfer function H( f )

using Wiener deconvolution,

X̂( f ) =
1

H( f )

 1
1 + 1

|H( f )|2 SNR( f )

Y( f ) (5.2)

where X̂( f ) is the Fourier transform of our desired input signal, and SNR( f ) =

S( f )/N( f ) is the signal-to-noise ratio of the original signal X̂( f ).

H( f ) becomes quite small at high frequencies (∼1 MHz), which can lead to

the deconvolved input being dominated by high frequency oscillations. To protect

X̂( f ) from blowing up at higher frequencies, we introduce the SNR( f ) term in the

denominator to increase H( f ) when it is small. SNR( f ) of our input waveform

is realistically large at small frequencies, allowing the denominator of (5.2) to

be dominated by H( f ). At higher frequencies, we expect that both H( f ) and

SNR( f ) decrease, regulating the denominator at reasonable levels. Currently, I
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heuristically estimate SNR( f ) to be three different values,


1×106 f ≤ 120kHz

500 120kHz < f ≤ 360kHz

10 360kHz < f

(5.3)

The target waveform for electrode N9 in 5-3 is deconvolved with the circuit

transfer function 5-8 using Wiener deconvolution (5.2) and plotted in Fig 5-10.

Note that since the target waveform only lasts 5 µs, I have chosen to mirror the

signal and add a 300 µs buffer at the beginning and ends, in order to extend the

waveform signal and make it periodic, with the goal of increasing the resolution

of its Fourier transform.

Figure 5-10: Deconvolved signal (red) of the target waveform for electrode N9
(black). The analog output of the deconvolved signal is simulated in SPICE (blue).

The deconvolved signal is a larger amplitude pulse that occurs before the sig-

nal, which is what we were expecting. However, running the deconvolved signal

through SPICE gives an output that does not completely match the target wave-

form. I have found that time-domain simulations in SPICE do not perfectly match

multiplication in frequency domain when non-linear components are involved
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(such as the op-amps in our high-voltage amplifier). Otherwise, with purely pas-

sive RLC components, I have found time-domain simulations to strongly agree

with transfer function convolution.

Perhaps a more robust estimate of our input signal-to-noise-ratio SNR( f )

would lead to better results in deconvolution. However, it is not a deal-breaker

that the deconvolved signal is not perfect, because we would not be able to input

such an analog signal to our system anyway.

5.3 Local Minimization

Once again, we are limited by the update rate of our DACs and thus must sample

the deconvolved signal. Naturally this will introduce more errors in our wave-

forms. However if we assume the deconvolved signal is close enough to the

globally optimal input waveform, then sampling the deconvolved signal should

still get us closer to the optimal inputs compared to sampling the target wave-

form. A local optimization cycle may be enough to get us within the basin of the

global minimum.

As compared to sampling the target waveform, which distorts and delays the

voltage signals, sampling the deconvolved waveform removes the time delay but

still results in a distorted waveforms, usually showing up as an oscillation towards

the end 5-11.

We then wrap the waveform error into a cost function 1 and run a local opti-

mization cycle based on SciPy’s Sequential Least Squares Quadratic Programming

algorithm to better match the target waveforms.

The initial guess to the optimization cycle is the sampled deconvolved signal

(shown in blue in Fig 5-11, which I believe to be close enough to the globally

optimal input waveform that a local minimization will find these optimal inputs.

The optimization cycle takes on average a couple hours to run, finishing with

1Cost function engineering is a future path line of work. There are various things you can put
in this cost function.
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Figure 5-11: Sampling the deconvolved signal. Time (µs) plotted on the x-axis.
The timing of the voltages are better than the naive voltages, but there’s uncon-
trolled oscillations at the end.

around a couple thousand SPICE simulations to evaluate the cost function.

Figure 5-12: After an optimization cycle. Time (µs) plotted on the x-axis. Smooths
out the ending oscillations to better match the target waveform.
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The output of the optimization cycle is shown in 5-12. Compared with the

sampled deconovlved signal, output waveforms from the optimized inputs do

not have large oscillations at the end. The optimal inputs are highly variable

and larger in amplitude than the target waveform, with multiple swings between

positive and negative voltages. This is intuitively reasonable since we must re-

ally drive our circuitry to overcome the low-pass filtering effects. It is previously

thought that bang-bang protocols (using only two voltage sets: one at the first

position, and the second at the ending position) are the fastest we can run ion

transport [19]. However voltage waveforms for a bang-bang would be heavily

filtered, regardless of how fast the DAC update rate is, and end up at the mercy

of the circuit’s natural step response. Thus we see here that my method of predis-

tortion leads to large driving inputs that allow us to actually achieve waveforms

that are faster than bang-bang protocols.

A couple remarks about this predistortion method. Because we are predistort-

ing in the time-domain, rather than using analytical transfer functions, we need

to be sure that our SPICE model matches our physical circuit as accurately as pos-

sible. Our predistorted inputs tend to drive our circuit extra hard, meaning that

we are more sensitive to inaccuracies in our circuit modelling. There is no other

way to ensure this besides making measurements of the predistorted waveforms

and comparing with simulations.

While this deconvolution plus local optimization technique can bring us closer

to the ideal inputs than just deconvolution or local optimization alone, there is

still no guarantee that the predistorted inputs are globally optimal. Future opti-

mization techniques could include more powerful global optimization algorithms

(e.g. genetic algorithms, basin hopping), training a neural network to learn the

system’s dynamics, and cost function engineering. While our evaluations of our

cost functions are purely done in simulation, having the ability to incorporate

experimentally measured data (e.g. voltage measurements or even ion motion ex-

perimental measurements) may prove to result in waveforms that are inherently

robust to experimental noise sources that are not included in simulation [73].
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Chapter 6

Experimental Results

In this chapter I will present the experimental efforts on the trapped-ion appa-

ratus at both the MIT Research Lab of Electronics and MIT Lincoln Laboratory.

First, I characterize our electrode circuitry by systematically measuring the step

response of each stage and compare with our model simulated in SPICE. Then,

I present successful diabatic ion transport on the MaxBeta trap and compare the

measured predistorted waveforms with my simulations. Next I discuss the spec-

troscopy data of two 40Ca ions taken during the splitting waveforms 5-2, applied

frame by frame. Finally, I detail a potential advantage of our MaxBeta trap for

precisely controlling the positions of ions in a chain. These efforts to compre-

hensively characterize electrode circuitry, evaluate applied voltages for optimal

transport and splitting, and simulating precise potentials on the MaxBeta trap are

all necessary steps towards achieving rigorous voltage control of trapped-ions.

Further work remains to be done in this direction in order to reliably achieve

optimal shuttling on surface electrode traps.

6.1 Electrode Circuitry Characterization

An accurate model of our system’s electrode circuitry is necessary when applying

voltage waveforms that push the speed of our DACs and amplifiers. Our method

for predistorting waveforms to account for filtering uses many time-domain sim-
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Figure 6-1: The output of the Fastino with a 0 to 2.5 V step input. The cable
from the HD68 Fastino connector and the oscilloscope was modelled as a 100 pF
parasitic capacitor.

ulations of our circuit modelled in SPICE. Certainly the better our SPICE model

predicts voltage outputs, the more confidence we can have that our predisorted

inputs will act favorably on our ions. From SPICE libraries, we have imported the

models for all the integrated circuits (ICs) in our system and have simulated all

the stages from the discrete inputs into the Fastino to the DB25 connectors that

feed into the trap electrodes.

The last requirement is to compare our SPICE simulations with voltage re-

sponses measured in the lab, which we have done stage by stage. The first stage

of our electrode circuitry is the Fastino circuit that amplifies the DAC inputs to a

±10 V output. We measure the Fastino output after applying a step input from

the DAC and compare with the predicted step response from our SPICE model 6-

1. The data and simulation match well and we move onto the next stage, which

is the high-voltage amplifier.

Then we connect the high-voltage amplifier to the Fastino and measure a step

response in a similar fashion 6-2.
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Figure 6-2: Fastino + HVamp output with 2.5 to 5 V and 5 to 2.5 V input steps.

From the measured data, we observe that the amplifier circuit actually had a

higher slew than rate than predicted from the SPICE model. To account for this

extra slew, a small change was needed in the model of the LTC6090-5 op amp in

the high-voltage amplifier circuit. Increasing the transconductance parameter, Kp,

of two vertical double diffused power MOSFETs by 100 mA/V2 in the LTC6090-5

model accounted for this increase in slew.

The rest of the stages of the circuit consists of two passive low-pass filters built

with linear R, L, C components only. Most of the components are well-known,

except for the NFE61PT472C1H9L electromagnetic interference (EMI) filter. This

component is listed as a third-order T-type low-pass filter with capacitance of 4.7

nF and two inductors of an unspecified value 6-3. To determine these values, I

powered EMI filter component by itself with a Agilent 33250A function generator

and measured the transfer function with a Tektronix TDS 2024C oscilloscope.

Since the transfer function of this filter topology is analytically well-known, I was

able to fit the analytical transfer function to the measured data to determine an

inductance of L = 0.878± 0.005 µH and a resistance of R = 5.14± 0.10Ω 6-4.
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Figure 6-3:
Circuit model
for the EMI
filter.

Figure 6-4: The fitted transfer function is shown in dotted
black and the measured data points is shown in blue. The χ2-
probability is 98%.

The final step response of the entire circuit with our modified values is shown

in Fig 6-5.

Figure 6-5: Full circuit output with output with 2.5 to 5 V and 5 to 2.5 V input
steps.
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6.2 Diabatic Ion Transport

We now investigate diabatic transport on the MaxBeta trap. Due to the inner

segmented electrode geometry, the MaxBeta trap can easily provide a strong axial

confinement, which we have shown to be quite advantageous for fast ion transport

in chapter 4.

We courageously try a bang-bang protocol by very coarsely sampling the

transport waveforms in Fig 5-1. We start the 40Ca ion at the center of electrode

S12 (corresponding to an axial position of 186.5 µm (2-4)) using the first voltage

set. Then we apply the very last voltage set, corresponding to harmonic trap at

the center of the next electrode (231.5 µm), and let the electrode filters + ion do

its thing. We then transport the ion back to the starting position using slower

transport waveforms that we have tested to lead to no motional excitation.

Remarkably, measuring the ion’s motion with sideband spectroscopy after

transport resulted in a motional excitation that is consistent with zero quanta1.

This bang-bang transport demonstration shows that our ion is protected by elec-

trode filtering and a high axial frequency. The filtering allows voltage waveforms

to respond smoothly and the high axial confinement keeps the imperfect controls

from exciting the ion. The transport trajectory certainly did not follow the in-

tended STA protocol ((4.23)) because we let the electrode filters respond naturally,

but the deviation in transport, δq, was not large enough to excite the ion. With

a DAC update rate of dt = 1000 ns, we would hope that a bang-bang proto-

col would finish in 2 µs. However, with Mr. Jules Stuart’s transport verification

scheme, we were able to observe that it took around 15 µs for the ion to be trans-

ported, which is reasonable given our low-pass filtering.

In hopes of transporting faster than the natural step response of our circuitry,

we predistort the transport waveforms 5-1 using my predistortion method de-

scribed in chapter 5. We also push Fastino to its speed limit by finding predis-

torted inputs for update rates of 1000 ns, 800 ns, and 600 ns. Stuart measured the

1The smallest nonzero excitation we can measure is actually 0.2 quanta
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Figure 6-6: Measurements of S13 waveform (blue) and simulated waveform
(dashed black). (a) bang-bang (b) predistorted dt = 1000 ns (c) predistorted dt
= 600 ns (d) predistorted dt = 800 ns.

resulting waveforms with an oscilloscope and observed timing issues that lead to

inconsistent triggering. These timing issues are believed to be caused by a bug in

the ARTIQ system and will be investigated further. Although the ion appeared

to have been successfully transported, it is hard to make any strong claims to the

transport excitation due to the inconsistent timing.

Mr. Jules Stuart was able to measure the waveform on electrode S13 for the

three update rates despite the timing issues and I compare them with the expected

waveform simulated in SPICE, shown in Fig 6-6. Turns out that the measured

waveforms were significantly slower than expected. Parasitic capacitance from

cabling and measuring apparatuses were added to the model but no change in

the linear RLC components could account for a discrepancy this large.

Since the waveforms had timing issues, I decided instead to analyze the model

of our DAC inputs. The specifications of the AD5542 IC in the Fastino model

report a 1 µs settling time and an output impedance of 6.25 kΩ. We’ve previously
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Figure 6-7: Measured waveform (blue) and simulated waveform (dashed black)
for electrode S13 with an adjusted DAC model. (a) bang-bang (b) predistorted dt
= 1000 ns (c) predistorted dt = 600 ns (d) predistorted dt = 800 ns.

modelled this chip as a piece-wise linear input, Vinput, in series with a 6.25 kΩ

resistor, R8, 5-6. Due to fast update rates below 1 µs and the observed timing

issues, both the piece-wise linear model and the value of R8 could be off.

I doubled the value of R8 to 13 kΩ, which led to a much stronger agreement

between simulated and measured waveforms in Fig 6-7. Note that the agreement

for the predistorted waveform with dt = 1000 ns is great up until a point 6-

7(b). I was able to explain this behavior by simulating a large 40 V glitch at the

beginning of sixth voltage update. Also, to get the agreement between simulation

and measurement for bang-bang waveform, 6-7(a), I had to change the value of

R8 to 25 kΩ instead.

This characterization of diabatic transport waveforms suggests that a stronger

model of our DACs is needed. While our previous characterization of our circuit

used a single step response, we are now driving our DACs essentially at their

speed limit, and our waveform outputs have shown to be sensitive to our DAC

timing. It is still unexplained why the R8 value changes when we perform voltage

steps in quick succession, what is causing the glitch behavior in 6-7(b), and how
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well our piece-wise linear model describes the DAC. These questions may be

answered by measuring the output of the AD5542 chip in the Fastino directly

during these transport waveforms. While we have statically characterized our

circuit in the previous section, we now must characterize the circuit during fast

dynamical changes.

We have demonstrated that even without a perfect model of our circuit dynam-

ics, we can be confident that our transport operations will end up cold. A large

axial frequency during transport can ensure that ions will be minimally excited

during transport. However, to drive the waveforms faster than the filtering cut-

offs, we must predistort the waveforms with an accurate dynamical model of the

circuit. Future characterizing of the DACs during waveform updates is needed to

ensure that cold transport is also as fast as we would expect.

6.3 Splitting Spectroscopy

The maximum β value that our MaxBeta trap is poised to create has never been

demonstrated before. As such, we are in uncharted territory and it is important

to carefully characterize these strong quartic potentials and their effects on ion

crystals. To do this, we slowly step through the optimal splitting waveforms in

the previous chapter, 5-2, and measure ion spectroscopy to determine the axial

mode frequencies throughout the split. The results of sideband spectroscopy is

shown in Fig 6-8.

By taking the difference in the corresponding sidebands at each index, we may

plot the COM and stretch frequencies as a function of the index. The expected

frequencies from our splitting waveforms is also plotted in 6-9. At first glance it is

obvious that we do not have the level of control during our splitting operation that

we would like. Furthermore, we hope that the COM frequency during the split

stays constant (for optimal splitting) rather than varying over a couple hundred

kHz like we measure. It is also interesting that the measured stretch and COM

mode frequencies essentially remain separated by a factor of
√

3 while we should
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Figure 6-8: Sideband data during a slow motion split. Each horizontal trace is a
different index of the splitting waveform, starting with index 1 at the bottom and
reaching index 83 at the top. The difference between the two sideband peaks gives
the mode frequency. The vertical bars shows the expected sideband location for a
COM frequency of 1.2 MHz (red) and a stretch frequency of 2.1 MHz (green).

Figure 6-9: Expected and measured axial frequencies during a slow motion split.

115



N21 N20 N19 N14 N13 N12 N11 N10 N9 N8 N4 N3 N2 N1

0 0 0 0 0 0 0 0 -0.14 -0.14 0 0 0 0

S1 S2 S3 S4 S8 S9 S10 S11 S12 S13 S14 S19 S20 S21

0 0 0 0 0 0 0 0.45 0.07 0.45 0 0 0 0

Table 6.1: Voltages for Ez = 1 V/cm on the MaxBeta, applied at a position of
(x, y, z) = (0, 186.5, 50) µm. Electrode names correspond to positions in Fig 2-4.

expect that these two modes converge as the ions move apart. This suggests

that there are experimental errors that cause the potential to remain as a single

harmonic well throughout the split, rather than transforming into a double well.

The critical point of our split (where β reaches its maximum value) occurs

around index 40. This is also when we are driving our electrodes the most by

applying +40 V on two electrodes. Thus there will likely be strong electric fields

in the ẑ direction. We may solve for the voltage sets that lead to a z-field of 1 V/cm

at the center of the split (186.5 µm)). Such a voltage set is shown in Table 6.1.

Figure 6-10: Simulated spectroscopy after adding various Ez fields, shown on the
y-axis. The vertical bars show the experimentally measured frequencies at index
15. Based on this scan, an optimal Ez field is ∼9.5 V/cm

For each index, we may figure out the proper amount of Ez field to add in order
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to explain our spectroscopy data. I scan over a large range of Ez at each index,

and for every Ez value, I add the corresponding voltage set in Table 6.1 to obtain

a new adjusted voltage set. I then calculate the resulting potential using (3.3), run

my ODE solver with two 40Ca ions, take the FFT of the oscillation in the adjusted

potential, and plot the resulting spectrum in Fig 6-10.

Fig 6-10 shows the manual tuning process for a single potential during the

splitting (index 15). The added Ez field is shown along the y-axis, with each cor-

responding horizontal plot showing the peaks of the mode frequencies calculated

with my ODE solver. The two vertical bars correspond to the measured mode fre-

quencies at index 15. For this specific example, the simulated modes best match

the measured modes when Ez ≈ 9.5 V/cm.

After repeating this tuning process for every index, we can now plot the op-

timal Ez field to add at each index in order to match the measured spectroscopy

data with simulation, shown in Fig 6-11a. While the reason to require such a Ez

correction is still unknown, it is interesting that Ez reaches a maximum magnitude

near the critical point of the split, suggesting that the ion crystal is not very well

behaved with +40 V electrodes. Furthermore, the shape of the optimal z-field

seems to mirror the behavior of the β-term during this splitting protocol. This

might be because when β is large, larger voltages on the electrodes are required,

but larger electrode voltages may drive the ions in unpredicted ways. A z-shim

up to 10 V/cm is not out of the ordinary for standard control of ions in surface

traps, however a −70 V/cm z-shim is quite large. Further work remains to be

done in understanding the mechanism behind this Ez behavior.

To actually apply the optimal Ez field in my simulations, I must add the corre-

sponding voltage set in Table 6.1, thereby adjusting the voltage set at every index.

The new voltage set is closer to what the ions actually "felt" during the split, a

so-called "effective" voltage. The effective voltage is plotted in 6-11b.

It is interesting to note in 6-11b that the effective voltages qualitatively look like

the applied splitting voltages in Fig 5-2, except the effective voltages are much

smaller in magnitude. This suggests that although we have supplied +40 V to
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(a) Added Ez field to qualitatively account for the measured spectroscopy.

(b) Voltages on electrodes {N8, N9, S11, S12, S13} after adding the optimal Ez field.

Figure 6-11: Spectroscopy tuning
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Figure 6-12: Simulated spectroscopy with measured data overlaid. The bars show
the measured data. Each horizontal trace represents a different time step along
the split, with index 0 at the bottom and index 83 at the very top.

our trap electrodes at the critical point, the ions have only "felt" +17 V. Again,

the reason behind this discrepancy is not well understood, but I have some pos-

sible hypotheses. Perhaps the large positive voltages push the ion away in the ẑ

direction, where it feels a smaller effective axial potential at the new z-position.

Another suggestion could be due to a decrease in stability as the large values on

DC electrodes reduce the confinement in the radial directions. A third possibility

could be due to the fact that the ion crystal orientation may no longer be guaran-

teed to lie along the axial direction, which would drastically affect the frequencies

we measure with sideband spectroscopy.

We now have a possible model for the discrepancy between our experimentally

measured and simulated spectroscopy. I then overlay the simulated spectroscopy

adjusted with the optimal Ez field, shown in 6-12.

While simulations have helped to begin explain the measured spectroscopy of

our split, the exact underlying mechanism is still unknown. Future work remains

to identify and also correct for sources of this discrepancy. Once this is satisfac-
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torily understood and controlled, we can then work on speeding up the splitting

experiment, with the ultimate goal of achieving a cold split in the faster-than-

adiabatic regime.

6.4 Equally-Spaced Ion Chains

Besides a large quartic confinement, another advantage of the MaxBeta trap’s

finely pitched electrode layout (45 µm on the smaller electrodes) is the ability to

create potentials that are highly variable in space. By alternating positive and neg-

ative voltages on neighboring electrodes, one can create a potential that mimics a

lattice potential 6-13.

Figure 6-13: Funky potential on the MaxBeta!

This enhanced control of potential shapes can perhaps be more usefully uti-

lized to engineer quartic potentials with a flat bottom, in order to hold ions in a

chain at equally spaced intervals. I wrote an optimizer in SciPy that performs a

local search for α and β parameters that lead to an equally spaced equilibrium
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position for a chain of N ions. To calculate the ion chain’s equilibrium positions,

I minimize the total potential energy of the chain given by,

U(~x) =
N

∑
i

qi

(
αx2

i + βx4
i + ∑

j 6=i

1
4πε0

qj

|xj − xi|

)
(6.1)

Where the potential energy, U, reaches a minimum at the equilibrium configura-

tion, ~x(0) =
[

x(0)1 x(0)2 . . . x(0)N

]
. The spacing between neighboring ions in the

equilibrium configuration, ~x(0), is compared to the target spacing and the cost

function is the squared error of the spacing.

I performed this search on a 4-, 5-, and 9-ion chain of 40Ca spaced by 5 µm.

A summary of the results can be seen in Table 6.2. Note that by tuning just two

parameters we can accurately space a 5-ion chain, but not a 9-ion chain. Perhaps

by allowing for higher-order potential shapes beyond 4th order can allow one

more finely tune the 9-ion case.

N α ω0
a β β/β0

b inter-ion spacing
(V/m2) (kHz) (V/m4) (µm)

4 2.588×10−6 562 2.346×10−8 0.12 5.000, 5.000, 5.000

5 1.407×10−6 415 1.346×10−8 0.07 5.000, 5.000, 5.000, 5.000

9 4.158×10−8 71 2.617×10−9 0.01 5.110, 4.865, 4.955, 5.083, 5.083, 4.955, 4.865, 5.110

Table 6.2: α and β values for a 4-, 5-, and 9-ion 40Ca chain. aFor a purely harmonic
potential with an α value confines an ion at frequency ω0 =

√
2αq/m. bThe

maximum beta value, β0 on our trap is 2×10−7 V/m4.

It is worth mentioning that I have not constrained the mode frequencies for

these chains. As seen in the small values of α and β, that the externally applied

field becomes smaller in magnitude to equally space a longer ion chain. Thus

if the ions are too far spaced, their Coulomb interactions may not be enough to

actually provide a strong enough confinement to keep the ions stable and shielded

from environmental noise sources.

We solve for voltages to achieve the desired potential for the 4-ion chain case,

shown in Table 6.3. Note that voltages are more or less symmetrical, as would be
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expected from a potential with purely even powers.

N21 N20 N19 N14 N13 N12 N11 N10 N9 N8 N4 N3 N2 N1

8 8 8 8 8 8 8 -16.22 -1.28 -1.36 -16.47 8 8 8

S1 S2 S3 S4 S8 S9 S10 S11 S12 S13 S14 S19 S20 S21

8 8 8 8 8 8 8 8.87 0.47 8.94 8 8 8 8

Table 6.3: Voltages for achieving a quartic potential to equally space four 40Ca
ions. Electrode names correspond to positions in Fig 2-4.

The simulated spectroscopy for four 40Ca ions with the applied voltages in 6.3

is depicted in 6-14. The four axial modes have frequencies of 893 kHz, 1.536 MHz,

2.020 MHz, 2.332 MHz.

Figure 6-14: The frequency of the four axial modes in a chain of four 40Ca ions
spaced by 5 µm.

These voltages will hopefully be applied to the MaxBeta trap. We can more

precisely engineering potentials by expanding to higher order terms, but finding

voltages to constrain those potentials is trickier, because higher order corrections

are typically smaller and thus harder to constrain. Further work remains to be
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done characterizing the sensitivity of the ion chain to stray fields and voltage

errors.

6.5 Summary

The four experimental results presented in this chapter are all necessary efforts to

achieve robust, diabatic transport and splitting. They each show the benefits of my

numerical tools to better understand ion motion dynamics on surface electrode

traps.

While static characterization of our circuit transfer function has been well

demonstrated, the dynamics of our circuit during fast waveforms, especially the

DACs, desire more investigation. Fortunately we have shown that we can reliably

achieve cold ion transport on the MaxBeta trap, and we are positioned to push

the limits of our circuit system to achieve faster-than-bang-bang transport.

Our splitting spectroscopy data shows that the MaxBeta trap is more than ca-

pable of producing strong confinement of two 40Ca ions, which is highly advan-

tageous for achieving fast and cold splitting. We are currently working towards

understanding the sensitivities of the ions during a large quartic confinement and

hope to be able to control the underlying mechanisms causing the variable axial

mode frequencies. Only once this is well controlled, may we begin predistorting

waveforms for fast splitting. As a by-product of understanding the large quartic

potentials on our MaxBeta trap, we may possibly gain enough voltage control to

precisely engineer potentials to keep long chains of ions equally spaced.

To achieve optimal shuttling operations on modern, scalable ion traps, I strongly

recommend the use of rigorous and comprehensive simulations to first under-

stand the effects of experimental imperfections on ion dynamics, and then work

towards controlling them.
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Chapter 7

Conclusion

The research questions tackled in this thesis reflects the state of modern trapped-

ion quantum technologies. Ion trap quantum computers have grown beyond sci-

ence experiments and are demanding serious considerations into their potential

for large-scale quantum processing. The use of industrialized fabrication tech-

niques, state-of-the-art integrated technologies, and collaborations outside aca-

demic groups have brought an engineering lens to trapped-ion research. A com-

mon goal for many engineers is to create robust systems and my work in this

thesis has brought robustness questions to ion shuttling operations, which are

likely to be crucial in future trapped-ion devices.

I present comprehensive simulations of ion shuttling experiments, from mod-

elling our voltage controls to evaluating state-of-the-art ion shuttling theories. I

bridge the gap between theory and experiment, by collaborating with Gonzalo

Muga’s theory group to consider realistic experimental noises, accurately char-

acterizing our system’s circuitry, and optimizing waveforms to achieve optimal

shuttling protocols. My ODE solver has allowed me to identify key characteris-

tics of optimal shuttling operations, which then I use to extend existing splitting

methods beyond the state-of-the-art STA splitting protocol [53]. My work with

numerical simulation tools, like ITVG, provide a deeper understanding of ion

motion dynamics on surface traps by analyzing spectroscopy data of a slow mo-

tion split.
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I have distilled the requirements for optimal shuttling operations into two

criteria: tight and rigid axial confinement. While these criteria has been satisfied

for ion transport, ion splitting remains a harder problem to solve. Achieving tight

and rigid confinement during a splitting operation requires a custom-designed

surface trap with an optimal electrode layout.

I present experiments on the MaxBeta trap towards achieving fast and cold

ion splitting. While we show that our MaxBeta trap can indeed provide tight

confinement during a split, future work remains in understanding and controlling

the stray fields during a split.

Future work also remains to be done in incorporating closed loop feedback

with simulation. Currently most ion shuttling operations are open loop, relying

on the accuracy of our system models. Extending the cost function to include

experimentally measured voltages, or training a machine learning model on ion

motion data may help to account for experimental errors.

My ultimate vision in this field is for shuttling operations to be seamlessly

and robustly integrated in quantum algorithms. While transport and splitting are

the bread and butter operations, there is a need to control and operate on longer

ion chains, and even mixed-species chains. Finally, ion shuttling does not have

to be limited to transporting quantum information. There have been research

and demonstrations of shuttling for fast entangling operations, logic gates, phase

gates, and Fock state preparation [75, 15, 52, 66]. A central enabling tool to all

the operations presented in this thesis are the simulation capabilities to improve

our knowledge and control of the ion’s motional dynamics in scalable surface

electrode traps.
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