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Abstract
This thesis introduces new methods to e�ciently infer and propagate nuclear data uncer-
tainty across Monte Carlo simulations of nuclear technologies. The main contributions
come in two areas: 1. novel statistical methods and machine learning algorithms (Embed-
ded Monte Carlo); 2. new mathematical parametrizations of the quantum physics models
of nuclear interactions and their uncertainties (Stochastic Windowed Multipole Cross Sec-
tions).

1. Embedded Monte Carlo infers the uncertainty in nuclear codes inputs (reactor ge-
ometry, nuclear data, etc.) from samples of noisy outputs (e.g. experimental ob-
servations), and in turn propagates this uncertainty back to the simulation outputs
(reactor power, reaction rates, flux, multiplication factor, etc.), without ever converg-
ing any single Monte Carlo reactor simulation. Such embedding of the uncertainty
within the Nested Monte Carlo computations vastly outperforms previous methods
(10–100 times less runs), and is achieved by approximating the input parameters
Bayesian posterior via variational inference, and reconstructing the outputs distribu-
tion via moments estimators. We validate the Embedded Monte Carlo method on a
new analytic benchmark for neutron slowdown we derived.

2. Stochastic Windowed Multipole Cross Sections is an alternative way to parametrize
nuclear interactions and their uncertainties (equivalent to R-matrix theory), whereby
one can sample on-the-fly uncertain nuclear cross sections and analytically compute
their thermal Doppler broadening. This drastically reduces the memory footprint of
nuclear data (at least 1,000-fold), without incurring additional computational costs.

These contributions are documented in nine peer-reviewed journal articles (eight published
and one under review) and seven conference articles (six published and one under review),
constituting the core of this thesis.

Thesis Supervisor: Benoit Forget
Title: Associate Department Head, Department of Nuclear Science & Engineering
Professor of Nuclear Science & Engineering
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I am just the messenger...
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The Take of Greg Sanchez, the man who built his freedom alone

In the summer of 2017, I drove across America to the deserts of New Mexico, to
work at the theoretical division of Los Alamos National Laboratory. Finding rent in
the towns of Los Alamos or Santa Fee quite expensive, I looked north to the town
of Española, much to the fear and dismay of my supervisors Mark Paris and Gerry
Hale as it was the national epicenter of the opioids epidemic. I ended up living in
the nearby Native American Pueblo of Ohkay Owingeh, where Greg Sanchez lent me
a room in his magnificent adobe house. In Tano, “Ohkay Owingeh” means “place
of the strong people”, and Greg Sanchez was a prodigious force of nature. Standing
straight with a profound sense of dignity and pride in his Native American origins,
Greg was a strong man with long black hair falling straight behind his shoulders,
and a deep look in his eyes. He showed me around the house, explaining with pride
the traditional adobe construction which let sunlight in during winter and provided
shade during summer. He showed me the view of the Rio Colorado and the Sangre de
Cristo mountains, and I saw a shinny light in his dark eyes. “Greg, what a magnifi-
cent house! It looks both traditional and new, did you acquire it recently?” I asked.
“No, I build it myself”, replied this man of few words. “You mean, you designed
it?” I questioned. “No, I built it with my own two hands”. “Impressive! I exclaimed
in admiration, what do you do for a living?”. And Greg replied: “I am a nuclear
weapons designer”. I was shocked and in awe. Greg had spend two years of his life
designing nuclear weapons during the day, and then his two-storey home during the
night, driving after work to lay every adobe brick one by one, all by himself. “I did it
for my wife and my two daughters” he smiled pointing to their pictures on the wall.
I opened the freezer, and it was full of brown meat. “What is it?” I asked. “There
is a good hunting season, Greg noted, I go to the mountain to hunt the Elk, bring
one back, and cut it so we have natural, healthy meat”. I could sense the pride he
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took in his self-reliance. He had actually gone even further: he had bought the lands
between his house and the Rio Colorado, and a tractor, and started farming the land,
ploughing the earth in the evenings and the weekends, to achieve food su�ciency. It
was a Herculean task. Greg had build his freedom with his own two hands, all to
provide for his wife and his two daughters. And it showed: Greg, the house, and the
scenery, were majestic.
I stopped for a moment to contemplate it all, feeling very lucky and humbled. “Greg,
it is an honor for me to live this summer in your house you built for your family. Are
you o� all together for the summer?”. He looked at the horizon, calm, proud, and
somber, like a fearless warrior facing death. “No, my wife found it too isolated here.
She left to the city with the girls”...

This tragic tale is a cautionary lesson for each one of us in pursuit of freedom. And
also for the nuclear industry as a whole: building prodigious things that people might
not want. Sharing this life story is my way here of giving back, and saying thank you.
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Chapter 1

Introduction | Executive summary

Imagination is more important than knowledge.
- Albert Einstein

Nuclear computations are amongst the world’s most challenging, and still today
require the world’s top supercomputers. Advances in nuclear computations therefore
impact the broader field of high performance computer science and engineering.

Both the Monte Carlo method and supercomputers emerged from the Manhattan
Project, to develop atomic weapons. Both have been necessary to their stewardship
ever since nuclear tests were banned by international treaties. Civil nuclear power
also heavily relies on nuclear computations in order to meet stringent regulatory
requirements. To design future advanced nuclear technologies — for zero-carbon
energy, medical applications, or weapons stewardship — we must be able to simulate
nuclear reactors to high predictive fidelity and with trustworthy confidence intervals.

By developing a series of new mathematical, physical, and computational methods
— both in statistical inference and machine learning (Embedded Monte Carlo) as well
as in nuclear physics and data models (windowed multipole stochastic cross sections)
— our work holds the promise of greatly advancing the accuracy and e�ciency of
such intensive computations.

1.1 The problems
The most accurate nuclear simulators are Monte Carlo particle transport codes. They
compute the random walks of nuclear particles across a reactor, and average their
outcomes. Yet, quantifying the uncertainty of these outputs has been a major com-
putational challenge. The two inputs of Monte Carlo codes are the reactor geometry,
and the nuclear physics properties of materials. In particular, elemental nuclear
reaction rates – for instance the probability of a fission occurring when a neutron
hits a uranium 235U nucleus – are represented with energy-dependent cross sections,
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parametrized by nuclear data. Since we know these cross sections in part from exper-
imental measurements, nuclear data therefore comes with uncertainties. Propagating
this nuclear data uncertainty across Monte Carlo simulations, from fundamental nu-
clear physics to nuclear reactor power, is amongst the hardest uncertainty to compute
in the field. So is the converse problem: inferring back an uncertainty distribution of
nuclear data from integral reactor experiments.

Currently, the two state-of-the-art uncertainty methods are: Nested Monte Carlo
(NMC); and Sensitivity Analysis (SA).

• Nested Monte Carlo (NMC) samples nuclear data from its uncertainty distri-
bution, and for each runs a Monte Carlo nuclear reactor simulation, yielding a
histogram of outputs (e.g. reactor power). However, these nested Monte Carlo
computations are forbiddingly costly, as we must converge thousands of di�er-
ent reactor simulations for the outputs. But even sampling the input possible
nuclear cross sections from their uncertainty distribution presently represents
a gargantuan computational and memory burden. That is because of the way
we account for temperature e�ects, in particular Doppler broadening, which is
the averaging of cross sections over the thermal motion of the target atoms.
Doppler broadening is of critical importance in neutron transport applications,
as it ensures the stability of many nuclear reactors (negative thermal reactivity
feedback). Currently, Doppler broadening to any desired temperature is per-
formed by interpolating between pre-computed Doppler broadened cross sec-
tions at di�erent reference temperatures. This costly process itself must them
be repeated myriad times if we want to generate uncertain cross section inputs.

• Sensitivity Analysis (SA) considers small perturbations in nuclear data inputs,
and propagates them to the outputs of the nuclear reactor simulations. However,
computing the sensitivities of the outputs to the inputs – say the derivatives
of reactor power to nuclear data – is costly and di�cult (requiring to solve the
adjoint problem and store many derivatives), while accounting for the e�ects of
temperature Doppler broadening on the sensitivities is currently out-of-reach.
Also, sensitivity analysis is only valid to first order, even though some nuclear
data uncertainties are large enough to propagate non-linearly. It is possible to
develop higher-order sensitivity methods, but at an impractically higher compu-
tational and memory cost. Furthermore, sensitivity analysis can only quantify
the e�ects of input perturbations on one given output at a time.

1.2 Our solutions
In this work, we developed new Embedded Monte Carlo statistical methods to infer
and propagate inputs uncertainty across intractable ensemble-average stochastic sim-
ulations. Embedded Monte Carlo is based on variational Bayesian inference and mo-
ments propagation in Nested Monte Carlo computations. For nuclear reactor physics,
Embedded Monte Carlo constitutes a breakthrough compared to the present state-
of-the-art uncertainty propagation methods (sensitivity analysis and Nested Monte
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Carlo): it can propagate nuclear data uncertainty non-linearly across a complex trans-
port simulation to all the integral outputs at once with only twice the number of neu-
trons of a single Monte Carlo run without uncertainty propagation, versus 1000 times
for fast-TMC (an e�cient NMC scheme) or 10 times for sensitivity analysis per any
given output quantity (because of sensitivity estimations). Embedded Monte Carlo
can also non-linearly infer nuclear data uncertainty across integral experiments, which
can only be achieved presently with linear Bayesian update for Gaussian sensitivity
analysis, or costly point-by-point Bayesian update on the NMC histogram.

However, to successfully apply Embedded Monte Carlo to nuclear reactor compu-
tations, we must be able to e�ciently sample and Doppler broaden possible nuclear
cross sections from their uncertainty distribution, and for each simulate correspond-
ing particle random walks.
We reduced this memory burden by developing an optimal Doppler broadening in-
terpolation method (Kernel reconstruction quadrature) which cuts the number of
pre-computed cross sections at reference temperatures ten times over the present
state-of-the-art.
Nonetheless, to reap the full benefits of Embedded Monte Carlo, we must be able to
sample stochastic nuclear cross sections at any temperature on-the-fly, that is with-
out any interpolations nor pre-computations stored in memory. Two capabilities are
needed for this: 1. Generate on-the-fly stochastic cross sections from their nuclear
data uncertainty distribution at zero Kelvin; 2. Doppler broaden them to any tem-
perature on-the-fly. We achieve both by developing a new mathematical formulation
of the quantum physics models for nuclear interactions — the windowed multipole
representation of R-matrix cross sections — which changes the parameter space of
nuclear data, replacing traditional resonance parameters with windowed multipole
parameters.

The multipole representation of nuclear cross sections was introduced by R. Hwang
at the end of the 20th century, with the promise of enabling on-the-fly Doppler broad-
ening. Yet it su�ered from a set of drawbacks: the formalism was only valid for
neutron particles without threshold; there was no analytic way to perform Doppler
broadening at low-energies; and converting nuclear resonance parameters data to
multipoles was complex and numerically unstable. We solved all these issues by
fully establishing the windowed multipole representation as an alternative physical
parametrization of nuclear cross sections (R-matrix theory), encompassing charged
particles and thresholds, thereby providing the foundations for a standard nuclear
data Windowed Multipole Library. We showed Hwang’s numerical instabilities were
caused by spurious pole parameters, and derived the correct number of poles, prov-
ing unexpected cancellations. We also established methods to directly convert nuclear
data and its uncertainty into windowed multipole parameters and their corresponding
covariances. We moreover derived a method to Doppler broaden windowed multipole
cross sections at low-energies. In the process, we were also able to establish arbitrary
order temperature derivatives of cross sections, which could prove a boon for thermal
feedback multi-physics coupling computations. Finally, we derived a neutron slow-
down benchmark which, for the first time, analytically solves the neutron slowdown
problem across overlapping resonances, using multipole cross sections. We validate
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our new Embedded Monte Carlo method on this analytic benchmark, comparing its
results to Total Monte Carlo and first-order Bayesian sensitivity analysis.

By enabling the on-the-fly sampling of uncertain nuclear cross sections and their
analytical Doppler broadening, the Windowed Multipole Library cuts 1,000 times over
the memory requirements of cross section Doppler broadening, at virtually no addi-
tional processing cost, in turn compounded over the 1000-10,000 samples of uncertain
nuclear cross sections required to run Nested Monte Carlo (while Doppler broad-
ened uncertainty quantification remains out-of-reach of previous sensitivity analysis).
Thus, compared to Nested Monte Carlo, using the Windowed Multipole representa-
tion for Embedded Monte Carlo uncertainty quantification achieves the same accu-
racy on the reconstructed outputs distribution with 10–100 times less neutrons (and
thus processor cost), and 200,000–2,000,000 times less memory: a game-changer for
modern supercomputers.

As such, we here introduce a versatile suite of novel physics, statistics, algorithms,
benchmarks, and methods, which can be deployed to perform on-the-fly non-linear
uncertainty propagation and inference across nuclear Monte Carlo computations: a
breakthrough in the field.

1.3 The claims
This thesis establishes novel statistical methods and algorithms, combined with new
mathematical representations of nuclear physics models, which enable us to infer
and propagate nuclear data uncertainty across Monte Carlo simulations of nuclear
technologies. The main contributions come in seven areas:

1. Establishing Embedded Monte Carlo, a suite of new statistical methods and al-
gorithms to perform approximate Bayesian inference of nuclear data uncertainty
across nuclear transport computations. This Embedded Variational Inference
is performed by a stochastic approximation algorithm that minimizes the in-
formation loss when constraining the Bayesian posterior to a given parametric
family [132, 133].

2. Conversely, Embedded Monte Carlo can then also perform approximate non-
linear forward propagation of nuclear data uncertainty across nuclear transport
computations. This Embedded Forward Propagation is achieved by construct-
ing unbiased estimators of the nested moments, and reconstructing the distri-
bution of outputs accordingly [132, 133]. Given a fixed number of total sim-
ulations, we established the optimal inner-loop-to-outer-loop trade-o� between
converging the mean and the variance of the distribution (figure 3-4).

3. Generalizing the windowed multipole formalism to all R-matrix cross sections
[130], in the process discovering many new mathematical and physical prop-
erties in R-matrix theory [125, 127], including: Mittag-Le�er expansions of
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the outgoing wavefunction and its reduced logarithmic derivative; generaliza-
tion of the alternative (Brune) parametrization to the Reich-Moore formalism;
existence of shadow alternative (Brune) poles; analytic continuation proper-
ties (poles cancellations, generalized unitarity, evanescent closure of cross sec-
tions below threshold); radioactive parameters properties (number and location
on the energy-wavenumber multi-sheeted Riemann surface, poles and residue
widths channel radii invariance properties); generalized Reich-Moore formalism
(converting complex Reich-Moore resonance energies to equivalent real R-matrix
formalism); windowed multipole formalism (analytic continuation and residues
estimation by contour integrals around the radioactive poles).

4. Establishing new methods to convert resonance parameters and their covariance
matrices into windowed multipoles with their multipole covariances [130].

5. Deriving new methods to Doppler broaden windowed multipole cross sections,
in the wake obtaining their temperature derivatives to arbitrary order [197, 130].

6. Establishing an optimal quadrature kernel reconstruction method for Doppler
broadening interpolation of point-wise nuclear cross sections [124].

7. Deriving an analytic benchmark for neutron slowdown [298, 53], with which the
Embedded Monte Carlo methods were validated [132, 132].

These contributions are documented in 9 peer-reviewed journal articles – 8 of which
are published [298, 53, 130, 125, 127, 262, 124, 197], and 1 still under review [132] –
as well as 7 conference papers [133, 129, 60, 222, 123, 131, 128] (one still under review
[133]). Together, their results constitute the core of this thesis.
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Chapter 2

Background:
Monte Carlo particle transport &
nuclear data uncertainty

All models are wrong, but some are useful.
- George Box

Ever since nuclear weapon tests were banned [19, 20, 15, 47, 233, 213, 40], and
stringent regulatory constraints on nuclear power made prototype development pro-
hibitive, the entire nuclear field – from weapon stewardship [39, 44, 204], fission
or fusion electric power generation [312, 37, 310], to medical [224, 226] and space
[247, 297] applications, or scientific investigations such as materials damage [17, 248]
– has had to rely on nuclear computations to design and innovate.

One of the greatest challenges for these simulations has been the accurate quan-
tification and e�cient computation of uncertainties (both on inputs and outputs)
[237, 14, 174, 46]. This doctoral thesis introduces a series of novel tools — from
nuclear physics formalism to applied mathematics methods and statistical inference
algorithms — which, when combined, can systematically quantify uncertainties in
nuclear simulations with equal or superior accuracy than previous state-of-the-art
methods, while outperforming them on computational e�ciency by several orders of
magnitude.

2.1 Monte Carlo particle transport: nuclear simu-
lations

The Monte Carlo method — ubiquitous in modern science [211, 240, 170] — was born
at Los Alamos National Laboratory during the Manhattan project for the sole initial
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purpose of simulating nuclear weapons [241, 239]. Monte Carlo particle transport
codes are extremely computationally intensive, which is their major drawback. So
much so that they have pioneered and been at the forefront of the high-performance
computing field [141, 176, 7, 229], and, still today, US Department of Energy National
Laboratories [18] — specially the nuclear weapons stewardship ones of Los Alamos
(LANL) [16], Lawrence Livermore (LLNL) [13], and Sandia (SNL) [27], but also
broader scientific and R&D laboratories such as Oak Ridge (ORNL) [22], Argone
(ANL) [3], or Brookhaven (BNL) [4] — possess the world largest supercomputers
[35, 38, 9, 33, 29, 30, 36], dedicated to solving the particle transport problem for
weapon stewardship programs [1, 142, 204, 277] (figure 2-1).

(a) Weapons simu-
lations.

(b) “Trinity” supercomputer, LANL.

Figure 2-1: Nuclear computations have been necessary for the stewardship of nuclear
weapons stockpiles ever since tests were banned [7]. This spearheaded both the Monte
Carlo method [241, 239], and the high-performance computing field [229]. Today’s top world
supercomputers are dedicated to nuclear computations [142] in National Laboratories [18]:
here the “Trinity” supercomputer [36] at Los Alamos National Laboratory [16].

Monte Carlo particle transport codes are the “gold standard” for such high-fidelity
predictive simulations of nuclear technologies. As such, in addition to their initial
nuclear weapons stewardship mission, they are used in many scientific investigations
requiring the modelling of transported nuclear particles (radiation), ranging from
science research (astronomy, climate, and medical sciences), to computer-assisted
design for companies proposing new nuclear technologies with novel geometries and
physical regimes (figure 2-2).

Given how mission-critical the outputs of nuclear Monte Carlo codes can be, it
is of paramount importance to properly quantify their uncertainty. Since they are
stochastic, Monte Carlo codes introduce statistical uncertainty to their results, which
is reduced by simulating the random walks of ever more particles. In addition to this,
one must also account for the epistemic uncertainty introduced by our incomplete
knowledge of the simulated phenomena and of the code inputs. Monte Carlo particle
transport codes take two inputs: (a) the reactor geometry (spacial configuration and
materials); and (b) the quantum physics properties of individual nuclear interactions,
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(a) Westinghouse AP-1000 reactor (2018). (b) Monte Carlo core simulation (2014).

Figure 2-2: Nuclear reactor simulations: help design nuclear technologies by comput-
ing the power distribution of reactor cores (and other reaction rates). Here a simulation
of the Westinghouse AP-1000 [2] pressurized light water reactor [6], performed in 2014 by
CASL [5].

parametrized by so-called nuclear data (figure 2-3).

Monte Carlo particle transport codes — such as MCNP [138], FLUKA [69], Geant4
[58], TRIPOLI-4 [91], Serpent [219], OpenMC [287], the SCALE suite [28](KENO,
TSUNAMI, etc.) or Shift [257], etc. — simulate the outcomes of a myriad of nuclear
particles (neutrons, photons, protons, decay products, etc.) transported across the
geometry of the system, where they interact, scatter, and react with the nuclei of
the core. This random walk spans the space, momentum (velocity or frequencies
and therefore energy and angles), and time dimensions, and as such constitutes a
considerable computational challenge.

In the case of commercial nuclear power reactors (figure 2-2), neutrons are typically
born at high energy from fission reactions. As they collide (scattering) with nuclei
across the geometry of the core, they change energy: mostly slowing down until they
reach thermal equilibrium. Along the way, they can occasionally be absorbed to yield
other nuclear reactions (fission, photon-emission “-capture, –, — or other decays,
fusion, etc.). Many such reactions release energy, which is subsequently deposited in
the core and impacts material temperatures. Some reactions produce more neutrons
than they consume (notably fission of uranium 235U produces 2.5 neutrons on average
while plutonium 239Pu yields 2.88), so that if they happen in the right quantity they
can sustain a chain-reaction, a state called criticality, which can dampen out, stabilize,
or run-away. In this branching process, the mean number of new neutrons produced
by each born neutron is called the multiplication factor ke� . The chain reaction is
maintained (criticality) when ke� = 1, whereas ke� < 1 (subcriticality) entails a the
chain reaction cannot be sustained, and ke� > 1 (supercriticality) an exponentially
increasing chain reaction. The outputs of Monte Carlo nuclear simulations are thus
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the di�erent particle densities and fluxes, and their resulting reaction rates, output
power, and multiplication factor (figure 2-2). The inputs are: (i) the geometry of
the system, and; (ii) the outcomes of individual nuclear reactions, parametrized by
nuclear cross section data (figure 2-3).

Nuclear data

Geometry   Nuclear computation   

Monte Carlo
Particle transport

Figure 2-3: Nuclear computations take two inputs: (i) geometry; and (ii) cross sections.
These are fed into a Monte Carlo particle transport code (or alternatively a deterministic
reactor physics code), such as MCNP [138] or OpenMC [287], which in turns outputs the
reaction rates in the nuclear core. Here shown is the full core 3D Monte Carlo simulation
of the AP1000 first startup cycle produced by VERA in 2014 [31], developed by CASL.

2.2 Nuclear data & cross sections:
Parametrizing quantum interactions

When two nuclear bodies collide and interact, di�erent (probabilistic) outcomes are
possible: they can bounce back (scattering) with a transfer of kinetic energy; they can
form a new compound nucleus which is often less stable and thus decays, releasing a
photon, an alpha particle, or even breaks up into two large stabler nuclides (fission)
while releasing extra neutrons. If the compound nucleus is more stable (fusion) the
extra energy is released in the form of highly energetic particles (often neutrons or
protons). The rates at which all these di�erent outcomes occur when the two bodies
interact are quantified by nuclear cross sections. Nuclear cross sections depend on
the relative energy of the collision, and exhibit quantum resonances, as can be seen
in figure 2-4 for uranium 238U and 235U. A general quantum physics theory, called
R-matrix theory [200, 79, 214, 120], models such interactions and parametrizes this
energy dependence with a set of resonance parameters, together called nuclear data.
Nuclear data thus constitutes our collective knowledge of nuclear interactions, which
nations document in standard Evaluated Nuclear Data Libraries: ENDF [87] (USA),
JEFF [267] (Europe), JENDL [293] (Japan), CENDL [153] (China), BROND [80]
(Russia), TENDL [207, 209] (TALYS).

Throughout this thesis, we will symbolically denote nuclear cross sections at zero
Kelvin (no temperature e�ects) as ‡0(E), and the resonance parameters (and all
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(a) 235U nuclear cross section
(wide energy range).
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Figure 2-4: Nuclear cross sections quantify the ratios of di�erent outcomes occurring
from a nuclear integration, which depend on the energy of the colliding bodies. This energy
dependence of cross sections is parametrized by nuclear data, which describe the quantum
resonances (energies E⁄ and widths “⁄c) as well as the threshold reactions. (a) Several
energy ranges for 235U: low/thermal energy; resolved resonance; unresolved resonance; and
high-energy/optical model. (b) First resonances of 238U, data from JANIS [11]. Natural
uranium is composed of about ≥ 99.3% of 238U and ≥ 0.7% of 235U. Only the latter has a
large fission cross section at low energies, hence the need for enrichment.

nuclear data) as
Ó
�

Ô
, so that R-matrix theory formally describes nuclear cross sections

as a parametric function of energy (represented in figure 2-4):

‡0(E) = f�(E) (2.1)

2.3 The inference problem:
Nuclear data evaluations and inputs uncertainty

Nuclear data is a convenient way of parametrizing nuclear cross sections, but we can-
not measure resonance parameters directly. Only cross sections are observable. To
construct the nuclear data libraries, an evaluation process must thus be undertaken,
whereby resonance parameters are inferred from experimental data.

Nations conduct experimental campaigns to collect nuclear cross section measure-
ments at di�erent energies. Such setups are called di�erential experiments, in that
they are an attempt to directly measure nuclear cross sections at an atomic level.
Pulsating beams of particles (photons, neutrons, protons, alpha particles, etc.) are
projected against target nuclei, and the di�erent reaction outcomes (scattering, cap-
ture, fission, fusion, alpha or beta decay, etc.) are measured along with their experi-
mental uncertainty. The energy of the incoming pulsed beam is selected (to a given
accuracy), for instance the velocity of non-relativistic neutron particles (and there-
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fore their kinetic energy) is resolved by chopping the time-of-flight between the source
and the target, with longer distance allowing for higher accuracy [94]. As such, these
di�erential experiments for nuclear data evaluations require large, expensive facilities
such as the GELINA [103] one shown in figure 2-5.

(a) GELINA di�erential experiment facility.
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Figure 2-5: Evaluations of nuclear data: di�erential experiments measure cross sec-
tions, from which evaluators infer resonance parameters. (a) European GELINA neutron
di�erential experiments facility [103]. (b) Chlorine 35Cl total cross section experimental
measurement points, and the resulting evaluated cross section plotted from the inferred
resonance parameters.

Having collected the di�erential experiments measurements, evaluators must in
turn interpret these results under the prism of the information we have on the exper-
imental setup, and on our knowledge of nuclear physics interactions — the R-matrix
theoretical quantum models of nuclear interactions parametrized by nuclear data —
in order to infer the values of the nuclear data (their uncertainty) that most faithfully
reproduce the experimental observations.
The observed cross section measurements are thus fitted with R-matrix codes [45, 309]
— such as EDA [164, 166] (Los Alamos National Laboratory LANL), SAMMY
[26, 217] (Oak Ridge National Laboratory ORNL), RAC [107] (China), CONRAD
[106] (France), AZURE [63], etc. — to infer the corresponding resonance parame-
ters

Ó
�

Ô
nuclear data. Because measurements invariably introduce epistemic exper-

imental uncertainties (both energy and cross section resolution), ‡(Ei ± �Ei) ± ‘i,
these translate — through R-matrix cross section parametrization (2.1) — into a
distribution of input resonance parameters

Ó
�

Ô
. Traditionally, the latter has been

represented as a multivariate normal distribution, N (�,Var (�)), whose mean is the
estimated true value of the resonance parameters, and whose covariance matrix quan-
tifies our uncertainty on that estimate (figure 2-6 illustrates the uncertain cross section
measurements and the corresponding covariances). Evaluated nuclear data libraries
therefore document both the mean and the covariance matrix of their resonance pa-
rameters. Presently, two methods compete to infer nuclear data and its uncertainty
from di�erential experiments: stochastic inference; and sensitivity inference.
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(a) 239Pu neutron-induced fission
(cross section measurements with uncertainties).

(b) Uncertainty covariance matrix

Figure 2-6: Nuclear data uncertainty. Uncertainty in nuclear cross section measure-
ments from di�erential experiments (a) translate into an uncertainty distribution of nuclear
data resonance parameters

)
�

*
, traditionally represented as a covariance matrix (b).

2.3.1 Stochastic inference: Bayesian Monte Carlo histogram

Stochastic inference is the direct numerical point-wise Bayesian inference of nuclear
data, yielding a histogram of resonance parameters. As such, it is the most straight-
forward way to infer the uncertainty distribution of nuclear data from experimental
observations. Formally, it can be expressed as follows.

Consider a set of input parameters, denoted X in general, in this case these are
the nuclear data resonance parameters X =

Ó
�

Ô
. We denote Z(X) the observable

quantity, for a nuclear data evaluation this would be the cross sections measured in a
di�erential experiment, parametrized as (2.1) from R-matrix theory Z(X) = ‡(E) =
fX=�(E). The di�erential experiments provide us with a data-set D , {Zi} of noisy
observations — measurements of Z(X) cross sections at di�erent energies with their
experimental uncertainty as in figure 2-6(a) — from which we seek to infer a new
distribution of input parameters X|D (nuclear data), starting from a given prior
distribution p(X|◊). We can do this directly by computing the likelihood p(D|X)
of observing D for each possible input values X, and then numerically estimate the
Bayesian posterior p(X|D) histogram using Laplace’s VIth principle of inference [215]:

p(X|D) = p(D|X)p(X|◊)
p(D|◊) (2.2)

For any given input parameters value X, computing p(D|X) — that is the prob-
ability that inputs X produced observables D given their uncertainty — requires
calculating Z(X) and comparing it to the experimental measurements Zi. In a dif-
ferential experiment evaluation, the observable Z(X) may be a direct cross section
point Z(X) = ‡(E), of which we know the parametrization from R-matrix theory
(2.1), or a ratio of such cross sections, all in a well-defined and simple geometry at a
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known temperature and controlled environment. Evaluators can therefore accurately
model the experimental setup and directly compute, for any given set of nuclear data
parameters X, the corresponding observables Z(X), and thereafter perform Bayesian
inference (2.2) numerically, building a histogram of posterior resonance parameters
X|D. Note that this requires a correct accounting of the measurements D = {Zi}

uncertainties, itself a tricky problem requiring models of the experimental setup and
the detectors resolution profiles. Also, an issue common to any Bayesian inference is
that of specifying an appropriate prior distribution p(X|◊).

This stochastic inference method has been called Unified Monte Carlo [100, 101]
or Bayesian Monte Carlo [70, 205, 206] in the nuclear data evaluation field, and the
TENDL nuclear data library is built in this fashion, using the TALYS code [70, 208,
207, 205, 206, 209]. Stochastic inference has the major advantage of being the exact
and direct application of Bayes rule (2.2). It can therefore account for any type of
input and output distributions, and thus go beyond the simple use of multivariate
normal distributions and their covariance matrices. There is indeed a push in the
nuclear data evaluation community towards the use of other uncertainty distributions,
such as lognormals, as some nuclear data parameters must be positive, or exhibit
skewed Bayesian posterior histograms.

Yet, though conceptually simple, stochastic inference is not the norm for nuclear
data evaluations: the most widespread approach to date is sensitivity inference here-
after explained in section 2.3.2. This may in part be due to the following drawbacks:

• As most Monte Carlo methods, stochastic inference can be computationally
expensive.

• In stochastic inference, the posterior distribution comes out in the form of a
point-wise histogram. Storing this information, and sampling from the uncer-
tainty distribution, therefore becomes a challenge of its own. Some approaches
have consisted in fitting the posterior distribution with a well-known parametric
family which is both simple to store and to sample from [100, 194]. Alternative
“brute-force” approaches have also been proposed [101, 205], to sample directly
from the histogram (Markov-chain Monte Carlo (MCMC) [240], Metropolis-
Hastings [170], etc.). But these are cumbersome and unfeasible in practice, they
are also somewhat of an overkill considering that the posterior histograms are
often well fitted by simple distributions (lognormal or normal). Moreover, the
precise posterior also depends on the uncertainty distribution of the measure-
ments, which themselves can also be somewhat arbitrarily set (usually normal,
exponential, Poisson, or log-normal). As such, nuclear data uncertainty is a
good illustration of George Box’s adage: “All models are wrong, but some are
useful.”.

Regardless of which method was used to perform the nuclear data evaluation —
stochastic inference (here explained in section 2.3.1) or sensitivity inference (hereafter
explained in section 2.3.2) — we obtain a Bayesian posterior distribution of nuclear
data (usually described as a multivariate normal distribution of resonance parameters
� with its mean vector and covariance matrix). Figure 2-7 shows how sampling from
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this nuclear data uncertainty distribution in turn generates stochastic cross sections,
through functional parametrization (2.1). The distributions of these stochastic cross
sections balance the di�erent uncertainty profiles from various measurements.

(a) 208Pb cross section measurements
(di�erential experiments)

(b) Stochastic cross sections (208Pb)

Figure 2-7: Stochastic cross sections. Uncertainty in nuclear cross section measure-
ments from di�erential experiments (a) translates into a distribution of resonance param-
eters

)
�

*
. Sampling from this nuclear data uncertainty distribution generates stochastic

nuclear cross sections (b). In red (b), the 208Pb cross section calculated with the mean
resonance parameters.

2.3.2 Sensitivity inference: linear Bayesian Sensitivity Anal-
ysis (SA)

The bread-and-butter way to perform nuclear data evaluations is sensitivity inference,
which is the use of Sensitivity Analysis (SA) to infer uncertainty, and simply consists
of linearizing the input-to-output relations around the mean values (1st-order Taylor
expansion), so as to use conjugate-prior relations to perform Bayesian inference (2.2)
analytically (assuming some conditions on the noisy measurements).

Formally, sensitivity analysis (SA) therefore assumes the uncertainty is small, and
performs a Taylor expansion around the mean input parameters X0 , E [X], so as to
see the 1st-order e�ects of small input parameters perturbations on the outputs:

Z(X) ƒ Z(X0) + ˆZ

ˆX

-----

T

X0

· (X ≠ X0)

= Èa|XÍ + b

(2.3)

with
a , ˆZ

ˆX

-----
X0

b , Z(X0) ≠
ˆZ

ˆX

-----

T

X0

· X0

(2.4)

This linear approximation (2.3) of the Z(X) relation allows to easily translate various
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uncertainty distributions of inputs X into distributions of outputs Z(X) through
a�ne transform (2.3).

This is crucial to perform sensitivity inference, whereby we are provided with
a data-set of ND noisy empirical observations D =

Ó
Zi

Ô

iœJ1,NDK
of the observable

Z(X), and seek to infer a posterior uncertainty distribution on the inputs X|D,
starting from a given prior X|◊ (say corresponding to our present knowledge), using
Laplace’s VIth principle of inference (2.2). A key quantity in this step is the likelihood
p(D|X) that the input parameter values X yielded measurements

Ó
Zi

Ô

iœJ1,NDK
. This

likelihood naturally depends on the type of noisy observations D. Sensitivity inference
can only infer nuclear data uncertainty by assuming Gaussian additive noise for the
measurements

Zi = Z(X) + ‘i (2.5)

where the noise ‘i is normally distributed and heteroskedastic, that is each measure-
ment Zi has a di�erent known variance �i (the square of the standard deviation)
specific to the experimental setup in question, so that the samples from the uncer-
tain measurements are normally distributed as Zi ≥ N (Z(X), �i), entailing the data
likelihood (with | · | denoting the pseudo-determinant):

p(D|X) =
NDŸ

i=1

-----
�≠1

i

2fi

-----

1
2

e≠ 1
2 �

≠1
i

1
Zi≠Z(X)

22

(2.6)

Importantly, all the noisy observations Zi come from the same X parameters. Note
that in practice many experimental quantities can be re-cast into this additive noise
model (2.5): for instance, for a product of noisy positive variables, a logarithmic
change of variables will transform the measurements into this form (2.5).

By linearizing the Z(X) relation (2.3), and assuming additive noise (2.5) with
Gaussian data likelihood (2.6), sensitivity analysis can then perform Bayesian in-
ference (2.2) analytically from a multivariate normal conjugate prior distribution,
X|◊ ≥ N (µ

0
, �0), yielding a normal Bayesian posterior X|D ≥ N (µD, �D) with

the well-known conjugacy relations:

�≠1

D = �≠1

0
+ a

C
dÿ

k=1

�≠1

i

D

aT (2.7)

µD = �D

C

�≠1

0
µ

0
+ a

C
dÿ

k=1

�≠1

i (Zi ≠ b)
DD

(2.8)

This linear sensitivity inference is the standard industry practice in the nuclear data
field: most evaluation codes, such as SAMMY [26, 217], EDA [164, 166], or CONRAD
[106], perform nuclear data evaluations using this 1st-order Bayesian update (2.8),
assuming a multivariate normal input X and linearizing Z(X) as (2.3) [43, 282, 162].
Most often, the observable Z(X) corresponds to a di�erential experiment, where the
Z(X) relation is simple enough to obtain analytical expressions for the output of
mean inputs Z(X0) and their sensitivities ˆZ

ˆX

---
X0

.
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The main advantage of the sensitivity inference method over the stochastic one
is that it is simple, producing multivariate normal uncertainty distributions of nu-
clear data, under the reasonable hypotheses of small perturbations (uncertainty is
small) and Gaussian noisy measurements (2.5). To these intrinsic limitations of the
sensitivity inference method (which can therefore not capture non-linear lognormal
behavior for instance), we can add the complications arising from the non-trivial task
of calculating the mean values Z(X0) and their sensitivities ˆZ

ˆX

---
X0

. Though this is
in practice often possible for di�erential experiments, it is a significant challenge for
integral experiments as we explain in section 2.5.2.

2.4 The propagation problem:
Monte Carlo codes output uncertainty

Section 2.3 explained the inference problem: how uncertainty in nuclear cross section
measurements translates into a distribution of nuclear data resonance parameters �,
which in turn generates stochastic nuclear cross sections (figure 2-7). This section
2.4 addresses the propagation problem: how these stochastic cross sections, input
to the Monte Carlo particle transport codes that simulate nuclear reactors (figure
2-3), entail a distribution of outputs, as represented in figure 2-8. In other words,
uncertainties in the input parameters of nuclear computations (nuclear data and
geometry) entail uncertainties in the simulated outputs (reaction rates, flux, power,
multiplication factor). And in particular, the uncertainty in our knowledge of nuclear
physics (nuclear data) propagates across simulations to generate a distribution of
outputs, as shown in figure 2-8.

For certain military applications, such as weapons stewardship programs, where
nuclear particle transport computations are indispensable, accurately quantifying the
range of possible outputs from the simulations — i.e. the output uncertainty distri-
bution — is critically important. The same can also be said for numerous civilian
applications, from nuclear medical imaging [81, 275], radiation and criticality safety,
as well as for designing future advanced nuclear reactors [12, 21, 24, 25, 10, 41, 42].
For the latter, the nuclear data uncertainty can be a limiting factor. For instance,
the Terrapower [34] new molten salt fast spectrum nuclear reactor design (MSR)
[8, 114, 32, 301] was calculated to have a considerable 5000 p.c.m. di�erence in the
beginning-of-life ke� , solely due to the changes in the neutron-proton (n, p) cross
section evaluations of chlorine 35Cl between the ENDF 7.0 and the 7.1. libraries
[68, 311, 312, 12]. Nuclear data uncertainty can also be significant in pressurized water
reactors (PWR) calculations: for the PWR full core Martin-Hoogenboom benchmark
[178, 177, 179], Total Monte Carlo (and fast-TMC) propagation of uranium 235U,
238U, plutonium 239Pu, and the hydrogen H in water H2O uncertainties [284, 285],
translates into a significant reactor output power uncertainty ranging between 1% and
5%, as shown in figure 2-9. All these instances are testimony to the importance of
propagating nuclear data uncertainty across nuclear computations, just as quantify-
ing uncertainty from geometry or material factors [83], or from multi-physics coupling
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Figure 2-8: Uncertainty propagation: Nested Monte Carlo computations. Un-
certain nuclear data inputs propagate across nuclear computations, yielding a distribution
of outputs. Directly computing this histogram of outputs requires nesting Monte Carlo sim-
ulations: that is sampling many stochastic cross sections (outer-loop of M samples), and
for each running a nuclear particle transport Monte Carlo simulation of the reactor core
(inner-loop taking N particles to converge), thereby computing a point-wise distribution of
outputs. This direct Nested Monte Carlo [274] method has been called Total Monte Carlo
[283, 285] in the nuclear data field.

[329].

Figure 2-9: Output power uncertainty from nuclear data propagation. Propa-
gating nuclear data uncertainties across the Martin-Hoogenboom pressurized water reactor
core benchmark [178, 177, 179] yields 1-5% uncertainty in output power, using the Total
Monte Carlo and fast-TMC approach [284, 285].

Just as for the inference problem (section 2.3), the same two main methods com-
pete to solve this propagation problem (amongst many hybrids [330, 140]): stochastic
propagation (Nested Monte Carlo (NMC) simulations which are called Total Monte
Carlo (TMC) in the field); and sensitivity propagation (Sensitivity Analysis (SA)).
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2.4.1 Stochastic propagation: Nested Monte Carlo (NMC)
Stochastic propagation consists of nesting Monte Carlo simulations [274], that is run-
ning an outer-loop Monte Carlo on the nuclear data uncertainty, and for each sampled
nuclear data value, run a full Monte Carlo particle transport problem to compute its
corresponding output observable quantities (multiplication factor ke� , power, flux,
reaction rates, etc.), as illustrated in figure 2-8.

This Nested Monte Carlo scheme, called Total Monte Carlo in the nuclear data
field [283, 285, 284, 172, 55], is therefore conceptually simple in practice: let X be
the input parameters to the Monte Carlo particle transport problem (nuclear data or
geometry), and denote Y |X the particle transport stochastic process (Y |X is then
any tallied quantity). Inputs X have an uncertainty distribution p(X), from which
we sample M nuclear data sets Xm (outer-loop). For any such sample Xm of possi-
ble input parameters, one then runs N di�erent simulations of the stochastic process
Yn|Xm (inner-loop), averaging them to approximate the conditional means Z(X) with
‚Z(Xm) , 1

N

qN
n=1

Yn|Xm.
Propagating the distribution of inputs X to that of outputs Z(X) is then a matter of
repeating this process M times over an outer-loop of di�erent Xm samples, thereby
constructing the point-wise histogram of outputs p( ‚Z(Xm)). The latter will converge
to the distribution of outputs p(Z(X)) as both N and M increase, with an asymptotic
convergence rate of O

1
1Ô

N◊M

2
.

The major drawback of TMC is that it is tremendously expensive computation-
wise, precisely because both M and N must be large to converge. Methods such as
fast-TMC [285] and half-Monte Carlo [136] have been proposed to address this high
computational cost, resting on the principle that in practice one only needs to converge
the inner-loop outputs (say reaction rate and ke� tallies) to within the uncertainty
we have from the outer-loop (nuclear data outputs distribution), thereby diminishing
the number of runs dedicated to the inner-loop. Another major drawback of this
Nested Monte Carlo approach is sampling the inputs Xm, which can be impractical
to generate and prohibitive to store when pre-computation is needed, as we explain
in section 2.6. This is why the vast majority of nuclear data uncertainty propagations
are performed using sensitivity propagation (SA).

2.4.2 Sensitivity propagation: linearized Sensitivity Analysis
(SA)

Sensitivity propagation is the standard in dusty practice for uncertainty propagation
in the nuclear data field [89, 203, 90, 265, 259, 294]. Just as for sensitivity inference
(section 2.3.2), it consists of assuming the uncertainty in the inputs parameters are
small, 1st-order perturbations, and linearize the input-outputs relationship (Taylor
expansion) to propagate the inputs uncertainty to the outputs using the simple a�ne
relation (2.3).

The key to this Sensitivity Analysis (SA) is thus to compute the output of the mean
inputs, Z(X0), and the Jacobian derivatives ˆZ

ˆX

---
X0

, which are called sensitivities.
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Once these are obtained, forward propagating the distribution of inputs p(X) to the
outputs simply consists in applying an a�ne transform (2.3), which for the first two
moments yields:

• for the mean:
EX [Z(X)] ƒ Z(X0)

= Èa|X0Í + b
(2.9)

• for the variance:

VarX [Z(X)] ƒ
ˆZ

ˆX

-----

T

X0

Var [X] ˆZ

ˆX

-----
X0

= aTVar [X] a

(2.10)

For instance, if the input distribution is a multivariate normal with mean vector
µX = X0 and covariance matrix �X , that is X ≥ N (µX , �X), then the distribution
of output is also normal, Z(X) ≥ N (µZ , �Z), with the well-known:

µZ = Z(µX)
= aT

· µX + b
(2.11)

�Z = ˆZ

ˆX

-----

T

X0

�X
ˆZ

ˆX

-----
X0

= aT�Xa

(2.12)

In solving the propagation problem to 1st order, the sensitivity analysis method
is both simple and informative, as it answers the physically interesting question of
what perturbations in the inputs X are the outputs Z(X) particularly sensitive to.
Nonetheless, in addition to the fact that sensitivity analysis is only a linear approx-
imation (intrinsically incapable of translating higher-order non-linear e�ects), the
computation of the sensitivities ˆZ

ˆX

---
X0

are the main drawback of the method (along
with its intrinsic limitation to 1st-order linear regime). The latter are indeed di�cult
to estimate in Monte Carlo transport solvers, increasing about 2-to-10 times over the
computational cost of a single Z(X0) calculation (accounting for the cost of computing
the adjoint flux necessary for a critical reactor computation) [89, 203, 90, 265, 263].

2.5 Propagation & inference:
Integral experiment evaluations

Section 2.4 described the problem of propagating nuclear data inputs across a Monte
Carlo particle transport calculation. We here consider the inverse problem (figure 2-
10): if we dispose of (noisy) observations from integral experiments — resulting from
the transport of particles across a geometry (say the output power, or measured reac-
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tion rates of a given nuclear reactor) — can we infer an updated knowledge of nuclear
data and our uncertainty on it (elemental nuclear quantum physics interactions)?

Random inputs !
Geometry   Nuclear computation   

Uncertain nuclear data

outer-loop
"

Monte Carlo
Particle transport

inner-loop
#

Noisy output
measures $

%(!|()
Posterior
!|$

Prior

Figure 2-10: Propagation and inference from integral experiments: Prior uncer-
tainty distribution of nuclear data inputs X|◊ propagates across nuclear particle transport
Monte Carlo computations, yielding a prior distribution of outputs Z(X|◊) (computed by
nesting Monte Carlo simulations [274] called Total Monte Carlo [283, 285]). We then ob-
serve noisy measurements D of the outputs Z(X) (reactor power), and perform Bayesian
inference (2.2) on the histogram of outputs, to obtain a posterior distribution of inputs X|D

(nuclear data).

Integral experiments consist of large-scale setups, for instance a measure of the
conditions which bring a given nuclear reactor mock-up to a sustained chain reac-
tion (criticality). Extracting nuclear data (a nuclear physics quantity) from such an
integral measure of the multiplication factor (a human-scale quantity) is di�cult:
one must first forward propagate the prior nuclear data uncertainty, which requires
translating resonance parameters values into nuclear cross sections (using R-matrix
theory), and then compute how these stochastic cross section propagate through a
large scale Monte Carlo particle transport problem with a more complex geometry. In
the most simple of cases, this large-scale experimental setup could be a plutonium or
uranium sphere brought to criticality. More generally, this means a full experimental
reactor mock-up, with corresponding materials and geometry a�ecting the transport
of particles. Such joint inference therefore couples the uncertainty on all the nuclear
data values in question (di�erent materials and isotopes).

The common practice in the field has been to use integral experiments mainly for
validation of nuclear data and codes, and adjustments to nuclear data are typically
made to accurately match a set of experiments. The ability to infer and propagate nu-
clear data uncertainty across nuclear simulations can then in turn be used to perform
computer-assisted design of nuclear experiments especially sensitive to the regions of
high uncertainty, thereby providing a tool for e�ciently narrowing down nuclear data
uncertainty with future experiments.

Because it is in general not possible to invert the function linking output mea-
surements to nuclear data, in order to infer nuclear data uncertainty we must first
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be able to translate a given distribution of nuclear data inputs into a distribution of
observable outputs from the system: that is to forward propagate the nuclear data
uncertainty across the nuclear simulation of the integral experiment. Then, the same
two methods compete to infer uncertainty across integral experiments: stochastic
inference, and sensitivity inference.

2.5.1 Stochastic inference: Bayesian Nested Monte Carlo
histogram

Just as for di�erential experiments, stochastic inference takes noisy measurements of
the observed outputs (for instance nuclear reactor power or multiplication factor),
and computes the point-wise histogram Bayesian posterior. However, for integral
experiments this first requires solving the Monte Carlo particle transport problem for
each sampled prior nuclear data, as illustrated in figure 2-11. Upon nesting these
Monte Carlo simulations [274] — that is a Total Monte Carlo [283] (fast-TMC in
practice [285]) forward propagation of uncertainty — the Bayesian update to infer
the posterior nuclear data uncertainty distribution p(X|D) is then calculated point-
wide on the histogram (see figure 2-11). As for Total Monte Carlo, this is immensely
computationally intensive.
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Figure 2-11: Nested Monte Carlo propagation and inference in integral exper-

iments: Prior uncertainty distribution of nuclear data inputs X|◊ is propagated across
the Monte Carlo particle transport simulation using the Nested Monte Carlo method [274]
(called Total Monte Carlo [283] or fast-TMC [285]), yielding a point-wise histogram of prior
output estimates ‚Z(Xm|◊) (computed by nesting Monte Carlo simulations [274] called To-
tal Monte Carlo [283, 285]). We then observe noisy measurements D of the outputs Z(X)
(reactor power), and perform histogram-wise Bayesian inference (2.2), to obtain a posterior
distribution of inputs X|D (nuclear data).

The forward propagation is performed by sampling the outer-loop M inputs Xm

(nuclear data samples) from their prior uncertainty distribution p(X|◊). Provided
with a data-set D of noisy observations, and having converged the inner-loop, one
can in turn compute the likelihood p(D|Xm) of observing the measurements for each
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sampled nuclear data set Xm, and numerically perform the Bayesian inference update
(2.2) on this histogram (figure 2-11). This stochastic integral inference method [295,
281], which combines “unified Monte Carlo” [100, 101] and “Total Monte Carlo”
[283, 285], has been used in various occasions [272], such as for the TENDL [207, 209]
nuclear data library [173, 295, 272, 281, 54].

2.5.2 Sensitivity inference: linear Bayesian Monte Carlo Sen-
sitivity Analysis (SA)

When using sensitivity analysis to infer nuclear data uncertainty from integral exper-
iments, the method is the same as for di�erential experiments: using the conjugate
prior relations (2.7) and (2.8) to calculate the Bayesian posterior mean and variance of
the multivariate normal nuclear data uncertainty distribution, as explained in section
2.3.2. Such integral sensitivity analysis inference have been performed for evaluations
in various nuclear data libraries [315], with integrated frameworks such as MOCABA
[175, 281].

Unlike for di�erential experiments, though, is the way the output of mean inputs
Z(X0) (reaction rates and multiplication factor computed from the prior mean nuclear
data resonance parameters X0) and their sensitivities ˆZ

ˆX

---
X0

are obtained: a full
Monte Carlo particle transport code must now be converged to compute them, which
is the sensitivity propagation step described in section 2.4.2. In particular, computing
the sensitivities ˆZ

ˆX

---
X0

and the adjoint flux (necessary to compute the perturbed
eigenvalue multiplication factor ”ke�) can be numerically challenging, and on average
multiplies the cost of the Monte Carlo particle transport run by a factor of two to
ten, depending on the method implemented [89, 203, 90, 265, 263].

This is all the more true if we wish to account for the temperature e�ects on the
sensitivities, in particular Doppler broadening (c.f. section 2.6): this is so compu-
tationally expensive as to be out-of-reach of present reactor physics computational
methods [53, 52, 263]. This hurdle posed by temperature treatments and Doppler
broadening leads us to the sampling problem of generating nuclear cross section in-
puts to Monte Carlo particle transport, hereafter discussed in section 2.6.

2.6 The sampling problem:
Temperature exacts massive memory cost on
stochastic cross sections

Temperature agitates things up. As temperature rises, nuclei vibrate, so that a par-
ticle that was going to collide with a target nucleus at a given relative speed if it
were at rest now finds it vibrating, thereby lowering or increasing the relative speed
(or energy) at which their interaction occurs. The resulting e�ective cross section is
therefore the average of the zero Kelvin cross section (target at rest) over all the possi-
ble relative energies at which the target and the particle interact (thermal vibration).
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This has the e�ect of “broadening” the e�ective cross section resonances, as shown in
figure 2-12, because particles that were hitting the targets at peak resonance energies
find themselves o� due to the vibrations, and conversely particles that were close to
the peak find that the vibrations can bring them to the peak resonance energy.

This Doppler broadening phenomenon — that is the averaging of cross sections
over the thermal motion of the target atoms — is of critical importance in neutron
transport applications, as it ensures the stability of many nuclear reactors (negative
thermal reactivity feedback caused by increased absorption from Doppler broaden-
ing). Accurately accounting for this temperature e�ect is therefore of paramount
importance.

Yet, Doppler broadening is also a major computational hurdle to generating
stochastic nuclear cross sections for uncertainty propagation, because present meth-
ods rely on memory-intensive pre-processing and storing, and this access to memory
is a prominent bottleneck for modern-day supercomputers (which have plenty of pro-
cessing power).

Figure 2-12: Doppler broadening of nuclear cross sections: temperature vibrations
of the target nuclei entail the e�ective cross section is the result of the zero Kelvin one
(at rest) averaged over the statistical distribution of the relative velocities with the target
nucleus. This Doppler broadening of cross sections can increase absorption as temperature
rises, guaranteeing the thermal stability of numerous nuclear power reactors (negative ther-
mal reactivity feedback). Here the three first s-wave resonances of uranium 238U at zero
Kelin (blue) and Doppler broadened at 100,000 Kelvin (red line).

2.6.1 The temperature problem: Doppler broadening & Sol-
brig’s kernel

In the semi-classical model of non-relativistic massive particles (i.e. not photons),
Doppler broadening of nuclear cross section assumes an isotropic Maxwellian distri-
bution of velocities for the target nuclei (that is a Boltzmann distribution of energies),
in what is called the Solbrig kernel [300], where the cross section ‡T (E) at temper-
ature T and energy E (in the laboratory coordinates) is related to the cross section
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‡(E) at temperature T0 as:
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where — is the square root temperature energy parameter:

— ,
Û

kB(T ≠ T0)
A

(2.14)

A designating the atomic mass number, and kB the universal Boltzmann constant.
Changing variables to z =

Ô
E, x =

Ô
E Õ, and denoting K

D
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2.6.2 Previous state-of-the-art temperature cross section in-
terpolations methods

Computing the Solbrig kernel integral (E.136) is a major challenge of nuclear reactor
physics. The traditional way of computing the Doppler broadened cross section at
any temperature ‡T (E) has been to pre-tabulate and store the exact point-wise cross
sections ‡Tj (E) (usually using the SIGMA1 algorithm of [118]) for several reference
temperatures

Ó
Tj

Ô
, and then interpolate between these points to obtain ‡T (E) [111,

313, 261]. This requires two grids, for energy (about 100,000 points for uranium
235), and temperature (about 100 di�erent temperatures to interpolate on the range
from 300K to 3000K using traditional log-log interpolation [314]), amounting to a
considerable memory footprint for storing these pre-computed quantities.

Methods to minimize this memory footprint and perform Doppler broadening
(E.136) on-the-fly — that is without pre-computations stored in memory yet at a
reasonable cost (running SIGMA1 [118] on-the-fly in prohibitive) — have therefore
been actively sought after, either from advanced interpolation and quadrature meth-
ods (such as the MCNP temperature curve-fit method [326]), new Fourier transform
methods [145], or Monte Carlo target motion sampling rejection schemes such as
SERPENT [316, 317, 288].

2.6.3 Computational pathway: pre-processing nuclear data
libraries

Doppler broadening has been a major computational bottleneck, significantly burden-
ing the pathway of nuclear computations. Nuclear data libraries (say ENDF [104, 87])
must be processed by codes (such as NJOY [228]) in order to:
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Figure 2-13: The sampling problem: pre-computing Doppler broadened cross sections
entails generating stochastic cross sections is extremely memory-intensive. Resonance pa-
rameters from nuclear data libraries are processed into point-wise cross sections on an energy
and temperature grid (using NJOY code). The operation must be repeated thousands of
times to generate stochastic cross sections callable at any energy or temperature.

1. Translate resonance parameters
Ó
�

Ô
into point-wise nuclear cross sections on

an energy grid (about 100,000 points for uranium 238U) at zero Kelvin (no
temperature vibrations) using R-matrix theory models (2.1),

2. Transform the zero Kelvin cross sections to the temperature of the experiment,
thereby accounting for the e�ects atomic vibrations have on nuclear cross sec-
tions (crystalline structure for low energies, Doppler broadening for higher en-
ergies). In NJOY [228], Doppler broadening is performed from the point-wise
cross section using algorithm SIGMA1 [118], generating Doppler broadened
cross sections at given reference temperatures, from which to interpolate. The
classic log-log interpolation requires 100 reference temperatures to achieve a
0.1% accuracy when interpolating between 300K and 3000K [314], while the
latest state-of-the-art curve-fit method of MCNP requires pre-storing some 12
coe�cients for di�erent temperatures [326], and our Kernel reconstruction op-
timal quadrature [124] only 10 reference temperaturess (see chapter 4 section
4.1).

Once processed by NJOY [228], these cross sections are reported point-wise (in
energy and temperature grids) in ACE files [228], which are the input files to nuclear
Monte Carlo particle transport codes (as shown in figure 2-13). For an order of mag-
nitude, the ENDF library (about 400 isotopes) thus processed for OpenMC [23, 287]
has a 500MB memory footprint per temperature point, on a 6 reference temperature
grid, for a total of 3GB of data (for the resolved resonance range region). To be able
to fully treat temperatures ranging from 300K to 3000K using standard log-log inter-
polation (100 reference temperatures), this should rise to 50GB of data per input file,
while 10 references temperatures if using our Kernel reconstruction method (see sec-
tion 4.1 or article [124]) would yield 5GB of data. Note that SERPENT [316, 317, 288]

48



having an on-the-fly rejection sampling method brings this down to 500MB. Orders
of magnitude comparisons between these memory and speed performance of di�erent
Doppler broadening methods are compared in table 2.1, where we included our op-
timal quadrature Doppler kernel reconstruction method and the windowed multipole
representation Doppler broadening from chapter 4.

Table 2.1: Doppler broadening methods memory and speed footprint compar-

isons for a 0.1% interpolation accuracy from 300K to 3000K: traditional log-log interpo-
lation [314]; optimal quadrature Doppler kernel reconstruction [124]; rejection sampling
[316, 317, 288]; windowed multipole [130, 197].

Method Memory Speed
Traditional
log-log interpolation

point-wise ‡(E, T )
100 temperatures ref. ref.

Kernel
reconstruction

point-wise ‡(E, T )
10 temperatures 10 ◊ less same

Rejection
sampling

point-wise ‡(E, T0)
1 temperature 0K 100 ◊ less 2 ◊ slower

Windowed
multipole

Windowed multipoles
Ó
�

Ô

Library
1000 ◊ less same

In addition to the cumbersome computational pathway the pre-processing of nu-
clear data libraries requires, in great part due to Doppler broadening (figure 2-13), the
ACE files end up having a sizeable memory footprint. They become intractable once
we seek to propagate (or infer) nuclear data across Monte Carlo particle transport
codes. For sensitivity propagation, it is currently prohibitively costly to account for
temperature e�ects on uncertainty (Doppler broadening the sensitivities to resonance
parameters). For stochastic propagation, the need to generate stochastic nuclear cross
sections at any given temperature and energy entails the entire pre-processing oper-
ation must be repeated thousands of times over (M times) to perform the outer-loop
(figure 2-13). Since M ƒ 103

≠ 104 (specially for high-dimensionality of input param-
eter space), this multiplies the point-wise memory requirements by as much, putting
the worst-case log-log method at 50-500TB of input data for generating stochastic
cross sections. While this would be cut to 5-50TB for the Kernel reconstruction
method, or 0.5-5TB for the point-wise rejection sampling method. This huge mem-
ory burden is particularly harmful when dealing with supercomputers, where access
to memory is a greater bottleneck than processing power. In other words, sampling
stochastic nuclear cross sections at any temperature and energy is currently a consid-
erable memory burden.

We have hitherto identified three major challenges when it comes to quantify nu-
clear data uncertainty in integral experiments: the sampling problem; the propagation
problem; and the inference problem. Our thesis proposes new methods to address,
and partially solve, all three of them.
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Inferring and propagating nuclear data uncertainty across
Monte Carlo simulations
To summarize, nuclear data uncertainty is documented in nuclear data
libraries (such as ENDF). These propagate across Monte Carlo particle
transport simulations to generate a distribution of possible outputs (reactor
power, multiplication factor, etc.). Conversely, if we measure these observables
(reactor power, multiplication factor, etc.) in a real-world integral experiment,
we can then simulate the experiment with a Monte Carlo particle transport
code, and infer updated values of nuclear data and its uncertainty. For both
these tasks (inference and propagation) there are presently two methods in the
field: Sensitivity Analysis (SA), and stochastic Nested Monte Carlo (NMC).
The main drawbacks of SA is that it is linear, and it can only propagate
uncertainty to one output at the time (because of the need to compute the
adjoint flux). It is also presently too costly for SA to compute the temperature
e�ects on uncertainty. The main drawbacks of NMC is that it is extremely
computationally intensive, and yields point-wise histogram distributions which
are di�cult to store and to sample from. Moreover, sampling the stochastic
nuclear cross sections for NMC also exacts a heavy memory toll because of the
pre-computed Doppler broadening.

In this thesis, we develop new methods to address these three problems: sam-
pling, propagation, and inference.
Chapter 3 presents our new Embedded Monte Carlo methods to propagate and
infer nuclear data uncertainty across Monte Carlo particle transport simula-
tions. Embedded Monte Carlo avoids the major computational burden of NMC
by performing approximate (but fair) propagation and inference using new sta-
tistical estimators. This brings down the cost of propagating and inferring
nuclear data across Monte Carlo particle transport simulations to about the
same as one single reactor simulation without uncertainty quantification.
Chapter 4 finds a solution to the sampling problem in a new formalism for
nuclear data parameters, called the windowed multipole representation, which
enables us to sample parameters and compute the corresponding Doppler broad-
ened stochastic nuclear cross section on-the-fly (without pre-computation),
thereby drastically cutting the memory footprint.

2.7 On transport and uncertainty

We close our background chapter on a few remarks regarding particle and Boltzmann
transport codes, and on our models of nuclear data uncertainty.
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2.7.1 Deterministic versus probabilistic transport solvers

Consider the neutrons and photons bouncing around in the sun, or any other nuclear
reactor. The geometry and the physics of the system – such as the outcomes of
nuclear collisions – can be described by a set of input parameters X. Given X, the
average energy released by nuclear reactions along the stochastic branching process
Y |X determines the output power (that is the average number of times an atom is
split in nuclear fission or atoms combining in nuclear fusion). This process can be
formally expressed as follows. Let X denote the set of input parameters to any given
nuclear transport computation (for instance X could be nuclear data or geometry).
A Monte Carlo code will simulate the individual random walks, denoted Y |X, of the
di�erent nuclear particles, tallying their reactions and histories, and averaging them
out so as to estimate the expectation value of any given outcome

Z(X) , EY [Y |X] (2.16)

whereby any output observable Z(X) is the ensemble average over the stochastic
process Y |X. For instance, Z(X) can be any reaction rate Ri(E) at given energy
E (for non-relativistic neutrons this is the kinetic energy E = 1

2
mnv2 of the neutron

of mass mn going at speed v), where i œ {fis, “, fus, tot} indicates fission, “-capture,
fusion, or any other reaction of interest, including the total reaction rate Rtot(E) from
which we derive the particle flux „(E) = Rtot(E)

�tot(E)
(where �tot(E) denotes the total cross

section at energy E). In the case of a criticality calculation, Z(X) can also be the
multiplication factor Z(X) = ke� . This direct Monte Carlo modeling of the particles
is a statistical mechanics approach to the problem of particle transport [102, 227].

There also exists a continuous, classical mechanics approach to this problem. In
the limit where the number of particles is very large, all quantities tend to their en-
semble average (2.16). This expectation value is then subject to a partial di�erential
equation called the Boltzmann transport equation [82], which is directly linked to
the statistical interpretation of the Fokker–Planck equation or Kolmogorov’s forward
equation. Deterministic codes take this classical mechanics approach, and discretize
the energy and space dimensions to numerically integrate the Boltzmann transport
partial di�erential equation, that is the mean behavior of the particles along their
overall trajectories. Such deterministic solvers using various methods such as the
method of characteristics, or the SN and PN methods with homogenization and dif-
fusion equivalence [72, 171, 279, 99].

Though they are only valid in the limit of very large number of particles [303,
320, 121, 192, 264], deterministic codes are much more computationally e�cient than
Monte Carlo particle transport codes, and as such they are the bread-and-butter of
the commercial nuclear power industry. They also require a lot of pre-processing and
careful neutron preservation during the order reduction process (energy group cross
section condensation, spacial homogenization) as well as the integration of their dif-
ferent computational stages (pin-cell, assembly, full-core). This necessitates a long
suite of tailored procedures, such as spatial self-shielding (Danco� factors), energy
self-shielding (Livoulant-Jeanpierre resonance mixture models), and other equiva-
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lence methods including SPH factors, discontinuity factors, transport correction, etc.
[72, 171, 279, 99]. Such fine-tuning of deterministic codes has made them very e�cient
at modelling standard commercial nuclear reactors, but it has also made them heavily
reactor-specific, performing poorly away from these standard well-known configura-
tions. In a way, they are over-specialized: their fine-tuning requires experimental
data that cannot easily be gathered for novel or future designs. In a nutshell, deter-
ministic codes, and in particular their pre-tuned inputs, are not always best equipped
to deliver the predictive performance and high-fidelity level of simulations required
for certain applications.

2.7.2 Modeling nuclear data uncertainty: a plea in favor of
distributions

The first principle is that you must not fool yourself
— and you are the easiest person to fool

- Richard Feynman

A final note on the present uncertainty methods in nuclear data. Currently, all
methods assume there exists a true value of nuclear parameters X, and consider that
the noisy measurements D induce an uncertainty distribution p(X|D) on this true
value X, modeled as the mean of p(X|D). This viewpoint warrants that the more
experiments we do, the more we narrow our uncertainty on the value of X, as can be
seen from the ever-smaller covariance matrices induced by Bayesian update (2.8).

Though this doctoral thesis follows and improves on this general practice in the
field, it is our personal belief that this viewpoint is not necessarily the best way to
account for and model our uncertainty in nuclear data parameters X. Actually, it
is a secret of Polichinelle that the uncertainty inferred from di�erential experiments
– by equation (2.8) – translates into minuscule uncertainties on Z(X), so small that
the evaluators manually increase the nuclear data uncertainty to better match that
of their di�erential experiment setup. Yet, when propagated across nuclear transport
simulations to integral experiments, these manually enlarged uncertainties predict
outputs Z(X) with very large uncertainties, deemed nonphysical considering the ac-
curacy we have on the integral observable Z(X) (say the multiplication factor ke�).

Our opinion is that if two measurements give discrepant values to alleged high
accuracy, this should actually increase our uncertainty on the knowledge of X, and
not decrease it. Such behavior could readily be achieved by modelling nuclear data
as a random variable X (and not a fixed value), and seek to infer its distribution
p(X|D) from the (noisy) data D. This is very di�erent from assuming the true value
is the mean of p(X|D), which is updated with more experiments as (2.7), and that
our uncertainty on this mean narrows down with more experiments as (2.8). Rather,
we advocate for an approach that models nuclear data as a random variable X with a
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parametric distribution p(X; –X), which could for instance be a multivariate normal
with mean and covariance parameters –X , {µX , �X}. We would then seek to
infer these parameters –X of the X distribution (say both the mean and variance)
from the experimental observations D, so that if two di�erent experiments produce
significantly di�erent results, this would translate into a larger variance for the nuclear
data random variable X, thereby increasing our uncertainty on it.

So as to fall in line with the present canon of the field, the subsequent methods
presented in this doctoral thesis do not implement this nuclear data distribution ap-
proach, even though we believe it to be the correct one despite commanding disregard
for the orthodoxy that there can only exist one true value of nuclear data (and not
a distribution of it). Nonetheless, we reckon the Embedded Monte Carlo method
hereafter exposed could be generalized to encompass this perspective, for instance by
means of the following procedure: starting from a hyperparameter priors distribution
p(–X |◊) on the –X family (if need be a Je�rey prior), one could then perform Bayesian
inference

p(–X |D) = p(D|–X)p(–X |◊)
p(D|◊) (2.17)

where the likelihood is now an integral on all the possible parameter values from the
distribution:

p(D|–X) =
⁄

p(D|x) · p (x|–X) dx

If the (noisy) observations D , {Zi}J1,NDK are all independent Gaussians, and assum-
ing the input parameters are a multivariate normal distribution X ≥ N (µX , �X),
the likelihood therefore becomes

p(D|–X) =
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which, upon invoking some proper assumptions — for instance on the nature of the
noise or by locally linearizing Z(X) — may be possible to incorporate into the general
Embedded Monte Carlo framework hereafter exposed.
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Chapter 3

Embedded Monte Carlo

It is better to be approximately right than precisely wrong.
- Warren Bu�et

When seeking to propagate nuclear data uncertainty across Monte Carlo particle
transport codes, and conversely infer updated nuclear data values from integral ex-
periments, there currently exists two main methods: sensitivity analysis (SA); and
Nested Monte Carlo (NMC). We identified in chapter 2 their various shortcomings,
primarily: linear regime and computing the sensitivities with temperature depen-
dence (for SA); gargantuan computational cost (for NMC).

We developed a novel suite of methods, called Embedded Monte Carlo, to infer
and propagate nuclear data uncertainty across intractable Nested Monte Carlo com-
putations. Embedded Monte Carlo samples di�erent possible nuclear data values
from their uncertainty distribution, and is able to converge towards accurate un-
certainty estimates for both inference and propagation, despite running only a few
non-converged nuclear simulations for each possible nuclear data sample (thereby
considerably cutting computational cost). This solves most problems of the prior
state-of-the-art Total Monte Carlo and Sensitivity Analysis methods, though bring-
ing about many convergence problems of its own. All the results we here present are
published in [133] and [132].

3.1 Embedded Forward propagation
Embedded Forward Propagation (EFP) is a novel suit of algorithms, which we estab-
lished in [133, 132], to propagate input parameters X distributions to output ensemble
averages (2.16) (conditional means)

Z(X) , EY [Y |X]
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The stochastic process Y |X is considered intractable in that computing samples Y |X
is feasible, but converging their means Z(X) for many di�erent values of X is not, ren-
dering Nested Monte Carlo [274] prohibitive in practice (called Total Monte Carlo in
the nuclear data field [283, 285]). Embedded Forward Propagation (EFP) estimates
the moments of the outputs Z(X) distribution, at an asymptotic rate of O

1
1Ô
M

2

for M input samples Xm (possible nuclear data values from their uncertainty dis-
tribution): the same as it would take to compute any single output Z(X). The
corresponding distribution of outputs p(Z(X)) is then best reconstructed according
to some pre-specified family or principle (such as maximum entropy): this excludes
fat-tailed distributions (for which the moments are ill defined and cannot be used
for reconstruction). Importantly, we established theoretical results for the optimal
ratio of inner-loop N to outer-loop M runs, given a total M ◊ N budget of Y |X
simulations.

3.1.1 Embedded Forward Propagation (EFP) synthesis
• Key hypotheses: the distribution of outputs Z(X|D) must belong to a family

which is fully parametrizable with its moments (for instance Normal or Lognor-
mal).

• Advantages:

– Converges at a O

1
1Ô
M

2
rate, proportional to the cost of any one Monte

Carlo simulation without uncertainty, whereas Total Monte Carlo requires
O

1
1Ô

N◊M

2
to converge.

– Can perform non-linear forward propagation, while Sensitivity Analysis
(SA) can only perform 1st order linear propagation.

– EFP can propagate inputs X|D uncertainty to any tally, whereas in par-
ticle transport problems SA can only (linearly) propagate uncertainty to
one tally at a time (because it needs to compute the sensitivities and the
adjoint flux).

• Drawbacks:

– Looses the point-wise mapping of inputs X|D (nuclear data) to simulation
outputs Z(X|D) (tallies such as the multiplication factor).

– EFP is not exact (but good approximation of outputs distribution through
moments reconstruction).

– Cannot reconstruct fat-tailed distributions.
– For Monte Carlo particle simulations, EFP does not give the sensitivities

(which can be of interest for informing design).
– The convergence is severely hindered if the output Z(X|D) is not an inte-

gral quantity (as is for case for any Monte Carlo computation).
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For validation and illustration purposes, we designed an Embedded Monte Carlo
toy-problem with multivariate normal parameters X|◊ and Gaussian noisy data (ap-
pendix C in [132] transcribed verbatim here in appendix A.3), demonstrating the
reconstruction capabilities of the EFP algorithm in figure 3-1.

3.1.2 General theory (EFP)

Theorem 1. Embedded Forward Propagation.
Let p(X) be a known distribution of input parameters X, which we seek to propagate
to the output ensemble averages Z(X) , EY [Y |X]. Considering p(Z) intractable,
we approximate it with a parametric family of distributions p’(Z). If p’(Z) can be
fully reconstructed with a finite amount of propagated moments (which are assumed
to exist),

ÈZk
Í , EX

Ë
Zk(X)

È
(3.1)

we can then sample M elements from the p(X) distribution and find the best approx-
imation p’ı(Z) at an asymptotic converge rate of O

1
1Ô
M

2
.

In particular, if log-likelihood ¸’(Z) , ln p’(Z) is polynomial of degree d, knowledge of
its first 2d ≠ 1 moments su�ces to reconstruct all the polynomial coe�cients, through
system (A.3) of theorem 4. Similarly, if p’(Z) is log-normal, knowledge of its first 2
moments yields ’ı through (3.6).

Proof. The “best approximate” Embedded Forward Propagation (EFP) distribution
p’ı(Z) can be defined in various ways. If we choose the principle of minimum dis-
crimination information, we can seek to minimize the Kullback-Leibler divergence
[212]:

Z [’],
⁄

ln
A

p’(z)
p(z|D)

B

p(z|D)dz =
⁄ 3

¸’(z) ≠ ¸(z|D)
4

p(z|D)dz

whose gradient can be expressed as expectation value:

ˆZ
ˆ’

[’] =
⁄ ˆ¸’(Z)

ˆ’
p(z|D)dz = EZ|D

C
ˆ¸’(Z)

ˆ’

D

(3.2)

Optimal meta-parameters ’ı will then annul this gradient:

ˆZ
ˆ’

[’ı] = 0 (3.3)

Approximating Z|D with parametric distribution p’(Z) belonging to the polynomial
log-likelihood class, we then have:

¸’(Z) =
dÿ

k=1

bk[’] · Z(X)k
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so that the Jacobians are:

ˆ¸’(Z)
ˆ’

=
dÿ

k=1

ˆbk

ˆ’
[’] · Z(X)k (3.4)

Conversely, if the Jacobians are polynomials in Z(X), then the log-likelihood is poly-
nomial. Akin to our EVI method (theorem 3), we can use the mean-power property
(3.28) to construct unbiased estimators

‰̂Z
ˆ’

[’] =
dÿ

k=1

ˆbk

ˆ’
[’] ·

„Zk(X)

and undertake an approximate forward-propagation by annulling gradient (3.3) with
a fixed-point stochastic optimization algorithm [280, 269]:

’t+1 = ’t ≠ “t ·

‰̂Z
ˆ’

[’t]

“t = c

t–
, with 0 < – < 1 , and 0 < c

’T , 1
T

Tÿ

t=0

’t

(3.5)

Actually, plugging (3.4) into (3.2) shows this approach consists in calculating the
(3.1) propagated moments ÈZk

Í and finding the polynomial of which these moments
are the roots

ˆZ
ˆ’

[’ı] =
dÿ

k=1

ˆbk

ˆ’
[’ı] · ÈZk

Í = 0

(note that the negative dominant coe�cient condition of theorem 4 can be enforced
by searching for bd = ≠c2

d). This can be a more complicated problem than directly
converging the first 2d ≠ 1 moments ÈZk

Í, k œ J1, 2d ≠ 1K, and reconstructing p’(Z)
directly using the linear system (A.3) and normalization condition (A.5) of theorem
4.

The class of distributions that can be fully reconstructed with their moments is
broader than the polynomial log-likelihood class. Indeed, the moments problem has
a long history [105, 234, 302, 210], and there are many metrics and methods that
can be used to approximate distributions using empirical estimates of their moments,
from orthogonal polynomial decomposition to the principle of maximum entropy [260].
Consequently, rather than performing stochastic optimization (3.5), which restricts us
to the polynomial log-likelihood class in the framework of the minimum discrimination
information principle, we can simply estimate the moments of the output mean (3.1),
with which we can reconstruct other distributions accordingly.
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Figure 3-1: Embedded Forward Propagation (EFP) (theorem 1). Inferred pa-
rameters distribution from figure 3-5 (EVI) are propagated to the ensemble average us-
ing EFP theorem 1. The reconstructed distribution from EFP moments estimation (with
O

1
1

M

2
simulations) matches the Nested Monte Carlo histogram (point-wise propagation

with O

1
1

M◊N

2
simulations). Results from the analytic toy-problem of appendix C in

[132], for di�erent levels of inner-loop convergence (given a fixed budget of total runs):
minimal convergence (optimal for mean), optimal trade-o�, optimal variance convergence,
over-converged.

3.1.3 Practical considerations (EFP)

In practice, theorem 1 consists in estimating the forward propagated moments (3.1)
– with asymptotic converge rate of O

1
1Ô
M

2
– and then approximating the distri-

bution of output means Z(X|D) accordingly. This restricts the Embedded Forward
Propagated method to ensemble averages Z(X) that do not have fat-tail distribu-
tions, in the sense that the moments of p(Z(X)) must exist (note that Embedded
Variational Inference (EVI) does not need such requirement to approximately infer
posterior distribution X|D).

Having estimated the output moments, reconstructing the distribution of ensemble
averages Z(X) can be performed in various ways. For instance, under the principle
of maximum entropy, the log-normal distribution can consistently (but with bias) be
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reconstructed as:
µ ƒ ln ‰

ÈZÍ ≠
1
2‡2

‡2
ƒ ln

Q

a1 +
\È�2ZÍ

‰
ÈZÍ

2

R

b
(3.6)

where we plugged-in the unbiased estimators of the outputs mean ÈZÍ , EX [Z(X)]
and variance È�2ZÍ , EX [Z(X)2] ≠ EX [Z(X)]2. If we instead approximate Z(X|D)
with a polynomial log-likelihood distribution, we can still estimate the forward prop-
agated moments (3.1), and use theorem 4 (Appendix A.1) to find the best meta-
parameters ’ı.

The key to Embedded Forward Propagation (EFP) is therefore to construct unbi-
ased estimators of these moments (3.1). This can be achieved using the mean-power
property (3.28) – akin to (3.36) – but this time with the inner-loop estimators (instead
of actual independent samples of Z(Xm)), yielding:

‰
ÈZÍ2 , 2

M(M ≠ 1)

Mÿ

m=1

m≠1ÿ

mÕ=1

‚Z(Xm) · ‚Z(XmÕ) (3.7)

Note that the estimators of the outer-loop (ensemble average) are complicated by
the inner-loop stochastic process Y |X, which introduces additional moments and
estimators of its own. The latter must be cancelled out in order to construct unbiased
estimators of the outer-loop moments. For instance, the variance È�2ZÍ of the output
means Z(X|D) distribution can be unbiasedly estimated as:

\È�2ZÍ , ‰
ÈZ2Í ≠

‰
ÈZÍ2 (3.8)

where ‰
ÈZ2Í can be computed using (3.36) or (3.40) as:

‰
ÈZ2Í , 1

M

Mÿ

m=1

„Z2(Xm) (3.9)

Interestingly, an equivalent estimator to (3.8) can be computed by tallying the stochas-
tic process variance ‰�Y (X) from (3.39) and computing:

‰
ÈZÍ , 1

M

Mÿ

m=1

‚Z(Xm) (3.10)

‰
È‡2

‚ZÍ , 1
M ≠ 1

Mÿ

m=1

1
‚Z(Xm) ≠

‰
ÈZÍ

22

(3.11)

[È�Y Í , 1
M

Mÿ

m=1

‰�Y (Xm) (3.12)

\È�2ZÍ , ‰
È‡2

‚ZÍ ≠

[È�Y Í

N
(3.13)
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Note that this latter form (3.13) is equivalent to

\È�2ZÍ = 1
M

Mÿ

m=1

S

WWU
‚Z(Xm)2

≠

‚Z(Xm)
M ≠ 1

Mÿ

k=1
k ”=m

‚Z(Xk) ≠

‰�Y (Xm)
N

T

XXV (3.14)

but expression (3.13) is much more computationally e�cient when M is large, as it is
computed in O (2 ◊ M) operations, rather than the O

1
M◊(M≠1)

2

2
needed to compute

(3.7) or (3.14).
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Figure 3-2: Embedded Forward Propagation: given a distribution of inputs X, EFP
converges the moments of the corresponding outputs Z(X) distribution, at a asymptotic
rate of O

1
1Ô
M

2
, without ever converging the inner-loop (only two particle counts for the

tallied quantities su�ce for the reactor simulation). The output distribution p(Z(X)) is
then reconstructed from its moments.

Propagating nuclear data uncertainty
across Monte Carlo particle transport computations
For context, let use the example of critical integral experiments modelled with
a Monte Carlo particle transport code, with uncertain resonance parameters
(inputs X). We seek to propagate this uncertainty to the multiplication factor
ke� (outputs Z(X)). We thus sample thousands of resonance parameters
(outer-loop M), and for each previous methods had to process an ACE file of
point-wise Doppler broadened stochastic cross sections, to give as inputs to our
particle transport code (figure 2-13). For each resonance parameter sample,
Nested Monte Carlo (NMC) — called Total Monte Carlo (TMC) or fast-TMC
— converges a full nuclear reactor simulation using N neutrons (inner-loop)
to obtain the corresponding multiplication factor ke� . The histogram of these
M converged outputs ke� is the propagated uncertainty (figure 2-8). TMC
converges at an overall rate of O

1
1Ô

M◊N

2
.
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Our EFP method calculates the mean and variance of the ke� histogram by
running only two neutrons per resonance parameter sample, that is without
having to converge the inner-loop (any N Ø 2 works). We then use these mean
and variance to reconstruct the distribution of ke� , say by assuming it is a
normal or a lognormal distribution.
EFP converges at an overall rate of O

1
1Ô
M

2
. There is however a trade-o�

between converging the mean and the variance of the ke� distribution: given
a total number of neutrons L = M ◊ N , the optimal number of neutrons
per simulation is the ratio of the variance of the inner-loop to the outer-loop
(3.20).

Combining EFP with windowed multipole parameters would enable on-the-fly
sampling of stochastic nuclear cross sections, thereby drastically cutting the
memory footprint (figure 3-3).

Random inputs !
Geometry   Nuclear computation   

Uncertain nuclear data

outer-loop
"

Monte Carlo
Particle transport

Stochastic
windowed	multipole	

cross	sections

ℙ(Π)

9:(;, =)

Distribution
of outputs 

>(!)
mean
< > >

variance
< ∆C> >

inner-loop
D ≥ 2

Figure 3-3: Embedded Forward Propagation: using a windowed multipole library
where one can sample windowed multipoles from their uncertainty distribution (multipole
covariance matrices) would enable us to run EFP with on-the-fly generation of stochastic
cross sections, thereby drastically cutting the memory footprint of the sampling problem.

3.1.4 Mean versus variance convergence trade-o� (EFP)
Mean ÈZÍ and variance È�2ZÍ unbiased estimators (3.10) and (3.13) show it is possi-
ble to estimate the first two moments of the distribution of ensemble average Z(X)
without ever converging the mean of the inner-loop stochastic process Y |X (a phe-
nomenon [156] also studied). Indeed, N = 2 su�ces to construct unbiased estimator
(3.39), which is defined as long as N Ø 2. Therefore, for each input parameter Xm,
one can run only two independent tallies Y1|Xm and Y2|Xm and accurately converge
the mean ÈZÍ and variance È�2ZÍ of the distribution of ensemble averages Z(X). In
essence, this is possible because we have reduced the entire point-wise output distribu-
tion p(Z(X)) to two quantities: mean ÈZÍ and variance È�2ZÍ. Nonetheless, running
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only N = 2 stochastic processes for each Xm sample may not be the optimal choice in
terms of convergence speed. Indeed, we here establish in theorem 2 that there exists
a trade-o� between converging the output mean ÈZÍ, for which we show the optimum
(3.16) is Nmean = 1, and converging the output variance È�2ZÍ, for which we show
the optimal Nvar is (3.19).

Theorem 2. Embedded Forward Propagation:
Mean versus variance convergence trade-off.

The output average estimator converges in law to the mean of the ensemble aver-
age, with the following asymptotic distribution:

‰
ÈZÍ

Law
≠æ

MæŒ
N

A

ÈZÍ,
È�2ZÍ

M
+ È�Y Í

MN

B

(3.15)

Given a fixed total amount L of stochastic process Y |X simulations, L , M ◊ N , the
optimal convergence rate (variance reduction) for the mean is therefore achieved for:

Nmean = 1 (3.16)

Nonetheless, to construct unbiased estimators of this convergence rate (3.15), we must
have at least M Ø 2 and N Ø 2.

Meanwhile, the unbiased output variance estimator converges in law to the variance
of the ensemble average, with the following asymptotic distribution:

\È�2ZÍ
Law
≠æ

MæŒ
N

Q

aÈ�2ZÍ,
È�4ZÍ ≠ È�2ZÍ

2

M
+

4È�2Z �Y Í + 2 È�2
Y Í

N≠1

MN

R

b (3.17)

where we denote È · Í , EX [ · ] the expectation value over the input parameters, so
that È�2Z �Y Í , EX

51
Z(X) ≠ ÈZÍ

2
2

· �Y (X)
6

is the expectation value of the product
between the stochastic process Y |X variance �Y (X) and the squared centered output
(ensemble average) variable �2Z(X) ,

1
Z(X) ≠ ÈZÍ

2
2

, while the the fourth central
moment of the outer ensemble average is

È�4ZÍ , EX

C3
Z(X) ≠ ÈZÍ

4
4
D

(3.18)

Given a fixed total amount L of stochastic process Y |X simulations, L , M ◊ N , the
optimal convergence rate (variance reduction) for the variance is therefore achieved
for the integer that best approaches

Nvar ƒ
N

1 +
ı̂ıÙ 2È�2

Y Í

È�4ZÍ ≠ È�2ZÍ2
(3.19)

Moreover, to construct unbiased estimators of the convergence rate (3.17), we must
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have at least M Ø 4 and N Ø 4.

Proof. The proof follows that of the convergence rate for traditional mean and vari-
ance estimators from the central limit theorem on random variable Z(X), but is
complicated by the fact that the latter is the ensemble average of stochastic process
Y |X (that is the conditional expectation value Z(X) = EY [Y |X]), which adds inter-
nal loop variance �Y components. The full derivations are reported in [132], verbatim
transcribed here in appendix A.2.

Theorem 2 warrants a few remarkable properties:

• The third µ3

Y (X) and fourth µ4

Y (X) central moments cancel out of (3.17), so
that neither the skewness nor the kurtosis of the inner-loop stochastic process
Y |X a�ect the asymptotic convergence rate of the ensemble average variance
estimator \È�2ZÍ. Nonetheless, they do a�ect our unbiased estimation of this
convergence rate.

• The cross term È�2Z �Y Í between inner and outer loops does not appear in the
optimal variance reduction number Nvar of inner-loop simulations (3.20) .

• For fixed inner loop and outer loop variances �Y and È�2ZÍ, fat tails (leptokur-
tic) ensemble average Z(X) output distributions require smaller inner-loop con-
vergence Nvar. Conversely, thin tails p(Z(X)) distributions (platykurtic) require
larger inner-loop convergence.

• For a normal (Laplace-Gaussian) distribution of ensemble averages Z(X), or
any other mesokurtic distribution, well-known property È�4ZÍ = 3È�2ZÍ

2 entails
that the optimal Nvar from (3.19) becomes the interpretable and intuitive ratio
of the inner and outer loop variances, plus one:

Nvar

normal

ƒ
N

1 +

Ò
È�2

Y Í

È�2ZÍ
(3.20)

Theorem 2, which generalizes the results of [156], shows there exists an inher-
ent conflict between accurately estimating the ensemble average mean ÈZÍ (which
increases linearly with internal-loop N convergence), versus the ensemble average
variance È�2ZÍ (which first decreases and then increases as a hyperbola in N), as
illustrated by figure 3-4. The optimal trade-o� in convergence rate acceleration (vari-
ance reduction) will depend on the estimated distribution, and the goal we seek to
achieve. If the goal is to best reconstruct the distribution p(Z(X)), then the opti-
mal trade-o� will be determined by how its moments parametrize it (assuming as in
theorem 1 that the distribution can be fully parametrized by its moments).

In the case of the normal distribution (Laplace-Gaussian), this optimal trade-o�
between mean and variance convergence rates is achieved by the integer that best
approaches:

Ntrade≠o�

normal
ƒ
N

1 + 1
Ô

2

Ò
È�2

Y Í

È�2ZÍ
= Nvar

Ô
2

+
A

1 ≠
1

Ô
2

B

(3.21)
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Figure 3-4: Mean versus variance trade-o� (EFP) (theorem 2). Asymptotic conver-
gence rates of theorem 2 have competing behaviors: linear increase (3.15) for the mean ÈZÍ;
hyperbolic decrease then increase (3.17) for the variance È�2

ZÍ. For analytic toy-problem of
appendix C in [132], the optimal convergence rates are: Nmean = 1 for the mean; Nvar = 212
for the variance; and Ntrade≠o�

normal
= 150 for trade-o� (3.21). Independent estimators (20 dif-

ferent random seeds) are plotted against the theoretical exact values and a convergence
interval with 2‡ , 2


È�2ZÍ, covering ƒ 95.45% of the asymptotic estimators distribution.

which is about 70% of the optimal variance convergence number (3.20): Ntrade≠o� ƒ

70%Nvar. Figure 3-4 shows this optimal normal distribution trade-o� (3.21), com-
pared to the variance optimal point (3.20). Result (3.21) can be established by
considering a fixed “budget” number L = M ◊N of total stochastic process Y |X sim-
ulations, so that convergence rates (3.15) and (3.17) of theorem 2 can be re-written
as

‰
ÈZÍ ≠ ÈZÍ

Ò
È�2ZÍ

Law
≠æ

MæŒ
N

Q

ccccca
0,

1
L

C

N + È�Y Í

È�2ZÍ

D

¸ ˚˙ ˝
, vN

R

dddddb

\È�2ZÍ ≠ È�2ZÍ

È�2ZÍ

Law
≠æ

MæŒ
N

Q

cccccca
0,

2
L

S

UN

1
È�4ZÍ
È�2ZÍ2 ≠ 1

2

2 + 2È�2Z �Y Í

È�2ZÍ2
+ 1

N ≠ 1
È�2

Y Í

È�2ZÍ2

T

V

¸ ˚˙ ˝
, wN

R

ddddddb

In other words, for outputs mean µ and variance ‡2, we respectively have estimators
convergence ‚µ Law

≠æ
MæŒ

µ ±
vN
L ‡, and „‡2 æ ‡2(1 ±

2wN
L ). The latter’s first-order Taylor

expansion yields
Ò

„‡2
Law
≠æ

MæŒ
‡(1 ±

wN
L ).

For the Laplace-Gaussian (normal) distribution, quantiles covering p percent of the
probability are expressed as multiples of the standard deviation from the mean: µ ±

qp‡ (with well-known q95% ƒ 1.96 and q99.9% ƒ 3.29). Therefore, if both the mean
and the variance are known to a given accuracy, plugging-in mean and standard
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deviation estimators ‚µ, ‚‡ into the normal distribution quantiles expression entails:
‚µ ± qp ‚‡ = µ ± qp‡ ±

1
vN +wN

L

2
‡. Therefore, the inner-loop N value which most

accurately describes a normal distribution of outputs Z(X) is that which minimizes
vN + wN . By di�erentiating this quantity with respect to N , one readily finds the
optimal trade-o� between mean and variance convergence rates is (3.21).

Additional schemes are possible for further variance reduction. In particular Multi-
Level Monte Carlo [109, 155] could be well suited to our ensemble average (2.16),
depending on the specific stochastic process Y |X being computed. Though [155]
explains how to use the Multi-Level Monte Carlo framework for nested simulation
(section 9 p.57), the method nonetheless solely focuses on the expectation value of
the mean ÈZÍ, and not the variance È�2ZÍ nor higher moments, which Embedded
Monte Carlo uses to reconstruct the distribution of ensemble averages (theorem 1).

3.2 Embedded Variational Inference

Embedded Variational Inference (EVI) is a set of new algorithms, which we estab-
lished in [133, 132], to infer input parameters X distributions from uncertain output
observations D ,

Ó
Zi

Ô
, when the outputs are ensemble averages (2.16) (conditional

means)
Z(X) , EY [Y |X]

over an intractable stochastic process Y |X: for a Monte Carlo particle transport
problem Z(X) would be any output from the nuclear simulation (reaction rates,
flux, multiplication factor, etc.), while Y |X would be the individual tallies of each
particle (neutron or photon for reactor physics) along their random walk (stochastic
process Y |X). Computing samples Y |X is feasible, but converging their means Z(X)
for many di�erent values of X is not, so nesting Monte Carlo estimators [274] is
intractable (called Total Monte Carlo in the nuclear data field [283, 285]). Using an
iterative stochastic approximation algorithm with T iterations, Embedded Variational
Inference finds the best Bayesian posterior X|D (2.2)

p(X|D) = p(D|X)p(X|◊)
p(D|◊)

approximation within a parametric family (by minimizing discrimination informa-
tion), at an asymptotic rate of O

1
1Ô
T

2
. This stochastic optimization is made possible

under the condition that the data D uncertainty has a polynomial log-likelihood

¸ (D|X) , ln p (D|X) œ R [X] (3.22)

which is the case for data D =
Ó
Zi

Ô

iœJ1,NDK
with standard additive Gaussian noise

Zi = Z(X) + ‘i
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where ‘i are drawn at random from the Gaussian uncertainty measurements (which
can be heteroskedastic). We can then embed the uncertainty and never converge any
single output Z(X), each of which would converge at a rate of O

1
1Ô
T

2
.

Figure 3-5: Embedded Variational Inference (EVI) (theorem 3). Given data-set D of
ND = 5 noisy observations of ensemble average Z(X), the posterior inputs X|D distribution
is approximated with a parametric family pÊ(X), within which stochastic approximation
EVI algorithm (3.30) converges towards the best meta-parameters Êı. In this case, Ê =Ó

µ, �
≠1

Ô
are the mean and variance (precision matrix) parameters of the multivariate

normal distribution from the analytic toy-problem of appendix C of [132].

3.2.1 Embedded Variational Inference (EVI) synthesis
• Key hypotheses: Noise must be of polynomial log-likelihood class (normal noise

works). The true Bayesian posterior is approximated with an uncertainty dis-
tribution belonging to a pre-specified parametric family: for instance, EVI finds
the "best multivariate normal posterior" approximation.

• Advantages:

– Converges at a O

1
1Ô
T

2
rate, proportional to the cost of any one Monte

Carlo simulation without uncertainty, whereas Total Monte Carlo requires
O

1
1Ô

N◊M

2
to converge.

– EVI can perform non-linear Bayesian inference, while Sensitivity Analysis
(SA) can only do 1st order linear approximation.

• Drawbacks:

– The noise must be of polynomial log-likelihood, this excludes fat-tailed
noise (though many non-heavy-tailed distributions with a local or compact
support can be well approximated with polynomial log-likelihood distribu-
tions).
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– Not exact in that one must pre-specify the parametric family of the ap-
proximate posterior (meta-optimization can be carried out to find best
posterior family).

– Very sensitive to learning rates (more research needed to accelerate con-
vergence).

– For nuclear transport problems, convergence is severely hindered if Z(X) is
not an integral quantity: as is the case with any Monte Carlo computation,
local tallies in energy and space are much harder to converge.

For validation and illustration purposes, we designed an Embedded Variational
Inference toy-problem with Gaussian noisy data and multivariate normal parameters
X|◊ (Appendix C in [132] here transcribed verbatim in appendix A.3), demonstrating
the convergence of the EVI algorithm in figure 3-5.

3.2.2 General theory (EVI)
Theorem 3 lays the theoretical foundations of EVI Monte Carlo. We denote ¸(X)
the log-likelihood of any given random variable X of density p(X) (distribution if
discrete):

¸(X) , ln p(X) (3.23)

Theorem 3. Embedded Variational Inference.
Let p(X|D) be the true posterior inputs distribution from Bayesian inference (2.2).
Let pÊ(X) denote a parametric family of probability distributions, with which we seek
to approximate p(X|D):

pÊ(X) ¥ p(X|D) = p(D|X)p(X|◊)
p(D|◊) (3.24)

The information lost by approximating p(X|D) with pÊ(X) is represented by the
Kullback-Leibler divergence [212]:

K [Ê] ,
⁄

pÊ(x) ln
A

pÊ(x)
p(x|D)

B

dx (3.25)

We search for the member pÊı(X) of the family that minimizes this information loss
cost function (3.25), that is the optimal meta-parameters [78]:

Êı , arg min
Ê

K [Ê] (3.26)

If the noisy data-set D , {Zi} is such that its log-likelihood ¸(D|X) is a polynomial
of degree d in Z(X), i.e.

¸ (D|X) =
dÿ

k=1

aD
k Z(X)k (3.27)
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where the aD
k œ R coe�cients depend on data-set D and its noise distribution, then

the general mean-power property

EY [Y |X]d =
dŸ

i=1

EYi [Yi|X] = Erd

i=1 Yi

C
dŸ

i=1

Yi|X

D

(3.28)

entails one can construct an unbiased Embedded Variational Inference estimator (EVI
estimator)

‰̂K
ˆÊ

[Ê] ,
5
1 + ¸Ê(X) ≠ \¸(D|X) ≠ ¸(X|◊)

6
ˆ¸Ê(X)

ˆÊ
(3.29)

so that in the following iterative stochastic approximation Robbins-Monro algorithm
for Embedded Variational Inference

Êt+1 = Êt ≠ “t ·

‰̂K
ˆÊ

[Êt]

“t = c

t–
, with 0 < – < 1 , and 0 < c

ÊT , 1
T

Tÿ

t=0

Êt

(3.30)

the Polyak-Ruppert average ÊT will converge to the optimum meta-parameters Êı at
an asymptotic rate of O

1
1Ô
T

2
.

Proof. The Kullback-Leibler divergence (3.25) is a way of accounting for the infor-
mation lost by approximating p(X|D) with pÊ(X). Though not a metric, it satisfies
K [Ê] Ø 0, and is null if, and only if, pÊ(X) a.e.= p(X|D) almost everywhere. Sinces

pÊ(x)dx = 1, we can integrate ¸(D|◊) out of our cost function K [Ê] and express it
as:

K [Ê] = ¸(D|◊) +
⁄

pÊ(x)
5
¸Ê(x) ≠ ¸(D|x) ≠ ¸(x|◊)

6
dx (3.31)

We can choose parametric families di�erentiable in Ê, so that after noticing ˆpÊ(X)

ˆÊ =
pÊ(X)ˆ¸Ê(X)

ˆÊ , the di�erential ˆK
ˆÊ can be expressed as the following expectation value

over the unknown distribution pÊ(X):

ˆK
ˆÊ

= EX|Ê

C5
1 + ¸Ê(X) ≠ ¸(D|X) ≠ ¸(X|◊)

6
ˆ¸Ê(X)

ˆÊ

D

(3.32)

EVI seeks to find the meta-parameters Êı that minimize the K [Ê] cost-function
(3.33) in our intractable Nested Monte Carlo case. Thus, optimal meta-parameter Êı

will satisfy the necessary condition :

ˆK
ˆÊ

[Êı] = 0 (3.33)

We suppose that the noisy data-set D , {Zi} has a polynomial log-likelihood
(3.27). Crucially, we can always construct unbiased estimators of the output raw
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moments „Zk(X) (i.e. such that EY

Ë
„Zk(X)

È
= Z(X)k), thanks to the general mean-

power property (3.28) [274]:

EY [Y |X]d =
dŸ

i=1

EYi [Yi|X] = Erd

i=1 Yi

C
dŸ

i=1

Yi|X

D

we can thus build an unbiased data-log-likelihood estimator:

\¸(D|X) ,
dÿ

i=1

aD
i

„Zk(X) (3.34)

such that EY

5
\¸(D|X)

6
= ¸(D|X). We then use this \¸(D|X) from (3.34) to establish

the EVI estimator (3.29), which satisfies the following unbiased nested estimator
property:

EX|Ê

C

EY

C ‰̂K
ˆÊ

[Ê]
DD

= ˆK
ˆÊ

[Ê] (3.35)

This property is the keystone of the EVI method, as it enables us to solve the
fixed-point problem (3.33) by means of stochastic optimization methods, such as
the Robbins-Monro algorithm [280], and subsequent Polyak–Ruppert averaging [269],
which guarantee the convergence of the the EVI iterations (3.30) at its asymptotic
rate of O

1
1Ô
T

2
.

For generality, our EVI algorithm (3.30) here uses the generic learning rates {“t}

and Polyak-Ruppert averaging ÊT of the Robbins-Monro algorithm. In practice, the
choice of sequence {“t} can dramatically impact the convergence of the EVI algorithm.
With knowledge of the Hessian or numerical approximations of higher derivatives, it
is possible take a stochastic gradient descent approach and tailor the learning rates
to accelerate convergence. Though of high practical importance, the design of such
learning rates sequences {“t} is problem-specific and beyond the scope of this article.

3.2.3 Practical considerations (EVI)
To understand the scope of theorem 3, we have to understand what type of noise
falls within the polynomial log-likelihood class. For instance, this encompasses any
additive noise (2.5) where densities of ‘i are the exponential of polynomials of degree
d. In practice, the particularly important case of Gaussian noise falls in this cate-
gory with a second order polynomial d = 2. Note that, remarkably, EVI makes no
assumption on the distribution of ensemble averages p(Z(X)) in theorem 3: that is
EVI can still perform variational Bayesian inference across the intractable ensemble
average Z(X), even if the latter has a fat-tails distribution with infinite moments.

For each iteration step t of algorithm (3.30), M independent realizations of the
parameter Xm are drawn from the pÊt(X) distribution. For each Xm, we simulate
a cohort of N independent stochastic processes Yn|Xm. Hence, the total amount of
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samples is: T ◊ M ◊ N . For each Xm, we build unbiased estimators of Zd(Xm) by
using the mean-power property (3.28). For instance, separating the pairs nÕ

”= n,
d = 2 yields:

„Z2(Xm) , 2
N(N ≠ 1)

Nÿ

n=1

n≠1ÿ

nÕ=1

(Yn · YnÕ) |Xm (3.36)

However, the latter estimator has complexity of O (N2), and in general such a „Zd(Xm)
would have complexity O

1
Nd

2
. Using central moments estimators, and their rela-

tionship to raw moments (Binomial expansion), one can compute the same estimator
with a O (d ◊ N) complexity. In the d = 2 case, this yields:

‚Z(Xm) , 1
N

Nÿ

n=1

Yn|Xm (3.37)

‰m2

Y (Xm) , 1
N

Nÿ

n=1

Y 2

n |Xm (3.38)

‰�Y (Xm) , 1
N ≠ 1

Nÿ

n=1

1
Yn|Xm ≠ ‚Z(Xm)

2
2

(3.39)

„Z2(Xm) , ‰m2

Y (Xm) ≠ ‰�Y (Xm) (3.40)

Crucially, to construct an unbiased estimate of the d-th power Zd(Xm), we need to
simulate at least N = d di�erent stochastic processes Yn|Xm for each value Xm. That
means that the minimum complexity to construct an unbiased estimator „Zd(Xm) is
O (d ◊ d).

Remarkably, M = 1 su�ces to compute the EVI estimator (3.29), though aver-
aging over M -batches (3.41) can in some cases yield faster convergence rates:

‰̂K
ˆÊ

[Êt],
1

M

Mÿ

m=1

5
1+ Ȩ̂t(Xm)≠¸(Xm|◊)≠ \¸(D|Xm)

6̂
Ȩ̂t

ˆÊ
(Xm) (3.41)

Therefore, the minimum complexity to compute T iterations of the EVI algorithm
is O (T ◊ d ◊ d), with an asymptotic convergence rate of O

1
1Ô
T

2
. In contrast, con-

verging a single output Z(Xm) for one given Xm parameter value using estimator
(3.37) has an asymptotic convergence rate of O

1
1Ô
N

2
. This means that converging

the mean Z(X) or finding Bayesian posterior X|D using the Embedded Variational
Inference method is of the same order of computational complexity.

71



Random inputs !
Geometry   Nuclear computation   

Uncertain nuclear data

inner-loop
" ≥ 2

outer-loop
% ≥ 1

Monte Carlo
Particle transport

Stochastic
windowed	multipole	

cross	sections

ℙ(Π)

=>(?, A)

Noisy output
measures B

C(!|E)
Prior

Embedded 
Variational Inference

G 1/ A
Convergence

Posterior

Unbiased	
output	
powers

KC
LCM

inference-loop
A!|B

Posterior
!|B

Figure 3-6: Embedded Variational Inference from integral experiments: given
experimental observations D, EVI converges towards the best approximation of Bayesian
posterior nuclear data uncertainty X|D at a asymptotic rate of O

1
1Ô
T

2
, without ever

converging any inner-loop (reactor simulations). This is possible by building the unbiased
estimators of the raw moments ‚Z(X) and „

Z2(X), and comparing them to the polynomial
log-likelihood uncertainty profile of the measurement data D.

Inferring nuclear data uncertainty
from integral experiments
Using our previous example, we now measure real-world ke� values from the
critical integral experiment. We assume these measures D have a Gaussian
uncertainty, and seek to infer updated values of resonance parameters.
NMC would require sampling M sets of resonance parameters and for each
run N neutrons to perform a histogram-wise Bayesian update (figure 2-10),
converging overall at a rate of O

1
1Ô

M◊N

2
.

If we model the resonance parameters with a multivariate normal (or any other
parametric distribution, say Lognormal), then our EVI method can take the
noisy data D and infer the updated resonance parameters distribution by the
following iterative procedure (figure 3-6):

• sample a set of resonance parameters from their present uncertainty dis-
tribution

• run at least two neutrons in Monte Carlo (similar trade-o� as in EFP)

• compare with noisy data D and update the uncertainty distribution of
resonance parameters

• repeat T times

EVI converges at an overall rate of O

1
1Ô
T

2
.

Combining EVI with windowed multipole parameters would enable the sam-
pling of stochastic nuclear cross sections on-the-fly and directly update the
windowed multipoles and their covariances during the EVI iterations (figure 3-
7), thereby eliminating the sampling and processing computational bottleneck.
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Figure 3-7: Embedded Variational Inference from integral experiments: from
a multivariate normal uncertainty distribution of windowed multipoles, we could generate
on-the-fly stochastic cross sections, drastically reducing the memory cost of sampling during
the EVI algorithm, all the while directly inferring updated windowed multipoles and their
covariances from integral experiments data at an asymptotic rate of O

1
1Ô
T

2
.

3.2.4 Meta-optimization (EVI)

Solving problem (3.33) means finding the Êı parameters such that ˆK
ˆÊ [Êı] = 0. Note

that this will only find the “best” approximate posterior (in the KL divergence sense)
within the parametric family pÊ(X). A meta-optimization over di�erent parametric
families can be carried out to find the one with the lowest minimum KL divergence
K [Êı], that is the “closest fit” family: 0 Æ K [Êı] Æ K [ÊÕ

ı]. Though the ¸(D|◊)
normalization term in (3.31) is usually intractable, the latter meta-optimization can
still be carried out by using the KL divergence property K [Ê] Ø 0 and comparing for
di�erent families their optimal lower-bound for the normalization:

¸(D|◊) Ø ≠

⁄
pÊı(X)

5
¸Êı(X) ≠ ¸(D|X) ≠ ¸(X|◊)

6
dx (3.42)

3.2.5 Gaussian noise data & multivariate normal parameters
(EVI)

In practice, an important EVI case is finding the best approximate multivariate nor-
mal parameters posterior X|D, inferred from noisy data D with Gaussian noise —
for nuclear computations this would mean modeling the nuclear data uncertainty as a
multivariate normal distribution (as it is traditionally modelled) and assume Gaussian
noise on the observations. That is parametric family pÊ(X) ≥ N (µÊ, �Ê) with

pÊ(X) =
-----
�≠1

Ê

2fi

-----

1
2

e≠ 1
2 (X≠µÊ)

T
�

≠1
Ê (X≠µÊ) (3.43)
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where | · | denotes the pseudo-determinant. When searching for meta-parameters Êı

that solve problem (3.26), the log-likelihood and its derivatives are then

¸Ê(X) = 1
2

C

ln
-----
�≠1

Ê

2fi

----- ≠ (X ≠ µÊ)T �≠1

Ê (X ≠ µÊ)
D

ˆ¸Ê(X)
ˆµÊ

= �≠1

Ê (X ≠ µÊ)

ˆ¸Ê(X)
ˆ�≠1

Ê

= 1
2

Ë
�Ê ≠ (X ≠ µÊ) (X ≠ µÊ)TÈ

(3.44)

For numerical stability purposes, we consider the precision matrix �≠1

Ê (inverse co-
variance), and enforce its positive semi-definite properties by decomposing it as a
Gram matrix:

�≠1

Ê , ST
ÊSÊ (3.45)

In searching for SÊ, Jacobian (3.44) thus becomes:

ˆ¸Ê(X)
ˆSÊ

= S≠T
Ê ≠ SÊ (X ≠ µÊ) (X ≠ µÊ)T (3.46)

The prior density is

p(X|◊) =
-----
�≠1

0

2fi

-----

1
2

e≠ 1
2 (X≠µ0)

T
�

≠1
0 (X≠µ0) (3.47)

so that the prior log-likelihood takes the form:

¸(X|◊) = 1
2

C

ln
-----
�≠1

0

2fi

----- ≠ (X ≠ µ
0
)T �≠1

0
(X ≠ µ

0
)
D

(3.48)

In data set D of empirical observations (2.5), the Gaussian noise ‘i, each with di�erent
(heteroscedastic) variance �i (the square of the standard deviation), entails likelihood:

p(D|X) =
NDŸ

i=1

-----
�≠1

i

2fi

-----

1
2

e≠ 1
2 �

≠1
i

1
Zi≠Z(X)

22

(3.49)

so that its log-likelihood is

¸(D|X) = 1
2

NDÿ

i=1

C

ln
-----
�≠1

i

2fi

----- ≠ �≠1

i

3
Zi ≠ Z(X)

4
2
D

(3.50)

crucially, this satisfies the necessary polynomial log-likelihood condition (3.27) for the
EVI method to work. Here ¸(D|X) is a polynomial of degree d = 2 (Gaussian case):

¸(D|X) = aDZ(X)2 + bDZ(X) + cD (3.51)
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with

aD,≠
1
2

NDÿ

i=1

�≠1

i

bD,
NDÿ

i=1

�≠1

i Zi

cD,1
2

NDÿ

i=1

C

ln
-----
�≠1

i

2fi

----- ≠ �≠1

i Z2

i

D

(3.52)

We can thus plug-in (3.37) and (3.40) into (3.51) to build the unbiased data-log-
likelihood estimator (3.34):

\¸(D|X) = aD „Z2(X) + bD ‚Z(X) + cD (3.53)

combining (3.44), (3.46), and (3.53) yields the EVI estimators (3.41) for each EVI
step (3.30)

‰̂K
ˆµ

[Êt]=
1

M

Mÿ

m=1

5
1+ Ȩ̂t(Xm)≠¸(Xm|◊)≠ \¸(D|Xm)

6
ˆ Ȩ̂t

ˆµ
(Xm)

‰̂K
ˆS

[Êt]=
1

M

Mÿ

m=1

5
1+ Ȩ̂t(Xm)≠¸(Xm|◊)≠ \¸(D|Xm)

6
ˆ Ȩ̂t

ˆS
(Xm)

(3.54)

3.3 Embedded Monte Carlo application: particle
random walk under uncertain nuclear data

We demonstrate our new Embedded Monte Carlo methods on the stochastic process
which gave birth to the Monte Carlo method: the complex random walk of nuclear
particles [241, 239]. For this, we developed an analytic benchmark for neutron particle
transport [298, 53]. This benchmark aims at resolving the energy variable, and as
such it consists of an ideal neutron slowdown, complicated by overlapping nuclear
resonances. It is remarkable in that it is the first explicit resolution of overlapping
resonances in neutron transport, without a resonance model nor numeric brute-force
[325, 221, 154, 108, 278], just analytic solutions using the multipole formalism we
established in [130].

3.3.1 Analytic neutron slowdown benchmark
The critical neutron slowdown analytic benchmark [298, 53] is a simple eigenvalue
problem (criticality calculation) for which we were able to derive closed-form solutions
for the flux, despite there being overlapping resonances (from 238U and 239Pu).
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Setup and key hypotheses

The three main hypotheses of the analytic benchmark are:

• Infinite homogeneous medium: no spatial or angular variables, only energy.

• Hydrogen-only scattering: scattering neutrons can uniformly go from their ini-
tial kinetic energy down to zero.

• Uniform fission: when a fission occurs, neutrons are equally likely to be born at
any energy from E0 = 0 to a cuto� EŒ, past which none are born.

• Steady-state (for multiplication factor ke� eigenvalue calculation), or time Laplace
transform for –-eigenvalue calculation.

The specific configuration is that of the first resonance of both 238U and 239Pu nuclear
cross sections, here reported in figure 3-8. This is an idealized system simple enough
for us to derive analytic solutions, yet complicated enough that the overlapping res-
onances pose a challenge to standard resonance self-shielding models. In this setup,
the analytic benchmark studies the multiplication factor ke�-eigenproblem:

�t(E)Âk(E) ≠

⁄ EŒ

E
dE Õ �s(E Õ)

E Õ Âk(E Õ) = ‰(E)
ke�

⁄ EŒ

E0
dE Õ‹�f (E Õ)Âk(E Õ). (3.55)

Key results and new achievements

The key results of the analytic benchmark are four-fold: (i) analytic resolution of the
flux Âk(E) and reaction rate Rk(E); (ii) numerical resolution of the multiplication
factor ke� ; (iii) resolution of – versus ke� eigenvalue problems; and (iv) arbitrary
order derivatives of the flux and eigenvalues to any parameter (nuclear data). We
here succinctly summarize these findings, and refer to the benchmark articles for
further detail [298, 53].

• (i) Analytic resolution of the flux and reaction rate.
This is achieved by considering the total reaction rate:

Rk(E) , �t(E)Âk(E) (3.56)

and introducing the downscattering ratio:

DS(E) , �s(E)
E�t(E) (3.57)

and the fission production ratio:

f‹(E) , ‹�f (E)
�t(E) , (3.58)
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Figure 3-8: Analytic Benchmark for Neutron Slowdown [298, 53]: Neutrons are
born from fission uniformly from 10≠5 to 2 ◊ 107 (eV). They slow down by scattering
on hydrogen, and in the process encounter the two first resonances of uranium U238 and
plutonium Pu239. These cross sections are the inputs of the random walk, parametrized by
nuclear data X (resonance parameters). When the mean parameters X = µ0 are chosen,
the multiplication factor ke� , Z(X) , EY [Y |X] equals one: ke� = 1.

so that the Boltzmann transport slowing-down ke�-eigenproblem (3.55) is simply
re-cast as follows:

Rk(E) =
⁄ EŒ

E
DSRkdE + ‰(E)

ke�

⁄ EŒ

0

f‹RkdE. (3.59)

where we define the total neutron production by fission as

Fk ,
⁄ EŒ

0

f‹RkdE, (3.60)

In the case of zero Kelvin nuclear cross sections, we established their windowed
multipole representation (see publication [130] or chapter 4), which is their local
meromorphic pole expansion. This means that we can also perform a partial
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fraction decomposition of the downscattering ratio in z ,
Ô

E space:

DS(z) , 2�s(z)
z�t(z) =

Npÿ

n=1

an

z ≠ bn
(3.61)

For neutral massive (not photons) particles, we proved the latter is a (complex
valued) rational function of degree -1, with Np = 2NL + 1 poles, where NL is
the number of radioactive poles (E.42), which we demonstrated in [125]:

Np , 2(2N⁄ +
ÿ

c

¸c) + 1. (3.62)

We were then able to derive a closed-form expression for the reaction rate:

Rk(E) = ‰0

Fk

ke�

NpŸ

n=1

AÔ
EŒ ≠ bn

Ô
E ≠ bn

Ban

. (3.63)

This reaction rate, and the corresponding flux, is reported in figure 3-8. Though
this result is only valid for zero Kelvin R-matrix reaction cross sections, it is
to our knowledge the first-ever explicit resolution of nuclear resonance self-
shielding. Strikingly, no assumptions were made on the overlap of nuclear reso-
nances, a traditionally unsolved challenge in nuclear reactor physics [154, 278,
325, 108, 221].

• (ii) Numerical resolution of the multiplication factor ke� .

Though the analytic benchmark provides closed-form expression (3.63) for the
reaction rate (and therefore the flux), it only provides with an integral expression
for the multiplication factor, which must them be computed numerically:

ke� =
‰(EŒ)

s EŒ
E0 dE Õ‹�f (E Õ)Âk(E Õ)
�t(EŒ)Âk(EŒ) . (3.64)

• (iii) Resolution of – versus ke� eigenvalue problems.
The analytic benchmark also studies the discrepancy between solving the ke�-
eigenproblem (3.55) and the –-eigenproblem:
5
–

v
+ �t(E)

6
Â–(E) ≠

⁄ EŒ

E
dE Õ �s(E Õ)

E Õ Â–(E Õ) = ‰(E)
⁄ EŒ

E0
dE Õ‹�f (E Õ)Â–(E Õ)

(3.65)
It establishes the remarkable closed-formula discrepancy between the – and the
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ke� reaction rates near-criticality (k = 1):

R–,� ≠ Rk,�

Rk,�
(E) ƒ

|–|π1

–

S

U
Npÿ

n=1

ˆan

ˆ–
ln

AÔ
EŒ ≠ bn

Ô
E ≠ bn

B

+ an
ˆbn

ˆ–

C
1

Ô
E ≠ bn

≠
1

Ô
EŒ ≠ bn

D T

V
(3.66)

where the ˆan
ˆ– and ˆbn

ˆ– are obtained by partial fraction decomposition (or contour
integration) of

ˆDS
–

ˆ–
(z) =

Npÿ

n=1

S

U
ˆa–

n
ˆ–

z ≠ bn
+

an
ˆb–

n
ˆ–

(z ≠ bn)2

T

V . (3.67)

where
DS

–(z) , 2�s(z)
z�–

t (z) (3.68)

and
�–

t (E) , –

v
+ �t(E) (3.69)

• (iv) Arbitrary order derivatives of the flux and eigenvalues to any parameter:
Using a similar approach to that for the study of the discrepancy between ke�

and – eigenvalue problems, we established general perturbation theory solutions
for the flux and eigenvalues. The reasoning goes as follows: we decompose the
Boltzmann transport problem into fission source and transport terms

TÂ = ⁄FÂ (3.70)

Where ⁄ , 1/k, and the operators are defined as:

TÂ , �T (E)Â(E) ≠

⁄ EŒ

E

�s(E Õ)
E Õ Â(E Õ)dE Õ (3.71)

and
FÂ , ‰(E)

⁄ EŒ

E0
‹�f (E Õ)Â(E Õ)dE Õ (3.72)

Taking the n-th derivative (denoted (n) superscript) of the transport eigen-
problem (3.77) with respect to any arbitrary parameter X, we obtain a lower-
triangular system:

nÿ

k=0

A
n

k

B

T (k)Â(n≠k) =
nÿ

k=0

kÿ

j=0

A
n

k

BA
k

j

B

⁄(j)F (k≠j)Â(n≠k) (3.73)

with unknowns Â(k), ⁄(k), while operators T , and F , and all their higher order
derivatives, are known. Being lower-triangular, the system can be rewritten as:

TÂ(n) = ⁄(n)FÂ + Cn (3.74)
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with

Cn ,
n≠1ÿ

j=0

⁄(j)F (n≠j)Â +
n≠1ÿ

k=1

kÿ

j=0

A
n

k

BA
k

j

B

⁄(j)F (k≠j)Â(n≠k)
≠

nÿ

k=1

A
n

k

B

T (k)Â(n≠k)

(3.75)
Using the Fredholm alternative [57, 56] then allows us to solve for ⁄(n) as:

⁄(n) = ≠
< Cn, „ >

< FÂ, „ >
(3.76)

where „ is the adjoint flux, solution to the adjoint transport eigenproblem:

T †„ = ⁄†F †„ (3.77)

Such ⁄(n) guarantees the derivative transport equation (3.74) can be inverted
(Fredholm alternative), from which the derivative flux Â(n) can be found.

3.3.2 Prior nuclear data uncertainty and sensitivities
We now deploy our Embedded Monte Carlo method on the hereupon introduced
analytic benchmark, as a proof-of-concept application to nuclear particle transport.
The input parameters X of the benchmark are the resonance parameters of the first
quantum resonance of both the 238U and the 239Pu nuclear cross sections. The res-
onance parameters X uncertainty is modeled as a multivariate normal distribution
X|◊ ≥ N (µ0, �0), the mean vector µ0 and covariance matrix �0 which are docu-
mented in the standard nuclear data libraries that compose our collective knowledge
of nuclear physics (ENDF [88]). The benchmark multiplication factor is k0

e�
= 1.0

when computed with the mean resonance parameters µ
0
.

In order to make evident the non-linear e�ects (and to reduce the computational
cost of converging the Embedded Monte Carlo estimators), we here focus only on
the capture widths resonance parameters X (plutonium 239Pu and uranium 238U
respectively), and use their scaled-up uncertainty (fictitious large covariance matrix)
from the analytic benchmark [298, 53] as the prior uncertainty distribution, which
has an uncertainty of about 7% for the plutonium capture width and 105% for the
uranium one:

µ
0

=
C

0.03982423
0.022711

D

, �0 = diag
AC

7.91779341 ◊ 10≠6

5.69933580 ◊ 10≠4

DB

(3.78)

Sampling resonance energies X from this prior uncertainty X|◊ ≥ N (µ
0
, �0) yields

the stochastic cross sections in figure 3-9. These propagate to a distribution of mul-
tiplication factors Z(X|◊) = ke� |◊, we report as the blue histogram in figure 3-9
(obtained using a Nested Monte Carlo “brute force” computation). We superimposed
the two noisy measurements of ke� which constitute the two data-points from which
Embedded Variational Inference will infer and propagate back the uncertainty. These
noisy measurements were generated numerically from ke� = 1 + ‘i, with the noise ‘i
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being sampled from heteroskedastic centered Gaussians with uncertainties ranging
around 2500 p.c.m., representing two experimental results as could be obtained from
an integral experiment.

Figure 3-9: Prior distributions. The prior distribution of inputs X|◊ (stochastic nuclear
cross sections) propagates across the particles Monte Carlo random walk Y |X, yielding a
distribution of outputs Z(X|◊) (blue histogram). Two noisy output measurements D = {Zi}

are provided (green normal distributions) to perform Bayesian inference.

Importantly, the analytic benchmark [53] also provides the Jacobians ˆZ
ˆX (sensi-

tivities), by which sensitivity analysis (SA) first-order propagation and inference can
be performed by linearizing the ensemble average relation through its Taylor expan-
sion (2.3), linear forward propagation using the well-known variance relation (2.10)
(called “sandwich rule” in the nuclear data field), and linear Bayesian inference (2.7)
and (2.8) assuming Gaussian additive noisy data (2.5)

For the analytic benchmark, the multiplication factor ke� sensitivities to the cap-
ture resonance width parameters are [53]:

ˆZ

ˆX

-----
X0

= ˆke�

ˆµ0

=
C

≠8.23992305
≠10.39643732

D

(3.79)

3.3.3 Prior uncertainty forward propagation
Sensitivities (3.79) enable us to compare linear (sensitivity analysis) to non-linear
(Embedded Monte Carlo) inference and propagation, and in turn to the direct “brute-
force” Nested Monte Carlo simulations (Total Monte Carlo). To first order (sensi-
tivity analysis), the uncertainty (3.78) linearly propagates to the multiplication fac-
tor k0

e�
, Z(X) as a normal distribution with mean 1 and standard deviation of

‡k0
e�

= 24928 p.c.m.. Figure 3-10 compares this distribution to those obtained from
Embedded Forward Propagation (for both log-normal and normal reconstruction) and
from Nested Monte Carlo. We coded two Monte Carlo implementations of the nuclear
stochastic process Y |X that we label: analog; and continuous. The analog case is a
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Figure 3-10: Embedded Forward Propagation: Analytic benchmark prior un-

certainty. For analog and continuous Monte Carlo codes, prior inputs X|◊ uncertainty
distribution is forward propagated to the output multiplication factor Z(X|◊) = ke� |◊ us-
ing: linearized sensitivity analysis SA; Embedded Forward Propagation EFP; and Nested
Monte Carlo. According to the maximum entropy principle, since ke� > 0, log-normal EFP
reconstructs better than normal.
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simple Bernoulli process, whereby each neutron either gets captured or fissions at the
end of its slowdown, and thus contributes either 0 or ‹ to the output multiplication
factor ke� , Z(X). In contrast, the implementation named continuous tallies the
ratio of fission to capture, thereby contributing the corresponding fraction of ‹ to the
multiplication factor. This reduces the variance of Z(X), and therefore acts like a con-
vergence accelerator. Figure 3-10 shows how the log-normal Embedded Monte Carlo
fits the prior uncertainty distribution of multiplication factors k0

e�
, Z(X|◊) more

accurately. Since the multiplication factor is a positive quantity, one can interpret
the better log-normal fit as an instance of the maximum entropy principle.

For the prior uncertainty forward propagation, one can estimate the optimal trade-
o� between inner-loop N (number of particles per run) and outer-loop M (number
of di�erent nuclear data samples) theorem 2, and using subsequent (3.20) and (3.21)
for order of magnitude reckonings. In the analog case ke� = ‹p — where p is the
Bernoulli parameter that is the likelihood that a neutron that is born will fission,
producing ‹ neutrons in the wake — so the variance of the inner-loop Bernoulli
process is �Y = (‹ ≠ ke�)2p + k2

e�
(1 ≠ p). Since k0

e�
= 1, it yields a corresponding

inner-loop variance of 1.88, so we approximate È�2

Y Í ¥ 3.5 in (3.20). The outer-loop
variance is È�2ZÍ = ‡2

k0
e�

¥ 6.2 ◊ 10≠2, so that the optimal EFP ratio would be on the
order of N ¥ 40 neutrons per run.

3.3.4 Inference from one noisy data-point
We then generate one noisy observation D =

Ó
Zi

Ô
of outputs Z(X), with Zi =

Z(X) + ‘i, drawn at random yielding Zi = 0.97717 ± 0.04364 (standard deviation
‡i = 0.02182), and proceed to infer updated input parameters X|D using Embedded
Variational Inference (theorem 3). The EVI estimators (3.41) were computed with
the analog Monte Carlo tallies at minimum convergence, that is for each iteration step
t, only one sample of the resonance parameters is drawn (M = 1), for which only two
neutrons are run (N = 2) each contributing either 0 or ‹ to the Z(X) = ke� estimator
(3.37). It is likely that a continuous Monte Carlo simulation with a more optimized
ratio of outer-loop M to inner-loop N estimators would accelerate convergence (such
as in theorem 2), yet we deliberately chose the estimators as binary (analog) and non-
converged to show the EVI algorithm works even under exacting circumstances. The
initial guesses were set at the prior values ◊ = {µ

0
, �0}, which is a di�cult starting

point as one of the covariance matrix entry is expected to diminish by two orders
of magnitude. All EFP propagations were computed with a total of three million
particle runs (M ◊ N = 3 ◊ 106), while all EVI inferences were performed with three
million iterations (T = 3 ◊ 106 and T ◊ M ◊ N = 6 ◊ 106). For a single observation
(ND = 1), the learning rate sequences of EVI algorithm (3.30) for the mean and the
Gramm root matrix in (3.54), were respectively set to (3.80) — chosen empirically
for their fast initial narrowing down towards the correct orders of magnitude given
our computational constraint of 107 neutrons total budget:

“tµ = 10≠8

(t + 1)1/2
· µ

0
, “tS = 5 ◊ 10≠2

(t + 1)1/8
(3.80)
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Figure 3-11: Embedded Variational Inference: one-point learning. Given one
(ND = 1) noisy observation D of multiplication factor outputs ke� , Z(X), Embedded
Variational Inference algorithm (3) infers Bayesian posterior inputs X|D across the analytic
benchmark with a convergence rate of O

1
1Ô
T

2
.

Figure 3-11 shows the O

1
1Ô
T

2
convergence of EVI algorithm (3.30), and stochastic

cross sections from the updated uncertainty distribution. The updated parameters
from Embedded Variational Inference are:

µEVI

X|D =
C

0.04036485
0.02290588

D

, �EVI

X|D =
C

8.05708972 ◊ 10≠7
≠8.32966704 ◊ 10≠7

≠8.32966704 ◊ 10≠7 1.23386885 ◊ 10≠5

D

(3.81)
compared to those from first-order linearized sensitivity analysis:

µSA

X|D =
C

0.03984802
0.02487164

D

, �SA

X|D =
C

7.84981490 ◊ 10≠6
≠6.17380691 ◊ 10≠6

≠6.17380691 ◊ 10≠6 9.22847964 ◊ 10≠6

D

(3.82)
We then propagate these inferred inputs X|D to outputs Z(X|D). Figure 3-12

compares the resulting Z(X|D) distributions obtained from linear sensitivity analysis
(SA); Embedded Monte Carlo (EFP); and Nested Monte Carlo. Note that the SA
distribution is almost identical to the data-point D = Zi uncertainty, while the EVI
uncertainty is larger. Perhaps three million EVI iterations did not fully converge
the inferred parameters distribution X|D. Nonetheless, the EFP can accurately re-
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construct the fully converged Nested Monte Carlo distribution, even for minimal
estimators (N = 2). As previously, we consider the optimal EFP ratio of inner-loop
N to outer-loop M , which theorem 2 links to the ratio of their variances (and kur-
toses). We again use (3.20) and (3.21) as rough approximations, and estimate the
optimal number of particles for analog EFP (Bernoulli binary process). The outer-
loop is now determined by the data D uncertainty, in the order of 2000 p.c.m, so the
optimal inner-loop number is closer to N ¥ 6000. Thus, with more accurate data D,
it is harder to resolve the Monte Carlo estimators, and it becomes more beneficial
to converge the inner-loop variance. The continuous implementation of our Monte
Carlo code will lower this optimal inner-loop number.

3.3.5 Inference from two noisy data-points
We generate a second noisy observation Zi = Z(X) + ‘i of outputs Z(X), drawn
at random yielding Zi = 1.01893 ± 0.05958 (standard deviation ‡i = 0.02979). We
then study the entire inference and propagation process with now two data-points
ND = 2, starting from the previously inferred parameters X|D from one data-point.
All runs were again carried out with three million particles, and identical learning
rates (3.80) but for a doubling of the precision matrix one “tS = 10

≠1

(t+1)1/8 , yielding the
following parameters distributions, inferred from two point ND = 2 using EVI and
SA respectively:

µEVI

X|D =
C

0.04105095
0.02281541

D

, �EVI

X|D =
C

7.33049849 ◊ 10≠7
≠6.88597475 ◊ 10≠7

≠6.88597475 ◊ 10≠7 5.99878688 ◊ 10≠6

D

(3.83)

µSA

X|D =
C

0.03983285
0.02349389

D

, �SA

X|D =
C

7.84963386 ◊ 10≠6
≠6.19024919 ◊ 10≠6

≠6.19024919 ◊ 10≠6 7.73519189e ◊ 10≠6

D

(3.84)
Figure 3-13 shows the EVI convergence towards the inferred parameters X|D, and the
corresponding uncertain nuclear cross sections. Note that the elements of covariance
matrices inferred from EVI were often smaller than those obtained from SA, yet
would still yield larger uncertainties when propagated to Z(X|D). This shows how
much correlations in the covariance matrix and the sensitivities can influence the
uncertainty of the outcome.

Finally, we then forward propagate these again to the multiplication factor outputs
Z(X|D) = ke� |D, and report the corresponding distributions in figure 3-14. There,
one can see how the inferred parameters means are now in between the two data-
points uncertainty distributions, correspondingly weighted as in sensitivity analysis
(2.8). Embedded Monte Carlo closely matches the Nested Monte Carlo simulations,
even with vastly under-converged inner-loops. Since fast-TMC is based on converging
the inner-loop (reactor simulations) to within the outer-loop uncertainty (from nuclear
data), that entails an order of magnitude of 10 to 100 times less neutrons needed to
converge an Embedded Monte Carlo calculation, depending on the optimal trade-
o� number (3.21), which is of the order of N ¥ 6000 for nuclear data uncertainty
translating into 2000 p.c.m (outer-loop) for an analog (binary) Monte Carlo particle
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transport close to criticality. Strikingly, computations with only two neutrons per
resonance parameters, in analog Monte Carlo transport simulations yielding binary
Bernoulli tallies, su�ce to accurately propagate and infer the input data uncertainty
across the complex stochastic process.

This analytic benchmark case is just an illustration of the potential applications
of the Embedded Monte Carlo method to nuclear computations. More generally,
Embedded Monte Carlo could be used to propagate and infer uncertainty from any
random inputs in geometry (pebble-bed, structural uncertainty, etc. [216]), or nuclear
physics (nuclear data, nuclear models, etc.).

3.4 Embedded conclusion
Given a set of input parameters X, you dispose of a simulator capable of generating
occurrences of an intractable stochastic process Y |X, in the sense that simulations
of Y |X are costly. You are provided with a data set D , {Zi} of noisy obser-
vations of the stochastic process ensemble average Z(X) , EY [Y |X] (conditional
mean). We here establish novel Embedded Monte Carlo methods to approximate the
updated Bayesian inference distribution of the parameters X|D, and propagate it to
the outputs Z(X|D). Such Embedded Monte Carlo Bayesian inference works under
the general hypotheses that the log-likelihood of the data, ln(p(D|X)), is polynomial
(which is the case for Gaussian noise). With appropriate learning rates, the Embed-
ded Variational Inference algorithm (an iterative stochastic optimization) converges
to the best posterior X|D distribution approximation within a parametric family (as
of the principle of minimum discrimination information), at the same asymptotic rate
O

1
1Ô
T

2
as it takes to converge any one output value Z(X). Embedded Forward Prop-

agation can then propagate this inferred uncertainty distribution of inputs X|D to
the outputs Z(X|D), at the same asymptotic rate O

1
1Ô
M

2
. This is possible assuming

the moments of the ensemble averages distribution p(Z(X|D)) exist (non-heavy-tails)
and can well reconstruct the distribution (moments problem). We verify all the meth-
ods on a toy problem with step-by-step analytic solutions from multivariate normal
conjugate priors. We then apply Embedded Monte Carlo to the stochastic process
at the origins of the Monte Carlo method: the random walk of nuclear particles. We
show how Embedded Monte Carlo enables Bayesian inference and uncertainty prop-
agation of nuclear data across the intractable branching process of neutron fission
chain reactions, without ever having to converge any one simulation: a breakthrough
in the field.

Much research is further needed in order to determine systematic methods to chose
learning rate sequences appropriate to given applications, as well as on how to scale
up to many input parameters X, as our empirical experience was that the algorithms
become ever more unstable as more and more parameters are added for inference.
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Figure 3-12: Embedded Monte Carlo: one-point learning. Analytic benchmark
one-point inferred resonance parameters X|D (EVI theorem 3 with ND = 1), forward
propagated to multiplication factor outputs Z(X|D) = ke� |D using SA, EFP, and Nested
Monte Carlo, for analog and continuous neutron transport codes.
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Figure 3-13: Embedded Variational Inference: Analytic benchmark two-points

posterior uncertainty. Given two (ND = 2) noisy observations D of outputs (multipli-
cation factor ke� , Z(X)), Embedded Variational Inference algorithm (3) infers Bayesian
posterior inputs X|D with a convergence rate of O

1
1Ô
T

2
.
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Figure 3-14: Embedded Monte Carlo: two-points learning. Analytic benchmark
two-points inferred resonance parameters X|D (EVI theorem 3 with ND = 2), forward
propagated to multiplication factor outputs Z(X|D) = ke� |D using SA, EFP, and Nested
Monte Carlo, for analog and continuous neutron transport codes.

89



90



Chapter 4

Windowed Multipole Stochastic
Cross Sections

Dans la vie, rien n’est à craindre, tout est à comprendre.
C’est maintenant le moment de comprendre davantage, afin de craindre moins.

- Marie Sk≥odowska-Curie

The analytic benchmark example demonstrates how the new Embedded Monte
Carlo statistics can be used to both: (a) propagate uncertainty in nuclear data to
the outputs of nuclear simulations (Embedded Forward Propagation); and (b) take
empirical uncertainty from experimental observations of outputs, and combine them
to a simulation of the experiment in question, in order to infer an updated distri-
bution for the nuclear data (Embedded Variational Inference). Both are achieved
at a drastically reduced computational cost compared to Total Monte Carlo (TMC),
and rely on the capability of running few neutrons (as few as two) on many di�erent
possible nuclear physics landscapes, that is Embedded Monte Carlo rests on being
able to readily sample nuclear cross sections from their uncertainty distributions.

While sampling nuclear data from their uncertainty distribution is fairly straight-
forward, it is in practice di�cult to translate this into their corresponding nuclear
cross sections (input to the nuclear simulation). This is because nuclear cross sec-
tions must undergo a processing step to account for temperature e�ects, in particular
Doppler broadening. This di�culty was not present in the analytic benchmark prob-
lem because it is a zero-kelvin problem, but in practice standard nuclear libraries
such as ENDF undergo a thorough pre-processing step to generate the cross sections
at the correct temperatures (using codes such as NJOY [228]), storing the resulting
point-wise nuclear cross sections into ACE files counting some 100,000 points for each
actinide at each reference temperature, over a grid of some 100 reference tempera-
tures: a considerable memory footprint. At present, generating millions of such ACE
files would therefore be necessary to run an Embedded Monte Carlo scheme, and this
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would be prohibitively costly (see section 2.6).
In order to e�ciently use the Embedded Monte Carlo methods, we therefore need

to be able to generate Doppler-broadened stochastic nuclear cross sections on-the-fly,
meaning without any large pre-computations stored in memory, just as it was the
case in the analytic benchmark. To achieve this, our team at MIT — in collaboration
with research groups at Los Alamos and Oak Ridge national laboratories, as well
as at University of Tennessee Knoxville — has developed a new windowed multipole
library. This library parametrizes the same nuclear cross sections in a di�erent math-
ematical representation — with windowed multipole parameters — which enables to
sample windowed multipole parameters, and subsequently compute the corresponding
Doppler broadened cross sections, on-the-fly and e�ciently.

We introduced the temperature Doppler broadening problem in section 2.6, and
how various methods have been recently proposed to perform Doppler broadening on-
the-fly (section 2.6.2), ranging from temperature curve-fits [326], to rejection-sampling
[316, 317, 288], or Fourier transform [145], and pseudo-materials [111, 313, 261]. Be-
fore moving-on to explain how we can perform Doppler broadening on-the-fly using
the windowed multipole representation (section 4.2), let us first here briefly recall a
optimal quadrature kernel reconstruction method we developed that is, to the best of
our knowledge, the best performer in temperature interpolation for Doppler broad-
ening.

4.1 Doppler kernel reconstruction optimal quadra-
ture

In our article [124] (transcribed verbatim in appendix F), we developed a new optimal
quadrature method for temperature interpolation — called Doppler kernel reconstruc-
tion — which outperforms ten-times-over the previous best-performing state-of-the-
art “curve fit” interpolation method [326], in that with only 10 reference temperaturesÓ
Ti

Ô
it achieves better than 0.1% interpolation accuracy (maximum relative error

i.e. L0-norm) for the Doppler broadened 238U cross section over the energy range of
[10≠5eV, 20 keV], and range of temperature [300 K, 3000 K] — which are typical nu-
clear reactor conditions — when with the same 10 reference temperatures the current
state-of-the-art “curve fit” method [326] achieves only a 1% interpolation accuracy,
as we show in figure 4-1 (which is FIG. 4 from [124]).

Our Kernel reconstruction optimal quadrature method is thoroughly established
in [124], and summarized in [123]. We here succinctly synthesize its essential steps
for implementation purposes.

Kernel reconstruction approximates the exact cross section ‡(exact)
T (E) at any en-

ergy E with a linear combination of pre-tabulated cross sections at reference temper-
atures

Ó
Ti

Ô
:

‡(exact)
T (E) ¥ ‡(approx)

T (E) =
Nÿ

j=1

cj(T ) ‡Tj (E)
(4.1)
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Figure 4-1: Kernel reconstruction optimal quadrature for Doppler broaden-

ing temperature interpolation. Maximum relative errors over energy
#
10≠5eV, 20 keV

$

and temperature [300 K, 3000 K] ranges. Performance of optimal quadrature Doppler ker-
nel reconstruction method (kernel rec. [124]) compared to linear interpolation (lin-lin),
logarithmic interpolation (log-log), and the MCNP curve fit (curve-fit [326]) method. Ker-
nel reconstruction is ten times more accurate than the MCNP curve-fit method. N = 10
optimal reference temperatures su�ce to achieve 0.1% relative error.

the interpolation coe�cients cj of the quadrature are then obtained by solving mini-
mization problem:

cj(T ) = argmin
cj

......
K

D
T ≠

ÿ

j

cjK
D
Tj

......
L2

(4.2)

We managed to cast the latter as the Gram matrix inversion problem
S

WWWWWWU

Ô
T1T1

(T1+T1
2 ) . . .

Ô
T1TN1

T1+TN
2

2

... . . . ...Ô
T1TN1
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2
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TN +TN

2

2
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·
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...
cN

T

XXV =

S

WWWWWU

Ô
T1T

(T1+T
2 )
...Ô

TN T1
TN +T

2

2

T

XXXXXV
(4.3)

which we were able to solve algebraically as

cj(T ) =

Ò
TjT

1
Tj+T

2

2
Ÿ

i”=j

3
T ≠ Ti

T + Ti

4 A
Tj + Ti

Tj ≠ Ti

B

(4.4)

A remarkable property of the Doppler kernel reconstruction quadrature method is
that the coe�cients

Ó
cj(T )

Ô
, readily calculable through (4.4), do not depend on any

isotope-specific cross sections: they only depend on the reference temperatures
Ó
Tj

Ô
.
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Having found the optimal linear coe�cients (4.4), we can then optimize the grid
of reference temperatures

Ó
Tj

Ô
by solving the following min-max LŒ problem over a

range of temperatures of interest T œ [Tmin, Tmax]:

Tj = argmin
Tj

A

max
T œ[Tmin,Tmax]

A
�‘

‘

B

D

B

(4.5)

where
1

�‘
‘

2

D
is the relative distance between the exact Doppler kernel at temperature

T and the linear combination of reference temperature kernels:

A
�‘

‘

B

D
©

...K
D
T ≠

qN
j=1

cjK
D
Tj

...
L2

ÎKD
T Î

L2

=
ı̂ııÙ1 ≠ 2

ÿ

i

ci

Ô
TiT1

Ti+T
2

2 +
ÿ

i

ÿ

j

cicj

Ò
TiTj

1
Ti+Tj

2

2 (4.6)

This optimal temperature grid for Doppler kernel reconstruction performs better than
linearly interpolating between other traditional temperature meshes (such as linear,
logarithmic spaced, etc.), as we document in figure -7 (FIG. E.7 of [124]). The optimal

Figure 4-2: Di�erent reference temperature grids. Doppler kernel relative error
(F.55) over the range [300K, 3000K] for linearly spaced, logarithmic spaced, square-root-
spaced, and optimal quadrature temperatures grids.

Doppler kernel reconstruction quadrature temperature grid
Ó
Tj

Ô
is documented in

table 1 (TABLE E.1 of [124]), and depicted in figure -6 (FIG. E.6 of [124]).

Remarkably, it only depends on the number N of reference temperatures, and the
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Table 4.1: Optimal temperature grid
)
Tj

*
for Doppler kernel reconstruction quadrature,

as a function of the number N of reference temperatures.

N Optimized temperature grid
Ó
Tj

Ô
to perform temperature-optimized free Doppler kernel reconstruction temperature interpolation

on range [300 K, 3000 K]
1 [948.427]
2 [435.246, 2062.500]
3 [358.012, 948.520, 2512.500]
4 [332.153, 629.087, 1425.806, 2700.000]
5 [320.460, 500.262, 947.380, 1793.691, 2800.000]
6 [314.094, 435.908, 720.689, 1249.489, 2065.967, 2862.500]
7 [310.307, 398.356, 595.912, 949.001, 1511.168, 2259.447, 2893.160]
8 [307.963, 374.068, 519.349, 770.695, 1165.427, 1728.875, 2399.149, 2912.500]
9 [306.145, 359.232, 471.071, 660.047, 950.788, 1369.094, 1917.188, 2513.831, 2937.500]
10 [305.048, 347.608, 436.673, 584.202, 806.228, 1123.081, 1548.951, 2069.173, 2596.590, 2950.000]
11 [304.252, 338.681, 412.408, 530.512, 705.793, 951.890, 1283.538, 1704.703, 2189.430, 2653.095, 2950.000]
12 [303.585, 332.980, 393.688, 492.033, 634.213, 831.825, 1096.021, 1435.603, 1846.909, 2297.375, 2708.445, 2962.500]
13 [303.000, 328.648, 380.443, 462.297, 580.728, 742.398, 956.598, 1232.018, 1571.752, 1966.591, 2380.887, 2744.320, 2962.500]
14 [302.495, 325.278, 370.687, 441.433, 541.558, 677.013, 855.133, 1082.763, 1365.105, 1701.746, 2078.919, 2460.747, 2783.786, 2971.098]
15 [302.0560, 322.886, 362.312, 423.02, 508.989, 624.631, 774.835, 965.193, 1201.262, 1485.613, 1814.241, 2170.679, 2520.285, 2809.074, 2975.000]

Figure 4-3: Optimal quadrature temperatures grids
)
Tj

*
for Doppler kernel

reconstruction. Reference temperature grids in both linear and log space as a function of
the number N of reference temperatures.

dimensionless ratio
r , ln

3
Tmax

Tmin

4
(4.7)

which determines the natural variable of the problem (dimensionless temperature):

· , ln
3

T

Tmin

4
/ln

3
Tmax

Tmin

4
(4.8)

The optimal temperature points are then symmetric in · , centered on 1/2, and deter-
mined only by the ratio r =

1
Tmax
Tmin

2
. For instance, in the particular case of r = e (the

Euler number), the optimal values match exactly those of the Chebyshev quadrature,
as shown in figure -5 (FIG. E.5 of [124]), and can range all the way to those of the
Legendre quadrature depending on the value of r.
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Figure 4-4: Optimal quadrature temperature grids vs. roots of the Chebyshev

polynomials. Number of reference temperatures vs optimal temperatures on the range
[1,e]. Optimal temperature points line up with Chebyshev quadrature.

4.2 On-the-fly stochastic nuclear cross sections us-
ing the windowed multipole representation

To improve the performance of Doppler broadening and facilitate on-the-fly calcu-
lations, one must look at the functional form of nuclear cross sections. These cross
sections are derived from R-matrix theory, a quantum model of nuclear interactions
that parametrizes their energy dependence with resonance parameters called reso-
nance energies E⁄ (for each level ⁄) and resonance widths “⁄,c (for each channel c and
level ⁄).

4.2.1 Windowed multipole representation formalism
We have recently established that R-matrix cross sections can be parametrized equiva-
lently with poles and residues and local expansion terms. This is called the windowed
multipole representation of R-matrix cross sections [130], which is essentially the
meromorphic continuation (local Mittag-Le�er expansion) of R-Matrix cross sections
to complex wavenumbers. For real wavenumbers (that is energies above threshold),
the windowed multipole expansion is exactly equivalent to the R-matrix formalism
(though they di�er for complex wavenumbers as is the case below threshold). In
the case where no threshold reactions are present (we refer to theorem 1 of [130]
for the general case), nuclear cross sections admit the following windowed multipole
representation:

‡(z) =
W(E)

1
z2

Ÿconj

S

U
ÿ

jØ1

rj

z ≠ pj

T

V +
ÿ

nØ≠2

anzn (4.9)

where z ,
Ô

E is the square root of the relative energy of the two interacting bodies
(in the center of mass), and where Ÿconj [f(z)] , f(z)+[f(zú

)]
ú

2
designates the analytic

continuation of the real part (called conjugate continuation in [130]). The poles
Ó
pj

Ô
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(a) 238U first resonances (3 s-waves and 4 p-
waves).

(b) 238U windowed multipole cross section sur-
face.

(c) 238U first s-wave resonance peak.

Figure 4-5: Windowed multipole representation of R-matrix cross sections. 238U
total cross section (minus potential scattering) meromorphic continuation into the complex
z-plane, for z = ±

Ô
E in (

Ô
eV). This surface’s crest and thalweg line along the real axis is

the R-matrix cross section above the zero threshold. FIG. E-1(b) shows the resonance peaks
are the saddle points between the complex conjugate poles. Negative z in FIG.E-1(b) are
on the shadow branch {E, ≠} of the energy-wavenumber mapping kc(E). The black circle
in FIG.E-1(c) represents the contour integrals around the poles of the complex cross section
which enable both conversion to windowed multipole covariances (theorem 2 in [130]) and
analytic Doppler broadening (theorem 3 of [130]).

and residues
Ó
rj

Ô
are global parameters, while the expansion coe�cients

Ó
an

Ô
are

local and depend on each energy window W(E). Figure E-1 (FIG. 1 of [130]) shows
the structure of nuclear resonances in the windowed multipole representation, and
how they exactly match R-matrix cross sections along the real axis in wavenumber
space (real energies above threshold).
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4.2.2 Windowed multipole representation Doppler broaden-
ing

This windowed multipole representation (E.96) has the great advantage that angle-
integrated cross sections can then be analytically Doppler broadened on-the-fly as
follows (theorem 3 of [130]):

‡T (z) =
W(E)

ÿ

nØ≠2

anDn
—(z)

+ 1
z2

Ÿ

S

Ui
Ô

fi
ÿ

jØ1

rj

—
·

C

w
A

z ≠ pj

—

B

≠ C
A

z

—
,
pj

—

BDT

V
(4.10)

where C
1

z
— , pj

—

2
is a correction term defined as:

C
A

z

—
,
pj

—

B

, 2 pj

ifi—

⁄ Œ

0

e≠( z
— +t)2

t2 ≠

1
pj

—

2
2
dt (4.11)

which is negligible in most physical ranges of temperatures and energies, so that
Doppler broadened windowed multipole cross sections can be well approximated as

‡T (z) ƒ
W(E)

1
z2

Ÿ

S

UÔ
fi

ÿ

jØ1

rj

i— · w
A

z ≠ pj

—

BT

V +
ÿ

nØ≠2

anDn
—(z) (4.12)

where Dn
—(z) are the Doppler broadened monomials:

Dn
—(z) ,

⁄ Œ

0

xn+2

z2
K

D
— (z, x)dx (4.13)

which can be computed from elemental Gaussian and error functions (defined in eq.
7.2.1 of [250]) using the following recurrence formulae [197]:

Dn+2

— (z) =
’nØ1

C
—2

2 (2n + 1) + z2

D

Dn
—(z) ≠

A
—2

2

B
2

n(n ≠ 1)Dn≠2

— (z)

D0

—(z) =
C

—2

2 + z2

D

D≠2

— (z) + —

z
Ô

fi
e≠( z

— )2

D≠1

— (z) = 1
z

D≠2

— (z) = 1
z2

erf
A

z

—

B

(4.14)

and where w(z) is the Faddeyeva function (defined in eq. 7.2.3 of [250]),

w(z) , e≠z2
3

1 ≠ erf (≠iz)
4

= e≠z2
A

1 + 2i
Ô

fi

⁄ z

0

et2dt

B

(4.15)
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called at poles in the complex lower semi-plane, i.e. ⁄

Ë
z≠pj

—

È
> 0. For all other poles,

which satisfy ⁄

Ë
z≠pj

—

È
Æ 0, we use the fact that the windowed multipole Represen-

tation has complex conjugate poles to call the Faddeyeva function at ≠ [w (zú)]ú =
≠w (≠z).

Figure E-6 (FIG.6 of [130]) shows how the windowed multipole cross sections
Doppler broadened using (4.12) match perfectly the direct integration of Solbrig’s
kernel, drastically outperforming the „/‰ functions approximation method of tradi-
tional approaches, and even the direct implementation of the SIGMA1 method in
NJOY [228].

Starting from the approximate form of the Doppler broadening (4.12), and there-
fore assuming that the temperature partial derivatives of the C

1
z
— , pj

—

2
function are

small (which in practice they are), we were also able to establish the k-th temperature
derivative as

ˆ(k)

T ‡T (z) ƒ
W(E)

1
z2

Ÿ

S

Ui
Ô

fi
ÿ

jØ1

rj · X(k)

— (z ≠ pj)
T

V +
ÿ

nØ≠2

an · ˆ(k)

T Dn
—(z) (4.16)

X(k)

— (z ≠ pj) are the k-th temperature derivatives of the Doppler broadened reso-
nances:

X(k)

— (z ≠ pj) , ˆ(k)

T

5
◊ · w

3
◊ (z ≠ pj)

46

=
kÿ

n=1

1
ˆ(n)

◊ ◊ · w
1
◊(z ≠ pj)

22
◊ Bk,n

1
◊(1), ◊(2), . . . , ◊(k≠n+1)

2 (4.17)

where the sum is the Arbogast composite derivatives (Faà di Bruno) formula [61],
linking the ◊-derivatives

ˆ(n)

◊ ◊ · w
1
◊(z ≠ pj)

2
=

’nØ1

≠
(z ≠ pj)n≠1

2 w(n+1)
1
◊(z ≠ pj)

2
(4.18)

to the ◊(n) temperature derivatives of ◊

◊(n) , ˆ(n)

T ◊ = 1
—

3
≠1
2

4n (2n ≠ 1)!!
(T ≠ T0)n (4.19)

by means of the partial exponential Bell polynomials Bk,n

1
◊(1), ◊(2), . . . , ◊(k≠n+1)

2
[71,

49, 85]. The derivatives of the Faddeyeva function can be computed using recurrence
formulae (c.f. 7.10 in [250]):

w(1)(z) = ≠2zw(z) + 2i
Ô

fi

w(n+2)(z) = ≠2zw(n+1)(z) ≠ 2(n + 1)w(n)(z)
(4.20)

ˆ(k)

T Dn
—(z) are the temperature derivatives of the Doppler broadened monomials, which
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(a) T = 300 Kelvin

(b) T = 105 Kelvin

(c) T = 107 Kelvin

Figure 4-6: Accuracy of di�erent Doppler-broadening methods. Modeling the first
resonance of 238U with a Single-Level-Breit-Wigner, the cross section is reconstructed at
T=0K. For each temperature {300, 105

, 107
} Kelvin, the cross section is then broadened

using four di�erent methods: (i) numerical integration of the Solbrig Kernel (E.136); (ii)
Using the ÂT /‰T approximation for SLBW Doppler broadening (classical method described
in section IV.B. of [130]); (iii) conversion of the resonance parameters {�} to multipoles
{�} and analytic Doppler broadening of windowed multipole representation (4.12); (iv)
formulation of the parameters in ENDF format and processing using NJOY [228]. For each
temperature, the right column shows the absolute relative error for methods (ii), (iii), and
(iv) to the direct integration of the Solbrig Kernel (i). Note: NJOY was run with a tolerance
parameter of 10≠2 as higher accuracy required a prohibitively long computation time.

are subject to the following recurrence formulae, defining a , kB
A :
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ˆ(k)

T Dn+2

— (z) =
’nØ1

C
—2

2 (2n + 1) + z2

D

ˆ(k)

T Dn
—(z) + a

2(2n + 1)k ˆ(k≠1)

T Dn
—(z)

≠
n(n ≠ 1)

4

S

U—4ˆ(k)

T Dn≠2

— (z) + 2a—k ˆ(k≠1)

T Dn≠2

— (z) + a2k(k ≠ 1)ˆ(k≠2)

T Dn≠2

— (z)
T

V

ˆ(k)

T D0

—(z) =
C

—2

2 +z2

D

ˆ(k)

T D≠2

— (z) + a

2k ˆ(k≠1)

T D≠2

— (z) + 1
z
Ô

fi

Ë
—2ˆ(k)

T ◊e≠(z◊)
2
+ak ˆ(k≠1)

T ◊e≠(z◊)
2È

ˆ(k)

T D≠1

— (z) = 1
z

”k,0

ˆ(k)

T D≠2

— (z) = 1
z2

ˆ(k)

T erf (z◊)
(4.21)

In recurrence relations (E.158), the terms ˆ(k)

T ◊e≠(z◊)
2 can themselves be computed

using Arbogast’s formula:

ˆ(k)

T ◊e≠(z◊)
2

= e≠(z◊)
2

kÿ

n=1

F (n)

z (◊) ◊ Bk,n

1
◊(1), ◊(2), . . . , ◊(k≠n+1)

2
(4.22)

where F (n)

z (◊) are polynomials of degree n + 1 defined as

F (n)

z (◊) , e(z◊)
2
ˆ(n)

◊ ◊e≠(z◊)
2

=
n+1ÿ

i=0

–(n)

i ◊i (4.23)

which are recursively constructed from F (0)

z (◊) = ◊ as

F (n+1)

z (◊) = ˆ◊F
(n)

z (◊) ≠ 2z2◊F (n)

z (◊) (4.24)

entailing these recurrence formulae on their coe�cients:

–(0)

0 = 0 –(0)

1 = 1
–(n+1)

n+1 = ≠2z2–(n)

n –(n+1)

n+2 = ≠2z2–(n)

n+1

–(n+1)

i =
1ÆiÆn

(i + 1)–(n)

i+1
≠ 2z2–(n)

i≠1

(4.25)

Finally, the terms ˆ(k)

T erf (z◊) in recurrence relations (E.158) can also be computed
using Arbogast’s formula:

ˆ(k)

T erf (z◊) =
kÿ

n=1

1
ˆ(n)

◊ erf (z◊)
2

· Bk,n

1
◊(1), . . . , ◊(k≠n+1)

2
(4.26)

in which the ◊ derivatives can be expressed as

ˆ(n)

◊ erf (z◊) =
nØ1

zn(≠1)n≠1
2

Ô
fi

Hn≠1 (z◊) e≠(z◊)
2

(4.27)
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where the Hermite polynomials Hn(z) are recursively calculable from H0 = 1 and
H1 = 2z as:

Hn+1 =
nØ1

2zHn ≠ 2nHn≠1 (4.28)

We have thus established an e�cient method to compute arbitrary-order tem-
perature derivatives of nuclear cross sections on-the-fly, the performance of which
is reported in [197, 198] and is roughly as fast as temperature lookup and interpola-
tion (slower than single but faster than double lookup) while requiring 1000 times less
memory. This capability could be combined with other codes to achieve advanced and
e�cient neutronics-theromhydraulics coupling for high-fidelity and high-performance
reactor simulations [168, 167, 169].

4.2.3 Converting resonance parameters to windowed multi-
poles

The detailed theory of the windowed multipole representation, and how to obtain it
from R-matrix parameters, is established in our article [130], reproduced in appendix
E. For summary, we here recall that general scattering theory expresses the incoming
channel c and outgoing channel cÕ angle-integrated partial cross section ‡c,cÕ(E) at
energy E as a function of the probability transmission matrix TccÕ(E), according to
eq.(3.2d) VIII.3. p.293 of [214]:

‡ccÕ(E) = 4figJfi
c

-----
TccÕ(E)
kc(E)

-----

2

(4.29)

where kc is the wavenumber of the channel, and the spin statistical factor is defined
eq.(3.2c) VIII.3. p.293. of [214] as:

gJfi
c

, 2Jc + 1
(2I1 + 1) (2I2 + 1) (4.30)

where Jfi
c is the total angular momentum of the channel (with its parity), I1 and I2

the spins of the two interacting bodies. The transmission matrix is itself derived from
the scattering matrix U of the interaction:

T , I ≠ e≠iÊUe≠iÊ

2
(4.31)

where Ê , diag
1
Êc

2
is the diagonal matrix composed of Êc , ‡¸c(÷c) ≠ ‡0(÷c),

that is the di�erence in Coulomb phase shift, ‡¸c(÷c), which are linked to the phases
(argument) of the Gamma function as defined by Ian Thompson in eq.(33.2.10) of
[250] for angular momentum ¸c

‡¸c(÷c) , arg
3

� (1 + ¸c + i÷c)
4

(4.32)
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and dimensionless Coulomb field parameter :

÷c , Z1Z2e2M–ac

~2flc
(4.33)

where ac is the channel radius, e the elementary charge, ~ the Planck constant, Z1

and Z2 the number of charges in the two interacting bodies, M– the reduced mass of
the system, and flc the dimensionless wavenumber:

flc , kc ac (4.34)

Note that transmission matrix (E.7) definition TccÕ , ”ccÕ ≠e
≠iÊc UccÕ e

≠iÊcÕ

2
is a scaled

rotation of the one defined by Lane and Thomas T L&T

ccÕ , ”ccÕe2iÊc ≠ UccÕ (c.f. eq.
(2.3), VIII.2. p.292 and eq.(3.2d) VIII.3. p.293 of [214]). We introduce definition
(E.7) for better physical interpretability, algebraic simplicity and numerical stability.

Unitarity of the scattering matrix entails that the total cross section of a given channel
is:

‡c(E) ,
ÿ

cÕ
‡ccÕ(E) = 4figJfi

c

Ÿ [Tcc(E)]
|kc(E)|2 (4.35)

R-matrix theory parametrizes the scattering matrix U (E) as:

U = O≠1I + 2ifl1/2O≠1“TA“O≠1fl1/2 (4.36)

where the level matrix A (see equations (17) and (18) of section II.C of [127]) is
defined as

A≠1 , e ≠ EI ≠ “ (L ≠ B) “T (4.37)

This level matrix is parametrized by the resonance energies E⁄ and the resonance
widths “⁄,c – of which we respectively build the diagonal matrix e = diag (E⁄) of size
N⁄, the number of levels (resonances), and the rectangular matrix “ = mat (“⁄,c)
of size N⁄ ◊ Nc where Nc is the number of channels. In exact R-matrix theory,
these resonance parameters (together symbolically denoted

Ó
�

Ô
here) are real, but

they become complex in the Reich-Moore formalism. Finally, B = diag (Bc) is
the diagonal matrix of real arbitrary boundary conditions Bc, and L = diag (Lc)
where Lc(flc) is the dimensionless reduced logarithmic derivative of the outgoing-wave
function at the channel surface:

Lc(flc) ,
flc

Oc

ˆOc

ˆflc
(4.38)

where the incoming and outgoing waves, I = diag (Ic) and O = diag (Oc) — subject
to the following Wronksian condition for all channel c, wc , O(1)

c Ic≠I(1)

c Oc = 2i — are
functions of the dimensionless wavenumber flc , ackc and are linked to the regular and
irregular Coulomb wave functions (or Bessel functions in the case of neutral particle
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channels), defined in eq.(2.13a)-(2.13b) III.2.b p.269 [214]:

Oc = H+ce≠iÊc = (Gc + iFc) e≠iÊc

Ic = H≠ceiÊc = (Gc ≠ iFc) eiÊc
(4.39)

and for properties of which we refer to Ian J. Thompson’s Chapter 33, eq.(33.2.11)
in [250], or Abramowitz & Stegun chapter 14, p.537 [51].

We now seek to convert these R-matrix nuclear cross sections (E.5) and (E.10)
into the following corresponding windowed multipole representations:

• Partial cross sections (E.5):

‡ccÕ(z) ,
W(z)

ÿ

nØ≠2

ÂaccÕ

n kn
c (z) + 1

z2
Ÿcont

S

U
ÿ

jØ1

ÂrccÕ
j

z ≠ pj

T

V (4.40)

• Total cross section (E.10) takes the form:

‡c(z) ,
W(z)

ÿ

nØ≠2

ac
nkn

c (z) + 1
z2

Ÿcont

S

U
ÿ

jØ1

rc
j

z ≠ pj

T

V (4.41)

As explained in theorem 1 of [130] (appendix E), this conversion can be performed in
one of two ways:

1. Resonance parameters conversion: Convert R-matrix resonance parame-
ters

Ó
�

Ô
directly into the poles

Ó
pj

Ô
and residues

Ó
rj

Ô
of the windowed mul-

tipole representation (E.96). As explained in [130], this can be performed in a
three-step process:

(a) Pole finding: First find the radioactive parameters, that is the complex
radioactive poles {pj} and corresponding level matrix residue widths {–j}

which solve the level-matrix radioactive eigenproblem in z ,
Ô

E space:

A≠1(z)
---
z=pj

–j = 0 (4.42)

Of which one will find NL solutions, where for massive (non-photon) neu-
tral particles this number of poles is

NL =
A

2N⁄ +
Ncÿ

c=1

¸c

B

◊ 2(NETc ”=ETcÕ
≠1) (4.43)

with NETc ”=ETcÕ
denoting the number of channels with di�erent thresholds.

Whereas for charged particles, there is an infinite number (countable) of
radioactive poles, NL = Œ, because in addition to the nearby ¸c poles,
the Coulomb functions add an infinity of far-away poles. Establishing the
correct number of radioactive poles (E.42) in theorem 1 of [125] is one of
our major nuclear physics theoretical findings.
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(b) Residue finding: Having found the radioactive poles {pj}, there are two
ways of computing the corresponding residues of the windowed multipole
representation (E.96) of R-matrix cross sections.

i. Constructive way: To each radioactive pole pj corresponds an eigen-
vector –j that is subject to normalization:

–j
T

Q

a ˆA≠1

ˆz

-----
z=pj

R

b –j = 1 (4.44)

which is readily calculable from

ˆA≠1

ˆz
(pj) = ≠2zI ≠ “

ˆL

ˆz
(pj)“T (4.45)

The resonance matrix residue widths are then defined as:

’j = H+

≠1 (pj) fl1/2 (pj) “T–j (4.46)

from which the partial cross sections residues can be constructed from
R-matrix parameters as:

ÂrccÕ

j , ≠i
4figJfi

c
p2

j

|kc(pj)|2
Ë
2 ’j’j

T
¶ T

1
pú

j

2úÈ

ccÕ (4.47)

and the total residues as

rc
j , ≠i

4figJfi
c
p2

j

|kc(pj)|2
Ë
’j’j

T
È

cc
(4.48)

ii. Contour integral way: Perform analytic continuation in z =
Ô

E space
of R-matrix cross sections (E.5) and (E.10). This can readily be
achieved by continuing all R-matrix operators in (E.14), and using,
for any function f(z), its continued conjugate f ú(z), defined as:

f ú(z) , f(zú)ú (4.49)

so that the continued conjugate real part is defined as

Ÿcont [f(z)] , f(z) + f ú(z)
2 (4.50)

and the continued conjugate square modulus as

|f |
2

cont
(z) , f(z) ◊ f ú(z) (4.51)

Then, the windowed multipole representation residues can be directly
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obtained by numerically performing the contour integrals

ÂrccÕ

j = 1
ifi

j

Cpj

z2‡ccÕ(z)dz (4.52)

where Cpj designates a positively oriented simple closed contour con-
taining only pole pj. For instance, if Cpj is a circle of small radius
‘ > 0 around pole pj, this yields

rc
j = ‘

fi

⁄
2fi

◊=0

1
pj + ‘ei◊

2
2

‡c

1
pj + ‘ei◊

2
ei◊d◊ (4.53)

(c) Background windowing fit: Once the global poles and residues are found,
the background Laurent expansion

Ó
an

Ô
coe�cients, specific to each energy

window W(E), can be found by removing the local poles and residues and
curve-fitting the remaining “background” term (as in [197]).

2. Direct point-wise conversion: Alternatively, one can directly curve-fit point-
wise nuclear cross sections with the windowed multipole representation (E.96)
by means of rational approximation algorithms. This approach, undertaken in
[262] and [225], has the advantage of being able to deal with cross sections that
have discontinuous background terms in standard nuclear data evaluations (for
instance file 3 in ENDF-6 format).

Regardless of the approach taken, one can constitute a complete windowed multipole
library[48] of all evaluated isotopes. Our personal contributions to the windowed
multipole library have been to:

• (i) Generalize the windowed multipole representation to encompass all nuclear
reactions (Coulomb channels and thresholds), thereby establishing it as a fun-
damental physics equivalent to R-matrix theory: this is the core purpose of
article [130] which built upon [125] and [127].

• (ii) Establish the exact number of poles of the windowed multipole represen-
tation (theorem 1 of [125]), when all previous methods su�ered from looking
for too many poles. In particular, in his initial article on “a rigorous pole rep-
resentation of multilevel cross sections"[190], Hwang only considered the case
of zero-threshold neutron cross sections (no charged particle channels). In this
case there is a finite amount of poles, which we establish in equation (34) the-
orem 1 of [125], and it is possible to represent exactly nuclear cross sections
in a closed form multipole representation without the need of windows, though
this requires the scattering and total cross section channels to have energy-
dependent residues (as we establish in section II.F. of [130]). Also, Hwang
(and all subsequent authors who attempted to convert resonance parameters
into multipole parameters) confronted serious numerical di�culties as he was
looking for too many cross section poles: the discovery of the correct number
of poles only came later, with our first proof established in theorem 1 of [125].
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Regardless, this original “rigorous pole representation” of Hwang is not compu-
tationally e�cient as all the poles and resonances have to be explicitly Doppler
broadened to call the cross section at any given temperature. In this sense,
switching from the “rigorous pole representation” to the ”windowed multipole
representation” can be seen as a compression algorithm to minimize the cost of
Doppler broadening on-the-fly. It is also a generalization, as the windowed mul-
tipole representation (E.96) — with energy-independent residues and a Laurent
expansion background term for every window — is valid for all cross sections,
with or without charged particle channels and thresholds (to correctly represent
the thresholds see theorem 1 and section II.E.4. of [130]).

• (iii) Develop the Doppler broadening algorithm for the Laurent expansion curve-
fit (E.149) [197]. This was necessary to Doppler broaden cross sections at low
energy, where the C

1
z
— , pj

—

2
term from (E.146) is not negligible.

• (iv) Derive the formulae for arbitrary-order temperature derivatives of Doppler
broadened windowed multipole cross sections (E.153) [130].

• (v) Introduce a regularized rational approximation algorithm to fit point-wise
nuclear cross section with the windowed multipole representation while avoiding
over-fitting with spurious poles [262].

• (vi) Establish rigorous methods to directly convert the R-matrix resonance pa-
rameters into windowed multipole parameters. These methods are described in
detail in theorem 1 of [130]. They require to first solve the radioactive eigen-
problem to find the poles and residue widths of the Kapur-Peierls operator.
These poles are also those of the windowed multipole cross sections, and their
residues can then be constructed by one of two ways: (a) evaluating the an-
alytic continuation of the complex conjugate (called conjugate continuation in
section II.D. of [130]) of the transmission matrix at these pole values; (b) us-
ing the conjugate continuations of all R-matrix operators to directly perform
the analytic continuation of R-matrix cross sections, and then perform contour
integrals around each pole to evaluate their residues. Once all the poles and
residues are found, a local sub-set of these can be called in the vicinity of any
given energy window W (E) and the rest of the cross section can be curve-fitted
with the Laurent expansion background term (this is the approach taken in
[197] which is di�erent from the direct curve-fitting of cross sections deployed
in [262] and [225]).

• (vii) Establish a method to translate resonance parameters covariances into
windowed multipole covariances, which reproduces the uncertainty reported in
standard nuclear data libraries [130]. As it is central to nuclear data uncertainty
inference and propagation using the windowed multipole representation, this
method and its consequences are summarized in the following section 4.2.4.

107



4.2.4 Translating resonance parameters uncertainties into win-
dowed multipole covariances

We denote
Ó
�

Ô
the set of all R-matrix resonance parameters

Ó
�

Ô
,

;
E⁄, “⁄,c

<
. These

are implicitly considered to be the expectation value
Ó
�

Ô
, E [�] of the underlying

uncertainty distribution from which they are drawn, assumed to be a multivariate
normal distribution N (�,Var (�)), where Var (�) designates their corresponding joint
covariance matrix.

If we are provided with the sensitivities ˆ‡
ˆ�

(z) of R-matrix cross sections (ana-
lytically continued) to resonance parameters (these ˆ‡

ˆ�
(z) can readily be obtained

analytically or by simple numerical finite di�erences of the conjugate continuation of
R-matrix cross section expressions), then we established in theorem 2 of [130] that the
multipole sensitivities (Jacobian matrix) with respect to the resonance parameters,1

ˆ�

ˆ�

2
, can be obtained from the following system (4.54) of contour integrals in the

complex plane, where Cpj designates any positively oriented simple closed contour
containing only pole pj. For instance, Cpj can be a circle of radius ‘ > 0 around pole
pj.
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(4.54)
For each energy window W(E), the multipole sensitivities

1
ˆ�

ˆ�

2
from system (4.54)

can then be converted to first order into windowed multipole covariances Var (�) as:

Var (�) =
A

ˆ�
ˆ�

B

Var (�)
A

ˆ�
ˆ�

B†

(4.55)

where [ · ]† designates the Hermitian conjugate (adjoint).
Assuming R-matrix cross section uncertainty is well represented by the resonance

parameters multivariate normal distribution N (�,Var (�)) documented in standard
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Figure 4-7: Multipole sensitivities to R-matrix parameters

1
ˆ�

ˆ�

2
. Trajectories

of pole p as resonance parameters {�} vary, using the SLBW approximation of the first
resonance of 238U (appendix A of [130]). The blue points show how the pole changes as E⁄

is varied with equal spacing within 3 standard deviations of the enlarged covariance matrix,
while the green points result from equally spaced variations of �“ within their uncertainty
range (3 standard deviations of enlarged covariance matrix). The Jacobian

1
ˆ�

ˆ�

2
from

system (4.54) are the tangents of these trajectories from the mean pole p (red reference
point) and are shown in solid lines. Complex pole p units are (

Ô
eV).

nuclear data libraries (file 32 in ENDF/B-VIII.0 [87]), there are two ways of trans-
lating this into cross section distributions: 1) first-order sensitivity propagation, or;
2) stochastic cross sections.

1. For any given energy E, first-order sensitivity propagation simply considers the
R-matrix cross section sensitivities to resonance parameters ˆ‡

ˆ�
(E) and linearly

converts the resonance parameter covariance Var (�) into a cross section covari-
ance Var (‡(E)) at each energy E, using the chain rule:

Var (‡�(E)) =
A

ˆ‡(E)
ˆ�

B

Var (�)
A

ˆ‡(E)
ˆ�

B†

(4.56)

The same approach can be undertaken using R-matrix cross section sensitivities
to windowed multipoles ˆ‡

ˆ�
(E), established in equations (126) of lemma 1 in

[130], and then propagating to first order the windowed multipole covariances
Var (�), obtained through (4.55), yielding cross section covariances

Var (‡�(E)) =
A

ˆ‡(E)
ˆ�

B

Var (�)
A

ˆ‡(E)
ˆ�

B†

(4.57)

2. Stochastic cross sections consist of sampling resonance parameters
Ó
�

Ô
from

their uncertainty distribution – say multivariate normal N (�,Var (�)) – and
computing the corresponding cross section ‡�(E) as a function of energy

dP
3

‡�(E)
4

= ‡dP(�)(E) (4.58)
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Alternatively, one could sample multipoles
Ó
�

Ô
from a windowed multipole

distribution – say multivariate normal N (�,Var (�)) – and correspondingly
generate windowed multipole stochastic cross sections

dP
3

‡�(E)
4

= ‡dP(�)(E) (4.59)

Stochastic cross sections uncertainties only match first order sensitivity approaches
(E.130) and (E.131) for very small covariances. This is because normally distributed
resonance parameters do not translate into normally distributed cross sections (E.132):
sampling resonance parameters from N (�,Var (�)) and then computing the corre-
sponding cross sections through R-matrix equations cannot in general lead to normally
distributed cross sections ‡�(E) at all energies. However, they do in the linear case,
which is a good first-order approximation for small covariances.

Significant work has been carried out to infer parameter distributions that ac-
curately reproduce our uncertainty of nuclear cross sections [149, 70, 101, 205, 206,
173, 281, 54, 282]. By introducing resonance covariances Var (�), present standard
nuclear data libraries are built with the implicit assumption that sampling resonance
parameters from a multivariate normal distribution N (�,Var (�)) and computing
the corresponding cross sections ‡�(E) generates outcome distributions commensu-
rate to our experimental uncertainty. This parameter uncertainty representation is
not obvious in se, because cross sections are measured at specific energies, with a
resolution subject to an exogenous uncertainty distribution (say normal, log-normal,
or exponential) dictated by the experiment. Therefore, no parameter distribution (be
it resonance parameters multivariate normal N (�,Var (�)) or any other) can exactly
reproduce the cross section uncertainty for each measurement energy. And yet, these
parameters distributions are our best way of balancing all the di�erent uncertain-
ties from disjointed experiments with the underlying R-matrix theory which unifies
our understanding of nuclear interactions physics. In other words stochastic cross
sections (E.132) are the conceptually correct way of representing nuclear data uncer-
tainty (though sensitivity analysis yields almost identical results when the uncertainty
is small): they are at the core of the TENDL library [207, 209], and being able to
sample them is a necessary prerequisite to the Total Monte Carlo [283, 285, 55] and
Embedded Monte Carlo [132, 133] uncertainty propagation methods.

Generating stochastic cross sections has been a major computational challenge in
practice because of the need of Doppler broadening nuclear cross sections: one must
sample resonance parameters from standard nuclear data libraries, reconstruct the
corresponding nuclear cross sections at zero Kelvin (0K), and then process each one
(with codes such as NJOY [228]) to compute the corresponding Doppler broadened
cross sections at temperature T (as explained in section 2.6). The whole comes at
significant computational cost and gargantuan memory footprint to store all the pre-
processed cross sections. In contrast, the windowed multipole library can generate
stochastic cross sections (E.133) on-the-fly, without any pre-processing nor storage,
because one can directly compute Doppler-broadened nuclear cross sections from
windowed multipole parameters

Ó
�

Ô
using (4.12): this constitutes a genuine physics-
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enabled computational breakthrough.

(a) 238U first capture resonance, parameters
sampled from ENDF/B-VIII uncertainty. 30
samples shown here.

(b) Cross section histogram at resonance energy
E⁄ = 6.67428 eV.

Figure 4-8: Windowed multipole covariances reproduce resonance parameters

uncertainty (small covariance case). R-matrix cross sections uncertainty, computed
either from the ENDF/B-VIII resonance parameters covariance Var (�) (from table II in
appendix A of [130]), or from the multipoles covariance Var (�), as converted through
(4.55), for both the stochastic cross sections (E.132, E.133) and the sensitivities approach
(E.130, E.131).

(a) 238U first capture resonance, parameters
sampled from an enlarged ENDF/B-VIII uncer-
tainty. 30 samples shown here.

(b) Cross section histogram at resonance energy
E⁄ = 6.67428 eV.

Figure 4-9: Windowed multipole covariances reproduce resonance parameters

uncertainty (large covariance case). R-matrix cross sections uncertainty, computed
either from the enlarged ENDF/B-VIII resonance parameters covariance Var (�) (from table
II in appendix A of [130]), or from the multipoles covariance Var (�), as converted through
(4.55), for both the stochastic cross sections (E.132, E.133) and the sensitivities approach
(E.130, E.131).

To be fully consistent with standard nuclear data libraries, uncertainties com-
puted using the windowed multipole representation

Ó
�

Ô
must correspond to those

computed using resonance parameters
Ó
�

Ô
(for both sensitivity analysis and stochas-

tic cross sections uncertainty). We showed that the windowed multipole covariances
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computed from our direct uncertainty conversion method (4.54) and (4.55) can ex-
actly reproduce the uncertainty stemming from resonance parameters covariances,
for both small and large uncertainties. We demonstrated this on a numerical ex-
periment in section III of [130], where the cross section uncertainty distributions
were computed by either covariances Var (�) or Var (�), for both sensitivity method
(E.130) and (E.131), or stochastic cross sections (E.132) and (E.133), and figures E-4
and E-5 show the strong correspondence in generated uncertainty distributions for
both small and large uncertainties. In particular, figures 4-8(a) and 4-9(a) show the
stochastic cross sections generating by sampling resonance parameters (30 samples)
from the multivariate normal uncertainty distributions from the analytic benchmark,
respectively with the ENDF and the enlarged covariances. Next to them, in figures
4-8(b) and 4-9(b), we show their respective histograms of cross sections at one energy
point — the resonance energy E⁄ (near the resonance peak) — on which we over-
lap the Gaussians from linearized sensitivity analysis, which are identical for both
the R-matrix resonance parameters and the windowed multipoles covariances. More
remarkably, the histograms of stochastic cross sections also match, computed either
from sampling resonance parameters from their multivariate normal uncertainty dis-
tribution or from sampling multipoles from their own multivariate normal distribution
with a windowed multipole covariances converted from (4.54) and (4.55). This result
is not trivial, and tends to show that the linearity regime from Jacobian transfor-
mation (4.55) — tangent lines of figure E-3 — is larger than for the cross section
(specially at near the resonance peak). We refer to [130] (appendix E) for more
details.

4.3 Advances in theoretical nuclear physics achieved
along the way

As we established the windowed multipole representation as an alternative formalism
to R-matrix theory which enables to compute on-the-fly Doppler broadened stochastic
nuclear cross sections, we achieved a few advances in theoretical nuclear physics along
the way, which we briefly list here and refer to their corresponding articles for in-depth
study:

• We discovered shadow poles in Brune’s alternative parametrization of R-matrix
theory, as well as associated new properties, which we completely established
and proved, in the process generalizing the alternative parametrization to en-
compass the Reich-Moore formalism and complex resonance parameters [127].

• We identified there exists an ambiguity in the way the nuclear physics commu-
nity continues R-matrix theory to complex wave numbers, and showed how it
is necessary to resolve it in order to propose alternative nuclear data represen-
tations of resonance parameters (such as the Brune alternative parameters, or
the windowed multipole parameters) [127, 125].

112



• We proposed a way to solve this ambiguity by arguing in favor of analytic
continuation as the new standard way of continuing R-matrix operators (and
in particular the shift S(fl) and penetration P (fl) functions)[125], against the
prevailing legacy of Lane & Thomas [214].

• We showed how the Siegert-Humblet pole expansions in radioactive states are
the bridge between R-matrix theory and the scattering matrix wave number
pole expansions of Humblet and Rosenfeld [125].

• We established numerous new mathematical physics results, such as: the Mittag-
Le�er expansion of the outgoing wave function reduced logarithmic derivative
L(fl) function [127]; all the poles of the scattering matrix are those of the Kapur-
Peierls operator (radioactive poles) and all other poles cancel out of the scatter-
ing matrix when performing analytic continuation of R-matrix operators while
conserving the Wronskian condition [125]; quantum tunneling evanescence could
explain channel closure when performing analytic continuation of R-matrix op-
erators to complex wave numbers [125]; the exact number of complex alternative
poles [127] and of radioactive poles [125]; etc.

• All these results form a “xenon trilogy on pole parametrizations of R-matrix
theory” [127, 125, 130], where all the predictions from these theoretical results
were revealed to be true as they were observed in the case of xenon 134. This
trilogy of articles is summarized in appendix B, and each article is transcribed
verbatim in appendices C, D, and E respectively.

• In parallel, we contributed to establishing the Generalized Reich Moore formal-
ism, which enables to convert complex Reich-Moore parameters into equivalent
real R-matrix parameters, albeit this often comes at the cost of significantly
expanding the number of capture levels [60].

• We also developed innovative high-order polynomial root-finding algorithms to
search for the radioactive poles [131].

• Finally, we explored other uses of the windowed multipole formalism, from res-
onance upscattering [222], to Fourier transform Doppler broadening of thermal
scattering [130], not withstanding the analytic resolution of transport problems
as in the analytic benchmark [298, 53].
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Chapter 5

Conclusion

The scientist has a lot of experience with ignorance and doubt and uncertainty,
and this experience is of very great importance, I think.

- Richard Feynman

To design future nuclear technologies — from weapons stewardship to medi-
cal imaging or zero-carbon power reactors — we need high-fidelity nuclear simu-
lations with trustworthy confidence intervals. Our knowledge of nuclear physics is
parametrized by nuclear data, whose values are drawn from experiments which in-
variably carry uncertainty. Propagating this nuclear data uncertainty across nuclear
simulations is thus of paramount importance. It has even been the limiting factor
for the design of some new advanced reactor technologies, such as Terrapower’s new
molten salt fast spectrum nuclear reactor. Such problems would be alleviated by
furthering our ability to take real-world measures in integral experiments of nuclear
reactors, and from these infer and narrow down our nuclear data uncertainty.

The previous two methods used to perform such propagation and inference of nu-
clear data uncertainty across Monte Carlo particle transport simulations were: Sen-
sitivity Analysis (SA); and Nested Monte Carlo (NMC) (called Total Monte Carlo
(TMC) and Bayesian Monte Carlo (BMC) in the field). The main drawbacks of SA
are: it is linear (cannot account for non-linear phenomena); it can only propagate
uncertainty to one output at the time (or infer from one observation at the time);
and it cannot accurately account for temperature e�ects (Doppler broadening) on the
uncertainty inference and propagation. This is why people have resorted to NMC,
the main drawbacks of which are: its immense computational cost; its impractical
results in the form of histograms which are di�cult to store and sample from; and
the gargantuan memory cost of sampling the required stochastic cross sections.

This thesis introduced a series of new tools — both from statistical inference and
machine learning (Embedded Monte Carlo) as well as from nuclear physics and data
models (windowed multipole stochastic cross sections) — which, when combined, can
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systematically infer and propagate nuclear data uncertainty across nuclear simulations
with considerably superior performance and higher fidelity than all previous state-of-
the-art methods.

5.1 Achievements

By restricting the inputs and outputs distributions to pre-determined parametric
families (outputs must be parametrizable with their moments) Embedded Monte
Carlo performs approximate propagation and inference of inputs uncertainty across
the Monte Carlo computations.

Compared to sensitivity analysis, Embedded Monte Carlo can propagate uncer-
tainty to all outputs of nuclear simulations at once and with accurate temperature
treatment, with 2 to 10 times less neutrons as those needed to compute the sensitivi-
ties and adjoint flux. Inference can be performed with the same asymptotic converge
rate.

For both the inference and the propagation problems, Embedded Monte Carlo
requires at least 10 to 100 times less particle simulations than Nested Monte Carlo
(or fast-TMC) to achieve the same accuracy (and further gains up to 10,000 times
less particles can be achieved in cases of large nuclear data uncertainty and small
random walk variance).

Moreover, to solve the major sampling bottleneck due to temperature Doppler
broadening, we used a new nuclear data formalism called windowed multipole that
allows on-the-fly sampling and on-the-fly Doppler broadening of stochastic nuclear
cross sections (we contributed to develop the theory and the later on-the-fly capabili-
ties of the windowed multipole representation). This can drastically cut the memory
footprint by up to a million times.

Indeed, for the resolved resonance region (RRR), the memory footprint of the
windowed multipole library is of 15 MB, and we can assume it to reach 250 MB for
stochastic windowed multipoles (adding the multipole covariances). This contrasts
with a memory burden of 500 MB for point-wise cross sections, for each reference
temperature, and a 100 reference temperatures are necessary to span the range of
300 - 3,000 Kelvin and achieve a 0.1% accuracy in Doppler broadening using the
traditional log-log interpolation. In table 5.1, we compare orders of magnitude of
memory and runtime for all the methods discussed, for both uncertainty inference and
propagation as well as for Doppler broadening. Non-linear inference and propagation
to all outputs simultaneously can be achieved by the brute-force Nested Monte Carlo
(fast-TMC [285]) with traditional log-log interpolation for Doppler broadening at a
cost 50-500 TB of memory for sampling. In the starkest of contrasts, this compares to
Embedded Monte Carlo with stochastic windowed multipoles, which has a memory
footprint of 250 MB (200,000 - 2,000,000 times less), all the while running 10 - 100
times less particles.
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Table 5.1: Uncertainty propagation and inference methods: memory and pro-

cessing comparisons. Statistical methods: Nested Monte Carlo (NMC) (for M =
1, 000 ≠ 10, 000 nuclear data samples using fast-TMC [285]); Sensitivity Analysis (SA);
and Embedded Monte Carlo. Doppler broadening methods for 0.1% interpolation accuracy
from 300K to 3000K on the resolved resonance range (RRR) for which point-wise cross
sections take 500 MB memory, and the windowed multipole library 15 MB (assuming 250
MB with covariances) [23]: traditional log-log interpolation (100 temperatures) [314]; opti-
mal quadrature Doppler kernel reconstruction (10 temperatures) [124]; rejection sampling
[316, 317, 288]; windowed multipole [130, 197].

Statistical method
(Doppler broadening) Characteristics Memory Runs (particles)

Nested Monte Carlo
(Log-log interpolation)

Exact + All outputs
Histogram

ref.
50 - 500 TB ref.

Nested Monte Carlo
(Rejection sampling)

Exact + All outputs
Histogram 100 ◊ less 2 ◊ more

Nested Monte Carlo
(Kernel reconstruction)

Exact + All outputs
Histogram 10 ◊ less same

Nested Monte Carlo
(Stochastic windowed multipole)

Exact + All outputs
Histogram

200,000 - 2,000,000 ◊ less
250 MB same

Sensitivity Analysis
(Log-log interpolation)

Linear + One output
No Doppler broadening
of uncertainty

1,000 - 10,000 ◊ less
50 GB 100 ≠ 1, 000◊ less

Sensitivity Analysis
(Rejection sampling)

Linear + One output
No Doppler broadening
of uncertainty

100,000 - 1,000,000 ◊ less
500 MB 50 ≠ 500◊ less

Sensitivity Analysis
(Kernel reconstruction)

Linear + One output
No Doppler broadening
of uncertainty

10,000 - 100,000 ◊ less
5 GB 100 ≠ 1, 000◊ less

Sensitivity Analysis
(Stochastic windowed multipole)

Linear + One output
No Doppler broadening
of uncertainty

100,000 - 1,000,000 ◊ less
500 MB 100 ≠ 1, 000◊ less

Embedded Monte Carlo
(Log-log interpolation)

Approximate + All outputs
Moments

same
50 - 500 TB 10 ≠ 100 ◊ less

Embedded Monte Carlo
(Rejection sampling)

Approximate + All outputs
Moments 100 ◊ less 5 ≠ 50 ◊ less

Embedded Monte Carlo
(Kernel reconstruction)

Approximate + All outputs
Moments 10 ◊ less 10 ≠ 100 ◊ less

Embedded Monte Carlo
(Stochastic windowed multipole)

Approximate + All outputs
Moments

200,000 - 2,000,000 ◊ less
250MB 10 ≠ 100 ◊ less

5.2 New horizons

This thesis established the general theory of Embedded Monte Carlo methods, and
of stochastic windowed multipoles. It however only implemented them in small-scale
proof-of-concept toy-problems which, though verisimilar, do not present many of the
challenges of scale. Scaling up the methods to full-core reactor calculations will require
much future implementation work.

For the stochastic windowed multipole library, coding the contour integral method
for covariance generation (4.55) in a streamlined program that can process entire
nuclear data libraries will be a major undertaking. And there will remain the problems
posed by isotopes non represented with resonance parameters, but only point-wise
data.
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Embedded Monte Carlo methods are but in their infancy. For Embedded Forward
Propagation, methods to estimate the optimal trade-o� on inner-loop to outer-loop
particles to be run as the computation unfolds will be necessary to accelerate con-
vergence. Further research will also have to investigate the convergence of criticality
eigenvalue problems, in particular the fission source. Embedded Variational Inference
will require a considerable amount of additional work to properly scale. In particular,
the study of the learning rates choice and estimation will be crucial. But so will
be establishing ways to add constraints to the parameter space. And many trade-
o�s in convergence between the inner-loop N , the outer-loop M , and the number of
iterations T are yet to be understood. Perhaps most fundamentally, Embedded Vari-
ational Inference optimizes according to a new standard — that of relative entropy
(Kullback–Leibler divergence) rather than the traditional least squares — so we must
understand how this a�ects traditional nuclear data evaluations.

New research grants are being sought to pursue these new horizons.

5.3 Epilogue
Research-wise, we were able to find closure on the windowed multipole front. The
physics theory is now fully achieved, and the remaining openings are in possible
new applications of the formalism, such as: threshold Doppler broadening; di�eren-
tial Doppler broadening (not angle-integrated); use for other temperature treatments
(thermal scattering); analytic method of characteristics; etc.

While we closed a theoretical physics topic, we were privileged enough to open
a new statistical learning field. Embedded Monte Carlo is a new, fertile ground.
While much more research is needed to engineer and optimize the methods to specific
applications (learning rates and algorithmic optimizations), Embedded Monte Carlo
holds the promise of breakthrough progress in many fields requiring statistical learning
across challenging computations.

In this wake, we hope that the field of nuclear computations will continue to spear-
head and lead innovations in the general treatment of information and computation
— just as it did when giving birth to the Monte Carlo method — for these lay at the
heart of our knowledge economy in the Information Age.
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Appendix A

Appendix of Embedded Monte
Carlo:
Proofs and explicit solutions

Here are verbatim transcribed the appendices from our article [132].

A.1 The polynomial log-likelihood class
This article establishes new methods to infer and propagate uncertainty across in-
tractable stochastic processes when the log-likelihoods – either of the noisy data D
(for inference EVI) or of the stochastic process ensemble average Z(X) (for forward
propagation EFP) – are polynomial.

To understand the scope of this article, we thus study the polynomial log-likelihood
class. Our key result is theorem 4, which establishes that a distribution whose log-
likelihood is a polynomial of degree d can be fully reconstructed with the knowledge
of its first 2d ≠ 1 moments.

Theorem 4. Polynomial Log-likelihood class.
The polynomial log-likelihood class can be fully reconstructed with the knowledge of
the raw moments. If X is a random variable with a (real) polynomial log-likelihood of
degree d, i.e. ÷ {ak} œ Rd+1 such that

¸(X) , ln p(X) = ≠Q(X) = ≠

dÿ

k=0

akXk (A.1)

then

• the degree d is even: i.e. d © 0 (mod 2)

• the dominant coe�cient ad is positive: ad > 0

149



so that there exists {–k, —k} œ {R ◊ R}
d such that

Q(X) = ad

d/2Ÿ

k=1

Ë
(X ≠ –k)2 + —k

È
(A.2)

Moreover, the first 2d ≠ 1 raw moments mn , E [Xn] su�ce to fully characterize
the distribution of X: coe�cients {ak}

d
k=1

can be found by solving linear system

’n œ J0, dK , (n + 1) · mn =
dÿ

k=1

k · ak · mn+k (A.3)

after which the constant a0 is determined as

a0 = ln
⁄

R
exp

A

≠

dÿ

k=1

akxk

B

dx (A.4)

Proof. The zero-th moment of a probability density is unity

m0 ,
⁄

R
e≠Q(x)dx = 1 (A.5)

For this normalization (A.5) to hold, we must have Q(X) ≠æ
Xæ±Œ

+Œ, which entails
that both the degree d is even – i.e. d © 0 (mod 2) – and that the dominant coe�cient
ad is positive: ad > 0. Moreover, applying the fundamental theorem of algebra to
Q(X), and factoring the even number of roots – which are either real or complex
conjugate – yields expression (A.2).

We then proceed to an integration per parts:
⁄

R
xne≠Q(x)dx =

⁄

R

xn+1

n + 1QÕ(x)e≠Q(x)dx

where QÕ(X) = qd
k=1

k · ad · Xk≠1, which establishes system (A.3). This is a linear
system of size d with d unknowns, inverting it therefore yields the coe�cients {ak}

d
k=1

.
To find the constant coe�cient a0, we separate a0 in Q(X) and take e≠a0 out of

the integral in the right-hand-side of normalization (A.5). Since we now have all the
{ak}

d
k=1

, this readily yields the result (A.4).

Note that polynomials can su�er from numerical instabilities when represented
through their coe�cients {ak} as in (A.1), rather than their roots or some factorization
(A.2).

This polynomial log-likelihood class is somewhat restrictive: it must have infinite
support (all of R rather than restricted to an interval) and few standard distributions
belong to it (not even the log-normal distribution, for instance). Yet these exponential
of polynomials densities are rapidly falling functions, thus defining a class of tempered
distributions in Schwartz space. As such, they are intrinsically local distributions, and
cannot capture heavy-tail phenomena. Excluding this, the polynomial log-likelihood
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Figure A-1: Polynomial log-likelihood class. Examples of distributions with a poly-
nomial log-likelihood. The distributions can have varied, local shapes, and are evanescent
beyond the first and last root (cannot be fat-tailed).

class is quite versatile, generalizing the Gaussian distribution (which belongs to it)
through factorization (A.2). Figure A-1 illustrates how polynomial log-likelihood
distributions can have a variety of maxima and shapes, all exponentially evanescent
past the first and last root.

For instance, for the simple Gaussian N (µ, ‡) case: m0 = 1; m1 = µ; m2 = µ2+‡2;
and m3 = µ3 + 3µ‡2. Upon inversion of system (A.3), this readily yields: a1 = ≠

µ
‡2 ,

and a2 = 1

2‡2 . Using the Gauss integral
s
R e≠t2dt =

Ô
fi to express (A.4) then begets:

a0 = 1

2

1
µ
‡

2
2

+ ln
1Ô

2fi‡2

2
, which indeed are the correct coe�cients.

A.2 Proof of theorem 2
We here derive the proof of theorem 2, which establishes the mean versus variance
convergence trade-o�.

Proof. We assume verified the conditions of uniform convergence necessary to apply
the Markov theorem (strong law of large numbers for the case of independent non-
identically distributed random variables), so that the average of ensemble average es-
timators converges almost surely to as the average of their expectation values Z(X) ,
EY [Y |X] (unbiased estimators), that is ‰

ÈZÍ , 1

M

qM
m=1

‚Z(Xm) a.s.
≠æ

MæŒ
1

M

qM
m=1

Z(Xm),
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and the rate of this convergence (in law) is given by the central limit theorem for inde-
pendent, non-identically distributed random variables (assuming hypotheses for the
Lindeberg form):

‰
ÈZÍ

Law
≠æ

MæŒ

1
M

Mÿ

m=1

Z(Xm) + N

Q

a0,
1

M

Mÿ

m=1

VarY

Ë
‚Z(Xm)

È

M

R

b

where the variance of the ensemble average estimator is the well-known VarY

Ë
‚Z(Xm)

È
=

�Y (Xm)

N . Applying the same reasoning again to 1

M

qM
m=1

Z(Xm) a.s.
≠æ

MæŒ
ÈZÍ, this time

with independent identically distributed random variables Z(Xm), entails

1
M

Mÿ

m=1

Z(Xm) Law
≠æ

MæŒ
ÈZÍ + N

A

0,
È�2ZÍ

M

B

The law of large numbers entails qM
m=1

�Y (Xm)

MN
a.s.

≠æ
MæŒ

È�Y Í
N , so that the additivity of

variances and Slutsky’s theorem yield asymptotic convergence rate (3.15), which can
be seen as a form of the law of total expectation and the law of total variance.

We are now given a fixed budget T for the total amount of stochastic process Y |X
simulations: T , M ◊ N . We notice that the variance in convergence rate (3.15) can
be expressed as NÈ�2ZÍ+È�Y Í

T , which is minimized for the smallest possible N value,
that is Nmean = 1. Nonetheless, if one wants to estimate this convergence rate in
(3.15), one must tally at least N = 2 stochastic processes in the inner-loop Yn|Xm,
and M = 2 in the outer-loop, as necessary to construct unbiased estimators (3.39)
and (3.11) respectively.

The same reasoning can now be applied to establish the asymptotic convergence
rate of unbiased variance estimator \È�2ZÍ, which can be re-written from (3.13) as:

\È�2ZÍ = 1
M

Mÿ

m=1

S

U
1

‚Z(Xm) ≠ ÈZÍ

2
2

≠

‰�Y (Xm)
N

T

V ≠

1
‰
ÈZÍ ≠ ÈZÍ

22

+
\È�2ZÍ

M
+

[È�Y Í

MN

As M increases, the last two terms vanish. Moreover, the law of large numbers
guarantees almost sure convergence ‰

ÈZÍ
a.s.

≠æ
MæŒ

ÈZÍ, while the just established (3.15)

guarantees
Ô

M
1

‰
ÈZÍ ≠ ÈZÍ

2 Law
≠æ

MæŒ
N

1
0, È�2ZÍ + È�Y Í

N

2
, so that the unbiased estima-

tor \È�2ZÍ of the ensemble average variance almost surely converges to:

\È�2ZÍ
a.s.

≠æ
MæŒ

1
M

Mÿ

m=1

S

U
1

‚Z(Xm) ≠ ÈZÍ

2
2

≠

‰�Y (Xm)
N

T

V

By developing the inner mean and variance estimator terms from (3.37) and (3.39),
one finds:

EY

S

U
1

‚Z(Xm) ≠ ÈZÍ

2
2

≠

‰�Y (Xm)
N

T

V =
1
Z(Xm) ≠ ÈZÍ

2
2
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Using definition (A.6), we again apply the central limit theorem for independent non
identically distributed random variables (Lindeberg form) to find:

\È�2ZÍ
Law
≠æ

MæŒ

1
M

Mÿ

m=1

1
Z(Xm) ≠ ÈZÍ

2
2

+ N

A

0,
1

M

Mÿ

m=1

W (Xm)
M

B

where we defined

WN(X) , VarY

S

U
1

‚Z(X) ≠ ÈZÍ

2
2

≠

‰�Y (X)
N

T

V (A.6)

Since we now have EX

51
Z(Xm) ≠ ÈZÍ

2
2
6

= È�2ZÍ, the well known relation ruizespe-
joOptimalUnbiasedEstimation2013, ruizespejoErratumOptimalUnbiased2016

VarX

51
Z(Xm) ≠ ÈZÍ

2
2
6

= È�4ZÍ ≠ È�2ZÍ
2

entails one can again apply the central limit theorem, now for independent identically
distributed random variables, as well as the Markov theorem and the plug-in limit
from Slutsky’s theorem, yielding (3.17).

To obtain explicit expression (3.17), we will now show that WN(X) defined in
(A.6) satisfies

WN(X) =
4 �2Z(X) �Y (X) + 2�

2
Y (X)

N≠1

N
(A.7)

which will immediately entail (3.17). This can be achieved by developing all the terms
in definition (A.6), yielding

W (Xm) , VarY

S

U
1

‚Z(Xm) ≠ ÈZÍ

2
2

≠

‰�Y (Xm)
N

T

V

= EY

S

WU

Q

a
1

‚Z(Xm) ≠ ÈZÍ

2
2

≠

‰�Y (Xm)
N

≠

3
Z(Xm) ≠ ÈZÍ

4
2

R

b
2
T

XV

= EY

S

U‚y4

m +
‰�Y

2

(Xm)
N2

≠ 2‚y2

m

‰�Y (Xm)
N

+ 4�Z(Xm)
Q

a‚y3

m ≠ ‚ym

‰�Y (Xm)
N

R

b + 4�2Z(Xm)‚y2

m

T

V
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where

�Z(Xm) , Z(Xm) ≠ ÈZÍ

‚ym , ‚Z(Xm) ≠ Z(Xm) = 1
N

Nÿ

n=1

(Yn|Xm ≠ Z(Xm))

‰�Y (Xm) , 1
N ≠ 1

Nÿ

n=1

1
Yn|Xm ≠ ‚Z(Xm)

2
2

=
3

N

N ≠ 1

4 C
1
N

Nÿ

n=1

3
Yn|Xm ≠ Z(Xm)

4
2

≠ ‚y2

m

D

since for any xi independent identically distributed random variables with raw mo-
ments mk , E

Ë
xk

È
we have:

E
C
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Nÿ

k=1

xnxk
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= Nm2 + N(N ≠ 1)m2
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E
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Nÿ
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i=1
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2
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1
+ N(N ≠ 1)(N ≠ 2)(N ≠ 3)m4

1

it stems that

EY [‚ym] = 0

EY

Ë
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È
= �Y (Xm)

N

EY

Ë
‚y3
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V = µ3

Y (Xm)
N2

EY

S
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‰�Y (Xm)
N

T
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A

1 ≠
1
N
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N(N ≠ 1)

B

where the inner third µ3

Y (X) and fourth µ4

Y (X) central moments of the stochastic
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process Y |X are defined as

µ3

Y (X) , EY

Ë
(Y |X ≠ Z(X))3

È

µ4

Y (X) , EY

51
Y |X ≠ Z(X)

2
4
6

Identifying the terms in the developed expression yields the result (A.7).

Having established convergence rate (3.17), we are now given a budget T of total
number of stochastic process Y |X simulation runs, T , M ◊N , and we search for the

choice of N that will minimize the variance N(È�4ZÍ≠È�2ZÍ2)+4È�2Z �Y Í+2
È�2

Y Í
N≠1

T in (3.17).
By di�erentiating the latter expression, we find the variance is minimized for the
closest integer that satisfies (3.19).

Finally, to construct unbiased estimators of this convergence rate (3.17), we can
again use the general mean-power property (3.28) to build term-by-term unbiased
estimators:

• Outputs (ensemble average) fourth central moment unbiased estimator:

\È�4ZÍ= 1
M

Mÿ

m=1

„Z4(Xm)

≠
4

M(M ≠ 1)

Mÿ

m=1

Mÿ

k=1
k ”=m

„Z3(Xm) ‚Z(Xk)

+ 6
M(M ≠ 1)(M ≠ 2)

Mÿ

m=1

Mÿ

k=1
k ”=m

Mÿ
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j ”=m
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„Z2(Xm) ‚Z(Xk) ‚Z(Xj)

≠
3

M(M ≠ 1)(M ≠ 2)(M ≠ 3)

Mÿ

m=1

Mÿ

k=1
k ”=m

Mÿ

j=1

j ”=m

j ”=k
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¸=1
”̧=m

”̧=k

”̧=j

‚Z(Xm) ‚Z(Xk) ‚Z(Xj) ‚Z(X¸)

(A.8)
where

„Z3(Xm)= 1
N(N ≠ 1)(N ≠ 2)

Nÿ

n=1

Nÿ

i=1
i”=n

Nÿ

s=1
s ”=n

s ”=i

(Yn · Yi · Ys) |Xm

„Z4(Xm)= 1
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Nÿ
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Nÿ
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s ”=i

Nÿ
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q ”=n

q ”=i

q ”=s

(Yn · Yi · Ys · Yq) |Xm

(A.9)
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• Square of the outer (ensemble average) variance unbiased estimator

\È�2ZÍ2= 1
M(M ≠ 1)

Mÿ

m=1

Mÿ

k=1
k ”=m

„Z2(Xm) „Z2(Xk)
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j ”=m

j ”=k
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(A.10)

• Inner-loop/outer-loop cross term unbiased estimator:

\È�2Z �Y Í= 1
M(M ≠ 1)

Mÿ
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Mÿ
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Mÿ
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Mÿ
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(A.11)

• Square of inner-loop variance unbiased estimator, with fourth centered moment
optimal unbiased estimator from ruizespejoOptimalUnbiasedEstimation2013,ruizespejoErratumOptimalUnbiased2016

[È�2

Y Í= 1
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Mÿ
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‰�2
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„µ4
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Ë ‰m4

Y ≠ 4 ‰m3

Y
‚Z

È
≠ 3(2N ≠ 3) ‰m2

Y

2

+ 3N2

Ë
2 ‰m2

Y
‚Z2

≠ ‚Z4

È

(N ≠ 1)(N ≠ 2)(N ≠ 3)
‰mk

Y (Xm), 1
N

Nÿ

n=1

Y k
n |Xm

(A.12)

Though estimators (A.8), (A.9), (A.10), (A.11), and (A.12) are expressed in a non-
computationally e�cient way to calculate, they nonetheless show that it is necessary
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to have N Ø 4 and M Ø 4 to construct unbiased estimators of the outer variance
convergence rate (3.17). This result is interesting in that the skewness and the kurtosis
of the stochastic process Y |X cancel out in the expression of convergence rate (3.17),
nonetheless, they to appear in the construction of an unbiased estimator of the square
of the variance �2

Y .

A.3 Analytic toy-problem: Multivariate inputs &
Gaussian outputs noise

We here design a simple toy case that is analytically solvable, with the aim of verify-
ing the general Embedded Monte Carlo methods. We choose a multivariate normal
prior X|◊, and an a�ne relation for ensemble average Z(X), so that we can per-
form Bayesian inference (2.2) analytically, and thus know the exact posterior X|D
distribution. We then use Embedded Variational Inference (EVI) to approximate the
exact p(X|D) density with pÊ(X), assuming that pÊ(X) is itself a multivariate normal
distribution, and search for the meta-parameters Êı which solve (3.26). We run the
EVI algorithm, and observe that the meta-parameters Êı converge towards the exact
p(X|D) solution. We then use Embedded Forward Propagation (EFP) to approxi-
mately propagate this inferred parameters uncertainty distribution to Z(X|D), and
compare the results to the exact solutions.

A.3.1 Exact Solution: a tractable stochastic process for mul-
tivariate Gaussian conjugate priors Bayesian inference

Let X , [X1, X2, . . . , Xq]T be the vector of parameters we are searching to infer. Let
BY (·) denote the Bernoulli random Law, –Y and a two real q-size vectors, and b and
—Y two known scalars, with 0 < —Y < 1. We consider the stochastic process:

Y |X ≥ aT
· X ·

Ë
1 + e≠–Y

T·X
È

—Y
BY

A
—Y

1 + e≠–Y
T·X

B

+ b (A.13)

so that the output ensemble average Z(X) , EY [Y |X] is a�ne:

Z(X) = aT
· X + b (A.14)

and the variance of the stochastic process �Y (X) , VarY [Y |X] is:

�Y (X) =
1
aT

· X
2

2

·

A
1 + e≠–Y

T·X

—Y
≠ 1

B

(A.15)

We generate a data-set of noisy measurements D = {Zi}, with heterosckedastic Gaus-
sian noise Zi ≥ N (Z(X), �i), where each �i is di�erent but known (�i is the variance,
that is the square of the standard deviation). We consider a multivariate normal prior
X|◊ ≥ N (µ

0
, �0). Since Z(X) is a�ne, the (conjugate) posterior Bayesian update
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(2.2) is also normal: X|D ≥ N (µD, �D), with:

�≠1

D = �≠1

0
+ a

C
dÿ

k=1

�≠1

i

D

aT (A.16)

µD = �D

C

�≠1

0
µ

0
+ a

C
dÿ

k=1

�≠1

i (Zi ≠ b)
DD

(A.17)

Moreover, a�ne transform (A.14) entails the forward propagated distribution of en-
semble averages is also normal, Z(X|D) ≥ N (ÈZÍ, È�2ZÍ), with mean and variance:

ÈZÍ = aTµD + b (A.18)
È�2ZÍ = aT�Da (A.19)

The convergence rates from theorem 2 are therefore given by (A.19) and (A.15) for
the mean (3.15), whereas for the variance (3.17), we have the outer loop ensemble
average Z(X) following a normal distribution, so that È�4ZÍ ≠ È�2ZÍ

2 = 2È�2ZÍ
2 =

2
1
aT�Da

2
2

. Moreover, the cross term and the variance squared integrals can be
expressed as:

È�Y Í =
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1
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B
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1
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L4 (2–Y )
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1
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2
M3 +

1
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2
2
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6

+ 1
—Y

5
L4 (–Y ) ≠ 2

1
aTµD

2
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1
aTµD

2
2

L2 (–Y )
6

Mk (µD) ,
⁄ 1

aT
· x

2k
pX(x)dx

M2 (µD) =
1
aTµD

2
2

+ aT�Da

M3 (µD) =
1
aTµD

2 51
aTµD

2
2

+ 3aT�Da
6

M4 (µD) =
1
aTµD

2
4

+ 6
1
aTµD

2
2

aT�Da + 3
1
aT�Da

2
2

Lk (–Y ) ,
⁄ 1

aT
· x

2k
e≠–Y

T·xpX(x)dx

Lk (–Y ) = e≠–Y
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1
2 –Y

T
�D–Y Mk (µD ≠ �D–Y )

(A.20)

These constitute our exact reference toy-problem solutions.

A.3.2 Numerical verification: Embedded Monte Carlo con-
verges to exact solutions

Toy-problem (A.13) was coded with the following characteristics:
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• Stochastic process (A.13) meta-parameter values were set at:
a = [2, ≠1], –Y = a, b = ≠3, —Y = 1/3.

• Five noisy observations were generated at random:
D = {Zi} = {9.18454678, 10.92305208, 7.564019177.16029873, 8.48488501},
with corresponding variances:
{�i} = {42.88669551, 3.17228589, 4.10857714, 4.2055173, 19.81653964}.

• Learning rate hyper-parameter sequences were set at:
é “t

µ = 8◊10
≠3

t1/2 and “t
S = 5◊10úú≠3

t7/10 .

• The full code is accessible at this link1.

The Embedded Monte Carlo results of this toy-problem are reported in figures 3-5,
3-1, and 3-4.

1https://www.dropbox.com/sh/uwe8h2duee3ztb7/AAAJla7nm0Xl4MlyI9kMzmzwa?dl=0
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Appendix B

A xenon trilogy on
pole parametrizations of R-matrix
theory

Cross sections are of paramount importance in nuclear physics. They quantify the
probability that this or that outcome occurs when two bodies collide and interact.
Nuclear cross sections vary with the momentum or energy at which the two bodies
are swung against each other. A model of two-body quantum interactions called R-
matrix theory parametrizes this energy dependence, and campaigns of measurements
are conducted to infer the corresponding R-matrix parameters, compiling them into
standard evaluated nuclear data libraries (ENDF, JEFF, BROND, JENDL, CENDL,
TENDL): these constitute a pillar of our common knowledge of nuclear physics.

In the past, two branches of theoretical physics formalisms emerged to describe and
parametrize nuclear cross sections (and their underlying scattering matrix): R-matrix
theory (of Kapur-Peierls [200], Wigner [323], and Bloch [79]), and pole expansions
(of Humblet and Rosenfeld [185, 289, 181, 182, 195, 183, 230, 290, 231]). The two
have been quite isolated from one another. The following three articles [127, 125, 130]
bridge these two formalisms, and build upon them to construct a new unified theory
to parametrize nuclear cross section: the windowed multipole representation of R-
matrix cross sections. We support this new theory with empirical evidence observed
in isotope xenon 134Xe spin-parity group Jfi = 1/2(≠). As such, the articles form a
xenon trilogy on pole parametrizations of R-matrix cross sections.

Present nuclear data libraries are all based on R-matrix resonance parameters.
This has many advantages, but also some drawbacks. For instance, R-matrix the-
ory requires some arbitrary parameters (boundary condition Bc and channel radii ac).
Also, R-matrix nuclear cross sections come in a format that is di�cult to subsequently
post-process to account for temperature e�ects. People have thus proposed di�erent
cross section parametrizations addressing some of these shortcomings, hoping to es-
tablish improved nuclear data libraries with the new parameters.

One such alternative parametrization was recently proposed by Brune [92]. Our
first article, Shadow poles in the alternative parametrization of R-matrix theory [127],
establishes various novel properties of this alternative parametrization, including the
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full counting of the number of alternative poles, revealing the existence of shadow
poles, and proving that one can choose any subset of these poles to fully parametrize
the scattering matrix (and therefore the cross sections) provided the subset maps at
least one-to-one to the resonance levels. We also generalize the alternative parametriza-
tion to encompass the important Reich-Moore formalism, commonly used for heavy
isotopes. This requires we continue R-matrix operators to complex energies (and
wavenumbers), in particular the shift S(E) and penetration P (E) functions. However,
the nuclear physics community has disagreed as to how to do so, with two compet-
ing ways emerging from ambiguous definitions of the shift and penetration functions,
L(E) = S(E) + iP (E), dividing the community along the same two branches: fol-
lowing an interpretation from Lane and Thomas [214], R-matrix theory people have
traditionally “force closed” channels by setting the penetration functions to zero bel-
low threshold energies (complex wavenumbers); meanwhile people in mathematical
scattering theory perform analytic continuation of all operators into pole expansions.
In order to establish new nuclear data libraries with alternative parameters, the nu-
clear physics community must thus decide what convention to adopt.

In our second article, Scattering matrix pole expansions for complex wavenumbers
in R-matrix theory [125], we argue in favor of analytical continuation (against the
legacy Lane and Thomas “force-closure” approach). We support our claim that an-
alytic continuation is the physically correct way of continuing R-matrix operators to
complex wavenumbers (and energies) with a series of mathematical and physics ar-
guments, showing that analytic continuation preserves generalized unitarity, cancels
spurious poles introduced by the “forced-closure” approach, and closes channels be-
low threshold with evanescent quantum tunneling. In the process, we prove that the
Siegert-Humblet pole expansion in radioactive states constitutes the bridge between
R-matrix theory and the wavenumber pole expansions of Humblet and Rosenfeld, and
discover various new properties of the radioactive poles and residue widths, including
their invariance properties to changes in channel radii ac.

R-matrix theory, the alternative Brune parameters, or the expansion in radioac-
tive states, all parametrize nuclear cross sections at zero Kelvin. These must then
be processed to account for temperature e�ects, in particular Doppler broadening,
which is the averaging of cross sections over the thermal motion of the target atoms.
Doppler broadening is of critical importance in neutron transport applications as it
ensures the stability of many nuclear reactors (negative thermal reactivity). Yet it has
been a considerable bottleneck for nuclear computations. In our third article, Win-
dowed multipole representation of R-matrix cross sections [130], we build upon the
expansion in radioactive states to establish the windowed multipole representation
as an alternative way to parametrize nuclear cross sections and their uncertainties
(equivalent to R-matrix theory). Remarkably, one can sample windowed multipole
cross sections from their uncertainty distribution and analytically Doppler broaden
them, all computed on-the-fly (no need to pre-compute and store). This drastically
reduces the memory footprint of nuclear data (over a thousand-fold), without incur-
ring additional computational costs.

These three articles together thus form a new, in-depth study of the parametriza-
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tions underpinning our standard nuclear cross section libraries, and propose innova-
tions for the way we document and use this body of nuclear cross sections knowledge.
This is of general interest to the nuclear physics community, as it paves the way for
alternative nuclear data libraries, whose parametrizations of nuclear cross sections
can unlock considerable gains, both for nuclear physics and computations.
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Appendix C

Shadow poles in the alternative
parametrization of R-matrix theory

Here is verbatim transcribed our article [127].

C.1 Abstract
We discover new, hitherto unknown, shadow poles in Brune’s alternative parametrization
of R-matrix theory [C. R. Brune, Phys. Rev. C 66, 044611 (2002)]. Where these poles are,
and how many, depends on how one continues R-matrix operators to complex wavenumbers
(specially the shift S and penetration P functions). This has little consequence for the exact
R-matrix formalism (past the last energy threshold), as we show one can still always fully
reconstruct the scattering matrix with only the previously known alternative parameters
(poles and corresponding resonance widths), for which there were as many poles as the
number of levels N⁄. However, we generalize the alternative parametrization to the Reich-
Moore formalism, and show that the choice of continuation is now critical as it changes
the alternative parameters values (poles and residue widths are now complex). In order to
establish nuclear libraries with alternative parameters, the nuclear community will thus have
to decide what convention to adopt. We argue in favor of analytical continuation (against
the legacy Lane and Thomas approach) in a follow-up article [P. Ducru, Phys. Rev. C
(2020)]. We observe the first evidence of shadow poles in the alternative parametrization
of R-matrix theory in isotope xenon 134Xe spin-parity group J

fi = 1/2(≠), and show how
they indeed depend on the choice of continuation to complex wavenumbers.

C.2 Introduction
When two nuclear bodies collide at a given energy – say a neutron and an uranium-
235 nucleus (n + 235

92
U), a “ particle (photon) and a beryllium atom (“ + 9

4
Be), or an

alpha particle (4

2
He) and a gold atom (–+197

79
Au) – the outcomes of this interaction are

expressed as nuclear cross sections. These cross sections are a fundamental compo-
nent of our nuclear physics knowledge, documented in standard nuclear data libraries
(ENDF [87], JEFF[267], JENDL[293], BROND[80], CENDL[153], TENDL[207, 209]).
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To constitute nuclear data libraries, an evaluation process fits experimental measure-
ments of reaction rates with a parametric model of nuclear interaction cross sections
called R-matrix theory, using evaluation codes such as EDA [164, 166], SAMMY
[217], or AZURE [62]. R-matrix theory models nuclear interactions as two incoming
bodies yielding two outgoing bodies through the action of a total Hamiltonian. The
latter is assumed to be the addition of a short-range, interior Hamiltonian that is null
beyond channel radius ac, and a long-range, exterior Hamiltonian that we know, say
Coulomb potential or free moving. This partitioning, along with an orthogonality
assumption of channels at the channel boundary, is what we could call the R-matrix
scattering model, described by Kapur and Peierls in their seminal article [200], uni-
fied by Bloch in [79], and reviewed by Lane and Thomas in [214]. The outcomes of
the interaction depend on the energy at which the interaction occurs, and R-matrix
theory parametrizes, for calculability reasons, this energy dependence. It can do so
in several ways: the one that has come to prevail in the nuclear physics community
is the Wigner-Eisenbud parametrization [323, 79, 214].

There are good reasons for this: the Wigner-Eisenbud parameters are uncon-
strained real parameters — i.e. though physically and statistically correlated, any
set of real parameters is mathematically acceptable (though not necessarily present
in nature) — that parametrize the interior interaction Hamiltonian (usually an in-
tractable many-body nuclear problem) and separate it from the exterior one (usually
a well-known free-body or Coulomb Hamiltonian with analytic Harmonic expansions).
Thus, Wigner and Eisenbud constructed a parametrization of the scattering matrix
for calculability purposes: introducing simple real parameters that help de-correlate
what happens in the inner interaction region from the asymptotic outer region. De-
spite all their advantages, the Wigner-Eisenbud parameters present a drawback for
nuclear data evaluators: they require the introduction, for every channel c, of an
arbitrary real “boundary condition” parameter, Bc. If this arbitrary parameter is set
to di�erent values, the same experimental nuclear data will yield di�erent Wigner-
Eisenbud resonance parameters. This poses both a physics interpretability problem,
and a standardization problem when edifying the standard nuclear data libraries.

In order to circumvent the need for arbitrary boundary parameters Bc, Brune
introduced an alternative parametrization of R-matrix theory in [92]. The alterna-
tive parameters are real (like the Wigner-Eisenbud ones) and are independent of the
arbitrary boundary condition parameters Bc. However, they do entangle the interior
region (function of the total energy E) with the outer region (function of the incom-
ing wavenumber kc and outgoing wavenumber kcÕ), so that the alternative parameters
depend on how the wavenumbers are related to the energy of the system, kc(E), and
this mapping has branch-points and di�erent sheets corresponding to all the choices
of sign in the square roots ±

Ô
E ≠ ETc of mapping (E.2). Using monotonic proper-

ties of the shift function S(E) on the physical sheet
Ó
E, +

Ô
of energy-wavenumber

(E.2) mapping (recently proved in [93]), Brune showed a one-to-one correspondence
between the number N⁄ of resonances (or levels) and the number of alternative res-
onance energies (or poles) [92]. This would make the conversion of nuclear data
libraries from Wigner-Eisenbud to alternative parameters very convenient.
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Section C.3 summarizes the Wigner-Eisenbud R-matrix parametrization, reports
on the branch-point nature of the energy-wavenumber mapping (E.2) – and its simple
relativistic generalisation (E.4) – and, for the first time, establishes in theorem 5
the Mittag-Le�er expansion of the reduced logarithmic derivative of the outgoing
wave operator Lc(flc). These results are used in section C.4 to show there exists
more alternative poles than previously thought: these shadow poles reside below the
reaction threshold energies ETc . We also show that these alternative shadow poles
depend on the definition that is chosen to continue the R-matrix operators to complex
wavenumbers. If the legacy Lane & Thomas definition (C.41) is chosen, then we call
them alternative branch poles and establish their properties in theorem 6, amongst
which that the shadow poles reside on the nonphysical sheet

Ó
E, ≠

Ô
sub-threshold.

If, instead, the analytic continuation definition (C.43) is chosen, then we call them
alternative analytic poles, and we establish their properties in theorem 7, in particular
we show alternative analytic poles are in general complex, of which there exists at
least N⁄ real ones. Moreover, and similarly to the Wigner-Eisenbud parameters,
alternative analytic poles only depend on the total energy E and thus no longer
present the branches of mapping (E.4). In theorem 8, we also show that, under a
proper generalization of the alternative level matrix, one can choose any subset of NS

alternative poles (for both definitions and real or complex) and still fully reconstruct
the scattering matrix (and thus the cross section), as long as NS Ø N⁄.

In nuclear libraries, many isotopes are evaluated with the Reich-Moore formal-
ism instead of the full R-matrix one. In section C.5, we generalize the alternative
parametrization of R-matrix theory to the Reich-Moore formalism, including the
newly discovered alternative shadow poles. The first evidence of alternative shadow
poles is observed in isotope xenon 134Xe spin-parity group Jfi = 1/2(≠), and reported
in section C.6. We also demonstrate how in practice (for Reich-Moore isotopes or
when thresholds are present) all alternative parameters depend on the choice of con-
tinuation of R-matrix operators to complex wavenumbers. This means that in or-
der to convert nuclear data libraries to alternative parameters, the nuclear physics
community must first agree on how to continue the R-matrix operators to complex
wavenumbers. We argue in favor of analytic continuation in a follow-up article [125].

C.3 R-matrix Wigner-Eisenbud parametrization

We here recall some fundamental definitions and equations of the Wigner-Eisenbud
R-matrix parameters [323, 79, 214]. As described by Bloch and Lane & Thomas,
for each channel c, R-matrix theory treats the two-body-in/two-body-out many-body
system as a reduced one-body system. All the study is then performed in the reduced
system and we consider the wave-number of each channel kc, which we can render
dimensionless using the channel radius ac and defining fl = diag (flc) with flc = kcac.
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C.3.1 Energy dependence and wavenumber mapping
All of the channel wavenumbers link back to one unique total system energy E,
eigenvalue of the total Hamiltonian. Conservation of energy entails that this energy
E must be the total energy of any given channel c (c.f. equation (5.12), p.557 of
[185]):

E = Ec = EcÕ = . . . , ’ c (C.1)

Each channel’s total energy Ec is then linked to the wavenumber kc of the channel by
its corresponding relation (E.4), say (C.4) and (C.5).

In the semi-classical model described in Lane & Thomas [214], we can separate
on the one hand massive particles, for which the wavenumber kc is related to the
center-of-mass energy Ec of relative motion of channel c particle pair with masses
mc,1 and mc,2 as

kc =
Û

2mc,1mc,2

(mc,1 + mc,2) ~2
(Ec ≠ ETc) (C.2)

where ETc denotes a threshold energy beyond which the channel c is closed, as energy
conservation cannot be respected (ETc = 0 for reactions without threshold). On
the other hand, for a photon particle interacting with a massive body of mass mc,1

the center-of-mass wavenumber kc is linked to the total center-of-mass energy Ec of
channel c according to:

kc = (Ec ≠ ETc)
2~c

C

1 + mc,1c2

(E ≠ ETc) + mc,1c2

D

(C.3)

Alternatively, in a more unified approach, one can perform a relativistic correction
and smooth these di�erences away by means of the special relativity Mandelstam
variable sc = (pc,1+pc,2), also known as the square of the center-of-mass energy, where
pc,1 and pc,2 are the Minkowsky metric four-momenta of the two bodies composing
channel c, with respective masses mc,1 and mc,2 (null for photons). The channel
wavenumber kc can then be expressed as:

kc =
Û

[sc ≠ (mc,1 + mc,2)2c2] [sc ≠ (mc,1 ≠ mc,2)2c2]
4~2sc

(C.4)

and the Mandelstam variable sc can be linked to the center-of-mass energy of the
channel Ec through

Ec = sc ≠ (mc,1 + mc,2)2c2

2(mc,1 + mc,2)
(C.5)

Interestingly, this is identical to the non-relativistic expression for the center-of-mass
energy in terms of the lab energy in whichever channel the total mass (mc,1 + mc,2)
is chosen to be the reference for E (but not in any other). This special relativistic
correction to the non-relativistic R-matrix theory is the approach taken by the EDA
code in use at the Los Alamos National Laboratory [164, 166].

Regardless of the approach taken to link the channel energy Ec to the channel
wavenumber kc, conservation of energy (C.1) entails there exists a complex mapping
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linking the total center-of-mass energy E to the wavenumbers kc, or their associated
dimensionless variable flc = kcrc:

flc(E) Ωæ E (C.6)

Figure C-1: Riemann surface of energy-wavenumber mapping fl(E) for massive particles
in the semi-classical limit (E.2). The square root flc(E) = ±fl0


E ≠ ETc gives rise to two

sheets: {E, +} and {E, ≠}. Units such that fl0 = 1. Threshold set at zero: ETc = 0.

Critical properties throughout this article will stem from the analytic continuation
of R-matrix operators. As the outgoing Oc and incoming Ic wave functions are defined
according to flc (c.f. section C.3.2 below), the natural variable to perform analytic
continuation is thus flc, which is equivalent to extending the wavenumbers into the
complex plane kc œ C. We can see that the mapping (E.4) from complex kc to
complex energies is non-trivial, specially since the wavenumbers are themselves all
interconnected. This creates a multi-sheeted Riemann surface, with branch-points at
each threshold ETc , well documented by Eden & Taylor [137] (also c.f. section 8 of
[185]). More precisely, when calculating flc from E one has to chose which sign to
assign to ±

Ô
E ≠ ETc in the semi-classical mapping (E.2) of massive particles (i.e.

not photons), or to the more general mapping (C.4). Figure C-1 shows mapping
(E.2) with zero threshold ETc = 0: one can see that flc(E) has two branches flc(E) =
±fl0

Ô
E ≠ ETc and is purely real above threshold (zero imaginary part), and purely

imaginary below threshold (zero real part). Each channel c thus introduces two
choices, and hence there are 2Nc sheets to the Riemann surface mapping (C.1) onto
(E.4), with the branch points close or equal to the threshold energies ETc . As we will
see, the choice of the sheet will have an impact when finding di�erent R-matrix and
alternative parameters.

C.3.2 External region wave functions
In the R-matrix model, the external region is subject to either a Coulomb interaction
or a free particle movement. In either case, the solutions form a two-dimensional
vector space, a basis of which is composed of the incoming and outgoing wave func-
tions: O(k) , diag (Oc(kc)), I(k) , diag (Ic(kc)). These are Whittaker or confluent
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Table C.1: Reduced logarithmic derivative L¸(fl) , fl
O¸

ˆO¸
ˆr (fl) of outgoing wavefunction

O¸(fl), and L
0

¸(fl) , L¸(fl) ≠ B¸ using B¸ = ≠¸, irreducible forms and Mittag-Le�er pole
expansions for neutral particles, for angular momenta 0 Æ ¸ Æ 4.

L¸(fl)
from recurrence (C.11)

L0

¸(fl) , L¸(fl) ≠ B¸

using B¸ = ≠¸ in (C.11)
L¸(fl) from theorem 5,

poles
Ó
Ên

Ô
from table C.2

Outgoing wavefunction
O¸(fl) from (C.16)

¸ L¸(fl) = fl2

¸≠L¸≠1(fl)
≠ ¸ L0

¸(fl) = fl2

2¸≠1≠L0
¸≠1(fl)

L¸(fl) = ≠¸ + ifl + q
nØ1

fl
fl≠Ên

O¸(fl) = ei(fl+
1
2 ¸fi)

r
nØ1(fl≠Ên)

fl¸

0 ifl ifl {ÿ} eifl

1 ≠1+ifl+fl2

1≠ifl
fl2

1≠ifl Ê¸=1

1
= ≠i eifl

1
1

fl ≠ i
2

2 ≠6+6ifl+3fl2≠ifl3

3≠3ifl≠fl2
fl2≠ifl3

3≠3ifl≠fl2 Ê¸=2

1,2 ¥ ±0.86602 ≠ 1.5i eifl
1

3

fl2 ≠
3i

fl ≠ 1
2

3 ≠45+45ifl+21fl2≠6ifl3≠fl4

15≠15ifl≠6fl2+ifl3
3fl2≠3ifl3≠fl4

15≠15ifl≠6fl2+ifl3
Ê¸=3

1
¥ ≠2.32219i

Ê¸=3

2,3 ¥ ±1.75438 ≠ 1.83891i eifl
1

15

fl3 ≠
15i

fl2 ≠
6

fl + i
2

4 ≠420+420ifl+195fl2≠55ifl3≠10fl4
+ifl5

105≠105ifl≠45fl2+10ifl3+fl4
15fl2≠15ifl3≠6fl4

+ifl5

105≠105ifl≠45fl2+10ifl3+fl4
Ê¸=4

1,2 ¥ ±2.65742 ≠ 2.10379i
Ê¸=4

3,4 ¥ ±0.867234 ≠ 2.89621i eifl
1

105

fl4 ≠
105i

fl3 ≠
45

fl2 + 10i

fl + 1
2

hypergeometric function whose analytic continuation is discussed in section II.2.b and
the appendix of [214], and for whose elemental properties and calculation we refer to
chapter 14 of [51] and chapter 33 of [250], as well as Powell [271], Thompson [308],
and Michel [242].

Note that the incoming and outgoing wave functions are only dependent on the
wavenumber of the given channel kc, this is a fundamental hypothesis of the R-matrix
model. For clarity of writing, we will not explicitly write the kc dependence of these
operators unless it is of importance for the argument.

Importantly, the Wronksian of the system is constant: ’c, wc , O(1)

c Ic ≠ I(1)

c Oc =
2i, or with identity matrix I

w , O(1)I ≠ I(1)O

= 2iI
(C.7)

Of central importance to R-matrix theory is the Bloch operator, L, which Claude
Bloch introduced as the opérateur de conditions aux limites in equation (35) of [79],
and that projects the system radially onto the channel boundaries for each channel,
at the channel radius rc = ac. The Bloch operator L is then added to the Hamil-
tonian to form an invertible and diagonalizable (but not Hermitian) operator in the
internal region (c.f. equation (34) of [79]). One can then diagonalize or invert this
operator using di�erent complete discrete generative eigenbases of the Hilbert space
to construct di�erent parameterizations of the solutions of the Schrodinger equation
for the R-matrix scattering model (Kapur-Peierls, Wigner-Eisenbud, etc.). This is
the essence of R-matrix theory, as best described by Claude Bloch in [79].

When using the Wigner-Eisenbud basis, this projection on the channel boundaries
at rc = ac, gives rise to the as yet unnamed quantity L0, introduced in equation (1.6a),
section VII.1. p.289 of [214], and which can be recognized in equation (57) of [79],
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defined for each channel as:

L0

c(flc) , Lc(flc) ≠ Bc (C.8)

where flc = kcac has been projected on the channel surface, Bc is the arbitrary
outgoing-wave boundary condition parameter, and Lc(flc) is the dimensionless re-
duced logarithmic derivative of the outgoing-wave function at the channel surface:

Lc(flc) , flc

Oc

ˆOc

ˆflc
(C.9)

or, equivalently, in matrix notation, and where [ · ](1) designates the derivative with
respect to flc:

L = diag (Lc) = flO≠1O(1) (C.10)

so that the L0 matrix function is written: L0 , L ≠ B.
Using the Powell recurrence formulae [271], R.G. Thomas established the following

scheme to calculate the outgoing-wave reduced logarithmic derivatives Lc for di�er-
ent angular momenta ¸ values in the Coulomb case (c.f. p.350, appendix of [214],
eqs.(A.12) and (A.13))

L¸ = a¸

b¸ ≠ L¸≠1

≠ b¸ (C.11)

with
a¸ , fl2 +

3
fl÷

¸

4
2

, b¸ , ¸ +
3

fl÷

¸

4
(C.12)

In general, both Oc(fl) and L¸(fl) are meromorphic functions of fl with a priori an
infinity of poles, and for whose computation we refer to [271, 308, 242]. In theorem
5, we here establish the Mittag-Le�er expansion of Lc(fl).

Theorem 5. Outgoing-wave reduced logarithmic derivative Lc(fl) Mittag-
Leffler Expansion.
The outgoing-wave reduced logarithmic derivative Lc(fl), defined in (C.9), admits the
following Mittag-Le�er pole expansion:

Lc(fl)
fl

=≠¸

fl
+ i +

ÿ

nØ1

1
fl ≠ Ên

(C.13)

where {Ên} are the roots of the Oc(fl) outgoing wavefunctions: ’n, Oc(Ên) = 0. For
neutral particles, there are a finite number of such roots, reported in table C.2.

Proof. From definition (C.9), Lc is the reduced logarithmic derivative of the outgoing
wavefunction Lc(fl) , flO

(1)
c (fl)

Oc(fl)
. In both the Coulomb and the neutral particle case,

the outgoing wavefunction Oc(fl) is a confluent hypergeometric function with simple
roots {Ên}. Moreover, their logarithmic derivative O

(1)
c (fl)

Oc(fl)
is bound at infinity. Thus,

the following hypotheses stand:

• L¸(fl) has simple poles {Ên}, zeros of the Oc(fl),
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• L¸(fl)

fl has residues of 1 at the {Ên} poles,

• ÷M œ R such as |L¸(fl)| < M |z| on circles CD as D ≠æ Œ

By removing the pole of O
(1)
c (fl)

Oc(fl)
at zero, these hypotheses ensure Mittag-Le�er expan-

sion (C.14) is verified:

Lc(fl)
fl

=Lc(0)
fl

+ L(1)

c (0) +
ÿ

nØ1

C
1

fl ≠ Ên
+ 1

Ên

D

(C.14)

R.G. Thomas’ recurrence formula (C.11) implies that Lc(flc) satisfies L¸(0) = ≠¸,
for both neutral and charged particles. Moreover, evaluating O

(1)
c (fl)

Oc(fl)
at the limit of

infinity yields:

L(1)

c (0) +
ÿ

kØ1

1
Êk

= Lim
flæŒ

A
Lc(fl)

fl

B

= Lim
flæŒ

A
O(1)

c (fl)
Oc(fl)

B

= i (C.15)

so that the Mittag-Le�er expansion (C.14) takes the desired form of (D.7).

Theorem 5 establishes, for the first time, the Mittag-Le�er expansion of L0

c(flc) as
a function of the roots {Ên} of the outgoing wavefunctions Oc(fl), which are Hankel
functions in the neutral particle case, and Whittaker functions in the more general
case of charged particles (c.f. equations (2.14b) and (2.17) section III.2.b. p.269 of
[214]). Extensive literature covers these functions [51, 250]. In the neutral particles
case of Hankel functions [201, 122, 115, 116, 202, 286] the search for their zeros
established that the reduced logarithmic derivative of the outgoing wave function is
a rational function of kc of degree ¸. In the general case, there are indeed ¸ zeros to
the Hankel function for |Ÿ[fl]| < ¸, but for |Ÿ[fl]| > ¸ there exists an infinity of zeros,
on or close to the real axis (c.f. FIG.1&2 of [122]). However, in our particular case
of physical (i. e. integer) angular momenta ¸ œ Z, the order of the Hankel function
happens to be a half-integer: H¸+1/2. Crucially, Hankel functions of half integer order
constitute a very special case: they have only a finite number of zeros in the finite
complex plane, where all but ¸ of them have migrated to infinity. This behavior is
reported in [115], where one can observe how the zeros of H‹ as ‹ varies between two
consecutive integer values. Here, we report in table C.2 all the algebraically solvable
cases of up to ¸ = 4, past which {Ên} are not guaranteed to be solvable by radicals
(c.f. Abel-Ru�ni theorem and Galois theory).

Another perspective over this property is that in the neutral particle case, ÷ = 0
and L¸=0(fl) = ifl, so that recurrence relation (C.11) entails Lc(flc) – and thus the
L0 function – is a rational fraction in flc, whose irreducible expressions are reported
in table C.1 along with their partial fraction decomposition, established in theorem
5, and whose poles are documented in table C.2. Moreover, since definition (C.9)
entails ˆOc

ˆfl (fl) = Lc
fl (fl)Oc(fl), a direct integration of (C.14) yields (with the correct
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Table C.2: Roots
)
Ên

*
of the outgoing wave function O¸(fl), algebraic solutions for neutral

particles up to ¸ Æ 4.

¸ = 0 : s-wave
Ó
Ê¸=0

0
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= {ÿ}
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Ô
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multiplicative constant):

O¸(fl)=ei(fl+
1
2 ¸fi)

r
nØ1 (fl ≠ Ên)

fl¸
(C.16)

This expression converges for neutral particles as the number of poles is finite, so using
Vieta’s formulas with the denominator of L¸(fl) enables to construct the developed
forms reported in table C.1.

Similar results do not hold for the charged particules case of Whittaker functions,
where there always exists an infinity of zeros to the outgoing wavefunction [143, 150],
and where a Coulomb phase shift would be present for any Weierstrass expansion in
infinite product of type (C.16).

C.3.3 Internal region parameters

Projections upon the orthonormal basis formed by the eigenvectors of the Hamiltonian
completed by the Bloch operator L allow for the parametrization of the interaction
Hamiltonian in the internal region by means of the Wigner-Eisenbud resonance pa-
rameters [79], composed of both the real resonance energies E⁄ œ R, and the real
resonance widths “⁄,c œ R. From the latter, and using Brune’s notation e , diag (E⁄)
and “ , mat (“⁄,c)⁄,c, the Channel R matrix, R, is defined as

Rc,cÕ ,
N⁄ÿ

⁄=1

“⁄,c“⁄,cÕ

E⁄ ≠ E
i.e. R = “T (e ≠ EI)≠1 “ (C.17)

and the Level A matrix, A, is defined through its inverse:

A≠1 , e ≠ EI ≠ “ (L ≠ B) “T (C.18)

where B = diag (Bc) is the arbitrary outgoing-wave boundary condition, which is
arbitrary, constant (non-dependent on the wavenumber), and for which Bloch demon-
strated that if it is real (i.e. Bc œ R), then the Wigner-Eisenbud resonance parameters
are also real [79]. From this, one can view the Wigner-Eisenbud parameters as the set
of channel radii ac, boundary conditions Bc, resonance widths “⁄,c, resonance energies
E⁄ and thresholds ETc . This set of parameters {ac, Bc, “⁄,c, E⁄, ETc} fully determines
the energy (or wavenumber) dependence of the scattering matrix U through equation
(E.14).

C.3.4 Scattering matrix and R-matrix parameters

As explained by Claude Bloch, the genius of R-matrix theory stems from it combining
the internal region with the external region to simply express the resulting scattering
matrix U (also called collision matrix, and often noted S, though we here stick to
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the Lane & Thomas scripture U for the scattering matrix) as:

U = O≠1I + wfl1/2O≠1
Ë
R≠1 + B ≠ L

È≠1

O≠1fl1/2

= O≠1I + 2ifl1/2O≠1“TA“O≠1fl1/2

= O≠1I + 2ifl1/2O≠1RLO≠1fl1/2

(C.19)

The equivalence between these channel and level matrix expressions stems from the
identity [I ≠ RL0]≠1 R = “TA“ which defines the Kapur-Peierls operator, RL:

RL ,
Ë
I ≠ RL0

È≠1

R = “TA“ (C.20)

Identity (C.20) can be proved by means of the Woodbury identity:
Ë
A + BD≠1C

È≠1

= A≠1
≠ A≠1B

Ë
D + CA≠1B

È≠1

CA≠1 (C.21)

Indeed, the application of the Woodbury identity (C.21) to equality (C.20), with
AWood = R≠1, BWood = L0, and CWood = DWood = I yields

Ë
I ≠ RL0

È≠1

R = R + RL0
Ë
I ≠ RL0

È≠1

R

= “T
Ë
(e ≠ EI)≠1 + (e ≠ EI)≠1 “L0

◊

Ë
I ≠ “T (e ≠ EI)≠1 “L0

È≠1

“T (e ≠ EI)≠1

6
“

and then reversely applying the Woodbury identity with AWood = (e ≠ EI), BWood =
≠“L0, CWood = “T, and DWood = I one now recognizes

Ë
I ≠ RL0

È≠1

R = “T
Ë
(e ≠ EI) ≠ “L0“T

È≠1

“

= “TA“

Considering the multi-sheeted Riemann surface stemming from the analytic con-
tinuation of mapping (E.4), a truly remarkable and seldom noted property of the
Wigner-Eisenbud formalism is that it completely de-entangles the branch points and
the multi-sheeted structure — entirely present in the outgoing O and incoming I
wave functions in the scattering matrix expression (E.14) — from the resonance pa-
rameters — which are the poles and residues of the channel matrix R as of equation
(E.16), and these poles and residues live on a simple complex energy E sheet, with no
branch points, and furthermore are all real. This de-entanglement of the branch-point
structure gives the R matrix all its uniqueness in R-matrix theory. For instance, it
does not translate to the level matrix A, whose analytic continuation entails a multi-
sheeted Riemann surface due to the introduction of the L0(fl(E))) matrix function
in its definition (E.18). The same is true for the alternative parameters, as will be
discussed throughout this article.
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C.3.5 Cross section and scattering matrix
General scattering theory expresses the incoming channel c and outgoing channel
cÕ angle-integrated partial cross section ‡c,cÕ(E) at energy E as a function of the
scattering matrix Uc,cÕ(E) according to eq.(3.2d) VIII.3. p.293 of [214]:

‡c,cÕ(E) = figJfi
c

--------

”c,cÕe2i

1
‡¸c (÷c)≠‡0(÷c)

2

≠ Uc,cÕ(E)
kc(E)

--------

2

(C.22)

where gJfi
c

, 2J+1

(2I1+1)(2I2+1)
is the spin statistical factor defined eq.(3.2c) VIII.3. p.293,

and where the Coulomb phase shift, ‡¸c(÷c), is defined by Ian Thompson in eq.(33.2.10)
of [250] for angular momentum ¸c and dimensionless Coulomb field parameter ÷c =
Z1Z2e2M–ac

~2flc
.

C.3.6 Invariance to arbiraty boundary parameter Bc

Having recalled essential results from R-matrix theory and the Wigner-Eisenbud pa-
rameters {ac, Bc, “⁄,c, E⁄, ETc}, we here focus on the fact that the fundamental physi-
cal operator describing the scattering event is the scattering matrix U , and while the
threshold energies ETc are intrinsic physical properties of the system, all the other
Wigner-Eisenbud parameters ac, Bc, “⁄,c, and E⁄ are interrelated and depend on ar-
bitrary values of the channel radius ac, or the boundary condition Bc. Though the
channel radius ac can arguably have some physical interpretation, this is not the case
of the boundary condition Bc.

The dependence of the Wigner-Eisenbud parameters to the boundary condition
Bc can be made explicit by fixing the channel radius ac and performing a change of
boundary condition B æ BÕ. This must entail a change in resonance parameters
E⁄ æ E Õ

⁄ and “⁄,c æ “Õ
⁄,c which leaves the scattering matrix U unchanged.

As described by Barker in [67], such change of variables can be performed by
noticing that e ≠ “ (BÕ

≠ B) “T is a real symmetric matrix when both B and BÕ are
real. The spectral theorem thus assures there exists a real orthogonal matrix K and
a real diagonal matrix D such that

e ≠ “ (BÕ
≠ B) “T = KTDK (C.23)

The new parameters are then defined as

eÕ , D , “ Õ , K“ (C.24)

This change of variables satisfies:

“ ÕTABÕ“ Õ = “TAB“ (C.25)

and thus leaves the scattering matrix unaltered through equation (E.14). Here ABÕ

designates the level matrix from parameters eÕ, “ Õ and BÕ. Equivalently, using the
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Woodbury identity (C.21) shows that this change of variables verifies (c.f. eq.(4) of
[67] or eq. (3.27) of [120]):

R≠1

B + B = R≠1

BÕ + BÕ (C.26)

If the change of variable is infinitesimal, this invariance property translates into the
following equivalent di�erential equations on the Wigner-Eisenbud RB matrix,

ˆR≠1

B

ˆB
+ I = 0 i.e. ˆRB

ˆB
≠ R2

B = 0 (C.27)

(c.f. eq (2.5b) section IV.2. p.274 of [214]) where we made use of the following
property to prove the equivalence:

ˆM≠1

ˆz
(z) = ≠M≠1(z)

A
ˆM

ˆz
(z)

B

M≠1(z) (C.28)

C.4 The alternative parametrization of R-matrix
theory

Since the physics of the system are invariant with the choice of the arbitrary Bc

boundary condition, Brune built on the work of Barker [67], Angulo and Descouve-
mont [59], to propose an alternative parametrization of R-matrix theory in which the
alternative parameters, Âe and Â“, are boundary-condition independent [92].

C.4.1 Definition of the alternative RS parametrization
Key to the alternative parametrization is the splitting of the outgoing-wave reduced
logarithmic derivative – and thus the L0 matrix function – into real and imaginary
parts, respectively the shift S and penetration P factors:

L = S + iP (C.29)

From there, and with slight changes from the notation in [92], the alternative level
matrix ÊA is defined as:

ÊA≠1(E) = ÊG + Âe ≠ E
Ë
I + ÊH

È
≠ Â“L(E)Â“T (C.30)

with
ÂG⁄µ =

Ê“µ

1
Sµ

ÊE⁄ ≠ S⁄
ÊEµ

2
Ê“⁄

ÊE⁄ ≠ ÊEµ

(C.31)

and
ÊH⁄µ =

Ê“µ (Sµ ≠ S⁄) Ê“⁄

ÊE⁄ ≠ ÊEµ

(C.32)

such that with the new alternative resonance parameters, ÊEi and Á“i,c, the following
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equality stands,
“TA“ = Â“T ÊAÂ“ (C.33)

and thus the scattering matrix U is left unchanged.
These alternative parameters Âe and Â“ are no longer B dependent since the arbi-

trary boundary condition does not appear in the definition of the alternative level
matrix, and from there in the parametrization of the scattering matrix.

Brune explains how to compute these alternative parameters from the Wigner-
Eisenbud ones by finding the

Ó
ÊEi

Ô
scalars and {ai} vectors that solve the Brune

generalized eigenproblem [92]:
Ë
e ≠ “

1
S(ÊEi) ≠ B

2
“T

È
ai = ÊEiai (C.34)

where each eigenvector is normalized so that:

ai
Tai = 1 (C.35)

and defining the alternative parameters as:

Âe , diag(ÊEi) , Â“ , aT“ (C.36)

where a is the matrix composed of the column eigenvectors: a , [a1, . . . , ai, . . .].
The alternative level matrix is then defined as (c.f. equation (30), [92]):

ÊA
≠1 , aTA≠1a (C.37)

which guarantees
A = a ÊAaT (C.38)

and thus (D.3.2), and whose explicit expression is (C.30).
Note that searching for the general eigenvalues in (C.34) is equivalent to solving

(apply the Sylvester determinant identity theorem, or c.f. eq. (49)-(50) in [92]):

det
1
R≠1

S (E)
2---

E= ÂEi
= 0 (C.39)

i.e. solving for the poles of the RS operator defined as

R≠1

S , R≠1 + B ≠ S (C.40)

The key insight is that in equation (22) of [92], Brune builds a square matrix
a , [a1, . . . , ai, . . . , aN⁄ ], from which he is able to built the inverse alternative level
matrix in his equation (30) of [92]. Brune justifies that this matrix is indeed square in
the paragraphs between equations (46) and (47) by a three-step monotony argument
depicted in FIG. 1 of [92]: 1) he assumes Sc(E) is continuous (i.e. has no real poles);
2) he assumes ˆSc

ˆE Ø 0, which is always true for negative energies and has recently
proved to be true for positive energies in the case of repulsive Coulomb interactions
[93] (a general proof is lacking for positive energy attractive Coulomb channels but has
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always been verified in practice); 3) he invokes the eigenvalue repulsion behavior (no-
crossing rule). If these three assumption are true, since the left-hand-side of (C.34) is a
real symmetric matrix for any real energy value, then the spectral theorem guarantees
there exists N⁄ di�erent real eigenvalues to it, and Brune’s three assumptions above
elegantly guarantee that there exists exactly N⁄ real solutions to the generalized
eiganvalue problem (C.34).

C.4.2 Ambiguity in shift and penetration factors definition
for complex wavenumbers

There is a subtlety, however. A careful analysis reveals that the assumption that
Sc(E) is continuous or monotonously increasing is not unequivocal, and points to an
open discussion in the field of R-matrix theory and nuclear cross section evaluations:
how should we continue the scattering matrix U to complex wavenumbers kc œ C
? Indeed, there is an ambiguity in the definition of the shift Sc(E) and penetration
Pc(E) functions: two approaches are possible, and the community is not clear on
which one is correct.

The first approach, legacy of Lane & Thomas, is to define the shift and penetration
functions as the real and imaginary parts of the the outgoing-wave reduced logarithmic
derivative:

’E œ C ,

I
S(E) , Ÿ [L(E)] œ R
P (E) , ⁄ [L(E)] œ R (C.41)

This definition, introduced in [214] III.4.a. from equations (4.4) to (4.7c), finds its
justification in the discussion between equations (2.1) and (2.2) of [214] VII.2, as it
presents the advantage of automatically closing the sub-threshold channels since:

’E < ETc , ⁄ [Lc(E)] = 0 (C.42)

This elegant closure of channels comes at the cost of loosing the mathematical proper-
ties of the scattering matrix U (k): it is no longer analytic for complex wavenumbers
kc œ C (we will also show in a follow-up article [125] that this introduces non-physical
spurious poles to the scattering matrix and brakes the generalized unitarity of Eden
& Taylor [137]). In this Lane & Thomas approach (C.41), the function calculated
for S changes from S(E) , Sc(E) above threshold (E Ø ETc), to S(E) , Lc(E)
below threshold (E < ETc), because of (C.42). Moreover, definition (C.41) induces
ramifications for both the shift and the penetration factors, as we show in lemma 1.

Lemma 1. Branch-point definition of shift Sc(E) and penetration Pc(E)
functions.
Definition (C.41) of the shift Sc(E) and penetration Pc(E) functions, legacy of Lane
& Thomas, entails:

• branch-points for both Sc(E) and Pc(E), induced by the multi-sheeted nature of
mapping (E.4),
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• on the
Ó
E, ≠

Ô
sheet below threshold E < ETc, the shift function Sc(E) can

present discontinuities and areas where ˆSc
ˆE (E) < 0,

• in particular, for neutral particles of odd angular momenta ¸c © 1 (mod 2),
there is exactly one real sub-threshold pole to Sc(E) on the

Ó
E, ≠

Ô
sheet,

• everywhere other than sub-threshold
Ó
E, ≠

Ô
sheet, and in particular on all of

the
Ó
E, +

Ô
sheet, the shift function Sc(E) is continuous and monotonously in-

creasing: ˆSc
ˆE (E) Ø 0.

Proof. The proof simply introduces the branch-structure of the flc(E) mapping (E.4),
observable in figure C-1, into the Lane & Thomas definition (C.41). Historically, the
study of the properties emanating from this definition have neglected the

Ó
E, ≠

Ô

sheet. Importantly, it was recently proved that ˆSc
ˆE (E) Ø 0 is true for most cases

[93]. This proof did not consider the
Ó
E, ≠

Ô
sheet of mapping (E.4). However,

their proof of ˆSc
ˆE (E) Ø 0 should still stand on the

Ó
E, +

Ô
sheet. Moreover, the

proof of lemma 2 establishes that all the discontinuity points, i.e. the real-energy
poles, happen at sub-threshold energies, and in particular that neutral particles with
odd angular moment introduce exactly one such sub-threshold discontinuity. This
means that above threshold, both the shift Sc(E) and penetration Pc(E) functions are
continuous. These behaviors are depicted in figure C-2. Finally, one will notice that
the

Ó
E, +

Ô
and

Ó
E, ≠

Ô
sheets coincide above threshold for the shift function Sc(E),

and below threshold for the penetration function Pc(E). For Pc(E), this is because
of property (C.42). For Sc(E), this is because for real energies above threshold, both
definitions (C.41) and (C.44) coincide, and lemma 2 shows the analytic continuation
definition of Sc(E) is function of fl2

c(E), which unfolds the sheets of the Riemann
mapping (E.4). Hence, for above-threshold energies, this property still stands for the
Lane & Thomas definition of the shift factor Sc(E).

The second approach to defining the shift and penetration functions, S and P ,
consists of performing analytic continuation of the scattering matrix U to complex
energies E œ C. This is implicit in the Kapur-Peierls or Siegert-Humblet expansions
(c.f. [?, 180] and section sections IX.2.c-d-e p.297-298 of [214]), and an abundant
literature revolves around the analytic properties of the scattering matrix in the com-
plex plane, including the vast Theory of Nuclear Reaction of Humblet and Rosenfeld
[185, 289, 181, 182, 195, 183, 230, 290, 231], or the general unitarity condition on
the multi-sheeted Riemann surface introduced by Eden and Taylor in [137]. In this
approach, energy dependence of the shift and penetration factors for positive energies
are analytically continued into the complex plane, i.e.

S :
I

C ‘æ C
E æ Sc(E) s.t. S(E) = Sc(E), ’(E ≠ ETc) œ R+ (C.43)

so that they can be computed from the outgoing wavefunction reduced logarithmic
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(a) Real part Ÿ
#
L¸(E)

$
, on both

)
E, ±

*
sheets. (b) Imaginary part ⁄

#
L¸(E)

$
, on both

)
E, ±

*

sheets.

Figure C-2: Real and imaginary parts of the reduced logarithmic derivative of the out-
going wavefunction L¸(E), for semi-classical massive neutral particles (table C.1) energy-
wavenumber mapping (E.2), for di�erent angular momenta ¸ œ J1, 4K. These real and
imaginary parts were used by Lane & Thomas to define the shift and penetration func-
tions, S¸(E) and P¸(E), as (C.41). This definition commands branch points from mapping
(E.2) (c.f. figure C-1). Ÿ

#
L¸(E)

$
presents sub-threshold discontinuities (for odd angular

momenta ¸) and non-monotonic behavior (for even angular momenta ¸) below threshold on
the

)
E, ≠

*
sheet. Units such that fl0 = 1. Threshold set at zero: ETc = 0.

derivative L by analytic continuation in wavenumber space kc œ C:

’flc œ C ,

I
Sc(flc) , Lc(flc)+[Lc(flú

c)]
ú

2
œ C

Pc(flc) , Lc(flc)≠[Lc(flú
c)]

ú

2i
œ C

(C.44)

From this definition (C.44), and using the recurrence relation (C.11), one readily finds
the expressions for the neutral particles shift and penetration factors documented in
table C.3. Critically, both definitions (C.41) and (C.44) will yield the same shift
Sc(E) and penetration Pc(E) functions for real energies above threshold E Ø ETc .
Moreover, definition (C.44) bestows interesting analytic properties onto the shift and
penetration functions, here established in lemma 2.

Lemma 2. Analytic continuation definition of shift Sc(E) and penetra-
tion Pc(E) functions.
When defined by analytic continuation (C.44), the shift function, Sc(fl), satisfies the
Mittag-Le�er expansion:

Sc(fl) = ≠¸ +
ÿ

nØ1

arg(Ên)œ[≠ fi
2 ,0]

fl2

fl2 ≠ Ê2
n

+ fl2

fl2 ≠ Êú
n

2 (C.45)

where the poles
Ó
Ên

Ô
are only the lower-right-quadrant roots – i.e. such that arg(Ên) œ

[≠fi
2
, 0] – of the outgoing wave function Oc(flc). In the neutral particles cases, these

are reported in table C.2. Given flc(E) mapping (E.4), this entails Sc(E):
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Table C.3: Shift S¸(fl), S
0

¸ (fl) , S¸(fl) ≠ B¸ using B¸ = ≠¸, and P¸(fl) irreducible forms
for neutral particles, for angular momenta 0 Æ ¸ Æ 4, all defined from analytic continuation
(C.44).

S¸(fl) S0

¸ (fl) , S¸(fl) ≠ B¸ P¸(fl)
(recurrence for B¸ = ≠¸ )

¸ S¸(fl) = S0

¸ (fl) , S¸(fl) + ¸ = P¸(fl) =
fl2

(¸≠S¸≠1(fl))

(¸≠S¸≠1(fl))
2
+P¸≠1(fl)2 ≠ ¸

fl2(2¸≠1≠S0
¸≠1(fl))

(2¸≠1≠S0
¸≠1(fl))2

+P¸≠1(fl)2
flP¸≠1(fl)

(¸≠S¸≠1(fl))
2
+P¸≠1(fl)2

0 0 0 fl

1 ≠
1

1+fl2
fl2

1+fl2
fl3

1+fl2

2 ≠
18+3fl2

9+3fl2+fl4
3fl2

+2fl4

9+3fl2+fl4
fl5

9+3fl2+fl4

3 ≠
675+90fl2

+6fl4

225+45fl2+6fl4+fl6
45fl2

+12fl4
+3fl6

225+45fl2+6fl4+fl6
fl7

225+45fl2+6fl4+fl6

4 ≠
44100+4725fl2

+270fl4
+10fl6

11025+1575fl2+135fl4+10fl6+fl8
1575fl2

+270fl4
+30fl6

+4fl8

11025+1575fl2+135fl4+10fl6+fl8
fl9

11025+1575fl2+135fl4+10fl6+fl8

• unfolds the sheets of flc(E) mapping (E.4),

• is purely real for real energies: ’E œ R, Sc(E) œ R.

The penetration function, Pc(fl), satisfies the Mittag-Le�er expansion:

Pc(fl) = fl

S

U1 ≠ i
ÿ

nØ1

arg(Ên)œ[≠ fi
2 ,0]

Ên

fl2 ≠ Ê2
n

≠
Êú

n

fl2 ≠ Êú
n

2

T

V
(C.46)

which in turn entails that Pc(E):

• is purely real for above threshold energies: ’E > ETc , Pc(E) œ R,

• is purely imaginary for sub-threshold energies: ’E < ETc , Pc(E) œ iR,

In the neutral particles case, Mittag-Le�er expansions (C.45) and (C.46) are the
partial fraction decompositions of the rational fractions reported in table C.3, and for
all odd angular momenta ¸c © 1 (mod 2), both have one, shared, real sub-threshold
pole.

Proof. The proof uses theorem 5, where we establish the Mittag-Le�er expansion
(C.14) of the reduced logarithmic derivative Lc(flc). We recall the conjugacy relations
of the outgoing and incoming wavefunctions (eq. (2.12), VI.2.c. in [214]), whereby,
for any channel c:

Ë
Oc(kú

c )
Èú

= Ic(kc) ,
Ë
Ic(kú

c )
Èú

= Oc(kc)
Oc(≠kc) = Ic(kc) , Ic(≠kc) = Oc(kc)

≠O(1)

c (≠kc) = I(1)

c (kc) , ≠I(1)

c (≠kc) = O(1)

c (kc)
(C.47)
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where the third line was obtained by taking the derivative of the second. Properties
(D.71) on the poles

Ó
Ên

Ô
mean each pole Ên on the lower right quadrant of the

complex plane – i.e. such that arg(Ên) œ [≠fi
2
, 0] – induces a specular pole ≠Êú

n.
Dividing the poles in specular pairs, we can re-write the Mittag-Le�er expansion
(C.14) as:

Lc(fl) = ≠¸ + ifl +
ÿ

nØ1

arg(Ên)œ[≠ fi
2 ,0]

fl

fl ≠ Ên
+ fl

fl + Êú
n (C.48)

Plugging-in expression (C.48) into the shift function definition (C.44) readily yields
(C.45) and (C.46).

Note that (C.45) unfolds the Riemann surface of mapping (E.4), whereas (C.46)
factors-out the branch points so that all its branches are symmetric. In (C.46) we
recognize the odd powers of fl in the neutral particles case of table C.3, which do
not unfold the Riemann sheets of mapping (E.4). These behaviors are illustrated in
figure C-3.

In the neutral particles case, Lc is a rational fraction in flc, and its denominator is
of degree ¸c, as can be observed in table C.1, thus inducing ¸c poles, reported in table
C.2. Since these poles

Ó
Ên

Ô
must respect the specular symmetry: Ê Ωæ ≠Êú

n; it thus
entails that these poles come in symmetric pairs. For neutral particles, odd angular
momenta mean there is an odd number of poles

Ó
Ên

Ô
. For them to come in pairs

thus imposes one is exactly imaginary Ên = ≠ixn, with xn œ R+. When squared, this
purely imaginary pole will introduce a real energy sub-threshold pole in both (C.45)
and (C.46), through: 1

fl2+x2
n
.

An example to illustrate the di�erence between definitions (C.41) and (C.44) is
depicted in figures C-2 and C-3. Consider the elemental case of a neutron channel
with angular momentum ¸c = 1, and let fl0 be the proportionality constant so that
(E.2) is written fl(E) = ±fl0

Ô
E ≠ ETc . Let us also set a zero threshold ETc = 0, for

simplicity.
In this case, the legacy Lane & Thomas definition (C.41) corresponds to taking

S(E) , Sc(flc(E)) = ≠
1

1+fl2
c

for above-threshold energies E Ø ETc , and switch to
S(E) , Lc(flc(E)) = ≠1+iflc+fl2

c
1≠iflc

for sub-threshold energies E < ETc . Since the (E.2)
mapping fl(E) = ±fl0

Ô
E ≠ ETc has two sheets, this means definition (C.41) entails:

S(E) , Sc(E) = ≠
1

1+fl2
0E for E Ø ETc , and S(E) , Lc(E) = ≠1±ifl0

Ô
E+fl2

0E

1ûifl0
Ô

E
for

E < ETc , which is a real quantity. Definition (C.41) thus introduces the ramifica-
tions reported in figure C-2. In particular, the full cyan line (L0 {E, +} case) of our
Ÿ

Ë
L¸(E)

È
plot (figure C-2) corresponds to the uncharged case for angular momen-

tum ¸ = 0 reported as a full black curve in FIG.1, p.6 of [93]. Notice that all theÓ
E, +

Ô
sheet curves are continuous and monotonically increasing (ˆSc

ˆE Ø 0), which
is in accordance to the monotonic properties established in [93]. However, on theÓ
E, ≠

Ô
sheet below threshold, Ÿ

Ë
Lc(E)

È
is no longer monotonic for even angular mo-

menta (
ˆŸ

Ë
Lc(E)

È

ˆE Ø 0 does not hold), and is discontinuous in the case of odd angular
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(a) Analytic shift function S¸(E), for both)
E, ±

*
sheets.

(b) Analytic penetration function real part
Ÿ[P¸(E)].

(c) Analytic penetration function imaginary
part ⁄[P¸(E)].

Figure C-3: Analytic shift S¸(E) and penetration P¸(E) functions, definition (C.44), non-
relativistic neutral particles (table C.3) kc(E) mapping (E.2), angular momenta ¸ œ J0, 4K,
zero threshold ETc = 0. The shift function Sc(E) has no

)
E, ±

*
branches (proof in lemma

2), has discontinuities (odd ¸) and non-monotonic behavior (even ¸) below threshold. P¸(E)
has

)
E, ±

*
branches, is purely real above threshold, and purely imaginary below. Units

such that fl0 = 1.

momenta.
In contrast, for our same elemental case, the analytic continuation definition

(C.44) simply defines S(E) , Sc(flc(E)) = ≠
1

1+fl2
c

for all real or complex energies
E œ C, that is S(E) , ≠

1

1+fl2
0E . The later happens to have a real pole, which intro-

duces a discontinuity, at Edis. = ≠
1

fl2
0
, as can be seen in figure C-3. One can observe

that all odd angular momenta are monotonous but have a real sub-threshold pole.
For even angular momenta, S¸(E) is continuous, monotonically increasing above-
threshold, but ˆS

ˆE (E) Ø 0 does not hold below-threshold. For the penetration function
Pc(E), each ramification is monotonous, but in opposite, mirror direction. In figure
C-3, the shift function Sc(E) does not present branch points, as proved in lemma 2:
it is a function of fl2 so no ±

Ô
· choice is necessary in flc(E) mapping (C.4).

184



C.4.3 Number of alternative poles:
existence of shadow poles

Definitions (C.41) and (C.43) have a major impact on the alternative parameters
(C.36): they command that the number NS of alternative poles

Ó
ÊEi

Ô
, solutions to

Brune’s generalized eigenproblem (C.34), is greater than the N⁄ previously found in
[92]: i.e. NS Ø N⁄. And this is regardless of whether definition (C.41) or (C.43) is
chosen for the shift factor Sc(E) when searching for these solutions.

The fundamental reason for this is that Brune’s three-step monotony argument,
which elegantly proved in [92] that there are exactly N⁄ solutions to (C.34) and
which we here recall in the last paragraph of section C.4.1, rests on two hypotheses
on the shift function Sc(E): 1) it is continuous (i.e. has no real poles), and; 2) it is
monotonously increasing, i.e. ˆSc

ˆE Ø 0. In [93], these two hypotheses have just been
proved to hold true for energies above threshold E Ø ETc , i.e. for real wavenumbers
kc œ R. Yet, we just established in lemmas 1 and 2 that proper accounting of the
multi-sheeted nature of the Riemann surface created by mapping (E.4) shows these
two hypotheses do not hold for sub-threshold energies E < ETc , where the wavenum-
ber is purely imaginary from mapping (E.2). This engenders additional solutions to
Brune’s generalized eigenproblem (C.34), so that the number NS of alternative polesÓ

ÊEi

Ô
is in fact greater than the number of channels: NS Ø N⁄. So how many NS

solutions are there? This depends on the R-matrix parameters and on the defini-
tion chosen for the shift function Sc(E), as we now show in theorems 6 and 7, for
definitions (C.41) and (C.43), respectively.

Theorem 6. Alternative Branch Poles.
Let the alternative branch poles

Ó
ÊEi

Ô
be the solutions of the Brune generalized eigen-

problem (C.34), using the legacy Lane & Thomas definition (C.41) for the shift Sc(E),
and let NS be the number of such solutions, then:

• all the alternative branch poles are real, and reside on the 2Nc sheets of the

Riemann surface from (E.4) mapping:

Y
_]

_[
ÊEi, ±, . . . , ±¸ ˚˙ ˝

Nc

Z
_̂

_\
œ RNS ,

• exactly N⁄ alternative branch poles are present on the
Ó
E, +, . . . , +¸ ˚˙ ˝

Nc

Ô
sheet of

mapping (E.4): these are the principal (or resonant) poles,

• additional alternative branch shadow poles can be found below threshold, E <
ETc, on the

Ó
E, ≠

Ô
sheets of mapping (E.4), depending on the values of the

resonance parameters
Ó
E⁄, “⁄c, Bc, ETc , ac

Ô
– though in a way that is invariant

under change of boundary-condition Bc,

• each neutral particle, odd angular momentum ¸c © 1 (mod 2), channel adds at
least one alternative branch shadow pole below threshold on its

Ó
E, ≠

Ô
sheet,
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so that the total number N±
S of alternative branch poles on all sheets of mapping (E.4)

is greater or equal to the number N⁄ of levels: N±
S Ø N⁄.

Proof. Let us go about solving the Brune generalized eigenproblem (C.34), follow-
ing the three-step argument of Brune (c.f. last paragraph of section C.4.1). We
consider the left-hand side of (C.34). According to definition (C.41), the shift func-
tion is always real, even for complex wavenumbers kc œ C. Since by construction
the Wigner-Eisenbud R-matrix parameters

Ó
E⁄, “⁄c, Bc, ETc , ac

Ô
are also all real, this

implies the right-hand side must be real to solve (C.34). Thus, all the alternative
branch poles from definition (C.41) are real. To find them, we follow Brune’s ap-
proach: for any energy E, on any of the 2Nc sheets of mapping (E.4), the left-hand
side is a real symmetric matrix, and its eigenvalue decomposition will thus yield N⁄

real eigenvalues:
Ó

ÊEi(E)
Ô

œ R. We then have to vary the E value until these real
eigenvalues cross the E = E identity line in the right-hand side. In general, the full
accounting of all the Riemann sheets from mapping (E.4) will entail solutions of the
generalized Brune eigenproblem (C.34) on all sheets. These alternative branch poles
should thus be reported with the choice of sheet from the mapping (E.4) for each
channel:

Ó
ÊEi, +, ≠, . . . , +

Ô
.

We state in lemma 1 than on the
Ó
E, +

Ô
sheet, Sc(E) is indeed continuous and

monotonously increasing. We can thus apply Brune’s three-step argument: the N⁄

eigenvalues of the left-hand side of (C.34) will satisfy ˆ ÂEi
ˆE (E) Æ 0, and thus each and

every one of them will eventually cross the E = E identity line exactly once as E
varies continuously. On the

Ó
E, +

Ô
sheet for all channels, there are thus exactly N⁄

alternative poles:

Y
_]

_[
ÊEi, +, . . . , +¸ ˚˙ ˝

Nc

Z
_̂

_\
œ RN⁄

However, we showed in lemma 1 that Sc(E) is not monotonous and can be dis-
continuous for sub-threshold energies E < ETc on the

Ó
E, ≠

Ô
sheet. So how many

alternative poles are there on all sheets? Unfortunately, the number of solutions to
Brune’s generalized eigenproblem (C.34) will depend on the values of the resonance
parameters

Ó
E⁄, “⁄c, Bc, ETc , ac

Ô
– though in a way that is invariant under change

of boundary-condition Bc, as made evident in (C.39) when considering invariance
(C.26). That the number of solutions to (C.34) depends on the parameters can be
observed in figure C-5.

For neutral particles odd momenta ¸c © 1 (mod 2) channels, lemma 1 also showed
there exist exactly one sub-threshold pole to Sc(E) on the

Ó
E, ≠

Ô
sheet of mapping

(E.4). This pole will automatically cross the E = E identity line of Brune’s three-step
argument twice, once below and once above threshold, adding an additional alterna-
tive shadow pole to the N⁄ ones Brune found in [92]. This proves that there exists
alternative shadow poles, just as shadow poles in the Siegert-Humblet parameters
were revealed by G.Hale in [163, 245]. This behavior is illustrated in figure C-4.

Theorem 6 establishes the existence of sub-threshold alternative shadow poles
when the legacy Lane & Thomas definition (C.41) is chosen for the shift function
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(a) Positive resonance energy E⁄ = 2. (b) Negative resonance energy E⁄ = ≠2.

Figure C-4: Brune eigenproblem (C.54) for 1-level 1-channel p-wave:
comparison of real solutions from definitions (C.41) versus (C.44), for angular momentum
¸c = 1, neutral particles energy-wavenumber mapping (E.2), resonance width “⁄,c = 1,
using Bc = ≠¸c convention and zero threshold ETc = 0. Units such that fl0 = 1. Since both
have a real sub-threshold poles, both will yield two solutions (crossing the E=E diagonal),
one above and one below the discontinuity. If at threshold energy ETc the left hand side of
(C.54) is above the E=E diagonal, then the above-threshold solutions from both definitions
coincide. In any case, the sub-threshold solutions di�er. Behavior is analogous for all odd
angular momenta ¸c © 1(mod2).

Sc(E). If instead the analytic continuation definition (C.43) is chosen, we now show
in theorem 7 that this unfolds the Riemann surface for the shift function Sc(E) so
that no branch points are required to define the alternative analytic parameters. We
argue in a follow-up article that the analytic continuation approach (C.44) is the
physically correct one [125], as it conserves the meromorphic properties of the Kapur-
Peierls operator, which preserves general unitarity, cancels non-physical poles out of
the scattering matrix U (E) otherwise spuriously introduced by the Lane & Thomas
approach (C.41), allows for parameters transform under change of channel radius, and
still should close cross sections below channel thresholds. Though there is no absolute
consensus yet amongst the community as to which approach ought to be valid, both
yield identical results for real energies above threshold (real wavenumbers kc œ R) in
the case of exact R-matrix formalism (but not the Reich-Moore approximation as we
show in section C.5).

Theorem 7. Alternative Analytic Poles.
Let the alternative analytic poles

Ó
ÊEi

Ô
be the solutions of the Brune generalized eigen-

problem (C.34), using the analytic continuation definition (C.44) for the shift Sc(E),
and let NS be the number of such solutions, then:

• the alternative analytic poles are in general complex, and live on the single sheet
of the unfolded Riemann surface from (E.4) mapping:

Ó
ÊEi

Ô
œ CNS ,

• in the neutral particle case, there are exactly NS complex alternative analytic
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poles with:

NS = N⁄ +
Ncÿ

c=1

¸c (C.49)

• in the charged particles case, there is a countable infinity of complex alternative
analytic poles: NS = Œ,

• for each level ⁄, there exists a real principal (or resonant) alternative analytic
pole. These N⁄ principal poles are the same as the principal alternative branch
poles of theorem 6,

• the number NR
S of real alternative analytic poles,

Ó
ÊEi

Ô
œ RNR

S , is greater than
the number of levels, NR

S Ø N⁄, and depends on the values of the resonance pa-
rameters

Ó
E⁄, “⁄c, Bc, ETc , ac

Ô
– though in a way that is invariant under change

of boundary-condition Bc,

• each neutral particle, odd angular momentum ¸c © 1 (mod 2), channel adds at
least one real alternative analytic shadow pole below threshold,

so that the number NS of complex and NR
S of real alternative analytic poles is greater

than the number N⁄ of levels: NS Ø NR
S Ø N⁄.

Proof. The proof follows the one of theorem 6. However, when considering the left-
hand side of (C.34), the shift function is now defined from analytic continuation
definition (C.44), which in general entails Sc(E) is a complex number. This entails
the left-hand side of (C.34) is now a complex symmetric matrix. In general, a complex
symmetric matrix is not diagonalizable, has no special properties on its spectrum,
and we refer to reference literature on its Jordan canonical form and other properties
[113, 119, 96, 292, 66, 151, 152]. Nonetheless, we know the left-hand side of (C.34)
will be real-symmetric, thus diagonalizable, for real energies above threshold, which
hints (but does not prove) it is probably a good assumption to assume the complex
symmetric matrix to be non-defective in general. Regardless of the eigenvectors, we
can search for the alternative poles

Ó
ÊEi

Ô
by solving problem (C.39) directly (c.f.

discussion around equation (51) in [92]). Here, the analytic properties of definition
(C.44), established in lemma 2, entail the determinant in (C.39) is a meromorphic
operator of fl2, which unfolds mapping (E.4) so that all the solutions of (C.39) live
on one single sheet.

In the case of Nc massive neutral channels, the shift factor Sc(fl) is a rational
fraction in fl2 with a degree of ¸c (in E space) in the denominator, where ¸c is the
angular momentum of the channel (c.f. table C.3 and lemma 2 with table C.2). The
search for the poles of the RS operator (C.39) will then yield NS complex alternative
poles

Ó
ÊEi

Ô
œ C with NS = N⁄ + qNc

c=1
¸c, as stated in (C.49). The intuition behind

this number NS is that both the R-matrix (E.16) and the diagonal matrix of shift
functions, S(E) , diag (Sc(E)), will each contribute their number of poles, N⁄ andq

c ¸c respectively, adding them up to yield NS = N⁄ + qNc
c=1

¸c solutions (C.49) to
the determinant problem (C.39). We achieved a formal proof of result (C.49), though
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it is somewhat technical. It rests on the diagonal divisibility and capped multiplic-
ities lemma 3, which we apply to the developed rational fraction det

1
R≠1

S (E)
2

in
(C.39), or directly to (C.34), depending on whether N⁄ Ø Nc or Nc Ø N⁄. In the
(most common) case of N⁄ Ø Nc, we develop det

1
R≠1

S

2
(E) = det

1
R≠1

≠ S0

2
(E)

by n-linearity: det
1
R≠1

≠ S0

2
= det

1
R≠1

2
det (I ≠ RS0) with det (I ≠ RS0) = 1≠

Tr (RS0) + . . . + Tr (Adj (≠RS0)) + det (≠RS0), so that: det
1
R≠1

S

2
= det

1
R≠1

2
≠

Tr
1
Adj

1
R≠1

2
S0

2
+ . . . ≠ Tr

1
R≠1Adj (S0)

2
+ (≠1)Ncdet (S0). In the latter ex-

pression, R≠1(E) = “+ (e ≠ EI) “T+ has no poles, so its determinant is a poly-
nomial det

1
R≠1

2
(E) œ C[X]. The rational fraction with greatest degree in the

denominator is det (S0) (E) œ C(X). For neutral particles S0

c (E) = s0
c(E)

dc(E)
, where

the denominator is of degree ¸c = deg (dc(E)) in E space (c.f. table C.3), so that
to rationalize the rational fraction det

1
R≠1

S

2
(E) œ C(X), we must multiply it

by the denominator of det (S0) (E), which is rNc
c=1

dc(E), a polynomial of degree
q

c ¸c. That is
1rNc

c=1
dc(E)

2
◊ det

1
R≠1

S

2
(E) =

1rNc
c=1

dc(E)
2

◊ det
1
R≠1

2
(E) + . . . +

(≠1)Nc
rNc

c=1
s0

c(E) œ C[X]. The dominant degree polynomial in this expression is1rNc
c=1

dc(E)
2

◊ det
1
R≠1

2
(E). In this expression, the total degree of the polynomial

is the sum of the degrees of the product terms. We readily have deg
1rNc

c=1
dc(E)

2
=

q
c ¸c. For the degree of the determinant term det

1
R≠1

2
(E), the application of di-

agonal divisibility and capped multiplicities lemma 3 stipulates that if E⁄1 = E⁄2 =
. . . = E⁄m⁄

, this multiplicity m⁄ of the resonance energy value E⁄ will be capped
by Nc. In practice, this does not happen because the Wigner-Eisenbud resonance
parameters E⁄ are defined as di�erent from each other E⁄ ”= Eµ ”=⁄. This is no longer
true in the case Nc Ø N⁄, where developing the determinant of (C.34) directly will
similarly yield by n-linearity, and denoting � , e ≠ EI for clarity of scripture:
det

1
� ≠ “S0“T

2
= det (�) ≠ Tr

1
Adj (�) “S0“T

2
+ . . . ≠ Tr

1
� Adj

1
“S0“T

22
+

(≠1)N⁄det
1
“S0“T

2
. Again, in the latter expression the rational fraction with the

highest-degree denominator is det
1
“S0“T

2
(E) œ C(X). Applying the diagonal di-

visibility and capped multiplicities lemma 3 to it commands that if there are various
channels with the same Sc(E), for instance with the same ¸c and fl0c, their multiplic-
ity of occurrence is capped by N⁄ when rationalizing the fraction det

1
“S0“T

2
(E) œ

C(X), so that Q(E) ◊ det
1
“S0“T

2
(E) œ C[X] is a polynomial, with Q(E) ,

Q

a rNc
c=1

dc ”=dc ”=cÕ

dc(E)
R

b ◊

Q

armin{Nc,N⁄}
c=1

dc=dc ”=cÕ
dc(E)

R

b. In the developed expression of the polyno-

mial Q(E) ◊ det
1
� ≠ “S0“T

2
, the dominant degree term is now: Q(E) ◊ det (�),

the degree of which is the sum of the degree of each term. The degree of det (�) is
N⁄, whereas the degree of Q(E) is deg (Q(E)) = qNc

c=1|¸c ”=¸cÕ ¸c +qmin{N⁄,Nc}
c=1|¸c=¸cÕ ¸c. Hence,

we find back the expression (C.49) to be proved: NS = N⁄ + qNc
c=1

¸c, but with the
additional subtlety that the multiplicities (repeating occurrences) are capped, both
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for q
E⁄ multiplicity
capped at Nc

deg (E⁄ ≠ fl2(E)) and for q
Sc multiplicity
capped at N⁄

deg (dc(fl(E))), so

that the final, exact number of complex eigenvalues to Brune’s generalized eigenprob-
lem (C.34) in the neutral channels case is:

NS = N⁄ +
ÿ

Sc multiplicity
capped at N⁄

¸c

(C.50)

This means that if many channels, say mc, have the same shift function Sc = ScÕ , the
resulting ¸c = ¸cÕ will only be added min {mc, N⁄} times in the sum (C.50).
A final technical note to state that this number NS of poles (C.50) is true in E space,
as we have showed in lemma 2 that definition (C.44) unfolds the Riemann sheet of
(E.4). If we were performing this in fl space, we would thus simply multiply the
degrees by 2. This is not true if we were searching for the poles of the Kapur-Peierls
operator RL, as the mapping of fl(E) is not one-to-one anymore. From table C.1, we
would be able to perform the same analysis that yielded (C.50), but it would have to
be in fl space.

In the charged particles case, Sc(E) has an infinity of poles (c.f. lemma 2). Ex-
tending our proof of (C.50) from the neutral particles to the charged particles ones
would thus yield a countable infinity of complex alternative analytic poles.

A key question is: how many of the NS complex alternative poles are real? To
address it, we come back to the three-step Brune argument and look for real eigen-
values from the left-hand-side of (C.34) that will cross the right-hand side identity
line E = E for real values. Here again, Brune’s three-step argument will guarantee at
least N⁄ real solutions. There are in general more solutions however, and as for the
alternative shadow poles of theorem 6, the number of real alternative analytic poles,
solutions to (C.34), will depend on the R-matrix parameters

Ó
E⁄, “⁄c, Bc, ETc , ac

Ô
, in

a way that is invariant under change of boundary-condition Bc (plug-in invariance
(C.26) into (C.39)). We illustrate various such cases in figure C-5. However, each
neutral particle channel with odd angular momentum ¸c © 1 (mod 2) will add at least
one real sub-threshold solution to the N⁄ ones, due to the real sub-threshold pole of
Sc(E) discovered in lemma 2. This behavior is depicted in figure C-4.

Lemma 3. Diagonal divisibility and capped multiplicities.
Let M œ Cm◊n be a complex matrix and D(z) œ Diagn (C (X)) be a diagonal matrix
of complex rational functions with simple poles, that is Dij(z) = ”ij

Ri(z)œC[X]

Pi(z)œC[X]
, with

C [X] designating the set of polynomials and C (X) the set of rational expressions,
and we assume Pi(z) has simple roots.
Let Q(z) œ C [X] be the denominator of det (D) (z), but with all multiplicities capped
by m, i.e.

Q(z) ,
nŸ

j = 1
Pj ”= Pi”=j

Pj(z)
mim{n,m}Ÿ

i = 1
Pi = Pi”=j

Pi(z) (C.51)
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then Q(z) is the denominator of det
1
MD(z)MT

2
, so that:

Q(z) · det
1
MD(z)MT

2
œ C [X] (C.52)

Proof. Leibniz’s determinant formula yields:

det
1
MD(z)MT

2
=

ÿ

‡œSm

‘(‡)
mŸ

i=1

nÿ

j=1

MijM‡ij
Rj(z)
Pj(z)

Let us now develop the product using the formula:
mŸ

i=1

nÿ

j=1

xi,j =
ÿ

j1,...,jmœJ1,nKm

mŸ

i=1

xi,ji

which leads to:

det
1
MDMT

2
=

ÿ

‡œSm

‘(‡)
ÿ

j1, . . . , jm
œ J1, nKm

mŸ

i=1

MijiM‡iji

Rji(z)
Pji(z) (C.53)

We here have a sum of products of m terms; thus, the Rj(z)

Pj(z)
never appear more than

m times in each product – nor more than their multiplicity in det (D) (z). It thus
su�ces to account for each Pj(z) a number of times that is the maximum between its
multiplicity and m in order to rationalize the det

1
MD(z)MT

2
œ C(X) fraction.

Importantly, since both shift function Sc(E) definitions (C.41) and (C.43) coincide
above threshold, the solutions to (C.34) will be the same above thresholds. The
discrepancy in the values of the alternative parameters, solutions to (C.34), will only
di�er when certain channels have to be considered below threshold: Sc(E) with E <
ETc .

To illustrate these di�erences, let us consider the simple example of a one-level,
one-channel neutral particle interaction, with a zero-threshold ETc = 0, and set about
solving the Brune generalized eigenproblem (C.34), which here takes the simple scalar
form:

E⁄ ≠ “⁄,c

1
Sc(E) ≠ Bc

2
“⁄,c = E (C.54)

In figures C-4 and C-5, we plotted the left and right hand side of this elemental
Brune eigenproblem (C.54), for both definitions (C.41) and (C.44) of the shift function
Sc(E), for various values of resonance parameters {E⁄, “⁄,c} and the convention Bc =
≠¸c, for di�erent angular momenta ¸c.

In the case of ¸c = 1, depicted in figure C-4, one can observe that the real sub-
threshold pole engendered by odd angular momenta (c.f. section C.4.2) introduces
a sub-threshold alternative parameter, where the left-hand side of (C.54) crosses the
E = E identity line. In the case of the Lane & Thomas legacy definition (C.41),
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(a) Positive resonance energy E⁄ = 1. (b) Negative resonance energy E⁄ = ≠2.

Figure C-5: Brune eigenproblem (C.54) for 1-level 1-channel d-wave:
comparison of real solutions from definitions (C.41) versus (C.44), for angular momentum
¸c = 2, neutral particles energy-wavenumber mapping (E.2), resonance width “⁄,c =

Ô
2,

using Bc = ≠¸c convention and zero threshold ETc = 0. Units such that fl0 = 1. Since there
are no real sub-threshold poles, both can yield one, two, or three solutions (crossing the E=E
diagonal), depending on the values of the resonance parameters. If at threshold energy ETc

the left hand side of (C.54) is above the E=E diagonal, then the above-threshold solutions
from both definitions coincide. In any case, the sub-threshold solutions di�er. Behavior is
analogous for all even angular momenta ¸c © 0(mod2).

this sub-threshold alternative shadow pole is on the
Ó
E, ≠

Ô
sheet of mapping (E.2),

whereas for analytic continuation definition (C.44) it is on the same, unique sheet.
The same behavior will be observable for all odd angular momenta ¸c © 1 (mod 2).

In the case ¸c = 2, depicted in figure C-5, the non-purely-imaginary poles {Ên, Êú
n} ”œ

iR (c.f. lemma 2 and table C.2) will impact the shift function Sc(flc) in ways that
may or may not produce additional real solutions

Ó
ÊEi

Ô
œ R to the generalized eigen-

problem (C.34). This behavior is reported in figure C-5, where one can observe that,
depending on the R-matrix parameter values

Ó
E⁄, “⁄,c, Bc

Ô
, there are either one, two

(tangential for the analytic continuation definition), or three solutions to the Brune
generalized eigenproblem (C.54). For instance, one can see that definition (C.41)
can yield situations with two sub-threshold alternative branch poles – one on theÓ
E, +

Ô
branch and one shadow pole (i.e. on the

Ó
E, ≠

Ô
branch) – or with two

sub-threshold alternative shadow poles – both sub-threshold on the
Ó
E, ≠

Ô
branch

– or situations where only one, above-threshold solution is produced. On the other
hand, analytic continuation definition (C.44) can also yield one, two (tangentially) or
three solutions, depending on the sub-threshold behavior and the resonant parame-
ters eigenvalues

Ó
E⁄, “⁄,c, Bc

Ô
. The number of real solutions

Ó
ÊEi

Ô
œ R to the Brune

generalized eigenproblem (C.34) will thus depend on the R-matrix parameters, and
is in general comprised between N⁄ and NS.

To verify the number of complex alternative analytic poles (C.49), a trivial exam-
ple is considering (C.54) in the ¸c = 1 case, where the analytic shift function takes the
wavenumber dependence, S(fl) = ≠

1

1+fl2 , and thus the poles of the RS operator are
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nothing but the solutions to E⁄≠E
“2

⁄,c
+ B + 1

1+fl2
0(E≠ETc )

= 0. The fundamental theorem
of algebra then guarantees this problem has NS = 2 complex solutions, not N⁄ = 1.
The surprising part is that both are real poles: one above and one below threshold,
which again stems from the fact the number of roots {Ên} is odd and that their
symmetries thus require one pole to be exactly imaginary (in wavenumber space), as
explained in section C.4.2. For ¸c = 2, we would have S0

2
(E) = 3E+2E2

9
fl2

0
+3E+E2 , so that

the fundamental theorem of algebra commands (C.54) will have NS = 3 solutions,
verifying the NS = N⁄ + qNc

c=1
¸c complex poles we establish in (C.49). In the general

charged-particles case, the shift factor Sc(fl) is no longer a rational fraction in fl2 but
is a meromorphic operator in fl2 with an infinity of poles (c.f. lemma 2). This illus-
trates how, in general, there exist N⁄ Æ NS Æ Œ complex poles of the RS operator,
and that at least N⁄ of them are real.

When the left-hand side of (C.54) crosses the E = E identity line above threshold,
the alternative branch poles coincide with the alternative analytic poles, as can be
observed in figures C-4 and C-5. Since the shift function Sc(E) is continuous and
monotonically increasing above threshold, the question is whether the eigenvalues of
the left-hand side of (C.34) are above the E = E identity line at the threshold value:
E = ETc . If yes, then it would mean that past the last threshold there will be exactly
N⁄ solutions to (C.34). However, nothing guarantees a priori that all the eigenvalues
of the left hand side of (C.34) are above the E = E at the last threshold. From
solving the elemental Brune problem (C.54), we observed that it seems to require
negative resonance levels E⁄ < 0 to induce the left-hand side of (C.34) to be below
the E = E identity line at the threshold value, as illustrated in figures C-4 and C-5.
When this happens, the alternative poles will be sub-threshold, and thus depend on
the (C.41) or (C.44) definition for the shift function Sc(E). However, the fact that
di�erent channels will have di�erent threshold levels ETc ”= ETcÕ , and that nothing
stops R-matrix parameters from displaying negative resonance levels E⁄ < 0, mean no
definitive conclusion can be reached as to the number of real alternative parameters
(other than there exists at least N⁄ of them).

C.4.4 Choice of alternative poles
Brune defined the alternative parameters in (C.36) and (C.37) by building the square
matrix a, and then inverting it to guarantee (C.38) (c.f. section C.4.1). We just
demonstrated in theorems 6 and 7 that there are in general more alternative poles
NS – either alternative branch poles or alternative analytic poles – than the number
N⁄ of resonance levels: NS Ø N⁄. Yet the fact that there are more than N⁄ solutions
to (C.34) implies the a , [a1, . . . , ai, . . . , aNS ] matrix, composed of the NS solutions
to Brune’s eigenproblem (C.34), is in general not square, and could even be infinite
if NS = Œ (Coulomb channels). This brings two critical questions: 1) do these
additional alternative poles impede us from well defining the alternative parameters?
2) can we still uniquely define the alternative poles?

We here demonstrate in theorem 8 the striking property that choosing any finite
set of at least N⁄ di�erent solutions from the N⁄ Æ NS Æ Œ solutions of Brune’s
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eigenproblem (C.34), su�ces, under our new extended definition (C.55), to properly
describe the R-matrix scattering model.

Theorem 8. Choice of alternative poles
If we generalize definition (C.37) of the alternative level matrix ÊA by defining it as
the following (Moore-Penrose) pseudo-inverse:

ÊA ,
Ë
aTA≠1a

È
+

(C.55)

then the choice of any number NS of alternative poles, solutions to the Brune gener-
alized eigenproblem (C.34), will reconstruct the scattering matrix U (E), if, and only
if, we choose at least N⁄ solutions: NS Ø N⁄.

Proof. The proof rests on the pseudo-inverse property for independent columns and
rows, and applies it to the a , [a1, . . . , ai, . . . , aNS ] matrix, constructed by choos-
ing NS solutions of the generalized eigenproblem (C.34). If NS Ø N⁄, then a has
independent rows so that its pseudo-inverse will yield: ÊA = a+AaT+. This prop-
erty in turn entails (C.38) is satisfied, and thus (D.3.2) stands, leaving unchanged
the Kapur-Peierls operator RL, and hence fully representing the scattering matrix
U (E).

Critically, N⁄ real solutions to (C.34) can always be found – as shown in theo-
rems 6 and 7 – meaning the alternative parametrization is always capable of fully
reconstructing the scattering matrix energy behavior with real parameters through
generalized pseudo-inverse definition (C.55). It is well defined.

Yet, if any choice of N⁄ alternative poles will yield the same scattering matrix
U (E) through definition (C.55), this choice is a priori not unique. Can we define some
conventions on the choice of alternative parameters to make them unique? Under the
legacy Lane & Thomas definition (C.41), this can readily be achieved by neglecting
the shadow poles and restraining the search to the principal sheet

Ó
E, +, . . . , +

Ô
, for

all Nc channels, where we have shown in theorem 6 that one will find exactly N⁄

poles. Under the analytic continuation definition (C.44), one can still uniquely define
the N⁄ “first" solutions in the following algorithmic way: one starts the search by
diagonalizing, at the last threshold energy (greatest ETc value), the left-hand side of
(C.34). If all the eigenvalues are above the E = E line, then increase the energy
until the eigenvalues cross the E = E diagonal, and we will have N⁄ uniquely defined
real alternative analytic poles. If at the first threshold some eigenvalues are below
the E = E identity line (as we saw could happen if some resonance energies are
negative E⁄ < 0), then we can decrease the energy values until those cross the E = E
identity line for the first time, and stop the search there, thus again uniquely defining
N⁄ alternative analytic poles. This foray into the algorithmic procedure for solving
(C.44) gives us the occasion to point to the vast literature on methods to solve non-
linear eigenvalue problems, in particular [319].

In the end, though we argue that the physically correct definition for the shift
function Sc(E) ought to be through analytic continuation (C.44), both approaches
enable to set conventions that will uniquely determine N⁄ real alternative poles.
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C.5 Generalized alternative parameters for Reich-
Moore formalism

In this section, we study how the community could convert present nuclear data
libraries – featuring both Wigner-Eisenbud parameters and Reich-Moore parameters
– to alternative parameters, in order to eliminate the dependence on the arbitrary
boundary condition parameters Bc. We generalize the alternative parametrization
to encompass the widely used Reich-Moore formalism, with which many evaluations
are conducted, and we show that it is necessary for the community to decide on a
convention to continue R-matrix operators to complex wavenumbers – that is we must
choose between branch-points definition (C.41) and analytic continuation (C.43).

C.5.1 Generalization to Reich-Moore formalism and Teichmann-
Wigner eliminated channels

In practice we are only interested in certain outcomes of a nuclear reaction (such
as neutron fission, scattering, etc.) and we are sometimes unable to track the vast
number of all possible channels (such as every single individual photon interaction)
– this is specially true of heavy nuclides for which the interaction becomes a large
many-body problem. For these cases, the community has traditionally resorted to
Teichmann and Wigner’s channel elimination method (c.f. [305] or section X, p.299 of
[214]) to not explicitly treat all the channels we are not interested in, but still capture
their e�ects on channels of interest. This yields the Reich-Moore approximation of R-
matrix theory [276], which models the e�ects of all the eliminated channels (usually “
“gamma capture” photon channels) on every level by adding to every level’s resonance
energy E⁄ a partial eliminated capture width �⁄,“ that shifts the e�ective resonance
energy into the complex plane:

eR.M. , diag
A

E⁄ ≠ i�⁄,“

2

B

(C.56)

From this, the Reich-Moore formalism R-matrix (E.16), where all the eliminated
capture channels have been collapsed into one “ channel, is now:

Rc,cÕ ”œ“elim. ,
N⁄ÿ

⁄=1

“⁄,c“⁄,cÕ

E⁄ ≠ i�⁄,“

2
≠ E

i.e. RR.M. = “T (eR.M. ≠ EI)≠1 “

(C.57)

and, equivalently, the Reich-Moore inverse level matrix (E.18) thereby becomes:

A≠1
R.M. , eR.M. ≠ E I ≠ “ (L ≠ B) “T (C.58)

All the other R-matrix expressions linking these operators to the scattering matrix
(E.14), and thereby the cross section (C.22) remain unchanged in the Reich-Moore
formalism. In practice, the only e�ect of this channel elimination is that the Reich-
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Moore formalism allows for complex resonance energies (E.19) in the parametrizations
of R-matrix theory. In this sense, though initially emerging from the channel elimina-
tion approximation, the Reich-Moore formalism can be seen like an actual extension
of the exact R-matrix formalism.

This has consequential e�ects on the alternative parametrization. If one wants to
convert the Reich-Moore parameters into alternative parameters, Brune’s equations
of section C.4 are not valid, since they assume the left hand side of (C.34) is a real
symmetric matrix (and thus diagonalizable with real eigenvalues). We here generalize
the alternative parametrization of R-matrix theory to encompass the Reich-Moore
formalism – which is of great practical importance – and the additional shadow poles
previously discovered (in theorems 6 and 7). First, we notice that in the Reich-Moore
formalism, Brune’s generalized eigenproblem (C.34) becomes:

Ë
eR.M. ≠ “

1
S(ÊEi) ≠ B

2
“T

È
ai = ÊEiai (C.59)

The fact that the left hand side of generalized eigenproblem (C.59) is now a complex
symmetric matrix (and not a real symmetric nor a Hermitian matrix) entails the
solutions ÊEi are no longer real, but complex (we now have complex alternative poles
ÊEi œ C and eigenvectors ai œ CN⁄). In order to conserve an euclidean norm on the
space of eigenvectors, the normalization condition must now be generalized to vectors
by means of the Hermitian conjugate:

ai
†ai = 1 (C.60)

We then define the alternative parameters with Hermitian conjugate transformation:

ÂeR.M. , diag(ÊEi) , Â“ , a†“ (C.61)

where a is the matrix composed of the column eigenvectors: a , [a1, . . . , ai, . . .]. We
then define the generalized alternative level matrix by means of theorem 8, generalized
to complex eigenvectors and for an arbitrary number NS Ø N⁄ (at least as many
generalized alternative poles as the number of levels) of solutions (now complex) to
the generalized eigenproblem (C.59):

ÊAR.M. ,
Ë
a†A≠1

R.M.a
È

+

(C.62)

This generalized definition will guarantee that the Kapur-Peierls operator (C.20) will
we conserved through the following generalization of Brune’s relation (D.3.2):

RLR.M. = “TAR.M.“ = Â“† ÊAR.M. Â“ (C.63)

thus preserving the scattering matrix (E.14) and ultimately the cross section (C.22),
as long as we choose more (or equal) solutions to (C.59) than there are levels: NS Ø

N⁄.
Note that our generalization (C.63) does not make the Kapur-Peierls operator

Hermitian, since the generalized alternative level ÊAR.M. matrix (C.62) is still not
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Hermitian, but complex symmetric.

C.5.2 Necessary choice: how to continue R-matrix operators
into the complex plane?

The fact that ÂeR.M. is now complex – complex alternative poles ÊEi œ C and eigenvec-
tors ai œ CN⁄ solve (C.59) – has profound consequences on the Reich-Moore alter-
native parameters (C.61), because it breaks Brune’s three-step monotony argument
(last paragraph of section C.4.1) to prove that here are exactly N⁄ real solutions on
the physical sheet above threshold (we showed there are shadow poles below threshold
or in the complex plane in both theorem 6 and 7). Indeed, nothing guarantees the
three-step monotony argument still stands in the complex plane, when calling the
shift operator S(ÊEi) at complex values ÊEi œ C. Actually, the choice of convention
to continue the R-matrix operators into the complex plane – that is branch-point
definition (C.41) or analytic continuation (C.44) – is now of critical importance, since
it will change S(ÊEi) (for ÊEi œ C) and thus the values of the all the Reich-Moore
alternative parameters (C.61), including the principal poles. If we choose analytic
continuation definition (C.44), then theorem 7 still stands and there are NS Ø N⁄

(complex) alternative poles as in (C.49). However, if we choose branch-point defi-
nition (C.41), then Brune’s three-step monotony argument does not stand and we
have no guarantee on the number of alternative poles anymore, nor on which sheet
of mapping (E.4) the alternative poles reside.

The only workaround to this is to use the Generalized Reich-Moore framework to
convert the Reich-Moore parameters into real R-matrix parameters as described in
[60]; but this would incur a great computational and memory cost as we will have to
expand a few eliminated channels R-matrix (Nc ◊ Nc with c ”œ “elim.) into a square
R-matrix of the size of the levels (N⁄ ◊ N⁄), when for large nuclides we often have
N⁄ ∫ Nc. And even in the case of Generalized Reich-Moore (which is equivalent
to exact R-matrix in that it yields real resonance parameters), the values of the
alternative parameters will still depend on the choice of continuation in the complex
plane – branch-point definition (C.41) versus analytic continuation definition (C.43)
– when there are many di�erent thresholds for di�erent channels, and the S(E)
operator must be called below threshold for certain channels when solving (C.59).
In fact, the only case where the choice of continuation – definition (C.41) versus
definition (C.43) – has no consequence on the values of the principal alternative poles
(the Shadow poles always di�er) is when we are using the exact R-matrix equations
(or the generalized Reich-Moore ones [60]) and all the alternative poles are above the
thresholds of all the channels.

In practice, this means that the choice of continuation matters because it changes
the values of all the alternative parameters: for Reich-Moore alternative parameters
(C.61) we need to call the external R-matrix operators (O, I, P , S) into the complex
plane; and for real R-matrix alternative parameters (C.36) the many thresholds will
mix up in the sub-threshold (shadow) values of the Sc(E) operator (unless we are only
solving past the last threshold). Thus, in order to convert nuclear data libraries from
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Wigner-Eisenbud to alternative parameters, the nuclear scientists community must
convene on a convention – either branch-point definition (C.41) or analytic continu-
ation definition (C.43) – to compute R-matrix operators for complex wavenumbers.
The authors are publishing a follow-up article arguing in favor of analytic continuation
[125].

C.6 Evidence of shadow alternative poles in xenon
134Xe

We here report the first evidence of the existence of shadow poles in the alternative
parametrization of R-matrix theory, observed in isotope xenon 134Xe for neutron
reactions: n+ 134Xe. In doing so, we also demonstrate that all alternative parameters
depend on the convention used for continuation into the complex plane of R-matrix
operators.

We chose xenon 134Xe because it has only a few resonances per spin group, this
makes it a clear case that is simple to solve numerically. Xenon 134Xe is stable
and the fourth most abundant isotope of xenon (10.436% of natural content, most
abundant is 132Xe with 26.909%). The isotope spin is 0(+), and the neutron’s 1/2(+).
There are three spin groups: Jfi = 1/2(+) with 3 s-wave resonances; Jfi = 1/2(≠)

with 2 p-wave resonances; and Jfi = 3/2(≠) with 1 p-wave resonance. The R-matrix
parameters of xenon 134Xe, here reported in table C.4, were taken from ENDF/B-
VIII.0 nuclear data library [87], where we observe the two p-waves in the Jfi = 1/2(≠)

spin group. The xenon 134Xe ENDF/B-VIII.0 evaluation is listed as a MLBW (Multi-
Level Breit-Wigner) with B=S approximation, which means that the exact R-matrix
equations are not used (neither the Reich-Moore ones), but instead the physically
incorrect approximation that Sc(E) = Bc is constant is made (i.e. the shift function
is forced onto the boundary parameters, to simplify the evaluation process). All
ENDF/B-VIII.0 evaluations with only a few resonances are carried out with this
B=S approximation. Though this has no incidence on s-waves (S¸=0 = 0) for neutral
channels, and in general the B=S approximation has only small e�ects in practice
on the evaluation, these equations cannot rigorously match the R-matrix-equivalent
formalisms we here derive.

To validate theorems 6 and 7, we first create a verisimilar fictitious single-channel
xenon 134Xe isotope in R-matrix formalism (instead of MLBW), by setting all the
capture widths (explicit “ or eliminated capture) to zero, and treating the resulting
purely scattering system with R-matrix equations – i.e. (E.14) and (E.16). We
then convert these Wigner-Eisenbud R-matrix parameters into alternative parameters
by solving the generalized eigenvalue system (C.34), and report the results in table
C.5. The alternative poles reported in table C.5 exhibit all the behaviors proved in
theorems 6 and 7. As in theorem 6, the alternative branch poles – i.e. found using
the Lane & Thomas definition (C.41) – are all real and count N⁄ = 2 principal poles
on the {E, +} sheet of mapping (C-1), near the resonances, as well as one shadow
alternative branch pole on the {E, ≠} sheet bellow threshold. Meanwhile, as proved in
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theorem 7, there are three (from (C.49) we have NS = 2+1) alternative analytic poles
– i.e. using the analytic continuation definition (C.43). Two (the ‘principal’ ones)
are real (because N⁄ = 2), and the last one (the ‘shadow alternative analytic pole’)
is sub-threshold and also happens to be real because ¸c = 1 is an odd number (c.f.
theorem 7). Again, since definition (C.44) unfolds mapping (E.4), the alternative
analytic poles have no multi-sheeted structure (which we made explicit by stating
both {E, ±} sheets).

To validate our generalization to Reich-Moore, established in section C.5.1, we pro-
ceed just as we did with the fictitious R-matrix single-channel xenon 134Xe isotope,
and convert the ENDF/B-VIII.0 resonance parameters into alternative parameters by
solving the Brune-generalized-to-Reich-Moore eigenproblem (C.59). The results are
reported in table C.6. The Reich-Moore generalized alternative parameters in table
C.6 also inherit most of the results from theorems 6 and 7. There are some notable
di�erences however. Generalizing to Reich-Moore entails all the alternative poles are
now complex, regardless of which definition (C.41) or (C.43) is chosen to continue the
shift function Sc(kc) to complex wavenumbers k œ C.
This has major consequences when choosing the Lane & Thomas definition (C.41):
unlike in the R-matrix case, in Reich-Moore the N⁄ principal poles are no longer on
the physical sheet {E, +}. Indeed, we observe in table C.6 that in our case all the
alternative branch poles are now on the non-physical sheet {E, ≠}. In the general
case, the alternative branch poles could be on the physical or the non-physical sheet
(we have no proof for either), and one could thus say that all alternative poles are
shadow poles in the Reich-Moore formalism. This lack of knowledge of on what sheet
to find the alternative branch poles comes atop the fact, discussed in section C.5.2,
that Brune’s three-step monotony argument (which proved the existence of exactly
N⁄ real alternative poles above threshold) is only valid for real-symmetric matrices.
When generalized to Reich-Moore, eigenproblem (C.59) counts a complex-symmetric
matrix, entailing Brune’s three-step monotony argument at the core of theorem 6 is
no longer valid, and we actually do not have proof of the number of alternative branch
poles (theorem 6 proof only stands for R-matrix, or generalized Reich-Moore).
This is not the case for the alternative analytic poles, which generalize quite nat-
urally to Reich-Moore formalism. In fact, the only di�erence to theorem 7 is that
the three-step monotony argument can no longer be used to prove that N⁄ of the
NS = N⁄ + q

c ¸c alternative analytic poles (C.49) are real – and indeed they are not,
as shown in table C.6. Apart from that, theorem 7 remains intact for our general-
ization to Reich-Moore established in section C.5.1: there are still NS = N⁄ + q

c ¸c

alternative analytic poles (C.49), and there is no need to specify on which {E, ±}

sheet of mapping (E.4) they reside since the analytic continuation of the shift function
Sc(flc) unfolds the mapping (c.f. lemma 2 and theorem 7).

Take a closer observation at the results in tables C.5 and C.6. Notice that the
imaginary part of the alternative branch poles are all equal to -0.039, which is ex-
actly the opposite of half the eliminated channel width: convenient. This can readily
be explained by splitting the generalized-to-Reich-Moore Brune-eigenproblem (C.59)
into real and imaginary parts, and noticing that if all the eliminated channel widths
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are the same, then the eigenvalue’s (alternative pole) imaginary part is exactly oppo-
site to the eliminated channel width divided by two, i.e. if ’⁄, ⁄Õ

œ Jfi, �⁄,“ = �⁄Õ,“

then ’j , ⁄

Ë
ÊEj

È
= ≠

�⁄,“

2
, from (E.19). It so happens that in our particular case of

xenon 134Xe this is indeed true, all eliminated capture widths are equal to 0.078 (c.f.
table C.4). Looking at the ENDF/B-VIII.0 library it is surprisingly common to have
the same eliminated capture widths within the same spin group (both xenon-132 and
xenon 134Xe are such examples). But this is of course not true in general, and a quick
look at uranium-238 will show that di�erent levels have di�erent eliminated capture
widths (i.e. ÷⁄, ⁄Õ

œ Jfi, �⁄,“ ”= �⁄Õ,“). So when the Lane & Thomas convention
(C.41) is chosen, the alternative branch poles imaginary part will in general not coin-
cide with the eliminated capture widths: ⁄

Ë
ÊEj

È
”= ≠

�⁄,“

2
. Similarly, neither will the

alternative branch eigenvectors be real in general.

Note that the eigenvectors in tables C.5 and C.6 are close, but di�er when going
to higher digits precision, and those small di�erences have strong impact on the cross
section calculation. This leads us to discuss the numerical methods employed to solve
the generalized eigenproblem (C.59), which need to be solved in wavenumber space
kc (we here use the variable z =

Ô
E) to properly describe the multi-sheeted nature

of mapping (E.4). For the fictitious R-matrix problem (dealing with only one channel
and real values), we coded the analytic continuation of the Sc(flc) shift function (c.f.
table C.3), and used the built-in MATLAB polynomial rootfinder to solve (C.59),
verifying that the results were indeed roots. For the branch-point definition (C.41),
we used a built-in MATLAB numerical solver for equations of the type f(x) = 0
on the determinant of the left-hand side of (C.34), and solved the roots one-by-one.
For the generalized Reich-Moore Brune eigenproblem (C.59), the alternative analytic
poles are readily found in the complex plane with the same polynomial rootfinder
(we discuss methods to solve for all the roots of a polynomial simultaneously in [131]
and [?]). Finding the alternative branch poles is much more complicated: the built-in
f(x) = 0 MATLAB solver finds the two principal poles (on the non-physical sheet
{E, ≠} this time), but to find the shadow pole we had to devise a procedure man-
ually: from the solution when the eliminated capture width is zero (R-matrix case),
we zoom-in in the region around that solution and build a convex bowl around it
and then slowly increase the eliminated capture width from zero. For each capture
width value we did a minimization on the norm of the determinant to find the up-
dated alternative pole for an in-between value of the eliminated capture width. We
then iteratively re-solve, re-do a new complex bowl, augment the eliminated capture
width, until we converge on the shadow alternative branch pole. This cumbersome
procedure points to the mathematical advantages of analytic continuation definition
(C.44) as it conserves smooth analytic properties of the Kapur-Peierls operator into
the complex plane, which greatly simplifies the conversion to alternative poles for
Reich-Moore evaluations.

Finally, to validate theorem 8, as well as the entire generalization to Reich-Moore
formalism we establish in section C.5.1, we construct the corresponding cross sections
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using the xenon 134Xe resonance parameters from ENDF/B-VIII.0 with the exact
R-matrix and Reich-Moore equations – i.e. (E.14) and (E.16) to compute (C.22).
The resulting point-wise cross section values are plotted in figure E-2, and their peak
resonance values are provided for reference in table C.7. These cross sections do not
exactly coincide with the point-wise evaluation values from ENDF/B-VIII.0, since
ENDF uses the (coarser) MLBW equations instead of the Reich-Moore (or R-matrix)
ones.

(a) First p-wave resonance. (b) Second p-wave resonance.

Figure C-6: Xenon 134Xe Reich-Moore cross sections for spin-parity group J
fi = 1/2(≠)

p-wave resonances: the cross sections are generated using the ENDF/B-VIII.0 resonance
parameters (a MLBW evaluation) into the Reich-Moore formalism equations. Similarly, the
R-matrix cross section is generated by setting all capture (including eliminated) widths to
zero. For reference, the exact cross section values at the resonance peaks are reported in
table C.7.

We then compute the cross section using the alternative parameters reported
in tables C.5 and C.6 and following the procedure established in section C.5.1 to
reconstruct the Kapur-Peierls operator (C.63), necessary for computing the scattering
matrix (E.14), and ultimately the cross section (C.22). We can now observe the
alternative parametrization yield the exact same cross section as the R-matrix (or the
Reich-Moore) parametrizaton, for both the Lane & Thomas (C.41) or the analytic
continuation (C.43) conventions, and by choosing any subset of at least N⁄ alternative
poles: including discarding the principal poles and instead using the shadow poles.
This result validates theorem 8 and its generalization to Reich-Moore (C.62), and will
come as quite striking to some evaluators: for p-waves (or higher angular momentum)
one can choose to discard the principal alternative pole directly close to the resonance
and instead use the shadow pole, which is far below the threshold and into the complex
plane, or even use both principal and shadow alternative poles (using the generalized
inverse definition (C.62) and the procedure detailed in section C.5.1), to produce the
exact same cross section resonance behavior.
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C.7 Conclusion
This article establishes the existence of shadow poles in the alternative parametriza-
tion of R-matrix theory. This parametrization is being considered as an alternative
to the traditional Wigner-Eisenbud resonance parameters to document nuclear cross
section values in the nuclear data libraries.

The Wigner-Eisenbud parameters are the poles
Ó
E⁄

Ô
and residue widths

Ó
“⁄,c

Ô

of the R matrix (E.16). They are N⁄ œ N real poles, which are independent from one
another (meaning any choice of real parameters are physically acceptable), and de-
entangle the energy dependence of the R matrix from the branch-points the thresholds
{ETc} introduce in the multi-sheeted Riemann surface of mapping (E.4). Both

Ó
E⁄

Ô

and
Ó
“⁄,c

Ô
are dependent on both the channel radii

Ó
ac

Ô
and the boundary conditions

Ó
Bc

Ô
. The set of Wigner-Eisenbud parameters

;
ETc , ac, Bc, E⁄, “⁄,c

<
is su�cient to

fully describe the scattering matrix U (E) energy dependence (E.14).
The alternative parameters are the poles

Ó
ÊEi

Ô
of the RS matrix (C.39) and the

widths {Á“i,c}, transformed by (C.36) from the residue widths of the alternative level
matrix ÊA in (C.30) and (C.34). They are N±

S Ø N⁄ poles, and are intimately inter-
dependent in that not any set of real parameters is physically acceptable (they must
be solutions of (C.34)). If the legacy Lane & Thomas definition (C.41) is chosen for
the shift function S, the alternative branch poles live on the multi-sheeted Riemann
surface of mapping (E.4): they have branch shadow poles

Ó
ÊEi

Ô
on the unphysical

sheets {E, ≠} below threshold E < ETc , though there are only N⁄ real poles on the
physical sheet (theorem 6). If analytic continuation definition (C.43) is chosen, then
the shift factor S is a function of fl2

c , which unfolds the sheets in mapping (E.4): there
are then NC

S Ø N⁄ analytic poles
Ó

ÊEi

Ô
, in general complex (though for R-matrix at

least N⁄ of them are real), all living on the same sheet with no branch points (theo-
rem 7). Both

Ó
ÊEi

Ô
and {Á“i,c} are invariant to change in boundary conditions

Ó
Bc

Ô
,

though both depend on the channel radii
Ó
ac

Ô
. Any subset of N⁄ or more alternative

parameters
;

ETc , ac, ÊEi, Á“i,c

<
is su�cient to entirely determine the energy behavior

of the scattering matrix U through (D.3.2) and (E.14) (theorem 8).
The first shadow alternative poles are observed in xenon isotope 134

54
Xe spin-parity

group Jfi = 1/2(≠), which has two p-wave resonance. We show how the shadow
alternative poles can be chosen instead of the traditional principal alternative poles
to compute the cross sections. We also demonstrate that any subset of N⁄ alternative
poles will also reconstruct the cross section. Since there are N⁄ principal (resonant)
alternative poles, this means that the shadow poles can be discarded from future
nuclear data libraries without compromising their capability to fully reconstruct R-
matrix cross sections (i.e. entirely describe their energy dependence).

In order to convert the xenon resonance parameters, we generalize the alternative
parameters to deal with the Reich-Moore approximation and the additional shadow
poles. The Reich-Moore approximation – widely used in nuclear data libraries – intro-
duces complex Reich Moore alternative parameters (C.61), and their values depend on
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which convention – analytic continuation definition (C.43) versus branch-point defini-
tion (C.41) – is chosen to continue the R-matrix operators to complex wavenumbers.
Deciding on this convention is thus a necessary prerequisite to converting nuclear
data libraries to alternative parameters. For mathematical and physical reasons, we
argue in favor of analytic continuation in a follow-up article [125].
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Table C.4: Xenon 134Xe resonance parameters for the two p-waves of spin group J
fi =

1/2(≠), from ENDF/B-VIII.0 evaluation

z =
Ô

E with E in (eV)
A = 132.760
ac = 5.80 : channel radius (Fermis)
fl(z) = Aac

Ô
2mn

h
A+1

z

with
Ò

2mn
h = 0.002196807122623 in units (1/(10≠14m

Ô
eV))

E1 = 2186.0 : first resonance energy (eV)
�1,n = 0.2600 : neutron width of first resonance
(not reduced width), i.e. �⁄,c = 2Pc(E⁄)“2

⁄,c

�1,“ = 0.0780 : eliminated capture width (eV)
E2 = 6315.0 : second resonance energy (eV)
�2,n = 0.4000 (eV)
�2,“ = 0.0780 (eV)
gJfi = 1/3 : spin statistical factor
Bc = ≠1
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Table C.5: Xenon 134Xe alternative parameters for spin-parity group J
fi = 1/2(≠). For a

verisimilar fictitious isotope, all capture widths (including eliminated channels) are set to
zero, and the p-waves are converted using ENDF/B-VIII.0 resonance parameters into R-
matrix equations, and solving the Brune eigenproblem (C.34) as detailed in section C.4.1, for
both conventions to continue the shift function to complex wavenumbers: Lane & Thomas
(C.41) versus analytic continuation (C.43). (Results to two significant digits of discrepancy)

R-matrix alternative parameters (C.34)
(verisimilar fictitious isotope)
Lane & Thomas definition (C.41)
Alternative branch poles (eV) and their sheet of mapping (C-1):Ó

ÊE1, ≠

Ô
= ≠626, 938 ; Êz1 = ≠791.794 iÓ

ÊE2, +
Ô

= 2, 183 ; Êz2 = 46.73Ó
ÊE3, +

Ô
= 6, 313 ; Êz3 = 79.454

Corresponding eigenvectors:
a1 = [0.8732734 , 0.4872304]T

a2 = [1.0 , 2.9864 ◊ 10≠4]T

a3 = [≠8.5708 ◊ 10≠4 , 1.0]T

Analytic continuation definition (C.43)
Alternative analytic poles (eV) and their sheet of mapping (C-1):Ó

ÊE1, ±

Ô
= ≠626, 111 ; Êz1 = 791.271 iÓ

ÊE2, ±

Ô
= 2, 183 ; Êz2 = 46.73Ó

ÊE3, ±

Ô
= 6, 313 ; Êz3 = 79.454

Corresponding eigenvectors:
a1 = [0.8732752 , 0.4872272]T

a2 = [1.0 , 2.9864 ◊ 10≠4]T

a3 = [≠8.5708 ◊ 10≠4 , 1.0]T
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Table C.6: Xenon 134Xe alternative parameters for spin-parity group J
fi = 1/2(≠). The

p-waves are converted using ENDF/B-VIII.0 resonance parameters into Reich-Moore equa-
tions, and solving the generalized eigenproblem (C.59) as detailed in section C.5.1, for both
conventions to continue the shift function to complex wavenumbers: Lane & Thomas (C.41)
versus analytic continuation (C.43). (Results to two significant digits of discrepancy)

Reich-Moore alternative parameters (C.59)
Lane & Thomas definition (C.41)
Alternative branch poles (eV) and their sheet of mapping (C-1):Ó

ÊE1, ≠

Ô
= ≠626938 ≠ 0.039 i

Êz1 = 2.462 ◊ 10≠5
≠ 791.794 iÓ

ÊE2, ≠

Ô
= 2183.8031735 ≠ 0.039 i

Êz2 = 46.73117988 ≠ 4.172 ◊ 10≠4 iÓ
ÊE3, ≠

Ô
= 6313.013519 ≠ 0.039 i

Êz3 = 79.454474511 ≠ 2.4542 ◊ 10≠4 i
Corresponding eigenvectors:
a1 = [0.8732734 , 0.487230]T

a2 = [1.0 , 2.9863794 ◊ 10≠4]T

a3 = [≠8.570833 ◊ 10≠4 , 1.0]T

Analytic continuation definition (C.43)
Alternative analytic poles (eV) and their sheet of mapping (C-1):Ó

ÊE1, ±

Ô
= ≠626111 ≠ 5.119 ◊ 10≠5 i

Êz1 = 3.234 ◊ 10≠8
≠ 791.271 iÓ

ÊE2, ±

Ô
= 2183.8031770 ≠ 0.03896 i

Êz2 = 46.73117992 ≠ 4.168 ◊ 10≠4 iÓ
ÊE3, ±

Ô
= 6313.013521 ≠ 0.03898 i

Êz3 = 79.454474522 ≠ 2.4534 ◊ 10≠4 i
Corresponding eigenvectors:
a1 = [0.8732752 + 3.5344 ◊ 10≠10 i , 0.487227]T

a2 = [1.0 + 1.7772 ◊ 10≠5 i , 2.9863747 ◊ 10≠4]T

a3 = [≠8.570825 ◊ 10≠4 + 5.2348 ◊ 10≠9 i , 1.0]T

Table C.7: Resonance peaks: Xenon 134Xe spin-parity group J
fi = 1/2(≠) two p-

waves cross section values at the peak of the resonances (truncated to 4 digits accuracy).
The cross sections are generated using the ENDF/B-VIII.0 resonance parameters (a MLBW
evaluation) into the Reich-Moore formalism equations. Similarly, the R-matrix cross section
is generated by setting all capture (including eliminated) widths to zero.

Energy (eV) 2183.8030 6313.0138
Total cross-section (barns) 310.2761 116.7259
Scattering cross-section (barns) 238.6095 97.6224
Capture cross-section (barns) 71.6666 19.1035
R-matrix cross-section (barns) 403.4677 139.5677
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Appendix D

Scattering matrix pole expansions
for complex wavenumbers in
R-matrix theory

Here is verbatim transcribed our article [125].

D.1 Abstract
In this follow-up article to [Ducru, Phys. Rev. C 004600 [CC10651] (2020)], we establish new
results on scattering matrix pole expansions for complex wavenumbers in R-matrix theory.
In the past, two branches of theoretical formalisms emerged to describe the scattering matrix
in nuclear physics: R-matrix theory, and pole expansions. The two have been quite isolated
from one another. Recently, our study of Brune’s alternative parametrization of R-matrix
theory has shown the need to extend the scattering matrix (and the underlying R-matrix
operators) to complex wavenumbers. Two competing ways of doing so have emerged from
a historical ambiguity in the definitions of the shift S and penetration P functions: the
legacy Lane & Thomas “force closure” approach, versus analytic continuation (which is
the standard in mathematical physics). The R-matrix community has not yet come to a
consensus as to which to adopt for evaluations in standard nuclear data libraries, such as
ENDF.

In this article, we argue in favor of analytic continuation of R-matrix operators. We
bridge R-matrix theory with the Humblet-Rosenfeld pole expansions, and discover new
properties of the Siegert-Humblet radioactive poles and widths, including their invariance
properties to changes in channel radii ac. We then show that analytic continuation of R-
matrix operators preserves important physical and mathematical properties of the scattering
matrix – cancelling spurious poles and guaranteeing generalized unitarity – while still being
able to close channels below thresholds.

D.2 Introduction
Myriad nuclear interactions have been modeled with R-matrix theory, with applica-
tions to many branches of nuclear physics, from nuclear simulation, radiation trans-
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port, astrophysics and cosmology, and extending to particle physics or atomistic and
molecular simulation [77][214][97][268, 307, 98, 95, 273]. Our current nuclear data
libraries are based on R-matrix evaluations (ENDF[87], JEFF[267], BROND[80],
JENDL[293], CENDL[153], TENDL[207, 209]). The R-matrix scattering model takes
di�erent incoming particle-waves and lets them interact through a given Hamilto-
nian to produce di�erent possible outcomes. R-matrix theory studies the particu-
lar two-body-in/two-body-out model of this scattering event, with the fundamental
assumption that the total Hamiltonian is the superposition of a short-range, inte-
rior Hamiltonian, which is null after a given channel radius ac, and a long-range,
exterior Hamiltonian which is well known (free particles or Coulomb potential, for
instance)[200, 323, 79, 214]. R-matrix theory can then parametrize the energy depen-
dence of the scattering matrix in di�erent ways. The Wigner-Eisenbud parametriza-
tion is the historical standard, because its parameters are real and well defined, though
some are arbitrary (the channel radius ac and the boundary condition Bc). To remove
this dependence on an arbitrary boundary condition Bc, the nuclear community has
recently been considering shifting nuclear data libraries to an alternative parametriza-
tion of R-matrix theory [67, 92, 59, 127].

In parallel, a vast literature in mathematical physics and nuclear physics has
studied pole expansions of the scattering matrix [135, 159, 117, 144, 236], starting
with the well-known developments by Humblet and Rosenfeld [185, 289, 181, 182,
195, 183, 230, 290].

In this article, which builds upon our previous [127], we show in section D.3
how the Siegert-Humblet expansion into radioactive states is the link between R-
matrix theory and the scattering matrix pole expansions of Humblet & Rosenfeld.
In the process, we unveil new relations between the radioactive poles and residues
and the alternative parametrization of R-matrix theory, and establish for the first
time the number of radioactive poles in wavenumber space (theorem 9) along with
their branch-structure. Section D.4 investigates the invariance properties of Siegert-
Humblet radioactive parameters to a change in channel radius ac. We demonstrate
in theorem 10 that invariance of the scattering matrix to ac sets a partial di�erential
equation on the Kapur-Peierls operator RL, which in turn enables us to derive explicit
transformations of the Siegert-Humblet radioactive widths {rj,c} under a change of
channel radius ac. Section D.5 considers the continuation of the scattering matrix to
complex wavenumbers in R-matrix theory. We establish several new results. We
show that the legacy of Lane & Thomas to force-close channels below threshold
not only breaks the analytic properties of the scattering matrix, but also introduces
nonphysical spurious poles. Yet we prove that these spurious poles are cancelled-
out if one performs analytic continuation of R-matrix operators instead (theorem
11). We also show that this analytic continuation of R-matrix operators enforces
the generalized unitarity conditions described by Eden & Taylor [137] (theorem 12).
Finally, in the case of massive particles, we propose a solution to the conundrum of
how to close the channels below thresholds, by invoking both a quantum tunneling
argument, whereby the transmission matrix is evanescent below threshold (theorem
13), and a physical argument based on the definition of the cross section as the ratio
of probability currents (theorem 14). All these results make us argue that, contrary
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to what Lane & Thomas prescribed [214], the R-matrix parametrization should be
analytically continued to complex wave-numbers kc œ C. These considerations have
practical implications on R-matrix evaluation codes, such as EDA [164, 166], SAMMY
[217], or AZURE [62], used to build our nuclear data libraries: ENDF[87]; JEFF[267];
BROND[80]; JENDL[293]; CENDL[153]; TENDL[207, 209]). We thus call for analytic
continuation of R-matrix operators to become the new standard for nuclear cross
section evaluations.

D.3 Siegert-Humblet pole expansion in radioac-
tive states

We here establish new R-matrix theory results concerning the Siegert-Humblet ex-
pansion into radioactive states (c.f. sections IX.2.c-d-e p.297-298 in [214]). These
radioactive parameters express the energy dependence of the scattering matrix into
a simple sum of poles and residues. We show this constitutes the link between R-
matrix theory and the scattering matrix pole expansions of Humblet and Rosenfeld
[185, 289, 181, 182, 195, 183, 230, 290] (section D.3.6). In the wake, we show how
to obtain the radioactive parameters (section D.3.1), link them to the Brune alterna-
tive parametrization (section D.3.2), reveal their branch structure (theorem 9 section
D.3.3), which emerges from the wavenumber-energy mapping (E.4):

flc(E) Ωæ E (D.1)

where flc , ackc is the dimensionless wavenumber variable fl , diag (flc), ac is the
arbitrary channel radius, and kc(E) is the wavenumber of channel c, which is linked to
the energy E of the system (eigenvalue of the Hamiltonian of the Schödinger equation)
as explained in section II.A. of [127].

D.3.1 Definition of Siegert & Humblet parametrization
Following the notation of [127] (to which we refer for further explanations), we here
recall the essential relation expressing the scattering matrix U as a function of R-
matrix operators:

U = O≠1I + 2ifl1/2O≠1RLO≠1fl1/2 (D.2)

I and O are the incoming and outgoing wavefunctions, which are subject to the
following Wronksian condition: for all channel c, wc , O(1)

c Ic ≠ I(1)

c Oc = 2i, or with
identity matrix I (expression (7) in [127]) and denoting [ · ](1) the diagonal channel c
derivative with respect to flc

w , O(1)I ≠ I(1)O = 2iI (D.3)

and where RL is the Kapur-Peierls operator, defined as (see equation (20) section
II.D of [127]):

RL , [I ≠ R (L ≠ B)]≠1 R = “TA“ (D.4)
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This Kapur-Peierls RL operator is at the heart of the Siegert-Humblet parametriza-
tion, and its study composes a core part of this article. The Kapur-Peierls operator
RL is a function of the Wigner-Eisenbud R-matrix R, parametrized by the resonance
parameters (energies e , diag (E⁄) and widths “ , mat (“⁄,c))

R(E) , “T (e ≠ E I)≠1 “ (D.5)

as well as the arbitrary boundary condition B , diag (Bc), and the reduced logarith-
mic derivative of the outgoing wavefunction L , diag (Lc), defined as (c.f. section
II.B of [127])

Lc(flc) ,
flc

Oc

ˆOc

ˆflc
(D.6)

and which admits the following Mittag-Le�er pole expansion (theorem 1 section II.B
of [127]):

Lc(fl)
fl

=≠¸

fl
+ i +

ÿ

nØ1

1
fl ≠ Ên

(D.7)

where {Ên} are the roots of the Oc(fl) outgoing wavefunctions: ’n, Oc(Ên) = 0
(reported in TABLE II of [127] for neutral particles).
Equivalently, the Kapur-Peierls operator RL can be expressed with the level matrix
A (see equations (17) and (18) of section II.C of [127]):

A≠1 , e ≠ EI ≠ “ (L ≠ B) “T (D.8)

All these R-matrix operators are functions of the wavenumbers kc(E) (or their cor-
responding dimensionless wavenumber variable fl , diag (flc)). The Siegert-Humblet
pole expansion in radioactive states consists of analytically continuing the Kapur-
Peierls RL operator to complex wavenumbers kc œ C, thereby becoming a locally
meromorphic operator. The poles of this meromorphic operator can be assumed to
have a Laurent expansion of order one (i.e. simple poles), as we will discuss in sec-
tion D.5.3. Since the Kapur-Peierls RL operator is complex-symmetric, its residues
at any given pole value Ej œ C are also complex-symmetric. For non-degenerate
eigenvalues Ej œ C, the corresponding residues are rank-one and expressed as rjrj

T,
while for degenerate eigenvalues Ej œ C of multiplicity Mj, the corresponding residues
are rank-Mj and expressed as qMj

m=1 rm
j rm

j
T. On a given domain, the Mittag-Le�er

theorem [244, 304] then states that RL locally takes the form, in the vicinity W(E)
(neighborhood) of any complex energy E œ C away from the branch points (threshold
energies ETc) of mapping (E.4), of a sum of poles and residues and a holomorphic
entire part HolRL(E):

RL(E) =
W(E)

ÿ

jØ1

qMj
m=1 rm

j rm
j

T

E ≠ Ej
+ HolRL(E) (D.9)

or, in the particular (but most common) case where Ej is a non-degenerate eigenvalue
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(with multiplicity Mj = 1),

RL(E) =
W(E)

ÿ

jØ1

rjrj
T

E ≠ Ej
+ HolRL(E) (D.10)

This is the Siegert-Humblet expansion into so-called radioactive states [296, 86, 218,
220, 110] — equivalent to equation (2.16) of section IX.2.c. in [214] where we have
modified the notation for greater consistency (Ej corresponds to H⁄ of [214] and rj

corresponds to Ê⁄) since there are more complex poles Ej than real energy levels E⁄.
The Siegert-Humblet parameters are then the poles {Ej} and residue widths {rj} of
this complex resonance expansion of the Kapur-Peierls operator RL.

The Gohberg-Sigal theory [157] provides a method for calculating these poles and
residues by solving the following generalized eigenvalue problem — which we call
radioactive problem:

R≠1

L (E)
---
E=Ej

qj = 0 (D.11)

that is finding the poles
Ó
Ej

Ô
of the Kapur-Peierls operator, RL, and their associated

eigenvectors {qj}. The poles are complex and usually decomposed as:

Ej , Ej ≠ i�j

2 (D.12)

It can be shown (c.f. discussion section IX.2.d pp.297–298 in [214], or section 9.2
eq. (9.11) in [185]) that fundamental physical properties (conservation of probability,
causality and time reversal) ensure that the poles reside either on the positive semi-
axis of purely-imaginary kc œ iR+ – corresponding to bound states for real sub-
threshold energies, i.e. Ej < ETc and �j = 0 – or that all the other poles are on
the lower-half kc plane, with �j > 0, corresponding to “resonance” or “radioactively
decaying” states. All poles enjoy the specular symmetry property: if kc œ C is a pole
of the Kapur-Peierls operator, then ≠kú

c is too.

Let Mj = dim
1
Ker

1
R≠1

L (Ej)
22

be the dimension of the nullspace of the inverse
of the Kapur-Peierls operator at pole value Ej – that is Mj is the geometric mul-
tiplicity. We can thus write Ker

1
R≠1

L (Ej)
2

= Span
1
q1

j , . . . , qm
j , . . . , q

Mj

j

2
. As we

discuss in section D.5.3, it is physically reasonable to assume that the geometric and
algebraic multiplicities are equal (semi-simplicity condition), which entails a Laurent
development of order one for the poles – i.e. no higher powers of 1

E≠Ej
in expan-

sion (D.9). Since RL is complex-symmetric, if we assume we can find non-quasi-null
eigenvectors solutions to (E.32) – that is ’ (j, m) , qm

j
Tqm

j ”= 0 so it is non-defective
[113, 119, 96, 292, 66, 151, 152] – then Gohberg-Sigal theory can be adapted to the
case of complex-symmetric matrices to normalize the rank-Mj residues of RL matrix
as:

Mjÿ

m=1

rm
j rm

j
T =

Mjÿ

m=1

qm
j qm

j
T

qm
j

T
A

ˆR≠1
L

ˆE

----
E=Ej

B

qm
j

(D.13)
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The residue widths
Ó
rm

j

Ô
, here called radioactive widths, can thus directly be ex-

pressed as:

rm
j =

qm
j

ı̂ıÙqm
j

T
A

ˆR≠1
L

ˆE

----
E=Ej

B

qm
j

(D.14)

where ˆR≠1
L

ˆE

----
E=Ej

can readily be calculated by means of the following property:

ˆR≠1

L

ˆE

-----
E=Ej

= ˆR≠1

ˆE
(Ej) ≠

ˆL

ˆE
(Ej) (D.15)

where the R-matrix R is invertible at the radioactive poles {Ej}, with

ˆR≠1

ˆE
(E) = ≠R≠1“T (e ≠ EI)≠2 “R≠1 (D.16)

In practice, we are most often presented with non-degenerate states where Mj = 1,
meaning the kernel is an eigenline Ker

1
R≠1

L (Ej)
2

= Span (qj), which entails rank-one
residues normalized as:

rjrj
T = qjqj

T

qj
T

A
ˆR≠1

L
ˆE

----
E=Ej

B

qj

(D.17)

or equivalently

rj
T

Q

a ˆR≠1

L

ˆE

-----
E=Ej

R

b rj = 1 (D.18)

thus for clarity of reading and without loss of generality, we henceforth drop the
superscript “m” and summation over the multiplicity, unless it is of specific interest.

The radioactive poles, {Ej}, and radioactive widths,
;

rm
j =

Ë
rm

j,c1 , . . . , rm
j,c, . . . , rm

j,cNc

ÈT<
,

are the Siegert-Humblet parameters. They are complex and locally untangle the en-
ergy dependence into an expansion sum of poles and residues (D.9). Additional discus-
sion on these poles and residues can be found in [214], sections IX.2.c-d-e p.297-298,
or in [296, 86, 218, 110].

The Kapur-Peierls matrix RL is invariant to a change in boundary conditions Bc

— c.f. equations (25) and (26) of section II.F of [127] — this entails the radioactive
poles {Ej} and widths {rj} are independent of the boundary condition Bc.

D.3.2 Level matrix A(E) approach to Siegert & Humblet ex-
pansion

An alternative approach to calculating the Siegert-Humblet parameters
Ó
ac, Ej, rm

j,c, ETc

Ô

from the Wigner-Eisenbud ones {ac, Bc, “⁄,c, E⁄, ETc} is through the level matrix A.
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We search for the poles and eigenvectors of the level matrix operator A:

A≠1(E)
---
E=Ej

bj = 0 (D.19)

from (E.18), this means solving for the eigenvalues {Ej} and associated eigenvectors
{bj} that satisfy: Ë

e ≠ “ (L(Ej) ≠ B) “T
È

bj = Ejbj (D.20)

This problem is analogous to the alternative parametrization of R-matrix theory, but
replacing the shift factor S with the outgoing-wave reduced logarithmic derivative L
(c.f. [127]).

Again, the same hypotheses as for the Kapur-Peierls operator RL in section D.3.1
allow us to adapt the Gohberg-Sigal theory to the case of complex-symmetric oper-
ators to yield the following local Mittag-Le�er expansion of the level matrix (with
normalized residues):

A(E) =
W(E)

ÿ

jØ1

qMj
m=1 am

j am
j

T

E ≠ Ej
+ HolA(E) (D.21)

In the most frequent case of non-degenerate eigenvalues to (E.36), this yields rank-one
residues as:

A(E) =
W(E)

ÿ

jØ1

ajaj
T

E ≠ Ej
+ HolA(E) (D.22)

Again, under non-quasi-null eigenvectors assumption bm
j

Tbm
j ”= 0, Gohberg-Sigal the-

ory ensures the residues are normalized as:

am
j am

j
T =

bm
j bm

j
T

bm
j

T
3

ˆA≠1

ˆE

---
E=Ej

4
bm

j

(D.23)

which is readily calculable from

ˆA≠1

ˆE
(Ej) = ≠I ≠ “

ˆL

ˆE
(Ej)“T (D.24)

Plugging (D.21) into (E.15), and invoking the unicity of the complex residues, implies
the radioactive widths (D.14) can be obtained as

rm
j = “Tam

j (D.25)

This is an interesting and novel way to define the Siegert-Humblet parameters,
which is similar to the alternative parameters definition of [127]. From this per-
spective, the alternative parameters appear as a special case that leave the Siegert-
Humblet level-matrix parameters invariant to boundary condition Bc. Indeed, one
could search for the Siegert-Humblet expansion of the alternative parametrization of
R-matrix theory, by simply proceeding as in equation (34) section III.A of [127], but
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replacing the level matrix A with the alternative level matrix ÊA (defined in equations
(30) and (33) section III.A of [127]):

ÊA
≠1(E)

----
E=Ej

Êbj = 0 (D.26)

The exact same Gohberg-Sigal procedure can then be applied to the Mittag-Le�er
expansion of the alternative level matrix ÊA, in the vicinity W(E) of E œ C away
from branch points {ETc},

ÊA(E) =
W(E)

ÿ

jØ1

qMj
m=1

Áam
j

Áam
j

T

E ≠ Ej
+ Hol ÂA(E) (D.27)

yielding the normalized residue widths:

Áam
j

Áam
j

T =
Ábm

j
Ábm

j

T

Ábm
j

T
A

ˆ ÂA≠1

ˆE

----
E=Ej

B
Ábm

j

(D.28)

where (E.38) can be combined to equation (33) of [127]:

“TA“ = Â“T ÊAÂ“

to calculate the energy derivative. Then, plugging (D.28) into the same equation (33)
of [127], we obtain the relation between the alternative R-matrix parameters and the
Siegert-Humblet radioactive parameters:

rm
j = Â“T Áam

j (D.29)

This relation (D.29) is especially enlightening when compared to (E.39) from
the viewpoint of invariance to boundary condition Bc. Indeed, we explained that
the Siegert-Humblet parameters

Ó
Ej, rm

j

Ô
are invariant with a change of boundary

condition Bc æ BÕ
c. This is however not true of the level matrix residue widths

Ó
am

j

Ô

from (D.23). Thus, we can formally write this invariance by di�erentiating (E.39)
with respect to Bc and noting that ˆrm

j

ˆB = 0, yielding:

0 = ˆ“T

ˆB
am

j + “T ˆam
j

ˆB
(D.30)

This new relation links the variation of the Wigner-Eisenbud resonance widths “⁄,c

at level values E⁄ (resonance energies) under a change of boundary conditions BcÕ ,
to the variation of the level matrix residue widths am

j,c at pole values Ej under change
of boundary condition BcÕ . Since transformations (26) and (27) of section II.F in
[127] detail how to perform ˆ“T

ˆB , equation (D.30) could be used to update am
j under

a change Bc æ BcÕ .
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Another telling insight from relation (D.30) is when we apply it to the relation be-
tween the alternative parameters and the Siegert-Humblet radioactive widths (D.29).
Since the alternative parameters Â“ are invariant to Bc (that is their main purpose),
the same di�erentiation as in (D.30) now yields zero derivatives,

0 = Â“T ˆ Áam
j

ˆB
(D.31)

This is obvious from the fact that the alternative level matrix ÊA is invariant un-
der change of boundary condition. Yet invariance (D.31) is insightful at it presents
the alternative parameters

Ó
ÊEi, Â“

Ô
as the ones which, when transformed to Siegert-

Humblet radioactive parameters {Ej, rj} though (D.29), leave the level residue widths
{Êaj} invariant to Bc.

Conversely, the Kapur-Peierls pole expansion (E.41) extends the alternative parametriza-
tion in that it generates boundary condition Bc independent poles {Ej} and radioac-
tive widths {rj} that explicitly invert the alternative level matrix ÊA to yield (D.27).

D.3.3 Siegert-Humblet Radioactive Pole Expansion Branch
Structure

Section D.3.1 introduced the Siegert-Humblet parametrization as the solutions of
radioactive problem (E.32), where the R(E) matrix (E.16) is a function of the energy
E, while L(fl) is a function of the dimensionless wavenumber flc , ackc(E). Thus,
radioactive problem (E.32) can be solved either in energy space or in momentum
space, both of which are linked by the fl(E) mapping (E.4). This mapping induces
a multi-sheeted Riemann surface, which introduces branch-points and sheets we now
unveil in theorem 9.

Theorem 9. Siegert-Humblet Radioactive Pole Expansion Branch Struc-
ture.
Let the radioactive poles {Ej} be the solutions of the radioactive problem (E.32), and
{ETc} denote the threshold energies, branch-points of the flc(E) wavenumber-energy
mapping (E.4), then:

• in the neighborhood W(E) of any complex energy E away from branch-points
{ETc}, there exists a series of complex matrices {cn} such that the Mittag-Le�er
expansion (E.41) takes the analytic form:

RL(E) =
W(E)

ÿ

jØ1

rjrj
T

E ≠ Ej
+

ÿ

nØ0

cnEn (D.32)

• the radioactive poles {Ej} are complex, and live on the multi-sheeted Riemann
surface of kc(E) wavenumber-energy mapping (E.4):

;
Ej, +, +, ≠, . . . , +, ≠

<
(D.33)
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• Let NL be the number of solutions to the radioactive problem (E.32) in wavenum-
ber fl space. For every sheet of the of the wavenumber-energy mapping (E.4),
each pole of the R-matrix (resonance energy E⁄ level) yields two radioactive
poles, and each pole of the outgoing wavefunction reduced logarithmic derivative
operator Lc(flc) (the Ên of Mittag-Le�er expansion (D.7) established in theo-
rem 1 section II.B and documented in TABLES I & II of [127]) yields another
additional pole.

• For neutral particles, denoting NETc ”=ETcÕ
the number of channels with di�erent

thresholds, this entails the number NL of radioactive poles is:

NL =
A

2N⁄ +
Ncÿ

c=1

¸c

B

◊ 2(NETc ”=ETcÕ
≠1) (D.34)

• For charged particles, this entails an infinite number (countable) of radioactive
poles: NL = Œ.

Proof. Away from the branch points {ETc}, the holomorphic part of Mittag-Le�er
expansion (E.41) can be analytically expanded in series as (D.32) – we here assumed
the non-degenerate case of rank-one residues (multiplicity Mj = 1) though it is readily
generalizable to (D.9).

When solving radioactive problem (E.32), or (D.20), to obtain the Siegert-Humblet
poles {Ej} and residues {rj}, or {aj}, it is necessary to compute the L0 matrix
function L0(E) , L0(fl(E)) for complex energies E œ C. As discussed in [127] (c.f.
sections II.A, B, III. B. and C. of [127]), mapping (E.4) generates a multi-sheeted
Riemann surface with 2Nc branches (with the threshold values ETc as branch points),
corresponding to the choice for each channel c, of the sign of the square root in fl(E).
This means that when searching for the poles, one has to keep track of these choices
and specify for each pole Ej on what sheet it is found. Every pole Ej must thus come
with the full reporting of these Nc signs, i.e. {Ej, ≠, +, +, . . . , ≠, +} as (D.33).

When searching for these radioactive poles in wavenumber space, the RL Kapur-
Peierls operator (E.15) is continued to complex wavenumbers by meromorphic contin-
uation of L(fl), where the reduced logarithmic derivative of the outgoing wavefunction
(E.17) takes the Mittag-Le�er expansion described in equation (13) of theorem 1 sec-
tion II.B. of [127]. There are more radioactive poles {Ej} than Wigner-Eisenbud levels
{E⁄} — as was the case for the alternative parameters (c.f. theorems 2 and 3 III.C
of [127]). For massive neutral particles, we can proceed in an analogous fashion as
for the proof of theorem 3 section III.C of [127], and apply the diagonal divisibility
and capped multiplicities lemma (lemma 3 section III.C. of [127]) to the determinant
of the Kapur-Peierls operator RL in (E.32) – but this time in flc space – and then
look at the order of the resulting rational fractions in flc and the number of times
one must square the polynomials to unfold all flc = û

Ô
· sheets of mapping (E.4).

We were thus able to establish that the number NL of poles in wavenumber fl-space
is 2N⁄ + qNc

c=1
¸c poles per sheet, capped by the level multiplicities (c.f. eq. (50) of
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[127]):
NL/2(NETc ”=ETcÕ

≠1) = N⁄ +
ÿ

Lc multiplicity
capped at N⁄

¸c

(D.35)

which in practice falls back to (E.42) over all sheets (there are rarely fewer levels
than the number of di�erent channels that have the exact same Lc(flc) function),
where NETc ”=ETcÕ

designates the number of di�erent thresholds (including the obvious
ETc = 0 zero threshold) and thus the number of sheets.

In the charged particles case, Lc(flc) has a countably infinite number of poles,
which in turn induces an infinite number (countable) of solutions to the radioactive
problem (E.32), though the discussion after the proof of theorem 1 in section II.B
of [127] shows most of these poles are far-away poles, and only ¸c ones are within a
closer range.

It is important to grasp the meaning of the Mittag-Le�er expansion (E.41) —
or (D.21) and (D.27). These are local expressions: they do not hold for all complex
energies E œ C because of the branch-point structure of the Riemann sheet. How-
ever, in the neighborhood W(E) of any complex energy point E œ C away from the
branch-points (thresholds {ETc}), the Mittag-Le�er expansion (E.41) is true, and
its holomorphic part admits an analytic expansion HolRL(E) , q

nØ0 cnEn. This
has two major consequences for the Siegert-Humblet expansion. First, contrarily to
the alternative parameters

Ó
ÊEi, Á“i,c

Ô
discussed in [127], the Siegert-Humblet set of

radioactive poles and widths {Ej, rj,c} do not su�ce to uniquely determine the energy
behavior of the scattering matrix U (E): one needs to locally add the expansion co-
e�cients [cn]c,cÕ of the entire part HolRL(E) , q

nØ0 cnEn. Second, since the set of
coe�cients {cn} is a priori infinite (and so is the set of poles in the Coulomb case),
this means that numerically the Siegert-Humblet expansion can only be used to com-
pute local approximations of the scattering matrix, which can nonetheless reach any
target accuracy by increasing the number of {Ej}jœJ1,NLK poles included and the order
of the truncation NW(E) in {cn}nœJ1,NW(E)K. In practice, this means that to compute
the scattering matrix one needs to provide the Siegert-Humblet parameters {Ej, rj,c},
cut the energy domain of interest into local windows W(E) away from threshold
branch-points {ETc}, and provide a set of local coe�cients {cn}nœJ1,NW(E)K for each
window.

As discussed in [127] (c.f. lemmas 1 and 2 section III.B and theorems 2 and 3 of
section III.C of [127]), the definition of the shift and penetration functions for com-
plex wavenumbers is ambiguous (in particular purely imaginary wavenumbers yield
negative or sub-threshold energies), which in turn entail various possible alternative
parameters. When solving radioactive problem (E.32) to find the Siegert-Humblet
radioactive poles and residues {Ej, rj,c} – or (D.20) equivalently – there are no such
ambiguities on the definition of L: the Kapur-Peierls operator is simply analytically
continued to complex wavenumbers. The unicity of analytic continuation thus entails
that the Siegert-Humblet parameters are uniquely defined, as long as we specify for
each channel c what sheet of the Riemann surface from mapping (E.4) was chosen,
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as in (D.33).
The {Ej, +, +, . . . , +, +} sheet is called the physical sheet, and we here call the

poles on that sheet the principal poles. All other sheets are called nonphysical and
the poles laying on these sheets are called shadow poles. Often, the principal poles
are responsible for the resonant behavior, with shadow poles only contributing to
background behavior, but cases have emerged where the shadow poles contribute
significantly to the resonance structure, as reported in [163], and G. Hale there in-
troduced a quantity called strength of a pole (c.f. eq. (7) in [163], or paragraph after
eq. (2.11) XI.2.b, p.306, and section XI.4, p.312 in [214]) to quantify the impact a
pole Ej will have on resonance behavior, by comparing the residue rj,c to the Wigner-
Eisenbud widths “⁄,c.

Result (E.42) is quite instructive: one can observe that the number NL of Siegert-
Humblet poles adds-up the number of levels N⁄ and the number of poles of L (which
is qNc

c=1
¸c for neutral massive particles, and is infinite in the Coulomb case, c.f. dis-

cussion after theorem 1 in section II.B of [127]. Moreover, NL is duplicated with
each new sheet of the Riemann surface from mapping (E.4) — that is associated
to a new threshold, hence the NETc ”=ETcÕ

. Interestingly, comparing NL from (E.42)
with the number NS of alternative analytic poles from equation (49) in theorem 3
section III.C of [127] — which are in E-space and must thus be doubled to obtain
the number of fl-space poles — we note that the analytic continuation of the shift
factor S (c.f. lemma 2 III.B of [127]) adds a virtual pole for each pole of L when
unfolding the sheets of mapping (E.4), because it is a function of fl2

c(E). This can
readily be observed in the trivial case of a p-wave (¸ = 1) channel with one resonance
(one level N⁄ = 1), where S(E) = ≠

1

1+fl2(E)
introduces two poles at fl(E) = ±i, while

L(E) = ≠1+ifl(E)+fl2
(E)

1≠ifl(E)
only counts one pole, at fl(E) = i.

As for equation (50) of theorem 3 section III.C. of [127], one should add the
precision that in the sum over the channels in (E.42), the multiplicity of possible
Lc(flc) repeated over many di�erent channels Lc(flc) = LcÕ ”=c(flcÕ) is capped by N⁄,
which in practice would only occur in the rare cases where only one or two levels
occurs for many channels with same angular momenta (and, of course, total angular
momenta and parity Jfi).

Numerically, solving the generalized eigenvalue problems (E.32) or (D.20) falls
into the well-known class of nonlinear eigenvalue problems, for which algorithms we
direct the reader to Heinrich Voss’s chapter 115 in the Handbook of Linear Algebra
[319]. We will just state that instead of the Rayleigh-quotient type of methods ex-
pressed in [319], it can sometimes be computationally advantageous to first find the
poles {Ej} by solving the channel determinant problem, det

3
R≠1

L (E)
---
E=Ej

4
= 0, or

the corresponding level determinant one, det
3

A≠1(E)
---
E=Ej

4
= 0, and then solve the

associated linear eigenvalue problem. Methods tailored to find all the roots of this
problem where introduced in [131], or in equations (200) and (204) of [149]. Notwith-
standing, from a numerical standpoint, having the two approaches is beneficial in
that solving (E.32) will be advantageous over solving (D.20) when the number of
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Figure D-1: Kapur-Peierls RL(E) operator (E.15) of xenon 134Xe two p-wave resonances
in spin-parity group J

fi = 1/2(≠). Dimensionless RL(E) is computed using radioactive
parameters from TABLE D.1 in expression (D.40), or using the R-matrix parameters from
TABLE D.1 in Reich-Moore level-matrix (E.18) – that is definition (58) of [127] – yielding
identical real and imaginary parts.

levels N⁄ far exceeds the number of channels Nc, and conversely. Nonetheless, the
multi-sheeted nature of the radioactive problem makes it harder to solve, as one must
search each sheet of mapping (E.4) to find all the poles.

D.3.4 Xenon 134Xe evidence of radioactive parameters
In our previous article [127], we observed the first evidence of shadow poles in the
alternative parametrization of R-matrix theory in isotope xenon 134Xe spin-parity
group Jfi = 1/2(≠), showing how they depend on the choice of continuation to complex
wavenumbers. We here document in TABLE D.1 the Siegert-Humblet radioactive pa-
rameters (poles and residues of the Kapur-Peierls RL operator), for these same p-wave
resonances of 134Xe spin-parity group Jfi = 1/2(≠). As shown in FIG.D-1, both the
radioactive parameters and the R-matrix parameters yield an identical Kapur-Peierls
RL(E) operator, and therefore exactly reconstruct the scattering matrix U (E) of the
nuclear interactions, as reported in FIG. D-2. Note there are NL = 5 radioactive
poles, as predicted by (E.42) in theorem 9: two for each resonance energy E⁄ level,
and ¸c for each Lc(flc) channel. Indeed, we here have only one threshold (at zero) so
that NETc ”=ETcÕ

= 1, and there is only one channel, for which ¸c = 1 (p-wave). As such,
we observe in TABLE D.1 that for each resonance energy E⁄, there are two nearby
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radioactive poles, each on one sheet of the Riemann surface energy-wavenumber map-
ping (E.4), and both close to (but not exactly) complex conjugates of one another.
Also, the additional radioactive pole (the first in TABLE D.1) is close to the corre-
sponding pole of the reduced logarithmic derivative of the outgoing operator Lc(flc):
for neutral particles p-waves we have Ê¸=1

1
= ≠i (see TABLE I of [127]), which entails

a radioactive pole close to
1

i

fl0

2
2

¥ ≠6.0673 ◊ 10+5. Incidentally, note that if there
were only one level N⁄ = 1, but two channels Nc = 2, both with the same angular
momentum (say p-waves) and the same flc(E) mapping, then we would need to cap
the multiplicity of the number of poles induced by these identical Lc(flc) to N⁄ = 1,
according to equation (D.35). This is rare in practice.

The exact reconstruction of the scattering matrix U (E) shown in FIG. D-2 is
made possible because 134Xe spin-parity group Jfi = 1/2(≠) has only a neutron channel
with zero threshold (ETc = 0). In the particular case of neutral particles with zero
threshold, the outgoing wavefunction reduced logarithmic derivative operator L(fl)
is a rational function in

Ô
E: this can be seen from Mittag-Le�er expansion (D.7)

with a finite amount of poles {Ên} (reported in theorem 1 section II.B and TABLE
II of [127]). Therefore, the transformation z ,

Ô
E unfolds the Riemann surface of

mapping (E.4): that is that searching for solutions to the radioactive problem (E.32)
in z-space is equivalent to searching on both sheets of the ±

Ô
E Riemann surface from

mapping (E.4). Moreover, a study of the numerator and denominator of the inverse
level matrix A≠1(z) from (E.18) then shows that the level matrix A(z) is rational
function of degree ≠2 in z-space, with NL poles from (E.42) with only one sheet (no
other thresholds than zero), so that its Mittag-Le�er expansion (D.22) is actually a
partial fraction decomposition in simple z poles, without constant nor holomorphic
part (c.f. section II.F. of [130] for more in depth discussion of this process):

A(E) =
NLÿ

j=1

ajaj
T

2

Ô
Ej

Ô
E ≠

Ò
Ej

(D.36)

Note that the nullity of the constant term entails the following remarkable property:

NLÿ

j=1

ajaj
T

2
Ò

Ej

= 0 (D.37)

Since from (E.39) we have rj = “Taj (assuming non-degenerate states), the lat-
ter properties on the level-matrix can be transcribed into the following exact pole
expansion for the Kapur-Peierls operator (E.15):

RL(E) =
NLÿ

j=1

rjrj
T

2

Ô
Ej

Ô
E ≠

Ò
Ej

(D.38)

which is equivalent to eq. (106) of [130], and the null constant relations (D.37) entails
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Figure D-2: Scattering matrix U(E) of xenon 134Xe two p-wave resonances in spin-
parity group J

fi = 1/2(≠), from equation (E.14). Dimensionless U(E) is computed using
outgoing waves O(E) from TABLE I of [127] and conjugacy relations (D.71), combined with
radioactive parameters from TABLE D.1 in expression (D.40), or R-matrix parameters from
TABLE D.1 in Reich-Moore level-matrix (E.18) – that is definition (58) of [127] – yielding
identical moduli and arguments.

the remarkable property on the radioactive parameters (c.f. eq. (108) of [130]):

NLÿ

j=1

rjrj
T

2
Ò

Ej

= 0 (D.39)

By setting a choice of sheet in z = ±
Ô

E, the latter equations can be written as:

RL(E) =
NLÿ

j=1

rjrj
T

E ≠ Ej
+

NLÿ

j=1

rjrj
T

2

Ô
Ej

Ô
E +

Ò
Ej

¸ ˚˙ ˝
HolRL

(E)

(D.40)

where ≠

Ò
Ej is not a pole, and therefore the second term is the exact holomorphic

part HolRL(E) from (E.41).
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D.3.5 Comparing radioactive, traditional, and alternative R-
matrix parameters

This case of xenon 134Xe shows the general merits of the radioactive parameters:
in contrast with the R-matrix resonance parameters, the radioactive poles Ej are
independent of both the arbitrary boundary parameter Bc and the channel radius ac,
while the radioactive widths rj are independent of the boundary parameters Bc and
depend on the channel radius in a systematic way (provided by theorem 10 bellow).
Moreover, in this specific neutral particles with zero-threshold case, the Kapur-Peierls
RL(E) operator pole expansions (D.38) and (D.40) are exact (c.f. FIG.D-1), and
therefore can fully reconstruct the R-matrix model scattering matrix, as can be seen
in FIG.D-2.

Nonetheless, this example also shows the limitations of the radioactive parameters
pole expansion approach (D.32) of theorem 9. Just as the alternative parameters
of Brune in [127], the radioactive parameters entangle the energy dimension with
the wavenumber one, meaning one now has to specify with each radioactive pole
Ej its sheet (D.33) on the Riemann surface of mapping (E.4), for each threshold
branch, as specified in theorem 9. In contrast, though they depend on the arbitrary
boundary parameters Bc and channel radii ac, the traditional Wigner-Eisenbud R-
matrix parameters have the truly remarkable (and seldom appreciated) property of
de-entangling the energy dimension from the wavenumber one. The Wigner-Eisenbud
resonance parameters are real and well defined in energy space, without any need to
map to the wavenumber and therefore specify where the resonance energies E⁄ dwell
on the multi-sheeted Riemann surface of mapping (E.4).

Another significant limitation of the radioactive parameters is that they are in
general incomplete, meaning that the knowledge of the radioactive poles and residues
is not su�cient to fully parametrize the RL(E) Kapur-Peierls operator: one also
needs to parametrize the holomorphic part HolRL(E) in Mittag-Le�er expansion
(D.32). In the general case of charged particles or thresholds, there is no simple way
of parametrizing this holomorphic part (though it is known exactly for zero-threshold
neutral particles as equation (D.40) specifies). Moreover, even if the holomorphic
part were known, in the general case of charged particles and thresholds there is an
infinite number of radioactive poles (NL = Œ), all of which are necessary to exactly
reconstruct the scattering matrix. This means the radioactive parameters alone are
not very well suited for evaluations in standard nuclear data libraries. Nonetheless,
the radioactive poles have recently been used to constitute an alternative nuclear data
library — the windowed multipole library — with the goal of achieving significant
computational performance gains in nuclear simulations, as we explain in our follow-
up article [130]: the final in the xenon trilogy on pole parametrizations of R-matrix
theory [127, 126, 130].

For comparison, the alternative parameters proposed by Brune in [92] combine
some merits and drawbacks of both the radioactive and the traditional (Wigner-
Eisenbud) parameters. Like the radioactive parameters, the alternative parameters
are independent of the arbitrary boundary condition Bc, though they still depend
on arbitrary channel radii ac. Like the Wigner-Eisenbud resonance parameters, the
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alternative parameters are always complete: with the knowledge of N⁄ alternative
poles, one can fully reconstruct the scattering matrix (c.f. theorem 4 of [127]). On
the other hand, unlike the Wigner-Eisenbud resonance parameters, the alternative
parameters entangle the energy dimension with the wavenumber one: as for the
radioactive poles, one must specify on which sheet of the Riemann surface (E.4) are
the alternative poles (c.f. theorems 2 of [127]). However, proper analytic continuation
will unfold the sheets of Riemann surface (E.4) and thus render such specification
useless, as we show in theorem 3 of [127] — this is another strong argument in favor
of analytic continuation of R-matrix operators, in particular the shift Sc(flc) and
penetration Pc(flc) functions (contrarily to “force-closure” legacy of Lane & Thomas).
Moreover, in practice this is not as much of a limitation, as we showed in theorem 4 of
[127] that we can always choose the first N⁄ resonant alternative poles of the physical
sheet {E, +}. Nonetheless, all Reich-Moore and sub-threshold alternative parameters
still change depending on whether the shift Sc(E) and penetration Pc(E) functions
are analytically continued (theorem 3 of [127]) or “forced-closed” as defined by Lane
& Thomas (theorem 2 of [127]): we here argue that the physically and mathematically
correct way is to perform analytic continuation of the shift Sc(flc) and penetration
Pc(flc) functions, and provide many more arguments for this in section D.5.

Note that a commonly alleged advantage of the alternative poles ÊE⁄ is that they
correspond to the peak of the resonances – actually of the Kapur-Peierls operator
RL(E) since the cross section has an additional 1

|kc(E)|2 modulating term (see [130] for
more discussion on this). Though this is true in the case of full R-matrix equations
(where the resonance energies are real) for resonant poles above threshold (not the
shadow poles discovered in [127]), this ceases to be true for channel-eliminated Reich-
Moore evaluations (where the resonance energies are in e�ect complex E⁄ ≠ i�⁄,“

2

as explained in section II.A.4. of [130]). Indeed, the alternative poles ÊE⁄ are then
complex (c.f. section IV.A of [127]), and neither analytic continuation nor Lane &
Thomas force-closure will entail their real parts exactly correspond to the Kapur-
Peierls operator RL(E) resonance peaks. The exact peaks of the RL(E) resonances
are actually the real parts of the radioactive poles Ÿ [Ej], and the widths are the
imaginary parts ⁄ [Ej], which we here document in TABLE D.1 and shown in FIG.D-
1 for the two p-wave resonances of xenon 134Xe spin-parity group Jfi = 1/2(≠). In
practice, though, the real part of the alternative poles Ÿ

Ë
ÊE⁄

È
are close (but not

identical) to the real part of the radioactive poles Ÿ [Ej] (one needs to go to more
digits to see the discrepancy between values of TABLE VI in [127] to our TABLE
D.1 here), and as such are much closer to the peak of the resonances than are the
Wigner-Eisenbud resonance energies E⁄.

Another important characteristic of the radioactive parameters is that they are
the bridge between the R-matrix theory parametrizations of nuclear reactions, and
the scattering matrix pole expansions of Humblet and Rosenfeld, as we now explain
in section D.3.6.
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D.3.6 Radioactive parameters link R-matrix theory to the
scattering matrix pole expansions

So far, we have started from the R-matrix Wigner-Eisenbud parameters {E⁄, “⁄,c} to
construct the poles and residues of the Kapur-Peierls operator RL, through (E.32)
and (D.14). We here show that these Siegert-Humblet radioactive parameters are
the link between R-matrix theory (c.f. [323, 79, 214]) and the scattering matrix pole
expansions of Humblet-Rosenfeld and others (c.f. [135, 159, 117, 185, 289, 181, 182,
195, 183, 230, 290]).

Indeed, plugging-in the Kapur-Peierls RL operator expansion (E.41) into the ex-
pression of the scattering matrix (E.14) then yields the Mittag-Le�er expansion of
the scattering matrix:

U (E) =
W(E)

w
ÿ

jØ1

ujuj
T

E ≠ Ej
+ HolU (E) (D.41)

where w , 2iI is the Wronskian (D.3), and the scattering residue widths uj are
defined as:

uj ,
Ë
fl1/2O≠1

È

E=Ej
rj (D.42)

In writing (D.41), we have used the fact that all the resonances of the scattering matrix
U (E) come from the Kapur-Peierls radioactive poles {Ej} – indeed, we demonstrate
in theorem 11, section D.5.4, that the poles {Ên} of the outgoing wave function O(E)
cancel out in (E.14) and are thus not present in the scattering matrix. Cauchy’s
residues theorem then allows us to evaluate the residues at the pole value to obtain
(D.42). As for (E.41), if a resonance were to be degenerate with multiplicity Mj,
the residues would no longer be rank-one, but instead the scattering matrix residue
associated to pole Ej would be qMj

m=1 um
j um

j
T, with um

j ,
Ë
fl1/2O≠1

È

E=Ej
rm

j .
Expression (D.41) exhibits the advantage that the energy dependence of the scat-

tering matrix U (E) is untangled in a simple sum. All the resonance behavior stems
from the complex poles and residue widths {Ej, uj,c}, which yield the familiar Breit-
Wigner profiles (Cauchy-Lorentz distributions) for the cross section. Conversely, all
the threshold behavior and the background are described by the holomorphic part
HolU (E), which can be expanded in various forms, for instance analytically (D.43).

This establishes the important bridge between the R-matrix parametrizations and
the Humblet-Rosenfeld expansions of the scattering matrix. More precisely, Mittag-
Le�er expansion (D.41) is identical to the Humblet-Rosenfeld expansions (10.22a)-
(10.22b) in [185] for the neutral particles case, and (5.4a)-(5.4b) in [182] for the
Coulomb case. We thus here directly connect the R-matrix parameters with the
Humblet-Rosenfeld resonances, parametrized by their partial widths and real and
imaginary poles, as described in [181]. In particular, the poles {Ej} from (E.40),
found by solving (E.32), are exactly the ones defined by equations (9.5) and (9.8) in
[185]. The scattering residue widths {uj,c}, calculated from (D.42), then correspond
to the Humblet-Rosenfeld complex residues (10.12) in [185], from which they build
their quantities {Gc,n} appearing in expansions (10.22a)-(10.22b) in [185], or (5.4a)-
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(5.4b) in [182]. Finally, the holomorphic part HolU (E) corresponds to the regular
function Qc,cÕ(E) defined between (10.14a) and (10.14b) in [185].

Just as Humblet and Rosenfeld did with Qc,cÕ(E) in section 10.2 of [185] and
section 4 of [182], we do not give here an explicit way of calculating this holomorphic
contribution HolU (E) other than stating that it is possible to expand it in various
ways. Far from a threshold, an analytic series in energy space E can stand:

HolU (E) =
W(E)

ÿ

nØ0

snEn (D.43)

In the immediate vicinity of a threshold, the asymptotic threshold behavior will pre-
vail (for massive particles, Uc,cÕ ≥ k¸c+1

c k
¸cÕ
cÕ , c.f. eq.(10.5) in [185], or [322]), yielding

an expansion in wavenumber space of the form:

HolU (E) =
W(ETc )

ÿ

nØ0

snkn
c (E) (D.44)

Though there is no explicit way of linking these expansions (D.44) or (D.43) to the
R-matrix Wigner-Eisenbud parameters {E⁄, “⁄,c}, this means that the same approach
as that discussed in the paragraph following theorem 9 can be taken: one can provide
a local set of coe�cients {sn}W(E)

to expand the holomorphic part of the scattering
matrix HolU (E), and then calculate the scattering matrix from the Mittag-Le�er
expansion (D.41). This is at the core of the windowed multipole representation of
R-matrix cross sections established in [130].

An important question is that of the radius of convergence of the Mittag-Le�er
expansion (D.41), in other terms how big can the vicinity W(E) be? Humblet and
Rosenfeld analyze this problem in section 1.4 of [185], and perform the Mittag-Le�er
expansion (1.50). In the first paragraph of p.538 it is stated that Humblet demon-
strated in his Ph.D. thesis that the Mittag-Le�er series will converge for M Ø 1 for
U(k), though this does not investigate the multi-channel case, and thus the multi-
sheeted nature of the Riemann surface stemming from mapping (E.4). They assume
at the beginning of section 10.2 that this property stands in the multi-channel case
and yet continue their discussion with a choice of M = 0 that would leave the residues
diverging according to their expansion (1.50). This is one reason why we chose in this
article to start from a local Mittag-Le�er expansion, and then search for its domain of
convergence. General mathematical scattering theory shows that the Mittag-Le�er
expansion holds at least on the whole physical sheet (c.f. theorem 0.2 p.139 of [159]).
Moreover, in his article on “threshold behaviour in quantum field theory”[?], Eden
proves that “between the threshold values [...] the [Scattering] matrix elements are
analytic functions of the energies and momenta of the incident particles”, though
it does not specify in which form the Mittag-Le�er expansion will converge sepa-
rately on each sheet. In practice this requirement is not needed since it is often
computationally more advantageous to break down an energy region between two
consecutive thresholds

Ë
ETc , ETc+1

È
into smaller vicinities (a compression method for

e�cient computation used in the windowed multipole library [130]).
As we see, by performing the Mittag-Le�er expansion (D.41), we have traded-
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o� a finite set of real, unwound, Wigner-Eisenbud parameters {E⁄, “⁄,c} that com-
pletely parametrize the energy dependence of the scattering matrix through (E.14),
with an infinite set of complex Siegert-Humblet radioactive parameters {Ej, rj,c} plus
some local coe�cients {sn}W(E)

for the holomorphic part, all intricately intertwined
through radioactive problem (E.32), which makes them dwell on a sub-manifold of
the multi-sheeted Riemann surface of mapping (E.4). This additional complexity of
the Siegert-Humblet parameters comes at the gain of a simple parametrization of
the energy dependence for the scattering matrix: the poles and residues expansion
(D.41). For computational purposes, this may sometimes be a trade-o� worth doing:
this is the basis for the windowed multipole representation of R-matrix cross sections
[130].

D.4 Radioactive parameters invariance to channel
radii

Section D.3 provided new insights into the link between the Humblet-Rosenfeld scat-
tering matrix pole expansions, and both the Wigner-Eisenbud, and the Siegert-
Humblet parametrizations of R-matrix theory. Concerning invariance to arbitrary
parameters, we saw that the Siegert-Humblet parameters are invariant under change
of boundary condition Bc, but not under change of channel radius ac — this is also
true for the alternative parameters discussed in [127]. This section is dedicated to
invariance properties of the Siegert-Humblet radioactive parameters to a change in
channel radius ac. This problem is less studied than that of the invariance to the
boundary conditions Bc. To the best of our knowledge, the only previous results
on this topic are the partial di�erential equations on the Wigner-Eisenbud {E⁄, “⁄,c}

parameters Teichmann derived in his Ph.D. thesis (c.f. eq. (2.29) and (2.31) sections
III.2. p.27 of [306]), a recent study of the limit case ac æ 0 in [165], as well as the
general results of the variations of the R-matrix to any arbitrary parameter by Mockel
and Perez (c.f equations (71) and (75) [?]). We here focus on the Siegert-Humblet
parameters

Ó
Ej, rj,c

Ô
. Our main result of this section resides in theorem 10, which

establishes a way of converting the Siegert-Humblet radioactive parameters under a
change of channel radius ac.

Theorem 10. Radioactive parameters transformation under change of
channel radius ac.
Let the radioactive poles {Ej} be the solutions of the radioactive problem (E.32). Under
a change of channel radius a(0)

c æ ac (or infinitesimal ˆ·
ˆac

):

• the Kapur-Peierls operator RL, defined in (E.15), is subject to the following
partial di�erential equations: for the diagonal elements,

ac
ˆRLcc

ˆac
+ (1 ≠ 2Lc)RLcc ≠ 1 = 0 (D.45)
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and for o�-diagonal ones,

ac
ˆRLccÕ

ˆac
+ (1

2 ≠ Lc)RLccÕ = 0 (D.46)

• the radioactive poles {Ej} are invariant:

ˆEj

ˆac
= 0 (D.47)

• the radioactive widths {rj,c} (widths of the Kapur-Peierls RL operator residues
(D.13)), are subject to the following first-order linear partial di�erential equa-
tion:

ac
ˆrj,c

ˆac
+ (1

2 ≠ Lc)rj,c = 0 (D.48)

• which can be formally solved as,

rj,c(ac) = rj,c(a(0)

c )
ı̂ıÙa(0)

c

ac
exp

A⁄ ac

a
(0)
c

Lc(kcx)
x

dx

B
(D.49)

• and explicitly integrates to:

rj,c(ac)
rj,c(a(0)

c )
= Oc(flc(ac))

Oc(flc(a(0)

c ))

ı̂ıÙa(0)

c

ac

(D.50)

• Moreover, letting {Ên} be the roots of the outgoing wave function
;

Ên | Oc(Ên) =

0
<

, the latter (D.50) can take the following elemental product expansion:

rj,c(ac)
rj,c(a(0)

c )
=

ı̂ıÙa(0)

c

ac

A
a(0)

c

ac

B¸

eikc

1
ac≠a

(0)
c

2
Ÿ

nØ1

A
kcac ≠ Ên

kca
(0)

c ≠ Ên

B
(D.51)

where there are an infinite number of such roots {Ên} in the Coulomb case,
while for neutral particle channel c with angular momentum ¸, there exists ex-
actly ¸ roots {Ên}nœJ1,¸K, the exact and algebraically solvable values of which are
reported, up to angular momentum ¸ = 4, in TABLE II of [127].

Proof. We start by bringing forth the observation that the scattering matrix U is
invariant under change of channel radius ac, i.e. for any channel c we have:

ˆU

ˆac
= 0 (D.52)

Since theorem 11 will show that the poles of the scattering matrix are exactly the
ones of the Kapur-Peierls operator RL, which are the Siegert-Humblet poles {Ej},
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invariance (D.52) entails that the radioactive poles are invariant under change of
channel radius ac, i.e. (D.47).

This is not the case for the radioactive widths {rj,c}. However, one can use
invariance (D.52) to di�erentiate the scattering matrix U expression (E.14). The L
operator definition (E.17), and flc = kcac, entail

ˆfl1/2

c O≠1

c

ˆac
= 1

ac
fl1/2

c O≠1

c

51
2 ≠ Lc

6
(D.53)

this enables us to establish the partial di�erential equations (D.45) and (D.46) on the
Kapur-Peierls matrix operator RL elements, which can be synthesized into expression,

a
ˆRL

ˆa
+ (1

2I ≠ L)RL + I ¶

5
(1
2I ≠ L)RL ≠ I

6
= 0 (D.54)

where ¶ designates the Hadamard matrix product, and where we used the notation:
C

ˆRL

ˆa

D

ccÕ
, ˆRLccÕ

ˆac
(D.55)

Equivalently, inverting the Kapur-Peierls operator in di�erential equation (D.55)
yields the following Riccati equation:

a
ˆR≠1

L

ˆa
≠ R≠1

L (1
2I ≠ L) ≠ I ¶

5
R≠1

L (1
2I ≠ L) ≠ R≠2

L

6
= 0 (D.56)

These first order partial di�erential equations on the Kapur-Peierls operator RL are
equivalent to relations (71) and (75) Mockel and Perez established for the R matrix
in [?]. They are quite inconvenient to solve in that they are channel-dependent, and
thus give rise to equations for each cross term. Remarkably, this is not the case for
the radioactive residues.

Having demonstrated the radioactive poles invariance (D.47), Mittag-Le�er ex-
pansion (D.41) entails that uj from (D.42) satisfies invariance: ˆuj

ˆac
= 0. Applying

result (D.53) to the latter then yields partial di�erential equation (D.48), the di-
rect integration of which readily yields (D.49). Since Lc(flc) , flc

Oc(flc)

ˆOc(flc)

ˆflc
, (D.49)

integrates explicitly to (D.50). This result also stands for any degenerate state of
multiplicity Mj, where for each radioactive width rm

j we have:

rm
j,c(ac)

rm
j,c(a

(0)

c )
= Oc(flc(ac))

Oc(flc(a(0)

c ))

ı̂ıÙa(0)

c

ac

(D.57)

Finally, the proof of (D.51) is the element-wise integration of (D.49) using the
Mittag-Le�er pole expansion (D.7) of Lc(fl), which we established in theorem 1 of
[127] – invoking Fubini’s theorem to permute sum and integral. In the case of neutral
particles, there is a finite number of roots {Ên} so that the product in (D.51) is finite.
Note that in the charged particles case, there is an infinite number (countable) of roots
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{Ên}, and the Weierstrass factorization theorem would thus usually require (D.51) to
be cast in a Hadamard canonical representation with Weierstrass elementary factors.
However, in (D.51), the product elements tend towards unity as n goes to infinity3

kcac≠Ên

kca
(0)
c ≠Ên

4
≠æ
næŒ

1, so that the infinite product in (D.51) should still converge.

Note that for neutral particles (massive or massless) s-waves (¸ = 0), the outgoing
wave function is Oc(fl(ac)) = eikcac (c.f. TABLE I of [127]), so that (D.50) yields

rj,c(ac) = rj,c(a(0)

c )
Ú

a
(0)
c
ac

eikc

1
ac≠a

(0)
c

2

. Alternatively, directly integrating (D.49) with
the outgoing-wave reduced logarithmic derivative expression Lc(fl(ac)) = ikcac yields
back the same result. Thus for s-wave neutral channels subject to a change of channel
radius, the modulus of the radioactive widths decreases proportionally to the inverse
square root of the channel radius ac, at least for real wavenumbers kc œ R, i.e. real
energies above the channel threshold. Since the transition probability rates partial
widths can be defined as the square of the modulus of the radioactive width (c.f.
eq. (6) in [163]), this means these transition partial widths decrease inversely to the

channel radius:
----

rj,c(ac)

rj,c(a
(0)
c )

----
2

= a
(0)
c
ac

.
A striking property of the R-matrix parametrizations is that they separate the

channel contribution to each resonance, meaning that to compute, for instance, the
Rc,cÕ element in (E.16), one only requires the widths for each level of each channel,
“⁄,c, and not some new parameter for each specific channel pair c, cÕ combination. In
this spirit, we show in theorem 10 that the Siegert-Humblet radioactive widths rj,c

play a similar role in that their transformation under a change of channel radius only
depends on that given channel.

Theorem 10 makes explicit the behavior of the radioactive widths
Ó
rj,c

Ô
under a

change of channel radius ac. Strikingly, only the Kapur-Peierls matrix RL appears in
this change of variable. This means that the R-matrix R and the L0 matrix function
su�ce to both compute the Siegert-Humblet parameters

Ó
Ej, rj,c

Ô
from (E.32), and

to change the radioactive widths
Ó
rj,c

Ô
under a change of channel radius ac. This

novel result portrays the Siegert-Humblet parameters as allowing a simple energy de-
pendence to the scattering matrix (D.41) — albeit locally and needing the expansion
coe�cients (D.43) — all the while being boundary condition Bc independent and easy
to transform under a change of channel radius ac.

D.5 Scattering matrix continuation to complex
energies

In section 5.2 of [185], Humblet and Rosenfeld continue the scattering matrix to
complex wave numbers kc œ C, and define corresponding open and closed channels.
They however never point to the conundrum that this entails: in their approach, the
scattering matrix seemingly does not annul itself below threshold. This is contrary to
the approach taken by Lane & Thomas, where they explicitly annul the elements of
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the scattering matrix below thresholds, as stated in the paragraph between equations
(2.1) and (2.2) of section VII.1. p.289 [214]. Claude Bloch ingeniously circumvents
the problem by explicitly stating after eq. (50) in [79] that the scattering matrix is
a matrix of the open channels only, meaning its dimensions change as more channels
open when energy E increases past new thresholds E > ETc . In his approach, sub-
threshold elements of the scattering matrix need not be annulled, one simply does
not consider them.

We dedicate this section to this question of how to extend the scattering matrix
to complex wavenumbers kc œ C, while closing the channels below threshold. We
argue that analytic continuation of R-matrix operators (lemma 2 section III.B of
[127]) is the physically correct way of constructing the scattering matrix for complex
wavenumbers. To support this, we advance and demonstrate three new arguments:
analytic continuation cancels out spurious poles otherwise introduced by the outgoing
wavefunctions Oc (theorem 11); analytic continuation respects generalized unitarity
(theorem 12); and, for massive particles (not photons), analytic continuation of real
wavenumber expressions to sub-threshold energies naturally sees the transmission
matrix evanesce on the physical sheet (theorem 13), while always closing the channels
by annulling the cross section (theorem 14).

D.5.1 Forcing sub-threshold elements to zero: the legacy of
Lane & Thomas

To close the channels for real energies below threshold, the simplest approach is
the one proposed by Lane & Thomas in [214]. The scattering matrix expressions
(E.14) can be re-written, for real energies above threshold, according to section VII.1
equation (1.6b) in [214]:

U = �
1
I + wP1/2RLP

1/2
2

� (D.58)

with Wronskian w from (D.3) and the values defined for energies above the thresholds
in III.3.a. p.271 of [214]:

� , O≠1I

P , flO≠1I≠1
(D.59)

Let us note that the Mittag-Le�er expansion (E.41) of the Kapur-Peierls matrix RL

operator can still be performed.
The Lane & Thomas “sub-threshold channel force-closure” approach exploits the

ambiguity in the definition of the shift S(E) and penetration P (E) factors:

L = S + iP (D.60)

for complex energies E œ C, as discussed in section III.B of [127] (of which we follow
the notation). Lane & Thomas choose the branch-point definitions for the shift S
and penetration P functions, made explicit in lemma 1 section III.B of [127]. Lane
& Thomas do not specify how they would continue the quantities (D.59) for negative
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energies, as they state “we need not be concerned with stating similar relations for
the negative energy channels" (c.f. paragraph after equation (4.7c), p.271.), but they
do specify that P = 0 below threshold energies and P = P above. This means that
plugging-in P in place of P in (D.59) has the convenient property of automatically
closing the reaction channels below threshold, since in that case Uc,cÕ = �c�cÕ , which
annuls the o�-diagonal terms of the cross section (the reaction channels c ”= cÕ)
when plugged into equation (1.10) in [214] VIII.1. p.291. Note that this approach
only annuls the o�-diagonal terms of the scattering cross section, leaving non-zero
cross sections for the diagonal ‡cc(E), even below threshold. Indeed, equation (4.5a)
section III.4.a., p.271 of [214] gives �c = ei(Êc≠„c), whilst the cross section is begotten
by the amplitudes of the transmission matrix T (E), defined as TccÕ , ”ccÕe2iÊc ≠ UccÕ

in (2.3), section VIII.2., p.292. For sub-threshold real energies, the diagonal term of
the transmission matrix is thus equal to Tcc = e2iÊc

1
1 ≠ e≠2i„c

2
. This means that in

the Lane & Thomas approach, all channels cÕ
”= c are force-closed to zero below the

incoming channel threshold E < ETc , except for the c æ c reaction, which is tactfully
overlooked as non-physical.

Of course, this approach comes at the cost of sacrificing the analytic properties
of the scattering matrix U : since Pc = ⁄ [Lc], the penetration factor is no longer
meromorphic and thus neither is U . This entails that in decomposition (D.58) of the
scattering matrix, if one “force-closes” the channels using the branch-point definition
of Lane & Thomas — instead of analytically continuing both P and � to complex
wavenumbers fl œ C — the scattering matrix U (E) cannot have poles, as there is then
no mathematical meaning to such notion. This goes directly against a vast amount
of literature on the analytic properties of the scattering matrix [137, 185, 289, 181,
182, 195, 183, 230, 290, 231, 184, 304, 159, 135]. This is the approach presently taken
by the SAMMY code at Oak Ridge National Laboratory [217], and upon which rest
numerous ENDF evaluations [87].

We would like to note that under careful reading, this might not actually have
been the approach intended by Lane & Thomas in [214]. Indeed, Lane & Thomas
never specify how to prolong the P to sub-threshold energies, and in equation (D.58)
it is P that is present and not P . They do however note in the paragraph between
equations (2.1) and (2.2) of section VII.1. p.289, that “as there are no physical sit-
uations in which the I≠

c occur, the components of the [scattering matrix] are not
physically significant and one might as well set them equal to zero as can be seen
from (1.6b). This may be accomplished without a�ecting the [positive energy chan-
nels] by setting the negative energy components of the Wronskian matrix to zero;
w≠

c = 0. (This means that the O≠
c and I≠

c are not linearly independent.)". The choice
of wording is here important. Indeed, it says that it is possible to set the Wronskian
to zero to close channels below the threshold, though it is not necessary. This is yet
another way of closing sub-threshold channels that would allow to keep the analytic
properties of the scattering matrix, with P , flO≠1I≠1 still analytically continued,
albeit at the cost of not knowing when in the complex plane should the Wronskian
wc be set to zero — perhaps only on R≠, which would then become a branch line.
We show in theorem 11 (section D.5.4) that as long as the Wronskian relation (D.3)
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is guaranteed, the poles of the outgoing scattering wave function Oc cancel out of
the scattering expressions (E.14) and (D.58). The Wronskian condition (D.3) is con-
served when keeping P from (D.59) analytically continued — instead of the definition
Pc , ⁄ [Lc], which cannot respect the Wronskian relation (D.3) — so that this ap-
proach of setting the Wronskian to zero below threshold while analytically continuing
the penetration and shift factors would indeed cancel out the spurious poles of the
outgoing wave functions Oc.

D.5.2 Analytic continuation of the scattering matrix
In opposition to the Lane & Thomas approach, an entire field of physics and math-
ematics has studied the analytic continuation of the scattering matrix to complex
wavenumbers kc œ C [135, 159, 117, 144, 236, 185, 289, 181, 182, 195, 183, 230, 290].

As we saw, there is no ambiguity as to how to continue the L(fl) matrix function
to complex wave numbers (c.f. theorem 1 section II.B of [127]), and thus the RL

Kapur-Peierls operator (E.15). Indeed, the incoming Ic(flc) and outgoing Oc(flc) wave
functions can be analytically continued to complex wavenumbers kc œ C (c.f. theo-
rem 1 section II.B of [127]), and through the multi-sheeted mapping (E.4) to complex
energies E œ C. This naturally yields the meromorphic continuation of the scatter-
ing matrix to complex energies (D.41). Since many evaluations are performed using
decomposition (D.58), in practice performing analytic continuation of R-matrix oper-
ators thus means continuing (D.59) operators � and P, setting P , P , and defining
the shift Sc(flc) and penetration Pc(flc) functions as analytically continued complex
meromorphic functions (that is definition (44) and lemma 2 of [127] as opposed to
the Lane & Thomas “force closure” definition (41) and lemma 1 of [127]).

The shortcoming of this analytic continuation approach is that it does not evi-
dently annul the channel elements of the scattering matrix for sub-threshold energies
E < ETc . Indeed, analytic continuation (D.41) means the scattering matrix U is a
meromorphic operator from C to C on the multi-sheeted Riemann surface of mapping
(E.4). Unicity of the analytic continuation then means that if the scattering matrix
elements are zero below their threshold, Uc,cÕ(E) = 0 , ’E ≠ ETc œ R≠, then it is
identically zero for all energies on that sheet of the manifold: Uc,cÕ(E) = 0 , ’E œ C.
Thus, the analytic continuation formalism cannot set elements of the scattering ma-
trix to be identically zero below thresholds {ETc}.

This apparent inability to close channels below thresholds is the principal reason
why the nuclear data community has stuck to the legacy approach of Lane & Thomas
(lemma 1 section III.B of [127]), when computing the scattering matrix in equation
(E.14). This has been the subject of an ongoing controversy in the field on how to
continue the scattering matrix to complex wave numbers.

D.5.3 Assuming semi-simple poles in R-matrix theory
Before advancing our analytic continuation arguments of channel closure (section
D.5.6) and generalized unitarity (section D.5.5), let us first start with a general note
on high-order poles in R-matrix theory (see the consequences for analytic continuation
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in section D.5.4). Being a high-order pole, as opposed to a simple pole, can bear
various meanings. In our context, the three following definitions are of interest: a)
Laurent order : the order of the polar expansion in the Laurent development in the
vicinity of a pole; b) Algebraic multiplicity: the multiplicity of the root of the resolvant
at a pole value; c) Geometric multiplicity: the dimension of the associated nullspace.

From equation (D.9) and throughout the article, we have treated the case of
degenerate states where the geometric multiplicity Mj > 1 was higher than one,
leading to rank-Mj residues. We have however always assumed the Laurent order to
be one: in equation (D.9), the residues might be rank-Mj, but the Laurent order is
still unity (no 1

(E≠Ej)2 or higher Laurent orders).
In the general case, the Laurent order is greater than one but it does not equal

geometric or algebraic multiplicity. In terms of Jordan normal form, if the Jordan
cells had sizes n1, ..., nmg , then the geometric multiplicity is equal to mg, the algebraic
multiplicity ma is the sum ma = n1 + ...+nmg , and the Laurent order is the maximum
max {n1, ..., nm}.

Alternatively, these can be defined as follows: Let M(z) be a complex-symmetric
meromorphic matrix operator, with a root at z = z0 (i.e. M(z0) is non-invertible).
The algebraic multiplicity ma is the first non-zero derivative of the determinant,
i.e. the first integer ma œ N such that d

ma

dzma det
3

M(z)
4----

z=z0
”= 0 ; alternatively,

using Cauchy’s theorem, the first integer ma such that
i

Cz0

M(z)

(z≠z0)ma dz = 0. The
geometric multiplicity mg is the dimension of the kernel (nullspace), i.e. mg =
dim (Ker (M(z0))). In general the algebraic multiplicity is greater than the geometric
one: ma Ø mg.

M(z0) is said to be semi-simple if its geometric and algebraic multiplicities are
equal, i.e. ma = mg (c.f. theorem 2, p.120 in [84]). Semi-simplicity can be established
using the following result: M(z0) is semi-simple if, and only if, for each nonzero
v œ Ker (M(z0)), there exists w œ Ker (M(z0)) such that:

vT

Q

a dM

dz

-----
z=z0

R

bw ”= 0 (D.61)

If an operator M(z0) is semi-simple at a root z0, then z0 is a pole of Laurent
order one for the inverse operator M≠1(z) ≥

W(z0)

ÊM
z≠z0

. For Hermitian operators, the
semi-simplicity property is guaranteed. However, resonances seldom correspond to
Hermitian operators. In our case, the resonances correspond to the poles of the
scattering matrix U (E), which is not self-adjoint but complex-symmetric UT = U
(c.f. equation (2.15) section VI.2.c p.287 in [214]). For complex-symmetric operators,
semi-simplicity is not guaranteed in general, even when discarding the complex case
of quasi-null vectors.

In the case of R-matrix theory, we were able to find cases where the geometric
multiplicity of the scattering matrix does not match the algebraic one, thus R-matrix
theory does not always yield semi-simple scattering matrices, and the Laurent de-
velopment orders of the resonance poles can be higher. For instance, we can devise

233



examples of non-semi-simple inverse level matrices from definition (E.18) by choosing
resonance parameters such that the algebraic multiplicity is strictly greater than the
geometric one.

However, one can also observe in these simple cases that the space of parameters
for which semi-simplicity is broken is a hyper-plane of the space of R-matrix param-
eters. This gives credit to the traditional physics arguments that the probability of
this occurring is quasi-null: R-matrix theory can yield scattering matrices with Lau-
rent orders higher than one, but this is extremely unlikely; a mathematical approach
of generic simplicity of resonances can be found in chapter 4 “Black Box Scatter-
ing in Rn" of [135], in particular theorem 4.4 (Meromorphic continuation for black
box Hamiltonians), theorem 4.5 (Spectrum of black box Hamiltonians), theorem 4.7
(Singular part of RV(⁄) for black box Hamiltonians), and theorem 4.39 (Generic sim-
plicity of resonances for higher dimensional black box with potential perturbation). In
other terms, we assume semi-simplicity is almost always guaranteed through R-matrix
parametrizations.

Henceforth, we use this argument to continue assuming the Kapur-Peierls matrix
RL is usually semi-simple, and thus the Laurent order of the radioactive poles

Ó
Ej

Ô

in (D.9) is, in practice, one.
But let us be aware that in general scattering theory, the scattering operator may

exhibit high-order poles [135, 159, 251], and e�orts are being made to have these
“exceptional points” of second order arise in the specific case of nuclear interactions
[249, 243]. The traditional R-matrix assumption where the poles of the scattering
matrix are almost-always of Laurent-order one is unable to describe these physical
phenomena.

D.5.4 Scattering matrix poles are the Siegert-Humblet ra-
dioactive poles

This section is dedicated to a remarkable property of the Siegert-Humblet radioactive
poles {Ej}: in R-matrix theory, these are exactly the poles of the scattering matrix
(theorem 11).

Theorem 11. Scattering matrix poles are the Siegert-Humblet radioac-
tive poles.
In R-matrix theory, when the R-matrix operators (Kapur-Peierls RL and incoming
and outgoing wavefunctions I and O) are analytically continued to complex ener-
gies E œ C such as to respect the Wronskian condition (D.3), then the poles of the
scattering matrix U are exactly the poles of the Kapur-Peierls operator RL, i.e. the
Siegert-Humblet radioactive poles

Ó
Ej

Ô
from (E.32) and (E.40). These poles are al-

most always of Laurent-order of one.

Section D.5.3 gives the reasons to assume that the poles of the Kapur-Peierls
matrix RL are simple (i.e. or Laurent order one). For the rest of this theorem, we
here give two proofs: a first by reductio ad absurdum, and a second constructive proof.
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Proof. Reductio ad absurdum: Since the radioactive poles Ej are not poles of the
outgoing wavefunction, i.e. O≠1fl1/2(Ej) ”= 0, expression (E.14) implies that all the
poles Ej of the Kapur-Peierls RL(E) operator are poles of the scattering matrix
U (E). As first sight, expression (E.14) would suggest the roots {Ên} of the outgoing
wavefunctions (i.e. all such that there exists a channel c for which Oc(Ên) = 0) are
also poles of the scattering matrix. However, when performing analytic continuation
of R-matrix operators while conserving the Wronskian condition (D.3), expression
(E.14) is equivalent to expression eq. (1.5) of section VII.1 of [214], for which it is
evident that the roots {Ên} of the outgoing wavefunction Oc(flc) are not poles of the
scattering matrix U (that is because in both the Coulomb and the neutral particle
case the outgoing wavefunctions Oc(flc) are confluent hypergeometric functions with
simple roots {Ên} entailing that O(1)

c (Ên) ”= 0). Hence the poles of the scattering
matrix U (E) must be exactly all the radioactive poles Ej.

Though this latter proof is correct, it does not explain how the roots {Ên} of the
outgoing wavefunction Oc(flc) cancel out of the scattering matrix in expression (E.14).
Yet it is important to understand this because expression (E.14) defines the potential
cross section in standard nuclear data libraries, which taken as is should thus count
the {Ên} as poles. We use this explicit cancellation of these spurious poles at the
residues level to establish the windowed multipole representation in our follow-up
article [130]. Moreover, if one uses the Lane & Thomas “force closure” definitions,
then expression (E.14) and eq. (1.5) of section VII.1 of [214] are no longer equivalent
in the complex plane. In this case, not only is the scattering matrix U (E) no longer
meromorphic, but it also diverges at the {Ên} outgoing wavefunction roots. Also, a
constructive proof requires a closer look at the behavior of specific poles and residues,
and gives us an opportunity to explain in detail di�erent non-trivial assumptions
usually made in nuclear physics about radioactive states and other states degeneracy.
For all these reasons, we believe it of interest to here provide a second, constructive
proof of theorem 11. It rests on the following lemma 4.

Lemma 4. Diagonal Semi-Simplicity – If a diagonal matrix D≠1(z) is composed
of elements with simple roots

Ó
Ên

Ô
, then its inverse is semi-simple, i.e. when a pole

Ên of a diagonal matrix D(z) has an algebraic multiplicity Mn > 1 the Laurent
development order of the pole remains 1 while the associated residue matrix is of rank
Mn, and can be expressed as:

D(z) =
W(z=Ên)

D0 + Dn

z ≠ Ên

Dn ,
Mnÿ

m=1

vnvn
T

vn
TD≠1

0

(1)vn

(D.62)

Proof. Without loss of generality, a change of variables can be performed so as to
set Ên = 0. Let D(z) = diag (d1(z), d2(z), . . . , d1(z), dj(z), dn(z)) be a diagonal
meromorphic complex-valued operator, which admits a pole at z = 0. D≠1(z) =
diag

1
d≠1

1 (z), d≠1

2 (z), . . . , d≠1

1 (z), d≠1

j (z), d≠1

n (z)
2

is well known, and det (D≠1) (z =
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0) = d≠1

1 (z)2
r

j ”=1 d≠1

j (z). Let us assume only d≠1

1 (z = 0) = 0, with a simple root, so
that d1(z) =

W(z=0)

d01 + R1
z . Then det (D≠1(z)) (z = 0) = d≠1

1 (z)2
r

j ”=1 d≠1

j (z) has a
double root: the algebraic multiplicity is thus 2. However, it is immediate to notice
that:

D(z) = diag (d1(z), d2(z), . . . , d1(z), dj(z), dn(z))
=

W(z=0)

diag (d01, d2(z), . . . , d01(z), dj(z), dn(z))

+1
z

diag (R1, 0, . . . , R1, 0, 0)

This means the Laurent development order remains 1, albeit the algebraic multiplicity
of the pole is 2 (or higher Mn). It can thus be written that: D(z) =

W(z=0)

D0 + D1
z .

When solving for the non-linear eigenproblem D≠1(z)v = 0, the kernel is no longer
an eigenline, but instead spans (v1, v2), i.e. Ker (D≠1

0) = Span (v1, v2), with v1 =
a1 [1, 0, . . . , 0, 0, 0]T and v2 = a2 [0, 0, . . . , 1, 0, 0]T. Then, following Gohberg-Sigal’s
theory [157], the fundamental property:

D≠1D = I

and the Laurent development around the pole:

D≠1(z) =
W(z=0)

D≠1
0 + zD≠1(1)

0
+ O

1
z2

2

yield the relations:
D≠1

0D0 + D≠1(1)

0
D1=I

D≠1
0D1=0

Constructing D1 to satisfy the latter then entails

D1=
v1v1

T

v1
TD≠1

0

(1)v1

+ v2v2
T

v2
TD≠1

0

(1)v2

where the transpose is used because the matrix is complex-symmetric. This reasoning
immediately generalizes to expression (D.62).

Let {Ên} be all the roots of the outgoing-wave functions (i.e. the poles of inverse
outgoing wave O≠1), which we can find by solving the non-linear Eigenvalue problem:

O(Ên)wnm = 0 (D.63)

Looking at (E.14) shows that the roots of the outgoing wave functions O could endow
the scattering matrix with additional poles, through O≠1, and that these poles could
potentially have higher Laurent orders, since O≠1 appears twice in expression (E.14).
Yet, because O is diagonal with simple roots, lemma 4 entails O≠1 is semi-simple: the
algebraic multiplicities are equal to the geometric multiplicities, and thus the poles
{Ên} all have Laurent order one. Situations can arise where same-charge channels
within the same total angular momentum Jfi will carry same angular momenta ¸c = ¸cÕ
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and equal channel radii ac = acÕ . In that case, the geometric multiplicity Mn of pole
Ên will be equal to the number of channels sharing the same functional outgoing
waves Oc = OcÕ . Diagonal semi-simplicity lemma 4 then establishes that the residue
of O≠1 associated to pole Ên is now a diagonal rank-Mn matrix, Dn, expressed as:

Dn =
Mnÿ

m=1

wnmwn
T
m

wn
T
mO(1)(Ên)wnm

(D.64)

where O(1)(Ên) designates the first derivative of O, evaluated at the pole value Ên.
This establishes the existence of higher-rank residues associated to the inverse outgo-
ing wave function O≠1. Notice that if the channel radii

Ó
ac

Ô
where chosen at random,

these high-rank residues would almost never emerge (null probability). However, since
ac is chosen arbitrarily in the context of R-matrix theory, it is often the case that
evaluators set ac to a fixed value for multiple di�erent channels, and even across iso-
topes. This is because the scattering radius is determined early on by the evaluator
(an not varied afterwards) based on the amount of potential scattering observed in
the experimental data, which is very similar for isotopes of the same element. There-
fore, in practice these high-rank residues are not uncommon. Our constructive proof
now establishes how analytic continuation annuls these high-rank residues.

Proof. Constructive: Consider the scattering matrix expression U = O≠1
Ë
I + 2ifl1/2RLO≠1fl1/2

È

from (E.14). Result (D.64) entails that, in the vicinity of Ên (root of the outgoing
wave-function O) the residue is locally given by:

U (z) =
W(E=Ên)

U 0(Ên)+
Dn

Ë
I+ 2ifl1/2RLO≠1fl1/2

È

E=Ên

E ≠ Ên

(D.65)

We now notice that evaluating the Kapur-Peierls RL operator (E.15) at the pole value
Ên yields the following equality:

RLO≠1(Ên)wnm = ≠

Ë
flO(1)

È≠1

(Ên)wnm (D.66)

Plugging (D.66) into the residue of (D.65), and using the fact that (D.64) guarantees
Dn is a linear combination of wnmwn

T
m, we then have the following equality on the

residues at poles Ên:

Dn

Ë
I+ 2ifl1/2RLO≠1fl1/2

È

E=Ên
= Dn

5
I ≠ 2iO(1)

≠1
6

E=Ên

(D.67)

The rightmost term is diagonal and independent from the resonance parameters.
Since the Wronskian matrix w of the external region interaction (for Coulomb or
free particles) is constant (D.3), w = O(1)I ≠ I(1)O = 2iI, evaluating at outgoing
wave-function root Ên, one finds 2iI = O(1)I(Ên). Plugging this result into (D.67)
annuls the corresponding residue from the scattering matrix, i.e.:

Dn

Ë
I + 2ifl1/2RLO≠1fl1/2

È

E=Ên
= 0 (D.68)
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Thus, if the Wronskian condition (D.3) is respected, the
Ó
Ên

Ô
poles cancel out of the

scattering matrix U

Importantly, both the Lane & Thomas force-closing of sub-threshold channels
D.5.1 or the analytic continuation D.5.2 will yield the same cross section values for
real energies above thresholds. However, theorem 11 demonstrates that the choice of
analytic continuation in equation (E.14), respecting the Wronskian condition (D.3),
leads to the cancellation from the scattering matrix U of the

Ó
Ên

Ô
spurious poles,

which have nothing to do with the resonant states of the scattering system. This
cancellation is thus physically accurate, and would not take place had the choice of
P = P been made in equation (D.58) with the Lane & Thomas “force closure” def-
inition P = ⁄ [L(z)] œ R (c.f. lemma 1 section III.B of [127]), under which the
scattering matrix diverges at

Ó
Ên

Ô
. Conversely, analytically continuing the penetra-

tion function as P (z) , 1

2i
(L(z) ≠ [L(zú)]ú) œ C (c.f. lemma 2 section III.B of [127])

will guarantee the cancellation of the
Ó
Ên

Ô
poles from the scattering matrix U when

using (D.58). Notice this is almost the definition (D.74) of �L(fl) we hereafter use
in the proof of the generalized unitarity. Then, to force-close sub-threshold channels,
one could set the Wronskian to zero, as proposed by Lane & Thomas in the paragraph
between equation (2.1) and (2.2) of section VII.1. p.289. This shifts the problem to
how to maintain the Wronskian condition (D.3) while setting the Wronskian to zero
below thresholds. Alternatively, we here argue in section D.5.6 that this might not
be necessary, as analytic continuation can naturally close sub-threshold channels.

D.5.5 Generalized unitarity for analytically continued scat-
tering matrix

One of the authors, G. Hale, proved a somewhat more esoteric argument in favor of
analytic continuation of the scattering matrix, showing it satisfies generalized unitar-
ity.

Eden & Taylor established a generalized unitarity condition, eq. (2.16) in [137],
which extents the one described by Lane & Thomas, eq. (2.13), VI.2.c. p.287, in
that the subset of open channels is unitary (thus conserving probability), but the
scattering matrix can still be continued to sub-threshold channels and be non-zero,
that is the full scattering matrix of open and closed channels is not unitary but
satisfies the generalized unitarity condition. This is also consistent with approaches
other than R-matrix to modeling nuclear interactions (c.f. commentary above eq. (3)
p.4 in [243], [236], or[117]).

The premises of the problem lies again in the multi-sheeted Riemann surface
spawning from mapping (E.4): when considering the scattering matrix U (E) at a
given energy E, there are multiple possibilities for the choice of wavenumber kc at
each channel. Following Eden & Taylor eq. (2.14a) and eq. (2.14b) [137], we consider
the case of momenta being continued along the following paths in the multi-sheeted
Riemann surface: one subset of channels c, denoted by ‚C, is continued as k

cœ‚C æ kú
cœ‚C,

while all the others are continued as k
c ”œ‚C æ ≠kú

c ”œ‚C, and we collectively denote this
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continuation k æ Âk:

k æ Âk :
I

’c œ ‚C , kc æ kú
c

’c ”œ ‚C , kc æ ≠kú
c

(D.69)

We then seek to reproduce the generalized unitarity property eq. (2.16) of [137], which
states that the submatrix „U composed of the channels c œ ‚C, verifies the generalized
unitarity condition:

„U (k)
5

„U (Âk)
6†

= I (D.70)

We now show that analytically continuing the R-matrix expression (E.14) ensures the
scattering matrix respects Eden & Taylor generalized unitarity condition.

Theorem 12. Analytic continuation of the R-matrix expression for the
scattering matrix ensures generalized unitarity.
By performing the analytic continuation of the R-matrix expression (E.14), the scat-
tering matrix U satisfies Eden & Taylor’s generalized unitarity condition (D.70).

Proof. The proof is based on the conjugacy relations of the outgoing and incoming
wavefunctions eq. (2.12), VI.2.c. in [214], whereby, for any channel c:

Ë
Oc(kú

c )
Èú

= Ic(kc) ,
Ë
Ic(kú

c )
Èú

= Oc(kc)
Oc(≠kc) = Ic(kc) , Ic(≠kc) = Oc(kc)

≠O(1)

c (≠kc) = I(1)

c (kc) , ≠I(1)

c (≠kc) = O(1)

c (kc)
(D.71)

where the third line was obtained by taking the derivative of the second. Conjugacy
relations (D.71) entail the following relations on the outgoing-wave reduced logarith-
mic derivative L:

5
Lc(kú

c )
6ú

= Lc(≠kc) ,
5
Lc(≠kú

c )
6ú

= Lc(kc) (D.72)

We also notice that the Wronskian condition (D.3) is equivalent to:

2iflc

OcIc
= flc

C
O(1)

c

Oc
≠

I(1)

c

Ic

D

(D.73)

Recognizing the definition (E.17) of L, and using conjugacy relations (D.72), this
Wronskian condition (D.73) can be expressed as a di�erence of the reduced logarith-
mic Lc derivatives:

�Lc(kc) , Lc(kc) ≠ Lc(≠kc) = 2iflc

OcIc
(kc) (D.74)

Defining the diagonal matrix �L , diag
3

�Lc(kc)
4

, we can then re-write, similarly
to (D.58), the R-matrix expression (E.14) of the scattering matrix U as a function of
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�Lc(kc), so that:
U = O≠1

Ë
I +

Ë
fl1/2RLfl≠1/2

È
�L

È
I

= I
Ë
I + �L

Ë
fl≠1/2RLfl1/2

ÈÈ
O≠1

(D.75)

Notice again how this expression is closely related to the analytic continuation of
expression (D.58).

Coming back to the Eden & Taylor continuation (D.69), let us now establish a
relation between the Kapur-Peierls operator RL and �L. From the definition (E.15)
of the Kapur-Peierls operator RL, recalling that under Eden & Taylor continua-
tions (D.69) the energy E from mapping (E.4) remains unaltered, and given that
the boundary-condition Bc in the L0 matrix function is real and thus the R-matrix
parameters (E.16) are too, it follows that:

Ë
R≠1

L (Âk)
Èú

≠R≠1

L (k) =
A ‰�L(k) 0

0 0

B

(D.76)

where we have used the L conjugacy relations (D.72) to establish that all channels
c ”œ ‚C cancel out, and the rest yield �L

cœ‚C(kc). The ‰�L thus designates the sub-
matrix composed of all the channels c œ ‚C. Multiplying both left and right, and
considering the sub-matrices on the channels c œ ‚C thus yields:

„RL(k) ≠

Ë
„RL(Âk)

Èú
= „RL(k) ‰�L(k)

Ë
„RL(Âk)

Èú
(D.77)

This relation is what guarantees the scattering matrix U satisfies generalized unitarity
condition (D.70). Indeed, let us develop the left-hand side of (D.70), using expressions
(D.75) on the sub-matrices of the channels c œ ‚C:

„U (k)
5

„U (Âk)
6†

=

„O
≠1(k)

C

I + \Ë
fl

1
2 RLfl≠ 1

2
È
(k) ‰�L(k)

D
‚I(k)

◊

C
‚I(Âk)

C

I + ‰�L(Âk) \Ë
fl≠ 1

2 RLfl
1
2
È
(Âk)

D
„O

≠1(Âk)
D†

= „O
≠1(k)

C

I + \Ë
fl

1
2 RLfl≠ 1

2
È
(k) ‰�L(k)

D
‚I(k)◊

5
„O

≠1(‚kú)
6ú

C

I+ \Ë
fl≠ 1

2 RLfl
1
2
È
(‚kú)

Ë
‰�L(‚kú)

Èú
DË

‚I(‚kú)
Èú

(D.78)

Noticing that conjugacy relation (D.72) entail the following �L symmetry from def-
inition (D.74),

Ë
‰�L(‚kú)

Èú
= ≠ ‰�L(k), and making use of the conjugacy relations for
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the wave functions (D.71), we can further simplify (D.78) to:

„U (k)
5

„U (Âk)
6†

= I + „O
≠1(k) \Ë

fl
1
2 RLfl≠ 1

2
È
(k) ◊

S

U

C5
\fl

1
2 RLfl≠ 1

2

6≠1

(kú)
D†

≠

5
\fl

1
2 RLfl≠ 1

2

6≠1

(k) ≠ ‰�L(k)
T

V ◊

C
\Ë

fl≠ 1
2 RLfl

1
2
È
(‚kú)

D†
‰�L(k)„O(k)

(D.79)

In the middle, we recognize property (D.76), where the fl±1/2 cancel out by commuting
with the diagonal matrix. Property (D.76) thus annuls all non-identity terms, leaving
Eden & Taylor’s generalized unitarity condition (D.70) satisfied.

Let us also note that the proof required real boundary conditions Bc œ R. Thus,
in R-matrix parametrization (E.14), real boundary conditions Bc œ R are necessary
for the scattering matrix U to be unitarity (and by extension generalized unitary).

Theorem 12 beholds a strong argument in favor of performing analytic contin-
uation of the R-matrix operators as the physically correct way of prolonging the
scattering matrix to complex wavenumbers kc œ C.

D.5.6 Closure of sub-threshold cross sections through ana-
lytic continuation

We finish this article with the key question of how to close sub-threshold channels.
Analytically continuing the scattering matrix below thresholds entails it cannot be
identically zero there, since this would entail it is the null function on the entire
sheet of the maniforld (unicity of analytic continuation). However, we here show
that for massive particles subject to fl(E) mappings (2) or (4) section II.A of [127],
adequate definitions and careful consideration will both make the transmission matrix
evanescent sub-threshold (in a classical case of quantum tunnelling), and annul the
sub-threshold cross-section — the physically measurable quantity.

The equations linking the scattering matrix U to the cross section — equations
(1.9), (1.10) and (2.4) section VIII.1. of [214] pp.291-293 — were only derived for real
positive wavenumbers. Yet, when performing analytic continuation of them to sub-
threshold energies, the quantum tunneling e�ect will naturally make the transmission
matrix infinitesimal on the physical sheet of mapping (E.4). Indeed, the transmission
matrix, T , is defined in [214] after eq. (2.3), VIII.2. p.292, as:

TccÕ , ”ccÕe2iÊc ≠ UccÕ (D.80)

where Êc is defined by Lane & Thomas in eq.(2.13c) III.2.b. p.269, and used in
eq.(4.5a) III.4.a. p.271 in [214], and is the di�erence Êc = ‡¸c(÷c) ≠ ‡0(÷c), where
the Coulomb phase shift, ‡¸c(÷c) is defined by Ian Thompson in eq.(33.2.10) of [250].
Defining the diagonal matrix Ê , diag

1
Êc

2
, and using the R-matrix expression
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(E.14) for the scattering matrix, the Lane & Thomas transmission matrix (D.80) can
be expressed with R-matrix parameters as:

T L&T , ≠2iO≠1

S

WWWWU

A
I ≠ Oe2iÊ

2i

B

¸ ˚˙ ˝
�

+fl1/2RLO≠1fl1/2

T

XXXXV
(D.81)

The angle-integrated partial cross sections ‡ccÕ(E) can then be expressed as eq.(3.2d)
VIII.3. p.293 of [214]:

‡ccÕ(E) = figJfi
c

-----
T ccÕ

L&T
(E)

kc(E)

-----

2

(D.82)

where gJfi
c

, 2J+1

(2I1+1)(2I2+1)
is the spin statistical factor defined eq.(3.2c) VIII.3.

p.293. Plugging-in the transmission matrix R-matrix parametrization (D.81) into
cross-section expression (D.82) then yields: [214]:

‡ccÕ = 4figJfi
c

----
1

Ockc

----
2 ---� + fl1/2RLO≠1fl1/2

---
2

ccÕ
(D.83)

An alternative, more numerically stable, way of computing the cross section is used
at Los Alamos National Laboratory, where one of the authors, G. Hale, introduced
the following rotated transmission matrix, defined as:

T H , ≠
e≠iÊT L&Te≠iÊ

2i
(D.84)

and whose R-matrix parametrization is thus

T H = H+

≠1

S

WWWWU
fl1/2RLfl1/2H+

≠1
≠

A
H+ ≠ H≠

2i

B

¸ ˚˙ ˝
F

T

XXXXV
(D.85)

where H± are defined as in eq.(2.13a)-(2.13b) III.2.b p.269 [214]:

H+c = OceiÊc = Gc + iFc

H≠c = Ice≠iÊc = Gc ≠ iFc
(D.86)

and for which we refer to Ian J. Thompson’s Chapter 33, eq.(33.2.11) in [250], or
Abramowitz & Stegun chapter 14, p.537 [51]. The partial cross section is then directly
related to the T H rotated transmission matrix (D.84) as:

‡ccÕ(E) = 4figJfi
c

-----
T ccÕ

H (E)
kc(E)

-----

2

(D.87)

Theorem 13. Evanescence of sub-threshold transmission matrix.

242



For massive particles, analytic continuation of R-matrix parametrization (E.14) makes
the sub-threshold transmission matrix T , defined as (D.81), evanescent on the physical
sheets of wavenumber-energy fl(E) mappings (2) or (4) section II.A of [127]. In turn,
this quantum tunnelling entails the partial cross sections ‡ccÕ(E) become infinitesimal
below threshold.

Proof. The proof is based on noticing that both transmission matrix expressions
(D.81) and (D.84) entail their modulus square is proportional to:

|T ccÕ|
2(E) Ã

-----
1

H+(E)

-----

2

(D.88)

This is because RLO≠1 =
Ë
O

Ë
R≠1

≠ B
È

≠ flO(1)
È≠1

, which does not diverge below
threshold. Asymptotic expressions for the behavior of H+(fl) then yield, for small fl
values:

H+(fl) ≥
flæ0

fl≠¸

(2¸ + 1)C¸(÷) ≠ iC¸(÷)fl¸+1 (D.89)

and asymptotic large-fl behavior:

H+(fl) ≥
flæŒ

ei(fl≠÷ ln(2fl)≠ 1
2 ¸fi+‡¸(÷)) (D.90)

Above the threshold, fl œ R is real and thus equation (D.90) shows how |H+(fl)| ≠æ
flæŒ

1. In other terms, the |H+(fl)| term cancels out of the cross section expressions (D.83)
and (D.87) for open-channels above threshold.

Yet, in both wavenumber-energy fl(E) mappings (2) or (4) section II.A of [127],
the sub-threshold dimensionless wavenumber is purely imaginary: fl œ iR. Since
asymptotic form (D.90) is dominated in modulus by: |H+(fl)| ≥

flæŒ
|eifl

|. Depending
on which sheet fl is continued sub-threshold, we can have fl = ±ix, with x œ R.
Thus, on the non-physical sheet

Ó
E, . . . , ≠c, . . .

Ô
for the given channel c of flc, the

transmission matrix (D.88) experiences exponential decay of 1/ |H+(fl)| leading to
the evanescence of the cross section (D.82), or (D.87). In e�ect, this means that the
|Oc(flc)| term in (D.83) asymptotically acts like a Heaviside function, being unity for
open channels, but closing the channels below threshold. Since flc = kcrc for the
outgoing scattered wave Oc(flc), the exponential closure depends on two factors: the
distance rc from the nucleus, and how far from the threshold one is |E ≠ ETc |. This
is a classical evanescence behavior of quantum tunneling.

What happens when continuing on the physical sheet
Ó
E, . . . , +c, . . .

Ô
, as |H+(fl)|

will now tend to diverge as a “divide by zero”? The authors have no rigorous answer,
but point to the fact that since E is left unchanged by the choice of the kc sheet, the
evanescence result ought to also stand, despite the apparent divergence.

Note that for photon channels, the semi-classic wavenumber-energy fl(E) map-
pings (3) of section II.A of [127] does not yield this behavior, only the relativistic
mapping (4) does.

243



We can estimate the orders of magnitude required to experimentally observe this
evanescent quantum tunneling closure of the cross sections below threshold. At dis-
tance rc from the center of mass of the nucleus, and at wavenumber kc, distant from
the threshold as |E ≠ETc |, the asymptotic behavior or the cross-section below thresh-
old is:

ln
3

‡ccÕ(kc, rc)
4

≥

Ec Æ ETc

kc æ ≠Œ

≠2rc|kc|

(D.91)

Assuming a detector is placed at a distance rc of the nucleus, the cross section
would decay exponentially below threshold as the distance �Ec = |E ≠ ETc| of E to
the threshold ETc increases. For instance, for a threshold of 238U target reacting with
neutron n channel, evanescence (D.91) would be of the rate of log

10

3
‡ccÕ(kc, rc)

4
≥

≠3 ◊ 1016rcm

Ô
�EceV. For a detector placed at a millimeter rc ≥ 10≠3m, this means

one order of magnitude is lost for the cross section in �Ec ≥ 10≠27eV, evanescent
indeed. Conversely, detecting this quantum tunneling with a detector sensitive to
micro-electronvolts �Ec ≥ 10≠6eV ≥ 1µeV (200 times more sensitive than the thermal
energy of the cosmic microwave background) would see the cross section drop of one
order of magnitude for a move of less than 10≠13m, or a tenth of a pico-meter. We are
at sub-atomic level of quantum tunneling: the outgoing wave evanesces into oblivion
way before reaching the electron cloud...

Regardless of the evanescence of the transmission matrix, a more general argu-
ment on the cross section shows that analytic continuation of the above-threshold
expressions will automatically close the channels below the threshold.

Theorem 14. Analytic continuation annuls sub-threshold cross sec-
tions.
For massive particles, analytic continuation of above-threshold cross-section expres-
sions to complex wavenumbers kc œ C will automatically close channels for real en-
ergies E œ R below thresholds E ≠ ETc < 0

Proof. The proof is based on the fact that massive particles are subject to mappings
(2) or (4) section II.A of [127], which entail wavenumbers are real above threshold,
and purely imaginary sub-threshold: ’E < ETc , kc œ iR. Let Â(r̨) be a general wave
function, so that the probability density is |Â|

2 (r̨).
For a massive particle subject to a real potential, the de Broglie non-relativistic

Schrödinger equation applies, so that writing the conservation of probability on a con-
trol volume, and applying the Green-Ostrogradsky theorem, will yield the following
expression for the probability current vector:

j̨Â , ~
µ

⁄

Ë
Âú

Ǫ̀Â
È

(D.92)

where µ is the reduced mass of the two-particle system (c.f. equations (2.10) and
(2.12) section VIII.2.A, p.312 in [77]). By definition, the di�erential cross section
d‡ccÕ
d�

is the ratio of the outgoing current in channel cÕ by the incoming current from
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channel c, by unit of solid angle d�.
Consider the incoming channel c, classically modeled as a plane wave, Âc(r̨c) Ã

eįkc·r̨c ; and the outgoing channel cÕ, classically modeled as radial wave, ÂcÕ(rcÕ) Ã

e
ikcÕ rcÕ

rcÕ
. For arbitrary complex wavenumbers, kc, kcÕ œ C, definition (D.92) will yield

the following probability currents respectively:

j̨ÂcÃ
~
µ

⁄

5
įkce≠2⁄[k̨c]·r̨c

6

j̨ÂcÕ Ã
~
µ

⁄

C3
ikcÕ ≠

1
rcÕ

4 e≠2⁄[kcÕ ]·rc

r2

cÕ

D

ęr

(D.93)

One will note these expressions are not the imaginary part of an analytic function
in the wavenumber, because of the imaginary part ⁄ [kc]. If however we look at real
wavenumbers kc, kcÕ œ R, that is at above-threshold energies E Ø ETc , the probability
currents (D.93) readily simplify to:

j̨Âc Ã
~
µ

Ÿ

Ë
k̨c

È
, j̨ÂcÕ Ã

~
µ

Ÿ [kcÕ ] ęr (D.94)

These expressions are the real part of analytic functions of the wavenumbers. If we
analytically continue them to complex wavenumbers, and consider the cases of sub-
threshold reactions E < ETc , for either the incoming or the outgoing channel, the
wavenumbers are then exactly imaginary, kc, kcÕ œ iR. The real parts in (D.94) be-
come zero, thereby annulling the cross section ‡c,cÕ(E). This means that for massive
particles (not massless photons) subject to real potentials, analytic continuation of
the probability currents expressions above threshold (D.94) will automatically close
the sub-threshold channels. This is true regardless of whether the transmission ma-
trix (D.80) is or is not evanescent below threshold. This constitutes another major
argument in favor of analytic continuation of open-channels expressions to describe
the closed channels.

Note that for photon channels, the derivations for the probability current vector
(D.92) do not stand, and the wavenumber kc is not imaginary below threshold using
mapping (2) nor using the relativistic-correction (4) of section II.A of [127]. The
fundamental reason why photon treatment is not straightforward is that R-matrix
theory was constructed on the semi-classical formalism of quantum physics, with
wavefunctions instead of state vectors. Though not incorrect, this wave function
approach of quantum mechanics does not translate directly for photons, though some
work has been done to describe photons through wave functions [74, 75]. This is
another open area in the field of R-matrix theory, beyond the scope of this article.

D.6 Conclusion
In this article, we conduct a study and establish novel properties of the Siegert-
Humblet pole expansion in radioactive states, which we show links R-matrix theory
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to the Humblet-Rosenfeld pole expansions of the scattering matrix. The Siegert-
Humblet parameters are the poles

Ó
Ej

Ô
and residue widths {rj,c} of the Kapur-Peierls

RL operator (E.15). They are NL Ø N⁄ complex, (almost always) simple poles,
that reside on the Riemann surface of mapping (E.4), comprised of 2Nc branches,
and for which one must specify on which sheet they reside, as shown in theorem
9. They are intimately interwoven in that not any set of complex parameters is
physically acceptable: they must be solution to (E.32). Both

Ó
Ej

Ô
and

Ó
rj,c

Ô
are

invariant to changes in boundary conditions {Bc}. Furthermore,
Ó
Ej

Ô
is invariant

to a change in channel radii {ac}, and we established in theorem 10 a simple way
of transforming the radioactive widths

Ó
rj,c

Ô
under a change of channel radius ac.

Since the Siegert-Humblet parameters are the poles and residues of the local Mittag-
Le�er expansion (E.41) of the Kapur-Peierls operator RL, the set of Siegert-Humblet
parameters

;
ETc , ac, Ej, ri,c

<
is insu�cient to entirely determine the energy behavior

of the scattering matrix U through (D.42) and (D.41). The latter expressions directly
link the R-matrix parameters to the poles and residues of the Humblet-Rosenfeld
expansion of the scattering matrix, and can be complemented by local coe�cients
{sn}W(E)

of the entire part (D.43), to untangle the energy dependence of the scattering
matrix into a simple sum of poles and residues (D.41), which is the full Humblet-
Rosenfeld expansion of the scattering matrix. Theorem 11 establishes that under
analytic continuation of the R-matrix operators, the poles of the Kapur-Peierls RL

operator (i.e. the Siegert-Humblet radioactive poles) are exactly the poles of the
scattering matrix U .

The latter is one of three results we advance to argue that, contrary to the legacy
force-closure of sub-threshold channels presented in Lane & Thomas [214], R-matrix
operators ought to be analytically continued for complex momenta. Such analytic
continuation is necessary to cancel the spurious poles which would otherwise be in-
troduced by the outgoing wavefunctions, as we establish in theorem 11. Moreover, we
show in theorem 12 that the analytic continuation of R-matrix operators in scattering
matrix parametrization (E.14) enforces Eden & Taylor’s generalized unitarity condi-
tion (D.70). Finally, we argue in theorems 13 and 14 that analytic continuation will
still close cross sections for massive particle channels (not massless photon channels)
below threshold.

We thus conclude that the R-matrix community should henceforth come to con-
sensus and agree to set the analytic continuation as the standard way of computing
R-matrix operators (in particular the shift Sc(E) and penetration Pc(E) functions)
when performing nuclear data evaluations.
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Table D.1: Radioactive parameters (Siegert-Humblet poles and residue widths of the
Kapur-Peierls RL(E) operator) of the two p-wave resonances of 134Xe, spin-parity group
J

fi = 1/2(≠), converted from ENDF/B-VIII.0 evaluation (MLBW) to multipole representa-
tion using Reich-Moore level matrix (E.18), that is definition (58) of [127].

z =
Ô

E with E in (eV)
A = 132.7600
ac = 5.80 : channel radius (Fermis)
fl0 = Aac

Ô
2mn

h
A+1

in (
Ô

eV≠1), so that fl(z) , fl0z

with
Ò

2mn
h = 0.002196807122623 in units (1/(10≠14m

Ô
eV))

Radioactive parameters (rounded to 5 digits):
Radioactive poles Radioactive residue Level-matrix residue
{Ej, ±} from (D.20) widths rj from (E.39) widths aj from (D.22)
(eV), sheet of (E.4) (

Ô
eV) (dimensionless)

I
≠6.2694 ◊ 10+5

≠i1.0238 ◊ 10≠4
,+

J
9.1193 ◊ 10≠8

≠i1.4762 ◊ 10+0

S

WWWU

2.7683 ◊ 10≠9

≠i4.4744 ◊ 10≠2

1.5345 ◊ 10≠9

≠i2.4964 ◊ 10≠2

T

XXXV

I
2.1838 ◊ 10+3

+i9.0757 ◊ 10≠2
,≠

J
8.6799 ◊ 10≠4

≠i2.5113 ◊ 10+1

S

WWWU

4.444 ◊ 10≠5

≠i9.995 ◊ 10≠1

≠1.7608 ◊ 10≠5

≠i2.9849 ◊ 10≠4

T

XXXV

I
2.1838 ◊ 10+3

≠i1.6868 ◊ 10≠1
,+

J
8.6814 ◊ 10≠4

+i2.5113 ◊ 10+1

S

WWWU

4.444 ◊ 10≠5

+i9.995 ◊ 10≠1

≠1.7597 ◊ 10≠5

+i2.9849 ◊ 10≠4

T

XXXV

I
6.3130 ◊ 10+3

+i1.6025 ◊ 10≠1
,≠

J
2.4919 ◊ 10≠3

≠i1.4085 ◊ 10+1

S

WWWU

8.5974 ◊ 10≠5

+i8.5696 ◊ 10≠4

2.3534 ◊ 10≠5

≠i9.9984 ◊ 10≠1

T

XXXV

I
6.3130 ◊ 10+3

≠i2.3822 ◊ 10≠1
,+

J
2.4916 ◊ 10≠3

+i1.4085 ◊ 10+1

S

WWWU

8.5964 ◊ 10≠5

≠i8.5697 ◊ 10≠4

2.3534 ◊ 10≠5

+i9.9984 ◊ 10≠1

T

XXXV

R-matrix parameters:

E1 = 2186.0 : first resonance energy (eV)
�1,n = 0.2600 : neutron width of first resonance
(not reduced width), i.e. �⁄,c = 2Pc(E⁄)“2

⁄,c

�1,“ = 0.0780 : eliminated capture width (eV)
E2 = 6315.0 : second resonance energy (eV)
�2,n = 0.4000 (eV)
�2,“ = 0.0780 (eV)
gJfi = 1/3 : spin statistical factor
Bc = ≠1
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Appendix E

Windowed multipole
representation of R-matrix cross
sections

Here is verbatim transcribed our article [130].

E.1 Abstract
Nuclear cross sections are basic inputs to any nuclear computation. Campaigns of experi-
ments are fitted with the parametric R-matrix model of quantum nuclear interactions, and
the resulting cross sections are documented – both point-wise and as resonance parameters
(with uncertainties) – in standard evaluated nuclear data libraries (ENDF, JEFF, BROND,
JENDL, CENDL, TENDL): these constitute our common knowledge of fundamental low-
energy nuclear cross sections. In the past decade, a collaborative e�ort has been deployed to
establish a new nuclear cross section library format — the Windowed Multipole Library —
with the goal of considerably reducing the computational cost of cross section calculations
in nuclear transport simulations.

This article lays the theoretical foundations underpinning these e�orts. From general
R-matrix scattering theory, we derive the windowed multipole representation of nuclear cross
sections. Though physically and mathematically equivalent to R-matrix cross sections, the
windowed multipole representation is particularly well suited for subsequent temperature
treatment of angle-integrated cross sections, in particular Doppler broadening, which is the
averaging of cross sections over the thermal motion of the target atoms. Doppler broad-
ening is of critical importance in neutron transport applications, as it ensures the stability
of many nuclear reactors (negative thermal reactivity). Yet, Doppler broadening of nuclear
cross sections has been a considerable bottleneck for nuclear transport computations, often
requiring memory-costly pre-tabulations. We show that the Windowed Multipole Repre-
sentation can perform accurate Doppler broadening analytically (up to the first reaction
threshold), from which we derive cross sections temperature derivatives to any order —
all computable on-the-fly (without pre-calculations stored in memory). Furthermore, we
here establish a way of converting the R-matrix resonance parameters uncertainty (covari-
ance matrices) into windowed multipole parameters uncertainty. We show that generating
stochastic nuclear cross sections by sampling from the resulting windowed multipole covari-
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ance matrix can reproduce the cross section uncertainty in the original nuclear data file.
The Windowed Multipole Representation is therefore a novel nuclear physics formalism
able to generate Doppler broadened stochastic nuclear cross sections on-the-fly, unlocking
breakthrough computational gains for nuclear computations.

Through this foundational article, we hope to make the Windowed Multipole Repre-
sentation accessible, reproducible, and usable for the nuclear physics community, as well as
provide the theoretical basis for future research on expanding its capabilities.

E.2 Introduction
Our knowledge of nuclear reactions is progressively built-up by undertaking experi-
ments and analyzing their outcomes through the prism of a quantum model of nuclear
collisions called R-matrix theory [200, 323, 79, 214]. This is known as the nuclear data
evaluation process. Evaluators conduct campaigns to measure nuclear cross sections
and fit them with R-matrix parameters. To account for the epistemic uncertainty
introduced, evaluators generate nuclear resonance parameters covariance matrices to
reproduce the variance observed in the measurements.

Other parametrizations of nuclear cross sections exist – such as the Humblet-
Rosenfeld pole expansions in wavenumber space [185, 289, 181, 182, 195, 183, 230,
290, 231] – but none have proven as practical to document or use as R-matrix theory,
which is why our standard evaluated nuclear data libraries (ENDF[87], JEFF[267],
BROND[80], JENDL[293], CENDL[153], TENDL[207, 209]) are constituted of R-
matrix parameters (and their covariance uncertainties).
At the end of the 20th century, R. Hwang from Argonne National Laboratory found a
way to calculate from R-matrix parameters the Humblet-Rosenfeld pole expansion of
neutron cross sections without thresholds, where the wavenumber is proportional to
the square root of energy kc(E) Ã

Ô
E. He also showed that this pole representation

in z ,
Ô

E space presents a major advantage for subsequent temperature treatment:
integral Doppler broadening can be accurately computed with analytic expressions
[190, 186, 187, 188, 189]. This formalism was further developed into the windowed
multipole representation in order to perform e�cient on-the-fly computations of no-
threshold neutron cross sections with a lesser computational memory footprint [146,
199, 197, 131, 262]. In this article, we extend the windowed multipole representation
to all cross sections in the context of R-matrix theory: be they Coulomb, photon,
neutrons, with or without thresholds. We also provide means of converting resonance
parameters uncertainties into windowed multipole uncertainties. We thus lay the
foundations to constitute a full Windowed Multipole Library, encompassing all present
nuclear data [48].

In section E.3, we derive the windowed multipole representation from general R-
matrix theory, showing it is the meromorphic continuation of cross sections to com-
plex energies, and discuss numerical ways of computing the mutipoles, either from
resonance parameters or point-wise cross section data. In section E.4, we expand the
windowed multipole representation to account for the epistemic uncertainty of the nu-
clear cross sections [129, 52]. We establish the analytic sensitivities of the windowed
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multipole parameters to the Wigner-Eisenbud R-matrix resonance parameters. This
enables us to convert to first-order the standard resonance parameters covariance
matrix into a windowed multipoles covariance matrix, and show the latter repro-
duces the statistical properties of nuclear cross section uncertainties. Having done so,
we consider temperature e�ects in section E.5, showing how to analytically Doppler
broaden windowed multipole angle-integrated cross sections, and how to compute
arbitrary-order temperature derivatives that can prove useful in multiphysics simula-
tions [168, 167].

By deriving conversion methods of R-matrix resonance parameters and their un-
certainties (covariance matrices) to windowed multipoles, and showing how to account
for temperature e�ects, we thus establish the windowed multipole representation as
a general, physically equivalent parametrization of R-matrix cross sections. By its
e�cient on-the-fly treatment of uncertainty and Doppler broadening, the windowed
multipole representation can achieve considerable computational gains, and has al-
ready found several new nuclear reactor physics applications, from the establish-
ment of a new analytic benchmark for neutron slowing down that resolves nuclear
resonances overlap [299], or explicit resonance treatment for thermal up-scattering
of angular cross sections [222], to di�erential temperature tallies for higher-order
neutronics-thermohydraulics coupling schemes in nuclear transport solvers [168, 167],
or enabling new uncertainty inference and propagation methods across intractable
nuclear systems [129].

E.3 From R-matrix to
Windowed Multipole

We here establish the Windowed Multipole Representation, deriving it from general
R-matrix scattering theory. In doing so, we show that R-matrix cross sections are the
sum of two phenomena: thresholds and resonances. Thresholds have a behavior in the
wavenumber kc space of the channel c, so that in the vicinity of a threshold the cross
section admits a Laurent expansion in powers of kc (starting at k≠2

c ). Resonances
have a behavior in the energy space E, and can thus be locally expressed as a sum
of Single-Level Breit-Wigner (SLBW) resonances, with both symmetric and anti-
symmetric Lorenztian functions. In [125], we linked the R-matrix parametrization of
the scattering matrix U (E) to its wavenumber kc expansion, established by Humblet
and Rosenfeld in their Theory of Nuclear Reactions [185, 289, 181, 182, 195, 183, 230,
290, 231]. In this article, we use this connection to establish the Windowed Multipole
Representation, which is the meromorphic continuation of R-matrix cross sections in
z ,

Ô
E space, locally expressing open channels as pole expansions. We build upon

our previous work on such expansions [127, 125], using the same consistent notation
as reference.
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E.3.1 R-matrix cross section parametrization

R-matrix theory models two-body-in/two-body-out scattering events interacting with
a “black-box” Hamiltonian [200, 323, 79, 214]. Each pair of possible two-body-
inputs/two-body-outputs, along with all the corresponding quantum numbers that
describe then, constitutes a channel c. It is assumed that for each channel, the
Hamiltonian can be partitioned into two regions: within an “inner region” sphere
of channel radius ac, the many bodies interacting through the strong nuclear forces
are considered an intractable “black-box” Hamiltonian; past the channel radius ac,
the “outer region” Hamiltonian is well known (say Coulomb potential or free-wave).
For each channel c, R-matrix theory studies the many-body scattering event into the
reduced one-body system, where the solution of the Schrödinger equation is a su-
perposition of an incoming wavefunction Ic and an outgoing wavefunction Oc, both
function of the wavenumber kc. The latter can be multiplied by the arbitrary (but
fixed) channel radius ac to yield the dimensionless wavenumber

flc , kcac (E.1)

and we define the corresponding diagonal matrix over all the channels fl = diag (flc).

Wavenumber-Energy mapping

Each wavenumber is related to the total energy E of the system, which is an eigenvalue
of the Hamiltonian in the reduced center-of-mass frame. In the semi-classical limit,
a two massive particles channel (i.e. not photons) of respective masses mc,1 and mc,2

will have a wavenumber kc of:

kc(E) =
Û

2mc,1mc,2

(mc,1 + mc,2) ~2
(E ≠ ETc) (E.2)

where ETc denotes a threshold energy below which the channel c is closed, as energy
conservation cannot be respected (ETc = 0 for reactions without threshold). In the
same semi-classical limit, a photon particle interacting with a massive body of mass
mc,1, the center-of-mass wavenumber kc is linked to the total center-of-mass energy
E according to:

kc(E) = (E ≠ ETc)
2~c

C

1 + mc,1c2

(E ≠ ETc) + mc,1c2

D

(E.3)

These two semi-classical limits can be encompassed within a single relativistic frame-
work as discussed in equations (4) and (5), section II.A. of [127]. Because one must
choose the sign of the square root ±

Ô
· in (E.2), these kc(E) relations engender a

wavenumber-energy mapping

flc(E) Ωæ E (E.4)
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which forms a complex multi-sheeted Riemann surface with branch-points at (or close
to) the threshold energies ETc , as discussed in section II.A. p.2 of [127].

Transmission matrix and cross section expressions

General scattering theory expresses the incoming channel c and outgoing channel
cÕ angle-integrated partial cross section ‡c,cÕ(E) at energy E as a function of the
probability transmission matrix TccÕ(E), according to eq.(3.2d) VIII.3. p.293 of [214]:

‡ccÕ(E) = 4figJfi
c

-----
TccÕ(E)
kc(E)

-----

2

(E.5)

where the spin statistical factor is defined eq.(3.2c) VIII.3. p.293. of [214] as:

gJfi
c

, 2J + 1
(2I1 + 1) (2I2 + 1) (E.6)

The transmission matrix is itself derived from the scattering matrix U of the inter-
action:

T , I ≠ e≠iÊUe≠iÊ

2
(E.7)

where Ê , diag
1
Êc

2
is the diagonal matrix composed of Êc , ‡¸c(÷c) ≠ ‡0(÷c),

that is the di�erence in Coulomb phase shift, ‡¸c(÷c), which are linked to the phases
(argument) of the Gamma function as defined by Ian Thompson in eq.(33.2.10) of
[250] for angular momentum ¸c

‡¸c(÷c) , arg
3

� (1 + ¸c + i÷c)
4

(E.8)

and dimensionless Coulomb field parameter :

÷c , Z1Z2e2M–ac

~2flc
(E.9)

Note that this transmission matrix (E.7) definition TccÕ , ”ccÕ ≠e
≠iÊc UccÕ e

≠iÊcÕ

2
is a scaled

rotation of the one defined by Lane and Thomas T L&T

ccÕ , ”ccÕe2iÊc ≠ UccÕ (c.f. eq.
(2.3), VIII.2. p.292 and eq.(3.2d) VIII.3. p.293 of [214]). We introduce definition
(E.7) for better physical interpretability, algebraic simplicity and numerical stability.

Unitarity of the scattering matrix entails that q
cÕ |”ccÕ ≠ e≠iÊcUccÕe≠iÊcÕ |

2 = 2 (1 ≠ Ÿ [e≠2iÊcUcc]),
which in turn leads to the following expression for the total cross section of a given
channel:

‡c(E) ,
ÿ

cÕ
‡ccÕ(E) = 4figJfi

c

Ÿ [Tcc(E)]
|kc(E)|2 (E.10)

In both cross section expressions (E.5) and (E.10), the 1/ |kc|
2 term links the cross

section to the probability of interaction, and expresses the channel reversibility equiv-
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alence:
k2

c ‡ccÕ

gJfi
c

= k2

cÕ‡cÕc

gJfi
cÕ

(E.11)

The incoming Ic and outgoing Oc waves are functions of the dimensionless wavenum-
ber flc , ackc and are linked to the regular and irregular Coulomb wave functions (or
Bessel functions in the case of neutral particle channels), defined in eq.(2.13a)-(2.13b)
III.2.b p.269 [214]:

Oc = H+ce≠iÊc = (Gc + iFc) e≠iÊc

Ic = H≠ceiÊc = (Gc ≠ iFc) eiÊc
(E.12)

and for properties of which we refer to Ian J. Thompson’s Chapter 33, eq.(33.2.11)
in [250], or Abramowitz & Stegun chapter 14, p.537 [51]. In polar notation:

H+c = |H+c| ei„c

|H+c| =
----
Ò

|Gc|
2 + |Fc|

2

----

„c , arg (H+c) = 2 arctan
A

|Fc|

|H+c| + |Fc|

B (E.13)

R-matrix scattering matrix parametrization

R-matrix theory parametrizes the energy dependence of the scattering matrix U (E)
as:

U = O≠1I + 2ifl1/2O≠1RLO≠1fl1/2 (E.14)

where the incoming and outgoing wavefunctions, I = diag (Ic) and O = diag (Oc),
are subject to the following Wronksian condition for all channel c, wc , O(1)

c Ic ≠

I(1)

c Oc = 2i, and where RL is the Kapur-Peierls operator, defined as (see equation
(20) section II.D of [127]):

RL ,
Ë
I ≠ RL0

È≠1

R = “TA“ (E.15)

where R is the Wigner-Eisenbud R-matrix [323]:

RccÕ(E) ,
N⁄ÿ

⁄=1

“⁄,c“⁄,cÕ

E⁄ ≠ E
(E.16)

parametrized by the real resonance energies E⁄ œ R and the real resonance widths
“⁄,c œ R – of which we respectively build the diagonal matrix e = diag (E⁄) of size
the number of levels (resonances) N⁄, and the rectangular matrix “ = mat (“⁄,c) of
size N⁄ ◊ Nc where Nc is the number of channels. The Kapur-Peierls operator (E.15)
is thus a function of R and L0 , L ≠ B, where B = diag (Bc) is the diagonal
matrix of real arbitrary boundary conditions Bc, and L = diag (Lc) where Lc(flc) is
the dimensionless reduced logarithmic derivative of the outgoing-wave function at the
channel surface:

Lc(flc) ,
flc

Oc

ˆOc

ˆflc
(E.17)
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An equivalent definition (E.15) of the Kapur-Peierls operator RL can be expressed
with the level matrix A (see equations (17) and (18) of section II.C of [127]):

A≠1 , e ≠ EI ≠ “ (L ≠ B) “T (E.18)

As such, provided with the threshold energies, the channel radius, boundary condi-
tions, and Wigner-Eisenbud resonance energies and widths, which we can collectively
call the set of R-matrix parameters

;
ETc , ac, Bc, E⁄, “⁄,c

<
, one can entirely determine

the energy behavior of the scattering matrix U through (E.14), and therefore the
cross sections through (E.5) and (E.10).

Reich-Moore and Breit-Wigner approximations to R-matrix theory

In practice, many evaluations in standard nuclear data libraries are carried out with
approximations of R-matrix theory. The most important and common is the Reich-
Moore approximation. It reduces the R-matrix to only the channels of interest, and
accounts for the e�ect of all the other channels not explicitly treated by means of the
Teichmann and Wigner channel elimination method (c.f. [305] or section X, p.299 of
[214]). This approximation is most useful when many channels are eliminated, such
that the e�ect on the o�-diagonal elements of the level matrix is small, a scenario
often encountered in heavy nuclei. Usually, photon channels (“ “gamma capture”)
are eliminated, so that in practice the Reich-Moore approximation of R-matrix theory
[276] consists of adding a partial eliminated capture width �⁄,“ to every resonance
energy E⁄, shifting the latter into the complex plane (c.f. section IV.A of [127]):

eR.M. , diag
A

E⁄ ≠ i�⁄,“

2

B

(E.19)

The R-matrix (E.16) without the eliminated photon channels becomes:

Rc,cÕ ”œ“elim. ,
N⁄ÿ

⁄=1

“⁄,c“⁄,cÕ

E⁄ ≠ i�⁄,“

2
≠ E

i.e. RR.M. = “T (eR.M. ≠ EI)≠1 “

(E.20)

and the Reich-Moore inverse level matrix (E.18) becomes:

A≠1
R.M. , eR.M. ≠ E I ≠ “ (L ≠ B) “T (E.21)

All the other R-matrix expressions linking these operators to the scattering matrix
(E.14), and therefore the cross sections, remain unchanged. Practically, the only
consequence of the Reich-Moore formalism is to introduce complex resonance energies
(E.19). In this sense, one can consider the Reich-Moore formalism as a generalization
of R-matrix theory, even though it finds its source in the elimination of intractable
channels. It can thus also be seen as a compression algorithm. Indeed, it is possible to
convert Reich-Moore parameters into standard R-matrix ones (not complex resonance
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energies) by means of the Generalized Reich-Moore formalism, as established in [60].
Yet this comes at the cost of introducing many more parameters, thereby considerably
increasing memory requirements. This is because Generalized Reich-Moore converts
the eliminated channels R-matrix (Nc ◊ Nc with c ”œ “elim.) into a square R-matrix
of the size of the levels (N⁄ ◊ N⁄), and we often have N⁄ ∫ Nc, specially for large
nuclides (c.f. [60]).

Also, note that some older evaluations are made in the Multi-Level Breit-Wigner
approximation, which simply consists of assuming the level matrix (E.18) is diagonal.
This can be expressed using the Hadamard product “ ¶ ” with the identity matrix as:

A≠1
MLBW , A≠1

¶ I (E.22)

Apart from these modified expressions of the level matrix, neither the Reich-Moore
nor the Multi-Level Breit-Wigner approximations have any further incidence on how
to convert R-matrix cross sections to Windowed Multipole Representation: it su�ces
to take the corresponding level matrix and proceed as follows.

Parametrizing R-matrix cross sections

By substituting the R-matrix parametrization (E.14) of the scattering matrix U into
the transmission matrix T definition (E.7), and noticing that wavefunction relations
(E.12) entail H+≠H≠

2i
= F , one finds the transmission matrix can be decomposed into

the rotated (by a factor of imaginary i) di�erence between a diagonal potential matrix
D and a full resonance matrix Z:

T = i (D ≠ Z)
Z , H+

≠1fl1/2RLfl1/2H+

≠1

D , H+

≠1F = I ≠ Y

2i
Y , H+

≠1H≠

(E.23)

From cross section expression (E.5), the transmission probabilities from channel c to
channel cÕ are then the square-modulus |TccÕ|

2. Decomposition (E.23) expresses this
as:

|TccÕ|
2 = |ZccÕ|

2 + |Dc|
2 ”ccÕ ≠ 2Ÿ [ZccÕDú

c ] ”ccÕ (E.24)

where [ · ]ú designates the complex conjugate. For the total cross section (E.10), it
is the real part of the transmission matrix that appears: Ÿ [Tcc] = Ÿ [iDc] ≠ Ÿ [iZcc].
Note that D definition (E.23) entails 2Dú = i (I ≠ Y ú) and |D|

2 = Ÿ [iD], since
definition (E.13) yields

Ÿ [iDc] = |Fc|
2

|Gc|
2 + |Fc|

2
= |Dc|

2 = sin2 („c) (E.25)

We can thus decompose the cross sections into the following components, all expressed
as the real part of some matrix elements calculable from R-matrix theory:
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• Potential cross section (of channel c):

‡pot

c (E) , 4figJfi
c

----
Dc

kc

----
2

= 4figJfi
c

Ÿ [iDc]
|kc|

2
(E.26)

• Total cross section (of channel c):

‡c(E) , ‡pot

c (E) + 4figJfi
c

Ÿ [≠iZcc]
|kc|

2
(E.27)

• Self-scattering cross section (of channel c):

‡scat

c (E) , 4figJfi
c

Ÿ [≠2ZccDú
c ]

|kc|
2

(E.28)

• Interference cross section (of channel c):

‡int

c (E) , 4figJfi
c

Ÿ [≠iZccY ú
c ]

|kc|
2

(E.29)

• Reaction cross section (from channel c to cÕ):

‡react

ccÕ (E) , 4figJfi
c

----
ZccÕ

kc

----
2

(E.30)

• Partial (angle-integrated) cross section (from channel c to cÕ):

‡ccÕ(E) ,
3

‡pot

c (E) + ‡scat

c (E)
4

”ccÕ + ‡react

ccÕ (E)

=
3

‡tot

c (E) ≠ ‡int

c (E)
4

”ccÕ + ‡react

ccÕ (E) (E.31)

Writing these expressions as functions of the dimensionless wavenumbers of each
channel, flc , kcac, cross sections appear as proportional to the area of the channel
radius disc ‡c(E) Ã 4fia2

c , and the modulation of this area is linked to both the
transmission matrix amplitudes |TccÕ(E)|2 – which exhibit the resonance behavior –
and the 1/k2

c wavenumber e�ect that dominates the total cross section close to the
zero-energy threshold.

E.3.2 Kapur-Peierls operator pole expansion in Siegert-Humblet
radioactive states

The first step towards the Windowed Multipole Representation consists of performing
the pole expansion of the Kapur-Peierls operator RL into what are called the Siegert-
Humblet radioactive states [296, 86, 218, 220, 110]. We here summarize this process
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for the usual case of non-degenerate solutions, and we refer to sections II and IV of
[125] for a detailed study.

The radioactive states problem consists of finding the poles
Ó
Ej

Ô
and residue widths

vectors {rj} of the Kapur-Peierls operator RL, that is solving the following general-
ized eigenvalue problem [296, 86, 218, 220, 110]:

R≠1

L (E)
---
E=Ej

rj = 0 (E.32)

where the residue widths vectors {rj} are subject to the following normalization:

rj
T

Q

a ˆR≠1

L

ˆE

-----
E=Ej

R

b rj = 1 (E.33)

which can be calculated using

ˆR≠1

L

ˆE

-----
E=Ej

= ˆR≠1

ˆE
(Ej) ≠

ˆL

ˆE
(Ej) (E.34)

if the R-matrix R is invertible at Ej, whence

ˆR≠1

ˆE
(E) = ≠R≠1“T (e ≠ EI)≠2 “R≠1 (E.35)

If the R-matrix R is not invertible at Ej, these radioactive poles {Ej} and radioactive
widths

;
rj =

Ë
rj,c1 , . . . , rj,c, . . . , rj,cNc

ÈT<
, jointly called the Siegert-Humblet parame-

ters, can be obtained by solving the level matrix A radioactive eigenproblem:

A≠1(E)
---
E=Ej

aj = 0 (E.36)

where the eigenvectors aj are subject to normalization:

aj
T

Q

a ˆA≠1

ˆE

-----
E=Ej

R

b aj = 1 (E.37)

which is readily calculable from

ˆA≠1

ˆE
(Ej) = ≠I ≠ “

ˆL

ˆE
(Ej)“T (E.38)

The level-matrix residues widths vectors are then linked to the radioactive widths by
the following relation:

rj = “Taj (E.39)
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The radioactive energy poles are complex and usually decomposed as:

Ej , Ej ≠ i�j

2 (E.40)

It can be shown (c.f. discussion section IX.2.d pp.297–298 in [214], or section 9.2
eq. (9.11) in [185]) that fundamental physical properties (conservation of probability,
causality and time reversal) ensure that the poles reside either on the positive semi-
axis of purely-imaginary kc œ iR+ – corresponding to bound states for real sub-
threshold energies, i.e. Ej < ETc and �j = 0 – or that all the other poles are on
the lower-half kc plane, with �j > 0, corresponding to “resonance” or “radioactively
decaying” states. All poles enjoy the specular symmetry property: if kc œ C is a
pole of the Kapur-Peierls operator, then ≠kú

c is too. Additional discussion on these
radioactive poles and residues can be found in [214], sections IX.2.c-d-e p.297-298, or
in [296, 86, 218, 220, 110].

For our purpose of constructing the Windowed Multipole Representation for R-
matrix cross sections, the key property of the radioactive states is that they allow, by
virtue of the Mittag-Le�er theorem [244, 304], to locally decompose the Kapur-Peierls
operator into a sum of poles and residues and a holomorphic entire part HolRL(E),
in the neighborhood W(E) (vicinity) of any complex energy E œ C away from the
branch points (threshold energies ETc) of mapping (E.4):

RL(E) =
W(E)

ÿ

jØ1

rjrj
T

E ≠ Ej
+ HolRL(E) (E.41)

Theorem 1 of [125] presents the branch structure of the radioactive poles Ej on the
Riemann surface of the energy-wavenumber mapping (E.4). We also show that when
solving in dimensionless wavenumber space flc, there are NL number of solutions to
the radioactive problem (E.32). In the case of massive neutral particles (neutrons
and neutrinos) we have

NL =
A

2N⁄ +
Ncÿ

c=1

¸c

B

◊ 2(NETc ”=ETcÕ
≠1) (E.42)

where NETc ”=ETcÕ
denotes the number of channels with di�erent thresholds. For

charged particles, there is an infinite number (countable) of radioactive poles: NL =
Œ. In essence, this is because for each di�erent sheet of the energy-wavenumber
mapping (E.4), of which there are 2(NETc ”=ETcÕ

≠1), the R-matrix contributes 2N⁄ poles
in wavenumber space (each resonance energy E⁄ yielding two flc(E) space poles),
and in addition each pole of the reduced logarithmic derivative Lc(flc) yields another
radioactive pole in flc space (c.f. theorem 1 of [125] for more detailed discussion).

Be that as it may, radioactive poles usually have the following characteristics (as
can be observed in table E.1 for the case of xenon 134Xe as well as in TABLE I of
[125]): for each resonance energy E⁄ there are two radioactive poles nearby, usually on
opposite sheets, close to but not exactly the specular symmetric of one another across
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the imaginary axis in wavenumber flc space (i.e. near opposite complex conjugates);
moreover, for each root Ên of the outgoing function Oc(flc), there is a radioactive pole
nearby. Often, only one of the two radioactive poles Ej close to the E⁄ is responsible
for most of the cross section resonance behavior, while all the other radioactive poles
are more akin to non-resonant “background levels”, though they are still necessary
to fully describe the cross section.

A critical property of the radioactive poles Ej is that these are exactly all the poles
of the scattering matrix U (E) (proof in theorem 3 of [125]). From decomposition
(E.23), this entails that the transmission matrix readily admits the following Mittag-
Le�er expansion:

T (E) =
W(E)

≠i
ÿ

jØ1

·j·j
T

E ≠ Ej
+ HolT (E) (E.43)

where the residue width vectors are obtained by evaluating the functions in (E.23) at
the pole values:

·j = H+

≠1 (Ej) fl1/2 (Ej) rj (E.44)

E.3.3 Transmission matrix T and resonance matrix Z expan-
sions in square root of energy z-space

Though energy E-space expansion (E.43) is correct, we will nonetheless also introduce
expansions in the square root of energy z-space:

z ,
Ô

E (E.45)

We do this to better express the behavior of massive particles (not massless photons)
near the zero-energy threshold, and in order to perform analytic Doppler broadening
of massive particles. Indeed, for the zero threshold ETc = 0, the wavenumber of
massive particles is simply proportional to the square root of energy: k Ã z. Hwang
noticed this entails a remarkable property: for neutral particles without threshold,
the Kapur-Peierls operator RL(z) is a rational function of z (c.f. [190]), and therefore
the radioactive problem (E.32) can be completely solved using polynomial root finders
(c.f. section E.3.6).

The general Mittag-Le�er expansion (E.41) of the Kapur-Peierls operator in z-
space is

RL(z) =
W(z)

ÿ

jØ1

ŸjŸj
T

z ≠ pj
+ HolRL(z) (E.46)

where square root of energy z-space poles are

pj ,
Ò

Ej (E.47)

and the residue widths are connected to the poles as:

Ÿj , rj
Ô2pj

(E.48)
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This is readily obtained from previous E-space expressions using partial fraction
decomposition of simple poles:

rjrj
T

E ≠ Ej
=

rjrj
T

2

Ô
Ej

Ô
E ≠

Ò
Ej

+
≠

rjrj
T

2

Ô
Ej

Ô
E +

Ò
Ej

The poles pj come in opposite pairs (p+

j = +
Ò

Ej and p≠
j = ≠

Ò
Ej), and the cor-

responding residue widths are thus rotated by ±fi/2 (multiplication by ±i): Ÿj
≠ ,

rj/
Ò

2p≠
j = ≠irj/

Ò
2p+

j . The same rj is shared by both poles p+

j and p≠
j , so that

Ÿj
≠Ÿj

≠T = ≠Ÿj
+Ÿj

+T.

Alternatively, Mittag Le�er expansion (E.46) can also be directly obtained by
solving the radioactive problem in square-root-of-energy z space:

R≠1

L (z)
---
z=pj

Ÿj = 0 (E.49)

where the residue widths vectors {Ÿj} are subject to the following normalization:

Ÿj
T

Q

a ˆR≠1

L

ˆz

-----
z=pj

R

b Ÿj = 1 (E.50)

which yields relationship (E.48) (from z =
Ô

E), and can be calculated directly using

ˆR≠1

L

ˆz

-----
z=pj

= ˆR≠1

ˆz
(pj) ≠

ˆL

ˆz
(pj) (E.51)

where R is invertible at z-space radioactive poles {pj} as

ˆR≠1

ˆz
(z) = ≠2zR≠1“T

1
e ≠ z2I

2≠2

“R≠1 (E.52)

and where the partial derivatives ˆL
ˆz (pj) can be derived from the Mittag-Le�er ex-

pansion of L(fl) established in theorem 1 of [127]:

ˆL

ˆz
=

S

Ui +
ÿ

nØ1

1
fl ≠ Ên

+ fl

(fl ≠ Ên)2

T

V ˆfl

ˆz
(E.53)

where {Ên} are the roots of the Oc(fl) outgoing wavefunctions, also roots of H+c(fl)
from (E.12): ’n, H+c(Ên) = 0. For neutral particles, there are a finite number of
such roots, reported in TABLE I of [127].

Equivalently, we can solve for the level matrix A radioactive problem in z-space:

A≠1(z)
---
z=pj

–j = 0 (E.54)
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with eigenvectors –j , ajÔ
2pj

subject to normalization:

–j
T

Q

a ˆA≠1

ˆz

-----
z=pj

R

b –j = 1 (E.55)

which is readily calculable from

ˆA≠1

ˆz
(pj) = ≠2zI ≠ “

ˆL

ˆz
(pj)“T (E.56)

The level-matrix residues widths vectors are then linked to the radioactive widths by
the following relation:

Ÿj = “T–j (E.57)

Regardless of the method deployed to obtain (E.46), the latter entails the following
Mittag Le�er expansion for resonance matrix Z

Z(z) =
W(z)

ÿ

jØ1

’j’j
T

z ≠ pj
+ HolZ(z) (E.58)

Where the residue widths are connected to the poles as:

’j = ·j
Ô2pj

= H+

≠1 (pj) fl1/2 (pj) Ÿj

= H+

≠1 (pj) fl1/2 (pj)
rj

Ô2pj

(E.59)

This links back to the transmission matrix Mittag Le�er expansion (E.43), which in
z-space entails:

T (z) =
W(z)

≠i
ÿ

jØ1

’j’j
T

z ≠ pj
+ HolT (z) (E.60)

This transmission matrix Mittag Le�er expansion (E.60) corresponds to the Humblet-
Rosenfeld scattering matrix expansion in equation (1.54) section I.1.4, p.538, of [185],
where they denote the holomorphic (entire) part HolT (z) as Q¸(k). As they discuss,
the natural variable for this non-resonant part is indeed the wavenumber kc. Equa-
tions (E.60) and (E.59) thus explicitly link the residues of the Humblet-Rosenfeld
expansions to the Wigner-Eisenbud R-matrix parameters. Unfortunately, there ex-
ists no simple general method to express the expansion coe�cients of this entire part
directly from R-matrix parameters.

E.3.4 Hwang’s conjugate continuation
The Windowed Multipole Representation is essentially an analytic continuation of R-
matrix cross sections into the complex plane, in z-space. R-matrix cross sections (E.5)
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and (E.10) are the square moduli and real parts of the transmission matrix TccÕ(E)
and the wavenumber kc(E), yielding real cross sections. Yet one can analytically
continue these cross sections by performing the conjugate continuation of all R-matrix
operators, which consists of taking the value of the modulus and real parts on the
real axis z œ R, and continuing them to the complex plane. This was the key insight
introduced by Hwang in [190].

For any meromorphic function f(z), we define its continued conjugate f ú(z) as:

f ú(z) , f(zú)ú (E.61)

As such, the continued conjugate real part is defined as

Ÿcont [f(z)] , f(z) + f ú(z)
2 (E.62)

and the continued conjugate square modulus as

|f |
2

cont
(z) , f(z) ◊ f ú(z) (E.63)

These are meromorphic complex functions: Ÿcont [f(z)] œ C and |f |
2

cont
(z) œ C. They

are the analytic continuation to complex z œ C of the real part and the square
modulus, which they match on the real axis z œ R. Consider a meromorphic function
f(z) with simple poles and Mittag-Le�er expansion

f(z) =
W(z)

ÿ

jØ1

rj

z ≠ pj
+

ÿ

nØ0

anzn (E.64)

Its continued conjugate square modulus is thus

|f |
2

cont
(z) =

W(z)

Q

a
ÿ
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(E.65)

The unicity of poles and residues entails all the poles of |f |
2

cont
(z) are the poles pj of

f(z) and their complex conjugate pú
j . By evaluating the corresponding residues, one

finds the following Mittag-Le�er expansion for the conjugate continuation:

|f |
2

cont
(z) =

W(z)

ÿ

jØ1

rj f(pú
j)ú

z ≠ pj
+

rú
j f(pú
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cnzn (E.66)

where

cn , Ÿ

S

U
nÿ

k=0

an≠kaú
k + 2

ÿ

jØ1

rj

Ë
f(pú

j)ú
≠ aú

n

È

pj

T

V (E.67)

which can be obtained by developing (E.65) and applying Cauchy’s residues theorem
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to (E.66) with contour integrations of |f |2(z)

zn+1 . In (E.66), one recognizes the remarkable
property that the continued square modulus can be expressed as a continued conjugate
real part

|f |
2

cont
(z) =

W(z)

Ÿcont

S

U
ÿ

jØ1

Ârj

z ≠ pj
+

ÿ

nØ0

cnzn

T

V (E.68)

with
Ârj , 2 rj f(pú

j)ú (E.69)

Therefore, by using Hwang’s conjugate continuation, one can express all R-matrix
cross sections as the continued conjugate real part of conjugate continued R-matrix
operators: this is the key to converting R-matrix cross sections to Windowed Multi-
pole Representation.

E.3.5 Windowed Multipole Representation

The Windowed Multipole Representation is the analytic continuation of the pole ex-
pansion of R-matrix cross sections. For open channels (energies above thresholds
E > ETc), the energy dependence of R-matrix cross sections – described by equations
(E.5) and (E.10) – is expanded along the real energy axis E œ R, and the corre-
sponding expressions are analytically continued to all complex energies E œ C. The
Windowed Multipole Representation can thus be seen as a generalization of R-matrix
cross sections to the complex plane, for open channels, as shown in figure E-1. As
such, windowed multipole cross sections only match R-matrix cross sections for real
energies above the channel threshold: E > ETc .

Windowed Pole Representation: Transmission matrix approach

The most straightforward approach is to consider the transmission matrix T (E)
Mittag-Le�er expansion (E.43), and apply Hwang’s conjugate continuation in en-
ergy space, which yields:

|T |
2

cont
(E) =

W(E)

Ÿcont

S

U
ÿ

jØ1

≠iÂ·j

E ≠ Ej
+ Hol|T |2(E)

T

V (E.70)

where we use the Hadamard product “ ¶ ” to express the residues as:

Â·j , 2 ·j·j
T

¶ T
1
E

ú
j

2ú
(E.71)

Thus, for real energies with open channels, the partial and total cross sections can be
expressed respectively as

‡ccÕ(E) =
W(E)

4figJfi
c

|kc(E)|2
Ÿcont

S

U
ÿ

jØ1

≠i [ Â·j ]ccÕ

E ≠ Ej
+ Hol|T |2(E)
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V (E.72)
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and

‡c(E) =
W(E)

4figJfi
c

|kc(E)|2
Ÿcont
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jØ1
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Ë
·j·j

T
È

cc

E ≠ Ej
+ HolT (E)

T

V (E.73)

Expressions (E.72) and (E.73) are general, they apply to any cross section described
by R-matrix theory (be it massless photons or massive charged or neutral particle
channels). They are local expressions, only valid on the neighborhood W(E) of any
given energy E away from the thresholds (branch points ETc of (E.4) mapping),
though this neighborhood can be as large as the distance between thresholds (for
more discussion on this point, we refer to the penultimate paragraph of section II.D
in [125]). They reflect the fact that two physical phenomena dictate the behavior of
R-matrix cross sections: resonances and thresholds.

Away from threshold energies ETc – the branch-points of wavenumber-energy map-
ping (E.4) – each resonance can be accurately represented by a Single-Level Breit-
Wigner (SLBW) profile in energy space E, that is the combination of symmetric
and anti-symmetric Lorenztian functions. These are made evident by recalling defi-
nition (E.40), which splits the radioactive poles into real and imaginary components
Ej , Ej ≠ i�j

2
, and noticing that each resonance of the Windowed Multipole Repre-

sentation (E.72) can be expressed as:

Ÿ

C
a + ib
E ≠ Ej

D

= a
(E ≠ Ej)

(E ≠ Ej)2 + �
2
j

4

+ b
�j

2

(E ≠ Ej)2 + �
2
j

4

(E.74)

The sum of resonances is complemented by the holomorphic background term
HolT , and modulated by the 1

|kc(E)|2 term. This illustrates the fact that the wavenum-
ber kc dominates the behavior of R-matrix cross sections near thresholds ETc , where
kc æ 0. Moreover, the holomorphic (entire) part is itself more naturally described as
a function of the wavenumber kc rather then the energy: HolT (k), as explained by
Humblet and Rosenfeld through equations (1.64) and (1.67) section I.1.4, p.539-540,
of [185]. The threshold behavior of R-matrix cross sections was detailed by Wigner in
[322]. Depending on the angular momenta ¸ and ¸Õ and the charges of the particles,
reaction and scattering cross sections either: a) have threshold behaviors in powers
of kN(¸,¸Õ

)

c , where N(¸, ¸Õ) œ Z is some integer depending on the di�erent angular
momenta, but never smaller than negative two (N(¸, ¸Õ) Ø ≠2); or b) in some cases
of Coulomb repulsion, modulate this with an exponential decay Ã exp(≠a/kc) with
some real positive a > 0 (see section III of [322] for more details). This means we can
represent in all generality the threshold behavior as a Laurent expansion around the
threshold: ‡ccÕ ≥

kcæ0

q
nØ≠2 ankn

c .

By thus expressing the threshold behavior explicitly, we can constitute the Win-
dowed Multipole Representation of R-matrix cross sections:
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W(E)

ÿ
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n kn
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Ÿcont
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and

‡c(E) ,
W(E)
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nkn

c (E) + 1
E

Ÿcont
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E ≠ Ej
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V (E.76)

where the residues are obtained by evaluating at the pole values as:

ÂRccÕ

j , ≠i 4figJfi
c
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|kc(Ej)|2
[ Â·j ]ccÕ (E.77)

and
Rc

j , ≠i 4figJfi
c
Ej

|kc(Ej)|2
Ë
·j·j

T
È

cc
(E.78)

Equivalently, the Windowed Multipoles Representation can be carried out in
square root of energy z-space, in what constitutes theorem 15.

Theorem 15. Windowed Multipole Formalism
Let Ej be the energy-space poles of the Kapur-Peierls operator RL, defined in (E.15),
and let z ,

Ô
E be the square root of energy. The energy dependence of R-matrix

cross sections can be exactly expressed as a Laurent expansion in wavenumber kc, of
order no less than k≠2

c , plus the conjugate continuation real part (E.62) of a sum
of energy-space resonances with poles Ej, which in z-space yield pairs of opposite
poles pj = ±

Ò
Ej, so that partial cross sections (E.5) take the Windowed Multipole

Representation:
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Ÿcont
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and the total cross section (E.10) takes the form:
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where the partial residues can be constructed from R-matrix parameters as:
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j , ≠i
4figJfi
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and the total residues as
rc

j , ≠i
4figJfi

c
p2

j

|kc(pj)|2
Ë
’j’j

T
È

cc
(E.82)

where the ’j residue widths vectors are linked to the Kapur-Peierls operator RL poles
and residues through relations (E.59).

Alternatively, the residues can be numerically obtained through Cauchy’s residues
theorem contour integrals

ÂrccÕ

j = 1
ifi

j

Cpj

z2‡ccÕ(z)dz (E.83)
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where Cpj designates a positively oriented simple closed contour containing only pole
pj. For instance, if Cpj is a circle of small radius ‘ > 0 around pole pj, this yields

rc
j = ‘

fi

⁄
2fi

◊=0

1
pj + ‘ei◊

2
2

‡c

1
pj + ‘ei◊

2
ei◊d◊ (E.84)

In order to perform these contour integrals, R-matrix cross sections (E.5) and (E.10)
must have been meromorphically continued to complex energies by means of conjugate
continuations (E.63) and (E.62) respectively.

Therefore, by solving the radioactive problem (E.32) – or level-matrix one (E.36)
– to find the poles Ej and residues rj of the Kapur-Peierls operator (respectively pj

and Ÿj from (E.50) or level-matrix equivalent (E.54) in z-space), we can compute the
transmission matrix residues ·j from (E.44) and the conjugate continuation ones Â·j

from (E.71) (respectively ’j from (E.59) in z-space), to find the poles and residues
of the Windowed Multipole Representation of R-matrix cross sections, through equa-
tions (E.75), (E.76), (E.77), and (E.78); or respectively equations (E.79), (E.80),
(E.81), and (E.82) for z-space.

Windowed Pole Representation: potential and resonance matrices ap-
proach

The transmission matrix approach is exact, but it has three drawbacks: 1) it is not
simple to interpret physically; 2) it does not give us information on the “background”
behavior (non-resonant Laurent expansion q

nØ≠2 ankn
c ); 3) it can be numerically

unstable. Decomposition (E.23) of the transmission matrix helps us separate the
cross sections into parts we can interpret physically: the potential cross section ‡pot

c

has no resonances (E.26); the reaction cross section ‡react

ccÕ has all the resonances
(E.30); and both the partial cross section ‡ccÕ from (E.31) and the total cross section
‡c from (E.86) also have interference resonances from the real part of the resonance
matrix Z. This means all the resonances of R-matrix cross sections can be recovered
from the resonance matrix Z Mittag Le�er expansion (E.58). Applying Hwang’s
conjugate continuation method to construct the Windowed Multipole Representation
then yields:

• Potential scattering cross section (of channel c):

‡pot

c (E) =
W(z)

4figJfi
c

Ÿ [iDc]
|kc|

2
(E.85)

• Total cross section (of channel c):

‡c(z) ,
W(z)

‡pot

c (z) + 1
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Ÿcont
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where the total residues rc
j are defined in (E.82).
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(a) 238U first resonances (3 s-waves and
4 p-waves).

(b) 238U windowed multipole cross section sur-
face.

(c) 238U first s-wave resonance peak.

Figure E-1: Windowed multipole representation of R-matrix cross sections: 238U total
cross section (minus potential scattering) meromorphic continuation into the complex z-
plane, for z = ±

Ô
E in (

Ô
eV). This surface’s crest and thalweg line along the real axis is

the R-matrix cross section above the zero threshold. FIG. E-1(b) shows the resonance peaks
are the saddle points between the complex conjugate poles. Negative z in FIG.E-1(b) are on
the shadow branch {E, ≠} of mapping (E.2). The black circle in FIG.E-1(c) represents the
contour integrals around the poles of the complex cross section which enable both conversion
to windowed multipole covariances (theorem 16) and analytic Doppler broadening (theorem
17).

• Self-scattering cross section (of channel c):
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with scattering residues:
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• Interference cross section (of channel c):
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with interference residues:

intrc
j , ≠i

4figJfi
c
p2

j

|kc(pj)|2
Ë
’j’j

T
¶ Y

1
pú

j

2úÈ

ccÕ
”ccÕ (E.90)

• Reaction cross section (from channel c to cÕ):
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with reaction residues:
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• Partial (angle-integrated) cross section (E.31) (from channel c to cÕ):

‡ccÕ(E) =
3

‡pot

c (E) + ‡scat

c (E)
4

”ccÕ + ‡react

ccÕ (E)

=
3

‡tot

c (E) ≠ ‡int

c (E)
4
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Noticing that ≠iT ú = Zú
≠Dú, this entails the partial residues ÂrccÕ

j from (E.81)
are connected to the total residues rc

j from (E.82), the reaction residues reactrccÕ
j

from (E.92), the scattering residues scatrc
j from (E.88), and the interference

residues intrc
j from (E.90), according to:

ÂrccÕ

j = reactrccÕ

j +scat rc
j

= reactrccÕ

j + rc
j ≠

int rc
j

(E.93)

Total cross section decomposition (E.86) is simpler to interpret physically than
expression (E.82) directly derived from the transmission matrix, because the potential
cross section ‡pot

c is extracted from the background Laurent expansion: q
nØ≠2 ac

nzn.
The same holds for the partial cross section (E.79), where the residues decomposition
(E.93) untangles the direct expression (E.81) from the transmission matrix approach.
Though mathematically equivalent, some of these approaches may be more numeri-
cally stable than others.

Importantly, we do not need the poles of the potential matrix D to express the
partial and total cross sections. This is because any such poles (the zeros of H+)
cancel out of the scattering matrix (E.14), and therefore of the cross sections. Before
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we proved this result in theorem 3 of [125], Hwang had to explicitly decompose the
potential cross section ‡pot

c into poles and residues in eq. (1) and (2) of [188] (also
in eq. (3) and (4) of [189]), with severe numerical instability implications which
he attempted to remedy by introducing pseudo-poles in [187]. We now known that
under proper analytic continuation, these spurious poles have zero residues in the
transmission matrix, and thus cancel out of the partial and total cross sections.

Pole expansion: R-matrix construct or rational fit

So far, we have constructed the transmission matrix Mittag-Le�er expansion (E.60)
by first solving the radioactive states problem (E.49) and then obtaining the transmis-
sion matrix residues from those of the Kapur-Peierls operator, through (E.59). One
could dispense of the intermediary steps and find the radioactive poles {pj} directly
through the transmission matrix by solving the generalized eigenvalue problem

T ≠1(z)
---
z=pj

’j = 0 (E.94)

and subjecting the residue widths vectors {’j} to the following normalization:

’j
T

Q

a ˆT ≠1

ˆz

-----
z=pj

R

b ’j = i (E.95)

Though mathematically equivalent, this all-in-one approach can nonetheless be prone
to numerical instabilities. Which leads us to the question of how to numerically
solve the generalized eigenproblems - either the radioactive ones (E.49) or directly
(E.94). On this issue, we direct the reader to the section of theorem 1 in [125] for a
more detailed discussion, in particular on the multi-sheeted nature of the Riemann
mapping (E.4), which can complicate the search for solutions. We will here sim-
ply state that these are nonlinear eigenvalue problems, and general algorithms to
solve them can be found in the Handbook of Linear Algebra [319], chapter 115. One
such algorithm is the Rayleigh-quotient method, used by Brune to find alternative
parameters in [92]. Alternatively, it is sometimes more computationally advanta-
geous to first find the radioactive poles {pj} directly by solving the channel determi-
nant problem, det

3
R≠1

L (z)
---
z=pj

4
= 0, or the corresponding level determinant one,

det
3

A≠1(z)
---
z=pj

4
= 0, and to second solve the associated eigenvalue problem (which

is now linear), or even to directly evaluate the residues at the found poles by con-
tour integrals (E.83) and (E.84). Such methods tailored to find all the roots of the
radioactive problem where introduced in [131], in section 5 of [299], or in equations
(200) and (204) of [149]. Also, solving the Kapur Peierls radioactive problem (E.49)
will be advantageous over solving the level matrix one (E.54) when the number of
levels N⁄ far exceeds the number of channels Nc, and conversely.

Rather than starting from the Wigner-Eisenbud R-matrix resonance parameters;
ETc , ac, Bc, E⁄, “⁄,c

<
to construct the Windowed Multipole Representation poles pj
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and residues ÂrccÕ
j and rc

j as (E.81) and (E.82), an alternative approach is to simply
curve-fit the point-wise energy-dependence of nuclear cross sections ‡cc(E) with the
corresponding Windowed Multipole Representation forms (E.79) and (E.80). For
instance, this approach was successfully deployed in [222] and in [262], where using the
“black-box” rational function approximating algorithm called “vector-fitting” [161,
160] led to finding the exact resonant radioactive poles {pj} of 16O, for which no
resonance parameters were published [262]. This conversion of point-wise R-matrix
cross sections into windowed multipoles representation approach was generalized to
most of the nuclides found in the ENDF/B-VII.1 nuclear data library [225, 223],
and could potentially be facilitated by recent advances in rational approximation
algorithms – such as RKFIT [73] or AAA [246].

Windowing process: Laurent background fit

Regardless of the method deployed to find the poles
Ó
pj

Ô
and their corresponding

residues, there exists no general way to construct the thresholds Laurent expansions,q
nØ≠2 ankc(z)n, from the R-matrix parameters. One must thus select an energy

window W(E) and curve fit the background Laurent expansion q
nØ≠2 ankc(z)n by

subtracting the resonances, that is the poles contribution q
jœW(E)

rc
j

z≠pj
. Nonetheless,

there is a di�culty as to which such poles one should include explicitly into the
window. It is not necessary to explicitly call all the poles

Ó
pj

Ô
for each window W(E),

rather the contribution of far-away poles is best curve-fitted and included in the
Laurent expansion q

nØ≠2 ankc(z)n. The criterion used to decide which poles {pj} to
include within each window is to select an accuracy bound for the Doppler broadened
cross section, and include in window W(E) all the poles whose Doppler broadened
resonances have a significant impact on the cross section within that window. Thus,
the greater the maximum temperature, the more far-away poles have to be included
to compute the cross section within window W(E). Once the contributing poles (after
Doppler broadening) have been found, we subtract them from the zero-kelvin cross
sections and curve-fit the di�erence with a Laurent-expansion q

nØ≠2 ankc(z)n. More
detailed explanations on this windowing process can be found in [146, 199, 197].

Though the background Laurent expansion must be numerically fitted, and that
the resonant poles themselves may be accurately found using rational approximation
“black-box” algorithms, it is critical to understand that the Windowed Multipole
Representation (E.79) and (E.80) is not a curve-fitting approximation: this is a rigor-
ous representation, mathematically and physically equivalent to the exact R-matrix
theory cross sections (for real energies in open channels), or the Humblet-Rosenfeld
pole expansions in wavenumber space. This can be tested by curve-fitting in E and
kc space, both the resonances and the background Laurent expansions. One will no-
tice that the E-space Breit-Wigner profiles (E.74) capture exactly one-for-one the
resonance behavior. However, the threshold behaviors are not well represented by
the E variable: while few coe�cients su�ce to reach high accuracy using Laurent
expansions in kc (usually no more than a≠2, a≠1, a0, and a1), many more expansion
coe�cients are necessary when fitting the background with Laurent expansions with
powers of E.
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Finally, remember that for non-massless particles, wavenumber-energy mapping
(E.2) entails that: k2

c Ã z2
≠ETc . Thus, for zero-threshold reactions (ETc = 0), we have

a direct proportionality kc Ã z. In order to achieve closed-form Doppler-broadening
expressions, we may be willing to sacrifice the physically accurate Laurent expansion
in kc, and replace it with an approximation in powers of z – that is a Laurent expan-
sion q

nØ≠2 anzn – plus rational Padé-type approximations with simple poles – that is
adding non-physical pseudo-poles – so as to approximate the exact threshold behaviorq

nØ≠2 ankc(z)n with powers of z and pseudo-poles q
nØ≠2

Âanzn + q
nØ1

Ârn

z≠Âpn
. Runge’s

theorem guarantees such approximation can always be performed to high-accuracy,
though this is often costly, as many more pseudo-poles and Laurent expansion coef-
ficients have to be introduced. Nonetheless, this approximation will have advantages
when Doppler-broadening massive (not massless photons) particles (both charged and
neutral), and it also provides a unified Windowed Multipole formalism:
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Ÿcont
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T
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In addition to the residues (E.83) and (E.84) of theorem 15, one can now also obtain
the Laurent expansion coe�cients by means of contour integrals:
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(E.97)

where C0 designates a positively oriented simple closed contour containing only pole
0, for instance a circle centered at zero with small radius ‘ > 0. Relations (E.97) are
obtained by performing partial fraction decomposition:

1
z2

rj/2
z ≠ pj

= rj/2
p2

j

C
1

z ≠ pj
≠

1
z

≠
pj

z2

D

Therefore, converting R-matrix cross sections to the unified Windowed Multipole
Representation formalism (E.96) is conceptually simple: it su�ces to solve for the
z-space poles {pj} of the A level matrix (E.18) – that is radioactive problem (E.54)
– and then perform contour integrals (E.84), (E.83) and (E.97) on the continued
conjugate (E.61) R-matrix cross sections (E.10) and (E.5) to find their residues and
Laurent expansion coe�cients.

Henceforth, we will only treat this unified Windowed Multipole Representation
formalism (E.96): it is physically exact for any R-matrix cross section of zero-
threshold, and an approximation of the exact Windowed Multipole representations
(E.79) and (E.80) only in windows that include non-zero thresholds.
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E.3.6 Hwang’s special case:
zero-threshold neutron cross sections

There is one special case where it is possible to fully and explicitly convert R-matrix
parameters into their exact windowed multipole representation (E.96), without any
need of curve-fitting or truncating the Laurent expansion: this is the case of neutron
cross sections with no thresholds, which Hwang first investigated in [190]. In this
case, because all channels have zero energy threshold (ETc = 0), every channel’s
wavenumber is proportional to the square root of energy, kc Ã z, we can therefore
write the dimensionless wavenumber as:

flc = fl0c z

fl0c , ac

Û
2mc,1mc,2

(mc,1 + mc,2) ~2

(E.98)

Moreover, there are no branch-points to mapping (E.2) other than zero, so that the
Windowed Multipole Representation (E.96) is exact and valid everywhere for positive
energies E > 0: the Laurent development q

nØ≠2 anzn at zero accurately describes
the threshold behavior (as there is no exponential dampening from charges). Because
there are no charges, the dimensionless Coulomb field parameter (E.9) is null, ÷c = 0,
so that the di�erence Êc , ‡¸c(÷c) ≠ ‡0(÷c) in Coulomb phase shift (E.8) is such that
we always have eiÊc = 1. From this, definitions (E.12) entail that the incoming and
outgoing wavefunctions are then simply the H≠ and H+ combination of regular and
irregular Bessel functions:

O(fl) = H+(fl) = G(fl) + iF (fl) = fl (≠y¸(fl) + ij¸(fl))
I(fl) = H≠(fl) = G(fl) ≠ iF (fl) = fl (≠y¸(fl) ≠ ij¸(fl)) (E.99)

where j¸(fl) is the spherical Bessel function of the first kind, and y¸(fl) is the spherical
Bessel function of the second kind, respectively defined in chapter 10, eq.(10.47.3)
and eq.(10.47.4) of [250], or in chapter 10, eq.(10.1.1) of Abramowitz & Stegun [51].
This in turn entails the remarkable property that the reduced logarithmic derivative
(E.17) of the outgoing-wave function L(fl) is now a rational function (that is the ratio
of polynomials) in fl, whose expressions, along with those of O(fl), are reported in
TABLE I of [127], and we refer to section II.B of [127] for a more detailed description
of these functions.

Solving the radioactive states problem:
polynomial rootfinding

Crucially, in this special case of only neutron channels without threshold, the fact that
L(fl) is now a rational function in z entails that (E.15), the Kapur-Peierls operator
RL, is also a rational function in z-space. Therefore, the radioactive problem (E.49)
itself becomes that of finding the roots of a rational function. We solve the radioactive
problem through the level matrix approach (E.54), where the residue width vectors
are normalized as (E.55), which we can calculate through (E.56) where the partial
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derivative (E.53) is now simply ˆfl
ˆz = fl0c from (E.98). The key is now to find the

radioactive poles
Ó
pj

Ô
in z-space. We can do so by solving for the roots of the inverse

level matrix (E.18) determinant: det
3

A≠1(z)
---
z=pj

4
= 0 . Since this determinant is

a rational function in z, one can find all its zeros by expressing it in irreducible form,
and solve for all the roots of the numerator polynomial. This can be accomplished by
developing the determinant and applying lemma 3 of [127] on diagonal divisibility and
capped multiplicities, in an analogous fashion as in the proof of theorem 3 in [127],
to which we point for more detailed explanations. More precisely, one can see in
TABLE I of [127] that L¸(fl) = u¸+1(fl)

q¸(fl)
is a proper rational function with simple poles,

with a denominator q¸(fl) of degree ¸ and a numerator u¸+1(fl) of degree ¸ + 1. The
polynomial factor Q(z) that makes the denominator of the det

1
A≠1

2
(z) rational

function irreducible can then be found by applying lemma 3 of [127] on diagonal
divisibility and capped multiplicities, yielding

Q(z) ,
NcŸ

c=1

q¸c(z) (E.100)

so that for only neutron channels without thresholds, finding all the radioactive polesÓ
pj

Ô
is akin to solving for all the roots of the following polynomial:

Q(z) det
1
e ≠ z2I ≠ “ (L(z) ≠ B) “T

2---
z=pj

= 0 (E.101)

The degree of this polynomial, and thus the number of (complex) roots
Ó
pj

Ô
, is:

NL = 2N⁄ +
Ncÿ

c=1

¸c (E.102)

which is a particular case of the general number of radioactive poles NL we stated in
(E.42) (and proved in theorem 1 of [125]), but with only one threshold, ETc = 0, so
that the number of di�erent thresholds is one: NETc ”=ETcÕ

= 1.
In the simple case of Multi-Level Breit-Wigner approximation (E.22), the diagonal

level matrix A≠1
MLBW greatly simplifies the radioactive states eigenproblem (E.54):

it is now diagonal and the poles {pj} are the roots of:

E⁄ ≠ p2

j ≠

Ncÿ

c=1

“2

⁄,c (Lc(pj) ≠ Bc) = 0 (E.103)

We then have
Ë
ŸjŸj

T
È

MLBW
= “T

Ë
–j–j

T
È

MLBW
“ where normalization (E.55) entails

Ë
–j–j

T
È

MLBW
= diagN⁄

A
≠1

2pj + qNc
c=1

“2

⁄,c
ˆLc
ˆz (pj)

B

(E.104)

This approach will yield the same results as those in [193].
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Interestingly, besides adding the spurious poles
Ó
Ên

Ô
of the potential cross section

‡pot

c (eq. (1) and (2) of [188] or eq. (3) and (4) of [189]), Hwang also accounted for too
many

Ó
pj

Ô
poles, in eq. (35a) section III.A, p.197 of [190]. This is for two fundamental

reasons: 1) lemma 3 of [127] on diagonal divisibility and capped multiplicities means
Hwang’s q¸(

Ô
E) functions can be taken out of his product in equation (36) of [190];

2) these same q¸(
Ô

E) functions are not the same as our q¸(fl) functions, which are
the denominator of L¸(fl). Instead, Hwang’s q¸(

Ô
E) functions are the denominator

of the penetration P¸(fl) and shift S¸(fl) functions – defined as L¸(fl) = S¸(fl) + iP¸(fl)
in (29) of [127] where a thorough and in-depth study of these functions is undertaken
– and these denominators are di�erent from the denominator of L¸(fl), as we show
in table III of [127]. In essence, this is because by writing L¸(fl) = S¸(fl) + iP¸(fl),
the denominator is brought to its squared modulus: L¸(fl) = u¸+1(fl) qú

¸ (fl)

q¸(fl) qú
¸ (fl)

, which is no
longer its irreducible form, and which therefore doubles the number of L¸(fl) poles
by introducing superfluous complex conjugate poles from qú

¸ (fl). These superfluous
poles have always been overlooked until now, recent examples are eq. (9) and (10) of
[193], eq. (I.7.28) of [?], or eq. (2.29) p.75 of [148], where they count them to find
NL = 2N⁄ + 2 qNc

c=1
¸c, which is actually the number of alternative analytic poles NS

we establish in eq. (49) theorem 3 of [127], instead of the correct number (E.102) of
radioactive poles NL = 2N⁄ + qNc

c=1
¸c we demonstrated in theorem 1 of [125].

Because polynomial root-finding is no simple endeavor – see [131] or [148] for
methods applied to the radioactive problem (E.101) and see [324, 134, 50, 266, 291,
158, 252, 253, 232, 254, 139, 256, 238, 255] for more general methods – searching for the
wrong number of poles (in particular too many) can have dire numerical consequences.
For instance, Hwang explains in [190] how he had to go to quadruple precision in this
code “WHOPPER”. He was finding the poles one by one using a Newton-Raphson
method, and then removing them to search for the next pole. But once he had
eliminated all the true poles, he was still searching for additional ones which did not
actually exist. Numerically, though, one can never fully cancel out a pole, and thus
will always find fictitious poles in the immediate vicinity of the cancelled ones. This
is exactly what happened to Hwang, and why he had many spurious poles clustered
around the non-resonant N⁄ ones. Hence knowing the correct number NL of poles
(E.102) – and more generally (E.42) – is crucial in practice.

Exact multipole representations

Hwang also spent a lot of subsequent work performing a pole expansion of the poten-
tial cross section ‡pot

c as well as of the energy dependence he found in his scattering
residues, in eq. (1) and (2) of [188] or eq. (3) and (4) of [189]. We recall that
though the potential cross section does have poles – roots

Ó
Ên

Ô
of the H+(fl) function

reported in TABLE I of [127] or expressed by radicals in table II of [127] – these
poles actually have zero residues in the scattering matrix, and thus cancel out of the
partial and total cross sections, as we prove in theorem 3 of [125]. It will thus su�ce
to write that for the case of neutron cross sections with zero threshold, (E.25) and
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(E.26) entail the potential cross section takes the form:

‡pot

c (z) = 4fia2

c

gJfi
c

fl0
2
c

sin2 „c(z)
z2

= 4fia2

c

gJfi
c

fl0
2
c

1
z2

Ÿcont

C
1 ≠ e≠2i„c(z)

2

D

(E.105)

With all this in mind, we can now finish the explicit Windowed Multipole Rep-
resentation of no-threshold neutral particles cross sections. Upon finding the NL

roots
Ó
pj

Ô
of the polynomial radioactive problem (E.101), we can then solve for the

nullspace of the inverse level matrix (which we here assume is an eigenline and we
refer to [125] for the degenerate cases), and notice that that the degrees of the level
matrix components A is at most -2, which leads to the the following, exact, partial
fraction decomposition of the level matrix and of the Kapur-Peierls operator:

A(z)=
NLÿ

j=1

–j–j
T

z ≠ pj

Ÿj,“T–j

RL(z)=
NLÿ

j=1

ŸjŸj
T

z ≠ pj

(E.106)

We can then build a pole expansion of the resonance matrix Z from (E.23) by noticing
that the fl1/2(z) =

Ô
zfl0

1/2 lead to an additional z term for each residue, and that
the degrees of the numerator and denominator of z times the level matrix, zA(z), is
still negative (degree of at most -1), guaranteeing the level matrix is a proper rational
fraction with simple poles in z-space:

fl
1
2 RLfl

1
2 (z)=

NLÿ

j=1

pjfl0

1
2 ŸjŸj

Tfl0

1
2

z ≠ pj
(E.107)

This has as consequence the remarkable property that for zero-threshold neutral
cross sections, the z-space radioactive squared widths ŸjŸj

T (rank-one residues of
the Kapur-Peierls operator at poles pj) add up to nullity:

NLÿ

j=1

ŸjŸj
T = 0 (E.108)

From (E.23), we therefore obtain the following expression for the resonance matrix:

Z(z) = H+

≠1(z)
NLÿ

j=1

pjfl0

1
2 ŸjŸj

Tfl0

1
2

z ≠ pj
H+

≠1(z) (E.109)

Where we deliberately left the energy dependence of H+

≠1(z), and recall that for
neutral particles H+(fl) = O(fl). Polar decomposition (E.13) entails:H+

≠1

¸ (fl) =
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---d≠1

¸ (fl)
--- e≠i„¸(fl) = e≠ifl d≠1

¸ (fl), which is Hwang’s notation in eq (3) of [189]. A closer
look at the last column of TABLE I of [127] shows that d≠1

¸ (fl) is the rational function
of degree zero (that is a proper rational fraction plus a constant) with ¸ poles – the
roots

Ó
Ên

Ô
– that is the square root of that which Hwang identified in eq. (1) of [188].

Careful analysis of this functions, using TABLE I of [127] and conjugate continuation
definitions (E.66), yields the following expressions:

e≠2i„c(z)=e≠2iflc(z)
d≠1

¸c
(z)

d≠1

¸c

ú(z)
= Yc(flc(z))

d¸(fl)=ei¸ fi
2

fl¸

r¸
n=1

(fl ≠ Ên)
d≠1

¸ (fl)
d≠1

¸
ú(fl)

=(≠1)¸
Ÿ̧

n=1

A
fl ≠ Êú

n

fl ≠ Ên

B

|d¸|
≠2

cont
(fl)= fl2¸

r¸
n=1

(fl ≠ Ên) (fl ≠ Êú
n)

(E.110)

The diagonal elements of (E.109) are therefore exactly:

Zcc(z) = |d¸c|
≠2

cont
(z)e≠2i„c(z)

NLÿ

j=1

fl0cpj

Ë
ŸjŸj

T
È

cc

z ≠ pj
(E.111)

which, upon partial fraction decomposition, yields the Hwang multipole representa-
tion [190]:

‡c(z) = ‡pot

c (z) + ‡Hwang

c (z)

+ 1
z2

Ÿcont

S

U≠i e≠2i„c(z)

NLÿ

j=1

Hwangrc
j

z ≠ pj

T

V

Hwangrc
j , 4fia2

c

gJfi
c

fl0
2
c

|d¸c|
≠2

cont
(pj) fl0cpj

Ë
ŸjŸj

T
È

cc

‡Hwang

c (z) , 4fia2

c

gJfi
c

fl0
2
c

1
z2

Ÿ

Ë
≠i e≠2i„c(z)�(z)

È

�(z) ,
¸cÿ

n=1

S

U
�n

Ë
fl

1
2 RLfl

1
2
È

cc

1
Ên
fl0

2

fl ≠ Ên

+
�ú

n

Ë
fl

1
2 RLfl

1
2
È

cc

1
Êú

n
fl0

2

fl ≠ Êú
n

T

V

�n , Ê2¸c
nr¸c

k=1
(Ên ≠ Êú

k) r¸c
k ”=n (Ên ≠ Êk)

(E.112)

where the Hwang residues in (E.112) are identical to eq. (2) of [189]. This scripture
is the conjugate continuation real part of NL + ¸c poles, as identified in [148]: the
NL radioactive poles (E.102), poles of the Kapur-Peierls operator (E.49), plus the
roots

Ó
Ên

Ô
of the outgoing wavefunction O(fl). However, we have proved the latter
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cancel out of the transmission matrix, and thus of the cross section (theorem 3 of
[125]). Therefore, there must exist a multipole representation with only the NL

Kapur-Peierls poles. This can be achieved by developing the potential cross section
(E.105) into poles and residues, factoring the e≠2iflc component (which has no poles)
using expressions (E.110), and performing a partial fraction decomposition of the
rational terms. Upon careful consideration, one will notice that this rational function
is of degree zero, that its poles are the radioactive poles (and only those), and that
the constant (obtained by evaluating at infinity |flc| æ Œ) is (≠1)¸c . This shifts the
potential cross section, so that the total cross section (E.27) can be expressed as the
sum of a background cross section (with no poles),

‡back

c (z),4fia2

c

gJfi
c

fl0
2
c

sin2

1
flc(z) + ¸c

fi
2

2

z2
(E.113)

plus a resonant cross section with the NL radioactive poles:

‡c(z) = ‡back

c (z) + 1
z2

Ÿcont

S

U≠i e≠2iflc(z)

NLÿ

j=1

totrc
j

z ≠ pj

T

V

totrc
j , 4fia2

c

gJfi
c

fl0
2
c

d≠2

¸c
(pj) fl0cpj

Ë
ŸjŸj

T
È

cc

= 4fia2

c

gJfi
c

fl0
2
c

(≠1)¸
(fl0cpj)2¸+1

Ë
ŸjŸj

T
È

ccr¸
n=1

(fl0pj ≠ Ên)2
(E.114)

To the best of our knowledge, expression (E.114) is the first time the exact multi-
pole representation of no-threshold neutron cross sections is derived with the proper
number of poles. It is exact and complete, in the sense that no window-by-window
Laurent expansions are needed. This is only made possible in this specific case of neu-
tron cross sections with zero threshold (no charged particles nor thresholds): though
quite restrictive, it is still a case of great practical importance for nuclear reactor
physics, as most heavy isotopes are evaluated with only two channels (neutron and
fission) with all the other channels being eliminated under the Reich-Moore approxi-
mation. This significant di�erence with light isotopes (in which many more channels
are explicitly treated) is partly due to the fact that for heavy isotopes the number of
photon channels is large enough that one can average their contribution out, and also
because the resonance region starts at lower energies for heavy isotopes, with many
resonances before the first non-zero threshold.

Note that the advantage of not needing local Laurent developments in (E.114)
comes at the computational cost of having to sum all the radioactive poles for each
energy call, instead of accounting for the contributions of far-away poles in the Laurent
expansion of each window – in this sense, the windowing process is a form of local
compression algorithm for improved e�ciency [187, 146].

To compute the partial cross sections (E.31), we can calculate the reaction cross
section (E.30) and the interference one (E.29). For the reaction cross section, we use
the square modulus conjugate continuation (E.66), and notice that

---H+

≠1

---
≠2

cont
(z) =
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(a) First p-wave resonance. (b) Second p-wave resonance.

Figure E-2: Xenon 134Xe Reich-Moore cross sections for spin-parity group J
fi = 1/2(≠)

p-wave resonances: the cross sections are generated using the multipole parameters from
table E.1 in the multipole representation total cross section (E.114), as well as the reaction
cross section (E.117) and interference one (E.119) to compute the scattering cross section as
(E.31), while the capture cross section is the di�erence between the total and the scattering.
All cross sections are identical to those computed using the Reich-Moore approximation R-
matrix equations with the ENDF/B-VIII.0 resonance parameters.

|d|
≠2

cont
(z) , diag (d¸c(fl) d¸c(flú)ú)≠2 is now a rational function (the e≠ifl terms cancel

out). Therefore, evaluating at the pole values yields the partial fraction decomposition
of the square modulus of the resonance matrix:

|Z|
2

cont
(z) = Ÿcont

S

U
NLÿ

j=1

›j

z ≠ pj

T

V (E.115)

where the residues ›j are explicitly constructed as

›j , 2|d|
≠2

cont
(pj)fl0

3
p2

jŸjŸj
T

¶

5
RL(pú

j)
6ú4

fl0 |d|
≠2

cont
(pj) (E.116)

In summary, the energy dependence of the residues in (E.109) cancels out of the
reaction residues, hence the reaction cross section (from channel c to cÕ) is exactly

‡react

ccÕ (z) = 1
z2

Ÿcont

S

U
ÿ

jØ1

reactrccÕ
j

z ≠ pj

T

V (E.117)

where the residues can either simply be evaluated as (E.92) or constructed as:

reactrccÕ

j , 4fia2

c

fl0
2
c

gJfi
c

[›j ]ccÕ (E.118)

For the interference cross section (E.29), we notice using expressions (E.110) that the
phase behavior also cancels out of Ÿ [≠iZccY ú

c ], so that plugging the resonance matrix
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partial fraction decomposition (E.111) into interference cross section expression (E.29)
yields rational fraction

‡int

c (z) = 1
z2

Ÿcont

S

U
NLÿ

j=1

intrc
j

z ≠ pj

T

V (E.119)

where the interference residues can simply be evaluated as (E.89), or explicitly con-
structed as

intrc
j , ≠i4fia2

c

gJfi
c

fl0
2
c

|d¸c |
≠2

cont
(pj) fl0cpj

Ë
ŸjŸj

T
È

cc

= ≠i4fia2

c

gJfi
c

fl0
2
c

(fl0cpj)2¸c+1
Ë
ŸjŸj

T
È

ccr¸
n=1

(fl0cpj ≠ Ên) (fl0cpj ≠ Êú
n)

(E.120)

Having explicitly constructed the total, potential, reaction, and interference cross
sections, we can thus calculate the partial cross sections explicitly through (E.31).

Evidence for exact multipole representation in 134Xe

We discovered shadow alternative poles of 134Xe spin-parity group Jfi = 1/2(≠) two
p-wave resonances in [127], and found the radioactive parameters poles and residues
in [125]. We now complete this xenon trilogy by here providing the exact multipole
representation of 134Xe spin-parity group Jfi = 1/2(≠) cross section. The multipole
parameters are documented in table E.1, and the corresponding cross sections are
plotted in figure E-2. In ENDF/B-VIII.0, 134Xe is a MLBW evaluation with only one
explicit (neutron) channel, all other channels are eliminated using Wigner-Teichmann
and Reich-Moore approximations. One can thus compute the total cross section us-
ing mutlipole representation (E.114), and the scattering cross section as the partial
cross section for ‡nn(E) from (E.31), using reaction cross section (E.117) and inter-
ference one (E.119). The capture cross section is then computed as the di�erence
between the total and the scattering cross section. The p-waves (¸c = 1) entail there
are NL = 5 radioactive poles – validating (E.102) – and the corresponding residues
are documented in table E.1. As we see in this xenon example, the multipole rep-
resentation is an exact alternative formalism to compute R-matrix cross sections.
Nonetheless, if we want to treat charged particle channels and thresholds, we need
to use local Laurent developments in energy windows, which makes the windowed
multipole representation cumbersome and somewhat unsuited for standard nuclear
data libraries.

Exact to windowed multipole representations

Note that we can convert the exact multipole total cross section expression (E.114)
– which has energy-dependent residues due to e≠2iflc(z) – into the general windowed
multipole representation (E.96), with energy-independent residues plus a Laurent
expansion of order no less than ≠2. It su�ces to evaluate the residues at the pole
values, and note that the Laurent expansion part Laur

tot
(z) is then the di�erence of the
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Table E.1: Windowed multipole parameters of the two p-wave resonances of 134Xe, spin-
parity group J

fi = 1/2(≠), converted from ENDF/B-VIII.0 evaluation (MLBW) to multipole
representation using Reich-Moore level matrix (E.21).

z =
Ô

E with E in (eV)
A = 132.7600
ac = 5.80 : channel radius (Fermis)
fl0 = Aac

Ô
2mn

h
A+1

in (
Ô

eV≠1), so that fl(z) , fl0z

with
Ò

2mn
h = 0.002196807122623 in units (1/(10≠14m

Ô
eV))

Multipole parameters (rounded to 5 digits): converted from R-matrix parameters using Reich-Moore equations.
Radioactive poles pj Total residues totrc

j Reaction residues reactrccÕ
j Interference residues intrc

j Hwang residues Hwangrc
j

(
Ô

eV) from (E.101) (barns
Ô

eV3) from (E.114) (barns
Ô

eV3) from (E.118) (barns
Ô

eV3) from (E.120) (barns
Ô

eV3) from (E.112)
6.4652 ◊ 10≠8 6.9766 ◊ 10+8 2.8519 ◊ 10≠2

≠2.8446 ◊ 10≠2
≠4.6048 ◊ 10+5

≠i7.9179 ◊ 10+2
≠i5.5825 ◊ 10≠2 +i4.6048 ◊ 10+5 +i4.6048 ◊ 10+5

≠i2.8446 ◊ 10≠2

≠4.6731 ◊ 10+1
≠1.2144 ◊ 10+3

≠1.5693 ◊ 10≠1
≠1.3518 ◊ 10≠1

≠1.2229 ◊ 10+3

≠i9.7105 ◊ 10≠4 +i1.4390 ◊ 10+2 +i1.7479 ◊ 10+3 +i1.2229 ◊ 10+3
≠i1.3518 ◊ 10≠1

4.6731 ◊ 10+1
≠1.2144 ◊ 10+3 1.5693 ◊ 10≠1 1.7868 ◊ 10≠1

≠1.2229 ◊ 10+3

≠i1.8048 ◊ 10≠3
≠i1.4386 ◊ 10+2 +i9.4043 ◊ 10+2 +i1.2229 ◊ 10+3 +i1.7868 ◊ 10≠1

≠7.9454 ◊ 10+1
≠1.0827 ◊ 10+3

≠4.2538 ◊ 10≠1
≠4.1864 ◊ 10≠1

≠1.1047 ◊ 10+3

≠i1.0084 ◊ 10≠3 +i2.1937 ◊ 10+2 +i1.3735 ◊ 10+3 +i1.1047 ◊ 10+3
≠i4.1864 ◊ 10≠1

7.9454 ◊ 10+1
≠1.0827 ◊ 10+3 4.2538 ◊ 10≠1 4.3211 ◊ 10≠1

≠1.1047 ◊ 10+3

≠i1.4991 ◊ 10≠3
≠i2.1936 ◊ 10+2 +i9.2389 ◊ 10+2 +i1.1047 ◊ 10+3 +i4.3211 ◊ 10≠1

R-matrix parameters: reference ENDF/B-VIII.0 evaluation (MLBW) used with Reich-Moore level matrix (E.21).

E1 = 2186.0 : first resonance energy (eV)
�1,n = 0.2600 : neutron width of first resonance
(not reduced width), i.e. �⁄,c = 2Pc(E⁄)“2

⁄,c

�1,“ = 0.0780 : eliminated capture width (eV)
E2 = 6315.0 : second resonance energy (eV)
�2,n = 0.4000 (eV)
�2,“ = 0.0780 (eV)
gJfi = 1/3 : spin statistical factor
Bc = ≠1

two remaining components, that is:

Laur
tot

(z) = 1
z2

Ÿcont

S

U
NLÿ

j=1

≠i totrc
j

z ≠ pj

1
e≠2ifl0cz

≠ e≠2ifl0cpj
2

T

V

= Ÿcont

S

U
NLÿ

j=1

totrc
j

iz2

Q

a
ÿ

nØ0

(≠2ifl0c)
n

n!
zn

≠ pn
j

z ≠ pj

R

b

T

V

=
ÿ

nØ1

nÿ

m=1

zm

z3
Ÿcont

S

U
NLÿ

j=1

totrc
j

i pn≠m
j

(≠2ifl0c)
n

n!

T

V

=
ÿ

nØ≠2

anzn (E.121)
281



so that the total cross section (E.112) can be expanded as

‡c(z) = ‡back

c (z) + 1
z2

Ÿcont
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≠i e≠2ifl0cpj totrc
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T

V

+Laur
tot

(z) (E.122)

where the residues are now independent of energy. By further performing the analytic
expansion of the background cross section (E.113)

‡back

c (z),4fia2
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gJfi
c

fl0
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S
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2 z2
+
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nØ1
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(2fl0c)2n

(2n)!
z2n

z2

T

V (E.123)

one recovers the general windowed multipole representation (E.96).
As we see, in this special case of neutron channels without threshold, we can

explicitly construct the full windowed multipole representation (E.122) without the
need of local expansions for each energy window W(E). Somewhat ironically, it is
also much more cumbersome to explicitly construct both the Laurent expansion and
the residues, compared to the more general approaches of theorem 15. Alternatively,
one can solve for the radioactive poles

Ó
pj

Ô
through polynomial root-finding (E.101),

and then revert to the general methods of theorem 15 to compute the corresponding
residues, after what the Laurent expansions can be locally curve-fitted.

E.4 Windowed Multipole Covariances
In section E.3, we established the windowed multipole representation as a general al-
ternative way to parametrize the energy dependence of R-matrix cross sections (the-
orem 15). In this section, we consider how the Windowed Multipole Representation
can account for R-matrix cross section epistemic uncertainties. Such uncertainties
exist because nuclear cross sections are known from experiments, and experimental
measurements always come with error-bars. Therefore, in addition to evaluating R-
matrix parameter values, evaluators add resonance parameters covariance matrices
to standard nuclear data libraries (File 32 in the ENDF/B-VIII.0 library [87]), aimed
at reproducing the empirical uncertainty observed in nuclear cross sections.

E.4.1 Converting R-matrix parameters covariances
If it exists, the covariance matrix Var (X) of a random vector X with expectation
value E [X] is a defined as:

Var (X) , E
Ë
XX†

È
≠ E [X]E [X]† (E.124)

We denote
Ó
�

Ô
the set of R-matrix resonance parameters

Ó
�

Ô
,

;
E⁄, “⁄,c

<
, which

are implicitly considered to be the expectation value of the underlying distribution,
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Ó
�

Ô
, E [�], and Var (�) their corresponding covariance matrices. These represent

the resonance parameters epistemic uncertainty, which is accounted for by assuming
the parameters are drawn from the multivariate normal distribution: N (�,Var (�)).
Recall that both the channel radii ac and the boundary conditions Bc are arbitrarily
set constants, and therefore have no uncertainty. Also, we here do not explicitly treat
the uncertainty on threshold energies ETc , but our approach could readily be extended
to them.

We consider the unified Windowed Multipole Representation of R-matrix cross
sections (E.96), which we proved is an exact representation of R-matrix cross sections
everywhere but for windows containing a non-zero threshold ETc œ W(E) – in these
threshold windows, form (E.96) is only an approximation of exact R-matrix cross
sections of theorem 15, yet this approximation (E.96) can be made to reach any target
accuracy. For each energy window W(E), we denote

Ó
�

Ô
the windowed multipole

parameters – that is the set of poles
Ó
pj

Ô
, residues

Ó
ÂrccÕ

j , rc
j

Ô
, and Laurent expansion

coe�cients
Ó
an

Ô
that parametrize cross section (E.96) in that energy window:

Ó
�

Ô
,

Ó
pj, ÂrccÕ

j , rc
j , an

Ô
.

The main result of this section – theorem 16 – establishes a framework to convert
R-matrix resonance parameters covariance matrices Var (�) into Windowed Multipole
Covariances Var (�). It is based on the following lemma 5, which derives sensitivities
of R-matrix cross sections ‡(E) to both resonance parameters

Ó
�

Ô
and multipoles

Ó
�

Ô
.

Lemma 5. Cross sections parameter sensitives
Let z œ C be the complex, analytically continued square-root-of-energy: z =

Ô
E.

Consider Windowed Multipole cross section (E.96), i.e. locally of the form:

‡(z) =
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We recall the Cauchy-Poincaré-Wirtinger holomorphic complex di�erential definition
for z = x + iy, x, y œ R

ˆz , 1
2 (ˆx ≠ iˆy) (E.125)

so that ˆzz = 1, and ˆzzú = 0, where zú , x ≠ iy.

The cross section sensitivities to multipoles ˆ‡
ˆ�

(z) (i.e. the partial di�erentials of
the cross section with respect to multipoles) are then given, for each window W(E),
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by:
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(E.126)

Moreover, the cross section sensitivities to resonance parameters ˆ‡
ˆ�

(z) (i.e. the par-
tial di�erentials of the cross section with respect to resonance parameters) are subject
to the following multipole representation:

ˆ‡

ˆ�(z) =
W(E)

1
z2

Ÿcont

S

U
ÿ

jØ1

1
ˆrj

ˆ�

2

z ≠ pj
+

1
rj

ˆpj

ˆ�

2

(z ≠ pj)2

T

V

+
ÿ

nØ≠2

A
ˆan

ˆ�

B

zn

(E.127)

We seek to convert R-matrix resonance parameters covariances Var (�) into Win-
dowed Multipole covariances Var (�). Yet obtaining multipoles

Ó
�

Ô
from resonance

parameters
Ó
�

Ô
is not a simple transformation: one must solve the radioactive prob-

lem (E.49) for the poles
Ó
pj

Ô
and then compute the corresponding residues

Ó
‚rccÕ

j , rc
j

Ô

(theorem 15). We therefore take an implicit functions approach, and locally invert
the � æ � transformation by means of the Jacobian matrix

1
ˆ�

ˆ�

2
, that is the sen-

sitivities of windowed multipole coe�cients to the R-matrix resonance parameters
(Cauchy-Dini implicit functions theorem). Under the assumption of small deviations
from the mean (small relative uncertainties), this yields a first-order linear relation
from multipoles

Ó
�

Ô
to resonance parameters

Ó
�

Ô
. In which case, the chain rule

entails the multipoles
Ó
�

Ô
are also subject to a multivariate normal distribution

N (�,Var (�)), the covariance of which is given by (E.129) (sometimes called “sand-
wich rule”). Therefore, the key to converting resonance covariances Var (�) into
multipole covariances Var (�) lies in the sensitivities

1
ˆ�

ˆ�

2
. Theorem 16 establishes

a contour-integrals method to calculate these sensitivities
1

ˆ�

ˆ�

2
, provided R-matrix

cross sections sensitivities ˆ‡
ˆ�

(E) from lemma 5.

Theorem 16. Windowed Multipole Covariances
Let us be provided with the sensitivities ˆ‡

ˆ�
(z) of R-matrix cross sections (analytically

continued) to resonance parameters (E.127). Then the multipole sensitivities (Jaco-
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bian matrix) with respect to the resonance parameters,
1

ˆ�

ˆ�

2
, can be obtained from

the following system (E.128) of contour integrals in the complex plane, where Cpj

designates any positively oriented simple closed contour containing only pole pj. For
instance, Cpj can be a circle of radius ‘ > 0 around pole pj.
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(E.128)
For each energy window W(E), the multipole sensitivities

1
ˆ�

ˆ�

2
from system (E.128)

can then be converted to first order into Windowed Multipole covariances Var (�) as:
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(E.129)

where [ · ]† designates the Hermitian conjugate (adjoint).

Proof. Partial fraction expansion of (E.127) lemma 5 yields
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The di�erent residues associated with poles 0 or pj are then obtained by invoking
Cauchy’s residue theorem and multiplying correspondingly by zn or (z ≠ pj), yielding
(E.128). Importantly, these contour integrals cannot be performed without having
an analytic representation of the partial derivatives of the cross section at complex
energies, ˆ‡

ˆ�
(z), which is made possible for open channels by Hwang’s conjugate con-

tinuations (E.66) and (E.62). Finally, (E.129) is a direct application of the well-known
chain-rule first-order perturbation covariance formula.
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Figure E-3: Multipole sensitivities to R-matrix parameters
1

ˆ�

ˆ�

2
. Trajectories of pole p

as resonance parameters {�} vary, using the SLBW approximation of the first resonance
of 238U (appendix E.8). The blue points show how the pole changes as E⁄ is varied with
equal spacing within 3 standard deviations of the enlarged covariance matrix, while the
green points result from equally spaced variations of �“ within their uncertainty range
(3 standard deviations of enlarged covariance matrix). The Jacobian

1
ˆ�

ˆ�

2
from system

(E.128) are the tangents of these trajectories from the mean pole p (red reference point)
and are shown in solid lines. Complex pole p units are (

Ô
eV).

E.4.2 Cross section uncertainties and parameter covariances
By introducing resonance covariances Var (�), present standard nuclear data libraries
are built with the implicit assumption that sampling resonance parameters from a
multivariate normal distribution N (�,Var (�)) and computing the corresponding
cross sections ‡�(E) generates outcome distributions commensurate to our experi-
mental uncertainty. Note that this parameter uncertainty representation is not obvi-
ous in se, because cross sections are measured at specific energies, and the measured
cross section uncertainty is usually described with a given exogenous distribution (say
normal, log-normal, or exponential), dictated by the experiment. Therefore, no pa-
rameter distribution (be it resonance parameters multivariate normal N (�,Var (�))
or any other) can exactly reproduce the cross section uncertainty for each measure-
ment energy. And yet, these parameters distributions are our best way of balancing all
the di�erent uncertainties from disjointed experiments with the underlying R-matrix
theory which unifies our understanding of nuclear interactions physics.

Significant work has been carried out to infer parameter distributions that accu-
rately reproduce our uncertainty of nuclear cross sections [149, 70, 101, 205, 206, 173,
281, 54, 282]. Assuming R-matrix cross section uncertainty is well represented by the
resonance parameters multivariate normal distribution N (�,Var (�)) documented in
standard nuclear data libraries (file 32 in ENDF/B-VIII.0 [87]), there are two ways of
translating this into cross section distributions: 1) first-order sensitivity propagation,
or; 2) stochastic cross sections.

1. For any given energy E, first-order sensitivity propagation simply considers the
R-matrix cross section sensitivities to resonance parameters ˆ‡

ˆ�
(E) and linearly

converts the resonance parameter covariance Var (�) into a cross section covari-
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ance Var (‡(E)) at each energy E, using the chain rule:

Var (‡�(E)) =
A

ˆ‡(E)
ˆ�

B

Var (�)
A

ˆ‡(E)
ˆ�

B†

(E.130)

The same approach can be undertaken using R-matrix cross section sensitivities
to windowed multipoles ˆ‡

ˆ�
(E), established in equations (E.126) of lemma 5, and

then propagating the windowed multipole covariances Var (�) to first order,
yielding cross section covariances

Var (‡�(E)) =
A

ˆ‡(E)
ˆ�

B

Var (�)
A

ˆ‡(E)
ˆ�

B†

(E.131)

2. Stochastic cross sections consist of sampling resonance parameters
Ó
�

Ô
from

their uncertainty distribution – say multivariate normal N (�,Var (�)) – and
computing the corresponding cross section ‡�(E) as a function of energy

dP
3

‡�(E)
4

= ‡dP(�)(E) (E.132)

Alternatively, one could sample multipoles
Ó
�

Ô
from a windowed multipole

distribution – say multivariate normal N (�,Var (�)) – and correspondingly
generate Windowed Multipole stochastic cross sections

dP
3

‡�(E)
4

= ‡dP(�)(E) (E.133)

Stochastic cross sections uncertainties only match first order sensitivity approaches
(E.130) and (E.131) for very small covariances. This is because normally distributed
resonance parameters do not translate into normally distributed cross sections (E.132):
sampling resonance parameters from N (�,Var (�)) and then computing the corre-
sponding cross sections (E.5) and (E.10) through R-matrix equations (E.7), (E.14),
(E.15), (E.16), and (E.17), cannot in general lead to normally distributed cross sec-
tions ‡�(E) at all energies. However, they do in the linear case, which is a good
first-order approximation for small covariances.

Stochastic cross sections (E.132) are at the core of the TENDL library [207, 209],
and being able to sample them is a necessary prerequisite to the Total Monte Carlo
uncertainty propagation method [283, 285, 55]. In practice, this has been a major
computational challenge, requiring to sample resonance parameters from standard
nuclear data libraries, reconstruct the corresponding nuclear cross sections at zero
Kelvin (0K), and then process each one (with codes such as NJOY [228]) to com-
pute the corresponding cross sections at temperature T (c.f. discussion of Doppler
broadening and thermal scattering in section E.5). All this is costly, and storing the
pre-processed cross sections consumes vasts amount of memory. Because one can di-
rectly compute Doppler-broadened nuclear cross sections from Windowed Multipole
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parameters
Ó
�

Ô
(c.f. theorem 17 section E.5), the Windowed Multipole Library can

generate stochastic cross sections (E.133) on-the-fly, without any pre-processing nor
storage, a true physics-enabled computational breakthrough.

(a) 238U first capture resonance, parameters
sampled from ENDF/B-VIII uncertainty. 30
samples shown here.

(b) Cross section histogram at resonance energy
E⁄ = 6.67428 eV.

Figure E-4: R-matrix cross sections uncertainty, computed either from the ENDF/B-
VIII resonance parameters covariance Var (�) (table E.2 in appendix E.8), or from the
multipoles covariance Var (�), as converted through (E.129), for both the stochastic cross
sections (E.132, E.133) and the sensitivities approach (E.130, E.131).

(a) 238U first capture resonance, parameters
sampled from an enlarged ENDF/B-VIII uncer-
tainty. 30 samples shown here.

(b) Cross section histogram at resonance energy
E⁄ = 6.67428 eV.

Figure E-5: R-matrix cross sections uncertainty, computed either from the enlarged
ENDF/B-VIII resonance parameters covariance Var (�) (table E.2 in appendix E.8), or
from the multipoles covariance Var (�), as converted through (E.129), for both the stochas-
tic cross sections (E.132, E.133) and the sensitivities approach (E.130, E.131).

Regardless of the method employed to represent nuclear cross section uncertainty,
it would be desirable that the uncertainties stemming from a windowed multipole rep-
resentation

Ó
�

Ô
are consistent with those stemming from resonance parameters

Ó
�

Ô

upon converting their covariances as indicated in equation (E.129) of theorem 16. We
undertook numerical experiments to measure the cross section uncertainty distribu-
tions generated by either covariances Var (�) or Var (�), for both sensitivity method
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(E.130) and (E.131), or stochastic cross sections (E.132) and (E.133). We treated
the simple case of the first single-level Breit-Wigner capture resonance of uranium
isotope 238U, which admits closed form explicit expressions for the multipoles, the
cross sections, and the sensitivities, all documented in appendix E.8. We compared
the methods for both the ENDF/B-VIII.0 resonance parameters covariance (which
is small as this is a very well known resonance), and an enlarged covariance matrix
which conserves the same correlations but brings the cross section dependency past
the linear regime. Both covariances are documented in table E.2 (appendix E.8), and
figures E-4 and E-5 show the following trends:

• For the sensitivity method (E.130) or (E.131), the cross section uncertainty is
identical for either the resonance parameter covariance Var (�) or the windowed
multipole covariance Var (�), which is the immediate consequence of conversion
(E.129).

• For the stochastic cross section method (E.132) or (E.133), sampling parameters
from N (�,Var (�)) or N (�,Var (�)) generates similar cross section distribu-
tions.

In the small covariance case of figure E-4, the stochastic cross section distributions
(E.132) and (E.133) are very close to the normal distributions from the sensitivity
approach (E.131), though at the tails they start di�ering. In the large covariance case
of figure E-5, the stochastic cross sections distributions are radically di�erent from
the normal distribution of the sensitivity method. This discrepancy is made more
blatant because the cross section distribution is recorded at resonance peak energy
E⁄ = 6.67428 eV, hence a small shift in resonance energy E⁄ can dramatically lower
the cross section value. This illustrates the fact that in theorem 16, when converting
the resonance parameters covariances Var (�) into Windowed Multipoles covariances
Var (�) through (E.129), the linear assumption used for the local inversion using
Jacobians

1
ˆ�

ˆ�

2
from (E.128) holds for a wider range of resonance parameters than

the liner assumption for the cross section sensitivity method (E.131). This can be
seen in figure E-3, where the tangent lines from Jacobians

1
ˆ�

ˆ�

2
are close to the

conversion surface, trajectories of �(�), even after three standard deviations of the
large covariance matrix, something clearly not true of the cross section linear behavior
at peak energy from figure E-5.

Therefore, whichever method is chosen to represent the nuclear cross sections
uncertainty, the Windowed Multipoles covariances Var (�) from theorem 16 faithfully
reproduce the uncertainty from the resonance parameters covariances Var (�).

E.5 Doppler broadening of Windowed Multipole
cross sections

Hitherto, we have established that the zero Kelvin (0 K) windowed multipole repre-
sentation of cross sections is equivalent to the traditional Wigner-Eisenbud R-matrix
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parametrization, in both cross section values and their uncertainties. We hence-
forth study how temperature a�ects R-matrix cross sections at the nuclear level
through Doppler broadening (we do not address thermal neutron scattering at the
crystalline level), and derive how the windowed multipole representation exhibits a
major advantage: in its form (E.96) – exact for zero-threshold channels or windows
without thresholds, and otherwise an accurate approximation – the window multi-
pole representation of R-matrix cross sections can be Doppler broadened precisely
by means of closed-form formulae (theorem 17). This enables the long sought-after
computational capability of on-the-fly Doppler broadening of nuclear cross sections
[300, 76, 118, 190, 313, 326, 146, 145, 124].

E.5.1 Doppler broadening of nuclear cross sections: Solbrig’s
Kernel

As temperature rises, nuclei vibrate, so that the e�ective cross section for a beam of
particles sent upon a target at a given energy and wavenumber is the statistical result
of the zero Kelvin cross sections averaged out on all the possible relative energies at
which the target and the beam interact. For non-relativistic, non-massless particles
(not photons) in the semi-classical representation, Doppler broadening of nuclear cross
section is the process of integration over the target velocity distribution, assuming
the latter is an isotropic Maxwellian (that is a Boltzmann distribution of energies).
Solbrig derived this Doppler broadening integral in eq. (3) p. 259 of [300], where the
cross section ‡T (E) at temperature T and energy E (in the laboratory coordinates)
is related to the cross section ‡(E) at temperature T0 as:

E‡T (E) =
Œ⁄

0

‡(E Õ)E Õ 1
2

2—
Ô

fi

S

Ue≠
1 Ô

EÕ≠
Ô

E
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22

≠ e≠
1 Ô

EÕ+
Ô

E
—

22T

VdE Õ (E.134)

where — is the square root temperature energy parameter:

— ,
Û

kB(T ≠ T0)
A

(E.135)

where A designates the atomic mass number, and kB the universal Boltzmann con-
stant.
Upon change of variable to z =

Ô
E, the Doppler broadening operation (E.134) be-

comes Solbrig’s kernel:

z2‡T (z) =
⁄ Œ

0

x2‡T0(x) K
D
— (z, x)dx

where: K
D
— (z, x) , 1

—
Ô

fi

5
e≠( z≠x

— )2
≠ e≠( z+x

— )26 (E.136)

Note that for zero-threshold channels, where z Ã kc(E), Solbrig kernel (E.136) is
an integral operator acting on k2

c (E) ‡c(E), which is the transmission matrix square
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amplitudes from cross section definition (E.5). The Solbrig kernel (E.136) thus acts
directly on the interaction probabilities, rather than the actual cross section, just as
the channel reversibility equivalence (E.11).

Solbrig kernel integral (E.136) has presented major computational challenges in
nuclear reactor physics. When no information is provided as to the functional form
of the zero Kelvin cross section ‡(E) – i.e. it is considered a point-wise input – the
traditional way of computing the Doppler broadened cross section at any tempera-
ture ‡T (E) has been to pre-tabulate exact cross sections ‡Ti(E) (usually using the
SIGMA1 algorithm of [118]) for a grid of reference temperatures

Ó
Ti

Ô
, and then in-

terpolate between these points to obtain ‡T (E) [111, 313, 261]. However, storing all
these pre-computed cross sections at reference temperatures

Ó
Ti

Ô
represents a consid-

erable memory burden, which is why methods to minimize the memory footprint and
perform Doppler broadening (E.136) on-the-fly have been actively sought after [326].
The most state-of-the-art approaches are either optimal temperature Doppler kernel
reconstruction quadratures [124] (which only require 10 reference temperatures

Ó
Ti

Ô

for standard nuclear reactor codes), new Fourier transform methods [145], or Monte
Carlo target motion sampling rejection schemes [316, 317, 288].

To do better, one must look at the functional form of the cross section. When the
reference temperature is zero Kelvin T0 = 0K, we have shown in section E.3 that R-
matrix cross sections are the sum of threshold behavior and resonances. Resonances
have traditionally been Doppler broadened approximately, using Voigt profiles [300],
as we here recall in section E.5.2.

E.5.2 Approximate Doppler broadening of Breit-Wigner res-
onances: Voigt profiles

The traditional approach to Doppler broadening nuclear cross sections has been to
consider individual Single-Level Breit-Wigner resonances (E.74) at zero Kelvin, with
both symmetric (Cauchy-Lorentz distributions) and anti-symmetric components, as-
suming it has a zero-energy threshold where it behaves as an s-wave neutron channel
(angular momentum ¸ = 0), so that we can multiply the resonance (E.74) by the
threshold behavior 1Ô

E
, as described by Wigner in III.A.2 [322]:
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where x ,
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2
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(E ≠ Ej)2 + �
2
j

4

‰0(x) , x

x2 + 1 =
(E ≠ Ej) �j

2

(E ≠ Ej)2 + �
2
j

4

(E.138)

Upon Doppler broadening (E.134), Single-Level Breit-Wigner resonance (E.137) be-
comes:

‡SLBW

T (E) = 1
Ô

E

CA
a

�j/2

B

‰T (E) +
A

b

�j/2

B

ÂT (E)
D

(E.139)

where ‰T and ÂT are defined using xÕ ,
1

EÕ≠Ej

�j/2

2
as

‰T (E), E≠ 1
2

2—
Ô

fi

Œ⁄

0

‰0(xÕ)
S

Ue≠
1 Ô

EÕ≠
Ô

E
—

22

≠ e≠
1 Ô

EÕ+
Ô

E
—

22T

VdE Õ

ÂT (E), E≠ 1
2

2—
Ô

fi

Œ⁄

0

Â0(xÕ)
S

Ue≠
1 Ô

EÕ≠
Ô

E
—

22

≠ e≠
1 Ô

EÕ+
Ô

E
—

22T

VdE Õ

(E.140)

To compute these functions, the following approximations are then traditionally in-
troduced (c.f. [300], or section 3.3.3 chapter 4, volume 1 of [99]):

1. the Maxwell approximation, whereby we assume the second exponential term

is vanishingly small: e≠
1 Ô

EÕ+
Ô

E
—

22

π 1. This is valid for E ∫ —2, but fails at
low energies or high temperatures,

2. a Taylor expansion around the energy of Doppler broadening: E Õ = E + ‘,
with ‘ π 1. This leads to

Ô
E Õ ≠

Ô
E = ‘

2
Ô

E
+ O (‘2), so that we approximate

e≠
1 Ô

EÕ≠
Ô

E
—

22

¥ e≠
1

EÕ≠E
2

Ô
E—

22

in the integrals, which under change of variable E Õ
æ

xÕ become
ÂT (x) ƒ

1
2—

Ô
fiE

�j

2

⁄ Œ

≠2Ej/�j

Â0(xÕ)e≠ (xÕ≠x)
2

4· dxÕ

‰T (x) ƒ
1

2—
Ô

fiE

�j

2

⁄ Œ

≠2Ej/�j

‰0(xÕ)e≠ (xÕ≠x)
2

4· dxÕ

where we defined

· , 4E

A
—

�j

B
2

= 4E
kB(T ≠ T0)

A�2

j

(E.141)

3. we furthermore assume 2Ej ∫ �j, so that we approximate the integral lower
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limit to ≠Œ, yielding

ÂT (x) ƒ
1

Ô
4fi·

⁄
+Œ

≠Œ

1
1 + xÕ2 e≠ (xÕ≠x)

2

4· dxÕ

‰T (x) ƒ
1

Ô
4fi·

⁄
+Œ

≠Œ

xÕ

1 + xÕ2 e≠ (xÕ≠x)
2

4· dxÕ
(E.142)

The latter are the standard Voigt functions, U(x, ·) and V(x, ·), defined in section
7.19 of [250], which are related to the Faddeyeva function (E.150) defined in 7.2.3
[250], by: Ú

fi

4·
w

A
x + i
2
Ô

·

B

= U(x, ·) + iV(x, ·)

for ⁄

Ë
x+i

2
Ô

·

È
> 0. In the case ⁄

Ë
x+i

2
Ô

·

È
< 0, we use ≠ [w (zú)]ú to calculate the inte-

gral. So that the ÂT (E) and ‰T (E) functions can approximately be related to the
Faddeyeva function as:

ÂT (E) ƒ

Ú
fi

4·
Ÿ

C

w
A

x + i
2
Ô

·

BD

‰T (E) ƒ

Ú
fi

4·
⁄

C

w
A

x + i
2
Ô

·

BD (E.143)

So that the Doppler broadened Breit-Wigner resonance, under these approximations,
can be expressed as:

‡SLBW

T (E) ƒ
1

Ô
E

Ÿ

C
a + ib
i�j/2

Ú
fi

4·
w

A
x + i
2
Ô

·

BD

= 1
E

Ÿ

C
Ô

fi
a + ib
i2—

w
A

E ≠ Ej

2—
Ô

E

BD (E.144)

This has been the traditional “psi-chi” method to perform approximate Doppler
broadening of nuclear resonances, though some improvements have been proposed
(c.f. eq. (65) in [190]).

Note that the single-level Breit-Wigner profile (E.137) does not represent higher-
order angular momenta for neutron channels, nor does it represent charged particles
or photon channels (of any angular momenta), neither does it consider non-zero-
threshold behaviors.

E.5.3 Analytic Doppler broadening of
Windowed Multipole cross sections

Theorem 15 establishes the Windowed Multipole Representation as an equivalent
formalism to parametrize R-matrix cross sections. Windowed Multipole cross sections
take the form (E.96) for zero-threshold cross sections of any kind (photons, charged,
higher angular momenta), and other thresholds can be approximated with this form
(E.96), though not exactly. Theorem 17 shows how these Windowed Multipole cross
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sections (E.96) can be Doppler broadened analytically to high accuracy, without
having to assume an energy dependence of the Single-Level Breit-Wigner cross section
form ‡SLBW

0
(E) as in (E.137).

Theorem 17. Doppler broadening of Windowed Multipole cross sec-
tions
Consider the Windowed Multipole Representation of R-matrix cross sections (E.96),
i.e. locally of the form:

‡(z) =
W(E)

1
z2

Ÿcont

S

U
ÿ

jØ1

rj

z ≠ pj

T

V +
ÿ

nØ≠2

anzn

Upon integration against the Solbrig kernel (E.136), the Doppler broadened cross sec-
tion at temperature T takes the following analytic expression:

‡T (z) =
W(E)

ÿ

nØ≠2

anDn
—(z)

+ 1
z2

Ÿ

S

Ui
Ô

fi
ÿ

jØ1

rj

—
w

A
z ≠ pj

—

BT

V

≠
1
z2

Ÿ

S

Ui
Ô

fi
ÿ

jØ1

rj

—
C

A
z

—
,
pj

—

BT

V

(E.145)

where C
1

z
— , pj

—

2
is a correction term defined as:

C
A

z

—
,
pj

—

B

, 2 pj

ifi—

⁄ Œ

0

e≠( z
— +t)2

t2 ≠

1
pj

—

2
2
dt (E.146)

which is negligible in most physical ranges of temperatures and energies, so that
Doppler broadened Windowed Multipole cross sections can be well approximated as

‡T (z) ƒ
W(E)

1
z2

Ÿ

S

UÔ
fi

ÿ

jØ1

rj

i— w
A

z ≠ pj

—

BT

V

+
ÿ

nØ≠2

anDn
—(z)

(E.147)

where Dn
—(z) are the Doppler broadened monomials:

Dn
—(z) ,

⁄ Œ

0

xn+2

z2
K

D
— (z, x)dx (E.148)

which are subject to the following recurrence formulae from elemental Gaussian and
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error functions (defined in eq. 7.2.1 of [250]) [197]:

Dn+2

— (z) =
’nØ1

C
—2

2 (2n + 1) + z2

D

Dn
—(z)

≠

A
—2

2

B
2

n(n ≠ 1)Dn≠2

— (z)

D0

—(z) =
C

—2

2 + z2

D

D≠2

— (z) + —

z
Ô

fi
e≠( z

— )2

D≠1

— (z) = 1
z

D≠2

— (z) = 1
z2

erf
A

z

—

B

(E.149)

and where w(z) is the Faddeyeva function (defined in eq. 7.2.3 of [250]),

w(z) , e≠z2
3

1 ≠ erf (≠iz)
4

= e≠z2
A

1 + 2i
Ô

fi

⁄ z

0

et2dt

B

(E.150)

called at poles in the complex lower semi-plane, i.e. ⁄

Ë
z≠pj

—

È
> 0. For all other poles,

which satisfy ⁄

Ë
z≠pj

—

È
Æ 0, we use the fact that the Windowed Multipole Represen-

tation has complex conjugate poles to call the Faddeyeva function at ≠ [w (zú)]ú =
≠w (≠z).

Proof. This analytic Doppler broadening comes from:

‡T (z) =
W(E)

1
z2

Ÿ

S

U
ÿ

jØ1

rj

⁄ Œ

0

K
D
— (z, x)

x ≠ pj
dx

T

V

+
ÿ

nØ≠2

anDn
—(z)

Doppler broadening of the Laurent expansion part (E.148), which describes the
threshold behavior, was established in [124] (eq. (14) to (16)), and the recurrence
formulae (E.149) are obtained through integration by parts.
The resonances Doppler broadening was established in [190] (eq. (70) to (75)), which
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we here recall

—
Ô

fi
⁄ Œ

0

K
D
— (z, x)

x ≠ pj
dx ,

⁄ Œ

0

dx

x ≠ pj

5
e≠( z≠x

— )2
≠ e≠( z+x

— )26

=
⁄ Œ

≠Œ

e≠( z≠x
— )2

x ≠ pj
dx ≠

⁄
0

≠Œ

e≠( z≠x
— )2

x ≠ pj
dx ≠

⁄ Œ

0

e≠( z+x
— )2

x ≠ pj
dx

=
⁄ Œ

≠Œ

e≠t2

t ≠

1
z≠pj

—

2dt +
⁄ Œ

0

e≠( z+x
— )2

C
1

x + pj
≠

1
x ≠ pj

D

dx

= ifi w
A

z ≠ pj

—

B

≠ 2pj

⁄ Œ

0

e≠( z+x
— )2

x2 ≠ p2

j

dx

where in the last line we introduced the Faddeyeva function (E.150), defined in eq.
7.2.3 of [250], which admits the following integral representation for ⁄ [z] > 0:

w(z) =
⁄[z]>0

1
ifi

⁄ Œ

≠Œ

e≠t2

t ≠ z
dt = 2z

ifi

⁄ Œ

0

e≠t2

t2 ≠ z2
dt (E.151)

In the case ⁄ [z] < 0, we then use the following integral representation:

≠ [w(zú)]ú = ≠w(≠z) =
⁄[z]<0

1
ifi

⁄ Œ

≠Œ

e≠t2

t ≠ z
dt (E.152)

So that, calling the Faddeyeva function directly for the poles in the complex lower
semi-plane, ⁄

Ë
z≠pj

—

È
> 0, while for the others we use ≠ [w (zú)]ú = ≠w (≠z) to calcu-

late the integral representation (the pole representation has complex conjugate poles),
the Solbrig kernel Doppler broadening operation yields (E.145). Hwang undertook
an in-depth study of the correction term C

1
z
— , pj

—

2
in section IV.D of [190], showing

it is negligible in most physical applications. Therefore, approximation (E.147) is
e�ectively faithful, in particular at high energies-to-temperature ratios z/— ∫ 1.

Compared to the traditional “psi-chi” method (E.144), theorem 17 gives a much
more general way to Doppler broaden nuclear cross sections, applicable to charged
or uncharged particles of any angular momentum. Theorem 17 also motivates why
we decomposed the resonances in z =

Ô
E space: it enables more accurate analytic

Doppler broadening, since the latter happens in wavenumber space as Hwang showed
in eq. (65) of [190].

Note that Hwang derived equations to analytically Doppler broaden his pole repre-
sentation (E.112), with energy-dependent residues, showing that the e≠2ifl component
shifts the Faddeyeva function evaluation, adding a purely imaginary o�set in eq. (6)
of [189]. Nonetheless, this approach is not generalizable to Coulomb channels nor to
thresholds, while theorem 17 is.

To compare these di�erent Doppler broadening methods, we conducted numer-
ical calculations on the first capture resonance of 238U, in the simple Single-Level
Breit-Wigner resonance case of appendix E.8, reporting the results in figure E-6.
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(a) T = 300 Kelvin

(b) T = 105 Kelvin

(c) T = 107 Kelvin

Figure E-6: Accuracy of di�erent Doppler-broadening methods. Using the SLBW res-
onance description given in appendix E.8, the cross section (E.183) is reconstructed at
T=0K. For each temperature {300, 105

, 107
} Kelvin, the cross section is broadened using

four di�erent methods: (i) numerical integration of the Solbrig Kernel (E.136); (ii) Using
the ÂT /‰T approximation (E.143) for SLBW Doppler broadening (E.144); (iii) conversion
(E.187) of the resonance parameters {�} to multipoles {�} and analytic Doppler broad-
ening of Windowed Multipole Representation (E.186) from theorem 17 equation (E.147);
(iv) formulation of the parameters in ENDF format and processing using NJOY [228]. For
each temperature, the right column shows the absolute relative error for methods (ii), (iii),
and (iv) to the direct integration of the Solbrig Kernel (i). Note: NJOY was run with a
tolerance parameter of 10≠2 as higher accuracy required a prohibitively long computation
time.

They show the analytic Windowed Multipole Doppler broadening exactly matches
the direct piece-wise integration of Solbrig’s kernel (E.136) to 10≠6 relative error,
significantly outperforming the SIGMA1 method [118] of NYOJ [228], while the tra-
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ditional ÂT /‰T approximation (E.144) breaks down at high temperatures. Note than
in this particular SLBW case of appendix E.8, the poles are exact opposites of one
another, while the residues are the same, so that they cancel out of the C-function
correction (E.146), hence the analytic Doppler broadening of the Windowed Multipole
Representation (E.147) is exact. This cancelling out of C-function correction (E.146)
is also true in general of zero threshold neutral particles s-wave cross sections, which
behave as 1/z at low energies, thereby yielding identical residues r+

j = r≠
j for opposite

z-poles pairs p+

j = ≠p≠
j .

E.5.4 Temperature derivatives of Doppler broadened Win-
dowed Multipole cross sections

The analytic Doppler broadening of Windowed Multipole cross sections (theorem 17)
has the additional advantage that one can compute all its temperature derivatives by
means of simple recurrence formulae, as we here establish in theorem 18.

Theorem 18. Temperature derivatives of Windowed Multipole cross
sections
Consider the approximate Doppler broadened Windowed Multipole Representation of
R-matrix cross sections (E.147) from theorem 17, upon change of variables ◊ , 1

—

‡T (z) ƒ
W(E)

1
z2

Ÿ

S

Ui
Ô

fi
ÿ

jØ1

rj ◊ w
3

◊ (z ≠ pj)
4T

V

+
ÿ

nØ≠2

anDn
—(z)

Then its k-th temperature derivative can be computed as

ˆ(k)

T ‡T (z) ƒ
W(E)

1
z2

Ÿ

S

Ui
Ô

fi
ÿ

jØ1

rj X(k)

— (z ≠ pj)
T

V

+
ÿ

nØ≠2

an ˆ(k)

T Dn
—(z)

(E.153)

X(k)

— (z ≠ pj) are the k-th temperature derivatives of the Doppler broadened resonances:

X(k)

— (z ≠ pj) , ˆ(k)

T

5
◊ w

3
◊ (z ≠ pj)

46

=
kÿ

n=1

S

U
1
ˆ(n)

◊ ◊ w
1
◊(z ≠ pj)

22
◊

Bk,n

1
◊(1), ◊(2), . . . , ◊(k≠n+1)

2
T

V

(E.154)

where the sum is the Arbogast composite derivatives (Faà di Bruno) formula [61],
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linking the ◊-derivatives

ˆ(n)

◊ ◊ w
1
◊(z ≠ pj)

2
=

’nØ1

≠
(z ≠ pj)n≠1

2 w(n+1)
1
◊(z ≠ pj)

2
(E.155)

to the ◊(n) temperature derivatives of ◊

◊(n) , ˆ(n)

T ◊ = 1
—

3
≠1
2

4n (2n ≠ 1)!!
(T ≠ T0)n (E.156)

by means of the partial exponential Bell polynomials Bk,n

1
◊(1), ◊(2), . . . , ◊(k≠n+1)

2
[71,

49, 85].
The derivatives of the Faddeyeva function can be computed using recurrence formulae
(c.f. 7.10 in [250]):

w(1)(z) = ≠2zw(z) + 2i
Ô

fi

w(n+2)(z) = ≠2zw(n+1)(z) ≠ 2(n + 1)w(n)(z)
(E.157)

ˆ(k)

T Dn
—(z) are the temperature derivatives of the Doppler broadened monomials,

which are subject to the following recurrence formulae, defining a , kB
A :

ˆ(k)

T Dn+2

— (z) =
’nØ1

C
—2

2 (2n + 1) + z2

D

ˆ(k)

T Dn
—(z)

+a

2(2n + 1)k ˆ(k≠1)

T Dn
—(z)

≠
n(n ≠ 1)

4

S

U—4ˆ(k)

T Dn≠2

— (z)

+ 2a—k ˆ(k≠1)

T Dn≠2

— (z)

+ a2k(k ≠ 1)ˆ(k≠2)

T Dn≠2

— (z)
T

V

ˆ(k)

T D0

—(z) =
C

—2

2 +z2

D

ˆ(k)

T D≠2

— (z) + a

2k ˆ(k≠1)

T D≠2

— (z)

+ 1
z
Ô

fi

Ë
—2ˆ(k)

T ◊e≠(z◊)
2
+ak ˆ(k≠1)

T ◊e≠(z◊)
2È

ˆ(k)

T D≠1

— (z) = 1
z

”k,0

ˆ(k)

T D≠2

— (z) = 1
z2

ˆ(k)

T erf (z◊)

(E.158)

In recurrence relations (E.158), the terms ˆ(k)

T ◊e≠(z◊)
2 can themselves be computed
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using Arbogast’s formula:

ˆ(k)

T ◊e≠(z◊)
2

= e≠(z◊)
2

kÿ

n=1

S

UF (n)

z (◊) ◊

Bk,n

1
◊(1), ◊(2), . . . , ◊(k≠n+1)

2
T

V
(E.159)

where F (n)

z (◊) are polynomials of degree n + 1 defined as

F (n)

z (◊) , e(z◊)
2
ˆ(n)

◊ ◊e≠(z◊)
2

=
n+1ÿ

i=0

–(n)

i ◊i (E.160)

which are recursively constructed from F (0)

z (◊) = ◊ as

F (n+1)

z (◊) = ˆ◊F
(n)

z (◊) ≠ 2z2◊F (n)

z (◊) (E.161)

entailing these recurrence formulae on their coe�cients:

–(0)

0 = 0 –(0)

1 = 1
–(n+1)

n+1 = ≠2z2–(n)

n –(n+1)

n+2 = ≠2z2–(n)

n+1

–(n+1)

i =
1ÆiÆn

(i + 1)–(n)

i+1
≠ 2z2–(n)

i≠1

(E.162)

Finally, the terms ˆ(k)

T erf (z◊) in recurrence relations (E.158) can also be computed
using Arbogast’s formula:

ˆ(k)

T erf (z◊) =
kÿ

n=1

1
ˆ(n)

◊ erf (z◊)
2

Bk,n

1
◊(1), . . . , ◊(k≠n+1)

2
(E.163)

in which the ◊ derivatives can be expressed as

ˆ(n)

◊ erf (z◊) =
nØ1

zn(≠1)n≠1
2

Ô
fi

Hn≠1 (z◊) e≠(z◊)
2

(E.164)

where the Hermite polynomials Hn(z) are recursively calculable from H0 = 1 and
H1 = 2z as:

Hn+1 =
nØ1

2zHn ≠ 2nHn≠1 (E.165)

Proof. The underlying assumption of the proof is that one can neglect the derivatives
of the correction term (E.146). The proof consists of a series of derivatives expanded
using the general Leibniz rule and the Arbogast formula for composite derivatives
(Faà di Bruno) (c.f. p.43 of [61]), in which the Bell polynomials can be computed as
referenced in [71, 49, 85]. Direct di�erentiation yields the temperature derivatives of
◊ (E.156). Expression (E.155) is obtained using the Faddeyeva function recurrence
formula (E.157), documented in 7.10 of [250]. The F (n)

z (◊) polynomials (E.160) are
defined from ˆ(n)

◊ ◊e≠(z◊)
2 = F (n)

z (◊)e≠(z◊)
2 and their degree n+1 stems from the recur-
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sive derivatives (E.161) initialized at F (0)

z (◊) = ◊, entailing the recurrence formula for
the coe�cients (E.162). Similarly, expression (E.164) is derived from change of vari-
able z æ ◊z, and using the derivative formula for the error function (c.f. Abramowitz
& Stegun, p.298, eq. 7.1.19 [51], or 7.10.1 in [250]):

erf(n+1)(z) = (≠1)n 2
Ô

fi
Hn(z)e≠z2

while the Hermite polynomials recurrence relation (E.165) is well known and docu-
mented (c.f. 18.9 of [250]).

Underpinning this direct di�erentiation approach is the assumption that the C-
function correction term (E.146), itself negligible, also has negligible temperature
derivatives. It is nonetheless possible to extend this method to explicitly include
thermal derivatives of the correction term (E.146), by noticing that these deriva-
tives follow a similar polynomial structure as (E.160) and are subject to a recurrence
relation similar to (E.161).

E.5.5 Fourier transform approach to
temperature treatment

Ferran developed a more general approach, based on Fourier transforms, to Doppler
broaden nuclear nuclear cross sections (we here only discussed Doppler broadening of
angle-integrated cross sections)[145]. In theorem 19, we generalize Ferran’s method,
begetting arbitrary-order temperature derivatives of Doppler broadened cross sec-
tions, while setting a more general framework for temperature treatments such as
low-energy thermal neutrons scattering with the phonons of the target’s crystalline
structure. Moreover, when applied to the Windowed Multipole Representation of
R-matrix cross sections, this Fourier transform approach exactly accounts for the en-
tire nuclear cross section, without neglecting the C-function correction term (E.146).
This generality comes at the additional cost of having to compute Fourier transforms
on-the-fly. Also, Fourier transforms can be numerically sensitive to the tails of dis-
tributions, meaning one has to be careful as to how the cross sections are extended
beyond the treated windows (c.f. Ferran’s discussion in section IV.B.2 of [145]).

We here recall Ferran’s general Fourier transform method from [145]. The function
f ı g designates the convolution product between functions f and g, defined as:

f ı g (x) ,
’xœR

⁄

R
f(t)g(x ≠ t)dt (E.166)

Ferran expressed Solbrig’s kernel (E.136) Doppler broadening operation as a convo-
lution product by introducing the Ferran representation odd-parity function [145]:

sT : z œ R ‘æ

Y
_]

_[

z2‡T (z) ’z œ Rú
+

0 if z = 0
≠z2‡T (≠z) ’z œ Rú

≠

(E.167)
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Applying Solbrig’s Kernel to sT yields a linear convolution product operator that
transforms the Ferran representation s0 of the cross section at temperature T0, to sT

at temperature T > T0 as follows [145]:

sT = s0 ı K
B
T (E.168)

where K
B
T is the Maxwell-Bolztmann distribution of energies of the target

K
B
T (z) ,

’zœR

1
—

Ô
fi

e≠( z
— )2

(E.169)

The Fourier transform of a function f is defined as (unitary, ordinary frequency
convention)[147]:

‚f(‹) ,
⁄

R
f(t) e≠i2fi‹tdt (E.170)

for which the inverse Fourier transform is:

f(x) =
⁄

R
‚f(‹) ei2fi‹xd‹ (E.171)

The Fourier transform of any odd-parity function g can be expressed as

‚g(‹) = ≠2i
⁄

R+
g(t) sin (2fi‹t) dt (E.172)

Fourier transforms satisfy the convolution property:

[f ı g = ‚f ‚g (E.173)

The Doppler broadening operation can therefore be performed by calculating the
inverse Fourier transform of

„sT = \s0 ı KB
T = „s0

‰
KB

T
(E.174)

Since the Fourier transform of Boltzmann kernel K
B
T is well-known

‰
KB

T (‹) = e≠(fi—‹)
2 (E.175)

given „s0, Doppler broadening can therefore be performed as the inverse Fourier trans-
form of „s0 e≠(fi—‹)

2 .
In theorem 19, we derive the Fourier transform of windowed multipole cross sec-

tions, and generalize Ferran’s method to account for arbitrary order temperature
derivatives, as an alternative to theorem 18.

Theorem 19. Fourier transform Doppler broadening of Windowed Mul-
tipole cross sections
Consider the zero Kelvin (0 K) Ferran representation of Windowed Multipole R-matrix
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cross sections (E.96), i.e. the odd-parity function s0(z) = ≠s0(≠z) locally of the form:

s0(z) ,
z>0

z2 ‡0(z) =
W(E)

Ÿcont

S

U
ÿ

jØ1

rj

z ≠ pj

T

V+
ÿ

nØ0

an≠2z
n (E.176)

Then its Fourier transform (E.170) can be expressed as

„s0(‹) =
W(E)

Ÿcont

S

U
ÿ

jØ1

rj
‚Vpj (‹)

T

V +
ÿ

nØ0

an≠2
‚Fn(‹) (E.177)

where the Fourier transforms of the Laurent expansions ‚Fn(‹) can be expressed for
either even or odd positive integers n Ø 0 as (”(n)(‹) designates the n-th derivative of
Dirac’s Delta distribution):

‚F2n(‹) , (≠1)n+1
2i(2n)!

(2fi‹)2n+1

‚F2n+1(‹) , (≠1)ni
(2fi)2n+1

”(n)(‹)
(E.178)

and the Fourier transforms of the resonances at pole pj
‚Vpj (‹) can be expressed as

‚Vpj (‹) ,
|ph(pj)|<fi

≠2i sgn(‹) f (≠2fi|‹|pj) (E.179)

where sgn(z) designates the sign function, and f is the auxiliary function defined in
6.2.17 of [250].

The kth-order temperature derivative of Windowed Multipole R-matrix cross sec-
tions is the convolution:

ˆ(k)

T sT = s0 ı ˆ(k)

T K
B
T (E.180)

which is the inverse Fourier transform (E.171) of product

\̂(k)

T sT = „s0 ˆ(k)

T
‰
KB

T
(E.181)

whose expressions are (E.177) for „s0 and, defining a , kB
A ,

ˆ(k)

T
‰
KB

T = ak(ifi‹)2k ‰
KB

T = ak(ifi‹)2ke≠(fi—‹)
2 (E.182)

Proof. The proof consists of directly calculating the corresponding Fourier transforms
by developing the linear operators. Equation (E.181) stems from the Fourier trans-
form linear property \

ˆ(k)

T KB
T = ˆ(k)

T
‰
KB

T applied to (E.180). Expression (E.182) is
obtained by direct di�erentiation of (E.175). In key expression (E.177), the Fourier
transforms of the Laurent development part (E.178) are obtained by noticing that
odd parity polynomials are already odd functions, while the even parity ones must be
written as the di�erence of (E.176) multiplied by the Heaviside function for domains
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R≠ and R+, and then applying standard Fourier transform properties. The Fourier
transforms of resonance terms (E.179) are obtained by identifying the integral repre-
sentation 6.7.13 in [250], and using identity f (ze±ifi) = fieûiz

≠ f(z) (c.f. 6.4.6 [250])
if the phase of the pole pj does not respect |ph (pj)| < fi.

The Fourier transform approach of theorem 19 to arbitrary order temperature
derivatives is conceptually more elegant than the direct di�erentiations of theorem
18: there is no need for Arbogast - Faà di Bruno composition expansions nor re-
currences. It is also more general, as the correction C-function term (E.146) is not
neglected in the Doppler broadening, and that the Fourier transform approach could
potentially be expanded to treat thermal scattering with the phonon distributions of
targets: one would then need to replace the Boltzmann distributions ‰

KB
T (E.175) with

the corresponding phonon Fourier spectra (c.f. “Neutron Slowing Down and Ther-
malization” chapter in [99] or [65, 318]). In practice, theorem 19 also runs into its
own hurdles: nothing guarantees that numerically performing the on-the-fly Fourier
transforms of theorem 19 – using the Fast Fourier Transform FFT and subsequent al-
gorithms [112, 64, 191] – is more computationally e�cient than calling the Faddeyeva
functions – which also have benefited of great algorithmic and computational perfor-
mance gains [321, 270, 328, 327, 196] – and the recursive formulae of theorem 18. This
is all the more so true than theorem 19 requires the computation of the f auxiliary
function (E.179), which could be more costly than calling the Faddeyava function.
Also, Fourier transforms are global integrals, so the windowing process complicates
this approach, and the windows have now to be selected according to the method Fer-
ran discussed in IV.B.2 of [145], considering that the Doppler broadening only a�ects
the cross section ‡(E) at a given energy E for a convolution over an interval com-
mensurate to the temperature energy —2, say four times E ± 4—2 [300, 118, 190, 145].
Note that this locality problem already exists in the direct Doppler broadening of
theorem 17 and by extension theorem 18, and even in the windowing process itself,
when selecting which poles pj to include in window W(E) as discussed in section
E.3.5 and established in [146, 197]. Though in theory the Mittag-Le�er expansion
converges on the entire energy domain between two thresholds [ETc , ETc+1], in prac-
tice it is too costly to compute the Faddeyeva functions for all poles, the essence of
the windowing process is therefore to only account for the poles which a�ect the cross
section in window W(E) upon Doppler broadening, in practice extending the domain
(“external window” in [146, 197]) for a couple of temperature energy variances in the
Boltzmann distribution (

Ë
W(Emin ≠ 4—2

max(T )
), W(Emax + 4—2

max(T )
)
È
): this is a very

similar process than Ferran’s continuation of the function for the Fourier transform,
discussed in section IV.B.2 of [145]. Therefore, if the windowing process is well per-
formed, the expression of theorem 19 will be valid within each window. Otherwise,
one would need to truncate the Fourier transforms at the boundary of each energy
window, and laboriously concatenate the Ferran representation window by window
in the Fourier transforms.

Finally, note that Ferran’s Doppler broadening method presents similarities with
the optimal temperature kernel reconstruction quadratures developed in [124]: both
are kernel methods operating on the cross sections, in particular the Boltzmann kernel
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eq. (6) of [124]. Appendix D of [124] studies the consequences the Windowed Multi-
pole Representation of R-matrix cross sections on the Fourier transforms involved in
theorem 19. In particular are discussed the general shapes of the Fourier transforms
of the nuclear resonances, compared to the K

B
T Boltzmann kernel (E.175), and how

this can entail properties of interest, such as frequency separation in L2 norm (c.f.
eq. (D.9) and sections D.2 and D.3 of appendix D in [124]).

E.6 Conclusion
This article establishes the theoretical foundations for the Windowed Multipole Li-
brary.

We derive how the Windowed Multipole Representation of R-matrix cross sections
can be constructed by finding the poles of the Kapur-Peierls operator and performing
Hwang’s albebraic continuation (theorem 15). In the process, we connect the Win-
dowed Multipole Representation to both the Bloch and Wigner-Eisenbud R-matrix
theory and to the Humblet-Rosenfeld pole expansions in wavenumber space.

We establish a method to convert R-matrix resonance parameters covariance ma-
trices into Windowed Multipole covariances (theorem 16), and show they generate the
same uncertainty distribution on nuclear cross sections, either through the sensitivity
approach or by sampling stochastic cross sections.

We recall Windowed Multipole cross sections can be Doppler broadened ana-
lytically to high accuracy (theorem 17), and expand this on-the-fly capability to
arbitrary-order temperature derivatives (theorem 18), whist deriving new capabilities
for temperature treatment by means of Fourier transforms of Windowed Multipole
cross sections (theorem 19).

The Windowed Multipole Representation of R-matrix cross sections has already
proved its e�cacy on a vast range of nuclear physics applications. We hope the foun-
dational results of this article will allow for the widespread adoption of the Windowed
Multipole Library, and underpin new research e�orts to expand its capabilities.
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E.8 Appendix: Single Breit-Wigner capture reso-
nance

In order to derive a simple reference case that is tractable analytically, we here study
the multipole representation of the first radiative capture s-wave resonance of ura-
nium 238U. We neglect the energy dependence of the widths in the resonance (this
constitutes the B=S approximation), and denote �⁄ , �“ +�n, so that the “-channel
cross section takes the form:

‡“(E) = figJfia2

c

�“�n

fl2
0

Ô
E⁄

1
Ô

E

1
(E⁄ ≠ E)2 + �2

⁄/4
(E.183)

which is a Single-Level Breit-Wigner resonance (E.137) with E⁄ , E⁄ ≠ i�⁄
2

, a = 0,
and b , 2fi �“�n

fl2
0
Ô

E⁄�⁄
, i.e.

‡“(E) = 1
Ô

E
Ÿ

C
ib

E ≠ E⁄

D

(E.184)

Let us now cast (E.183) into the multipole representation (E.96). We perform this
by change of variables z2 = E, and p2 = E⁄, and partial fraction decomposition:

1
Ô

E
Ÿ

C
ib

E ≠ E⁄

D

= 1
z2

Ÿ

C
ib/2
z ≠ p

+ ib/2
z + p

D

(E.185)

So that the multipole cross section in z-space is then:

‡“(z) = 1
z2

Ÿcont

C
r

z ≠ p
+ r

z + p

D

(E.186)

with
r , ifi �“�n

fl2
0

Ô
E⁄ �⁄

p ,
Û

E⁄ ≠ i�⁄

2

(E.187)

One can then verify the results of theorem 15 with these explicit formulae.
In theorem 16, we develop a method to compute the Jacobian matrix

1
ˆ�

ˆ�

2
, us-

ing the sensitivities ˆ‡
ˆ�

(E) of the cross section ‡(E) to resonance parameters
Ó
�

Ô
.

These can here be derived by direct di�erentiation of (E.183), yielding the relative
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sensitivities (derivatives):

1
‡“

ˆ‡“

ˆE⁄
= ≠1

2E⁄
+ 2(E ≠ E⁄)‡“

fl2

0

Ô
E

Ô
E⁄

fi�n�“

1
‡“

ˆ‡“

ˆ�n
= 1

�n
≠

�⁄

2 ‡“
fl2

0

Ô
E

Ô
E⁄

fi�n�“

1
‡“

ˆ‡“

ˆ�“
= 1

�“
≠

�⁄

2 ‡“
fl2

0

Ô
E

Ô
E⁄

fi�n�“

(E.188)

Alternatively, these same cross section sensitivities ˆ‡
ˆ�

(E) can be computed using
(E.184). For real b œ R, the partial derivatives to any real coe�cient � œ R follow

1
‡“

ˆ‡“

ˆ� = 1
b

ˆb

ˆ� +
Ÿ

Ë
i

(E≠E⁄)2
ˆE⁄
ˆ�

È

Ÿ

Ë
i

E≠E⁄

È

Since we have:
ˆE⁄

ˆE⁄
= 1 ,

1
b

ˆb

ˆE⁄
= ≠

1
2E⁄

ˆE⁄

ˆ�n
= ˆE⁄

ˆ�“
= ≠

i
2 ,

1
b

ˆb

ˆ�n
= 1

�n
≠

1
�⁄

,
1
b

ˆb

ˆ�“
= 1

�“
≠

1
�⁄

(E.189)

the cross section sensitivities ˆ‡
ˆ�

(E) to resonance energy E⁄, neutron scattering width
�n, and radiative capture width �“ are thus respectively

1
‡“

ˆ‡“

ˆE⁄
= ≠1

2E⁄
+

Ÿ

Ë
i

(E≠E⁄)2

È

Ÿ

Ë
i

E≠E⁄

È

1
‡“

ˆ‡“

ˆ�n
= 1

�n
≠

1
�⁄

+ 1
2

Ÿ

Ë
1

(E≠E⁄)2

È

Ÿ

Ë
i

E≠E⁄

È

1
‡“

ˆ‡“

ˆ�“
= 1

�“
≠

1
�⁄

+ 1
2

Ÿ

Ë
1

(E≠E⁄)2

È

Ÿ

Ë
i

E≠E⁄

È

(E.190)

where the derivatives could be taken within the real part because all the parameters
were real. Using the cross section sensitivities ˆ‡

ˆ�
(E) – either from (E.188) or (E.190)

– and performing the corresponding Hwang’s conjugate continuation (section E.3.4),
one can therefore compute the multipole sensitivities

1
ˆ�

ˆ�

2
of theorem 16 using the

contour integrals system (E.128).

In this simple case of a Single-Level Breit-Wigner resonance in multipole repre-
sentation (E.186), we are also able to explicitly calculate the multipole sensitivities to
resonance parameters – i.e. Jacobian

1
ˆ�

ˆ�

2
– by direct di�erentiation of the explicit
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formulae (E.187), yielding:

ˆp+

ˆE⁄
= ≠

ˆp≠

ˆE⁄
= 1

2p+

ˆr+

ˆE⁄
= ˆr≠

ˆE⁄
= ≠

r+

2E⁄

and
ˆp+

ˆ�n
= ≠

ˆp≠

ˆ�n
= ≠i

4p+

ˆr+

ˆ�n
= ˆr≠

ˆ�n
= r+

3 1
�n

≠
1

�⁄

4

and
ˆp+

ˆ�“
= ≠

ˆp≠

ˆ�“
= ≠i

4p+

ˆr+

ˆ�“
= ˆr≠

ˆ�“
= r+

A
1

�“
≠

1
�⁄

B

(E.191)

The latter multipole sensitivities (E.191) can then be used to validate theorem 16.
For verification and reproducibility purposes, we generated figures E-4, E-5, and E-

6 using cross section (E.183) with the parameters from the neutron slowdown analytic
benchmark [299], which we here report in table E.2. These parameters are similar
(but not identical) to those of ENDF/B-VIII.0 evaluations, yielding the same cross
section to a multiplicative constant. The resonance energies and widths are those of
ENDF/B-VIII.0, as well as their covariance matrix. The enlarged covariance matrix
in table E.2 is that of the analytic benchmark [299], and was designed to bring the
neutron slowdown problem past the linear regime in resonance sensitivity.
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Table E.2: Resonance parameters of the first s-wave radiative “-capture resonance of 238U
used for generating temperature tolerance plot (FIG. E-6) and sensitivities demonstration
(FIG.E-4 and FIG.E-5). The resonance energies and widths, as well as their covariance
matrix, are those of ENDF/B-VIII.0 evaluation [87]. The enlarged covariance matrix, as
well as the channel radius ac, the atomic weight A, and fl0, are those of the analytic neutron
slowdown benchmark [299]

z =
Ô

E with E in (eV)
A = 238
ac = 0.000948 : channel radius, in Fermis
fl0/ac = 0.002196807122623/2 (

Ô
eV≠1)

E⁄ = 6.674280 : first resonance energy (eV)
�n = 0.00149230 : neutron width of first resonance
�“ = 0.0227110 : eliminated capture width (eV)
gJfi = 1 : spin statistical factor
ENDF/B-VIII.0 covariance matrix:
Var ([E0, �n, �“]) =
S

WU
1.1637690 ◊ 10≠7

≠2.7442070 ◊ 10≠10 1.8617500 ◊ 10≠8

≠2.7442070 ◊ 10≠10 3.9366000 ◊ 10≠10
≠6.5102670 ◊ 10≠9

1.8617500 ◊ 10≠8
≠6.5102670 ◊ 10≠9 1.6255630 ◊ 10≠7

T

XV

Enlarged covariance matrix (same correlation):
Var ([E0, �n, �“]) =
S

WU
1.2373892 ≠1.1217107 ◊ 10≠5 5.6993358 ◊ 10≠4

≠1.1217107 ◊ 10≠5 6.1859980 ◊ 10≠8
≠7.6617177 ◊ 10≠7

5.6993358 ◊ 10≠4
≠7.6617177 ◊ 10≠7 1.4327486 ◊ 10≠5

T

XV
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Appendix F

— Kernel reconstruction methods
for Doppler broadening —
temperature interpolation by
linear combination of
reference cross sections at
optimally chosen temperatures

Here is verbatim transcribed our article [124] on optimal quadrature kernel recon-
struction methods for Doppler broadening interpolation.

F.1 Abstract
This article establishes a new family of methods to perform temperature interpolation of
nuclear interactions cross sections, reaction rates, or cross sections times the energy. One
of these quantities at temperature T is approximated as a linear combination of quantities
at reference temperatures (Tj). The problem is formalized in a cross section independent
fashion by considering the kernels of the di�erent operators that convert cross section re-
lated quantities from a temperature T0 to a higher temperature T – namely the Doppler
broadening operation. Doppler broadening interpolation of nuclear cross sections is thus
here performed by reconstructing the kernel of the operation at a given temperature T by
means of linear combination of kernels at reference temperatures (Tj). The choice of the
L2 metric yields optimal linear interpolation coe�cients in the form of the solutions of a
linear algebraic system inversion. The optimization of the choice of reference temperatures
(Tj) is then undertaken so as to best reconstruct, in the LŒ sense, the kernels over a given
temperature range [Tmin, Tmax]. The performance of these kernel reconstruction methods
is then assessed in light of previous temperature interpolation methods by testing them
upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly
outperforms all previous interpolation-based methods, achieving 0.1% relative error on tem-
perature interpolation of 238U total cross section over the temperature range [300K, 3000K]
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with only 9 reference temperatures.

F.2 Introduction
Temperature e�ects play a crucial role in nuclear reactor physics. One such e�ect –
Doppler broadening – is for instance responsible for important feedback mechanisms
that can ensure the stability of a critical reactor.

In both deterministic and Monte Carlo neutron transport calculations, the tem-
perature dependence of nuclear cross sections is often dealt with by pre-tabulating
N Doppler-broadened cross sections, ‡Tj (E), at a sequence of given temperatures,
(Tj)jœJ1;NK, and then interpolating those values through some interpolation scheme to
find the cross section, ‡T (E), at the desired temperature T [314]. Such an interpo-
lation is necessary in practice due to the di�culty of calculating the exact Doppler
broadening on-the-fly. So far, Doppler broadening temperature interpolation has been
traditionally performed by ad hoc methods that were not the result of a rigorous op-
timization problem, and which were selected on best-performance criteria.

In this article, a new family of linear interpolation methods is developed: kernel
reconstruction methods. They rest on the mathematical concept of minimizing the
distance between the kernels of the linear operators that transform a cross section, a
reaction rate, or energy times the cross section, from one temperature to another.

As a physical interpretation, these kernel reconstructions seek to recreate the
velocity (or energy) distribution of the target particle at a given temperature, T ,
with a linear combination of the distributions at the reference temperatures, (Tj).
This idea had been introduced, though not systematically formalized, in [?], for a
particular case of reaction rates.

In section F.3, this article presents the principle of linear kernel reconstruction
methods for Doppler broadening, and presents four natural kernel reconstruction
methods: Doppler kernel reconstruction; Maxwellian kernel reconstruction; Maxwellian-
over-velocity kernel reconstruction; and Boltzmann kernel reconstruction. In each
case, the linear reconstruction can be performed as a free optimization problem or
as a constrained one, for a total of eight methods. For each method, the optimal
coe�cients – in the L2 norm sense – for linear interpolation are exhibited as the so-
lution to an inversion of a cross section independent system. Thus, provided a set of
reference temperatures (Tj) and a target temperature T to which to interpolate, the
kernel reconstruction methods provide optimally chosen interpolation coe�cients.

Section F.4 further temperature-optimizes these kernel reconstruction methods
by finding the set of reference temperatures (Tj)jœJ1;NK that minimize the kernel re-
construction relative error over the entire temperature range [Tmin, Tmax] on which
the quantities are to be interpolated. An algorithm specifically devised to solve the
min-max problem of such a temperature-optimization is introduced. Each kernel re-
construction method is tested with its own optimized reference temperatures grid to
assess kernel reconstruction performance.

Finally, section F.5 studies the performance of the kernel reconstruction methods,
with their respective optimal (Tj)jœJ1;NK reference temperature distributions, on nu-
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clide 238U. Temperature-optimized constrained Doppler kernel reconstruction is shown
to have the best accuracy amongst all eight kernel reconstruction methods. However,
the free Doppler kernel reconstruction method was preferred due to its close accuracy
and higher algorithmic and computational performance. Free Doppler kernel is then
compared to previous Doppler broadening interpolation methods commonly in use in
nuclear reactor physics calculations.

F.3 Kernel reconstruction linear combination tem-
perature interpolation methods

This section defines and establishes the various kernel reconstruction methods to per-
form Doppler broadening temperature interpolation by means of linear combination
of reference cross sections, reaction rates, or energy-times-cross sections.

F.3.1 Dopper broadening operation

Assuming Maxwell-Boltzmann’s free-gas model for the target nuclei distributions of
velocities ≠ævt and energies, the Doppler broadening e�ect of temperature on the reac-
tion rates can be modeled as follows [?]:

v‡T (v) =
⁄

vt|vr>0

vr‡T0(vr)MT (≠ævt ) d≠ævt (F.1)

where T is the temperature of the target nuclei; T0 a given reference temperature
which will henceforth be, without loss of generality, assumed to be zero; vr is the
relative speed between the neutron hitting at speed v the target that has a Maxwell-
Boltzmann velocity distribution MT (≠ævt ); and ‡T (v) designates the interaction cross
section at temperature T for incoming neutron speed v (respectively temperature T0

and relative speed vr for ‡T0(vr)). The assumption of isotropic velocity distribution
yields the following Doppler broadening of the reaction rates operator:

v‡T (v) = 1
2

⁄
1

≠1

dµ
⁄

vt|vr>0

vr‡T0(vr)MT (vt) dvt (F.2)

where µ = ≠ævt ·
≠ævr and MT (vt) is the Maxwellian distribution of speeds vt of the

target particle at temperature T :

MT (vt) dvt =
Û

2
fi

A
mnA

4›

B
3/2

v2

t exp
A

≠

1

2
mnAv2

t

4›

B

dvt (F.3)

mn designates the neutron mass, and 4› = kb(T ≠T0)

A , where A is the atomic weight
ratio of the target nuclei with respect to the incoming neutron, and kb is the Boltz-
mann constant. Further developing the classical energy transformation
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1
2mv2

r = 1
2m

1
v2

≠ 2µvtv + v2

t

2
(F.4)

yields Solbrig’s kernel for Doppler broadening as a function of u =
Ô

E, with
E = 1

2
mnv2 is the kinetic energy of the incoming neutron [?]:

u2‡T (u) =
⁄ Œ

0

x2‡T0(x)S(u, x)dx

S(u, x) = 1
2
Ô

fi›

5
e≠ (u≠x)2

4› ≠ e≠ (u+x)2
4›

6 (F.5)

F.3.2 Kernel operators definitions
From the latter, it stems that Doppler broadening is a kernel linear operation that
transforms a quantity at temperature T0 to its value at temperature T . Depending
on which of the following three quantities is being transformed, four kernels K can
be observed:

1. The E · ‡(E) quantity relates to the K
B
T kernel – here called the Boltzmann

kernel since it is the Boltzmann distribution of the target particles energies:

u2‡T (u) =
⁄

x2‡T0(x)KB
T (u, x)dx (F.6)

2. The v · ‡(v) quantity can relate to two kernels, according to how the integra-
tion is interpreted: K

M
T – here called the Maxwell kernel as it is the Maxwell

velocity distribution of the target particles; or K
M
v
T – here called the Maxwell-

over-velocity kernel since that is the ratio that springs from the integration.

v‡T (v) =
⁄

x‡T0(x)KM
T (v, x)dx (F.7)

v‡T (v) =
⁄

x‡T0(x)K
M
v
T (v, x)dx (F.8)

3. The ‡(u) quantity relates to the kernel K
D
T – here called the Doppler kernel as

it is the kernel of the Doppler broadening operation acting on the cross section:

‡T (u) =
⁄

‡T0(x)KD
T (u, x)dx (F.9)

For clarity purposes, the integrals in the latter definitions are so-far willfully left
vague, and formal derivations are expressed to present the structure of the reason-
ing. The details of all derivations are relegated to the appendixes for reproducibility
purposes.
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F.3.3 Kernel reconstruction
Hereafter is presented the general method of kernel reconstruction, and the kernel
reconstruction problem is formally solved in the general case for both free and con-
strained reconstruction problems.

Temperature interpolation by linear combination of pre-tabulated cross
sections

Let us consider the cross section temperature interpolation problem and search for
solutions that are linear combinations of the pre-tabulated values, such that we ap-
proximate the exact value of the cross section, ‡(exact)

T by:

‡(exact)
T ¥ ‡(approx)

T =
Nÿ

j=1

cj‡Tj (F.10)

where the ‡Tj are assumed to be also exactly calculated. Our goal is to formulate
the problem so as to find the optimal choice of (cj) coe�cients to perform this linear
interpolation.

The linearity of the kernel operators entails that the di�erence between the exact
and the interpolated quantity translates into an integral di�erence between kernels.
In the case of the Doppler kernel, this means:

1
‡(exact)

T ≠ ‡(approx)

T

2
(u) =

⁄
‡T0(x)

S

UK
D
T ≠

ÿ

j

cjK
D
Tj

T

V (u, x)dx
(F.11)

Free kernel reconstruction & algebraic solution

Regardless of the metrics chosen, the minimization of the latter expression will be
cross section dependent. However, to develop a cross section independent interpola-
tion method, a weak formulation can be used to search the (cj) that minimize, for all
‡T0 , the quantity:

⁄ 1
‡(exact)

T ≠ ‡(approx)

T

2
(u)du =

⁄⁄
‡T0(x)

S

UK
D
T ≠

ÿ

j

cjK
D
Tj

T

V (u, x)dxdu
(F.12)

In particular, if for all u, the cross section is arbitrarily chosen as:

’x, ‡T0(x) =
S

UK
D
T ≠

ÿ

j

cjK
D
Tj

T

V (u, x) (F.13)

this entails the following L2 minimization problem:
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Find the (cj) coe�cients that minimize in the L2 sense the di�erence between
the exact Doppler kernel at temperature T and a linear combination of kernels at temperatures (Tj)

cj = argmin
cj

......
K

D
T ≠

ÿ

j

cjK
D
Tj

......
L2

(F.14)
Solving this problem is here called L2 free Doppler kernel reconstruction, and the

same approach on v · ‡T (v) and E · ‡T (E) yields analog minimization problems and
free kernel reconstructions for the Maxwell, Maxwell-over-velocity and Boltzmann
kernels.

An important characteristic of these kernel reconstruction schemes is that the
choice of the L2 norm provides an Hilbert space structure in which the latter optimiza-
tion problems become algebraically solvable. Indeed, let (cj) be the coe�cients we are
searching for, and Èf |gÍ denote the scalar product acting upon our Hilbert functional
space, then developing

...KT ≠
qN

j=1
cjKTj

...
2

L2
= ÈKT |KT Í ≠ 2 q

jœJ1;NK cjÈKTj |KT Í +
q

j,k ckcjÈKTj |KTk
Í, and searching for the local minima ’j œ J1; NK ˆ

ˆcj

...KT ≠
qN

j=1
cjKTj

...
2

L2
=

0, yields the following system:

’j œ J1; NK,
ÿ

k ”=j

ckÈKTj |KTk
Í + cjÈKTj |KTj Í = ÈKTj |KT Í (F.15)

Thus, if our problem has an interior solution, it must satisfy the above system,
which can be written in matrix form as follows:

G · C = Y (F.16)

where C is the array of coe�cients we are searching for:

C = vect (ÈKTi|KT Í) =
Ë

c1 , . . . , cN

È€
(F.17)

G is the Gram matrix of the kernels:

G = mat
1
ÈKTi|KTj Í

2

(F.18)

and Y is the target vector:

Y =
Ë

ÈKT1|KT Í , . . . , ÈKTN |KT Í

È€
(F.19)

Constrained kernel reconstruction & Algebraic solution

Both Boltzmann and Maxwell kernels are the respective densities of the Boltzmann
and Maxwell probability distribution functions, which means that their L1 norm is
equal to one.
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When performing the kernel reconstruction, it can be advantageous to conserve
this physical property, which guarantees the volume of the kernel is unchanged. This
implies making sure that the linear combination of Boltzmann or Maxwell distribu-
tions integrates to one so that it can still be considered a probability density function
for the target nuclei, or, equivalently, imposing that the linear interpolation coe�-
cients cj sum up to 1.

This leads us to consider the L2 constrained kernel reconstruction problems:

Find the (cj) coe�cients that minimize in the L2 sense the di�erence between
the exact kernel at temperature T and a linear combination of kernels at temperatures (Tj)

cj = argmin
cj

......
KT ≠

ÿ

j

cjKTj

......
L2

under the unity constraint of conserving probability densities:
Nÿ

j=1

cj = 1

(F.20)
In the constrained kernel reconstruction case, injecting the condition q

j cj = 1
into

...KT ≠
qN

j=1
cjKTj

...
L2

yields the following system:
Y
_________]

_________[

N≠1ÿ

k ”=j

ckÈ ÁKTj |
ÁKTk

Í + cjÈ
ÁKTj |

ÁKTj Í = È ÁKTj |
ÁKT Í

’j œ J1; N ≠ 1K, ÁKTj = KTj ≠ KTN

Nÿ

j=1

cj = 1

(F.21)

by noticing that

È ÁKTj |
ÁKTk

Í = ÈKTj |KTk
Í ≠ ÈKTj |KTN Í ≠ ÈKTN |KTk

Í + ÈKTN |KTN Í (F.22)

the constrained problem is thus reduced to inverting the following matrix system:

ÂG · C = ÂY (F.23)

where S

WWWWU

Ág1,1 . . . ĝ1,N≠1 0
... . . . ... ...

ĝN≠1,1 . . . ^gN≠1,N≠1 0
1 . . . 1 1

T

XXXXV
(F.24)

and
ÂY =

Ë
È ÁKT1|ÁKT Í , . . . , ÈK̂TN≠1|ÁKT Í , 1

È€
(F.25)

The actual expressions of these Gram matrices will now depend on the particular
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kernel being reconstructed and the scalar product considered.

F.3.4 Dopper kernel reconstruction
In the case of Doppler kernel reconstruction, the scalar products diverge. However,
the algebraic solutions can still be derived with the help of a continuity argument
exposed in appendix A. This yields the following temperature-dependent systems.

Free Doppler reconstruction system

The free Doppler kernel reconstruction system is:

D · C = Y (F.26)

with
S

WWWWWWU

Ô
T1T1

(T1+T1
2 ) . . .

Ô
T1TN1

T1+TN
2

2

... . . . ...Ô
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2 . . .
Ô
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2

2
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·
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2 )

... Ô
TN T1

TN +T
2

2

T

XXXXXV
(F.27)

Constrained Doppler reconstruction system

The constrained Doppler kernel reconstruction system is:

ÂD · C = ÂA (F.28)

where S

WWWWWU

Ád1,1 . . . d̂1,N≠1 0
... . . . ... ...

d̂N≠1,1 . . . ^dN≠1,N≠1 0
1 . . . 1 1

T

XXXXXV
·

S
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T

XXXXV
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(F.29)

with
Êdij =

Ò
TiTj

1
Ti+Tj

2

2 ≠

Ô
TiTN1

Ti+TN
2

2 ≠

Ò
TNTj

1
TN +Tj

2

2 +
Ô

TNTN1
TN +TN

2

2 (F.30)

and
Âyi =

Ô
TiT1

Ti+T
2

2 ≠

Ô
TiTN1

Ti+TN
2

2 ≠

Ô
TNT

1
TN +T

2

2 +
Ô

TNTN1
TN +TN

2

2 (F.31)

Free Doppler reconstruction analytical solution

Further algebraic manipulations, developed in appendix A, have also enabled to ex-
hibit the analytical solution to the free Doppler kernel reconstruction system (i.e.
equation F.27). The explicit formulae for the solution coe�cients are:
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cj =

Ò
TjT

1
Tj+T

2

2
Ÿ

i”=j

3
T ≠ Ti

T + Ti

4 A
Tj + Ti

Tj ≠ Ti

B

(F.32)

F.3.5 Maxwell kernel reconstruction

In the case of Maxwell kernel reconstruction, the algebraic solutions stem from the
Gauss integrals. These are derived in appendix B, and yield the following temperature-
dependent systems:

Free Maxwell reconstruction system

The free Mawell kernel reconstruction system is:

M · C = Y (F.33)

with
S

WWWU
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T

XXXV (F.34)

Constrained Maxwell reconstruction system

The constrained Maxwell kernel reconstruction system is:

ÊM · C = ÂY (F.35)

where S

WWWWU

Ám1,1 . . . m̂1,N≠1 0
... . . . ... ...

m̂N≠1,1 . . . ^mN≠1,N≠1 0
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(F.36)

with

Ámij = TiTj

(Ti + Tj)5/2
≠

TiTN

(Ti + TN)5/2
≠

TNTj

(TN + Tj)5/2
+ TNTN

(TN + TN)5/2 (F.37)

and

Âyi = TiT

(Ti + T )5/2
≠

TiTN

(Ti + TN)5/2
≠

TNT

(TN + T )5/2
+ TNTN

(TN + TN)5/2 (F.38)
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F.3.6 Maxwell-over-velocity kernel reconstruction
In the case of Maxwell-over-velocity kernel reconstruction, the algebraic solutions
also stem from the Gauss integrals, but are of a di�erent order due to a di�erent
interpretation of the integral domains. Derivations are found in appendix B, and
yield the following temperature-dependent systems:

Free Maxwell-over-velocity reconstruction system

The free Maxwell-over-velocity kernel reconstruction system is:

M
v

· C = Y (F.39)

with
S
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1Ô
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3

T

XXXV (F.40)

It should be noted that this system is the Hadamard product 3rd power of the
Boltzmann kernel reconstruction problem that will be described below. This has the
implication that the condition number of the system is essentially risen to the 3rd

power, significantly hindering the numerical stability of this system over the Boltz-
mann reconstruction one.

Constrained Maxwell-over-velocity reconstruction system

The constrained Maxwell-over-velocity kernel reconstruction system is:

ÊM
v

· C = ÂY (F.41)

where S

WWWWU
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(F.42)

with

Ámvij = 1
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3 (F.43)

and
Âyi = 1

Ô
Ti + T

3
≠

1
Ô

Ti + TN
3

≠
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3
+ 1
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3 (F.44)
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F.3.7 Boltzmann kernel reconstruction
Boltzmann kernel reconstruction is rooted into Ferran’s convolution formalization of
the Doppler broadening operation [?]. Its Fourier analysis can help to physically
justify the arbitrary choice of L2 norm reconstruction using a frequency separation
argument, as reported in appendix D. The algebraic solutions for the Boltzmann
kernel reconstruction are derived in appendix C, and yield the following temperature-
dependent systems:

Free Boltzmann reconstruction system

The free Boltzmann kernel reconstruction system is:

B · C = Y (F.45)

with
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Constrained Boltzmann reconstruction system

The constrained Boltzmann kernel reconstruction system is:

ÂB · C = ÂY (F.47)

where S

WWWWWU

Áb1,1 . . . b̂1,N≠1 0
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with
Êbij = 1
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(F.49)

and
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≠
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(F.50)

F.4 Temperature-Optimized Kernel Reconstruction
Doppler Broadening

It has so far been demonstrated that provided the reference temperatures (Tj) and a
temperature of interest T to which one wishes to interpolate the value of a Doppler

321



broadened quantity by linear combination of the values at reference temperatures,
then the choice of the (cj) interpolation coe�cients can be optimally approximated in
a cross section independent way by solving a kernel reconstruction problem. In other
words, given (Tj) and T , optimal choices (in L2 sense) for (cj) have been established.

The purpose of this section is to address the optimal choice of reference tempera-
tures (Tj) that will minimize the interpolation error over a given temperature range
T œ [Tmin, Tmax]. This error is dependent on the cross section values. However, ap-
pendix D justifies why it is a good approximation to solve the interpolation problem
in a cross section independent fashion by minimizing the distance amongst the ker-
nels. From this it stems that the optimal choice of reference temperatures (Tj)jœJ1;NK
can also be chosen in a cross section independent way by solving for the optimal set
of reference temperatures (Tj)jœJ1;NK that minimizes the distance, in both energy and
temperature spaces, and in a sense yet to be determined, amongst the kernels.

F.4.1 L2 kernel reconstruction relative error
Another advantage of having defined our problem with a Hilbert space structure is
that the relative distances between the kernels also become analytically expressible
as functions of the Gram matrix coe�cients as follows:
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(F.51)
Thus, for the various kernel reconstruction problems, one finds the following rel-

ative L2 distances among kernels by reporting the (cj), which are the solutions of
either the constrained or free problem, into:

Boltzmann kernel relative error
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Maxwell kernel relative error
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(F.53)
Maxwell-over-velocity kernel relative error

A
�‘

‘

B

M
v

©

....K
M
v
T ≠

qN
j=1

cjK
M
v
Tj

....
L2....K

M
v
T

....
L2

=
ı̂ıııÙ1 ≠ 2

ÿ

j

cj

Ô
2T

3

Ò
Tj + T

3
+

ÿ

i

ÿ

j

cicj

Ô
2T

3

Ò
Ti + Tj

3

(F.54)
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Doppler kernel relative error
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(F.55)

F.4.2 LŒ Temperature Optimization: Min-max problem
These kernel reconstruction errors can now be optimized so as to find the reference
temperatures (Tj) that best reconstruct the kernel over a given temperature range.
If the LŒ metric is now chosen to represent what it means to minimize the distance
among kernels over all of the temperature range, the optimization can be cast as
solving for the following min-max problem:

Find the (Tj) reference temperatures that minimize
the relative distance between exact and interpolated kernels

(Tj) = argmin
(Tj)

A

max
T œ[Tmin,Tmax]

A
�‘

‘

B

G

B

over a range of temperatures of interest T œ [Tmin, Tmax]

(F.56)

F.4.3 Solving the min-max problem: Temperature Optimiza-
tion Algorithm

For a given number N of reference temperatures (Tj), solving this min-max prob-
lem for any of the four kernels (and the respective eight solutions of optimal coef-
ficients (cj) for free and constrained problems) is a highly non-linear (nor convex)
high-dimensionality problem. Di�erential evolution and basin-hopping optimization
algorithms were tested in an attempt to minimize the maximum relative error (i.e.
max

1
�‘
‘

2

G
) over the temperature range [Tmin, Tmax]. However, the high dimensional-

ity of the optimization problem coupled with the stochastic nature of these algorithms
led to the algorithms converging in many cases to local rather than global minimae,
and with very long running times that were prohibitive past N = 6. This issue in-
spired the creation of a non-stochastic optimization algorithm specifically tailored to
the needs of solving the min-max problem on (�‘

‘ )G.
This algorithm works by choosing values for the reference temperatures such that

the maximum relative error on the interval between any pair of adjacent reference
temperatures is equal to within some tolerance to the maximum relative error between
neighboring adjacent reference temperature pairs. In other words, given some number
N of reference temperatures, the algorithm chooses reference temperature values so
that:

’(i, j) œ J1, N ≠ 1K2 ,
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B

(F.57)

323



The algorithm begins with an initial linear guess in (Tj), then iterates through
sets of three adjacent reference temperatures, equalizing the maximum relative errors
on the intervals between the first two and last two temperatures in each set. This is
accomplished by moving the center temperature in a binary search fashion until the
di�erence in the maximum errors on each of the two intervals is below some threshold.

The use of this algorithm allowed reference temperature placement to be optimized
more accurately and in a much faster manner than either of the previously tried
algorithms. The result of the algorithm on six reference temperatures with an initial
guess of linear spacing is shown in figure (F-1). A thorough analysis of the optimal
reference temperature grid for Doppler kernel reconstruction can be found in appendix
E.

Figure F-1: Free Doppler kernel reconstruction L2 relative error over the temperature
range [300, 3000] for both linearly spaced and optimized spacing of N = 6 reference temper-
atures. Optimization of the reference temperature grid was performed through the presented
algorithm with tolerance 10≠6, and yields an order of magnitude on kernel reconstruction
L2 relative error.

The high condition numbers of the matrices, specially the one stemming from
equation (F.40), necessitated the use of the preconditioned conjugate gradients method
for numerically stable inversion. For the free Doppler Kernel method in particular, nu-
merical instability in the calculation of (cj) values was essentially eliminated through
use of the analytical expression for these values shown in equation (F.32).

Another source of numerical instability was the truncation of calculated relative
errors due to machine precision when the number of reference temperatures used
was su�ciently large. This issue was addressed by calculating both relative errors
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and optimal temperature points in arbitrary precision. For any given N number of
reference temperatures, 10≠(N+4) precision was used to compute

1
�‘
‘

2
2

G
.

F.4.4 Optimal reference (Tj) distributions kernel reconstruc-
tion performance

Once the optimal temperature grid (Tj) has been found for each one of the eight meth-
ods, a way of gauging the performance of the various kernel reconstruction methods is
to compare, given N reference temperatures, which method is better at reconstructing
its own kernel. The results of such an analysis are pictured in figure (F-2).

Figure F-2: Comparison of self reconstruction ability:
1

�‘
‘

2

G
(T ) for each of the eight

kernel reconstruction methods (free and constrained Boltzmann, Maxwell, Maxwell-over-
velocity, and Doppler), with there respective optimal reference temperature grids (Tj)
for N = 4 optimal reference temperatures over the temperature range [300, 3000]. The
temperature-optimized free Boltzmann kernel reconstruction is the best at reconstructing
itself.

It can be observed that the temperature-optimized free Boltzmann kernel recon-
struction was the best at reconstructing itself. This, however, did not mean it would
fair better on actual isotopes.
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F.5 Performance & comparison of temperature in-
terpolation methods

Of the eight Doppler broadening temperature interpolation methods here introduced,
only one – the constrained Maxwell kernel reconstruction method – has been previ-
ously attempted [?]. The other linear interpolation methods traditionally used in the
field are provided below, as well as the reference logarithmic interpolation method for
comparison purposes [314].

F.5.1 Previous temperature interpolation methods

Traditional temperature interpolation methods have been either linear interpolations
in temperature, or linear in logarithmic space, while a recent curve-fit method was
introduced in MCNP.

Linear interpolation methods

Linear combination interpolation methods are defined by:

‡T ¥

Nÿ

j=1

cj‡Tj (F.58)

The choices for finding the (cj) have been [?]:

• The "Lin-Lin" interpolation scheme:

cj =
r

i”=j (T ≠ Ti)
r

i”=j (Tj ≠ Ti)
(F.59)

• The "Lin-Sqrt" interpolation scheme:

cj =
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1Ô
T ≠

Ô
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r
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Ô
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2 (F.60)

• The "Lin-Log" interpolation scheme:

cj =
r

i”=j (ln T ≠ ln Ti)
r

i”=j (ln Tj ≠ ln Ti)
(F.61)

Logarithmic-Logarithmic method

The "Log-Log" interpolation scheme is defined as:
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(F.62)

Though they are here defined with general expressions, these interpolation meth-
ods as such would su�er from Runge phenomena, and are thus in practice always
computed piecewise, using the two closest reference temperature points and ignoring
the information provided by all other temperatures. The following comparisons use
this two-points interpolation definition.

MCNP curve fit method

One other way to perform temperature interpolation of nuclear data is to curve fit
the temperature dimension. This is the method recently adopted by MCNP [235].
For a given reaction, the cross section is Doppler broadened to a large number of
temperatures on an union energy mesh. Then, for each energy, the coe�cients, ag,i,
bg,i and cg are calculated for the following equation using least-squares minimization:

‡“(T, Eg) ¥

Nÿ

i=1

ag,i

T i/2
+

Nÿ

i=1

bg,iT
i/2 + cg (F.63)

The MCNP method is thus a symmetrically truncated Laurent development curve-
fit, and the coe�cients are entirely cross section and energy dependent.

F.5.2 Performance of the temperature-optimized kernel re-
construction methods

The performance of an interpolation method is assessed on the LŒ maximum relative
error criterium as defined below:.
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(F.65)

The performance of the kernel reconstruction methods here introduced was tested
upon isotope 238U, over the energy range [Emin = 10≠5eV, Emax = 20 keV]. The point-
wise ENDF/B-VII.1 data was Doppler broadened using the SIGMA1 algorithm [?], to
a sequence of fixed reference temperatures (Tj), providing the exact reference ‡Tj (E)
, as well as to calculate all ‡(exact)

T (E) of the temperature grid. The LŒ norm of the
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relative di�erence between the exact cross section, ‡(exact)
T (E), and the interpolated

cross section, ‡(approx)

T (E), was then computed for a range of temperatures.

Best performer amongst kernel reconstruction methods

Each of the eight temperature-optimized kernel reconstruction methods was run using
one to six reference temperatures on 238U isotope data. The result of this test for N =
6 is displayed in figure (F-3). It can be noticed that the constrained interpolations
slightly outperform the free ones in this case. This could presumably be attributed to
the fact that constraining the coe�cients to summing to unity enforced the essential
property of probability distribution, yielding better results overall, specially at the
tails of the distributions. Thus, though the free M

v method does not appear in figure
(F-3) due to numerical instability issues, the constrained version of this method can
be viewed as its lower bound.

From figure (F-3), it can readily be observed that the two Doppler reconstruction
methods outperform all other methods over the entire range of temperatures. Though
the temperature-optimized constrained Doppler kernel reconstruction method nar-
rowly outperforms the temperature-optimized free Doppler kernel reconstruction one,
the di�erence in performance is quite slight. The ease with which the free Doppler
kernel reconstruction coe�cients can be computed using the analytical expression of
equation (F.32), as opposed to the matrix inversion required to compute the con-
strained Doppler coe�cients, was felt to make up for the small performance di�er-
ence between the two methods. Thus the temperature-optimized free Doppler kernel
reconstruction method was reckoned to be the best performer amongst temperature-
optimized kernel reconstruction methods, and was thus tested on 238U isotope and
compared against currently used Doppler broadening interpolation methods.

Performance of temperature-optimized free Doppler kernel reconstruction
against previous methods

The temperature-optimized free Doppler kernel reconstruction method was tested
on 238U isotope data against linear interpolation, logarithmic interpolation, and the
MCNP curve fit method discussed in section F.5.1 for N = 2 through 15 reference
temperatures. The results of this are displayed in figure (F-4). The free Doppler kernel
reconstruction method was found to beat the other methods up to N = 12, at which
point the maximum relative errors of the kernel reconstruction and the MCNP curve
fit methods fell below the level of accuracy from the SIGMA1 Doppler broadening of
the 238U isotope data itself, rendering comparison meaningless. From figure (F-4), it
can be observed that in order to obtain 0.1% accuracy on a reconstructed 238U kernel
using the temperature-optimized free Doppler kernel reconstruction method, nine
reference temperatures would be required. The 238U isotope was chosen because the
complexity of its resonance structure makes it a di�cult isotope to Doppler broaden.
Therefore it is likely that using the free Doppler kernel reconstruction method with
N = 10 reference temperatures would be su�cient to ensure 0.1% precision on all
other isotopes.
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Figure F-3:

---�‡
‡

---
LŒ

(T ) is computed for N = 6 optimal reference temperatures on the
temperature range [300, 3000], for each kernel reconstruction method. The two Doppler
kernel reconstruction methods outperform all other kernel reconstruction methods on 238U
isotope. The ease of computing the free Doppler kernel reconstruction coe�cients led to its
choice over the constrained Doppler method as a candidate for further testing.

Considerations on performance

Apart from the MCNP curve fit method, which is an ad hoc Laurent development
curve-fit which kernel reconstruction outperforms by one order of magnitude on pre-
cision of interpolation for the same number of reference temperatures, previous meth-
ods all consisted of a local interpolation between the two closest temperatures. For a
small-enough temperature di�erence (Tj+1 ≠ Tj æ 0), lin-lin interpolation is sure to
converge as a 1st order Taylor expansion, with convergence in O(N). In contrast, the
kernel reconstruction methods here introduced are global methods. They converge
as O(CN) to the true solution as the number of reference temperatures increases
(N æ Œ), because the physics of the system at temperature T are increasingly well
reconstructed through linear combinations of distributions at reference temperatures
Tj.

Analyses have shown that to achieve 0.1% accuracy on temperature interpolation
of 238U, previous methods require a temperature mesh of about 30K intervals, thus
requiring roughly 100 temperature points to cover nuclear reactor analysis range [314].
The need to use the cross section information for all 10 reference temperatures in the
kernel reconstruction methods, instead of only the 2 closest for the older methods
(except the MCNP curve fit which needs 12 points for the same precision), invariably
requires more cross section lookups. However, the same accuracy can be achieved
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Figure F-4: Maximum relative errors over energy
#
10≠5eV, 20 keV

$
and temperature

[300 K, 3000 K] ranges. Performance of temperature-optimized free Doppler kernel recon-
struction method (kernel rec.) compared to linear interpolation (lin-lin), logarithmic in-
terpolation (log-log), and the MCNP curve fit (curve-fit) method. Temperature-optimized
free Doppler kernel reconstruction is one order of magnitude more accurate than the MCNP
curve-fit method. N = 10 optimal reference temperatures su�ce to achieve 0.1% relative
error.

with roughly one order of magnitude less temperature points. Additionally, better
e�ciency can be obtained if each nuclide utilizes a uniform energy grid in temperature
and proper ordering.

F.6 Conclusions
A new family of methods has here been established for performing cross section,
reaction rates, or energy times cross section, temperature interpolation by linear
combination of reference cross sections (or their respective quantity). The meth-
ods rely on the L2-norm di�erence minimization of operator kernels, representing
the physical idea that the optimal way of interpolating is by best reconstructing the
conditions of the interaction, that is the kernel of the operation. For instance, this
can mean reconstructing the energy (or velocity) distribution for the target nuclei as
close as possible to the real one at temperature T . Furthermore, isotope-independent
optimal reference temperatures grids have been calculated to fine-tune the perfor-
mance of kernel reconstruction methods over a given temperature range [Tmin, Tmax].
Though these methods require higher runtime due to multiple cross section lookups,
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the temperature-optimized free Doppler kernel reconstruction method was shown to
achieve 0.1% accuracy on isotope 238U cross section temperature interpolation over
the entire temperature range T œ [300K, 3000K] with only N = 10 optimally spaced
reference temperatures (Tj), reducing the memory requirements for Doppler broad-
ening interpolation by an order of magnitude.
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A Appendix A: Doppler kernel reconstruction deriva-
tions

A.1 Dopper kernel reconstruction divergence issue
The cross section is extended as an odd function over the entire energy range as:

sT : E ‘æ

I
‡T (E), ’E œ R+

sT (E) = ≠sT (≠E) ’E œ R≠
(66)

which transforms Solbrig’s kernel into the following Doppler broadening operation:

sT (u) =
⁄ Œ

≠Œ
sT0(x)KD

T (u, x)dx
(67)

with u =
Ô

E and where the Doppler Kernel K
D
T is here defined as

K
D
T (u, x) ©

x2

u2
K

B
T (u ≠ x) = 1

2
Ô

fi›

x2

u2
e≠ (u≠x)2

4› (68)

The functional Hilbert space is provided with the following scalar product

Èf |gÍ ©

⁄⁄

R2
f · g (69)

With this notation, it can be shown that

ÈK
D
Ti

|K
D
Tj

Í = 1
2fi

Ò
›i›j

›i + ›j
� (70)
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where:

� =
⁄

2fi

◊=0

cos4 ◊

sin4 ◊(cos ≠ sin)2
d◊ (71)

One can observe that � diverges: it is defined everywhere but for the line (◊ = 0).
The problem thus seems to be ill-defined.

Free Doppler kernel reconstruction

It is however still possible to find an optimal solution to the problem by means of a
continuity argument. Defining �‘ as:

�‘ =
⁄

2fi

‘

cos4 ◊

sin4 ◊(cos ≠ sin)2
d◊ (72)

For all value of epsilon ‘ > 0, the optimal inversion of the system becomes:

D‘ · C = Y‘ (73)

with
S

WWWWWWU

Ô
T1T1

(T1+T1
2 ) . . .

Ô
T1TN1

T1+TN
2

2

... . . . ...Ô
T1TN1

T1+TN
2

2 . . .
Ô

TN TN1
TN +TN

2

2

T

XXXXXXV
·

S

WWU

c1

...
cN

T

XXV =

S

WWWWWU

Ô
T1T

(T1+T
2 )

... Ô
TN T1

TN +T
2

2

T

XXXXXV
(74)

where the definition of ›j = kb(Tj≠T0)

4A was used to show the explicit temperature
dependence of the Gram coe�cients, and also making the problem nuclide indepen-
dent. Since the system is invariant in ‘, by continuity of the property with respect to
the value of ‘, this system still represents the optimal solution in the limit of ‘ = 0.

Constrained Doppler kernel reconstruction

As done above, the constrained problem becomes

ÂD · C = ÂA (75)

where S

WWWWWU

Ád1,1 . . . d̂1,N≠1 0
... . . . ... ...

d̂N≠1,1 . . . ^dN≠1,N≠1 0
1 . . . 1 1

T

XXXXXV
·

S

WWWWU

c1

...
cN≠1

cN

T

XXXXV
=

S

WWWWU

Êy1

...
]yN≠1

1

T

XXXXV
(76)

with
Êdij =

Ò
TiTj

1
Ti+Tj

2

2 ≠

Ô
TiTN1

Ti+TN
2

2 ≠

Ò
TNTj

1
TN +Tj

2

2 +
Ô

TNTN1
TN +TN

2

2 (77)
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and
Âyi =

Ô
TiT1

Ti+T
2

2 ≠

Ô
TiTN1

Ti+TN
2

2 ≠

Ô
TNT

1
TN +T

2

2 +
Ô

TNTN1
TN +TN

2

2 (78)

A.2 Analytical Solutions
The free Doppler kernel reconstruction system has stunningly remarkable properties:

1. Since D is a Gram matrix, it is a strictly symmetric positive definite matrix:
D œ S

++

N

2. Moreover, the elements of the matrix D are ratios of the geometric mean to the
arithmetic mean of the reference temperature pairs, which only yields values
between 0 and 1, with 1’s on the diagonal:

Ô
TiTj1

Ti+Tj
2

2 œ [0, 1]. This quantity is

very rich in physical meaning and has links to the information entropy of the
system.

3. The matrix D also exhibits a particular symmetry in that it can be written as:

D = 2 · T1/2
· C · T1/2 (79)

where T = diag (Ti) and C = mat
1

1

Ti+Tj

2
. The latter is a Cauchy matrix, which

enables us to derive the algebraic solution to this system.

Cramer’s inversion formula on the free Doppler kernel reconstruction system yields:

ck =
det

1
D(k)

2

det (D)
(80)

where D(k) is the matrix formed by replacing the k-th column of D by the column
vector Y .

Let us note that D(k) also exhibits a particular symmetry in that it can be written:

D(k) = 2 · T1/2

(k)
· C(k) · T1/2 (81)

where the sub-index (k) signifies that Tk is replaced by T in the k-th column:
T(k) = diag (T1 , . . . , Tk≠1 , T , Tk+1 , . . . , TN) and
C(k) = mat

1
C1 , . . . , Ck≠1 ,

1
1

Ti+T

2

i
, Ck+1 , . . . , CN

2
.

Both C and C(k) are Cauchy matrices of the type
1

1

ai+bj

2
, the determinant of

which is given by the well-known formula:

|C|N =
r

i<j (aj ≠ ai)
r

i<j (bj ≠ bi)
r

i,j (ai + bj)
(82)

By analyzing the ratio of determinants in Cramer’s formula ck =
Ô

T det(Ck)Ô
Tkdet(C)

, one
finds the explicit solution of the kernel-minimizing coe�cients:
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ck =
Ô

TkT
1

Tk+T
2

2
Ÿ

i”=k

3
T ≠ Ti

T + Ti

4 3
Tk + Ti

Tk ≠ Ti

4
(83)

It is noteworthy that ck(
Ô

T ) is a proper rational fraction in
Ô

T of degree ≠1,
and on which it is thus possible to perform partial fraction decomposition, with poles
±i

Ô
Ti and roots ±

Ô
Ti and 0.

Thus, provided a set of reference temperatures (Tj) and given a temperature T ,
the (ck) coe�cients in equation 83 are the ones that algebraically minimize the L2

norm between the Doppler kernels.

B Appendix B: Maxwell kernel & Maxwell-over-
velocity reconstruction derivations

B.1 Maxwell & Maxwell-over-velocity kernels definition
Physically, the Doppler broadening operation is defined through the conservation of
the reaction rate in equation (F.1) as the relative energies span the Maxwellian distri-
bution of velocities of the ideal gaz model for the target nucleus. When interpolating
by linear combination of reference temperatures, this yields:

1
v‡(T rue)

T ≠ v‡(approx)

T

2
(v) =

⁄

vt|vr>0

vr‡T0(vr)
S

UMT (≠ævt ) ≠
ÿ

j

cjMTj (≠ævt )
T

V d≠ævt

(84)
Upon change of variables from vectorial velocity to scalar speeds, the Maxwell

distribution is recovered:

v‡T (v) = 1
2

⁄ Œ

0

[vr‡T0(vr)]
vr

v
dvr

⁄ |v+vr|

|v≠vr|

MT (vt)
vt

dvt (85)

From this, we define the Maxwell kernel as:

K
M
T : u ‘æ

u2

›
K

B
T = 1

2
Ô

fi
Ô

›
3
u2e≠ u2

4› (86)

The coe�cients of the Gram matrix are then readily calculated

ÈK
M
Ti

|K
M
Tj

Í = 1
4fi

1
Ò

›i›j

3

⁄ Œ

0

u4e
≠u2

1
1

4›i
+

1
4›j

2

du (87)

Defining the Gauss integrals of order n

Gn =
⁄ Œ

0

xne≠x2
dx (88)
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and using the following recurrence formula

Gn = n ≠ 1
2 Gn≠2

G1 = 1
2

G0 =
Ô

fi

2

(89)

one finds

ÈK
M
Ti

|K
M
Tj

Í = 3
Ô

fi

›i›j

(›i + ›j)5/2 (90)

Let us note that equation (85) leaves the choice of reconstructing the M
v kernel

instead of M. In that particular case, the recurrence formula would have yielded the
following Gram matrix coe�cients:

È
K

M
Ti

v
|
K

M
Tj

v
Í = 1

2
Ô

fi

1
Ò

›i + ›j

3 (91)

Free Maxwell & Maxwell-over-velocity kernels reconstruction

From the latter, the free Maxwell kernel reconstruction system is:

M · C = Y (92)

with
S

WWWU

T1T1
(T1+T1)

5/2 . . . T1TN

(T1+TN )
5/2

... . . . ...
TN T1

(TN +T1)
5/2 . . . TN TN

(TN +TN )
5/2

T

XXXV ·

S

WWU

c1

...
cN

T

XXV =

S

WWWU

T1T
(T1+T )

5/2

...
TN T

(TN +T )
5/2

T

XXXV (93)

If instead the choice of reconstructing M
v is made, then the L2 minimization solu-

tion is given by

M
v

· C = Y (94)

with
S

WWWU

1Ô
T1+T1

3 . . . 1Ô
T1+TN

3

... . . . ...
1Ô

TN +T1
3 . . . 1Ô

TN +TN
3

T

XXXV ·

S

WWU

c1

...
cN

T

XXV =

S

WWWU

1Ô
T +T1

3

...
1Ô

T +TN
3

T

XXXV (95)

which is the Hadamard product 3rd power of the Boltzmann kernel reconstruction
problem.
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Constrained Maxwell & Maxwell-over-velocity kernels reconstruction

The constrained Maxwell kernel reconstruction problem is then

ÊM · C = ÂY (96)

where S

WWWWU

Ám1,1 . . . m̂1,N≠1 0
... . . . ... ...

m̂N≠1,1 . . . ^mN≠1,N≠1 0
1 . . . 1 1

T

XXXXV
·

S

WWWWU

c1

...
cN≠1

cN

T

XXXXV
=

S

WWWWU

Êy1

...
]yN≠1

1

T

XXXXV
(97)

with

Ámij = TiTj

(Ti + Tj)5/2
≠

TiTN

(Ti + TN)5/2
≠

TNTj

(TN + Tj)5/2
+ TNTN

(TN + TN)5/2 (98)

and
Âyi = TiT

(Ti + T )5/2
≠

TiTN

(Ti + TN)5/2
≠

TNT

(TN + T )5/2
+ TNTN

(TN + TN)5/2 (99)

Again, the same considerations are true for the M
v reconstruction by replacing

TiTj

(Ti+Tj)
5/2 by 1

Ô
Ti+Tj

3 .

C Appendix C: Boltzmann kernel reconstruction
derivations

C.1 Casting the Doppler broadening operation as a convolu-
tion with the Boltzmann distribution

G. Ferran et al. [?] recently introduced a generalized, odd parity, function sT linked
to the cross section as:

sT : E ‘æ

I
E · ‡T (E), ’E œ R+

sT (E) = ≠sT (≠E) ’E œ R≠
(100)

Applying the Doppler broadening operation to sT yields a linear convolution prod-
uct operator that transforms the generalized function s0 from temperature T0 to tem-
perature T > T0 as follows [?]:

sT = s0 ı K
B
T (101)

where the convolution product is defined as:

’x œ R, f ı g(x) =
⁄ Œ

≠Œ
f(t)g(x ≠ t)dt (102)
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and with K
B
T representing the Boltzmann distribution of energies of the target

nuclei.

K
B
T :

Y
]

[

R æ R+

t ‘æ
1

2

Ô
fi›

e≠ t2
4›

(103)

The problem provides a Hilbert space structure through the L2 norm and its
associated scalar product:

Èf |gÍ =
⁄ Œ

≠Œ
f(t)g(t)dt (104)

From which it stems that the Gram matrix coe�cients are:

ÈK
B
Ti
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B
Tj

Í = 1
4fi

Ò
›i · ›j

⁄
+Œ

≠Œ
e≠t2

Ë
1

4›i
+

1
4›j

È

dt (105)

and using the recurrence formula for the Gauss integrals (equations 89), one finds:

ÈK
B
Ti

|K
B
Tj

Í = 1
2

Ò
fi (›i + ›j) (106)

C.2 Free Boltzmann kernel reconstruction
The free Boltzmann kernel reconstruction solution for the L2 norm is thus found by
inverting the system:

B · C = Y (107)

with
S

WWU
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T
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Constrained Boltzmann kernel reconstruction

Similarly, the constrained Boltzmann kernel reconstruction problem is:

ÂB · C = ÂY (109)

where S

WWWWWU

Áb1,1 . . . b̂1,N≠1 0
... . . . ... ...
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with
Êbij = 1

Ò
Ti + Tj

≠
1

Ô
Ti + TN

≠
1

Ò
TN + Tj

+ 1
Ô

TN + TN
(111)

and
Âyi = 1

Ô
Ti + T

≠
1

Ô
Ti + TN

≠
1

Ô
TN + T

+ 1
Ô

TN + TN
(112)

D Appendix D: Physical justification of the choice
of L2 norm for kernel reconstruction

The performance of all these kernel reconstruction methods will be nuclide dependent,
hence the choice in equation (F.13) of posing the problems as L2 norm minimizations
may seem somewhat arbitrary. However, the general physical properties of cross
sections tend to support the latter choice in the following way.

D.1 L2 norm interpolation error for Boltzmann convolution
Kernel

When considering the linear combination temperature interpolation problem in the
light of Ferran’s convolution product approach, the di�erence between the exact gen-
eralized odd function sT and the interpolated one is given by:

s(T rue)

T ≠ s(approx)

T = s0 ı

Q

aK
B
T ≠

Nÿ

j=1

cjK
B
Tj

R

b (113)

Having the approximate temperature-interpolated cross section equating the true
value (in a simple convergence sense)

1
s(T rue)

T ≠ s(approx)

T = 0
2

is thus equivalent to
verifying the condition:

s0 ı

Q

aK
B
T ≠

Nÿ

j=1

cjK
B
Tj

R

b = 0 (114)

However, considerations hereafter exposed on s0 show that s0 is not of a compact
support, which means the latter condition can be met if, and only if:

Q

aK
B
T ≠

Nÿ

j=1

cjK
B
Tj

R

b = 0 (115)

It is however not possible to fully satisfy such condition by interpolation, and
thus a metric has to be chosen so as to minimize the distance among kernels to
approach this condition. The L2 metric is a good choice in tune with the properties
of s0. Indeed, if it is sought to minimize the L2-distance between the two, this means
finding the (cj) such as to minimize:
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...s(T rue)

T ≠ s(approx)

T

...
L2

=

......
s0 ı

Q
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B
T ≠

Nÿ

j=1

cjK
B
Tj

R

b

......
L2

(116)

Recalling the Fourier transform property on the convolution product,

[f ı g = ‚f · ‚g (117)

one can invoke the theorem of Parseval to establish that:

...s(T rue)

T ≠ s(approx)

T

...
L2

=

......
„s0 ·

Q

a‰
KB

T ≠

Nÿ

j=1
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‰
KB

Tj

R

b

......
L2

(118)

D.2 Pole representation properties of nuclear cross sections
To infer additional information, a careful analysis of the „s0 function is required.
Angle-integrated nuclear cross sections can be cast into a sum of poles and residues
according to the Pole Representation formalism [190] [?]. From which s0 takes the
general form:

s0(u) = spot +
ÿ

j

Ÿ

C
rj

pj ≠ u

D

(119)

and thus the Fourier transform verify

„s0(‹) = ‰spot +
ÿ

j

Ÿ

C
rj

pj ≠ u

D

(‹) (120)

The first term can be close to an inverse function or a sign function, the Fourier
transform which are Fourier transforms of one-another. The poles will correspond to
wide, flat, Fourier transforms, which are known analytically [?]. On the contrary, the
Boltzmann distributions will have Gaussian Fourier transforms. Frequency separation
is thus a physically good approximation and one can treat „s0 as slowly varying in
comparison to the Boltzmann kernels.

......
„s0 ·

Q
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KB
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cj
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......
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(121)

Thus, minimizing the L2 norm
...s(T rue)

T ≠ s(approx)

T

...
L2

is close to minimizing the L2

distance between the Boltzmann energy distributions of the target particles.

D.3 Quantifying cross section independent kernel reconstruc-
tion error

How good an approximation the former is can be more accurately captured by further
analysis, where the isotope specificity of each s0 appears. Let K

B
c =

1
K

B
T ≠

qN
j=1

cjK
B
Tj

2
.

The distribution theory property: Èf ı g|u · vÍ = Èf |uÍ · Èg|vÍ is used to establish
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(122)

Bi-linearity of the hermitian product combined with the Plancherel-Parseval the-
orem then yield
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Thus, the di�erence among the two is:
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Yet, when only minimizing the distance amongst the kernels, one solved for:
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Thus, that at the (cj) coe�cients solution to the L2 kernel reconstruction problem,
the L2 minimization of sT interpolation is o� from its optimal point by as much as1
|„s0|

2
≠ Îs0Î

2

L2

2
·
‰
KB

c is non collinear to ‰
KB

c . More specifically, equation (124) enables us
to estimate how close to the s0 cross section dependent optimal linear interpolation
coe�cients (cj)(s0) are the cross section independent coe�cients (cj) found by L2

kernel reconstruction. Indeed, at kernel reconstruction optimal (cj), equation (124)
gives the value of ˆ

ˆcj

...s0 ı K
B
c

...
2

L2
, which should be zero if at cross section optimal

(cj)(g0). Thus, one can calculate for various cross sections the value of equation
(124) at their kernel reconstruction optimal (cj) and compare: the bigger the value,
the most has been lost with respect to isotope-dependent optimality (cj)(g0) for this
isotope (though how much is not quantified). This quantifies the dependency in s0

and reinforces the validity of the approximation provided the general mathematical
properties of the Pole Representation of angle-integrated nuclear cross sections.

E Appendix E: Temperature optimized free Doppler
kernel reconstruction reference temperatures (Tj)
distribution study

Here are analyzed important properties of the temperature-optimized free Doppler
kernel reconstruction reference temperature grid (Tj).
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E.1 Structure of optimal temperature grid (Tj) & scaling
properties

The study of the optimal reference temperatures as a function of N shows that the
entire problem is scaled according to the dimensionless variable:

· = ln
3

T

Tmin

4
/ln

3
Tmax

Tmin

4
(126)

and the entire system is determined only by the ratio r =
1

Tmax
Tmin

2
, i.e. for any

[Tmin, Tmax] with the same ratio r =
1

Tmax
Tmin

2
, the L2 relative error

1
�‘
‘
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is left un-

changed. Also, the optimal distribution is symmetric, centered on 1/2. Thus,
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A noteworthy property is that for the particular choice of r = e, where e desig-
nates the Euler number, the optimal values match exactly those of the Chebyshev
quadrature, as seen in figure (-5). This hints that the optimization problem is some
super-set quadrature, that can range from Chebyshev to Legendre according to the
value of r. Indeed, the kernel reconstruction methods can be seen as a form of ex-
tended quadrature operation with separation of variables where the coe�cients bear
all the T dependence and the energy E dependence is carried out by the cross sections.

Figure -5: Number of reference temperatures vs optimal temperatures on the range [1,e].
Optimal temperature points line up with Chebyshev quadrature.

E.2 Optimal temperature grid for Doppler kernel reconstruc-
tion

For the purpose of reactor analysis, the dimensionless ·i solutions to the min-max
optimization problem with ratio r = 10 (which corresponds to the usual values used
in nuclear reactor analysis) are hereafter reported in figure (-6), and their scaled
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N Optimized temperature grid (Tj) to perform temperature-optimized free Doppler kernel reconstruction temperature interpolation
1 [948.427]
2 [435.246, 2062.500]
3 [358.012, 948.520, 2512.500]
4 [332.153, 629.087, 1425.806, 2700.000]
5 [320.460, 500.262, 947.380, 1793.691, 2800.000]
6 [314.094, 435.908, 720.689, 1249.489, 2065.967, 2862.500]
7 [310.307, 398.356, 595.912, 949.001, 1511.168, 2259.447, 2893.160]
8 [307.963, 374.068, 519.349, 770.695, 1165.427, 1728.875, 2399.149, 2912.500]
9 [306.145, 359.232, 471.071, 660.047, 950.788, 1369.094, 1917.188, 2513.831, 2937.500]
10 [305.048, 347.608, 436.673, 584.202, 806.228, 1123.081, 1548.951, 2069.173, 2596.590, 2950.000]
11 [304.252, 338.681, 412.408, 530.512, 705.793, 951.890, 1283.538, 1704.703, 2189.430, 2653.095, 2950.000]
12 [303.585, 332.980, 393.688, 492.033, 634.213, 831.825, 1096.021, 1435.603, 1846.909, 2297.375, 2708.445, 2962.500]
13 [303.000, 328.648, 380.443, 462.297, 580.728, 742.398, 956.598, 1232.018, 1571.752, 1966.591, 2380.887, 2744.320, 2962.500]
14 [302.495, 325.278, 370.687, 441.433, 541.558, 677.013, 855.133, 1082.763, 1365.105, 1701.746, 2078.919, 2460.747, 2783.786, 2971.098]
15 [302.0560, 322.886, 362.312, 423.02, 508.989, 624.631, 774.835, 965.193, 1201.262, 1485.613, 1814.241, 2170.679, 2520.285, 2809.074, 2975.000]

Table 1: Optimal temperature grid for cross section interpolation using the free Doppler
kernel reconstruction method on the range of temperatures [300, 3000], for a given number
N of reference temperatures.

optimal values for Tmin = 300 to Tmax = 3000 reference temperatures corresponding
values are recorded in table (1).

Figure -6: Plots of number of reference temperatures vs optimal reference temperature
grid for Doppler kernel reconstruction, in both linear and log space. In Linear space, the
scaling properties are such that [3, 30] is equivalent to [300, 3000], as the ratio r =

1
Tmax
Tmin

2

is left unchanged.

E.3 Temperature-optimized Doppler kernel reconstruction
performance

Here are assessed the e�ciency gains in reconstructing the Doppler kernel as the
grid of reference temperatures (Tj) varies. These are quantified by comparing the
maximum kernel reconstruction relative error

1
�‘
‘

2

D
over the temperature range of

interest [Tmin, Tmax]. The optimized temperature grid outperforms linear, square-root,
and logarithmic spacing for any number of reference temperatures. As the number
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of reference temperatures increases, optimized spacing yields greater gains over other
methods. This is illustrated in figure (-7) and results are recorded in table (E.2) and
plotted in (-8).

Figure -7: Doppler kernel relative error over the range [300, 3000] for both linearly spaced
and optimized temperatures.

N Optimized Linear Square-root Logarithmic
2 1.382 ◊ 10≠1 2.698 ◊ 10≠1 2.698 ◊ 10≠1 2.698 ◊ 10≠1

3 3.614 ◊ 10≠2 1.037 ◊ 10≠1 8.241 ◊ 10≠2 5.532 ◊ 10≠2

4 9.791 ◊ 10≠3 4.524 ◊ 10≠2 2.900 ◊ 10≠2 1.435 ◊ 10≠2

5 2.600 ◊ 10≠3 2.102 ◊ 10≠2 1.101 ◊ 10≠2 4.157 ◊ 10≠3

6 6.600 ◊ 10≠4 1.015 ◊ 10≠2 4.372 ◊ 10≠3 1.279 ◊ 10≠3

7 1.819 ◊ 10≠4 5.034 ◊ 10≠3 1.791 ◊ 10≠3 4.091 ◊ 10≠4

8 5.146 ◊ 10≠5 2.542 ◊ 10≠3 7.477 ◊ 10≠4 1.342 ◊ 10≠4

9 1.197 ◊ 10≠5 1.300 ◊ 10≠3 3.184 ◊ 10≠4 4.490 ◊ 10≠5

10 3.236 ◊ 10≠6 6.731 ◊ 10≠4 1.374 ◊ 10≠4 1.522 ◊ 10≠5

11 9.833 ◊ 10≠7 3.508 ◊ 10≠4 5.923 ◊ 10≠5 5.222 ◊ 10≠6

12 2.300 ◊ 10≠7 1.839 ◊ 10≠4 2.614 ◊ 10≠5 1.807 ◊ 10≠6

13 7.005 ◊ 10≠8 9.725 ◊ 10≠5 1.151 ◊ 10≠5 6.296 ◊ 10≠7

14 2.021 ◊ 10≠8 5.166 ◊ 10≠5 5.041 ◊ 10≠6 2.208 ◊ 10≠7

15 1.319 ◊ 10≠8 2.732 ◊ 10≠5 2.247 ◊ 10≠6 7.780 ◊ 10≠8

Figure -8 & Table 2: Maximum relative error in reconstructing the Doppler kernel for a
given number of reference temperatures N , for various temperature spacings. The optimal
reference temperatures grid (Tj) significantly outperforms all other reference temperature
grid spacing.
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