MODELING OF CRACK AND CREVICE CHEMISTRY IN LIGHT WATER REACTOR ENVIRONMENTS

by

MAUREEN J. PSAILA-DOMBROWSKI

B.S. Wheaton College
(1982)

S.M. Massachusetts Institute of Technology
(1986)

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1990

© Massachusetts Institute of Technology

Signature of Author: ____________________________
Department of Nuclear Engineering
January 24, 1990

Certified by: ________________________________
Dr. Ronald G. Ballinger
Thesis Supervisor

Accepted by: ________________________________
Dr. Allan F. Henry
Chairman, Departmental Committee of Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

APR 20 1990 ARCHIVES
MODELING OF CRACK AND CREVICE CHEMISTRY IN LIGHT WATER REACTOR ENVIRONMENTS

by

Maureen J. Psaila-Dombrowski

Submitted to the Department of Nuclear Engineering on the 24th of January 1990, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Nuclear Engineering.

ABSTRACT

A mathematical model has been developed that can predict the time-evolution of solution chemistry and electrode potential within cracks and crevices, in any alloy system, exposed to light water reactor (LWR) environments (i.e. dilute solutions and low conductivity) and other systems. Specific processes modeled include: transport due to diffusion, ion migration, and convection (induced by cyclic displacement of the crack walls); homogeneous reactions including equilibrium reactions and radiolysis; heterogeneous reactions, occurring on the walls of the cavity, including anodic and cathodic reactions, precipitation, and chemical dissolution. In relation to cracks, enhanced electrode reaction rates associated with crack tip straining is also incorporated. The number of species or reactions the model is limited only by computing memory and speed. The model has been verified by comparison with simple analytic solutions and other numerical models for more limited systems.

The model has been used to predict the evolution of electrochemical conditions within a crevice exposed to Boiling Water Reactor (BWR) environments for a range of material and environmental variables. The practical goal, in this case, was to evaluate the material and bulk conditions leading to the development of crevice chemistry conducive to stress corrosion cracking (SCC). The crevice was modeled as parallel sided plates constructed of 304 stainless steel and Inconel 600 typical of a piping safe end. It was found that the inclusion of both internal cathodic reactions and solubility limits on metallic ions were necessary for accurate prediction of the electrochemical conditions that develop within the crevice. The dissolution of the major alloying elements (Ni\(^{2+}\), Fe\(^{2+}\), and Cr\(^{3+}\)) and minor element Mn\(^{2+}\), was not sufficient to cause polarization or acidification in the crevice because of the low solubility of these elements. Indeed, the conditions developed within the crevice corresponds to alkaline pH and a relatively low potential, equivalent to the corrosion potential of the alloy in the localized environment. These conditions are relatively benign in relation to SCC. The modeling results compare favorably with experimental crevice measurements. However it was shown that under appropriate conditions, chemical dissolution of manganese sulfide (MnS) inclusions to form H\(_2\)S could cause a rise in potential without lowering the pH. This is the result of enhancement of cathodic processes within the crevice by the reduction of H\(_2\)S, a feature not previously considered in high temperature electrochemistry. The induced change in local chemistry was reversible once the MnS inclusions were consumed. For this case the effect is transient and will not have long-lasting implications. Excursions in bulk conductivity drastically changed the electrochemistry within the crevice causing polarization, acidification and
a large increase in crevice conductivity. Using realistic reduction kinetics, these conditions were maintained even after the excursion was over and the bulk conductivity was restored to its original condition. Thus, new steady state conditions were established within the crevice. The irreversibility of local conditions has two important implications. First, the aggressive environment developed during the excursion may persist despite remedies to bulk coolant. Second, the existence of multiple steady states raises questions concerning the application of steady state analysis to the evaluation of local crack or crevice electrochemistry exposed to LWR environments. The application of hydrogen water chemistry reduced the severity of the conditions generated in the crevice during and after an excursion, but did not completely prevent polarization and acidification from occurring. The chemistry developed during the excursion did not necessarily revert to the original conditions after the excursion was over.

Cracking has been observed to occur within the crevice when the potential and/or conductivity is raised above critical levels. Based on these modeling results, these conditions will be achieved under the following circumstances: as the result of chemical dissolution of MnS inclusions or as the consequence of excursions in bulk conductivity. Additionally, the dissolution of a more soluble minor species could, in principle, induce significant chemistry changes. This latter aspect could not be evaluated fully because of a lack of necessary input data for all the minor elements. In the case of a BWR recirculation inlet nozzle, which creates a very long crevice, the first two effects are not likely to initiate cracking because: (1) inclusions will be consumed shortly after the initial immersion of the component and the driving force for cracking is not sustained, and (2) the length of excursions in operating reactors is short and aggressive electrochemical conditions does not have sufficient time to develop. However, the dissolution of more soluble species could play a role in the initiation of cracking in this safe end region. Another important factor could be a decrease in temperature (such as during an outage) which would increase the solubility of the cations produced and, thereby, raise the local conductivity within the crevice during the outage period. These conditions may not be reversible with the return to operating temperature.

The investigations carried out in this thesis have lead to some important concerns. In particular, it is necessary to establish: (a) whether the cracking associated with the recirculation safe end is actually due to specific chemistry changes in the crevice, (2) the role of crevice geometry in crevice stress corrosion testing, (3) the role of manganese sulfide inclusions, and (4) the effect of long term plant outages on cracking behavior and the reversibility of the conditions developed during plant outages. It is also necessary to assess the amount and nature of crud buildup in safe ends and to evaluate the effect of this crud on flow in these regions. In addition, this work has stressed the importance and need of basic high temperature experimental data (e.g., anodic and cathodic kinetic parameters, diffusion coefficients, equilibrium constants, solubility limits, and stress corrosion cracking susceptibility curves for the relevant alloy/environment systems).

Thesis Supervisor: Ronald G. Ballinger
Title: Associate Professor of Nuclear Engineering and Materials Science and Engineering
ACKNOWLEDGEMENTS

There are a number of people who have helped me during my stay at MIT that I would like to acknowledge. First, I would like to thank Alan Turnbull, a visiting scientist at MIT during 1989, for the aid and support he gave during his stay. His advice and encouragement have been critical in the development of my thesis and my development as a scientist. I have particularly appreciated and benefitted from the numerous discussions that typified our interactions. I have been greatly enriched by our collaboration.

I am deeply grateful to my family for their constant encouragement and help. I would like to thank my husband, David Dombrowski, who provided me with the support I needed to finish this thesis. Not only did he type most of this document, he also put up with the frequent expressions of frustration and discouragement that were part of the process. I would like to thank my parents, Dr. Justin Psaila and Gemma Psaila, for the support and encouragement they have given me throughout my life and, particularly, during these last few months. They have always provided me with a living example of what can be accomplished if one works at it.

I am also grateful to my advisor, Prof. R. Ballinger, for supporting me during my stay at MIT and for his advice and encouragement. He always believed I could do it even when I didn't. Also, I would like to thank Prof. N. Rasmussen for always being available to talk and for introducing me to the difference between a pigeon and a rock dove. I have also benefitted from numerous discussions with Il Soon Hwang.

Cameron Haase-Pettingell, a dear friend, was also very helpful with the thesis preparation and showed her encouragement through numerous care packages and phone calls. Susan Cooper and Margarita Crocker also showed their support also showed their support.

A number of people on the staff of the Nuclear Engineering Department have also been very helpful. Jennifer Gwinn provided invaluable support at a critical time. Clare Egan was always available to answer questions and provide encouragement. Also, Paula Cornelio and Laura Mittner provided word processing aid and advice during the thesis preparation processes.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>9</td>
</tr>
<tr>
<td>List of Tables</td>
<td>14</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>16</td>
</tr>
<tr>
<td>1.1 Introductory Remarks</td>
<td>16</td>
</tr>
<tr>
<td>1.2 Thesis Description</td>
<td>21</td>
</tr>
<tr>
<td>1.3 References</td>
<td>24</td>
</tr>
<tr>
<td>2. Literature Review of Crack and Crevice Modeling</td>
<td>25</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Literature Review</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1 Simple Steady-State Models Involving One or Two Modes of Transport</td>
<td>30</td>
</tr>
<tr>
<td>Migration Models</td>
<td>32</td>
</tr>
<tr>
<td>Diffusion Models</td>
<td>35</td>
</tr>
<tr>
<td>Convective Models With No Homogeneous Reactions</td>
<td>37</td>
</tr>
<tr>
<td>Diffusion and Migration Models with No Homogeneous Reactions</td>
<td>38</td>
</tr>
</tbody>
</table>
2.2.2 Advanced Steady-State Models and Transient Models
Involving Diffusion and/or Migration .. 42

2.2.3 Advanced Transport Models Involving Convection
and Reactions ... 47

2.2.4 Recent Work ... 53

2.3 Discussion ... 56

2.4 References ... 60

3. Model Description And Verification .. 64

3.1 Introduction ... 64

3.2 General Transport Equation .. 66

3.2.1 Mass balance ... 66

3.2.2 Homogeneous Chemical Reactions 70

3.2.3 Electrochemical Reactions Along Wall 71

3.2.4 Solubility Reactions .. 74

3.2.5 Chemical Dissolution ... 74

3.3 Solution of Mathematical Model ... 75

3.4 Verification of Numerical Model .. 82

3.4.1 Diffusion ... 82

3.4.2 Diffusion and Linear Source Term 87

3.4.3 Diffusion and Convection with Wall Reactions 92

3.4.4 Diffusion, Migration and Electrochemical
Reactions at Tip and on Walls ... 97

3.5 References ... 107

4. Modeling Of The Electrochemistry Within Crevices 108
4.1 Introduction ... 108

4.2 Results of Crevices Modeling ... 115

4.2.1 Verification of L^2/h Scaling Parameter .. 115

4.2.2 Electrochemistry Developed Within Crevice Without Solubility Limits and Cathodic Reactions ... 123

4.2.3 Effect of Internal Cathodic Reactions Without Solubility Limits 131

4.2.4 Description of Minimum Conditions Necessary to Model Crevice 145

4.2.5 Effect of Solubility Limits .. 146

4.2.6 Dissolution of Soluble of Partially Soluble Species 154

Manganese .. 154

Sulfur .. 165

4.2.7 Excursions in Bulk Conductivity ... 184

4.2.8 Hydrogen Water Chemistry ... 206

4.3 Comparison of Modeling Results with Experimental Data. 218

4.4 Summary .. 225

4.5 References ... 230

5. Implications of Crevice Modeling for BWR Recirculation Inlet Safe

End Cracking ... 237

5.1 Introduction ... 237

5.2 Description of BWR Nozzie Safe Ends ... 233

5.3 Implications of Crevice Modeling Results For Inconel Alloy 600 Laboratory Cracking Experiments ... 237
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1</td>
<td>Capacity factor loss by calendar year due to pipe cracking.</td>
<td>20</td>
</tr>
<tr>
<td>3 - 1</td>
<td>Geometry used by model for (a) crevice and (b) crack.</td>
<td>65</td>
</tr>
<tr>
<td>3 - 2</td>
<td>Comparison of transient model results with exact solution for diffusion.</td>
<td>85</td>
</tr>
<tr>
<td>3 - 3</td>
<td>Comparison of steady-state model results with exact solution for diffusion.</td>
<td>86</td>
</tr>
<tr>
<td>3 - 4</td>
<td>Comparison of transient modeling results with exact solution for diffusion with a linear source term (KC+G).</td>
<td>90</td>
</tr>
<tr>
<td>3 - 5</td>
<td>Comparison of steady-state modeling results with exact solution for diffusion with a linear source term (KC+G).</td>
<td>91</td>
</tr>
<tr>
<td>3.6</td>
<td>Geometry of a) compact tension specimen; and b) model crack.</td>
<td>93</td>
</tr>
<tr>
<td>3 - 7</td>
<td>Comparison of the maximum periodic value of normalized oxygen concentrations with varying R obtained using model presented in this thesis and modeling results obtained by A. Turnbull (DK = 10 M Nm⁻³/², f = 0.1 Hz, i' = 50 A mole⁻¹ cm).</td>
<td>99</td>
</tr>
<tr>
<td>3 - 8</td>
<td>Comparison of the maximum periodic value of normalized oxygen concentration for varying i' using model presented in this thesis and modeling results obtained by A. Turnbull (DK = 10MN m⁻³/², f = 0.1 Hz, R = 0.5, l = 10mm).</td>
<td>100</td>
</tr>
<tr>
<td>3 - 9</td>
<td>Comparison of transient normalized oxygen concentration at x/l = 0.8 (2mm from mouth) of model with results obtained by A. Turnbull (DK = 10M Nm⁻³/², f = 0.1 Hz, R = 0.5, l = 10 mm).</td>
<td>101</td>
</tr>
<tr>
<td>3 - 10</td>
<td>Comparison of the transient crevice tip concentrations obtained using model presented in this thesis and results obtained by Shuck and Swedlow.</td>
<td>104</td>
</tr>
<tr>
<td>3 - 11</td>
<td>Comparison of steady state concentration profile within the crevice obtained using the model presented in this thesis and results obtained by Shuck and Swedlow.</td>
<td>105</td>
</tr>
<tr>
<td>3 - 12</td>
<td>Comparison of initial and steady state potential profiles within crevice obtained using the model presented in this thesis and result obtained by Shuck and Swedlow.</td>
<td>106</td>
</tr>
<tr>
<td>4 - 1</td>
<td>Stress corrosion cracking susceptibility curve for lightly sensitized stainless steel.</td>
<td>111</td>
</tr>
</tbody>
</table>
4 - 2 Schematic of crevice used in model. The walls of the crevice are made of stainless steel and Inconel. ... 113

4 - 3 Validation of L^2/h scaling parameter by comparison of transient crevice tip a) concentration, and b) potential profiles. ... 120

4 - 4 Validation of L^2/h scaling parameter by comparison of steady-state a) concentration, and b) potential profiles along crevice. ... 121

4 - 5 Transient crevice tip concentration and potential profiles for nickel dissolution without solubility limits or cathodic reactions. ... 125

4 - 6 Steady-state concentration and potential profile within the crevice for nickel dissolution without solubility limits or cathodic reactions. 127

4 - 7 The steady-state H^+ and Cl^- concentration profiles within the crevice as a function of bulk conductivity. ... 129

4 - 8 The steady-state Ni^{2+} concentration and potential profiles within the crevice as a function of bulk conductivity. ... 130

4 - 9 Oxygen depletion at the crevice tip and near the crevice mouth. 138

4 - 10 Comparison of transient potential profile at crevice tip with and without internal cathodic reactions. ... 141

4 - 11 Comparison of transient pH profiles at crevice tip with and without internal cathodic reactions. ... 142

4 - 12 Steady-state concentration and potential profiles within crevice with cathodic reactions and no solubility limits. ... 143

4 - 13 Transient concentration and potential profiles at crevice tip using fast reduction kinetics and incorporating a solubility limit on Ni^{2+}. 149

4 - 14 Transient concentration and potential profiles at crevice tip using slow reduction kinetics and incorporating a solubility limit on Ni^{2+}. 150

4 - 15 Steady-state pH and potential profile within crevice (fast reduction kinetics and solubility limit on Ni^{2+}). ... 151

4 - 16 Steady-state pH and potential profile within crevice (slow reduction kinetics and solubility limit on Ni^{2+}). ... 152

4 - 17 Transient concentration and potential profiles at crevice tip when Mn dissolves from the metal at 1% of the passive current and Mn$^{2+}$ has not solubility limit (fast reduction kinetics). ... 157
4 - 18 Steady-state concentration and potential profiles within the crevice when Mn dissolves from the metal at 1% of the passive current and Mn$^{2+}$ has no solubility limit (fast reduction kinetics). .. 158

4 - 19 Transient concentration and potential profile at crevice tip when Mn dissolves at 1% of the passive current and Mn$^{2+}$ is limited in solubility (fast reduction kinetics). .. 160

4 - 20 Comparison of steady-state pH and potential profiles developed with Mn dissolution with and without Mn$^{2+}$ solubility limit (fast reduction kinetics). .. 162

4 - 21 Transient concentration and potential profiles at the crevice tip when Mn dissolves at 1% of the passive current, Mn$^{2+}$ is limited in solubility, and slow reduction kinetics are applied. .. 164

4 - 22 Comparison of fast and slow reduction kinetics for Mn dissolution with Mn$^{2+}$ solubility limit. .. 165

4 - 23 Calculated high temperature E/pH diagram. .. 168

4 - 24 Transient concentration and potential profiles at the crevice tip with MnS dissolution (H$_2$S flux = 10$^{-10}$ moles/dm2sec) and slow reduction kinetics. .. 172

4 - 25 Transient concentration and potential profiles at the crevice tip with MnS dissolution (H$_2$S flux = 10$^{-11}$ moles/cm2sec) and slow reduction kinetics. .. 173

4 - 26 Transient concentration and potential profiles at the crevice tip with MnS dissolution (H$_2$S flux = 10$^{-12}$ moles/dm2sec) and slow reduction kinetics. .. 174

4 - 27 Steady-state potential profiles within crevice for each of the MnS dissolution rates (or H$_2$S fluxes). .. 176

4 - 28 Comparison of steady-state potential profiles developed within the crevice with fast and slow H$_2$S reduction kinetics (H$_2$S flux = 10$^{-10}$ moles/dm2sec). .. 179

4 - 29 Comparison of steady-state H$_2$S and HS$^-$ concentration profiles within the crevice with fast and slow H$_2$S reduction kinetics (H$_2$S flux = 10$^{-10}$ moles/dm2sec). .. 180

4 - 30 Steady-state potential profiles within the crevice when MnS dissolves with H$_2$S reduction and fast reduction kinetics. .. 182

4 - 31 Transient HSO$_4^{2-}$, Ni$^{2+}$ and NiOH$^+$ concentration profiles during and after an excursion in bulk conductivity (Nickel dissolution). .. 188
4-32 Transient pH and potential profiles during and often an excursion. The same conditions hold as in figure 4-31 (Nickel dissolution). .. 189

4-33 Transient HSO₄⁻, Na²⁺ and MnOH⁺ concentration profiles during and after an excursion in bulk conductivity (Nickel and manganese dissolution). .. 191

4-34 Transient pH and potential profiles during and after an excursion in bulk conductivity. ... 192

4-35 Comparison of the pH and potential developed during and after excursions of different orders of magnitude in bulk conductivity. .. 195

4-36 Effect of H⁺ reduction kinetics on the transient pH profile developed within the crevice during and after an excursion. ... 198

4-37 Effect of H⁺ reduction kinetics on the transient potential profile developed within the crevice during and after an excursion. ... 199

4-38 Transient concentration and potential profiles developed at the crevice tip during and after an excursion to 3μS/cm in bulk conductivity. 203

4-39 Transient concentration and potential profiles developed at the crevice tip during and after an excursion to 30μS/cm in bulk conductivity. 204

4-40 A comparison of steady-state pH and potential profiles (before excursion) with normal water chemistry (NWC) and hydrogen water chemistry (HWC). (Nickel dissolution). ... 210

4-41 A comparison of steady-state pH and potential profiles (before excursion) with normal water chemistry (NWC) and hydrogen water chemistry (HWC). (Nickel and manganese dissolution). ... 211

4-42 Comparison of transient pH and potential profile at the crevice tip during and after an excursion in bulk conductivity for simple Ni dissolution and Ni with Mn dissolution. ... 214

4-43 Comparison of the steady-state pH and potential profiles developed during an excursion of simple Ni dissolution and Ni with Mn dissolution... 215

4-44 A comparison of the steady-state pH and potential profiles developed, after an excursion in bulk conductivity, of simple Ni dissolution and Ni with Mn dissolution. ... 216

4-45 pH of solution in segments from tube filled with deaerated water and exposed to aerated water at 288 C for 1 week. (D. Taylor, G.E.). 222
4 - 4.6 Typical stress corrosion cracking susceptibility curve with bulk and crevice regions of electrochemistry defined: (1) conditions in bulk solution with normal water chemistry; (2) conditions in bulk solution with hydrogen water chemistry; (3) conditions developed at crevice tip by dissolution of Ni\(^{2+}\) or Ni\(^{2+}\) with Mn\(^{2+}\); (4) potential/conductivity conditions developed as the result of MnS dissolutions; (5) conditions developed in crevice after an excursion in bulk conductivity in normal water chemistry; and (6) conditions developed in crevice after an excursion in bulk conductivity in hydrogen water chemistry. 227

5 - 1 Location of safe-end on BWR pressure vessel. ... 234

5 - 2 Schematic of typical BWR recirculation inlet nozzle crevice. 235

6 - 1 Variation of parameter "n" with crack tip anion concentration for mid and low alloy steels in various solutions of sulfate, borate, molybdate and chloride at 288°C. ... 247

6 - 2 Variation of parameter "n" with corrosion potential and bulk solution conductivity for sensitized (EPR = 15Ccm\(^{-2}\)). ... 248

C - 1 Geometry used by model for (a) crevice and (b) crack. 280
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 1</td>
<td>Input Parameters for Simple Diffusion Case.</td>
<td>84</td>
</tr>
<tr>
<td>3 - 2</td>
<td>Input Parameters for Diffusion with Linear Source Term Comparison.</td>
<td>89</td>
</tr>
<tr>
<td>3 - 3</td>
<td>General Input Parameters for Figure 3-7 through 3-9.</td>
<td>98</td>
</tr>
<tr>
<td>3 - 4</td>
<td>Input Parameters for Figures 3-10 through 3-12.</td>
<td>103</td>
</tr>
<tr>
<td>4 - 1</td>
<td>Normal BWR Water Electrochemistry.</td>
<td>114</td>
</tr>
<tr>
<td>4 - 2</td>
<td>Nominal Composition of Inconel Alloy 600 and 304 Stainless Steel.</td>
<td>117</td>
</tr>
<tr>
<td>4 - 3</td>
<td>Input Parameters for Long Crevice.</td>
<td>118</td>
</tr>
<tr>
<td>4 - 4</td>
<td>Input Parameters for Short Crevice.</td>
<td>119</td>
</tr>
<tr>
<td>4 - 5</td>
<td>Input Parameters for Figure 4-5.</td>
<td>124</td>
</tr>
<tr>
<td>4 - 6</td>
<td>Input Parameters for Figure 4-7 and 4-8.</td>
<td>128</td>
</tr>
<tr>
<td>4 - 7</td>
<td>Summary of Reduction Kinetic Parameters for Crevice Problem.</td>
<td>135</td>
</tr>
<tr>
<td>4 - 8</td>
<td>Input Parameters for Figure 4-9.</td>
<td>137</td>
</tr>
<tr>
<td>4 - 9</td>
<td>Input Parameters for Transient Potential and pH Data Incorporating Cathodic Reduction Depicted in Figure 4-10 and 4-11.</td>
<td>140</td>
</tr>
<tr>
<td>4 - 10</td>
<td>Input Parameters for Figure 4-13. (Fast reduction kinetics).</td>
<td>147</td>
</tr>
<tr>
<td>4 - 11</td>
<td>Input Parameters for Figure 4-14 (Slow reduction kinetics).</td>
<td>149</td>
</tr>
<tr>
<td>4 - 12</td>
<td>Input Parameters for Figure 4-17 and 4-18 (Mn dissolution, no solubility limits on Mn$^{2+}$).</td>
<td>156</td>
</tr>
<tr>
<td>4 - 13</td>
<td>Input Parameters for Figure 4-19 (Mn dissolution with solubility limits on Mn$^{2+}$, fast reduction kinetics).</td>
<td>159</td>
</tr>
<tr>
<td>4 - 14</td>
<td>Input Parameters for Figure 4-21 (Mn dissolution, Mn$^{2+}$ solubility limits, slow reduction kinetics).</td>
<td>163</td>
</tr>
<tr>
<td>4 - 15</td>
<td>Input Parameters for Figure 4-24 through 4-26. (MnS dissolution, H$_2$S reduction, slow reduction kinetics).</td>
<td>171</td>
</tr>
<tr>
<td>4 - 16</td>
<td>Input Parameters for Fast H$_2$S Reduction.</td>
<td>178</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

1.1 INTRODUCTORY REMARKS

The cost of corrosion and corrosion protection is extremely high \(^{(1,2)}\). In the United States alone it is estimated to be over 200 billion dollars per year \(^{(1)}\). Thus corrosion results in an enormous waste of resources and money. The tremendous cost of corrosion is understandable when one considers that corrosion is probable whenever metals are used in an application. Environmental degradation is common for all alloy systems in many environments. Corrosion phenomena can be divided into two general categories. The first group encompasses general corrosion processes which occur on the bulk metal surface. It includes uniform corrosion, galvanic corrosion, erosion corrosion, and selective leaching. The second group of corrosion processes are localized phenomena that act at specific sites on the metals surface. These processes include crevice attack, intergranular attack, stress corrosion cracking, corrosion fatigue, and pitting.

In this thesis we are concerned primarily with the characterization of the environment and, in particular, the modeling of corrosion and electrochemical processes which develop in the restricted geometries of crevices and cracks. These processes can promote the development of an environments that results in the premature failure by one or more of the above processes. In general, the materials involved may be metals or non-metals. Environments include aqueous with inorganic
or organic solutes, gaseous, or liquid metals (3). However, in this work, the primary application will be to alloys exposed to aqueous environments and, in particular, environments typical of Light Water Reactor (LWR) systems.

Crevice chemistry is usually different from the bulk environment because mass transport of dissolved species is restricted and little or no convective mixing occurs within the occluded region (1,2). Since there is no mixing, the concentration of all dissolved species is controlled by their transport within the region, due to diffusion and ion migration, and the production and consumption of these species either in solution or on the walls. If these changes result in the production of a sufficiently aggressive environment, localized attack may occur and lead to environmentally enhanced cracking (EAC). In either case, prediction of cracking and localized attack within crevices requires a knowledge of the local electrochemical conditions within the crevice (i.e., pH, electrode potential, concentration of dissolved ions, etc.). This information would be used, in conjunction with experimental data defining the environmental conditions necessary to initiate and propagate cracking, to identify regimes of susceptibility or risk.

Stress corrosion cracking (SCC) and corrosion fatigue (CF) are forms of environmentally assisted cracking which result from the synergistic interaction of the mechanical environment (stress) and the chemical environment, often in combination with certain microstructural features. As with the crevice, the chemical environment within the crack is affected by transport of dissolved species, electrochemical processes on the tip and walls of the crack, homogeneous chemical reactions, and precipitation. The distinction is that localized straining at the crack tip can disrupt protective or partially protective films. The mechanical stresses can be present as the result of residual stresses from fabrication and installation and/or stresses resulting from operation. SCC refers to an environmentally assisted cracking process that is
generally considered to occur as the result of a combination of "static" tensile stress, applied or residual, a particular environment and a susceptible material. CF refers to a similar cracking process that involves cyclic loading. It is considered by some that CF is not mechanistically distinctive from SCC (4). The stress results in the accumulation of strain at the crack tip which eventually leads to film rupture and crack propagation. The removal of either the chemical environment or mechanical stress often results in the cessation of cracking. Environmentally assisted cracking in aqueous solutions can be promoted by either anodic reaction processes or by hydrogen embrittlement. There are various mechanisms by which the crack is considered to propagate, at least in part, by anodic dissolution mechanisms. The two most popular mechanisms are: (1) film rupture/slip dissolution (as proposed by Ford et al. (3)) in which cracking is directly related to the oxidation charge density passed between the film rupture events; and, (2) film-induced cleavage (proposed by Sieradzki and Newman (5)) in which cracks initiate in the anodic reaction film and propagate into the metal substrate by a cleavage process. In relation to hydrogen embrittlement the major mechanisms proposed include: (1) hydrogen induced local plasticity in which the normal ductile slip processes are enhanced by absorbed hydrogen; (2) decohesion in which hydrogen acts to lower the fracture strength of atom-atom bonds at the crack tip; and, (3) the formation of brittle hydride phases at the crack tip (4). Whichever detailed mechanism is appropriate, knowledge of the local crack tip environment is necessary to predict crack propagation rate since this will determine both the hydrogen supply rate and the anodic reaction rate.

In the nuclear industry, EAC has been a major problem for at least the last fifteen years (6,7,8,9). SCC and CF have been the major cause of failures (5,6). Crevices have been identified as important sites for SCC initiation in some cases. Premature failures of structural components have occurred in both the primary and
the secondary systems. Components affected include vessel clad and internals, nozzle safe ends, control rod drives, piping valves, fuel cladding, steam generators, turbines, fittings, and heat exchangers (8,9,10). These failures have delayed plant startups, caused extensive downtime, and proven expensive to the nuclear industry as a result of the costs of equipment repair, replacement costs, and lost power (3,7). Figure 1-1 shows the loss of capacity due to various corrosion and cracking problems. This area under this curve represents a loss of capacity of billions of dollars (10). This cost does not include the cost of replacement or repair, nor the cost due to other forms of corrosion that occur in nuclear reactors. These premature failures have resulted in the loss of structural integrity of components and have raised questions regarding the present safety evaluation codes used to predict component life. It is because of these economic and safety concerns that considerable scientific effort has been focused on finding ways to understand, predict, and prevent these forms of localized attack.

Much of this effort has been directed towards the development of a fundamental understanding of the complex interactions involving the material, environment, stress, temperature, and time. With the appropriate use of a quantitative crack growth model, it would be possible to anticipate component failure situations and more effectively deal with and understand any failures that might occur (7). As previously discussed, such a crack growth model must include the capability of accurately predicting the local electrochemistry in occluded regions such as cracks and crevices. In order to predict the chemistry within these regions, a model must be developed which can accurately describe the interrelation between the local environment with the bulk environment, and metal that forms the occluded region through the modeling of the transport processes and reactions involving dissolved species within these regions. The development and application of a model that predicts local chemistry based on rigorous mass transport and electrochemical theory is presented in this thesis.
Figure 1-1. Capacity factor loss by calendar year due to pipe cracking (9).
1.2 THESIS DESCRIPTION

The goal of the research project was to develop a model which can accurately predict the local chemistry within cracks and crevices in any alloy systems exposed to light water reactor environments. This required a model that is both fundamentally rigorous but flexible. Rigor is essential to ensure confidence in its predictions and because too many simplifications or assumptions would impose serious limitations on the applicability of the model and thus limit its application. The model must be flexible in order to be able to model cracks or crevices in different alloy systems which may involve different dissolved species and different reactions processes.

The model that has been developed and is presented in this thesis has the following features:

• It is a transient model. Thus the time dependent concentration and potential profiles within the cavity region can be analysed as well as the effect of changes in bulk conductivity and potential on these profiles.

• Transport modes included in the model are:
 -- diffusion,
 -- ion migration,
 -- convection induced by cyclic pumping of crack walls.

• Parallel sided or tapered geometries may be used.
Any number of species may be used limited only by computer memory and speed.

Any number of homogeneous reactions may be incorporated.

Any number of anodic and cathodic reactions at the crack tip or on the walls may be used. These reactions may be dependent on the local concentration of species or potential.

Solubility limits may be applied to any dissolved species.

The production of species by radiolysis of water may be included.

Chemical dissolution of inclusions may also be incorporated.

The inclusion all these transport and reaction processes should result in a model capable of accurately predicting the environment within cracks and crevices exposed to reactor environments. However, the accuracy of the predictions made by this model is limited by the accuracy of the necessary input data.

In the following chapters the model is described in detail and a particular application of the model is presented. Chapter 2 presents a literature review which allows one to distinguish this model from other models which have been developed. Chapter 3 presents a detailed mathematical description of the model, the numerical solution of this mathematical model, and its verification. Chapter 4 describes the application of the model to assessment of the chemistry developed within a crevice for a variety of environmental and material variables. Two important variables considered
are the dissolution of soluble or partially soluble species from the metal and excursions in bulk conductivity. The implications of these results to the cracking susceptibility of a typical BWR recirculation inlet safe-end crevice are described in Chapter 5. In Chapter 6, the importance of the results and the broad implications of these results in understanding environmentally enhanced cracking is discussed. Some details of the proposed applications of the model to these cracking problems are also presented. Conclusions and future work are described in Chapter 7.
1.3 REFERENCES

Chapter 2

LITERATURE REVIEW OF CRACK AND CREVICE MODELING

2.1 INTRODUCTION

A critical review of the literature on the mathematical modeling of crack, crevice, and pit electrochemistry is presented in this chapter. Two extensive literature reviews have already been done giving a detailed description of each modeler's work (1,2). Unlike these reviews, this chapter examines previous modeling efforts in order to evaluate whether the models developed are sufficiently rigorous and flexible for specific application to the crevices and cracks in a nuclear power station. A number of the models developed were appropriate for the specific case for which they were developed, but are not appropriate for the environment or alloy systems of interest in this thesis. The purpose of this review is to establish the current state of modeling and to present the model in this context.

The aim of most models of crevice, crack, and pit electrochemistry is to predict the solution chemistry and potential within the occluded region of interest. This information, coupled with "known" separately determined electrochemical behavior of the material under these conditions, can be used as input into crack growth models and in predicting localized corrosion. Specifically, models ideally try to predict the concentration of dissolved species and/or electrode potential as a function of position and, possibly, time within the cavity region. These variables will be a function of bulk solution composition, occluded region geometry, external electrode potential, kinetics
of electrochemical reactions, homogeneous reactions, etc. The development of an appropriate model for a particular application is nontrivial and requires a great amount of information during the model development (in order to construct an accurate model) and in its the application. A complete description of the information necessary to develop, formulate, and apply a mathematical model to predict localized chemistry within cavities is presented in Appendix A. As described there, the accuracy and appropriateness of a model depends to a large extent on the assumptions and approximations which are made in its development. Indeed, the model is inherently limited by these assumptions and in many cases the assumptions are so significant as to make the model inappropriate for application to the problem for which it was designed. In order to better understand some of the assumptions made and thus gain an appreciation of the validity and relevance of previous models, a general description of the theory used will be presented here. A more detailed description is presented in Chapter 3.

The models that have been developed range from very simple to the very complex, requiring analytic solutions or rigorous numerical schemes respectively. Though the models vary greatly, they are all derived from the same fundamental governing theory. This theory describes the mass transport, production, and consumption of solute species in dilute electrolyte solutions. The transport of dissolved aqueous species is controlled by diffusion, ion migration, and convection. This is mathematically detailed in the flux equation., The flux of species i, J_i, is given by

$$J_i = C_i \nu - D_i \frac{\partial C_i}{\partial x} - \frac{z_i D_i F}{RT} C_i \frac{\partial \phi}{\partial x} \tag{2 - 1}$$

where

- $D_i = \text{diffusion coefficient of species } i$
- $C_i = \text{concentration of species } i$
\(z_i \) = charge of species \(i \)
\(\mu_i \) = ionic mobility of species \(i \)
\(F \) = Faraday's constant
\(\phi \) = electrostatic potential
\(V \) = velocity of solution
\(R \) = gas constant
\(T \) = temperature (K)

The first term represents convection which represents transport due to motion of the solvent fluid. The second term is the diffusion term which represents transport as the result of a gradient in concentration. Ion migration, mathematically represented by the third term, is the transport of charged species due to a gradient in potential. The one dimensional form of the equation is given here since that is the form typically used by modelers.

Mass is conserved within the cavity, and for a species \(i \) this is described by

\[
\frac{\partial C_i}{\partial t} = -\frac{\partial J_i}{\partial x} + \sum_j R_{i,j} \tag{2-2}
\]

where
\(t \) = time
\(R_i \) = rate of production or consumption of species \(i \) by reactions occurring in solution

Substituting Equation 2-1 into Equation 2-2 results in the full form of the mass balance equation
\[
\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial x^2} + \frac{z_i D_i F}{RT} \frac{\partial}{\partial x} \left(C_i \frac{\partial \phi}{\partial x} \right) - \frac{\partial}{\partial x} (C_i v) + \sum_j R_{i,j} \quad (2.3)
\]

Where \(\frac{\partial C}{\partial t} \) is the time rate of change of species \(i \) at any position within the region. The reaction rate term normally represents homogeneous reactions occurring in the solution. Reactions such as electrochemical reactions, precipitation, and chemical dissolution which occur on the walls of the cavity normally constitute the boundary conditions in the appropriate dimension. However, in principle, they can be incorporated into the one-dimensional model by averaging over the width of the cavity region. The resulting term is implicitly represented by \(R_i \) in Equation 2.3. The inclusion of homogeneous and heterogeneous reactions are important in many modeling applications because these reactions can significantly alter the local electrochemistry.

The potential is governed by Poisson's equation which can be described by

\[
\nabla^2 \phi = \frac{E}{\varepsilon} \sum_i z_i C_i \quad (2.4)
\]

where \(\varepsilon \) is the permittivity of the solution. The permittivity is a very small number and therefore \(F/\varepsilon \) is very large. This implies that slight deviations from electrically neutral solution (i.e., \(\Sigma_i z_i C_i = 0 \)) are restored by very large forces. Thus, Poisson's equation is usually approximated by the electroneutrality equation

\[
\sum_i z_i C_i = 0 \quad (2.5)
\]

in most models. An additional equation frequently used by modelers is that for the current density in electrochemical solutions. The current density in the solution is proportional to the fluxes of the species in solution and is given by
\[I = F \sum_{i} z_i J_i \] (2.6)

where \(I \) is the current density.

Equations 2.1 through 2.6 provide a complete description of the transport, production, and consumption of dissolved species within a crack, crevice, or pit. When used with appropriate boundary conditions and initial conditions, where appropriate, they provide a consistent set of equations that can be used by modelers. Although it is not intrinsically difficult to construct models based on the above equations, the solution of the stiff, nonlinear set of equations that result is not trivial and requires advanced numerical techniques. Indeed, it is the difficulty of numerical solution that is often the limiting factor in model development. Since these governing equations have been known for decades, the development of crack and crevice modeling primarily reflects advances in computing power readily available to the modeler.

A lack of computing power often results in a series of approximations to the fundamental equations some of which have validity but which in many other cases introduce significant uncertainties. In making any assumptions that would simplify the solution of the problem, the limitations in applicability of the model developed with these assumptions must be clearly understood. In general, the approximations made include: (1) a reduction in dimensionality of the problem from three dimensions to one dimension; (2) steady-state analysis of electrochemistry in cavity; (3) simplification or exclusion of certain transport processes; and (4) exclusion of various reaction processes. Often a number of these simplifications are made in combination. While the simplification in dimensionality and the use of steady-state analysis can be appropriate in many cases, the exclusion of transport (especially diffusion and ion migration) and reaction processes often is not. When metal is immersed in water, electrode reactions
(both anodic and cathodic) occur on its surface. In occluded regions, these reactions, combined with poor mixing, result in chemistry changes (i.e., deaeration, acidification, etc) (3,4). The establishment of a concentration and/or a potential gradient within these regions will lead to transport due to diffusion and ion migration. Reactions, both electrode and homogeneous, occur in the cavity region. While simplification concerning these processes may have been justifiable in the past due either to a lack of understanding of the importance of different processes or lack of computing power it is unnecessary now. It is clear that, in order for a model to be rigorous and of wide applicability it must include, in general, at least transport due to diffusion and ion migration (as long as convective effects within the cavity are negligible), homogeneous reactions, and anodic and cathodic reactions.

In this literature review, the models are grouped according to the transport modes included and time dependence of the model. This grouping broadly follows the historical progression of modeling as computing power has increased and interest in this problem has grown.

2.2 LITERATURE REVIEW

As discussed in the last section, models have been developed with a range of different assumptions and approximations. Indeed, it is possible to classify a model according to its complexity and the approximations made during its development. In this section, the previous modeling efforts are reviewed. They have been classified into four groups. The first group of models discussed are simple steady-state models which are usually based on one form of transport (i.e., diffusion, ion migration, or convection) or very simple coupled transport. Usually no homogeneous reactions were
incorporated into these models. The second group of models included advanced steady state models and simple transient models. Steady state models generally incorporated multiple homogeneous reactions. Transient models incorporated a few reaction terms but added and subtracted the transport equations to remove the homogeneous reaction rate terms from these equations in order to make the system of equations less stiff. For example, if the system of interest involves two dissolved species (A and B) which react with one another, the governing mass transport equations (given by Equation 2-3) can be added together or subtracted from one another in order to remove the homogeneous reaction rate terms (given by \(R_{i,j} \) in Equation 2-3). A single mass transport equation would result involving transport of both species A and B and the equilibrium relationship must be used as the additional equation necessary to solve for the unknown concentrations. This addition or subtraction of the transport equations limits the application of the model to systems involving the same homogeneous reactions. The third group of models include advanced transient models involving convection. The convective term is the result of pumping due to movement of the crack wall. In the last part of the review, the most recent modeling efforts are reviewed in order to more clearly set the model presented in this thesis in the appropriate context.

2.2.1 Simple Steady-State Models Involving One or Two Modes of Transport

Early efforts to model crack, crevice, or pit electrochemistry appeared in the 1960's and early 1970's. These models were very simple and usually incorporated only one mode of transport, such as diffusion, ion migration, or convection, or were in very simplified cases involving both diffusion and ion migration (5-30). Rarely were
homogeneous reactions, solubility limits, and cathodic reactions considered. These types of transport problems were numerically straightforward to solve. This simplified type of modeling continued until about 1980. The next few paragraphs will detail a few models typical of each simplified approach. The models will be present and a critique of the general approach will be made at the end of each section.

Migration Models

A number of steady state models have been developed that assume that mass transport within the cavity regions occurs only by ion migration (5-14). This assumes that there are no concentration gradients within the cavity and the fluid velocity is zero everywhere. Hence, no diffusion or convection occur within the occluded region. Substituting Equation 2-1 into Equation 2-6 and removing the diffusion and convection terms yields the governing equations that are generally used in these models

\[
I = \left[-\frac{F^2}{RT} \sum_i z_i^2 D_i C_i \right] \frac{\partial \phi}{\partial x} \quad (2-7)
\]

or

\[
I = \kappa \frac{\partial \phi}{\partial x} \quad (2-8)
\]

This is simply a form of Ohm's law. Laplace's equation is used to solve for the potential distributions. Laplace's equation, in one dimension, is given by
\[\frac{\partial^2 \phi}{\partial x^2} = 0 \] \hspace{1cm} (2-9)

The current density within the cavity is considered to be a function of position in many migration models. The goal of these models was, usually, to predict the potential distribution within the crack or crevice region.

The first of the migration models was developed by Hines (5). In this model it was assumed that anodic dissolution occurred at the tip and on the walls of a wedge-shaped crack. The crack tip was rounded with a radius dependent on crack length. All cathodic reactions occurred on the external surface outside the crack. The model was used to predict the potential drop down a stress corrosion crack as a function of the anodic current, crack depth and radius of the crack tip, and crack mouth opening.

Two later migration models, developed by Gutman (6) and by Bignold (7), considered migration in a paralleled sided crack where anodic dissolution occurred at the tip and cathodic processes occurred on the walls. It was assumed that no homogeneous reactions occurred within the crack region. Gutman used his model to predict the type of polarization (anodic or cathodic) that occurred within the crack when the external surface is at the free corrosion potential and under cathodic polarization. Bignold considered the cases of free corrosion potential and anodic polarization.

Vicentini et al. developed a model to predict the potential distribution and current density variation along a cylindrical crevice (8). Ohm's law was used to develop this one dimensional model in which current was averaged over the width of the crevice. In this case, the current density at the crevice tip was ignored. The resulting equations were solved numerically.
Two models were developed to predict the potential distribution within pits. Newman et al. developed a model based on Laplace's equation in an effort to predict the potential within a hemispherical corroding pit (9). The equations were solved numerically to give equipotential and flux curves within the model pit. Nisancioglu and Holtan developed a model based on Ohm's law to predict the potential drop within a cylindrical pit (10). The walls of the pit were assumed to be inert. An analytic solution was developed for the potential drop down the pit.

Dolg and Flewitt developed a model to predict the distribution of potential and electrode reactions within a parallel-sided stress corrosion crack (11,12). Their model assumed that anodic dissolution reactions occurred only at the tip and that only cathodic reactions occurred on the walls of the crack. Ohm's law was used as the basic transport equation with Tafel expressions for the anodic and cathodic current densities. Tafel equations relate potential to the log of the current density for a particular electrode reaction. A quasi-analytic/numerical approach was taken to solve the resulting differential equations. An important step in the solution processes was the assumption that the slope of the potential approached zero as the potential approached the free corrosion potential. Melville criticized this assumption suggesting that it is valid only for semi infinite cracks (13,14).

Melville developed (in his opinion) a more appropriate analytic model (within the constraints of the assumption of Ohm's law) which predicted the potential distribution within a stress corrosion crack (13,14). The model incorporated a corrosion current density that was a function of potential along the walls of the crack. The width of crack could be varied linearly with crack length. The potential distribution within the crack was described by modified Bessel functions of the first and third kind of orders zero and one.
The key assumption in all of these models is that concentration gradients within an occluded region are negligible and, therefore, diffusion can be ignored. This is only valid at short times when the solution within the cavity will be similar to the bulk concentration, such as when a pre-cracked specimen is initially immersed. However, the potential gradient and the resulting ion migration and electrochemical reactions will cause a rapid change in the concentration of species within the cavity region resulting in concentration gradients. In this case Ohm’s law is no longer valid. Thus, these simple migration models cannot accurately predict electrochemical conditions within cavities.

Diffusion Models

A number of models have been developed which incorporate transport due only to diffusion (15-21). This reduced the flux, as given in Equation 2-1, to

\[
J_i = -D_i \frac{\partial C_i}{\partial x} \quad (2 - 10)
\]

in one dimension. The simplified mass balance equation, derived from Equation 2-3 under steady state conditions is

\[
D_i \frac{\partial^2 C_i}{\partial x^2} + \sum_j R_{i,j} = 0 \quad (2 - 11)
\]

In the early diffusion-based models developed by Falta et al. (15), Tester and Isaacs (16), and Galvele (17,18), Equation 2-10 was used as the governing transport
equation. Since this equation was used, homogeneous reactions occurring within the crevice could not be accounted for in any mathematically correct way. Indeed, Faita et al., and, Tester and Isaacs made no attempt to account for any homogeneous reactions occurring in their transport models. Galvele attempted to account for homogeneous reactions by incorporating the equilibrium relations as part of the system of equations used to solve for the concentration of species. Of the models developed that incorporated diffusion as the only mode of transport, the model developed by Turnbull (19) is the most advanced because it incorporated both homogeneous and electrochemical reactions occurring along the walls and tip of the parallel-sided crack or crevice (19). Steady-state transport equations were used for each of the four species, Fe$^{2+}$, FeOH$^+$, H$^+$, and OH$^-$, including reaction terms appropriate for the hydrolysis of Fe$^{2+}$ to FeOH$^+$. The electrochemical reactions included dissolution of Fe to form Fe$^{2+}$ and cathodic reduction of water and H$^+$. In order to remove some of the reaction terms the system of equations was simplified by adding and subtracting the mass balance equations (Equation 2-11 for each species) and assuming equilibrium, as described earlier in this chapter. The system of equations was solved numerically. The model was extended to take into account the effects of alloying elements and the buffering action of sea water.

These diffusion models assume that the potential drop down the model crack or crevice is small and thus ion migration terms can be neglected. The potential drop in a cavity depends on a number of variables including the conductivity of the solution in the bulk and the cavity, the geometry of the cavity, and, of course, the current within the cavity. This would only be valid when the conductivity of the solution is very high or when the current density within the crevice is extremely low. These factors, the conductivity and the current, are dependent on the conditions that develop within the cavity region and it is therefore impossible to establish general criterion for when
these conditions would occur. The validity of the assumption can only be tested by solving the relevant mass transport equations with both diffusion and ion migration or by experimental measurement of potentials within the cavity.

Convective Models With No Homogeneous Reactions

Few models have been developed that incorporate only convection as a mode of transport within the occluded region (22-25). There has been no generalized approach to convective transport models. Hartt et al. (22) attempted to evaluate how fatigue variables might influence mixing between the crack and bulk solutions. This evaluation consisted of calculating the average velocity of the fluid at the crack mouth. This calculated velocity was not the velocity of the fluid in the crack but the fluid velocity generated at the mouth of a corrosion crack due to the cyclic displacement of the crack walls. The velocity was used to calculate the net momentum of the fluid during crack wall displacement. Hartt et al. considered that the net momentum should influence the amount of mixing that occurs at the crack mouth. The momentum was found to be a function of the crack opening angle, frequency, mean stress, and crack length. The importance of the calculated fluid momentum on the chemistry within the crack would depend on the amount of external flow past the mouth of the crack. The model does not attempt to predict the chemistry within a fatigue crack. It's purpose is to predict what factors may be important in the development of electrochemistry within the crack.

Taunt and Charnock (23,24) developed a model to predict the concentration of a reactant within a corrosion fatigue crack based on convective transport. The model assumes that there is perfect turbulent mixing within the crack, resulting in uniform composition, and that the bulk solution is fast flowing past the mouth so that each load
cycle draws fresh fluid into the crack. Expressions used to calculate the opening at the crack tip and mouth as a function of time allowed calculation of the average displacement and the amount of fluid expelled and replaced. The effects of specimen type, crack length, stress ratio, maximum stress intensity factor, and frequency on the concentration of the reactant was evaluated.

This assumption of turbulent mixing is only valid if the Reynold's number, as given by

\[Re = \frac{(velocity)(width)}{kinematic \ \text{viscosity}} \]

(2-12)

within the cavity is greater than 1000 (for parallel plates) (25). Assuming a crack width of approximately 10 μm and a kinematic viscosity of 10^{-5} \text{ m}^2/\text{s} (air at room temperature) the velocity of fluid within the crack would have to be 10^3 \text{ m/s} or three times the speed of sound in air. A similar calculation can be done for water, where the kinematic viscosity is 10^{-3} \text{ m}^2/\text{s}, resulting in velocities greater than 100 \text{ m/s} being necessary for turbulent flow. These velocities are unrealistic within a crack. Therefore, the flow within a crack is laminar and the electrochemistry developed within this region cannot be modelled by convective transport alone.

Diffusion and Migration Models With No Homogeneous Reactions

The last group of models that will be presented in this section are the first attempts at combining the transport processes of diffusion and ion migration in a steady state model (26-30). These models were generally simple transport models that ignore any homogeneous reactions that might take place. The steady state model is
developed by using the flux equation, as described by Equation 2-1, in one dimension without the convection term. Thus the governing transport equation is

\[
J_i = - D_i \frac{\partial C_i}{\partial x} - \frac{z_i D_i F}{RT} C_i \frac{\partial \phi}{\partial x}
\] \hspace{1cm} (2-13)

There are two different types of models that fall in this group.

The first type, developed by Oldfield and Sutton (26,27), separated the effects of transport due to diffusion and ion migration to model the electrochemistry within a crevice. The model is based on a four stage mechanism for crevice corrosion. The four stages include: (1) oxygen depletion within the crevice; (2) anodic dissolution resulting in eventual acidification within the crevice; (3) breakdown of the passive film resulting in rapid corrosion; (4) propagation of crevice corrosion. The model uses the first three stages of this crevice corrosion mechanism separately to try to identify parameters associated with the alloy, environment, and crevice geometry that might control crevice corrosion. In the first stage, the time necessary to deplete the oxygen within the crevice \(t_d \) and the distance which oxygen can diffuse into the crevice in this time \(\delta_d \) are calculated. Modeling of the second stage of crevice corrosion is more complicated. The time to decrease the pH from its initial bulk value to the critical value for passivity breakdown \(\text{pH}_C \) is determined by calculating the time necessary to change the pH a small amount, \(\Delta \text{pH} \). To do this it is necessary to calculate the rate of production of various ions in the crevice (using Faraday's law) and the amount of acidification resulting from the precipitation of chromate ions which is necessary to produce the necessary change in pH. Thus a time for the \(\Delta \text{pH} \) can be calculated. The effect of migration on this value is taken into account and an estimate of diffusion effects is calculated. These effects are used to make corrections on the pH change that occurs in a certain time and, therefore, alter the time necessary to change
the pH by ΔpH. The third stage, passivity breakdown, is accounted for by assuming that
the critical solution chemistry (i.e., pH) for breakdown and propagation of corrosion is
known. The model does not give an accurate representation of behavior within a crevice
since the transport and reaction processes are separated. In the real crevice situation
transport and reaction processes occur on a continual basis. Also, some important
reactions which greatly affect the pH (i.e., reduction of water or H^+ ions and water
equilibrium) are not included. Since the model is based on the calculation of pH, the
lack of these reaction processes is a serious limitation.

The other general type of steady-state diffusion/migration model developed tried
to solve the coupled diffusion/ion migration equations. These equations were solved, in
part, analytically. The flux equation as given by Equation 2-12 was assumed to be
linear for non-reacting species (i.e., ϕ is not a function of the concentration of
species in solution). The equation was then integrated for these non-reacting species
(28-30). The resulting analytic expression for these non-reacting species is the
Boltzman's distribution given by

$$C_i = C_{i,\text{bulk}} \exp \left(- \frac{z_i F \phi}{RT} \right)$$

(2-14)

The major fault with these models (based on Boltzman's distribution) is that the
assumption of linearity of the flux equation is incorrect. The error in this assumption
is explained in detail in Appendix B. To summarize, this assumption is incorrect
because the potential is a complex function of all the charged species in solution. Thus,
the flux equation is non-linear. Since the flux equation is nonlinear it cannot be
directly integrated and, therefore, the Boltzman's distribution that results from this
equation is incorrect. Also, in these models no homogeneous reactions are allowed to
occur.
Vermilyea and Tedmon (28) developed such a model to predict the concentration and potential variation in a crevice. In this model, the current is carried by a cation and an anion is included to balance charge. The concentration of the anion is assumed to be given by Boltzman's distribution. Because of charge neutrality, the concentration of each of the charge carrying ions is assumed to be equal. The potential distribution is derived from Ohm's law. The Boltzman's distribution is substituted into this potential gradient and the resulting equation integrated to get the potential distribution. This model is mathematically and physically unsound because of the use of Boltzman's distribution, Ohm's law, and the lack of homogeneous reactions, cathodic reactions and the assumption of inert walls.

Ateya and Pickering (29) developed a model to predict the electrochemical conditions within a crack undergoing cathodic hydrogen charging. H+ ions and an anion are considered. The Boltzman distribution was assumed for the non-reacting anion. Since there are only two ions and electroneutrality must hold the flux equation (Equation 2.-12) for the non-reacting ion was used to derive an expression for the potential. This model is invalid because of its use of Boltzman's relationship, lack of homogeneous reactions, and the lack of any other electrochemical reaction other than H+ reduction (e.g., water reduction, anodic processes, etc.).

The most advanced example of these models was developed by Beck and Grens II (30). This steady state model predicted the concentration of three dissolved species (an anion, a cation, and H+) and the potential within a stress corrosion crack. The concentration profile of the non-reactive cation is obtained using the approach described above. The concentration of the other species and the potential were solved numerically using iterative techniques. Because of the lack of homogeneous reactions and the assumption of a linear flux equation this model was generally invalid, but
considering that this model was published in 1969, these modelers were obviously ahead of their time.

2.2.2 Advanced Steady-State Models and Transient Models Involving Diffusion and/or Migration

In the previous section the simple steady-state transport models which first appeared in the literature were reviewed. These models were often based on only one transport process (i.e., diffusion, ion migration, or convection). Those coupled diffusion/ion migration models that did appear involved either the separation of these transport processes or an unjustified assumption in order to simplify the equations for solution. Also, homogeneous reactions were generally ignored as well as many of the electrochemical processes that occur. Though these models were generally not comprehensive enough to accurately predict the electrochemistry, they represent a first attempt at such predictions. In the mid 1970's and 1980's as modeling of transport in cavity regions became more prevalent as the desire for the accurate prediction of local electrochemistry within cracks and crevices increased, more advanced steady state and simple transient models were developed (31-46). The governing equation used in the simple transient diffusion models is given by

\[
\frac{\partial C_i}{\partial t} = D_i \nabla^2 C_i + \sum_j R_{i,j} \tag{2.15}
\]

For the two dimensional diffusion model that was developed, only homogeneous reactions were included. In the case of a one dimensional model, reactions occurring on the walls were included. Turnbull developed a series of analytic solutions to simplified forms of
Equation 2-15 (31). These solutions involved only oxygen in solution in the model crack and were a prelude to more elaborate and accurate models that were developed later.

Alkire et al. also developed an analytic diffusion model (32). This model involved one species being transported by one dimensional diffusion but without any homogeneous reactions. A more elaborate diffusion model was later developed by Alkire and Siitari in which the electrochemistry within a crevice was modeled assuming transport by diffusion but the electrochemical reactions that occurred on the walls were potential dependent (33). The potential was calculated using Ohm's law. It should be recalled that Ohm's law is inherently invalid because concentration gradients are present. Other limiting factors of these models are the fact that transport due to ion migration and homogeneous reactions are ignored.

More advanced steady state models were developed which incorporated the transport of many species as the result of diffusion and ion migration as well as homogeneous and heterogeneous reactions involving these species (34-38). The governing equation in this case is derived from Equation 2-3 for steady state diffusion and ion migration in one dimension. Thus, the equation used in these models is

\[
D_i \frac{\partial^2 C_i}{\partial x^2} + \frac{z_i D_i F}{RT} \frac{\partial}{\partial x} \left(C_i \frac{\partial \phi}{\partial x} \right) + \sum_j R_{i,j} = 0 \tag{2-16}
\]

Gravano and Galvele developed a model to predict the electrochemical conditions within pits (34). The pit walls were assumed to be inert. This is not an accurate approximation unless the passive current on the walls of the pit is many orders of magnitude less than the current at the bottom surface of the pit. Also, cathodic reactions were ignored in the model pit. The transport equations for the dissolved
species were added and subtracted in order to remove the reaction rate terms from the equations thus making the system of equations less stiff. Boltzman's distribution (Equation 2-14) was used for the concentration of non-reacting species. The system of equations was solved numerically. The limitations of this model stem from the omission of electrochemical reactions occurring on the walls and the use of Boltzman's distribution for non-reacting species. The application of the model to other systems is restricted because of the addition and subtraction of transport equation. Despite these limitations this model did provide some important insights into pit behavior.

The models developed by Turnbull and by Danielson to predict the electrochemistry within parallel-sided cracks were very similar (35-38). The steady-state transport equations incorporated diffusion and ion migration with homogeneous reactions and heterogeneous electrochemical potential dependent fluxes occurring on the walls and averaged over the width of the crack. These equations were added and subtracted in order to remove the homogeneous reaction rate terms from the transport equations resulting in multiple species transport equations. Electroneutrality was used as the equation to solve for potential. The equilibrium relationships were substituted as equations for unknown concentrations. For non-reacting species, an exact analytic solution (Boltzman's distribution) was used which was derived assuming that the flux equation was linear. The implications of this and reasons for its invalidity were explained briefly in Section 2.2.1 and are explained in detail in Appendix A. Thus, a system of transport equations, equilibrium equations, and analytic type equations was solved numerically.

The models described in the previous paragraph were greatly advanced compared to other models developed in the same period. They were relatively rigorous since they included the transport effects of both diffusion and ion migration along with both homogeneous reactions occurring in the crack, solution and anodic and cathodic reactions
at the crack tip and on the walls. The assumption of Boltzmann's distribution (Equation 2-14) for the non-reacting species is the only part of these models that is not rigorous. The development of these complex, many species, models was a big step in understanding the complexity of electrochemistry within occluded regions.

A few simple transient diffusion/migration models were developed during this period of time. These models were all one dimensional. The governing transport equation for these models could be derived from Equation 2-3 by ignoring the convective transport term. The resulting transport equations that was used is given by

\[\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial x^2} + \frac{z_i D_i F}{RT} \frac{\partial}{\partial x} \left(C_i \frac{\partial \phi}{\partial x} \right) \] (2-17)

The first transient model incorporating the effects of both diffusion and ion migration was developed by Shuck and Swedlow (39,40). This model incorporated only three species: hydrogen ions, hydroxide ions, and chloride ions. Hydrogen ions were electrochemically produced on the walls and presumably the crack tip at a constant rate by oxide formation. The effect of crack geometry on the concentration of species was examined for three specific cases: rectangular, hyperbolic, and pie-shaped. The model showed some differences in local electrochemistries initially for these different geometries, but there was little difference at steady state. This model ignored cathodic reactions occurring within the crack and the lack of potential dependence of electrochemical reactions. The model was applied to very simple systems involving only two or three species.

A more rigorous transient model was developed by Herbert and Alkire (41) for predicting the electrochemistry in crevices in aluminum alloys. This model incorporated diffusion, ion migration, homogeneous equilibrium reaction, and potential
dependent heterogeneous reactions (both anodic and cathodic). In this case, some of the transport equations were added and subtracted (as described earlier in this chapter) and an equilibrium relationship was used. Not all charged species were allowed to migrate under the influence of the potential field; only the inert ions such as Cl- and Na+. This is a curious assumption considering that the H+ and Al3+ ions which are considered are very likely to migrate because of high mobility and large charge, respectively. This assumption is inherently not valid but the effect on the accuracy of the predictions is unknown.

Another transient diffusion and ion migration model was developed by Fu and Chan (42). This model assumed that the walls of the crack were inert and that no homogeneous reactions occurred within the region of interest. Also, Ohm’s law was assumed valid and used to calculate the potential distribution in the cavity region. These assumptions make the model unrealistic.

A few of the models that were developed during the mid 1980’s seemed overly simplistic relative to the other models developed during this period. The model developed by Bertocci (43) assumed that the walls of the model crack were inert and no cathodic reactions were allowed to occur. It is unclear from the paper whether homogeneous reactions were included. Even if homogeneous reactions were included, they could not have been incorporated correctly since the flux equations (as shown in Equation 2-10) were used as governing equations in this model; homogeneous reactions cannot be incorporated correctly using the flux equation, the mass balance equation (given in Equation 2-3) must be used. The model is more typical of models developed in the mid 1970’s. Another model developed by Edwards (44) also ignored homogeneous reaction and electrochemical reactions occurring on the walls. Lastly, a model developed by Alkire, Tomasson, and Hebert (45) assumed transport of species only by diffusion and calculated the potential distribution using Ohm’s law. Both of
these assumptions lack rigor, as discussed in the previous section, and create uncertainty in the prediction. This latter work is particularly surprising, since just three years before this, the same authors presented a very detailed transient diffusion and ion migration model which included homogeneous reactions and potential dependent reactions occurring at the tip and on the walls.

In summary, a number of advanced steady-state diffusion migration models have been developed incorporating homogeneous and heterogeneous reaction. The most complete of these models used a Boltzmann's distribution (Equation 2-14) for the concentration distribution of non-reacting species. The equation for the concentration is derived using the invalid assumption of linearity of the flux equation (see Appendix B). Thus, the concentrations of these species cannot be calculated using this distribution. A few simple transient diffusion/ion migration models were developed which in general did not incorporate homogeneous reactions or did not allow charged species to migrate.

2.2.3 Advanced Transport Models Involving Convection And Reactions

Convection within occluded regions such as cracks or crevices can develop by several mechanisms: (1) natural convection due to bubble formation or density gradients, (2) motion of the fluid in the bulk solution, (3) movement of the crack front, and, (4) cyclic displacement of the walls of the region such as in corrosion fatigue. No models have been developed to date which account for transport of dissolved species due to natural convection within cracks, crevices, or pits. However, some work
has been done in which the convection within these regions is induced by bulk fluid motion or displacement of the walls of the occluded region. This work will be reviewed here.

The flow of the bulk fluid external to the crack, crevice, or pit may occur in many directions relative to the cavity orientation (47). Flow may occur parallel to the metal surface. In the case of a crack, this type of flow may occur across the crack mouth, along a crack mouth with closed sides, or at some angle between these two orientations. Flow may also occur perpendicular to the metal surface. In this case, flow may be directly into the cavity region, or, in the case of compact tension specimens which are open on the sides, through the crack.

Some work has been done on the flow induced within a cavity by flow past the mouth of this cavity and parallel to the external surface of the metal (48-52). Most of these models have concentrated on the flow patterns which develop within cavity regions and do not incorporate this induced flow into a transport model to predict the concentration of species within the cavity region. These hydrodynamic models are not of direct interest and have been reviewed in detail elsewhere (47).

The model developed by Alkire et al. makes a first attempt at incorporating the effect of convective transport (induced by flow past a semi-spherical cavity parallel to the external metal surface) on the concentration of dissolved species within the cavity (53). The model is a diffusion/convection model in which dissolution occurs only from the surfaces of the cavity and without any homogeneous reaction. The two-dimensional steady-state velocity profile developed within the cavity was calculated using the equation for incompressible Stokes flow as given by

\[\nabla^2 v = \frac{1}{\nu \rho} \nabla p \]

(2-18)
where
\[V = \text{velocity} \]
\[\nu = \text{kinematic viscosity} \]
\[\rho = \text{fluid density} \]
\[P = \text{pressure} \]

The velocity profile was used in the steady state diffusion convection transport equation which can be derived from Equation 2-3 and is given by

\[\nabla^2 C_i = \nu \nabla C_i \quad (2-19) \]

The model was used to calculate the steady state two dimension/concentration profiles that developed within the cavity as a function of external fluid velocity. The model does not incorporate the effects of ion migration and homogeneous reactions. Nevertheless, it is important because it has been the only attempt to assess the influence of this type of induced flow within occluded regions on the concentrations developed within those regions.

No model has been developed to predict the velocity profile developed within a cavity induced by external fluid flow perpendicular to the external metal surface (be it into the opening of a cavity or through a crack). Thus, the effect of this type of flow on the concentration of dissolved species within the cavity has not been quantitatively assessed. Some qualitative analysis of the possible effects of various parameters (width, length, external fluid velocity, etc.) on crack chemistry has been done by Easthope and Turnbull (47).

The lack of modeling in the area of flow induced by external fluid flow is potentially serious. Most of the laboratory experiments are carried out using "two dimensional" specimens (i.e., with no side plates) often with external fluid flow.
results of these experiments are used to predict the behavior of these metals in practical applications. Cracks in service do not have this "two-dimensional" shape, but are usually semi-elliptical. Hence, in real cracks through flow cannot occur. Without accurate modeling to predict the significance of induced flow, no direct comparison can be made between the conditions that develop within "laboratory" cracks and "real" cracks that develop in service. Without this direct comparison a degree of uncertainty in prediction of practical behavior with laboratory specimens is inevitable.

Fluid flow within a cavity, particularly a crack, can be induced by the movement of the tip of the cavity region. Models developed to predict the concentration of dissolved species within ignore the effect of ion migration. The governing mass transport equation used in this case is generally given by

\[
\frac{\partial C_i}{\partial t} = D\nabla^2 C_i - \nabla \cdot (C_i \nabla V) + \sum_j R_{i,j}
\] \hspace{1cm} (2.20)

Steady state models simply use the same governing equation setting \(\partial C_i/\partial t \) equal to zero. This equation can be derived from Equation 2.3 assuming no potential gradients are present within the model crack.

Shuck and Swedlow developed a very simple model of the diffusion convection type assuming that the sides of the crack are displaced vertically and that the crack angle does not change (39,40). This simulates crack growth. Thus, the velocity is constant over the entire length of the crack. H\(^+\) ions dissolved at a constant flux from the crack walls. No cathodic or homogeneous reactions were accounted for. Two very similar models were developed by Newman and Smyrl to predict the velocity and the concentration of dilute species in propagating cracks (54,55). The first model predicted the velocity profile within a propagating crack using the Navier-Stokes momentum equation and the continuity equation for a fluid of uniform density. The
second model incorporated the velocity profile developed within the crack in a steady-state diffusion/convection model. In this case the walls were inert and no electrochemical or homogeneous reactions occurred in the model crack. Both groups of modelers ignored transport by ion migration. No homogeneous or cathodic reactions were allowed to occur within the model regions. These assumptions lead to serious limitations on application of the models, and, indeed, are unrealistic. Another factor of importance concerning these models is that for significant convection to be induced by crack growth, the crack propagation must be so fast that the structure is already failing. Therefore this type of modeling is not relevant practically.

The last type of induced convective motion that is considered in this review, is that induced by the opening and closing of the crack walls. This type of flow was considered earlier by Hartt et al. and by Taunt et al. (22-24). In this group of models, however, the effect of this type of induced convection on the electrochemistry within the cavity region was not quantitatively evaluated. The governing equation in this case was similar to that given in Equation 2-20. While this may be valid for transport of uncharged species, since they are not influenced by potential gradients, it is not valid for the case of charged species. Shuck and Swedlow also modeled the convective effect of crack opening (not cyclic opening and closing) on the concentration profile. The crack angle increases in a wedge shaped model with no change in crack length; the crack was allowed only to open, drawing in fluid from the bulk. Crack closure was not incorporated into the model. Thus pumping of the crack wall did not occur. The velocity of the fluid in the crack increased linearly with distance from the crack tip. The opening of the crack was not related in any way to normal mechanical stress parameters such as stress intensity factors, yield strength, etc.. Again H+ ions were allowed to dissolve at a constant rate from the crack walls. No homogeneous reactions or cathodic
reactions were incorporated. The assumptions made in this model make it inapplicable to real crack situations.

A more advanced diffusion convection model was developed by Turnbull (56-59). The model tried to predict the oxygen concentration within a tapered corrosion fatigue crack with a blunt tip. Thus, flow within the crack is the result of opening and closing of the crack and results in an influx and efflux of fluid. (The cathodic reduction of oxygen is considered to be a function of oxygen concentration and external electrode potential). Cycling of the crack walls is a function of stress intensity factor, stress ratio, and specimen geometry. The crack tip opening displacement is calculated using Dugdale's model of crack tip plasticity. Using the displacement at the load line and the crack tip opening displacement, the width of the crack as a function of position and time was calculated. The average velocity at any position within the crack was calculated using

\[
\bar{v} = -\frac{\dot{h}(x, t) x}{h(x, t)}
\]

(2.21)

where

\(h(x,t)\) = crack half width at position \(x\) and time \(t\)

\(\dot{h}(x,t)\) =

\(x\) = position from crack tip

\(v\)-bar = average velocity

The velocity is used in the governing transport equation that is obtained by integrating the flux over the width and averaging. The resulting equation is
\[
\frac{\partial C_i}{\partial t} + \frac{\dot{h}(x,t)C_i}{h(x,t)} = -\frac{\partial J_{i'}}{\partial x} \frac{1}{h(t)} \tag{2.22}
\]

where \(J_{i'} \) = flux (due to diffusion and convection)

\(l' \) = flux of oxygen consumed on walls

This equation was solved numerically. The model is limited by the lack of ion migration and homogeneous reactions. Though oxygen is not a dissolved species, and, therefore, does not migrate in a potential field, the reduction kinetics is potential dependent and will vary with changes in potential down the crack. Nevertheless, the model provided insight into the effect of mechanical variables and crack depth on transport within a corrosion fatigue crack.

Turnbull and Ferris developed a much more elaborate transient model involving convection induced by cyclic pumping of crack walls (60-64). The cyclic opening and closing of the crack is modeled in the same way as with their previous model. The model includes the effects of transport by diffusion, ion migration and convection as well as homogeneous reactions in the solution and potential dependent electrode reactions on the crack walls. This model is the most rigorous model developed to date.

2.2.4 Recent Work

A number of modeling papers have appeared in the literature in the last two years. Many of these models have not included important transport and reaction processes. Of this recent work, the crevice modeling done by Sharland et al. has been the most rigorous (65,66). In this case crevice was modeled as both a passive (inert) walled crevice (no electrode reactions on walls) and an active wall crevice. The inert
wall model is invalid since the walls are important, especially in a crevice, because of the large surface area of wall as compared to tip. The first model developed was a steady state model. The governing transport equation was similar to that in Equation 2-3. Homogeneous reactions were included in the model. Solubility reactions were included but as equilibrium type reactions with a forward and backward in this model. This type of approach could easily lead to spurious source terms which would be strongly dependent on the value of the rate chosen for the precipitate dissolution. In order to use this approach accurately, one must account for how much precipitate is produced as a function of position and ensure that the precipitate dissolution process does not exceed this amount. In this model, the amount of precipitate produced is not monitored and, therefore, a spurious source term may be present. A better approach is to consider the precipitation process as occurring in one direction and without precipitate dissolution. Indeed, the kinetics of metal oxide dissolution are very slow and it is likely that other processes (i.e., anodic dissolution) would supply metal ions at a much faster rate. The equations were added and subtracted (as discussed in the beginning of Section 2.2) to remove the reaction rate terms, thus making the system of equations easier to solve but limiting the applicability of the model to other systems.

A transient model has recently been published by Sharland et al. in the literature (67). It is difficult to comment on this model since the equations used were not fully documented in the paper. It is clear that if precipitation processes were incorporated in the transient form of the model that they would have been incorporated as in the previous model and the danger of spurious terms would still be present.

The latest paper by Bertocci is very similar to the earlier work which has been previously discussed (68). The model is steady state with inert crack walls. No cathodic reactions or homogeneous reactions were incorporated into the model. Apparently no homogeneous reactions or solubility limits were incorporated. The flux
equation incorporating diffusion and ion migration were used as the governing transport equation. It was unclear how the problem is solved. In any case, the assumptions made are limiting for general application.

Another recent model was developed by Alkire and Lott to predict the electrochemistry in stainless steel crevices exposed to room temperature, high conductivity NaCl solutions (69). This transient model incorporates transport by diffusion and ion migration. Homogeneous reactions, cathodic reactions and solubility limits are ignored. The walls of the crevice are anodically active without any potential dependence and the crack tip is inert. Manganese sulfide inclusions are allowed to dissolve to produce Mn²⁺ and S₂O₃²⁻ at a rate dependent on the potential. H⁺ ions are not included in this model. The system of equations is solved numerically. The lack of homogeneous reactions and cathodic reactions is invalid. The fact that the pH within the crevice is not calculated is curious since the onset of crevice corrosion is usually pH dependent.

The most recent model by MacDonald and Urquidi-MacDonald is the only model to date which has attempted to predict the electrochemistry within an occluded region exposed to high temperature, low conductivity solutions (i.e., BWR water chemistry) (70). This a steady-state crack model which assumes that the crack walls are inert, that there are no cathodic reactions, and that no homogeneous reactions occur within the crack and that the metal ion concentration is not limited by solubility limits. Another assumption is that Laplace's equation is valid within the crack. The anodic crack tip reaction has no potential dependence. The assumptions made in this model are unrealistic. The crack walls cannot be assumed inert unless the crack tip current density is many orders of magnitude higher than the wall current density. In low conductivity (or high resistivity) media cathodic reactions cannot be ignored within the crack (as shown in Chapter 4 of this thesis). In all likelihood, some of the anodic
current will be satisfied within the crack region. Homogeneous reactions occur everywhere in solution and are always important. In high conductivity water, metal ions have a very low solubility (except in very acidic conditions). The assumption that Laplace's equation can be used is intrinsically invalid when concentration gradients are present as in this case.

2.3 DISCUSSION

The development of a mathematical model to predict the local electrochemistry within a cavity which considers transport, and, production and consumption of species within this region is not intrinsically difficult. The necessary governing equations have been known for some time. The limitation on the development of the model is the solution of the system of equations that results from the development of a rigorous model. The system of equations obtained consist of a set of stiff, non-linear, differential equations which in their full form are three dimensional. By using approximations and assumptions to the full set of transport based equations, it is possible to simplify the system of equations and make their solution tractable. The approximations and assumptions which are made will in some way limit the applications of these models. The question is whether these limitations are appropriate for realistic situations such as a crack, crevice, or pit. As described earlier, to completely model the electrochemical conditions within cracks and crevices, the transport effect of diffusion and ion migration (and convection if fluid flow into the occluded region is significant) must be included. Homogeneous and potential dependent anodic and cathodic reactions should be incorporated. If the solubility of any species in the model is limited, the possibility of precipitation should be incorporated. By
ignoring the possible effects of these important factors when developing a model it is possible that the results from the model may be misleading. Approximations and assumptions should be made only in cases where the limitations imposed by these assumptions does not prohibit application to the problem of interest.

Earlier modelers used many approximations after reducing the transport equation to one type of transport or simplified diffusion/ion migration models at steady state. Homogeneous reactions, equilibrium reactions, wall reactions, and cathodic reactions were generally ignored. Modeling work progressed to much more complicated steady state models and simple transient models. The steady-state models included transport by diffusion and ion migration as well as homogeneous reaction; and in some cases cathodic reaction within the occluded region. Simple transient models incorporating diffusion and ion migration were developed. These models incorporated neither homogeneous reactions nor cathodic reaction within the cavity region. Also the anodic electrode reactions were not potential dependent.

More rigorous models were developed culminating with the work of Turnbull and Ferris. (60-64). Turnbull developed a crack model which was rigorous in approach, incorporating transport by diffusion, ion migration, and convection (due to pumping of the crack walls). Also incorporated were homogeneous reactions, precipitation of species on the walls, potential dependent electrode reactions. The model is very rigorous but is somewhat limited in flexibility because of the addition and subtraction of transport equations. This limits the application of the model to other systems of interest.

No model has been developed that can rigorously model electrochemistry within cavities exposed to nuclear reactor environments incorporating all the necessary transport terms, homogeneous reactions, potential dependent electrode reactions on the tip and on the walls, solubility reactions, production of species by radiolysis, and the
low conductivity conditions present within BWR's (71). The only model that purports to describe the electrochemistry in an occluded region in BWR water is that of MacDonald and Urquidi-MacDonald (70). As already discussed, this model is not a rigorous one and contains invalid and inappropriate approximations which cast doubt on the predictions.

The model presented in this thesis was developed to rigorously and flexibly model the transient electrochemistry within occluded regions exposed to nuclear reactor aqueous environments. The transport modes of diffusion and ion migration are included, and, when appropriate, convection due to pumping can be included. Any number of homogeneous equilibrium reactions and potential dependent electrode reactions at the tip and on the wall can also be included. Since the transport equations are not added and subtracted from one another, as done in other models in order to remove the homogeneous reaction reaction rates, the model is general and flexible. It can be applied to a crack or crevice in any system as long as the necessary input data (equilibrium constants, diffusion coefficients, electrode reaction kinetic parameters, etc.) are known. Solubility reactions (occurring along the walls of the cavity) can be applied to any of the species being modeled. Also, the possibility of chemical dissolution of inclusions from the wall and the tip is accounted for. Production of species, such as oxygen or peroxide by radiolysis of water, can be incorporated. Radiolysis production is possible due to both neutron and gamma radiation and is dose dependent. The model also allows for transients in bulk (boundary) conditions such as concentrations of species or external potential during the run to account for transients that normally occur during reactor operation. The model was developed for nuclear reactor environments and therefore is able to handle very dilute solutions (10^{-6} M) which tend to make the system of equations more difficult to solve than usual. Thus, the model developed is very rigorous by the standards set in previous modeling work and
incorporates the effects of all the important types of reactions that could occur. The model is not all embracing. Indeed, convection induced by flow past the mouth of the cavity and natural convection are not considered. Nevertheless, the model developed is a significant step in the general progression of predicting the local electrochemistry within cavity regions.
2.4. REFERENCES

(58) A. Turnbull, NPL Report DMA(A)69, 1983.

(69) R.C. Alkire and S.E. Lott, to be published.
(71) A. Turnbull, private communication
Chapter 3

MODEL DESCRIPTION AND VERIFICATION

3.1 INTRODUCTION

In order to predict accurately the electrochemistry within cracks and crevices, a complete physical model must be developed including a description of the occluded region and the types of events that occur within this region. A rigorous mathematical model of the physical processes must be established and solved, and, with the use of accurate input data, the mathematical model can be applied to predict the electrochemistry. A detailed summary of the requirements for modeling local electrochemistry in occluded regions is given in Appendix A. In this chapter a complete description of the model that has been developed is provided. The mathematical equations used and the solution technique are explained. Verification of the model against analytic techniques and other numerical solutions developed for more limited systems is also provided.

As explained in Chapter 2, the model presented in this thesis is flexible and rigorous. It was designed not only to model one specific crack or crevice problem, but to be able to model cracks or crevices in any alloy system. The number of species used in the model is limited only by computer power (i.e., memory and speed). As many homogeneous, precipitation, electrode, or radiolysis reactions can be included as is desired. Chemical dissolution of inclusions can also be incorporated. The geometry of the region can be either parallel sided (crevice geometry) or tapered with a blunt tip (crack geometry) as shown in Figure 3-1. Convection induced by movement of the region's walls can be incorporated along with diffusion and ion migration. Thus the
Figure 3-1. Geometry used by model for (a) crevice and (b) crack.
model incorporates most of the necessary factors that could be needed to model stress corrosion cracks, corrosion fatigues cracks, and crevices.

3.2 General Transport Equations

3.2.1 Mass balance

The transport of dissolved species i is controlled by diffusion, ion migration, and convection. These mechanisms of transport can be described by the flux equation, as given by

\[
J_i = - D_i \nabla C_i - z_i \mu_i F C_i \nabla \phi + C_i \nu \tag{3.1}
\]

where

- \(J_i \) = flux of species i (moles/dm²-sec)
- \(D_i \) = diffusion coefficient of species i (dm²/sec)
- \(C_i \) = concentration of species i (moles/dm³)
- \(z_i \) = charge of species i
- \(\mu_i \) = ionic mobility of species i (dm²-mole/J-sec)
- \(F \) = Faraday's constant (C/equiv)
- \(\phi \) = potential (volts)
- \(\nu \) = velocity (dm/sec)

Assuming that the solution of interest is dilute, the activity of species i is approximately equal to its concentration. The diffusion coefficient of species i can be related to its ionic mobility by the Nernst-Einstein relationship:
\[\mu_i = \frac{D_i}{RT} \] \hspace{1cm} (3 - 2)

where \(R \) = gas constant
\(T \) = temperature (K)

Substituting Equation 3-2 into the flux equation given by Equation 3-1 results in the Nernst-Planck equation

\[J_i = - D_i \nabla C_i - \frac{z_i D_i F}{RT} C_i \nabla \Phi + C_i \nu \] \hspace{1cm} (3 - 3)

The first term on the right represents diffusion which is the transport of any dissolved species due to a gradient in its concentration. Species will tend to diffuse from regions of high concentrations to regions of low concentration. The second term represents ion migration which is the transport of charged species due to a gradient in potential. This term is only applicable to electrochemical systems. The last term represents convection which is transport induced by flow.

The mass balance or the time rate of change of species \(i \) is given by

\[\frac{\partial C_i}{\partial t} = - \nabla \cdot J_i + \sum_j R_{i,j} \] \hspace{1cm} (3 - 4)

where \(R_{ij} \) = rate of production or consumption of species \(i \) by reaction processes (due to homogeneous reactions and radiolysis)
\(t \) = time

In one dimension, this equation is given by
\[
\frac{\partial C_i}{\partial t} = -\frac{\partial J_i}{\partial x} + \sum_j R_{i,j} \tag{3.5}
\]

Some reactions of importance take place along the walls of the crack or crevice region shown in Figure 3-1. These reactions include electrochemical reactions (both anodic and cathodic), precipitation reactions, and chemical dissolution from the walls. In this case, the system is two dimensional and must be averaged over the \(y\) dimension. The resulting equation contains a new type of reaction term and some averaging that accounts for the dilution effect of having tapered walls. This averaging is explained in greater detail in Appendix C. The resulting mass balance equation is given by

\[
\frac{\partial C}{\partial t} = -\frac{\partial J_x}{\partial x} + C \frac{\partial v_x}{\partial x} + \frac{\theta D}{h} \frac{\partial C}{\partial x} + \frac{\theta z D F}{h R T} C \frac{\partial \phi}{\partial x} + \sum_j R_j + \sum_j \frac{R_{j,\text{het}}}{h} \tag{3.6}
\]

where

- \(\theta\) = crack angle (= 0 for crevice)
- \(h\) = half width of cavity

In this equation, the concentrations represent an average concentration over the crack or crevice width. Substituting the one-dimensional form of Equation 3-3 into this equation and expanding gives
\[
\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial x^2} + \frac{z_i D_i F}{RT} \frac{\partial}{\partial x} \left(C_i \frac{\partial \phi}{\partial x} \right) - \frac{\partial}{\partial x} (C_i \nu) + C_i \frac{\partial \nu}{\partial x} \\
+ \frac{\theta D_i}{h} \frac{\partial C_i}{\partial x} + \frac{\theta z_i D_i F}{hRT} C_i \frac{\partial \phi}{\partial x} + \sum_j R_{i,j} + \sum_j \frac{R_{i,j,het}}{h}
\] (3.7)

for species i. Poisson's equation

\[
\frac{\partial^2 \phi}{\partial x^2} = \frac{E}{\varepsilon} \sum_i z_i C_i
\] (3.8)

where \(\varepsilon \) is the permittivity of the solution, is used to replace the second order derivative in potential. The total current density equation,

\[
I = F \sum_i z_i J_i = -F \left[\sum_i z_i D_i \frac{\partial C_i}{\partial x} + \sum_i \frac{F z_i^2 D_i}{RT} C_i \frac{\partial \phi}{\partial x} \right]
\] (3.9)

where \(I \) is the current density, is used to replace the first order derivative in potential.

The resulting mass balance equation is differenced (as explained in Appendix D) and used to find the concentration of every species as a function of time and position within the cavity. In addition, the total current density equation is used to solve for the potential.

In the following parts of this section, the types of reaction processes incorporated in the model and the resulting rate terms used in Equation 3.7 for each of these reaction processes will be explained in detail.
3.2.2 Homogeneous Chemical Reactions

The general form for a chemical reaction that occurs in solution is:

\[
aA + bB + cC + \ldots \quad \frac{k_f}{k_b} \quad mM + nN + oO + \ldots
\]

(3.10)

where the capital letters represent dissolved species in solution and the lower case letters preceding a species represent the order of the reaction with respect to that species. The \(k_f\) and \(k_b\) are the rate constants for the forward and back reactions, respectively. In this model, reactions involving three dissolved products and three dissolved reactants may be considered. The order of the reaction may be up to 9 for each species in the reaction. Thus the typical equation that may be considered looks like:

\[
aA + bB + cC \quad \frac{k_f}{k_b} \quad dD + eE + fF
\]

(3.11)

where \(a, b, c, d, e, f\) may have values between 0 and 9.

The rate of a homogeneous reaction is equal to the product of the concentrations of reacting species times the rate constant for that direction of the reaction. Thus the reaction rate term used in the mass balance equation for species A is given by:

\[
-k_fC_A^{a}C_B^{b}C_C^{c} + k_bC_D^{d}C_E^{e}C_F^{f}
\]

(3.12)

Since very little rate constant data is available, especially at high temperatures, these rate constants must be chosen. A description of how these rate constants are chosen is presented in Appendix E.
3.2.3 **Electrochemical Reactions Along Wall**

Both anodic and cathodic reactions occur along the walls of the crack or crevice. Many crack and crevice modelers assume these wall reactions are unimportant. In order for this to be a valid assumption, the production of species by the walls must be insignificant relative to the production from the tip. In other words, the contribution of the current from the wall to the total current density inside the crack must be very small. In a crevice before the breakdown of passivity, the walls and tip are both at the passive current and, therefore, are equally important. Hence the walls will dominate by virtue of their greater area. For a crack, this is more complex because the crack tip is active relative to the walls and, therefore, has a current density that can be several orders of magnitude greater than that of the walls. It might appear that the crack tip would determine the local environment. However, this ignores the fact that the area of the crack tip is small relative to the wall area. Within the crack it is the total current density that is important. In order to calculate the total current density within the crack the wall current density must be integrated over the total length of the crack and added to the tip current density as shown below:

$$I_{\text{total}} = I_{\text{tip}} + \int_{c}^{l} \frac{I_{\text{wall}}}{h} \, dx$$ \hspace{1cm} (3.13)

where

- $I_{\text{total}} = \text{total current density}$
- $I_{\text{tip}} = \text{crack tip current density}$
- $I_{\text{wall}} = \text{crack wall current density}$
- $h = \text{crack half width}$
If we assume that the crack is parallel sided, as many modelers do, and that the passive current on the walls is independent of potential, the resulting integration over the length of the crack, \(L \), leads to

\[
I_{\text{total}}(x) = I_{\text{tip}} + \frac{I_{\text{wall}} L}{h}
\]

(3.14)

where \(h \) is the half width of the crack. The assumption of inert walls can be valid only if

\[
I_{\text{tip}} \gg \frac{I_{\text{wall}} L}{h}
\]

(3.15)

For a 1 cm crack with a width of 10 \(\mu \)m, the average crack tip density must be very much greater than \(10^3 \) times \(I_{\text{wall}} \). Thus ignoring the electrochemical wall reactions may not be a valid approximation in many cases. In this model, wall electrochemical reactions are incorporated. These reactions may be dependent on the concentration of a species in solution to the \(p \) power and exponentially dependent on the potential. For a general electrochemical reaction involving species \(M_j \) as shown below (7)

\[
\sum_{j} s_j M_j^{z_j} \rightarrow n e^{-}
\]

(3.16)

where

\(s_j \) = stoichiometric coefficient for species \(M_j \)

\(n \) = number of electrons transferred

The current density for this reaction can be expressed in the following form (2) :
\[I_w = k_0 \ C_j^p \exp \left[-\frac{\alpha_wF(E_m - \phi)}{RT}\right] \]

(3.17)

where

- \(I_w \) = current density produced by electrochemical reaction \(w \)
- \(k_0 \) = pre-exponential constant for reaction \(w \)
- \(C_j^p \) = concentration of species \(j \) to the \(p \)th power
- \(\phi \) = potential
- \(\alpha_w \) = transfer coefficient for reaction \(w \)
- \(F \) = Faraday's constant
- \(E_m \) = electrode potential measured at the mouth of the cavity
- \(R \) = gas constant
- \(T \) = temperature in degrees Kelvin

This equation can be related to the flux of species \(i \) from the wall using (7). The current density is related to the flux by the following expression.

\[J_{i,w} = \frac{s_i \ I_w}{n_i \ F} \]

(3.18)

To be incorporated into the mass balance equation, the expression given Equation 3.17 is substituted into Equation 3.18 and is averaged over the width of the crack or crevice. The resulting expression is given by

\[\frac{s_i k_0}{n_i F} C_j^p \exp \left[-\frac{\alpha_wF(E_m - \phi)}{RT}\right] \]

(3.19)
3.2.4 Solubility Reactions

After the solubility limit of a dissolved species is reached, the species is allowed to precipitate. This precipitation generally occurs along the walls of the crack or crevice. The general form of solubility reaction assumed is

\[k_s \]
\[M^{2+} + 2 OH^- \rightarrow M(CH)_2 \] (3.20)

where \(k_s \) is the rate constant for the precipitation reaction. There is no data available for this constant, and therefore, it must be chosen to ensure that the solubility limit is maintained. In the mass balance equation the rate of this reaction is represented by (2)

\[\frac{k_s}{h} (C_{M^{2+}}C_{OH^-} - K_s) \] (3.21)

where

\(k_s = \) rate of precipitation of species \(M^{2+} \)

\(K_s = \) solubility limit on species \(M^{2+} \)

\(h = \) half-width of the cavity

3.2.5 Chemical Dissolution

Chemical dissolution of substances is assumed to take place from the walls by a simple reaction such as:

\[A_aB_bC_c = aA + bB + cC \] (3.22)
where \(A, B, C \) may be charged in solution as long as electroneutrality is maintained. The flux of species \(A \) from the wall is given by

\[
J_{A,d} = a \cdot J_d \quad (3.23)
\]

where \(J_{A,d} \) = the flux of species \(A \) at the wall due to dissolution reaction
\(a \) = the number preceding species \(A \) in the dissolution equation
\(J_d \) = dissolution rate of \(A_B B_C \)

The expression used in the mass balance equation for species \(A \) is given by

\[
a \cdot J_d \over h \quad (3.24)
\]

where \(h \) is the half-width of the cavity.

3.3 SOLUTION OF MATHEMATICAL MODEL

The mathematical model developed involves a series of coupled partial differential equations of the general form

\[
\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial x^2} + \frac{z_i D_i F}{RT} \frac{\partial}{\partial x} \left(C_i \frac{\partial \phi}{\partial x} \right) - \frac{\partial}{\partial x} (C_i \nu) + C_i \frac{\partial \nu}{\partial x} + \frac{3D_i}{h} \frac{\partial C_i}{\partial x} + \frac{3z_i D_i F}{hRT} C_i \frac{\partial \phi}{\partial x} + \sum_j R_{i,j} + \sum_j \frac{R_{i,j,het}}{h} \quad (3.25)
\]
\[I = -F \left[\sum_i \frac{z_i D_i \partial C_i}{\partial x} + \sum_i \frac{F z_i^2 D_i}{RT} C_i \frac{\partial \phi}{\partial x} \right] \] \hspace{1cm} (3-26)

Each species in solution is modeled using an equation similar to Equation 3-25 and the potential is modeled using Equation 3-30. Thus, for a model system involving \(n \) dissolved species, there are \(n+1 \) coupled equations. A sample set of governing equations is presented in Appendix F. These equations have been described in detail in the previous section and therefore will not be discussed here. This problem is nonlinear because of the migration and reaction terms. The many reaction terms give rise to a very stiff system of equations. Stiffness can be defined, in this case, as the presence of one or more fast 'decay' type processes. The time constant of this process is short relative to the time constants of the other processes occurring (i.e. diffusion, ion migration, etc) \((3) \). (This stiffness will require that an implicit time integration method be used).

In order to more easily solve this system of equations, the numerical method of lines is employed. This converts a system of time dependent partial differential equations into a system of time dependent ordinary differential equations (ODEs) by a spatial discretization procedure \((4) \). The right hand side of Equations 3-25 and 3-26 were discretized using finite difference techniques. The details of this discretization are presented in Appendix D. The resulting system of ODEs have the general form

\[A(t,Y) \frac{dY}{dT} = A(t,Y) \dot{Y} = g(t,y) \] \hspace{1cm} (3-27)

where

\[A = \text{a matrix of pre-derivative coefficients} \]

\[Y = \text{vector of unknowns (i.e., concentration and potential)} \]
\[\dot{Y} = \text{time derivative of vector } Y \]

\[g = \text{vector containing discretized equations} \]

The resulting system of differential/algebraic equations is solved using a package developed for stiff ODEs.

The package that was selected is among a collection of packages called ODEPACK (3.5-8). In particular, the package LSODI developed by Hindmarsh and Painter was selected. This selection was made because the package has been applied with great success to the solution of the Navier-Stokes equation in two dimensions. These equations have a similar construction to the equations in the model developed in this thesis (i.e. they are also nonlinear and stiff). The rest of this section will explain the methods employed by LSODI.

The methods employed by LSODI for large stiff systems involve backward differentiation. These are multistep methods which were first implemented by C.W. Gear (9). The package used in the model described in this thesis is based on these original packages developed by Gear. These packages solve a stiff system of equations of the simpler general form

\[\dot{Y} = \frac{dY}{dt} = f(t,Y) \] \hspace{1cm} (3.28)

This system is of size \(N \) (i.e., the vector \(Y \) has a length \(N \)). The independent variable, \(t \), need not be time necessarily, but it is in this case. Consider it to be a fixed time step size, \(\Delta t \), such that

\[t_n = t_{n-1} + \Delta t \] \hspace{1cm} (3.29)
With this nomenclature it is possible to describe a particular time \(t_n \) such that

\[
 t_n = n \Delta t \tag{3.30}
\]

In this fashion, it is possible to construct discrete approximations to the unknown value \(Y \) at time \(t_n \) which will be denoted \(Y_n \). \(Y_0 \) is the discrete representation of the initial array \(Y \) which is known. \(\dot{Y}_n \) is the time derivative of \(Y_n \) and is given by \(f(t_n,Y_n) \) as described in Equation 3-28.

LSODI uses the particular backward differentiation formula given by

\[
 Y_n = \sum_{i=1}^{q} \alpha_i Y_{n-i} + \Delta t \beta_0 \dot{Y}_n = a_n + \Delta y \beta_0 f(t_n,Y_n) \tag{3.31}
\]

In this equation, \(Y_{n-i} \) refers to the previous (in time) values of the array \(Y \). The index number \(q \) refers to the order of the approximation. This refers to the truncation error that results from the approximation. Thus the value of \(Y_n \) is exact within an error that is on the order of \((\Delta t)^{q+1}\), where \(q \) has values ranging between 1 and 5. \(\dot{Y}_n \) again represents the time derivative of \(Y_n \). \(\alpha_i \) and \(\beta_0 \) are coefficients. \(\beta_0 \) is always greater than zero. The result of the summation, \(a_n \), is a constant vector. The expression given by Equation 3-31 represents a fully implicit approximation. Because of the stiffness and nonlinearity of the problem it is usually solved by making a first guess or predicting \(Y_n \) and then initiating or correcting this guess to find the true solution. The first guess is denoted \(Y_n(0) \) and later corrected guesses are denoted \(Y_n(1) \), etc.

For stiff, nonlinear problems, normal functional iteration, which involves the substitution of the previous guess back into the equation to get the new guess, fails to converge. A modified Newton iteration is used instead. Newton's Method (10) assumes that, given a general nonlinear equation of the form \(f(x) = 0 \), the solution, \(x \), must be
obtained by starting with an initial guess and improving upon it. The initial guess to the solution being \(x^0 \) and latter guesses being \(x^1, x^2, \) etc. Thus, the current approximation is \(x^k \), Newton's Method uses the derivative approximation given by

\[
I(x^{k+1}) = I(x^k) + I'(x^k) (x^{k+1} - x^k) \quad (3.32)
\]

In this case \(I'(x^k) \) represents the Jacobian matrix of the function \(g \). The aim is that \(I(x^{k+1}) = 0 \), therefore Newton's method uses

\[
I''(x^k) (x^{k+1} - x^k) = -I(x^k) \quad (3.33)
\]

and solves for the new corrected approximation \(x^{k+1} \). In this case, the function we are evaluating can be derived from Equation 3.31 and is

\[
I(Y_n) = Y_n - a_n - \Delta t \beta_0 f(t_n, Y_n) = 0 \quad (3.34)
\]

The following equation used for the Newton iteration is given by

\[
-P \left[Y_{n(m+1)} - Y_{n(m)} \right] = Y_{n(m)} - a_n - \Delta t \beta_0 f(t_n, Y_{n(m)}) \quad (3.35)
\]

where

\[
P = \text{a NxN matrix approximating the Jacobian of the algebraic system of equations}
\]

\[
m = \text{iteration number}
\]

\[
n = \text{time step number}
\]

\(P \) is given by
\[P = 1 - \Delta t \beta_0 J \] (3.36)

In this case \(I \) represents an \(N \times N \) identity matrix and the Jacobian matrix, \(J \), is given by

\[J = \frac{\partial f(t_n, Y_{n(m)})}{\partial Y_{n(m)}} \] (3.37)

This method differs from the traditional Newton's method in that the Jacobian matrix is only evaluated periodically when a new value appears necessary (i.e., when convergence fails). Within LSODI \(\Delta t \) (the time step size) and \(q \) (the order of the approximation) are varied to meet local error tolerances.

The problem that must be solved with this model has the general form

\[A(t_n, Y) \dot{Y}_n = g(t_n, Y_n) \] (3.38)

where \(A \) is not necessarily the identity matrix. This equation was described earlier in this section. Another approximation that must be used in the solver instead of Equation 3.31. This obtained by multiplying both sides of Equation 3.31 by \(A(t_n, Y_n) \) and replacing \(A(t_n, Y_n)Y_n \) by \(g(t_n, Y_n) \). The resulting equation can be rearranged to yield the new implicit relation given by

\[S(Y_n) = A(t_n, Y_n) [Y_n - a_n] - \Delta t \beta_0 g(t_n, Y_n) = 0 \] (3.39)

\(S(Y_n) \) in this case is equivalent to \(I(Y_n) \) defined in Equation 3.34. The modified Newton iteration is still used, after the introduction of the residual function, \(r(t_n, Y_{n(m)}) \), as given by
\[r(t_n, Y_{n(m)}) = g(t_n, Y_{n(m)}) - A(t_n, Y_{n(m)}) \cdot s \quad (3.40) \]

Here, \(s \) represents an approximation to \(\dot{Y}_n \) and is defined to be

\[s = \frac{(Y_{n(0)} - a_n)}{\Delta t \cdot \beta_0} \quad (3.41) \]

Thus, \(s \) is the predicted value of \(\dot{Y}_n \) that corresponds to the prediction \(Y_{n(0)} \).

Rearranging Equation 3-40 with the inclusion of Equation 3-41 in substituting into Equation 3-39 results in

\[S(Y_{n(m)}) = A(t_n, Y_{n(m)}) \cdot (Y_{n(m)} - Y_{n(0)}) - \Delta t \cdot \beta_0 \cdot r(Y_{n(m)}) \quad (3.42) \]

The Jacobian matrix, \(P \), in this case is given by

\[P = S'(Y_{n(m)}) = A(t_n, Y_{n(m)}) - \Delta t \cdot \beta_0 \cdot \frac{\partial r(t_n, Y_{n(m)})}{\partial Y_{n(m)}} \quad (3.43) \]

and the equation used for the Newton iteration is

\[P \cdot [Y_{n(m+1)} - Y_{n(m)}] = S(Y_{n(m)}) \quad (3.44) \]

This is solved for \(Y_{n(m+1)} \) which is the next guess. At each time step, an initial guess is made using an implicit Gear's method, in particular, a backward differentiation formula (i.e., Equation 3-31 times \(A(t_n, Y_n) \)). The modified Newton's method described above is then applied, in order to account for the stiffness and nonlinearity until the
accurate solution is arrived at. A listing of the program (without the solver LSODI) is provided in Appendix G.

3.4 VERIFICATION OF NUMERICAL MODEL

The verification of the model has taken place as the model has been developed. The initial verifications were established using very simplified cases and analytic solutions. Comparisons of the more complex aspects of the model were made where possible with other published models.

3.4.1 Diffusion

The first verification for the model was a simple one dimensional transient diffusion problem with boundary conditions of the first and second type (i.e. constant concentration and flux boundary conditions). Thus, the problem statement can be given as

\[
\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \quad (3.45)
\]

with the boundary conditions

\[
x = 0, \quad \frac{\partial C}{\partial x} = \frac{J_{\text{tip}}}{D} \quad (3.46)
\]

\[
x = L, \quad C(L,t) = C_{\text{bulk}} \quad (3.47)
\]
where

\[C = \text{concentration} \]
\[D = \text{diffusion coefficient} \]
\[t = \text{time} \]
\[x = \text{distance from tip} \]
\[J_{\text{tip}} = \text{flux at tip} \]
\[L = \text{length of crack} \]

and an initial condition

\[C(x,0) = C_{\text{bulk}} \quad (3.48) \]

The exact solution to this problem can be easily derived and is given by

\[C(x,t) = \frac{J_{\text{tip}}}{D}(L-x) + C_{\text{bulk}} \]
\[+ \frac{2}{L} \sum e^{-D\beta_m^2 t} \cos \beta_m(x) \left[\frac{(K' + K''x)}{\beta_m} \left(-1\right)^m - \frac{K''}{\beta_m^2} \right] \quad (3.49) \]

where

\[\beta = \text{positive roots of the equation } \cos \beta_m L = 0 \]
\[= \frac{(2m+1)\pi}{2L} \]
\[m = \text{integer} \]
\[K' = C_i - C_{i,\text{bulk}} - \frac{J_{\text{tip}} L}{D} \]
\[K'' = \frac{J_{\text{tip}} L}{D} \]

This exact solution was compared against the solution produced by the numerical model. The conditions for the simulation are given in Table 3-1. Figure 3-2 gives the transient concentration profile at the crack tip and one third of the way into the crack.
Table 3-1. Input Parameters for Diffusion with Linear Source Term Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{tip}</td>
<td>5×10^{-7} moles/m2.sec</td>
</tr>
<tr>
<td>C_{bulk}</td>
<td>0.0 M</td>
</tr>
<tr>
<td>C_i</td>
<td>0.0 M</td>
</tr>
<tr>
<td>L</td>
<td>1×10^{-2} m</td>
</tr>
<tr>
<td>D</td>
<td>9.3×10^{-9} m2/sec</td>
</tr>
</tbody>
</table>
Figure 3-2. Comparison of transient model results with exact solution for diffusion.
Figure 3-3. Comparison of steady-state model results with exact solution for diffusion.
Figure 3-3 gives the steady state profile within the crack. In both cases the agreement is excellent.

3.4.2 Diffusion and Linear Source Term

In the model there are many homogeneous equilibrium reactions, radiolysis, and the possibility of dissolution reactions that take place. The only way to check this part of the model is by comparison with an analytic solution derived for the diffusion with a linear source term. The equation for this problem is given by

\[
\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} + \gamma C + g
\]

(3.50)

where
- \(C \) = concentration
- \(D \) = diffusion coefficient
- \(t \) = time
- \(x \) = distance from tip
- \(\gamma \) = reaction rate constant
- \(g \) = source term

The boundary conditions are given by

\[
x = 0, \quad \frac{\partial C}{\partial x} = -\frac{J_{\text{tip}}}{D}
\]

(3.51)

\[
x = L, \quad C(L,t) = C_{\text{bulk}}
\]

(3.52)
and the initial conditions in the crack are

\[t = 0, \quad C(x,0) = C_{\text{bulk}} \] \hspace{1cm} (3.53)

This problem has an exact solution given by

\[C(x,t) = \frac{g}{2D} (L^2 - x^2) + \frac{J_{\text{tip}}}{D} (L - x) + C_{\text{bulk}} \]

\[+ 2 \sum_{m=0}^{\infty} \cos(\beta_m x) \left[\frac{C_{\text{bulk}}}{\beta_m} \sin(\beta_m L) e^{\gamma \cdot D\beta_m t} \right] \]

\[- 2 \sum_{m=0}^{\infty} \cos(\beta_m x) \left[\frac{C_{\text{bulk}} + \frac{g}{D\beta_m}}{D\beta_m} \sin(\beta_m L) + \frac{J_{\text{tip}}}{D\beta_m^2} \right] \frac{1}{(D\beta_m^2 - \gamma)} \]

\[+ 2 \sum_{m=0}^{\infty} \cos(\beta_m x) \left[D\beta_m e^{\gamma \cdot D\beta_m t} - \gamma \right] \]

where \(\beta \) = the positive roots to the equation \(\cos \beta_m L = 0 \)

\[= \frac{(2m+1)\pi}{2L} \]

This exact solution was compared against the solution produced by the model under identical initial and boundary conditions. The conditions and constants for the test case presented are given in Table 3.2. Figure 3-4 gives the concentration profile for the crack tip and halfway down the crack as a function of time. Figure 3-5 shows the comparison of the steady state concentration profile within the crack. In all cases agreement is excellent.
Table 3-2. Input Parameters for Diffusion with Linear Source Term Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{tip}</td>
<td>5×10^{-7} moles/m2-sec</td>
</tr>
<tr>
<td>C_{bulk}</td>
<td>0.0 M</td>
</tr>
<tr>
<td>C_i</td>
<td>0.0 M</td>
</tr>
<tr>
<td>L</td>
<td>1×10^{-2} m</td>
</tr>
<tr>
<td>D</td>
<td>4.3×10^{-9} m2/sec</td>
</tr>
<tr>
<td>g</td>
<td>1×10^{-2} moles/sec-m3</td>
</tr>
<tr>
<td>K</td>
<td>1×10^{-7} sec$^{-1}$</td>
</tr>
</tbody>
</table>
Figure 3-4. Comparison of transient modeling results with exact solution for diffusion with a linear source term (KC+G).
Figure 3-5. Comparison of steady-state modeling results with exact solution for diffusion with a linear source term (KC+G).
3.4.3 *Diffusion and Convection With Wall Reactions*

In this case, the model is compared with a crack model developed by A. Turnbull (2). Mass transfer of oxygen occurs by diffusion and advection (forced convection due to movement of the crack walls) and cathodic consumption of oxygen on the walls of the crack. The crack is assumed to be in a compact tension specimen an the shape of the crack used in the model is assumed to be trapezoidal. Both of these geometries are shown in Figure 3-6. Before showing the comparison of results it is necessary to describe the particulars of the model.

As described in Section 3-1, the fluid velocity at any position, averaged across the width of the crack is given by:

\[
\bar{v}(x,t) = - \frac{x}{h} \frac{\partial h}{\partial t}
\]

(3.55)

where

\(\bar{v}\) = average velocity at position \(x\)

\(h\) = half width of the crack at position \(x\)

\(x\) = distance from crack tip

\(t\) = time

The half width of the crack is a function of position and time and is given by

\[
h(x,t) = h_0(t) + x \tan(\theta(t))
\]

(3.56)

where

\(h_0(t)\) = half width at crack tip

\(\theta(t)\) = crack angle (Figure 3-1b)
Figure 3.6. Geometry of a) compact tension specimen; and b) model crack (2).
The displacement or two times the half width of the crack tip, $2h_0(t)$, is represented by the crack tip opening displacement (CTOD). In this case, the CTOD is evaluated using the Dugdale model of plasticity with the assumption of small scale yielding (2). For plane strain conditions, this model for CTOD is expressed by the following for the unloading condition:

$$\text{CTOD}(t) = \frac{1}{3} \frac{K_{\max}^2}{E'\sigma_y} \left[1 - 0.5 \left(1 - \frac{K(t)}{K_{\max}} \right)^2 \right]$$ \hspace{1cm} (3.57)

and for the loading condition:

$$\text{CTOD}(t) = \frac{1}{3} \frac{K_{\max}^2}{E'\sigma_y} \left[1 - 0.5 \left(1 - R_D^2 \right) + 0.5 \left(\frac{K(t)}{K_{\max}} - R_D \right)^2 \right]$$ \hspace{1cm} (3.58)

where

$R_D = \text{minimum load/maximum load}$

$E'' = \frac{E'}{(1 - \mu^2)}$

$E' = \text{Young's Modulus}$

$\mu = \text{Poisson's ratio}$

$K = \text{stress intensity factor}$

$K_{\max} = \text{maximum stress intensity factor}$

$\sigma_y = \text{yield strength}$

In this case, the time dependence of the stress intensity factor is given by

$$K(t) = K_{\max} + \delta K \sin(2\pi ft)$$ \hspace{1cm} (3.59)
\[\delta K = \text{range of stress intensity factor} \]

\[f = \text{frequency} \]

The displacement at the loading line, \(\delta(t) \), for conditions of plane strain is given by

\[\delta(t) = \frac{K(t) \cdot W \cdot V_2 \left(1 - \mu^2 \right)}{\sqrt{a} \cdot F \cdot E'} \quad (3.6.0) \]

where

\[W = \text{distance of loading from base of specimen} \]

\[a = \text{distance of crack tip from loading line} \]

\[V_2 = \text{function of } a/W \text{ calculated using the relationship found in reference (11)} \]

\[F = \text{function of } a/W \]

\[E' = \text{Young's Modulus} \]

\(F \) is a function of \(a/W \) and for \(0.3 \leq a/W \leq 0.7 \) is given by (2)

\[F(\frac{a}{W}) = 29.6 - 185.5 \left(\frac{a}{W} \right) + 655.7 \left(\frac{a}{W} \right)^2 \]

\[- 1017 \left(\frac{a}{W} \right)^3 + 638.9 \left(\frac{a}{W} \right)^4 \quad (3.6.1) \]

The crack angle is given by

\[\tan(\theta(t)) = \frac{\delta(t) - \text{CTOD}(t)}{2a} \quad (3.6.2) \]

and the width at any value of \(x \) is described by
\[w(x,t) = 2 \ h(x,t) = CTOD(t) + 2 \ x \ \tan(9(t)) \quad (3.63) \]

Thus, using Equations 3-56 through 3-63 and substituting into Equation 3-55 yields the fluid velocity due to movement of the crack walls as a function of position and time averaged over the width of the crack. This velocity is used in the convective term of the following equation,

\[
\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - \frac{\partial}{\partial x} (Cv) + C \ \frac{\partial v}{\partial x} - \frac{1}{4F} \ C \quad (3.64)
\]

where

\[C = \text{concentration of oxygen} \]
\[D = \text{diffusion coefficient of oxygen} \]
\[l = k' \ \exp\left[-\frac{\alpha FE}{RT}\right] \]
\[k' = \text{rate constant for oxygen reduction} \]
\[\alpha = \text{transfer coefficient} \]
\[E = \text{electrode potential} \]
\[F = \text{Faraday's constant} \]
\[R = \text{gas constant} \]
\[T = \text{temperature} \]

The transport of oxygen due to diffusion and convection is incorporated as well as cathodic consumption down the crack. In this equation the last term represents the consumption of oxygen by cathodic reduction as shown below

\[
O_2 + 2H_2O + 4 \ e^- \rightarrow 4 \ OH^- \quad (3.65)
\]
Comparison of the modeling results obtained by Turnbull (2) and the model presented in this thesis are shown in Figures 3-7 through 3-9. Table 3-3 gives the basic input parameters used for these figures. Figure 3-7 shows the comparison of the maximum periodic values of normalized oxygen concentration within the model crack for different R values. The agreement is very good. There are some differences at the tip of the crack probably due to some slight difference in application of the boundary condition at this point and the difficulty in identifying the time at maximum concentration is reached in the crack. Figure 3-8 shows the comparison of the maximum periodic values of normalized oxygen concentration profile within the model crack for different i' (i.e. different oxygen consumption rates). The agreement is very good in this case. Figure 3-9 shows a comparison of the transient normalized oxygen concentration at a dimensionless position of .8 from the crack tip. The cyclic nature of the concentration profile is evident is this figure. Agreement between the two models is excellent.

3.4.4 Diffusion, Migration and Electrochemical Reactions at Tip and on Walls

Shuck and Swedlow modeled the electrochemistry within a parallel sided crack using the following governing equation (12,13)

\[
\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial x^2} + \frac{z_i D_i F}{RT} \frac{\partial}{\partial x} \left(C_i \frac{\partial \phi}{\partial x} \right) + \frac{i_o \ S}{h \text{F} \ n} \tag{3.66}
\]
Table 3-3. General Input Parameters for Figures 3-7 through 3-9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1.4×10^{-9} m2/s</td>
</tr>
<tr>
<td>σ_y</td>
<td>340 MPa</td>
</tr>
<tr>
<td>a/W</td>
<td>0.3</td>
</tr>
<tr>
<td>W</td>
<td>6.0×10^{-2} m</td>
</tr>
<tr>
<td>L</td>
<td>1.0×10^{-2} m</td>
</tr>
<tr>
<td>k'</td>
<td>4.2×10^{-1} A mole$^{-1}$ m</td>
</tr>
<tr>
<td>α</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Figure 3.7. Comparison of the maximum periodic value of normalized oxygen concentrations with varying R obtained using model presented in this thesis and modeling results obtained by A. Turnbull (DK = 10 M Nm\(^{-3/2}\), f = 0.1 Hz, \(i' = 50\) A mole\(^{-1}\) cm) (2).
Figure 3-8. Comparison of the maximum periodic value of normalized oxygen concentration for varying i' using model presented in this thesis and modeling results obtained by A. Turnbull ($DK = 10 M N m^{-3/2}$, $f = 0.1$ Hz, $R = 0.5$, $l = 10$ mm) (2).
Figure 3-9. Comparison of transient normalized oxygen concentration at $x/l = 0.8$ (2mm from mouth) of model with results obtained by A. Turnbull ($Dk = 10 \text{ MNm}^{-3/2}$, $f = 0.1 \text{ Hz}$, $R = 0.5$, $l = 10 \text{ mm}$) (2).
The transport modes were diffusion and ion migration. There was a constant source of species on the walls and tip of the crack. The method used to average the flux between the walls of the crack is unclear in this model.

The results obtained from this model were compared with results obtained using the model developed in this thesis. Table 3-4 presents conditions and constants used for the simulations. Figure 3-10 presents the transient concentration profiles of the three figures of interest. Figure 3-11 shows the steady state concentration profiles developed. Figure 3-12 presents the initial and steady state potential profile in the crack. In all cases the agreement is good. There are some slight differences in the H\(^+\) profiles and potential profiles which maybe the result of a different method of averaging over the crack width.
<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion Coefficient (m²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺</td>
<td>+1</td>
<td>9×10^{-9}</td>
<td>10⁻⁷</td>
</tr>
<tr>
<td>Na⁺</td>
<td>+1</td>
<td>1.33×10^{-9}</td>
<td>0.6</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>-1</td>
<td>2×10^{-9}</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equilibrium Reactions</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Electrochemical Reactions</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k_0</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td>3.1×10^{-2}</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solubility Reactions</th>
<th>k</th>
<th>K_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Dissolution Reactions</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
</tr>
<tr>
<td>No. of Nodes</td>
</tr>
<tr>
<td>Temperature (K)</td>
</tr>
<tr>
<td>573</td>
</tr>
</tbody>
</table>

103
Figure 3-10. Comparison of the transient crevice tip concentrations obtained using model presented in this thesis and results obtained by Shuck and Swedlow (12,13).
Figure 3-11. Comparison of steady state concentration profile within the crevice obtained using the model presented in this thesis and results obtained by Shuck and Swedlow (12,13).
Figure 3-12. Comparison of initial and steady state potential profiles within crevice obtained using the model presented in this thesis and result obtained by Shuck and Swedlow. (12,13)
3.5 REFERENCES

Chapter 4

MODELLING OF THE ELECTROCHEMISTRY WITHIN CREVICES

4.1 INTRODUCTION

The first application of the model is to the prediction of the electrochemical conditions that develop within a crevice. A crevice can be defined as a narrow region within which mass transport is restricted and little or no convective mixing occurs. Crevices can form at metal/metal or metal/non-metal junctions such as holes, gaskets, lap joints, loose corrosion deposits, marine growths, coupled pipes, threaded joints, bolts, and rivet heads, and are often inherent in the design of structures. The formation of a creviced region produces changes in the local electrochemistry which may be sufficient to cause breakdown of the passive film which may result in EAC. Loss of passivity within a crevice can result in a form of localized attack known as crevice corrosion. Metal or alloys that depend on their passive films for corrosion resistance are particularly susceptible to crevice corrosion. For example, stainless steel, aluminum, and copper based alloys are susceptible to this form of localized attack (1). The change in local electrochemistry that occurs in creviced regions even without passivity breakdown can also result in the initiation of stress corrosion cracking in these regions. Both crevice attack and stress corrosion cracking can result in premature failure of the component at the creviced region.
Since there is no convective mixing within a crevice, the concentration of all dissolved species is controlled by their production, consumption, and transport due to diffusion and ion migration in the region. The solution within the crevice quickly becomes deaerated because of the rapid reduction of oxygen on the walls of the crevice coupled with restricted mass transport of oxygen into the crevice region. This difference in oxygen concentration can lead to a difference in potential between the creviced region and the bulk environment. Other changes in local electrochemistry within the crevice that can occur are induced by the dissolution of species from the alloys that make up the crevice, ions that are transported into the crevice from the bulk solution by ion migration, and reactions processes involving these species. The local concentration of these species can increase over a period of time creating a completely different local chemical environment within the crevice. The factors that affect the concentration and potential profiles that develop within the crevice are bulk conductivity, bulk oxygen concentration (which determines the bulk metal potential), passive current (assuming the system is passive), and total cathodic current on the walls of the crevice (the sum of total anodic and total cathodic currents determine the net current in the crevice), and crevice geometry (width and length).

As described above, the formation of crevices is often inherent in the design of the structure or component. In light water reactor systems, creviced regions can occur in steam generators between tubing and tube support plates, at turbine discs in blade root and shroud attachment regions or in the keyway area, and in nozzle safe ends between inlet tube or thermal sleeves and the pressure vessel (2). Stress corrosion cracks have initiated in these creviced regions as the result of the local electrochemical environment which develops within these regions (2). The initiation of stress corrosion cracking has resulted in premature failure of these components.
The model developed in the present study has been applied to the particular problem of predicting the electrochemistry within a tight crevice exposed to BWR environments in order to evaluate whether the conditions generated within the crevice are sufficient to increase susceptibility to stress corrosion cracking. This possibility of stress corrosion crack initiation will be evaluated using an engineering diagram such as is shown in Figure 4-1. The curve shown in this figure separates regions of stress corrosion cracking susceptibility and immunity as a function of solution conductivity and potential (3). If the conditions developed within the crevice fall above the curve when plotted on this figure, it is possible to initiate stress corrosion cracking within the crevice region. The farther above these conditions fall, the more likely it would be to initiate stress corrosion cracking. Conversely, if the electrochemical conditions within the crevice are below the values depicted by this curve, it is unlikely that stress corrosion cracks would initiate. Thus, the objective of this research is to identify the crevice conditions that develop and to place them on this diagram in order to determine the environment or material conditions that might lead to stress corrosion cracking initiation. In this chapter, the results obtained from modeling of crevice electrochemical conditions will be presented and discussed in detail. The implication of these results for a crevice that is present at a BWR recirculation inlet nozzle safe ends will be discussed in Chapter 5.

In order to eventually apply the modeling results obtained to the safe end crevice, it is necessary to use the correct crevice geometry, materials, and environment. A difficulty in modeling the safe end annulus is its length (0.6096 m or 2 feet) and the time necessary to achieve steady state within the crevice. The time necessary to achieve steady state can be calculated approximately as follows
Figure 4-1. Stress corrosion cracking susceptibility curve for lightly sensitized stainless steel (3).
With $D_{\text{metal ion}} = 1.3 \times 10^{-8} \text{ m}^2/\text{s}$, the time to steady state is approximately 1 year. This combination of length and time to steady state is a computational problem because of the large number of nodes (large array sizes) and time steps (long run times) necessary for accurate predictions. To overcome this computational difficulty some previously developed understanding of crevice problems involving dimensionless analysis will be employed (4,5).

Since a crevice may be a passive system (until the passive layer breaks down), it should be dominated by the reactions occurring on the walls because the area of the walls is much greater than that of the tip. Thus, the crevice geometry should scale as (length)2/(crevice half width) or L^2/h when using the parameters dimensionless time [$\tau=DL^2$] and dimensionless length [$X=x/L$]. As long as the scaling parameter, L^2/h, is constant the time evolution and steady state profiles for concentration and potential within the crevice should be identical when plotted vs dimensionless time and length respectively. Thus, in principle, the long safe end annulus can be simulated by a shorter but narrower crevice saving much computational time. Verification of this L^2/h scaling is presented in the next section.

The crevice used in the modeling is a one dimensional parallel sided, stagnant region composed of Inconel® 600 on one side and type 304 stainless steel on the other. It is similar to the BWR recirculation inlet safe-end crevice. A schematic of the model crevice is shown in Figure 4-2. In this figure, the safe end piece is assumed to be located at the crevice tip. The passive current of Inconel® 600 was used since it is twenty times greater than the passive current of type 304 stainless steel. The passive current was divided by two since only one wall of the crevice is Inconel® 600.
Figure 4-2. Schematic of crevice used in model. The walls of the crevice are made of stainless steel and Inconel.
Unless otherwise stated, the external bulk concentration used was that of normal BWR water chemistry as described in Table 4-1. The upper limits on normal conductivity and oxygen concentration were used. The temperature assumed for the modelling was 300 °C.

<table>
<thead>
<tr>
<th>Table 4-1</th>
<th>Normal BWR Water Electrochemistry (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (at 25 °C)</td>
<td>< 0.3 μS/cm</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>< 200 ppb</td>
</tr>
<tr>
<td>Potential</td>
<td>−0 V</td>
</tr>
</tbody>
</table>

In order to develop a scientific understanding of the importance of different variables on the electrochemistry developed within a crevice as well as to apply the model to the specific problem of a BWR crevice, the model has been applied in a logical, step by step fashion. The first objective was to establish the minimum level of complexity that must be included in order to model a crevice accurately. In this context the initial factors evaluated are described below:

- Establishment of the validity of the L²/h scaling parameter.
- Evaluation of the conditions developed within the crevice when both solubility and internal cathodic reduction reactions are ignored.
- Evaluation of the effect of cathodic reduction reactions on crevice electrochemistry.
These preliminary studies are described in detail in Sections 4.2.1-4.2.3 and summarized in Section 4.2.4. After the completion of these primary objectives, the model was applied more specifically to modelling the local electrochemistry within a BWR crevice. The factors that were considered and evaluated in relation to their influence on crevice chemistry are described below

- Assessment of the importance of solubility limits on local electrochemistry
- The role of more soluble alloying elements and impurities.
- The effect of excursions in bulk conductivity.
- The significance of hydrogen water chemistry.
- The importance of crevice geometry on crevice chemistry.

These more realistic calculations are described in Sections 4.2.5-4.2.8. In addition, in view of the uncertainty in the necessary input data (i.e., kinetics of cathodic reduction reactions), the sensitivity of the conclusions to the values of kinetic parameters chosen has also been considered.

4.2 RESULTS OF CREVICE MODELING

4.2.1 Verification of L^2/h Scaling Parameter

As discussed in the previous section of this chapter, scaling of a crevice is possible, in principle, provided that the L^2/h scaling parameter remains constant. The steady-state concentration profiles should be identical provided the results are plotted
using the dimensionless position parameter, $X = \frac{x}{L}$. Similarly, the transient profiles of concentration should be the same if plotted using the dimensionless time parameter, $\tau = D \frac{\nu}{L^2}$. Verification of this prediction has been demonstrated by running a full length annulus case with a length of 0.6096 m (2 feet) and with a half width of 6.35x10^{-3} m and then comparing the results to those obtained from crevice with a length of 0.1 dm and a half width of 1.709x10^{-3} m. The scaling parameter L^2/ν in both the long wide crevice and the short narrow crevice was 58.5 m. Except for crevice geometry, the modelling conditions were identical for the long and short crevice. Since nickel is the major component of Inconel® Alloy 600 (see Table 4-2), it was assumed that only nickel was dissolving from the walls and tip of the crevice. Inclusion of the other major alloying elements has no major effect since their reaction and transport characteristics are similar. The passive current for Inconel® 600 at this temperature in BWR water is 7.58x10^{-2} A/m² (6). Nickel ions were also allowed to hydrolyze, but no solubility limits were applied. A bulk solution of NaCl was assumed which was equivalent to approximately 0.55 μS/cm at 25°C. Reduction reactions within the crevice were neglected. The initial conditions and constants for the long and short crevice are listed in Tables 4-3 and 4-4, respectively.

The time dependent results are compared in Figure 4-3a and b for the Ni²⁺ and Cl⁻ concentrations and for potential. A comparison of the steady state Ni²⁺ and Cl⁻ concentration and potential profiles in the crevice are shown in Figure 4-4 a and b. There is very good agreement in all cases. Thus, the rest of the cases were run using shorter, narrower crevices to speed up computational time. The figures depicting the results in this section will have concentrations and/or potential plotted as a function of dimensionless units. For time the dimensionless unit is given by
<table>
<thead>
<tr>
<th>Alloy</th>
<th>Ni</th>
<th>Fe</th>
<th>C</th>
<th>Mn</th>
<th>S</th>
<th>Cr</th>
<th>Si</th>
<th>Cu</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>bal</td>
<td>6-10</td>
<td>0.15</td>
<td>1.0</td>
<td>0.01</td>
<td>14-18</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>304 SS</td>
<td>8-10.5</td>
<td>bal</td>
<td>0.08</td>
<td>2.00</td>
<td>0.03</td>
<td>18-20</td>
<td>1.0</td>
<td>0.04</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4-3. Input Parameters for Long Crevice

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>4.4x10⁻⁶</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10⁻⁶</td>
<td>4.4x10⁻⁶</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NIOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}^+ + \text{OH}^- = \text{H}_2\text{O}$</td>
<td>$1x10^{12}$</td>
<td>5</td>
<td>$2x10^{11}$</td>
</tr>
<tr>
<td>$\text{Ni}^{2+} + \text{H}_2\text{O} = \text{Ni}^{3+} + \text{H}^+$</td>
<td>$6x10^3$</td>
<td>$1x10^9$</td>
<td>$6x10^{-6}$</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Sign</th>
<th>n_e</th>
<th>k_0</th>
<th>α</th>
<th>Reference</th>
<th>Specific Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni \rightarrow Ni$^{2+}$ + 2e$^-$</td>
<td>+1</td>
<td>2</td>
<td>$7.56x10^{-4}$</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>6.096</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>0.127</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>51</td>
</tr>
<tr>
<td>Delta X</td>
<td>0.139</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4-4. Input Parameters for Short Crevice.

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>4.4x10⁻⁶</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10⁻⁶</td>
<td>4.4x10⁻⁶</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

\[
\begin{align*}
H^+ + OH^- &= H_2O \\
Ni^{2+} + H_2O &= NiOH^+ + H^+
\end{align*}
\]

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(k_f)</th>
<th>(k_b)</th>
<th>(K_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1x10^{12}</td>
<td>5</td>
<td>2x10^{11}</td>
</tr>
<tr>
<td></td>
<td>6x10^{3}</td>
<td>1x10^{9}</td>
<td>6x10^{-6}</td>
</tr>
</tbody>
</table>

Electrochemical Reactions

\[
Ni \rightarrow Ni^{2+} + 2e^-
\]

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(k_o)</th>
<th>(\alpha)</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.56x10^{-4}</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(k)</th>
<th>(K_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Dissolution Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.1</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.709x10⁻⁵</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>21</td>
</tr>
<tr>
<td>Delta X</td>
<td>0.005</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
a) Transient crevice tip concentration profiles of Cl⁻ and Ni^{2+} in long and short crevices. Plotted versus dimensionless time.

b) Transient crevice tip potential profiles for long and short crevice. Plotted versus dimensionless time.

Figure 4-3. Validation of L^2/h scaling parameter by comparison of transient crevice tip a) concentration, and b) potential profiles.
a) Steady-state concentration profiles of Cl^- and Ni^{2+} along long and short crevices. Plotted versus dimensionless position from crevice tip.

Figure 4-4. Validation of L^2/h scaling parameter by comparison of steady-state a) concentration, and b) potential profiles along crevice.
b) Steady-state potential profile along long and short crevice. Plotted versus dimensionless position from crevice tip.
\[
\text{dimensionless time} = \frac{(\text{time}) \cdot (\text{diffusion coefficient})}{(\text{crevice length})^2} = \frac{tD}{L^2} \quad (4 \cdot 2)
\]

and for dimensionless distance:

\[
\text{dimensionless distance} = \frac{\text{distance from crevice tip}}{\text{crevice length}} = \frac{x}{L} \quad (4 \cdot 3)
\]

4.2.2 Electrochemistry Developed Within Crevice Without Solubility Limits and Cathodic Reactions

In this section, the conditions developed within the crevice will be evaluated without restraint on the solubility of dissolved species and neglecting any cathodic reactions that may be occurring within the crevice. Figure 4-5 depicts the transient crevice tip concentration and potential profiles that develop. The initial conditions and constants used in this case are shown in Table 4-5. As is apparent in this figure, the initial crevice tip potential is \(-1400 \text{ V}\). Potentials expected within crevices should be limited by the corrosion potential in oxygen free media because the effect of a large potential drop is simply to decouple the crevice for the external surface. Thus, the predicted initial value of \(-1400 \text{ V}\) is meaningless and arises because no cathodic reactions have been considered. The \(\text{H}^+\) ion concentration initially dips, since the positive ions are initially being forced out by ion migration due to the large potential gradient. As the potential drop in the crevice decreases and the ionic concentration increases, ion migration becomes less important and the \(\text{H}^+\) concentration increases (\(\text{pH}\) decreases). The metal ion concentrations (\(\text{Ni}^{2+}\) and \(\text{NiOH}^+\)) jump very quickly from 0
Table 4-5. Input Parameters for Figure 4-5.

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm2/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10$^{-5}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10$^{-6}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equilibrium Reactions</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^+ + OH^- = H_2O$</td>
<td>1x1012</td>
<td>5</td>
<td>2x1011</td>
</tr>
<tr>
<td>$Ni^{2+} + H_2O = NiOH^+ + H^+$</td>
<td>6x103</td>
<td>1x109</td>
<td>6x10$^{-6}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Electrochemical Reactions</th>
<th>sign</th>
<th>no. of e^-</th>
<th>k_o</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni \rightarrow Ni$^{2+}$ $+ 2e^-$</td>
<td>+1</td>
<td>2</td>
<td>7.56x10$^{-4}$</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| Solubility Reactions | none | K_S | |
|----------------------|------|------||

<table>
<thead>
<tr>
<th>Wall/Tip Dissolution Reactions</th>
<th>Flux (dm2/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10$^{-7}$</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10$^{-4}$</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-5. Transient crevice tip concentration and potential profiles for nickel dissolution without solubility limits or cathodic reactions.
M to approximately 2x10^{-7} M (not shown in Figure 4-5 because of the time scale), then rise more gradually. Initially, the NiOH^+ concentration is greater than the Ni^{2+} concentration because the H^+ concentration is very low. This pushes the nickel hydrolysis equilibrium reaction

\[\text{Ni}^{2+} + \text{H}_2\text{O} = \text{NiOH}^+ + \text{H}^+ \] (4-4)

to the right. Later in time, as acidification occurs (pH decreases), the reaction shifts towards the left and the Ni^{2+} increases, exceeding the NiOH^+ concentration, as expected.

As the system approaches steady state, the crevice tip potential achieves a more realistic value of -0.2 V. Figure 4-6 shows the steady state profile developed within the crevice. The dissolved nickel species reach a steady state concentration of 0.2 M for Ni^{2+} and 6.0x10^{-3} M for NiOH^+. This is at least an order of magnitude above the solubility limit for dissolved nickel at this temperature and pH (7-12). This is obviously unrealistic. Nevertheless, it demonstrates that significant polarization can occur with the production of soluble cations.

Another indication of the lack of feasibility of the assumptions of no solubility limit and no cathodic reactions is the insensitivity of crevice electrochemistry to bulk conductivity as shown in Figures 4-7 and 4-8. These figures show the steady state H^+, Cl^-, Ni^{2+} concentration and potential profiles for a range of conductivity increasing from 0.3 \mu S/cm to approximately 300 \mu S/cm (at 25 °C). Table 4-6 gives the conditions for these modelling runs. There is no noticeable difference between the steady state profiles for all conductivities, even close to the crevice mouth. Thus, there is no sensitivity of crevice conditions to bulk conductivity. Sensitivity to conductivity is expected because of the enhanced cracking rates experienced in plants that undergo
Figure 4-6. Steady-state concentration and potential profile within the crevice for nickel dissolution without solubility limits or cathodic reactions.
Table 4-6. Input Parameters for Figures 4-7 and 4-8.

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76×10^{-5}</td>
<td>2.23×10^{-6}</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8×10^{-6}</td>
<td>2.23×10^{-6}</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3×10^{-6}</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3×10^{-6}</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^+ + OH^- \rightarrow H_2O$</td>
<td>1×10^{12}</td>
<td>5</td>
<td>2×10^{11}</td>
</tr>
<tr>
<td>$Ni^{2+} + H_2O \rightarrow NiOH^+ + H^+$</td>
<td>6×10^3</td>
<td>1×10^9</td>
<td>6×10^{-6}</td>
</tr>
</tbody>
</table>

Wall/Tip Electrode Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e^-</th>
<th>k_0</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ni \rightarrow Ni^{2+} + 2e^-$</td>
<td>+1</td>
<td>2</td>
<td>7.56×10^{-4}</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71×10^{-7}</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33×10^{-4}</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
a) Steady-state H^+ concentration profiles.

b) Steady-state Cl^- concentration profiles.

Figure 4-7. The steady-state H^+ and Cl^- concentration profiles within the crevice as a function of bulk conductivity. Bulk NaCl concentration is (1) 1.968 x 10^{-6} M, (2) 1 x 10^{-5} M (3) 1 x 10^{-4} M, (4) 1 x 10^{-3} M. There is no difference in the profiles that develop.
Figure 4-8. The steady-state Ni$^{2+}$ concentration and potential profiles within the crevice as a function of bulk conductivity. Bulk NaCl concentration is (1) 1.968×10^{-6} M, (2) 1×10^{-5} M, (3) 1×10^{-4} M, (4) 1×10^{-3} M of here is no difference in the profiles that develop.
significant excursions in bulk conductivity (2,13,14). This lack of sensitivity is probably due to high concentrations achieved within the crevice (0.2 M) which results from the assumption of no solubility limit on dissolved nickel concentration. The cation production rate determines the chemistry developed within the crevice rather than the bulk chemistry. This could have significance at lower temperatures where metal ion solubilities are much higher. Under these conditions it is predicted that the internal conditions within crevices and cracks may be relatively insensitive to initial and bulk concentrations unless the bulk concentration of salt is high.

Neglecting the solubility limits on metal ions and cathodic reactions results in an unrealistic time dependent and steady state concentration and potential profile development within the crevice. Because of the discrepancies in initial potential, concentrations of metal ions and their hydroxides, and the lack of crevice chemistry sensitivity to solution conductivity that result from assuming no solubility limits and ignoring cathodic reactions, it is obvious that these assumptions are inherently incorrect. Solubility limits and cathodic reactions must be incorporated into the modeling of high temperature local electrochemistry and the effect of these factors on crevice electrochemistry is demonstrated in the next two sections.

4.2.3 Effect of Internal Cathodic Reactions Without Solubility Limits

The cathodic reactions that have been considered are the reduction of water, hydrogen ions and oxygen as listed below
\[
\begin{align*}
H_2O + e^- & \rightarrow OH^- + H \\
H^+ + e^- & \rightarrow H \\
O_2 + 2H_2O + 4e^- & \rightarrow 4OH^-
\end{align*}
\] (4.5)

The kinetics of these reactions are extremely important not only in the development of the potential profiles, but also in the development of the pH profiles within the crevice. The kinetics of these reduction processes are exponentially dependent on the potential as described in Section 3.2.3. This potential dependence fixes the minimum potential that can be developed within the crevice since the sum of the anodic current densities must equal the sum of the cathodic current densities at every point within the crevice when solution conductivity is very low and no polarization can occur. Thus, in the case of crevice modelling, the cathodic reactions (balanced by the anodic current) fix the initial potential to the corrosion potential of the alloy in deaerated neutral water. The cathodic reactions either consume H\(^+\) ions or produce OH\(^-\) ions. The production of excess OH\(^-\) ions is equivalent to consuming H\(^+\) ions because of their interaction in the water equilibrium described below

\[
H^+ + OH^- = H_2O
\] (4.6)

The production of OH\(^-\) drives the reaction to the right, consuming H\(^+\) ions. Thus, cathodic reactions have the net effect of consuming H\(^+\) ions and, therefore, tend to increase the pH.

The kinetics of electrochemical reactions can be obtained from polarization scans using electrodes of the approximate material (in this case Inconel\(^\text{®}\) Alloy 600) and solutions composed of the appropriate solutes (dilute Cl\(^-\), SO\(_4\)^{2-}\) solutions) and at the
appropriate temperature (approximately 300°C). Unfortunately, the data available are extremely limited and inconsistent. No systematic studies have been conducted to analyze the kinetics of these various cathodic reactions on different alloys at temperature in dilute solutions. What little data exist were often obtained using solutions of high concentration and with oxygen concentrations that were not well defined or insufficiently low. Also, most of these scans were conducted using fast scan rates. The resulting current densities do not reflect steady state values at each potential and are therefore may be unreliable from the viewpoint of quantitative modeling. Nonetheless, these data are used where available, and appropriate. The kinetic parameters obtained are somewhat modified so that they correspond to values that accurately predict the corrosion potential of Inconel® Alloy 600 in pure, deaerated water, which is a well established value (15).

The only data for water reduction on Inconel® alloy 600 were obtained by Bogaert et al. (16). Analysis of the polarization scans yields the following kinetic parameters for water reduction kinetics:

\[
\alpha_{\text{H}_2\text{O}} = 0.6 \quad (4.7)
\]

\[
k_{0,\text{H}_2\text{O}} = 1.5 \times 10^{-6}
\]

where \(\alpha\) is the transfer coefficient and \(k_0\) is the pre-exponential rate constant for the electrode reaction (as described in Section 3.2.3). Thus, the water reduction chemistry current density is given by

\[
i_{\text{H}_2\text{O}} = k_{0,\text{H}_2\text{O}} \exp\left[-\frac{\alpha_{\text{H}_2\text{O}} F (E_m - \phi)}{RT}\right] \quad (4.8)
\]
There are no cathodic polarization scans available from which H⁺ ion reduction kinetics can be deduced. In order to include this important reduction reaction we must apply knowledge developed at room temperature. It has been shown at room temperature in neutral pH solutions that the kinetics of H⁺ ion reduction is first order and equal to that of water reduction (17). Thus, remembering that neutral pH at 300 °C is equal to 5.6 ([H⁺] = 2.239x10⁻⁶ M) and assuming the same potential dependence as for water reduction, the kinetic parameters for H⁺ ion reduction are:

\[
\alpha_{H^+} = 0.6 \quad \text{(4.9)}
\]

\[
k_{0,H^+} = 1.5 \times 10^{-6}
\]

and the H⁺ reduction current density is given by

\[
i_{H^+} = k_{0,H^+} C_{H^+} \exp \left[- \frac{\alpha_{H^+} F (E_m - \phi)}{RT} \right] \quad \text{(4.10)}
\]

Assuming that the passive current is independent of potential, these cathodic current densities can be intersected with the passive current density to obtain the corrosion potential. The total anodic current density equals the total cathodic current density, as shown below

\[
i_{\text{passive}} = i_{H_2O} + i_{H^+} = \left(k_{0,H_2O} + k_{0,H^+} C_{H^+}\right) \exp \left[- \frac{\alpha F (E_m - \phi)}{RT} \right] \quad \text{(4.10)}
\]

This equation can be used to solve for the corrosion potential which is given by
\[E_{\text{corrosion}} = E_m - \phi \] (4-11)

Setting the external metal potential, \(E_m \), to zero, the passive current density to 7.56x10\(^{-4} \) A/dm\(^2\), using the known H\(^+\) concentration of 2.239x10\(^{-6} \) M, and the values of \(\alpha \) and \(k_0 \) as defined above, the resulting corrosion potential is approximately -450 mV. However, experimental evidence indicates that the corrosion potential for Inconel\(^\circledR\) 600 in deaerated water should be -750 mV (15). These data are well characterized and probably reliable. The discrepancy is possibly the result of some residual dissolved oxygen in the experiments, reported by Bogaerts et al. (16), who quotes values of 10-20 ppb oxygen. Because of this inconsistency, another set of water and hydrogen reduction kinetics are adopted which results in the correct corrosion potential. The values of \(\alpha \) are assumed to be the same for these reactions but the values of \(k_0 \) are changed, resulting in a slower set of reduction kinetics parameters. Both sets are presented in the table below for comparison.

Table 4-7. Summary of Reduction Kinetic Parameters for Crevice Problem

<table>
<thead>
<tr>
<th></th>
<th>Fast kinetics</th>
<th>Slow Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O}) reduction</td>
<td>(\alpha) 0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>(k_0) 1.5x10(^{-6})</td>
<td>4.55x10(^{-8})</td>
</tr>
<tr>
<td>(\text{H}^+) reduction</td>
<td>(\alpha) 0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>(k_0) 0.671</td>
<td>2.03x10(^{-2})</td>
</tr>
</tbody>
</table>

135
Because of the inaccuracy of the data used, both fast kinetic parameters and slow kinetic parameters will often be used in the modeling presented in the following sections for comparison. It should be noted that the slow reduction kinetic parameters (shown in the second column of Table 4-7) are probably more realistic since there is solid evidence supporting the lower corrosion potential and because the fast kinetics where derived from polarization scans conducted at fast scan rates and in conditions where the oxygen concentration was not necessarily insignificant.

The kinetics of oxygen reduction under activation control are also unknown in high temperature water. However, some information exists which indicates that the oxygen reduction current density has the form

\[i_{O_2} = k_{0,O_2} C_{O_2} \exp\left(-\frac{\alpha_{O_2} F (E_m - \phi)}{RT}\right) \] (4-12)

Assuming that \(\alpha \) has the same value as at room temperature (i.e., \(\alpha = 0.5 \)), \(k_0 \) can be calculated using the known bulk potential and oxygen concentration in BWR water. As above, the total anodic current density equals the total cathodic current density

\[i_{\text{passive}} = i_{H_2O} + i_{H^+} + i_{O_2} \]

\[i_{\text{passive}} = (k_{0,H_2O} + k_{0,H^+} C_{H^+}) \exp\left(-\frac{\alpha F (E_m - \phi)}{RT}\right) \]

\[+ k_{0,O_2} C_{O_2} \exp\left(-\frac{\alpha_{O_2} F (E_m - \phi)}{RT}\right) \] (4-13)

In the bulk solution \(E_m = 0.0 \text{ V} \) and \(\phi = 0.0 \text{ V} \), therefore
Table 4-8. Input Parameters for Figure 4-9.

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion Coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>SO₄</td>
<td>-2</td>
<td>2.0x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>Cu</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>O₂</td>
<td>0</td>
<td>1.89x10⁻⁶</td>
<td>??????</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

\[H^+ + OH^- = H_2O \]

<table>
<thead>
<tr>
<th>(k_f)</th>
<th>(k_b)</th>
<th>(K_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>reaction</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>(k_0)</th>
<th>(\alpha)</th>
<th>ref. spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni + H₂O → 2H⁺ + 2e⁻ + NiO</td>
<td>+1</td>
<td>2</td>
<td>7.48x10⁻⁴</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H⁺ + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>1.5x10⁻⁶</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H⁺</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H⁺</td>
</tr>
<tr>
<td>Cu → Cu²⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁶</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4 e⁻ + O₂ + 2 H₂O → 4 OH⁻</td>
<td>-1</td>
<td>4</td>
<td>1.71x10²</td>
<td>0.5</td>
<td>O₂</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>(k)</th>
<th>(K_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>-</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Length (dm)</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>(E_m) (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-9. Oxygen depletion at the crevice tip and near the crevice mouth.
\[i_{\text{passive}} = k_{0,\text{H}_2\text{O}} + k_{0,\text{H}^+} C_{\text{H}^+} + k_{0,\text{O}_2} C_{\text{O}_2} \] (4-14)

Assuming approximately 200 ppb \(\text{O}_2 \) (4.4\times10^{-6} \text{ M}) and knowing the values of \(k_0 \) from Table 4-7, the \(k_0 \) for oxygen reduction can be calculated. For fast \(\text{H}^+ \) and \(\text{H}_2\text{O} \) reduction kinetics the calculated \(k_0 = 171.1 \text{ A/(dm}^2\text{ M)} \) and for slow \(\text{H}^+ \) and \(\text{H}_2\text{O} \) reduction kinetics the calculated \(k_0 = 171.8 \text{ A/(dm}^2\text{ M)} \). The calculated oxygen reduction \(k_0 \) value for the fast and slow kinetics are very similar and, therefore, should result in similar behavior when applied in the model.

Figure 4-9 shows the depletion of oxygen at the crevice tip and near the crevice mouth using conditions described in Table 4-8. As can be seen, oxygen is rapidly consumed within the crevice. In the two foot long safe end crevice, the oxygen is depleted in approximately two minutes. Since oxygen is not produced within the crevice (radiolysis, which produces oxygen, decays exponentially with length and is therefore unimportant within most of the crevice), oxygen is consumed faster than it can be transported into the crevice and the solution rapidly becomes deaerated. In all crevice modelling presented in this chapter, oxygen reduction is ignored within the crevice but it is recognized that radiolytic processes can be important in shorter crevices or cracks and thus is being considered for future work.

Figures 4-10 and 4-11 show a comparison of the transient pH and potential profiles at the crevice tip with and without cathodic reactions. The initial conditions and constants for this modelling without and with cathodic reactions are presented in Tables 4-5 and 4-9, respectively. Allowing cathodic reactions within the crevice limits the initial potential to the corrosion potential in oxygen free solution (-450 mV for fast reduction kinetics and -750 mV for slow reduction kinetics). Without cathodic reactions to limit the initial potential a huge unrealistic potential of -1400 V develops.
Table 4-9. Input Parameters for Transient Potential and pH Data Incorporating Cathodic Reduction Depicted in Figures 4-10 and 4-11.

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>-1</td>
<td>2.5x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>Ni</td>
<td>-2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>-2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

\[
\begin{align*}
H^+ + OH^- & \rightarrow H_2O & k_f & = 1 \times 10^{12} & k_b & = 5 & K_{eq} & = 2 \times 10^{11} \\
Ni^{2+} + H_2O & \rightarrow Ni(OH)^+ + H^+ & k_f & = 6 \times 10^3 & k_b & = 1 \times 10^9 & K_{eq} & = 6 \times 10^{-6}
\end{align*}
\]

Wall Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Charge</th>
<th>Sign</th>
<th>Electrons</th>
<th>ko (A/cm²)</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni → Ni^{2+} + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁴</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>1.5x10⁻⁶</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Solubility Reactions

none

Wall Tip Dissolution Reactions

Flux (dm²/sec)

none

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>2.01</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>21</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Em (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-10. Comparison of transient potential profile at crevice tip with and without internal cathodic reactions.
Figure 4-11. Comparison of transient pH profiles at crevice tip with and without internal cathodic reactions.
Figure 4-12. Steady-state concentration and potential profiles within crevice with cathodic reactions and no solubility limits.
as described in Section 4.2.2. The potential eventually rises to approximately the same value as that without reduction reactions because of the increase in conductivity associated with the limited cation solubility. The large increase in conductivity from metal ion dissolution enables significant polarization to occur and therefore there is an increase in potential. The pH initially increases (H⁺ concentration decreases) with time because cathodic reactions are consuming H⁺ or producing OH⁻, as previously described. The cathodic reactions consume H⁺ more effectively than the passive current can produce H⁺ since Ni²⁺ hydrolysis to NiOH⁺ is incomplete. However, once the Ni²⁺ concentration is sufficiently high polarization occurs and excess H⁺ ions are produced. Acidification results, but not to the same extent as achieved without cathodic reactions because of the consumption of H⁺ by reduction reaction as described above.

The steady state concentration profiles are shown in Figure 4-12. By comparing this figure with Figure 4-6, it can be seen that allowing cathodic reactions affects only the steady state pH and NiOH⁺ profiles. As discussed above, the pH reached within the crevice with cathodic reactions is not as low as without these reactions because cathodic reactions have the net effect of H⁺ consumption. The NiOH⁺ concentration is affected through the equilibrium reaction

\[
\text{Ni}^{2+} + \text{H}_2\text{O} = \text{NiOH}^+ + \text{H}^+ \tag{4.15}
\]

Decreasing the H⁺ concentration results in an increased NiOH⁺ concentration. The steady state potential profile remains unchanged since it is governed by the increase in conductivity which results from the increase in cation concentration (there is no limit placed on Ni²⁺ solubility) and the resulting polarization.

Allowing cathodic reactions within the crevice has reduced the initial potential drop in the crevice from 1400 V to 450 mV. The pH that develops within the crevice
is also higher because cathodic reactions have the net effect of consuming H^+ ions. Therefore cathodic reactions cannot be ignored within a crevice exposed to BWR environments. However, the Ni$^{2+}$ and NiOH$^+$ concentrations are still much too high in relation to the cation solubility (this discussed in Section 4.4.5). The application of solubility limits on metal ion concentration is essential and will be discussed in Section 4.2.5.

4.2.4. Description of Minimum Conditions Necessary to Model Crevice

The previous sections have described modeling results that were obtained expressly to determine the processes that must be applied in the model in order for the model to predict realistic transient and steady state electrochemical conditions within a crevice. From this work, it is apparent that cathodic reactions must be included within the crevice in order to develop realistic potential and pH profiles. Without the application of cathodic reactions, the initial potential is at least three orders of magnitude larger than it should be, the pH transient profile is very different, and the resulting steady state pH is 1.5 units lower. Thus, the incorporation of cathodic reactions occurring within the crevice is imperative. Also, solubility limits must be placed on nickel species in order to prevent unrealistic metal ion concentrations that would otherwise develop. Higher unrealistic metal ion concentrations result in higher conductivities that may lead to more polarization. Hence, solubility limits must be included in the evaluation of high temperature local electrochemistry. In the following result sections, the model is applied more directly to the specific problem of evaluating
the electrochemistry that develops within a BWR crevice. In all the following modelling, both cathodic reactions and solubility limits on Ni$^{2+}$ are incorporated.

4.2.5 Effect of Solubility Limits

In this section, the solubility limit on dissolved Ni$^{2+}$ ions is applied as described in Section 3.2.4. As previously discussed, the behavior of the major alloying elements (Fe, Cr, Ni) has been modeled using nickel. Thus the passive current for Alloy 600 is attributed to the dissolution of nickel. The question arises as to the validity of this approach with the incorporation of solubility limits. Since the solubility limits of Fe$^{2+}$ and Cr$^{3+}$ are equivalent to or lower than that of nickel (all are low), the behavior of the model with nickel dissolution should be representative. The value of the Ni$^{2+}$ solubility limit (7-12) used is given by

\[
\left[\text{Ni}^{2+}\right][\text{OH}^2] = 2.25 \times 10^{-20}
\]

(4-16)

Figures 4-13 and 4-14 show the transient concentration and potential profiles for the crevice tip for fast and slow reduction kinetics, respectively. Tables 4-10 and 4-11 present initial conditions and constants for these two cases, respectively. Initially, the concentration of dissolved nickel species, Ni$^{2+}$ and NiOH$^+$, is limited to very low values (virtually zero) and the H$^+$ ion concentration decreases. This decrease in H$^+$ concentration or increase in pH occurs because the cathodic reactions have the net effect of consuming H$^+$ ions. Because of the decrease in H$^+$ concentration, the water reduction
Table 4-10. Input Parameters for Figure 4-13 (fast reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>(3.158x10⁻⁵)</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄⁻</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

\[
\begin{align*}
H^+ + OH^- & \rightarrow H_2O & k_f = 1 \times 10^{12} & k_b = 5 & K_{eq} = 2 \times 10^{11} \\
Ni^{2+} + H_2O & \rightarrow NiOH^+ + H^+ & k_f = 6 \times 10^3 & k_b = 1 \times 10^9 & K_{eq} = 6 \times 10^{-6}
\end{align*}
\]

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni → Ni^{2+} + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁴</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>1.5x10⁻⁶</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>Kₛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni^{2+} + 2OH⁻ → Ni(OH)₂</td>
<td>1x10¹⁴</td>
<td>2.25x10⁻²⁰</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

Flux (dm²/sec)

none

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-13. Transient concentration and potential profiles at crevice tip using fast reduction kinetics and incorporating a solubility limit on Ni^{2+}.
Table 4-11. Input Parameters for Figure 4-14 (slow reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>2.51x10⁻⁶</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ → H₂O</td>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
<tr>
<td>Ni²⁺ + H₂O → NiOH⁺ + H⁺</td>
<td>6x10³</td>
<td>1x10⁹</td>
<td>6x10⁻⁶</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni → Ni²⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁴</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>4.55x10⁻⁸</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10⁻²</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>Kₛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni²⁺ + 2 OH⁻ → Ni(OH)₂</td>
<td>1x10¹⁴</td>
<td>2.25x10⁻²⁰</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
</table>

General Data

<table>
<thead>
<tr>
<th>Length (dm)</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>ΔX</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Eₘ (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4.14. Transient concentration and potential profiles at crevice tip using slow reduction kinetics and incorporating a solubility limit on Ni^{2+}.
Figure 4-15. Steady-state pH and potential profile within crevice (fast reduction kinetics and solubility limit on Ni^{2+}).
Figure 4-16. Steady-state pH and potential profile within crevice (slow reduction kinetics and solubility limit on Ni^{2+}).
reaction dominates the cathodic reactions and the potential drops to a new corrosion potential, -512 mV for fast reduction kinetics and -800 mV for slow reduction kinetics.

Thus, the addition of solubility limits restricts the concentration of dissolved nickel species, as expected. The pH increases because Ni^{2+} hydrolysis is incomplete and the potential field causes H^+ to migrate out. Because of the increase in pH, the metal ion concentration is fixed at very low values: 2.0 \times 10^{-13} \text{ M} for Ni^{2+} and 2.0 \times 10^{-10} \text{ M} for Ni\text{OH}^+. Since the conductivity of the solution does not significantly increase as it did in the previous case (with no solubility limit), there is no polarization within the crevice. Figures 4-15 and 4-16 present the steady state pH and potential profiles for fast and low reduction kinetics, respectively. The potential remains at the corrosion potential relative to the local environment. Without polarization, there is no acidification and the pH remains above neutral within the crevice. The internal crevice surface becomes isolated from the bulk.

Thus, the application of solubility limits drastically changes the steady state and transient concentration and potential profiles within the crevice. The electrochemistry that develops within the crevice is one of low potential (the corrosion potential of the alloy), low conductivity, and basic pH. It is very unlikely that stress corrosion cracking would initiate under these conditions (see Figure 4-1) (3). In order for a sufficiently aggressive crevice electrochemistry (i.e., high potential, low pH, high conductivity) to develop with normal BWR water as the bulk solution, some more soluble species must be introduced into the crevice region or the conductivity within the crevice must increase in some other way. There are two possible sources for such soluble species or increased conductivity:
(1). the dissolution of more soluble species from the alloys making up the crevice,

(2). an excursion in the conductivity of the bulk solution at the crevice mouth.

The dissolution of more soluble species will be discussed in Section 4.2.6 and excursions in bulk conductivity will be discussed in Section 4.2.7.

4.2.6 Dissolution of Soluble or Partially Soluble Species

Table 4-2 shows the composition of Inconel® Alloy 600 and stainless steel 304. These alloys are made up primarily of three elements (nickel, iron, and chromium), numerous minor alloying elements and impurities. The primary alloying elements are very insoluble in high temperature, neutral (pH 5.6) water (7-12). There is little solubility data on the remaining elements present in the alloys. The little information that does exist suggests that manganese is partially soluble and sulfur is very soluble in high temperature water (12). The effect of dissolution of these two soluble species on the electrochemistry within the crevice region will be evaluated in this section.

Manganese

As shown in Table 4-2, manganese is present in the alloys of interest at about 1 weight percent. Since the atomic percent of manganese is approximately equal to its weight percent (i.e., 1%), it is assumed that 1 % of the passive current is due to the dissolution of manganese. This implies that each element anodically dissolves at a rate
proportional to its concentration in the alloy (atomic percent) and that no preferential dissolution occurs. Thus, the current densities for nickel and manganese are

\[i_{Ni} = 7.4844 \times 10^{-4} \text{ A/dm}^2 \]
\[i_{Mn} = 7.56 \times 10^{-6} \text{ A/dm}^2 \]
(4-17)

Since the solubility of Ni\(^{2+}\) is four orders of magnitude less than that of Mn\(^{2+}\) and because the number of species that can be incorporated in the model using the present computer is limited, it is assumed that nickel dissolves to form NiO as shown below

\[\text{Ni} + \text{H}_2\text{O} = \text{NiO} + 2\text{H}^+ + 2\text{e}^- \]
(4-18)

to form H\(^+\) ions instead of Ni\(^{2+}\). This assumption has been validated using the model.

The first case modeled was the dissolution of manganese without limiting its solubility and using fast reduction kinetics. The results, shown in Figure 4-17, were obtained using the initial conditions and constants presented in Table 4-12. The Mn\(^{2+}\) and MnOH\(^+\) ion concentrations increase, drawing in the Cl\(^-\) ions and thus increasing the solution conductivity. The increased conductivity allows polarization to occur raising the potential. Some slight acidification also occurs as a result of this polarization. The steady state electrochemistry that is developed within the crevice is shown in Figure 4-18. The Mn\(^{2+}\) concentration reached a value of approximately 2.0x10\(^{-3}\) M. The solution is more conductive and slightly acidic, and the potential in the crevice is high.

However, application of a solubility limit to as given by the following reaction

\[[\text{Mn}^{2+}] [\text{OH}^-]^2 = 2.3 \times 10^{-16} \]
(4-19)
Table 4-12. Input Parameters for Figures 4-17 and 4-18 (Mn dissolution, no solubility limit on Mn$^{2+}$)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm2/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76×10^{-5}</td>
<td>2.23×10^{-6}</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8×10^{-6}</td>
<td>2.23×10^{-6}</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5×10^{-6}</td>
<td>1.968×10^{-6}</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8×10^{-6}</td>
<td>1.968×10^{-6}</td>
</tr>
<tr>
<td>Mn</td>
<td>+2</td>
<td>1.3×10^{-6}</td>
<td>0</td>
</tr>
<tr>
<td>MnOH</td>
<td>+1</td>
<td>1.3×10^{-6}</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

- $H^+ + OH^- = H_2O$
 k_f: 1×10^{12}
 k_b: 5
 K_{eq}: 2×10^{11}

- $Mn^{2+} + H_2O = MnOH^+ + H^+$
 k_f: 1.7×10^{3}
 k_b: 1×10^9
 K_{eq}: 1.7×10^{-6}

Wall/Tip Electrochemical Reactions

- $Ni + H_2O \rightarrow 2H^+ + 2e^- + NiO$
 Sign: +1
 n: 2
 k_0: 7.48×10^{-4}
 α: 0
 Spec. power -

- $H_2O + e^- \rightarrow H + OH^-$
 Sign: -1
 n: 1
 k_0: 1.5×10^{-6}
 α: 0.6
 Spec. power -

- $H^+ + e^- \rightarrow H$
 Sign: -1
 n: 1
 k_0: 0.671
 α: 0.6
 Spec. power H^+ 1

- $Mn \rightarrow Mn^{2+} + 2e^-$
 Sign: +1
 n: 2
 k_0: 7.56×10^{-6}
 α: 0
 Spec. power -

Solubility Reactions

- none

Wall/Tip Dissolution Reactions

- none

General Data

<table>
<thead>
<tr>
<th>Length (dm)</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (dm)</td>
<td>1.71 $\times 10^{-7}$</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33 $\times 10^{-4}$</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-17. Transient concentration and potential profiles at crevice tip when Mn dissolves from the metal at 1% of the passive current and Mn$^{2+}$ has not solubility limit (fast reduction kinetics).
Figure 4.18 Steady-state concentration and potential profiles within the crevice when Mn dissolves from the metal at 1% of the passive current and Mn$^{2+}$ has no solubility limit (fast reduction kinetics).
Table 4-13. Input Parameters for Figure 4-19 (Mn dissolution with solubility limit on Mn\(^2^+\), fast reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm(^2)/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10(^{-5})</td>
<td>2.23x10(^{-6})</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10(^{-6})</td>
<td>2.23x10(^{-6})</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10(^{-6})</td>
<td>1.968x10(^{-6})</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10(^{-6})</td>
<td>1.968x10(^{-6})</td>
</tr>
<tr>
<td>Mn</td>
<td>+2</td>
<td>1.3x10(^{-6})</td>
<td>0</td>
</tr>
<tr>
<td>MnOH</td>
<td>+1</td>
<td>1.3x10(^{-6})</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equilibrium Reactions</th>
<th>(k_f)</th>
<th>(k_b)</th>
<th>(K_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H^+ \cdot OH^- = H_2O)</td>
<td>1x10(^{12})</td>
<td>5</td>
<td>2x10(^{11})</td>
</tr>
<tr>
<td>(Mn^{2+} + H_2O = MnOH^+ + H^+)</td>
<td>1.7x10(^3)</td>
<td>10(^9)</td>
<td>1.7x10(^{-6})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Electrochemical Reactions</th>
<th>sign</th>
<th>no. of e(^-)</th>
<th>(k_o)</th>
<th>(\alpha)</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ni + H_2O \rightarrow 2 H^+ + 2e^- + NiO)</td>
<td>+1</td>
<td>2</td>
<td>7.48x10(^{-4})</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(H_2O + e^- \rightarrow H + OH^-)</td>
<td>-1</td>
<td>1</td>
<td>1.5x10(^{-6})</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(H^+ + e^- \rightarrow H)</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H(^+)</td>
<td>1</td>
</tr>
<tr>
<td>(Mn \rightarrow Mn^{2+} + 2e^-)</td>
<td>+1</td>
<td>2</td>
<td>7.56x10(^{-6})</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solubility Reactions</th>
<th>(k)</th>
<th>(K_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Mn^{2+} + 2 OH^- = Mn(OH)_2)</td>
<td>1x10(^8)</td>
<td>2.3x10(^{-16})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Dissolution Reactions</th>
<th>Flux (dm(^2)/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

General Data

Length (dm)	0.01
No. of Nodes	31
Temperature (K)	573

Width (dm) 1.71x10\(^{-7}\)
Delta X 3.33x10\(^{-4}\)
Em (V) 0
Figure 4-19. Transient concentration and potential profile at crevice tip when Mn dissolves at 1% of the passive current and Mn²⁺ is limited in solubility (fast reduction kinetics).
gives very different results (12). Figure 4-19 shows the transient concentration and potential profiles that develop at the crevice tip using the conditions and constants presented in Table 4-13. As explained previously, the solution goes basic as the result of H⁺ consumption by cathodic reactions. Since the solubility of Mn²⁺ ions is directly proportional to the H⁺ concentration squared, the solubility of Mn²⁺ becomes very low as the H⁺ concentration decreases. Thus, after an initial increase (cannot be seen in Figure 4-19 because of the x-axis scale), the Mn²⁺ concentration decreases as the H⁺ concentration decreases. Since the Mn²⁺ concentration does not significantly increase, the conductivity within the crevice does not increase. This continuing low conductivity within the crevice does not allow polarization to occur. Thus the initial increase in pH fixes the solution electrochemistry to one of low potential (at the corrosion potential), low conductivity, and high pH similar to that for Ni dissolution. Comparison of Figures 4-17 and 4-19 and the steady state pH and potential profiles for each case as shown in Figure 4-20 demonstrates again the importance of applying solubility limits on all metal ions at this temperature even when the metal ions are being produced at such a low rate.

The same model case was run with slow reduction kinetics. Figure 4-21 shows the transient concentration and potential profile at the crevice tip using the initial conditions and constants shown in Table 4-14. By comparison with Figure 4-19, it is apparent that the trends are the same. The increase in pH (decrease in H⁺ concentration) fixes the Mn²⁺ concentration thus fixing the conductivity. A direct comparison of the steady state pH and potential profiles developed for the different reduction kinetic parameters is shown in Figure 4-22. The faster kinetics result in a higher pH because more H⁺ ions are consumed or more OH⁻ produced. The corrosion
Figure 4-20. Comparison of steady-state pH and potential profiles developed with Mn dissolution with and without Mn$^{2+}$ solubility limit (fast reduction kinetics).
Table 4-14. Input Parameters for Figure 4-21 (Mn dissolution, Mn$^{2+}$ solubility limit, slow reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm2/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10$^{-5}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10$^{-6}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>Mn</td>
<td>+2</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>MnOH</td>
<td>+1</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^+ + OH^- = H_2O$</td>
<td>1×10^{12}</td>
<td>5</td>
<td>2×10^{11}</td>
</tr>
<tr>
<td>$Mn^{2+} + H_2O = MnOH^+ + H^+$</td>
<td>1.7×10^{3}</td>
<td>109</td>
<td>1.7×10^{-6}</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e^-</th>
<th>k_o</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ni + H_2O \rightarrow 2 H^+ + 2e^- +NiO$</td>
<td>+1</td>
<td>2</td>
<td>7.48×10^{-4}</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$H_2O + e^- \rightarrow H + OH^-$</td>
<td>-1</td>
<td>1</td>
<td>4.55×10^{-8}</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$H^+ + e^- \rightarrow H$</td>
<td>-1</td>
<td>1</td>
<td>2.03×10^{-2}</td>
<td>0.6</td>
<td>H$^+$</td>
<td>1</td>
</tr>
<tr>
<td>$Mn \rightarrow Mn^{2+} + 2e^-$</td>
<td>+1</td>
<td>2</td>
<td>7.56×10^{-6}</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Mn^{2+} + 2 OH^- = Mn(OH)_2$</td>
<td>1×10^8</td>
<td>2.3×10^{-16}</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Flux (dm2/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Length (dm)</th>
<th>Width (dm)</th>
<th>No. of Nodes</th>
<th>Delta X</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.71x10$^{-7}$</td>
<td>31</td>
<td>3.33x10$^{-4}$</td>
<td>573</td>
</tr>
</tbody>
</table>
Figure 4-21. Transient concentration and potential profiles at the crevice tip when Mn dissolves at 1% of the passive current, Mn$^{2+}$ is limited in solubility, and slow reduction kinetics are applied.
Figure 4-22. Comparison of fast and slow reduction kinetics for Mn dissolution with Mn$^{2+}$ solubility limit.
potential is reached in both cases, but the value of the corrosion potential is dependent on these kinetic parameters. The corrosion potential (after H⁺ concentration is decreased) for the fast kinetics is -512 mV and for the slower kinetics it is -800 mV, as previously described.

In conclusion, the electrochemical conditions that develop within the crevice (high pH, low potential, low conductivity) from the dissolution of the potentially more soluble manganese are not sufficient to promote stress corrosion cracking in the crevice (3). If the charged species produced has a much higher or no solubility limit then it may be possible to initiate and propagate stress corrosion cracking. If the species has some solubility limit then its influence may be limited by the initial increase in pH. Further data are necessary in order to evaluate the relative solubilities of the other metallic minor alloying elements so that their effects can be evaluated.

Sulfur

Sulfur is present, in the stainless steels alloys of interest and in Inconel® Alloy 600, in small amounts as shown in Table 4-2. In steels, non metallic materials, such as sulfur, enter the alloy during the deoxidation process when the alloy is being made. It is present in the alloy primarily as a metallic sulfide inclusion, in particular, manganese sulfide (MnS). Manganese sulfide dissolves chemically from the alloy to give manganese species (Mn²⁺ or MnO) and a dissolved sulfur species (S²⁻, HS⁻, or H₂S) (18,19). This chemical dissolution process may play a role in stress corrosion cracking (20). At this pH, temperature, and potential (5.6, 300 °C, and the corrosion potential,
respectively), the dissolution process results in \(\text{H}_2\text{S} \) \((18,19)\). The net reaction can be represented by either

\[
\text{MnS} + 2\text{H}^+ = \text{Mn}^{2+} + \text{H}_2\text{S} \quad (4.20)
\]
or

\[
\text{MnS} + \text{H}_2\text{O} = \text{MnO} + \text{H}_2\text{S} \quad (4.21)
\]

Use of either of these equations results in similar conditions being generated in the crevice. In the modelling presented in this section, the second reaction is used to account for MnS chemical dissolution. The data for this dissolution process are very limited and are available only for low alloy steel. Even for this case, the reported dissolution rates span three orders of magnitude \((\pm)\). In order to account for this variability, the modeling has been carried out using three different dissolution rates.

The electrochemistry of sulfur species is very complex and has not been studied experimentally in high temperature water. Figure 4-23 shows a calculated E-pH
Figure 4-23. Calculated high temperature E/pH diagram.
diagram for sulfur species in 300°C water (22). The important species (for occluded regions in high temperature BWR water) shown on the diagram include $H_2S, HS^-, S^{2-}, S_2O_3^{2-}$, and HSO_4^-. In the calculation of this table the reduction of H_2S has been ignored. Indeed even at room temperature this reduction processes has, in general, been ignored in the formation of E-pH diagrams. Nonetheless, it is well established that at ambient temperatures direct reduction of H_2S can be significant (23,24). Thus, the reduction of H_2S is incorporated into the model, as given by

$$H_2S + e^- \rightarrow HS^- + H$$ \hspace{1cm} (4.22)

This reaction has interesting implications when coupled with the chemical equilibrium between H_2S and HS^-

$$H_2S = HS^- + H^+$$ \hspace{1cm} (4.23)

It becomes apparent that HS^- could be considered a 'catalyst' for H^+ reduction. H_2S is reduced to produce HS^- and HS^- combines with H^+, returning it to reform H_2S. The pH would therefore increase. This pseudo-catalytic effect would be pH dependent and would only be self-sustaining provided a source of H^+ is maintained. Indeed, it may be possible to explain, in part, the enhanced hydrogen production at metal surfaces and hydrogen diffusion into metals seen in the presence of H_2S (for example see reference 28) by this reduction/equilibrium induced catalytic behavior (25).

The kinetics of this reaction are unknown at high temperature so it is necessary to extrapolate knowledge obtained at room temperature. At room temperature the kinetics of H_2S reduction is comparable to or faster than H^+ ion reduction (27).
Therefore, the same reduction kinetic parameters will be chosen (i.e., $\alpha_{H_2S} = 0.6$ and $k_{0,H_2S} = 2.03 \times 10^{-2}$). The resulting H_2S reduction current density would be given by

$$i_{H_2S} = k_{0,H_2S} C_{H_2S} \exp \left\{ -\frac{\alpha_{H_2S} F (E_m - \phi)}{R T} \right\} \quad (4.24)$$

In view of the uncertainty of the data, faster H_2S reduction kinetics (i.e., $k_{0,H_2S} = 2.03 \times 10^{-1}$) will also be evaluated.

Figures 4.24, 4.25, and 4.26, show the transient concentration and potential profiles at the crevice tip for the three H_2S dissolution rates described above assuming the slow, more realistic reduction kinetic parameters. The initial conditions and constants for these figures are given in Table 4.13. In Figure 4.24, the rate of MnS dissolution is large (flux of H_2S is 10^{-10} moles/(dm2sec)) and the concentration of H_2S and HS^- increases to a high value (>10$^{-3}$ M). It becomes necessary at this point to define two types of increase in potential which will be labelled polarization and net polarization. Polarization will be defined as an increase in potential relative to the initial potential (at time equal to zero). Net polarization will be defined as an increase in potential (at time t) above the local corrosion potential (i.e., potential at which total anodic current equals the total cathodic current at each point) in the crevice at that time. The need for such a definition arises because the local environment changes. This change in the local environment can change the rate of electrochemical processes occurring in the crevice. In this case with fast dissolution of MnS and slow reduction kinetics, the resulting steady state potential (-166mV) is polarized relative to the initial potential (-750mV) but no net polarization occurs. The corrosion potential in 5x10$^{-3}$ M H_2S solution is -0.166mV. Since MnS is considered to dissolves chemically, not electrochemically, the production of H_2S in solution results in an extra source of
Table 4.15. Input Parameters for Figures 4.24 through 4.26 (MnS dissolution, H$_2$S reduction, slow reduction kinetics).

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm2/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10$^{-5}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10$^{-6}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>0</td>
<td>2.0x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>HS</td>
<td>-1</td>
<td>2.0x10$^{-6}$</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$^+$ + OH$^-$ → H$_2$O</td>
<td>1x1012</td>
<td>5</td>
<td>2x1011</td>
</tr>
<tr>
<td>H$_2$S = H$^+$ + HS$^-$</td>
<td>1.8x103</td>
<td>1x1010</td>
<td>1.8x10$^{-7}$</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>n</th>
<th>e^-</th>
<th>k_0</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni + H$_2$O → NiO + 2H$^+$ + 2e$^-$</td>
<td>+1</td>
<td>2</td>
<td>7.56x10$^{-4}$</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H$_2$O + e$^- → H$ + OH$</td>
<td>-1</td>
<td>1</td>
<td>4.55x10$^{-8}$</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H$^+$ + e$^- → H$</td>
<td>-1</td>
<td>1</td>
<td>2.03x10$^{-2}$</td>
<td>0.6</td>
<td>H$^+$</td>
<td>1</td>
</tr>
<tr>
<td>H$_2$S + e$^- → HS$ + H$</td>
<td>-1</td>
<td>1</td>
<td>2.03x10$^{-2}$</td>
<td>0.6</td>
<td>H$_2$S</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Flux (dm2/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnS + H$_2$O → MnO + H$_2$S</td>
<td>1x10$^{-10}$ (Fig. 24)</td>
</tr>
<tr>
<td></td>
<td>1x10$^{-11}$ (Fig. 25)</td>
</tr>
<tr>
<td></td>
<td>1x10$^{-12}$ (Fig. 26)</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Length (dm)</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10$^{-7}$</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10$^{-4}$</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-24. Transient concentration and potential profiles at the crevice tip with MnS dissolution (H₂S flux = 10⁻¹⁰ mol·m⁻²·s⁻¹) and slow reduction kinetics.
Figure 4-25. Transient concentration and potential profiles at the crevice tip with MnS dissolution (H_2S flux = 10^{-11} moles/cm2sec) and slow reduction kinetics.
Figure 4-26. Transient concentration and potential profiles at the crevice tip with MnS dissolution (H_2S flux = $10^{-12} \text{ moles/dm}^2\text{sec}$) and slow reduction kinetics.
cathodic reactant. This stimulation of the cathodic process raises the potential. This is further demonstrated by the fact that the potential curve closely follows the H₂S concentration curve in Figure 4-24.

For the medium MnS dissolution rate (flux of H₂S is 10⁻¹¹ moles/(dm²·sec)), a smaller transient concentration and potential profile develops, as shown in Figure 4-25. There is an increase in the H₂S and HS⁻ concentrations. The values do not get as high, which is expected since the dissolution rate is lower. Again, the potential rises because of the cathodic stimulation of H₂S. However, the lower H₂S production rate results in a smaller degree of polarization. Since the local corrosion potential is -540 mV (in 5x10⁻⁵ M H₂S) no net polarization exists.

The transient concentration and potential profiles at the crevice tip for slow MnS dissolution (flux of H₂S is 10⁻¹² moles/(dm²·sec)) are shown in Figure 4-26. The H₂S and HS⁻ concentrations increase in a similar manner as before, but the concentrations reached are even lower because of the lower MnS dissolution rate. The potential in this case does not rise at all. It decreases to approximately -785 mV (the corrosion potential in the local environment). Indeed, comparing this figure to Figure 4-22 shows how little effect MnS dissolution at this low rate has on the local pH and potential at the crevice tip.

A comparison of the steady state potential profiles in the crevice for these three dissolution rates is shown in Figure 4-27. This figure shows another interesting effect of the stimulus of the H₂S reduction reaction. The slope of the potential changes sign in the crevice. Close to the crevice mouth, between 0.9 and 1 in the dimensionless position, the slope of the potential curve is positive. As we move into the crevice, the slope of the curve is negative. Since the reduction of H₂S is dependent on its concentration, and the concentration of H₂S is greater at the crevice tip compared to the
Figure 4-27. Steady-state potential profiles within crevice for each of the MnS dissolution rates (or H₂S fluxes).
mouth, the cathodic reaction stimulation is greater at the tip than the mouth. This raises the potential at the tip more than at the mouth. This effect is most obvious in the top curve of Figure 4-27 for the fastest MnS dissolution rate, as one might expect.

Increasing the kinetics of H$_2$S reduction by changing k_0 from 2.03x10^{-2} to 2.03x10^{-1} causes significant upward shifts in the potential profiles to develop within the crevice. This dramatic effect is shown in Figure 4-28 for H$_2$S flux = 10$^{-10}$ moles/dm2-sec. The initial conditions and constants for faster H$_2$S reduction kinetics are given in Table 4-16. The potential developed within the crevice is significantly higher with fast H$_2$S reduction kinetics. Again there is no net polarization within the crevice. There is also some change in the H$_2$S concentration profile within the crevice as shown in Figure 4-29. As one might expect, the H$_2$S concentration is lower for faster reduction kinetics.

If the fast reduction kinetics is used for all cathodic reactions, including H$_2$S reduction (as described in Section 4.2.3), the effect is dramatic for all dissolution rates. Figure 4-30 shows the steady state potential profiles that develop within the crevice for the three dissolution rates of interest using the initial conditions described in Table 4-17. Comparing this figure with Figure 4-27 shows the effect of fast and slow cathodic reduction kinetics respectively. The steady state potentials for all three dissolution rates shift upward with faster reduction kinetics. The potential for the fastest dissolution rate even goes positive. The change in sign of the potential gradient becomes more significant. Even at the lowest dissolution rate the change in slope is obvious and dramatic. Indeed, it is fortunate that these kinetics are probably unrealistic, because such an drastic increase in potential would probably result in cracking.

In all cases run involving MnS dissolution, once the MnS inclusions are consumed and H$_2$S is no longer being produced, the electrochemical conditions within the
<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>H₂S</td>
<td>0</td>
<td>2.0x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HS</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ = H₂O</td>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
<tr>
<td>H₂S = H⁺ + HS⁻</td>
<td>1.8x10³</td>
<td>1x10¹⁰</td>
<td>1.8x10⁻⁷</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni + H₂O → NiO + 2H⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁴</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>4.55x10⁻⁸</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10⁻²</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
<tr>
<td>H₂S + e⁻ → HS⁻ + H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10⁻¹</td>
<td>0.6</td>
<td>H₂S</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnS + H₂O → MnO + H₂S</td>
<td>1x10⁻¹⁰</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-28. Comparison of steady-state potential profiles developed within the crevice with fast and slow H₂S reduction kinetics (H₂S flux = 10⁻¹⁰ moles/dm²/sec).
Figure 4-29. Comparison of steady-state H\textsubscript{2}S and HS- concentration profiles within the crevice with fast and slow H\textsubscript{2}S reduction kinetics (H\textsubscript{2}S flux = 10^{-10} \text{ moles/cm}^2\text{sec}).
Table 4-17. Input Parameters for Figure 4-30 (MnS dissolution, H$_2$S reduction, fast reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm2/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10$^{-5}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10$^{-6}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10$^{-6}$</td>
<td>1.968x10$^{-6}$</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>0</td>
<td>2.0x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>HS</td>
<td>-1</td>
<td>2.0x10$^{-6}$</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

- $H^+ + OH^- = H_2O$
 - $k_f = 1x10^{1.2}$
 - $k_b = 5$
 - $K_{eq} = 2x10^{1.1}$
- $H_2S = H^+ + HS^-$
 - $k_f = 1.8x10^{3}$
 - $k_b = 1x10^{1.0}$
 - $K_{eq} = 1.8x10^{-7}$

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e^-</th>
<th>k_0</th>
<th>α</th>
<th>ret. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni + H$_2$O → NiO + 2H$^+$ + 2e$^-$</td>
<td>+1</td>
<td>2</td>
<td>7.56x10$^{-4}$</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H$_2$O + e$^-$ → H + OH$^-$</td>
<td>-1</td>
<td>1</td>
<td>1.5x10$^{-6}$</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H$^+$ + e$^-$ → H</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H$^+$</td>
<td>1</td>
</tr>
<tr>
<td>H$_2$S + e$^-$ → HS$^-$ + H</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H$_2$S</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

- None

Wall/Tip Dissolution Reactions

- MnS + H$_2$O → MnO + H$_2$S
 - a. $1x10^{-10}$
 - b. $1x10^{-11}$
 - c. $1x10^{-12}$

General Data

- Length (dm): 0.01
- Width (dm): $1.71x10^{-7}$
- No. of Nodes: 31
- Delta X: $3.33x10^{-4}$
- Temperature (K): 573
- E_m (V): 0
Figure 4-30. Steady-state potential profiles within the crevice where MnS dissolves with H₂S reduction and fast reduction kinetics.
crevice return to the benign conditions that were described in Section 4.2.5 and shown in Figure 4-16. The pH in the solution becomes basic, there is no H₂S or HS⁻ present, and the potential returns to the corrosion potential for deaerated basic solutions (-512 mV for fast reduction kinetics and -800 mV for slow reduction kinetics). Thus, the electrochemistry generated by MnS dissolution is reversible to high pH, low potential conditions.

Therefore, the presence of MnS inclusions is only important for certain limited circumstances. One case when MnS inclusion could be important is when the crevice is initially submerged. It is possible to create conditions within the crevice that could initiate stress corrosion cracking shortly after submersion. If cracks are not initiated during the initial period of time they will not initiate unless stimulated by some other process such as excursions (which will be discussed in the next section). Another time that the presence of MnS inclusions may be of importance is when precracked specimens are used in mechanical testing. These specimens are cracked in air possibly exposing MnS inclusions. Once submerged for testing, these inclusions will dissolve from the crack planes in the precrack region producing H₂S. Production of H₂S may raise the potential at the crack tip which may increase the crack propagation rate. Eventually, this transient increased crack propagation rate would decrease with time as the MnS inclusions in the precrack region dissolve away and the true propagation rate would be reached. Though recognized as a feasible factor in crack growth rates, the scatter in results from variations in MnS distribution makes it difficult to observe such effects (26).
4.2.7 Excursions in Bulk Conductivity

In a BWR, excursions in bulk conductivity can be attributed to two different types of intrusions. One type is the intrusion of seawater through the condenser. If the demineralizer capacity is exceeded, there will be an increase in the bulk chloride ion concentration. Such an intrusion occurred at the Millstone plant in 1972 resulting in Cl- concentrations exceeding 50 ppm, conductivities greater than 100 \(\mu \text{S/cm} \) and a pH of approximately 3.5 in the bulk solution (13). This was obviously a severe, but rare, excursion in bulk conductivity. Another type of intrusion is of demineralizer resins from the reactor vessel clean up loop. The resins release bisulfate ions (H\text{SO}_42-) generally in the form of dilute sulfuric acid. Such an excursion occurred at the Duane Arnold plant in 1975 resulting in conductivities of greater than 50 \(\mu \text{S/cm} \) (13). In both cases the bulk electrochemistry was well within the stress corrosion cracking susceptibility region shown in Figure 4-1. These excursions were extreme cases. Nevertheless, excursions due to resin intrusions are to some extent unavoidable in nuclear power plants. Most excursions result in a conductivity increase and an increase in concentration of some aggressive anion.

In the modelling conducted, excursions of both sodium bisulfate (NaH\text{SO}_4) and sulfuric acid (H\text{2SO}_4) were considered. There was no difference in the results using either sodium sulfate or sulfuric acid since the bulk environment contains dissolved oxygen and oxygen reduction dominates the cathodic processes. In this section, the results for sulfuric acid excursions of one and two orders of magnitude increase in bulk conductivity will be presented. It is important to note that the bisulfate ion is considered an inert conducting ionic species, like chloride (Cl-), in this case. This is
not completely accurate since it is possible and, indeed, likely that HSO$_4^-$ will be reduced within the crevice according to the following reaction

$$\text{HSO}_4^- + 9 \text{H}^+ + 8 \text{e}^- \rightarrow \text{H}_2\text{S} + 4 \text{H}_2\text{O} \quad (4.25)$$

Since the kinetics of this reaction are completely unknown, there is no way to realistically evaluate the effect of this reduction reaction. Once H$_2$S is formed it can be reduced to form HS$^-$ as discussed in Section 4.2.6. If the potential or pH increase (possibly due to HSO$_4^-$ or H$_2$S reduction) H$_2$S may be oxidized back to HSO$_4^-$. This reaction

$$\text{H}_2\text{S} + 4 \text{H}_2\text{O} \rightarrow \text{HSO}_4^- + 9 \text{H}^+ + 8 \text{e}^- \quad (4.25)$$

would then certainly increase the pH. It is likely that the resulting conditions would be some equilibrium between HSO$_4^-$ and H$_2$S dependent on the specific conditions in the crevice. Again it would be extremely difficult to realistically evaluate the effect of these electrochemical reactions since the kinetics of HSO$_4^-$ reduction and H$_2$S oxidation are completely unknown.

The first excursion that will be discussed involves an increase in the bulk conductivity by increasing HSO$_4^-$ concentration at the mouth of the crevice to 2.96 x 10^{-5} M. This intrusion of bisulfate is assumed to be of the form H$_2$SO$_4$ therefore there is also an increase in the H$^+$ concentration at the mouth. The other species in solution are present in concentrations on the order of 10^{-6} M or less. Two situations are considered. The first case is that of just nickel dissolution. Nickel is
assumed to dissolve from the walls and tip of the crevice to form Ni^{2+} at a rate equal to the passive current. The dissolution reaction for this case is given by

$$\text{Ni} \rightarrow \text{Ni}^{2+} + 2 \text{e}^- \quad (4.26)$$

The second case assumes that nickel and manganese dissolve from the alloy. The other alloying elements, such as Fe or Cr, are not incorporated in the model since their ions have solubilities close to or below that of Ni^{2+}. In this case manganese is assumed to dissolve to form Mn^{2+} at a rate proportional to 1% of the passive current (as explained in Section 4.2.6). Nickel is assumed to form NiO and H^{+} at a rate of 99% of the passive current. The dissolution reactions for this case are given by

$$\text{Mn} \rightarrow \text{Mn}^{2+} + 2 \text{e}^- \quad (4.27)$$
$$\text{Ni} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2 \text{H}^+ + 2 \text{e}^-$$

Figures 4-31 and 4-32 give transient crevice tip concentration, pH and potential profiles that develop for nickel dissolution using initial conditions given in Table 4.18. Figures 4-33 and 4-34 show those that develop when manganese dissolution is also included using the initial conditions given in Table 4.19. In both cases the excursion starts at a dimensionless time of 0.0 from initially steady state crevice conditions. This small increase in bulk ion concentrations or conductivity is sufficient to cause drastic changes within the crevice.

For both the Ni^{2+} and Ni^{2+} with Mn^{2+} dissolution cases there is a rapid acidification to a pH of approximately 8 to 8.5. The bisulfate concentration at the crevice tip reaches 8.0x10^{-3} M. The metal ion concentration for both cases is

186
Table 4-18. Input Parameters for Figure 4-31 and 4-32 (Excursion in bulk conductivity, slow reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>2.51x10⁻⁶</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>2.51x10⁻⁶</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>kᵢ</th>
<th>kᵣ</th>
<th>Kₑq</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ → H₂O</td>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
<tr>
<td>Ni²⁺ + H₂O = NiOH⁺ + H⁺</td>
<td>6x10³</td>
<td>1x10⁹</td>
<td>6x10⁻⁶</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>kₒ</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni → Ni²⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁴</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>4.55x10⁻⁸</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10⁻²</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Kₛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni²⁺ + 2 OH⁻ → Ni(OH)₂</td>
<td>1x10¹⁴</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>Eₘ (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-31. Transient HSO_4^-, Ni^{2+} and NiOH^+ concentration profiles during and after an excursion in bulk conductivity (Nickel dissolution). Excursion starts at dimensionless time 0 and ends at dimensionless time 5.4. Slow reduction kinetics were used. The conditions are irreversible within the crevice.
Figure 4-32. Transient pH and potential profiles during and often an excursion. The same conditions hold as in figure 4-31 (Nickel dissolution).
Table 4-19. Input Parameters for Figures 4-33 and 4-34 (excursion in bulk conductivity, Mn dissolution, slow reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>2.51x10⁻⁶</td>
</tr>
<tr>
<td>Mn</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>MnOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.0x10⁻³</td>
<td>2.51x10⁻⁶</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ = H₂O</td>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
<tr>
<td>Mn²⁺ + H₂O = MnOH⁺ + H⁺</td>
<td>6.0x10³</td>
<td>1x10⁹</td>
<td>6.0x10⁻⁶</td>
</tr>
</tbody>
</table>

Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn → Mn²⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁵</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni + H₂O → NiO + 2H⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.48x10⁻³</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>4.55x10⁻⁸</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10⁻²</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn²⁺ + 2 OH⁻ → Mn(OH)₂</td>
<td>1x10⁸</td>
<td>2.30x10⁻¹⁶</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Length (dm)</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-33. Transient HSO_4^-, Na^{2+} and MnOH^+ concentration profiles during and after an excursion in bulk conductivity (Nickel and manganese dissolution). Excursion starts at dimensionless time 0 and ends at dimensionless time 6.3. Slow reduction kinetics were used. Again, the conditions were irreversible within the crevice.
Figure 4-34. Transient pH and potential profiles during and after an excursion in bulk conductivity. This excursion was the same as that in Figure 4-33 (Nickel and Manganese dissolution)
approximately 3×10^{-3} M. A high value of dissolved metal species is reached because the solution becomes very acidic. The potential rises dramatically to a value of -247 mV for Ni$^{2+}$ dissolution and -255 mV for Mn$^{2+}$ dissolution. In both cases these potentials are above the corrosion potentials relative to the local environment; therefore, net polarization does occur. The resulting electrochemistry which rapidly develops in the crevice is highly conducting, low pH, and high potential which is readily capable of initiating and propagating stress corrosion cracking (see Figure 4-1).

After the excursion is over and the bulk electrochemistry is returned to its normal 'ideal' conditions (at a dimensionless time of approximately 5.3 for nickel dissolution and 6.2 for manganese dissolution) there is a small increase in the pH and a slight decrease in the potential. The conditions do not revert to those shown in Figure 4-19 of the previous section. Thus the excursion was irreversible for both the Ni$^{2+}$ and Ni$^{2+}$ with Mn$^{2+}$ dissolution cases. The implications of this non-reversibility are important and will be discussed later in this section.

An increase in the magnitude of the excursion was considered. The bulk conductivity was raised by two orders of magnitude. The concentration of bisulfate was increased to approximately 3×10^{-4} M in the bulk with a corresponding increase in H^+ concentration. Additionally Mn$^{2+}$ dissolution was considered. The initial conditions and constants are given in Table 4-26. A comparison of the pH's and potentials during and after the excursion for this and the previous excursion is presented in Figure 4-35. During the higher excursion the pH is more acidic and the potential is higher (-188 mV). Thus, the conditions developed during a larger excursion are, more severe than during a smaller excursion which is expected. After the excursion is over, at a dimensionless time of 6.0 on Figure 4-36, and the bulk concentrations for all the species are returned to their normal ideal values, the conditions drop close to those
<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion Coefficient (dm^2/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10^{-5}</td>
<td>2.23x10^{-6}</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10^{-6}</td>
<td>2.23x10^{-6}</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10^{-6}</td>
<td>2.51x10^{-6}</td>
</tr>
<tr>
<td>Mn</td>
<td>+2</td>
<td>1.3x10^{-6}</td>
<td>(3.0x10^{-4})</td>
</tr>
<tr>
<td>MnOH</td>
<td>+1</td>
<td>1.3x10^{-6}</td>
<td>0</td>
</tr>
<tr>
<td>HSO_4</td>
<td>-1</td>
<td>2.0x10^{-6}</td>
<td>(3.0x10^{-4})</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^+ + OH^- = H_2O</td>
<td>1x10^{12}</td>
<td>5</td>
<td>2x10^{11}</td>
</tr>
<tr>
<td>Mn^{2+} + H_2O = MnOH^+ + H^+</td>
<td>6.0x10^{3}</td>
<td>1x10^{9}</td>
<td>6.0x10^{-6}</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of</th>
<th>k_o</th>
<th>α</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn -> Mn^{2+} + 2e^-</td>
<td>+1</td>
<td>2</td>
<td>7.56x10^{-5}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni + H_2O -> NiO + 2H^+ + 2e^-</td>
<td>+1</td>
<td>2</td>
<td>7.48x10^{-3}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H_2O + e^- -> H + OH^-</td>
<td>-1</td>
<td>1</td>
<td>4.55x10^{-8}</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>H^+ + e^- -> H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10^{-2}</td>
<td>0.6</td>
<td>H^+</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn^{2+} + 2 OH^- -> Mn(OH)_2</td>
<td>1x10^{8}</td>
<td>2.30x10^{-16}</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

Flux (dm^2/sec)

<table>
<thead>
<tr>
<th>General Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
</tr>
<tr>
<td>Width (dm)</td>
</tr>
<tr>
<td>No. of Nodes</td>
</tr>
<tr>
<td>Temperature (K)</td>
</tr>
<tr>
<td>Delta X</td>
</tr>
<tr>
<td>E_m (V)</td>
</tr>
</tbody>
</table>
Figure 4-35. Comparison of the pH and potential developed during and after excursions of different orders of magnitude in bulk conductivity.
experienced after the previous smaller excursion case. Thus the conditions developed after an excursion are independent of excursion size but are not reversible to original steady state conditions.

Since the hydrogen ion concentration that develops within the crevice after an excursion is high, it is important to evaluate the effect of our choice of the H⁺ reduction kinetic parameter \(k_0 \) (in this case \(k_0 = 2.03 \times 10^{-2} \) for slow reduction kinetics) relative to water reduction kinetics. The kinetic parameter was increased (\(k_0 = 2.03 \times 10^{-1} \)) and decreased (\(k_0 = 2.03 \times 10^{-3} \)) an order of magnitude in order to evaluate the effects. Note, the increased H⁺ kinetics used in this case were approximately a factor of 3 or less than the fast reduction kinetics described in Table 4-21. Figures 4-36 and 4-37 show the transient and steady state pH and potential profiles developed in the crevice during and after an order of magnitude excursion in bulk conductivity. These model experiments were conducted using the initial conditions and constants presented in Table 4-21. The effect of H⁺ reduction kinetics on the potential profile during the excursion is not extreme. Faster H⁺ reduction kinetics result in a lower potential within the crevice but the differences are not large. For every decade increase in \(k_0 \), a 30 mV decrease in potential develops at the crevice tip because of a decrease in conductivity (more H⁺ was consumed).

There was also a significant change in the pH developed at the crevice tip during the excursion. A factor of ten decrease in \(k_0 \) resulted in a factor of 12.7 increase in the H⁺ concentration. Thus, as expected, the slower the kinetics of H⁺ reduction the higher the resulting H⁺ concentration and the lower the pH. Since the H⁺ concentration is higher, the amount of metal ion that can go into solution is greater and the conductivity is higher. The high conductivity that develops causes net polarization to occur relative to the local corrosion potential. Thus, the rise in potential discussed above is due partly
<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>Mn</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>MnOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reactions</th>
<th>k_f</th>
<th>k_b</th>
<th>K_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ = H₂O</td>
<td>1x₁₀¹²</td>
<td>5</td>
<td>2x₁₀¹¹</td>
</tr>
<tr>
<td>Mn²⁺ + H₂O = MnO⁺ + H⁺</td>
<td>6.0x₁₀³</td>
<td>1x₁₀⁹</td>
<td>6.0x₁₀⁻⁶</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Sign</th>
<th>No. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>Ref. spec.</th>
<th>Spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn → Mn²⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x₁₀⁻⁵</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni + H₂O → NiO + 2H⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.48x₁₀⁻³</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>4.55x₁₀⁻⁸</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>2.03x₁₀⁻²</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reactions</th>
<th>k</th>
<th>K_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn²⁺ + 2 OH⁻ → Mn(OH)₂</td>
<td>1x₁₀⁸</td>
<td>2.30x₁₀⁻¹⁶</td>
</tr>
<tr>
<td>Ni²⁺ + 2 OH⁻ → Ni(OH)₂</td>
<td>1x₁₀¹⁴</td>
<td>2.25x₁₀⁻²⁰</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

<table>
<thead>
<tr>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Length (dm)</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (dm)</td>
<td>1.71x₁₀⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x₁₀⁻⁴</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-36. Effect of H⁺ reduction kinetics on the transient pH profile developed within the crevice during and after an excursion.
Figure 4-37. Effect of H^+ reduction kinetics on the transient potential profile developed within the crevice during and after an excursion.
to an increase in the H⁺ ion concentration and therefore an increase in the corrosion potential, and partly to net polarization. The amount of polarization that occurs is dependent on the kinetics of H⁺ reduction. For the lowest value of k₀, slowest kinetics, there is 17 mV of net polarization at the crevice tip. In the other two cases the amount of polarization is less, 1 mV for the medium k₀ and 0.8 mV for the largest k₀.

After the excursion is over, at a dimensionless time of about 6.5, the resulting local electrochemistry developed for the different H⁺ reduction kinetics is also different. The highest value of k₀ results in a more reversible pH and potential, but it is still not completely reversible. The potential drops from -287 mV to -314 mV and the pH rises from 3.95 to 4.09. In contrast, the return to normal bulk concentrations of HSO₄⁻ and H⁺ does not significantly change the pH and potential for slow H⁺ reduction kinetics (small k₀). It is important to note that in each case, the amount of polarization during and after an excursion does not significantly change. Indeed, the net polarization may be the cause of the irreversibility of the electrochemical conditions developed in the crevice. The polarization induces a net cation production rate which is sufficient to maintain the conductive electrochemistry and potential distribution within the crevice. The potential field holds the bisulfate ions inside the crevice (due to ion migration), balancing diffusion even after their bulk concentration is reduced.

The effect of applying fast reduction kinetics to all reduction reactions, as described in Section 4.2.3, demonstrates strongly the important effect of cathodic reaction kinetics. It is important to note that these fast kinetics are probably unrealistic (as described in Section 4.2.3). They are included here only for completeness. Figures 4-38 and 4-39 show the transient concentration and potential profiles developed at the crevice tip during and after two different excursions in bulk conductivity. The excursions differ by one order of magnitude. Thus in Figure 4-38,
Table 4.22. Input Parameters for Figure 4-38 (fast reduction kinetics)

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10⁻⁶</td>
<td>(3.158x10⁻⁵)</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>NOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>kₐ</th>
<th>kᵦ</th>
<th>Kₑq</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ = H₂O</td>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
<tr>
<td>Ni²⁺ + H₂O = NiOH⁺ + H⁺</td>
<td>6x10³</td>
<td>1x10⁹</td>
<td>6x10⁻⁶</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni → Ni²⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁴</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>1.50x10⁻⁶</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H⁺</td>
</tr>
</tbody>
</table>

Solubility Reactions

Ni²⁺ + 2OH⁻ → Ni(OH)_2

k = 1x10¹⁴
Kₛ = 2.25x10⁻²₀

Wall/Tip Dissolution Reactions

Flux (dm²/sec)

none

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>Eₘ (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4-23. Input Parameters for Figure 4-39 (fast reduction kinetics).

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>1.968x10⁻⁶</td>
</tr>
<tr>
<td>Cl</td>
<td>-1</td>
<td>3.8x10⁻⁶</td>
<td>(3.023x10⁻⁴)</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>(3.004x10⁻⁴)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equilibrium Reactions</th>
<th>kf</th>
<th>kb</th>
<th>Keq</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ → H₂O</td>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
<tr>
<td>Ni²⁺ + H₂O → NiOH⁺ + H⁺</td>
<td>6x10³</td>
<td>1x10⁹</td>
<td>6x10⁻⁶</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Electrochemical Reactions</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni → Ni²⁺ + 2e⁻</td>
<td>1</td>
<td>2</td>
<td>7.56x10⁻⁴</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>1.50x10⁻⁶</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>0.671</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solubility Reactions</th>
<th>k</th>
<th>KS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni²⁺ + 2OH⁻ → Ni(OH)₂</td>
<td>1x10¹⁴</td>
<td>2.25x10⁻²⁰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Dissolution Reactions</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10⁻⁷</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10⁻⁴</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>E_m (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-38 Transient concentration and potential profiles developed at the crevice tip during and after an excursion to 3μs/cm in bulk conductivity. Fast reduction kinetics were used.
Figure 4-39 Transient concentration and potential profiles developed at the crevice tip during and after an excursion to 30μs/cm in bulk conductivity. Fast reduction kinetics were used.
the conductivity changes from 0.3 μS/cm to 3 μS/cm and in Figure 4-39 the conductivity changes to 30 μS/cm. In both cases only Ni$^{2+}$ dissolution is allowed to occur. The initial conditions for these figure are shown in Tables 4-22 and 4-23 respectively. In this figure the excursion occurs at a dimensionless time of 7.5. The H$^+$ concentration at the crevice tip does not drastically increase as in the previous case shown in Figure 4-36. Since there is no significant acidification, the metal ion concentration cannot increase. This limits the increase in conductivity that is possible. Without an increase in conductivity there is no polarization in the crevice. The lack of polarization becomes obvious after the excursion ends at dimensionless time. The conditions within the crevice revert to their original values after the bulk conductivity excursion has ended. When Mn$^{2+}$ is allowed to dissolve at 1% of the passive current, the conditions developed in the crevice are only partially reversible for these fast reduction kinetics. Thus, reduction kinetics are important in determining reversibility after excursions in bulk conductivity.

The net effect of excursions in bulk conductivity with more realistic slow reduction kinetics is an increase in conductivity, a decrease in pH (acidification), and an increase in potential with polarization within the crevice. These changes in electrochemistry are irreversible. Even increases in the H$^+$ reduction kinetics result in conditions which are largely irreversible. These electrochemical conditions that develop in the crevice (i.e., high potential, low pH, and high conductivity) during and irreversibly after an excursion could cause initiation and propagation of stress corrosion cracking (see Figure 4-1).

Irreversibility after a bulk conductivity excursion demonstrates that the electrochemical conditions that develop within the crevice are dependent on its past history. The implications of this finding become more obvious when one examines two of the steady state conditions that are reached during this model excursion: first, just before the excursion begins and, second, after an excursion is over. Before an excursion
in bulk conductivity, when the bulk conductivity is 0.3 µS/cm, the pH in the crevice is high (i.e., basic) and the potential is low (at the corrosion potential for that local environment). After the excursion is over and the bulk conductivity is returned to 0.3 µS/cm, the steady state electrochemical condition that develop within the crevice are one of low pH (acidic) and high potential (with polarization from the corrosion potential). Thus for the same boundary conditions there exists two steady state solutions; the solution chemistry predicted within the crevice depends on the history experienced by the crevice.

The existence of multiple steady state solutions has significant consequences for modelers using steady state analysis because their work must either assume that the boundary conditions for the crack, crevice, or pit remain constant over the time of interest, or that the history experienced by the crack, crevice, or pit does not effect the steady state results (i.e., that multiple steady states do not exist). The first assumption may be valid under very controlled conditions, such as laboratory experiments, but are unlikely to exist in practical cases. The assumption that the history experienced by the region of interest does not effect the steady state results must be carefully considered before application. In the case described in this section, this assumption is invalid. Steady state analysis could not be applied to this case because there would be no way for account for the occurrence of such transients. Thus, the existence of multiple steady state solutions must be ruled out before steady state modelling can be applied to any situation.

4.2.8 Hydrogen Water Chemistry

Hydrogen water chemistry is being considered and applied in many BWR plants in an effort to control intergranular stress corrosion cracking by decreasing the dissolved
oxygen concentration. In general, radiolysis of water produces dissolved oxygen (100-300 ppb) and dissolved hydrogen (12-38 ppb) (6). This level of oxygen is sufficient to facilitate stress corrosion cracking of many structural materials in BWR’s. By adding hydrogen (hence hydrogen water chemistry) to the feedwater, the dissolved oxygen concentration is reduced in the reactor coolant water. This reduces the oxidizing capability of the water and the bulk reactor coolant potential, thereby improving the stress corrosion cracking performance of the alloys in this environment. In this section, the application of hydrogen water chemistry to the model crevice is described in order to evaluate its effect on stress corrosion cracking initiation within the crevice.

The bulk conditions used are described in Table 4-24. These data are typical of a plant at 90% power (6). Comparing this table to Table 4-1, it is apparent that the conductivity is the same as for regular water chemistry. The dissolved oxygen concentration is lowered thus decreasing the potential.

<table>
<thead>
<tr>
<th>Table 4-24</th>
<th>Hydrogen Water Chemistry (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (at 25 °C)</td>
<td>< 0.3 µS/cm</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>< 100 ppb</td>
</tr>
<tr>
<td>Potential</td>
<td>-230 mV</td>
</tr>
</tbody>
</table>

Application of hydrogen water chemistry significantly changes the condition that develop within the crevice before, during and after an excursion. Figures 4-40 and 4-41 show a comparison of the steady state pH profiles developed with or without hydrogen water chemistry for Ni²⁺ and Ni²⁺ with Mn²⁺ formation using the initial conditions shown in Tables 4-25 and 4-26, respectively. In all the figures in this section, HWC and NWC represent hydrogen water chemistry and normal water chemistry, respectively. The steady state pH that develops the crevice is not as basic as
Table 4-25. Input Parameters for Figure 4-40.

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.51x10⁻⁶</td>
<td>2.51x10⁻⁶</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.51x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
<tr>
<td>Mn</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>MnOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equilibrium Reactions</th>
<th>k_f</th>
<th>k_b</th>
<th>K_eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ + OH⁻ = H₂O</td>
<td>1x10¹²</td>
<td>5</td>
<td>2x10¹¹</td>
</tr>
<tr>
<td>Mn²⁺ + H₂O = MnOH⁺ + H⁺</td>
<td>1.7x10³</td>
<td>10⁹</td>
<td>1.7x10⁻⁶</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Electrochemical Reactions</th>
<th>sign</th>
<th>no. of e⁻</th>
<th>k₀</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni + H₂O → 2 H⁺ + 2e⁻ + NiO</td>
<td>+1</td>
<td>2</td>
<td>7.48x10⁻⁴</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + e⁻ → H + OH⁻</td>
<td>-1</td>
<td>1</td>
<td>4.5x10⁻⁸</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H⁺ + e⁻ → H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10⁻²</td>
<td>0.6</td>
<td>H⁺</td>
<td>1</td>
</tr>
<tr>
<td>Mn → Mn²⁺ + 2e⁻</td>
<td>+1</td>
<td>2</td>
<td>7.56x10⁻⁵</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solubility Reactions</th>
<th>k</th>
<th>K_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn²⁺ + 2 OH⁻ = Mn(OH)₂</td>
<td>1x10⁸</td>
<td>2.3x10⁻¹⁶</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall/Tip Dissolution Reactions</th>
<th>Flux (dm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

General Data

- Length (dm): 0.01
- Width (dm): 1.71x10⁻⁷
- No. of Nodes: 31
- Delta X: 3.33x10⁻⁴
- Temperature (K): 573
- E_m (V): -0.230
<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm²/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10⁻⁵</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10⁻⁶</td>
<td>2.23x10⁻⁶</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10⁻⁶</td>
<td>2.51x10⁻⁶</td>
</tr>
<tr>
<td>Ni</td>
<td>+2</td>
<td>1.3x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
<tr>
<td>NiOH</td>
<td>+1</td>
<td>1.3x10⁻⁶</td>
<td>0</td>
</tr>
<tr>
<td>HSO₄</td>
<td>-1</td>
<td>2.0x10⁻⁶</td>
<td>(2.961x10⁻⁵)</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

\[
\begin{align*}
H^+ + OH^- &= H_2O \\
Ni^{2+} + H_2O &= NiOH^+ + H^+
\end{align*}
\]

<table>
<thead>
<tr>
<th>(k_f)</th>
<th>(k_b)</th>
<th>(K_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x10^12</td>
<td>5</td>
<td>2x10^11</td>
</tr>
<tr>
<td>6x10^3</td>
<td>1x10^9</td>
<td>6x10^-6</td>
</tr>
</tbody>
</table>

Wall/Tip Electrochemical Reactions

\[
\begin{align*}
Ni \rightarrow Ni^{2+} + 2e^- \\
H_2O + e^- &\rightarrow H + OH^- \\
H^+ + e^- &\rightarrow H
\end{align*}
\]

<table>
<thead>
<tr>
<th>sign</th>
<th>(\text{no. of } e^-)</th>
<th>(k_0)</th>
<th>(\alpha)</th>
<th>ref.</th>
<th>spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>2</td>
<td>7.56x10^-4</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>4.55x10^-8</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>2.03x10^-2</td>
<td>0.6</td>
<td>H+</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Solubility Reactions

\[
Ni^{2+} + 2 OH^- \rightarrow Ni(OH)_2
\]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(K_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x10^14</td>
<td>2.25x10^-20</td>
</tr>
</tbody>
</table>

Wall/Tip Dissolution Reactions

Flux (dm²/sec)

<table>
<thead>
<tr>
<th>General Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10^-7</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>(\Delta x)</td>
<td>3.33x10^-4</td>
</tr>
<tr>
<td>(E_m) (V)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4-40 A comparison of steady-state pH and potential profiles (before excursion) with normal water chemistry (NWC) and hydrogen water chemistry (HWC) (Nickel dissolution)
Figure 4-41 A comparison of steady-state pH and potential profiles (before excursion) with normal water chemistry (NWC) and hydrogen water chemistry (HWC) (Nickel and manganese dissolution)
with normal water chemistry. Indeed, for nickel dissolution alone the pH is virtually that of the bulk solution, approximately 5.7. When 1% of the passive current is assumed to be attributed to manganese dissolution, the pH rises to a value of 6.33. At these pH's the metal ion concentration is very low and no polarization occurs. The potential in both cases drops to the corrosion potential for the alloy relative to the local chemical environment in the crevice. This is different for manganese dissolution with hydrogen water chemistry than with normal water chemistry because the pH does not get as high and, thus, hydrogen reduction is still significant and affects the corrosion potential.

During and after an order of magnitude excursion in bulk conductivity with hydrogen water chemistry the results were considerably different from those for normal water chemistry. Figures 4-42, 4-43, and 4-44 show the steady state and crevice tip transient pH and potential for profiles that develop using the initial conditions described in Table 4-27. Simple Ni²⁺ dissolution and Ni²⁺ with Mn²⁺ dissolution are compared in these figures. Comparing Figure 4-44 with Figures 4-32 and 4-34 one can immediately see the differences. With hydrogen water chemistry the conditions developed within the crevice during an excursion are partially reversible and there is a significant difference between simple Ni²⁺ dissolution and Ni²⁺ with Mn²⁺. In normal BWR water chemistry the results for Ni and Mn are virtually identical. But for hydrogen water chemistry, during the excursion from dimensionless time of 0 to about 7, in Figure 4-43, the pH drops more significantly for Ni dissolution case than for the Mn dissolution case, representing much more acidification (steady state pH is 3.87 for the Ni case and 5.77 for the Mn case). The potential rises more for the case of nickel dissolution only (-460 mV for nickel only and -569 mV for manganese). In the previous section, it was suggested that net polarization was the cause of, or at least indicative of, irreversibility of the crevice electrochemistry after an excursion. In this case, there is only a slight amount of net polarization in the nickel dissolution case.
Table 4-27. Input Parameters for Figures 4-42 through 4-44.

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Diffusion coefficient (dm2/sec)</th>
<th>Initial Concentration (moles/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1</td>
<td>1.76x10$^{-5}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>OH</td>
<td>-1</td>
<td>9.8x10$^{-6}$</td>
<td>2.23x10$^{-6}$</td>
</tr>
<tr>
<td>Na</td>
<td>+1</td>
<td>2.5x10$^{-6}$</td>
<td>2.51x10$^{-6}$</td>
</tr>
<tr>
<td>a. Ni</td>
<td>+2</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>a. NiOH</td>
<td>+1</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>b. Mn</td>
<td>+2</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>b. MnOH</td>
<td>+1</td>
<td>1.3x10$^{-6}$</td>
<td>0</td>
</tr>
<tr>
<td>HSO$_4$</td>
<td></td>
<td>2.0x10$^{-6}$</td>
<td>(2.961x10$^{-6}$</td>
</tr>
</tbody>
</table>

Equilibrium Reactions

<table>
<thead>
<tr>
<th>Species</th>
<th>k$_f$</th>
<th>k$_b$</th>
<th>K$_{eq}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$^+$ + OH$^-$ = H$_2$O</td>
<td>1x1012</td>
<td>5</td>
<td>2x1011</td>
</tr>
<tr>
<td>a. Ni$^{2+}$ + H$_2$O = NiOH$^+$ + H$^+$</td>
<td>6x103</td>
<td>1x109</td>
<td>6x10$^{-6}$</td>
</tr>
<tr>
<td>b. Mn$^{2+}$ + H$_2$O = MnOH$^+$ + H$^+$</td>
<td>1.7x103</td>
<td>1x109</td>
<td>1.7x10$^{-6}$</td>
</tr>
</tbody>
</table>

Electrochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>sign</th>
<th>no. of e$^-$</th>
<th>k$_o$</th>
<th>α</th>
<th>ref. spec.</th>
<th>spec. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Ni \rightarrow Ni$^{2+}$ + 2e$^-$</td>
<td>+1</td>
<td>2</td>
<td>7.56x10$^{-4}$</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H$_2$O + e$^-$ \rightarrow H + OH$^-$</td>
<td>-1</td>
<td>1</td>
<td>4.55x10$^{-8}$</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H$^+$ + e$^-$ \rightarrow H</td>
<td>-1</td>
<td>1</td>
<td>2.03x10$^{-2}$</td>
<td>0.6</td>
<td>H$^+$</td>
<td>1</td>
</tr>
<tr>
<td>b. Ni$^{2+}$ + H$_2$O \rightarrow NiO + 2 H$^+$ + 2 e$^-$</td>
<td>+1</td>
<td>2</td>
<td>7.48x10$^{-4}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b. Mn \rightarrow Mn$^{2+}$ + 2e$^-$</td>
<td>+1</td>
<td>2</td>
<td>7.56x10$^{-5}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Solubility Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k</th>
<th>K$_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Ni$^{2+}$ + 2 OH$^-$ \rightarrow Ni(OH)$_2$</td>
<td>1x1014</td>
<td>2.25x10$^{-20}$</td>
</tr>
<tr>
<td>b. Mn$^{2+}$ + 2 OH$^-$ \rightarrow Mn(OH)$_2$</td>
<td>1x108</td>
<td>2.30x10$^{-16}$</td>
</tr>
</tbody>
</table>

Dissolution Reactions

Flux (dm2/sec)

<table>
<thead>
<tr>
<th>Wall/Tip</th>
<th>Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (dm)</td>
<td>0.01</td>
</tr>
<tr>
<td>No. of Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>573</td>
</tr>
<tr>
<td>Width (dm)</td>
<td>1.71x10$^{-7}$</td>
</tr>
<tr>
<td>Delta X</td>
<td>3.33x10$^{-4}$</td>
</tr>
<tr>
<td>E$_m$ (V)</td>
<td>-0.230</td>
</tr>
</tbody>
</table>
Figure 4-42 Comparison of transient pH and potential profile at the crevice tip during and after an excursion in bulk conductivity for simple Ni dissolution and Ni with Mn dissolution. Hydrogen water chemistry was applied.
Figure 4-43. Comparison of the steady-state pH and potential profiles developed during an excursion of simple Ni dissolution and Ni with Mn dissolution. Hydrogen water chemistry was applied.
Figure 4-44. A comparison of the steady-state pH and potential profiles developed, after an excursion in bulk conductivity, of simple Ni dissolution and Ni with Mn dissolution. Hydrogen water chemistry was applied.
(1.52 \times 10^{-2} \text{ mV}) which is negligible and somewhat more net polarization in the manganese case, approximately 0.82 mV, which is also very small.

The amount of polarization is reflected in the reversibility of the local electrochemistry after the excursion is over (between 7 and 7.5 on the dimensionless time scale). When only nickel dissolution is considered, the local electrochemistry is almost completely reversible. The original pH and potential before the excursion were 5.7 and -745 mV respectively. After the excursion is over the pH and potential return to values of 5.0 and -666 mV respectively, almost complete reversibility. For the case including manganese dissolution, the pH and potential at the crevice tip before the excursion were 6.3 and -784 mV. After the excursion has ended and a new steady state is reached the pH and potential are given by 4.4 and -549 mV, respectively and, thus, the situation is not completely reversible. It is interesting to note that the amount of net polarization at the crevice tip after the excursion is over and steady state is reached are almost identical to that achieved during the excursion (0.81 mV versus 0.82 mV, respectively). When nickel dissolution is considered there is very little net polarization within the crevice and almost complete reversibility after the excursion. In comparison, when manganese dissolution is incorporated there is more net polarization and less reversibility. The trend proposed in the previous section is consistent. But the magnitude of net polarization in these cases seems insignificant and, therefore, it is possible that net polarization alone does not explain irreversibility after bulk conductivity excursions.

The conditions that develop within the crevice using hydrogen water chemistry before, during, and after excursions are significantly different than those that develop in normal BWR water chemistry. The pH does not decrease as much (less acidification) and the potential does not rise as much. There is also less net polarization within the crevice and, therefore, the situation is somewhat more reversible. Thus, because of the higher pH and lower potential, that are maintained, the use of hydrogen water chemistry does
reduce the probability of stress corrosion cracking susceptibility. The system is not immune but somewhat less susceptible.

4.3 COMPARISON OF MODELLING RESULTS WITH EXPERIMENTAL DATA

Ideally, one would like to compare the crevice results presented in this chapter to a range of experimental crevice data. Unfortunately, this type of work is difficult and consequently very little has been conducted in evaluating high temperature aqueous crevice electrochemistry. Only two groups of researchers have tried to experimentally determine the high temperature electrochemistry within occluded regions: Gabetta, et al. (27) and Taylor et al. (28-34).

Gabetta et al. (27) measured the potential inside a growing corrosion fatigue crack in A533B pressure vessel steel exposed to low conductivity (1 µS/cm) water at 288 °C. Standard compact tension specimens were used with varying notch depth. All specimens were precracked to a 5 mm crack length. The corrosion potential was measured at three positions representing the external corrosion potential, the internal (within crack) central corrosion potential, and the internal side value of corrosion potential. The internal corrosion potentials were measured by probes placed in holes drilled on crack plane and on crack path, respectively. Unfortunately, direct comparison with the crevice data presented earlier in this chapter are not advisable since this data is for a crack not a crevice and it shows a large effect of stress ratio.

The data do show a significant difference in potential measured within the crevice (at the surface) and the external potential. For aerated bulk conditions, the potential within the crevice is higher than the external potential. One must question the experimenter's interpretation of these results as being due to the transport of dissolved
oxygen into the crevice. Other modelling work (Turnbull) has shown that oxygen is quickly consumed very close to the crack mouth. Therefore, oxygen would not have an opportunity to be transported into the crack. Other possible explanations for the data include leakage of oxygen into the system at the seals of the Teflon probes used to measure potential, diffusion of oxygen through the Teflon of the probe and then into the crevice, or the chemical dissolution of manganese sulfide inclusions to form H₂S. This H₂S can be reduced, as discussed in Section 4.2.6, which would raise the potential. The H₂S mechanism cannot be proven in this case because there is no information on heat of A533B steel used or even if all the specimens came from the same heat. Since the MnS inclusion size, distribution, and type vary from heat to heat, it is difficult to evaluate how much H₂S could be formed in each case.

Taylor et al. have been working on the experimental modelling of high temperature crevice electrochemistry for the past ten years using a variety of methods (28-34). All of the work has involved a long narrow bore tube made of the alloy of interest (either Inconel® Alloy 600 or type 304 stainless steel). The tube was bent into a U shape and closed at one end (either welded or with the electrode). The tube was typically filled with a highly conducting solution (0.1-0.2 M concentration) of Na₂SO₄ or NaCl which was occasionally acidified to a pH of ~1.5 (at room temperature) using H₂SO₄ or HCl, respectively. The tube was attached to an autoclave and the open end was exposed, generally, to aerated pure water at 290 °C for 5-7 days. Three different types of experiments have been conducted over the ten year period using similar tube design. Each experiment was capable of measuring different things. The steady state concentration and pH profile within the crevice, the transient pH and potential at the crevice tip, or the current distribution within the crevice. A description of the results obtained in each type of experiment is presented later in the section. Before describing the experiments and data in detail, a discussion of the choice of crevice solution will be
presented since the implications of this choice will be referred to frequently in the rest of this section.

The choice of high conductivity 0.1-0.2 M sulfate or chloride solutions as the initial crevice solution has not been explained in any of Taylor's work. The objective may have been to assume the final crevice chemistry following an excursion and to determine the change with time. Since it has been known for some period of time that such concentrations can not develop within actual crevices (35), this choice is peculiar to say the least. It is only possible to generate these conditions if all metallic ions produced are completely soluble (Section 4.2.2 and 4.2.3). At high temperatures the solution must be extremelt acidic for metal ions to have significant solubility (7-12). In Taylor's only experiments involving high purity water the pH went basic, therefore, the metal ion concentration would be very low (28). No description of the conditions necessary to generate the internal conditions has been given. Also, fixing the chemistry uniformly within the crevice initially is unrealistic since the concentration and potential gradients developed within the crevice will greatly affect the electrochemical and transport properties of the system, as can be seen by examining Equations 3-1 and 3-7.

Another question that must be raised is the stability of the passive film in these solutions. It is possible that breakdown of the passive film could occur and may account for some of the peculiar results. Coupling the above problems with the possible existence of multiple steady states dependent on crevice history (described in Section 4.2.7), it is difficult to apply these experimental results directly to the practical problem of crevices in nuclear power plants. It is hoped that future experiments will include filling the crevice tube with pure water and changing the bulk solution to various concentrations and solute species appropriate to excursions in order to develop understanding of such crevices in nuclear power plants. Nonetheless, this experimental work will be evaluated in the rest of the section. Where possible, comparisons will be
drawn or possible alternate explanations of the experimental work will be presented based on the understanding derived from the modelling work presented in this chapter.

The first method used to measure steady state concentrations of dissolved species and pH incorporated freezing the solution, cutting the tube into sections, and testing. All these tests, except one, were carried out in 0.1 M solutions. The experiment was terminated by shutting off the heating mantle and cooling to 100 °C. The model crevice tubes were removed and immersed in liquid nitrogen. The frozen tube was cut into 3 cm sections each containing 30 µL solution. The solution from each section was removed and the pH and metal concentrations were determined at room temperature. The results obtained by this method were generally invalid because changing temperature from 286°C to 25°C drastically changed the equilibrium constants and solubility limits. Later experimental work by Taylor (32) showed that these results were, indeed, not valid, especially those involving sulfate species. The one set of data which has some validity is shown in Figure 4-45. In this test, the tube was filled with deaerated water and exposed to bulk aerated water. As predicted by the model described in this thesis, the solution in the crevice becomes basic (see Figures 4-16 and 4-20).

The second type of experiment attempted in situ (at temperature) measurements of pH and potential at the opposite ends of the bent tube. This allowed for the transient behavior of pH and potential to be determined. Since the pH electrode was located at the end of the tube exposed to the bulk solution (close to the mouth of the crevice), one must question exactly what pH was being measured; certainly not the pH at the crevice tip. Again, the tubes were filled with 0.1-0.2 M solution of Na₂SO₄ and NaCl. This
Figure 4-45. pH of solution in segments from tube filled with deaerated water and exposed to aerated water at 288 C for 1 week. (D. Taylor, G.E.)
invalidates direct comparison of the experimental results with the modelling results. Nevertheless, the knowledge developed by the modelling presented in the chapter can be applied to help understand the results obtained. The pH and potential are measured at different times. After a short period of time acidification takes place, due to polarization, and the potential rises. After two days, the pH begins to rise (eventually becoming close to neutral) but the potential remains high. This high potential is usually associated with acidic polarized conditions.

Taylor's explanation of these results involve the reversibility of the hydrogen electrode. He argues that the dissolved hydrogen concentration is high enough that reversible conditions are reached and dissolved hydrogen is oxidized to produce H⁺ ions as shown below:

\[H \rightarrow H^+ + e^- \quad (4.28) \]

This proposed mechanism does not explain the high potential since the addition of another anodic reaction (with the passive current) would increase the total anodic current within the crevice and thus lower the potential. Taylor does suggest that another cathodic reaction may be involved but no specific reactions were put forth (4.5.5). One possibility is HSO₄⁻ and subsequently H₂S reduction. H₂S is the most likely form of sulfur at the initial pH, temperature and potential. As previously discussed in Section 4.2.6, HSO₄⁻ can be reduced to give H₂S by the following reaction

\[\text{HSO}_4^- + 9 H^+ + 8 e^- \rightarrow H_2S + 4 \text{H}_2O \quad (4.29) \]

The H₂S can then be reduced

\[H_2S + e^- \rightarrow \text{HS}^- + \text{H} \quad (4.30) \]
HS- will revert back to H\textsubscript{2}S in acidic environments

\[\text{H}_2\text{S} = \text{HS}^- + \text{H}^+ \quad (4.31) \]

consuming H+ ions and allowing further H\textsubscript{2}S reduction. As shown in Section 4.2.6, this process raises the potential and brings the pH close to neutral. This process would proceed until HS- became the favored form based on the equilibrium constant and pH or the potential was high enough to oxidize H\textsubscript{2}S by

\[\text{H}_2\text{S} + 4 \text{H}_2\text{O} \rightarrow \text{HSO}_4^- + 9 \text{H}^+ + 8 \text{e}^- \quad (4.32) \]

producing HSO\textsubscript{4}-. Eventually, some steady state will be reached between the above equilibrium and electrochemical reactions. This could explain the rise in pH at such a high potential.

The third type of crevice experiment performed by Taylor was a segmented tube experiment. The tubes were cut into sections and insulated from each other using zirconia spacers. The tubes were assembled using polytetrafluoroethylene (PTFE) sleeves. The sections were electrically connected with wire of the same alloy and the tubes were bent into a U shape. The tubes were again filled with conducting 0.1-0.2 M Na\textsubscript{2}SO\textsubscript{4} or NaCl solutions. Again, because of the high concentration of solution initially put into the tubes, the results cannot be compared to the model nor can they be practically applied. Localized anodic and cathodic zones develop within the experimental crevice which Taylor argues separates H+ reduction and H\textsubscript{2} oxidation regions. This is speculation and such local currents may be associated with breakdown of the passive film or variations in H\textsubscript{2}S concentration. The model does not account for localized breakdown.

In summary, comparison of the modelling results presented earlier in this chapter with experimental data is extremely limited. In one case, comparison is
difficult because the experiments were conducted using corrosion fatigue cracks. In the other case, the choice of initial crevice concentration makes comparison with modelling results impossible in all but one test. Where comparison is possible, model and experiment exhibit the same trends. The understanding developed through the modelling can be used to provide plausible explanations for the experimental crevice work examined.

4.4 SUMMARY

Quantitative predictions depend on the reliability of our knowledge base. Indeed, the quality of the results obtained from the model depends on the quality of the input data. Because of the lack of availability and poor quality of the required input data (electrochemical reaction kinetic parameters, solubility limits, etc.) the results obtained can only be considered as indicating broad trends. Nevertheless, an understanding of high temperature crevice electrochemistry has been developed and will be summarized in this section.

Cathodic reactions occurring on the internal surfaces of the crevice and solubility limits on the partially soluble Ni^{2+} produced within the crevice must be applied in the model. The inclusion of cathodic reactions results in realistic potential and pH development within the crevice. Solubility limits prevent the unrealistic accumulation of metal ions which would artificially increase the conductivity of the solution within the crevice and cause polarization. Thus in order to accurately predict the electrochemical conditions that develop within a crevice, both cathodic reactions and solubility limits must be used.

The engineering implications of the results that have been presented in this chapter (using both cathodic reactions and a solubility limit on Ni^{2+}) are summarized
in Figure 4-46. This is the potential/conductivity curve, indicating the region of stress corrosion cracking susceptibility and immunity, presented in Figure 4-1. On this figure the potential conductivity fields, obtained from the modeling presented in this chapter, are plotted. It must be noted that this curve should be considered qualitative since it was generated for lightly sensitized 304 stainless steel and not alloy 600. Also, since the conductivity in the figure is measured at 25°C, there is some uncertainty in extrapolating the modeling results from 25°C to 300°C.

The first two boxes in Figure 4-46 are presented for reference. They represent the conductivity and potential regimes of the bulk BWR solutions with normal water chemistry and hydrogen water chemistry, respectively. As represented in this figure by box 1, normal water chemistry puts the bulk solution into the stress corrosion cracking regime, especially if the conductivity is sufficiently high. Hydrogen water chemistry (box 2) greatly improves the conditions within the bulk, lowering the cracking susceptibility. As in the previous case, keeping a low conductivity is extremely important in reducing the chances of crack initiation and propagation.

If one considers simple Ni²⁺ dissolution or Ni²⁺ with Mn²⁺ dissolution and the application of solubility limits on these metal ions in solutions, the conditions that develop within the crevice are very different from the bulk conditions. These conditions are shown in Figure 4-46 by box 3. The electrochemistry within the crevice is
Figure 4-46. Typical stress corrosion cracking susceptibility curve with bulk and crevice regions of electrochemistry defined: (3) (1) conditions in bulk solution with normal water chemistry; (2) conditions in bulk solution with hydrogen water chemistry; (3) conditions developed at crevice tip by dissolution of Ni$^{2+}$ or Ni$^{2+}$ with Mn$^{2+}$; (4) potential/conductivity conditions developed as the result of MnS dissolutions; (5) conditions developed in crevice after an excursion in bulk conductivity in normal water chemistry; and (6) conditions developed in crevice after an excursion in bulk conductivity in hydrogen water chemistry.
characterized by high pH, slightly elevated conductivity and very low potential. The potential achieved within the crevice is the corrosion potential for the local crevice environment. No polarization occurs. Thus, the crevice should be immune to stress corrosion cracking. If some soluble metal ion was produced within the crevice these conditions would alter and the conditions developed within the crevice would put it in the stress corrosion cracking susceptibility range.

The chemical dissolution of MnS inclusions to form H₂S has been found to play an important role in the development of local electrochemical conditions within occluded regions. The formation of H₂S by chemical dissolution can, in principle, stimulate the cathodic processes through the reduction of H₂S to form HS⁻. This results in an increase in potential within the crevice without lowering the pH. This is shown by box 4 in Figure 4-46. For the higher MnS dissolution rates, the crevice conditions developed make the region susceptible to stress corrosion cracking. The polarization that occurs is not net polarization. This means that the local anodic and cathodic processes are equal. After the MnS inclusions are consumed and the production of H₂S ceases, the crevice chemistry returns to the benign conditions discussed above (i.e., high pH and low potential). This stimulation of the cathodic processes may explain some experimental crevice measurements.

Excursions in bulk conductivity drastically change the electrochemistry within the crevice. The potential increases, the pH decreases, and the conductivity of the local crevice solution increases. In this case, the net polarization does occur. After the excursion was over, the bulk conductivity was returned to its original value. The electrochemical changes that had developed within the crevice during the excursion did not revert to the benign conditions expected given the low conductivity boundary condition. Thus, the conditions of high potential, low pH, and high conductivity are maintained within the crevice. This is depicted by box 5 in Figure 4-46. These conditions within the crevice are well within the stress corrosion cracking region. This
irreversibility was sensitive to the reduction kinetics chosen, but was completely irreversible for realistic reduction kinetics. There was no significant difference between simple Ni$^{2+}$ dissolution and Ni$^{2+}$ with Mn$^{2+}$ dissolution. Once the crevice becomes net polarized it does not revert to its original conditions. This result has obvious importance in operating BWR reactors but is also important to modeling. Such a system cannot be modeled using a steady state model, since the local electrochemistry is history dependent.

Lowering of the bulk oxygen concentration through the addition of hydrogen (i.e., applying hydrogen water chemistry) reduces the severity of conditions developed within the crevice during and after an excursion (box 6 in Figure 4-46). In the realistic case of Ni$^{2+}$ with Mn$^{2+}$ dissolution, the electrochemical conditions developed within the crevice during an excursion are partially reversible. The resulting electrochemistry puts the crevice on the borderline between stress corrosion cracking susceptibility and immunity. Thus, the crevice exposed to hydrogen water chemistry is less likely to initiate stress corrosion cracking.

This chapter has evaluated the electrochemical conditions that develop within a crevice exposed to typical BWR environments has been evaluated. By varying the material and bulk conditions realistically, the effect of the parameters has been evaluated and the bulk conditions necessary to induce stress corrosion cracking within the crevice have been estimated. By changing certain input parameters, the sensitivity of the results to these input parameters was examined and the need for accurate and reliable input data was clearly demonstrated. Nonetheless, an understanding for high temperature electrochemistry within occluded regions was developed and conclusions can be drawn about cracking in such regions from this information.

The implications of these conclusions for laboratory cracking experiments and BWR safe end crevice cracking are explored in the next chapter.
4.5 REFERENCES

(21) J.D. Atkinson and J.E. Forrest, unpublished data.

Chapter 5

IMPLICATIONS OF CREVICE MODELING FOR BWR RECIRCULATION INLET SAFE END CRACKING

5.1 INTRODUCTION

Since 1969, cracks have been found in BWR feedwater, core spray and recirculation nozzle safe ends initiating from the creviced region in the United States (1,2,3). Similar safe end cracking has also been experienced in Japanese and German nuclear reactors (4). It is believed that this cracking is induced by the crevice chemistry generated in the nozzle safe-end annulus. In this chapter, the understanding and insight developed in Chapter 4 will be used to determine the material and/or operating conditions that could be inducing stress corrosion cracking of the safe-end annulus.

The safe-end crevice of particular interest is that formed in the recirculation inlet nozzle. This safe-end crevice will be described in detail and the limitations of applying modeling results to this safe-end are discussed. Then the implications of the crevice modeling results for laboratory experiments seeking to simulate safe-end cracking will be considered. Finally, the relevance of this to in-reactor safe-end performance will be evaluated.
5.2 DESCRIPTION OF BWR NOZZLE SAFE ENDS

The location of some nozzle safe-ends on a BWR pressure vessel is shown in Figure 5-1. A typical safe end is an Inconel® alloy 600 or stainless steel (type 304, 316, or 316NG) transition piece used to facilitate the welding of the stainless steel piping to the carbon steel pressure vessel nozzles (1). The composition of these alloys is given in Table 5-1. A cross sectional schematic of a typical recirculation inlet safe end annulus or crevice is shown in Figure 5-2. The crevice region shown is 0.6096m (2 ft) long with a width that varies from 5.08x10^-3 m to 1.27x10^-2 m (0.2 in. to 0.5 in.). In addition, supporting pads block 16% to 90% of the circumferential opening at the crevice mouth. The amount of blockage varies from plant to plant. Flow past the crevice opening at the mouth, in the BWR core region, is typically between 0.6 and 1.2 m/s during normal operating conditions. This crevice is typically formed by two different alloys, namely type 304 stainless steel and Inconel® 600.

Stress corrosion cracking initiates near the weld between the safe end and the inlet pipe in the chromium depleted heat affected zone of the safe end (see Figure 5-2) (3). The crack typically propagates from this region into the weld material. It is not necessary that the material be sensitized (i.e., have a chromium content of less than 12% in the heat affected zone) for this type of cracking to occur (3,4). Indeed, there is evidence that even low carbon steels, which are not susceptible to sensitization, will experience cracking in these regions (4,5). In some plants the cracking problem is so severe that all the safe ends of certain systems (i.e., recirculation system) have had to be replaced.

There are three complicating factors which must be considered when applying the modeling results to the BWR inlet safe end annulus or crevice: width of the crevice, flow past the mouth of the crevice, and crevice closure due to support pads. The width of the
Figure 5-1. Location of safe-end on BWR pressure vessel.
Figure 5-2. Schematic of typical BWR recirculation inlet nozzle crevice.
crevice, 6.25x10^{-3} m (0.5"), is large. This width poses a question about the validity of the averaging techniques employed when incorporating electrochemical wall reactions, solubility reactions, and chemical dissolution reactions. Averaging over the width of the crevice assumes that any concentration gradients between the walls of the crevice are small. This may not be exactly true in this case. To model this accurately, the crevice would have to be modelled in two dimensions. Nevertheless, the one-dimensional model will provide understanding of the local electrochemistry and the effect of material choice and operating parameters on the local electrochemistry.

Flow past the opening of the annulus may induce two-dimensional convective motion inside the annulus (6,7,8). Induced flow in the annulus area may result in mixing within the crevice region thus reducing the effective transport length and changing the dimensionality of the problem from one dimension to two dimensions. No existing model can analyze the effect of diffusion, ion migration, and complex reaction processes in two dimensions as well as this possible induced convective flow. In-reactor experience shows that crud does build up within the safe end region crevice region. This implies that mixing within the crevice is not vigorous, certainly at long times. Even if there is some mixing, crud would build up gradually, reducing the effectiveness of this mixing.

The third complicating factor is the presence of the supporting pads at the end of the annulus. These pads may have a large effect on the transport processes occurring inside the annulus depending on the extent of annulus closure. The potential field lines will be concentrated near the pad resulting in an increase potential gradient. This will affect the transport of ions due to ion migration in the pad regions. Also, the convective motion induced by flow past the mouth of the crevice may be considerably dampened, resulting in a decrease in mixing and an increase in the effective transport length.

Experimental work has been carried out at MIT to try and simulate the flow induced in a typical BWR recirculation inlet nozzle crevice by flow past the mouth of
this crevice (8). The work has been carried out using a scaled down plastic model of the crevice region. This plastic model was modified to simulate the closure of the crevice region by supporting pads. Dye was injected at the tip of this model and the amount of time necessary for most of the dye to be swept out of the crevice induced convection was monitored. These experiments showed that crevice should be flushing rapidly. These results conflict somewhat with in-reactor experience of crud buildup within the safe-end crevice region. It is possible that the crevice initially flushes freely, but that after some time crud builds up in this region and gradually reduces the extent of flushing. The numerical model in this thesis has been applied to the limiting case of a stagnant safe-end crevice.

5.3 IMPLICATIONS OF CREVICE MODELING RESULTS FOR INCONEL® ALLOY 600 LABORATORY CRACKING EXPERIMENTS

Much of the Inconel® Alloy 600 safe-end cracking experimental work has been carried out by R. Page and A. McMinn (9-12). The experiments were carried out in creviced and uncreviced conditions. The creviced conditions were obtained by wrapping the slow strain rate test specimens with a layer of graphite cloth and an outer layer of nickel foil. These creviced specimens were exposed for 168 hours (7 days) in the autoclave prior to initiation or straining in order to allow crevice chemistry to develop. In most cases the bulk environment was low conductivity water with varying amount of dissolved oxygen: 200 ppb or 8 ppm O2 for uncreviced specimens and 16 ppm O2 for creviced specimens. The results show that alloy 600 is immune to SCC under normal conditions but cracks when creviced or when excursions in bulk conductivity occur.
Unfortunately, the exact dimensions of the crevice in the experiments are not known and, therefore it is impossible to verify the scaling parameter of the experiment. The experiment should be scaled by L^2/h in order to produce conditions similar to those found in the real safe-end crevice. Also, the composition of the nickel foil and the graphite cloth are not known. Any soluble impurities present would be important in analyzing the results. The modeling results presented in Chapter 4 indicate that polarization, acidification, or an increase in conductivity would not occur unless some completely soluble or reducible species, such as MnS, dissolved from the alloy or an excursion occurred. Since, in these experiments, the crevices slow strain rate specimens were exposed to high purity water the cracking may have been induced by dissolution of some soluble or reducible species from the alloy. The dissolution of MnS may explain the results though there is no way to be sure. If this is the case then the results from these short term laboratory tests may not reflect long term plant conditions for which the MnS would have dissolved.

The dissolution of MnS may have implications in other experimental work. Specimens used in environmentally enhanced cracking testing are often precracked in air exposing fresh metal surface in a tight crack. Once these specimens are placed in their test environment, any MnS inclusions present may dissolve providing an extra cathodic source thus possibly raising the potential into the cracking regime. This would result in an initially high crack propagation rate which would decay after the MnS exposed on the crack surfaces dissolved. As discussed in Chapter 4, there is such variability in specimen to specimen cracking because of the sensitivity of cracking behavior to MnS distribution that definitive conclusions are not possible. It may be wise to expose specimens to the environment of interest for a period of time depending on size and distribution of MnS particles before any load is applied in order to get accurate crack propagation information.
5.4 IMPLICATIONS OF MODELLING RESULTS FOR BWR RECIRCULATION INLET SAFE ENDS

The results presented in Chapter 4 are directly applicable to the BWR recirculation inlet safe-end crevice since the L^2/h for the model crevice and the BWR safe-end are identical. As described in chapter 4, the crevice is predicted to be self protecting under normal operating conditions. The pH should be high and the potential should be low (at the local corrosion potential). Only two of the effects evaluated produced conditions which were sufficient to initiate and propagate stress corrosion cracks within the crevice. The effects were:

1. The chemical dissolution of manganese sulfide (MnS) inclusions to produce H$_2$S.
2. Excursions in bulk conductivity.

The importance of these two phenomena in the development of local electrochemical conditions in a BWR recirculation inlet nozzle crevice will be evaluated in this section.

The dissolution of MnS inclusions to form H$_2$S results in a rise in potential induced by the cathodic stimulus of H$_2$S. This process is limited by the amount of MnS available on the walls and at the tip of the crevice. Once these inclusions are consumed, the conditions within the crevice revert to the high pH, low potential conditions described in the previous paragraph. If cracks do not initiate during the period of time while MnS inclusions are dissolving, it is unlikely that they would initiate unless some other factor induces change within the crevice. Additionally, the driving force for propagation is removed as the inclusions are consumed.
Excursions in bulk conductivity produces electrochemical changes within the model crevice. These electrochemical changes include acidification, increase in conductivity, and a rise in potential. The most significant aspect of this change in local conditions within the crevice is that these are not reversible once the excursion in bulk conductivity is over. Thus, once the crevice is polarized it remains polarized. The probability that this polarization could develop in an operating BWR is low if the EPRI "BWR Water Chemistry Guidelines" are followed (2). The EPRI guidelines are not binding, but are considered good operating practice for BWR's. If these guidelines are followed, the duration of an excursion is strictly limited to a time span shorter than that needed to develop polarization. If no polarization occurs, then the conditions within the crevice should remain benign.

Thus, according to the modeling results presented in this thesis, the conditions within the BWR crevice should remain protective (high pH and low potential). The only other possible sources for changes in crevice electrochemistry are the dissolution of soluble species from the metal or a decrease in temperature (as would occur during an outage). The dissolution of soluble species, even if present in extremely small amounts in the metal, may be sufficient to cause polarization and initiate cracking within the crevice. Since very little solubility data is available, this possibility can not be thoroughly evaluated. A decrease in temperature would increase the solubility of metal ions, thus increasing the conductivity of the solution within the crevice. This buildup of ions would not depend on transport from the bulk in this case. The rate of production of cations in the crevice may be sufficient to increase the conductivity within the time-scale of the plant outage. An increase in conductivity could result in polarization within the crevice, and stress corrosion cracks could initiate. Also, once this chemistry was developed, it might not convert to the high pH, low potential conditions as the temperature is raised. The temperature excursion may be irreversible. In order to accurately assess this phenomena, cracking susceptibility must be established for such a
scenario. Care must be taken that the experimental model is designed to have the same L^2/h value as the in-reactor crevice. An experiment should be carried out in which a system experiences low temperatures characteristic of an outage, and then experiences temperatures characteristic of normal operation. The reversibility or irreversibility of polarization induced by a temperature outage can then be established. After susceptibility is determined, it will then be possible to ascertain whether cracking is induced by chemistry changes created by restricted mass transport within the crevice, or whether it is induced by residual stress, cold working, etc. In addition, solubilities of all alloying elements and impurities must be evaluated to ascertain whether any of these species are sufficiently soluble to cause polarization, and subsequent cracking, within the crevice.
5.5 REFERENCES

Chapter 6

GENERAL DISCUSSION

6.1 DISCUSSION

The goal of this research has been to develop a model to predict the local electrochemistry in cracks and crevices. This goal has been achieved but in applying the model the primary emphasis has been in defining the electrochemistry in crevices. This is of immediate practical concern to BWR's in so far as it impinges on cracking susceptibility. In the process, a significant step forward in the understanding of the electrochemistry of cavities in high temperature waters has been achieved. Much of the understanding developed can be applied directly to cracking phenomena because in most cases the electrochemical conditions developed within cracks are dominated by processes occurring at the walls. This is because the surface area of the walls is so much greater than that of the tip. In general, tip processes can only dominate in situations where the time-averaged current density is many orders of magnitude greater than that of the walls. An exception is when species are produced uniquely at the tip that are not produced on the walls (e.g. the dissolution of MnS to produce a dissolved sulfur species). Thus, in this chapter the most important features illuminated by this modeling work will be briefly highlighted and applied more generally to an understanding of cracking behavior.

It is obvious from this work that the electrochemistry which develops in occluded regions is a complicated function of the many processes (transport and
homogeneous and heterogeneous reactions) occurring within these regions. It has been
the inclusion of these important processes that has resulted in a more complete
understanding of the electrochemical conditions developed within these regions. Many
important features of high temperature local electrochemistry have been brought to
light and have been discussed in previous chapters of this thesis. Some of these
features are "technical" in so far as they indicate requirements for successful
modeling e.g. the interrelation between diffusion and migration, the role of cathodic
reactions internally, and the importance of solubility. However, in conceptual
understanding, the most dramatic of the features exposed by the modeling involve the
possible role of manganese sulfide inclusion dissolution not only in supplying sulfur
species to the crack tip region but also in raising the potential by supplying an
additional source of cathodic reactant. The other most dramatic feature is the
irreversibility of electrochemical conditions within occluded regions which can
develop under appropriate conditions once polarization occurs. Apart from the
practical engineering consequences, the latter raises questions concerning the
application of steady state modeling to this environment since predictions depend on
the history of the system and are not uniquely defined by the steady-state boundary
conditions. It is important to point out that in the model crevice polarization did not
occur unless some solubles species was introduced into the crevice region thereby
increasing the local conductivity. This could occur as a consequence of dissolution of
species from the metal or due to transport of species from the bulk into the crevice
during an excursion. In the absence of soluble species, the crevice was isolated from
the bulk and protected. In part, this was due to the fact that the model crevice was
generically very restricted (i.e., it had a large L^2/h) conditions appropriate to
practical crevice situations in-plant. Nevertheless, it may be possible to polarize
cracks, particularly short cracks, even in low conductivity water. This possibility will be evaluated fully when the model is applied directly to cracks.

In order to discuss the importance of these and other features in relation to local crack electrochemistry, the prevalent understanding of electrochemical aspects cracking in Inconel, stainless steel and low alloy pressure vessel steel will be discussed and re-assessed in the context of the modeling results presented in this thesis.

6.1.1 Inconels and Stainless Steels

In the case of cracking in Inconels and stainless steels in high temperature water no clear distinction can be made as to the detailed mechanism at this point although there is little argument that cracking precedes due to anodic processes. The quantitative crack growth rate model developed by Ford and Andresen (1-3) has been used to characterize both inconels and stainless steels. This work has been the vanguard of predictive modeling in nuclear applications and can be seen as the representation of postulated views about localized electrochemistry and high temperature cracking behavior. Hence, in order to evaluate the current understanding of the electrochemistry within cracks in these materials, it is appropriate to review the assumptions and approximations used in the Andresen/Ford model and compare and contrast with the understanding developed by the rigorous modeling presented in this thesis.

The model developed is based primarily on the film rupture/slip dissolution mechanism of crack advance though the film induced cleavage process, as proposed by Sieradzki and Newman (4), has been incorporated into later versions. The precise mechanism is not critical to this discussion. The crack growth model is dependent on
three basic parameters: (1) the crack tip strain rate, (2) time to rupture of the oxide film, and (3) the repassivation kinetics of the bare metal surface exposed by film rupture. These factors are incorporated into the crack growth model in the form (for simplicity film induced cleavage is not considered)

\[\dot{a} = f(n) (\epsilon_{ct})^n \] \hspace{1cm} (6-1)

\(\epsilon_{ct} \) is the crack tip strain rate; \(n \) represents the decay constant associated with the transient oxidation current given by

\[I = I_0 \left(\frac{t}{t_0} \right)^n \] \hspace{1cm} (6-2)

where \(I_0 \) is the bare surface current density and \(t_0 \) is the time this bare surface current density is maintained before oxide nucleation and growth occurs reducing the current density.

The parameter \(n \) depends on the local potential and anion concentration, as shown in Figures 6-1 and 6-2, and even on the type of anion. Generally, when applying this crack growth model, the material, stresses (can be measured or calculated), and the bulk environment are known. The important unknown factors are the local environment and potential at the crack tip. Hence it is necessary to develop a relationship between the known bulk environment and the crack tip environment.

In recent work, Andresen has developed a method of evaluating this parameter \(n \) through quantitative calculations of crack chemistry (1,2). Crack growth rates calculated using this model have had good agreement with experimental work. For reasons indicated below, this agreement is perhaps surprising. Since application of
Figure 6-1. Variation of parameter "n" with crack tip anion concentration for mid and low alloy steels in various solutions of sulfate, borate, molybdate and chloride at 288°C (3).
Figure 6.2. Variation of parameter "n" with corrosion potential and bulk solution conductivity for sensitized (EPR = 15Ccm⁻²) Type 304 Stainless Steel in water at 288°C (3).
the model will be extended to predicting crack growth rates for situations for which there is little or no data for comparison (i.e., irradiation conditions, fluid velocity, etc.). It is important to examine the assumptions made in quantitatively predicting crack chemistry and potential and the parameter n using the understanding developed in this model.

In the absence of a mathematical model such as described herein, experiments were employed to quantify the electrochemical conditions that developed within a crack (1-3). These experiments are carried out at room temperature using a Teflon® 1T compact tension specimen with a crack slot machined into the specimen at the bottom of the notch. The chemistry was measured within the crack slot using twenty chloride ion sensitive probes. Two types of experiments were carried out. Either the crack plane was flooded with KCl solution or a flux of hydrogen ions was generated at the "crack" tip. In both cases the transport of chloride ions and the steady state concentrations developed in the region were monitored. There are major criticisms of this experimental approach. The assumption that room temperature experiments using Teflon® could simulate a crack in a metallic material at high temperatures is certainly questionable. The temperature change results in differences in equilibrium constant and transport properties. A Teflon® specimen, even with an active hydrogen ion producing tip is unrealistic for two important reasons. The first reason is that the walls of the crack slot are inert. In real cracks, the passive current on the walls will often dominate the chemistry within the crack as described in the first paragraph of this chapter. The second reason is that Teflon® has slip, which is important to the flow characteristics, whereas metals do not have slip, so the simulation of convective transport is also unrealistic.

This experimental work led to a relationship between the bulk concentration of anions and the crack tip anion concentration given by
To use such an experimental set-up to evaluate local electrochemistry, it was critical to establish the uniqueness of this relationship for the range of bulk concentrations, \(\text{H}^+ \) fluxes at the crack tip, and sources on the walls. This was not done and hence, even without any theoretical considerations, the experiments must be considered to be fundamentally inadequate. Furthermore, the theoretical analysis herein indicates that there is no basis for the relationship. The potential drop in the above equation is the potential difference between the crack mouth and the crack tip. Since the value is unknown, a value must be assumed in the Andresen model. The value used is the corrosion potential of stainless steel in deaerated pure water (i.e., = -0.05 V (SHE)). This is a fixed value and does not change. By assuming that the potential within the crack is at the corrosion potential, it is assumed that no polarization occurs within the crack. Andresen assumes that changes in potential are small because the change in pH is assumed to be no larger than 3 units. The results presented in this thesis show that very significant polarization will occur with such a change in pH. Also ignored in this approach is the importance of changes in the bulk conductivity which may affect the degree of polarization in the crack. Based on Equation 6-2, the crack tip anion concentration is limited to approximately 100 times that of the bulk. The results presented in this thesis show that it may be possible to generate higher concentrations in occluded regions.

In Andresen's model, the concentrations generated in the crack are considered to have no bearing on the local potential. The potential is assumed and then the concentration of ions is calculated. This separation is based on the assumption that the corrosion potential within the crack is dependent on the availability of species which
do not alter the local conductivity of the solution in the crack (i.e., oxygen). This completely ignores the reduction of hydrogen ions and the strong effect of hydrogen ions on the conductivity of the solution due to their very high mobility. Once net polarization occurs (i.e., the local anodic processes are greater than the cathodic processes), acidification will result and, since the kinetics of hydrogen ion reduction are dependent on its concentration, this will be a major contributing factor in controlling the potential in the crack.

The fact that the predicted crack growth rates from Andresen's model appear to compare well with experimental crack growth rates is **not** proof that all the component parts of the model and the assumptions made are correct. There is considerable scatter in the experimental data used to access the model and the sensitivity to the uncertainties in each component of the model is unclear. While the model may compare with crack growth data, perhaps fortuitously, the model is inherently flawed in its assumptions and may provide misleading perspectives on the important factors determining local electrochemistry. Nonetheless, this model should be recognized as the first attempt to incorporate crack tip electrochemistry into a model to predict crack growth rates in high temperature waters. It is a future objective to link the model described in this thesis to to crack growth model as a basis for more effective prediction.

6.1.2 Low Alloy Steels

Cracking in low alloy pressure vessel steels has been studied for some time. Though the basic mechanism is unclear, the results of these studies indicate that three parameters acting either separately or in conjunction control the cracking of this material: (1) the water flow rate, (2) water chemistry, and (3) the steel sulfur
content (4). Trends in data and the complexity of the interactions of these parameters can be understood in terms of their effect on controlling the concentration of sulfur species in solution within the crack (5). The flow rate would affect the concentration of species by inducing convective motion within the crack and sweeping out any accumulation of species. The bulk water chemistry could play an important role by providing sulfate ions (from resin intrusions) which could accumulate in the crack due to ion migration. The sulfur content probably plays the most important role because it is a "constant" source for these aggravating sulfur species at the crack tip.

The sulfur in the steel is present in the form of sulfide inclusions, particularly manganese sulfide. These inclusions are soluble and dissolve from the steel to form H_2S (1-8). H_2S and HS^- are the stable form of sulfur in deaerated media. The size, distribution and type of manganese sulfide inclusion plays an important role in the cracking behavior in so far as they influence the effective flux (6-8). Ccmbrade et al. have attempted to incorporate these factors in a simple diffusion based model to obtain a rough estimate of the crack tip sulfur concentrations. This model ignores homogeneous reactions and H_2S reduction and the results obtained will have to be confirmed in future application of the present model. It is suggested that the sulfur species could affect the crack propagation rate in three ways (5):

(1) The dissolution rate of the alloy increases in the presence of sulfur species.

(2) The fracture properties of the film could be altered by the presence of precipitate sulfides on the surface.

(3) The cathodic processes could increase because of delayed crack tip
repassivation.

Thus, the more sulfur present, the more these processes and properties would be affected.

In the modeling work presented in this thesis, the effect of the dissolution of manganese sulfide dissolution on the electrochemistry developed within the model crevice was studied. In this modeling approach, manganese sulfide dissolved chemically to yield H_2S. The reduction of H_2S (a well documented reaction at room temperature) and the equilibrium between H_2S and HS^-S was also considered. The reduction of H_2S has not been previously considered as a process occurring in cracks in high temperature water. Through this modeling it was discovered that the production of H_2S by chemical dissolution would yield an extra cathodic source, thus stimulating the cathodic current. This resulted in an increase in potential inside the crack. This increase in potential and extra cathodic source could be another potential reason for cracking in this material and should be considered in future experimental and modeling work.

6.2 APPLICATION OF MODEL TO CRACK ELECTROCHEMISTRY PREDICTION

The framework for modeling the electrochemistry within cracks is already available. There are two important differences in modeling cracks as opposed to crevices. The first difference is the geometry. A crack is modeled with a trapezoidal geometry whereas the crevice is parallel sided. This difference in geometry causes some dilution effects as the crack opens from the tip to the mouth and must be
accounted for in the transport equations as shown in Equation 3-7. This effect is incorporated into the model.

The second difference is the crack tip. In the crevice the crack tip has the same properties as the crack walls. Anodic reactions occurred at the passive current density and the kinetics of cathodic processes are assumed identical. In a crack, the tip region is more active than the walls because of the effect of localized straining or film rupture. While in the case of stainless steel and Inconel this may not have the dominant effect on the electrochemistry, it is important to account for it correctly until this can be demonstrated for the systems of interest. It is certainly critical for low alloy steels. In the model the crack tip is blunt and has a crack opening that is defined by fracture mechanics (as described in chapter 3). This opening may be significantly larger than the active area of the tip. It is necessary before applying the model presented in this thesis to a cracking problem, to evaluate the averaged properties of the crack tip so that these averaged properties may be used in the model. This averaging will be done over the area of the crack tip and may also be done in time to account for both the fracture of the passive film and repassivation kinetics. Later, it may be necessary to incorporate this time dependence of rupture and repassivation into the model.

The modeling of the crack tip in the case of low alloy steel is straightforward. The crack tip region is important as a source of H$_2$S. Indeed, it may be possible to ignore the production of metal species at the tip since the exposure and dissolution of manganese sulfide inclusions is the dominant effect. Crack advance exposes new manganese sulfide inclusions that dissolve away at some rate until either the inclusion is depleted or new metal surface is exposed by crack advance. Knowing the size and distribution of these inclusions, the dissolution rate of manganese sulfide, and the crack propagation rate will enable averaging of the flux of H$_2$S over the crack tip area.
(CTOD). It may be possible, eventually, to account for any time fluctuations in concentration of H₂S production and concentration within the crack due to the depletion of manganese sulfide inclusions or the exposure of new inclusions by the advance of the crack.

In the case of cracking in stainless steels and inconels, the definition of the crack tip model is not so clear. One must define the area exposed by the intersection of the oxide film at the tip by slip planes. This is the area over which the bare metal current density acts. This current density must be time averaged over the time for film rupture to account for repassivation. The rest of the crack tip region has an oxide film on the surface and the appropriate current density must be used for this region. Thus one would arrive at an averaged current density for the crack tip as shown

\[
\bar{I}_{\text{average}} = \left(\frac{1}{\text{averaged over time between rupture events}} \right) \left(\frac{\text{AREA EXPOSED}}{\text{TOTAL AREA OF CRACK TIP}} \right)
\]

\[
+ \left(\frac{1}{\text{oxide covered surface}} \right) \left(\frac{\text{AREA NOT EXPOSED}}{\text{TOTAL AREA OF CRACK TIP}} \right)
\]

(6.4)

In the case of sensitized materials, there is a region at the crack tip (i.e., near the grain boundary) which has very different properties. The area of this region must be defined and the current from this region must be incorporated into the averaged current density equation shown above. The averaged crack tip current density could then be used in the model.

In conclusion, the application of the model to predicting the electrochemical conditions in cracks should not be difficult. The only complexity lies in the definition of the crack tip region and obtaining the necessary data for electrode reaction kinetics.
on both passivated and possibly bare metal surface. With the aid of experimentalists, sensible judgements can be made concerning the description of the crack tip current. The model developed in this thesis can then be applied in a rigorous manner.
6.3 REFERENCES

(1) P.L. Andresen, paper #566, Corrosion/89, NACE, Houston.

(4) P.M. Scott, Corrosion Science, vol. 25 (819), 1985, pp. 583-606

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 INTRODUCTION

A model which can predict the local electrochemistry within cracks and crevices has been developed. Both transient and steady-state conditions can be calculated. The model incorporates the important transport, electrochemical and chemical processes, and is designed for application to a wide range of alloy systems. It is thereby unique in its combination of fundamental rigor and flexibility. The model can be applied to any crack or crevice in light water reactor environments, provided that the appropriate data are available. Results from modeling of the electrochemistry within crevices are presented. Of particular interest are the results from the study of a crevice in the high temperature, low conductivity aqueous environment characteristic of BWR light water reactor recirculation systems. The extreme conditions characterizing this case produce electrochemical responses not predicted by a consideration of room temperature, high conductivity electrochemistry. The conclusions drawn from this work are presented in Section 7.2.

Analysis of the above results has generated a wide range of ideas for further application of the model, and for complementary experimental work. The most important ideas in these two areas are summarized in Section 7.3.
7.2 CONCLUSIONS

Much information pertinent to both general crevice modeling and a crevice in a BWR environment has been obtained in the course of this work. The most important portions of this information are summarized below.

- Both cathodic reactions and solubility limits on metal ions must be incorporated into the model in order to predict accurate electrochemistry within occluded regions.

- Dissolution of manganese sulfide to form H_2S can, in principle, cause a rise in the potential within the crevice without lowering the pH. This process may explain some experimental crevice measurements.

- Dissolution of completely soluble cations could cause polarization and acidification within the crevice.

- Dissolution of partially soluble metal species, such as Ni^{2+} and Mn^{2+}, does not cause polarization in the crevice. Indeed, the potential reached within the crevice is the corrosion potential for the local crevice environment.

- Excursions in bulk conductivity drastically change the electrochemistry within the crevice causing polarization, acidification and a large
increase in the crevice conductivity. The change is irreversible using realistic reduction kinetics.

- Lowering the bulk oxygen concentration and, therefore, lowering the external metal potential by the addition of dissolved hydrogen does reduce the severity of conditions generated within the crevice during and after an excursion. The conditions developed within the crevice are less likely to induce stress corrosion cracking.

- The BWR recirculation inlet safe end crevice should not crack under normal operating conditions.
 -- Mns inclusions should be already consumed; thus, no H2S will be produced.
 -- Excursions in bulk conductivity are, ideally, very limited in time. An aggressive environment does not have sufficient time to develop under these conditions.

- The results obtained from crevice modeling can be broadly applied to the understanding of cracking behavior.
 -- The understanding of crack electrochemistry as culled from previous quantitative models is flawed for the following reasons
 -- It is based in part on inaccurate experiments.
 -- Assumption of constant potential in the crack (fixed at the corrosion potential) is inaccurate. Modeling has

260
shown that once polarization occurs large changes in potential will follow.

-- Another possible factor in low alloy steel cracking is the stimulation of cathodic processes at the crack tip and subsequent rise in potential resulting from the dissolution of MnS to form H$_2$S.

The model has revealed many important features of electrochemistry in occluded regions exposed to high temperature water. These features are not only of academic interest, but are of practical importance.

7.3 FUTURE WORK

This section is divided into two parts. The first part suggests future applications of the model. The second part indicates experimental work that should be carried out in order to broaden the data base and confirm the predictions made by the model.

7.3.1 Future Applications of the Model

In the future, the model will be applied to realistic cracking problems in nuclear power plants. The details of the application to cracking was discussed briefly in Chapter 5. As suggested, the importance of the crack tip relative to the crack walls should be assessed. Also presented were three cracking problems that should be investigated.
(1) Low alloy (pressure vessel) steels

(2) Stainless steels

(3) Inconels

It is recommended that these three cases be evaluated. It should be noted that the model developed can, in principle, be applied to any cracks or crevices exposed to a liquid inorganic aqueous environment. Hence, the possibilities for future application are great in number.

7.3.2 Suggested Experimental Work

Emphasized throughout this thesis is the importance of accurate and reliable input data. Without accurate input data, accurate predictions of electrochemistry within cracks and crevices cannot be made. In the field of high temperature chemistry and electrochemistry there is a dearth of reliable data and in many cases there are no data at all. Thus, it is recommended that the following data be obtained:

- High temperature polarization data (both anodic and cathodic) in the appropriate media. In the case of anodic polarization data, the appropriate media would include various concentrations of ionic species in order to correctly simulate the chemistry within the occluded region. Modeling like that presented in this thesis, could help evaluate the conditions for experimental testing. Good anodic polarization data are needed for every alloy of interest and, in the case of sensitized materials, for material typical of the grain boundary region. The solution should be deaerated as it is within a cavity. This is especially important for the cathodic polarization data. In both cases, the oxygen
concentration should be monitored in order to better assess the condition of the experiment. Cathodic polarization is needed for H^+, H_2O, O_2, H_2O_2, H_2S, and HSO_4^-, all of which play a critical role in the development of local electrochemistry within cavities.

- High temperature ionic diffusion coefficients

- High temperature equilibrium constants or free energies of formation in the appropriate media and temperature range.

- Solubility limits for all alloying elements and impurities. This information should be obtained as a function of pH and potential. Some precipitation processes are actually oxidation processes and should be evaluated accordingly.

- Potential-conductivity curves delineating regions of stress corrosion cracking susceptibility and immunity (as shown in Figure 4-1) for sensitized and non-sensitized Inconel 600 and other alloys.

In the case of the BWR recirculation inlet safe-end, it has not been experimentally demonstrated that stress corrosion cracking is induced by the buildup of an aggressive environment within the crevice. Unless convective motion dominates within the region, some chemistry change will occur. However, this change may not be necessarily sufficient to induce cracking within the safe-end crevice. In order to establish whether or not a sufficiently aggressive develops, a number of experiments and evaluations must be made under plant conditions. The necessary work includes:
• Accurate crevice experiments using the correct dimensions (i.e., L^2/h), and low conductivity solutions to access whether the conditions developed within the crevice are sufficient to cause cracking.

• The effect of a long term outage on the cracking behavior must be evaluated and the reversibility of the conditions developed during an outage to benign high temperature conditions must be demonstrated.

• Evaluation of the role of manganese sulfide inclusions.

• In-plant assessment of crud buildup in crevices is vital. The extent of crevice blockage and the nature of the crud must be determined.

• The extent of flushing within a realistic safe-end (i.e, with crud blockage) must be determined.

Once these experiments and in-plant observations have been carried out, further recommendations can be made concerning these crevice regions.
Appendix A

RECIPE FOR MODELING OF
THE LOCAL ELECTROCHEMICAL CONDITIONS
IN CRACKS AND CREVICES

The development of an appropriate model to predict the local electrochemistry in cracks and crevices requires a range of information regarding the mass transport and reactions in these regions. In order to focus attention on the detailed requirements for the development and successful application of such a model, a compilation of the necessary information is presented in this appendix (1). This list of necessary information is separated into three sections: information needed or questions that must be answered to physically describe the problem; information concerning the mathematical description of the problem, and necessary data.

Physical Description of Problem

The first step in the modeling of any problem is the physical description of the problem. A detailed understanding of the physical requirements of the problem is necessary for the development of an appropriate model. This physical description includes the following information.

- Is the cavity to be modeled as a crack or a crevice? If the former, is it a stress corrosion crack or a corrosion fatigue crack?
• The alloys involved must be known.

• The geometry of the cavity must be specified.

• Any reactions that could be occurring within the region must be listed. This includes homogeneous equilibrium and radiolysis reaction and heterogeneous electrochemical reactions (both anodic and cathodic), chemical dissolution reactions and precipitation reactions.

• The initial and boundary conditions must be specified (i.e., the bulk environment)

• Fluid flow in the cavity region may occur as a consequence of natural convection, motion of the bulk solution past the mouth of the cavity and cyclic displacement of the cavity walls. An understanding of the convective motion within the occluded region must be developed.

Mathematical Description of Problem

Once a physical description of the problem is known, the mathematical description and model can be developed. This involves using the physical description of the model to decide which mathematical terms must be used and the reasonable approximations that can be made. It must be noted that any assumptions or simplifications made will limit the application of the model. Great care must be taken in order to ensure that the assumption made do not restrict the model application to the point of it being inappropriate for use on the problem which you are trying to model.

The following information is needed:
• Specific geometry must be chosen for the model (i.e., parallel-sided, tapered, or wedge shaped)

• A geometry for the cavity tip region must be specified (i.e., blunt or rounded tip)

• An expression for the width of the crevice as a function of position, and, possibly, time is necessary. In the case of corrosion fatigue modeling, this requires expressions for CMOD (crack mouth opening displacement) and CTOD (crack tip opening displacement) as a function of all necessary parameters (time, frequency, crack length, positions of load line, etc.)

• It is usually necessary to reduce the problem to a one dimensional form. This requires the assumption that the sides of the region are sealed in the through-thickness direction and that the cavity is sufficiently narrow to permit averaging across the width.

• The use of dilute solution theory will greatly simplify the problem. The validity of this assumption should be assessed. In practice, full treatment of concentrated solute theory for a number of species reactions can be prohibitively complex.

• A decision must be made as to whether steady state analysis is sufficient. Attention must be given to the possibility of multiple steady states (as described in this thesis).
• To develop the mathematical model, a choice must be made as to what transport terms should be included and what type of reaction processes should be included in the mass balance formula of the model.

 -- Diffusion and ion migration are always necessary in modeling electrochemistry within cracks or crevices (except in very limited circumstances).

 -- If convection is included as a necessary mode of transport, the velocity of the fluid as a function of time and position must be specified.

• The range homogeneous equilibrium reactions or radiolysis reactions must be identified.

• Heterogeneous reactions occurring on the walls such as electrochemical reaction (both anodic and cathodic are important), chemical dissolution or precipitation must be considered.

• The mathematical equations which describe the above conditions must be developed.

• Boundary conditions must be specified at both the cavity mouth and tip. It is usually reasonable to neglect the moving boundary nature of the system except at very high growth rates in cracks.

• Initial conditions for the cavity must be specified for transient problems.
• A robust numerical scheme is necessary to solve the equations that have been developed. This scheme should be tested using initially simple conditions and applied progressively.

Input Data

A reliable data base is necessary for any model. The more accurate and reliable the input data are, the more 'realistic' the predictions of the model will be. The output of any model is only as good as the assumptions that have been made and the data that is put into the model. The following input data will be needed.

• Bulk chemistry to which the cavity is exposed.

• The composition of the alloy.

• Diffusion coefficients for all dissolved species.

• Rate constants for homogeneous reactions. These can be chosen from equilibrium data and the assumption of fast reaction kinetics.

• Solubility limits for appropriate species. Kinetics for precipitation must be decided but may artificially set to give $\Omega \cong 1$, where Ω is the degree of supersaturation.

• Kinetics of electrochemical reactions including (both anodic and cathodic)
• concentration dependence

• potential dependence

It must be noted that the kinetics of processes occurring on the walls of the cavity may be significantly different from those occurring at the tip, and, therefore, must be specified separately. Also, the kinetics of electrochemical reactions occurring at the tip may be time dependent because the metal at the tip may go through cycles of being bare then building up a film which ruptures repeating the cycle.

• Kinetics of any chemical dissolution processes that may be occurring.

• The rate of production of species by radiolysis as a function of dose rate and type of radiation.

• The possible effect of temperature on any of the above data.

Thus, by following the above recipe it is possible to develop a rigorous and appropriate model for the prediction of the local electrochemical conditions within any occluded region. It cannot be emphasized enough that any approximations or assumptions made will limit the application of the model, and, therefore, must be made with great care. Also, after the model has been developed and is being applied, the quality of the input data will also limit the accuracy of the predictions.

References

Appendix B

IMPLICATIONS OF THE NONLINEARITY OF THE FLUX EQUATION

The flux of the species i in one dimension (ignoring convection) is given by

$$ J_i = -D_i \frac{\partial C_i}{\partial x} - z_i \mu_i F C_i \frac{\partial \phi}{\partial x} \quad (B\cdot1) $$

where

- J_i = flux of species i
- D_i = diffusion coefficient of species i
- C_i = concentration of species i
- z_i = charge of species i
- μ_i = ionic mobility of species i
- F = Faraday's Constant
- ϕ = potential

For the case of dilute solutions, the Nernst-Einstein equation, as described by

$$ D_i = \frac{\mu_i}{RT} \quad (B\cdot2) $$

(where R is the gas constant and T is temperature) holds, and the flux equation becomes

271
\[J_i = - D_i \frac{\partial C_i}{\partial x} - \frac{z_i D_i F}{RT} C_i \frac{\partial \phi}{\partial x} \]
(B - 3)

Many authors use the equation to solve for the steady state concentration profile for non-reacting species, e.g. Na\(^+\) and Cl\(^-\) ions (1-9). Their approach is as follows. First, at steady state, species that are not being produced or consumed in solution or on the walls or tip of the occluded region, have a flux equal to zero. Thus, Equation A-3 becomes

\[0 = - D_i \frac{\partial C_i}{\partial x} - \frac{z_i D_i F}{RT} C_i \frac{\partial \phi}{\partial x} \]
(B - 4)

The diffusion term is brought to the left hand side of the equation and the total equation is divided by the diffusion coefficient, \(D_i\), resulting in the following equation

\[\frac{\partial C_i}{\partial x} = - \frac{z_i F}{RT} C_i \frac{\partial \phi}{\partial x} \]
(B - 5)

The partial derivatives are changed to total derivatives and the equation is divided by \(C_i\) giving

\[\frac{dC_i}{C_i} = - \frac{z_i F}{RT} d\phi \]
(B - 6)

Equation A-6 is integrated with the boundary condition

\[C_i = C_{i,\text{bulk}} \]
\[x = L \]
\[\phi_i = 0 \]
(B - 7)
to yield

\[C_i = C_{i,\text{bulk}} \exp \left(- \frac{z_i F \phi}{R T} \right) \quad (B \cdot 8) \]

Thus, the concentration of non-reacting species is expected to have an exponential dependence on \(\phi \).

The approach is invalid because the implicit assumption in going from Equation A-5 to A-6 is that \(\phi \) is only a function a function of \(x \). In truth, \(\phi \) is a complex function of the concentration of all species in solution and the total current density. It is through these unknowns that \(\phi \) is a function of \(x \). Since \(\phi \) is a function of the concentrations of all species in solution, Equation A-5 is nonlinear and, therefore, one cannot integrate Equation A-6 as is done by these modelers. This is easier to see if one examines the equation for the total current density in solution

\[i = F \sum_j z_j J_j = -F \left[\sum_j z_j D_j \frac{\partial C_j}{\partial x} + \sum_j z_j^2 \frac{F D_j}{R T} C_j \frac{\partial \phi}{\partial x} \right] \quad (B \cdot 9) \]

Rearranging this equation and solving for \(\frac{\partial \phi}{\partial x} \) results in

\[\frac{\partial \phi}{\partial x} = - \left[\frac{i + F \sum_j z_j D_j \frac{\partial C_j}{\partial x}}{F^2 \sum_j z_j^2 D_j C_j} \right] \quad (B \cdot 10) \]
Equation A-9 shows the complex dependence of ϕ on the concentration and the concentration profiles of all the species in solution. This equation can be substituted into equation A-5 giving

$$\frac{\partial C_i}{\partial x} = \frac{z_i F}{RT} C_i \left[i + \frac{F}{RT} \sum_j z_j D_j \frac{\partial C_i}{\partial x} \right]$$

(B-11)

which clearly shows nonlinearity. For the same reason the flux equation is also nonlinear. Thus the Equation A-8 was derived ignoring this nonlinearity and is not generally valid. It may be a reasonable approximation in cases where concentration gradients are not great and the current is primarily carried by ion migration, though this has not been proven.

REFERENCES

(4) C.A. Oster and M.J. Danielson, PNL-5821, 1986

Appendix C

DERIVATION OF AVERAGED CONSERVATION OF MASS EQUATION

To simplify the numerical and computational aspects of solving the coupled set of nonlinear transport equations necessary to model the electrochemistry within cracks and crevices the multidimensional governing mass conservation equation (for a crack or crevice with closed sides) is averaged. In order to average the velocity and the governing mass transport equations. The averaging described in this thesis follows that derived by Turnbull et al (1,2).

VELOCITY

For incompressible fluids, the continuity equation can be given by

\[
\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0 \quad (C\cdot1)
\]

where \(v_x\) = velocity in x direction and \(v_y\) = velocity in y direction, so

\[
\int_{-h}^{h} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \, dy = 0 \quad (\cdot\cdot2)
\]
Using Leibnitz's rule,

\[\frac{\partial}{\partial x} \left(\int_{-h}^{h} v_x \ dy \right) = \int_{-h}^{h} \frac{\partial v_x}{\partial x} \ dy + (v_x)_h \frac{\partial h}{\partial x} + (v_x)_{-h} \frac{\partial h}{\partial x} \quad (C - 3) \]

Substituting Equation C-3 into Equation C-2 yields

\[\frac{\partial}{\partial x} \left(\int_{-h}^{h} v_x \ dy \right) - \frac{\partial h}{\partial x} [(v_x)_h + (v_x)_{-h}] + (v_x)_h - (v_x)_{-h} = 0 \quad (C - 4) \]

From symmetry

\[(v_y)_h = - (v_y)_{-h} \]
\[(v_x)_h = (v_x)_{-h} \quad (C - 5) \]

Therefore

\[\frac{\partial}{\partial x} \left(\int_{-h}^{h} v_x \ dy \right) - 2(v_x)_h \frac{\partial h}{\partial x} + 2(v_x)_h = 0 \quad (C - 6) \]

From the geometry of the model cavity

\[x = r \cos \theta(t) \quad (C - 7) \]
\[y = h_0(t) \ r \sin \theta(t) \]

Using these relationships the velocities can be derived,
\[(v_x)_h = \dot{x} = r \dot{\theta}(t) \sin \theta(t) \]

\[(v_y)_h = \dot{y} = \dot{h}_0(t) + r \dot{\theta}(t) \cos \theta(t) \]

(C - 8)

These velocities can then be substituted into the later part of Equation C-6 to give

\[(v_y)_h - (v_x)_h \frac{\partial h}{\partial x} = \dot{h}_0 + r \dot{\theta}(t) \cos \theta(t) + \tan \theta(t) \left(r \dot{\theta}(t) \sin \theta(t) \right) \]

\[= \dot{h}_0 + \frac{r \dot{\theta}(t)}{\cos \theta(t)} = \dot{h}_0 + \frac{x \dot{\theta}(t)}{\cos^2 \theta(t)} \]

(C - 9)

Since \(\theta \) is very small

\[(v_y)_h - (v_x)_h \frac{\partial h}{\partial x} = \dot{h}_0 + x \dot{\theta}(t) \]

(C - 10)

By defining the average velocity as

\[\bar{v}_x = \frac{1}{2h} \int_{-h}^{h} v_x \, dy \]

(C - 11)

Equation C-6 becomes

\[\frac{\partial}{\partial x} 2h \bar{v}_x - 2 \left(\dot{h}_0 + x \dot{\theta} \right) = 0 \]

(C - 12)

Since \(\dot{h}_0 \) (dot) and \(\dot{\theta} \) (dot) did not vary with \(x \), the Equation C-2 can be integrated to give

the average velocity,
\[\bar{v}_x = \frac{\dot{h}_0 + x \dot{\theta}(t)}{h} \quad (C \cdot 13) \]

MASS CONSERVATION EQUATIONS

In general, the basic mass conservation equation for a dissolved species is given by

\[\frac{\partial C}{\partial t} = - \nabla J + \sum_j R_j \quad (C \cdot 14) \]

where

- \(C \) = concentration
- \(J \) = flux
- \(t \) = time
- \(R \) = homogeneous reaction rate

In a crack or crevice with the sides sealed, this equation is reduced to two dimensions as shown in Figure C-1. The governing equation becomes:

\[\frac{\partial C}{\partial t} = - \frac{\partial J_x}{\partial x} - \frac{\partial J_y}{\partial y} + \sum_j R_j \quad (C \cdot 15) \]

This equation can be averaged over the y dimension as shown below

\[\int_{-h}^{h} \frac{\partial C}{\partial t} dy = - \int_{-h}^{h} \frac{\partial J_x}{\partial x} dy - \int_{-h}^{h} \frac{\partial J_y}{\partial x} dy + \int_{-h}^{h} \sum_j R_j dy \quad (C \cdot 16) \]
Figure C-1. Geometry used by model for (a) crevice and (b) crack.
Now, using Leibnitz's rule,

\[
\frac{\partial}{\partial t} \int_{-h}^{h} C \, dy = \int_{-h}^{h} \frac{\partial C}{\partial t} \, dy + \dot{h} [C_h + C_{-h}]
\]

(C.17)

\[
\frac{\partial}{\partial x} \int_{-h}^{h} J_x \, dy = \int_{-h}^{h} \frac{\partial J_x}{\partial x} \, dy + \frac{\partial h}{\partial x} [(J_x)_h + (J_x)_{-h}]
\]

Rearranging these equations and substituting into Equation C-6 results in

\[
\frac{\partial}{\partial t} (2h\overline{C}) - \dot{h} [C_h + C_{-h}] = - \frac{\partial}{\partial x} (2h\overline{J_x}) + \frac{\partial}{\partial x} [(J_x)_h + (J_x)_{-h}]
\]

\[
- (J_y)_h + (J_y)_{-h} + 2h \sum_j \overline{R_j}
\]

(C.18)

where \(\overline{R_j} \) is the homogeneous reaction rates based on the average concentration and average concentrations and fluxes defined by

\[
\overline{C} = \frac{1}{2h} \int_{-h}^{h} C \, dy
\]

(C.19)

\[
\overline{J_x} = \frac{1}{2h} \int_{-h}^{h} J_x \, dy
\]

From symmetry
\[C_h = C \cdot h \]
\[(J_y)_h = -(J_y)_h \quad (C-20) \]
\[(J_x)_h = (J_x)_h \]

These relationships, given by Equations C-20, are substituted into Equation C-18. The resulting mass transport equation is

\[\frac{\partial}{\partial t}(hC) - hC_h = - \frac{\partial}{\partial x}(hJ_x) + (J_x)_h \frac{\partial h}{\partial x} \]
\[- (J_y)_h + h \sum_j R_j \quad (C-21) \]

The fluxes on the walls of the crack or crevice are given by

\[(J_x)_h = (Cv_x)_h - D \left(\frac{\partial C}{\partial x} \right)_h - \frac{z D F}{R T} \left(C \frac{\partial \phi}{\partial x} \right)_h \quad (C-22) \]
\[(J_y)_h = (Cv_y)_h - D \left(\frac{\partial C}{\partial y} \right)_h - \frac{z D F}{R T} \left(C \frac{\partial \phi}{\partial y} \right)_h \]

Substituting these equations into equations C-21 results in

\[\frac{\partial}{\partial t}(hC) - hC_h = - \frac{\partial}{\partial x}(hJ_x) \]
\[+ \frac{\partial h}{\partial x} \left[(Cv_x)_h - D \left(\frac{\partial C}{\partial x} \right)_h - \frac{z D F}{R T} \left(C \frac{\partial \phi}{\partial x} \right)_h \right] \]
\[- (Cv_y)_h + D \left(\frac{\partial C}{\partial y} \right)_h + \frac{z D F}{R T} \left(C \frac{\partial \phi}{\partial y} \right)_h + h \sum_j R_j \quad (C-23) \]
Since

$$\frac{\partial}{\partial x} \int_{h}^{h} v_x \, dy = 2 \left[(v_x)_{h} \frac{\partial h}{\partial x} - (v_y)_{h} \right]$$

Equation C-23 becomes

$$\frac{\partial}{\partial t} (h\overline{C}) - h\overline{C}_h = - \frac{\partial}{\partial x} (h\overline{J}_x) + \overline{C}_h \frac{\partial}{\partial x} (h\overline{V}_x)$$

$$- \frac{\partial h}{\partial x} \left[D \left(\frac{\partial C}{\partial x} \right)_{h} + \frac{z \overline{D} \overline{F}}{R \overline{T}} \left(\frac{\partial \overline{C}}{\partial x} \right)_{h} \right]$$

$$+ D \left(\frac{\partial C}{\partial y} \right)_{h} + \frac{z \overline{D} \overline{F}}{R \overline{T}} \left(\frac{\partial \overline{C}}{\partial y} \right)_{h} + h \sum_{j} R_j$$

The average flux \overline{J}_x is given by

$$\overline{J}_x = \frac{1}{2h} \int_{h}^{h} \left[C_v_x - D \frac{\partial C}{\partial x} - \frac{z \overline{D} \overline{F}}{R \overline{T}} \left(\frac{\partial \overline{C}}{\partial x} \right) \right] \, dy$$

$$= \overline{C} \overline{V}_x - \frac{D}{2h} \left[\int_{h}^{h} \frac{\partial C}{\partial x} \, dy + \frac{z \overline{D} \overline{F} \overline{C}}{R \overline{T}} \int_{h}^{h} \frac{\partial \overline{C}}{\partial x} \, dy \right]$$

Assuming $\overline{C}(x) = C(x,y)$. Using Leibnitz's rule

$$\frac{\partial}{\partial x} \int_{h}^{h} C \, dy = \int_{h}^{h} \frac{\partial C}{\partial x} \, dy + \frac{\partial h}{\partial x} \left[C_h + C_{-h} \right]$$

283
\[
\frac{\partial}{\partial x} \int_{-h}^{h} \phi \ dy = \int_{-h}^{h} \frac{\partial \phi}{\partial x} \ dy + \frac{\partial h}{\partial x} [\phi_h + \phi_{-h}] \tag{C-28}
\]

So, from symmetry

\[
\bar{J}_x = \bar{C} \bar{v}_x - \frac{D}{2h} \left[\frac{\partial}{\partial x} \int_{-h}^{h} C \ dy - \frac{\partial h}{\partial x} [C_h + C_{-h}] \right]
\]

\[
- \frac{zDF}{2hRT} \bar{C} \left[\frac{\partial}{\partial x} \int_{-h}^{h} \phi \ dy - \frac{\partial h}{\partial x} [\phi_h + \phi_{-h}] \right] \tag{C-29}
\]

or, using the definition for \(\bar{C} \) and \(\bar{\phi} \),

\[
\bar{J}_x = \bar{C} \bar{v}_x - \frac{D}{2h} \left[\frac{\partial}{\partial x} (2h\bar{C}) - 2C_h \frac{\partial h}{\partial x} \right]
\]

\[
- \frac{zDF}{2hRT} \bar{C} \left[\frac{\partial}{\partial x} (2\bar{\phi}) - 2\phi_h \frac{\partial h}{\partial x} \right] \tag{C-30}
\]

Assuming \(C_{i1} = \bar{C} \),

\[
\bar{J}_x = \bar{C} \bar{v}_x - \frac{D}{h} \left[\bar{C} \frac{\partial h}{\partial x} + h \frac{\partial \bar{C}}{\partial x} - \bar{C} \frac{\partial h}{\partial x} \right]
\]

\[
- \frac{zDF}{hRT} \bar{C} \left[\phi \frac{\partial h}{\partial x} + h \phi \frac{\partial \phi}{\partial x} - \phi \frac{\partial h}{\partial x} \right] \tag{C-31}
\]
resulting in

\[\bar{J}_x = \bar{C} \bar{v}_x - D \frac{\partial \bar{C}}{\partial x} - \frac{zDF \bar{C}}{RT} \frac{\partial \phi}{\partial x} \]

(C-32)

Substituting Equation C-31 into Equation C-28 and assuming

\[C_h = \bar{C} \]

\[\frac{\partial h}{\partial x} \left(\frac{\partial \bar{C}}{\partial x} \right) = \frac{\partial h}{\partial x} \left(\frac{\partial \bar{C}}{\partial x} \right) \]

(C-33)

\[\frac{\partial h}{\partial x} \left(\frac{\partial \phi}{\partial x} \right) = \frac{\partial h}{\partial x} \left(\frac{\partial \phi}{\partial x} \right) \]

gives

\[\frac{\partial (h\bar{C})}{\partial t} - hC_h = - \ h \frac{\partial \bar{J}_x}{\partial x} - \frac{\partial h}{\partial x} \left[\bar{C} \bar{v}_x - D \frac{\partial \bar{C}}{\partial x} - \frac{zDF \bar{C}}{RT} \frac{\partial \phi}{\partial x} \right] \]

\[+ C_h \left[h \frac{\partial \bar{v}_x}{\partial x} + \bar{v}_x \frac{\partial h}{\partial x} \right] - \frac{\partial h}{\partial x} \left[\frac{D}{RT} \left(\frac{\partial \bar{C}}{\partial x} \right)_h + \frac{zDF}{RT} \left(\frac{\partial \phi}{\partial x} \right)_h \right] \]

(C-34)

\[+ D \left(\frac{\partial \bar{C}}{\partial y} \right)_h + \frac{zDF}{RT} \left(\frac{\partial \phi}{\partial y} \right)_h + h \sum R_j \]

Simplifying this equation gives
\[
\frac{\partial \bar{C}}{\partial t} = - \frac{\partial \bar{J}_x}{\partial x} + \bar{C} \frac{\partial \bar{v}_x}{\partial x} + \frac{\theta D}{h} \frac{\partial \bar{C}}{\partial y} + \frac{\partial}{\partial y} \left(\frac{\partial \bar{C}}{\partial y} \right) \\
+ \frac{z z_{DF}}{hRT} \bar{C} \frac{\partial \phi}{\partial y} \left(\frac{\partial \phi}{\partial y} \right) + \sum_i R_j
\]
(C-35)

In general the flux normal to the wall is given by

\[
D \frac{\partial \bar{C}}{\partial d_n} + \frac{z z_{DF}}{RT} \bar{C} \frac{\partial \phi}{\partial d_n} = R_{het}
\]
(C-36)

where \(R_{het} = \) rate of heterogeneous reactions
\(d_n = \) direction normal to the surface

Thus,

\[
D \left(\frac{\partial \bar{C}}{\partial y} \right) + \frac{z z_{DF}}{RT} \bar{C} \left(\frac{\partial \phi}{\partial y} \right) = \frac{R_{het}}{\cos \theta} \\
+ \tan \theta \left[D \frac{\partial \bar{C}}{\partial x} + \frac{z z_{DF}}{RT} \bar{C} \frac{\partial \phi}{\partial x} \right]
\]
(C-37)

and, since the angle \(\theta \) is small and assuming \(C = \bar{C} \) Equation C-33 becomes

\[
\frac{\partial \bar{C}}{\partial t} = - \frac{\partial \bar{J}_x}{\partial x} + \bar{C} \frac{\partial \bar{v}_x}{\partial x} + \frac{\theta D}{h} \frac{\partial \bar{C}}{\partial x} \\
+ \frac{\partial}{\partial y} \left(\frac{\partial \bar{C}}{\partial y} \right) \\
+ \frac{\theta z z_{DF}}{hRT} \bar{C} \frac{\partial \phi}{\partial x} + \sum_j R_j + \sum_j \frac{R_{j,het}}{h}
\]
(C-38)

In the text of this thesis \(\bar{C} \) is \(C \).
REFERENCES

APPENDIX D

DIFFERENCING OF GOVERNING TRANSPORT EQUATION

The governing mass transport equation used in this model is given by

\[
\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} + \frac{zDF}{RT} \frac{\partial}{\partial x} \left(\frac{C \partial \phi}{\partial x} \right) - \frac{\partial}{\partial x} (Cv) + \frac{C \partial v_x}{\partial x} \tag{D-1}
\]

\[
+ \frac{\theta D}{h} \frac{\partial C}{\partial x} + \frac{\theta zDF}{hRT} \frac{C \partial \phi}{\partial x} + \sum_j R_j + \sum_j \frac{R_{j,wall}}{h}
\]

With Poisson's equation

\[
\frac{\partial^2 \phi}{\partial x^2} = \frac{F}{\varepsilon} \sum_j z_j C_j \tag{D-2}
\]

and the total current density equation

\[
I = F \sum_j z_j J_j = - F \left[\sum_j z_j D_j \frac{\partial C_j}{\partial x} + \sum_j \frac{z_j D_j F}{RT} C_j \frac{\partial \phi}{\partial x} \right] \tag{D-3}
\]

for the second and first derivatives of \(\phi \), respectively. As described in chapter three, the numerical method of lines is employed which converts the time dependent partial differential equations into time dependent ordinary differential equations by spatial
discretization of the right hand side of Equation D-1. This spatial discretization is the topic of this appendix.

Finite difference techniques are employed to convert the spatial partial differential equations into algebraic equations. This differencing takes the standard form of a central difference for the second order spatial partial derivative,

$$\frac{\partial^2 C}{\partial x^2} = \frac{C_{i+1} - 2C_i + C_{i-1}}{(\Delta x)^2} \quad (D-4)$$

where i is the node number and Δx is the spatial increment. The first order spatial derivatives are differenced using an upwind-difference scheme which ensures convergence (1). Thus, the partial differential equation can be upwinded using a forward difference scheme,

$$\frac{\partial C}{\partial x} = \frac{C_{i+1} - C_i}{\Delta x} \quad (D-5)$$

or a backward difference scheme,

$$\frac{\partial C}{\partial x} = \frac{C_i - C_{i-1}}{\Delta x} \quad (D-6)$$

depending on the coefficient in front of the derivative. Using these differencing techniques, Equation D-1 can be converted to the following ordinary differential equation.
\[
\left(\frac{\partial C_i}{\partial t} \right)_{x=i} = D \left[\frac{C_{i+1} - 2C_i + C_{i-1}}{(\Delta x)^2} \right] - v_i \left(\frac{C_{i+1} - C_i}{\Delta x} \right) \\
+ \frac{zDF}{RT} \left[C_t \sum_i z_i C_i + \left(\frac{C_{i+1} - C_i}{\Delta x} \right) \left(\sum_j \left[F_j D_j \left(\frac{C_{i+1,j} - C_{i,j}}{\Delta x} \right) \right] - i \right) \right] \tag{D-7} \\
+ \frac{\theta D}{h} \left(\frac{C_{i+1} - C_i}{\Delta x} \right) + \frac{\theta zDF}{hRT} C_i \left(\frac{\phi_{i+1} - \phi_i}{\Delta x} \right) \\
+ \sum_k R_{i,k} + \sum_k \frac{R_{i,k,wall}}{h}
\]

In this equation all first order derivatives were upwinded using a forward difference scheme. Equation D-7 was used in LSODI to solve the system of nonlinear differential equations.

REFERENCE

Appendix E

CALCULATIONS AND DATA

HOMOGENEOUS REACTION RATE CONSTANTS

Very few homogeneous reaction rate constants are known, especially at the temperature of interest in this thesis (i.e. ≈ 300°C). Therefore it is necessary to assume reaction rate constants in order to predict the local electrochemistry using this model. The assumption used is based on fast reaction rate kinetics; the reactions are assumed to proceed at a rate which is sufficient to produce equilibrium in a short period of time. The only restriction is that the ratio of the forward reaction rate constant to the backward rate constant must be equal to the equilibrium constant, i.e. for the reaction

\[
A + B \rightleftharpoons C + D \quad (E-1)
\]

where \(A, B, C, D = \text{species} \)

\(k_f = \text{forward rate constant} \)

\(k_b = \text{backward rate constant} \)

the equilibrium constant is equal to
\[K_{eq} = \frac{k_f}{k_b} \quad (E \cdot 2) \]

where \(K_{eq} \) is the equilibrium constant for the reaction shown in Equation E-1. Thus, in order to assume values for the forward and backward rate constants, the equilibrium constant for each reaction must be known.

Equilibrium constants can be calculated from the free energy change for the reaction using the following relationship \((f.2)\)

\[\Delta G^0 = -RT \ln K_{eq} \quad (E \cdot 3) \]

where \(\Delta G^0 \) = free energy change for the reaction,

\(R = \) gas constant,

\(T = \) temperature \((K) \).

The free energy change for the general reaction

\[A + B + ... \xrightleftharpoons[k_i]{k_b} a + b + ... \quad (E \cdot 4) \]

is given by

\[\Delta G^0_{\text{reaction}} = \left(\Delta G^0_{f,a} + \Delta G^0_{f,b} + ... \right) - \left(\Delta G^0_{f,A} + \Delta G^0_{f,B} + ... \right) \quad (E \cdot 5) \]
where $\Delta G_{f,i}^{o}$ is the free energy of formation for species i. Thus the standard free energy change for the reaction is given by the sum of the free energies of formation of the products minus the free energies of formation of the reactants, or

$$\Delta G_{\text{reaction}}^{o} = \sum_{i} \Delta G_{f,i}^{o \text{ products}} - \sum_{i} \Delta G_{f,i}^{o \text{ reactants}} \quad (E \cdot 6)$$

Some free energies of interest are given in Table E-1.

DIFFUSION COEFFICIENTS

There are no measured diffusion coefficients available for ionic species at 300°C. Diffusion coefficients have been calculated using a number of methods. The diffusion coefficients used in this thesis were calculated using the Stokes-Einstein equation, as given by

$$D_{T} = D_{25°C} \frac{\eta_{25°C}}{\eta_{T}} \left(\frac{T}{298.15} \right) \quad (E \cdot 7)$$

where D_{T} = diffusion coefficient at temperature T

η_{T} = viscosity of solution at temperature T

T = temperature

This equation gives a rough estimate of the diffusion coefficients in high temperature waters (3). This equation assumes no change in the ionic radius (ie. hydration of the ion) as temperature increases. Table E-2 the diffusion coefficients used in the
Table E-1. Free Energies of Formation

<table>
<thead>
<tr>
<th>Species</th>
<th>25 °C</th>
<th>300 °C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe (s)</td>
<td>0</td>
<td>2.936</td>
<td>2</td>
</tr>
<tr>
<td>Fe(OH)_{2} (aq)</td>
<td>-116.4</td>
<td>-98.7</td>
<td>1</td>
</tr>
<tr>
<td>Fe^{2+} (aq)</td>
<td>-18.8</td>
<td>-17.3</td>
<td>1</td>
</tr>
<tr>
<td>Fe_{2}O_{3} (s)</td>
<td>-177.4</td>
<td>-159.8</td>
<td>1</td>
</tr>
<tr>
<td>FeOH^+ (aq)</td>
<td>-66.3</td>
<td>-57.2</td>
<td>1</td>
</tr>
<tr>
<td>H^+ (aq)</td>
<td>0</td>
<td>-2.928</td>
<td>2</td>
</tr>
<tr>
<td>H_{2}O (l)</td>
<td>-56.7</td>
<td>-46.8</td>
<td>1</td>
</tr>
<tr>
<td>H_{2}S (aq)</td>
<td>-16.1</td>
<td>-10.6</td>
<td>1</td>
</tr>
<tr>
<td>HS^- (aq)</td>
<td>-6.6</td>
<td>9.7</td>
<td>1</td>
</tr>
<tr>
<td>Mn (s)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mn^{2+} (aq)</td>
<td>-54.5</td>
<td>-55.9</td>
<td>1</td>
</tr>
<tr>
<td>MnO (s)</td>
<td>-86.7</td>
<td>-81.9</td>
<td>1</td>
</tr>
<tr>
<td>MnOH^+ (aq)</td>
<td>-96.8</td>
<td>-88.0</td>
<td>1</td>
</tr>
<tr>
<td>Ni (s)</td>
<td>0</td>
<td>3.186</td>
<td>2</td>
</tr>
<tr>
<td>Ni^{2+} (aq)</td>
<td>-10.9</td>
<td>-9.6</td>
<td>1</td>
</tr>
<tr>
<td>NiOH^+ (aq)</td>
<td>-54.4</td>
<td>-43.0</td>
<td>1</td>
</tr>
<tr>
<td>NiO (s)</td>
<td>-50.6</td>
<td>-44.6</td>
<td>1</td>
</tr>
<tr>
<td>O_{2}</td>
<td>3.9</td>
<td>5.8</td>
<td>1</td>
</tr>
<tr>
<td>OH^- (aq)</td>
<td>-37.6</td>
<td>-17.3</td>
<td>1</td>
</tr>
<tr>
<td>S (s)</td>
<td>-9.5</td>
<td>-4.6</td>
<td>1</td>
</tr>
<tr>
<td>S^{2-} (aq)</td>
<td>11.0</td>
<td>28.7</td>
<td>1</td>
</tr>
<tr>
<td>S_{2}O_{4}^{2-} (aq)</td>
<td>-162.5</td>
<td>-114.6</td>
<td>1</td>
</tr>
<tr>
<td>S_{2}O_{3}^{2-} (aq)</td>
<td>-143.0</td>
<td>-95.2</td>
<td>1</td>
</tr>
<tr>
<td>SO_{4}^{2-} (aq)</td>
<td>-187.5</td>
<td>-138.8</td>
<td>1</td>
</tr>
</tbody>
</table>
Table E-2. Diffusion Coefficients

<table>
<thead>
<tr>
<th>Species</th>
<th>25 °C</th>
<th>300 °C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺</td>
<td>9.34x10⁻⁷</td>
<td>1.76x10⁻⁵</td>
<td>5, 6</td>
</tr>
<tr>
<td>OH⁻</td>
<td>5.23x10⁻⁷</td>
<td>9.8x10⁻⁶</td>
<td>5, 6</td>
</tr>
<tr>
<td>Na⁺</td>
<td>1.35x10⁻⁷</td>
<td>2.5x10⁻⁶</td>
<td>5, 6</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>2.03x10⁻⁷</td>
<td>3.8x10⁻⁶</td>
<td>5</td>
</tr>
<tr>
<td>Ni²⁺</td>
<td>0.69x10⁻⁷</td>
<td>1.3x10⁻⁶</td>
<td>5</td>
</tr>
<tr>
<td>Mn²⁺</td>
<td>0.681x10⁻⁷</td>
<td>1.3x10⁻⁶</td>
<td>6</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>1.065x10⁻⁷</td>
<td>2.0x10⁻⁶</td>
<td>6</td>
</tr>
</tbody>
</table>
modeling presented in this thesis (note: \(\eta = 2.18 \text{ lbm/hr ft} \) and \(\eta = 0.223 \text{ lbm/hr ft} \).

SOLUBILITY LIMITS

The solubility reaction, which is assumed to take place on the walls of the cavity region, is given by

\[
M^{2+} + 2 \text{OH}^- \rightarrow MnO + H_2O \quad (E\cdot8)
\]

or

\[
M^{2+} + 2 \text{OH}^- \rightarrow Mn(OH)_2 \quad (E\cdot9)
\]

Thus the solubility of the metal ion can be expressed as

\[
K_s = [M^{2+}][\text{OH}^-]^2 \quad (E\cdot10)
\]

where \(K_s \) is the solubility product of the reaction. Some standard solubility limits are shown in Table E-3.
<table>
<thead>
<tr>
<th>Species</th>
<th>K_S at 300 °C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$^{2+}$</td>
<td>2.25×10^{-20}</td>
<td>2</td>
</tr>
<tr>
<td>Mn$^{2+}$</td>
<td>2.3×10^{-16}</td>
<td>2</td>
</tr>
</tbody>
</table>
CONDUCTIVITY

The conductivity of the solution is dependent on the amount of ions and type of ions present in the solution. The conductivity can be given by

\[\kappa = \frac{F^2}{RT} \sum_i z_i^2 D_i C_i \] \hspace{1cm} (E \cdot 11)

where

- \(\kappa \) = conductivity of the solution,
- \(z_i \) = the charge of species \(i \)
- \(F \) = Faraday's constant
- \(D_i \) = diffusion coefficient of species \(i \)
- \(C_i \) = concentration of species \(i \)
- \(R \) = gas constant
- \(T \) = temperature

This equation assumes dilute solution theory.
REFERENCES

Appendix F

SAMPLE SYSTEM OF EQUATIONS

In this appendix, a sample system of equations will be presented in order to give a better understanding for the nature of the governing equations (i.e., Equations 3-7). A simple system of species will be considered consisting of six species: H⁺, OH⁻, Na⁺, Cl⁻, Ni²⁺, and NiOH⁺. The geometry of the cavity considered will be a crevice in order to simplify the equations somewhat. The following homogeneous and precipitation reactions will be considered

(1) H⁺ + OH⁻ = H₂O
(2) Ni²⁺ + H₂O = NiOH⁺ + H⁺
(3) Ni²⁺ + H₂O = NiO + H₂O

The resulting set of governing equations is given by

\[
\frac{\partial C_H^+}{\partial t} = \frac{\partial^2 C_H^+}{\partial x^2} + \frac{Z_{H^+} D_{H^+} F}{RT} \frac{\partial}{\partial x} (C_{H^+} \frac{\partial \phi}{\partial x})
\]

\[
- k_{f,1} C_{H^+} C_{OH^-} + k_{b,1}
\]

\[
+ k_{f,2} C_{Ni^{2+}} - k_{b,2} C_{H^+} C_{NiOH^-}
\]

(F - 2)
\[\frac{d\text{COH}^-}{dt} = D_{\text{OH}} \frac{d^2\text{COH}^-}{dx^2} + Z_{\text{OH}} D_{\text{OH}} F \frac{\partial}{\partial x} \left(\text{COH}^- \frac{\partial \phi}{\partial x} \right) - k_{f,1} \text{CH}^+ \cdot \text{COH}^- + k_{b,1} \] (F-3)

- \[\frac{k_{f,3}}{h} \left(\text{C}^{2+}_{\text{Ni}} \cdot \text{COH}^- - k_{s,3} \right) \]

\[\frac{d\text{Na}^+}{dt} = D_{\text{Na}^+} \frac{d^2\text{Na}^+}{dx^2} + Z_{\text{Na}^+} D_{\text{Na}^+} F \frac{\partial}{\partial x} \left(\text{Na}^+ \frac{\partial \phi}{\partial x} \right) \] (F-4)

\[\frac{d\text{Cl}^-}{dt} = D_{\text{Cl}^-} \frac{d^2\text{Cl}^-}{dx^2} + Z_{\text{Cl}^-} D_{\text{Cl}^-} F \frac{\partial}{\partial x} \left(\text{Cl}^- \frac{\partial \phi}{\partial x} \right) \] (F-5)

\[\frac{d\text{Ni}^{2+}}{dt} = D_{\text{Ni}^{2+}} \frac{d^2\text{Ni}^{2+}}{dx^2} + Z_{\text{Ni}^{2+}} D_{\text{Ni}^{2+}} F \frac{\partial}{\partial x} \left(\text{Ni}^{2+} \frac{\partial \phi}{\partial x} \right) - k_{f,2} \text{Ni}^{2+} + k_{b,2} \text{CH}^+ \cdot \text{CNiOH}^- \] (F-6)

- \[\frac{k_{f,3}}{h} \left(\text{C}^{2+}_{\text{Ni}} \cdot \text{COH}^- - k_{s,3} \right) \]

\[\frac{d\text{NiOH}^+}{dt} = D_{\text{NiOH}^+} \frac{d^2\text{NiOH}^+}{dx^2} + Z_{\text{NiOH}^+} D_{\text{NiOH}^+} F \frac{\partial}{\partial x} \left(\text{NiOH}^+ \frac{\partial \phi}{\partial x} \right) + k_{f,2} \text{Ni}^{2+} - k_{b,2} \text{CH}^+ \cdot \text{CNiOH}^- \] (F-7)

Equations F-2 through F-7 represent the set of governing equations used to solve for the unknown concentrations.
This page is intentionally blank.
APPENDIX G

PROGRAM

In this appendix the program used to obtain the data presented in Chapter 4 is presented. The first section contains the program listing. The following two sections contain a sample input and a sample output from the program. It should be noted that the crack model has been developed separately and the two programs are presently being merged together to form a localized chemistry model package which is 'user friendly'. This package and an accompanying users manual will be available in the next few months.
PROGRAM LISTING
PROGRAM CREVICE

DESCRIPTION

DIRENP4 IS A CODE WHICH MODELS THE LOCAL CHEMISTRY WITHIN A STRESS CORROSION CRACK EXPOSED TO AN AQUEOUS ENVIRONMENT. THE DRIVING ROUTINE DIRENP CALLS ALL THE NECESSARY SUBROUTINES TO INPUT THE DATA, SOLVE THE PROBLEM, AND OUTPUT THE RESULTS AND ANY ERROR MESSAGES. IN DIRENP NO POTENTIAL IS USED IN THE MIGRATION TERM. POISSON'S EQUATION AND AN EQUATION FOR THE TOTAL CURRENT IS USED INSTEAD. THE POTENTIAL IS CALCULATED AND THEN USED TO CALCULATE THE TIP AND WALL CURRENTS.

DESCRIPTION OF SUBROUTINES IN DIRENP3

ADDAP CALLED BY LSODI. SEE LSODI WRITEUP FOR COMPLETE DESCRIPTION. (FOR PARALLEL SIDED CRACK OR CREVICE)

LSODI THIS SOLVER WAS DEVELOPED AT LAWRENCE LIVERMORE LABS. BY ALAN HINDMARSH AND JEFF PAINTER. IT CONSISTS OF A SET OF ROUTINES THAT CAN SOLVE A SET OF STIFF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS USING GEARS METHOD. IT CAN SOLVE A GENERAL PROBLEM OF THE FORM:

\[a_{i,j} \mathbf{Y}\dot{\mathbf{Y}}(t) = \mathbf{g}(i,j, \mathbf{Y}(t)) \]

OUT1 OUTPUTS ALL THE INITIAL INPUT DATA.

OUT2 OUTPUTS ALL THE INITIAL LSODI DATA.

OUT3 OUTPUTS CONCENTRATIONS AND POTENTIAL EVERY OUTPUT TIME.

REACT SETS UP HOMOGENOUS REACTION TERMS

RESP CALLED BY LSODI. SETS UP RESIDUAL EQUATIONS FOR SOLUTION. SEE LSODI WRITEUP FOR MORE COMPLETE DESCRIPTION. (FOR PARALLEL SIDED CRACK OR CREVICE)

SREACT SETS UP SOLUBILITY REACTION TERMS.

TIP1 CALCULATES THE INITIAL CURRENT AND POTENTIAL DISTRIBUTION USING BISECTION.

TREACT SETS UP TIP REACTION TERMS.

WREACT SETS UP WALL REACTION TERMS.

YINIT INITIALIZES THE UNKNOWN ARRAY.

VAX VMS FILES CALLED:

SET.FIL: CONTAINS THE NAMES OF THE INPUT, OUTPUT, AND PLOT FILES (CHANNEL 5, 6 AND 8, RESPECTIVELY)
VARIABLES:

- **TOL** ABSOLUTE TOLERANCE FOR LSODI
- **ARF** ARRAY OF SPECIES NAMES
- **F** STRESS INTENSITY FACTOR FOR TRAP. CRACK
- **CM** CONSTANT FOR TRAP. CRACK (DUGDALE)
- **CH** POISONER RATIO
- **CON2.3** CONSTANT FOR TRAP. CRACK (DUGDALE)
- **CTRL** TELLS TYPE OF CRACK
 - PARALLEL
 - TRAPEZIODAL
- **D** DELTA STRESS INTENSITY FACTOR TRAP. CRACK (DUGDALE)
- **DX** " " " " (PARALLEL)
- **D2C2** CONSTANT TRAP. CRACK (DUGDALE)
- **DIF** DIFFUSION COEFFICIENT
- **DCON** DIFFUSION COEFFICIENT DIVIDED BY DX^2
- **DSR** DOSE RATE (RAD/S)
- **DH** DOSE RATE FOR HIGH-LET PARTICLES (RAD/S)
- **E** YOUNG'S MODULUS (DUGDALE)
- **EA** ACTIVATION ENERGY (KJ/MOLE-K)
- **EIA** CONSTANT FOR VELOCITY CALCULATION (PARALLEL)
- **FCON** FARADAY'S CONSTANT
- **FI** ARRAY CONTAINING THE NAMES OF SPECIES OUTPUT FILES
- **FREQ** CRACK PUMPING FREQUENCY
- **FR** CONSTANT FC/RGAS(TEM)
- **G** G-VALUE (# SPECIES/100 eV)
- **GH** G-VALUE FOR HIGH-LET PARTICLES (# SPECIES/100 eV)
- **GAMMA** CONSTANT FOR VELOCITY CALCULATION (PARALLEL)
- **H** ARRAY - CRACK HALF WIDTH
- **HC** STEP SIZE TO BE NEXT USED BY LSODI
- **HN** STEP SIZE LAST USED BY LSODI
- **I.I.I.J.K** LOOP COUNTERS
- **IDER** INDEX TO SEE IF DERIVATIVE SHOULD BE CALCULATED
- **IDIV** INDEX TO SEE IF DERIVATIVE SHOULD BE CALCULATED
- **IF** UNIT NUMBERS FOR OUTPUT FILES
- **IFLAG** FLAG FOR OUTPUT TIME STEPPING METHOD
 - 0
 - 1
- **IMR** INDEX OF COMPONENT OF LARGEST MAGNITUDE IN ERROR VECTOR
- **INFS** INPUT FILE NAME
- **IWORK** INTEGER WORKING ARRAY (LSODI)
- **M** MEAN STRESS INTENSITY FACTOR
- **MJ** MAXIMUM "

306
MRTN NUMBER OF REACTIONS
NST NUMBER OF STEPS TAKEN SO FAR BY LSODI
HWRM NUMBER OF WALL REACTIONS
TMLT MULTIPLE TIME Multiplier for NEXT solution TIME
OFILE FULL output file
P_TYPE TELLS WHAT KIND OF PROBLEM IS BEING SOLVED
 P_TYPE = 1 : DIFF/I-MIGRATION
 2 : DIFF/I-H/CONVECTION (TRAP. CRACK)
 3 : DIFF/I-H/CONV (PARALLEL CRACK)
RGAS UNIVERSAL GAS CONSTANT (VARIous UNITS)
RTOL RELATIVE TOLERANCE FOR LSODI
RWORK REAL WORKING ARRAY (LSODI)
SIGMA YIELD STRESS (DUGDALE)
SR STRESS RATIO = KMIN/KMAX
T TIME
TCUR CURRENT VALUE OF T
TDOS TOTAL DOSE (RADS)
TDOS TOTAL DOSE (RADS)
TENS TEMPERATURE (KELVIN)
TEMP REFERENCE TEMPERATURE FOR RRate constants (KELVIN)
TFINAL FINAL solution TIME (SEC)
TOLSF TOLERANCE SCALE FACTOR USED BY LSODI
VAPEP CONSTANT FOR TRAP.CRACK (DUGDALE)
W INITIAL maximum POSITION
XLOW MINIMUM POSITION
XLONG CRACK LENGTH = XHIGH-XLOW
XINC DELTA X
XINC XINC^XINC
Y SPECIES CONCENTRATION VECTOR (LSODI)
YDOT TIME DERIVATIVE OF Y (LSODI)

LSODE VARIABLES ARE DEFINED IN THE LSODE WRITE-UP

**
DESCRIPTION OF NAMELIST
F GIVES THE output FILES FOR THE PROBLEM
L GIVES PARAMETERS FOR LSODI
NAMES CONTAINS NAMES OF SPECIES AND THEIR PARAMETERS
OUTPUT CONTAINS output FILES and THEIR UNIT NUMBERS
SIZE SIZES THE PROBLEM
STATE
TYPE GIVES THE TYPE OF PROBLEM
TCUR PARAMETERS FOR CRACK TIP CURRENT CALCULATION

**
FILE UNIT NUMBERS
5 = input
6 = full output
7 = HOMogeneous REACTION input file
8 = Wall reaction input file
9 = tip reaction input file
10 = SOLubility reaction input file
**IFILES(IS) = DATA output FILES WHERE 'IS' IS THE SPECIES number
 NOTE : IFILES MUST BE > 10

**
FUNCTIONS CALLED:
DEXP, DPLOTJ, DLOG10

LSODE FUNCTION CALLS ARE DEFINED IN THE LSODE WRITE-UP

**

C INCLUDE 'P.BLK'
C INCLUDE 'D.BLK'
C EXTERNAL RESP, ADDAP

**

C DIMENSION FILES(MNEQP2), IFILES(MNEQP2)
C DIMENSION RWORK(LRW), IWORK(LIW), ATOL(MNEQ*MNDX), ATOLI(MNEQ)
C DIMENSION TDOSE(MA)
C DIMENSION Y(MA), YDOTI(MA), DKY(MA), ARS(0:MNEQ), VM(MNEQ),
C YM2(MNEQ)

C CHARACTER*8 ARS
C CHARACTER*35 INFILE, OFILE, FILES
C INTEGER FLAG, P_TYPE, C_TYPE
C REAL*8 MULTIME
C REAL*8 KM, KMAX, KMIN

**

C NAMELISTS

C NAMELIST/L/ IOPT, ITASK, RTOL, ITOL, ATOL, RWORK, IWORK, IDERV,
C ISTATE, MF
C NAMELIST/STATE/ TEM, TEMR, DSRATE, DHRATE, EPS, EM
C NAMELIST/NAME8/ ARS, Z, TIPJ, DIF, G, GH
C NAMELIST/OUTPUT/ TOUT, TFINAL, TSTEP, MULTIME, TADD, TOUTCH
C NAMELIST/SIZE/ NS, NRTN, NWRTN, NRTN, NSRTN, MESHPTS, XHIGH, XLOW,
C * HIN
C NAMELIST/TOL/ RFECT, PFACT, PDLIM
C NAMELIST/TYPE/ P_TYPE, C_TYPE
C NAMELIST/F/ FILE5, IFILES, OFILE
C NAMELIST/TCURC/ PT1, CLAMBD
C NAMELIST/SULPHUR/WALLF, TIPF, WALLT, TIPT, NSP1, P1, NSP2, P2, NSP3, P3

**

C DEFAULT DATA FOR NAMELISTS

C NOTE: MUST FIX THIS SECTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

C DATA TEM, TEMR, 298.0D0, 289.0D0, DSRATE, DHRATE, 0.0D0, 0.0D0/
C DATA EPS/7.0D-9/
C DATA TSTEP/1.0D-5/, TFINAL/100.0D0/
C DATA MF/12/, ITOL/1/, ISTATE/1/, ITASK/1/, RTOL/1.0D-5/
C DATA IDERV/0/, MULTIME/3.16227D0/
C DATA IFLAG/0/

**

C CONSTANTS

C DATA RGAS/8.314D0/, FR/11605.364D0/, FC/96487.0D0/

**

C OPEN FILE WHICH CONTAINS THE NAME OF THE INPUT FILE
C**C
C PRINT*, 'DIRENP4'
C OPEN (5, FILE='DIRENP4.SET', STATUS='OLD', ERR=90)
READ(5,100)INFILE
90 CLOSE(5)
100 FORMAT(A35)
C**C
C OPEN FILE THAT CONTAINS NAMELISTS AND READ IN TYPE AND SIZE
C NAMELIST
C**C
C OPEN (5, FILE=INFILE, STATUS='OLD')
C READ (5, NML=TYPE)
READ (5, NML=SIZE)
C**C
C READ IN OTHER NAMELISTS
C**C
C READ (5, NML=F)
READ (5, NML=STATE)
READ (5, NML=OUTPUT)
READ (5, NML=NAME)
READ (5, NML=TOL)
READ (5, NML=ICURC)
READ (5, NML=SULPHUR)
C**C
C OPEN REACTION DATA FILES
C**C
C OPEN (7, FILE = 'REACT.DAT', STATUS = 'OLD')
OPEN (8, FILE = 'WREACT.DAT', STATUS = 'OLD')
OPEN (9, FILE = 'TREACT.DAT', STATUS = 'OLD')
C**C
C CALCULATE CONSTANTS
C**C
C NEQ = NS + 1
C PDLIM = DABS(PDLIM)
XLONG = XHIGH - XLOW
XINC = XLONG/DFLOAT(MESHPTS-1)
XINCSQ = XINC**2.000
MPTS = NEQ*MESHPTS
DO 130 I = 1, NEQ-1
 DCON(I) = DIF(I)/XINCSQ
130 CONTINUE
C DO 140 I = 1, MESHPTS
C H(I) = HIN
C 140 CONTINUE
C
\[IDIV = \text{MESHPTS}/15 \]
\[\text{PRINT}*, ' ' \]
\[\text{PRINT}*, 'NODES USED FOR OUTPUT' \]
\[\text{DO } 150 \ I = 1, \text{MESHPTS}/IDIV \]
\[\text{PRINT}*, (I-1)*IDIV+1 \]
\[150 \text{ CONTINUE} \]
\[\text{PRINT}*, \text{MESHPTS} \]

\[\text{OPEN OUTPUT FILES} \]

\[\text{OPEN (6, FILE=OTFILE, STATUS='NEW')} \]
\[\text{DO } 155 \ I = 1, \text{NEQ} \]
\[\text{OPEN (IFILES(I), FILE=FILES(I), STATUS='NEW')} \]
\[155 \text{ CONTINUE} \]

\[\text{CALL SUBROUTINE THAT OUTPUTS INITIAL INFORMATION} \]

\[\text{CALL OUT1(INFILE, OTFILE, MULTIME, TFINAL, TOUT, EPS, NRTN,} \]
\[\quad \text{NWRTN, NTRTN, NSRTN, MESHPTS, XLOW, XHIGH, TEM, TEMR, ARS,} \]
\[\quad \text{Z, TIPJ, DIF, FILES, G, GH, NEQ, HIN, NS, EM, XINC, TOUTCH, TADD)} \]

\[\text{CONSTANTS FOR MIGRATION AND CRACK TIP CURRENT} \]

\[\text{PC2 = FC*FC} \]
\[\text{PCON = FC/EPS} \]
\[\text{FRF = FR/(TEM)} \]
\[\text{DO } 160 \ II = 1, \text{NEQ-1} \]
\[\text{PCD(II) = Z(II)*DCON(II)} \]
\[\text{PCM1(II) = PCD(II)*FRF*Z(II)} \]
\[\text{PCM(II) = DIF(II)*FRF*Z(II)} \]
\[\text{PRINT*, PCD(II), ' ', PCM1(II)} \]

\[\text{CONVERT G-VALUES FROM # spec/100 ev TO moles/l-rad} \]

\[\text{GH(II) = GH(II)*1.033D-9} \]
\[\text{G(II) = G(II)*1.033D-9} \]

\[160 \text{ CONTINUE} \]

\[\text{CALL SUBROUTINE THAT READS THE REACTION DATA AND SETS UP} \]
\[\text{REACTION COEFFICIENTS AND ORDER MATRICIES FOR THE HOMOGENEOUS} \]
\[\text{REACTIONS} \]

\[\text{CALL REACT(NPTS, NEQ, ARS, TEM, TEMR)} \]

310
CALL SUBROUTINE THAT READS THE REACTION DATA AND SETS UP
REACTION COEFFICIENTS AND ORDER MATRICES FOR THE WALL
REACTIONS

CALL WRSTATE(NPTS,NEQ,ARS,EM,FRT)
DO 170 I = 1,NWRTN
 WSTATE(I) = WSTATE(I)*FRT
170 CONTINUE

CALL SUBROUTINE THAT READS THE REACTION DATA AND SETS UP
REACTION COEFFICIENTS AND ORDER MATRICES FOR THE CRACK TIP
REACTIONS

CALL TSTATE(NPTS,NEQ,ARS,EM,FRT)
DO 180 I = 1,NTRTN
 TSTATE(I) = TSTATE(I)*FRT
180 CONTINUE

CALL SUBROUTINE THAT READS THE REACTION DATA AND SETS UP
REACTION COEFFICIENTS AND ORDER MATRICES FOR THE SOLUBILITY
REACTIONS

CALL SSTATE(NPTS,NEQ,ARS,TEM,TEMR)

OUTPUT CHEMICAL DISSOLUTION TERMS

WRITE(6,185) WSTATE,WALLT,TIPF,TIPT,NSP1,P1,NSP2,P2,NSP3,P3
185 FORMAT(///10X,'CHEMICAL DISSOLUTION',
 '/15X,'WSTATE = ',E10.2,5X,' WALLT = ',E10.2,
 '/15X,'TIPTF = ',E10.2,5X,' TIPT = ',E10.2,
 '/15X,'NSP1 = ',E10.2,5X,' P1 = ',E10.2,
 '/15X,'NSP2 = ',E10.2,5X,' P2 = ',E10.2,
 '/15X,'NSP3 = ',E10.2,5X,' P3 = ',E10.2)

CALL SUBROUTINE THAT SETS INITIAL CONDITIONS

CALL YINIT(Y,YDOTT,YM,TCH,EMCH,YM2,TCH2,EMCH2)

SET PARAMETERS FOR LSODI

ITOL = 1
RTOL = 1.0D-6
DO 190 IS = 1,NEQ
 ATOL(IS) = 1.0D-6
190 CONTINUE
ITASK = 3
ISTATE = 0
IOPT = 0
MF = 22
RWORK(5) = 0.0D0
RWORK(6) = 0.0D0
RWORK(7) = 0.0D0
RWORK(8) = 0.0D0
RWORK(9) = 0.0D0
RWORK(10) = 0.0D0
IWORK(5) = 0
IWORK(6) = 0
IWORK(7) = 0
IWORK(8) = 0
IWORK(9) = 0
IWORK(10) = 0
RFACT = 1.0D-8

C**C
C READ IN CHANGES TO LSODI INPUT PARAMETERS
C**C
C
READ (5,NML = L)
CLOSE(5)
DO 210 IX = 1,MESHPTS
 DO 200 IN = 1,NEQ
 K = NEQ*(IX-1)
 ATOL(K+IN) = ATOL(IN)
 PRINT*, K,IN,K+IN,ATOL(K+IN),ATOL(IN)
200 CONTINUE
210 CONTINUE

C**C
C OUTPUT LSODI DATA
C**C
C
CALL OUT2(ITOL,RTOL,ATOL,ITASK,ISTATE,IOPT,MF,IWORK,RWORK,NEQ)

C**C
C OUTPUT INITIAL CONCENTRAIONS AND POTENTIAL DISTRIBUTION
C**C
C
TOLD = 0.0D0
CALL OUT3(T,Y,RWORK,IWORK,IFILES,INDIV,TOLD,NEQ,MESHPTS,
 Z,DIF,FRT,FC,ARS,TIPJ,KINC,EM,H)

C**C
C CALL SOLVER
C**C
C
280 CALL LSODI(RESP,ADDAP,JAC,NPTS,YDOTT,T,TOUT,ITOL,RTOL,
 ATOL,ITASK,ISTATE,IOPT,RWORK,LIW,IWORK,LF)

C**C
C PRINT RESULTS OF PREVIOUS TIME STEP AND INCREMENT
C THE TIME OR STOP AND PRINT FINAL RESULTS
C
CALCULATE THE TOTAL DOSE (TDOSE), AND PRINT THE RESULTS OF
THE LAST ITERATION

TDSEL = DSRATE*T
TDSEH = DHRATE*T

OUTPUT CONCENTRATIONS AND POTENTIAL

CALL OUT3(T,Y,RWORK,WORK,IPRINT,ITL,T0D,T,NEQ,MESHPTS,
Z,DIF,FR,T,FZ,FRS,TPF,XINC,EM,EM)

CHANGE MOUTH CONCENTRATIONS : EXCURSION IN CONCENTRATION OR
POTENTIAL

IF(T.GE.TCH.AND.T.LT.TCH*5.000) THEN

EM = EMCH
ISTATE = 1

DO 300 I = 1,NEQ
K = NEQ^(MESHPTS-1)
Y(K+I) = YM(I)

300 **CONTINUE**

DO 310 IT = 1,NTRTN
TCIO(IT) = TKCIO(IT)*DEXP(-TALPHA(IT)*EM)

310 **CONTINUE**

DO 320 IW = 1,NWRTN
WCIO(IW) = WKCIO(IW)*DEXP(-WALPHA(IW)*EM)

320 **CONTINUE**

ENDIF

IF(T.GE.TCH2.AND.T.LT.TCH2*5.000) THEN

EM = EMCH2
ISTATE = 1

DO 325 I = 1,NEQ
K = NEQ^(MESHPTS-1)
Y(K+I) = YM2(I)

325 **CONTINUE**

DO 330 IT = 1,NTRTN
TCIO(IT) = TKCIO(IT)*DEXP(-TALPHA(IT)*EM)

330 **CONTINUE**

DO 335 IW = 1,NWRTN
WCIO(IW) = WKCIO(IW)*DEXP(-WALPHA(IW)*EM)

335 **CONTINUE**

ENDIF
DETERMINE ERROR CONDITION OR END OF RUN AND TAKE APPROPRIATE ACTION

IF (ISTATE.LT.-1) GO TO 380
IF (T.GE.TFINAL) GO TO 380

INCREMENT THE TIME WITH ADDITIVE TERM OR MULTIPLICATIVE TERM
TSTEP<0.0 ADDITIVE ITFLAG=1
TSTEP>= 0.0 MULTIPLICATIVE ITFLAG = 0

IF(T.GE.TOUTCH) THEN
 TOUT = T + TADD
ELSE
 TOUT=TOUT*MULTIME
ENDIF

DON'T OVERSHEET FINAL TIME REQUESTED
IF(TOUT.GT.TFINAL)TOUT=TFINAL

IF TOO MANY STEPS RESET ISTATE AND CONTINUE CALCULATION
IF (ISTATE.EQ.-1) ISTATE = 2
CONTINUE INTEGRATION

PRINT*, ISTATE
GO TO 280

PRINT OUT LSODI PARAMETERS FOR ANALYSIS

380 HU = RWORK(11)
 HCUR = RWORK(12)
 TCUR = RWORK(13)
 TOLSF = RWORK(14)
 NST = IWORK(11)
 NRE = IWORK(12)
 NJE = IWORK(13)
 NQU = IWORK(14)
 NQUR = IWORK(15)
 IMEX = IWORK(16)
 LENRW = IWORK(17)
 LENIW = IWORK(18)
 WRITE (6,382)
782 FORMAT (/80(1h_)/,)
 WRITE (6,381)
381 FORMAT(29X,'RUN STATISTICS')
 WRITE (6,382)
 WRITE (6,389) HU,HCUR,TCUR,TOLSF

314
5X./25H TOLFRANCE SCALE FACTOR* , E12.5

WRITE (6,390) LEMKW,LEMW,HST,NRE,NJE,NQU,NQR
390 FORMAT (5X./25H REQUIRED RMWORK SIZE = ,I10,
* 5X./25H IWORK SIZE = ,I10,
* 5X./25H NUMBER OF STEPS = ,I10,
* 5X./25H # OF FUNC.- EVALS. = ,I10,
* 5X./25H # OF JACOB.- EVALS = ,I10,
* 5X./25H METHOD ORDER USED = ,I10,
* 5X./25H ORDER FOR NEXT STEP = ,I10)

WRITE (6,400) ISTATE
400 FORMAT (///22H ERROR HALT...ISTATE = ,I3)

C**
C OUTPUT Y IF ISTATE LT 0 (IE. FOR ERROR CONDITION)
C**

C IF (ISTATE.LT.0) PRINT*, 'ERROR ISTATE < 0 ; ', 'Y : ', 'Y,
* 'YDOTI : ', 'YDOTI

C**
C CLOSE OUTPUT FILE
C**

C CLOSE (6)

C**
C END OF PROGRAM
C**

C STOP

C**

C**

SUBROUTINE OUT1(INFILE,OTFILE,MULTIME,TFINAL,TOUT, EPS, NRTN,
* NWTN, NRTN, NRTN, MESHPTS, XLOW, XHIGH, TEM, TEMR, ARS,
* Z, TIPJ, DIF, FILES, G, GH, NEQ, HIN, KS, EM, XINC, TOUTCH, TADD)

C**

C WRITTEN BY: MAUREEN J. PSAILA-DOMBROWSKI
C REVISION DATE: JULY 22, 1989
C**

C**

C INCLUDE 'P.BLK'

C**

DIMENSION ARS (0:MNNEQ), DIF (MNNEQ), Z (MHS), FILES (MNNEQ,2), G (MNNEQ),
* GH (MNNEQ), TIPJ (MHS)

C**

REAL*8 MULTIME
CHARACTER*8 ARS
CHARACTER*9 TDATE, TTIME
CHARACTER*35 INFILE, OTFILE, FILES

C**

CALL DATE (TDATE)
CALL TIME(TTIME)

C

WRITE (6,10)

10 FORMAT(15X,'******************************',*
 /15X,' * DIRENP4 CODE OUTPUT *
 /15X,'******************************',*
 /* 15X, '******************************',*
 /* 15X, '******************************',*
 /* 15X, '******************************',*

WRITE (6,130)

WRITE (6,105)TDATE,TTIME
WRITE (6,130)
WRITE (6,140)
WRITE (6,130)
WRITE (6,120)INFILE,OUTFILE

C

DO 50 I = 1,NEQ
C
WRITE(6,300)ARS(I),FILES(I)
C
50 CONTINUE
C

WRITE (6,110)NS,NEQ,NRTN,NWRTN,NTRTN,NSRTN,MESHPTS,XLOW,
XHIGH,HIN,XINC,MESHPTS*NEQ+1

105 FORMAT(10X,38H RUN DATE = .A9, *
 /10X,38H RUN TIME = .A9)

110 FORMAT(10X,'GENERAL DATA :',/,
 15X,38H NUMBER OF SPECIES BEING EVALUATED = ,I5,/, *
 15X,38H NUMBER OF EQUATIONS EVALUATED = ,I5,/, *
 15X,38H NUMBER OF CHEMICAL REACTIONS = ,I5,/, *
 15X,38H NUMBER OF WALL REACTIONS = ,I5,/, *
 15X,38H NUMBER OF TIP REACTIONS = ,I5,/, *
 15X,38H NUMBER OF SOLUBILITY REACTIONS = ,I5,/, *
 15X,38H NUMBER OF UNIFORM MESH POINTS = ,I5,/, *
 15X,38H LEFT COORDINATE = ,D10.3,/, *
 15X,38H RIGHT COORDINATE = ,D10.3,/, *
 15X,38H INITIAL HALF WIDTH = ,D10.3,/, *
 15X,38H DELTA X = ,D10.3,/, *
 15X,38H NPTS + 1 = ,I5,/)

120 FORMAT(10X,'FILES :',/,
 16X, ' INPUT FILE NAME = ',A20,/)

130 FORMAT(80(1H=1/))

140 FORMAT(3X,'INPUT')
C

WRITE(6,200)TEM,TEMR,EM

200 FORMAT(15X,38H TEMPERATURE = ,D10.3, *
 /15X,38H REFERENCE TEMPERATURE = ,D10.3, *
 /15X,38H INITIAL BULK METAL POTENTIAL = ,D10.3,/)
C

WRITE(6,230)DSRATE,DRATE,TFINAL,TOUT,EP

230 FORMAT(15X,38H LOW LET DOSE RATE = ,D10.3, *
 /15X,38H HIGH LET DOSE RATE = ,D10.3, *
 /15X,38H FINAL TIME EVALUATION = ,D10.3, *
 /15X,38H INITIAL TIME STEP = ,D10.3, *
 /15X,38H EPSILON = ,D10.3)
C

C***C
C
C***C
WRITE(6,270) MULTIME,TOUTCH,TADD
 FORMAT(15X,38H TIME MULTIPLE
 * 15X,38H TIME TO CHANGE FROM MULT. TO ADD = ,D10.3/,
 * 15X,38H TIME ADDED TO TIME STEP = ,D10.3)
C
300 FORMAT(16X,' FILE FOR ',A8,16X,' = ',A10)
C
WRITE(6,540)
 DO 500 IS = 1,NEQ-1
C
WRITE (6,550) ARS(IS),Z(IS),TIPJ(IS),DF(IS),G(IS),GH(IS)
C
500 CONTINUE
C
540 FORMAT('1')
550 FORMAT(/10X,'SPECIES : ',A8,/25X,'CHARGE : ',E10.3,
 * /25X,'CRACK TIP FLUX : ',E10.3,
 * /25X,'DIFFUSION COEFFICIENT : ',E10.3,
 * /25X,'G : ',E10.3,
 * /25X,'GH : ',E10.3)
C
RETURN
C
C***
C
C SUBROUTINE OUT2(ITOL,RTOL,ATOLI,ITASK,ISTATE,IOPT,MF,IWORK,
 * RWORK,NEQ)
C***
C
C***
C WRITTEN BY : MAUREEN J. PSAILA-DOMBROWSKI
C REVISION DATE : JULY 22, 1989
C***
C THIS SUBROUTINE OUTPUTS THE LSODI PARAMETERS USED FOR RUN
C***
C INCLUDE 'P.BLK'
C
DIMENSION IWORK(LIW),FWORK(LRW),ATOLI(MNEQ)
C
REAL*8 MULTIME
C***
C WRITE TIME CONTROL PARAMETERS
C***
C
WRITE(6,250) ITOL,RTOL
 DO 10 IS = 1,NEQ
 WRITE(6,260) ATOLI(IS)
10 CONTINUE
C
WRITE(6,270)ITASK,ISTATE,IOPT,MF
250 FORMAT('1',/10X,'LSODI PARAMETERS : ',/,
 * /10X,38H TOLERANCE FACTOR = ,I5,
 * /10X,38H RELATIVE TOLERANCE = ,D14.5)
C
260 FORMAT(10X,38H ABSOLUTE TOLERANCE = ,D14.5)
C
270 FORMAT(10X,38H ITASK = ,I5,
 * /10X,38H ISTATE = ,I5,
* /10X,38H IOPT = 15.
* /10X,38H MF = 15

WRITE(6,300) RWORK(5),RWORK(6),RWORK(7),IWORK(5),IWORK(6),
* IWORK(7)

300 FORMAT(10X,38H FIRST TIME STEP = E10.3,
* /10X,38H MAX TIME STEP = E10.3,
* /10X,38H MIN TIME STEP = E10.3,
* /10X,38H MAX ORDER ALLOWED = 15,
* /10X,38H MAX NUMBER OF INTERNAL STEPS = 15,
* /10X,38H MAX NUMBER OF MESSAGES = 15,
* /
*,
*)

RETURN
END

SUBROUTINE OUT3(T,Y,RWORK,IWORK,IFILES,IDIV,TOLD,NEQ,MESHPTS,
* Z,DIF,FRT,FC,ARS,TIPJ,XINC,EM,H)

WRITTEN BY: MAUREEN J. PSAILA-DOMBROWSKI
REVISION DATE: JULY 22, 1989

THIS SUBROUTINE OUTPUTS THE CONCENTRATIONS AND POTENTIAL AT
OUTPUT TIME

LIST OF VARIABLES

ARS
ARRAY CONTAINING UNKNOWN NAMES
DIF
DIFFUSION COEFFICIENTS FOR SPECIES I
FC
FARADAY'S CONSTANT
FRT
CONSTANT = F/RT
IDIV
INTEGER USED TO CALCULATE OUTPUT NODES
IFILES
OUTPUT FILE UNIT NUMBERS FOR CONCENTRATIONS
IWORK
INTEGER WORK ARRAY FOR LSODI
MESHPTS
NUMBER OF MESHPOINTS
NEQ
NUMBER OF EQUATIONS
PT
POTENTIAL ARRAY
RWORK
REAL WORK ARRAY USED BY LSODI
T
PRESENT TIME
TOLD
OLD TIME FOR OUTPUT
Y
UNKNOWN CONCENTRATION
Z
CHARGE OF SPECIES I

INCLUDE 'P.BLK'

DIMENSION Y(1),RWORK(LRW),IWORK(LIW),IFILES(MNEQP2),
* Z(MNS),DIF(MNEQ),ARS(0:MNEQ),TIPJ(MNS),H(MNDX)

COMMON/TIP/ MTRTN,TALPHA(MNTR),TCIO(MNTR),KT(MNTR),TPOW(MNTR),
* KOF(MNTR,MNEQ),TIOO(MNTR),CTT(MNTR),ST(MNTR,0:MNEQ)

COMMON/WALL/ MTRWN,WALPHA(MNWR),WCI0(MNWR),KW(MNWR),WPOW(MNWR),
* KOFW(MNWR,MNEQ),WCI0(MNWR),CTW(MNWR),SW(MNWR,0:MNEQ)

CHARACTER*8 ARS

318
IF (T.GT.0.0D0) THEN
 ATS = (T-TOLD)/DFLOAT(IWORK(11))
 TOLD = T
ENDIF

COND = 0.0D0

DO 50 IS = 1, NEQ-1
 COND = COND + Z(IS)*Z(IS)*DIF(IS)*FRT*FC*Y(IS)
50 CONTINUE

WRITE (6,500) T,RWORK(11),IWORK(11),ATS,COND,EM
WRITE(6,550) ARS(I),TIPJ(I),I=1,NEQ-1

IWORK(11) = 0
DO 100 J = 1, (MESHPTS/10)
 K = NEQ*((J-1)*10)
 ZG=DFLOAT((J-1)*10)*XINC
 ELECT = 0.0D0
 DO 70 IS = 1, NEQ-1
 ELECT = ELECT + Z(IS)*Y(K+IS)
70 CONTINUE

WRITE (6,600) ZG,Y(K+NEQ),ELECT,
 *(ARS(I),Y(K+I),I=1,NEQ-1)

100 CONTINUE

K = NEQ*(MESHPTS-1)
ELECT = 0.0D0
DO 120 IS = 1, NEQ-1
 ELECT = ELECT + Z(IS)*Y(K+IS)
120 CONTINUE

ZG = DFLOTJ(MESHPTS-1)*XINC
WRITE (6,600) ZG,Y(K+NEQ),ELECT, (ARS(I),Y(K+I),I=1,NEQ-1)

DO 400 I = 1, NEQ
 PRINT*, I, IFILES(I)
 WRITE(IFILES(I),700)T,
 (Y((I+NEQ(((J-1)*IDIV))),J=1,MESHPTS/IDIV),
 * Y(I+(MESHPTS-1)*NEQ))
400 CONTINUE

400 CONTINUE

FORMAT (1X,'TIME = ',D10.3,' TIME STEP SIZE = ',E10.3,1X,
 ' NUMBER OF STEPS = ',I5,1X,
 '')
'AVE TIME STEP = '.EQ.3,' TIP COND. = '.EQ.3,
' EXT. METAL POT. = '.EQ.3)
550 FORMAT (1X,' TIP FLUX : ',
 3(1X,A3,' = ',E9.3),/11X,4(1X,A3,' = ',E9.3),
600 FORMAT (2X,3HX = ,F9.5,2X,3HP = ,D10.3,' ELECT = ',D10.3,/,
 3(4X,A3,' = ',D13.6))
C 650 FORMAT(1X,/)
C 700 FORMAT(1X,E12.5,9(1X,E12.5),/1X,10(1X,E12.5),
 /1X,10(1X,E12.5))
C RETURN
END
C***C
C***C
C SUBROUTINE REACT(NPTS,NEQ,ARS,TEM,TEMR)
C***C
C WRITTEN BY : MAUREEN J. PSAILA-DOMBOWSKI
C REVISION DATE : JULY 22, 1989
C***C
C READS LOGICAL UNIT NUMBER 7 FOR THE REACTION MATRIX
C AND REACTION RATE CONSTANTS. REACTION RATE CONSTANTS ARE
C ADJUSTED FOR TEMPERATURE USING AN ARRHENIUS TEMPERATURE
C DEPENDENCE
C***C
C LIST OF VARIABLES
C***C
C CJP
C I,II,
C IJ,J,K
C FLG
C IND
C R
C IP
C IR
C KOEF
C NJ
C***C
C INCLUDE 'P.BLK'
C***C
DIMENSION EA(MNR),IP(MNR,4),IR,HNR,3,NJ(MNR,MNEQ),
 ARS(0:MNEQ)
***C
COMMON/REACT/ NRTN,IN1(MNR),IN2(MNR),IN3(MNR),KOEF(MNR,MNEQ),
 RC(MNR)
***C
CHARACTER*4 ARS
CHARACTER*3 CJP
DATA R/S.314D-3/
ARS(0) = ' '
IF(NRTN,EQ.0)GO TO 900
C***
C INITIALIZE THE COEFFICIENT AND ORDER MATRICES FOR THE FUNCTION
C EVALUATION SEGMENT OF LSODES
C***
C
DO 5 IJ=1,NEQ-1
 DO 5 I=1,NRTN
 KOF(I,J,II)=0
 NJ(I,J,II)=0
 5 CONTINUE
C***
C READ THE REACTIONS ONE BY ONE AND SET UP THE COEFFICIENT
C MATRICES (KOF), AND THE REACTION ORDER MATRIX (NJ)
C***
C
PRINT*, 'REACT'
WRITE (6,10)
10 FORMAT ('1',10X,
 + 'CHEMICAL REACTIONS : '//' + '26X,' 'REACTIONS', '28X,' 'RATE', '3X,' 'ACTIVATION', '2X,' + 'ENERGIES')
C
READ (7,99)
DO 140 I=1,NRTN
 READ(7,100) CJP, (IR(I,K), K=1,3), (IF(I,K), K=1,4), RC(I), EA(I)
C***
C CONVERT THE RATE CONSTANT USING AN ARRHENIUS EXPRESSION
C***
C
RC(I)=RC(I)/DEXP(-EA(I)/(R*TEMP))**DEXP(-EA(I)/(R*TEMP))
C
WRITE(6,110) CJP, (ARS(JIABS(IR(I,K))), K=1,3),
 + (ARS(IF(I,K)), K=1,4), RC(I), EA(I)
99 FORMATE(1X)
100 FORMATE(A3,1X,A3), 4(A1,1X), 1X,D16.8, 1X,D16.8
110 FORMATE(A3,1X,3A8,'*', 4A8,D9.2, 1X,D9.2)
C***
C SET UP THE REACTION INDICES IR AND THE PRODUCT INDICES IP
C FILL THE COEFFICIENT MATRIX KOF
C***
C
C CHECK FIRST TO SEE IF ANY OF THE REACTANTS ARE PRESENT
C IN A SECOND ORDER FASHION
C***
C
IF (((IR(I,1), EQ, IR(I,2))) OR ((IR(I,2), EQ, IR(I,3)))
 + .AND. (IR(I,2), NE, 0) THEN
 NJ(I, JIABS(IR(I,2)))=-2
 KOF(I, JIABS(IR(I,2)))=-2
ENDIF
C***
C FILL UP THE MATRIX FOR THE REACTANTS WHICH ARE FIRST ORDER
C***
C
DO 120 K=1,3
 IF ((IR(I,K), NE, 0) .AND. (NJ(I, JIABS(IR(I,K))), NE, -2)) THEN
NJ(I).TABS(IP(I,K))=1
KOEF(I,JABS(IR(I,K)))=1
ENDIF

CONTINUE

C***C
C CHECK FOR SECOND ORDER PRODUCTS
C***C

IF((IP(I,1).EQ.IP(I,2)).OR.(IP(I,2).EQ.IP(I,3))
 .AND.(IP(I,2).NE.0))THEN
 KOEF(I,JABS(IP(I,2)))=2
ENDIF

IF((IP(I,3).EQ.IP(I,2)).OR.(IP(I,3).EQ.IP(I,4))
 .AND.(IP(I,3).NE.0))THEN
 KOEF(I,JABS(IP(I,3)))=2
ENDIF

C***C
C FILL UP THE PRODUCTS MATRIX FOR FIRST ORDER PRODUCTS
C***C

DO 130 K=1,4
 IF((IP(I,K).NE.0).AND.(KOEF(I,IP(I,K)).NE.2))THEN
 KOEF(I,IP(I,K))=1
 ENDIF
130 CONTINUE

CONTINUE

C***C
C NORMALIZE CATALYTIC REACTANTS
C***C

DO 150 K=1,NEQ-1
 DO 150 I=1,NRTN

C***C
ARE THERE PRODUCTS OF SPECIES K AS WELL AS REACTANTS OF SPECIES K?
C***C

IF((KOEF(I,K).NE.NJ(I,K)).AND.(NJ(I,K).NE.0))
 +
 KOEF(I,K)=KOEF(I,K)+NJ(I,K)

C***C
ARE THERE ONLY PRODUCTS? (FILL NJ AFTER CHECKING FOR CATALYTIC REACTIONS)
C***C

IF((KOEF(I,K).NE.NJ(I,K)).AND.(NJ(I,K).EQ.0))
 +
 NJ(I,K)=KOEF(I,K)

CONTINUE

150 CONTINUE

210 FORMAT (/1X,A8,5(2X,D9.2))
220 FORMAT (5X,D10.3,4(5X,D10.3))
C
CLOSE (5)

322
C**C
C SET UP REACTION ORDER INDICES FOR FAST FUNCTION EVALUATION
C**C
C NOTE REMOVED Y(NPTS+I) = 1.000 LOOP : DID NOT SEEM NECESSARY
C
DO 300 I=1,NRTN
C
C**C
C INITIAL ALL REACTANTS TO ZERO ORDER
C**C
C
IN1(I)=NPTS+1
IN2(I)=NPTS+1
IN3(I)=NPTS+1
IND=0
IFLG=0
C
DO 270 J=1,NEQ-1
C
C**C
C ESTABLISH ALL FIRST ORDER REACTANTS
C**C
C
IF(NJ(I,J).EQ.-1.AND.IND.EQ.0)THEN
 IN1(I)=J
 IFLG=IFLG+1
ENDIF
IF(NJ(I,J).EQ.-1.AND.IND.EQ.1)THEN
 IN2(I)=J
 IFLG=IFLG+1
ENDIF
IF(NJ(I,J).EQ.-1.AND.IND.EQ.2)THEN
 IN3(I)=J
 IFLG=IFLG+1
ENDIF
C
C**C
C DETERMINE THE SECOND ORDER REACTANTS (EITHER FIRST TWO
C OR LAST TWO) IND IS NUMBER OF REACTANTS CHOSEN SO FAR
C**C
C
IF(NJ(I,J).EQ.-2.AND.IND.EQ.0)THEN
 IN1(I)=J
 IN2(I)=J
 IFLG=IFLG+2
ENDIF
IF(NJ(I,J).EQ.-2.AND.IND.EQ.1)THEN
 IN2(I)=J
 IN3(I)=J
 IFLG=IFLG+2
ENDIF
IND = IND+IFLG
IFLG=0
270 CONTINUE
300 CONTINUE
C
WRITE(6,625)
DO 600 I = 1,NRTN
C
WRITE(6,650)(KOE(I,K),K=1,NEQ-1)

323
600 CONTINUE
625 FORMAT(/10X,'KOEP(NRTN,NEQ) : ')
650 FORMAT(10X,2(1X,I5))
WRITE(6,725)
DO 700 I = 1,NRTN
WRITE(6,750)IN1(I),IN2(I),IN3(I),RC(I)
700 CONTINUE
725 FORMAT(/10X,' IN1 IN2 IN3 RC')
750 FORMAT(10X,3(I4,1X),E10.3)
CLOSE(7)
900 RETURN
END

SUBROUTINE WREACT(NPTS,NEQ,ARS,EM,FRT)

WRITTEN BY : MAUREEN J. PSAILA-DOMBROWSKI
REVISION DATE : AUGUST 21, 1989

THIS SUBROUTINE READS IN ALL THE NECESSARY DATA FOR THE CRACK WALL ELECTROCHEMICAL REACTIONS AND SETS UP THE ARRAYS

DESCRIPTION OF VARIABLES

INCLUDE 'P.BLK'

DIMENSION IR(MNWR,3),IP(MNWR,3),ARS(0:MNWR),ACTW(MNWR),
* ISW(MNWR,6),WEN(MNWR)

COMMON/WALL/ NWRTHALPHA(MNWR),WCIO(MNWR),KW(MNWR),WPOW(MNWR),
* KOEPW(MNWR,NEQ),WKCIO(MNWR),CTW(MNWR),SW(MNWR,0:MNEQ)

CHARACTER*1 ACTW
CHARACTER*8 ARS
ARS(0) = ' '
IF(NWRTN.EQ.0)GO TO 900

BEGIN PROGRAM

PRINT*, 'WREACT'

INITIALIZE THE COEFFICIENT AND ORDER MATRICIES FOR THE FUNCTION
EVALUATION SEGMENT OF LSODES

DO 20 J=1,NWRTN
 SW(J,0) = 0.0D0
20 CONTINUE
DO 10 I=1,NEQ-1
KOFW(J,I)=0
SW(J,I) = 0.0D0
10 CONTINUE
20 CONTINUE

C************************ READ THE REACTIONS ONE BY ONE AND SET UP THE COEFFICIENT
C MATRICES (KOF), AND THE REACTION ORDER MATRIX (NJ)
C**

READ(8,40)
40 FORMAT(1X)
WRITE (6,50)
50 FORMAT (//10X,'WALL REACTIONS : '/)
WRITE(6,60)
60 FORMAT(5X,'TYPE',3X,'#e')

DO 500 I=1,NWRTN
500 CONTINUE

READ(8,80)ACTW(I),NW,((ISW(I,K),IR(I,K)),K = 1,3),
* ((ISW(I,3+K),IP(I,K)),K = 1,3),WKCIO(I),
* WALPHA(I),KW(I),WPW(I)

DO 850 K = 1,3
850 CONTINUE

FORMAT(1X,A1,1X,I2,3(1X,I1,1X,I3),J(1X,I1,1X,I3),
1X,D14.6,1X,D5.2,1X,I2,1X,I4,1X,D4.1)

WEN(I) = DFLOAT(NW)
WKCIO(I) = WKCIO(I)*DEXP(-WALPHA(I)*EM*FRT)

DO 85 K = 1,3
85 CONTINUE

IF (IR(I,K).NE.0) SW(I,JIABS(IR(I,K))) = DFLOAT(ISW(I,K))
IF (IP(I,K).NE.0) SW(I,JIABS(IP(I,K))) = DFLOAT(ISW(I,3+K))

DO 86 IK = 1,NEQ
86 CONTINUE

PRINT*, I1K,SW(I1K)

IF (KW(I).EQ.0) KW(I) = NPTS+1
IF (WPW(I).EQ.0.0D0) WPW(I) = 1.0D0
IF (ACTW(I).EQ.'A') CTW(I) = 1.0D0
IF (ACTW(I).EQ.'C') CTW(I) = -1.0D0

C******************************** WRITE VALUES OF DATA TO OUTPUT FILE
C**

WRITE(6,100)ACTW(I),CTW(I),WEN(I),
* ((SW(I,JIABS(IR(I,K)))),ARS(JIABS(IR(I,K))),K = 1,3),
* ((SW(I,JIABS(IP(I,K)))),ARS(JIABS(IP(I,K))),K = 1,3)

100 FORMAT(5X,A1,1X,F3.0,1X,F3.0,1X,F3.0,1X,A5,1X,F3.0,1X,A5)

PRINT*, 'STOP'

C** SET UP THE REACTION INDICES IR AND THE PRODUCT INDICES IP
C**

C** FILL THE COEFFICIENT MATRIX KOF

325
C**
C DO 120 K = 1,3
C IF(IR(I,K).NE.0) KOEFW(I,JIABS(IR(I,K)))=-1
IF(IP(I,K).NE.0) KOEFW(I,JIABS(IP(I,K)))=1
C 120 CONTINUE
C**
C DO 510 I = 1,NWRTN
DO 510 J = 1,NEQ-1
 SW(I,J)=SW(I,J)*DFLOAT(KOEFW(I,J))/WEN(I)
C 510 CONTINUE
C WRITE(6,725)
DO 520 I = 1,NWRTN
C WRITE(6,750)WCIO(I),WALPHA(I),KW(I),WPOW(I)
C 520 CONTINUE
WRITE(6,625)
DO 600 I = 1,NWRTN
C WRITE(6,650)(SW(I,K),K=1,NEQ-1)
C 600 CONTINUE
C 625 FORMAT(/10X,'SW(NWRTN,NEQ) : ')
650 FORMAT(10X,20(2X,F4.1))
C C C 725 FORMAT(/20X,' WCIO WALPHA KW WPOW')
750 FORMAT(20X,2(E10.3,1X),14,1X,E10.3)
CLOSE(8)
900 RETURN
END
C C**
C SUBROUTINE TREAT(NPTS,NEQ,ARS,EM,FRT)
C**
C WRITTEN BY : MAUREEN J. PSAILA-DOMBROWSKI
C REVISION DATE : AUGUST 21, 1989
C**
C THIS SUBROUTINE READS IN ALL THE NECESSARY DATA FOR THE CRACK
C TIP ELECTROCHEMICAL REACTIONS AND SETS UP THE ARRAYS
C**
C DECSRIPTION OF VARIABLES
C**
C INCLUDE 'P.BLK'

326
DIMENSION IR(MNWR,3),IP(MNWR,3),ARS(0:MNEQ),ACTT(MNTR),
* IST(MNTR,6),TEN(MNTR)

COMMON/TIP/ NTRTN,TALPHA(MNTR),TCIO(MNTR),KT(MNTR),TPOW(MNTR),
* KCEF(MNTR,MNEQ),TCTCIO(MNTR),CTT(MNTR),ST(MNTR,0:MNEQ)

CHARACTER*1 ACTT
CHARACTER*8 ARS
ARS(0) = ' ' IF(NTRTN.EQ.0)GO TO 900

**
BEGIN PROGRAM
PRINT*, 'TREAT'.
**
INITIALIZE THE COEFFICIENT AND ORDER MATRICIES FOR THE FUNCTION
EVALUATION SEGMENT OF LSODI
**
DO 20 J=1,NTRTN
 ST(J,0) = 0.0D0
 DO 10 I=1,MNEQ-1
 KCEF(J,I) = 0
 ST(J,I) = 0.0D0
 10 CONTINUE
 20 CONTINUE

**
READ THE REACTIONS ONE BY ONE AND SET UP THE COEFFICIENT
MATRICIES (KCEF), AND THE REACTION ORDER MATRIX (NJ)
**
READ(9,40)
FORMAT(IX)
WRITE (6,50)
FORMAT ('//10X, 'TIP REACTIONS : '//')
WRITE(6,60)
FORMAT(5X,'TYPE',3X,'#0')

DO 500 I=1,NTRTN
 READ(9,80)ACTT(I),NT,((IST(I,K),IR(I,K)),K = 1,3),
* ((IST(I,3*K),IP(I,K)),K = 1,3),TCIO(I),
* TALPHA(I),KT(I),TPOW(I)
 FORMAT(1X,A1,1X,I2,3(I1X,I1,1X,IJ),3(I1X,I1,1X,I3),
* 1X,D14.6,1X,D5.2,1X,I2,1X,D4.1)
 TEN(I) = DFLOAT(NT)
 TCIO(I) = TCIO(I)*DFLOAT(-TALPHA(I)*FRT*EM)
 DO 85 K = 1,3
* IF(IR(I,K).NE.0) ST(I,JIABS(IR(I,K))) = DFLOAT(IST(I,K))
* IF(IP(I,K).NE.0) ST(I,JIABS(IP(I,K))) = DFLOAT(IST(I,3*K))
 85 CONTINUE

DO 86 IK = 1,MNEQ
 PRINT*, I.IK,ST(I,IK)
C 86 CONTINUE
C
IF (KT(I).EQ.0) KT(I) = NPTS+1
IF (TPOW(I).EQ.0.0D0) TPOW(I) = 1.0D0
IF (ACTT(I).EQ.'A') CTT(I) = 1.0D0
IF (ACTT(I).EQ.'C') CTT(I) = -1.0D0
C
C***C
C WRITE VALUES OF DATA TO OUTPUT FILE
C***C
C
WRITE(6,100) ACTT(I), CTT(I), TEN(I),
 ((ST(I,JIABS(IR(I,K)))), ARS(JIABS(IR(I,K))), K = 1,3),
 ((ST(I,JIABS(IP(I,K)))), ARS(JIABS(IP(I,K))), K = 1,3)
100 FORMAT(5X,A1,1X,F3.0,1X,F3.0,1X,3(1X,F3.0,1X,A5)," "),
 3(1X,F3.0,1X,A5))
C
C***C
C SET UP THE REACTION INDICES IR AND THE PRODUCT INDICES IP
C FILL THE COEFFICIENT MATRIX KOEF
C***C
C
DO 120 K = 1,3
C
IF (IR(I,K).NE.0) KOEFT(I,JIABS(IR(I,K))) = -1
IF (IP(I,K).NE.0) KOEFT(I,JIABS(IP(I,K))) = 1
C
120 CONTINUE
C
C***C
C 500 CONTINUE
C
DO 510 I = 1,NTRTN
 DO 510 J = 1,NEQ-1
C
 IF (ST(I,J).NE.0.0D0) ST(I,J) = ST(I,J)*DFLOAT(KOeft(I,J))/TEN(I)
C
510 CONTINUE

WRITE(6,725)
 DO 520 I = 1,NTRTN
C
 WRITE(6,750) TCIO(I), TALPHA(I), KT(I), TPOW(I)
C
520 CONTINUE
C
WRITE(6,625)
 DO 600 I = 1,NTRTN
C
 WRITE(6,650) (ST(I,K), K=1,NEQ-1)
C
600 CONTINUE
C
625 FORMAT(/10X,'ST(NTRTN,NEQ) : ')
650 FORMAT(10X,20(2X,F4.1))
C
725 FORMAT(/20X,' TCIO TALPHA KT TPOW')
750 FORMAT(20X,2(E10.3,1X),14,1X,F10.3)
C
CLOSE(9)
900 RETURN
END
C

C
SUBROUTINE SREACT(NPTS,NEQ,ARS,TEM,TEMR)
C

C
WRITTEN BY : MAUREEN J. PSAILA-DOMBRWSKI
C
REVISION DATE : JULY 22, 1989
C
READS LOGICAL UNIT NUMBER 7 FOR THE REACTION MATRIX
C
AND REACTION RATE CONSTANTS. REACTION RATE CONSTANTS ARE
C
ADJUSTED FOR TEMPERATURE USING AN ARRHENIUS TEMPERATURE
C
DEPENDENCE
C
LIST OF VARIABLES
C
C
CJP
I,I,J,
I,J,K
IFLG
IND
A
IP
IR
KOEFS
NJ
C

C
INCLUDE 'P.BLK'
C
DIMENSION IR(MNSR,3),ARS(0:NEQ),NJ(MNSR,NEQ)
C
COMMON//SREACT/ NSRTN,INS1(MNSR),INS2(MNSR),INS3(MNSR),
* KOEFS(MNSR,NEQ),SRC(MNSR),SC(MNSR)
C
CHARACTER*3 CJP
CHARACTER*8 ARS
DATA R/8.341D-3/
ARS(0) = ' ' IF(NSRTN.EQ.0)GO TO 900
OPEN (10, FILE = 'SREACT.DAT', STATUS = 'OLD')
C

C
INITIALIZE THE COEFFICIENT AND ORDER MATRICIES FOR THE FUNCTION
C
EVALUATION SEGMENT OF LSODES

C
DO 20 II=1,NEQ-1
 DO 10 IJ=1,NSRTN
 KOEFS(IJ,II)=0
10 CONTINUE
CONTINUE

READ THE REACTIONS ONE AT ONE AND SET UP THE COEFFICIENT
MATRICES (KOEP), AND THE REACTION ORDER MATRIX (NJ)

PRINT*, 'SREACT'
READ(10,40)
WRITE (6,50)
FORMAT ('//10X,'SOLUBILITY REACTIONS :',//)
DO 140 I=1,NSRTN
READ(10,100)(IR(I,K),K=1,3),SRC(I),SC(I)

WRITE(6,110)(ARS(JIABS(IR(I,K))),K=1,3),SRC(I),SC(I)
FORMAT(3(1x,1),2(1x,d15.10))
110 FORMAT(3(1x,a8),2(1x,d9.2))

DO 140 I=1,NSRTN
READ(10,100)(IR(I,K),K=1,3),SRC(I),SC(I)

WRITE(6,110)(ARS(JIABS(IR(I,K))),K=1,3),SRC(I),SC(I)
FORMAT(3(1x,1),2(1x,d15.10))
110 FORMAT(3(1x,a8),2(1x,d9.2))

CONTINUE

READ THE REACTIONS ONE AT ONE AND SET UP THE COEFFICIENT
MATRICES (KOEP), AND THE REACTION ORDER MATRIX (NJ)

PRINT*, 'SREACT'
READ(10,40)
WRITE (6,50)
FORMAT ('//10X,'SOLUBILITY REACTIONS :',//)
DO 140 I=1,NSRTN
READ(10,100)(IR(I,K),K=1,3),SRC(I),SC(I)

WRITE(6,110)(ARS(JIABS(IR(I,K))),K=1,3),SRC(I),SC(I)
FORMAT(3(1x,1),2(1x,d15.10))
110 FORMAT(3(1x,a8),2(1x,d9.2))

CONTINUE

READ THE REACTIONS ONE AT ONE AND SET UP THE COEFFICIENT
MATRICES (KOEP), AND THE REACTION ORDER MATRIX (NJ)

PRINT*, 'SREACT'
READ(10,40)
WRITE (6,50)
FORMAT ('//10X,'SOLUBILITY REACTIONS :',//)
DO 140 I=1,NSRTN
READ(10,100)(IR(I,K),K=1,3),SRC(I),SC(I)

WRITE(6,110)(ARS(JIABS(IR(I,K))),K=1,3),SRC(I),SC(I)
FORMAT(3(1x,1),2(1x,d15.10))
110 FORMAT(3(1x,a8),2(1x,d9.2))

CONTINUE

READ THE REACTIONS ONE AT ONE AND SET UP THE COEFFICIENT
MATRICES (KOEP), AND THE REACTION ORDER MATRIX (NJ)

PRINT*, 'SREACT'
READ(10,40)
WRITE (6,50)
FORMAT ('//10X,'SOLUBILITY REACTIONS :',//)
DO 140 I=1,NSRTN
READ(10,100)(IR(I,K),K=1,3),SRC(I),SC(I)

WRITE(6,110)(ARS(JIABS(IR(I,K))),K=1,3),SRC(I),SC(I)
FORMAT(3(1x,1),2(1x,d15.10))
110 FORMAT(3(1x,a8),2(1x,d9.2))

CONTINUE

READ THE REACTIONS ONE AT ONE AND SET UP THE COEFFICIENT
MATRICES (KOEP), AND THE REACTION ORDER MATRIX (NJ)

PRINT*, 'SREACT'
READ(10,40)
INITIAL ALL REACTANTS TO ZERO ORDER

C

INS1(I) = NPTS + 1
INS2(I) = NPTS + 1
INS3(I) = NPTS + 1
IND = 0
IFLG = 0

C

DO 270 J = 1, NEQ - 1

C

-establish all first order reactants

C

IF (NJ(I, J).EQ.-1.AND.IND.EQ.0) THEN
 INS1(I) = J
 IFLG = IFLG + 1
ENDIF
IF (NJ(I, J).EQ.-1.AND.IND.EQ.1) THEN
 INS2(I) = J
 IFLG = IFLG + 1
ENDIF
IF (NJ(I, J).EQ.-1.AND.IND.EQ.2) THEN
 INS3(I) = J
 IFLG = IFLG + 1
ENDIF

C

determine the second order reactants (either first two
or last two) IND IS NUMBER OF REACTANTS CHOSEN SO FAR

C

IF (NJ(I, J).EQ.-2.AND.IND.EQ.0) THEN
 INS1(I) = J
 INS2(I) = J
 IFLG = IFLG + 2
ENDIF
IF (NJ(I, J).EQ.-2.AND.IND.EQ.1) THEN
 INS2(I) = J
 INS3(I) = J
 IFLG = IFLG + 2
ENDIF
IND = IND + IFLG
IFLG = 0

270 CONTINUE
100 CONTINUE

WRITE (6, 625)
DO 600 I = 1, NSRTN

WRITE (6, 650) (KOEFS(I, K), K = 1, NEQ - 1)

600 CONTINUE

625 FORMAT (/10X, 'KOEFS(NSRTN,NEQ) :
650 FORMAT (10X, 20(2X, I5))

WRITE (6, 725)
DO 700 I = 1, NSRTN
SUBROUTINE YINIT(Y, YDOTI, YM, TCH, EMCH, YM2, TCH2, EMCH2)

WRITE(6,750) INS1(I), INS2(I), INS3(I), SRC(I), SC(I)

700 CONTINUE

725 FORMAT(/1X,' INS1 INS2 INS3 SRC SC')
750 FORMAT(10X,3(I4,1X),2(1X,E10.3))

CLOSE(10)
900 RETURN
END

SUBROUTINE YINIT(Y, YDOTI, YM, TCH, EMCH, YM2, TCH2, EMCH2)

WRITTEN BY : MAUREEN J. PAILA-DOMBROWSKI
REVISION DATE : JULY 22, 1989

THIS SUBROUTINE INITIALIZES THE ARRAY CONTAINING THE UNKNOWNS

LIST OF VARIABLES

CONPOT CONSTANT USED TO CALCULATE INITIAL POTENTIAL
 DISTRIBUTION
DEL P SPATIAL POTENTIAL GRADIENT
DIST DISTANCE FROM CRACK TIP
I,IS,IX , J LOOP COUNTERS
K,KN,L KP COUNTERS FOR Y (L IS FOR Y = POTENTIAL)
TIPCUR TOTAL CRACK TIP CURRENT
TOUTI TOUT FOR CALCULATION OF YDOTI

INCLUDE 'P.BLK'
INCLUDE 'D.BLK'

DIMENSION Y(MA), YDOTI(MA), YI(MNEQ), RWORK(LRW), IWORK(LIW),
 YM(MNEQ), YIM(MNEQ), YMCH(MNEQ), YM2(MNEQ),
 YMCH2(MNEQ)

NAMELIST/VALUES/ YI, YIM, YMCH, TICH, EMICH, YMCH2, TICH2, EMICH2

PRIN ' , ' YINIT'

READ(5, NM=VALUES)

CALCULATE CONSTANTS AND INITIALIZE COUNTERS AND SET CONSTANT
VALUES

I(1,NPTS+1) = 1.000 IS CONSTANT USED FOR CALCULATING REACTION
TERMS IN RESIDUAL EQUATION
TCH2 = TICH2
EMCH2 = EMICH2
EMCH = EMICH
TCH = TICH
Y(NEQ*MESHPTS+1) = 1.0D0

SET INITIAL VALUES OF CONCENTRATION

IF CONCENTRATION GRADIENT EXISTS

DO 10 I = 1, MESHPTS*(NEQ-1)
 Y(I) = YI(I)
 PRINT*, I, YI(I), Y(I)
10 CONTINUE

IF NO CONCENTRATION GRADIENT EXISTS

DO 10 J = 1, MESHPTS
 DO 5 I = 1, NEQ
 K = (NEQ)*(J-1) + I
 Y(K) = YI(I)
 CONTINUE
10 CONTINUE

DO 20 I = 1, NEQ
 Y(NEQ*(MESHPTS-1)+I) = YM(I)
 YM(I) = YMCH(I)
 YM2(I) = YMCH2(I)
20 CONTINUE

IF (TCH.EQ.0.0D0) THEN
 EM = EMCH
 DO 50 I = 1, NEQ
 K = NEQ*(MESHPTS-1)
 Y(K+I) = YM(I)
 50 CONTINUE
ENDIF

IF (TCH2.EQ.0.0D0) THEN
 EM = EMCH2
 DO 60 I = 1, NEQ
 K = NEQ*(MESHPTS-1)
 Y(K+I) = YM2(I)
 60 CONTINUE
ENDIF

RETURN
SUBROUTINE RESP(NPTS,T,Y,S,R,IRES)

WRITTEN BY : MAUREEN J. PSIAILA-DOMBROWSKI
REVISION DATE : JULY 22, 1989

THIS SUBROUTINE SETS UP THE RESIDUAL FOR LSODI. THE RESIDUAL IS
THE DIFFERENCE BETWEEN THE EXACT EQUATION AND THE APPROXIMATION
TO THE EQUATION

VARIABLES (IN ALPHABETIC ORDER)

A
CKMAX CONSTANT RELATED TO KMAX USED IN CTOD CALCULATIONS
CON1,CON3 CONSTANTS
COVCON CONSTANT USED TO DETERMINE UPWIND DIRECTION
CKL AMPLITUDE OF STRESS INTENSITY FACTOR
DELTA
DELDOT TIME DERIVATIVE OF DELTA
DCON DIFFUSION COEFFICIENT/DX**2
DIF DIFFUSION COEFFICIENT
DKCON2 CONSTANT
DX DELTA X USED ABOVE
H0 CRACK TIP HALF WIDTH
H1DOT TIME DERIVATIVE OF H0
H(X) CRACK HALF WIDTH
KOEF(IR,IS) COEFFICIENT ARRAY FOR REACTIONS
KN MEAN STRESS INTENSITY FACTOR
KMAX MAXIMUM STRESS INTENSITY FACTOR
L,I,IX,IS,IR COUNTERS
R(I) RESIDUAL ARRAY FOR EACH EQUATION
RC(IR) REACTION RATE CONSTANT ARRAY
S(I) LSODI'S GUESS TO RESIDUAL
SK STRESS INTENSITY FACTOR
SR STRESS RATIO = KMIN/KMAX
T TIME
THETA CRACK ANGLE
THEDOT TIME DERIVATIVE OF CRACK ANGLE
V(X) VELOCITY ARRAY
VAFEPF CONSTANT
X POSITION FROM CRACK TIP
XINC DELTA X
XINCXDX DX*DX
Y UNKNOWN ARRAY

INCLUDE 'P.BLK'
INCLUDE 'D.BLK'
C**C
C DIMENSION AND COMMON BLOCKS
C**C
C DIMENSION R(MA),Y(MA),S(MA)
C**C
C REAL*8 KM,KMAX,KMIN,KDOT
C**C
C BEGINNING OF PROGRAM
C**C
C CALCULATE CRACK TIP FLUX
C**C
C DO 50 IS = 1,NEQ-1
C TIPJ(IS) = 0.0D0
C CCCCCCCC FROM CURRENT
C DO 45 IT = 1,NTRTN
C IF(ST(IT,IS),EQ.0.0D0)GO TO 45
C IF(Y(KT(IT)),GT.1.0D-14)THEN
C TIPJ(IS) = TIPJ(IS) + ST(IT,IS)*TCIO(IT)
C *(Y(KT(IT)))**TPOW(IT)1)
C *DEXP(TALPHA(IT)*Y(NEQ))/FC
C ENDIF
C 45 CONTINUE
C CCCCCCCC FROM CHEMICAL DISSOLUTION
C IF(IS.EQ.NSP1.AND.T.LT.TIPT) TIPJ(IS) = TIPJ(IS) + P1*TIPF
C IF(IS.EQ.NSP2.AND.T.LT.TIPT) TIPJ(IS) = TIPJ(IS) + P2*TIPF
C IF(IS.EQ.NSP3.AND.T.LT.TIPT) TIPJ(IS) = TIPJ(IS) + P3*TIPF
C 50 CONTINUE
C**C
C START CALCULATION OF CONCENTRATION
C**C
C PRINT*, T
C TCURR = 0.0D0
C ASAVE = 0.0D0
C DO 300 IX = 1,MESHPTS-1
C K = (IX-1)*NEQ
C L = K + NEQ
C
AEM = 0.0D0
C IF(IS.EQ.1.)THEN
C PRINT*, 'IX, IT, CTT(IT), TCURR'
C DO 60 IT = 1, NTRTN
C IF(Y(KT(IT)).GT.1.0D-14)THEN
C CON1 = CTT(IT)*TCIO(IT)*DEXP(TALPHA(IT)*Y(NEQ))
C CON2 = CON1 * (Y(KT(IT))**TPOW(IT))
C TCURR = TCURR + CON2
C ASAVE = ASAVE - CON2*S(NEQ)*TALPHA(IT)
C IF(KT(IT).NE.(NPTS+1))THEN
C ASAVE = ASAVE - TPOW(IT)*CON1* (Y(KT(IT))**((TPOW(IT)-1.0D0))*S(KT(IT))
C ENDIF
C ENDIF
C PRINT*, IX, IT, CTT(IT), TCURR
C 60 CONTINUE
C ENDIF
C IF(IS.EQ.1. OR. IX.EQ.MESHPTS)THEN
C PRINT*, 'IX, IW, CTT(IW), TCURR'
C DO 64 IW = 1, NWRTN
C IF (KW(IW).EQ.(NPTS+1)) THEN
C KP = NPTS+1
C ELSE
C KP = K + KW(IW)
C ENDIF
C IF(Y(KP).GT.1.0D-14)THEN
C CON1 = CTT(IW)*TCIO(IW)*((XINC/2.0D0)*
C DEXP(WALPHA(IW)*Y(I),/)/X)
C CON2 = CON1 * (Y(KP)**TPOW(IW))
C TCURR = TCURR + CON2
C ASAVE = ASAVE - CON2*S(NEQ)*WALPHA(IW)
C IF(KW(IW).NE.(NPTS+1))THEN
C ASAVE = ASAVE - TPOW(IW)*((Y(KP)**
C WPOW(IW)-1.0D0))*S(KP)*CON1
C ENDIF
C 64 CONTINUE
C ELSE
DO 65 IW = 1,NWRTH

IF (KW(IW) .EQ. (NPTS+1)) THEN
 KP = NPTS+1
ELSE
 KP = K + KW(IW)
ENDIF

IF(Y(KP) .GT. 1.0D-14) THEN

* CON1 = CTM(IW) * WCI0(IW) * (XINC) *
 DEXP(WALPHA(IW) * Y(L) / H(IW))

CON2 = CON1 * (Y(KP) ** WPOW(IW))

TCURR = TCURR + CON2

ASAVE = ASAVE - CON2 * S(L) * WALPHA(IW)

IF(KW(IW) .NE. (NPTS+1)) THEN

 ASAVE = ASAVE - WPOW(IW) ** (Y(KP)
 ** ((WPOW(IW) - 1.0D0) * S(KP) * CON1))
ENDIF

ENDIF

65 CONTINUE

PRINT*, ASAVE
ASUM1 = ASUM1 + ASAVE

SUM1 = 0.0D0
SUM2 = 0.0D0
SUM3 = 0.0D0

DO 70 IS = 1,NEQ-1

I = K + IS

CON = Z(IS) * Z(IS) * DIF(IS)

SUM1 = SUM1 + CON * Y(I)
SUM3 = SUM3 + Z(IS) * Y(I)

IF (IX.LT.MESHPTS-1) THEN

ASUM1 = ASUM1 - CON * FC * FR(T) * (S(I) * (4.0DO * Y(I) + NEQ)
 - 3.0DO * Y(L) - Y(L+2*NEQ))) + (Y(I) *
 (4.0DO * S(L+NEQ) - 3.0DO * S(L) - S(L+2*NEQ)))
 / (2.0DO * XINC)

ELSE

ASUM1 = ASUM1 - CON * FC * FR(T) * (S(I) * Y(L-NEQ)
 - Y(L-NEQ)) + (Y(I) * S(L-NEQ) - S(L-NEQ))
 / (2.0DO * XINC)

ENDIF

70 CONTINUE
ENDIF

CONTINUE

IF (IX.EQ.1) THEN
 DO 80 IS = 1,NEQ-1

 I = K + IS

 CON = Z(IS)*DIF(IS)*FC/(2.0D0*XINC)

 SUM2 = SUM2 + CON*(4.0D0*Y(I+NEQ)
 -3.0D0*Y(I)-Y(I+2*NEQ))

 ASUM1 = ASUM1 + CON*(4.0D0*S(I+NEQ)
 -3.0D0*S(I)-S(I+2*NEQ))

 PRINT*, 'I=', I, ASUM1

 80 CONTINUE
ELSE
 DO 90 IS = 1,NEQ-1

 I = K + IS

 CON = Z(IS)*DIF(IS)*FC/(2.0D0*XINC)

 SUM2 = SUM2 + CON*(Y(I+NEQ)-Y(I-NEQ))

 ASUM1 = ASUM1 - CON*(S(I+NEQ)-S(I-NEQ))

 PRINT*, 'I=', I, ASUM1

 90 CONTINUE
ENDIF

R(L) = ASUM1

CKAP = SUM1*FC*FRT

DP = (-TCURR-SUM2)/CKAP

DDP = -PCON*SUM3

DO 200 IS = 1,NEQ-1

 I = K + IS

 CCCCCCCC INITIALIZE ARRAY R
 C
 R(I) = 0.0D0

 CCCCCCCC NOTE: REACTIONS AND TRANSPORT TERMS ARE
CCCCCCCCC NOT ADDED AT CRACK MOUTH
CCCCCCCCC

 CCCCCCCC ADD REACTION TERMS
 C

 RR = 0.0D0

 DO 120 IR = 1,NRTN
 C
 IF(KOFF(IR,IR).EQ.0.0) GO TO 120
 KP11 = K+IN1(IR)
 KP22 = K+IN2(IR)

 120 CONTINUE
KPIN3 = K+INS3(IR)
IF(KP1N1.GT.NPTS) KP1N1 = NPTS+1
IF(KP1N2.GT.NPTS) KP1N2 = NPTS+1
IF(KP1N3.GT.NPTS) KP1N3 = NPTS+1

RR = RR + DFLOTJ(KOEF(IR,IS)) * RC(IR) *
 Y(KP1N1) * Y(KP1N2) * Y(KP1N3)

C
CONTINUE
C
RWR = 0.0DO
DO 130 IW = 1,NWRTN
C
IF(SW(IW,IS).EQ.0.0DO) GO TO 130
C
IF (KW(IW).EQ.(NPTS+1)) THEN
 KP = NPTS+1
ELSE
 KP = K + KW(IW)
ENDIF
C
IF(Y(KP).GT.1.0D-14) THEN
 RWR = RWR + SW(IW,IS) * WCIO(IW)
 *(Y(KP)**WPOW(IW))*
 *DEXP(WALPHA(IW)*Y(L))/(H(IX)**FC)
ENDIF
C
CONTINUE
C
RWR = 0.0DO
DO 150 IR = 1,NSRTN
C
IF(KOEFS(IR,IS).EQ.0) GO TO 150
KP1N1 = K+INS1(IR)
KP1N2 = K+INS2(IR)
KP1N3 = K+INS3(IR)
IF(KP1N1.GT.NPTS) KP1N1 = NPTS+1
IF(KP1N2.GT.NPTS) KP1N2 = NPTS+1
IF(KP1N3.GT.NPTS) KP1N3 = NPTS+1
C
RSR = RSR + DFLOTJ(KOEFS(IR,IS)) * SRC(IR) *
 DMAX1((Y(KP1N1) * Y(KP1N2) * Y(KP1N3) - SC(IR)), 0.0DO) /
 /H(IX)
C
CONTINUE
C
CCCCCHEMICAL DISSOLUTION
C
RSD = 0.0DO
C
IF(IS.EQ.NSP1.AND.T.LT.WALT)
 RSD = RSD + F1WALLF/H(IX)
C
IF(IS.EQ.NSP2.AND.T.LT.WALT)
 RSD = RSD + F2WALLF/H(IX)
C
IF(IS.EQ.NSP3.AND.T.LT.WALT)
RADIOLYSIS REACTIONS

\[
\begin{align*}
\text{DIST} &= (\text{NDX} - 1) \times \text{XINC} \\
\text{RR} &= \text{RR} + \text{G} (\text{IS}) \times \text{DSRATE} \times \text{DEXP} (\text{ATTG} \times \text{DIST}) \\
&\quad + \text{GH} (\text{IS}) \times \text{DHRATE} \times \text{DEXP} (\text{ATTN} \times \text{DIST}) \\
\end{align*}
\]

FOR CRACK TIP APPLY BOUNDARY CONDITIONS

\[
\begin{align*}
\text{R} (\text{I}) &= \text{R} (\text{I}) + \text{RR} + \text{RMR} + \text{RSR} + \text{RSD} \\
\end{align*}
\]

IF (IX.EQ.1) THEN

\[
\begin{align*}
\text{CALCULATE Y-NEQ} \\
\text{YMNEQ} &= \text{Y} (\text{I} + \text{NEQ}) + (2.0 \times \text{XINC} / \text{DIF} (\text{IS})) \times (\text{V} (\text{I} - 1, \text{IS}) \\
&\quad + \text{Y} (\text{I}) \times \text{PCM} (\text{IS}) \times \text{DP}) \\
\end{align*}
\]

ADD TRANSPORT TERMS: DIFFUSION

\[
\begin{align*}
\text{R} (\text{I}) &= \text{R} (\text{I}) + \text{DCON} (\text{IS}) \times (\text{Y} (\text{I} + \text{NEQ}) - 2.0 \times \text{Y} (\text{I}) + \text{YMNEQ}) \\
\end{align*}
\]

PRINT*, 'R(1)', R(I)

MIGRATION

\[
\begin{align*}
\text{CVCOMM} &= -\text{PCM} (\text{IS}) \times \text{DP} \\
\text{RM} &= \text{PCM} (\text{IS}) \times \text{Y} (\text{I}) \times \text{DDP} \\
\text{PRINT*}, 'RM FIRST', \text{RM} \\
\end{align*}
\]

IF (CVCOMM.GT.0.0D0) THEN

\[
\begin{align*}
\text{YM1} &= \text{Y} (\text{I}) - \text{YMNEQ} \\
\text{RM} &= \text{RM} + \text{PCM} (\text{IS}) \times \text{DP} \times \text{YM1} / (\text{XINC}) \\
\text{PRINT*}, '<0 YM1', \text{YM1} \\
\end{align*}
\]

ELSE

\[
\begin{align*}
\text{YP1} &= \text{Y} (\text{I} + \text{NEQ}) - \text{Y} (\text{I}) \\
\text{RM} &= \text{RM} + \text{PCM} (\text{IS}) \times \text{DP} \times \text{YP1} / (\text{XINC}) \\
\text{PRINT*}, '>0 YP1', \text{YP1} \\
\end{align*}
\]

ENDIF

ADD MIGRATION TERM AND REACTIONS AND SUBTRACT GUESS

\[
\begin{align*}
\text{R} (\text{I}) &= \text{R} (\text{I}) + \text{RM} - \text{S} (\text{I}) \\
\end{align*}
\]

GO TO 200

ENDIF

TRANSPORT TERMS FOR REST OF CRACK OR CREVICE

\[
\begin{align*}
\text{R} (\text{I}) &= \text{R} (\text{I}) \\
\end{align*}
\]

DIFFUSION
* + DCON(IS) *(Y(I+NEQ) - 2.0D0 * Y(I) + Y(I-NEQ))

PRINT*, ' R DIFF ', R(I)

MIGRATION

CVCMM = -PCM(IS)*DP
RM = PCM(IS) * Y(I)*DDP
PRINT*, ' RM FIRST ', RM

IF (CVCMM GT 0.0D0) THEN

YM1 = Y(I) - Y(I-NEQ)
RM = RM + PCM(IS)*DP*YM1/(XINC)

ELSE

YP1 = Y(I+NEQ) - Y(I)
RM = RM + PCM(IS)*DP*YP1/(XINC)

ENDIF

R(I) = R(I) + RM

SUBTRACT APPROXIMATE TERM FROM LSODI

R(I) = R(I) - S(I)

CONTINUE

CONTINUE

DO 400 IS = 1, NEQ
 I = NEQ*(MESHPTS-1)+IS
 R(I) = R(I) - S(I)

400 CONTINUE

RETURN
END

**

SUBROUTINE ADDAP(NPTS, T, Y, ML, MU, P, NROWP)

**

WRITTEN BY: MAUREEN J. PSAILA-DOMBROWSKI

REVISION DATE: JULY 22, 1989

**

INCLUDE 'P.BLK'
INCLUDE 'D.BLK'

DIMENSION Y(MA), P(NROWP, MA)

PRINT *, 'ADDAP'
C PRINT*, MROWP, NEQ
C
C**
C POTENTIAL TERMS
C**
C
DO 300 IX = 1, MESHPTS - 1
C
K = (IX - 1) * NEQ
L = K + NEQ
C
PRINT*, 'IX : ', IX, K, L
DO 70 IXX = 1, IX
C
KK = (IXX - 1) * NEQ
LX = KK + NEQ
C
PRINT*, 'IXX : ', IXX, KK, LX
IF (IXX .EQ. 1) THEN
 DO 60 IT = 1, NTATN
 IF (Y(KT(IT)) .GT. 1.0D-14) THEN

 CON1 = CTT(IT) * TCIO(IT) * DEXP(TALPHA(IT) * Y(LX))
 CON2 = CON1 * (Y(KT(IT)) ** TFOW(IT))

 PL(LX) = PL(LX) + CON2 * TALPHA(IT)

 IF (KT(IT) .NE. (NPTS + 1)) THEN
 PL(KT(IT)) = PL(KT(IT)) + TP ** - CON1 *
 (Y(KT(IT)) ** TFOW(IT) * -1.0D0)
 ENDIF
 ENDIF
 60
 CONTINUE
ENDIF
C
IF (IXX .EQ. 1 .OR. IXX .EQ. MESHPTS) THEN
 DO 64 IW = 1, NWRTN
 IF (KW(IW) .EQ. (NPTS + 1)) THEN
 KP = NPTS + 1
 ELSE
 KP = KK + KW(IW)
 ENDIF

 IF (Y(KP) .GT. 1.0D-14) THEN

 CON1 = CTW(IW) * WCIO(IW) * (XINC / 2.0D0) *
 DEXP(WALPHA(IW) * Y(LX)) / H(IXX)

 CON2 = CON1 * (Y(KP) ** WPOW(IW))

 PL(LX) = PL(LX) + CON2 * WALPHA(IW)

 IF (KW(IW) .NE. (NPTS + 1)) THEN

342
* \[P(L, KP) = P(L, KP) + (Y(KP)**(WPOW(IW) - 1.0*D0)) \]
* \[\text{WPOW}(IW)^*\text{CON1} \]

ENDIF

C

ENDIF

C

64

ELSE

CONTINUE

DC 65 IW = 1, NWRTN

C

IF (KW(IW).EQ.(NPTS+1)) THEN

KP = NPTS+1

ELSE

KP = KK + KW(IW)

ENDIF

C

IF(Y(KP).GT.1.0D-14)THEN

C

* \[\text{CON1} = \text{CTW}(IW)^*\text{WCIO}(IW)^*(XINC)^* \]
* \[\text{DEXP}(\text{WALPHA}(IW)^*Y(LX))/N(IXX) \]

C

CON2 = CON1 * (Y(KP)**WPOW(IW))

C

P(L,LX) = P(L,LX) + CON2*WALPHA(IW)

C

IF(KW(IW).NE.(NPTS+1))THEN

C

* \[P(L, KP) = P(L, KP) + (Y(KP)**(WPOW(IW) - 1.0*D0)) \]
* \[\text{CON1}^*\text{WPOW}(IW) \]

ENDIF

C

65

ENDIF

CONTINUE

C

70

CONTINUE

C

PRINT*, P(L,L)

DC 200 IS = 1, NEQ-1

C

I = K + IS

C

CON3 = Z(IS)^*DIF(IS)^*FC/(2.0D0*XINC)

C

IF (IX.LT.MESHPTS-1) THEN

C

CON1 = Z(IS)^*Z(IS)^*DIF(IS)^*FC^*FRT/(2.0D0*XINC)

C

CON2 = CON1^*Y(I)

C

* \[P(L,L) = P(L,L) + CON1^*(4.0D0^*Y(L+NEQ) - 3.0D0^*Y(L) - Y(L+2^*NEQ)) \]

C

P(L,L) = P(L,L) - CON2^*3.0D0

C

P(L,L+NEQ) = P(L,L+NEQ) + CON2^*4.0D0

C

P(L,L+2^*NEQ) = P(L,L+2^*NEQ) - CON2
P(L,I+NEQ) = P(L,I+NEQ) + CON3*4.0D0
P(L,I) = P(L,I) - CON3*3.0D0
P(L,I+2*NEQ) = P(L,I+2*NEQ) - CON3

ELSE

CON1 = Z(IS)*Z(IS)*DIF(IS)*FC*FRT/(XINC)
CON2 = CON1*Y(I)
P(L,I) = P(L,I) + CON1*(Y(L+NEQ) - Y(L))
P(L,L+NEQ) = P(L,L+NEQ) + CON2
P(L,L-NEQ) = P(L,L-NEQ) - CON2

P(L,I+NEQ) = P(L,I+NEQ) + CON3
P(L,I-NEQ) = P(L,I-NEQ) - CON3

ENDIF

**
* CONCENTRATION TERMS
**
P(I,I) = P(I,I) + 1.0D0
PRINT*, I,P(I,I)

200 CONTINUE

300 CONTINUE

DO 400 IS = 1,NEQ
 K = (MESHPTS-1)*NEQ + IS
 P(K,K) = P(K,K) + 1.0D0
400 CONTINUE

DO 500 IX = 1,MESHPTS
 DO 500 IS = 1,NEQ
 K = (IX-1)*NEQ + IS
 PRINT*, IX,IS,K,P(K,K)
500 CONTINUE
RETURN
END

*---
SUBROUTINE TIP_I(T,Y,PFAC)

WRITTEN BY : MAUREEN J. PSAILA-DOMBROWSKI

REVISED DATE : JULY 22, 1989

THIS SUBROUTINE USES OHM'S LAW TO CALCULATE AN INITIAL FLUXES
AND POTENTIAL AT THE CRACK TIP.

LIST OF VARIABLES

INCLUDE 'P.BLK'

DIMENSION Y(MA),SUM1S(MNDX),SUM2S(MNDX),YSAVE(MNDX)

COMMON/SPECS/ Z(MNS),DIF(MNEQ),DCOM(MNEQ)

COMMON/POT/ PCD(MNS),PCMI(MNS),FR,TFPJ(MNS),CLAMBD,
 * PCON,PC,PCPM(MNS),PDIM

COMMON/CRACK/ XLONG,XINC,XINCSQ,MESHPTS,NEQ,R(MNDX)

COMMON/TIP/ NTRTN,TALPHA(MNTR),TCIO(MNTR),KT(MNTR),TPW(MNTR),
 * KQEF(MNTR,MNEQ),TCIO(MNTR),CTT(MNTR),ST(MNTR,0:MNEQ)

COMMON/WALL/ NWRTN,WALPHA(MNWR),WCIO(MNWR),KW(MNWR),WPW(MNWR),
 * KQEFW(MNWR,MNEQ),WCIO(MNWR),CTW(MNWR),SW(MNWR,0:MNEQ)

START PROGRAM

CALCULATE PL AND PR

IC = 0

Y(MESHPTS*NEQ) = 0.0D0
NPTS = MESHPTS*NEQ
COND = 0.0D0
TCURRS = 0.0D0
IALPHA = 0
DO 7 IX = 1,MESHPTS
 L = NEQ*IX
 YSAVE(IX) = Y(L)
7 CONTINUE

IC = IC + 1

CALCULATE TOTAL CURRENT DOWN CRACK

DO 10 IT = 1,NTRTN

IF(TALPHA(IT).NE.0.0D0) IALPHA=1
IF(Y(KT(IT)).GT.1.0D-14)
 TCURRS = TCURRS + CTT(IT)*TCIO(IT)*Y(KT(IT))*TPW(IT))
C 10 CONTINUE
C PRINT*, 'TCURRS', TCURRS
C DO 25 IX = 1, MESHPTS-1
K = NEQ*(IX-1)
DO 20 IW = 1, NWRTN
C IF (KW(IW).EQ.(NPTS+1)) THEN
KP = NPTS+1
ELSE
KP = K + KW(IW)
ENDIF
C IF(Y(KP).GT.1.0D-14)THEN
C IF(WALPHA(IW).NE.0.0D0)IALPHA=1
C TCURRS = TCURRS + CTW(IW)*MCIO(IW)*XINC/H(IX)
C *(Y(KP)**WPOW(IW))
C *DEXP(WALPHA(IW)*Y(K+NEQ))
C ENDIF
C 20 CONTINUE
25 CONTINUE
C**C
C START POSITION LOOP
C**C
C DO 450 IX = MESHPTS-1, 1,-1
C
K = (IX-1)*NEQ
L = K + NEQ
C*****
SUBTRACT OFF CURRENT OF LAST DX FROM TOTAL CURRENT
C TCURR = TCURRS
C DO 60 IW = 1, NWRTN
C IF (KW(IW).EQ.(NPPTS+1)) THEN
KP = NPPTS+1
ELSE
KP = K + KW(IW)
ENDIF
IF(Y(KP).GT.1.0D-14)THEN
C TCURR = TCURR - CTW(IW)*MCIO(IW)*XINC/H(IX)
C *(Y(KP)**WPOW(IW))
C *DEXP(WALPHA(IW)*Y(L))
C ENDIF
C 60 CONTINUE
C 66 SUM1 = 0.0D0
SUM2 = 0.0D0
DO 70 IS = 1,NEQ-1
 I = K + IS
 SUM1 = SUM1 + Z(IS)*Z(IS)*DIF(IS)*Y(I)
CONTINUE
70
IF (IX.EQ.1) THEN
 DO 80 IS = 1,NEQ-1
 I = K + IS

 SUM2 = SUM2 + Z(IS)*DIF(IS)*(4.0D0*Y(I+NEQ)
 -3.0D0*Y(I)-Y(I+2*NEQ))/(2.0D0*XINC)
 80
ELSE
 CONTINUE
 DO 90 IS = 1,NEQ-1

 IF = K + IS
 YP1 = Y(I+NEQ)
 YM1 = Y(I-NEQ)

 SUM2 = SUM2 + Z(IS)*DIF(IS)*(YP1-YM1)
 /(2.0D0*XINC)
90 CONTINUE
ENDIF
CKAP = FC*SUM1*FRT
COND = CKAP/XINC
IF (TCURR.GE.0.0D0) THEN
 PR = Y(L+NEQ) + (TCURR+SUM2)/COND
 PL = Y(L+NEQ)
 IF(T.EQ.0.0D0.AND.IALPHA.EQ.1) PR = PDLIM
ELSE
 PR = Y(L+NEQ)
 PL = Y(L+NEQ) + (TCURR+SUM2)/COND
 IF(T.EQ.0.0D0.AND.IALPHA.EQ.1) PL = PDLIM
ENDIF
CUSTOM CALCULATE F(PL) AND F(PR)
ITERL = 0
TCURRL = TCURR
ENDIF
ITERL = ITERL + 1
DO 250 IW = 1,NWRTN
 IF(WC(IW).EQ.0.0D0) GO TO 250
IF (KW(IW).EQ.(NPTS+1)) THEN
 KF = NPTS+1
ELSE
 KF = K + KW(IW)
ENDIF

IF(Y(KP).GT.1.0D-14)THEN
 TCURRL = TCURRL + CTW(IW)*MCIO(IW)*(Y(KP)**WPOW(IW))
 *DEXP(WALPHA(IW)*PL)*XINC/H(IW)
 TCURRR = TCURRR + CTW(IW)*MCIO(IW)*(Y(KP)**WPOW(IW))
 *DEXP(WALPHA(IW)*PR)*XINC/H(IW)
ENDIF

CONTINUE

IF(IX.EQ.1)THEN
 DO 260 IT = 1,NTR:N
 IF(Y(KP).GT.1.0D-14)THEN
 TCURRR = TCURRR + CTT(IT)*TCIO(IT)*(Y(KT(IT))**TPOW(IT))
 *DEXP(TALPHA(IT)*PR)
 TCURRL = TCURRL + CTT(IT)*TCIO(IT)*(Y(KT(IT))**TPOW(IT))
 *DEXP(TALPHA(IT)*PL)
 ENDIF
 CONTINUE
260
ENDIF

IF (TCURRL.EQ.TCURRR) THEN
 IF(TCURR.GE.0.0D0)Y(L) = PR
 IF(TCURR.LT.0.0D0)Y(L) = PL
 GO TO 420
ENDIF

IF (FPL*FPR.LT.0.0D0) THEN
 IF(PL.NE.0.0D0)PTOL = DABS((PL-PR)/PR)
 IF(PR.EQ.0.0D0.AND.PL.NE.0.0D0)PTOL = DABS((PR-PL)/PL)
 PRINT*, 'LT 0 ', PTOL
 IF(PTOL.LT.(2.0D0*PFACT)) GO TO 40;
 PSTORL = PL
 PL = (PL+PR)/2.0D0
 PRINT*, 'PL', PL, 'PR', PR
 GO TO 200
ELSE
 IF(PR.NE.0.0D0)PTOL = DABS((PR-PL)/PR)
If (PP.EQ.0.000 .AND. PL.NE.0.000) PTOL = DABS((PP-PL)/PL)
C
PRINT*, 'GT 0 ', PTOL
IF(PTOL.LT.(2.000*PFAC)/2.000)
C
PR = PL
PL = PSTORE
PL = (PL+PR)/2.000
C
PRINT*, 'PL',PL,'PR',PR
GO TO 200
C
ENDIF
C
400 Y(L) = (PL+PR)/2.000
C
420 DO 440 IW = 1,NWRTN
C
IF (KW(IW).EQ.(NPTS+1)) THEN
 KP = NPTS+1
ELSE
 KP = K + KW(IW)
ENDIF
C
IF(Y(KP).GT.1.0D-14)THEN
 TCURRS = TCURS - CTW(IW)*WCIO(IW)*XINC
 * *(Y(KP)**WPWM(IW))**
 * DEXP(WALPHA(IW)**Y(L))/H(IX)
C
ENDIF
C
440 CONTINUE
C
450 CONTINUE
C
IF(IC.LE.1) GO TO 5
DO 500 IX = 1, MESHPTS-1
C
L = IX*NEQ
 IF (DABS((YSAVE(IX)-Y(L))/YSAVE(IX)).GT.PFACT) GOTO 5
C
500 CONTINUE
C
RETURN
END
SAMPLE INPUT
THINGS TO REMEMBER:
 1) THERE ARE TWO PLACES TO SET EM : STATE AND VALUES (EICH=EM AFTER TICH)

$TYPE
 P_TYPE = 0,
 C_TYPE = 0
$END
 VERIFY = 'Y'

$SIZE
 NS = 6,
 NRTH = 4,
 NWRTH = 4,
 NSRTN = 1,
 NSHPSTS = 31,
 XLOW = 0.0000,
 XHIGH = 1.0000-1,
 MIN = 1.709D-7
$END

$F
 FILES(1) = 'H86',
 FILES(2) = 'OH86',
 FILES(3) = 'MA86',
 FILES(4) = 'MSO486',
 FILES(5) = 'MM86',
 FILES(6) = 'MNOW6',
 FILES(7) = 'P86',
 IFILES(1) = 41,
 IFILES(2) = 42,
 IFILES(3) = 43,
 IFILES(4) = 44,
 IFILES(5) = 45,
 IFILES(6) = 46,
 IFILES(7) = 47,
 OFILE = 'CREV86'
$END

$STATE
 DSRATE = 0.0000
 DHRATE = 0.0000
 TEM = 573.0000
 TEMR = 573.0000
 EPS = 7.000D-11
 EM = 0.0000
$END

$OUTPUT
 TOUT = 1.000-2
 TFINAL = 9.0002,
 TSTEP = 1.000-6,
 MULTIME = 1.8000,
 TADD = 25.000,
 TOUTC1 = 300.0000
$END
$NAMES
ABS = ' ', 'H', 'OH', 'HA', 'HSO4', 'HM', 'MHOH', 'P',
E = 1.0D0, -1.0D0, 1.0D0, -1.0D0, 2.0D0, 1.0D0, 0.0D0
TIFJ = 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0
DIF = 1.666D-5, 1.0D-5, 2.36D-6, 1.89D-6, 1.4D-6, 1.4D-6, 0.0D0
G = 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0
CH = 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0
$END

$TOL
PDLIM = 1.5D0
RPACT = 1.0D-15
PFACL = 1.0D-5
$END

$VELPAS
ETA = 1.26D-4
GAMMA = 8.66D-4
A = 0.19D0
CK = 0.1932503D0
DCK = 0.3162277D0
FREQ = 1.0D0
$END

$VELDUG
DE = 0.6324555D0
SR = 0.1D0
W = 0.32D0
E = 2.0D3
CM = 0.3D0
FREQ = 0.1D0
SIGMA = 3.4D0
$END

$TCURC
PT1 = 1.000
CLAMBDA = 0.5D0
$END

$SULPHUR
WALLF = 1.0D-11
TIFF = 1.0D-11
WALLT = 0.0D0
TIPT = 0.0D0
NSP1 = 20
NSP2 = 20
PL = 1.0
P2 = 1.0
$END

$VALUES
Y1 = 2.239D-6, 2.239D-6, 2.51D-6, 2.51D-6, 0.0D0, 0.0D0, 0.742747D0,
YIM = 2.239D-6, 2.239D-6, 2.51D-6, 2.51D-6, 0.0D0, 0.0D0, 0.0D0
YMCH = 2.961D-5, 1.689D-7, 2.51D-6, 2.961D-5, 0.0D0, 0.0D0, 0.0D0
YMCH2 = 2.239D-6, 2.239D-6, 2.51D-6, 2.51D-6, 0.0D0, 0.0D0, 0.0D0
TCH = 450.0D0
EMICH = 0.0D0

352
\TICN2 = 450.2D0
\EMICH2 = 0.0D0
END

L
MF = 22
ITOL = 2
ATOL(1) = 1.0D-12
ATOL(2) = 1.0d-12
ATOL(3) = 1.0d-12
ATOL(4) = 1.0d-12
ATOL(5) = 1.0d-20
ATOL(6) = 1.0d-20
ATOL(7) = 1.0d-12
RTOL = 1.0D-6
ISTATE = 0
IOPT = 1
ITAS = 3
RWORK(5) = 0.0D0
RWORK(6) = 0.0D0
RWORK(7) = 0.0D0
RWORK(8) = 0.0D0
RWORK(9) = 0.0D0
\IWORK(10) = 0.0D0
\IWORK(5) = 0.0D0
\IWORK(6) = 5000
\IWORK(7) = 0
\IWORK(8) = 0
\IWORK(9) = 0
\IWORK(10) = 0
\IDERV = 0
$END
<table>
<thead>
<tr>
<th>CJP</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REACTP3_2.DAT
<table>
<thead>
<tr>
<th>#</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>TKCIO</th>
<th>TALPH</th>
<th>KT</th>
<th>TPOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7.4844D-4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4.545D-4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>H+</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2.03D-2</td>
<td>0.6</td>
<td>1.0</td>
<td>1.0</td>
<td>HNO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2.03D-2</td>
<td>0.6</td>
<td>4.0</td>
<td>1.0</td>
<td>HSO4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1.5D-6</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>H2S</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6.71D-1</td>
<td>0.6</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>7.56D-4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>6.71D-1</td>
<td>0.6</td>
<td>5.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>9.65D-7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>171.1364D0</td>
<td>0.5</td>
<td>6.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TREAT.DAT
<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>WKCIO</th>
<th>WALPH</th>
<th>KW</th>
<th>WPOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>7.4844D-4</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>4.545D-8</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>H2O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>2.03D-2</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>0.0</td>
<td>H+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
<td>7.56D-6</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>MN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1.5D-6</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>HSO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>6.71D-1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>0.0</td>
<td>H2S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
<td>7.56D-4</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>6.71D-1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>171.1364D0</td>
<td>0.5</td>
<td>6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

WREACT.DAT
SAMPLE OUTPUT
RUN DATE = 16-NOV-89
RUN TIME = 22:07:46

INPUT

FILES:

INPUT FILE NAME = DIRENP4.DAT
OUTPUT FILE NAME = CREV86
FILE FOR H = H86
FILE FOR OH = OH86
FILE FOR NA = NA86
FILE FOR HSO4 = HSO486
FILE FOR MN = MN86
FILE FOR MNOH = MNOH86
FILE FOR P = P86

GENERAL DATA:

NUMBER OF SPECIES BEING EVALUATED = 6
NUMBER OF EQUATIONS EVALUATED = 7
NUMBER OF CHEMICAL REACTIONS = 4
NUMBER OF WALL REACTIONS = 4
NUMBER OF TIP REACTIONS = 4
NUMBER OF SOLUBILITY REACTIONS = 0

NUMBER OF UNIFORM MESH POINTS = 31
LEFT COORDINATE = 0.0000D+00
RIGHT COORDINATE = 0.1000D+01
INITIAL HALF WIDTH = 0.1710D-06
DELTA X = 0.3333D-03
NPTS + 1 = 218

TEMPERATURE = 0.5731D+03
REFERENCE TEMPERATURE = 0.5731D+03
INITIAL BULK METAL POTENTIAL = 0.0000D+00

LOW LET DOSE RATE = 0.0000D+00
HIGH LET DOSE RATE = 0.0000D+00

FINAL TIME EVALUATION = 0.9000D+03
INITIAL TIME STEP = 0.1000D-01
EPSILON = 0.7000D-10
TIME MULTIPLE = 0.1800D+01
TIME TO CHANGE FROM MULT. TO ADD = 0.0300D+03
TIME ADDED TO TIME STEP = 0.2500D+02
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CHARGE</th>
<th>CRACK TIP FLUX</th>
<th>DIFFUSION COEFFICIENT</th>
<th>D</th>
<th>G</th>
<th>GH</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.100E+01</td>
<td>0.000E+00</td>
<td>0.126E-04</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>-0.100E+01</td>
<td>0.000E+00</td>
<td>0.100E-04</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>0.100E+01</td>
<td>0.000E+00</td>
<td>0.236E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td></td>
</tr>
<tr>
<td>HSO4</td>
<td>-0.100E+01</td>
<td>0.000E+00</td>
<td>0.189E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td></td>
</tr>
<tr>
<td>MN</td>
<td>0.200E+01</td>
<td>0.000E+00</td>
<td>0.140E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td></td>
</tr>
<tr>
<td>MNOH</td>
<td>0.100E+01</td>
<td>0.000E+00</td>
<td>0.140E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td></td>
</tr>
</tbody>
</table>
Chemical Reactions:

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>W + H</td>
<td>OH</td>
</tr>
<tr>
<td>W + MN</td>
<td>MNH + H</td>
</tr>
</tbody>
</table>

Koef (NRTH, NEQ):

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 -1 0 0 0 0</td>
<td>1 1 0 0 0 0</td>
</tr>
<tr>
<td>1 0 0 0 -1 1</td>
<td>-1 0 0 0 1 -1</td>
</tr>
</tbody>
</table>

IN1 IN2 IN3 RC:

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 218 0.100E+13</td>
</tr>
<tr>
<td>218 218 218 0.501E+01</td>
</tr>
<tr>
<td>5 218 218 0.170E+04</td>
</tr>
<tr>
<td>1 6 218 0.100E+10</td>
</tr>
</tbody>
</table>

Wall Reactions:

Type	**A**	**B**	**C**	**D**	**E**	**F**	**G**	**H**	**I**	**J**	**K**	**L**	**M**	**N**	**O**	**P**	**Q**	**R**	**S**	**T**	**U**	**V**	**W**	**X**	**Y**	**Z**				
	1.2.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	-1.	1.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	-1.	1.	0.	0.	1.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	A 1.	2.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

WCIO WAlPHA KW WPow:

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.748E-03 0.000E+00 218 0.100E+01</td>
</tr>
<tr>
<td>0.455E-07 0.600E+00 218 0.100E+01</td>
</tr>
<tr>
<td>0.203E-01 0.600E+00 1 0.100E+01</td>
</tr>
<tr>
<td>0.756E-05 0.000E+00 218 0.100E+01</td>
</tr>
</tbody>
</table>

SW (NRTH, NEQ):

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>0.0 1.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>-1.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>0.0 0.0 0.0 0.0 0.0 0.5 0.0</td>
</tr>
</tbody>
</table>

Tip Reactions:

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2.</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>-1.</td>
<td>1.</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>-1.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>-1.</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>A 1.</td>
<td>2.</td>
<td>0.</td>
</tr>
</tbody>
</table>

TCIO TAlPHA KT TPow:

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.748E-03 0.000E+00 218 0.100E+01</td>
</tr>
<tr>
<td>0.455E-07 0.600E+00 218 0.100E+01</td>
</tr>
<tr>
<td>0.203E-01 0.600E+00 1 0.100E+01</td>
</tr>
<tr>
<td>0.756E-05 0.000E+00 218 0.100E+01</td>
</tr>
</tbody>
</table>

ST (NRTH, NEQ):

361
```
1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
-1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0

SOLUBILITY REACTIONS:

<table>
<thead>
<tr>
<th>OH</th>
<th>OH</th>
<th>MN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.10D+09 0.23D-15</td>
</tr>
</tbody>
</table>

KOEPS(MNSRNW,NEQ):

| u  | v  | t  | 0   | 0   | 1   |

IN(1) INS2 INS3 SRC SC

| 1  | 2  | 5  | 0.10E+09 0.230E-15 |

CHEMICAL DISSOLUTION

<table>
<thead>
<tr>
<th>WALLF</th>
<th>WALLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10E-10</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIPF</th>
<th>TIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10E-10</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

MSP1 = 20 P1 = 0.10E+01
MSP2 = 20 P2 = 0.10E+01

362
**LSODI PARAMETERS:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOLERANCE FACTOR</td>
<td>2</td>
</tr>
<tr>
<td>RELATIVE TOLERANCE</td>
<td>0.10000D-05</td>
</tr>
<tr>
<td>ABSOLUTE TOLERANCE</td>
<td>0.10000D-11</td>
</tr>
<tr>
<td>ABSOLUTE TOLERANCE</td>
<td>0.10000D-11</td>
</tr>
<tr>
<td>ABSOLUTE TOLERANCE</td>
<td>0.10000D-19</td>
</tr>
<tr>
<td>ABSOLUTE TOLERANCE</td>
<td>0.10000D-19</td>
</tr>
<tr>
<td>ITASK</td>
<td>3</td>
</tr>
<tr>
<td>ISTATE</td>
<td>0</td>
</tr>
<tr>
<td>IOPT</td>
<td>1</td>
</tr>
<tr>
<td>MF</td>
<td>22</td>
</tr>
<tr>
<td>FIRST TIME STEP</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>MAX TIME STEP</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>MIN TIME STEP</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>MAX ORDER ALLOWED</td>
<td>0</td>
</tr>
<tr>
<td>MAX NUMBER OF INTERNAL STEPS</td>
<td>5000</td>
</tr>
<tr>
<td>MAX NUMBER OF MESSAGES</td>
<td>0</td>
</tr>
</tbody>
</table>
TIME = 0.000000 TIME STEP SIZE = 0.000000 NUMBER OF STEPS = 0
AVE TIME STEP = 0.000000 TIP COND. = 0.146E+00 EXT. METAL POT. = 0.000000
TIP FLUX : H = 0.000000 OH = 0.000000 NA = 0.000000
HSO = 0.000000 MN = 0.000000 MNO = 0.000000
X = 0.000000 P = 0.743400 ELECT = 0.000000
H = 0.223900 OH = 0.223900 NA = 0.251000
HSO = 0.251000 MN = 0.000000 MNO = 0.000000
X = 0.000333 P = 0.743400 ELECT = 0.000000
H = 0.223900 OH = 0.223900 NA = 0.251000
HSO = 0.251000 MN = 0.000000 MNO = 0.000000
X = 0.000667 P = 0.743400 ELECT = 0.000000
H = 0.223900 OH = 0.223900 NA = 0.251000
HSO = 0.251000 MN = 0.000000 MNO = 0.000000
X = 0.010000 P = 0.000000 ELECT = 0.100000
H = 0.223900 OH = 0.223900 NA = 0.251000
HSO = 0.251000 MN = 0.000000 MNO = 0.000000

TIME = 0.100000 TIME STEP SIZE = 0.692E-03 NUMBER OF STEPS = 117
AVE TIME STEP = 0.859E-04 TIP COND. = 0.163E-03 EXT. METAL POT. = 0.000000
TIP FLUX : H = 0.512E-08 OH = 0.512E-08 NA = 0.000000
HSO = 0.000000 MN = 0.392E-10 MNO = 0.000000
X = 0.000000 P = 0.766E+00 ELECT = -0.671D-13
H = 0.13194D-05 OH = 0.44270D-05 NA = 0.250995
HSO = 0.25100D-05 MN = 0.98317D-06 MNO = 0.132187
X = 0.00333 P = 0.766E+00 ELECT = -0.386D-13
H = 0.13194D-05 OH = 0.44251D-05 NA = 0.251008
HSO = 0.25099D-05 MN = 0.98252D-06 MNO = 0.132050
X = 0.00667 P = 0.766E+00 ELECT = -0.386D-13
H = 0.13194D-05 OH = 0.44251D-05 NA = 0.251008
HSO = 0.25099D-05 MN = 0.98252D-06 MNO = 0.132050
X = 0.01000 P = 0.000000 ELECT = 0.100D-08
H = 0.223900 OH = 0.223800 NA = 0.251000
HSO = 0.251000 MN = 0.000000 MNO = 0.000000

TIME = 0.187001 TIME STEP SIZE = 0.735E-03 NUMBER OF STEPS = 119
AVE TIME STEP = 0.619E-04 TIP COND. = 0.199E-03 EXT. METAL POT. = 0.000000
TIP FLUX : H = 0.573E-08 OH = 0.581E-08 NA = 0.000000
HSO = 0.000000 MN = 0.392E-10 MNO = 0.000000
X = 0.000000 P = 0.775D-00 ELECT = -0.655D-13
H = 0.778752D-06 OH = 0.647933D-05 NA = 0.250995
HSO = 0.251005D-05 MN = 0.14219D-05 MNO = 0.285677
X = 0.00333 P = 0.775D-00 ELECT = -0.439D-13
H = 0.77914D-06 OH = 0.647602D-05 NA = 0.251014
HSO = 0.250989D-05 MN = 0.14212D-05 MNO = 0.285410
X = 0.00667 P = 0.775D-00 ELECT = -0.443D-13
H = 0.77914D-06 OH = 0.647602D-05 NA = 0.251014
HSO = 0.250989D-05 MN = 0.14212D-05 MNO = 0.285410
X = 0.01000 P = 0.000000 ELECT = 0.100D-08
H = 0.223900 OH = 0.223800 NA = 0.251000
HSO = 0.251000 MN = 0.000000 MNO = 0.000000

TIME = 0.330000 TIME STEP SIZE = 0.115E-02 NUMBER OF STEPS = 163
AVE TIME STEP = 0.878E-04 TIP COND. = 0.269E-03 EXT. METAL POT. = 0.000000
TIP FLUX : H = 0.630E-08 OH = 0.638E-08 NA = 0.000000
HSO = 0.000000 MN = 0.392E-10 MNO = 0.000000
X = 0.000000 P = 0.738D+00 ELECT = -0.537D-13

364
### TIME = 0.590D-01 TIME STEP SIZE = 0.132E-02 NUMBER OF STEPS = 340

<table>
<thead>
<tr>
<th>H</th>
<th>0.509516D-06</th>
<th>OH</th>
<th>0.990968D-05</th>
<th>NA</th>
<th>0.251000D-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSO</td>
<td>0.251000D-05</td>
<td>MN</td>
<td>0.183910D-05</td>
<td>MNO</td>
<td>0.572153D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.00333</td>
<td>P</td>
<td>0.783D+00</td>
<td>ELECT</td>
<td>-0.231D-13</td>
</tr>
<tr>
<td>H</td>
<td>0.509778D-06</td>
<td>OH</td>
<td>0.990452D-05</td>
<td>NA</td>
<td>0.251021D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.250983D-05</td>
<td>MN</td>
<td>0.183869D-05</td>
<td>MNO</td>
<td>0.571698D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.00667</td>
<td>P</td>
<td>0.783D+00</td>
<td>ELECT</td>
<td>-0.256D-13</td>
</tr>
<tr>
<td>H</td>
<td>0.509777D-06</td>
<td>OH</td>
<td>0.990433D-05</td>
<td>NA</td>
<td>0.251022D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.250983D-05</td>
<td>MN</td>
<td>0.183869D-05</td>
<td>MNO</td>
<td>0.571699D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.01000</td>
<td>P</td>
<td>0.000D+00</td>
<td>ELECT</td>
<td>0.100D-08</td>
</tr>
<tr>
<td>H</td>
<td>0.223900D-05</td>
<td>OH</td>
<td>0.223800D-05</td>
<td>NA</td>
<td>0.251000D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.251000D-05</td>
<td>MN</td>
<td>0.000000D+00</td>
<td>MNO</td>
<td>0.000000D+00</td>
</tr>
</tbody>
</table>

### TIME = 0.109D+00 TIME STEP SIZE = 0.446E-02 NUMBER OF STEPS = 360

<table>
<thead>
<tr>
<th>H</th>
<th>0.644E-08</th>
<th>OH</th>
<th>0.652E-08</th>
<th>NA</th>
<th>0.000E+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSO</td>
<td>0.000E+00</td>
<td>MN</td>
<td>0.392E-10</td>
<td>MNO</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>X</td>
<td>0.00000</td>
<td>P</td>
<td>0.785D+00</td>
<td>ELECT</td>
<td>-0.655D-16</td>
</tr>
<tr>
<td>H</td>
<td>0.453617D-06</td>
<td>OH</td>
<td>0.111321D-04</td>
<td>NA</td>
<td>0.251050D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.250961D-05</td>
<td>MN</td>
<td>0.185915D-05</td>
<td>MNO</td>
<td>0.695928D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.00333</td>
<td>P</td>
<td>0.785D+00</td>
<td>ELECT</td>
<td>-0.218D-13</td>
</tr>
<tr>
<td>H</td>
<td>0.453613D-06</td>
<td>OH</td>
<td>0.111321D-04</td>
<td>NA</td>
<td>0.251049D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.250961D-05</td>
<td>MN</td>
<td>0.185914D-05</td>
<td>MNO</td>
<td>0.695911D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.00667</td>
<td>P</td>
<td>0.785D+00</td>
<td>ELECT</td>
<td>-0.231D-13</td>
</tr>
<tr>
<td>H</td>
<td>0.453606D-06</td>
<td>OH</td>
<td>0.111323D-04</td>
<td>NA</td>
<td>0.251084D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.250954D-05</td>
<td>MN</td>
<td>0.185902D-05</td>
<td>MNO</td>
<td>0.675921D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.01000</td>
<td>P</td>
<td>0.000D+00</td>
<td>ELECT</td>
<td>0.100D-08</td>
</tr>
<tr>
<td>H</td>
<td>0.223900D-05</td>
<td>OH</td>
<td>0.223800D-05</td>
<td>NA</td>
<td>0.251000D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.251000D-05</td>
<td>MN</td>
<td>0.000000D+00</td>
<td>MNO</td>
<td>0.000000D+00</td>
</tr>
</tbody>
</table>

### TIME = 0.190D+00 TIME STEP SIZE = 0.772E-02 NUMBER OF STEPS = 379

<table>
<thead>
<tr>
<th>H</th>
<th>0.644E-08</th>
<th>OH</th>
<th>0.652E-08</th>
<th>NA</th>
<th>0.000E+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSO</td>
<td>0.000E+00</td>
<td>MN</td>
<td>0.392E-10</td>
<td>MNO</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>X</td>
<td>0.00000</td>
<td>P</td>
<td>0.785D+00</td>
<td>ELECT</td>
<td>-0.825D-16</td>
</tr>
<tr>
<td>H</td>
<td>0.453608D-06</td>
<td>OH</td>
<td>0.111323D-04</td>
<td>NA</td>
<td>0.251079D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.250936D-05</td>
<td>MN</td>
<td>0.185907D-05</td>
<td>MNO</td>
<td>0.695913D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.00333</td>
<td>P</td>
<td>0.785D+00</td>
<td>ELECT</td>
<td>-0.218D-13</td>
</tr>
<tr>
<td>H</td>
<td>0.453604D-06</td>
<td>OH</td>
<td>0.111323D-04</td>
<td>NA</td>
<td>0.251078D-05</td>
</tr>
<tr>
<td>HSO</td>
<td>0.250937D-05</td>
<td>MN</td>
<td>0.185907D-05</td>
<td>MNO</td>
<td>0.695917D-05</td>
</tr>
<tr>
<td>X</td>
<td>0.00667</td>
<td>P</td>
<td>0.785D+00</td>
<td>ELECT</td>
<td>-0.504D-13</td>
</tr>
</tbody>
</table>
TIME = 0.353d+00 TIME STEP SIZE = 0.200E-01 NUMBER OF STEPS = 385
AVE TIME STEP = 0.424E-03 TIP COND. = 0.294E-03 EXT. METAL POT. = 0.000E+00
TIP FLUX : H = 0.664E-08 ON = 0.652E-08 NA = 0.000E+00
X = 0.000000 P = 0.785d+00 ELECT = -0.778D-16
H = 0.453589D-06 ON = 0.111328D-04 NA = 0.251138D-05
HSO = 0.250869D-05 MN = 0.185892D-05 MNO = 0.695885D-05
X = 0.003333 P = 0.785d+00 ELECT = -0.218D-13
H = 0.453589D-06 ON = 0.111328D-04 NA = 0.251138D-05
HSO = 0.250892D-05 MN = 0.185892D-05 MNO = 0.695888D-05
X = 0.006667 P = 0.785d+00 ELECT = -0.579D-13
H = 0.452871D-06 ON = 0.111504D-04 NA = 0.254086D-05
HSO = 0.249745D-05 MN = 0.185306D-05 MNO = 0.694796D-05
X = 0.010000 P = 0.000D+00 ELECT = 0.100D-08
H = 0.223900D-05 ON = 0.223800D-05 NA = 0.251000D-05
HSO = 0.251000D-05 MN = 0.000000D+00 MNO = 0.000000D+00

TIME = 0.637d+00 TIME STEP SIZE = 0.405E-01 NUMBER OF STEPS = 395
AVE TIME STEP = 0.718E-03 TIP COND. = 0.294E-03 EXT. METAL POT. = 0.000E+00
TIP FLUX : H = 0.644E-08 ON = 0.652E-08 NA = 0.000E+00
X = 0.000000 P = 0.785d+00 ELECT = -0.403D-16
H = 0.453597D-06 ON = 0.111336D-04 NA = 0.251241D-05
HSO = 0.250807D-05 MN = 0.185866D-05 MNO = 0.695836D-05
X = 0.003333 P = 0.785d+00 ELECT = -0.228D-13
H = 0.453541D-06 ON = 0.111339D-04 NA = 0.251295D-05
HSO = 0.250796D-05 MN = 0.185866D-05 MNO = 0.695821D-05
X = 0.006667 P = 0.785d+00 ELECT = -0.309D-13
H = 0.452261D-06 ON = 0.111654D-04 NA = 0.256992D-05
HSO = 0.249143D-05 MN = 0.184806D-05 MNO = 0.693854D-05
X = 0.010000 P = 0.000D+00 ELECT = 0.100D-08
H = 0.223900D-05 ON = 0.223800D-05 NA = 0.251000D-05
HSO = 0.251000D-05 MN = 0.000000D+00 MNO = 0.000000D+00

TIME = 0.114d+01 TIME STEP SIZE = 0.846E-01 NUMBER OF STEPS = 404
AVE TIME STEP = 0.124E-02 TIP COND. = 0.294E-03 EXT. METAL POT. = 0.000E+00
TIP FLUX : H = 0.644E-08 ON = 0.652E-08 NA = 0.000E+00
X = 0.000000 P = 0.785d+00 ELECT = -0.364D-15
H = 0.453498D-06 ON = 0.111350D-04 NA = 0.251432D-05
HSO = 0.250661D-05 MN = 0.185818D-05 MNO = 0.695745D-05
X = 0.003333 P = 0.785d+00 ELECT = -0.245D-13
H = 0.453382D-06 ON = 0.111378D-04 NA = 0.251950D-05
HSO = 0.250538D-05 MN = 0.185725D-05 MNO = 0.695577D-05
X = 0.006667 P = 0.785d+00 ELECT = -0.216D-13
H = 0.451974D-06 ON = 0.111725D-04 NA = 0.259179D-05
HSO = 0.249678D-05 MN = 0.184572D-05 MNO = 0.693410D-05
X = 0.010000 P = 0.000D+00 ELECT = 0.100D-08
H = 0.223900D-05 ON = 0.223800D-05 NA = 0.251000D-05
HSO = 0.251000D-05 MN = 0.000000D+00 MNO = 0.000000D+00

366
| TIME          | TIME STEP SIZE | NUMBER OF STEPS | AVE TIME STEP | TIP FLUX | HSO | P | M | ELECT | X | H | CH | M | ELECT | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.209D+01    | 0.124E+00      | 413            | 0.232E-02     | 0.294E-03  | 0.000E+00  | 0.644E-08 | 0.652E-08 | 0.000E+00 |
|              |                |                |               |           | 0.392E-10 |      |    | -0.204D-14 | 0.000000 |         | 0.453331D-06 | 0.111391D-04 | NA | 0.252061D-05 |
|              |                |                |               |           |      |    | 0.250333D-05 | 0.185681D-05 | MNO | 0.695489D-05 |
|              |                |                |               |           | 0.00333 |         | 0.785D+00 | -0.239D-13 | 0.000667 | P | 0.785D+00 | ELECT | -0.216D-13 | 0.0219D-13 | 0.223900D-05 | 0.223800D-05 | NA | 0.251000D-05 |
|              |                |                |               |           |      |    | 0.251000D-05 | 0.000000D+00 | MNO | 0.000000D+00 |
| 0.358C+01    | 0.282E+00      | 420            | 0.354E-02     | 0.295E-03  | 0.000E+00  | 0.644E-08 | 0.652E-08 | 0.000E+00 |
|              |                |                |               |           | 0.392E-10 |      |    | -0.299D-14 | 0.000000 |         | 0.452937D-06 | 0.111488D-04 | NA | 0.253788D-05 |
|              |                |                |               |           |      |    | 0.249769D-05 | 0.184357D-05 | MNO | 0.694882D-05 |
|              |                |                |               |           | 0.00333 |         | 0.785D+00 | -0.231D-13 | 0.00667 | P | 0.785D+00 | ELECT | -0.219D-13 | 0.223900D-05 | 0.223800D-05 | NA | 0.251000D-05 |
|              |                |                |               |           |      |    | 0.251000D-05 | 0.000000D+00 | MNO | 0.000000D+00 |
| 0.659D+01    | 0.434E+00      | 428            | 0.704E-02     | 0.295E-03  | 0.000E+00  | 0.644E-08 | 0.652E-08 | 0.000E+00 |
|              |                |                |               |           | 0.392E-10 |      |    | -0.242D-14 | 0.000000 |         | 0.452083D-06 | 0.111699D-04 | NA | 0.258082D-05 |
|              |                |                |               |           |      |    | 0.249185D-05 | 0.184658D-05 | MNO | 0.693569D-05 |
|              |                |                |               |           | 0.00333 |         | 0.785D+00 | -0.227D-13 | 0.00667 | P | 0.785D+00 | ELECT | -0.218D-13 | 0.223900D-05 | 0.223800D-05 | NA | 0.251000D-05 |
|              |                |                |               |           |      |    | 0.251000D-05 | 0.000000D+00 | MNO | 0.000000D+00 |
| 0.120D+02    | 0.990E+00      | 435            | 0.124E-01     | 0.296E-03  | 0.000E+00  | 0.644E-08 | 0.652E-08 | 0.000E+00 |
|              |                |                |               |           | 0.392E-10 |      |    | -0.127D-14 | 0.000000 |         | 0.450944D-06 | 0.111976D-04 | NA | 0.267248D-05 |
|              |                |                |               |           |      |    | 0.251938D-05 | 0.183174D-05 | MNO | 0.691857D-05 |
|              |                |                |               |           | 0.01000 |         | 0.785D+00 | -0.100D-08 | 0.000000 | P | 0.785D+00 | ELECT | 0.223900D-05 | 0.223800D-05 | NA | 0.251000D-05 |
|              |                |                |               |           |      |    | 0.251000D-05 | 0.000000D+00 | MNO | 0.000000D+00 |

367
TIME = 0.209D+02  TIME STEP SIZE = 0.147E+01  NUMBER OF STEPS = 442
AVERAGE TIME STEP = 0.201E-01  TIP COND. = 0.297E-03  EXT. METAL POT. = 0.000E+00
TIP FLUX : H = 0.645E-08  OH = 0.653E-08  NA = 0.000E+00
H2O = 0.000E+00  MN = 0.392E-10  MMO = 0.000E+00
X = 0.00000  P = 0.785D+00  ELEC = 0.345D-16
H = 0.449325D-06  OH = 0.112386D-04  NA = 0.273428D-05
H2O = 0.000E+00  MN = 0.182409D-05  MMO = 0.689327D-05
X = 0.00033  P = 0.785D+00  ELEC = -0.215D-13
H = 0.449321D-06  OH = 0.112386D-04  NA = 0.274225D-05
H2O = 0.000E+00  MN = 0.182408D-05  MMO = 0.689329D-05
X = 0.00067  P = 0.785D+00  ELEC = -0.211D-13
H = 0.449328D-06  OH = 0.112369D-04  NA = 0.276225D-05
H2O = 0.000E+00  MN = 0.182463D-05  MMO = 0.689432D-05
X = 0.00100  P = 0.000D+00  ELEC = 0.100D-08
H = 0.223900D-05  OH = 0.223800D-05  NA = 0.251000D-05
H2O = 0.000E+00  MN = 0.000000D+00  MMO = 0.000000D+00

TIME = 0.393D+02  TIME STEP SIZE = 0.378E+01  NUMBER OF STEPS = 449
AVERAGE TIME STEP = 0.411E-01  TIP COND. = 0.297E-03  EXT. METAL POT. = 0.000E+00
TIP FLUX : H = 0.645E-08  OH = 0.653E-08  NA = 0.000E+00
H2O = 0.000E+00  MN = 0.392E-10  MMO = 0.000E+00
X = 0.00000  P = 0.785D+00  ELEC = 0.142D-14
H = 0.447755D-06  OH = 0.112780D-04  NA = 0.282358D-05
H2O = 0.000E+00  MN = 0.181135D-05  MMO = 0.686912D-05
X = 0.00033  P = 0.785D+00  ELEC = -0.208D-13
H = 0.447930D-06  OH = 0.112735D-04  NA = 0.282121D-05
H2O = 0.000E+00  MN = 0.181279D-05  MMO = 0.687189D-05
X = 0.00067  P = 0.785D+00  ELEC = -0.207D-13
H = 0.448492D-06  OH = 0.112594D-04  NA = 0.281267D-05
H2O = 0.000E+00  MN = 0.181735D-05  MMO = 0.688055D-05
X = 0.00100  P = 0.000D+00  ELEC = 0.100D-08
H = 0.223900D-05  OH = 0.223800D-05  NA = 0.251000D-05
H2O = 0.000E+00  MN = 0.000000D+00  MMO = 0.000000D+00

TIME = 0.679D+02  TIME STEP SIZE = 0.448E+01  NUMBER OF STEPS = 456
AVERAGE TIME STEP = 0.626E-01  TIP COND. = 0.298E-03  EXT. METAL POT. = 0.000E+00
TIP FLUX : H = 0.645E-08  OH = 0.653E-08  NA = 0.000E+00
H2O = 0.000E+00  MN = 0.328E-10  MMO = 0.000E+00
X = 0.00000  P = 0.785D+00  ELEC = 0.209D-14
H = 0.44698D-06  OH = 0.112974D-04  NA = 0.286776D-05
H2O = 0.000E+00  MN = 0.180144D-05  MMO = 0.685732D-05
X = 0.00033  P = 0.785D+00  ELEC = -0.204D-13
H = 0.44774D-06  OH = 0.112907D-04  NA = 0.286029D-05
H2O = 0.000E+00  MN = 0.180728D-05  MMO = 0.686143D-05
X = 0.00067  P = 0.785D+00  ELEC = -0.206D-13
<table>
<thead>
<tr>
<th>TIME = 0.619D+03</th>
<th>TIME STEP SIZE = 0.253E+02</th>
<th>NUMBER OF STEPS = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE TIME STEP</td>
<td>0.844E+01</td>
<td>TIP COND. = 0.298E-03</td>
</tr>
<tr>
<td>TIP FLUX</td>
<td>H = 0.645E-08 OH = 0.653E-08 NA = 0.000E+00</td>
<td>EXT. METAL POT. = 0.000E+00</td>
</tr>
<tr>
<td>X = 0.000000</td>
<td>P = 0.785D+00</td>
<td>ELECT = -0.203D-13</td>
</tr>
<tr>
<td>H = 0.446739D-06</td>
<td>MN = 0.180313D-05</td>
<td>MNO = 0.685349D-05</td>
</tr>
<tr>
<td>X = 0.000333</td>
<td>P = 0.785D+00</td>
<td>ELECT = -0.203D-13</td>
</tr>
<tr>
<td>H = 0.447026D-06</td>
<td>MN = 0.180548D-05</td>
<td>MNO = 0.685800D-05</td>
</tr>
<tr>
<td>X = 0.000667</td>
<td>P = 0.785D+00</td>
<td>ELECT = -0.205D-13</td>
</tr>
<tr>
<td>H = 0.447903D-06</td>
<td>MN = 0.181257D-05</td>
<td>MNO = 0.687148D-05</td>
</tr>
<tr>
<td>X = 0.010000</td>
<td>P = 0.000D+00</td>
<td>ELECT = 0.000D+00</td>
</tr>
<tr>
<td>H = 0.223900D-05</td>
<td>MN = 0.223900D-05</td>
<td>MNO = 0.251000D-05</td>
</tr>
<tr>
<td>X = 0.010000</td>
<td>P = 0.000D+00</td>
<td>ELECT = 0.000D+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.660D+03</th>
<th>TIME STEP SIZE = 0.396E+02</th>
<th>NUMBER OF STEPS = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE TIME STEP</td>
<td>0.136E+02</td>
<td>TIP COND. = 0.298E-03</td>
</tr>
<tr>
<td>TIP FLUX</td>
<td>H = 0.645E-08 OH = 0.653E-08 NA = 0.000E+00</td>
<td>EXT. METAL POT. = 0.000E+00</td>
</tr>
<tr>
<td>X = 0.000000</td>
<td>P = 0.785D+00</td>
<td>ELECT = 0.229D-14</td>
</tr>
<tr>
<td>H = 0.446739D-06</td>
<td>MN = 0.180313D-05</td>
<td>MNO = 0.685349D-05</td>
</tr>
<tr>
<td>X = 0.000000</td>
<td>P = 0.785D+00</td>
<td>ELECT = 0.229D-14</td>
</tr>
<tr>
<td>H = 0.446739D-06</td>
<td>MN = 0.180548D-05</td>
<td>MNO = 0.685800D-05</td>
</tr>
<tr>
<td>X = 0.000667</td>
<td>P = 0.785D+00</td>
<td>ELECT = -0.205D-13</td>
</tr>
<tr>
<td>H = 0.447903D-06</td>
<td>MN = 0.181257D-05</td>
<td>MNO = 0.687148D-05</td>
</tr>
<tr>
<td>X = 0.010000</td>
<td>P = 0.000D+00</td>
<td>ELECT = 0.000D+00</td>
</tr>
<tr>
<td>H = 0.223900D-05</td>
<td>MN = 0.223900D-05</td>
<td>MNO = 0.251000D-05</td>
</tr>
<tr>
<td>X = 0.010000</td>
<td>P = 0.000D+00</td>
<td>ELECT = 0.000D+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.733D+03</th>
<th>TIME STEP SIZE = 0.714E+02</th>
<th>NUMBER OF STEPS = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE TIME STEP</td>
<td>0.242E+02</td>
<td>TIP COND. = 0.298E-03</td>
</tr>
<tr>
<td>TIP FLUX</td>
<td>H = 0.645E-08 OH = 0.653E-08 NA = 0.000E+00</td>
<td>EXT. METAL POT. = 0.000E+00</td>
</tr>
<tr>
<td>X = 0.000000</td>
<td>P = 0.785D+00</td>
<td>ELECT = 0.229D-14</td>
</tr>
<tr>
<td>H = 0.446739D-06</td>
<td>MN = 0.180313D-05</td>
<td>MNO = 0.685349D-05</td>
</tr>
<tr>
<td>X = 0.000000</td>
<td>P = 0.785D+00</td>
<td>ELECT = 0.229D-14</td>
</tr>
<tr>
<td>H = 0.446739D-06</td>
<td>MN = 0.180548D-05</td>
<td>MNO = 0.685800D-05</td>
</tr>
<tr>
<td>X = 0.000667</td>
<td>P = 0.785D+00</td>
<td>ELECT = -0.205D-13</td>
</tr>
<tr>
<td>H = 0.447903D-06</td>
<td>MN = 0.181257D-05</td>
<td>MNO = 0.687148D-05</td>
</tr>
<tr>
<td>X = 0.000667</td>
<td>P = 0.785D+00</td>
<td>ELECT = -0.205D-13</td>
</tr>
</tbody>
</table>
TIME = 0.979D+03  TIME STEP SIZE = 0.245E+03  NUMBER OF STEPS = 3
AVE TIME STEP = 0.822E+02  TIP COND. = 0.298E-03  EXT. METAL POT. = 0.000E+00
TIP FLUX :  H = 0.645E-08  OH = 0.653E-08  NA = 0.000E+00
   HSO = 0.000E+00  MN = 0.392E-10  MNO = 0.000E+00
X = 0.000000  P = 0.785D+00  ELECT = 0.229D-14
   H = 0.446739D-06  OH = 0.113037D-04  NA = 0.288209D-05
   HSO = 0.248487D-05  MN = 0.180313D-05  MNO = 0.685349D-05
X = 0.000333  P = 0.785D+00  ELECT = -0.203D-13
   H = 0.447026D-06  OH = 0.112963D-04  NA = 0.287304D-05
   HSO = 0.249270D-05  MN = 0.180544D-05  MNO = 0.685300D-05
X = 0.000667  P = 0.785D+00  ELECT = -0.205D-13
   H = 0.447903D-06  OH = 0.112742D-04  NA = 0.284603D-05
   HSO = 0.251636D-05  MN = 0.181257D-05  MNO = 0.687148D-05
X = 0.010000  P = 0.000D+00  ELECT = 0.000D+00
   H = 0.223900D-05  OH = 0.223900D-05  NA = 0.251000D-05
   HSO = 0.251000D-05  MN = 0.000000D+00  MNO = 0.000000D+00

RUN STATISTICS

STEP SIZE LAST USED  = 0.24517E+03
STEP SIZE FOR NEXT  = 0.24517E+03
CURRENT VALUE OF T  = 0.97938E+03
TOLERANCE SCALE FACTOR = 0.000000E+00
REQURED RWORK SIZE  = 49064
IWORK SIZE  = 217
NUMBER OF STEPS  = 0
# OF FUNC.- EVALS.  = 439
# OF JACOB.- EVALS  = 2
METHOD ORDER USED  = 1
ORDER FOR NEXT STEP  = 1

ERROR HALT...ISTATE = 1