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ABSTRACT 
 
In this work, we construct an updatable and unambiguous delegation scheme based on the 
decisional assumption on bilinear groups introduced by Kalai, Paneth and Yang [STOC 2019]. 
Using this delegation scheme, we show PPAD-hardness (and hence the hardness of computing 
Nash equilibria) based on the quasi-polynomial hardness of this bilinear group assumption and any 
hard language that is decidable in quasi-polynomial time and polynomial space. 
 
The delegation scheme is for super-polynomial time deterministic computations and is publicly 
verifiable and non-interactive in the common reference string (CRS) model. It is updatable 
meaning that given a proof for the statement that a Turing machine reaches some configuration C 
in T steps, it is efficient to update it into a proof for the statement that the machine reaches the next 
configuration C' in T+1 steps. It is unambiguous meaning that it is hard to produce two different 
proofs for the same statement. 
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1 Introduction
The computational complexity of finding a Nash equilibrium in bimatrix games has been the subject of extensive research
in recent years. In his seminal work, Papadimitriou [Pap94] defined the complexity class PPAD and showed that it
contains the problem NASH. Daskalakis, Goldberg and Papadimitriou [DGP09], and Chen, Deng and Teng [CDT09]
proved that NASH is PPAD-complete.

Currently polynomial (or even subexponential) time algorithms for PPAD are not known and NASH is conjectured
to be intractable. A promising approach to proving the hardness of PPAD, proposed by Papadimitriou, is to base
its hardness on assumptions from cryptography. Despite tremendous progress in this direction over the past five
years, PPAD-hardness is only known under very strong and “non-standard" cryptographic assumptions. Building
on [AKV04], Bitanski, Paneth and Rosen [BPR15] show that PPAD is hard on average assuming sub-exponentially
secure indistinguishability obfuscation. Hubá�ek and Yogev [HY17] extended this result to CLS, a subclass of PPAD.
The assumption was relaxed in [GPS16, KS17] from indistinguishability obfuscation to strong assumptions related to
functional encryption. Very recently, Choudhuri et al. [CHK+19b, CHK+19a] and Ephraim et al. [EFKP19] showed
average-case hardness of PPAD under an assumption closely related to the soundness of the Fiat-Shamir heuristic
when applied to specific protocols. See Section 2.3 for more details on related work.

Basing PPAD-hardness on weaker, well-studied cryptographic assumptions remains an important goal.

This work. We prove hardness of CLS and PPAD, under the following assumptions:

1. A decisional assumption on groups with bilinear maps (Assumption 1.3). This is a quasi-polynomial version of
an assumption recently introduced by [KPY19]. It is falsifiable (in quasi-polynomial time) and it holds in the
generic group model.

2. The existence of a hard language L that can be decided in time n
(log n)‘ for some ‘ < 1 and polynomial space.

For example, the assumption that SAT over m = (log n)1+‘ variables is hard for 2m
c -size circuits for any

1/(1 + ‘) < c < 1 su�ces. This is (weaker than) non-uniform Exponential Time Hypothesis (ETH). If L is
hard on average we show average-case hardness of PPAD.

Our result follows a similar approach to that of Choudhuri et al. [CHK+19b] exploiting a folklore connection
between PPAD and the notion of incrementally verifiable computation [Val08]. Specifically, we consider delegation
schemes that are both updatable and unambiguous. Loosely speaking, a delegation scheme for T -time computations is
a computationally sound proof system that can be verified in time << T . For the purpose of proving PPAD-hardness,
in this work we focus on publicly verifiable non-interactive schemes in the CRS model for delegating super-polynomial
time computations with polynomial-time verification.1 A delegation scheme is said to be updatable if given a proof of
correctness for the first t steps of a computation, we can extend it to a proof of correctness of the first t+1 steps without
recomputing the proof from scratch (that is, in time independent of t). A delegation scheme is said to be unambiguous
if it is computationally hard to construct two di�erent accepting proofs for the same statement.

We show that the existence of such a delegation scheme for a hard language L as above, implies the hardness of a
problem known as �������-S���-��-V���������-L��� (rSVL) that was defined and reduced to a problem in CLS in
[CHK+19b].

Theorem 1.1 (Informal). Let L be a hard (resp. hard on average) language decidable by a deterministic Turing
machine running in time T (n) = n

Ê(1) and space S(n) = poly(n). If there exists an updatable and unambiguous
delegation scheme for L then rSVL is hard (resp. hard on average).

We refer the reader to Theorem 4.4 for the formal statement, and to Section 3 for the definition of delegation.

Our main contribution is the construction of such a delegation scheme. Specifically, we show that for any
0 < ‘ < 1 and T = T (n) Æ n

(log n)‘ there exists an updatable and unambiguous delegation scheme for any T -time
polynomial-space deterministic computation under Assumption 1.3 below.

1More generally, in the literature delegation may also refer to privately verifiable schemes and interactive schemes. The focus is
often on delegating polynomial-time computations with near linear-time verification.
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Theorem 1.2 (Informal). Let 0 < ‘ < 1 and let M be a deterministic Turing machine that runs in time T (n) Æ n
(log n)‘

and space S(n) = poly(n). Under Assumption 1.3 for �(Ÿ) = 2(log Ÿ)
1+‘
1≠‘ there exists an updatable and unambiguous

delegation scheme for M with setup and verification time poly(S(n)) where the prover runs in time T (n) ·poly(S(n)).

We refer the reader to Corollary 5.3 for the formal statement, and to Section 5 for our results with more general
parameters. We note that in Theorem 1.2 the e�ciency of the delegation scheme grows with the space of the
computation. This dependency can be removed using standard techniques [KRR14, KPY19]. However, we did
not implement this in the current work since it would further complicate the proof and is not needed for showing
PPAD-hardness.

Assumption 1.3 is a version of the bilinear group assumption from [KPY19] with a hardness parameter � = �(Ÿ).
We mention that [KPY19] rely on this assumption for �(Ÿ) = poly(Ÿ) to construct a delegation scheme for polynomial-
time computations. To construct a delegation scheme for super-polynomial time computations, we rely on this
assumption for super-polynomial �(Ÿ).

Assumption 1.3. Let G be a group of prime order p = 2�(Ÿ) equipped with a bilinear map. For every –(Ÿ) =
O(log �(Ÿ)) given the following 3-by-– matrix of group elements:

1
g

s
j
t

i
2

iœ[0,2]
jœ[0,–]

=

Q

ca
g

s
0

g
s

1
. . . g

s
–

g
s

0
t

g
s

1
t

. . . g
s

–
t

g
s

0
t

2
g

s
1
t

2
. . . g

s
–

t
2

R

db

for random g œ G and s œ Zp, it is �(Ÿ)-hard to distinguish between the case where t = s
2–+1 and the case where t

is a random independent element in Zp.

2 Technical Overview
In this section we give an overview of our delegation scheme with updatable and unambiguous proofs. We build on the
non-interactive delegation scheme of [KPY19] (KPY). We start by recalling the high-level structure of their scheme.

2.1 The KPY Delegation Scheme
The KPY construction consists of two steps: first, they construct quasi-arguments for NP which, following [KRR14],
are known to imply delegation for P. The KPY quasi-arguments have a long CRS which results in a delegation scheme
for P with a long CRS (of length proportional to the running time of the computation). Then they use quasi-arguments
again to “bootstrap" a delegation scheme with a long CRS and get a delegation scheme with a short CRS.

Quasi-arguments. A quasi-argument is a relaxation of an argument-of-knowledge: in a quasi-argument, the
standard knowledge extraction requirement is replaced by a weaker requirement called non-signaling (local) extraction.
To argue about locality, the definition specifically considers the NP complete language 3SAT. Roughly speaking, in
an argument-of-knowledge for 3SAT, for any prover that convinces the verifier to accept a formula Ï there exists an
extractor that produces a satisfying assignment for Ï. In a quasi-argument, however, the extractor is not required to
produce a full assignment. Rather it is given a small set of variables S and it produces an assignment only for the
variables in S. This partial assignment is required to be locally consistent, satisfying every clause of Ï over variables in
S. Furthermore, the partial assignments produced by the extractor should satisfy the non-signaling property. Loosely
speaking, this property requires that for any subsets S µ SÕ the distribution of the assignments produced by the
extractor for the variables in SÕ, when restricted to the variables in S, is independent of the variables in SÕ \ S. We
refer the reader to Section 8.1 for the formal definition. The notion of a quasi-argument was introduced in [PR17]
under the name “core protocol with a local assignment generator". Prior works including [KRR13, KRR14, BHK17]
(implicitly) construct privately verifiable two-message quasi-arguments for NP.
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The BMW heuristic. The KPY quasi-argument is inspired by the BMW heuristic [BMW98] for converting a
multi-prover interactive proof (MIP) into a two-message privately verifiable delegation scheme. In this delegation
scheme, the verifier generates the MIP queries, encrypts each query using a homomorphic encryption scheme (with a
fresh key), and sends the encrypted queries to the prover. The prover then homomorphically computes the encrypted
answers, and the verifier decrypts and checks the answers. While this heuristic is known to be insecure in general
[DNRS03, DHRW16], the work of [KRR13] shows that it is sound for MIPs satisfying a strong soundness condition
called non-signaling soundness.

From private to public verification. To obtain a publicly verifiable non-interactive delegation scheme, KPY
follow the blueprint of Paneth and Rothblum (PR) [PR17] and place the encrypted queries in the CRS. Now, since the
verifier does not encrypt the queries itself, it can no longer decrypt the answers. Instead, the queries are encrypted
using a special homomorphic encryption equipped with a weak zero-test that allows the verifier to check the validity
of the prover’s answers without decrypting them. Modularizing the analysis of [KRR13, KRR14], PR show that the
resulting protocol is a quasi-argument for NP.

The CRS length. Unlike the PR solution that was based on multilinear maps, KPY construct a zero-testable
homomorphic encryption scheme based only on bilinear maps. In the KPY scheme, however, the ciphertext length
grows exponentially with the length of the encrypted query. This results in a quasi-argument with a long CRS. To
shorten the CRS, KPY use an idea known as “bootstrapping" that was previously used to obtain succinct arguments
of knowledge for NP (SNARKs) with a short CRS [Val08, BCCT13]. In this setting, a SNARK with a long CRS is
recursively composed with itself yielding a SNARK with a short CRS. In contrast, KPY compose a delegation scheme
for P and a quasi-argument for NP, both with a long CRS to obtain a delegation scheme for P with a short CRS.

2.2 Our Delegation Scheme
We modify the KPY delegation scheme to make its proofs updatable and unambiguous. Obtaining updatability is fairly
straightforward. Previous work [Val08, BCCT13] used recursive proof composition to merge proofs and applied this
technique both for bootstrapping proofs (with the goal of shortening the CRS) and for creating updatable proofs. In
the setting of delegation for P, the work of KPY shows how to use quasi-arguments to merge proofs for bootstrapping.
Following KPY, our work shows how to use quasi-arguments to merge proofs for updatability.

The main technical challenge and the focus of the following overview is achieving unambiguity. We first construct
quasi-arguments for NP with a long CRS that satisfy a notion of unambiguity. Then we argue that unambiguity
is preserved in the bootstrapping step. We mention that in addition to satisfying the unambiguity property, our
quasi-arguments are also more e�cient than the quasi-arguments in KPY. As a result, we can delegate n

log n
‘-time

computations with a poly(n)-size CRS, as opposed to KPY that could only delegate n
O(log log n)-time computations.

Unambiguous quasi-arguments. The KPY delegation scheme is constructed from a quasi-argument and, there-
fore, to get an unambiguous delegation scheme we first construct unambiguous quasi-arguments. In contrast to
delegation schemes that argue about deterministic computations, quasi-arguments argue about non-deterministic for-
mulas. We therefore need to take care in defining the required notion of unambiguity. The strongest requirement
would be that the prover cannot find two accepting proofs for the same formula, even if the formula has multiple
satisfying assignments. This notion, however, is only known under very strong assumptions [SW14, CPW20]. A
natural relaxation is to ask for unambiguous proofs only for formulas where the satisfying assignment is unique, or
where finding multiple satisfying assignments is intractable. Even this relaxation, however, seems outside the reach
of our techniques. The issue is that there exist formulas where the full satisfying assignment is unique, however,
there exists an e�cient non-signaling local extractor that can produce multiple locally consistent assignments for every
small set of variables (without violating the non-signaling property). Therefore, we further relax the unambiguity
requirement for quasi-arguments to only require that it is hard to find multiple accepting proofs for formulas where any
e�cient non-signaling local extractor can only produce a unique assignment to each small set of variables. We refer to
such formulas as locally unambiguous.
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We observe that instantiating the KPY delegation scheme with a quasi-argument satisfying this notion of unambi-
guity results in an unambiguous delegation scheme. To argue this we need to take a closer look at the bootstrapping
step of KPY.

The KPY delegation scheme is obtained by recursive composition of quasi-arguments. In the base of the recursion
we use a quasi-argument with a long CRS to construct a delegation scheme for P with a long CRS. The delegation
scheme simply invokes the quasi-argument for the following 3SAT formula encoding the delegated computation: The
formula contains variables describing the state of the computation in each timestep and clauses that enforce that each
state is correctly computed from the previous one. Since the computation is deterministic, we can design the formula so
it has a unique satisfying assignment. Moreover, we can show that the resulting formula is, in fact, locally unambiguous
as follows. Using the fact that the formula has a unique satisfying assignment we can argue that if a non-signaling
local extractor produces a unique assignment for the variables describing some state of the computation then, by
local-consistency, it must also produce a unique assignment for the variables describing the subsequent state. The
assignment for the variables describing the initial state must be unique, and therefore, we can use the non-signaling
property of the extractor to argue that the assignments for every set of variables must also be unique. Since the 3SAT
formula is locally unambiguous, the unambiguity of the delegation scheme follows from that of the quasi-argument.

In the induction step the delegation scheme for P is composed with a quasi-argument to reduce the length of the
CRS. The idea is to split the computation into small blocks and use the base delegation scheme to argue about each
of the blocks. Simply sending the delegation proof for each block will result in a proof that is too long. Instead
the composed delegation scheme invokes the quasi-argument for a 3SAT formula that is satisfiable if and only if the
delegation proofs for all blocks are accepting. Using an argument similar to the one used in the base case, we can
leverage the unambiguity of the base delegation scheme to show that this 3SAT formula is also locally unambiguous.

Constructing unambiguous quasi-arguments. Next we describe our high-level strategy for making the KPY
quasi-argument unambiguous. Recall that in KPY the quasi-argument CRS consists of encrypted MIP queries and the
proof contains encrypted answers. Our construction has two steps: first we modify the quasi-argument so the answers
encrypted in the proof are unambiguous. That is, for an honestly generated CRS, it is hard to find two accepting proofs
for the same locally unambiguous formula that, when decrypted, result in di�erent answers. Then we proceed to argue
the unambiguity of the ciphertexts themselves. We show that in the KPY encryption scheme it is hard to find two
di�erent ciphertexts that decrypt to the same value without knowing the secret key. Moreover, this task is hard even
given the ciphertexts in the CRS. Together, these two steps imply the unambiguity of the quasi-argument proof. We
first discuss the unambiguity of the ciphertexts and then explain how to achieve unambiguous answers which is the
main challenge.

Unambiguity of ciphertexts. We first show that an adversarial prover cannot find two di�erent ciphertexts that
decrypt to the same value, even given the CRS that contains encryptions of random MIP queries. In the KPY quasi-
argument, the MIP queries are random in F¸ where F is a large field and ¸ is logarithmic in the number of variables in
the formula. In the KPY encryption scheme, the secret key is a random element sk œ F and a ciphertext encrypting
an element q œ F¸ is given by a cryptographic encoding of a random low-degree polynomial P : F æ F¸ such that
P (sk) = q. Therefore, the encryption of the random query q œ F¸ in the CRS is just an encoding of a random
polynomial and hence, it does not reveal any information about sk. Finding two ciphertexts that encrypt the same value
requires finding two encoded low-degree polynomials that agree on sk. Since sk is information theoretically hidden,
this can only be done with negligible probability.

Unambiguity of answers. Our next step is to modify the KPY quasi-argument so that it has unambiguous answers.
Together with the unambiguity of the ciphertexts this implies the unambiguity of the entire quasi-argument proof. In
the KPY quasi-argument, the prover’s answers are given by low-degree polynomials in the queries. The first polynomial
evaluated is denoted by X and it encodes the prover’s assignment. Specifically, X : F¸ æ F is the multilinear extension
of the assignment. That is, X is multilinear, and for every variable Z of the formula there exists a Boolean input
y œ {0, 1}¸ such that the assignment to Z is X(y). For each encrypted query in the CRS, the proof contains the
evaluation of X on that query as well as evaluations of additional “proof polynomials" that help convince the verifier

9



that the X evaluations are locally consistent. In this overview we focus on making the evaluations of X unambiguous.
We use similar techniques to make the evaluations of the proof polynomials unambiguous.

Unambiguity of X . Our first goal is to ensure unambiguity of the X evaluations. That is, for a locally unambiguous
formula and an honestly generated CRS it should be hard to find two accepting proofs that encrypt di�erent evaluations
of X . In fact, we show that for any fixed query q œ F¸, the evaluation X(q) is unambiguous regardless of the other
queries encrypted in the CRS. Before proving the unambiguity of X(q) for any query q œ F¸ we focus on proving
unambiguity in the special case where q œ {0, 1}¸ is a Boolean query. In this case we can prove the unambiguity of
X(q) based on the fact that the formula is locally unambiguous using the properties of the KPY local extractor. To see
this, recall that for a Boolean q, the evaluation X(q) gives the assignment to some variable Z of the formula. The KPY
extractor, given a small set of variables that contains Z, samples a CRS that contains an encryption of q, evaluates the
prover on the CRS and obtains an accepting proof. (If the proof is rejecting, the extractor is allowed to fail.) It then
decrypts the value X(q) and returns it as the assignment to Z. Since the formula is locally unambiguous, the value
that the extractor assigns to Z is unambiguous. Since the CRS sampled by the extractor has the same distribution as
an honestly generated CRS that contains an encryption of q, it follows that the evaluation X(q) in the proof is also
unambiguous for the special case of Boolean queries.

For the general case of non-Boolean queries we observe that the KPY quasi-argument does not guarantee unam-
biguity. An adversarial prover can produce a second accepting proof by computing a di�erent polynomial ÂX ”= X

that agrees with X on all inputs in {0, 1}¸ and following the honest prover’s strategy using ÂX instead of X . It may be
tempting to try and fix this problem by considering a variant of the KPY quasi-argument where the queries in the CRS
are Boolean rather than random in F¸. For this quasi-argument the unambiguity of the X evaluations follows by the
above argument. However, we can no longer argue the unambiguity of ciphertexts. In fact, if we let the CRS contain
only Boolean queries we can break the unambiguity of ciphertexts by evaluating two di�erent polynomials that agree
on {0, 1}¸ over the same query resulting in two di�erent ciphertext that encrypt the same value. We therefore proceed
to argue the unambiguity of X for any query in F¸.

A proof of multilinearity. Observe that in the above attack on the unambiguity of the KPY quasi-argument, while
X is multilinear, ÂX must have individual degree > 1 since a multilinear polynomial is completely determined by its
evaluations on {0, 1}¸. Intuitively, to eliminate such attacks our approach is to have the prover convince the verifier
that the polynomial X it uses is indeed multilinear. Formally defining the soundness of such a “multilinearity proof",
however, requires some care. The main challenge is that the polynomial X used by the cheating prover is not well
defined. In fact, any small set of queries and answers is typically consistent with some multilinear polynomial. One
way to strengthen the soundness condition is to require that the prover knows the the polynomial X . This, in particular,
guarantees that a cheating prover does not choose X in a way that signals information about the queries encrypted in the
CRS. Currently, however, such succinct non-interactive arguments of knowledge are only known under non-falsifiable
knowledge assumptions [Nao03, GW11].

In order to avoid knowledge assumptions, we introduce a new notion of a multilinearity proof that allows us to argue
the unambiguity of X for all queries. We then construct such proofs based on our bilinear assumption. Intuitively, the
main idea is to identify some property of multilinear polynomials that can be tested locally, on a small set of queries
and answers, and is su�cient to prove the unambiguity of X . We use the fact that the restriction of a multilinear
polynomial to a one-dimensional axis-parallel line is a univariate linear function. Therefore, for any set of queries
on an axis-parallel line, their answers must be consistent with some linear function. More formally, we consider the
setting where the CRS contains m encrypted queries q1, ..., qm œ F¸. The honest prover is given as input a multilinear
polynomial X : F¸ æ F and it homomorphically evaluates yi = X(qi) and sends these these m encrypted evaluations
together with a multilinearity proof. The soundness requirement is that, except with negligible probability, if the proof
is accepted then for every axis-parallel line L : F æ F¸ there exist elements a, b œ F such that for every x œ F, if
qi = L(x) then yi = a · x + b.

Unambiguity of X via proofs of multilinearity. Before describing our multilinearity proof, we show that by
adding a multilinearity proof for X to the KPY quasi-argument we get unambiguity of X . The idea is to reduce any
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attack on unambiguity for a query q œ F¸ to an attack on unambiguity for a Boolean query. For the KPY quasi-
argument we have already argued the unambiguity of X for Boolean queries. Therefore, in our new quasi-argument,
the unambiguity of X must hold for any query in F¸. Our strategy is to move from the query q œ F¸ to a Boolean
query one coordinate at a time. That is, we reduce any attack on unambiguity for a query q œ {0, 1}i ◊ F¸≠i to an
attack on unambiguity for a query q

Õ œ {0, 1}i+1 ◊ F¸≠i≠1. In every step the success probability of the attack halves.
Therefore, since the dimension ¸ is logarithmic in the size of the formula, the overall loss is polynomial.

Fix a query q œ {0, 1}i◊F¸≠i and assume there is an adversary that given a random CRS that contains an encryption
of q outputs two accepting proofs that encrypt two di�erent answers for q. For b œ {0, 1} let qb œ {0, 1}i+1 ◊ F¸≠i≠1

be the query q with its (i + 1)’st coordinate set to b. Now move to an experiment where the CRS contains encryptions
of q0, q1 and q. Since each query is encrypted under a fresh key, the adversary must output accepting proofs that
encrypt two di�erent answers for q with almost the same probability as before. Since the queries q0, q1, q are on the
same axis-parallel line, by the soundness of the multilinearity proof, if the proofs encrypt two di�erent answers for q

they must also encrypt di�erent answers for either q0 or q1. It follows that for some b œ {0, 1}, the adversary given a
random CRS that contains an encryption of qb outputs two accepting proofs that encrypt two di�erent answers for qb

with probability at least half as before.

Towards constructing a proof of multilinearity. We construct our multilinearity proof in two steps. First we
construct an “equality proof" that provides a weaker soundness than the multilinearity proof. Then we use this equality
proof to construct our multilinearity proof. Intuitively, if a multilinearity proof convinces the verifier that all queries
were answered by evaluating a single multilinear polynomial, then an equality proof convinces the verifier that all
queries were answered by evaluating a single low-degree polynomial that may not be multilinear. More formally, we
again consider the setting where the CRS contains m encrypted queries q1, ..., qm œ F¸. The honest prover is given
as input a low-degree polynomial X : F¸ æ F and it homomorphically evaluates yi = X(qi) and sends these these
m encrypted evaluations together with an equality proof. The soundness requirement is that, except with negligible
probability, if the proof is accepted and qi = qj , then yi = yj . It is easy to verify that the soundness of the equality
proof is indeed weaker than the soundness of the multilinearity proof.

Zero-testable encryption. Our equality proof relies on the weak zero-test of the homomorphic encryption used
in KPY.2 Before describing the construction, we describe the properties of this test. The weak zero-test is a public
procedure (not using the secret key) that given a ciphertext, tests if it encrypts zero or not. A perfectly accurate zero-test
can clearly be used to break semantic security. Therefore, we consider a weak zero-test that has false negatives: it
never passes on encryptions of non-zero values, however, it may fail on some encryptions of zero. The test is only
guaranteed to pass on “trivial" encryptions of zero which are ciphertexts that result from homomorphically evaluating
a polynomial that is identically zero over F on some fresh ciphertext.

To exemplify the usefulness of the weak zero-test consider the following dummy protocol: the CRS contains an
encryption of some query q œ F¸. The honest prover holds three polynomials A, B, C : F¸ æ F such that A · B © C.
It homomorphically evaluates the polynomials A, B, C on q and sends the verifier the encrypted evaluations a, b, c

respectively. Now, the verifier can test that indeed a · b = c by homomorphically computing the value a · b ≠ c and
zero-testing the resulting ciphertext. In the honest execution, A · B ≠ C is indeed the zero polynomial over F and,
therefore, the verifier evaluates a trivial encryption of zero and the weak zero-test is guaranteed to pass. If a cheating
prover, however, sends encryptions such that a · b ”= c then the verifier’s ciphertext encrypts a non-zero value and the
weak zero-test is guaranteed to fail.

A proof of equality from zero-testable encryption. We outline our equality proof construction. For simplicity,
in this overview we assume that the number of queries in the CRS m is 2. If m > 2 we simply give a separate equality
proof for every pair of queries.3 We also assume for simplicity that the polynomial X given as input to the honest

2As a homomorphic encryption scheme, the KPY construction has several limitations: it can only encrypt short messages, and
it is limited to arity-one one-hop homomorphic computations. For simplicity, in this overview we ignore these limitations.

3Our actual construction is slightly more involved due to the limitations of the KPY homomorphic encryption. Our construction
is also more e�cient with the proof length growing linearly with m and not quadratically.
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prover is multilinear. The construction can be extended to support higher degrees in a straightforward way. Note that
we do not make any assumptions on the evaluations sent by the cheating prover.

Recall that the CRS contains queries q1, q2 œ F¸ encrypted under di�erent keys. Our construction crucially relies
on the fact that the zero-testable homomorphic encryption from KPY is multi-key homomorphic and therefore we can
compute jointly over both queries together.4 Using multi-key homomorphism, a natural approach to implementing the
equality proof is to simply have the verifier homomorphically compute the value y1 ≠ y2 and zero-test the resulting
ciphertext. This approach, however, does not achieve completeness. Even if the prover is honestly evaluating the
same polynomial X on both queries, since q1 and q2 are encrypted independently, the verifier’s ciphertext would be
a non-trivial encryption of zero and may fail the zero-test. In more detail, we can think of the tested ciphertext as
the result of evaluating the polynomial D(z1, z2) = X(z1) ≠ X(z2) on a ciphertext encrypting (q1, q2). Unless X is
constant, D is not identically zero and, therefore, the verifier may reject.

Instead we take a di�erent approach. Suppose that the prover’s polynomial X is sparse. In this case, the prover can
simply send X’s coe�cients and the verifier can recompute y1 and y2 on its own by evaluating X on q1 and q2. For
a general polynomial X our idea is inspired by the interactive sum-check proof [LFKN90]. In a nutshell, we restrict
X to a sequence of axis-parallel lines transitioning from q1 to q2. Each restriction is sparse and its consistency can be
checked by the verifier using the weak zero-test.

In more detail, for every i œ [¸] the prover computes the polynomials Ai, Bi : F¸≠1 æ F such that X(z) ©
Ai(z≠i) · zi + Bi(z≠i) where z≠i denotes the vector z with its i’th entry removed. For i œ [0, ¸] we denote by q

(i)

the “hybrid” input whose first i coordinates are from q1 and whose last ¸ ≠ i coordinates are from q2 (so q
(0) = q2

and q
(¸) = q1). The prover homomorphically computes the evaluations y1 = X(q1) and y2 = X(q2) and the equality

proofs that contain for every i œ [¸] the encrypted evaluations:

y
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q

(i)
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2 = X
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1
q
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1
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(i≠1)
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.

The verifier checks that y2 = y
(1)
2 , y1 = y

(¸)
1 , y

(i)
1 = y

(i+1)
2 for every i œ [¸ ≠ 1] and (a(i)

1 , b
(i)
1 ) = (a(i)

2 , b
(i)
2 )

for every i œ [¸] by comparing the evaluated ciphertexts. The verifier also uses the weak zero-test to check that
y

(i)
j

= a
(i)
j

· (qj)i + b
(i)
j

for every j œ [2] and i œ [¸]. The completeness of the proof follows from the properties of
the weak zero-test together with the fact that, by construction, q

(i)
≠i

and q
(i≠1)
≠i

are encrypted by the same ciphertext. To
show soundness, we argue that if q1 = q2, then the equalities tested by the verifier imply that y1 = y2.

From equality to multilinearity. We proceed to construct a multilinearity proof using the zero-testable encryption
and the equality proof. Recall that in a multilinearity proof, the CRS contains encrypted queries q1, ..., qm œ F¸, the
prover holds a multilinear polynomial X and it sends the encrypted evaluations yi = X(qi) together with a multilinearity
proof computed as follows. For every i œ [¸], the prover computes the polynomials Ai, Bi : F¸≠1 æ F such that
X(z) © Ai(z≠i) · zi + Bi(z≠i). For every j œ [m], the prover homomorphically evaluates ai,j = Ai((qj)≠i) and
bi,j = Bi((qj)≠i). The proof consists of these encrypted evaluations. To ensure that the prover is evaluating the same
polynomial X on every query, the multilinearity proof also includes an equality proof for the m query-answer pairs
{(qj , yj)}. The verifier checks the equality proofs, and for every i, j the verifier homomorphically computes the value
ai,j · (qj)i + bi,j ≠ yj and checks that all the resulting ciphertexts pass the weak zero-test.

However the proof described above is still not sound. A cheating prover may evaluate a polynomial X of individual
degree > 1 and still produce an accepting proof by computing the encrypted evaluations ai,j , bi,j as a function of the
entire query qj and not just of (qj)≠i. For example, it may set ai,j = 0 and bi,j = X(qj). Our solution is to add to the
proof two more equality proofs for every i œ [m]: one for the m query-answer pairs {((qj)≠i, ai,j)} and one for the m

query-answer pairs {((qj)≠i, bi,j)}. Intuitively, these extra equality proofs guarantee that ai,j , bi,j are independent of
qj . To see this, consider a CRS that contains two queries qj , qjÕ that agree on all their entries except for the i’th entry.
Therefore, by the soundness of the equality proofs, the evaluations (ai,j , bi,j) and (ai,jÕ , bi,jÕ) must also agree.

4In KPY, as well as in this work, multi-key homomorphism is also used to evaluate the proof polynomials over multiple queries
that are encrypted under di�erent keys.
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To argue the soundness of the multilinearity proof, consider a set of CRS queries {qj}
jœS

that lie on a line L that
is parallel to the i’th axis, that is, the restrictions {(qj)≠i}jœS

are all equal to each other. By the soundness of the
equality proofs, all the pairs {(ai,j , bi,j)}

jœS
must also be equal to each other. Therefore, since all of the verifier’s

zero-tests pass, we have that yj = ai,1 · (qj)i + bi,1 for every j œ S.

Unambiguity of the multilinearity and equality proofs. To guarantee the unambiguity of the evaluations of
X we add a multilinearity proof to the KPY quasi-argument. Now however, to show the unambiguity of the new
quasi-argument we must also guarantee that the multilinearity proofs are themselves unambiguous. Recall that the
KPY encryptions already provide unambiguity of cipertexts and therefore, it is su�cient to prove that all the values
encrypted in the multilinearity and equality proofs are unambiguous.

We start by arguing the unambiguity of the evaluations in the multilinearity proof. Recall that the multilinearity
proof contains encrypted evaluations ai,j , bi,j and equality proofs between these evaluations. We have already
argued that the evaluations of X are unambiguous and it remains to show that the evaluations {ai,j , bi,j} are also
unambiguous. Assume towards contradiction that there exists an adversary that outputs two accepting proofs containing
the evaluations {ai,j , bi,j} and

)
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Õ
i,j

, b
Õ
i,j

*
such that (ai,j , bi,j) ”= (aÕ

i,j
, b

Õ
i,j

) for some i, j. That is, if we define the
lines Li,j(z) © ai,j · z + bi,j and L

Õ
i,j

(z) © a
Õ
i,j

· z + b
Õ
i,j

then Li,j ”© L
Õ
i,j

. Now consider an experiment where the
CRS contains a query qjÕ that agrees with qj on all entries except for the i’th entry. Since each query is encrypted under
a fresh key, the adversary must continue to output accepting proofs such that Li,j ”© L

Õ
i,j

. Since (qj)≠i = (qjÕ)≠i, by
the soundness of the equality proofs also Li,j © Li,jÕ and L

Õ
i,j

© L
Õ
i,jÕ . Since yj , yjÕ are unambiguous, the verifier’s

weak zero-test guarantees that:

Li,j((qj)i) = yj = L
Õ
i,j

((qj)i) , Li,j((qjÕ)i) = Li,jÕ((qjÕ)i) = yjÕ = L
Õ
i,jÕ((qjÕ)i) = L

Õ
i,j

((qjÕ)i) .

However, since Li,j ”© L
Õ
i,j

, the two lines cannot agree on both qj and qjÕ .
Moving on to the unambiguity of the equality proofs, recall that the equality proof for query-answer pairs

{(qj , yj)}
jœ[2] contains the evaluations a

(i)
j

, b
(i)
j

and y
(i)
j

for every j œ [2] and i œ [¸]. First observe that it is
su�cient to prove that if y

(i)
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1 . To see this recall that the verifier checks that
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2 ). The verifier’s weak zero-test guarantees that y
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are unambiguous, then so is y
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2 . Finally, since the verifier checks that y
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2 , the unambiguity of y1 = y
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guarantees the unambiguity of the entire proof.
In an honestly generated equality proof, the evaluations a

(i)
1 , b

(i)
1 are computed from q

(i)
≠i

(recall that q
(i)
≠i

= q
(i≠1)
≠i

).
A cheating prover, however, may be able to output two accepting proofs with the same y

(i)
1 but with di�erent a

(i)
1 , b

(i)
1

by computing these evaluations also using (q1)i, (q2)i.5 We have encountered a similar issue in arguing the soundness
of the multilinearity proof. There, the solutions was to evaluate the same polynomial on queries encrypted under
two di�erent keys and provide an equality proof for the two evaluations. However, making the equality proof itself
unambiguous requires a di�erent solution.

Unambiguous equality proofs from rerandomized ciphertexts. To get unambiguous equality proofs we use
a similar solution to the one used in the multilinearity proof, but instead of evaluating the same polynomial on queries
encrypted under two di�erent keys, we evaluate it on two encryptions of the same query, generated in a correlated
way. In more detail, we add to the KPY zero-testable encryption a rerandomization operation that given a ciphertext c

encrypting q œ F¸ under a secret key sk, produces a new ciphertext ‚c encrypting q under a correlated key ‚sk. To explain
the nature of the correlation between c and ‚c consider evaluating the same polynomial X on both c and ‚c and obtaining
the evaluated ciphertexts e and ‚e respectively. The correlation between the two ciphertexts allows us to e�ciently
verify that e and ‚e indeed encrypt the same value. However, given the ciphertexts c and ‚c≠i, which is obtained from
‚c by removing the encryption of the i’th entry qi, it should be hard to recover ‚c. In fact, to make the equality proofs
unambiguous we need to rely on a stronger requirement: given c and ‚c≠i it is hard to generate a pair of ciphertexts
encrypting values ‚a,‚b œ F under ‚sk such that ‚a · qi + ‚b = 0 but ‚a,‚b are not both zero.

5This can be done by viewing the verifier’s checks as an underdetermined system of linear equations in the proof’s ciphertexts.
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Next we show how to use rerandomization to ensure the unambiguity of the equality proofs. As argued above, it is
su�cient to prove that if y

(i)
1 is unambiguous then so are a

(i)
1 , b

(i)
1 . To this end we modify the equality proof as follows.

Let c
(i) be the encryption of the hybrid query q

(i) given in the CRS. We rerandomize c
(i), remove the encryption

of the i’th element q̃
(i)
i

, and add the resulting ciphertext ‚c(i)
≠i

to the CRS. As before, the prover homomorphically
evaluates the polynomials Ai and Bi on c
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1 . Assuming y
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the CRS containing c
(i) and ‚c(i)

≠i
could find two accepting equality proof where the values (a(i)

1 , b
(i)
1 ) = (‚a(i)

1 ,‚b(i)
1 ) are

di�erent, by subtracting the ciphertext from the two proofs, we would obtain a pair of ciphertexts encrypting values
‚a,‚b œ F such that ‚a · qi +‚b = 0 but ‚a,‚b are not both zero, in contradiction to our requirement on correlated ciphertexts.

2.3 Related Work
Comparison with Choudhuri et al. and followup work. The PPAD-hardness proof of Choudhuri et al.
[CHK+19b] and followup work [CHK+19a, EFKP19, LV20] can all be seen as constructing an updatable and un-
ambiguous delegation scheme for some particular contrived language. In [CHK+19b] the language is related to the
computation of a round-collapsed sum-check proof and [CHK+19a, EFKP19] start from the protocol of Pietrzak
[Pie19] instead of sum-check. In contrast, this work constructs an updatable and unambiguous delegation scheme for
general (bounded space) deterministic computations.

The delegation schemes in [CHK+19b, CHK+19a, EFKP19, LV20] are based on an interactive protocol that is
made non-interactive via the Fiat-Shamir transform. The unambiguity property is inherited from that of the original
protocol. Updatability relies on the recursive structure of the interactive protocol and requires augmenting the language
to depend on the protocol itself. In comparison, the delegation scheme in our work is based on the scheme from
[KPY19] for general computation and relies on a quasi-polynomial version of their assumption on bilinear groups.
Updatability follows from the bootstrapping technique developed in [KPY19] and the focus of this work is on achieving
unambiguity.

Following the work of Canetti et al. [CCH+19] on instantiating the Fiat-Shamir huristic from simpler assumptions,
Choudhuri et al. [CHK+19b] show that the security of their sum-check based scheme follows from a strong assumption
on the “optimal security" of Learning with Errors against quasi-polynomial attacks. In a recent work (concurrent to
ours) Lombardi and Vaikuntanathan [LV20] start from Pietrzak’s protocol and replace the Fiat-Shamir assumption by
sub-exponential hardness of Learning with Errors.

In addition to the assumption behind the delegation scheme, previous work as well as ours rely on the hardness
of an underlying language. Choudhuri et al. [CHK+19b] assume hardness of #SAT with poly-logarithmic number of
variables, while [CHK+19a, EFKP19, LV20] rely on super-polynomial or sub-exponential hardness of the repeated
squaring problem that is behind Pietrzak’s protocol and the time-lock puzzle of [RSW96]. Since our delegation
scheme supports general languages we can rely on any hard language that can be decided in quasi-polynomial time and
polynomial space.

Hardness of local search. Recently, Bitansky and Gerichter [BG20] showed the hardness of the class Polynomial
Local Search (PLS), which is a di�erent subclass of TFNP that contains CLS, based on the delegation scheme of KPY
[KPY19]. They observe that the KPY delegation scheme can be made incremental and use this to show PLS hardness.
For hardness in PPAD and CLS, however, we need the unambiguity property achieved in this work.

3 Delegation
In this section we define the notion of a non-interactive delegation scheme for deterministic Turing machines.

Fix any Turing machine M. Let T (n) be an upper bound on the running time of M on inputs of length n and let
S(n) be an upper bound on the size of M’s configuration which includes the machine’s state, input tape and all of the
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work tapes. We always assume, without loss of generality, that T (n) Ø S(n) Ø n. Let UM denote the language such
that (cf, cfÕ

, t) œ UM if and only if M transitions from configuration cf to configuration cfÕ in exactly t steps. Let
UM

n
™ UM be the set of instances (cf, cfÕ

, t) œ UM such that the input tapes in cf, cfÕ are of length n. Let n = n(Ÿ)
be a function of the security parameter.

A non-interactive delegation scheme for UM consists of algorithms (Del.S, Del.P, Del.V) with the following
syntax:

Setup: The probabilistic setup algorithm Del.S takes as input a security parameter Ÿ œ N and outputs a pair of public
keys: a prover key pk and a verifier key vk.

Prover: The deterministic prover algorithm Del.P takes as input a prover key pk and an instance x œ UM. It outputs
a proof �.

Verifier: The deterministic verifier algorithm Del.V takes as input a verifier key vk, an instance x œ UM and a proof
�. It outputs a bit indicating if it accepts or rejects.

Definition 3.1. A �-sound non-interactive delegation scheme (Del.S, Del.P, Del.V) for UM with input length n, setup
time TS = TS(Ÿ) and proof length L� = L�(Ÿ) satisfies the following requirements:

Completeness. For every Ÿ œ N and x = (cf, cfÕ
, t) œ UM

n
:

Pr
5
Del.V(vk, x, �) = 1

----
(pk, vk) Ω Del.S(Ÿ)
� Ω Del.P(pk, x)

6
= 1 .

E�ciency. In the completeness experiment above:

• The setup algorithm runs in time TS.
• The prover runs in time O(t · L�) and outputs a proof of length L�.
• The verifier runs in time O(|x| + L�).

�-Soundness. For every poly(�(Ÿ))-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N:

Pr
5

Del.V(vk, x, �) = 1
x /œ UM

n

----
(pk, vk) Ω Del.S(Ÿ)
(x, �) Ω Adv(pk, vk)

6
Æ µ(�(Ÿ)) .

Next we define the notion of an updatable delegation scheme (incrementally verifiable computation [Val08]).

Definition 3.2 (Updatability). A non-interactive delegation scheme (Del.S, Del.P, Del.V) for UM with input length n is
updatable if there exists a deterministic polynomial-time algorithm Del.U such that for every Ÿ œ N and x1, x2 œ UM

n

of the form x1 = (cf, cf1, t) and x2 = (cf, cf2, t + 1):

Pr

S

WWU
cfÕ

2 = cf2
�Õ

2 = �2

--------

(pk, vk) Ω Del.S(Ÿ)
�1 Ω Del.P(pk, x1)
�2 Ω Del.P(pk, x2)
(cfÕ

2, �Õ
2) Ω Del.U(pk, x1, �1)

T

XXV = 1 .

Lastly we define the notion of an unambiguous delegation scheme (adapting the definition in [RRR16]).

Definition 3.3 (�-Unambiguity). A non-interactive delegation scheme (Del.S, Del.P, Del.V) for UM with input length
n is �-unambiguous if for every poly(�(Ÿ))-size adversary Adv there exists a negligible function µ such that for every
Ÿ œ N:

Pr

S

U
Del.V(vk, x, �) = 1
Del.V(vk, x, �Õ) = 1
� ”= �Õ

------
(pk, vk) Ω Del.S(Ÿ)
(x, �, �Õ) Ω Adv(pk, vk)

T

V Æ µ(�(Ÿ)) .
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4 PPAD-Hardness
The complexity class PPAD is a subclass of TFNP that consists of all problems that are polynomial-time reducible to
the End-of-the-Line problem. We show PPAD-hardness by following the blueprint of Choudhuri et al. [CHK+19b]
and refer the reader to their work for background material. Specifically, we show the hardness of the subclass CLS that
lies in the intersection of PPAD and PLS. Towards this end, we consider the Relaxed-Sink-of-Verifiable-Line problem
that was defined and proven to be reducible to a problem in CLS in [CHK+19b].

Definition 4.1 ([CHK+19b]). A Relaxed-Sink-of-Verifiable-Line (rSVL) instance (Succ, Ver, T, v0) consists of T œ
[2m], v0 œ {0, 1}m and circuits Succ : {0, 1}m æ {0, 1}m and Ver : {0, 1}m ◊ [T ] æ {0, 1} with the guarantee that
for every (v, i) œ {0, 1}m ◊ [T ] such that v = Succi(v0), it holds that Ver(v, i) = 1. A solution consists of one of the
following:

1. The sink: A vertex v œ {0, 1}m such that Ver(v, T ) = 1.

2. A false positive: A pair (v, i) œ {0, 1}m ◊ [2m] such that v ”= Succi(v0) and Ver(v, i) = 1.

Lemma 4.2 ([CHK+19b]). Relaxed-Sink-of-Verifiable-Line is polynomial-time reducible to a problem in CLS.

Average-case hardness. Let T = T (n) be a function. A decision problem given by a language L is weakly
T -hard on average if there exists an e�ciently sampleable distribution D = {Dn} and polynomial p such that for every
poly(T )-size circuit Adv = {Advn} and n œ N:

Pr
xΩDn

[Advn(x) = 1 … x œ L] Æ 1 ≠ 1/p(n) .

To prove the main theorem in this section (Theorem 4.4) it will be convenient to rely on a hard search problem
rather than a hard decision problem. We start by stating a direct product theorem giving a hard search problem from
a hard decision problem. A search problem given by a relation R is T -hard on average if there exists an e�ciently
sampleable distribution D = {Dn} such that for every poly(T )-size circuit Adv = {Advn} there exists a negligible
function µ such that for every n œ N:

Pr
xΩDn

[(x, Advn(x)) œ R] Æ µ(T (n)) .

Lemma 4.3. If there exists a language L that is decidable in time T (n) and space S(n) that is weakly ‚T -hard on
average for some function ‚T (n) Ø n, then there exists a search problem R that is solvable in time T (n) · poly(n) and
space S(n) + poly(n) and is ÂT -hard on average for any ÂT (n) = ‚T (n)o(1).

Proof. Let L be ‚T -hard with respect to D = {Dn} and polynomial p, let t(n) = p(n) · log ‚T , and let

R = {(x1 . . . xt, b1 . . . bt) : ’i œ [t] xi œ L … bi = 1} .

Indeed, R is solvable in time T (n) · poly(n) and space S(n) + poly(n). The fact that R is ‚T o(1)-hard on average
follows from the Concatenation Lemma of [GNW11]. The lemma states that if every s(n)-size circuit decides L with
probability at most ”(n) over D, then for any function ‘(n), every (‘/n)c · s(n)-size circuit solves R with probability
at most ”

t + ‘ over Dt = {Dt
n
} where c > 0 is some constant. Setting s = ‚T 2c+1, ” = 1 ≠ 1/p, and ‘ = 1/ ‚T we have

that by the ‚T -hardness of L any circuit of size:
1

‘

n

2c

s =
3 1

‚T · n

4c

‚T 2c+1 Ø ‚T Ø poly( ÂT ) ,

solves R with probability at most:

”
t + ‘ =

3
1 ≠ 1

p(n)

4p(n) log ‚T
+ 1

‚T
Æ 2

‚T
= negl( ÂT ) .
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Next we show that the existence of a hard search problem and an updatable unambiguous non-interactive delegation
scheme implies rSVL is hard.

Theorem 4.4. Let R be a search problem that is solvable by a deterministic Turing machine M that runs in time
T = T (n) = n

Ê(1) and space S = S(n) = poly(n) that is ‚T -hard on average (in the worst-case respectively) for
some function ‚T (n) Ø n. Let n = n(Ÿ), � = �(Ÿ) be functions such that T (n) Æ �.

If there exists a non-interactive delegation scheme for UM with input length n, setup time TS = poly(n) and
proof length L� = poly(n) that is updatable, �-sound, and �-unambiguous, then rSVL is ÂT -hard on average (in the
worst-case respectively) for some ÂT = ÂT (n) = ‚T (nO(1)).

Proof. We start with the proof for average-case hardness. Then we explain how to modify the proof for worst-case
hardness.

Let R be ‚T -hard with respect to a distribution D = {Dn}. Let (Del.S, Del.P, Del.V, Del.U) be a delegation
scheme as in the theorem statement. Let AÕ denote a circuit for solving rSVL. We construct a circuit A that uses AÕ to
solve R.

Given as input an instance x œ {0, 1}n, the algorithm A proceeds as follows:

1. Set the security parameter Ÿ such that |x| = n. Sample (pk, vk) Ω Del.S(Ÿ). Let m = S(n) + L�(Ÿ).
2. Let cf0 be the initial configuration of the Turing machine M on input x. We assume without loss of generality

that at every time step, the configuration of M contains an index i œ [T ] corresponding to the current time step.
Let v0 = (cf0, �0) where �0 Ω Del.P(pk, (cf0, cf0, 0)).

3. Let Succ = Succx,pk : {0, 1}m æ {0, 1}m be the circuit that on input (cfi, �i), parses the index i œ [0, T ]
from cfi and outputs (cfi+1, �i+1) Ω Del.U(pk, (cf0, cfi, i), �i).

4. Let Ver = Verx,vk : {0, 1}m ◊ [T ] æ {0, 1} be the circuit that on input (v, i) œ {0, 1}m ◊ [T ], parses
v = (cf, �) and returns the output of Del.V(vk, (cf0, cf, i), �).

5. Run AÕ on (Succ, Ver, T, v0).

(a) If AÕ outputs v œ {0, 1}m such that Ver(v, T ) = 1 (the sink), then parse v = (cf, �) and output the
solution for x contained in cf.

(b) Otherwise output ‹.

We construct the following ÂT -hard distribution DÕ of rSVL instances: sample x Ω Dn and run Steps 1 to 4 of A
to generate (Succ, Ver, T, v0) of length ¸ = ¸(n) Ø n.

First we show DÕ = {DÕ
¸
} is e�ciently sampleable. By the e�ciency guarantees of the delegation scheme

(Del.S, Del.P, Del.V, Del.U) (given by the theorem statement, Definition 3.1, Definition 3.2) Steps 1 to 4 take poly(n) =
poly(¸) steps. Since D is e�ciently sampleable, this shows DÕ is e�ciently sampleable.

Next we argue that DÕ is supported on valid rSVL instances. We show that for any x œ {0, 1}n, A generates
(Succ, Ver, T, v0) such that for every i œ [T ] it holds that Ver(Succi(v0), i) = 1. Consider any i œ [T ] and
let v = (cf, �) = Succi(v0). Let cfi be the unique configuration such that (cf0, cfi, i) œ UM

n
and let �i =

Del.P(pk, (cf0, cfi, i)). By the updatability of the delegation scheme (Definition 3.2) (cf, �) = (cfi, �i) so by the
completeness of the delegation scheme (Definition 3.1) Ver(v, i) = 1, as desired.

To show that rSVL is ÂT -hard with respect to DÕ, assume towards contradiction that there exists a poly( ÂT (¸))-size
circuit AÕ = {AÕ

¸
} and polynomial function p

Õ such that for infinitely many ¸ œ N, given an rSVL instance sampled
from DÕ

¸
, AÕ

¸
outputs a solution (the sink or a false positive) with probability at least 1/p

Õ( ÂT (¸)). Since Steps 1
to 4 take poly(n) steps, ¸ = poly(n) = n

c for some c > 0 so ÂT (¸) = ‚T (n). Let p be a polynomial such that
p

Õ( ÂT (¸)) Æ p( ‚T (n)). Since DÕ is e�ciently sampleable and AÕ is a circuit of size poly( ‚T (n)), A is a circuit of size
poly( ‚T (n)). It follows from our assumption that for x Ω D, AÕ outputs a rSVL solution (the sink or a false positive)
in Step 5 with probability at least 1/p( ‚T (n)). Below we show AÕ outputs a false positive with probability at most
1/2p( ‚T (n)) and therefore it outputs the sink with probability at least 1/2p( ‚T (n)). In this case, we use the sink to
recover a solution for x.
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Assume towards contradiction that for infinitely many n œ N, AÕ outputs a false positive (v, i) with probability
at least 1/2p( ‚T (n)) Ø 1/2p(�(Ÿ)) (since ‚T (n) < T (n) Æ �(Ÿ)). If (v = (cf, �), i) is a false positive, then
Del.V(vk, (cf0, cf, i), �) = Ver(v, i) = 1 and (cf, �) ”= (cfi, �i) = Succi(v0), so either cf ”= cfi, or cf = cfi and
� ”= �i. One of the two cases must occur for infinitely many Ÿ œ N with probability at least 1/4p(�(Ÿ)). In the
first case, cf ”= cfi, and AÕ can be used to break the �-soundness of the delegation (Definition 3.1): (cf0, cf, i) ”œ UM

n

but Del.V(vk, (cf0, cf, i), �) accepts. In the second case, cf = cfi and � ”= �i, and AÕ can be used to break the
�-unambiguity of the delegation (Definition 3.3): by the e�ciency of the delegation (cfi, �i) can be computed in time
T (n) · poly(n) Æ poly(�(Ÿ)), and Del.V(vk, (cf0, cfi, i), �) and Del.V(vk, (cf0, cfi, i), �i) both accept.

This shows AÕ outputs a false positive with probability at most 1/2p( ‚T (n)). Thus for infinitely many n œ N, with
probability at least 1/2p( ‚T (n)), AÕ outputs the sink v = (cf, �) and (cf, �) = SuccT (v0). By the updatability of the
delegation (Definition 3.2) (cf0, cf, T ) œ UM

n
, i.e. cf is the configuration of M on input x after T steps so it contains

a solution for x. In this case, A outputs this solution, contradicting the ‚T -hardness of R.

Now we explain how to modify this proof to show worst-case hardness of rSVL. If AÕ solves rSVL in the worst-case
then A is a randomized circuit that solves R with probability 1 ≠ negl( ‚T (n)) for every x œ {0, 1}n. By standard
techniques, such a randomized circuit can be converted into a deterministic circuit that solves R in the worst-case,
contradicting the ‚T -hardness of R. This conversion only requires running poly( ‚T (n)) independent executions of A.
Since A is of size poly( ‚T (n)), the final deterministic circuit is of size poly( ‚T (n)).

5 Our Results
In this section we state our results: we show the existence of an updatable unambiguous delegation scheme and use it
to show PPAD-hardness. Our results are based on the following decisional assumption on groups with bilinear maps.
For a function � = �(Ÿ), the assumption is a �-secure version of the assumption in [KPY19].

Assumption 5.1. There exists an ensemble of groups G = {GŸ} of prime order p = p(Ÿ) = 2�(Ÿ) with a non-
degenerate bilinear map such that for every d(Ÿ) = O(log �(Ÿ)) and poly(�)-size adversary Adv, there exists a
negligible function µ such that for every Ÿ œ N:

Pr

S

WWWWWWWWWU

b
Õ = b

---------------

b Ω {0, 1}
g Ω G

s Ω Zp

t0 Ω Zp

t1 Ω s
2d+1

b
Õ Ω Adv

A1
g

s
i·tj

b

2
iœ[0,d]
jœ[0,2]

B

T

XXXXXXXXXV

Æ 1
2 + µ(�(Ÿ)) .

We show the existence of a non-interactive delegation scheme that is updatable and unambiguous under this
assumption. Specifically, in Section 6 we construct an encryption scheme based on this assumption and use it to
construct a quasi-argument in Section 8. In Section 9 we use a quasi-argument to construct a delegation scheme. By
combining Theorem 6.16, Theorem 8.6, and Theorem 9.1, we obtain our main theorem:

Theorem 5.2 (Updatable Unambiguous Delegation). For any deterministic Turing machine M that runs in time
T = T (n) and space S = S(n) Ø n and functions n = n(Ÿ) Ø Ÿ and � = �(Ÿ) such that T (n) Æ � Æ 2o(Ÿ),
under Assumption 5.1 there exists a non-interactive delegation scheme for UM with input length n, setup time
TS = poly(S(n), Ÿ

logn T (n)) and proof length L� = poly(S(n), Ÿ
logn T (n)) that is updatable, �-sound, and �-

unambiguous.

Proof. Let N = 2S(n), M̄ = poly(S(n), Ÿ
logn T (n)), ¯̧ = log M̄ , and ”̄ = 2. Since n Ø Ÿ and T (n) Æ �,

Ÿ
logn T (n) Æ �. Thus ”̄

¯̧ = M̄ = poly(S(n), Ÿ
logn T (n)) Æ poly(�).

The encryption scheme in Section 6 is defined over F = Zp where p = 2�(Ÿ) so � Æ 2o(Ÿ) Æ |F|o(1).
By Theorem 6.16 there exists a �-secure zero-testable homomorphic encryption scheme (Definition 6.14) under
Assumption 5.1.
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Since N Æ M̄ Æ poly(�) by Theorem 8.6 there exists a �-secure �-unambiguous quasi-argument (Definitions 8.3
and 8.4) with formula size bound M̄ and input length N . Finally by Theorem 9.1 there exists an updatable �-sound
�-unambiguous delegation scheme for UM with input length n, setup time TS = poly(M̄) = poly(S(n), Ÿ

logn T (n))
and proof length L� = poly(M̄) = poly(S(n), Ÿ

logn T (n)) as desired.

Next we state corollaries of Theorem 5.2 for di�erent settings of parameters.

Corollary 5.3 (Quasi-polynomial Secure Delegation). For any constant c Ø 1 and any deterministic Turing machine
M that runs in time T Æ n

(log n)a

where a = (c ≠ 1)/(c + 1) and space S = poly(n), let � = 2(log Ÿ)c

and
n = 2

Ô
log �·log Ÿ. Under Assumption 5.1 there exists a non-interactive delegation scheme for UM with input length n,

setup time TS = poly(n) and proof length L� = poly(n) that is updatable, �-sound, and �-unambiguous.

Proof. Note that n = 2
Ô

log �·log Ÿ = 2
Ô

(log Ÿ)c+1 Ø Ÿ. Next we show T (n) Æ � by showing:

n
(log n)a = 2(log n)a+1

Æ 2(log Ÿ)c

for a = (c ≠ 1)/(c + 1) .

It su�ces to prove that:
(log n)a+1 Æ (log Ÿ)c for a = (c ≠ 1)/(c + 1) .

This follows from the calculation:

(log n)a+1 = (log � · log Ÿ) a+1
2 = ((log Ÿ)c · log Ÿ)

a+1
2 = (log Ÿ)

(c+1)(a+1)
2 = (log Ÿ)c

.

Finally note that � = 2(log Ÿ)c Æ 2o(Ÿ).
The above shows the conditions of Theorem 5.2 hold and since:

Ÿ
logn T (n) Æ Ÿ

logn � = 2
log �·log Ÿ

log n = 2
Ô

log �·log Ÿ = n

we have poly(S(n), Ÿ
logn T (n)) = poly(n). Thus Corollary 5.3 follows.

Corollary 5.4 (Sub-exponential Secure Delegation). For any constant 0 < ‘ < 1 and any deterministic Turing machine
M that runs in time T Æ n

‘
2 · log n

log log n and space S = poly(n), let � = 2Ÿ
‘

and n = 2
Ô

log �·log Ÿ. Under Assumption 5.1
there exists a non-interactive delegation scheme for UM with input length n, setup time TS = poly(n) and proof length
L� = poly(n) that is updatable, �-sound, and �-unambiguous.

Proof. Note that Ÿ
‘

> log Ÿ so n = 2
Ô

log �·log Ÿ
> 2log Ÿ = Ÿ. Next we show T (n) Æ � by showing:

n
‘
2 · log n

log log n = 2
‘·(log n)2
2 log log n Æ 2Ÿ

‘

.

It su�ces to prove that:
‘ · (log n)2

2 log log n
Æ Ÿ

‘
.

This follows from the calculation:

log n = (log � · log Ÿ)1/2 = (Ÿ‘ · log Ÿ)1/2 Ø Ÿ
‘/2

‘ · (log n)2

2 log log n
= ‘ · Ÿ

‘ log Ÿ

2 log log n
Æ ‘ · Ÿ

‘ log Ÿ

2 · (‘/2) · log Ÿ
= Ÿ

‘
.

Finally note that � = 2Ÿ
‘ Æ 2o(Ÿ).

The above shows the conditions of Theorem 5.2 hold and since:

Ÿ
logn T (n) Æ Ÿ

logn � = 2
log �·log Ÿ

log n = 2
Ô

log �·log Ÿ = n

we have poly(S(n), Ÿ
logn T (n)) = poly(n). Thus Corollary 5.4 follows.
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By Lemma 4.3 and Theorem 4.4, Corollaries 5.3 and 5.4 imply the hardness of rSVL. We remark that a hard
language L can be based on a non-uniform version of the Exponential Time Hypothesis (ETH) for SAT.

Corollary 5.5 (rSVL Hardness based on Quasi-polynomial Hardness). Assume Assumption 5.1 holds for � = 2(log Ÿ)c

for some c Ø 1. If there exists a language L that is decidable by a deterministic Turing machine M that runs in time
T Æ n

(log n)a

where a = (c ≠ 1)/(c + 1) and space S = poly(n) that is weakly ‚T -hard on average (in the worst-case
respectively) for some function ‚T (n) Ø n, then rSVL is ÂT -hard on average (in the worst-case respectively) for any
ÂT (n) = ‚T (n‘)o(1) for some ‘ > 0.

Corollary 5.6 (rSVL Hardness based on Sub-exponential Hardness). Assume Assumption 5.1 holds for � = 2Ÿ
‘

for
some 0 < ‘ < 1. If there exists a language L that is decidable by a deterministic Turing machine M that runs in time
T Æ n

‘
2 · log n

log log n and space S = poly(n) that is weakly ‚T -hard on average (in the worst-case respectively) for some
function ‚T (n) Ø n, then rSVL is ÂT -hard on average (in the worst-case respectively) for any ÂT (n) = ‚T (n‘

Õ)o(1) for
some ‘

Õ
> 0.

6 Zero-Testable Homomorphic Encryption
Our delegation scheme is based on a variant of the notion of zero-testable homomorphic encryption [PR17, KPY19].
We define this variant of zero-testable homomorphic encryption in Section 6.2. In Section 6.3 we construct such an
encryption scheme based on bilinear maps, and in Section 6.4 we analyze the construction.

6.1 Notation
Let E denote the empty string. For any vector v = (v1, . . . , vn) and i œ [n] let vi denote the element vi. Let v≠i

denote the vector (v1, . . . , vi≠1, vi+1, . . . , vn). For any pair of vectors v = (v1, . . . , vn) and w = (w1, . . . , wm) let
(v | w) denote the concatenated vector (v1, . . . , vn, w1, . . . , wm). We denote by [v, w]≠i

the pair (v≠i, w) if i Æ n

and the pair
!
v, w≠(i≠n)

"
if i > n.

Polynomials. We represent a polynomial P : F¸ æ F over a field F by a list of its coe�cients. For a polynomial
P : F¸ æ F of individual degree ” œ N and i œ [¸], let P |

i,0, . . . , P |
i,”

: F¸≠1 æ F be the unique polynomials such
that:

P (z) ©
ÿ

jœ[0,”]
P |

i,j
(z≠i) · zj

i
. (1)

Namely, interpreting P as a univariate polynomial in the i’th variable zi, P |
i,j

(z≠i) is the coe�cient of zj

i
.

For – œ F we denote by – : F¸ æ F the constant polynomial – when the number of variables ¸ is clear from the
context.

6.2 Definition
The notion of zero-testable homomorphic encryption introduced in this section is quite complex. While some of the
details are similar to standard formulations of homomorphic encryption in the literature, other details are tailored to
the applications presented in the subsequent sections. The definition in this section serves as an abstraction of the
properties of our group-based construction that are required for our applications.

We present the definition of our zero-testable homomorphic encryption scheme in several stages. In Section 6.2.1
we present a bare-bones version of the notion featuring the basic interface and properties. In Section 6.2.2 we define
the unambiguity of ciphertexts property. In Section 6.2.3 we introduce the zero-test operation. In Section 6.2.4 we
define operations for extending and restricting ciphertexts. In Section 6.2.5 we introduce ciphertext rerandomization.
The interface and properties defined in Sections 6.2.1 and 6.2.3 are similar to the properties in [KPY19] (with the
exception of Definitions 6.2 and 6.3). The rest of the properties are new to this work.
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6.2.1 Bare-bones encryption.

In this section we define a bare-bones version of our encryption scheme that includes the basic interface, correctness
properties and semantic security. We first describe the syntax and then highlight some important di�erences between
the notion here and the standard formulations of homomorphic encryption in the literature. For security parameter
Ÿ œ N, the encryption scheme is parameterized by a bound ”̄ = ”̄(Ÿ) on the individual degree of homomorphic
computations and by a bound ¯̧ = ¯̧(Ÿ) on the length of plaintexts. The plaintext space is of the form FÆ¯̧ where
F = FŸ is a field.

The bare-bones encryption scheme is given by the algorithms:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec)

with the following syntax.

Parameter generation: the probabilistic parameter generation algorithm ParamGen takes as input the security pa-
rameter Ÿ œ N. It outputs public parameters pp. The running time of ParamGen is poly(Ÿ, log ¯̧).

Key generation: the PPT key generation algorithm KeyGen takes as input the public parameters pp and outputs a
secret key sk.

Encryption: the probabilistic encryption algorithm Enc takes an input a secret key sk, a message m œ F¸ such
that ¸ Æ ¯̧, and randomness r œ {0, 1}Ÿ◊¸. It outputs a single-key ciphertext c. The running time of Enc is
poly(Ÿ, ”̄

¯̧). We explicitly refer to the randomness r œ {0, 1}Ÿ◊¸, where ri œ {0, 1}Ÿ is the randomness used
to encrypt the i’th element of the message. This explicit notation will be useful later on.

Multi-key encryption: the probabilistic multi-key encryption algorithm MEnc takes as input a pair (“1, “2). For
every i œ [2], “i is a tuple (ski, mi, ri) including a secret key ski, a message mi œ F¸i such that ¸i Æ ¯̧, and
randomness ri œ {0, 1}Ÿ◊¸i . It outputs a multi-key ciphertext �. The running time of MEnc is poly(Ÿ, ”̄

¯̧).
Homomorphic evaluation: the deterministic polynomial-time homomorphic evaluation algorithm Eval takes as input

the public parameters pp, a (single-key or multi-key) ciphertext � encrypting messages of lengths ¸1, ¸2 Æ ¯̧(in
the case that � is a single-key ciphertext either ¸1 or ¸2 is zero) and a polynomial P : F¸1+¸2 æ F of individual
degree ” Æ ”̄. It outputs a (single-key or multi-key) evaluated ciphertext e. The length of e is poly(Ÿ, ¸1 +¸2, ”̄).

Encoded elements. Before we introduce the syntax of the decryption algorithm, we introduce the notion of encoded
elements. The encryption’s public parameters pp define for every element – œ F an encoded element È–Ípp. Given
– and pp computing È–Ípp is e�cient. While the encoding is injective, the inversion operation may not be e�cient.
The encoding is additively homomorphic meaning that given encodings of two elements we can e�ciently compute
the encoding of their sum or di�erence. We also define homomorphic multiplication of encodings. This operation
however may not be e�cient.

Decryption: the deterministic polynomial-time decryption algorithm Dec takes as input either a secret key sk and a
single-key evaluated ciphertext e, or a pair of secret keys (sk1, sk2) and a multi-key evaluated ciphertext e. It
outputs the encoding È–Ípp of an element – œ F.

Notation. When the public parameters are clear from context, we may omit them from the inputs to the algorithms.
We denote single-key ciphertexts by c and use � to denote ciphertexts that can be either single-key or multi-key. For a
ciphertext �, we denote by ¸(�) the total length of the message it encrypts. That is, � is either a single-key ciphertext
encrypting a message of length ¸(�) or a multi-key ciphertext encrypting two messages of lengths ¸1, ¸2 such that
¸1 + ¸2 = ¸(�).

We highlight some important di�erences between the notion here and the standard formulations of homomorphic
encryption in the literature:

• We only support “arity-one" homomorphic evaluation. That is, the homomorphic evaluation algorithm can only
operate on a single ciphertext at a time.
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• To homomorphically compute over multiple field elements, these elements must be encrypted together in a
single ciphertext. Specifically, we can encrypt a message m œ F¸ into a single ciphertext where the ciphertext
size is exponential in ¸.

• Evaluation is “one-hop” meaning that we cannot continue to compute homomorphically over evaluated cipher-
texts. Unlike fresh ciphertexts that can encrypt long messages, an evaluated ciphertext only encrypts a single
feild element.

• The homomorphically evaluated polynomial P is represented as a list of monomials with coe�cients in F.
Note that the size of this representation may be exponentially larger than the size of an arithmetic circuit for P .
We emphasize that the running time of the homomorphic evaluation algorithm is polynomial in the number of
monomials in P .

• Decryption outputs an additivly homomorphic encoding of the encrypted element rather than the element itself.

Next we define the properties of the encryption scheme. We start by defining the correctness of evaluation for
single-key and multi-key ciphertexts. This property requires that evaluated ciphertexts encrypt the correct value.

Definition 6.1 (Correctness of Evaluation). For every Ÿ œ N, message m œ F¸ such that ¸ Æ ¯̧ and polynomial
P : F¸ æ F of individual degree at most ”̄:

Pr

S

WWWWWWU
v = ÈP (m)Ípp

------------

pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c Ω Enc(sk, m, r)
e Ω Eval(c, P )
v Ω Dec(sk, e)

T

XXXXXXV
= 1 .

Similarly, for every messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧ and polynomial P : F¸1+¸2 æ F of
individual degree at most ”̄:

Pr

S

WWWWWWU
v = ÈP (m1, m2)Ípp

------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
e Ω Eval(�, P )
v Ω Dec((sk1, sk2), e)

T

XXXXXXV
= 1 .

In the experiments above, the polynomial P is evaluated over F.

Next we define the stability of evaluation. This property requires that when evaluating a polynomial P that is
independent of its i’th input, the evaluated ciphertext is independent of the i’th element of the encrypted message.

Definition 6.2 (Stability of Evaluation). For every Ÿ œ N, message m œ F¸ such that ¸ Æ ¯̧, index i œ [¸] and
polynomials P : F¸ æ F and P

Õ : F¸≠1 æ F of individual degree at most ”̄ such that P (z) © P
Õ(z≠i):

Pr

S

WWWWWWWWU

e
Õ = e

--------------

pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

,

c Ω Enc(sk, m, r)
e Ω Eval(c, P )
c

Õ Ω Enc(sk, m≠i, r≠i)
e

Õ Ω Eval(cÕ
, P

Õ)

T

XXXXXXXXV

= 1 .
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Similarly, for every messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧, index i œ [¸1 + ¸2] and polynomials
P : F¸1+¸2 æ F and P

Õ : F¸1+¸2≠1 æ F of individual degree at most ”̄ such that P (z) © P
Õ(z≠i):

Pr

S

WWWWWWWWWWWWU

e
Õ = e

------------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
e Ω Eval(�, P )
(mÕ

1, mÕ
2) Ω [m1, m2]≠i

(rÕ
1, rÕ

2) Ω [r1, r2]≠i

�Õ Ω MEnc((sk1, mÕ
1, rÕ

1), (sk2, mÕ
2, rÕ

2))
e

Õ Ω Eval(�Õ
, P

Õ)

T

XXXXXXXXXXXXV

= 1 .

Next we require that the encryption of the empty message is independent of the secret key.

Definition 6.3 (Empty Message Encryption). For every Ÿ œ N:

Pr

S

WWU c1 = c2

--------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
c1 Ω Enc(sk1, E , E)
c2 Ω Enc(sk2, E , E)

T

XXV = 1 .

Next we define the correctness of encryption. We require that the ciphertext generated by encrypting a message
m using Enc is identical to the ciphertext generated by encrypting messages m and E using MEnc.

Definition 6.4 (Correctness of Encryption ). For every Ÿ œ N and message m œ F¸ such that ¸ Æ ¯̧:

Pr

S

WWWWWWU

�1 = c

�2 = c

------------

pp Ω ParamGen(Ÿ)
sk, skÕ Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c Ω Enc(sk, m, r)
�1 Ω MEnc((sk, m, r), (skÕ

, E , E))
�2 Ω MEnc((skÕ

, E , E), (sk, m, r))

T

XXXXXXV
= 1 .

Next we define one-time semantic security.

Definition 6.5 (�-Semantic Security). For every poly(�)-size adversary Adv there exists a negligible function µ such
that for every Ÿ œ N and messages m0, m1 œ F¸ such that ¸ Æ ¯̧:

Pr

S

WWWWWWWWU

b
Õ = b

--------------

b Ω {0, 1}
pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c0 Ω Enc(sk, m0, r)
c1 Ω Enc(sk, m1, r)
b

Õ Ω Adv(pp, cb)

T

XXXXXXXXV

Æ 1
2 + µ(�(Ÿ)) .

In the above definition we implicitly require that the size of the ciphertext is bounded by the size of Adv. We
therefore require that ”̄

¯̧ Æ poly(�).

23



6.2.2 Unambiguity of ciphertexts.

The next property that we require is the unambiguity of ciphertexts. The unambiguity property for evaluated ciphertexts
states that without knowing the secret key, an adversary cannot produce two di�erent ciphertexts that encrypt the same
value. We require this to hold even if the adversary is given an encryption of a random message in F¸.

We note that the adversary can always start with an honestly generated ciphertext and pad it with two di�erent
strings. In this case we could treat the padded ciphertexts as encrypting an undefined value. However, we choose
to define the function Dec that never fails and always returns some encoded element. Instead we require that the set
Valid = ValidŸ of valid evaluated ciphertext is recognizable in polynomial time.

Definition 6.6 (Unambiguity of Ciphertexts). For every adversary Adv, Ÿ œ N and ¸ Æ ¯̧:

Pr

S

WWWWWWWWWWU

e, e
Õ œ Valid

e ”= e
Õ

v = v
Õ

----------------

pp Ω ParamGen(Ÿ)
m Ω F¸

,

sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c Ω Enc(sk, m, r)
(e, e

Õ) Ω Adv(pp, c)
v Ω Dec(sk, e)
v

Õ Ω Dec(sk, e
Õ)

T

XXXXXXXXXXV

Æ poly(”̄ · ¯̧)
|F| .

Similarly, for every adversary Adv, Ÿ œ N and ¸1, ¸2 Æ ¯̧:

Pr

S

WWWWWWWWWWU

e, e
Õ œ Valid

e ”= e
Õ

v = v
Õ

----------------

pp Ω ParamGen(Ÿ)
m1 Ω F¸1 , m2 Ω F¸2

sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
(e, e

Õ) Ω Adv(pp, �)
v Ω Dec((sk1, sk2), e)
v

Õ Ω Dec((sk1, sk2), e
Õ)

T

XXXXXXXXXXV

Æ poly(”̄ · ¯̧)
|F| .

6.2.3 Quadratic zero-test.

The encryption scheme supports a zero-test operation. We start with an informal discussion of this notion.
Intuitively, the zero-test indicates whether a given evaluated ciphertext e decrypts to zero or not. If defined naively,

however, such zero-test can be used to break the encryption’s semantic security. We therefore consider a zero-test
satisfying a weak notion of correctness: the test never passes if e does not decrypt to zero, but it may fail even if e does
decrypt to zero. The zero-test is only required to pass if there exists an honestly generated ciphertext c such that e is
obtained by homomorphically evaluating the zero polynomial P © 0 on c.

Two-hop homomorphism. The encryption scheme defined in Section 6.2.1 only supports one-hop homomorphic
evaluation. Our application, however, requires a restricted type of two-hop homomorphic evaluation: given two vectors
of evaluated ciphertexts e = (e1, . . . , en) and eÕ = (eÕ

1, . . . , e
Õ
n
) and a coe�cient vector ↵ = (–1, . . . , –n) œ Fn it is

possible to further evaluate the weighted inner product
q

iœ[n] –i · ei · eÕ
i
. The ciphertext resulting from the second-hop

evaluation can then be zero-tested.
For simplicity, we unify the second-hop evaluation and the zero-test into one operation that we call quadratic

zero-test. Given vectors e, eÕ and ↵, the quadratic zero-test is only guaranteed to pass if there exists an honestly
generated ciphertext c and vectors of polynomials (P1, . . . , Pn) and (P Õ

1, . . . , P
Õ
n
) such that

q
iœ[n] –i · Pi · P

Õ
i

© 0
and the ciphertexts ei and e

Õ
i

are obtained by homomorphically evaluating Pi and P
Õ
i
, respectively, on c. If ei and e

Õ
i

encrypt values mi and m
Õ
i
, respectively, such that

q
iœ[n] –i · mi · m

Õ
i

”= 0 the quadratic zero-test fails.

Formally, quadratic zero-test ZT has the following syntax:
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Quadratic zero-test: the deterministic polynomial-time quadratic zero-test algorithm ZT takes as input the public
parameters pp, two vectors of evaluated ciphertexts e = (e1, . . . , en) and eÕ = (eÕ

1, . . . , e
Õ
n
), and a vector

↵ = (–1, . . . , –n) œ Fn. It outputs a bit indicating if the test passes or fails. The running time of ZT is linear
in n. We may omit the input vector ↵ when all its entries are ones.

The zero-test satisfies the following completeness and soundness requirements.

Definition 6.7 (Weak Completeness of Zero-Test). For every Ÿ œ N, messages m1 œ F¸1 , m2 œ F¸2 such that
¸1, ¸2 Æ ¯̧, vector ↵ = (–1, . . . , –n) œ Fn and polynomials

)
Pi, P

Õ
i

: F¸1+¸2 æ F
*

iœ[n] of individual degree at most
”̄ such that

q
iœ[n] –i · Pi · P

Õ
i

© 0:

Pr

S

WWWWWWU
ZT(pp, e, eÕ

,↵) = 1

------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
e = (ei Ω Eval(�, Pi) : i œ [n])
eÕ = (eÕ

i
Ω Eval(�, P

Õ
i
) : i œ [n])

T

XXXXXXV
= 1 .

Definition 6.8 (Soundness of Zero-Test). For every Ÿ œ N, vectors of single-key evaluated ciphertexts e = (e1, . . . , en)
and eÕ = (eÕ

1, . . . , e
Õ
n
) and vector ↵ = (–1, . . . , –n) œ Fn:

Pr

S

WWU
ZT(pp, e, eÕ

,↵) = 1q
iœ[n] –i · vi · v

Õ
i

”= È0Ípp

--------

pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
’i œ [n] : vi Ω Dec(sk, ei)
’i œ [n] : v

Õ
i

Ω Dec(sk, e
Õ
i
)

T

XXV = 0 .

Similarly, for every Ÿ œ N, vectors of multi-key evaluated ciphertexts e = (e1, . . . , en) and eÕ = (eÕ
1, . . . , e

Õ
n
) and

vector ↵ = (–1, . . . , –n) œ Fn:

Pr

S

WWU
ZT(pp, e, eÕ

,↵) = 1q
iœ[n] –i · vi · v

Õ
i

”= È0Ípp

--------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
’i œ [n] : vi Ω Dec((sk1, sk2), ei)
’i œ [n] : v

Õ
i

Ω Dec((sk1, sk2), e
Õ
i
)

T

XXV = 0 .

6.2.4 Ciphertext extension and restriction.

The encryption scheme supports operations for adding and removing elements from a given ciphertext (with knowing
the secret key). The ciphertext extension operation Extend turns a single-key ciphertext into a multi-key one. The
restriction operation Restrict removes the element in a given location from the encrypted message. The ciphertext
random extension operation RandExtend adds a random unknown element to the encrypted message in a given location.
In contrast to the ciphertext extension operation, the random extension operation does not add a new key to the ciphertext
and the new element is encrypted under the original key. Formally, the extension, restriction and random extension
operations have the following syntax:

Ciphertext extension: the probabilistic ciphertext extension algorithm Extend takes as input “1 and “2 such that for
some i œ [2], “i is a single-key ciphertext c and for j œ [2] \ {i}, “j is a a tuple (sk, m, r) including a secret key
sk, a message m œ F¸ such that ¸ Æ ¯̧, and randomness r œ {0, 1}Ÿ◊¸. It outputs a multi-key ciphertext �. The
running time of Extend is poly(Ÿ, ”̄

¯̧).
Ciphertext restriction: the deterministic polynomial-time ciphertext restriction algorithm Restrict takes as input the

public parameters pp, a ciphertext � and an index i œ [¸(�)]. It outputs a ciphertext �≠i that omits the i’th
element of the message.

25



Ciphertext random extension: the PPT ciphertext random extension algorithm RandExtend takes as input the public
parameters pp, a multi-key ciphertext �, and an index i œ [¸(�) + 2]. It outputs a ciphertext �Õ that includes an
encryption of a random element from F inserted at the specified index (if � encrypts messages of lengths ¸1, ¸2,
then i œ [¸1 + 1] index into the first message and i œ [¸1 + 2, ¸(�) + 2]) index into the second message).

We may replace the index i with a set of indices I as a shorthand for applying Restrict or RandExtend successively
for every index i œ I . For Restrict the applications on i œ I are in decreasing order, and for RandExtend the
applications are in increasing order.

Next we define the correctness of the extension algorithm. We require that a ciphertext generated by first encrypting
a message using Enc and then extending this ciphertext using Extend, is identical to the multi-key ciphertext generated
by MEnc.

Definition 6.9 (Correctness of Extension). For every Ÿ œ N and messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧:

Pr

S

WWWWWWWWWWU

�1 = �
�2 = �

----------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

c1 Ω Enc(sk1, m1, r1)
c2 Ω Enc(sk2, m2, r2)
� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
�1 Ω Extend(c1, (sk2, m2, r2))
�2 Ω Extend((sk1, m1, r1), c2)

T

XXXXXXXXXXV

= 1 .

Next we define the correctness of the restriction algorithm. We require that the ciphertext obtained by first
encrypting a message m and then applying Restrict to an index i is identical to the ciphertext generated by encrypting
m≠i.

Definition 6.10 (Correctness of Restriction). For every Ÿ œ N, message m œ F¸ such that ¸ Æ ¯̧and index i œ [¸]:

Pr

S

WWWWWWWWWWU

c
Õ = c≠i

----------------

pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c Ω Enc(sk, m, r)
c≠i Ω Restrict(c, i)
mÕ Ω m≠i

rÕ Ω r≠i

c
Õ Ω Enc(sk, mÕ

, rÕ)

T

XXXXXXXXXXV

= 1 .

Similarly, for every Ÿ œ N, messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧and index i œ [¸1 + ¸2]:

Pr

S

WWWWWWWWWWU

�Õ = �≠i

----------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
�≠i Ω Restrict(�, i)
(mÕ

1, mÕ
2) Ω [m1, m2]≠i

(rÕ
1, rÕ

2) Ω [r1, r2]≠i

�Õ Ω MEnc((sk1, mÕ
1, rÕ

1), (sk2, mÕ
2, rÕ

2))

T

XXXXXXXXXXV

= 1 .

Next we define the correctness of the random extension algorithm. We require that the distribution of ciphertexts
obtained by encrypting messages using MEnc and then extending the i’th coordinate using RandExtend is identical to
the distribution of ciphertexts obtained by encrypting the same messages with an additional random i’th coordinate.
In the following definition, for a vector v = (v1, . . . , v¸) œ A

¸ (where A is either F or {0, 1}Ÿ) and index i œ [¸] let
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v+i denote the random variable (v1, . . . , vi≠1, v
ú
, vi, . . . , v¸) where v

ú Ω A, or (v | v
ú) if i = ¸ + 1. For vectors

v, w we denote by [v, w]+i
the random variable (v+i, w) if i Æ |v| + 1 and the random variable

!
v, w+(i≠|v|≠1)

"
if

i > |v| + 1.

Definition 6.11 (Correctness of Random Extension). For every Ÿ œ N, messages m1 œ F¸1 , m2 œ F¸2 such that
¸1, ¸2 Æ ¯̧≠ 1 and index i œ [¸1 + ¸2 + 2]:

S

WWWWU
�+i

----------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
�+i Ω RandExtend(�, i)

T

XXXXV
©

S

WWWWWWU
�

------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

(mÕ
1, mÕ

2) Ω [m1, m2]+i

(rÕ
1, rÕ

2) Ω [r1, r2]+i

� Ω MEnc((sk1, mÕ
1, rÕ

1), (sk2, mÕ
2, rÕ

2))

T

XXXXXXV
.

6.2.5 Ciphertext rerandomization.

We add to the encryption scheme the algorithm Rerand with the following syntax:

Ciphertext rerandomization: the PPT ciphertext rerandomization algorithm Rerand takes as input the public param-
eters pp and a ciphertext �. It outputs a rerandomized ciphertext ‚�. We extend the syntax of the algorithms in
Sections 6.2.1 and 6.2.3 to rerandomized ciphertexts.

Next we define the weak completeness of the zero-test for rerandomized ciphertexts. This property is similar to the
weak completeness of the zero-test (Definition 6.7) except here we require that the zero-test still passes if one vector of
evaluated ciphertexts results from evaluating polynomials on a rerandomization of �.

Definition 6.12 (Weak Completeness of Zero-Test for Rerandomized Ciphertexts). For every Ÿ œ N, messages m1 œ
F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧, vector ↵ = (–1, . . . , –n) œ Fn and polynomials

)
Pi, P

Õ
i

: F¸1+¸2 æ F
*

iœ[n] of
individual degree at most ”̄ such that

q
iœ[n] –i · Pi · P

Õ
i

© 0:

Pr

S

WWWWWWWWU

ZT(pp, e, eÕ
,↵) = 1

--------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
‚� Ω Rerand(pp, �)
e = (ei Ω Eval(�, Pi) : i œ [n])
eÕ = (eÕ

i
Ω Eval(‚�, P

Õ
i
) : i œ [n])

T

XXXXXXXXV

= 1 .

Next we define the unambiguity of decompositions for rerandomized ciphertexts. In the following definition, the
adversary is given a ciphertext � and a rerandomization ‚�≠i with the i’th coordinate omitted. We require that the
adversary cannot compute a ciphertext e along with two di�erent pairs (Q1

, ‚Q1) ”= (Q2
, ‚Q2) that each consist of a

decomposition and rerandomized decomposition; namely, for every k œ {1, 2}, Qk is the decomposition for e and ‚Qk

is the rerandomization of Qk.

Definition 6.13 (�-Unambiguity of Decompositions for Rerandomized Ciphertexts). For every poly(�)-size adversary
Adv there exists a negligible function µ such that for every Ÿ œ N, messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧
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and i œ [¸1 + ¸2]:

Pr

S

WWWWWWWWWWWWWWU

(Q1
, ‚Q1) ”= (Q2

, ‚Q2)
’k œ [2], j œ [0, ”̄] :

Qk =
!
Q

k

”

"
”œ[0,”̄]

‚Qk =
1

‚Qk

”

2

”œ[0,”̄]
ZT((E | e≠1), (Qk | e)) = 1
ZT((Qk

j
| e≠1), (‚e1 | ‚Qk

j
)) = 1

--------------------

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
‚�≠i Ω Rerand(Restrict(�, i))1

e, Q1
, ‚Q1

, Q2
, ‚Q2

2
Ω Adv(pp, �, ‚�≠i)

e≠1 Ω Eval(�, ≠1)
‚e1 Ω Eval(‚�≠i, 1)
E =

1
Ej Ω Eval(�, Z

j

i
) : j œ [0, ”̄]

2

T

XXXXXXXXXXXXXXV

Æ µ(�(Ÿ)) .

In the experiment above, Z
j

i
: F¸1+¸2 æ F denotes the monomial Z

j

i
(z1, . . . , z¸1+¸2) © z

j

i
.

In the above definition we implicitly require that the size of the ciphertext is bounded by the size of Adv. We
therefore require that ”̄

¯̧ Æ poly(�).
We note that this property holds more generally for any vector of evaluated ciphertexts E containing at least one

ciphertext computed by homomorphically evaluating a polynomial F that depends on zi.

The final definition. Putting together the definitions from Sections 6.2.1 to 6.2.5, we get the following definition.

Definition 6.14 (Zero-testable Homomorphic Encryption). A �-secure zero-testable homomorphic encryption scheme:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

with degree bound ”̄ and message length bound ¯̧satisfies the requirements in Definitions 6.1 to 6.13.

6.3 Construction
In this section we construct a zero-testable homomorphic encryption scheme from bilinear maps. We begin with
notation.

Notation. For a vector of polynomials C = (C1, . . . , C¸) œ (F[x])¸ and a vector � = (”1, . . . , ”¸) œ [0, ”]¸, we
denote by C� the polynomial

r
iœ[¸] C

”i
i

.
For every security parameter Ÿ œ N, fix a group G = GŸ of prime order p = p(Ÿ) = 2�(Ÿ) with a non-degenerate

bilinear map e : G ◊ G æ GT and let F = Zp.
For any t œ F and g œ G, we refer to the element g

t as the encoding of t under g and denote it by ÈtÍ
g
. For

any n-variate polynomial P (x) =
q

�œ[0,”]n –� · x� œ F[x] of individual degree Æ ”, the encoding of P under g

consists of the encodings of its coe�cients
1

È–�Í
g

2

�œ[0,”]n
and we denote it by ÈP Í

g
. Observe that given the encoded

polynomial ÈP Í
g

and the elements t œ Fn we can homomorphically evaluate P on t. That is, we can e�ciently
compute the encoding:

ÈP (t)Í
g

=
K

ÿ

�œ[0,”]n

–� · t�
L

g

=
Ÿ

�œ[0,”]n

1
È–�Í

g

2t�
.

Similarly, we can e�ciently compute ÈP (t)Í
g

given the polynomial P and the encoded elements
1+

t�
,

g

2

�œ[0,”]n
.

Next we describe the algorithms of our encryption scheme with degree bound ”̄ = ”̄(Ÿ) and message length bound
¯̧= ¯̧(Ÿ).
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The parameter generation algorithm ParamGen. Given as input the security parameter Ÿ the parameter
generation algorithm samples a random group generator g Ω G and outputs the public parameters pp = (1Ÿ

, g). In
what follows, let d = ¯̧· ”̄ and d

Õ = 2d + 1. The encoding È–Ípp of an element – œ F is È–Í
g
.

The key generation algorithm KeyGen. Given as input the public parameters pp, the key generation algorithm
samples a random element s Ω F and outputs the secret key sk = (pp, s).

The encryption algorithm Enc. Given as input the secret key sk = (pp, s), a message m = (m1, . . . , m¸) such
that ¸ Æ ¯̧ and randomness r = (r1, . . . , r¸) œ {0, 1}Ÿ◊¸, the encryption algorithm samples a vector of polynomials
C = (C1, . . . , C¸) as follows: for every i œ [¸] it uses randomness ri œ {0, 1}Ÿ to sample a random polynomial
Ci œ F[x] of degree d

Õ satisfying Ci(s) = mi. It computes and outputs the ciphertext:

c =
1+

C� œ F[x]
,

g

2

�œ[0,”̄]¸
.

The multi-key encryption algorithm MEnc. Given as input a pair (“1, “2) where “i is a tuple containing a
secret key ski = (pp, si), a message mi = (mi,1, . . . , mi,¸i) such that ¸i Æ ¯̧and randomness ri = (ri,1, . . . , ri,¸i) œ
{0, 1}Ÿ◊¸i , the multi-key encryption algorithm proceeds as follows: for every i œ [2] it samples a vector of polynomials
Ci = (Ci,1, . . . , Ci,¸i) by using the randomness ri,j œ {0, 1}Ÿ to sample a random polynomial Ci,j œ F[xi] of degree
d

Õ satisfying Ci,j(si) = mi,j . It computes and outputs the multi-key ciphertext:

� =
1+

(C1 | C2)� œ F[x1, x2]
,

g

2

�œ[0,”̄]¸1+¸2
.

If ¸1 = 0 or ¸2 = 0 then the encoded polynomials in � are treated as polynomials in a single variable.

The homomorphic evaluation algorithm Eval. The homomorphic evaluation algorithm is given as input:

• The public parameters pp.

• A (single-key or multi-key) ciphertext � =
1+

C�
,

g

2

�œ[0,”̄]¸
of length ¸ = ¸(�).

• An ¸-variate polynomial P (x) =
q

�œ[0,”]¸ –� · x� of individual degree ” Æ ”̄.

The homomorphic evaluation algorithm computes and outputs the evaluated ciphertext:

e = ÈP (C)Í
g

=
K

ÿ

�œ[0,”]¸

–� · C�

L

g

.

Note that if � is single-key (resp. multi-key), then e is single-key (resp. multi-key). Since P is an ¸-variate polynomial
of individual degree Æ ”̄ and each element of C is a polynomial of degree d

Õ, the individual degree of P (C) is at most:

”max = ¯̧· ”̄ · d
Õ = 2¯̧2

”̄
2 + ¯̧̄” .

We therefore define the set Valid of valid evaluated ciphertexts to be the set of all encoded polynomials in F[x] or
F[x1, x2] of individual degree Æ ”max.

The decryption algorithm Dec. The decryption algorithm operates on either single-key or multi-key evaluated
ciphertexts. In the single-key case, it is given as input a secret key sk = (pp, s) and a single-key evaluated ciphertext
e = ÈR œ F[x]Í

g
. In the multi-key case, it is given as input a pair of secret keys (sk1, sk2) such that ski = (pp, si)

and a multi-key evaluated ciphertext e = ÈR œ F[x1, x2]Í
g
. Let s = (s) in the single-key case and s = (s1, s2) in the

multi-key case. The decryption algorithm outputs the encoding ÈR(s)Í
g
.
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The quadratic zero-test algorithm ZT. The quadratic zero-test algorithm is given as input:
• The public parameters pp.
• Two vectors of evaluated ciphertexts e = (e1, . . . , en), eÕ = (eÕ

1, . . . , e
Õ
n
) where ei = ÈRi œ F[x]Í

g
, e

Õ
i

=
ÈRÕ

i
œ F[x]Í

g
.

• A vector ↵ = (–1, . . . , –n) œ Fn.
If for some i œ [n], ei /œ Valid or e

Õ
i

/œ Valid then it outputs 0. Using the bilinear map it computes the encoded
polynomial: K

ÿ

iœ[n]
–i · RiR

Õ
i

L

e(g,g)

.

If this encoded polynomial is È0Í
e(g,g) (that is, if every coe�cient is zero) then it outputs 1. Otherwise it outputs 0.

The ciphertext extension algorithm Extend. Given as input “1 and “2 such that for some i œ [2], “i is a
single-key ciphertext c =

1+
C�

i

,
g

2

�œ[0,”̄]¸i
and for j œ [2] \ {i}, “j is a tuple (sk, m, r) including a secret key

sk = (pp, s), a message m = (m1, . . . , m¸j ) such that ¸j Æ ¯̧, and randomness r = (r1, . . . , r¸j ) œ {0, 1}Ÿ◊¸j , the
ciphertext extension algorithm samples a vector of polynomials Cj = (Cj,1, . . . , Cj,¸j ) as follows: for every k œ [¸j ] it
uses the randomness rk œ {0, 1}Ÿ to sample a random polynomial Cj,k œ F[xj ] of degree d

Õ satisfying Cj,k(s) = mk.
It computes and outputs the multi-key ciphertext:

� =
1+

(C1 | C2)� œ F[x1, x2]
,

g

2

�œ[0,”̄]¸1+¸2
.

Note that the encoded polynomials in � can be computed e�ciently since Cj is not encoded.

The ciphertext restriction algorithm Restrict. Given as input the public parameters pp, a ciphertext � =1+
C�

,
g

2

�œ[0,”̄]¸
and an index i œ [¸], the ciphertext restriction algorithm outputs the ciphertext:

�≠i =
3e

(C≠i)�
f

g

4

�œ[0,”̄]¸≠1
=

1+
C�

,
g

2

�œ[0,”̄]¸ : �i=0
.

The ciphertext random extension algorithm RandExtend. Given as input the public parameters pp, a
multi-key ciphertext � =

1+
(C1 | C2)� œ F[x1, x2]

,
g

2

�œ[0,”̄]¸1+¸2
and i œ [¸1 + ¸2 + 2], if i Æ ¸1 + 1, the

ciphertext random extension algorithm samples a random polynomial C
Õ œ F[x1] of degree d

Õ and sets CÕ
1 =

(C1,1, . . . , C1,i≠1, C
Õ
, C1,i, . . . , C1,¸1) if i Æ ¸1 or CÕ

1 = (C1 | C
Õ) if i = ¸1 + 1. It computes and outputs the

ciphertext:
�Õ =

1+
(CÕ

1 | C2)� œ F[x1, x2]
,

g

2

�œ[0,”̄]¸1+¸2+1
.

Note that the encoded polynomials in �Õ can be computed e�ciently since C
Õ is not encoded.

Alternatively, if i > ¸1 + 1, it samples a random polynomial C
Õ œ F[x2], and for i

Õ = i ≠ ¸1 ≠ 1 it sets
CÕ

2 = (C2,1, . . . , C2,iÕ≠1, C
Õ
, C2,iÕ , . . . , C2,¸2) if i

Õ Æ ¸2 or CÕ
2 = (C2 | C

Õ) if i
Õ = ¸2 + 1. It computes and outputs

the ciphertext:
�Õ =

1+
(C1 | CÕ

2)� œ F[x1, x2]
,

g

2

�œ[0,”̄]¸1+¸2+1
.

The ciphertext rerandomization algorithm Rerand. Given as input the public parameters pp and a ciphertext
� =

1+
C�

,
g

2

�œ[0,”̄]¸
, the rerandomization algorithm samples a random element ⁄ Ω F. It computes and outputs the

ciphertext:
‚� =

1+
C�

,
g⁄

2

�œ[0,”̄]¸
.
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6.4 Analysis
In this section we prove the construction in Section 6.3 with degree bound ”̄ and message length bound ¯̧ is a
�-secure zero-testable homomorphic encryption scheme (Definition 6.14) under the following hardness assumption
parameterized by ”̄ and �. For ”̄ = O(1) this is identical to Assumption 5.1.

Assumption 6.15. For every d(Ÿ) = O(”̄ ·log �(Ÿ)) and poly(�)-size adversary Adv, there exists a negligible function
µ such that for every Ÿ œ N:

Pr

S

WWWWWWWWWWU

b
Õ = b

----------------

b Ω {0, 1}
g Ω G

s Ω Zp

t0 Ω Zp

t1 Ω s
2d+1

b
Õ Ω Adv

Q

a
3e

s
i · t

j

b

f

g

4

iœ[0,d]
jœ[0,”̄]

R

b

T

XXXXXXXXXXV

Æ 1
2 + µ(�(Ÿ)) .

Theorem 6.16. For any � = �(Ÿ) Æ |F|o(Ÿ), ”̄ = O(1) and ¯̧(Ÿ) such that ”̄
¯̧ Æ poly(�) the encryption scheme:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

given in Section 6.3 is a �-secure zero-testable homomorphic encryption scheme (Definition 6.14) under Assump-
tion 6.15.

To prove Theorem 6.16, we focus on proving that our construction satisfies the following properties: semantic
security (Definition 6.5) unambiguity of ciphertexts (Definition 6.6) and unambiguity of zero-test for rerandomized
ciphertexts (Definition 6.13). The remaining requirements in Definition 6.14 follow from the construction.

6.4.1 Semantic security.

Assume towards contradiction that there exists a poly(�)-size adversary Adv and a polynomial p such that for infinitely
many Ÿ œ N, there exists ¸ Æ ¯̧and m0

, m1 œ F¸ such that:

Pr

S

WWWWWWWWU

b
Õ = b

--------------

b Ω {0, 1}
pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c0 Ω Enc(sk, m0
, r)

c1 Ω Enc(sk, m1
, r)

b
Õ Ω Adv(pp, cb)

T

XXXXXXXXV

Ø 1
2 + 1

p(�(Ÿ)) .

Fix any such Ÿ, ¸ and m0
, m1. For every i œ [0, ¸] define the message m̄i œ F¸ as follows: let m̄i

j
= m1

j
for j Æ i

and m̄i

j
= m0

j
for j > i. Therefore, there exists i

ú œ [¸] such that:

Pr

S

WWWWWWWWU

b
Õ = b

--------------

b Ω {0, 1}
pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c0 Ω Enc(sk, m̄i
ú≠1

, r)
c1 Ω Enc(sk, m̄i

ú
, r)

b
Õ Ω Adv(pp, cb)

T

XXXXXXXXV

Ø 1
2 + 1

¸ · p(�(Ÿ)) . (2)

31



Fix such i
ú œ [¸]. Next we construct an adversary breaking Assumption 6.15 with parameter ”̄ and d = ”̄ · ¯̧.

Since ”̄ = O(1) and ”̄
¯̧ Æ poly(�) we have ¯̧ = O(log �) and indeed d(Ÿ) = O(”̄ · log �(Ÿ)). First we construct an

adversary AdvÕ
m for any m œ F¸ such that:

Pr

S

WWWWWU
b = 1

-----------

g Ω G

s Ω F
t Ω s

2d+1

b Ω AdvÕ
m

A1+
s

i · t
j
,

g

2
iœ[0,d]
jœ[0,”̄]

B

T

XXXXXV
= Pr

S

WWWWU
b = 1

----------

pp Ω ParamGen(Ÿ)
sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊¸

c Ω Enc(sk, m, r)
b Ω Adv(pp, c)

T

XXXXV
(3)

and

Pr
gΩG

s,tΩF

C
AdvÕ

m̄iú

A1+
s

i · t
j
,

g

2
iœ[0,d]
jœ[0,”̄]

B
= 1

D
= Pr

gΩG

s,tΩF

C
AdvÕ

m̄iú≠1

A1+
s

i · t
j
,

g

2
iœ[0,d]
jœ[0,”̄]

B
= 1

D
. (4)

By Equations (2) and (3):

Pr
gΩG

sΩF
tΩs

2d+1

C
AdvÕ

m̄iú

A1+
s

i · t
j
,

g

2
iœ[0,d]
jœ[0,”̄]

B
= 1

D
≠ Pr

gΩG

sΩF
tΩs

2d+1

C
AdvÕ

m̄iú≠1

A1+
s

i · t
j
,

g

2
iœ[0,d]
jœ[0,”̄]

B
= 1

D
Ø 2

¸ · p(�(Ÿ)) .

Therefore, for some m œ
)

m̄i
ú
, m̄i

ú≠1*
, AdvÕ

m breaks Assumption 6.15.

Now we construct AdvÕ
m for m = (m1, . . . , m¸). Given as input the encodings

+
s

i · t
j
,

g
for every i œ [0, d] and

j œ [0, ”̄], the adversary AdvÕ
m proceeds as follows:

1. Let pp = (1Ÿ
, g) and d

Õ = 2d + 1.

2. For every i œ [¸] sample a random polynomial C
Õ
i

œ F[x] of degree d
Õ ≠ 1.

3. For i œ [¸] \ {i
ú} let Ci = x · C

Õ
i

≠ s · C
Õ
i

+ mi. Observe that Ci is distributed like a random degree-dÕ

polynomial subject to Ci(s) = mi. Note that the adversary cannot compute the polynomial Ci since it is only
given encodings of s.

4. Let Ciú = x · C
Õ
iú ≠ s · C

Õ
iú + miú + (xd

Õ ≠ t). Observe that if t = s
d

Õ then Ci is distributed like a random
degree-dÕ polynomial subject to Ci(s) = miú . If t is random and independent of s, then Ci is distributed like a
random degree-dÕ polynomial.

5. Use the encodings
+
s

i · t
j
,

g
for i œ [0, d] and j œ [0, ”̄] to compute the ciphertext:

c =
1+

(C1, . . . , C¸)�
,

g

2

�œ[0,”̄]¸
.

Observe that for every i œ [¸], every coe�cient of Ci depends linearly on s. Moreover, the free coe�cient of
Ciú depends linearly on t. Therefore, every encoded polynomial in c can indeed be computed from the input.

6. Output the bit returned by Adv(pp, c).
By construction, if t = s

d
Õ then the ciphertext c generated by AdvÕ

m is distributed exactly like an encryption of m and
hence Equation (3) follows. If t is random and independent of s, then the output of AdvÕ

m is independent of miú . Since
m̄i

ú≠1 and m̄i
ú only di�er in location i

ú, Equation (4) follows.
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6.4.2 Unambiguity of ciphertexts

We prove the property for multi-key ciphertexts. The proof for single-key ciphertexts is similar. We first define the
distribution of ciphertexts RandEnc(pp, ¸1, ¸2) for public parameters pp and ¸1, ¸2 œ [0, ¯̧]. RandEnc generates a
ciphertext as follows:

1. Let d
Õ = 2 · ”̄ · ¯̧+ 1.

2. For every i œ [2] sample a vector of polynomials Ci = (Ci,1, . . . , Ci,¸i) such that for every j œ [¸i], Ci,j œ F[xi]
is a random polynomial of degree d

Õ.

3. Compute and output the ciphertext:
1+

(C1 | C2)� œ F[x1, x2]
,

g

2

�œ[0,”̄]¸1+¸2
.

It follows from the construction of MEnc and RandEnc that for any Ÿ œ N and ¸1, ¸2 œ [0, ¯̧], the distribution of
(pp, sk1, sk2, �) in Definition 6.6 is the same as the distribution of (pp, sk1, sk2, �Õ) sampled as follows:

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
�Õ Ω RandEnc(pp, ¸1, ¸2) .

Therefore it su�ces to show that for every adversary Adv, Ÿ œ N and ¸1, ¸2 œ [0, ¯̧]:

Pr

S

WWWWWWU

e, e
Õ œ Valid

e ”= e
Õ

v = v
Õ

------------

pp Ω ParamGen(Ÿ)
�Õ Ω RandEnc(pp, ¸1, ¸2)
(e, e

Õ) Ω Adv(pp, �Õ)
sk1, sk2 Ω KeyGen(pp)
v Ω Dec((sk1, sk2), e)
v

Õ Ω Dec((sk1, sk2), e
Õ)

T

XXXXXXV
Æ poly(”̄ · ¯̧)

|F| .

Fix any Ÿ œ N and ¸1, ¸2 œ [0, ¯̧]. In this experiment Adv outputs evaluated ciphertexts e = ÈRÍ
g

and e
Õ = ÈRÕÍ

g

such that R, R
Õ œ F[x1, x2]. If e, e

Õ œ Valid then the individual degree of R, R
Õ is at most ”max = 2¯̧2

”̄
2 + ¯̧̄”. If

e ”= e
Õ then (R ≠ R

Õ) œ F[x1, x2] is a nonzero polynomial of individual degree Æ ”max.
Since sk1 = (pp, s1) and sk2 = (pp, s2) for random elements s1, s2 Ω F that are independent of R, R

Õ, if
e ”= e

Õ then (R ≠ R
Õ)(s1, s2) = 0 with probability at most 2”max/|F| so v = ÈR(s1, s2)Í

g
= ÈRÕ(s1, s2)Í

g
= v

Õ with
probability at most 2”max/|F| = poly(”̄ · ¯̧)/|F|.

6.4.3 Unambiguity of zero-test for rerandomized ciphertexts

The proof considers a sequence of experiments. The first experiment, Exp0 corresponds to Definition 6.13:

pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊¸1

, r2 Ω {0, 1}Ÿ◊¸2

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
‚�≠i Ω Rerand(Restrict(�, i))3

e, Q1 =
!
Q

1
”

"
”œ[0,”̄] , ‚Q1 =

1
‚Q1

”

2

”œ[0,”̄]
, Q2 =

!
Q

2
”

"
”œ[0,”̄] , ‚Q2 =

1
‚Q2

”

2

”œ[0,”̄]

4
Ω Adv(pp, �, ‚�≠i)

e≠1 Ω Eval(�, ≠1)
‚e1 Ω Eval(‚�≠i, 1)
E =

1
Ej Ω Eval(�, Z

j

i
) : j œ [0, ”̄]

2

.
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Assume towards contradiction that there exists a poly(�)-size adversary Adv and a polynomial p such that for
infinitely many Ÿ œ N there exist messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧and i œ [¸1 + ¸2] such that:

Pr
Exp0

S

WWU

÷j œ [0, ”̄] : (Q1
j
, ‚Q1

j
) ”= (Q2

j
, ‚Q2

j
)

’k œ [2], j œ [0, ”̄] :
ZT((E | e≠1), (Qk | e)) = 1
ZT((Qk

j
| e≠1), (‚e1 | ‚Qk

j
)) = 1

T

XXV Ø 1
p(�(Ÿ)) .

Let Exp1 be the experiment that is defined like Exp0 except that we sample random independent messages
m1 Ω F¸1 and m2 Ω F¸2 . By semantic security (Definition 6.5) for infinitely many Ÿ œ N:

Pr
Exp1

S

WWU

÷j œ [0, ”̄] : (Q1
j
, ‚Q1

j
) ”= (Q2

j
, ‚Q2

j
)

’k œ [2], j œ [0, ”̄] :
ZT((E | e≠1), (Qk | e)) = 1
ZT((Qk

j
| e≠1), (‚e1 | ‚Qk

j
)) = 1

T

XXV Ø �(1)
p(�(Ÿ)) .

For i œ [2] let ski = (pp, si). For k œ [2] and j œ [0, ”̄] let Q
k

j
=

+
R

k

j

,
g

and ‚Qk

j
=

e
‚Rk

j

f

g

. Let:

+
–

k

j

,
g

=
+
R

k

j
(s1, s2)

,
g

= Dec((sk1, sk2), Q
k

j
) ,

+
—

k

j

,
g

=
e

‚Rk

j
(s1, s2)

f

g

= Dec((sk1, sk2), ‚Qk

j
) ,

and let –j = –
1
j

≠ –
2
j

and —j = —
1
j

≠ —
2
j
.

Recall that ZT only accepts if Q
k

j
, ‚Qk

j
œ Valid for all k œ [2], j œ [0, ”̄]. Therefore, by the unambiguity of

ciphertexts (Definition 6.6) for infinitely many Ÿ œ N:
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Exp1

S

WWWU

÷j œ [0, ”̄] :
1

È–jÍ
g

, È—jÍ
g

2
”=

1
È0Í

g
, È0Í

g

2

’k œ [2], j œ [0, ”̄] :
ZT((E | e≠1), (Qk | e)) = 1
ZT((Qk

j
| e≠1), (‚e1 | ‚Qk

j
)) = 1

T

XXXV
Ø �(1)

p(�(Ÿ)) ≠ poly(”̄ · ¯̧)
|F| = �(1)

p(�(Ÿ)) .

Since ”̄ = O(1), ”̄
¯̧ Æ poly(�) and � Æ |F|o(Ÿ), indeed poly(”̄ · ¯̧)/|F| = negl(�(Ÿ)).

Next we define an algorithm S that samples ciphertexts (�, ‚�≠i) given encoded group elements. Given as input the
encodings

+
s

j
,

g
for j œ [0, ”̄] and ÈtÍ

g
the algorithm S samples � that encrypts a random message whose i’th element

is s and ‚�≠i that is a rerandomized version of � encoded in base g
t with the i’th element removed. The algorithm S

proceeds as follows:

1. For every j œ [¸1] \ {i} sample a random polynomial Cj œ F[x1] of degree d
Õ = 2 · ”̄ · ¯̧+ 1. For every

j œ [¸1 + 1, ¸2] \ {i} sample a random polynomial Cj œ F[x2] of degree d
Õ.

2. If i Æ ¸1, sample a random polynomial C
Õ
i

œ F[x1] of degree d
Õ such that then C

Õ
i
(s1) = 0. If i > ¸1, sample a

random polynomial C
Õ
i

œ F[x2] of degree d
Õ such that then C

Õ
i
(s2) = 0. Let Ci = C

Õ
i

+ s.

3. Let C = (C1, . . . , C¸1+¸2). Use the encodings
1+

s
i
,

g

2

iœ[0,”̄]
to compute the ciphertext:

� =
1+

C�
,

g

2

�œ[0,”̄]¸1+¸2
.

4. Use the encoding ÈtÍ
g

to compute the ciphertext:

‚�≠i =
1+

C�
≠i

,
gt

2

�œ[0,”̄]¸1+¸2≠1
.

Observe that in � and ‚�≠i, only the constant coe�cient of Ci is encoded so � and ‚�≠i can indeed be computed
from the input.
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5. Output (�, ‚�≠i).

Let Exp2 be the experiment that is defined like Exp1 except that the ciphertexts (�, ‚�≠i) are generated by S on
encodings of random elements s, t Ω F:

s Ω F
t Ω F
pp Ω ParamGen(Ÿ)
sk1, sk2 Ω KeyGen(pp)
1

�, ‚�≠i

2
Ω S

31+
s

j
,

g

2

jœ[0,”̄]
, ÈtÍ

g

4

3
e, Q1 =

!
Q

1
”

"
”œ[0,”̄] , ‚Q1 =

1
‚Q1

”

2

”œ[0,”̄]
, Q2 =

!
Q

2
”

"
”œ[0,”̄] , ‚Q2 =

1
‚Q2

”

2

”œ[0,”̄]

4
Ω Adv(pp, �, ‚�≠i)

e≠1 Ω Eval(�, ≠1)
‚e1 Ω Eval(‚�≠i, 1)
E =

1
Ej Ω Eval(�, Z

j

i
) : j œ [0, ”̄]

2

.

We argue that �, ‚�≠i have the same distribution in Exp1 and Exp2. S samples � by encrypting messages m1, m2
such that (m1 | m2)≠i consists of independent random elements of F and (m1 | m2)i = s. Since s Ω F in Exp2, the
distribution of � in both experiments is identical. In Exp1 we compute:

‚�≠i =
1+

C�
≠i

,
g⁄

2

�œ[0,”̄]¸1+¸2≠1
Ω Rerand

3
Restrict

3
� =

1+
C�

,
g

2

�œ[0,”̄]¸1+¸2
, i

44
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for a random element ⁄ Ω F. Since t Ω F in Exp2, the distribution of ‚�≠i in both experiments is identical.
Since �, ‚�≠i have the same distribution in Exp1 and Exp2 we have that for infinitely many Ÿ œ N:

Pr
Exp2

S

WWWU

÷j œ [0, ”̄] :
1

È–jÍ
g

, È—jÍ
g

2
”=

1
È0Í

g
, È0Í

g

2

’k œ [2], j œ [0, ”̄] :
ZT((E | e≠1), (Qk | e)) = 1
ZT((Qk

j
| e≠1), (‚e1 | ‚Qk

j
)) = 1

T

XXXV
Ø �(1)

p(�(Ÿ)) .

Let Exp3 be the experiment that is defined like Exp1 except that set t = s
2”̄+1 instead of sampling an independent

random element t Ω F. By Assumption 6.15 with parameter ”̄ and d = ”̄ we have that for infinitely many Ÿ œ N:

Pr
Exp3

S

WWWU

÷j œ [0, ”̄] :
1

È–jÍ
g

, È—jÍ
g

2
”=

1
È0Í

g
, È0Í

g

2

’k œ [2], j œ [0, ”̄] :
ZT((E | e≠1), (Qk | e)) = 1
ZT((Qk

j
| e≠1), (‚e1 | ‚Qk

j
)) = 1

T

XXXV
Ø �(1)

p(�(Ÿ)) . (5)

Using Equation (5) we construct an adversary AdvÕ breaking Assumption 6.15 with parameter ”̄ and d = 2”̄ + 1.
Given as input the encodings

+
s

i · t
j
,

g
for every i œ [0, d] and j œ [0, ”̄], AdvÕ uses only the encodings of s to emulate

Exp3. Let AC be the event tested in Equation (5). If AC does not occur AdvÕ outputs a random bit. Otherwise, if AC
occurs, let j

Õ be the maximal index such that
1

È–jÕÍ
g

, È—jÕÍ
g

2
”=

1
È0Í

g
, È0Í

g

2
. AdvÕ test that:

e

1
È–jÕÍ

g
, ÈtÍ

g

2
·

Ÿ

jœ[jÕ]
e

1
È—jÕ≠jÍ

g
,
+
s

d+1≠j
,

g

2
= 1 œ GT . (6)

If this test passes, AdvÕ output 1. Otherwise it output 0. Note that emulating Adv requires time poly(�) and the rest of
the execution requires time poly(Ÿ).
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Claim 6.17.

Pr
AdvÕ

S

UAC æ –jÕ · s
2d+1 +

ÿ

jœ[jÕ]
—jÕ≠j · s

d+1≠j = 0

T

V = 1 .

Proof. Assume AC occurs and, therefore:

1.
1+

–
Õ
j

,
g

,
+
—

Õ
j

,
g

2
”=

1
È0Í

g
, È0Í

g

2

2. ’j > j
Õ :

1
È–jÍ

g
, È—jÍ

g

2
=

1
È0Í

g
, È0Í

g

2

3. For every k œ [2]: ZT((E | e≠1), (Qk | e)) = 1

4. For every k œ [2], j œ [0, ”̄]: ZT((Qk

j
| e≠1), (‚e1 | ‚Qk

j
)) = 1

Let e = ÈRÍ
g

and È–Í
g

= ÈR(s1, s2)Í
g

= Dec((sk1, sk2), e). Recall that:

e≠1 = Eval(�, ≠1) =
+
≠1

,
g

,
+
≠1(s1, s2)

,
g

= È≠1Í
g

‚e1 = Eval(‚�≠i, 1) =
+
1
,

gsd ,
+
1(s1, s2)

,
gsd = È1Í

gsd =
+
s

d
,

g

Ej = Eval(�, Z
j

i
) =

e
Z

j

i
(C)

f

g

,

e
Z

j

i
(C)(s1, s2)

f

g

=
+
s

j
,

g

Therefore, since ZT accepts we have that for all k œ [2], j œ [0, ”̄]:
ÿ

jœ[0,”̄]

–
k

j
· s

j = – ∆
ÿ

jœ[0,”̄]

–j · s
j = 0 (7)

–
k

j
· s

d = —
k

j
∆ –j · s

d = —j . (8)

Since –j = 0 for j > j
Õ, by Equation (7):

ÿ

jœ[0,jÕ]
–j · s

j = 0 ∆
ÿ

jœ[0,jÕ]
–j · s

2d+1≠j
Õ+j = 0 ∆

ÿ

jœ[0,jÕ]
–jÕ≠j · s

2d+1≠j = 0 .

By Equation (8):
–jÕ · s

2d+1 +
ÿ

jœ[jÕ]
—jÕ≠j · s

d+1≠j = 0 .

By Equation (5) and Claim 6.17 for infinitely many Ÿ œ N:

Pr
Expb

S

UAC · –jÕ · s
2d+1 +

ÿ

jœ[jÕ]
—jÕ≠j · s

d+1≠j = 0

T

V Ø �(1)
p(�(Ÿ)) .

Therefore, if t = s
2d+1 then Equation (6) holds and Adv outputs 1 with probability Ø �(1)/p(�(Ÿ)). If t Ω F is

independent of s then Equation (6) holds with probability at most 1/|F| = negl(�(Ÿ)). Therefore, AdvÕÕ contradicts
Assumption 6.15.
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7 Auxiliary Protocols
In this section we introduce a sequence of sub-protocols used in our unambiguous quasi-argument construction. The
protocols in this section are defined with respect to the interface of the encryption scheme introduced in Section 6 and
they follow a common framework. Given a (single-key or multi-key) ciphertext � as input, we run the protocol’s setup
algorithm to generate a prover key pk (which includes �) and a verifier key vk. The prover is given as input pk and
some polynomial (or a sequence of polynomials) to be evaluated homomorphically on �. The polynomial must belong
to some restricted set of valid polynomials specified by the protocols. The prover sends to the verifier a single message
that contains the evaluated ciphertext (or ciphertexts) together with a proof. Intuitively, this proof certifies that the
evaluated polynomial is indeed in the set of valid polynomials. Using the verification key vk the verifier can check the
proof against the evaluated ciphertext and either accept or reject. While the setup and prover algorithms may run in
time that is polynomial in 2¸ (the length of �), we require that the running time of the verifier is polynomial in ¸ and
the security parameter.

For each protocol we define completeness, e�ciency, soundness and unambiguity requirements. The completeness
requirement says that when the prover honestly evaluates a valid polynomial on � the verifier accepts. The soundness
requirement says that if the verifier accepts, then the values encrypted in the evaluated ciphertext and in � satisfy some
conditions. Intuitively, these conditions should only be satisfied if the prover honestly evaluates a valid polynomial.
The unambiguity requirement says that it is hard to find two di�erent accepting proofs for the same evaluated ciphertext
with respect to the same verification key.

7.1 Notation
Let:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)
be a zero-testable homomorphic encryption scheme with degree bound ”̄ = ”̄(Ÿ) = O(1), message length bound
¯̧ = ¯̧(Ÿ) and field F = FŸ (Definition 6.14). The interface of the protocols in this section are defined with respect to
this scheme. We use the notation introduced in Section 6.1 as well as the following shorthand:
Encryption: for a message m, we denote by Enc [m]pp the output (sk, c, r) in the following experiment:

sk Ω KeyGen(pp)
r Ω {0, 1}Ÿ◊|m|

c Ω Enc(sk, m, r)

Multi-key encryption: for messages m1, m2, we denote by MEnc [m1, m2]pp the output:

(sk = (sk1, sk2) , �, r = (r1, r2)) ,

in the following experiment:
sk1, sk2 Ω KeyGen(pp)
r1 Ω {0, 1}Ÿ◊|m1|

, r2 Ω {0, 1}Ÿ◊|m2|

� Ω MEnc((sk1, m1, r1), (sk2, m2, r2))
Vector encryption: for a vector of messages V = (m1, . . . , mK) œ F¸◊K we denote by VEnc [V]pp R the output:

(sk = (sk1, . . . , skK) , c = (c1, . . . , cK) , r = (r1, . . . , rK)) ,

in the following experiment:
’k œ [K] : skk Ω KeyGen(pp)
’k œ [K] : rk Ω {0, 1}Ÿ◊¸

’k œ [K] : ck Ω Enc(skk, mk, rk)
Homomorphic evaluation: for a ciphertext � and a polynomial P , we denote by [P (�)]pp the output of Eval(pp, �, P ).
Quadratic zero-test: for two vectors of evaluated ciphertexts a, aÕ of length n1 and two vectors of evaluated ciphertexts

b, bÕ of length n2, we denote by [a · aÕ = b · bÕ]pp the output of ZT(pp, e, eÕ
,↵) where e = (a | b), eÕ =

(aÕ | bÕ) and ↵ = (1n1 | (≠1)n2).
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7.2 Decomposition Protocol
This section describes the decomposition protocol. The protocol’s CRS contains a ciphertext � encrypting a message
m = (m1, . . . , m¸) œ F¸. The honest prover is given a polynomial F : F¸ æ F of individual degree at most ”̄. The
prover homomorphically evaluates F on � and sends the resulting ciphertext e to the verifier. The prover also provides
a decomposition Q = (Q0, . . . , Q

”̄
) of e along some coordinate i œ [¸]. The decomposition is computed as follows:

let F |
i,0, . . . , F |

i,”̄
: F¸≠1 æ F be the unique polynomials such that:

F (z) ©
ÿ

jœ[0,”̄]

F |
i,j

(z≠i) · zj

i
.

The ciphertext Qj is obtained by homomorphically evaluating F |
i,j

on �≠i which is obtained from � by removing the
encryption of mi.

The verifier uses the zero-test to check that the decomposition Q is consistent with the evaluation e. In more detail,
the verifier interprets the decomposition Q as an encryption of a univariate degree-”̄ polynomial. Using the zero-test
the verifier checks that the evaluation of this polynomial on mi is indeed equal to the value encrypted in e.

This simple decomposition protocol is ambiguous, meaning that a cheating prover can produce di�erent decom-
positions of the same evaluated ciphertext e that are both accepted by the verifier. Such an attack can be carried out by
homomorphically computing a decomposition that depends on mi (and the honest decomposition that does not depend
on mi). To prevent this attack and ensure unambiguous decompositions we add to the CRS a rerandomization ‚�≠i

of the ciphertext �≠i which contains no information about mi. The prover also provides a rerandomized decompo-
sition ‚Q0, . . . , ‚Q

”̄
where ‚Qj is obtained by homomorphically evaluating F |

i,j
on ‚�≠i. The verifier will also check

that the rerandomized decomposition and the original one are consistent. The unambiguity of the resulting protocol
follows directly from the unambiguity of decompositions for rerandomized ciphertexts property of the encryption
(Definition 6.13).

Another useful property of the decomposition protocol is injectivity, meaning that di�erent evaluated ciphertexts
cannot have the same decomposition under the same CRS.

7.2.1 Definition.

The decomposition protocol consists of algorithms (DC.S, DC.P, DC.V) with the following syntax:

Setup: The PPT setup algorithm DC.S takes as input public parameters pp for the encryption scheme, a ciphertext �
and an index i œ [¸(�)]. It outputs a prover key pk and a verifier key vk.

Prover: The deterministic polynomial-time prover algorithm DC.P takes as input a prover key pk and a polynomial
F : F¸ æ F of individual degree at most ”̄. It outputs an evaluated ciphertext e, a decomposition Q and a proof
�.

Verifier: The deterministic polynomial-time verifier algorithm DC.V takes as input a verifier key vk, an evaluated
ciphertext e, a decomposition Q and a proof �. It outputs a bit indicating if it accepts or rejects.

Definition 7.1. A �-secure decomposition protocol (DC.S, DC.P, DC.V) with degree bound ”̄ and message length
bound ¯̧satisfies the following requirements:

Completeness. For every Ÿ œ N, messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧, index i œ [¸1 + ¸2] and
polynomial F : F¸1+¸2 æ F of individual degree at most ”̄:

Pr

S

WWWWWU

DC.V (vk, e, Q, �) = 1
e = [F (�)]pp
’j œ [0, ”̄] : Qj =

Ë
F |

i,j
(�≠i)

È

pp

-----------

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω DC.S(pp, �, i)1

e, Q = (Qj)
jœ[0,”̄], �

2
Ω DC.P(pk, F )

�≠i Ω Restrict(�, i)

T

XXXXXV
= 1 .
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E�ciency. In the completeness experiment above |vk| = poly(Ÿ, ¯̧, ”̄) and |�| = poly(Ÿ, ¯̧, ”̄).
Soundness. For every Ÿ œ N, message m œ F¸ such that ¸ Æ ¯̧, index i œ [¸], and adversary Adv:

Pr

S

WWWWWWWWWU

DC.V (vk, e, Q, �) = 1
– ”=

q

jœ[0,”̄]
—j · z

j

---------------

pp Ω ParamGen(Ÿ)
Z = (sk, c, r) Ω Enc [m]pp
(pk, vk) Ω DC.S(pp, c, i)1

e, Q = (Qj)
jœ[0,”̄], �

2
Ω Adv(pk, vk, Z)

– Ω Dec(sk, e)
’j œ [0, ”̄] : —j Ω Dec(sk, Qj)
z Ω ÈmiÍpp

T

XXXXXXXXXV

= 0 .

Similarly, for every Ÿ œ N, messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧, index i œ [¸1 + ¸2] and
adversary Adv:

Pr

S

WWWWWWWWWU

DC.V (vk, e, Q, �) = 1
– ”=

q

jœ[0,”̄]
—j · z

j

---------------

pp Ω ParamGen(Ÿ)
Z = (sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω DC.S(pp, �, i)1

e, Q = (Qj)
jœ[0,”̄], �

2
Ω Adv(pk, vk, Z)

– Ω Dec(sk, e)
’j œ [0, ”̄] : —j Ω Dec(sk, Qj)
z Ω È(m1 | m2)iÍpp

T

XXXXXXXXXV

= 0 .

�-Injectivity. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N,
messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧and index i œ [¸1 + ¸2]:

Pr

S

WWU
DC.V (vk, e, Q, �) = 1
DC.V (vk, e

Õ
, Q, �Õ) = 1

e ”= e
Õ

--------

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω DC.S(pp, �, i)
(e, Q, �, e

Õ
, �Õ) Ω Adv(pk, vk, �)

T

XXV Æ µ(�(Ÿ)) .

�-Unambiguity. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N,
messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧and index i œ [¸1 + ¸2]:

Pr

S

WWU
DC.V (vk, e, Q, �) = 1
DC.V (vk, e, QÕ

, �Õ) = 1
(Q, �) ”= (QÕ

, �Õ)

--------

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω DC.S(pp, �, i)
(e, Q, �, QÕ

, �Õ) Ω Adv(pk, vk, �)

T

XXV Æ µ(�(Ÿ)) .

7.2.2 Construction.

We construct a decomposition protocol (DC.S, DC.P, DC.V) with degree bound ”̄ and message length bound ¯̧ as
follows.

The setup algorithm DC.S. The setup algorithm is given as input:

• Public parameters pp for the encryption scheme.

• A ciphertext � with ¸ = ¸(�).
• An index i œ [¸].

It proceeds as follows:
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• Set ‚�≠i Ω Rerand(Restrict(�, i)).

• Set E =
3

Ej Ω
Ë
Z

j

i
(�)

È

pp

4

jœ[0,”̄]
where Z

j

i
: F¸ æ F denotes the monomial Z

j

i
(z1, . . . , z¸) © z

j

i
.

• Set e1 Ω
#
1(�)

$
pp and ‚e1 Ω

Ë
1(‚�≠i)

È

pp
.

• Output the prover key pk =
1

pp, �, i, ‚�≠i

2
and verifier key vk = (pp, E, e1, ‚e1).

The prover algorithm DC.P. The prover algorithm is given as input:

• A prover key pk =
1

pp, �, i, ‚�≠i

2
.

• A polynomial F : F¸ æ F of individual degree at most ”̄.

It proceeds as follows:

• Set e Ω [F (�)]pp.

• Set �≠i Ω Restrict(�, i).

• Set Q =
3

Qj Ω
Ë

F |
i,j

(�≠i)
È

pp

4

jœ[0,”̄]
.

• Set � =
3

‚Qj Ω
Ë

F |
i,j

(‚�≠i)
È

pp

4

jœ[0,”̄]
.

• Output the evaluated ciphertext e, decomposition Q and proof �.

The verifier algorithm DC.V. The verifier algorithm is given as input:

• A verifier key vk =
1

pp, E = (Ej)
jœ[0,”̄] , e1, ‚e1

2
.

• An evaluated ciphertext e.

• A decomposition Q = (Qj)
jœ[0,”̄].

• A proof � = ( ‚Qj)
jœ[0,”̄].

It proceeds as follows:

• Test that e œ Valid (see Definition 6.6).

• Test that [Q · E = e · e1]pp.

• For every j œ [0, ”̄] test that
Ë
Qj · ‚e1 = e1 · ‚Qj

È

pp
.

• Output 1 if all tests pass. Otherwise output 0.

7.2.3 Analysis.

In this section we prove the following theorem:

Theorem 7.2. For any �(Ÿ), ”̄(Ÿ) and ¯̧(Ÿ) such that � · ”̄ · ¯̧= |F|o(1), assuming that:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

is a �-secure zero-testable homomorphic encryption scheme (Definition 6.14) with degree bound ”̄ and message length
bound ¯̧, the decomposition protocol (DC.S, DC.P, DC.V) given in Section 7.2.2 is a �-secure decomposition protocol
(Definition 7.1) with degree bound ”̄ and message length bound ¯̧.
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Completeness. Fix any Ÿ œ N, messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧, index i œ [¸1 + ¸2] and
polynomial F : F¸1+¸2 æ F of individual degree at most ”̄. Consider the completeness experiment where the setup
algorithm output the keys:

pk =
1

pp, �, i, ‚�≠i

2
, vk =

A
pp, E =

3
Ej =

Ë
Z

j

i
(�)

È

pp

4

jœ[0,”̄]
, e1 =

#
1(�)

$
pp, ‚e1 =

Ë
1(‚�≠i)

È

pp

B
,

and the prover outputs:
A

e = [F (�)]pp, Q =
3

Qj =
Ë

F |
i,j

(�≠i)
È

pp

4

jœ[0,”̄]
, � =

3
‚Qj =

Ë
F |

i,j
(‚�≠i)

È

pp

4

jœ[0,”̄]

B
.

Next we show that every test in DC.V passes:

• For every j œ [0, ”̄] let F
Õ
i,j

: F¸ æ F be the polynomial such that F
Õ
i,j

(z) © F |
i,j

(z≠i). By the stability
of evaluation (Definition 6.2) and the correctness of restriction (Definition 6.10) for every j œ [0, ”̄], Qj =#
F

Õ
i,j

(�)
$

pp. By the weak completeness of the zero-test (Definition 6.7) [Q · E = e · e1]pp passes since:
ÿ

jœ[0,”̄]

F
Õ
i,j

· Z
j

i
© F · 1 .

• By the stability of evaluation (Definition 6.2) and the correctness of restriction (Definition 6.10) e1 =
#
1(�≠i)

$
pp.

By the weak completeness of zero-test for rerandomized ciphertexts (Definition 6.12) for every j œ [0, ”̄],Ë
Qj · ‚e1 = e1 · ‚Qj

È

pp
passes.

Soundness. We prove soundness in the multi-key setting. The single-key setting is analogous. Fix Ÿ œ N, messages
m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧, index i œ [¸1 + ¸2] and adversary Adv. We consider the soundness
experiment where the verifier’s input includes:

vk =
1

pp, E = (Ej)
jœ[0,”̄] , e1, ‚e1

2
, e , Q = (Qj)

jœ[0,”̄] , � =
1

‚Qj

2

jœ[0,”̄]
.

Assume the verifier accepts in the soundness experiment. By the correctness of evaluation (Definition 6.1) for every
j œ [0, ”̄]:

Dec((sk1, sk2), Ej) =
e

(m1 | m2)j

i

f

pp
, Dec((sk1, sk2), e1) = È1Ípp .

Since [Q · E = e · e1]pp passes, the soundness of the zero-test (Definition 6.8) implies that:
ÿ

jœ[0,”̄]

Dec((sk1, sk2), Qj) · Dec((sk1, sk2), Ej) = Dec((sk1, sk2), e) · Dec((sk1, sk2), e1) = 0 .

Therefore: ÿ

jœ[0,”̄]

—j · z
j = – .

�-Injectivity. Assume towards contradiction that there exists a poly(�)-size adversary Adv and a polynomial p such
that for infinitely many Ÿ œ N there exist messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧and index i œ [¸1 + ¸2]
such that:

Pr

S

WWU
DC.V (vk, e, Q, �) = 1
DC.V (vk, e

Õ
, Q, �Õ) = 1

e ”= e
Õ

--------

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω DC.S(pp, �, i)
(e, Q, �, e

Õ
, �Õ) Ω Adv(pk, vk, �)

T

XXV Ø 1
p(�(Ÿ)) .
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By semantic security (Definition 6.5) for infinitely many Ÿ œ N:

Pr

S

WWWWU

DC.V (vk, e, Q, �) = 1
DC.V (vk, e

Õ
, Q, �Õ) = 1

e ”= e
Õ

----------

pp Ω ParamGen(Ÿ)
m1 Ω F¸1 , m2 Ω F¸2

(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω DC.S(pp, �, i)
(e, Q, �, e

Õ
, �Õ) Ω Adv(pk, vk, �)

T

XXXXV
Ø �(1)

p(�(Ÿ)) .

We construct an adversary AdvÕ that contradicts the unambiguity of ciphertexts (Definition 6.6). AdvÕ is given as
input public parameters pp and a multi-key ciphertext � encrypting messages of lengths ¸1, ¸2 under sk. It sets:

(pk, vk = (pp, E, e1, ‚e1)) Ω DC.S(pp, �, i) ,

(e, Q, �, e
Õ
, �Õ) Ω Adv(pk, vk, �) ,

and outputs (e, e
Õ). With probability fl Ø �(1)/p(�(Ÿ)), both DC.V (vk, e, Q, �) and DC.V (vk, e

Õ
, Q, �Õ) accept and

e ”= e
Õ. In this case, e, e

Õ œ Valid and both [Q · E = e · e1]pp and [Q · E = e
Õ · e1]pp pass. By the soundness of the

zero-test (Definition 6.8):
Dec(sk, e) · Dec(sk, e1) = Dec(sk, e

Õ) · Dec(sk, e1) .

By the correctness of evaluation (Definition 6.1) Dec(sk, e1) = È1Ípp and therefore:

Dec(sk, e) = Dec(sk, e
Õ) .

Overall, AdvÕ breaks the unambiguity of ciphertexts with probability fl Ø �(1)/p(�(Ÿ)). Since � · ”̄ · ¯̧= |F|o(1), we
have that fl Ø poly(”̄ · ¯̧)/|F| for su�ciently large Ÿ œ N, in contradiction to the unambiguity of ciphertexts.

�-Unambiguity. Assume towards contradiction that there exists a poly(�)-size adversary Adv and a polynomial
p such that for infinitely many Ÿ œ N there exist messages m1 œ F¸1 , m2 œ F¸2 such that ¸1, ¸2 Æ ¯̧ and index
i œ [¸1 + ¸2] such that:

Pr

S

WWU
DC.V (vk, e, Q, �) = 1
DC.V (vk, e, QÕ

, �Õ) = 1
(Q, �) ”= (QÕ

, �Õ)

--------

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω DC.S(pp, �, i)
(e, Q, �, QÕ

, �Õ) Ω Adv(pk, vk, �)

T

XXV Ø 1
p(�(Ÿ)) . (9)

We construct an adversary AdvÕ that contradicts the unambiguity of the zero-test for rerandomized ciphertexts
(Definition 6.13). Given as input public parameters pp and ciphertexts � and ‚�≠i with ¸(�) = ¸ and ¸(‚�≠i) = ¸ ≠ 1,
the adversary AdvÕ proceeds as follows:

1. Emulate the setup algorithm DC.S to compute (pk, vk):

(a) Set E =
3

Ej Ω
Ë
Z

j

i
(�)

È

pp

4

jœ[0,”̄]
.

(b) Set e1 Ω
#
1(�)

$
pp and ‚e1 Ω

Ë
1(‚�≠i)

È

pp
.

(c) Set pk Ω
1

pp, �, i, ‚�≠i

2
and vk Ω (pp, E, e1, ‚e1).

2. Set (e, Q, �, QÕ
, �Õ) Ω Adv(pk, vk, �) and output (e, Q, �, QÕ

, �Õ).

When (pp, �, ‚�≠i) are distributed according to Definition 6.13, the keys (pk, vk) computed by AdvÕ are distributed
as in Equation (9). Therefore with probability Ø 1/p(�(Ÿ)), both DC.V (vk, e, Q, �) and DC.V (vk, e, QÕ

, �Õ) accept
and (Q, �) ”= (QÕ

, �Õ) so the event in Definition 6.13 occurs. Therefore AdvÕ contradicts Definition 6.13.
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7.3 Equality Protocol
This section describes the equality protocol. The protocol’s CRS contains a multi-key ciphertext � encrypting two
messages m1, m2 of equal length ¸ under two secret keys sk1, sk2. The honest prover is given a polynomial F : F¸ æ F
of individual degree at most ”̄. The prover homomorphically evaluates F on each of the messages encrypted in � and
sends the resulting ciphertexts e1, e2 to the verifier. The prover also sends a proof to convince the verifier that indeed it
evaluated the same polynomial on both messages. More formally, the soundness requirement is that if m1 = m2 and
the verifier accepts the proof, then e1 and e2 encrypt the same value.

The equality protocol is constructed as follows. First, for every i œ [0, ¸] we consider the hybrid multi-key
ciphertext �i encrypting the first i elements of m1 under sk1 and the last ¸ ≠ i elements of m2 under sk2. In particular
�¸ encrypts m1 and �0 encrypts m2. The proof of equality consists of multiple decompositions of F . In more detail,
for every i œ [¸], the prover decomposes F along its i’th coordinate by invoking the decomposition protocol twice:
once evaluating F on �i and once on �i≠1. This results in the evaluations A

i
1 and A

i
2 and the decompositions Qi

1 and
Qi

2 respectively.
The verifier first checks that all decompositions are accepting. Next it checks that indeed, A

¸
1 = e1, A

1
2 = e2 and

for every i œ [¸ ≠ 1], A
i
1 = A

i+1
2 . Finally it checks that for every i œ [¸], Qi

1 = Qi
2. These decompositions should

indeed be equal since �i and �i≠1 di�er only on the i’th encrypted element. The intuition behind soundness is that
if m1 = m2 and Qi

1 = Qi
2, it follows from the soundness of the decomposition protocol that A

i
1 and A

i
2 encrypt the

same value. By induction, e1 and e2 encrypt the same value as well.
The unambiguity of the decomposition protocol guarantees that this equality protocol is also unambiguous in the

following sense: a cheating prover cannot find two di�erent accepting equality proofs for (e1, e2) and (eÕ
1, e

Õ
2) such

that e1 = e
Õ
1 or e2 = e

Õ
2.

7.3.1 Definition.

The equality protocol consists of algorithms (EQ.S, EQ.P, EQ.V) with the following syntax:

Setup: The PPT setup algorithm EQ.S takes as input public parameters pp for the encryption scheme and a multi-key
ciphertext � encrypting two messages, each of length ¸. It outputs a prover key pk and a verifier key vk.

Prover: The deterministic polynomial-time prover algorithm EQ.P takes as input a prover key pk and a polynomial
F : F¸ æ F of individual degree at most ”̄. It outputs two single-key evaluated ciphertexts e1, e2 and a proof �.

Verifier: The deterministic polynomial-time verifier algorithm EQ.V takes as input a verifier key vk, two single-key
evaluated ciphertexts e1, e2 and a proof �. It outputs a bit indicating if it accepts or rejects.

Definition 7.3. A �-secure equality protocol (EQ.S, EQ.P, EQ.V) with degree bound ”̄ and message length bound ¯̧
satisfies the following requirements:

Completeness. For every Ÿ œ N, messages m1, m2 œ F¸ such that ¸ Æ ¯̧and polynomial F : F¸ æ F of individual
degree at most ”̄:

Pr

S

WWWWWWU

EQ.V(vk, e1, e2, �) = 1
’i œ [2] : ei = [F (ci)]pp

------------

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω EQ.S(pp, �)
(e1, e2, �) Ω EQ.P(pk, F )
c1 Ω Restrict(�, [¸ + 1, 2¸])
c2 Ω Restrict(�, [¸])

T

XXXXXXV
= 1 .

E�ciency. In the completeness experiment above |vk| = poly(Ÿ, ¯̧, ”̄) and |�| = poly(Ÿ, ¯̧, ”̄).
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Soundness. For every Ÿ œ N, message m œ F¸ such that ¸ Æ ¯̧and adversary Adv:

Pr

S

WWWWU
EQ.V(vk, e1, e2, �) = 1
v1 ”= v2

----------

pp Ω ParamGen(Ÿ)
Z = (sk, �, r) Ω MEnc [m, m]pp
(pk, vk) Ω EQ.S(pp, �)
(e1, e2, �) Ω Adv(pk, vk, Z)
’i œ [2] : vi Ω Dec(ski, ei)

T

XXXXV
= 0 .

�-Unambiguity. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N,
messages m1, m2 œ F¸ such that ¸ Æ ¯̧and index i œ [2]:

Pr

S

WWU

EQ.V (vk, e1, e2, �) = 1
EQ.V (vk, e

Õ
1, e

Õ
2, �Õ) = 1

(e1, e2, �) ”= (eÕ
1, e

Õ
2, �Õ)

ei = e
Õ
i

--------

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω EQ.S(pp, �)
(e1, e2, �, e

Õ
1, e

Õ
2, �Õ) Ω Adv(pk, vk, �)

T

XXV Æ µ(�(Ÿ)) .

7.3.2 Construction.

We construct an equality protocol (EQ.S, EQ.P, EQ.V) with degree bound ”̄ and message length bound ¯̧as follows.
The construction uses a decomposition protocol (DC.S, DC.P, DC.V) with degree bound ”̄ and message length bound
¯̧.

The setup algorithm EQ.S. The setup algorithm EQ.S is given as input:

• Public parameters pp for the encryption scheme.

• A multi-key ciphertext � encrypting two messages, each of length ¸.

It proceeds as follows:

• For every i œ [0, ¸] set �i Ω Restrict (�, [i + 1, i + ¸]).
• For every i œ [¸] set (DC.pki, DC.vki) Ω DC.S(pp, �i, i) and (DC.p̃ki, DC.ṽki) Ω DC.S(pp, �i≠1, i).
• Output the prover key and verifier key:

pk =
1

pp, �,
!
DC.pki, DC.p̃ki

"
iœ[¸]

2
, vk =

!
DC.vki, DC.ṽki

"
iœ[¸] .

The prover algorithm EQ.P. The prover algorithm EQ.P is given as input:

• A prover key pk =
1

pp, �,
!
DC.pki, DC.p̃ki

"
iœ[¸]

2
.

• A polynomial F : F¸ æ F of individual degree at most ”̄.

It proceeds as follows:

• Set c1 Ω Restrict(�, [¸ + 1, 2¸]) and c2 Ω Restrict(�, [¸]).
• Set e1 Ω [F (c1)]pp and e2 Ω [F (c2)]pp.

• For every i œ [¸] set (Ai, Qi, DC.�i) Ω DC.P(DC.pki, F ) and (Ãi, Q̃i, DC.�̃i) Ω DC.P(DC.p̃ki, F ).
• Output the single-key evaluated ciphertexts and proof:

e1 , e2 , � =
!
Ai, Qi, DC.�i, Ãi, Q̃i, DC.�̃i

"
iœ[¸] .
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The verifier algorithm EQ.V. The verifier algorithm EQ.V is given as input:

• A verifier key vk =
!
DC.vki, DC.ṽki

"
iœ[¸].

• Two single-key evaluated ciphertexts e1 and e2.

• A proof � =
!
Ai, Qi, DC.�i, Ãi, Q̃i, DC.�̃i

"
iœ[¸].

It proceeds as follows:

• Test that e1 = A¸ and e2 = Ã1.

• For every i œ [¸] test that DC.V(DC.vki, Ai, Qi, DC.�i) and DC.V( ˜DC.vki, Ãi, Q̃i, DC.�̃i) both accepts.

• For every i œ [¸ ≠ 1] test that Ai = Ãi+1.

• For every i œ [¸] test that Qi = Q̃i.

• Output 1 if all tests pass. Otherwise output 0.

7.3.3 Analysis.

In this section we prove the following theorem:

Theorem 7.4. For any �(Ÿ), ”̄(Ÿ) and ¯̧(Ÿ) such that ¯̧Æ �O(1) and � · ”̄ = |F|o(1), assuming that:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

is a �-secure zero-testable homomorphic encryption scheme (Definition 6.14) with degree bound ”̄ and message
length bound ¯̧, the equality protocol (EQ.S, EQ.P, EQ.V) given in Section 7.3.2 is a �-secure equality protocol
(Definition 7.3) with degree bound ”̄ and message length bound ¯̧.

Completeness. Fix any Ÿ œ N, messages m1, m2 œ F¸ such that ¸ Æ ¯̧and polynomial F : F¸ æ F of individual
degree at most ”̄. We consider the completeness experiment and show that each of the verifier’s tests passes.

• The setup algorithm sets �¸ = c1 and (DC.pk¸, DC.vk¸) Ω DC.S(pp, c1, ¸). The prover sets e1 Ω [F (c1)]pp and
(A¸, Q¸, DC.�¸) Ω DC.P(DC.pk¸, F ). By the correctness of restriction (Definition 6.10) c1 is in the support
of MEnc [m1, E ]pp. By the correctness of the decomposition protocol (Definition 7.1) A¸ = [F (c1)]pp = e1.

Similarly, the setup algorithm sets �0 = c2 and (DC.p̃k1, DC.ṽk1) Ω DC.S(pp, c2, 1). The prover sets
e2 Ω [F (c2)]pp and (Ã1, Q̃1, DC.�̃1) Ω DC.P(DC.p̃k1, F ). By the correctness of restriction (Definition 6.10)
c2 is in the support of MEnc [E , m2]pp. By the correctness of the decomposition protocol (Definition 7.1)
Ã1 = [F (c2)]pp = e2.

• By the correctness of restriction (Definition 6.10) for every i œ [0, ¸] the ciphertexts �i computed by the
setup algorithm are in the support of MEnc [mÕ

1, mÕ
2]pp for some mÕ

1 œ Fi
, mÕ

2 œ F¸≠i. Therefore, by the
completeness of the decomposition protocol (Definition 7.1) for every i œ [¸], DC.V(DC.vki, Ai, Qi, DC.�i)
and DC.V(DC.ṽki, Ãi, Q̃i, DC.�̃i) both accept.

• By the completeness of the decomposition protocol (Definition 7.1) for every i œ [¸], Ai = [F (�i)]pp and
Ãi = [F (�i≠1)]pp. Therefore for every i œ [¸ ≠ 1], Ai = Ãi+1.

• By the correctness of restriction (Definition 6.10) for every i œ [¸]:

Restrict(�i, i) = Restrict(�, [i, ¸ + i]) = Restrict(�i≠1, i) .

Therefore, by the completeness of the decomposition protocol (Definition 7.1) Qi = Q̃i.
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Soundness. Fix any Ÿ œ N, message m = (m1, . . . , m¸) œ F¸ such that ¸ Æ ¯̧ and adversary Adv. We consider
the soundness experiment. By the correctness of restriction (Definition 6.10) for every i œ [0, ¸] the ciphertext �i

computed by the setup algorithm is in the support of:

MEnc [(m1, . . . , mi) , (mi+1, . . . , m¸)]pp ,

encrypted under sk. Let the output of Adv be:
1

e1, e2, � =
!
Ai, Qi =

!
Qi,0, . . . , Q

i,”̄

"
, DC.�i, Ãi, Q̃i =

!
Q̃i,0, . . . , Q̃

i,”̄

"
, DC.�̃i

"
iœ[¸]

2
.

For every i œ [¸] and j œ [0, ”̄] let:

–i = Dec(sk, Ai) , —i,j = Dec(sk, Qi,j) , –̃i = Dec(sk, Ãi) , —̃i,j = Dec(sk, Q̃i,j) .

The tests in EQ.V imply that:

1. v1 = –¸ and v2 = –̃1.

2. By the correctness of restriction (Definition 6.10) and the soundness of the decomposition protocol (Defini-
tion 7.1) for every i œ [¸]:

–i =
ÿ

jœ[0,”̄]

—i,j ·
e

m
j

i

f

pp
, –̃i =

ÿ

jœ[0,”̄]

—̃i,j ·
e

m
j

i

f

pp
.

3. For every i œ [¸ ≠ 1]: –i = –̃i+1.

4. For every i œ [¸], j œ [0, ”̄]: —i,j = —̃i,j .

The above equalities imply that v1 = v2.

�-Unambiguity. Fix any poly(�)-size adversary Adv, Ÿ œ N, messages m1, m2 œ F¸ such that ¸ Æ ¯̧and an index
j œ [2] and let Exp denote the unambiguity experiment:

pp Ω ParamGen(Ÿ)
(sk, �, r) Ω MEnc [m1, m2]pp1

pk, vk =
!
DC.vki, DC.ṽki

"
iœ[¸]

2
Ω EQ.S(pp, �)

(e1, e2, �, e
Õ
1, e

Õ
2, �Õ) Ω Adv(pk, vk, �)

where:
� =

!
Ai, Qi, DC.�i, Ãi, Q̃i, DC.�̃i

"
iœ[¸] , �Õ =

!
A

Õ
i
, QÕ

i
, DC.�Õ

i
, Ã

Õ
i
, Q̃Õ

i
, DC.�̃Õ

i

"
iœ[¸]

Let AC be the event that EQ.V(vk, e1, e2, �) and EQ.V(vk, e
Õ
1, e

Õ
2, �Õ) both accept and ej = e

Õ
j
. We need to show that:

Pr
Exp

[AC · (e1, e2, �) ”= (eÕ
1, e

Õ
2, �Õ)] Æ negl(�(Ÿ)) . (10)

We prove Equation (10) for j = 1. The proof for j = 2 is analogous. We rely on the following claim.

Claim 7.5. For every i œ [¸]:

Pr
Exp

[AC · Qi = QÕ
i

æ AC · Ai = A
Õ
i

æ (Qi, DC.�i) = (QÕ
i
, DC.�Õ

i
)] Ø 1 ≠ negl(�(Ÿ)) .

Pr
Exp

#
AC · Q̃i = Q̃Õ

i
æ AC · Ãi = Ã

Õ
i

æ (Q̃i, DC.�̃i) =
!
Q̃Õ

i
, DC.�̃Õ

i

"$
Ø 1 ≠ negl(�(Ÿ)) .

Before proving the claim we use it to prove Equation (10). If AC occurs then:
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• By Claim 7.5 for every i œ [¸]:

Pr
Exp

[AC · Ai = A
Õ
i

æ (Qi, DC.�i) = (QÕ
i
, DC.�Õ

i
)] Ø 1 ≠ negl(�(Ÿ)) .

• Since Qi = Q̃i and QÕ
i

= Q̃Õ
i

we have that Qi = QÕ
i

∆ Q̃i = Q̃Õ
i
. Therefore, by Claim 7.5:

Pr
Exp

5
AC · Ai = A

Õ
i

æ (Ai, Qi, DC.�i) = (AÕ
i
, QÕ

i
, DC.�Õ

i
)!

Ãi, Q̃i, DC.�̃i

"
=

!
Ã

Õ
i
, Q̃Õ

i
, DC.�̃Õ

i

"
6

Ø 1 ≠ negl(�(Ÿ)) .

• A¸ = e1 = e
Õ
1 = A

Õ
¸
. Also, since Ai = Ãi+1 and A

Õ
i

= Ã
Õ
i+1, we have that Ãi = Ã

Õ
i

∆ Ai≠1 = A
Õ
i≠1.

Therefore:

Pr
Exp

C
AC æ

(Ai, Qi, DC.�i)iœ[¸] = (AÕ
i
, QÕ

i
, DC.�Õ

i
)
iœ[¸]!

Ãi, Q̃i, DC.�̃i

"
iœ[¸] =

!
Ã

Õ
i
, Q̃Õ

i
, DC.�̃Õ

i

"
iœ[¸]

D
Ø 1 ≠ ¸ · negl(�(Ÿ)) .

• Since e2 = Ã1 and e
Õ
2 = Ã

Õ
1, we have that Ã1 = Ã

Õ
1 ∆ e2 = e

Õ
2.

Since ¯̧= �O(1), Equation (10) follows. It remains to prove Claim 7.5.

Proof of Claim 7.5. Fix i
ú œ [¸]. We prove the first part of the claim:

Pr
Exp

[AC · Qiú = QÕ
iú æ AC · Aiú = A

Õ
iú æ (Qiú , DC.�iú) = (QÕ

i
, DC.�Õ

iú)] Ø 1 ≠ negl(�(Ÿ)) .

The proof of the second part is analogues. Let Exp1 be the experiment that is defined just like Exp except that we
sample random messages m1, m2 Ω F¸. We can emulate Exp1 given � as input. Therefore, by semantic security
(Definition 6.5) it is su�cient to prove that:

Pr
Exp1

[AC · Qiú = QÕ
iú æ AC · Aiú = A

Õ
iú æ (Qiú , DC.�iú) = (QÕ

i
, DC.�Õ

iú)] Ø 1 ≠ negl(�(Ÿ)) .

Let Exp2 be the experiment that is defined just like Exp1 except that instead of sampling:

(sk, �, r) Ω MEnc [m1, m2]pp
(pk, vk) Ω EQ.S(pp, �) ,

we sample (pkú
, vkú) as follows:

• Sample mú
1 Ω Fi

ú
, mú

2 œ F¸≠i
ú .

• Set (sk, �ú
, r) Ω MEnc [mú

1, mú
2]pp.

• Set (DC.pkú
, DC.vkú) Ω DC.S(pp, �ú

, i
ú)

• Set � Ω RandExtend(�ú
, [iú + 1, ¸] fi [¸ + 2, 2¸ ≠ i

ú + 1]).

• Set
1

pk =
1

pp, �,
!
DC.pki, DC.p̃ki

"
iœ[¸]

2
, vk =

!
DC.vki, DC.ṽki

"
iœ[¸]

2
Ω EQ.S(pp, �).

• Let (pkú
, vkú) be the same as (pk, vk) except that we replace (DC.pkiú , DC.vkiú) by (DC.pkú

, DC.vkú).
In the rest of the experiment we use (pkú

, vkú) instead of (pk, vk). By the correctness of random extension (Defini-
tion 6.11) the distribution of � in Exp1 and in Exp2 is identical and By the correctness of restriction (Definition 6.10),
�ú = Restrict (�, [iú + 1, i

ú + ¸]). Therefore, it is su�cient to prove that:

Pr
Exp2

[AC · Qiú = QÕ
iú æ AC · Aiú = A

Õ
iú æ (Qiú , DC.�iú) = (QÕ

i
, DC.�Õ

iú)] Ø 1 ≠ negl(�(Ÿ)) . (11)
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If AC occurs then DC.V(DC.vkiú , Aiú , Qiú , DC.�iú) and DC.V(DC.vkiú , A
Õ
iú , QÕ

iú , DC.�Õ
iú) both accept. Also,

we can emulate Exp2 given (DC.pkú
, DC.vkú) and �ú as input. Therefore, by the unambiguity of the decomposition

protocol (Definition 7.1):

Pr
Exp2

[AC · Aiú = A
Õ
iú æ (Qiú , DC.�iú) = (QÕ

iú , DC.�Õ
iú)] Ø 1 ≠ negl(�(Ÿ))

Also, by the injectivity of the decomposition protocol (Definition 7.1):

Pr
Exp2

[AC · Qiú = QÕ
iú æ Aiú = A

Õ
iú ] Ø 1 ≠ negl(�(Ÿ)) .

Equation (11) follows, concluding the proof of the claim.

7.4 Multi-equality Protocol
7.4.1 Definition.

The multi-equality protocol consists of algorithms (MEQ.S, MEQ.P, MEQ.V) with the following syntax:

Setup: The PPT setup algorithm MEQ.S takes as input public parameters pp for the encryption scheme and a vector
c of K single-key ciphertexts each encrypting a message of length ¸. It outputs a prover key pk and a verifier
key vk.

Prover: The deterministic polynomial-time prover algorithm MEQ.P takes as input a prover key pk and a polynomial
F : F¸ æ F of individual degree at most ”̄. It outputs a vector e of K single-key evaluated ciphertexts and a
proof �.

Verifier: The deterministic polynomial-time verifier algorithm MEQ.V takes as input a verifier key vk, a vector e of
K single-key evaluated ciphertexts and a proof �. It outputs a bit indicating if it accepts or rejects.

Definition 7.6. A �-secure multi-equality protocol (MEQ.S, MEQ.P, EQ.V) with degree bound ”̄, message length
bound ¯̧and locality bound K̄ satisfies the following requirements:

Completeness. For every Ÿ œ N, vector of messages V œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄ and polynomial F : F¸ æ F
of individual degree at most ”̄:

Pr

S

WWU
MEQ.V(vk, e, �) = 1
’k œ [K] : ek = [F (ck)]pp

--------

pp Ω ParamGen(Ÿ)
(sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω MEQ.S(pp, c)
(e, �) Ω MEQ.P(pk, F )

T

XXV = 1 .

E�ciency. In the completeness experiment above |vk| = K · poly(Ÿ, ¯̧, ”̄) and |�| = K · poly(Ÿ, ¯̧, ”̄).
�-Soundness. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N,

vector of messages V œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄ and indices k1, k2 œ [K] such that Vk1 = Vk2:

Pr

S

WWWWU
MEQ.V(vk, e, �) = 1
vk1 ”= vk2

----------

pp Ω ParamGen(Ÿ)
Z = (sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω MEQ.S(pp, c)
(e, �) Ω Adv(pk, vk, Z)
’k œ [K] : vk Ω Dec(skk, ek)

T

XXXXV
Æ µ(�(Ÿ)) .

�-Unambiguity. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N,
vector of messages V œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄ and index k

ú œ [K]:

Pr

S

WWU

MEQ.V (vk, e, �) = 1
MEQ.V (vk, eÕ

, �Õ) = 1
(e, �) ”= (eÕ

, �Õ)
ekú = eÕ

kú

--------

pp Ω ParamGen(Ÿ)
(sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω MEQ.S(pp, c)
(e, eÕ

, �, �Õ) Ω Adv(pk, vk, c)

T

XXV Æ µ(�(Ÿ)) .
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7.4.2 Construction.

We construct a multi-equality protocol (MEQ.S, MEQ.P, MEQ.V) with degree bound ”̄, message length bound ¯̧and
locality K̄ as follows. The construction uses an equality protocol (EQ.S, EQ.P, EQ.V) with degree bound ”̄ and
message length bound ¯̧.

The setup algorithm MEQ.S. The setup algorithm MEQ.S is given as input:

• Public parameters pp for the encryption scheme.

• A vector c = (ck)
kœ[K] of single-key ciphertexts each encrypting a message of length ¸.

It proceeds as follows:

• Sample s̃k Ω KeyGen(pp) and r̃ Ω {0, 1}Ÿ◊¸.

• For every k œ [K] set �k Ω Extend(ck, (s̃k, 0¸
, r̃)).

• For every k œ [K] set (EQ.pkk, EQ.vkk) Ω EQ.S(pp, �k)
• Output the prover key pk = (EQ.pkk)

kœ[K] and verifier key vk = (EQ.vkk)
kœ[K]:

The prover algorithm MEQ.P. The prover algorithm MEQ.P is given as input:

• A prover key pk = (EQ.pkk)
kœ[K].

• A polynomial F : F¸ æ F of individual degree at most ”̄.

It proceeds as follows:

• For every k œ [K] set (ek, ẽk, EQ.�k) Ω EQ.P(EQ.pkk, F ).
• Output the vector of single-key evaluated ciphertexts and proof

e = (ek)
kœ[K] , � = (ẽk, EQ.�k)

kœ[K] .

The verifier algorithm MEQ.V. The verifier algorithm MEQ.V is given as input:

• A verifier key vk = (EQ.vkk)
kœ[K].

• A vector e = (ek)
kœ[K] of evaluated ciphertexts.

• A proof � = (ẽk, EQ.�k)
kœ[K].

It proceeds as follows:

• For every k œ [K] test that ẽ1 = ẽk.

• For every k œ [K] test that EQ.V(EQ.vkk, ek, ẽk, EQ.�k) accepts.

• Output 1 if all tests pass. Otherwise output 0.

7.4.3 Analysis.

In this section we prove the following theorem:

Theorem 7.7. For any �(Ÿ), ”̄(Ÿ),¯̧(Ÿ) and K̄(Ÿ) such that ¯̧, K̄ Æ �O(1) and � · ”̄ = |F|o(1), assuming that:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

is a �-secure zero-testable homomorphic encryption scheme (Definition 6.14) with degree bound ”̄ and message length
bound ¯̧, the multi-equality protocol (MEQ.S, MEQ.P, MEQ.V) given in Section 7.4.2 is a �-secure equality protocol
(Definition 7.6) with degree bound ”̄, message length bound ¯̧and locality K̄.
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Completeness. Fix any Ÿ œ N, vector of messages V = (m1, . . . , mK) œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄ and
polynomial F : F¸ æ F of individual degree at most ”̄. We need to show that:

Pr

S

WWWWWU

MEQ.V(vk, e, �) = 1
’k œ [K] : ek = [F (ck)]pp

-----------

pp Ω ParamGen(Ÿ)1
sk, c = (ck)

kœ[K] , r
2

Ω VEnc [V]pp1
pk, vk = (EQ.vkk)

kœ[K]

2
Ω MEQ.S(pp, c)

1
e = (ek)

kœ[K] , � = (ẽk, EQ.�k)
kœ[K]

2
Ω MEQ.P(pk, F )

T

XXXXXV
= 1 .

By the correctness of extension (Definition 6.9) for every k œ [K] the ciphertext �k computed by the setup algorithm
is in the support of MEnc

#
mk, 0¸

$
pp. Therefore, by the completeness of the equality protocol (Definition 7.3) for

every k œ [K]:
• ek = [F (Restrict(�k, [¸ + 1, 2¸]))]pp.

• ẽk = [F (Restrict(�k, [¸]))]pp.

• EQ.V(EQ.vkk, ek, ẽk, EQ.�k) accepts.

By the correctness of restriction (Definition 6.10) for every k œ [K]:

ck = Restrict(�k, [¸ + 1, 2¸]) , Enc(s̃k, 0¸
, r̃) = Restrict(�k, [¸]) .

It follows that ek = [F (ck)]pp and that ẽ1 = ẽk.

�-Soundness. Assume towards contradiction that there exists a poly(�)-size adversary Adv and a polynomial p such
that for infinitely many Ÿ œ N there exist a vector of messages V = (m1, . . . , mK) œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄

and indexes k1, k2 œ [K] such that mk1 = mk2 and:

Pr

S

WWWWWWWU

EQ.V(vk, e, �) = 1
vk1 ”= vk2

-------------

pp Ω ParamGen(Ÿ)
Z =

1
sk = (skk)

kœ[K] , c = (ck)
kœ[K] , r

2
Ω VEnc [V]pp1

pk, vk = (EQ.vkk)
kœ[K]

2
Ω EQ.S(pp, c)

1
e = (ek)

kœ[K] , � = (ẽk, EQ.�k)
kœ[K]

2
Ω Adv(pk, vk, Z)

’k œ [K] : vk Ω Dec(skk, ek)

T

XXXXXXXV

Ø 1
p(�(Ÿ)) . (12)

Let Exp1 be the experiment that is defined just like in Equation (12) except that we modify the step algorithm
EQ.S as follows: instead of setting �k Ω Extend(ck, (s̃k, 0¸

, r̃)), it first sets c̃ = Enc(s̃k, 0¸
, r̃) and then sets

�k Ω Extend((skk, mk, rk), c̃). By the correctness of extension (Definition 6.9):

Pr
Exp1

5
EQ.V(vk, e, �) = 1
vk1 ”= vk2

6
Ø 1

p(�(Ÿ)) .

Let Exp2 be the experiment that is defined just like Exp1 except that instead of setting c̃ = Enc(s̃k, 0¸
, r̃) we set

c̃ = Enc(s̃k, m, r̃) where m = mk1 = mk2 . We can emulate Exp2 given c̃ as input. Therefore, by semantic security
(Definition 6.5):

Pr
Exp2

5
EQ.V(vk, e, �) = 1
vk1 ”= vk2

6
Ø �(1)

p(�(Ÿ)) . (13)

For k
ú œ {k1, k2} let ṽkú be the encoded element Dec(s̃k, ẽ

ú
k
). When EQ.V(vk, e, �) accepts we have that

EQ.V(EQ.vkkú , ekú , ẽkú , EQ.�kú) accepts. By the correctness of extension (Definition 6.9) the ciphertext �k is in
the support of MEnc [mkú , m]pp. Since m = mkú for k

ú œ {k1, k2}, by the soundness of the equality protocol
(Definition 7.3), vkú = ṽkú . When EQ.V(vk, e, �) accepts also ẽ1 = ẽk2 = ẽk1 and, therefore, ṽk1 = ṽk2 . It follows
that:

Pr
Exp2

[EQ.V(vk, e, �) = 1 æ vk1 = vk2 ] = 1 ,

contradicting Equation (13).
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�-Unambiguity. Fix any poly(�)-size adversary Adv, Ÿ œ N, vector of messages V = (m1, . . . , mK) œ F¸◊K

such that ¸ Æ ¯̧, K Æ K̄ and an index k
ú œ [K]. Let Exp denote the unambiguity experiment:

pp Ω ParamGen(Ÿ)
(sk, c, r) Ω VEnc [V]pp1

pk, vk = (EQ.vkk)
kœ[K]

2
Ω MEQ.S(pp, c)

1
e = (ek)

kœ[K] , eÕ = (eÕ
k
)
kœ[K] , � = (ẽk, EQ.�k)

kœ[K] , �Õ = (ẽÕ
k
, EQ.�Õ

k
)
kœ[K]

2
Ω Adv(pk, vk, c)

Let AC be the event that MEQ.V (vk, e, �) and MEQ.V (vk, eÕ
, �Õ) both accept and ekú = e

Õ
kú . We need to show that:

Pr
Exp

[AC · (e, �) ”= (eÕ
, �Õ)] Æ negl(�(Ÿ)) . (14)

We rely on the following claim.

Claim 7.8. For every k œ [K]:
Pr
Exp

[AC · (ek, ẽk, EQ.�k) ”= (eÕ
k
, ẽ

Õ
k
, EQ.�Õ

k
) æ ek ”= e

Õ
k

· ẽk ”= ẽ
Õ
k
] Ø 1 ≠ negl(�(Ÿ)) .

Before proving the claim we use it to prove Equation (14). If AC occurs then ekú = e
Õ
kú . Therefore, by Claim 7.8:

Pr
Exp

[AC æ ẽkú = ẽ
Õ
kú ] Ø 1 ≠ negl(�(Ÿ)) .

When AC occurs, MEQ.V (vk, e, �) and MEQ.V (vk, eÕ
, �Õ) both accept and, hence, for every k œ [K], ẽ1 = ẽk

and ẽ
Õ
1 = ẽ

Õ
k
. Therefore:

Pr
Exp

Ë
AC · ẽkú = ẽ

Õ
kú æ (ẽk)

kœ[K] = (ẽÕ
k
)
kœ[K]

È
Ø 1 ≠ negl(�(Ÿ)) .

By Claim 7.8:

Pr
Exp

Ë
AC · (ẽk)

kœ[K] = (ẽÕ
k
)
kœ[K] æ (ek, EQ.�k)

kœ[K] = (eÕ
k
, EQ.�Õ

k
)
kœ[K]

È
Ø 1 ≠ K · negl(�(Ÿ)) .

Since K̄ Æ �O(1), Equation (14) follows. It remains to prove Claim 7.8

Proof of Claim 7.8. Fix k
ú œ [K]. Let Exp1 be the experiment that is defined just like Exp except that instead of

sampling:
(sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω MEQ.S(pp, c)

we sample (pk, vk) as follows:
• Sample (sk, �kú , r) Ω MEnc

#
mkú , 0¸

$
pp.

• Set (EQ.pkkú , EQ.vkkú) Ω EQ.S(pp, �kú)
• Set c̃ Ω Restrict(�kú , [¸]).
• For every k œ [K]\{k

ú}, sample skk Ω KeyGen(pp) , rk Ω {0, 1}Ÿ◊¸ and set �k Ω Extend((skk, mk, rk), c̃).
• For every k œ [K] set (EQ.pkk, EQ.vkk) Ω EQ.S(pp, �k)
• Let pk = (EQ.pkk)

kœ[K] and vk = (EQ.vkk)
kœ[K].

By the correctness of random extension (Definition 6.11) and the correctness of restriction (Definition 6.10) the
distribution of �1. . . . , �K in Exp and in Exp1 is identical. Therefore, it is su�cient to prove that:

Pr
Exp1

[AC · (ek, ẽk, EQ.�k) ”= (eÕ
k
, ẽ

Õ
k
, EQ.�Õ

k
) æ ek ”= e

Õ
k

· ẽk ”= ẽ
Õ
k
] Ø 1 ≠ negl(�(Ÿ)) . (15)

If AC occurs then EQ.V(EQ.vkkú , ekú , ẽkú , EQ.�kú) and EQ.V(EQ.vkkú , e
Õ
kú , ẽ

Õ
kú , EQ.�Õ

kú) both accept. Also, we
can emulate Exp1 given (EQ.pkkú , EQ.vkkú) and �kú as input. Therefore, Equation (15) follows from the unambiguity
of the equality protocol (Definition 7.3), concluding the proof of the claim.
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7.5 Multilinearity Protocol
This section describes the multilinearity protocol. The protocol’s CRS contains a single-key ciphertext c encrypting
a message m of length ¸ under a secret key sk. The honest prover is given a multilinear polynomial F : F¸ æ F and it
homomorphically evaluates F on c. It sends the resulting ciphertext e to the verifier together with a proof convincing
the verifier that F is indeed multilinear. More formally, in the soundness experiment, a cheating prover produces two
evaluated ciphertexts e1 and e2, each with a proof of multilinearity. We say that the prover splits the ciphertexts e1 and
e2 if both proofs are accepting and e1 and e2 encrypt di�erent values. The soundness requirement is that if for some
message m œ F¸ encrypted in c the prover splits the ciphertexts with probability p then there exists a binary message
mú œ {0, 1}¸ such that when c encrypts mú, the same prover splits the ciphertexts with probability Ø p · 2≠¸.

We explain why this soundness requirement intuitively captures the multilinearity of the evaluated polynomial.
Consider a cheating prover that computes e1 by homomorphically evaluating some polynomial F1 of degree > 1 on
c. If the prover is able to produce an accepting proof for e1 then we can use it to violate the soundness requirement.
Let F2 be the multilinear polynomial that agrees with F1 on inputs in {0, 1}¸. We compute e2 by homomorphically
evaluating F2 on c and compute the proof of multilinearity honestly. Since F1 and F2 must disagree on some m œ F¸,
if c encrypts m, then we split e1 and e2. If, however, c encrypts a Boolean message m œ {0, 1}¸ then we do not split
the ciphertexts.

We note that when switching c from an encryption of a message in F¸ to an encryption of a message in {0, 1}¸

the probability of splitting may drop by a factor of 2≠¸ in general. Consider a prover that samples a random message
mú Ω {0, 1}¸ and homomorphically evaluates two random multilinear polynomials that agree on every Boolean input
except mú. If c encrypts any message outside {0, 1}¸ then the prover splits the ciphertexts with probability 1 ≠ 1/|F|
while if c encrypts any Boolean message, the prover splits the ciphertexts with probability 2≠¸.

The multilinearity protocol is constructed as follows. The setup algorithm first extends c into a multi-key ciphertext
� encrypting m under sk and a random message mÕ œ F¸ under an independent key skÕ. Given a multilinear polynomial
F : F¸ æ F, the prover uses the decomposition protocol to compute the decomposition of F along every coordinate
i œ [¸] evaluated once on m≠i and once on mÕ

≠i
. The verifier checks that the decompositions interpreted as encryptions

of univariate polynomials are indeed linear . To convince the verifier that the decomposition evaluated on m≠i is indeed
independent of mi, the prover uses the equality protocol to prove that if m≠i and once on mÕ

≠i
the two decompositions

along the i’th coordinate encrypt the same values.
The unambiguity of this multilinearity protocol follows directly from the unambiguity of the decomposition

protocol and the equality protocol.

7.5.1 Definition.

The multilinearity protocol consists of algorithms (ML.S, ML.P, ML.V) with the following syntax:

Setup: The PPT setup algorithm ML.S takes as input public parameters pp for the encryption scheme and a vector c
of K single-key ciphertexts each encrypting a message of length ¸. It outputs a prover key pk and a verifier key
vk.

Prover: The deterministic polynomial-time prover algorithm ML.P takes as input a prover key pk and a multilinear
polynomial F : F¸ æ F. It outputs a vector e of K single-key evaluated ciphertexts and a proof �.

Verifier: The deterministic polynomial-time verifier algorithm ML.V takes as input a verifier key vk, a vector e of K

evaluated ciphertexts and a proof �. It outputs a bit indicating if it accepts or rejects.

Definition 7.9. A �-secure multilinearity protocol (ML.S, ML.P, ML.V) with message length bound ¯̧and locality K̄

satisfies the following requirements:

Completeness. For every Ÿ œ N, vector of messages V œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄ and multilinear polynomial
F : F¸ æ F:

Pr

S

WWU
ML.V(vk, e, �) = 1
’k œ [K] : ek = [F (ck)]pp

--------

pp Ω ParamGen(Ÿ)
(sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω ML.S(pp, c)
(e, �) Ω ML.P(pk, F )

T

XXV = 1 .
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E�ciency. In the completeness experiment above |vk| = K · poly(Ÿ, ¯̧) and |�| = K · poly(Ÿ, ¯̧).
�-Soundness. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N,

vector of messages V = (m1, . . . , mK) œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄, index i œ [¸] and set S ™ [K] such
that (mk)≠i

= (mkÕ)≠i
for all k, k

Õ œ S:

Pr

S

WWWWU

ML.V(vk, e, �) = 1
’—0, —1 œ F :

÷k
ú œ S : È—1 · (mkú)

i
+ —0Ípp ”= vkú

----------

pp Ω ParamGen(Ÿ)
Z = (sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω ML.S(pp, c)
(e, �) Ω Adv(pk, vk, Z)
’k œ [K] : vk Ω Dec(skk, ek)

T

XXXXV
Æ µ(�(Ÿ)) .

�-Unambiguity. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N,
vector of messages V œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄ and index k

ú œ [K]:

Pr

S

WWU

ML.V (vk, e, �) = 1
ML.V (vk, eÕ

, �Õ) = 1
(e, �) ”= (eÕ

, �Õ)
ekú = eÕ

kú

--------

pp Ω ParamGen(Ÿ)
(sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω ML.S(pp, c)
(e, eÕ

, �, �Õ) Ω Adv(pk, vk, c)

T

XXV Æ µ(�(Ÿ)) .

7.5.2 Construction.

We construct a multilinearity protocol (ML.S, ML.P, ML.V) with message length bound ¯̧and locality K̄ as follows.
The construction uses a decomposition protocol (DC.S, DC.P, DC.V) with degree bound ”̄ = 1 and message length
bound ¯̧ and a multi-equality protocol (MEQ.S, MEQ.P, MEQ.V) with degree bound ”̄ = 1 message length bound ¯̧
and locality K̄.

The setup algorithm ML.S. The setup algorithm ML.S is given as input:

• Public parameters pp for the encryption scheme.

• A vector c = (ck)
kœ[K] of single-key ciphertexts each encrypting a message of length ¸.

It proceeds as follows:

• For every k œ [K] and i œ [¸] set (DC.pkk,i, DC.vkki) Ω DC.S(pp, ck, i).
• For every k œ [K] and i œ [¸] set ck,i Ω Restrict(ck, {i}).
• For every i œ [¸] set (MEQ.pki, MEQ.vki) Ω MEQ.S(pp, (ck,i)kœ[K]).
• Output the prover key and verifier key:

pk =
1

pp,
!
DC.pkk,i

"
kœ[K],iœ[¸] , (MEQ.pki)iœ[¸]

2
, vk =

1
(DC.vkk,i)kœ[K],iœ[¸] , (MEQ.vki)iœ[¸]

2
.

The prover algorithm ML.P. The prover algorithm ML.P is given as input:

• A prover key:
pk =

1
pp,

!
DC.pkk,i

"
kœ[K],iœ[¸] , (MEQ.pki)iœ[¸]

2
.

• A multilinear polynomial F : F¸ æ F.

It proceeds as follows:

• For every k œ [K] set ek Ω [F (ck)]pp.

• For every k œ [K] and i œ [¸] set (Ak,i, Qk,i, DC.�k,i) Ω DC.P(DC.pkk,i, F ).
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• For every i œ [¸] and j œ [0, ”̄] set (Bi,j , MEQ.�i,j) Ω MEQ.P(MEQ.pki, F |
i,j

).
• Output the vector of evaluated ciphertexts and proof:

e = (ek)
kœ[K] , � =

1
(Ak,i, Qk,i, DC.�k,i)kœ[K],iœ[¸] , (Bi,j , MEQ.�i,j)

iœ[¸],jœ[0,”̄]

2
.

The verifier algorithm ML.V. The verifier algorithm ML.V is given as input:

• A verifier key:
vk =

1
(DC.vkk,i)kœ[K],iœ[¸] , (MEQ.vki)iœ[¸]

2
.

• A vector e = (ek)
kœ[K] of evaluated ciphertexts.

• A proof:

� =
31

Ak,i, Qk,i = (Qk,i,j)
jœ[0,”̄] , DC.�k,i

2

kœ[K],iœ[¸]
,

1
Bi,j = (Bk,i,j)

kœ[K] , MEQ.�i,j

2

iœ[¸],jœ[0,”̄]

4
.

It proceeds as follows. For every i œ [¸]:
• For every k œ [K] test that ek = Ak,i.

• For every k œ [K] test that DC.V(DC.vkk,i, Ak,i, Qk,i, DC.�k,i) accepts.

• For every k œ [K] and j œ [0, ”̄] test that Qk,i,j = Bk,i,j .

• For every j œ [0, ”̄] test that MEQ.V(MEQ.vki, Bi,j , MEQ.�i,j) accepts.

• Output 1 if all tests pass. Otherwise output 0.

7.5.3 Analysis.

In this section we prove the following theorem:

Theorem 7.10. For any �(Ÿ), ¯̧(Ÿ) and K̄(Ÿ) such that ¯̧= O(log �), ¯̧, K̄ Æ �O(1) and � = |F|o(1), assuming that:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

is a �-secure zero-testable homomorphic encryption scheme (Definition 6.14) with degree bound ”̄ Ø 1 and message
length bound ¯̧, the multilinearity protocol (ML.S, ML.P, ML.V) given in Section 7.5.2 is a �-secure multilinearity
protocol (Definition 7.9) with message length bound ¯̧and locality K̄.

Completeness. Fix any Ÿ œ N, vector of messages V = (m1, . . . , mK) œ F¸◊K such that ¸ Æ ¯̧, K Æ K̄ and
multilinear polynomial F : F¸ æ F. We need to show that:

Pr

S

WWWU
ML.V(vk, e, �) = 1
’k œ [K] : ek = [F (ck)]pp

---------

pp Ω ParamGen(Ÿ)1
sk, c = (ck)

kœ[K] , r
2

Ω VEnc [V]pp
(pk, vk) Ω ML.S(pp, c)
(e = (ek)

kœ[K] , �) Ω ML.P(pk, F )

T

XXXV
= 1 ,

where:

vk =
1

(DC.vkk,i)kœ[K],iœ[¸] , (MEQ.vki)iœ[¸]

2
,

� =
31

Ak,i, Qk,i = (Qk,i,j)
jœ[0,”̄] , DC.�k,i

2

kœ[K],iœ[¸]
,

1
Bi,j = (Bk,i,j)

kœ[K] , MEQ.�i,j

2

iœ[¸],jœ[0,”̄]

4
.

By construction for every k œ [K] the prover sets ek Ω [F (ck)]pp. Next we show that for every i œ [¸] each of the
verifier’s tests passes. By the completeness of the decomposition protocol (Definition 7.1) for every k œ [K]:
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• Ak,i = [F (ck)]pp = ek.

• DC.V(DC.vkk,i, Ak,i, Qk,i, DC.�k,i) accepts.

• For every j œ [0, ”̄], Qk,i,j =
Ë

F |
i,j

(Restrict(ck, i))
È

pp
.

By the correctness of restriction (Definition 6.10) for every k œ [K] the ciphertext ck,i computed by the setup
algorithm is in the support of Enc

#
(mk)≠i

$
pp. Therefore, by the completeness of the multi-equality protocol (Defini-

tion 7.6) for every j œ [0, ”̄]:
• MEQ.V(MEQ.vki, Bi,j , MEQ.�i,j) accepts.

• For every k œ [K], Bk,i,j =
Ë

F |
i,j

(ck,i)
È

pp
.

For every k œ [K] and j œ [0, ”̄], since ck,i = Restrict(ck, i) we have that Qk,i,j = Bk,i,j .

Soundness. Fix any poly(�)-size adversary Adv, Ÿ œ N, vector of messages V = (m1, . . . , mK) œ F¸◊K such
that ¸ Æ ¯̧, K Æ K̄, index i

ú œ [¸] and set S ™ [K] such that (mk)≠iú = (mkÕ)≠iú for all k, k
Õ œ S. Let Exp denote

the soundness experiment:

pp Ω ParamGen(Ÿ)
Z =

1
sk = (skk)

kœ[K] , c = (ck)
kœ[K] , r

2
Ω VEnc [V]pp

(pk, vk) Ω ML.S(pp, c)
(e = (ek)

kœ[K] , �) Ω Adv(pk, vk, Z)
’k œ [K] : vk Ω Dec(skk, ek)

where:

vk =
1

(DC.vkk,i)kœ[K],iœ[¸] , (MEQ.vki)iœ[¸]

2
,

� =
31

Ak,i, Qk,i = (Qk,i,j)
jœ[0,”̄] , DC.�k,i

2

kœ[K],iœ[¸]
,

1
Bi,j = (Bk,i,j)

kœ[K] , MEQ.�i,j

2

iœ[¸],jœ[0,”̄]

4
.

For k œ [K] and j œ [0, ”̄] let:

–k = Dec(skk, Ak,iú) , —k,j = Dec(skk, Qk,iú,j) , ’k,j = Dec(skk, Bk,iú,j) .

We need to show that:

Pr
Exp

5 ML.V(vk, e, �) = 1
’—0, —1 œ F ÷k

ú œ S : È—1 · (mkú)
iú + —0Ípp ”= vkú

6
Æ negl(�(Ÿ)) . (16)

We rely on the following claim.

Claim 7.11. For every k1, k2 œ S and j œ [0, ”̄]:

Pr
Exp

[ML.V(vk, e, �) = 1 æ ’k1,j = ’k2,j ] Ø 1 ≠ negl(�(Ÿ)) .

Before proving the claim we use it to prove Equation (10). If S is empty, soundness holds trivially. Otherwise, fix
some k

Õ œ S and for j œ [0, ”̄], let —j = —kÕ,j . If ML.V(vk, e, �) accepts then:

• By Claim 7.11 for every k
ú œ S and j œ [0, ”̄]:

Pr
Exp

[ML.V(vk, e, �) = 1 æ ’kÕ,j = ’kú,j ] Ø 1 ≠ negl(�(Ÿ)) .

Since ”̄ = 1 and |S| Æ K̄ Æ �O(1):

Pr
Exp

#
ML.V(vk, e, �) = 1 æ ’k

ú œ S, j œ [0, ”̄] : ’kÕ,j = ’kú,j

$
Ø 1 ≠ negl(�(Ÿ)) .
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• For every k œ [K] and j œ [0, ”̄], —k,j = ’k,j , and therefore:

Pr
Exp

#
ML.V(vk, e, �) = 1 æ ’k

ú œ S, j œ [0, ”̄] : —j = —kÕ,j = —kú,j

$
Ø 1 ≠ negl(�(Ÿ)) .

• For every k
ú œ S, DC.V(DC.vkkú,iú , Akú,iú , Qkú,iú , DC.�kú,iú) accepts. Therefore, by the soundness of the

decomposition protocol (Definition 7.1):

Pr
Exp

Ë
ML.V(vk, e, �) = 1 æ ’k

ú œ S : È—1 · (mkú)
iú + —0Ípp = –kú

È
Ø 1 ≠ negl(�(Ÿ)) .

• For every k
ú œ S, vkú = –kú , and therefore:

Pr
Exp

Ë
ML.V(vk, e, �) = 1 æ ’k

ú œ S : È—1 · (mkú)
iú + —0Ípp = vkú

È
Ø 1 ≠ negl(�(Ÿ)) .

Equation (16) follows. It remains to prove Claim 7.11.

Proof of Claim 7.11. Fix any k1, k2 œ S and j œ [0, ”̄]. Let Exp1 be the experiment that is defined just like Exp except
that instead of sampling:

(sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω ML.S(pp, c)

we sample (pkú
, vkú) as follows:

• Let Vú =
!
(mk)≠iú

"
kœK

.

• Sample Z = (sk = (skk)
kœ[K] , cú

, rú = (rú
k
)
kœ[K]) Ω VEnc [Vú]pp.

• Set (MEQ.pkú
, MEQ.vkú) Ω MEQ.S(pp, cú)

• For k œ [K] sample rk Ω {0, 1}Ÿ◊¸ such that (rk)≠iú = rú
iú and set ck = Enc(skk, mk, rk).

• Set (pk, vk) Ω ML.S(pp, c = (ck)
kœ[K]) where:

pk =
1

pp,
!
DC.pkk,i

"
kœ[K],iœ[¸] , (MEQ.pki)iœ[¸]

2
, vk =

1
(DC.vkk,i)kœ[K],iœ[¸] , (MEQ.vki)iœ[¸]

2
.

• Let (pkú
, vkú) be the same as (pk, vk) except that we replace (MEQ.pkiú , MEQ.vkiú) by (MEQ.pkú

, MEQ.vkú).
Observe that the distribution of c in Exp and in Exp1 is identical. Also, by the correctness of restriction

(Definition 6.10), cú = (ck,iú)
kœ[K]. Therefore, it is su�cient to prove that:

Pr
Exp1

[ML.V(vk, e, �) = 1 æ ’k1,j = ’k2,j ] Ø 1 ≠ negl(�(Ÿ)) . (17)

If ML.V(vk, e, �) accept then MEQ.V(MEQ.vkiú , Biú,j , MEQ.�iú,j) accepts as well. Since k1, k2 œ S, we have
that (mk1)≠iú = (mk2)≠iú . Also, we can emulate Exp1 given (MEQ.pkú

, MEQ.vkú) and Z as input. Therefore,
Equation (17) follows from the soundness of the multi-equality protocol (Definition 7.6), concluding the proof of the
claim.

56



�-Unambiguity. Fix any poly(�)-size adversary Adv, Ÿ œ N, vector of messages V = (m1, . . . , mK) œ F¸◊K

such that ¸ Æ ¯̧, K Æ K̄ and an index k
ú œ [K]. Let Exp denote the unambiguity experiment:

pp Ω ParamGen(Ÿ)1
sk, c = (ck)

kœ[K] , r
2

Ω VEnc [V]pp
(pk, vk) Ω ML.S(pp, c)1

e = (ek)
kœ[K] , eÕ = (eÕ

k
)
kœ[K] , �, �Õ

2
Ω Adv(pk, vk, c)

where:

pk =
1

pp,
!
DC.pkk,i

"
kœ[K],iœ[¸] , (MEQ.pki)iœ[¸]

2
,

vk =
1

(DC.vkk,i)kœ[K],iœ[¸] , (MEQ.vki)iœ[¸]

2
,

� =
31

Ak,i, Qk,i = (Qk,i,j)
jœ[0,”̄] , DC.�k,i

2

kœ[K],iœ[¸]
,

1
Bi,j = (Bk,i,j)

kœ[K] , MEQ.�i,j

2

iœ[¸],jœ[0,”̄]

4
.

�Õ =
31

A
Õ
k,i

, QÕ
k,i

=
!
Q

Õ
k,i,j

"
jœ[0,”̄] , DC.�Õ

k,i

2

kœ[K],iœ[¸]
,

1
BÕ

i,j =
!
B

Õ
k,i,j

"
kœ[K] , MEQ.�Õ

i,j

2

iœ[¸],jœ[0,”̄]

4
.

Let AC be the event that ML.V (vk, e, �) and ML.V (vk, eÕ
, �Õ) both accept and ekú = e

Õ
kú . We need to show that:

Pr
Exp

[AC · (e, �) ”= (eÕ
, �Õ)] Æ negl(�(Ÿ)) . (18)

We rely on the following claim.

Claim 7.12. For every i œ [¸] and j œ [0, ”̄]:

Pr
Exp

#
AC · Bkú,i,j = B

Õ
kú,i,j

æ (Bi,j , MEQ.�i,j) =
!
BÕ

i,j , MEQ.�Õ
i,j

"$
Ø 1 ≠ negl(�(Ÿ)) .

Before proving the claim we use it to prove Equation (18). If AC occurs then for every i œ [¸]:
• Akú,i = ekú = e

Õ
kú = A

Õ
kú,i

.

• DC.V(DC.vkkú,i, Akú,i, Qkú,i, DC.�kú,i) and DC.V(DC.vkkú,i, A
Õ
kú,i

, QÕ
kú,i

, DC.�Õ
kú,i

) both accept. Also,
we can emulate Exp given (DC.pkkú,i, DC.vkkú,i) and ckú as input. Therefore, by the unambiguity of the
decomposition protocol (Definition 7.1):

Pr
Exp

#
AC · Akú,i = A

Õ
kú,i

æ (Qkú,i, DC.�kú,i) =
!
QÕ

kú,i
, DC.�Õ

kú,i

"$
Ø 1 ≠ negl(�(Ÿ)) .

• For every j œ [0, ”̄], Qkú,i,j = Bkú,i,j and Q
Õ
kú,i,j

= B
Õ
kú,i,j

. Therefore:

Qkú,i = QÕ
kú,i

∆ ’j œ [0, ”̄] : Bkú,i,j = B
Õ
kú,i,j

.

• By Claim 7.12, for every j œ [0, ”̄]:

Pr
Exp

#
AC · Bkú,i,j = B

Õ
kú,i,j

æ (Bi,j , MEQ.�i,j) =
!
BÕ

i,j , MEQ.�Õ
i,j

"$
Ø 1 ≠ negl(�(Ÿ)) .

• For every k œ [K] and j œ [0, ”̄], Qk,i,j = Bk,i,j and Q
Õ
k,i,j

= B
Õ
k,i,j

. Therefore:

’j œ [0, ”̄] : Bi,j = BÕ
i,j æ ’k œ [K] : Qk,i = QÕ

k,i
.
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• For every k œ [K], DC.V(DC.vkk,i, Ak,i, Qk,i, DC.�k,i) and DC.V(DC.vkk,i, A
Õ
k,i

, QÕ
k,i

, DC.�Õ
k,i

) both ac-
cept. Also, we can emulate Exp given (DC.pkk,i, DC.vkk,i) and ck as input. Therefore, by the injectivity of the
decomposition protocol (Definition 7.1):

Pr
Exp

#
AC · Qk,i = QÕ

k,i
æ Ak,i = A

Õ
k,i

$
Ø 1 ≠ negl(�(Ÿ)) .

Also, by the unambiguity of the decomposition protocol (Definition 7.1):

Pr
Exp

#
AC · Ak,i = A

Õ
k,i

æ DC.�k,i = DC.�Õ
k,i

$
Ø 1 ≠ negl(�(Ÿ)) .

Since ”̄ = 1 and ¸, K Æ �O(1), Equation (18) follows. It remains to prove Claim 7.12.

Proof of Claim 7.12. Fix any i œ [¸] and j œ [0, ”̄]. Let Exp1 be the experiment that is defined just like Exp except
that we sample random messages m1, . . . , mK Ω F¸. Also, we can emulate Exp1 given c as input. Therefore, by
semantic security (Definition 6.5) and since K Æ M̄ Æ poly(�) it is su�cient to prove that:

Pr
Exp1

#
AC · Bkú,i,j = B

Õ
kú,i,j

æ (Bi,j , MEQ.�i,j) =
!
BÕ

i,j , MEQ.�Õ
i,j

"$
Ø 1 ≠ negl(�(Ÿ)) .

Let Exp2 be the experiment that is defined just like Exp1 except that instead of sampling:

(sk, c, r) Ω VEnc [V]pp
(pk, vk) Ω ML.S(pp, c)

we sample (pkú
, vkú) as follows:

• Let Vú =
!
(mk)≠i

"
kœK

.

• Sample (sk = (skk)
kœ[K] , cú = (cú

k
)
kœ[K] , rú = (rú

k
)
kœ[K]) Ω VEnc [Vú]pp.

• Set (MEQ.pkú
, MEQ.vkú) Ω MEQ.S(pp, cú)

• For k œ [K] set ck Ω RandExtend(cú
k
, [i]).

• Set (pk, vk) Ω ML.S(pp, c = (ck)
kœ[K]) where:

pk =
1

pp,
!
DC.pkk,i

"
kœ[K],iœ[¸] , (MEQ.pki)iœ[¸]

2
, vk =

1
(DC.vkk,i)kœ[K],iœ[¸] , (MEQ.vki)iœ[¸]

2
.

• Let (pkú
, vkú) be the same as (pk, vk) except that we replace (MEQ.pkiú , MEQ.vkiú) by (MEQ.pkú

, MEQ.vkú).
In the rest of the experiment we use (pkú

, vkú) instead of (pk, vk). By the correctness of random extension (Defini-
tion 6.11), the distribution of c in Exp1 and in Exp2 is identical. Also, by the correctness of restriction (Definition 6.10),
cú = (ck,i)kœ[K]. Therefore, it is su�cient to prove that:

Pr
Exp2

#
AC · Bkú,i,j = B

Õ
kú,i,j

æ (Bi,j , MEQ.�i,j) =
!
BÕ

i,j , MEQ.�Õ
i,j

"$
Ø 1 ≠ negl(�(Ÿ)) . (19)

We can emulate Exp2 given (MEQ.pkú
, MEQ.vkú) and cú as input. Therefore, Equation (19) follows by the

unambiguity of the multi-equality protocol (Definition 7.6), concluding the proof of the claim.

58



7.6 Sum-check Protocol
This section describes the sum-check protocol which is implicit in [PR17, KPY19]. The protocol’s CRS contains
a single-key ciphertext c encrypting a message m = (m1, . . . , m¸). The honest prover is given a polynomial
F : F¸ æ F of individual degree at most ”̄ such that F (mú) = 0 for every Boolean input mú œ {0, 1}¸. The prover
homomorphically evaluates F on c and sends the resulting ciphertext e to the verifier together with a proof convincing
the verifier that F vanishes on Boolean inputs. Formally, the soundness requirement states that if m œ {0, 1}¸ and the
verifier accepts the proof then e encrypts 0.

Note that the verifier cannot simply apply the zero-test to e. This test will fail since F is not the zero polynomial.
Instead we use a sum-check proof, based on the PCP of [BFLS91]. For every i œ [¸] let Fi be the polynomial that is
obtained from F by linearizing the first i variables:

Fi(z1, . . . , z¸) ©
ÿ

v1,...,viœ{0,1}

ID(z1, . . . , zi, v1, . . . , vi) · F (v1, . . . , vi, zi+1, . . . , z¸) ,

where ID(z, v) is the multilinear extension of the Boolean identity function that outputs 1 if and only if z = v. Note
that since F vanishes on Boolean inputs, so does Fi for every i œ [¸]. In particular, since F¸ is multilinear, it is the
zero polynomial.

For every i œ [¸] the sum-check proof includes the ciphertext ei that results from homomorphically evaluating Fi

on c. Let F0 = F and e0 = e. Using the zero-test, the verifier checks that ei and ei≠1 are consistent following the
identity:

Fi(z1, . . . , z¸) ©
ÿ

viœ{0,1}

ID(zi, vi) · Fi≠1(z1, . . . , zi≠1, vi, zi+1, . . . , z¸) .

To allow the verifier to perform these tests, the CRS also includes encryptions of the values ID(zi, vi) for vi œ {0, 1}
and the sum-check proof includes the decomposition of Fi≠1 in the i’th coordinate. Finally, the verifier checks that e¸

encrypts zero by using the zero-test. This zero-test passes since F¸ is the zero polynomial.
The soundness of the sum-check proof follows from the soundness of the zero-test. Since e¸ passes the zero-test,

it must encrypt zero. If m œ {0, 1}¸ we have that ID(mi, vi) = 1 for mi = vi and ID(mi, vi) = 0 for mi ”= vi.
Therefore, the consistency test between ei and ei≠1 guarantees that the two ciphertexts encrypt the same value. It
follows that e = e0 must also encrypt zero.

To show the unambiguity of the sum-check protocol we show that the unambiguity of ei follows from that of ei≠1.
We then use the unambiguity of the decomposition protocol to argue that the entire sum-check proof is unambiguous.
To argue the the unambiguity of ei, we consider a CRS that contains an encryption of a random message m œ F¸. We
first show that if ei≠1 is unambiguous, then the value encrypted in ei must also be unambiguous. This follows from
the consistency between ei and ei≠1. (This holds for arbitrary message m œ F¸, not just for a Boolean one.) Then, the
unambiguity of ei follows from the unambiguity of ciphertexts property of the encryption.

7.6.1 Definition.

The sum-check protocol consists of algorithms (SC.S, SC.P, SC.V) with the following syntax:

Setup: The PPT setup algorithm SC.S takes as input public parameters pp for the encryption scheme and a single-key
ciphertext c encrypting a message of length ¸. It outputs a prover key pk and a verifier key vk.

Prover: The deterministic polynomial-time prover algorithm SC.P takes as input a prover key pk and a polynomial
F : F¸ æ F of individual degree at most ”̄ such that F (z) = 0 for every z œ {0, 1}¸. It outputs an evaluated
ciphertext e and a proof �.

Verifier: The deterministic polynomial-time verifier algorithm SC.V takes as input a verifier key vk, an evaluated
ciphertext e and a proof �. It outputs a bit indicating if it accepts or rejects.

Definition 7.13. A �-secure sum-check protocol (SC.S, SC.P, SC.V) with degree bound ”̄ and message length bound
¯̧satisfies the following requirements:
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Completeness. For every Ÿ œ N, message m œ F¸ such that ¸ Æ ¯̧and polynomial F : F¸ æ F of individual degree
at most ”̄ such that F (z) = 0 for every z œ {0, 1}¸:

Pr

S

WWU
SC.V (vk, e, �) = 1
e = [F (c)]pp

--------

pp Ω ParamGen(Ÿ)
(sk, c, r) Ω Enc [m]pp
(pk, vk) Ω SC.S(pp, c)
(e, �) Ω SC.P(pk, F )

T

XXV = 1 .

E�ciency. In the completeness experiment above |vk| = poly(Ÿ, ¯̧, ”̄) and |�| = poly(Ÿ, ¯̧, ”̄).

Soundness. For every Ÿ œ N, message m œ {0, 1}¸ such that ¸ Æ ¯̧and adversary Adv:

Pr

S

WWWWU
SC.V (vk, e, �) = 1
v ”= È0Ípp

----------

pp Ω ParamGen(Ÿ)
Z = (sk, c, r) Ω Enc [m]pp
(pk, vk) Ω SC.S(pp, c)
(e, �) Ω Adv(pk, vk, Z)
v Ω Dec(sk, e)

T

XXXXV
= 0 .

�-Unambiguity. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N
and message m œ F¸ such that ¸ Æ ¯̧:

Pr

S

WWU
SC.V (vk, e, �) = 1
SC.V (vk, e, �Õ) = 1
� ”= �Õ

--------

pp Ω ParamGen(Ÿ)
(sk, c, r) Ω Enc [m]pp
(pk, vk) Ω SC.S(pp, c)
(e, �, �Õ) Ω Adv(pk, vk, c)

T

XXV Æ µ(�(Ÿ)) .

7.6.2 Construction.

We construct a sum-check protocol (SC.S, SC.P, SC.V) with degree bound ”̄ and message length bound ¯̧as follows.
The construction uses a decomposition protocol (DC.S, DC.P, DC.V) with degree bound ”̄ and message length bound
¯̧.

The setup algorithm SC.S. The setup algorithm is given as input:

• Public parameters pp for the encryption scheme.

• A single-key ciphertext c encrypting a message of length ¸.

It proceeds as follows:

• For every i œ [¸] set (DC.pki, DC.vki) Ω DC.S(pp, c, i).
• For i œ [¸] and b œ {0, 1} let IDi,b(z1, . . . , z¸) © zi · b + (1 ≠ zi)(1 ≠ b).
• For every i œ [¸] set Bi,0 Ω [IDi,0(c)]pp and Bi,1 Ω [IDi,1(c)]pp.

• Set e1 Ω
#
1(c)

$
pp and A¸+1 Ω

#
0(c)

$
pp.

• Output the prover key and verifier key:

pk =
1

pp, c, (DC.pki)iœ[¸]

2
, vk =

1
pp, (DC.vki, Bi,0, Bi,1)

iœ[¸] , e1, A¸+1
2

.
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The prover algorithm SC.P. The prover algorithm is given as input:

• A prover key pk =
1

c, (DC.pki)iœ[¸]

2
.

• A polynomial F : F¸ æ F of individual degree at most ”̄ such that F (z) = 0 for every z œ {0, 1}¸.

It proceeds as follows:

• Let F0 : F¸ æ F be the polynomial F .

• For every i œ [¸] let ID(z1, . . . , zi, z
Õ
1, . . . , z

Õ
i
) be the multilinear polynomial extending the Boolean equality

function:
ID(z1, . . . , zi, z

Õ
1, . . . , z

Õ
i
) ©

Ÿ

jœ[i]

!
zj · z

Õ
j

+ (1 ≠ zj)(1 ≠ z
Õ
j
)
"

.

• For every i œ [¸ ≠ 1] let Fi : F¸ æ F be the polynomial:

Fi(z1, . . . , z¸) ©
ÿ

v1,...,viœ{0,1}

ID(z1, . . . , zi, v1, . . . , vi) · F0(v1, . . . , vi, zi+1, . . . , z¸) .

• Set e Ω [F (c)]pp.

• For every i œ [¸] set (Ai, Qi, DC.�i) Ω DC.P(DC.pki, Fi≠1).
• Output the evaluated ciphertext e and proof � = (Ai, Qi, DC.�i)iœ[¸].

The verifier algorithm SC.V. The verifier algorithm is given as input:

• A verifier key vk =
1

pp, (DC.vki, Bi,0, Bi,1)
iœ[¸] , e1, A¸+1

2
.

• An evaluated ciphertext e.

• A proof � =
1

Ai, Qi = (Qi,j)
jœ[0,”̄] , DC.�i

2

iœ[¸]
.

It proceeds as follows:

• Test that e = A1.

• For every i œ [¸] test that DC.V(DC.vki, Ai, Qi, DC.�i) accepts.

• For every i œ [¸] test that:
S

UBi,0 · Qi,0 + Bi,1 ·
ÿ

jœ[0,”̄]

Qi,j = Ai+1 · e1

T

V

pp

.

• Output 1 if all tests pass. Otherwise output 0.

7.6.3 Analysis.

In this section we prove the following theorem:

Theorem 7.14. For any �(Ÿ), ”̄(Ÿ) and ¯̧(Ÿ) such that ¯̧Æ �O(1) and � · ”̄ = |F|o(1), assuming that:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

is a �-secure zero-testable homomorphic encryption scheme (Definition 6.14) with degree bound ”̄ and message
length bound ¯̧, the sum-check protocol (SC.S, SC.P, SC.V) given in Section 7.6.2 is a �-secure sum-check protocol
(Definition 7.13) with degree bound ”̄ and message length bound ¯̧.
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Completeness. Fix any Ÿ œ N, message m œ F¸ such that ¸ Æ ¯̧and polynomial F : F¸ æ F of individual degree
at most ”̄ such that F (z) = 0 for every z œ {0, 1}¸. Let the verifier’s input in the completeness experiment include the
key vk, ciphertext e and proof � where:

vk =
1

pp, (DC.vki, Bi,0, Bi,1)
iœ[¸] , e1, A¸+1

2
, � =

1
Ai, Qi = (Qi,j)

jœ[0,”̄] , DC.�i

2

iœ[¸]
.

By construction, for every i œ [¸] and b œ {0, 1}:

Bi,b = [IDi,b(c)]pp , e1 =
#
1(c)

$
pp , A¸+1 =

#
0(c)

$
pp , e = [F (c)]pp .

By the completeness of the decomposition protocol (Definition 7.1) for every i œ [¸], DC.V(DC.vki, Ai, Qi, DC.�i)
accepts and for every j œ [0, ”̄]:

Ai = [Fi≠1(c)]pp , Qi,j =
Ë

Fi≠1|
i,j

(c≠i)
È

pp
.

Let F̄i,j : F¸ æ F be the polynomial such that F̄i,j(z) © Fi≠1|
i,j

(z≠i). By the correctness of restriction
(Definition 6.10) and the stability of evaluation (Definition 6.2) we have that Qi,j =

#
F̄i,j(c)

$
pp.

Recall that F0 © F and for every i œ [¸ ≠ 1] we set:

Fi(z1, . . . , z¸) ©
ÿ

v1,...,viœ{0,1}

ID(z1, . . . , zi, v1, . . . , vi) · F0(v1, . . . , vi, zi+1, . . . , z¸) .

Similarly, let F¸ be the polynomial:
F¸(z) ©

ÿ

vœ{0,1}¸

ID(z, v) · F0(v) .

Since F (v) = 0 for every v œ {0, 1}¸ we have that F¸ © 0 and in particular, A¸+1 = [F¸(c)]pp.
For every i œ [¸] we have that:

IDi,0(z) · F̄i,0(z) + IDi,1(z) ·
ÿ

jœ[0,”̄]

F̄i,j(z) ©

ÿ

bœ{0,1}

IDi,b(z) · Fi≠1(z1, . . . , zi≠1, b, zi+1, . . . , z¸) © Fi · 1 .

Therefore, by the weak completeness of the zero-test (Definition 6.7) the verifier’s zero-test passes:
S

UBi,0 · Qi,0 + Bi,1 ·
ÿ

jœ[0,”̄]

Qi,j = Ai+1 · e1

T

V

pp

.

Soundness. Fix any Ÿ œ N, message m = (m1, . . . , m¸) œ {0, 1}¸ such that ¸ œ [¯̧] and adversary Adv. Let the
verifier’s input in the soundness experiment include the key vk, ciphertext e and proof � where:

vk =
1

pp, (DC.vki, Bi,0, Bi,1)
iœ[¸] , e1, A¸+1

2
, � =

1
Ai, Qi = (Qi,j)

jœ[0,”̄] , DC.�i

2

iœ[¸]
.

By construction, for i œ [¸]:

Dec(sk, Bi,0) = È1 ≠ miÍpp , Dec(sk, Bi,1) = ÈmiÍpp , Dec(sk, e1) = È1Ípp .

Let v Ω Dec(sk, e), and for every i œ [¸] and j œ [0, ”̄] let:

–i Ω Dec(sk, Ai) , —i,j Ω Dec(sk, Qi,j) ,

and let –¸+1 = Dec(sk, A¸+1) = È0Ípp.
If the verifier SC.V accepts then:
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• e = A1 and therefore v = –1.

• For every i œ [¸], DC.V(DC.vki, Ai, Qi, DC.�i) accepts. Therefore, by the soundness of the decomposition
protocol (Definition 7.1):

–i =
ÿ

jœ[0,”̄]

—i,j · ÈmiÍj

pp .

• For every i œ [¸] the following zero-test passes:
S

UBi,0 · Qi,0 + Bi,1 ·
ÿ

jœ[0,”̄]

Qi,j = Ai+1 · e1

T

V

pp

.

Therefore, by the soundness of the zero-test (Definition 6.8) for every i œ [¸]:

–i+1 = È1 ≠ miÍpp · —i,0 + ÈmiÍpp ·
ÿ

jœ[0,”̄]

—i,j = —i,0 + ÈmiÍpp ·
ÿ

jœ[”̄]

—i,j .

Since m œ {0, 1}¸:

–i+1 = —i,0 + ÈmiÍpp ·
ÿ

jœ[”̄]

—i,j =
ÿ

jœ[0,”̄]

—i,j · ÈmiÍj

pp = –i .

Therefore, v = –1 = –¸+1 = È0Ípp as required.

�-Unambiguity. Fix any poly(�)-size adversary Adv, Ÿ œ N and message m œ F¸ such that ¸ Æ ¯̧ and let Exp
denote the unambiguity experiment:

pp Ω ParamGen(Ÿ)
(sk, c) Ω Enc [m]pp1

pk =
1

c, (DC.pki)iœ[¸]

2
, vk =

1
pp, (DC.vki, Bi,0, Bi,1)

iœ[¸] , e1, A¸+1
22

Ω SC.S(pp, c)
3

e, � =
1

Ai, Qi = (Qi,j)
jœ[0,”̄] , DC.�i

2

iœ[¸]
, �Õ =

1
A

Õ
i
, QÕ

i
=

!
Q

Õ
i,j

"
jœ[0,”̄] , �Õ

i

2

iœ[¸]

4
Ω Adv(pk, vk)

Let AC be the event that SC.V (vk, e, �) and SC.V (vk, e, �Õ) both accept. We need to show that:

Pr
Exp

[AC · � ”= �Õ] Æ negl(�(Ÿ)) .

Let Exp1 be the experiment that is defined just like Exp except that we sample m Ω F¸. We can emulate Exp1
given c as input. Therefore, by semantic security (Definition 6.5) it is su�cient to prove that:

Pr
Exp1

[AC · � ”= �Õ] Æ negl(�(Ÿ)) . (20)

If AC occurs then:

• e = A1 = A
Õ
1

• For every i œ [¸], DC.V(DC.vki, Ai, Qi, DC.�i) and DC.V(DC.vki, A
Õ
i
, QÕ

i
, �Õ

i
) both accept. Also, we can

emulate Exp1 given (DC.pki, DC.vki) and c as input. Therefore, by the unambiguity of the decomposition
protocol (Definition 7.1):

Pr
Exp1

[AC · Ai = A
Õ
i

æ (Qi, �i) = (QÕ
i
, �Õ

i
)] Ø 1 ≠ negl(�(Ÿ)) .
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• For every i œ [¸ ≠ 1] the following zero-tests pass:
S

UBi,0 · Qi,0 + Bi,1 ·
ÿ

jœ[0,”̄]

Qi,j = Ai+1 · e1

T

V

pp

,

S

UBi,0 · Q
Õ
i,0 + Bi,1 ·

ÿ

jœ[0,”̄]

Q
Õ
i,j

= A
Õ
i+1 · e1

T

V

pp

.

By construction Dec(sk, e1) ”= È0Ípp and thus, by the soundness of the zero-test (Definition 6.8):

Pr
Exp1

#
AC · Qi = QÕ

i
æ Dec(sk, Ai+1) = Dec(sk, A

Õ
i+1)

$
= 1 .

We have that DC.V(DC.vki+1, Ai+1, Qi+1, DC.�i+1) and DC.V(DC.vki+1, A
Õ
i+1, QÕ

i+1, �Õ
i+1) both accept.

Therefore, Ai+1, A
Õ
i+1 œ Valid. Also, we can emulate Exp1 given c as input. Therefore, by the unambiguity of

ciphertexts (Definition 6.6):

Pr
Exp1

#
AC · Dec(sk, Ai+1) = Dec(sk, A

Õ
i+1) æ Ai+1 = A

Õ
i+1

$
Ø 1 ≠ poly(”̄ · ¯̧)

|F| .

Since ”̄ = 2, ¯̧= 3 log M̄ Æ poly(�) and � = |F|o(1):

Pr
Exp1

#
AC · Dec(sk, Ai+1) = Dec(sk, A

Õ
i+1) æ Ai+1 = A

Õ
i+1

$
Ø 1 ≠ negl(�(Ÿ)) .

Since ¯̧= �O(1), Equation (20) follows.

8 Quasi-argument
This section describes the unambiguous quasi-argument. We define quasi-arguments in Section 8.1. Our construction
is given in Section 8.2 and the analysis is given in Section ??. Parts of this section are taken verbatim from [KPY19].

8.1 Definition
Given an M -variate 3CNF formula and a locality parameter K Æ M , the quasi-argument setup algorithm generates
prover and verifier keys. The honest prover is given an assignment ‡ satisfying the formula that includes an assignment
x for the formula’s input variables. It produces a proof that can be checked using x. Quasi-arguments satisfy a relaxed
notion of soundness called non-signaling extraction. Loosely speaking, we consider an adaptive adversary acting as
the prover that given honestly generated keys, produces an input x for Ï together with a proof. We require that there
exists a non-signaling extractor E that takes as input the formula Ï along with a subset S of Ï’s variables of size at
most K and samples an input x together with a partial assignment for the variables in S.

We make the following requirements of the extractor E. First, we require that for every formula Ï and set S,
whenever E samples x ”= ‹, the partial assignment sampled by E is consistent with x and it satisfies all of Ï’s clauses
that are over the variables in S. Second, the output distribution of E must satisfy the non-signaling requirement. Finally,
for every formula Ï and set S, E must produce partial assignments for a distribution of inputs x that is indistinguishable
from the distribution sampled by the adversary when its corresponding proof is accepting. More formally, we consider
an experiment where the adversary produces an input x together with a proof, and if the proof is rejecting then we
replace x with ‹. We require that this distribution of x is indistinguishable from x sampled by E.

Formally, for security parameter Ÿ œ N, the quasi-argument is parameterized by a formula size bound M̄ = M̄(Ÿ)
on the number of variables in the 3CNF formula and by the number of input variables n = n(Ÿ). The quasi-argument
consists of algorithms (QA.S, QA.P, QA.V) with the following syntax.

Setup: The probabilistic setup algorithm QA.S takes as input a security parameter Ÿ, an M -variate 3CNF formula Ï

such that M Æ M̄ and a locality parameter K Æ M . It outputs a prover key pk and a verifier key vk.
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Prover: The deterministic prover algorithm QA.P takes as input a prover key pk and an assignment ‡ : [M ] æ {0, 1}.
It outputs a proof �.

Verifier: The deterministic verifier algorithm QA.V takes as input a verifier key vk, an input x œ {0, 1}n and a proof
�. It outputs a bit indicating if it accepts or rejects.

We rely on the following notion of locally satisfying assignments. In what follows, we denote the M variables of
the formula Ï by z1, . . . , zM and assume, without loss of generality, that for i œ [n], the i’th input variable is zi.

Definition 8.1 (Locally Satisfying Assignment). For an M -variate 3CNF formula Ï and a set S ™ [M ] we say that a
partial assignment ‡ : S æ {0, 1} locally satisfies Ï if every clause in Ï that only contains variables in S is satisfied
by ‡. We denote by Ï(‡) the bit indicating whether or not ‡ locally satisfies Ï.

Next we define the notion of a non-signaling extractor used in the definition of a quasi-argument.

Definition 8.2 (�-Non-signaling Extractor). A �-non-signaling extractor E with formula size bound M̄ , input length
n and locality K satisfies the following requirements:

�-Local consistency: There exists a negligible function µ such that for every Ÿ œ N, M -variate formula Ï such that
M Æ M̄ and set S ™ [M ] of size at most K:

Pr
(x,‡)ΩE(Ï,S)

5
x = ‹ ‚ ’i œ S fl [n] : ‡(i) = xi

Ï(‡) = 1

6
Ø 1 ≠ µ(�(Ÿ)) .

�-Non-signaling: For every poly(�)-size distinguisher D there exists a negligible function µ such that for every
Ÿ œ N, M -variate formula Ï such that M Æ M̄ and sets SÕ ™ S ™ [M ] of size at most K:

---- Pr
(x,‡)ΩE(Ï,S)

[D(x, ‡(SÕ)) = 1] ≠ Pr
(x,‡Õ)ΩE(Ï,SÕ)

[D(x, ‡
Õ) = 1]

---- Æ µ(�(Ÿ)) .

Definition 8.3 (Quasi-argument). A �-secure quasi-argument (QA.S, QA.P, QA.V) with formula size bound M̄ and
input length n satisfies the following requirements:

Completeness. For every Ÿ œ N, M -variate 3CNF formula Ï such that M Æ M̄ locality parameter K Æ M and
assignment ‡ : [M ] æ {0, 1} satisfying Ï:

Pr

S

UQA.V(vk, x, �) = 1

------

(pk, vk) Ω QA.S(Ÿ, Ï, K)
x Ω ‡([n])
� Ω QA.P(pk, ‡)

T

V = 1 .

E�ciency. In the completeness experiment above:

• The setup algorithm runs in time poly(Ÿ, M̄).
• The prover runs in polynomial time and it outputs a proof � of length K · poly(Ÿ, log M̄).
• The verifier runs in time (K + n) · poly(Ÿ, log M̄).

�-Non-signaling extraction. For every function K there exists a PPT oracle machine E such that for every poly(�)-
size adversary Adv:

• E makes a single oracle query to Adv.
• EAdv is a �-non-signaling extractor with formula size bound M̄ , input length n and locality K.
• For every poly(�)-size distinguisher D there exists a negligible function µ such that for every Ÿ œ N and

M -variate formula Ï such that K Æ M Æ M̄ :
------
Pr

S

UD(x) = 1

------

(pk, vk) Ω QA.S(Ÿ, Ï, K)
(x, �) Ω Adv(pk, vk)
if QA.V(vk, x, �) = 0 : set x = ‹

T

V ≠ Pr
(x,‡)ΩEAdv(Ï,ÿ)

[D(x) = 1]

------
Æ µ(�(Ÿ)) .

65



Below we define the notion of an unambiguous quasi-argument. Since in general, a formula Ï may have multiple
satisfying assignments, we cannot hope to construct a quasi-argument that has completeness, for every Ï and satisfying
assignment ‡, and also has unambiguous proofs. The unambiguity property of our quasi-argument states that if a
prover outputs two di�erent accepting proofs, then there exist two non-signaling local extractors that output di�erent
assignments for some variable of Ï.

Definition 8.4 (�-Unambiguity). A quasi-argument (QA.S, QA.P, QA.V) with formula size bound M̄ and input
length n is �-unambiguous if for every function K there exist a pair of PPT oracle machines E1, E2 such that for every
poly(�)-size adversary Adv:

• E1 and E2 make a single oracle query to Adv.

• EAdv
1 and EAdv

2 are �-non-signaling extractors with formula size bound M̄ , input length n and locality K.

• There exists a negligible function µ such that for every Ÿ œ N, M -variate formula Ï such that K Æ M Æ M̄

and sets S1, . . . , SB such that |Si| Æ K and
t

iœ[B] Si = [M ]:

Pr

S

U
QA.V(vk, x, �) = 1
QA.V(vk, x, �Õ) = 1
� ”= �Õ

------
(pk, vk) Ω QA.S(Ÿ, Ï, K)
(x, �, �Õ) Ω Adv(pk, vk)

T

V Æ

ÿ

iœ[B]
Pr
r

5
x1 = x2 ”= ‹
‡1 ”= ‡2

---- ’j œ [2] : (xj , ‡j) Ω EAdv
j

(Ï, Si ; r)
6

+ µ(�(Ÿ))

8.2 Construction
We construct a quasi-argument (QA.S, QA.P, QA.V) with formula size bound M̄ and input length n. We start by
introducing notation.

The construction uses a zero-testable homomorphic encryption scheme:

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

with degree bound ”̄ = 2, message length bound ¯̧ = 3 log M̄ and field F = FŸ (Definition 6.14). We also use the
multilinearity protocol (ML.S, ML.P, ML.V) with message length bound ¯̧and locality K̄ = M̄ + ¯̧+3 (Definition 7.9)
and the sum-check protocol (SC.S, SC.P, SC.V) with degree bound ”̄ and message length bound ¯̧ (Definition 7.13).
We use the notation introduced in Sections 6.1 and 7.1.

The input formula. In our quasi-argument, the 3CNF formula Ï has n input variables and M variables in total.
The honest prover is given an assignment ‡ that satisfies Ï and is consistent with some input x œ {0, 1}n given to
the verifier. It produces a proof �. To check the consistency of x and � we define an a 3CNF formula Ix. For every
i œ [n] and b œ {0, 1} let Ii,b be the clause Ii,b(zi) = (zi = b ‚ zi = b ‚ zi = b) and for any x œ {0, 1}n let
Ix =

w
iœ[n] Ii,xi . We assume without loss of generality that Ï does not contain any clauses of the form Ii,b. Note that

for every set S and partial assignment ‡ : S æ {0, 1}, if Ix(‡) = 1 then ‡(i) = xi for every i œ S fl [n].

Formula arithmetization. We represent 3CNF formulas as multilinear polynomials. Let Ï be an M -variate 3CNF
formula over the variables z1, . . . , zM . We identify the variables’ indices with strings in {0, 1}¸ for ¸ = log M .

Definition 8.5. A multilinear polynomial Ï̂ : F3¸+3 æ F is an arithmetization of the 3CNF formula Ï if the following
holds: for every triplet of indices v1, v2, v3 œ {0, 1}¸ and bits b1, b2, b3 œ {0, 1}, Ï̂(v1, v2, v3, b1, b2, b3) outputs 1 if
Ï contains the clause (zv1 = b1 ‚ zv2 = b2 ‚ zv3 = b3) and 0 otherwise.

Let Ï̂, Îi,b, Îx denote the arithmetizations of the formulas Ï, Ii,b, Ix respectively. Observe that Îx =
q

iœ[n] Îi,xi .
Since Ï and Ix do not have any clauses in common, Ï̂ + Îx is an arithmetization of the formula Ï · Ix.

Next we describe the quasi-argument algorithms (QA.S, QA.P, QA.V).
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The setup algorithm QA.S. The setup algorithm is given as input:

• A security parameter Ÿ.

• An M -variate 3CNF formula Ï such that M Æ M̄ .

• A locality parameter K Æ M .

It proceeds as follows:

• Let ¸ = log M and K
Õ = K + ¸.

• Set pp Ω ParamGen(Ÿ).

• For every k œ [K Õ] sample skk Ω KeyGen(pp), rk Ω {0, 1}Ÿ◊¸ and set ck Ω Enc(skk, 0¸
, rk).

• Sample s̃k Ω KeyGen(pp). For every j œ [3] sample r̃j Ω {0, 1}Ÿ◊¸ and set c̃j Ω Enc(s̃k, 0¸
, r̃j).

• Set c̃ Ω Enc(s̃k, 03¸
, (r̃1 | r̃2 | r̃3))

• For j œ [3] set (ML.pkj , ML.vkj) Ω ML.S(pp, (c1, . . . , cKÕ , c̃j)).
• Set (SC.pk, SC.vk) Ω SC.S(pp, c̃).
• Set e0 Ω

#
0(c̃)

$
pp and e1 Ω

#
1(c̃)

$
pp.

• For every b œ {0, 1}3 set Ab Ω [Ï̂(c̃, b)]pp.

• For every b œ {0, 1}3, i œ [n] and b œ {0, 1} set Bb,i,b Ω
Ë
Îi,b(c̃, b)

È

pp
.

• Output the prover key and verifier key:

pk =
1

Ï, pp,
!
ML.pkj

"
jœ[3] , SC.pk, c̃

2
,

vk =
1

pp, (ML.vk)
jœ[3] , SC.vk, e0, e1, (Ab)bœ{0,1}3 , (Bb,i,b)bœ{0,1}3

,iœ[n],bœ{0,1}

2
.

The prover algorithm QA.P. The prover algorithm is given as input:

• A prover key pk =
1

Ï, pp,
!
ML.pkj

"
jœ[3] , SC.pk, c̃

2
.

• An assignment ‡ : [M ] æ {0, 1} satisfying Ï .

It proceeds as follows:

• Let ID(z, v) be the multilinear polynomial extending the Boolean equality function:

ID(z1, . . . , z¸, v1, . . . , v¸) :=
Ÿ

jœ[¸]
(zj · vj + (1 ≠ zj)(1 ≠ vj)) .

• Let � : F¸ æ F be the multilinear extension of the assignment ‡:

�(z) :=
ÿ

vœ{0,1}¸

ID(z, v) · ‡(v) .

• For every b = (b1, b2, b3) œ {0, 1}3 and non-empty subset J ™ [3] let �b,J : F3¸ æ F be the polynomial:

�b,J(z1, z2, z3) :=
Ÿ

jœJ

(�(zj) ≠ bj) .
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• Let x = ‡([n]) and for every b œ {0, 1}3 let Pb : F3¸ æ F be the polynomial:

Pb(z) := (Ï̂ + Îx)(z, b) · �b,[3](z) .

• For j œ [3] set (Cj , ML.�j) Ω ML.P(ML.pkj , �).

• For every b œ {0, 1}3 set (Db, SC.�b) Ω SC.P(SC.pk, Pb).

• For every b œ {0, 1}3 and J ™ [3] set Eb,J Ω [�b,J(c̃)]pp.

• Output the proof:

� =
1

(Cj , ML.�j)
jœ[3] , (Db, SC.�b)bœ{0,1}3 , (Eb,J)bœ{0,1}3

,J™[3]

2
.

The verifier algorithm QA.V. The verifier algorithm is given as input:

• A verifier key:

vk =
1

pp, (ML.vkj)
jœ[3] , SC.vk, e0, e1, (Ab)bœ{0,1}3 , (Bb,i,b)bœ{0,1}3

,iœ[n],bœ{0,1}

2
.

• An input x œ {0, 1}n.

• A proof:

� =
1!

Cj =
!
Cj,1, . . . , Cj,KÕ , C̃j

"
, ML.�j

"
jœ[3] , (Db, SC.�b)bœ{0,1}3 , (Eb,J)bœ{0,1}3

,J™[3]

2
.

It proceeds as follows:

• For every k œ [K Õ] test that C1,k = C2,k = C3,k

• For k œ [K Õ], b œ {0, 1}3 and J ™ [3] test that C1,k, Db, Eb,J œ Valid (see Definition 6.6).

• For every j œ [3] test that ML.V(ML.vkj , Cj , ML.�j) accepts.

• For every b œ {0, 1}3 test that SC.V(SC.vk, Db, SC.�b) accepts.

• For every b = (b1, b2, b3) œ {0, 1}3 and j œ [3] test that:
#!

Eb,{j} + ebj

"
· e1 = C̃j · e1

$
pp .

• For every b œ {0, 1}3 and pair of non-empty disjoint subsets J, J
Õ ™ [3] test that:

[Eb,J · Eb,JÕ = Eb,JfiJÕ · e1]pp .

• For every b œ {0, 1}3 test that:
S

UDb · e1 =

Q

aAb +
ÿ

iœ[n]
Bb,i,xi

R

b · Eb,[3]

T

V

pp

.

• Output 1 if all tests pass. Otherwise output 0.
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8.3 Analysis
In this section we prove the following theorem:

Theorem 8.6. For any �(Ÿ), M̄(Ÿ) and n(Ÿ) such that n Æ M̄ Æ poly(�) and � = |F|o(1), if there exists a �-secure
zero-testable homomorphic encryption scheme (Definition 6.14):

(ParamGen, KeyGen, Enc, MEnc, Eval, Dec, ZT, Extend, Restrict, RandExtend, Rerand)

for degree bound ”̄ = 2 and message length bound ¯̧= 3 log M̄ , then the quasi-argument (QA.S, QA.P, QA.V) given
in Section 8.2 is a �-secure �-unambiguous quasi-argument (Definitions 8.3 and 8.4) with formula size bound M̄ and
input length n.

8.3.1 Completeness.

Fix any Ÿ œ N, M -variate 3CNF formula Ï such that 2¸ = M Æ M̄ , locality parameter K Æ M and assignment
‡ : [M ] æ {0, 1} satisfying Ï. We need to prove that:

Pr

S

UQA.V(vk, x, �) = 1

------

(pk, vk) Ω QA.S(Ÿ, Ï, K)
x Ω ‡([n])
� Ω QA.P(pk, ‡)

T

V = 1 ,

where:

vk =
1

pp, ML.vk, (SC.vk)
jœ[3] , e0, e1, (Ab)bœ{0,1}3 , (Bb,i,b)bœ{0,1}3

,iœ[n],bœ{0,1}

2
,

� =
1!

Cj =
!
Cj,1, . . . , Cj,KÕ , C̃j

"
, ML.�j

"
jœ[3] , (Db, SC.�b)bœ{0,1}3 , (Eb,J)bœ{0,1}3

,J™[3]

2
.

and:

eb =
#
b(c̃)

$
pp : b œ {0, 1} ,

Ab = [Ï̂(c̃, b)]pp : b œ {0, 1}3
,

Bb,i,b =
Ë
Îj,b(c̃, b)

È

pp
: b œ {0, 1}3

, i œ [n], b œ {0, 1} ,

Eb,J = [�b,J(c̃)]pp : b œ {0, 1}3
, J ™ [3] .

We show that every test in QA.V passes.

• Since � is a multilinear polynomial, by the completeness of the multilinearity protocol (Definition 7.9), for
every j œ [3], ML.V(ML.vkj , Cj , ML.�j) accepts and for every k œ [K Õ]:

Cj,k = [�(ck)]pp , C̃j = [�(c̃j)]pp .

In particular C1,k = C2,k = C3,k and C1,k œ Valid.

• Since the assignment ‡ satisfies Ï and x = ‡([n]), the assignment ‡ also satisfies Ï · Ix. Since Ï̂ + Îx is an
arithmetization of Ï · Ix, we have that for every b œ {0, 1}3 and z = (z1, z2, z3) œ {0, 1}3¸:

Pb(z) = (Ï̂ + Îx)(z, b) · �b,[3](z) = (Ï̂ + Îx)(z, b) ·
Ÿ

jœ[3]
(�(zj) ≠ bj) = 0 .

Therefore, by the correctness of the sum-check protocol (Definition 7.13), SC.V(SC.vk, Db, SC.�b) accepts
and:

Db = [Pb(c̃)]pp .
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• By the stability of evaluation (Definition 6.2), for every b = (b1, b2, b3) œ {0, 1}3 and j œ [3]:

Eb,{j} =
#
�b,{j}(c̃)

$
pp = [�(c̃j) ≠ bj ]pp , e0 =

#
0(c̃)

$
pp =

#
0(c̃j)

$
pp , e1 =

#
1(c̃)

$
pp =

#
1(c̃j)

$
pp .

Therefore, by the weak completeness of the zero-test (Definition 6.7) the following zero-test passes:
#!

Eb,{j} + ebj

"
· e1 = C̃j · e1

$
pp .

• For every b œ {0, 1}3 and pair of non-empty disjoint subsets J, J
Õ ™ [3], �b,J · �b,JÕ © �b,JfiJÕ . Therefore,

by the weak completeness of the zero-test (Definition 6.7) the following zero-test passes:

[Eb,J · Eb,JÕ = Eb,JfiJÕ · e1]pp .

• For every b œ {0, 1}3 we have that:

Pb(z) © (Ï̂ + Îx)(z, b) · �b,[3](z) © (Ï̂ +
ÿ

jœ[n]
Îj,xj )(z, b) · �b,[3](z) .

Therefore, by the weak completeness of the zero-test (Definition 6.7) the following zero-test passes:
S

UDb · e1 =

Q

aAb +
ÿ

jœ[n]
Bb,j,xj

R

b · Eb,[3]

T

V

pp

.

8.3.2 Non-signaling extraction.

For every function K(Ÿ) we construct a PPT oracle machine E. E is given as input an M -variate formula Ï such that
M Æ M̄ and a set S ™ [M ] = {0, 1}¸ of size at most K. It is also given oracle access to an adversary Adv. E proceeds
as follows:

• Set v1, . . . , v|S| to be the elements of S in an arbitrary order and set v|S|+1, . . . , vKÕ = 0¸.
• Set u1, . . . , uKÕ to be a random reordering of v1, . . . , vKÕ .
• Emulate the setup algorithm QA.S(Ÿ, Ï, K) to sample keys (pk, vk) except that instead of setting ck Ω

Enc(skk, 0¸
, rk), set ck Ω Enc(skk, uk, rk).

• Set (x, �) Ω Adv(pk, vk) where:

� =
1!

Cj =
!
Cj,1, . . . , Cj,KÕ , C̃j

"
, ML.�j

"
jœ[3] , (Db, SC.�b)bœ{0,1}3 , (Eb,J)bœ{0,1}3

,J™[3]

2
.

• If QA.V(vk, x, �) rejects then set x = ‹ and set ‡(v) = 0 for every v œ S.
• If QA.V(vk, x, �) accepts then for k œ [K Õ] such that uk œ S, if Dec(ski, C1,k) = ÈbÍpp for some b œ {0, 1},

set ‡(uk) = b. Otherwise set ‡(uk) = 0.
• Output (x, ‡).
Fix any poly(�)-size adversary Adv. We show that EAdv is indeed a �-non-signaling extractor (Definition 8.2) and

that for every poly(�)-size distinguisher D there exists a negligible function µ such that for every Ÿ œ N and M -variate
formula Ï such that K Æ M Æ M̄ :

------
Pr

S

UD(x) = 1

------

(pk, vk) Ω QA.S(Ÿ, Ï, K)
(x, �) Ω Adv(pk, vk)
if QA.V(vk, x, �) = 0 : set x = ‹

T

V ≠ Pr
(x,‡)ΩEAdv(Ï,ÿ)

[D(x) = 1]

------
Æ µ(�(Ÿ)) . (21)

Since E given S = ÿ sets ci Ω Enc(ski, 0¸
, ri) for very i œ [K Õ] the distribution of (pk, vk) in both experiments in

Equation (21) is identical. Since in both experiment we set (x, �) Ω Adv(pk, vk) and then set x = ‹ if QA.V(vk, x, �)
rejects, Equation (21) follows. Next we show that EAdv satisfies the local consistency and non-signaling requirements
(Definition 8.2).
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Local consistency. Assume towards contradiction that there exists a polynomial p such that for infinitely many
Ÿ œ N, there exists an M -variate formula Ï such that M Æ M̄ and a set S ™ [M ] of size at most K such that:

Pr
(x,‡)ΩEAdv(Ï,S)

5
x ”= ‹
(Ï · Ix)(‡) = 0

6
Ø 1

p(�(Ÿ)) .

It follows that there exists ṽ1, ṽ2, ṽ3 œ S such that:

Pr
(x,‡)ΩEAdv(Ï,S)

5
x ”= ‹
(Ï · Ix)(‡({ṽ1, ṽ2, ṽ3})) = 0

6
Ø 1

M3 · p(�(Ÿ)) .

Let Exp1 be the experiment that emulates EAdv(Ï, S) except that instead of setting c̃j Ω Enc(s̃k, 0¸
, r̃j) we set:

c̃1 = Restrict(c̃, [¸ + 1, 3¸]) , c̃2 = Restrict(c̃, [¸] fi [2¸ + 1, 3¸]) , c̃3 = Restrict(c̃, [2¸]) .

By the correctness of restriction (Definition 6.10):

Pr
Exp1

5
x ”= ‹
(Ï · Ix)(‡({ṽ1, ṽ2, ṽ3})) = 0

6
Ø 1

M3 · p(�(Ÿ)) .

Let Exp2 be the experiment that is defined just like Exp1 except that instead of setting c̃ Ω Enc(s̃k, 03¸
, (r̃1 | r̃2 | r̃3))

we set c̃ Ω Enc(s̃k, (ṽ1 | ṽ2 | ṽ3), (r̃1 | r̃2 | r̃3)). We can emulate Exp2 given c̃ as input. Therefore, by semantic
security (Definition 6.5):

Pr
Exp2

5
x ”= ‹
(Ï · Ix)(‡({ṽ1, ṽ2, ṽ3})) = 0

6
Ø 1

M3 · p(�(Ÿ)) ≠ negl(�(Ÿ)) .

Since M Æ M̄ Æ poly(�):

Pr
Exp2

5
x ”= ‹
(Ï · Ix)(‡({ṽ1, ṽ2, ṽ3})) = 0

6
Ø �(1)

M3 · p(�(Ÿ)) .

Let Exp3 be the experiment that is defined just like Exp3 except that instead of setting c̃j by restricting c̃, we set
c̃j Ω Enc(s̃k, ṽj , r̃j). By the correctness of restriction (Definition 6.10):

Pr
Exp3

5
x ”= ‹
(Ï · Ix)(‡({ṽ1, ṽ2, ṽ3})) = 0

6
Ø �(1)

M3 · p(�(Ÿ)) .

Let AC be the event that x ”= ‹ and QA.V(vk, x, �) accepts. Since E sets x = ‹ whenever QA.V(vk, x, �)
rejects, it follows that:

Pr
Exp3

5
AC
(Ï · Ix)(‡({ṽ1, ṽ2, ṽ3})) = 0

6
>

�(1)
M3 · p(�(Ÿ)) . (22)

In the experiment Exp3 let:

pk =
1

Ï, pp,
!
ML.pkj

"
jœ[3] , SC.pk, c̃

2

vk =
1

pp, (ML.vk)
jœ[3] , SC.vk, e0, e1, (Ab)bœ{0,1}3 , (Bb,i,b)bœ{0,1}3

,iœ[n],bœ{0,1}

2
,

� =
1!

Cj =
!
Cj,1, . . . , Cj,KÕ , C̃j

"
, ML.�j

"
jœ[3] , (Db, SC.�b)bœ{0,1}3 , (Eb,J)bœ{0,1}3

,J™[3]

2
.

By construction we have that:

Dec(s̃k, eb) = ÈbÍpp : b œ {0, 1} ,

Dec(s̃k, Ab) = ÈÏ̂(ṽ1, ṽ2, ṽ3, b)Ípp : b œ {0, 1}3
,

Dec(s̃k, Bb,j,b) =
e

Îj,b(ṽ1, ṽ2, ṽ3, b)
f

pp
: b œ {0, 1}3

, j œ [n], b œ {0, 1} ,
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Let:
–j,k = Dec(skk, Cj,k) : j œ [3], k œ [K Õ] ,

–̃j = Dec(s̃k, C̃j) : j œ [3] ,

›b = Dec(s̃k, Db) : b œ {0, 1}3
,

’b,J = Dec(s̃k, Eb,J) : b œ {0, 1}3
, J ™ [3] .

For every j œ [3], let kj œ [K] be the index such that ṽj = ukj .
The proof of local consistency relies on the following claim.

Claim 8.7. For every j œ [3]:
Pr

Exp3

#
AC æ –j,kj = –̃j

$
Ø 1 ≠ negl(�(Ÿ)) .

Before proving the claim we use it to prove local consistency. If AC occurs then QA.V(vk, x, �) accepts and,
therefore:

• For every k œ [K Õ], –j,k = –2,k = –3,k.
• For every j œ [3], by Claim 8.7:

Pr
Exp3

#
AC æ –j,kj = –̃j

$
Ø 1 ≠ negl(�(Ÿ)) .

• For every b œ {0, 1}3, SC.V(SC.vk, Db, SC.�b) accepts. By the soundness of the sum-check protocol
(Definition 7.13):

Pr
Exp3

Ë
AC æ ›b = È0Ípp

È
= 1 .

• For every b = (b1, b2, b3) œ {0, 1}3 and j œ [3] the following zero-test passes:
#!

Eb,{j} + ebj

"
· e1 = C̃j · e1

$
pp .

By the soundness of the zero-test (Definition 6.8):

Pr
Exp3

Ë
AC æ ’b,{j} = –̃j ≠ ÈbjÍpp

È
= 1 .

• For every b œ {0, 1}3 and pair of non-empty disjoint subsets J, J
Õ ™ [3] the following zero-test passes:

[Eb,J · Eb,JÕ = Eb,JfiJÕ · e1]pp .

By the soundness of the zero-test (Definition 6.8):

Pr
Exp3

[AC æ ’b,J · ’b,JÕ = ’b,JfiJÕ ] = 1 .

• For every b œ {0, 1}3 the following zero-test passes:
S

UDb · e1 =

Q

aAb +
ÿ

jœ[n]
Bb,j,xj

R

b · Eb,[3]

T

V

pp

By the soundness of the zero-test (Definition 6.8):

Pr
Exp3

S

UAC æ ›b =
K

Ï̂(ṽ1, ṽ2, ṽ3, b) +
ÿ

jœ[n]
Îj,xj (ṽ1, ṽ2, ṽ3, b)

L

pp

· ’b,[3]

T

V = 1 .

Since Îx =
q

jœ[n] Îj,xj :

Pr
Exp3

Ë
AC æ ›b = È(Ï̂ + Ix)(ṽ1, ṽ2, ṽ3, b)Ípp · ’b,[3]

È
= 1 .
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For every b = (b1, b2, b3) œ {0, 1}3 the above equities imply that:

Pr
Exp3

S

UAC æ È0Ípp = È(Ï̂ + Ix)(ṽ1, ṽ2, ṽ3, b)Ípp ·
Ÿ

jœ[3]

1
–1,kj ≠ ÈbjÍpp

2
T

V = 1 .

Recall that if –1,kj = ÈbjÍpp then E sets ‡(ṽj) = bj . Therefore:

Pr
Exp3

S

UAC æ 0 = (Ï̂ + Ix)(ṽ1, ṽ2, ṽ3, b) ·
Ÿ

jœ[3]
(‡(ṽj) ≠ bj)

T

V = 1 .

Since Ï̂ + Ix is an arithmetization of Ï · I (Definition 8.5) it follows that:

Pr
Exp3

[AC æ (Ï · Ix)(‡({ṽ1, ṽ2, ṽ3})) = 1] = 1 ,

contradicting Equation (22). It remains to prove Claim 8.7.

Proof of Claim 8.7. Fix any j œ [3]. In the experiment Exp3 let:

Z =
!
sk = (sk1, . . . , skKÕ , s̃k) , c = (c1, . . . , cKÕ , c̃j) , r = (r1, . . . , rKÕ , r̃j)

"
.

If AC occurs then QA.V(vk, x, �) accepts and, therefore, ML.V(ML.vkj , Cj , ML.�j) also accepts. Also, recall
that in Exp3 we set:

ckj Ω Enc(skkj , ukj , rkj ) , c̃j Ω Enc(s̃k, ṽj , r̃j) .

Since ukj = vj , we have that for any i
ú œ [¸]:

!
ukj

"
iú = (vj)

iú ,
!
ukj

"
≠iú = (vj)≠iú .

We can emulate Exp3 given (ML.pkj , ML.vkj) and Z as input. Therefore, by the soundness of the multilinearity
protocol (Definition 7.9):

Pr
Exp3

5
AC · ’—0, —1 œ F : ÷–

ú œ
)

–j,kj , –̃j

*
:

e
—1 · (vj)≠iú + —0

f

pp
”= –

ú
6

Æ K
Õ · negl(�(Ÿ)) .

Since K
Õ Æ poly(�):

Pr
Exp3

5
AC · ’—0, —1 œ F : ÷–

ú œ
)

–j,kj , –̃j

*
:

e
—1 · (vj)≠iú + —0

f

pp
”= –

ú
6

Æ negl(�(Ÿ)) .

The claim follows since:

–j,kj ”= –̃j æ ’—0, —1 œ F : ÷–
ú œ

)
–j,kj , –̃j

*
:

e
—1 · (vj)≠iú + —0

f

pp
”= –

ú
.

Non-signaling. Fix any poly(�)-size distinguisher D. We show that for every Ÿ œ N, M -variate formula Ï such
that M Æ M̄ and sets SÕ ™ S ™ [M ] of size at most K:

---- Pr
(x,‡)ΩEAdv(Ï,S)

[D(x, ‡(SÕ)) = 1] ≠ Pr
(x,‡Õ)ΩEAdv(Ï,SÕ)

[D(x, ‡
Õ) = 1]

---- Æ negl(�(Ÿ)) . (23)

Let Exp0 be the experiment that is defined just like the execution of EAdv(Ï, SÕ) except that instead of setting ‡(uk)
for every uk œ S, set ‡(uk) only for uk œ SÕ. Let E1 be the oracle machine that is defined just like E0 except that for
every k œ [K] such that uk œ S \ SÕinstead of setting ck Ω Enc(skk, uk, rk) it sets ck Ω Enc(skk, 0¸

, rk).
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E0 and E1 only di�er in the values encrypted in ck for k œ [K] such that uk œ S \ SÕ. Also, we can emulate E1
given ck as input. Therefore, by semantic security (Definition 6.5):

---- Pr
(x,‡)ΩE0

[D(x, ‡) = 1] ≠ Pr
(x,‡)ΩE1

[D(x, ‡) = 1]
---- Æ |S \ SÕ| · negl(�(Ÿ)) .

Since |S \ SÕ| Æ M̄ Æ poly(�):
---- Pr
(x,‡)ΩE0

[D(x, ‡) = 1] ≠ Pr
(x,‡)ΩE1

[D(x, ‡) = 1]
---- Æ negl(�(Ÿ)) .

Observe that the distribution of (pk, vk) generated by E0 is identical to the distribution of (pk, vk) generated by
E(Ï, S) and, therefore:

[(x, ‡) | (x, ‡) Ω E0] © [(x, ‡(SÕ)) | (x, ‡) Ω E(Ï, S)] .

Recall that E(Ï, SÕ) sets v1, . . . , v|SÕ| to be the elements of SÕ in some arbitrary order and sets v|SÕ|+1, . . . , vKÕ = 0¸.
Since the ciphertexts c1, . . . , cKÕ in both E(Ï, SÕ) and E1 encrypt the same values v1, . . . , vKÕ in a random order, it
follows that the distribution of (pk, vk) generated by E1 is identical to the distribution of (pk, vk) generated by E(Ï, SÕ)
and, therefore:

[(x, ‡) | (x, ‡) Ω E1] © [(x, ‡(SÕ)) | (x, ‡) Ω E(Ï, S)] .

Equation (23) follows.

8.3.3 Unambiguity.

For every function K(Ÿ) we define a pair of PPT oracle machines E1, E2 just like the machine E defined in the
non-signaling extraction proof in Section 8.3.2 except that:

• E1 and E2 make an oracle call to Adv and obtain x, �, �Õ instead of a single proof.

• E1 continues just like E using the proof � and E2 continues using the proof �Õ.

• If QA.V(vk, x, �) accepts then for k œ [K Õ] such that uk œ S fl {0, 1}¸, if Dec(ski, C1,k) /œ
Ó

È0Ípp , È1Ípp

Ô
,

instead of setting ‡(uk) = 0, E1 sets ‡(uk) as follows:

– If Dec(ski, C
Õ
1,k

) = ÈbÍpp for some b œ {0, 1} set ‡(uk) = 1 ≠ b.

– If Dec(ski, C
Õ
1,k

) /œ
Ó

È0Ípp , È1Ípp

Ô
set ‡(uk) = 0.

If Dec(ski, C
Õ
1,k

) /œ
Ó

È0Ípp , È1Ípp

Ô
, instead of setting ‡(uk) to a the default value 0, E2 sets ‡(uk) as follows:

– If Dec(ski, C1,k) = ÈbÍpp for some b œ {0, 1} set ‡(uk) = 1 ≠ b.

– If Dec(ski, C1,k) /œ
Ó

È0Ípp , È1Ípp

Ô
set ‡(uk) = 1.

Before proving that E1 and E2 satisfy the required properties we start by introducing some notation.

The experiment Exp(S). For any Ÿ œ N fix an M -variate formula Ï such that K Æ M Æ M̄ . For a set S ™ F¸ of
size at most K

Õ let Exp(S) be the experiment where we execute EAdv
1 (Ï, S) and EAdv

2 (Ï, S) with the same randomness
r. We note that:

1. In general, a non-signaling extractor with locality K is only defined on subsets of {0, 1}¸ of size at most K.
The construction of E1 and E1, however, supports subsets of F of size at most K

Õ.

2. We assume without loss of generality that Adv is deterministic. Therefore, the two execution are identical up
until they obtain output (x, �, �Õ) from Adv.
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In the experiment Exp(S) let:

pk =
1

Ï, pp,
!
ML.pkj

"
jœ[3] , SC.pk, c̃

2
,

vk =
1

pp, (ML.vkj)
jœ[3] , SC.vk, e0, e1, (Ab)bœ{0,1}3 , (Bb,i,b)bœ{0,1}3

,iœ[n],bœ{0,1}

2
,

� =
1!

Cj =
!
Cj,1, . . . , Cj,KÕ , C̃j

"
, ML.�j

"
jœ[3] , (Db, SC.�b)bœ{0,1}3 , (Eb,J)bœ{0,1}3

,J™[3]

2
,

�Õ =
1!

CÕ
j =

!
C

Õ
j,1, . . . , C

Õ
j,KÕ , C̃

Õ
j

"
, ML.�Õ

j

"
jœ[3] , (DÕ

b, SC.�Õ
b)bœ{0,1}3 , (EÕ

b,J
)bœ{0,1}3

,J™[3]

2
,

Let:
–k = Dec(skk, C1,k) , –

Õ
k

= Dec(skk, C
Õ
1,k

) : k œ [K Õ] ,

›b = Dec(s̃k, Db) , ›
Õ
b = Dec(s̃k, D

Õ
b) : b œ {0, 1}3

,

’b,J = Dec(s̃k, Eb,J) , ’
Õ
b,J

= Dec(s̃k, E
Õ
b,J

) : b œ {0, 1}3
, J ™ [3] .

For v œ S let k(v) œ [K Õ] denote the index such that uk(v) = v.

The non-signaling property. The following claim generalizes the non-signaling property (Definition 8.2).

Claim 8.8. For every poly(�)-size distinguisher D there exists a negligible function µ such that for every sets
SÕ ™ S ™ F¸ of size at most K

Õ:
---- Pr
Exp(S)

5
D

31
–k(v), –

Õ
k(v)

2

vœ[SÕ]

4
= 1

6
≠ Pr

Exp(SÕ)

5
D

31
–k(v), –

Õ
k(v)

2

vœ[SÕ]

4
= 1

6---- Æ µ(�(Ÿ)) .

Proof. Fix any poly(�)-size distinguisher D and sets SÕ ™ S ™ F¸ of size at most K
Õ.

Let ExpÕ(S) be the experiment that is defined just like Exp(S) except that for every v œ S \ SÕ, instead of setting
ck(v) Ω Enc(skk(v), uk(v), rk(v)) we set ck(v) Ω Enc(skk(v), 0¸

, rk(v)). Exp(S) and ExpÕ(S) only di�er in the values
encrypted in ck(v) for v œ S \ SÕ. Also, we can emulate ExpÕ(S) and decrypt the values

1
–k(u), –

Õ
k(u)

2

uœ[SÕ]
given

ck(v) for v œ S \ SÕ as input. Therefore, by semantic security (Definition 6.5):
---- Pr
Exp(S)

5
D

31
–k(v), –

Õ
k(v)

2

vœ[SÕ]

4
= 1

6
≠ Pr

ExpÕ(S)

5
D

31
–k(v), –

Õ
k(v)

2

vœ[SÕ]

4
= 1

6---- Æ |S \ SÕ| · negl(�(Ÿ)) .

Since |S \ SÕ| Æ M̄ Æ poly(�):
---- Pr
Exp(S)

5
D

31
–k(v), –

Õ
k(v)

2

vœ[SÕ]

4
= 1

6
≠ Pr

ExpÕ(S)

5
D

31
–k(v), –

Õ
k(v)

2

vœ[SÕ]

4
= 1

6---- Æ negl(�(Ÿ)) .

Recall that in Exp(SÕ) we set v1, . . . , v|SÕ| to be the elements of SÕ in some arbitrary order and sets v|SÕ|+1, . . . , vKÕ =
0¸. Since the ciphertexts c1, . . . , cKÕ in both Exp(SÕ) and ExpÕ(S) encrypt the same values v1, . . . , vKÕ in a random
order, it follows that:

51
–k(v), –

Õ
k(v)

2

vœ[SÕ]

---- ExpÕ(S)
6

©
51

–k(v), –
Õ
k(v)

2

vœ[SÕ]

---- Exp(SÕ)
6

.

The claim follows.

The events AC and EQ. For a set S ™ F¸ of size at most K
Õ let AC be the event that in the experiment Exp(S),

Adv outputs (x, �, �Õ) such that both QA.V(vk, x, �) and QA.V(vk, x, �Õ) accept. Since E1 outputs x1 = ‹ when
QA.V(vk, x, �) rejects and E2 outputs x2 = ‹ when QA.V(vk, x, �Õ) rejects, it follows that:

Pr
Exp(S)

[AC ¡ x1 = x2 ”= ‹] . (24)

For v œ S let EQv be the event that in the experiment Exp(S), –k(v) = –
Õ
k(v). For SÕ ™ S let EQ(SÕ) be the event

that EQu occurs for every u œ SÕ. For j œ [2], let ‡j denote the assignment generated by Ej .
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Claim 8.9. For any set S ™ F¸ of size at most K
Õ and v œ S fl {0, 1}¸:

Pr
Exp(S)

[AC · ¬EQv æ ‡1(v) ”= ‡2(v) ] = 1 .

Proof. Assume AC and EQv occur. We consider the following cases:

• If –k(v) = ÈbÍpp and –
Õ
k(v) = È1 ≠ bÍpp for b œ {0, 1} then ‡1(v) = b and ‡2(v) = 1 ≠ b.

• If –k(v) = ÈbÍpp for b œ {0, 1} and –
Õ
k(v) /œ

Ó
È0Ípp , È1Ípp

Ô
then ‡1(v) = b and ‡2(v) = 1 ≠ b.

• If –k(v) /œ
Ó

È0Ípp , È1Ípp

Ô
and –

Õ
k(v) = ÈbÍpp for b œ {0, 1} then ‡1(v) = 1 ≠ b and ‡2(v) = b.

• If –k(v), –
Õ
k(v) /œ

Ó
È0Ípp , È1Ípp

Ô
then ‡1(v) = 0 and ‡2(v) = 1.

In any case ‡1(v) ”= ‡2(v).

The experiment ExpÕ(S). For a string u œ {0, 1}Æ¸ and a vector t = (t1, . . . , t¸) œ ¸ let [u]t denote the string
(u | (t|u|+1, . . . , t¸)) œ F¸. For a set S ™ FÆ¸ let [S]t denote the set {[u]t : u œ S}. For a set S ™ FÆ¸ of size at
most K

Õ let ExpÕ(S) be the experiment Exp([S]t) for a random t Ω F¸. For u œ S let EQu be the event that in the
experiment ExpÕ(S), the event EQ[u]t

occurs. For SÕ ™ S let EQ(SÕ) be the event that in the experiment ExpÕ(S), the
event EQ([SÕ]t) occurs.

The sets SÆv and QÆv. For any Ÿ œ N fix sets S1, . . . , SB such that |Si| Æ K and
t

iœ[B] Si = {0, 1}¸. We
assume without loss of generality that the sets S1, . . . , SB are pairwise disjoint. For every v œ {0, 1}¸ let Sv denote the
unique set Si that contains v. Let S<v denote the set {u : u œ Sv · u < v} and let SÆv denote the set SÆv fi {v}.

For every v œ {0, 1}¸ we define a set QÆv ™ {0, 1}Æ¸. Let QÆ0¸ =
)

0¸
*

and for every v > 0¸ we compute QÆv
as follows:

• Set QÆv Ω QÆv≠1 fi {v}.

• While there exists u œ {0, 1}<¸ such that {u0, u1} ™ QÆv, remove u0 and u1 from QÆv and add u.

Let Q<0¸ = ÿ and for every v > 0¸ let Q<v = QÆv≠1. The following claim give some useful properties of QÆv:

Claim 8.10. For every v œ {0, 1}¸:

• |QÆv| Æ ¸.

• For every u Æ v, QÆv contains a prefix of u.

• QÆ1¸ = {E}

The proof of the unambiguity property relies on the following claims.

Claim 8.11.
Pr

ExpÕ(QÆ1¸ )

#
AC · EQ(QÆ1¸) æ � = �Õ$ Ø 1 ≠ negl(�(Ÿ)) .

Claim 8.12. For every v œ {0, 1}¸:

Pr
ExpÕ(Q<vfiQÆvfi{v})

[AC · EQ(Q<v) · EQv æ EQ(QÆv)] Ø 1 ≠ negl(�(Ÿ)) .

Claim 8.13. For every v œ {0, 1}¸:

Pr
ExpÕ(SÆvfiQÆv)

[AC · EQ(QÆv) æ EQ(SÆv)] Ø 1 ≠ negl(�(Ÿ)) .
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Before proving the claims we use them to prove that E1 and E2 satisfy the required properties. Fix any poly(�)-size
adversary Adv. It follows from the analysis in Section 8.3.2 that E1 and E2 are �-non-signaling extractors with formula
size bound M̄ , input length n and locality K (Definition 8.2). Note that in the experiment Exp(S), for v œ S fl {0, 1}¸,
if –k(v) /œ

Ó
È0Ípp , È1Ípp

Ô
then E1 sets ‡(v) di�erently than the extractor E in Section 8.3.2 (and similarly for –

Õ
k(v)

and E2). The proof of the non-signaling extraction property in Section 8.3.2, however, only relies in the fact that if
–k(v) = ÈbÍpp for b œ {0, 1} then ‡(v) = b.

It remains to show that for every Ÿ œ N:

Pr
5
AC · � ”= �Õ

----
(pk, vk) Ω QA.S(Ÿ, Ï, K)
(x, �, �Õ) Ω Adv(pk, vk)

6
Æ

ÿ

iœ[B]
Pr

ExpÕ(Si)

5
x1 = x2 ”= ‹
‡1 ”= ‡2

6
+ negl(�(Ÿ)) . (25)

Observe that in the experiment ExpÕ(ÿ) the distribution of (pk, vk) is identical to the output distribution of the
setup algorithm QA.S. Therefore:

Pr
5
AC · � ”= �Õ

----
(pk, vk) Ω QA.S(Ÿ, Ï, K)
(x, �, �Õ) Ω Adv(pk, vk)

6
= Pr

ExpÕ(ÿ)
[AC · � ”= �Õ] . (26)

By Claim 8.11:

Pr
ExpÕ(QÆ1¸ )

[AC · � ”= �Õ] Æ Pr
ExpÕ(QÆ1¸ )

#
AC · ¬EQ(QÆ1¸)

$
+ negl(�(Ÿ)) .

By Claim 8.8:

Pr
ExpÕ(ÿ)

[AC · � ”= �Õ] Æ Pr
ExpÕ(QÆ1¸ )

#
AC · ¬EQ(QÆ1¸)

$
+ negl(�(Ÿ)) . (27)

By Claim 8.12 for every v œ {0, 1}¸
, v > 0¸:

Pr
ExpÕ(Q<vfiQÆvfi{v})

[AC · ¬EQ(QÆv)] Æ Pr
ExpÕ(Q<vfiQÆvfi{v})

[AC · EQ(Q<v) · ¬EQv]

+ Pr
ExpÕ(Q<vfiQÆvfi{v})

[AC · ¬EQ(Q<v)] + negl(�(Ÿ)) .

By Claim 8.8:

Pr
ExpÕ(QÆv)

[AC · ¬EQ(QÆv)] Æ Pr
ExpÕ(Q<vfi{v})

[AC · EQ(Q<v) · ¬EQv]

+ Pr
ExpÕ(Q<v)

[AC · ¬EQ(Q<v)] + negl(�(Ÿ)) .

Therefore:

Pr
ExpÕ(QÆ1¸ )

#
AC · ¬EQ(QÆ1¸)

$
Æ

ÿ

vœ{0,1}¸

Pr
ExpÕ(Q<vfi{v})

[AC · EQ(Q<v) · ¬EQv] + 2¸ · negl(�(Ÿ)) . (28)

By Claim 8.13 for every v œ {0, 1}¸:

Pr
ExpÕ(S<vfiQ<v)

[AC · EQ(Q<v) æ EQ(S<v)] Ø 1 ≠ negl(�(Ÿ)) .

By Claim 8.8:

Pr
ExpÕ(SÆvfiQ<v)

[AC · EQ(Q<v) · ¬EQv æ EQ(SÆv) · ¬EQv] Ø 1 ≠ negl(�(Ÿ)) .

Therefore:

Pr
ExpÕ(SÆvfiQ<v)

[AC · EQ(Q<v) · ¬EQv] Æ Pr
ExpÕ(SÆvfiQ<v)

[AC · EQ(S<v) · ¬EQv] + negl(�(Ÿ)) .
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By Claim 8.8:

Pr
ExpÕ(Q<vfi{v})

[AC · EQ(Q<v) · ¬EQv] Æ Pr
ExpÕ(Sv)

[AC · EQ(S<v) · ¬EQv] + negl(�(Ÿ)) . (29)

By Equation (24) and Claim 8.9:

Pr
ExpÕ(Sv)

[AC · EQ(S<v) · ¬EQv æ x1 = x2 ”= ‹ · ‡1 ”= ‡2] = 1 .

Since for every i œ [B] and v, vÕ œ Si the events (EQ(S<v) · ¬EQv) and (EQ(S<vÕ) · ¬EQvÕ) are disjoint:
ÿ

vœSi

Pr
ExpÕ(Si)

[AC · EQ(S<v) · ¬EQv] Æ Pr
ExpÕ(Si)

[x1 = x2 ”= ‹ · ‡1 ”= ‡2] .

Since
t

iœ[B] Si = {0, 1}¸:
ÿ

vœ{0,1}¸

Pr
ExpÕ(Sv)

[AC · EQ(S<v) · ¬EQv] Æ
ÿ

iœ[B]
Pr

ExpÕ(Si)
[x1 = x2 ”= ‹ · ‡1 ”= ‡2] . (30)

Putting together Equations (26) to (30) we get:

Pr
5
AC · � ”= �Õ

----
(pk, vk) Ω QA.S(Ÿ, Ï, K)
(x, �, �Õ) Ω Adv(pk, vk)

6

Æ Pr
ExpÕ(QÆ1¸ )

[AC · � ”= �Õ] + negl(�(Ÿ))

Æ Pr
ExpÕ(QÆ1¸ )

#
AC · ¬EQ(QÆ1¸)

$
+ negl(�(Ÿ))

Æ
ÿ

vœ{0,1}¸

Pr
ExpÕ(Q<vfi{v})

[AC · EQ(Q<v) · ¬EQv] + 2¸ · negl(�(Ÿ))

Æ
ÿ

vœ{0,1}¸

Pr
ExpÕ(Sv)

[AC · EQ(S<v) · ¬EQv] + 2¸ · negl(�(Ÿ))

Æ
ÿ

iœ[B]
Pr

ExpÕ(Si)
[x1 = x2 ”= ‹ · ‡1 ”= ‡2] + 2¸ · negl(�(Ÿ)) .

Since 2¸ = M Æ M̄ Æ poly(�), Equation (25) follows. It remains to prove Claims 8.11 to 8.13.

Proof of Claim 8.11. Let Exp1 be the experiment that is define just like ExpÕ(QÆ1¸) except that instead of setting
c̃j Ω Enc(s̃k, 0¸

, r̃j) we set:

c̃1 = Restrict(c̃, [¸ + 1, 3¸]) , c̃2 = Restrict(c̃, [¸] fi [2¸ + 1, 3¸]) , c̃3 = Restrict(c̃, [2¸]) .

By the correctness of restriction (Definition 6.10) it is su�cient to prove that:

Pr
Exp1

#
AC · EQ(QÆ1¸) æ � = �Õ$ Ø 1 ≠ negl(�(Ÿ)) .

Let Exp2 be the experiment that is defined just like Exp1 except that instead of setting c̃ Ω Enc(s̃k, 03¸
, (r̃1 | r̃2 | r̃3))

we sample z1, z2, z3 Ω F¸ and set c̃ Ω Enc(s̃k, (z1 | z2 | z3), (r̃1 | r̃2 | r̃3)). We can emulate Exp2 given c̃ as input.
Therefore, by semantic security (Definition 6.5) and since M Æ M̄ Æ poly(�) it is su�cient to prove that:

Pr
Exp2

#
AC · EQ(QÆ1¸) æ � = �Õ$ Ø 1 ≠ negl(�(Ÿ)) .

By Claim 8.10, QÆ1¸ = {E}. Therefore, we need to prove that:

Pr
Exp2

[AC · EQt æ � = �Õ] Ø 1 ≠ negl(�(Ÿ)) . (31)

We rely on the following claim.
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Claim 8.14. For every j œ [3]:

Pr
Exp2

Ë
AC · Cj,k(t) = C

Õ
j,k(t) æ (Cj , ML.�j) = (CÕ

j , ML.�Õ
j
)
È

Ø 1 ≠ negl(�(Ÿ)) .

Before proving Claim 8.14 we use it to prove Equation (31). If AC occurs:

• Ck(t), C
Õ
k(t) œ Valid. Also, we can emulate the experiment Exp2 given ck(t) as input. Therefore, by the

unambiguity of ciphertexts (Definition 6.6):

Pr
Exp2

Ë
AC · EQt æ C1,k(t) = C

Õ
1,k(t)

È
Ø 1 ≠ K

Õ · poly(”̄ · ¯̧)
|F| .

Since ”̄ = 2, K
Õ
, ¯̧= 3 log M̄ Æ poly(�) and � = |F|o(1):

Pr
Exp2

Ë
AC · EQt æ C1,k(t) = C

Õ
1,k(t)

È
Ø 1 ≠ negl(�(Ÿ)) .

• Since C1,k = C2,k = C3,k and C
Õ
1,k

= C
Õ
2,k

= C
Õ
3,k

we have that for every j œ [3]:

C1,k(t) = C
Õ
1,k(t) ∆ Cj,k(t) = C

Õ
j,k(t) .

• By Claim 8.14:

Pr
Exp2

Ë
AC · Cj,k(t) = C

Õ
j,k(t) æ (Cj , ML.�j) = (CÕ

j
, ML.�Õ

j
)
È

Ø 1 ≠ negl(�(Ÿ)) .

• For every b = (b1, b2, b3) œ {0, 1}3 and j œ [3] the following zero-tests pass:

#!
Eb,{j} + ebj

"
· e1 = C̃j · e1

$
pp ,

Ë1
E

Õ
b,{j} + ebj

2
· e1 = C̃

Õ
j

· e1
È

pp
.

By construction Dec(s̃k, e1) ”= È0Ípp and thus, by the soundness of the zero-test (Definition 6.8):

Pr
Exp2

Ë
AC · C̃j = C̃

Õ
j

æ ’b,{j} = ’
Õ
b,{j}

È
= 1 .

Eb,{j}, E
Õ
b,{j} œ Valid. Also, we can emulate Exp2 given c̃ as input. Therefore, by the unambiguity of

ciphertexts (Definition 6.6):

Pr
Exp2

Ë
AC · ’b,{j} = ’

Õ
b,{j} æ Eb,{j} = E

Õ
b,{j}

È
Ø 1 ≠ poly(”̄ · ¯̧)

|F| .

Since ”̄ = 2, ¯̧= 3 log M̄ Æ poly(�) and � = |F|o(1):

Pr
Exp2

Ë
AC · ’b,{j} = ’

Õ
b,{j} æ Eb,{j} = E

Õ
b,{j}

È
Ø 1 ≠ negl(�(Ÿ)) .

• For every b œ {0, 1}3 and pair of non-empty disjoint subsets J, J
Õ ™ [3] the following zero-tests pass:

[Eb,J · Eb,JÕ = Eb,JfiJÕ · e1]pp .

By construction Dec(s̃k, e1) ”= È0Ípp and thus, by the soundness of the zero-test (Definition 6.8):

Pr
Exp2

#
AC · Eb,J = E

Õ
b,J

· Eb,JÕ = E
Õ
b,JÕ æ ’b,JfiJÕ = ’

Õ
b,JfiJÕ

$
= 1 .
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Eb,JfiJÕ , E
Õ
b,JfiJÕ œ Valid. Also, we can emulate Exp2 given c̃ as input. Therefore, by the unambiguity of

ciphertexts (Definition 6.6):

Pr
Exp2

#
AC · ’b,JfiJÕ = ’

Õ
b,JfiJÕ æ Eb,JfiJÕ = E

Õ
b,JfiJÕ

$
= 1 ≠ poly(”̄ · ¯̧)

|F| .

Since ”̄ = 2, ¯̧= 3 log M̄ Æ poly(�) and � = |F|o(1):

Pr
Exp1

#
AC · ’b,JfiJÕ = ’

Õ
b,JfiJÕ æ Eb,JfiJÕ = E

Õ
b,JfiJÕ

$
Ø 1 ≠ negl(�(Ÿ)) .

• For every b œ {0, 1}3 the following zero-tests pass:
S

UDb · e1 =

Q

aAb +
ÿ

iœ[n]
Bb,i,xi

R

b · Eb,[3]

T

V

pp

.

By construction Dec(s̃k, e1) ”= È0Ípp and thus, by the soundness of the zero-test (Definition 6.8):

Pr
Exp2

Ë
AC · Eb,[3] = E

Õ
b,[3] æ ›b = ›

Õ
b

È
= 1 .

Eb,[3], E
Õ
b,[3] œ Valid. Also, we can emulate Exp2 given c̃ as input. Therefore, by the unambiguity of ciphertexts

(Definition 6.6):

Pr
Exp2

Ë
AC · ›b,[3] = ›

Õ
b,[3] æ Db = D

Õ
b

È
= 1 ≠ poly(”̄ · ¯̧)

|F| .

Since ”̄ = 2, ¯̧= 3 log M̄ Æ poly(�) and � = |F|o(1):

Pr
Exp2

Ë
AC · ›b,[3] = ›

Õ
b,[3] æ Db = D

Õ
b

È
Ø 1 ≠ negl(�(Ÿ)) .

• For every b œ {0, 1}3, SC.V(SC.vk, Db, SC.�b) and SC.V(SC.vk, D
Õ
b, SC.�Õ

b) both accepts. We can emulate
Exp2 given c̃ as input. Therefore, by the unambiguity of the sum-check protocol (Definition 7.13):

Pr
Exp2

[AC · Db = D
Õ
b æ SC.�b = SC.�Õ

b] Ø 1 ≠ negl(�(Ÿ)) .

Equation (31) follows. It remains to prove Claim 8.14.

Proof of Claim 8.14. Fix any j œ [3]. Let Exp3 be the experiment that is define just like Exp2 except that instead of
setting:

c̃j = Restrict(c̃, [(j ≠ 1) · ¸] fi [j · ¸ + 1, 3¸]) ,

we set c̃j Ω Enc(s̃k, zj , r̃j). By the correctness of restriction (Definition 6.10) it is su�cient to prove that:

Pr
Exp3

Ë
AC · Cj,k(t) = C

Õ
j,k(t) æ (Cj , ML.�j) = (CÕ

j , ML.�Õ
j
)
È

Ø 1 ≠ negl(�(Ÿ)) .

Let Exp4 be the experiment that is defined just like Exp3 except that instead of setting c̃ Ω Enc(s̃k, z, (r̃1 | r̃2 | r̃3))
we set:

c̃ = RandExtend(c̃j , [(j ≠ 1) · ¸] fi [j · ¸ + 1, 3¸]) .

By the correctness of random extension (Definition 6.11) it is su�cient to prove that:

Pr
Exp4

Ë
AC · Cj,k(t) = C

Õ
j,k(t) æ (Cj , ML.�j) = (CÕ

j , ML.�Õ
j
)
È

Ø 1 ≠ negl(�(Ÿ)) .
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We can emulate Exp4 given (ML.pkj , ML.vkj) and (c1, . . . , cKÕ , c̃j) as input. Therefore, by the by the unambiguity
of the multilinearity protocol (Definition 7.9):

Pr
Exp4

Ë
AC · Cj,k(t) = C

Õ
j,k(t) æ (Cj , ML.�j) = (CÕ

j , ML.�Õ
j
)
È

Ø 1 ≠ K
Õ · negl(�(Ÿ)) . (32)

Since K
Õ Æ M̄ Æ poly(�), Equation (32), concluding the proof of the claim.

Proof of Claim 8.12. We rely on the following claim.

Claim 8.15. For every u œ {0, 1}<¸:

Pr
ExpÕ({u,u0,u1})

[AC · EQu0 · EQu1 æ EQu] Ø 1 ≠ negl(�(Ÿ)) .

Before proving Claim 8.15 we use it to prove Claim 8.12.
Fix any v œ {0, 1}¸. By the definition of the set QÆv there exists a sequence of sets Q0, . . . , Q¸Õ such that

Q0 = Q<v fi v, Q¸Õ = QÆv and for every i œ [¸Õ] there exists ui œ F<¸ such that:

ui0, ui1 œ Qi≠1 , Qi = (Qi≠1 \ {ui0, ui1}) fi {ui} .

By Claim 8.10, |Q<v| Æ ¸ and, hence, ¸
Õ Æ ¸. Since ¸ Æ M̄ Æ poly(�), it is su�cient to prove that for every

i œ [0, ¸
Õ]:

Pr
ExpÕ(Q0fiQi)

[AC · EQ(Q0) æ EQ(Qi)] Ø 1 ≠ i · negl(�(Ÿ)) . (33)

We prove Equation (33) by induction on i. For i = 0 Equation (33) holds trivially. Assume that Equation (33) holds
for i ≠ 1:

Pr
ExpÕ(Q0fiQi≠1)

[AC · EQ(Q0) æ EQ(Qi≠1)] Ø 1 ≠ (i ≠ 1) · negl(�(Ÿ)) .

By Claim 8.8:

Pr
ExpÕ(Q0fiQi≠1fiQi)

[AC · EQ(Q0) æ EQ(Qi≠1)] Ø 1 ≠ (i ≠ 1) · negl(�(Ÿ)) .

By Claim 8.15 and Claim 8.8:

Pr
ExpÕ(Q0fiQi≠1fiQi)

[AC · EQui0 · EQui1 æ EQui
] Ø 1 ≠ negl(�(Ÿ)) .

Since ui0, ui1 œ Qi≠1 and Qi ™ Qi≠1 fi {ui}:

Pr
ExpÕ(Q0fiQi≠1fiQi)

[AC · EQ(Q0) æ EQ(Qi≠1) æ EQ(Qi)] Ø 1 ≠ i · negl(�(Ÿ)) .

Equation (33) follows by Claim 8.8 concluding the proof of the claim.

Proof of Claim 8.15. Let i = |u0|. We have that:

([u]t)
i

= ti , ([u0]t)
i

= 0 , ([u1]t)
i

= 1 , ([u]t)≠i
= ([u0]t)≠i

= ([u1]t)≠i
.

In the experiment ExpÕ({u, u0, u1}) let:

Z =
!
sk = (sk1, . . . , skKÕ , s̃k) , c = (c1, . . . , cKÕ , c̃1) , r = (r1, . . . , rKÕ , r̃j)

"
.

Also, let —0, —1, —
Õ
0, —

Õ
1 œ F be the unique values such that:

È—1 · 0 + —0Ípp = –k([u0]t) , È—1 · 1 + —0Ípp = –k([u1]t) ,

È—Õ
1 · 0 + —

Õ
0Ípp = –

Õ
k([u0]t) , È—Õ

1 · 1 + —
Õ
0Ípp = –

Õ
k([u1]t) .
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When AC occurs ML.V(ML.vk1, C1, ML.�) and ML.V(ML.vk1, CÕ
1, ML.�Õ) both accept. Also, we can emulate

ExpÕ({u, u0, u1}) given (ML.pk1, ML.vk1) and Z as input. Therefore, by the soundness of the multilinearity protocol
(Definition 7.9):

Pr
ExpÕ({u,u0,u1})

5
AC æ

È—1 · ti + —0Ípp = –k([u]t)
È—Õ

1 · ti + —
Õ
0Ípp = –

Õ
k([u]t)

6
Ø 1 ≠ K

Õ3negl(�(Ÿ)) .

Since K
Õ Æ poly(�):

Pr
ExpÕ({u,u0,u1})

5
AC æ

È—1 · ti + —0Ípp = –k([u]t)
È—Õ

1 · ti + —
Õ
0Ípp = –

Õ
k([u]t)

6
Ø 1 ≠ negl(�(Ÿ)) .

When EQu0 and EQu1 both occur, we have that (—0, —1) = (—Õ
0, —

Õ
1) and, therefore:

Pr
ExpÕ({u,u0,u1})

[AC · EQu0 · EQu1 æ —1 · ti + —0 = —
Õ
1 · ti + —

Õ
0 æ EQu] Ø 1 ≠ negl(�(Ÿ)) .

Proof of Claim 8.13. We rely on the following claim.

Claim 8.16. For every u œ {0, 1}¸ and prefix w of u:

Pr
ExpÕ({u,w})

[AC · EQw æ EQu] Ø 1 ≠ negl(�(Ÿ)) .

Before proving Claim 8.16 we use it to prove Claim 8.13. By Claim 8.10 for every u œ SÆv, the set QÆv contains
a prefix w of u. By Claim 8.16 and Claim 8.8:

Pr
ExpÕ(SÆvfiQÆv)

[AC · EQw æ EQu] Ø 1 ≠ negl(�(Ÿ)) .

Since |SÆv| Æ M̄ Æ poly(�) the claim follows.

Proof of Claim 8.16. We prove the claim by induction on the length i of the prefix w. If i = ¸ we have that w = u
and the claim holds trivially. Assume that the claim holds for the length i prefix w of u:

Pr
ExpÕ({u,w})

[AC · EQw æ EQu] Ø 1 ≠ negl(�(Ÿ)) . (34)

We show that the claim holds also for the prefix wÕ of length i ≠ 1. Let w̄ be the prefix w with its last bit flipped.
We have that:

([wÕ]t)
i

= ti , ([w]t)
i

= ui , ([w̄]t)
i

= 1 ≠ ui , ([wÕ]t)≠i
= ([w]t)≠i

= ([w̄]t)≠i
.

In the experiment ExpÕ({wÕ
, w, w̄}) let:

Z =
!
sk = (sk1, . . . , skKÕ , s̃k) , c = (c1, . . . , cKÕ , c̃1) , r = (r1, . . . , rKÕ , r̃j)

"
.

Also, let —0, —1, —
Õ
0, —

Õ
1 œ F be the unique values such that:

È—1 · ui + —0Ípp = –k([w]t) , È—1 · (1 ≠ ui) + —0Ípp = –k([w̄]t) ,

È—Õ
1 · ui + —

Õ
0Ípp = –

Õ
k([w]t) , È—Õ

1 · (1 ≠ ui) + —
Õ
0Ípp = –

Õ
k([w̄]t) .
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When AC occurs ML.V(ML.vk1, C1, ML.�) and ML.V(ML.vk1, CÕ
1, ML.�Õ) both accept. Also, we can emulate

ExpÕ({wÕ
, w, w̄}) given (ML.pk1, ML.vk1) and Z as input. Therefore, by the soundness of the multilinearity protocol

(Definition 7.9):

Pr
ExpÕ({wÕ,w,w̄})

5
AC æ

È—1 · ti + —0Ípp = –k([wÕ]t)
È—Õ

1 · ti + —
Õ
0Ípp = –

Õ
k([wÕ]t)

6
Ø 1 ≠ K

Õ3 · negl(�(Ÿ)) .

Since K
Õ Æ poly(�):

Pr
ExpÕ({wÕ,w,w̄})

5
AC æ

È—1 · ti + —0Ípp = –k([wÕ]t)
È—Õ

1 · ti + —
Õ
0Ípp = –

Õ
k([wÕ]t)

6
Ø 1 ≠ negl(�(Ÿ)) .

When EQwÕ occurs, –k([wÕ]t) = –
Õ
k([wÕ]t). Therefore:

Pr
ExpÕ({wÕ,w,w̄})

Ë
AC · EQwÕ æ È—1 · ti + —0Ípp = È—Õ

1 · ti + —
Õ
0Ípp

È
Ø 1 ≠ negl(�(Ÿ)) .

When ¬EQw occurs, –k([w]t) ”= –
Õ
k([w]t) and, therefore, (—0, —1) ”= (—Õ

0, —
Õ
1). In this case, let t œ F be the unique

element such that —1 · t + —0 = —
Õ
1 · t + —

Õ
0. We, therefore, have that:

Pr
ExpÕ({wÕ,w,w̄})

[AC · EQwÕ · ¬EQw æ ti = t] Ø 1 ≠ negl(�(Ÿ)) .

It follows that:

Pr
ExpÕ({wÕ,w,w̄})

[AC · EQwÕ ”æ EQw] Æ Pr
ExpÕ({wÕ,w,w̄})

[¬EQw · ti = t] + negl(�(Ÿ)) .

Given ti and the encoding elements –k([w]t), –k([w̄]t), –
Õ
k([w]t), –

Õ
k([w̄]t) we can e�ciently test whether or not

ti = t using the fact that the encoding is additively homomorphic. Therefore, by Claim 8.8:

Pr
ExpÕ({wÕ,w})

[AC · EQwÕ ”æ ¬EQw] Æ Pr
ExpÕ({w,w̄})

[¬EQw · ti = t] + negl(�(Ÿ)) .

Since the experiment ExpÕ({w, w̄}) is completely independent of ti we have that:

Pr
ExpÕ({wÕ,w})

[AC · EQwÕ ”æ EQw] Æ 1
|F| + negl(�(Ÿ)) .

Since � = |F|o(1):
Pr

ExpÕ({wÕ,w})
[AC · EQwÕ æ EQw] Ø 1 ≠ negl(�(Ÿ)) .

By the inductive hypothesis (Equation (34)) and Claim 8.8:

Pr
ExpÕ({u,wÕ,w})

[AC · EQwÕ æ AC · EQw æ EQu] Ø 1 ≠ negl(�(Ÿ)) .

The claim follows by Claim 8.8.

9 Updatable Unambiguous Delegation
In this section we construct an updatable unambiguous delegation scheme.
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9.1 Construction
Fix an input length n = n(Ÿ) and a Turing machine M that runs in time T = T (n) and space S = S(n) Ø n.
Recall that UM consists of tuples (cf, cfÕ

, t) such that M transitions from cf to cfÕ in exactly t steps, and UM
n

™ UM

consists of such tuples where the input tapes in cf, cfÕ are of length n. Let M̄ = M̄(Ÿ) be a size bound that is specified
below, and let ¯̧= log M̄ . Let (QA.S, QA.P, QA.V) be a quasi-argument with formula size bound M̄ and input length
N = 2S (Definition 8.3).

High-level structure. The delegation scheme for UM is based on recursive proof composition. The recursion has
d = logn T (n) levels, and the proof in each level is composed of B = n proofs in the level below. For i œ [0, d], in the
i’th level of the recursion we invoke the quasi-argument setup algorithm on a formula Ïi with locality parameter Ki

and obtain the verification key vki. Let Mi denote the number of variables in Ïi and let ¸i = log Mi. Next we define
the formula Ïi and specify Ki. For each i > 0, the formula Ïi is defined using the previous level’s verification key
vki≠1.

The base formula Ï0. Let Ï0 be a 3CNF formula that checks a single computation step of the Turing machine M
on inputs of length n. The formula Ï0 has M0 = poly(S) variables describing:

• An input x of length N .

• A witness w of length poly(S).
We require that Ï0 satisfies the following properties:

• For every input x = (cf, cfÕ) œ {0, 1}N there exists w such that Ï0(x, w) = 1 if and only if (cf, cfÕ
, 1) œ UM.

Given x we can compute w in time poly(S).
• For every x there exists at most one w such that Ï0(x, w) = 1.

Since M is deterministic machine with space S, there exists such a formula Ï0. We set K0 = M0.

The quasi-argument verification formula. To define the formula Ïi for i œ [d], we use the formula Ï
QA
i

that
verifies a single quasi-argument proof form level i ≠ 1. For security parameter Ÿ œ N, let vki≠1 and Ki≠1 be the
verification key and locality parameter of the quasi-argument in level i≠1. The formula Ï

QA
i

has (Ki≠1+N)·poly(Ÿ, ¯̧)
variables describing:

• An input x of length N .

• A quasi-argument proof � of length Ki≠1 · poly(Ÿ, ¯̧).
• A witness w of length (Ki≠1 + N) · poly(Ÿ, ¯̧).

We require that Ï
QA
i

satisfies the following properties:

• For every (x = (cf, cfÕ), �) there is a witness w such that Ï
QA
i

(x, �, w) = 1 if and only if:

QA.V(vki≠1, (cf, cfÕ), �) = 1 .

Given (x, �) we can compute w in time (Ki≠1 + N) · poly(Ÿ, ¯̧).
• For every (x, �) there exists at most one w such that Ï

QA
i

(x, �, w) = 1.

Since QA.V is a deterministic algorithm running it time (Ki≠1 + N) · poly(Ÿ, ¯̧), there exists such a formula Ï
QA
i

.
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The batch verification formula. For i œ [d] the formula Ïi verifies B successive quasi-argument proofs form
level i ≠ 1. For security parameter Ÿ œ N the formula Ïi has Mi variables:

Mi = B · (Ki≠1 + N) · poly(Ÿ, ¯̧) ,

describing:
• An input x = (cf0, cfB) of length N .
• For every j œ [B ≠ 1], a configuration cfj of length S.
• For every j œ [B], a quasi-argument proof �j of length Ki≠1 · poly(Ÿ, ¯̧).
• For every j œ [B], a witness wj of length (Ki≠1 + N) · poly(Ÿ, ¯̧).

The formula Ïi is given by:

Ïi

1
cf0, (cfj , �j , wj)

jœ[B]

2
=

fi

jœ[B]
Ï

QA
i

((cfj≠1, cfj), �j , wj) .

We set Ki = (Ki≠1 + N) · poly(Ÿ, ¯̧) to be the number of variables in the formula Ï
QA
i

. Therefore, we have that
Mi < B · Ki.

Setting the formula size bound M̄ . We need to set M̄ such that Mi Æ M̄ for every i œ [d]. To this end we
assume that T (n) Æ 2Ÿ. Recall that we set K0 = M0 Ø N . Since Ki Ø Ki≠1 for every i œ [d], also Ki Ø N and,
therefore:

Ki = (Ki≠1 + N) · poly(Ÿ, ¯̧) = Ki≠1 · poly(Ÿ, ¯̧) .

Since M0 = poly(S) and ¯̧= log M̄ :

Ki = poly(S) · (poly(Ÿ, ¯̧))i = poly(S, Ÿ
i
, logi

M̄) .

Since Mi < B · Ki and B = n Æ S:
Mi = poly(S, Ÿ

i
, logi

M̄) .

Since T (n) Æ 2Ÿ it follows that d = logn T (n) Æ Ÿ. Therefore, we can set M̄ = poly(S, Ÿ
d) such that log M̄ Æ

poly(log S, Ÿ) and for every i œ [d]:
Mi = poly(S, Ÿ

i
, logi

M̄) Æ M̄ .

For such M̄ we have that:
Mi = poly(S, Ÿ

i) , Ki = poly(S, Ÿ
i) . (35)

We can now describe the scheme’s algorithms (Del.S, Del.P, Del.V, Del.U).

The setup algorithm Del.S. The setup algorithm is given as input the security parameter Ÿ and it proceeds as
follows:

• For every i œ [0, d] set (pki, vki) Ω QA.S (Ÿ, Ïi, Ki).
• Output the prover key pk = (pki, vki)iœ[0,d] and verifier key vk = (vki)iœ[0,d].

The prover algorithm Del.P. The prover algorithm is given as input:
• A prover key pk = (pki, vki)iœ[0,d].
• An input x = (cf, cfÕ

, t) œ UM
n

.
It proceeds as follows:

• Set cf0 Ω cf and �0 Ω E .
• For every i œ [t] set (cfi, �i) Ω Del.U(pk, (cf0, cfi≠1, i ≠ 1), �i≠1).
• Output the proof �t.
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The verifier algorithm Del.V. The verifier algorithm is given as input:

• A verifier key vk = (vki)iœ[0,d].

• An input x = (cf, cfÕ
, t).

• A proof �.

It proceeds as follows:

• Test that cf and cfÕ contain the same input tape of length n.

• Let —0, . . . , —d œ [0, B ≠ 1] be such that t =
q

iœ[0,d] —i · B
i.

• Parse � = (xi,j , �i,j)
iœ[0,d],jœ[—i].

• For every i œ [0, d] and j œ [—i] test that QA.V(vki, xi,j , �i,j) accepts.

• Let (yk)
kœ[k̄] be a lexicographic ordering of (xi,j)

iœ[0,d],jœ[—i] first by decreasing order of i and then by increasing
order of j. That is, for yk = xi,j and ykÕ = xiÕ,jÕ , if k < k

Õ then either i > i
Õ, or i = i

Õ and j < j
Õ.

• Parse yk = (cfk, cfÕ
k
) and test that

!
cf1, cfÕ

k̄

"
=

!
cf, cfÕ" and for every k œ [k̄ ≠ 1], cfÕ

k
= cfk+1.

• Output 1 if all tests pass. Otherwise output 0.

The update algorithm Del.U. The update algorithm is given as input:

• A prover key pk = (pki, vki)iœ[0,d].

• An input x = (cf, cfÕ
, t) œ UM

n
.

• A proof �.

It proceeds as follows:

• Let cfÕÕ by the configuration such that (cfÕ
, cfÕÕ

, 1) œ UM
n

.

• Let w be such that Ï0((cfÕ
, cfÕÕ), w) = 1.

• Let —0, . . . , —d œ [0, B ≠ 1] be such that t =
q

iœ[0,d] —i · B
i.

• Parse � = (xi,j , �i,j)
iœ[0,d],jœ[—i].

• Set —0 Ω —0 + 1, x0,—0 Ω (cfÕ
, cfÕÕ) and �0,—0 Ω QA.P(pk0, (x0,—0 , w)).

• While there exists i œ [0, d] such that —i = B:

– For every j œ [B] let wj be such that Ï
QA
i

(xi,j , �i,j , wj) = 1.
– For every j œ [B] parse xi,j = (cfj , cfÕ

j
).

– Set —i Ω 0 and —i+1 Ω —i+1 + 1.
– Set xi+1,—i+1 = (cf1, cfÕ

B
) and �i+1,—i+1 Ω QA.P

!
pki+1,

!
cf1, (cfÕ

j
, �i,j , w

i

j
)jœ[B]

""
.

• Output the configuration cfÕÕ and proof �Õ = (xi,j , �i,j)
iœ[0,d],jœ[—i].
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9.2 Analysis
In this section we prove the following theorem:

Theorem 9.1. For any deterministic Turing machine M that runs in time T = T (n) and space S = S(n) Ø n and
any functions n = n(Ÿ), � = �(Ÿ) such that n Ø Ÿ and T (n) Æ � Æ 2Ÿ, assuming that (QA.S, QA.P, QA.V) is a
�-secure �-unambiguous quasi-argument (Definitions 8.3 and 8.4) with formula size bound M̄ = poly(S, Ÿ

logn T (n))
and input length N = 2S, the delegation scheme (Del.S, Del.P, Del.V, Del.U) given in Section 9.1 is an updatable
�-sound �-unambiguous delegation scheme for UM with input length n, setup time TS = poly(M̄) and proof length
L� = poly(M̄).

The completeness, e�ciency, and updatability requirements follow by construction and by the completeness and
e�ciency of the quasi-argument. We focus on proving the soundness and unambiguity.

9.2.1 Soundness

We rely on the following claim.

Claim 9.2. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N and
i
ú œ [0, d]:

Pr
5

QA.V(vkiú , x, �) = 1
(cf, cfÕ

, B
i

ú) /œ UM
n

----

!
pk, vk = (vki)iœ[0,d]

"
Ω Del.S(Ÿ)

(x = (cf, cfÕ), �) Ω Adv(pk, vk)

6
Æ µ(�(Ÿ)) .

Before proving Claim 9.2 we use it to prove soundness. Fix a poly(�)-size adversary Adv and Ÿ œ N. Let Exp
denote the soundness experiment:

(pk, vk = (vki)iœ[0,d]) Ω Del.S(Ÿ)
(x = (cf, cfÕ

, t), �) Ω Adv(pk, vk)

Let —0, . . . , —d œ [0, B ≠ 1] be such that t =
q

iœ[0,d] —i · B
i and let � =

!
xi,j = (cfi,j , cfÕ

i,j
), �i,j

"
iœ[0,d],jœ[—i].

Let
!
yk = (cfk, cfÕ

k
)
"

kœ[k̄] be a lexicographic ordering of (xi,j)
iœ[0,d],jœ[—i] first by decreasing order of i and then by

increasing order of j. If Del.V(vk, x, �) accepts than:

• For every i œ [0, d] and j œ [—i], QA.V(vki, xi,j , �i,j) accepts. Therefore, by Claim 9.2:

Pr
Exp

#
Del.V(vk, x, �) æ ’i œ [0, d], j œ [—i] : (cfi,j , cfÕ

i,j
, B

i) œ UM
n

$
Ø 1 ≠ d · B · negl(�(Ÿ)) .

Since d, B Æ T (n) Æ �:

Pr
Exp

#
Del.V(vk, x, �) æ ’i œ [0, d], j œ [—i] : (cfi,j , cfÕ

i,j
, B

i) œ UM
n

$
Ø 1 ≠ negl(�(Ÿ)) .

•
!
cf1, cfÕ

k̄

"
=

!
cf, cfÕ" and for every k œ [k̄ ≠ 1], cfÕ

k
= cfk+1 Therefore:

Pr
Exp

#
Del.V(vk, x, �) · ’i œ [0, d], j œ [—i] : (cfi,j , cfÕ

i,j
, B

i) œ UM
n

æ (cf, cfÕ
, t) œ UM

n

$
= 1 .

Soundness follows. It remains to prove Claim 9.2.

Proof of Claim 9.2. For an adversary Adv and Ÿ œ N, let ExpAdv denote the experiment:

(pk, vk = (vki)iœ[0,d]) Ω Del.S(Ÿ)
(x = (cf, cfÕ), �) Ω Adv(pk, vk)

For i œ [0, d] let ACi be the event that in the experiment ExpAdv, QA.V(vki, x, �) accepts and (cf, cfÕ
, B

i) /œ UM
n

.
We rely on the following claims.
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Claim 9.3. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N:

Pr
ExpAdv

[AC0] Æ µ(�(Ÿ)) .

Claim 9.4. For every poly(�)-size adversary Adv and function ‘ there exists an adversary AdvÕ of size |Adv|+poly(�)
and negligible function µ such that for every Ÿ œ N and i œ [d] if:

Pr
ExpAdv

[ACi] Æ B · Pr
ExpAdvÕ

[ACi≠1] + µ(�(Ÿ)) .

Since B
d = T (n) Æ �, Claim 9.2 follows. It remains to prove Claims 9.3 and 9.4.

Proof of Claim 9.3. Fix any poly(�)-size adversary Adv. Let AdvÕ be the adversary that is given (pk0, vk0) emulates
the experiment ExpAdv except that in the emulation of Del.S it uses (pk0, vk0) given as input instead of having Del.S
sample these keys. Since Del.S runs in time poly(M̄) = poly(S, Ÿ

d) and Ÿ
d Æ n

d = T (n) Æ � we have that AdvÕ is
also of size poly(�) and for every Ÿ œ N:

Pr
ExpAdv

[AC0] = Pr
5

QA.V(vk0, x, �) = 1
(cf, cfÕ

, 1) /œ UM
n

----
(pk0, vk0) Ω QA.S (Ÿ, Ï0, K0)
(x = (cf, cfÕ), �) Ω AdvÕ(pk0, vk0)

6
.

Or, equivalently:

Pr
ExpAdv

[AC0] = Pr

S

U (cf, cfÕ) = x ”= ‹
(cf, cfÕ

, 1) /œ UM
n

------

(pk0, vk0) Ω QA.S (Ÿ, Ï0, K0)
(x = (cf, cfÕ), �) Ω AdvÕ(pk0, vk0)
if QA.V(vk0, x, �) = 0 : set x = ‹

T

V .

By the non-signaling extraction of the quasi-argument (Definition 8.3) there exists an oracle machine E such that:

• EAdvÕ is a �-non-signaling extractor with formula size bound M̄ , input length N and locality K0.

• Since we can test if (cf, cfÕ
, 1) /œ UM

n
in time poly(S) Æ poly(�) we have that for every Ÿ œ N:

Pr
ExpAdv

[AC0] Æ Pr
(x,‡)ΩEAdvÕ (Ï0,ÿ)

5
(cf, cfÕ) = x ”= ‹
(cf, cfÕ

, 1) /œ UM
n

6
+ negl(�(Ÿ)) .

Recall that K0 = M0 is the number of variables in the formula Ï0. Therefore, by the non-signaling of E
(Definition 8.2) for every Ÿ œ N:

Pr
ExpAdv

[AC0] Æ Pr
(x,‡)ΩEAdvÕ (Ï0,[M0])

5
(cf, cfÕ) = x ”= ‹
(cf, cfÕ

, 1) /œ UM
n

6
+ negl(�(Ÿ)) .

Let (x̃, w̃) be the values described by the assignment ‡ : [M0] æ {0, 1}. By the local consistency of E
(Definition 8.2) for every Ÿ œ N:

Pr
(x,‡)ΩE(Ï0,[M0])

5
x = ‹ ‚ x = x̃

Ï0(x̃, w̃) = 1

6
Ø 1 ≠ negl(�(Ÿ)) .

Therefore, we have that for every Ÿ œ N:

Pr
ExpAdv

[AC0] Æ Pr
(x,‡)ΩEAdvÕ (Ï0,[M0])

S

U
(cf, cfÕ) = x ”= ‹
Ï0(x, w̃) = 1
(cf, cfÕ

, 1) /œ UM
n

T

V + negl(�(Ÿ)) .

By the construction of Ï0 there exists w̃ such that Ï0(x, w̃) = 1 only if (cf, cfÕ
, 1) œ UM. Therefore:

Pr
ExpAdv

[AC0] Æ negl(�(Ÿ)) .
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Proof of Claim 9.4. Fix any poly(�)-size adversary Adv and for every Ÿ œ N fix any i œ [d]. Let ExpÕ
r

be the
experiment ExpAdv where we fix the randomness r of Del.S used to sample the keys (pkj , vkj) for every j < i.
Therefore, we have that:

Pr
ExpAdv

[ACi] = Pr
r,ExpÕ

r

[ACi] .

For every Ÿ œ N, fix some r. Note that this also fixes the formula Ïi. Let AdvÕ
r

be the adversary that is given
(pki, vki) emulates the experiment ExpÕ

r
except that in the emulation of Del.S it uses (pki, vki) given as input instead

of having Del.S sample these keys. Since Del.S runs in time poly(M̄) = poly(S, Ÿ
d) and Ÿ

d Æ n
d = T (n) Æ �, we

have that AdvÕ
r

is also of size poly(�) and for every Ÿ œ N:

Pr
ExpÕ

r

[ACi] = Pr
5

QA.V(vki, x, �) = 1
(cf, cfÕ

, B
i) /œ UM

n

----
(pki, vki) Ω QA.S (Ÿ, Ïi, Ki)
(x = (cf, cfÕ), �) Ω AdvÕ

r
(pki, vki)

6
.

Or, equivalently:

Pr
ExpÕ

r

[ACi] = Pr

S

U (cf, cfÕ) = x ”= ‹
(cf, cfÕ

, B
i) /œ UM

n

------

(pki, vki) Ω QA.S (Ÿ, Ïi, Ki)
(x, �) Ω AdvÕ

r
(pki, vki)

if QA.V(vki, x, �) = 0 : set x = ‹

T

V .

For x = (cf, cfÕ) and j œ [0, B] we denote by c̄fj the unique configuration such that (cf, c̄fj , j · B
i≠1) œ UM

n
.

The configuration c̄fj can computed in time poly(S) · B
i Æ poly(�) given x. We have that for every Ÿ œ N:

Pr
ExpÕ

r

[ACi] = Pr

S

U x ”= ‹
cfÕ ”= c̄fB

------

(pki, vki) Ω QA.S (Ÿ, Ïi, Ki)
(x, �) Ω AdvÕ

r
(pki, vki)

if QA.V(vki, x, �) = 0 : set x = ‹

T

V .

By the non-signaling extraction requirement of the quasi-argument (Definition 8.3) there exists an oracle machine
E such that:

• E runs in time poly(M̄) and makes a single oracle call to AdvÕ
r
. Therefore, we can emulate EAdvÕ

r in time
poly(�).

• EAdvÕ
r is a �-non-signaling extractor with formula size bound M̄ , input length N and locality Ki.

• Since the configuration c̄fB can computed in time poly(�), we have that for every Ÿ œ N:

Pr
ExpÕ

r

[ACi] Æ Pr
(x,‡)ΩEAdvÕ

r (Ïi,ÿ)

5
x ”= ‹
cfÕ ”= c̄fB

6
+ negl(�(Ÿ)) .

Recall that the formula Ïi is given by:

Ïi

1
cf0, (cfj , �j , wj)

jœ[B]

2
=

fi

jœ[B]
Ï

QA
i

((cfj≠1, cfj), �j , wj) ,

and that Ki is the number of variables in the formula Ï
QA
i

. For every j œ [B] let Sj be the set of Ki variables describing
the values (cfj≠1, cfj , �j , wj). By the non-signaling of E (Definition 8.2) for every j œ [B] and Ÿ œ N:

Pr
ExpÕ

r

[ACi] Æ Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

5
x ”= ‹
cfÕ ”= c̄fB

6
+ negl(�(Ÿ)) . (36)

Let (c̃fj≠1, c̃fj , �̃j , w̃j) be the values described by the assignment ‡ : Sj æ {0, 1}. By the local consistency of
E (Definition 8.2) for every j œ [B] and Ÿ œ N:

Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

5
x = ‹ ‚ ’i œ Sj fl [N ] : ‡(i) = xi

Ï
QA
i

((c̃fj≠1, c̃fj), �̃j , w̃j) = 1

6
Ø 1 ≠ negl(�(Ÿ)) .
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By the construction of Ï
QA
i

there exists w̃j such that Ï
QA
i

((c̃fj≠1, c̃fj), �̃j , w̃j) = 1 only if:

QA.V(vki≠1, (c̃fj≠1, c̃fj), �̃j) = 1 .

Therefore, we have that for every j œ [B] and Ÿ œ N:

Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

#
x ”= ‹ æ QA.V(vki≠1, (c̃fj≠1, c̃fj), �̃j) = 1

$
Ø 1 ≠ negl(�(Ÿ)) . (37)

Additionally, for j = 1:

Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

#
x ”= ‹ æ c̄f0 = cf = c̃f0

$
Ø 1 ≠ negl(�(Ÿ)) . (38)

Similarly, for j = B:

Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

#
x ”= ‹ æ c̄fB ”= cfÕ = c̃fB

$
Ø 1 ≠ negl(�(Ÿ)) . (39)

By the non-signaling of E (Definition 8.2) for every j œ [B ≠ 1] and Ÿ œ N:
------

Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

S

U
x ”= ‹
cfÕ ”= c̄fB

c̄fj = c̃fj

T

V ≠ Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj+1)

S

U
x ”= ‹
cfÕ ”= c̄fB

c̄fj = c̃fj

T

V

------
Æ negl(�(Ÿ)) . (40)

For every j œ [B], since c̄fj is the unique configuration such that (c̄fj≠1, c̄fj , B
i≠1) œ UM

n
. Therefore:

Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

S

U
x ”= ‹
cfÕ ”= c̄fB

c̃fj≠1 = c̄fj≠1

T

V (41)

Æ Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

S

U
x ”= ‹
cfÕ ”= c̄fB

(c̃fj≠1, c̃fj , B
i≠1) /œ UM

n

T

V + Pr
(x,‡)ΩEAdvÕ

r (Ïi,Sj)

S

U
x ”= ‹
cfÕ ”= c̄fB

c̃fj = c̄fj

T

V .

By Equations (36) and (38):

Pr
ExpÕ

r

[ACi] Æ Pr
(x,‡)ΩEAdvÕ

r (Ïi,S1)

S

U
x ”= ‹
cfÕ ”= c̄fB

c̃f0 = c̄f0

T

V + negl(�(Ÿ)) .

By Equations (40) and (41):

Pr
ExpÕ

r

[ACi] Æ
ÿ

jœ[B]
Pr

(x,‡)ΩEAdvÕ
r (Ïi,Sj)

S

U
x ”= ‹
cfÕ ”= c̄fB

(c̃fj≠1, c̃fj , B
i≠1) /œ UM

n

T

V

+ Pr
(x,‡)ΩEAdvÕ

r (Ïi,SB)

S

U
x ”= ‹
cfÕ ”= c̄fB

c̃fB = c̄fB

T

V + negl(�(Ÿ)) .

By Equation (39):

Pr
ExpÕ

r

[ACi] Æ
ÿ

jœ[B]
Pr

(x,‡)ΩEAdvÕ
r (Ïi,Sj)

S

U
x ”= ‹
cfÕ ”= c̄fB

(c̃fj≠1, c̃fj , B
i≠1) /œ UM

n

T

V + negl(�(Ÿ)) .
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By Equation (37):

Pr
ExpÕ

r

[ACi] Æ
ÿ

jœ[B]
Pr

(x,‡)ΩEAdvÕ
r (Ïi,Sj)

5
QA.V(vki≠1, (c̃fj≠1, c̃fj), �̃j) = 1
(c̃fj≠1, c̃fj , B

i≠1) /œ UM
n

6
+ negl(�(Ÿ)) .

Therefore, there exists j
ú œ [B] such that:

Pr
ExpAdv

[ACi] = Pr
r,ExpÕ

r

[ACi] Æ B · Pr
r,EAdvÕ

r (Ïi,Sjú )

5
QA.V(vki≠1, (c̃fjú≠1, c̃fjú), �̃jú) = 1
(c̃fjú≠1, c̃fjú , B

i≠1) /œ UM
n

6
+ negl(�(Ÿ)) .

Let AdvÕ be the adversary that given (pk, vk = (vki)iœ[0,d]) sampled from Del.S(Ÿ) emulates EAdvÕ
r (Ïi, Sjú) except

that in the emulation of Del.S it uses the input keys (pkj , vkj) for every j < i instead of having Del.S sample these
keys using the randomness r (note that r is not used anywhere else in the emulation). The adversary AdvÕ outputs
((c̃fjú≠1, c̃fjú), �̃jú). We have that:

Pr
r,EAdvÕ

r (Ïi,Sjú )

5
QA.V(vki≠1, (c̃fjú≠1, c̃fjú), �̃jú) = 1
(c̃fjú≠1, c̃fjú , B

i≠1) /œ UM
n

6
= Pr

ExpAdvÕ
[ACi≠1] .

Therefore:
Pr

ExpAdv
[ACi] Æ B · Pr

ExpAdvÕ
[ACi≠1] + negl(�(Ÿ)) .

9.2.2 Unambiguity.

We rely on the following claim.

Claim 9.5. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N and
i
ú œ [0, d]:

Pr

S

U
QA.V(vkiú , x, �) = 1
QA.V(vkiú , x, �̄) = 1
� ”= �̄

------

!
pk, vk = (vki)iœ[0,d]

"
Ω Del.S(Ÿ)

(x = (cf, cfÕ), �, �̄) Ω Adv(pk, vk)

T

V Æ µ(�(Ÿ)) .

Before proving Claim 9.5 we use it to prove unambiguity. Fix a poly(�)-size adversary Adv and Ÿ œ N. Let Exp
denote the unambiguity experiment:

(pk, vk = (vki)iœ[0,d]) Ω Del.S(Ÿ)
(x = (cf, cfÕ

, t), �, �̄) Ω Adv(pk, vk)

Let —0, . . . , —d œ [0, B ≠ 1] be such that t =
q

iœ[0,d] —i · B
i and let

� =
!
xi,j = (cfi,j , cfÕ

i,j
), �i,j

"
iœ[0,d],jœ[—i] , �̄ =

1
x̄i,j = (c̄fi,j , c̄fÕ

i,j
), �̄i,j

2

iœ[0,d],jœ[—i]
.

Let
!
yk = (cfk, cfÕ

k
)
"

kœ[k̄] be a lexicographic ordering of (xi,j)
iœ[0,d],jœ[—i] first by decreasing order of i and then

by increasing order of j. Similarly, let
1

ȳk = (c̄fk, c̄fÕ
k
)
2

kœ[k̄]
be a lexicographic ordering of (x̄i,j)

iœ[0,d],jœ[—i]. If

Del.V(vk, x, �) and Del.V(vk, x, �̄) both accept then:
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• For every i œ [0, d] and j œ [—i], QA.V(vki, xi,j , �i,j) and QA.V(vki, x̄i,j , �̄i,j) both accept. Therefore, by
Claim 9.2:

Pr
Exp

#
Del.V(vk, x, �) æ ’i œ [0, d], j œ [—i] : (cfi,j , cfÕ

i,j
, B

i) œ UM
n

$
Ø 1 ≠ d · B · negl(�(Ÿ)) .

Since d, B Æ T (n) Æ �:

Pr
Exp

#
Del.V(vk, x, �) æ ’i œ [0, d], j œ [—i] : (cfi,j , cfÕ

i,j
, B

i) œ UM
n

$
Ø 1 ≠ negl(�(Ÿ)) .

•
!
cf1, cfÕ

k̄

"
=

!
cf, cfÕ" and for every k œ [k̄ ≠ 1], cfÕ

k
= cfk+1. Let ti,j =

1q
iÕœ[i+1,d] —iÕ · B

i
Õ
2

+ j · B
i. Since

M is deterministic, the following holds:

Pr
Exp

5
Del.V(vk, x, �)
’i œ [0, d], j œ [—i] : (cfi,j , cfÕ

i,j
, B

i) œ UM
n

æ ’i œ [0, d], j œ [—i] : (cf, cfÕ
i,j

, ti,j) œ UM
n

6
= 1 .

Together this implies:

Pr
Exp

#
Del.V(vk, x, �) æ ’i œ [0, d], j œ [—i] : (cf, cfÕ

i,j
, ti,j) œ UM

n

$
Ø 1 ≠ negl(�(Ÿ)) .

Similarly:

Pr
Exp

Ë
Del.V(vk, x, �̄) æ ’i œ [0, d], j œ [—i] : (cf, c̄fÕ

i,j
, ti,j) œ UM

n

È
Ø 1 ≠ negl(�(Ÿ)) .

Since M is deterministic, if (cf, cfÕ
i,j

, ti,j) œ UM
n

and (cf, c̄fÕ
i,j

, ti,j) œ UM
n

then cfÕ
i,j

= c̄fÕ
i,j

. Thus:

Pr
Exp

5
Del.V(vk, x, �)
Del.V(vk, x, �̄) æ ’i œ [0, d], j œ [—i] : xi,j = x̄i,j

6
Ø 1 ≠ negl(�(Ÿ)) .

Then by Claim 9.5:

Pr
Exp

S

U
Del.V(vk, x, �)
Del.V(vk, x, �̄)
’i œ [0, d], j œ [—i] : xi,j = x̄i,j

æ ’i œ [0, d], j œ [—i] : �i,j = �̄i,j

T

V Ø 1 ≠ d · B · negl(�(Ÿ)) .

Unambiguity follows. It remains to prove Claim 9.5.

Proof of Claim 9.5. For an adversary Adv and Ÿ œ N, let ExpAdv denote the experiment:

(pk, vk = (vki)iœ[0,d]) Ω Del.S(Ÿ)
(x = (cf, cfÕ), �, �̄) Ω Adv(pk, vk)

For i œ [0, d] let ACi be the event that in the experiment ExpAdv, QA.V(vki, x, �) and QA.V(vki, x, �̄) both accept
and � ”= �̄.

We rely on the following claims.

Claim 9.6. For every poly(�)-size adversary Adv there exists a negligible function µ such that for every Ÿ œ N:

Pr
ExpAdv

[AC0] Æ µ(�(Ÿ)) .

Claim 9.7. For every poly(�)-size adversary Adv there exists an adversary AdvÕ of size |Adv|+poly(�) and negligible
function µ such that for every Ÿ œ N and i œ [d]:

Pr
ExpAdv

[ACi] Æ B · Pr
ExpAdvÕ

[ACi≠1] + µ(�(Ÿ)) .
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Since B
d = T (n) Æ �, Claim 9.5 follows. It remains to prove Claims 9.6 and 9.7.

Proof of Claim 9.6. Fix any poly(�)-size adversary Adv. Let AdvÕ be the adversary that is given (pk0, vk0) emulates
the experiment ExpAdv except that in the emulation of Del.S it uses (pk0, vk0) given as input instead of having Del.S
sample these keys. Since Del.S runs in time poly(M̄) = poly(S, Ÿ

d) and Ÿ
d Æ n

d = T (n) Æ � we have that AdvÕ is
also of size poly(�) and for every Ÿ œ N:

Pr
ExpAdv

[AC0] = Pr

S

U
QA.V(vk0, x, �) = 1
QA.V(vk0, x, �̄) = 1
� ”= �̄

------
(pk0, vk0) Ω QA.S (Ÿ, Ï0, K0)
(x = (cf, cfÕ), �, �̄) Ω AdvÕ(pk0, vk0)

T

V .

For every i
Õ œ [B] let SiÕ = [M0] and note that |SiÕ | Æ K0 and

t
iÕœ[B] SiÕ = [M0]. By the �-unambiguity of the

quasi-argument (Definition 8.4) there exist oracle machines E1, E2 such that for every Ÿ œ N:

Pr

S

U
QA.V(vk, x, �) = 1
QA.V(vk, x, �̄) = 1
� ”= �̄

------
(pk0, vk0) Ω QA.S(Ÿ, Ï0, K0)
(x = (cf, cfÕ), �, �̄) Ω AdvÕ(pk0, vk0)

T

V Æ

ÿ

iÕœ[B]
Pr
r

5
x1 = x2 ”= ‹
‡1 ”= ‡2

---- ’j œ [2] : (xj , ‡j = (x̃j , w̃j)) Ω EAdvÕ

j
(Ï0, SiÕ ; r)

6
+ negl(�(Ÿ)) .

Furthermore:
ÿ

iÕœ[B]
Pr
r

5
x1 = x2 ”= ‹
‡1 ”= ‡2

---- ’j œ [2] : (xj , ‡j = (x̃j , w̃j)) Ω EAdvÕ

j
(Ï0, SiÕ ; r)

6
Æ

ÿ

iÕœ[B]
Pr
r

5
x1 = x2 ”= ‹
÷j œ [2] : xj ”= x̃j ‚ Ï0(‡j) ”= 1

---- ’j œ [2] : (xj , ‡j = (x̃j , w̃j)) Ω EAdvÕ

j
(Ï0, SiÕ ; r)

6
.

For i œ [B], j œ [2] by the local consistency of Ej (Definition 8.2):

Pr
(xj ,‡j=(x̃j ,w̃j))ΩEAdvÕ

j (Ï0,Si)

5
xj = ‹ ‚ xj = x̃j

Ï0(‡j) = 1

6
Ø 1 ≠ negl(�(Ÿ)) .

Thus:
ÿ

iÕœ[B]
Pr
r

5
x1 = x2 ”= ‹
÷j œ [2] : xj ”= x̃j ‚ Ï0(‡j) ”= 1

---- ’j œ [2] : (xj , ‡j = (x̃j , w̃j)) Ω EAdvÕ

j
(Ï0, SiÕ ; r)

6
Æ

ÿ

iÕœ[B],jœ[2]
Pr
r

5
xj ”= ‹
xj ”= x̃j ‚ Ï0(‡j) ”= 1

---- (xj , ‡j = (x̃j , w̃j)) Ω EAdvÕ

j
(Ï0, SiÕ ; r)

6
Æ B · negl(�(Ÿ)) .

The above together with B Æ T (n) Æ � shows that:

Pr
ExpAdv

[AC0] Æ negl(�(Ÿ)) .

Proof of Claim 9.7. Fix any poly(�)-size adversary Adv and for every Ÿ œ N fix any i œ [d]. Let ExpÕ
r

be the
experiment ExpAdv where we fix the randomness r of Del.S used to sample the keys (pkj , vkj) for every j < i.
Therefore, we have that:

Pr
ExpAdv

[ACi] = Pr
r,ExpÕ

r

[ACi] .

For every Ÿ œ N, fix some r. Note that this also fixes the formula Ïi. Let AdvÕ
r

be the adversary that is given
(pki, vki) emulates the experiment ExpÕ

r
except that in the emulation of Del.S it uses (pki, vki) given as input instead
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of having Del.S sample these keys. Since Del.S runs in time poly(M̄) = poly(S, Ÿ
d) and Ÿ

d Æ n
d = T (n) Æ �, we

have that AdvÕ
r

is also of size poly(�) and for every Ÿ œ N:

Pr
ExpÕ

r

[ACi] = Pr

S

U
QA.V(vki, x, �) = 1
QA.V(vki, x, �̄) = 1
� ”= �̄

------
(pki, vki) Ω QA.S (Ÿ, Ïi, Ki)
(x = (cf, cfÕ), �, �̄) Ω AdvÕ

r
(pki, vki)

T

V .

Recall that the formula Ïi is given by:

Ïi

1
cf0, (cfj , �j , wj)

jœ[B]

2
=

fi

jœ[B]
Ï

QA
i

((cfj≠1, cfj), �j , wj) ,

and that Ki is the number of variables in the formula Ï
QA
i

. For every j œ [B] let Sj be the set of Ki variables
describing the values (cfj≠1, cfj , �j , wj). Note that

t
jœ[B] Sj = [Mi]. By the �-unambiguity of the quasi-argument

(Definition 8.4) for every Ÿ œ N:

Pr

S

U
QA.V(vki, x, �) = 1
QA.V(vki, x, �̄) = 1
� ”= �̄

------
(pki, vki) Ω QA.S(Ÿ, Ïi, Ki)
(x, �, �̄) Ω AdvÕ

r
(pki, vki)

T

V Æ

ÿ

júœ[B]
Pr
r

5
x1 = x2 ”= ‹
‡1 ”= ‡2

---- ’j œ [2] : (xj , ‡j) Ω EAdvÕ
r

j
(Ïi, Sjú ; r)

6
+ negl(�(Ÿ)) .

By the equations above:

Pr
ExpAdv

[ACi] Æ
ÿ

júœ[B]
Pr
r

5
x1 = x2 ”= ‹
‡1 ”= ‡2

---- ’j œ [2] : (xj , ‡j) Ω EAdvÕ
r

j
(Ïi, Sjú ; r)

6
+ negl(�(Ÿ)) . (42)

Fix any j
ú œ [B]. Let (cfjú≠1, cfjú , �jú , wjú) and (c̄fjú≠1, c̄fjú , �̄jú , w̄jú) be the values described by the

assignments ‡1 : Sjú æ {0, 1} and ‡2 : Sjú æ {0, 1} respectively. By the local consistency of E1 (Definition 8.2) for
every Ÿ œ N:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,Sjú )

5
x1 = ‹ ‚ ’i œ Sjú fl [N ] : ‡1(i) = x1,i

Ï
QA
i

((cfjú≠1, cfjú), �jú , wjú) = 1

6
Ø 1 ≠ negl(�(Ÿ)) .

This implies:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,Sjú )

Ë
x1 ”= ‹ æ Ï

QA
i

((cfjú≠1, cfjú), �jú , wjú) = 1
È

Ø 1 ≠ negl(�(Ÿ)) .

Similarly:

Pr
(x2,‡2)ΩEAdvÕ

r
2 (Ïi,Sjú )

Ë
x2 ”= ‹ æ Ï

QA
i

((c̄fjú≠1, c̄fjú), �̄jú , w̄jú) = 1
È

Ø 1 ≠ negl(�(Ÿ)) .

Let Expj
ú

r
denote the experiment:

’j œ [2] : (xj , ‡j) Ω EAdvÕ
r

j
(Ïi, Sjú ; r) .

Then:

Pr
r,Expjú

r

5
x1 = x2 ”= ‹
‡1 ”= ‡2

6
Æ Pr

r,Expjú
r

S

WWU

x1 = x2 ”= ‹
‡1 ”= ‡2
Ï

QA
i

((cfjú≠1, cfjú), �jú , wjú) = 1
Ï

QA
i

((c̄fjú≠1, c̄fjú), �̄jú , w̄jú) = 1

T

XXV + negl(�(Ÿ)) . (43)
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By the construction of Ï
QA
i

if (cfjú≠1, cfjú , �jú) = (c̄fjú≠1, c̄fjú , �̄jú) and both Ï
QA
i

((cfjú≠1, cfjú), �jú , wjú) =
1 and Ï

QA
i

((c̄fjú≠1, c̄fjú), �̄jú , w̄jú) = 1 then ‡1 = ‡2. Additionally there exists wjú , w̄jú such that

Ï
QA
i

((cfjú≠1, cfjú), �jú , wjú) = 1

Ï
QA
i

((c̄fjú≠1, c̄fjú), �̄jú , w̄jú) = 1
only if:

QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1

Therefore:

Pr
r,Expjú

r

S

WWU

x1 = x2 ”= ‹
‡1 ”= ‡2
Ï

QA
i

((cfjú≠1, cfjú), �jú , wjú) = 1
Ï

QA
i

((c̄fjú≠1, c̄fjú), �̄jú , w̄jú) = 1

T

XXV Æ (44)

Pr
r,Expjú

r

5
x1 = x2 ”= ‹
cfjú≠1 ”= c̄fjú≠1

6
+ Pr

r,Expjú
r

S

WWWWU

x1 = x2 ”= ‹
cfjú≠1 = c̄fjú≠1
cfjú ”= c̄fjú

QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1

T

XXXXV
(45)

+ Pr
r,Expjú

r

S

WWWWU

x1 = x2 ”= ‹
(cfjú≠1, cfjú) = (c̄fjú≠1, c̄fjú)
�jú ”= �̄jú

QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1

T

XXXXV
. (46)

In what follows, we upper bound each of the probabilities on the right. First note that:

Pr
r,Expjú

r

S

WWWWU

x1 = x2 ”= ‹
(cfjú≠1, cfjú) = (c̄fjú≠1, c̄fjú)
�jú ”= �̄jú

QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1

T

XXXXV
Æ Pr

r,Expjú
r

S

U
QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (cfjú≠1, cfjú), �̄jú) = 1
�jú ”= �̄jú

T

V .

Let AdvÕ be the adversary that given (pk, vk = (vki)iœ[0,d]) sampled from Del.S(Ÿ) samples r and for j œ [2]
emulates EAdvÕ

r
j

(Ïi, Sjú) except that in the emulation of Del.S it uses the input keys (pkjÕ , vkjÕ) for every j
Õ
< i instead

of having Del.S sample these keys using the randomness r (note that r is not used anywhere else in the emulation).
The adversary AdvÕ outputs ((cfjú≠1, cfjú), �jú , �̄jú). We have that:

Pr
r,Expjú

r

S

U
QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (cfjú≠1, cfjú), �̄jú) = 1
�jú ”= �̄jú

T

V = Pr
ExpAdvÕ

[ACi≠1]

so

Pr
r,Expjú

r

S

WWWWU

x1 = x2 ”= ‹
(cfjú≠1, cfjú) = (c̄fjú≠1, c̄fjú)
�jú ”= �̄jú

QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1

T

XXXXV
Æ Pr

ExpAdvÕ
[ACi≠1] . (47)

Let AdvÕÕ be the adversary that given (pk, vk = (vki)iœ[0,d]) sampled from Del.S(Ÿ) samples r and for j œ [2]
emulates EAdvÕ

r
j

(Ïi, Sjú) except that in the emulation of Del.S it uses the input keys (pkjÕ , vkjÕ) for every j
Õ
< i instead
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of having Del.S sample these keys using the randomness r. AdvÕÕ outputs ((cfjú≠1, cfjú), �jú) or
!
(c̄fjú≠1, c̄fjú), �̄jú

"

with equal probability. Since M is deterministic, if cfjú≠1 = c̄fjú≠1 and cfjú ”= c̄fjú then either (cfjú≠1, cfjú , B
i≠1) /œ

UM
n

or (c̄fjú≠1, c̄fjú , B
i≠1) /œ UM

n
. Therefore:

Pr
r,Expjú

r

S

WWWWU

x1 = x2 ”= ‹
cfjú≠1 = c̄fjú≠1
cfjú ”= c̄fjú

QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1

T

XXXXV
Æ Pr

r,Expjú
r

S

U
QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1
(cfjú≠1, cfjú , B

i≠1) /œ UM
n

‚ (c̄fjú≠1, c̄fjú , B
i≠1) /œ UM

n

T

V

Æ 2 · Pr
5

QA.V(vki≠1, x, �) = 1
(cf, cfÕ

, B
i≠1) /œ UM

n

----

!
pk, vk = (vki)iœ[0,d]

"
Ω Del.S(Ÿ)

(x = (cf, cfÕ), �) Ω AdvÕÕ(pk, vk)

6
.

By Claim 9.2:

Pr
r,Expjú

r

S

WWWWU

x1 = x2 ”= ‹
cfjú≠1 = c̄fjú≠1
cfjú ”= c̄fjú

QA.V(vki≠1, (cfjú≠1, cfjú), �jú) = 1
QA.V(vki≠1, (c̄fjú≠1, c̄fjú), �̄jú) = 1

T

XXXXV
Æ negl(�(Ÿ)) . (48)

Next we prove the following claim.

Claim 9.8. For every j
ú œ [B] there exists a negligible function µ such that for every Ÿ œ N:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,Sjú )

5
x1 ”= ‹
cfjú≠1 ”= ĉfjú≠1

6
Æ µ(�(Ÿ))

where x1 = (cf, cfÕ), ‡1 = (cfjú≠1, cfjú , �jú , wjú) and ĉfjú is the unique configuration of M after j
ú · B

i≠1 steps
starting from cf. Similarly:

Pr
(x2,‡2)ΩEAdvÕ

r
2 (Ïi,Sjú )

5
x2 ”= ‹
c̄fjú≠1 ”= ĉfjú≠1

6
Æ µ(�(Ÿ)) .

Proof. We focus on proving the claim for E1. The proof for E2 is analogous. By the non-signaling of E1 (Definition 8.4)
for every j

Õ œ [jú ≠ 1] and Ÿ œ N, since ĉfjÕ can be computed in time �(Ÿ) given cf we have that:
------

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ+1)

5
x1 ”= ‹
cfjÕ ”= ĉfjÕ

6
≠ Pr

(x1,‡1)ΩEAdvÕ
r

1 (Ïi,SjÕ )

5
x1 ”= ‹
cfjÕ ”= ĉfjÕ

6------
Æ negl(�(Ÿ)) .

Therefore:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ+1)

5
x1 ”= ‹
cfjÕ ”= ĉfjÕ

6
Æ (49)

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

5
x1 ”= ‹
cfjÕ≠1 ”= ĉfjÕ≠1

6
+ Pr

(x1,‡1)ΩEAdvÕ
r

1 (Ïi,SjÕ )

S

U
x1 ”= ‹
cfjÕ≠1 = ĉfjÕ≠1
cfjÕ ”= ĉfjÕ

T

V + negl(�(Ÿ)) . (50)

If cfjÕ≠1 = ĉfjÕ≠1 and cfjÕ ”= ĉfjÕ then (cfjÕ≠1, cfjÕ) /œ UM
n

. Thus:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

S

U
x1 ”= ‹
cfjÕ≠1 = ĉfjÕ≠1
cfjÕ ”= ĉfjÕ

T

V Æ Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

5
x1 ”= ‹
(cfjÕ≠1, cfjÕ , B

i≠1) /œ UM
n

6
.
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By the local consistency of E1 (Definition 8.2) for every j
Õ œ [jú ≠ 1] and Ÿ œ N:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

Ë
x1 ”= ‹ æ Ï

QA
i

((cfjÕ≠1, cfjÕ), �jÕ , wjÕ) = 1
È

Ø 1 ≠ negl(�(Ÿ)) .

Therefore:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

S

U
x1 ”= ‹
cfjÕ≠1 = ĉfjÕ≠1
cfjÕ ”= ĉfjÕ

T

V Æ Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

5
QA.V(vki≠1, (cfjÕ≠1, cfjÕ), �jÕ) = 1
(cfjÕ≠1, cfjÕ , B

i≠1) /œ UM
n

6
+negl(�(Ÿ)) .

Let AdvÕ be the adversary that given (pk, vk = (vki)iœ[0,d]) sampled from Del.S(Ÿ) emulates EAdvÕ
r

1 (Ïi, SjÕ) except
that in the emulation of Del.S it uses the input keys (pkj , vkj) for every j < i instead of having Del.S sample these
keys using the randomness r. The adversary AdvÕ outputs ((cfjÕ≠1, cfjÕ), �jÕ). By Claim 9.2:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

5
QA.V(vki≠1, (cfjÕ≠1, cfjÕ), �jÕ) = 1
(cfjÕ≠1, cfjÕ , B

i≠1) /œ UM
n

6
=

Pr
5

QA.V(vki≠1, x, �) = 1
(cfjÕ≠1, cfjÕ , B

i≠1) /œ UM
n

----

!
pk, vk = (vki)iœ[0,d]

"
Ω Del.S(Ÿ)

(x = (cfjÕ≠1, cfjÕ), �) Ω AdvÕ(pk, vk)

6
Æ negl(�(Ÿ)) .

Therefore:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ )

S

U
x1 ”= ‹
cfjÕ≠1 = ĉfjÕ≠1
cfjÕ ”= ĉfjÕ

T

V Æ negl(�(Ÿ)) .

Then by (49):

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,SjÕ+1)

5
x1 ”= ‹
cfjÕ ”= ĉfjÕ

6
Æ Pr

(x1,‡1)ΩEAdvÕ
r

1 (Ïi,SjÕ )

5
x1 ”= ‹
cfjÕ≠1 ”= ĉfjÕ≠1

6
+ negl(�(Ÿ)) .

Since j
ú Æ B Æ � summing over j

Õ œ [jú ≠ 1] we have that:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,Sjú )

5
x1 ”= ‹
cfjú≠1 ”= ĉfjú≠1

6
Æ Pr

(x1,‡1)ΩEAdvÕ
r

1 (Ïi,S1)

5
x1 ”= ‹
cf0 ”= ĉf0

6
+ negl(�(Ÿ)) . (51)

By the local consistency of E1 (Definition 8.2) for every Ÿ œ N:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,S1)

[x1 ”= ‹ æ ’i œ S1 fl [N ] : ‡1(i) = x1,i] Ø 1 ≠ negl(�(Ÿ)) .

Since S1 fl [N ] consists of the indices corresponding to cf:

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,S1)

Ë
x1 ”= ‹ æ cf0 = cf = ĉf0

È
Ø 1 ≠ negl(�(Ÿ)) .

Thus by (51):

Pr
(x1,‡1)ΩEAdvÕ

r
1 (Ïi,Sjú )

5
x1 ”= ‹
cfjú≠1 ”= ĉfjú≠1

6
Æ negl(�(Ÿ)) .

This concludes the proof of Claim 9.8.

By Claim 9.8:

Pr
r,Expjú

r

#
x1 = x2 ”= ‹ æ cfjú≠1 = ĉfjú≠1 = c̄fjú≠1

$
Ø 1 ≠ negl(�(Ÿ)) . (52)
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where if x1 = x2 then ĉfjú≠1 is the unique configuration of M after (jú ≠ 1) · B
i≠1 steps starting from cf = c̄f.

Combining (43) (44) (47) (48) (52) we have:

Pr
r,Expjú

r

5
x1 = x2 ”= ‹
‡1 ”= ‡2

6
Æ Pr

ExpAdvÕ
[ACi≠1] + negl(�(Ÿ)) . (53)

Finally by (42) and since B Æ T Æ �:

Pr
ExpAdv

[ACi] Æ B · Pr
ExpAdvÕ

[ACi≠1] + negl(�(Ÿ)) .

This concludes the proof of Claim 9.7.
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