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Abstract

Optical frequency division multiplexing communication systems have the poten-
tial for a large throughput. However, semiconductors lasers used as optical sources
have random frequency fluctuations that deteriorate system performance. Hence,
frequency monitoring and stabilization are necessary to prevent channel interference.

A mathematical model was formulated to evaluate the performance of a frequency
stabilization feedback scheme to lock many optical frequency shift keyed signals onto
distinct resonances of a single Fabry-Perot resonator. The optimal and suboptimal
loop filters to minimize the mean squared error were found, and performance was

evaluated as a function of the system parameters.
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The hand of the Lord was upon me, and he brought me out by the
Spirit of the Lord and set me in the middle of the valley; it was full of
bones. he led me back and forth among them, and I saw a great many
bones on the floor of the valley, bones that were very dry. He asked me,
“Son of man, can these bones live?”

I said, “O Sovereign Lord, you alone know.”

Then he said to me, “Prophesy to these bones and say to them, ‘Dry
bones, hear the word of the Lord! This is what the Sovereign Lord says
to these bones: I will make breath enter you, and you will come to life. I
will attach tendons to you and make flesh come upon you and cover you
with skin; I will put breath in you, and you will come ot life. Then you
will know that I am the Lord.”

So I prophesied as I was commanded. And as I was prophesying, there
was a noise, a rattling sound, and the bones came together, bone to bone.
I looked, and tendons and flesh appeared on them and skin covered them,
but there was no breath in them.

Then he said to me, “Prophesy to the breath; prophesy, son of man,
and say to it, ‘This is what the Sovereign Lord says: Come from the four
winds, O breath, and breathe into these slain, that they may live.” ” So
I prophesied as he commanded me, and breath entered them; they came
to life and stood up on their feet—a vast army.

I will put my Spirit in you and you will live.

Ezekiel 37:1-10,14
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Chapter 1

Introduction

1.1 Background

Communication systems are moving toward single mode optical fiber for transmis-
sion, because they are excellent for point to point communication. The advantages
that optical transmission (optical fibers) have over electrical transmission (electrical
cables) are the high available bandwidth, low attenuation, low weight, noise immu-
nity, and elimination of ground loops. The move is toward local communication
systems connected by various types of networks. Presently, signals are generated and
manipulated electrically. Hence, there is an electrical-to-optical conversion at the
input (transmitter) to the fiber and optical-to-electrical conversion at the output of
the fiber(receiver). Two common light sources are Light Emmitting Diode (LED)
which transimnits incoherent light and is intensity modulated, and the more expensive
Semiconductor Injection Laser which transmits almost coherent light and can use
various types of modulation. The laser is modulated by varying the injection cur-
rent (performed by electronics), changing the temperature, or by varying the cavity
mechanically, or using external modulation. The semiconductor laser has frequency
fluctuations due to variations in temperature, variations in injection current, and
quantum effects. These fluctuations becomes a significant issue for both coherent
and incoherent communication systems.

Because tunable heterodyne can demultiplex optical carriers with fine resolut on,



Frequency Division Multiplexing (FDM) seems promising in making use of the wide
bandwidth of single-mode fiber (approximately 30 THz), since it provides narrow
channel spacing. Laser frequency stability is crucial to prevent channel interference.
In heterodyne-type optical communication systems, a difficulty is the frequency drift
of the lasers, because the semiconductor laser is used as the local oscillator besides

the transmitter.

1.2 Optical Communication System

The classical network topologies of bus, loop, and star are also popular fiber optic
networks, but they are implemented differently. A star-type network example is shown
in Figure (1.1). All tranceivers can communicate with each other. Compared to bus
or loop, the star network can have more tranceivers because of lower losses (although
it requires more wiring). The power (in dB) decays with the logarithm of number of
transceivers whereas for the bus it decays linearly. Optical FDM systems using star
networks have the potential for large throughput.

Coherent optical communication systems have better performance than conven-
tional intensity modulation/direct detection systems for the following reasons: (1)
Coherent detection have improved receiver sensitivity by 10 to 20 dB with respect to
direct detection; (2) The greater frequency selectivity is similar to what is possible in
Radio frequencies; (3) Tunable optical receivers; (4) There is the choice of different
modulation types such as FSK, PSK, DPSK. The most serious problem with coher-
ent communication is the phase noise of the laser which broadens the linewidth and

hence, deteriorates the performance of coherent receivers.
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Figure 1.1: Star-Type Optical Network
1.3 Laser Description
A single-mode laser transmitting at frequency fo will emit the lasing field
E(t) = Ege~/(2mfot+(t) (1.1)

The phase noise ¢(t) is a randon process due to quantum effects and affects the
intensity of the laser. These randomly occuring spontaneous emissions which cause
phase and intensity changes in the laser field give rise to fluctuations and is called
spectral broadening. We would like to know the spectrum of the laser, in particular,
the power spectral density of the field, S,(f), which is the Fourier Transform of the
autocorrelation function of E(t), and the power spectral density of the frequency noise
S#(f) (instantaneous frequency fluctuation) ¢(t).

Henry [1] developed a model to explain the laser noise phenomenon. He assumes
that the spontaneous emissions that change the instantaneous phase of the EM field
is due to two contributions: (1) Random phase of spontaneous emitted electrons,

and (2) consequent change of field intensity which modifies the refractive index of the



medium. The phase is modelled as a random walk process where the steps correspond
to the spontaneous emission events that cause a small amount of instantaneous phase
change in a random way. Based on this model, he derived the linewidth formula for
the power spectral density of the Field spectrum which turns out to be a Lorentzian
lineshape shown in Figure 1.2.

The Lorentzian lineshape is proportional to [Af + (f — fo)?]~! where fo is called
the center frequency and is changed by varying the injection current. The Lorentian is
the characteristic reponse of damped&resona.nt systems. The linewidth Af is defined
as the separation between the two frequencies where the Lorentzian is at half its
maximum peak value. Unfortunately, this Field spectrum widens when the lasing
field is modulated.

Experimental measurements show that the frequency noise spectrum has a 1/f
component in frequency regions below 100 KHz and a Gaussian white noise compo-
nent that extends to the GHz range, as shown in Figure 1.2. The spectral height,
call it A, of the white noise component is related to the linewidth by 4 = Af/x.
The 1/f noise is not Wide Sense Stationary (WSS) because it has no corresponding
autocorrelation function. It is part of the relatively low frequency components so can
be easily tracked. Hence, our main focus will be on the white component. Further-
more, the effects of this 1/f component is not significant for data transmission rates
in range 100 Mbits/s to 1 Gbits/s. [6]. Hence, the frequency noise spectrum can be
approximated as white for almost all system applications. We will refer to its spectral
height as A.

The laser linewidth can be experimentally measured by self-heterodyning. The
signal is mixed with a delayed version of itself to produce a spectral image at low
frequency. Linewidth measurements can also be obtained by beating the test laser
with a much more stable laser, passing the difference signal through a discriminator,
and doing a spectral analysis on the output. This can be done by a spectrometer and

scanning Fabry-Perot. Experimental measurements show the Lorentian spectrum
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of the field (although there is a small resonance peak at the relaxation resonant
frequency of the carrier density above 1 GHz), and 1/f and white noise components
of the frequency spectrum.

Hence, the model of the phase fluctuations used to derive the spectrum of the

laser is valid since many experimental measurements agree with the theory.

Sp(f) Sr(f)

g H2?
H:z Hz

Af Af

fo f(Hz) 100 KHz f(Hz)

Figure 1.2: (a) Power Spectrum (b) Frequency Spectrum

1.4 Brief Overview of Frequency Stabilization Tech-
niques

Linewidth can be reduced by increasing the quality of the laser. In coherent communi-
cation systems, the adverse effects of the linewidth can also be reduced by increasing
the data rate since the linewidth requirements are dependent on the rate. Linewidth
can be significantly reduced by external feedback (as much as 200 by optical feedback).

Several schemes to stabilize the laser frequency have been developed. All of them
use some sort of feedback loop to lock the laser onto a reference frequency via an
optical frequency discriminator. This feedback loop controls the laser frequenc: by

varying the injection current (or sometimes temperature). The temperature of the
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laser is usually controlled by putting the laser in a Peltier element. The typical sta-
bilization method is shown in Figure 1.3. The frequency discriminator discriminates
the frequency deviation of the laser by producing a proportional intensity. Then the
photodetector translates this intensity in the optical domain to current. The gain ele-
ment amplifies the current in proportion to the amount needed to vary that frequency
back to center frequency in the laser.

Typical frequency references are Fabry-Perot Interferometers (FPI), fiber-optic
ring resonators (FORR), atomic or molecular absorption spectrum, or another ref-
erence laser. Frequency discriminators are slopes of the resonance curves or peaks
of the FPI of FORR. If the laser is locked to a point on the slope of the reference,
then the frequency discriminator is the shape of the slope. If the laser is locked to
the peak of the reference, the control signal is generated by demodulating a modu-
lated signal. Then the frequency discrimination function is roughly proportional to
the first derivative of the reference lineshape function. The FPI linewidth would be
approximately the same order of magnitude as the laser linewidth.

Another type of stabilization scheme is AM sideband injection locking technique
[6], where the frequency of the slave lasers are locked to the sideband frequencies of
the master laser. The phase of the slave tracks the phase fluctuations of the master.
Thus, the linewidth of the slave laser is controlled by injection level and linewidth
of the master. The frequency separation of the slave lasers are controlled by the

modulation frequency of the master laser.
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Figure 1.3: Typical Frequency Stabilization Method
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Chapter 2

System Model 1

2.1 Description of Stabilization Experiment

A novel frequency stabilization scheme for three lasers in an optical, FDM coherent,
star network was designed and built by Glance et al. at AT&T Bell Laboratory [4, 5].
Each laser frequency was locked to a distinct resonance of a single fiber Fabry-Perot.
If the FDM signals are to be confined to equally spaced frequencies, then lasers
must be locked to adjacent resonances or the same number of resonances apart. The
stabilization scheme and experiment are described as follows and shown in Figure 2.1.

The three optical sources are fast frequency-tunable external cavity lasers, fre-
quency tuned over 4,000 GHz, transmitting around 1.28um. Each is frequency-shift-
keyed (FSK) at 45 Mbits/s, but can modulate up to 100 MHz. The bit streams
are independent random Non-Return-to Zero (NRZ), with modulation index approx-
imately equal to one. The three lasers are combined by a 4 x 4 fiber star coupler.
One of the outputs of the 4 x 4 coupler will be used in the stabilization feedback loop,
consisting of a Fabry-Perot resonator, photodiode, simple electronics, and LPF {low
pass filter). The Fabry-Perot resonator used is a single-mode fiber 20 cm long and
has a comb of resonances 300 MHz apart, with a 3dB bandwidth of approximstely
50 MHz. This frequency spacing is chosen because the minimum optical frequency

spacing needed to prevent co-channel interference in the IF domain for 45 Mbits's is

260 MHz.
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Figure 2.1: Frequency Stabilization Circuit
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The error signal in this feedback loop is generated by the following manner. When
the optical signal source drifts from its assigned frequency (one of the resonant fre-
quencies of the Fabry-Perot), the Fabry-Perot will produce an optical intensity pro-
portional to the drift. The photodiode then converts the optical intensity from the
output of the Fabry-Perot to a baseband signal. The bit pattern in FSK is now a bit
patiern in AM. The polarity of the AM bit stream signal is dependent on which side
of the resonance the frequency drifted. After the Fabry-Perot and Photbdetector,
the DC signal (constant bias current to keep the lasers at the resonant frequencies)
must be removed , since only the frequency deviation from resonance is of interest.
Each user then multiplies the photocurrent bit pattern (whose amplitude is the er-
ror signal) by the FSK bit pattern to extract the error signal which is fed back to
the laser as correction to lock the laser onto the designated Fabry-Perot resonance.
Performance is deteriorated by the noise (the other user’s bit streams are the most
dominant) corrupting the error signal.

Experimental results showed that this frequency locking scheme is very robust.
The FDM optical signals are heterodyned from the optical domain to the IF domain
and monitored on a spectrum analyser. The three lasers remained locked to the
selected resonant frequencies when the free-running laser frequency variation is up to
42.2 GHz. For larger tuning, the lasers would jump mode and onto other resonances
[5].

Experimental results for another experiment using the same stabilization sheme,
but with six lasers (that have better linewidth than the experiment with three lasers),
were also good. The lasers used were multiple quantum well distributed Bragg re-
flector lasers (MQWDBR), transmitting around 1.53um wavelength, and frequency
tunable over 1,000 GHz, and having a narrow linewidth (2-4 MHz). They can be
FSK-modulated up to a few hundred Mbits/s. The lasers in this FDM coherent op-
tical network are multiplexed by a 16 x 16 optical-fibre star network. Since tlese

monolithic frequency-tunable lasers are FSK modulated at 200 Mbit/s, the channel
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spacing is 2.2 GHz (minimum possible spacing without adjacent channel interference).
The channels are accessed by computer control. Glance showed that these six lasers
were also stabilized well.

This stabilization technique can certainly work for one laser and separate feedback
loops , each containing a Fabry-Perot can be implemented for each laser. Then the
dominant user noise from the other lasers would not be present, there would be no
need for the Low Pass Filter, and stabilization performance would undoubtedly im-
prove. This technique would be just like the typical method described in the previous
section. However, this scheme would have a problem in a FDM system, because the
Fabry-Perot’s resonant frequencies (which is used as a frequency discriminator and
reference) will drift in time, with temperature, etc. Then the frequency channels of
the users will collide into each other. Hence, the major advantage of Glance’s stabi-
lization system is that a single Fabry-Perot is used so the channel spacings between
the users are controlled, preventing channel crossover. Another advantage of this sys-
tem is that there are few components (only a Fabry-Perot Resonator, a photodiode,
and simple electronics). The disadvantage of this stabilization scheme are that the
optical sources must transmit from the same location. Glance has also developed
a similar scheme for lasers transmitting from different locations. He uses a master
Fabry-Perot to stabilize the other Fabry-Perot’s in different regions [5].

It is intuitively clear that the Low Pass Filter is needed to filter out the user
noise which is the dominant factor in degrading the stabilization performance. Right
after the photodiode and before the correlator, each user gets the sum of every user’s
data stream scaled by their respective individual error signals of which each is only
interested in extracting its own error signal, which it does so by correlating data
streams. Clearly, the worst case is if all the user data streams are the same, then
after correlation and filtering, each laser gets not only its own error signal, but the
sum of all the other error signals as well. However, since the data streams are all

independent, the above case is unlikely if we wait long enough to decorrelate.



The bandwidth of the filter must be smaller than the bit rate for the above reason.
If the bandwidth of the filter is small, then the integration time is long, so decorre-
lation is good, and the user noise is filtered out well, but then the system will not be
able to track the drift of the laser if the drift is too quick. On the other hand, if the
bandwidth of the filter is large, then the filter is quick in time and the system can
track the drift well, but the decorrelation time is small so cannot filter out the user

noise well. Hence, there is a trade-off in the bandwidth of the filter design.

2.2 Fabry-Perot Resonator as Frequency Descrim-

inator

The Fabry-Perot Interferometer has many applications such as being used as the res-
onator for lasers, as an optical filter, and as an optical spectrum analyzer. This device
consists of two parallel partially transmitting and generally highly reflective mirrors
that are spaced apart by a distance L. The important property of the Fabry-Perot is
its frequency dependent transmission of power. The transmission characteristics are
derived via computing the multiple reflections in the cavity.

Let Ey be the incident electric field (with angle § with respect to the mirror
normal; for ease of explanation, let § = 0) of Figure 2.2. It is partially reflected with
factor ro and partially transmitted with factor ¢;. After a delay of length L, this wave
is partially reflected with factor r; and transmitted with to, resulting in Ty. Then,
T, is the electric field resulting from two more reflections and delay of 2L. The total
transmitted field is the sum of all the transmitted fields Y2, T;. The measurement is
a power density(irradiance, w/m?), not electric field. This power density is related to
the electric field by H = ‘3—5; where E is the electric field and Z, is the characteristic
impedance of air (377Q?). The power transmitted per unit area is

(1-R)®
(1 — R)? + 4Rsin?( )

P(f) = (2.1)

18



Ry

Figure 2.2: Fabry-Perot Interferometer

where R = r? = rl is the reflectivity of the mirrors (reflected power per unit incident
power), f is optical frequency, c is the speed of light, and n is the refractive index of
the resonant cavity. From Equation 2.1, the resonant frequencies (100% transmitted
power, 0 reflected), f.. for integer m > 0, occurs when sinz(zf—?-) = 0. These trans-
mission peaks are the resonant frequencies and are given by the equation (note that
we have incorporated incident angle )

. me
" 2nlcosf

fm (2.2)

The frequency separation of these resonant peaks is called the mode spacing or Free

Spectral Range (FSR)

c
FSR = fmys = fm = 2nlcos @ (2:3)
in terms of frequency and
2
FSR:-/\——COSO (2.4)
2nl

in terms of wavelength. The “full width at half-maximum?” of the transmission peaks,

call it 8;/,, can be calculated from Equation 2.1

(1 - R)c
27/ RnL cos 6

51/2 =

19



and the finesse of the Fabry-Perot is defined as

FSR VR
&2 1-R

(2.6)

Finesse =

Figure 2.3 shows the Fabry-Perot transfer function for two different finesse. The
higher the reflectivity, the higher the finesse, the sharper the frequency discrimination,

the more expensive the device.

1.0 —mmm—y— v

0.8

0.6 |-

P(f)

04 -

02

O'O B 1

Figure 2.3: Fabry-Perot transfer function for R = 0.9 (solid) and R = 0.6 (broken)

The photodetector is a device that transfers optical energy (photons) to an elec-
trical signal (current) for processing. There are two main types of semiconductor
photodetectors: (1) The PIN photodiode is popular for data rates less than 100
Mbits/s, and (2) the APD (Avalanche photodiode) is popular for data rates grcater
than 1 Gbit/s. The quantum efficiency of the photodetector is defined to be the
fraction of incident photons converted into carriers at the electrodes. There is a trade
off between Quantum efficiency and speed. A high response time is paid by reduced

sensitivity. Also, in the APD, the bandwidth decreases with increasing gain. When

20
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Figure 2.4: Frequency discrimination of the Fabry-Perot’s in Figure 2.3

there is no light, both PIN and APD produce a small current due to thermal ex.
citation of carriers. This is called “dark current” and represents background noise
signal. In our model of the frequency discriminator, we assume the response time of
the photodetector is immediate (i.e. the delay is negligible).

In the stabilization experiment, the laser frequencies are locked onto the resonant
peaks, f.., of the Fabry-Perot, call it the center frequencies. The FSK modulation
frequencies, f.0, fim1, are equidistant from the center frequency. The error signal is
obtained after demodulation. The frequency deviation in the laser is converted to
amplitude variation in optical intensity. The frequency discrimination of the Fabry-
Perot is approximately the first derivative of the power transfer function in Equation
2.1, which is linear within a range for each center frequency as shown in Figure 2.4; the
locking range extends a bit beyond the linear range. For fixed FSR and modulation
frequency distance (o — fm1), we see that a higher finesse results in a steeper slope
(high gain) but smaller locking range. The bit rate will determine the mininum
channel spacing and hence, the FSR, and the laser will determine FSK modulalion

spacing. Thus, the Fabry-Perot should be chosen such that the locking range is as
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large as possible but the discriminator still linear. Assuming there is no laser intensity
noise, this resulting loss in gain may affect the performance if the gain cannot be put
back into the system ( we shall see why in the next section).

The transfer functions for the feedback loop discriminator is as follows. Let C'
frequency/ cﬁrrent be the transfer constant for the laser, D current/photons be the
transfer constant for the photodiode, and B photons/frequency be the tranfer con-
stant for the Fabry-Perot discriminator. Then, the total transfer function n for the
open loop within the locking range is n(f) = BCDf, where f is the frequency de-
viation. Assume that BCD = 1 so that everything is normalized. If the physical
parameters will not allow it, then assume we normalize it in the gain of the filter
(which we are free to design). The frequency discriminator function is now linear

with slope one.

2.3 Linearized Model and Assumptions

We assume there are N users on this FDM system and all the users are operating on
the correct resonant freqeuncies. Although there is a locking range for the linear dis-
criminator, we assume that it extends from negative infinity to positive infinity. The
lasers may lose lock and jump modes, but we will not be concerned about that. The
laser frequency noise which the stabilization system attempts to track is approximated
to be white Gaussian noise. This is the random fluctuations from center frequency
(optical domain) or random fluctuations from zero amplitude (after the photodetec-
tor). The criterion used to measure the frequency stabilization performance will be
the MSE of the error signal. We will model the system by modelling the behavior
from the standpoint of one laser.

Recall from the previous section that the total transfer constant of the cascade
of all the individual devices (laser, phgtodiode, Fabry-Perot) is normalized to one.

Hence the laser noise process in frequency is now converted to a random proce:s in
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amplitude with the same stochastic characterization.

The user noise in the system is the main contribution to system degradation and
will dominate over system noise (such as shot noise, “dark current”, background
signal noise, etc.). The dominant noise from the other users is the current fluctuation
caused by their modulation when they have a frequency offset. The user noise is seen
right after the photodiode and it consists of the sum of the other user’s bit streams
multiplied by their individual error signals. In reality, the locking range is finite
(although we modelled the linear region of the frequency discriminator as extending
to infinity), so the error signal amplitude is in fact bounded. Hence, it is reasonable
to assume that all the rest of the user frequency drift with constant offset equal to
the locking range, call it L. That is, all users put on the channel the worst noise.
The amplitude of their bit streams is L. Since we have two degrees of freedom in the
transfer constants described above, we can assume D, the transfer constant for the
photodiode to be 1/L, so that the error amplitudes of the other user bits streams are
all one.

The stabilization system can be modelled as in Figure 2.5 where z,(t) is the laser
frequency noise with power spectral density S.o(f), di(t) is the data stream of user

one, u(t) is the sum of all other user’s data streams, v(t) is the system noise, and

H(f) is the filter.

u(t) + v(t)

@[f

di(t)

H(f)

Figure 2.5: Model I of Stabilization System



Each user ¢ in the system is modulating with independent random NRZ (non

return to zero) data stream d;(t) and bit time T, which can be described by

di(t) = Z L(n)p(t — nT + 73) (2.7)
where for each
1 p=3
I(n) =
-1 p=1
and
1 0<t<T
p(t) =

0 otherwise

To make d;(t) WSS, let 7; randomize the start time where P (7) be uniformly dis-
tributed over the interval [0,T]. The user noise in the system is the sum of all the

other users bit streams and denoted by

N

u(t) =) i L(t)p(t — nT + ) (2.8)

i=2 n=—00

Noticing that d;(t)d;(¢) = 1, the model in Figure 2.5 can be reduced to the model in
Figure 2.6.

Now the noise from the other users, call it n(t), becomes

n(t) = di(t)u(t) =D Z L(n)p(t — nT + 1) [1(n)p(t — nT + 1) (2.9)

t=2 n=—00

The closed loop transfer functions of Figure 2.6 are as follows

Y() = X+ M)
E(N) = T3 X0+ NOHG)
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n(t) + v(t)

z(t) +_® e(t) f-l;\
- L

y(t)

Figure 2.6: Reduced System Model I

and the Power Spectral Densities are

2

Syy(f) = ‘l_flﬂ'% [Szz(f)+5nn(f)]
Sul) = iy | [5ee) + OS] (2.10)

As mentioned earlier, the criterion used to evaluate performance is mean squared

error (MSE).

MSE = E[e(t)?] = / © S.(f)df (2.11)

To minimize E[e(t)?], the MSE, for causal h(t), Wiener Filtering methods will be
employed. The noncausal h(t) will provide a lower bound on the MSE. For a noncausal
optimal filter, we minimize equation(2.11) by minimizing the integrand.

As mentioned earlier, we normalized the product of all the transfer constanis in
the stabilization loop to one by assuming we can take care of it in the gain ol the
filter, H(f). If, due to physical limitations, the normalization cannot be achieved,

then the filter will be suboptimal. Let that suboptimal filter be G(f) = kH(f) wuere
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k < 1 and H(f) is the optimal filter. Then the power spectral density of the error

signal will be

2

Sea(f) +

2

L Spn(F) (2.12)

See =\
(f) 1+ kH(f)
and the suboptimal MSE can be evaluated.

H(f)

++ H(f)

2.4 Noise

Besides the system noise v(t), there are three types if user noises ni(t),na(t),na(t)

whose statistics depend on the model we use.

2.4.1 System Noise

The “dark current” of the photodiode, shot noise, electrical noise, and any other
physical noise will be lumped together and modelled as white Gaussian noise. We

will refer to these noises as system noise, v(t), with spectral height S,,(f) = V.

2.4.2 Synchronous Users

The users are synchronous when they all have the same random start time 7, = 7, Vs.

Let's define n,(t) as the synchronous user noise. Then equation(2.9) reduces to

N oo

()=, >, Ji(n)p(t —nT +71) (2.13)

1=2 n=—o0

where

Ji(n) = Ii(n)i(n) = I(n) (2.14)

Since all the bit streams are independent, the autocorrelation function is the anto-

correlation function of one bit stream multiplied by the number of bit streams.

Efna(t + r)na(t)] = (N — DE[d(t + 7)d(t)] (2.15)
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¢]

Rnl"l (T) = (N - 1)[1 - T] (216)

The Power Spectral Density is the Fourier Transform of Rn,n,(7) which in this case
is the convolution of two square pulses. Hence, S, (f) is the sinc function squared,

shown below in figure 2.7

. 2
szmrfT] (2.17)

nfT
The Power Spectral Density can also be represented by the Bilateral Laplace Trans-

Suums (f) = (N = )T [

form of R, n,(7) which is

sT/2 _ _—sT/2 2
:—-—] (2.18)

L]

Snlm(") = (N - 1) [

Tl(t) Snlm(f)
) \
(N-1)

y

=T T — %

=

Figure 2.7: Synchronous Autocorrelation Function and corresponding Power Spectral

Density

2.4.3 Asynchronous Users

The users are asynchronous when their random start times are all independent. lLet’s

define n,(t) as the asynchronous noise.

N

na(t) = 'sl(t) Y si(t) (2.19)

i=1
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Again, the bit streams are independent, so the autocorrelation function is just the

sum of the individual autocorrelation functions.

E[na(t + m)na(t)] = (N —=1)E[sy(t + 7)8a(t + 7)s1(¢)82(2))

= (N = 1)Rnn, (7)’

- (N—1)[1—¥

with corresponding Power Spectral Density
Swanalf) = [ Rugma(r)e "1t

= (N - 1)/: (1 - %)2 2cos(2n ft)dt

(N—I)T1 sin2n fT
(xfT)* | 2«fT

and Bilateral Laplace Transform

_ 4N -1) e’ T — T
Snana(8) = =77 [ 2T 1]
Tz(t) Sﬂznz(f)
A
(N -1)

Y

=F i 2 —

(LY
1L

(2.20)

(2.21)

(2.22)

Figure 2.8: Asynchronous Autocorrelation Function and corresponding Power Spec-

tral Density

2.4.4 Random Telegraph Signal

The user’s bit streams modulation is dependent on a Poisson count. Let the bit

streams be the stochastic process z(t) = a - f [n(0,t)] where
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e"\t(/\t)k

pn(0,t) = k] = — (2.23)

1 if n(0,t) is odd

fn(0,t) = k| =
—1 if n(0,t) is even
1 p= %
a=
-1 p= %

The bit sequence is such that as soon as there is an arrival from the Poisson process,
the bit stream changes polarity (1 — —1 or —1 — 1) at the time of the arrival. The
random variable a is to randomize the starting bit at ¢ = 0 so that the process is

WSS. Then, the autocorrelation function is calculated to be
R..(t) = e 2I"! (2.24)

and corresponding Power Spectral Density

A

S..(f) = Nt (nf)

(2.25)

We are interested in the RTW example because its exponential autocorrelation
function can approximate the user synchronous and asynchronous autocorrelation
functions. This approximation is useful because the Power Spectral Density of the
RTW is a rational function (whereas the Power Spectral Density of the synchronous
and asynchronous user noises are not), and will allow us to find the optimal filter
easily in closed form. Physically, we can view the RTW process in our bit sequence as
follows. Due to independence of nonoverlapping time intervals of the Poisson precess
and that a bit time T is very small, P[arrival in (0,T)] = P[bit change in (0,T)] imj lies
that AT = 1. Alternatively, let ¢t = nT where n is a large integer, we expect I[#

2
arrivals in (0,t)] = E[# bit changes in (0,t)] which implies AnT = (3)n, giving A = 5.
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From Equation 2.9, the noise in the system is

o0
na(t) = z1(t) - D zl(t) (2.26)

1=2
which is a sum of n — 1 independent random telegraph waves. For the synchronous
case approximation, the Poisson rate is the same, but for the asynchronous case the
Poisson rate is doubled (the sum of independent Poisson processes is a Poisson process
with the rates summed). We will only consider the asynchronous case since it better

models reality. So the autocorrelation function is
Ry (1) = (N = 1)~ = (N — 1) (2.27)

with corresponding Power Spectral Density
1

Spyny(f) = (N — 1) T :
and Bilateral Laplace Transform
4
Sﬂana(s) = (N - I)WZT_? (229)
T3(t) Snsns(f)

N-1)

Y

\J

Figure 2.9: Random Telegraph Wave Autocorrelation Function and corresponting
Power Spectral Density

From here on, we use the notation S,.(f) to describe a generic user noise spectral
density and S(f) is the Power Spectral .Density of a generic single bit stream (binary
transmission). Then, Spn(f) = (N — 1) - S(f) = Saini(f) fore=1,2,3.
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Chapter 3

Optimum Filter

3.1 Noncausal Filter

We seek to find the filter H(f) which minimizes the MSE, given no causality con-

straints. From the previous section, recall

1

| [ F HHP S ()] df (3.)

Ble(ty) = [

Examining equation(2.10), we see that since S,-(f) is a constant (white noise compo-
nent), H(f) must approach oo as f T to produce a finite variance. In fact, H(f) must
increase at least as fast as f, which means A(t) must contain at least a differentiator.
Furthermore, for finite MSE, n(t) must have finite power.

In general, H(f) is complex, but since Sc-(f) > 0 and Sn.(f) > 0, Vf, the
integrand is minimized when H(f) is real. This is true, because for any |H(f)| in
the complex plane, IH-_PII(T)l is minimized when |H(f)| = H(f). Hence, equation (3.1)

can be reduced to

Ele(t))] = /_ : (ﬁ%!m) [See(f) + H(f)?Sun(f)] df (3.2)

To minimize the integrand, call it I, in equation(3.1), let h = H(f), then solve for
such that d"—hI = 0 and checking %I > 0 shows that indeed the optimal causal filter
is '

H(f)= i3.3)




Since spectral densities are even, H(f) is also even. Thus, h(t) is real and even. For

the noncausal filter, the MSE becomes

Ele(t)’] = f_ Z i :’((;))JLSSI‘:(J;)) df (3.4)

Let the integrand in Equation 3.4 be J, then notice that

11
J Sea(f)  Sen(f)

After a change of variables, where u; = 7 fT and u, = 27 fT for synchronous and

(3.5)

asynchronous repectively, and the integration is now over u;, 1 = 1,2,

1 : 1 1
TN At oS 1 v (36)

The eflect of the spectral height of the laser, the number of users IV, and the bit stream
T on the MSE can be seen. The different noise Power Spectral Density S,.(f) is given
in equations(2.17,2.21, 2.28). If the spectral height of the laser noise A, the number
of users N, or the system noise V increases, then % decreases, and the MSE increases.
System performance degrades as we would expect. If the bit time T increases, the
MSE also decreases. This is reasonable, since the price paid for a better system is a
lower bit rate. On the other hand, this fact is against our intuition about the system,
as we believed that a quicker bit rate will decorrelate the binary bit streams quicker,
resulting in better system performance.

In the results section, we numerically integrate Equation 3.4 to obtain the MSE

and discuss the results in further detail.

3.2 Causal Filter

3.2.1 Basic Wiener Filtering Theory

The Wiener filter is the CT causal filter that provides the LLSE of a random process

from a random process observation. Let z(t) be the CT process to be estimated, n(t)
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the additive noise, #(t) the estimate, and {y(7) : T; < 7 < Ty} the observed random
process. For the causal Wiener filter, {y(7): —oo < 7 < t}. Their mean E [z(t)],
E [y(t)], autocovariance functions Reo(7), Ryy(7), and cross-covariance Ry (7) must
be known. The linear, time-varying filter A(¢,7) which minimizes the mean squared
error MSE = F [(z(t) - :c(t))z] is the Wiener filter. The general model is shown in
Figure 3.1.

=(t) _/_}_\ W0 | s #(t)

Figure 3.1: Wiener Filter Problem

Ty
i(t) = [ " h(t,)y(r)ir (3.7)
The optimal causal estimate is the one whose estimation error is orthogonal to the

past observations.

. T
E[(z(t) — 2(t))y(7)] = Roy(t, 7) — /T h(t,o)Ryy(o,7)do =0 (3.8)
which gives the Wiener-Hopf equation
Ty
Rey(t,7) = /T h(t,0)Ry(0,7)doc T <7 <Ty (3.9)

that the LLSE filter must be the solution to.
The random observation process are WSS and JWSS and since h(t,0) is cansal

and the equation is satisfied for arbitrary time ¢, the above equation becomes
Reylt) = [ h(r)Ry(t—7)dr 0 <t<oo (5 10)
0
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If the observation process y(t) is 0-mean WSS unit-strength white noise, then
h(t) = Ray(t)u_s(t) C(3.11)

which is the causal part of the cross-covariance function.
If y(t) is otherwise, then we can decompose the problem by whitening the obser-
vation by a whitening filter W(s) which is both causal and causally invertible. For

convenience, let us whiten to unit spectral height.
Sy ()W (s)W(—3) =1 = Syu(s) (3.12)

That is, the time function corresponding to W(s) and 1/W(s) must be causal. Then,
W (—s) must be anticausal. For example, if Sy, (s) is rational, then W(s) must contain
both poles and zeros in the Left Half Plane. It is intuitively clear that if prepossessing
is causally reversible, then there is no performance degradation of the system. In other
words, if we are unable to undo the processing then we have lost information and the
resulting filter is not optimal. The reversibility proof is as follows. Suppose that there
are two systems shown in Figure 3.2. If G* is causal, then system 1 is no worse than
system 2. If 51; is causal, then system 2 is no worse than system 1.

Then we find the Wiener filter G(s)based on the white noise and the overall filter
by the cascade of the filters, H(s) = G(s)W(s) as in Figure 3.3 below.

Now, G(s) = {Szu(8)}+ = {Szy(8)W(—3)}4 where the notation {Szv(8)}+ is the
Bilateral Laplace Transform (BLT) of R, (t)u_1(t). Recall that

R.,(7) = E [z(t + 7)y(t)] (3.13)
Ser(9) = [ Ray((r)e"7dr = Sua(s)H(—3) (3.14)

Similarily,
Sya(s) = Saa(9)H(s) (3 15)

The causal Wiener filter which minimizes the MSE between the observation process

and estimate is:

H(s) = W(s) - {Say(s) - W(—9)}+ (3 16)



(a) z(t) Optimal y(t)

Filter
(b) z(t) Whitening Optimal y(t)
G+ Filter

Figure 3.2: Reversibility Proof: (a) System 1 (b) System 2

3.2.2 Model for Causal Filter

We can transform the problem to a Wiener filtering problem as follows. Let y(t) be
the observation process and z(t) the process to be estimated. Since z(t) and n(t)
are independent, they are uncorrelated, E [z(t)n(t)] = 0. We will derive the causal
Wiener filter via two approaches. For our system model in Figure 3.4, the following

spectral densities are

Swe(f) = A (3.17)
Syy(f) = ‘1—:—% [Szz(f)+Snn(f)] (3.18)
Slf) = SANBUY = 1375 5= (3.19)

The optimal causal filter from Equation 3.16 is then

H(f)=[1+H(HIW(f) {1%;% [1+ H(f)"] W(f)'} (2 20)

where z(t) is a 0-mean white noise component with spectral height A, and W(f)W! f)*[Szo(f)+
Sun(f) = 1 with W(f) causal and causally invertible. Solving for the optimal fil'er,
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| . T
y(t) W(s) (t) G(s) ] (t) _
| Wiener filter |
L _ _ _ _ . _ _basedono(t) |

Figure 3.3: Wiener filter for Colored Noise Observations

W(f){S=a(f) - W(£)"},

) = T (5 W )T,

(3.21)

Alternatively, if we use the idea of lumping the closed loop system function as in

Figure 3.5, then

6(f) = D ana m(f)= )

1+ H(f) - 1-G(f)
S:2(f) = A
Syw(f) = Sea(f)+ San(f)

Szy(f) = S:w(f)

Then, G(f) is the Wiener filter

and solving for the optimal filter H(f) by substituting Equation 3.22

_ W{Sel) - W
= W) {5l D) W) T,

H(f)
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Figure 3.4: System Model I

Lo 7
0oy S S s IR

Figure 3.5: Model Reduction for Causal Filter

we get what was obtained previously.

Clearly, if H(f) is causal, then G(f) is causal. By the formulation of the problem,
we are solving H(f) is terms of G(f), and hence, we are concerned about the causality
of H(f). If G(f) is causal, then H(f) is also causal. This fact is evident in Equation
3.22 where the transfer function H(f) is the enclosed feedback system of Figure 3.5
where G(f) and H(f) are interchanged and the feedback is changed from negative to
positive.

The optimal filter of Equation 3.27 can be further reduced. Within the braciets
of the above equation is the positive tiime component of A§(t) x w(—t). Since w(—t)

is anti-causal, it must have a delta function at the origin or else the optimal causal



filter is H(f) = 0,Yf. That is, the mean is always guessed. We show in the next
section that the whitening filter W( f) does indeed have a delta function at the origin.
Hence, the optimal filter can be reduced to equation(3.28) for a constant C'. In a later

section we show this C' = 712.

W(f)-¢

H(f)=————1_w(f)_0

(3.28)

3.2.3 Whitening Filter-Frequency Domain

Since power spectral densities are real and even, all poles and zeros in the complex
plane are reflected about the real and imaginary axis, i.e., they have quadruple sym-
metry. Hence, if the function to whiten, S,,(s), were rational, the whitening filter
could be found by spectral factorization. Since W(s)W(—s)S,,(s) = 1, then W(s)
just contains all the pole and zeros of Syy(s) in the LHP. The whitening filter can be
easily found for the random telegraph wave user noise, Spyn,(s)

If S,,(s) were not polynomial as in the cases for S, n, (3) and Sp,n,(s), the whiten-
ing filter is very difficult to find. Note that since S..(f) is stable, the ROC includes
the jw-axis, so Spn(s) is the complex extension of S..(f) where s = j2wf. The
magnitude of the whitening filter is |[W(f)| = \/H—S—,m(f), and all that is needed
is to find /W(f) such that w(t) is causal. This angle exists for both user Spectral
Densities by the Paley-Wiener Theorem which states that for any square-integrable
function |H(f)| that satisfies

= |ln |H(f)|l
/_w il|+—(ﬂldf<oo (3.29)

there exists an /H(f) such that |H(f)| eiLH(f) is the Fourier Transform of a cansal
h(t). The theorem also states that if h(t) is square-integrable and causal, ‘hen
equation(3.29) is satisfied. Note that there are many factorizations where Sy, (<) =
Y(s)Y(—s), but y(t) is not causal.

An attempt using the spectral factorization method on the nonpolynomial fnc-



tions was made. For both observations, Sy,(s) contains no poles, but may contain
zeros. If so, an approximation can be made by just capturing the zeros close to the
origin, and the whitening filter will have as roots the zeros in the LHP. The roots far
from the real axis correspond to high frequency components which is of lesser inter-
est, since it is the low frequency components that are degrading the communication
system. The roots (in LHP) far from the imaginary axis correspond to signals that

decay quickly in time, so also have lesser effect. For the synchronous user case,

esT/Z —e—*T/2

Swls) =1+ 51— e T1—eT) = 1 4 (3.30)

52
and we wish to find its roots. Letting s = o we see there are no roots on the real axis
since there is no real o that satisfies the equation (e°T/2 — e=2T/2)2 = _?_ Letting
8 = jw, we also see there are also no roots on the imaginary axis, since (efeT/2
e~ T/ = w2 is also sin(wT/2) + (%) = 0, and no real w satisfies the equation.
A computer program was generated to find the roots of S,,(s) and found that there
was an infinite number of roots whose imaginary components were spaced at periodic
intervals apart. The whitening filter W(s) = (s —21) (8 —21) N (s—22) (s —Z,) 1 - --
is a rational function approximation. However, since w(t) does not contain an impulse

function at the origin, the optimal causal filter is zero as shown previously. Hence,

this approximation is no good.

3.2.4 Whitening Filter-Time Domain

There are no general methods to find the whitening filter for nonpolynomial spectral
densities, so we will try some time domain techniques. Suppose 7(t) is the function to
be whitened. If a causal y(¢) with a causal inverse can be found such that y(t)xy(—1) =
r(t), then w(t), the causal inverse of y(t) (i.e. w(t)* y(t) = 6(t)) is the whitering
filter.

For example, suppose we are looking for a whitening filter to the triangle autccor-
relation function in figure(3.6). Then we; notice that y(¢) = 1,0 < ¢t < T, and zero <lse-

where convolved with y(—¢) will result in 7(¢). The causal inverse to y(t) can be :een
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by inspection in the time domain as an infinite differentiator, w(t) = Y72, §(t —nT),

in figure(3.7). The inverse can also be obtained from the frequency domain where

1
W(S) = Ws)- = 3(1 + e_JT + e—ZaT + 6_3’T + - ) (3.31)
and inverse transform to a causal w(¢). There is also the anti-causal inverse, call it
w'(t) = — $71_ §(t — nT) by inspection or from inverse transforming
1
Wi(s) = Y—(s_) — _esT(l +eT 42T 4 3T 4 .. ) (3.32)

y(—t) y(t) r(t)

Figure 3.6: Triangular Autocorrelation Function r(t)

y(t) w(t) 8(t)

I

(t) ﬂs(t) “5@)

T 0 T 2T

Figure 3.7: Causal Inverse to Square Pulse and Whitening Filter to r(t)

The nonpolynomial functions that need to be whitened are the user synchronous
and asynchronous spectrums plus the spectral height of the laser shown in figure 3.8
below. Given that both functions have impulse function at the origin, we know that

the causal part y(t) must contain exactly one impulse funtion. There cannot l-e a
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finite number of impulse functions in y(t), because the resulting convolution with
y(—t) would produce a train of impulse functions. An infinite number of impulse
functions in y(t) is also impossible. The proof is as follows:
We show that for any T' > 0 and a, € ® , the only solution to

oo 0

S and(t —nT)* > and(t+nT)=5(t) (3.33)

n=0 n=-—oo

is £8(t — T') VT € R. From equation(3.33) the conditions that must be satisfied are

®oa2 =1and
.T - 17

ag apg a;y as ... 1

a a; @y az ... 0
= (3.34)

as as a3 Q4 ... 0

R

Suppose [ap a; az -+ is a solution. Let So = [ag a3 az -], S1 = [0 ao @y ],

S2 =[00aq ---], and so forth, where ao # 0. If ag = 0, then shift the whole sequence
until ag is the first nonzero element in the sequence.

Equation 3.34 implies that the S; are orthonormal. If they are a complete and
orthonormal basis for £2 where £2(R) is the set of all sequences such that 32y a? < oo,
then any such sequence f = S2.(f,5:)S:. Let f = eI, where e = (100 ---]T.
Then, el = £2,(el,5:)S; = (el,S0)So = aoSo. This implies that {1 00 -] =
[a2 aga; aoaz---]. Hence, ap = +1 and a; = 0 for ¢ # 0 .

All we have left to do is show that the S;’s are complete. Because e; are complete,
if e; can be written as a linear combination of S;, then S; are complete. We only need

to show this is true for eg, since the rest of the e; are a shifted version of eg, or we

41



can show it for all e;. Now, S; can be written as a function of e;

- - - r - T
SO dg a1 az ... €g
Sl 0 apg a; ... €1
= (3.35)
Sz 0 0 apg ... €2

It is clear by the structure of the infinite dimension matrix that the rows are all
independent. Let’s represent Equation 3.35 by the Matrix multiplication § = MI. If
we can find the inverse to the infinite dimension matrix M, then we have shown that
all the ¢;’s can be written as linear combinations of the S;’s. Since all the rows of M

are orthonormal, by inspection, M MT = I as in Equation 3.36.

- r - -
apg a1 Qg ...W ag 0 0 cee 1 0 0 cae
0 ag a1 ... a; Qo 0 01 0
= (3.36)
0 0 ag ... as a; Q4o ... 00
1

If MMT = I, then MTM =1 and MTS = I. Thus, any sequence f € £? can written
as a linear combination of S; by f = (fM7T)S. Hence, the S;’s are complete.

Thus, we have shown in the above proof that the only possible solutions of causal
impulse functions y(¢) convolving with its anticausal function y(—t) are strictly single
impulse functions. That is y(t) = 6(t — T') VT > 0 as in Figure 3.9.

We have shown so far that y(t) contains exactly one impulse. We now chow
that the whitening filter must contain exactly one impulse function at the origin
and a nonpolynomial function. First, the whitening filter must contain an impulse.

This can be seen in the frequency domain. Since all the density functions ot the
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Ry(t) R,(t)

(a) (b)

Figure 3.8: Function to Whiten for (a) Synchronous Users, (b) Asynchronous Users.

observation are square-integrable if the the constant (Power Spectral Density of the
laser) is subtracted, the spectral factorizations must behave in the same way. They
must consist of a constant and a square-integrable function. Its inverse, the whitening
filter, must also contain a constant since their product must equal one. Second, due
to causality constraints, this impulse must be at the origin. Convolution is a linear
operator. Since w(t) also contains an impulse, the only way it can undo a delayed
impulse in y(t) is by having a noncausal impulse. But this cannot be since w(t) is
causal. Hence, both y(¢) and w(t) must contain impulses at the origin. So the form
of the whitening filter is known; namely, it consists of an impulse at the origin and
a non rational causal function. For the causal wiener filter h(t) in the last section,
C = 1/v/A. The area of the impulse must be 1/v/4, so that W(f) for a large f is
1/+/A, which is necessary to produce a white signal of unit spectral density.

43



8(t)

Figure 3.9: Only Possible Causal and Anticausal Impulse Solutions to Impulse Func-

tion
3.3 Bounds on Mean Squared Error for Causal

Filter

3.3.1 Lower Bounds

The whitening filter is in general difficult to find. From the previous section we found
the optimal causal filter H(f) was the filter whose closed loop transfer function was

the whitening filter W( f)

__w(Hv4 _HH 1
H(f)—l—;Wf)\—/——Z and W(f)_l+H(f) 73 (3.37)
wlere
W(H W) [Szelf) + Sun(f)] = 1 (2.38)

Substituting Equation 3.37 into Equation 3.1, the power spectral density of the ¢ ror

can be expressed as a function of the whitening filter.

Seel £) = [WOVA| San(f) + [1 = W(HVA|" Sua(f) (2 39)
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Given that only |W(f)| is known, but not W(f), |1 — W(f)| can be bounded by
n-w(HF =1+ \W(f)* — 2Re[W(f)] (3.40)

1+ [W(HP —2Aw (Al < 1 - W(HIE <1+ WP +2AW ) (3.41)

The MSE can be bounded by substituting the bounds of Equation 3.41 into Equation
3.39 and integrating over all f. The lower bound exists and the the upper bound does
not. However, any suboptimal causal filter which gives a finite variance will suffice

for an upper bound to the optimal causal filter. The lower bound of the MSE is

MSErp = f—w 2A (1 - w 14 —%Sm(,f)) df (3.42)

Let the integrand be I and by a change of variable, u; = infT @ = 1,2, and now

integrating over ui,
- V ATV anT -

Now we can see the effect of the system parameters on the MSE. Just like the non-
causal case, if we increase IV, A,V (imbedded in A if we choose to include it, since it
is part of the observation and must be whitened along with A), then MSE increases.
If T is increased, the MSE decreases. The results hold for both synchronous and
asynchronous cases.

Again, in the results section, we will numerically integrate Equation 3.42 to obtain

curves for the MSE.

3.3.2 Upper Bounds

Finding a causal and causally invertible whitening filter is in general difficull as
we have shown. Suppose the function to whiten is X(s), then |W(s)2X(s) == 1,
\W(HPX() =1 and w(t)xw(t)*z(t) = §(t), where W(f) is the Fourier Transform
of w(t) and W(s) is the BLT of w(t).. If X(s) were rational, the difficulty lies in
factorization. All Power Spectral Densities(BLT) have quadruple symmetry in the
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complex plane, so there always exist a spectral factorization (whether it is rational
or not). Since the Power Spectral Density must be stable, the region of coﬁvergence
(ROC) in the complex plane is right of the left most pole and left of the right most
pole of the Power Spectral Density. The jw-axis must be included in the ROC, so the
time function can be evaluated along it. Substituting s = j2xf into X(s) will give
us X(f). However, we transfer to the Bilateral Laplace Transform domain because
causality cannot be determined readily from the Fourier Transform.

The BLT for the synchronous and asynchronous noise Power Spectral Density
are not rational. Attempts to find a whitening filter by spectral factorization of
Snn(8) + A or time domain methods of convolution have been unsuccessful. We can
obtain a causal whitening filter for both the noises, but they consist of delays, which
does not make it causally invertible (the inverse will consist of an advancement in
time to undo the delay).

Hence, we resort to a rational approximation of the Power Spectral Density which
will allow us to find the whitening filter of the approximation. The criteria for ap-
proximation is to approximate the magnitude of the whitening filter well in the MS
sense. Since we are only concerned with |W(f)| and |1 — W(f)|, because the MSE
needs these functions.

There are no rational functions that can approximate S,,(s) since the the expo-
nential increases faster than any polynomial. The magnitude of the whitening filter is
known, so a rational function | W(f)|? can be used to approximate it. Then, substi-
tute s = j27 f to obtain | W(s)|? which can be spectrally factored into W(s) W(—s)
and the approximate whitening filter (¢) can be found (inverse BLT of | W(s)|).
Now, () can be nowhere near w(t), and W (s) may not even approximate W'(s)
well in the MS sense, since the complex extension need not be close although the

Fourier Transform is close. But it is not so crucial as we are only concerned with the

parameter |W(f)| and |1 — W(f)| and @(t) will give us good approximate behavior.
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3.3.3 Rational Function Approximation

Since the Power Spectral Density of the noise behaves as %, is even and nonnegative

for all f, the approximation functions used will be

fe) = 5

with N(z) = (z? —a®)? and D(z)=[1+ (bz?)"|™ (3.44)

where n,m are integers and a,b are constants chosen to match first zero in Power

Spectral Density. To approximate S, n,(f) the following function was used

n _ 3 [fz _ (%)2]2
Snlﬂl(f) - (N l)T(%)4(1 + (fT)2)3 (345)

and to approximate Sp,n,(f)

; _ [£? = (7))
Snana(f) = (N — l)T(%)‘,(1 (2T (3.46)

Of course there are other better approximations, such as using the same form of

rational functions above, but catching more zeros of the power spectral density. But
the filter and MSE are harder to find, since the roots must be found in a higher order

polynomials.

3.4 Causal Filter for Random Telegraph Wave

Since the power spectral density of the random telegraph wave is a polynomial, the
optimal causal filter can be solved for exactly. The lower bound of the causal filter

can also be compared to the optimal solution as a measure.

W(s)W(-s) = - 4 _"222 (3.47)
AN 1)+ AR -9
Wi(s) = %-}-s 2
(#) VAR + AN - 1)+ sVA (%)
let '
o= \/A(%)Z + %(N— 1) (3 49)
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W(f) = =+ T2 (3.50)

1 2 a
— )+ (—= — —
A i a
The whitening filter is an impulse function and exponential as expected. The optimal

filter, h(t) is

w(t) = )e VA (3.51)

1
al — 2

h(t) = [2VA8(t) + TVAS(t) (3.52)

which has an impulse function and differentiator also as expected.

The MSE can be integrated exactly resulting in

(N-1) . VA(a- jVAP

2T+/(7)* + () to

3.5 Discussion of Results to RMSE

MSE = (3.53)

Results of the numerical integrations for the noncausal, causal lower bound, causal
upper bound, optimal filters for synchronous, asynchronous, and random telegraph
signal are shown in Figures 3.10, 3.11 and 3.12. The user noise n(t) is dominant over
the system noise v(¢) so in the integration, we did not include the system noise. Since
we have modelled both system noise and laser frequency as white, there is no filter
that will give a finite MSE. The white noise model is a mathematical convenience
and does not really model reality, since Both noises are bandlimited. Hence, the filter
will also be bandlimited. Therefore, we could have also included the system noise but
bandlimit the integration (the difference in numerical results is negligible).

Looking at the numerical results for the RMSE, we notice that all three user noises
have similar results and differ only slightly in MSE. This fact is not surprising since
their autocorrelation functions look similar. As the number of users V increases, the
MSE degrades approximately with the square root of V. If the spectral height ol the
laser frequency noise or system noise increases, the MSE also increases as we noticed

in the previous sections and which is not surprising.
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If the bit time increases, the system performs better, and the MSE decreases. From
the system model, this result is expected. Looking at the power spectral densities
, we notice that most of the energy of the user noise is located within the main
lobe whose bandwidth decreases with increasing 7. The laser noise and user noise
are independent. Since the laser spectrum is white, the system likes to see all the
user noise confined to a small bandwidth. Then anything outside that bandwidth is
not corrupted by noise; it comes from the laser and will be guessed perfectly by the
system. It is the noise indside that bandwidth that is causing the error. In the limit
as T — oo, the user noise power spectral density is a delta fuction at the origin, and
the system performs great. Physically, when T — oo, there is no modulation, so all
the noise the other users put on the channel is a DC constant of +1, and any random
fluctuation belongs to the laser. The system just ignores this constant. Practically, it
can also be agreed that the price for better stabilization performance is transmitting
at a lower bit rate.

By the same power spectral density argument, it can be concluded that the asyn-
chronous users do more damage to the system that the synchronous users because
the bandwidth of asynchronous users is twice that of the synchronous users. Again,
from a practical perspective, it can be argued that synchronization is hard to achieve
, but the reward is better system performance.

Nevertheless, both these results are counter to our intuition about the stabilization
feedback loop. We argued in chapter 2 that modulation was crucial in differentiating
our error signal from the other error signals. Hence, quicker bit rate should result in
better performance. The same argument holds that asynchronous user noise system
works better than synchronous systems because the greater randomness allows better
decorrelation with the other bits streams. If, looking at the limit, there were no
modulation, then the system would perform bad because there is no way to distinguish
each individual error signal.

Finally, the filter itself was interesting. Looking at the power spectral density of

49



the error signal and knowing that the user noise falls as 1/ f%, we know that for finite
MSE, the filter must increase at least as fast as f. Again, this filter is consistent with
the model, since the user noise is located at low frequencies and the laser spectrum is
uniform over all frequncies, the system will weight the higher frequencies components
much more since they are least corrupted by the user noise. Hence, we expected the
high pass filter. However, with our understanding into the circuit, we expected a low
pass filter (as mentioned in chapter 2) to filter out all the high frequency user user
noise from modulation (sum of all the bit streams).

In conclusion, the results we obtained with the model are consistent with the
model, but not with our understanding and intuition of the stabilization circuit itself.
Hence, we conclude that Model I does not capture all the characteristics of the physical

system. Therefore, a new model is proposed for further analysis.
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Figure 3.10: MSE for Synchronous users. Solid line is an achievable upper bound to
causal optimal filter. Dotted line is a lower bound to causal optimal filter, and the

dashed line is the noncausal filter.
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Figure 3.11: MSE for Asynchronous users. Solid line is an achievable upper bound
to causal optimal filter. Dotted line is a lower bound to causal optimal filter, and the

dashed line is the noncausal filter.
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Figure 3.12: MSE for Random Telegraph wave transmission. Solid line is for the
causal optimal filter. Dotted line is a lower bound to causal optimal filter, and the

dashed line is the noncausal filter.
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Chapter 4

System Model 11

In Model I, we made two major assumptions. The first assumption is that the error
signals are constant. If the offset is removed, the noise in Model I will become will
no longer be just a bit stream with constant amplitude, but a bit stream multiplied
by a random amplitude. This amplitude is not independent of the data streams
and the noise n(t) is not independent of z(¢), and Equation 3.1 no longer holds for
system model I. From Figure2.5, a new model is proposed to capture the effect of
the dependency of the error signals. This model for NV = 2 users is shown in Figure
(4.1). This model describes the experiment more clearly and carefully. When more
users are added, they are just connected at the center adder where v(t) is added.
This is the point through the photodiode where all the users see the same system and
photodiode noise.

For the case N = 2, the system model in figure(4.1) can be simplified to the
following system in figure(4.2). The simplification was done by looking at all the

independent inputs to the system separately. Let

Fi(t) = F-1 (ﬁ) v o) + F (%) co(Bdi(t)  (4.1)

The system is not linear if there is modulation, but insight can be gained and analysis
done. In this reduced model, the effects of the error signals on the other user’s e:ror
signal can be seen.

For N = 3, the system model can be reduced to the following Figure 4.3. Nutice
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that complexity rapidly increases as N increases, but there is a pattern. For a system
with N-users, the following relation is an expression for the error signal of the i-th
user. Denote F~! as the inverse Fourier Transform.
HU)] 4 H(f)
xz;+ F1 xvd; +Y F! * (e;d;d;
[L+HU) g; 1+ H(f) (e;d;di)
(4.2)
The error signals of all the users can also be written in matrix notation (letting
K =F"1 [ﬁT:lI(_f_)] and L = F! [l—f_%{% , and for notational convenience, we have

left out the funtions of time, i.e. e; = e;(t), K = K (), etc.)

1 - - - - - _ r
eldl T d1 0 dl dl e Cldl
ezdz ) dz dz 0 dg e eZdz
- «K +v « L+ « L (4.3)
endy TN dy ] i d, d, --- 0 ] endny ]

The error signal must be represented in terms of the data streams d;(t), the laser
frequency noise z;(t), and the system noise v(¢) which are all independent and zero-
mean. Then the attempt to find the optimal filter and calculation of the MSE can

proceed.



z1(t) i(_i_} el(ﬂj\x[) f}_\ {?}ez(t) \j/+ )imz(t)

dy(t) da(t)
ds(t) "Q‘) GOr— da(t)
H(f) H(f)

Figure 4.1: Model II of Stabilization System for N=2 Users.

() =
el(t) dl(t)
dy(t) da(t)
da(t) ea(t)
H(f) N F(t)
TFH() )

Figure 4.2: Reduction of Model II for N=2 Users
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ds

Figure 4.3: Model II Reduction for N=3 Lasers
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Chapter 5

Conclusion

5.1 Summary

Optical FDM has the potential to make use of the large available bandwidth in the
optical frequencies, but channel frequency monitoring and stabilization is critical
to prevent channel interference. Coherent detection offers a number of advantages
over Direct Detection, but has stringent linewidth requirements. Thus, frequency
stabilization of sources is crucial in optical communication systems.

A frequency stabilization scheme was developed by Glance and built to lock a few
optical FDM sources using FSK modulation onto the resonances of a Fabry-Perot
robustly. It certainly has the capability to support many more users since there are
several resonances of the Fabry-Perot. The system seems like a good candidate for a
coherent optical FDM system, and so it is of interest to evaluate the system and its
performance.

A reasonable model was developed to study the experimental circuit. From the
model and using the MSE of the frequency as the criterion for performance, the
optimal filters and bounds to the optimal filters were found. The performance of the
stabilization scheme was analyzed in terms of the system parameters. Performance
degraded when number of users increased, laser linewidth increased, system noise
increased, bit rate increased, and when the users were asynchronous (as opposeil to

synchronous).
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All these results were consistent with the model and our intuition of the model.
But the results that the bit rate increase and asynchronous users deteriorate perfor-
mance did not agree with our intuition and understanding of the stabilization system.
Because of the discrepancy, we gained insight into the feedback loop and realized there
are limitations to the model.

We realized that the error signals of all the lasers were correlated and our model
did not capture the dependency of the error signals. Therefore, we proposed a new
model that does capture this dependency for further research. Preliminary work has
shown that the behavior of this new model in terms of the system parameters agrees

well with our intuition.

5.2 Further Research

There is quite much work to be done on Model II. First, finding the optimal filter is
difficult. Second, determining how the system degrades in performance with respect
to the number of users is also a challenge.

We used the MSE as the performance criterion. Perhaps there is another measure
of system performance that would be more suitable. We assumed that the users
were able to initialize onto the correct resonant frequency peaks. In reality, this is
very difficult to do. The problem of frequency monitoring the signals is an important
problem. Lasers may loose lock and need to be reinitialized onto their resonant peaks.

Lastly, the research into the optimal receiver design is important.
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