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Abstract

Detection of contact and calculation of collision forces is an important problem in any kind
of physical multi-body simulation. For computer graphics and physicaliy based animation
it is especially important to devise methods that combine efficient computational methods
with powerful existing graphics tools if one is to obtain a realistic, real-time virtual world.
Most of physical simulations are computationally expensive, and thus, it is difficult to set
up any simulations that are stable and have a real-time response.

Efficient methods for contact detection and response for physical interactions of de-
formable objects in physically based virtual world environments are presented. Contact,
collision and friction of objects iz virtual worlds are specifically addressed in the framework
of differential geometry and finite element modeling. A statistical approach is introduced
for estimation and conirol of the physical simulation. These methods employ statistical
estimation of contact between stochastically defined surfaces and linear control theory for
estimation and control to obtain stable forward time simulations. By mapping from the
statistical domain to the geometric domain and then to the physical domain, we have been
able to obtain efficient physical simulations of multi-body systems.
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Chapter 1

Introduction

A physically based virtual world, is a synthetic world based on the principles of physics that
we see around us in everyday life. This “world” contains virtual objects that are expected
behave in the virtual environment as real objects would in the real world. This emphasis
leads into a study of physics and mechanics, as these are the essential problems for this
kind of modeling.

One of the most important issues for a virtual world with multiple objects is physical
interactions of these objects. The problem of contact detection, though intensely studied by
researchers in the computer graphics, robotics, materials and mechanical engineering, has
not been completely solved. However there are a lot of results that will help characterize
the contact problem and solve it in certain cases. In a physically based virtual world it does
not, however, suffice to just detect if there is a contact. Further work to see what kind of
contact exists and how much surface penetration has resulted from the contact is essential.
Contact response due to a contact and forces due to sliding constitute especially important
aspects of a physically based environment.

Efficient detection of collisions and characterization of response are the chief goals of

this thesis.
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1.1 Background

As mentioned above, contact detection and collision response is essential in multi-body sim-
ulations. As interest in developing virtual worlds escalates [1, 2, 3, 4] in computer graphics,
computer animation and vision and modeling , much research has been devoted to the
study of the theories of contact detection, collisions and surface penetrations from the fields
of civil and mechanical engineering, and implementing them for computer animations and
modeling. The problem faced here is that most of the collision detection algorithms devel-
oped in these fields, and there are a large number of them, are computationally expensive
and in many cases non-linear [5]. The focus of the computer graphics community has been
to develop time and cost efficient algorithms, keeping in mind their need for realism, ap-
proximate accuracy and visual acceptability. This has led to approximate methods and
linearizing techniques for non-linear systems. Some of these techniques have been adopted
from various engineering disciplines {6, 7, 8].

In this thesis most of the emphasis will be on the physical interactions of objects in
virtual worlds. For this purpose some formulations for dynamic simulations using finite
element method will be presented. These formulations are required, because the essence of

this work is to develop concepts of virtual modeling with deformable objects.

1.2 Contact and Collision

For computer animations of interactions of bodies in multi-body systems, two specific issues
are at hand, detection and response [9]. Detection is primarily a kinematic problem, which
involves the relative positions of objects (bodies) in the virtual world while response is a
dynamic problem, which involves predicting behavior according to laws of physics (Beer
and Johnson [10] Chap 12). Moore and Wilhelms [9] discuss at length the problems with
contact detection and response for computer animations and present algorithms for collision
detection that deal with triangulated surface representations of objects and rigid polyhedra.
These algorithms are simple and robust but for most cases are tco computationally expensive
to be feasible. In Chapter 2 various methods of contact detection will be presented and it

will be shown how applications of implicit function geometric descriptions and differential
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geometry can be adopted to reduce computation. Implicit fanctions will be used describe the
geometric and modeling primitives, and the advantages of these will be emphasized. Most
of the concepts presented can easily be generalized for explicit functions , with an additional
cost that goes with these functions for calculations in differential geometry [9, 11].

The response issue comes to play after the contact has been detected. Any system that
uses dynamic simulations must respond to collisions realistically and automatically. The
collision response has essentially two facets, the magnitude and the direction of response.
The collision response must satisfy the laws of conservation of angular and linear momen-
tum. Moore and Wilhelms presented [9] algorithms for collision response for rigid bodies.
In Chapter 4 new and efficient methods for collision response for non-rigid deformable ob-
jects, which will account for the stress distributions across the surfaces due to deformations,
directly relating them to the material properties of the objects [12] will be presented. These
methods can easily be generalized to rigid-bodies.

An specially important type of response is the frictional force generated by interpene-
trating or touching bodies. If contact or surface penetration is detected a force (response)
against the direction of motion parallel to the surface needs to be automatically imparted
on graphic elements of our virtual world for realistic behavior. The concepts of friction
have not been completely implemented in the computer graphics/animation fields due to
problems in determination of contact patches and the computational complexity involved
with it [13]. These concepts are explained in detail, from the basics of Coulomb’s law to
stress distributions on the surfaces on contact in Chapter 5. The friction response problem
will be presented in detail in the following chapters (5,6 and 7) and an analytical description
of the frictional forces and statistical estimates of roughness of colliding/sliding objects will
be derived and used to enhance these simulations.

A very important consideration in animations and especially physically based forward
time simulations, is control. The ability to control the instability that has been added on
to the system by approximations that were made by the dynamic simulation module is
a problem that has not been addressed in virtual world simulations. A solution to this

problem will be presented in Chapter 7.
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1.3 FEM Perspective

For a force based virtual environment it is essential to develop a system for transfer of forces
between bodies and within bodies. This is especially important for deformable objects.
For deformable objects the stress and strain behavior of an individual object has to be
modeled. This requires discretization of the objects and study of the forces (stresses)
and displacements (strains) of these discrete elements of the object. For the modeling of
deformable objects this work extensively relies on the in depth work done in Finite Element
Analysis and Discrete Element Method [14, 15, 16, 17, 18].

Finite Element Method (FEM) ! is a numerical procedure for obtaining solutions of
differential equations in engineering analysis. It has two main subdivisions. First, discretize
an object and obtain its displacements and forces as per its structural framework, and
second, use the continuum of the discretized elements to get the solutions for the whole
body [19].

Fields of civil, mechanical, aerospace and materials engineering are enriched in methods
employing in FEM and Discrete Element Modeling (DEM) for these kind of applications.
The problem, however with FEM is that it is computationally quite expensive. Though a
structural or mechanical designer can wait a few minutes to get the results of his analysis
a user of a virtual world system would only be pleased with a system that simulates a
physical process as he would expect it in real world. Implementation of FEM for virtual
worlds is becoming an important topic now as the computer hardware is becoming more
powerful, however the ability to do all the in depth computation, that is required for FEM,
at every time step is still not possible. The problems of the computational complexity
become more and more apparent as we think of virtual worlds with complex scenes [13].
Some formulations of FEM for physically based virtual world systems will be discussed and
at the same time some methods to deal with these in more approximate method will be

presented in Chapter 3.

! Finite Element Method will be mostly referred to as FEM and Discrete Element Method will be referred
to as DEM.

16



1.4 Multi Body Dynamics

For multi-body dynamics for virtual world systems, time and cost efficient methods that
are accurate within reason are desired. One special method of FEM that has received a
lot of attention in virtual world modeling in the last couple of years is the modal dynamics
formulation as presented by Pentland and Williams [6, 16]. This formulation of dynamic
simulation will be used for most of the implementations discussed here and a discussion
of this methed with respect to the mode superposition method that is used for dynamic
analysis of systems in FEM will be presented [18]. This discussion will emphasize on the
importance of adopting FEM principles for virtual world modeling and how computationally
expensive methodologies of FEM could be adopted, with some modifications for applications
in physically based modeling.

1.5 Stochastic Appreach

For a multi-body dynamics system interaction of bodies and their response to this interac-
tion is a function of the roughness of the surface. This surface roughness in a virtual world
is typically modeled using a stochastic. The intention here is not only to model the rough-
ness but to use this roughness to estimate surface penetrations and determine the contact
patch. This surface roughness model could be used to “shape” the stress distribution of
the interpenetrated surfaces and hence, could be used for the response computations as

discussed in Chapters 2 and 6.

1.6 Control Theory Approach

One major problem with a force based forward dynamics system is the stability of the
solution. To keep a virtual world environment real time or at least time efficient, we are
forced to use large time-steps for simulations and coarse sampling of the virtual (graphic)
objects. Therefore, in forward dynamics systems, with the constraints as mentioned above,
it is almost impossible to avoid introducing a significant error into the dynamic simulation.

Hence to get the stability that will make the system more realistic, it is necessary to consider

17



concepts from control theory.

By using simple concepts of overshoot, time delay and lag, controllability and observabil-
ity filtering, prediction and control, the dynamic response of the system can be controlled
or “reshaped” to discount the error and noise that was introduced by the above mentioned

restrictions. Some simplified methods of controlling the dynamic response of the system

that will solve the problem of instability will be présented in Chapter 7.

Figure 1-1: A Typical THINGWORLD session
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1.7 Current Implementations

Most of the concepts that are discussed here are implemented on the Thingworld Modeling
System [20, 21]. 2 This system uses the Modal Vibrations Method [6, 16] for its dynamic
simulations and the superquadric functions [22] are its geometric/shape primitives. Thing-
world runs on Sun3s (with or without the floating point 68881 coprocessor) and Sunds
(Sparc chip) with a TAAC Board. Most of the code is a mixture of Lucid Lisp and C,
where C is used for numerical calculations and Lisp for object orientated control. The
graphics are run on X11 Release 4. 3. A typical sessicii of Thingworld on a Sparcstation is

shown in Figure 1-1.

2Thingworld Modeling System is a ©1985,86,87,88,89,90 Alex Pentland,
©1989,90 Vision and Modeling Group, The Media Lab, M.I.T..

3Sun3, Sun4, TAAC a:2 Sun Lucid Lisp are trademarks of Sun Microsystems
X11 R4 is ©X Consortium M.L.T.
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Chapter 2

Contact Detection

The basic principle of contact detection in virtual world modeling is to determine if the
bodies are penetrating each other. This requires knowledge of the surface and shape repre-
sentations of objects and their relationships to each other in the geometric domain. Compu-
tational geometry is used to calculate the curvatures and normals of these surfaces, which
then helps resolve the exact locations of penetrations. Since it is desired to deal with de-
formable objects, a deformation mapping on these surfaces is required, which in turn requires

application of a deformation map to the computations of surface normals and curvatures.

2.1 Shape and surface representation

With the increase in interest of numerical methods for three dimensional design and repre-
sentation, parametric shape representations are proving to be of more and more importance
in computer graphics, animation, vision and modeling and many other disciplines. These
parametric representations provide a mathematical formulation, which gives more intuitive
detail in setting up of three dimensional environments, which are easily accessible for shad-
ing, texture, displacement maps, imaging, finite element meshes and many other numerical
systems. Using simple three dimensional parametric modifiers for transformations extends
the ranges of geometric shapes, deformations can also applied in the same way [23, 6, 16].
The superquadric functions with transformations and deformations extend the geometric

primitives of quadric surfaces and parametric patches to give a whole new family of flexible

20



and deformable three dimensional forms. The biggest advantage of this representation is
the ability to alter the shape by modifying few interactive parameters.
2.1.1 Mathematical formulation

A formulation for three dimensional parametric shape functions is developed as follows.

Consider two 2d parametric curves,

[ hl(w)
h(w) = wy w<w
(w) - ha(e) 0 Sw<w
mim) = | ™| pp<n<m (2.1)
i mz('))

The spherical product of these two curves gives the three dimensional surface,

X=m®h

mh) |
X(n,w) = | my(n)hi(w) =r= (2.2)
wp Sw<w
my(n)

Geometrically, h(w) is a horizontal curve vertically modulated by m(n) where m;(7)
changes the relative scale of h while my(7) raises and lowers it. 7 is a north-south parameter,
like latitude, and w is a east-west parameter, like longitude (see Figure 2-1),. The spherical
product can be scaled by a vector A =[ a; a; a3 |7 which carries the sizes of the object

in three directions. !

aymy(n)hy(w) <
X(n,0) = | agmamha@) | oo (2.3)
wo Sw<w
asmz(ﬂ)

!For a detailed description of this derivation and spherical products see Barr [23, 24, 25, 26].
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Figure 2-1: Representation of Coordinate System of Superquads.

2.1.2 Superquadric Representation

Superquadrics can be compared to lumps of clay that can be deformed into realistic looking
three dimensional models 2 [27). This analogy becomes apparent on using the Thingworld
Modeling System. Superquadrics are a family of parametric shapes that were invented
by a Danish designer Peit Hein as an extension of basic quadric surface and shapes as is
explained above [22, 23, 24, 28]. Superquadric surface is defined by setting up the following
relationships in Equation (2.1).

cos®?(w)
h(w) = —r<w<rw
sin®?(w)
cos® (n) _— .
m(n) = ] T3 (2-4)
sin®t ()
Therefore the superquadric surface is defined by:
a; cos® (n) cos®?(w)
-rfw<lTw
X(n,w) = a; cos® (1) sin®? (w) (25)
) Ty
a sin® (n)

Where e; and e; are squareness parameters (see Figure 2-2).

2clay is considered to be a fastest traditional modeling medium [20]
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Figure 2-2: Superquads with various squareness values (a) el = 1.0, €2 = 1.0, (b) el = 0.05,
€2 = 0.05, (c) el = 1.0, €2 = 0.05, (d) el = 2.0, €2 = 2.0, (e) el = 1.0, €2 = 2.0, and (f)
el =0.5,e2=1.0

2.1.3 Implicit Representation of Superquads

Eliminating the parameters w and 7 from Equation (2.3) using the trigonometric identity

sin? z 4 cos? z = 1, we get an implicit equation of a superquadric surface [22].

(G BT G- e

This equation could then be writter as an inside-outside function.

[J

2 2 13
F(z,y,2) = [[5: CI [g_]ez]

az

[_z_] e (2.7)
a3

Following is the functionality of the inside-outside function when a given point (zp, Yp, 2p) is
plugged into the inside-outside function of a superquad: Hence the superquadric functions
provides an inherently better mathematical formulation for contact detection then the non-
parameterized representations where the inside-outside is dreadfully expensive to compute
and sometimes techniques for calculating bounding boxes of models and casting rays from

one element to the other are used 2 [13].

3See [9] and [13] for comparisons.
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| Inside-outside function _pf a superquad |

F(2p, ¥p, 2zp) || > 1.0 || outside the surface

F(zp,Yp, 2p) || = 1.0 || on the surface

F(2p, Yp; 2p) || < 1.0 || inside the surface

Table 2.1: The inside-outside function of a superquad

2.1.4 Surface normals of superquadric functions

Normals to the two parametric curves in Equation (2.4) are;

[ o cos?e2 (w)
ny(w) = 1 gintes (o)

[ cos?~*1 (1)
nm(n) = 1 sinz‘el(n)

After
N=nmQ®nyp

we get the surface normals of the superquadric functions:

2 cos(n)?~¢! cos(w)?~2
N(nw) = =+ cos(n)?~*! sin(w)?~*2

0—13- sin(n)?-¢!

(2.8)

1 cos(n)? cos(w)?

3 cos(n)? sin(w)? (2.9}

Lsin(n)?

2.2 Contact for Deformed and Undeformed Objects

Barr [24, 26]) presented transformations and deformations of solid primitives specifically

applied to parametric three dimensional shapes. Nguyen [29], Pentland [27] Bajcsy [22] and

Solina [30] use the superquadrics with deformations and transformations for object recog-

nition and description. These deformations and transformations extend the functionality

of these parametric superquadric functions as geometric primitives. Pentland [6] presented

another method of applying deformations on the superquadric functions which quite effi-
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Figure 2-3: Deformed Superquads; (a) bending only (b) pinch only (c) taper only (d) shear
only (e) bending, taper and pinch superimposed. (f) cup (g) wing (aerofoil) (h) bent pipe
(i) deformations with a displacement map; from range data and (j) joining parts to form a
chair.

ciently work with the clay sculpting analogy [20]. This deformation mapping is based on
the different vibration modes of the body transformations (see Appeadix A). Using only
the linear and gqnadratic modes of vibration, a large variety of deformations could be incor-
porated into the system. Since the modes of vibrations are uncoupled 4 [6], superposition of
these modes is also possible and extends the functionality of superquads into a deformable

domain. Let D be the deformation matrix of a superquad, then

X4 = DX (2.10)

where Xg is vector for the deformed superquadric surface.

The deformation matrix should be always invertible (i.e. det D # 0) to allow calculations
of undeformed surface from the deformed surface. However there are cases in which this
might not be true and an iterative process must be used to determine the undeformed space
from the deformed (see Appendix A).

Figure 2-3 shows the different types of modes of vibrations that form the deformed

*discussed in the Chapter 3
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superquads. Figures 2-3 (a) to (d) show the modes of bending, taper, pinch and shear
separately, while Figures 2-3 (e) (f) (g) and (h) show the superposition of these modes.
Figure 2-3 (i) shows a face that was generated by deformations of a single superquad and
then a displacement map was applied on top. The displacement and the deformation maps
were based on range data from a real face. Superquads have been used extensively for data
fitting and recognition of parts. Pentland [31] has done a lot of work of object recognition
using deformable superquads, and this figure is an example of that work. Figure 2-3 (j)

shows how various shapes could be added together to form complex scenes.

Figure 2-4: Target and Contactor.

Figure 2-5: Objects in Contact.
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2.3 Curvatures for Improved Contact Detection

In this section a formulation will be developed to improve contact detections for parametric
shape representations, even with less sampling points on the surface. For our formulation,
the colliding bodies will be referred to as contactor and target, the target being the one
with whom the collision is taking place and the contactor the body itself (see Figure 2-4).

First the formulation of curvatures of parametric curves.[29, 22]

2.3.1 Formulation for curvatures of parametric curves

Equation of curvature of a parametric curve is given by:

K= _z!i:_y:f_a (2.11)

[(£)2 + (9)2)2
Applying Equation (2.11) to the parametric curves in (2.4) we obtain the curvatures of
the two parametric curves of the superquadric surfaces. These essentially are the principle

curvatures of the superquadric surface.

1 ill ﬁl
= = - 2.12
TR | by >
E e N (2.13)

Since both xp(w) and Kk, (n) are perpendicular (L) to each other the curvature of the

surface at any point is given by
K(@) = km cos?(a) + &y, sin?(a) (2.14)

where « is the angle from the h(n) curve, traversing the surface at that point.
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The Gaussian curvature of a superquad as calculated by Nguyen [29] is:

g B (DR @) | 1

K(n,) = minm ()RR (2.15)

INmE | n, &,

Figure 2-6: Objects in Contact and Deformed.

2.3.2 Lowest point of penetration

As mentioned above, one very good way of determining if the bodies are in contact is
to check if any point of one body is inside the surface of the other. The use of inside-
outside function Table 2.1 for parametric surfaces presents a definite edge. However it is
not feasible to check each and every point of one body with the inside-outside of the other
as it is computationally too expensive. For this reason sampling points of one object (the
contactor) are checked with the inside-outside of the target. The problem with this method
is that if the sampling is too coarse then the penetration value returned will be true for
that specific point but most probably not the point of most penetration(see Figure 2-7).
By using the principles of differential and computational geometry to exactly locate that
point (see Figure 2-8) this problem could be solved with less computation. The following
is the algorithm.

1. Check for contact of a sample point, referred to as a node. This check is simply testing
the inside-outside function for the specific node.
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penetration point
of the contactor

maximum
penetration of
the target by

the contactor /e

Figure 2-7: Point of Contact (two-dimensional view).

2. If the check is positive and there is contact then the lowest point should be located.
This can be done by two methods

(a) A brute force method of incrementally changing the values of z, y and z to get
the lowest value of the inside-outside function. OR

(b) Traversing down the two parametric curves Equation (2.4) using diff~rential ge-
ometry and do a local minimization of the contactor body inside the target body

to locate the most penetrated point of the object.

The latter method is discussed in more detail in the next section.

2.3.3 Local minimum point of the target

To determine the local minima of a target body inside the contactor,

1. Calculate the curvatures at that point using Equations (2.13) and (2.12).
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penetration point
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the curvatre of

ellipsoid and

contactor the

at this point

point of max.
penetration
normal to
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penetration of point
the target by
the contactor

Figure 2-8: Ellipsoid for a contact point (two-dimensional view).

2. Form an ellipsoid with a vertex of the ellipse at the node and the centroid of the
ellipsoid lying on the surface normal of the contactor node, (see Figure 2-8) with the

following equation

Km cos(7) cos(w)

Xe(n,w) ) “TIwsw (2.16)
el?,w) = Kh cos(n) sin(w .
) () sin( = <n<s
Ko sin(n)
where
e Em + Kn
°= 2

This ellipsoid can now be transformed (translated and rotated) into the local coordinates

of the target and then minimized in the local coordinates system to get the lowest point

within the target.
Xt = TX, (2.17)
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vXt=o0 (2.18)
where

V= [ dz dy dz ]
This should give a point which is the minimum point on the ellipsoid that is inside the
target.

Simplifications As it is obvious that the above method is computationally expensive.
More speed could be achieved at the loss accuracy by assuming a sphere rather then an
ellipsoid. The major problem that exists with this method is that the curvature at flat loca-
tions is very large. Singularity checks are required to make sure that curvature calculations
do not blow up (diverge). It might be noted that all of these calculations of curvatures and
normals are in undeformed space. The deformation map has to be applied on top to get

the right values (see Appendix A).

So far, the discussion has been restricted to detection of contact. The next phase is
the determination of the response due to this contact. For this information about the
force and energy distributions over the surface of the colliding bodies is necessary. In the
next chapter formulations, using FEM, will be developed for this purpose. The concepts of
dynamic analysis will be introduced and efficient methods for the dynamic simulations will
be presented. In the following chapters (4 and 5) these formulations will then be applied

for collision and friction.
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Chapter 3

Finite Element Method

Formulation

In this chapter some introductory concepts of finite element methods from their formulation
to their applications are presented. Since the intention is to use deformable models in virtual
world modeling, it is essential to develop and use, formulations for relating the forces on
the surface and within the body and its deformations. Finite Element Method, which is
a numerical procedure for solving differential equation systems for engineering analysis,
provides a very efficient formulation for this kind of application. The primary subdivisions

of FEM are:
o idealize the system into a form that can be analyzed (discretize).
o formulate the governing equilibrium equations of the idealized system (formulate).
o solve these equilibrium equations (obtain node and element characteristics).

e interpret the results to the entire system (backsolve, utilize continunm of elements to

obtain solution for the whole system).

It will be shown in this chapter, how these principles could be used to develop a finite
element basis for an object, specifically for objects that have a parametric surface represen-

tations (superquadric functions). The formulations of the governing equilibrium equations
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are presented and then a discussion on the use of the different methods for dynamic analysis

will be presented. !

3.1 Formulation of Displacement Based Finite Element

Method

This formulation is based on the fact that when certain part (node) of a body is allowed
some displacement, it is possible to calculate the applied loads on it. The displacement
based finite element is just at extension to the displacement method of analysis.

3.1.1 Basic Steps of the Formulation

1. Idealize the structure (or whatever) as an assemblage of elements that are intercon-

nected.
2. Identify the unknown displacements that completely define the displacement response.

3. Establish force balance equations corresponding to the unknown joint displacements

(from item 2 above) and solve.
4. Calculate internal stress distributions.

5. Interpret the displacements and stresses calculated above based on the idealizations

and assumptions used.

3.2 General Derivation Of Finite Element Equations

Consider a three dimensional body (see Figure 3-1). In this figure the the coordinate system,
displacements variables and the different types of forces and their notations are specified,

where;

'Most of the formulations presented here are based on the formulations presented by Bathe [18] and the
concepts of FEM from [19]. The notations used are also compatible with Bathe [18].
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X,u

Finite Element

Figure 3-1: General Three Dimensional Body.

X,Y and Z, = global coordinate system
U,V and W, = global displacements
z,yand 2, = local coordinate system
u,vand w, = local displacements
2 52 F;
2 = (B, £ =|f]|, F = |F
2 2 F;
here:
d Body Forces (Force/unit volume)

Surface Forces (Force/surface area)
Concentrated Forces

"
. @
o
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The strains (€) corresponding to U and the corresponding stresses (7) are:

€zx Tzz
€y Tyy
e,‘ 1.8,
€ = ; T =
Yzy Try
Yxz Tzz
| Tvz ] | Tyz

3.2.1 Principle of Virtual Work

Definition 3.1 The Equilibrium of a body requires that for any compatible, small virtual
displacements, which satisfy the essential boundary conditions, imposed on the body, the
total virtual work is equal to the total external virtual work [18].

[ erav = [ OPTeBav + [ ©STeSas + 3 OTF (3.1)
v \ 4 \4 3
Note: A bar on the vector signifies “virtual”

For the above to be true the following conditions have to be met:

e displacements should be compatible and continuous.

o must satisfy the displacement boundary conditions.

e must satisfy constitutive relationships (i.e. stresses could be evaluated from strains).

3.2.2 Shape or Interpolation Functions

As per the definition of Principle of Virtual work, it is necessary to set up a system of
shape functions that relate the displacement of one node of the body with the the relative
displacements of all the other node. Similar functions are required for the distribution of
strains across the body of the finite element model. These functions called the displacement

interpolation functions and strain-displacement functions are described in vector form as;

u("')(:c, Y,2) = H("')(z, ¥,2)U (3.2)
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and

€™ (z,y,2) = B(™(z,y,2)U (3.3)

where;

The displacement interpolation matrix

Tke strain displacement matrix

The three dimensional dispiacement vector.
The element number

3cawH

H and B are related and B be calculated by appropriate differentiations of the functions
in H. Setting up of the B and H matrices is explained in detail in Appendix B.

3.2.3 Develop Stiffness and Load Matrices

By using equations (3.2) and (3.3) the assemblage process of the local stiffness matrices
to the global stiffness matrix, referred to as the direct stiffness method is automatically
performed in the finite element application of the principle of virtual displacements. This
application is done as follows.

Relation between strains and initial stresses is:
r(m) = E(m) m) 4 p1(m) (3.4)

where:

E = The elasticity matrix
1 = The initial stress

Converting Equation (3.1) into element formulation:

&m) p(m) gy (m) [(m)BT g(m)B gy (m)
v(m) v(m)

+ U(m)ST g(m)S 4 5(m)
V(m)

+ Y UTF (3.5)
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Now substituting Equations (3.2) and (3.3) into equation (3.5) and comparing with the

following equilibrium equation;

KU=R (3.6)
We get;
- (m)T g (m) g(m) gy (m) 3.7
K ; . B™TEM™B (3.7)
also,
R=RB4+RS-RI4+RC (3.8)
B _ (m)T g(m)B gy (m) 3.9
R Z,,: o B (3.9)
RS =% / H(m)ST(m)S gg(m) (3.10)
I_ (m)T - (m)I gy (m) 3.1
R ; o BT (3.11)
RC=F (3.12)

3.2.4 Include Inertia Forces

In the above equations of motion, the inertia effects were neglected. If the loads are to be
applied rapidly, then the inertia forces have to be considered using d’Alambert’s principle
[18]. We can simply include the element inertia forces as a part of the body forces. Assuming
that the element accelerations are in the same directions as the element displacements, the

contribution of the inertia force to the load vector is:
RE = / ()T (g(m)B _ o) (m) (v ™) 3.
; o H™T(f p"H™ UV (3.13)

again on comparing with

MU+KU=R (3.14)
we get,

M= H™T p(m) g () gy (m) (3.15)
™ JVim)
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3.2.5 Inciude Damping Forces

Subsequently, in measuring time dependent respomse, it is observed that the energy is
dissipated which in time dependent response is taken into account by “velocity dependent

damping forces”. Based on this:

RB = E / H(M)T[f(m)B - p("‘)H("‘)ﬁ' - n("')H("')fJ]dV("‘) (3.16)
= Jvim)
For equation:
MU+ CU+KU=R (3.17)
and hence:
C= H(™)T ((m)g(m) gy (m) ' (3.18)
= Jy(m)

A complete method for setting up the stiffness K and mass M matrices for superquads
is presented in Appendix B from the development of the shape interpolation functions to
the deformation matrices. The rest of this chapter will concern itself with the use of these
matrices, which define the governing equations of our system.

Two important methods for analysis of physical systems are available, they are;
1. Static Analysis.
2. Dynamic Analysis.

These methods are explained in detail in the following sections.

3.3 Static Analysis

The basic difference between static analysis and dynamic analysis is that in static analysis
the velocity and acceleration dependent forces are neglected, while in dynamic analysis
they are not. The decision between dynamic and static analysis is purely an “engineering”
decision, the object being to reduce the analysis effort. However, it should be realized that
the assumption of static analysis must be justified, otherwise the results are meaningless. In
the case of non-linear analysis (which is not dealt with in this thesis) neglecting the effects of

inertia and damping forces may be so severe that a solution may be difficult or not possible
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to obtain. For virtual world simulations inertia and damping forces are important and hence
enforcing the use of dynamic analysis. The two important methods for static analysis are
Gauss Elimination Methods and Orthogonal Matrices Method 2 and these methods have to
be used in dynamic analysis for step-by-step integration methods as described in the next

section.

3.4 Dynamic Analysis

The equations of equilibrium governing the linear dynamic response of a system of finite

elements as shown in the formulations above is:
MU+CU+KU=R (3.19)

Recall that this equation (same as (3.17)) was derived from the considerations of statics

at time ¢. Rewriting the above equation:
Fr(t) + Fp(t) + FE(t) = R(t) (3.29)

where F(t) are the inertia forces, Fp(t) are the damping forces and Fg(t) are elastic forces
at time ¢.

Mathematically, Equation (3-19) represents a system of linear differential equations of
second order. The solution could be obtained by standard methods of solving differential
equations with constant coefficients [18, 32]. However, these methods are computationally
expensive, hence a few effective techniques are required suitable to our systems. Two of

these techniques are discussed below:

3.4.1 Direct Integration Methods

In direct integration methods the Equation (3-19) is integrated using an numerical iterative
procedure. By direct integration it is meant that prior to numerical integration, no trans-

formation of equation into a different form is carried out. The direct integration techniques

?see Bathe [18] and Strang [32, 33] for detailed analysis of these methods
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velocities and accelerations that determine the accuracy, stability and cost efficiency of the
system.

A few commonly used direct integration methods are:
1. Central Difference Method.

2. Houbolt Method

3. Wilsen Method

4. Newmark Method.

Orly two of the above methods are discussed below (for more detail on these methods see

Bathe [18] or any other Numerical Methods in Engineering Text).

Central Difference Method Centraj difference method is based on the following as-

sumption:
.
U, = E(Ut-At -2U,; + Uiae) (3.21)
. 1
U = E‘(‘Ut—At + Upsar) (3.22)

The algorithm for Central Difference Method ( CDM) for dynamic analysis is shown in
Table 3.1,

Newmark Method The Newmark method is based on the following assumptions:

Usrae = U, + [(1 -0, + ‘7fft+At] At (3.23)
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A, Instial Calcui?iom_

1. | Form stiffness matrix K, mass matrix M and damping matrix C
2. | Initialize Up Uy and Up.
3. | Select time step At, At < At.,, and calculate integration constants:

- . - . — . -l
00—31,7, al—%{a a2 = 2ao; 03-3

4. | Calculate U._.a, = Ug - Atﬂo + asﬁo.

5. | Form effective mass matrix M = agM + a;C.
6. | Triangularize M : M = LDLT .

(B. | | For each step
1. | Calculate effective load at time t;

ﬁ.g = R.g - (K - azM)Ug - (aoM - alc)Ug_M

2. | Solve for displacements at time t + At:

LDLTU; ar = R:.

3. I_f required, evaluate accelerations and velocities at time t:
U, = ao(Ui—at — 2U; + Uggar)

U; = a1(—U;_at + Uiiasr)

Table 3.1: Step by step solution using central difference method, from Bathe [18], U, is U
at time ¢

3.4.2 Mode Superposition

The direct integration methods discussed in the previous section show that if a diagonal
mass mairix is used for inertance effects in the analysis  and no damping is assumed, then
the number of operations per time step, roughly, is greater then 2nm where n is the order
of the stiffness matrix and my is half bandwidth 4 of the stiffness matrix. In CDM 2nm;
operations are required for the product of the stiffness times the displacement vector and
in Houbolt, Wilson and Newmark methods, 2nm; operations are required for the solution
of the system at every time step. If consistent mass matrix is used and damping is assumed
then about nm,; additional operations are required per time step.

The above discussion shows that the number of operations required in dynamic analysis
are directly proportional to the number of time steps used in the analysis. Therefore, direct

integration techniques are good for short duration simulations, and hence there is a need for

31t has been proved that the assumption of a diagonal mass matrix is a good one and converges to the
same sclution as the actual mass matrix, except after some oscillations about the correct solution (monotonic
convergence).

“See Bathe[18] Appendix A.2.2 and Segerlind [19] for complete discussion or bandwidth of a stiffness
matrix.
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a

Initial Calculations
1. | Form stiffness matrix K, mass matrix M and damping matrix C

2. | Initialize Up Up and D.

3. | Select time step At, parameters a and v and calculate integration constants:
a>0.50; a > C.25(0.50+ )2
a0 = Az a1 = o =gk a=g-l
aa=1-1; as= A‘(l 2) as—At(l—‘y); ar = 7At

4. Calculate U_a:=Ug - AtUo + 03Uo

5. | Form effective stiffness matrix K = K + agM + a;C.

6. | Triangularize K : K = LDLT .

B. For each step

1. | Calculate effective load at time ¢ + At;

ﬁ-t =R; —M(aoU; + azﬁt + aaﬁt)c(alut + ﬂ4ﬁt + ﬂsﬁt)
2. | Solve for displacements at time t + At:

LDLTU;pa: = Regas.

3. If required, evaluate acceletatlons and velocitia at time t:
Ut+At = aO(UH—At Uy) - a;U; — a3 U,

Uspar = Up + a6U; + a7U0 40

Table 3.2: Step by step solution using Newmark integration method, from Bathe [18], U,
is U at time ¢

a method which transforms the Equation (3.19) into a form which leads to a less costly step
by step solution. Since the number of operations, as mentioned above, is proportional to
the half bandwidth m; of the stiffness matrix, a reduction in m; 3, would greatly reduce the
cost of step-by-step solution [18]. The mode superposition method is used in the Thingworld
Modeling System and has gained to a lot of interest in the computer graphics and animation

fields, for physically based modeling after its introduction by Pentland and Williams [6].

Change of Basis to Generalized Displacements To accomplish the purpose described
above the following transformation on the finite element nodal point displacements U is
used.

U(t) = PX(t) (3.25)

5emphasis should be paid to the fact that the bandwidth of the system matrices depends on the topology
of the finite element mesh (how the nodes and elements are numbered), however, there is a limit cn a
minimum bandwidth that can be achieved for a system, therefore another technique to establish this criteria
has to be adopted
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where P is the square transformation matrix and X{(¢) is a time-dependent vector of gener-
alized displacements. Combine this with our Equation (3.19). Substitute Equation (3.25))
into Equation (3.19) and premultiply by PT:

MX+CX+KX=R (3.26)
where:

M =PTMP; C=PTCP; K =PTKP; R =PTRP (3.27)
Now we can express the elemental displacements in terms of generalized displacements:

u™(z,y,2,t) = H™PX(1) (3.28)

With this transformation of the basis a new system of stiffness, mass and damping matrices
is obtained which has a smaller bandwidth then the original system. Usually the transfor-
mation matrix is established using the displacement solutions of free vibration equilibrium
equations with damping neglected [18].

Hence assuming no damping the system of squations is:
MU+ KU=R (3.29)
the solution to this equation is of the form:
U = ¢sin [w(t — to)] (3.30)

where ¢ is a vector of order n, t is the time variable, ¢y % time constant and w the frequency
of vibration of vector ¢. From this an eigenvalue problem could be set up as follows, from

which ¢ and w must be determined.

K¢ = w*M¢ (3.31)
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The eigenvalue problem in Equation (3.31) yields the n eigensolutions

(w%’ ¢1)a (“’37 ¢2)9 sy (w?u ¢n)

where all the eigenvectors are M-orthonormalized 6. Hence we have:

¢iTMo;

i
2
-,
e
<.

and

0< w! < w?<wl<... <u?

(3.32)

(3.33)

The vector ¢; is the ith-mode shape vector and w; is the corresponding frequency of

vibration. Now defining a matrix ®, which has for its columns the eigenvectors ¢;, and a

diagonal matrix 22, with the eigenvalues w? on its diagonal:

wf

§=[¢1’ ¢2a ¢37 ey ¢n]; 92=

Using (3.34) we can write (3.31) as:

K& = M3Q?

and since the eigenvectors are M-orthonormal:

TK® =02 3TM® =1

(3.34)

(:;.35)

(3.36)

From the above formulations it becomes apparent that matrix @ i an appropriate

®as per the properties of eigenvalues and eigenvectors, see Bathe [18] or Strang [32, 33]

44



transformation matrix P, therefore replacing in (3.25) and (3.26) we get;
X + #TC®X + 02X = 8TR(t) (3.37)

Equation (3.37) shows that if the damping matrix is not included in the analysis, then
the finite element equations are decoupled on using a transformation matrix P with the free
vibration mode shapes of FEM system to be its columns [6] [18]. The implementation of
this method by Pentland [6] on the Thingworld Modeling System and how this @ is used
for deformations of an object is explained in Appendix A. Now we will briefly touch on the

concepts of systems with or without damping.

Analysis without Damping: For systems in which damping effects are negligible and

could be neglected the equations of equilibrium for analysis are reduced to;
X + 92X = 8TR(t) (3.38)
or to n independent and individual equations of the form

Zi(t) + wizi(t) = 7i(2)
ri(t) = #7R(?) (3.39)

fori = 1,2, 3,...,n

Note here that in the above Equations (3.40), each equation is an equilibrium equation of
single degree of freedom with a unit mass and stiffness of w?. The solution to each equation
in (3.40) can be obtained by any integration method described in the direct integration
methods or by using the following Duhamel integral.

t
zi(t) = &/o ri(7) sinw;(t — 7)dT + a;sinw;t + B; cosw;t (3.40)

where a; and f; are constants depending on the initial conditions. For complete response all

the n-equations above are solved and finite element nodal point displacements are obtained
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by superposition of response in each mode [18], using
n
U(t) = E¢;z;(t) (3.41)
=1

Analysis with Damping: In the analysis of systems in which the effects of damping
cannot be neglected it would be preferable, if at all possible, to deal with the same func-
tionality of decoupled equilibrium equations as in the undamped case. The damping matrix,
essentially estimates the overall energy dissipation during the system response, and hence,
cannot be generally obtained from element assemblage, like the mass and stiffness matrices.

If assumed that damping is proportional to response then
#{ C = 27665 (3.42)

where §; is a modal damping parameter and §;; is the Kronecker delta (6;; = 1 for i = j,
6;j = 0 for i # j). Now using Equation (3.42) and assuming that the eigenvectors ¢; are

C-orthogonal. Equation (3.37) becomes

£i(1) + 2wiliti(t) + wizi(t) = ri(2)
rt) = ¢{R(2) (3.43)

fori = 1,2, 3,..., n

Compare this equation with Equation (3.40) and note that an extra damping term is in-
troduced. A damping ratio, §;, is a part of the single degree of freedom system. Since the
formulation of damping case was set up with the intent of maintaining the functionality of
the damped and the undamped cases similar, therefore similar procedures could be used to

solve the damped case. The Duhamel integral now becomes.
t
zi(t) = u_)—l- / ri(r)e" 69 ") sin @y(t — T)dr + e~ ) {q;sin@;t + Bicos@it}  (3.44)
i Jo

where

@ = wiyf1— &
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Note that if §; = 0 Equation (3.40)becomes (3.44).

For a system with damping it is important to consider the following two points.

1. The total damping of the structure is equal to the sum of individual damping of each
mode. AND

2. In modal analysis for numerical solution of the system, using the decoupled equations,
only stiffness K and mass M matrices are calculated from the elemental assemblage.

Damping C is computed as follows.

The damping matrix that satisfies the relation in Equation (3.42) is obtained by using

the Caughey series [18],
c-M¥a [M-k] (3.45)

k=0

where the coefficients ax,k = 1,...,p, are calculated from p simultaneous equations. At
P = 2 Equation (3.45) reduces to Rayliegh damping (C = ayM + a2K). If p > 2 then
matrix C is, in general, a full matrix, which increases the cost of computation by big factor,
therefore, Rayliegh damping is assumed. A limitation of this assumption is that higher
modes are considered more damped then the lower modes. The magnitudes of the Rayliegh

damping coefficients, a¢; and ay, are to a large extent dependent on the energy dissipation

characteristics of the structural materials.

3.4.3 Determination of minimum time step

In the preceding sections two principal procedures for solutions of dynamic equations were
presented. An important observation was that the cost of a direct integration analysis
is directly proportional to the number of time steps. It follows that the selection of an
appropriate time step in direct integration techniques is of extreme importance. The time
step should be small enough to obtain the desired accuracy and not smaller then necessary,
which would make the solution more costly. The aim of this section is to discuss in detail the
problem of selecting an appropriate time step At. The analysis of the stability and accuracy
characteristics of the integration methods results in essential guidelines for selection of an

appropriate time step.
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Mode Superposition versus Direct Integration: As mentioned in preceding sections
using either mode superposition or direct integration procedures the solution is essentially
still obtained by numerical integration. However, for mode superposition a change of basis
from finite element coordinate basis to the basis of eigenvectors of the generalized eigenprob-
lem (Equation (3.31)) is performed prior to time integration. Hence, essentially Equation
(3.37) or

X + AX + 0?X = 8TR(t) (3.46)

where A = $TC® is the differential equation that needs to be solved. Here the columns
in & are the M-orthonormalized eigenvectors (free vibration modes) ¢1,¢2,...,%n and Q2
is a diagonal matrix with the eigenvalues (free vibration frequencies squared) Wi, Wi, ...,
w2 of the eigenproblem (Equation (3.31)) as described in Section 3.4.2. Assuming damping
is proportional, A is a diagonal matrix as mentioned in previous section.

The equations (3.46) (3.37) consist of n decoupled equations, which can be solved by
any of the previously mentioned integration techniques in the preceding sections. However,
as the periods of vibration, Tj,i = 1,2,...,n are know, where, T; = %"‘_'—, we can choose, in
the numerical integration of each equation in (3.46), an appropriate time step that assures
a required level of accuracy. On the other hand, if all the n equations in (3.46) were
integrated using the same time step At, then the mode superposition method is completely
equivalent to direct integration, in which the same time step is used. The essence of the
mode superposition solution is that frequently only a small fraction of the total number of
decoupled equations need to be considered, in order to obtain a good approximate solution
to the actual response. Mostly, only the first p equilibrium equations need to be used; i.e.
we need to include only i = 1,2,...,p where p < n (3.40) or (3.44) equations, in order to
get a reasonably accurate solution. This means that only p eigenvalues and eigenvectors in
Equation (3.31) need to be solved and superposition of modes Equation (3.41) is carried
cut by adding up only the first p modes.

The reason that only the lowest modes are considered lies in the complete modeling
process for dynamic analysis. In general, when monotonic convergence conditions are not
satisfied, the finite element analysis approximates the lowest exact frequencies, and little

or no accuracy can be expected in approximating the higher frequencies and mode shapes.
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Therefore, there is little justification in including the dynamic response of high frequencies
in the analysis. This can be achieved by considering only the important modes of the finite
element system.

While considering the problem of selecting the number of modes to be included in the
mode superposition analysis, it should be remembered that an approximate solution of
equilibrium equations in Equation (3.19) is desired. If not enough modes are considered
then the equation in Equation (3.19) are not solved accurately enough and the equilibrium,
including inertia forces is not satisfied for the appropriate response calculated. Denoting
by U, the response predicted by mode superposition when p modes are considered, an
indication of the accuracy of the analysis at any time ? is obtained by calculating the error

measure €p;
0 < RO = MO0 + KU,0)]|
’ R

Assuming that |[R(t)| # 0. If a good approximate solution of the equilibrium systems

(3.47)

has been obtained then ¢,(t) will be small at any time t. Note that Up(t) must be obtained
by accurate calculations at the response in each of the p modes considered, so that the error

is only due to not including enough modes 7

In this chapter, the formulations to set up a three dimensional objects which can deform
and has internal and surface stresses, have been presented. In the following chapters these
three dimensional objects will be used to develop formulations for interactions of these

objects in a virtual world.

"For a more detailed discussion on stability and accuracy of integratior methods described here see Strang
[33, 32], Bathe [18] and Segerlind [19]
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Chapter 4

Collision Response

Many analytical methods for characterizing and calculation of collision response of rigid
and non-rigid colliding bodies have been presented for computer animation and simulation.
In the following sections these methods will be discussed and a new method for collision
response for deformable objects based on the formulations developed in previous chapters,

will be derived.

4.1 Previous Work

Moore and Wilhelms [9] presented a method for rigid body collisions which relied on the cal-
culation of impulse of the colliding bodies at a single point. Laws of conservation of angular
and linear momentum were used to determine the collision response. This force was then
applied by introducing springs at the collision points. Hahn [34] presented similar methods
for rigid-body contacts using non-holonomic and holonomic constraints. “Penalty” Meth-
ods, that introduce restraining forces against penetrations were presented by Terzopoulos
[7] for rigid and non-rigid penetrations. Baroff [35] presented an analytical methods for
contact response for non-penetrating rigid bodies in continuous contact. In many respects
Moore and Wilhelms [9] method, which uses springs for response forces is in the same lines
as to the penalty method, as referred to by Terzopoulos [7].

Here it is imporiant to get into the discussion of contact response and collision response.

Even though sometimes these terms are used interchangeably [35]. Collision response is
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actually a discontinuous impulse force that acts instantaneously on a body, which has just
collided with another body. On the other hand contact response is a continuous response
that is shared by the contacting bodies from the the moment they are in contact. These
both responses are calculated /determined analytically on collision and/or contact to prevent
bodies from penetrating each other. Continuous contact (resulting in contact response) is
a little difficult to characterize, specially for a simulation. Moore and Wilhelms [9] model
simultaneous collisions as staggered series of single collisions, while Hahn {34] models them
as a series of frequently occurring collisions.

As Baroff [35] has noted that for most collision response calculations, size of the critical
time step plays an important role, specially when the objects are moving with high velocities,
(impulse is high). Also for the systems, that deal with continuous contact as mentioned
above, stability becomes a big problem, and the objects will never become stationary on
contact unless the time step is extremely small. The stability problem will dealt with briefly
in this chapter and then the discussion will be continued in Chapter 7.

penetration
X,
apply a spring
of stiffness k
to get a response
F = kx

Figure 4-1: Penalty Method.
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4.2 Penalty Method

In the “penalty” method as presented by Moore and Wilhelms [9] and Terzopoulos [7],
the penetration of bodies is prevented by applyirg a repulsive force on the surface using
springs. For best results these repulsive forces should be surface forces. For deformable
objects the force should be equivalent to the surface forces that caused the deformations,
i.e. the force forces required to undeform the object. However as mentioned earlier, the
above mentioned methods apply spring forces at the points of penetrations by determining
the spring constant that would be needed to negate the penetration. As it is obvious, in
this case the contact patch is not at all characterized and the repulsive force is not at
all distributed over the surface, and hence realism is compromised. Baroff [35] discusses
that various analytical methods have a win over the “penalty” methods, specially for rigid
bodies. Baroff’s discussion on expensive computations and approximate results due infinite
rigidity of hard bodies and infinitely hard surfaces for rigid bodies is true, however, the
use of analytical methods that are presented to solve indeterminate rigid systems for rigid
bodies is highly approximate. It should however be noted that thé results of that system
are extremely good, and surprisingly look quite realistic.

Pentland [6, 13] and Williams [16] have time and again emphasized the need of surface
patch characterization for collisions and contact. This kind of surface patch characteriza-
tion is considered extremely important in engineering analysis of contact as discussed by
Bathe [5]). Pentland [6, 13] recommends the use of analytic representations of geometric
shapes for surface characterization. In Chapter 2 the geometric formulations for surface
representations were presented. The formulations could very well be used to get the shape
of the interpenetration region, as was discussed in that chapter.

Using the parametric surface representations with implicit equations for defining de-
formable models that are also finite element models, a new method of determining collision
and contact response will be presented. In essence, this method will figure out the de-
formations in contacting bodies on the basis of their material properties, and amount of
surface forces exerted by these bodies on deformations. These deformation forces will then
be applied as collision or contact forces. First a FEM formulations will be presented then
a simplified approach will be discussed.
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Target

Displacements

Figure 4-2: Contact Problem : Conditions prior to contact [5].
4.3 FEM Formulation of the contact problem

In this section the contact problem will be viewed with an FEM perspective and a formula-
tion will be presented for collision response for a deformable object. Consider Figures 4-2,
4-3 and 4-4. These figures shows two generic bodies colliding called the contactor and the
target. Contactor contains the nodes that come in contact with the segments (polygons)
and nodes of the target. The most important conditions of contact along the contact surface
is that no material overlap should occur, which as a result require contact forces along the

region of contact. Following is true about these contact forces.
o These forces are equal and opposite (Newton’s third law of motion).
e Contact forces are only compressive (they can only push).

¢ Tractions on the surface are frictional forces and obey the laws of friction (This point
will be considered in detail in the next chapter and for now we will work with the

assumption of no friction).

Now lets characterize the different kinds of contact and discuss the response for these.
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Contact Region
No apriori
knowiedge of
region

Target Contactor

Figure 4-3: Contact Problem : Conditions at contact [5].

Definition 4.1 (Contact forces for sticking contact) Sticking contact can be defined
as a contact in which, (a) the contactor node has penetrated the target body in iteration
i — 1, whereas it was not in contact in iteration i — 2; (b) frictional resistance is enough to
resist sliding, i.e. the node does not slide. In case (a) the contact force at a specific node,
say k is zero at iteration i and the contact force is generated during iteration i when the
penetration is eliminated [5].

Definition 4.2 (Contact forces for sliding contact) A contactor node k is assumed to”
be in sliding contact if the tangential traction, as discussed in Chapter 5 ezceeds the frictional

capacity.

Bathe [5] presents an algorithm for arisymmetric contact analysis using the incremental
finite element equations of motion, by adding the contact conditions with static conditions.

The governing finite element equations are:

i—1 ) — i—
Kiial 0 + [Kc?—lA)) AU® | | Resar B Fia) + cht+lA)t)
t+A? = i-1
0 0 0 0 0 A°§t+A)t)
(4.1)
where;
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Figure 4-4: Contact Problem : Forces acting on target and contactor [5].

AUG = vector of incremental displacement in iteration i.
.9\0) = vector of increments i contact forces iteration i.
thf;Al,) = target stiffness matrix, after iteration ¢ — 1.
ch;kt) = contact stiffness matrix, for effect of contact after iteration ¢ — 1.
FE:AII = vector of nodal point forces equivalent to element stresses
after iteration ¢ — 1.
B“’.A‘ = vector of total applied external forces at time ¢ + At.
ch(;:_lA)t) = vector of updated contact forces after iteration z — 1.
Ac(;:_k)‘) = vector of overlaps or penetrations of bodies.

Each contactor node k contributes to ch _,Lt), chllA)t), and Acglzt) These terms

can be considered separately for single contactor nodes as the contributions for a number
of nodes are obtained by adding the individual contributions using direct stiffness method’s
assemblage principles.

Note that the above iterative system for the contact problem corresponds to a full
Newton Iteration. Bathe [5] suggests the use of Newton Raphson method just for this

reason. 1

!For further details on this formulation and worked out examples see Bathe [5, 18], For Newton Raphson
method see Strang [32).
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Most of the difficulty in solving the above described contact problem lies in numerically
updating the contact conditions at the contactor node. In other words a system should
automatically decide whether the node is in contact, and if in contact, is it sliding or
sticking contact, so that the matrices for sliding or sticking contact could be incorporated
in the system at that iteration.

The contact scenario proceeds as follows. The contactor node penetrates the target body
in an iteration. This is the contact detection stage. An efficient method using parametric
shape functions and inside-outside functions was presented in the Chapter 2. The next
problem is the geometric overlap of these bodies. It is essential to know the shape of the
contact patch [6] to get an accurate description of the contact scenario. This is an extremely
difficult and time consuming operation, specially for an interactive virtual world system.
Some simple ways of using the geometric shape descriptions of the objects could be used for
the surface patch characterization. Some methods for approximate and stochastic methods
for this description on basis of the roughness of the surface are presented in Chapter 6.
Also in each every iteration, checks for sticking or sliding contact are required. The case of
motion after collisions/contact will be discussed in detail when the discussion on friction is
taken up in the next chapter. Now we will discuss how a simplified approach to the method

described in this section could be employed for our purposes.

4.4 Response for Deformable Bodies

To develop a formulation of collision and contact of bodies, specifically for deformable
bodies, first we need a suitable model. Figure 4-5 shows two bodies connected by springs
and dampers. This represents a simplistic model of collision of two bodies. The springs and
dampers, account for the deformabilty and the response of the object. In this figure, k; and
k; represent the stiffness of the springs, which accounts for the stiffness of the contactor and
target (nodes, segments). In case of three dimensional deformable bodies, these represent
the stiffness matrices K of the target and the contactor. However for simplicity, and ease
of computation, we will assume that each node of the object has been decoupled and has
its own stiffness value. We will consider collisions between nodes of the objects or the node

of the contactor with the segment of the target. The stiffness value of each and every node
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Figure 4-5: Model for Collision and Contact Forces

essentially makes up the stiffness matrix K of the three-dimensional body. Similarly the
damping coefficients ¢, and ¢; can be related to the members of the the damping matrix
C and m, and m, from the mass matrix. 2. Appendix C shows approximate methods of
determining the stiffness values of the the nodes and segments from the stiffness matrix.
The mass and dampiag values of each node could he determined using diagonal mass and
damping matrices, which as mentioned in previous chapter lead to a good, but monotonic
convergence to a solution.

Now using the following constitutive relationships the model in Figure 4-5 can be mod-

*In. system dynamics } is referred to as capacitance (stores energy), ¢ as resistance (resists flow) and m

as inertance (induces flow).
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Figure 4-6: A Simplified Model for Collision and Contact Forces using the constitutive
relationships from Equation (4.3)

ified to Figure 4-6.

> m

me =
1=0
J
Ce = th (4.2)
=0
¢ .
ke —_ n;=o k'
i=o ki

In this system the state variables are k. and m.. Let v be the relative velocity of the

system and f the force on the mass and if Fy is the applied force then:

' 0k 0 ]
{ = 1 Ce f -I-Fa[ 1 j (4.3)
v “me m. L7 | e

The above equation is a second order differential equation with two system variables, f and
v and is equivalent to ;

Mei + Ce + kex = F, (4.4)
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as on solving the above equation for # which equals © we get;

PR RN P
m, m, m,
and as;
[ = kez
f = ke
f = ke

The notation in Equation (4.3) is known as state-space notation and the reason for using

this notation is that the system equation can be generally written as;
X = AX + BU (4.5)

where X" is the vector of system variables, i/ is the vector of inputs, while A and B are
the matrices system parameters as can be seen on comparison with Equation (4.3). The
order of the system is defined by the number of variables in vector X', which in turn is
dependent on the integral constraints on the system. This kind of notation is typically used
for estimation and control theory applications and since, estimation and control are some
major parts of this thesis, it is important to introduce this notation.

Using Equation (43) with dynamic analysis (as discussed in previous chapter) gives us
the change in velocity and forces for each time step. Hence, this formulation provides us
with an simplified method for collision and contact response at each iteration. However it
should be noted that it works with one big assumption that it suffices to consider a collision
in which the properties for stiffness, damping and mass of the nodes of the target and
contactor could be used. Essentially the assumption is based on the decoupled and local
information of the collision, and disregards the global effects. What makes this assumption
feasible is that on collision, when forces are picked up, these are then applied as external
forces to the bodies, at this point the forces are distributed over the body. Hence this
formulation defines the collision on the local level, determines the approximate forces that
caused the deformation, then applies them to the bodies. Since the material properties of

the nodes are used the deformation is completely dependent on the material characteristics
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in the region of collision of the object.

- The assumption fails when the mesh of the model is coarse. In that case the localized
effect of the collision will noi be efficiently transferred, as the estimation of the stiffness
values itself would be inaccurate and the collision deformation would be highly approximate.
However, the error is still low iz these cases and the the response realistic, as the surface
forces are being distributed. Appendix C , shows a simple method to distribute the stiffness

values over the surface and to increase the number of nodes.

Figure 4-7: Deformed Contact.

One of the main features of this methed is that the deformations of the colliding objects
are dependent on the inaterial properties of the objects and the uses of the principles
of energy minimization to figure out the relevant deformations of both the target and
the contactor. The other advantage of this method is that it really does not require a
complete surface description as the distribution of the material stiffness over the mesh
approximates the stress distributions over the surface. By using the stiffness and damping
values, the deformation is accounted for and hence the response of the body to the collision
is predictable, which is then used for undeforming, and hence applied as a response for

collision.
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Figure 4-8: Directions of Response.

4.5 Computational Geometry : The Correct Direction Of

Response

The direction of response for the contactor and the target in collision as per Newton’s Third
Law should be completely opposite. This is however, not an easy thing to determine as we
still do not have the complete profile of the object after collision, specially as penetration
is used to check for contact. For a completely non-penetrating contact, the surfaces are
touching each other and they are not deforming, hence the normals to the bodies and
the tangents can be determined. Using the magnitudes of tangential and normal force
responses, the direction can be calculated [35). For deformable objects, to get the direction
of the response the shape of the surface after deformation is needed, so that the normals
and tangents to it could be calculated.

- Figure 4-7 shows a two-dimensioral view of a collision. A check for contact, and the
estimation of deformation requires penetration, as described in Chapter 2. The deformed
profile of the contactor and the target is also shown. Figure 4-8 shows the normal and
tangents the surface. By using parametric surface representations with inside-outside func-
tion, witn deformations mapped on top, it is possible to determine the directions of the

normals and tangents to the surface if the deformed object can be transformed back into
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undefermed space. Appendix A shows a method by which a body that is in deformed space
is transformed into undeformed space [15, 14, 16].

4.6 Surface Penetrations

In the previous section, a study of the response of collision and/or contact of objects in
a multi-body simulation environment is presented. The problem that was briefly touched
was the characteristic description of the contact patch. This characterization is extremely
important for non-rigid body cases as the deformable bodies on collision undergo change
in shape, hence the contact patch is not a simple geometric shape, but quite complex.
Analytical description of this shape is difficult. It is this problem of contact patches of
non-rigid bodies that has led us into the study of approximate methods. A discussion of
penetrated surface (overlapped surface) in terms of stochastic estimations of the roughness
of surfaces will be carried out in detail in Chapter 6. However, it is wise to at least open
the doors to it now.

Every surface has some roughness. For most of these surfaces the roughness is basically
a random process mapped on top of a smooth surface. Assuming this to be true, then it
is also true that if a statistical domain could be mapped on top of a geometric domain, we
will get a geometric surface with roughness. Even though we have discussed in detail on
how to figure out if the bodies are interpenetrating, in Chapter 2, if a roughness is mapped
on to the surface then it is required to check for interpenetration of the roughness too. This
takes us into the sum and differences of random processes and convolution of the random
processes. This theory will be developed more formally in the later chapters, but it suffices
to say now that by mapping from statistical to geometric domain, it will help us to get an
estimate of the surface patch that could be used to estimate the stress distributior. over the

surface and/or the collision response.

In the next chapter a discussion on the tangential (frictional) forces will be presented, a
topic which as avoided in this chapter. The formulations that were presented in this chapter
will be generalized to handle frictional forces.
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Chapter 5

Friction

In the preceding chapters (Chapters 2, 4) it was assumed that the surfaces in contact were
frictionless. If the surfaces are frictionless then the surface forces exerted by the contactor
and the target (Figure 4-2) are normal to the surfaces, and the objects can move freely
with respect to each other along their surfaces. In actuality, this is a far from a realistic
assumption, as friction is a very important part of the world. Hence its importance and
significance in physically based virtual world modeling is quite apparent. Friction has been
one of the more difficult problems to solve for people trying to make virtual and syntheiic
worlds. Frictional forces, their analysis, and their application in design of mechanical models
is an integral part of machine and part designs.

Friction is usually described as a non-conservative force which resists motion. In the
world around us it is easy to see, with the knowledge of Newton’s First Law of Motion
in the back of our minds, the importance of frictional resistance. The reason for interest
in friction, by researchers working on the concept of virtual reality are quite obvious too.
Similarly, Robotics research has also concerned itself with friction, as the design of a robot
that will move in the real world will have to account for the resistance to its motion. Friction
also plays an important role in design of control systems for dynamic processes because its

irregular contributions tend to ) disturb to the system stability.
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5.1 Previous work

So far in the world of computer graphics and animation, friction has been either extensively
approximated or simply neglecied. Baroff [35] completely ignores friction in his dynamic
simulations of non-rigid contact, mainly due to the reasons of it causing instabiiity to
the system. Schroder [36] approximates the effects of friction by incorporating rigid-body
motion damping. This results in a resistance to the motion internally, not due to the
external resistance of traction and penetrating forces. Hahn [34] and Moore and Wilhelms
[9] present methods for continuous coatact, but their formulation is based on a repeated
application of forces due to collision. These forces are not restricted to being normal to the
surface and hence the forces in surface direction are also applied at contact. The reasons

for need of approximations for friction (and/or ignoring it) are:

e computationally it is very expensive to determine the traction forces over the surface

(requires integration over the contact patch),
e the contact patch of the two surfaces is difficult to characterize, and
o it is difficult to estimate the stress distributions across the surface of contact.

All of the above mentioned problems are within the main interest of this thesis and
have been addressed for various aspects of virtual world modeling in Chapters 2, 3 and 4.
Further discussion of estimation and control of systems in contact is pursued in the following
chapters. In this chapter the discussion will be restricted to formulations for friction in the
dynamic models and then the application of these formulations and the ones developed in
previous chapters. Theoretical background of frictional resistance will be introduced and

then various kind of contact conditions will be evaluated.

5.2 Coulomb’s Law of Friction

Coulomb conducted the first thorough investigation of sliding friction, in which he searched
for dependencies of the frictional force on every conceivable parameter, including the time of

repose before sliding commences, elapsed time of sliding, speeds of sliding, types of surfaces,
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cleanliness of surfaces and the magnitude of the normal force. Although all of the above

effect the friction response in one way or other, Coulomb’s conclusion was;

Definition 5.1 (Coulomb’s Law of Friction) Over an enormous range of materials
and normal forces to the surface, the frictional force is directly dependent on the normal
force and the material of the objects (surfaces) [37].

The tangential force of friction during sliding (see Definition 4.2) is directed opposite
to the direction of motion, with the magnitude proportional to the normal force. The
constant of proportionality is called the coefficient of dynamic friction (px) which depends
on the contacting materials, but not on the speed of the motion. If there is no motion
between the contacting bodies then sticking contact (Definition 4.1) conditions exist and
different constant (usually greater) is used, called the coefficient of static friction (u,). The
tangential force is constrained to be no greater than the product of the normal force and
the coefficient of static friction.

Fs < p, F, (5.1)

During sliding, Coulomb’s law completely determines the frictional force,
Fy = i Fp (5.2)

however, in case of sticking contact (no motion), the frictional force may not be completely
determined. In some cases, the potential indeterminacy is resolved by the tendency of the

frictional force to resist any impending motion at the point in question [10, 37].

5.2.1 Friction Cone and Friction Angle

While calculating friction forces, it is essential to characterize the kind of contact and and
hence the friction. There are basically three type of frictional forces as described in Figure
5-2. Static friction is for a sticking contact while the sliding friction, for a sliding contact.
The Limiting friction is the phase change from static to sliding friction. The limiting friction
comes into play when the motion starts or ends. A more intuitive idea of friction can be

developed using the geometric interpretation of Coulomb’s Law as developed by Moseley
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t
Figure 5-2: Types of Frictional Resistance

[37). Consider a point p moving on a surface (Figure 5-3). Construct a vector F, which is
the total contact force on that point, comprising the normal force F,, due to surface stiffness
and tangential force Fy due to friction. The angle between the normal force F,, and Fy is

given by .
a = tan™!? F‘:

where a is the friction angle. By Coulomb’s law Fy = pF,, where p is the constant of friction,

(type of contact establishes if it is kinetic or static friction). Therefore o = tan~! u. The

set of vectors subtending an angle of a from the normal, form a cone called a friction cone

[37). The friction angle specifies the minimum angle of attack (direction of force) that

will create motion, that is the body will be in sliding contact. The friction cone describes

a whole region, in which if the applied force vector lies, then the case of static friction
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is controlling the motion along the surface. If the vector is outside this region, then the
case of either limiting or sliding friction is in effect. The concept of friction cones and
friction is extensively used by Mason [38] for robotic manipulator pushing operations. For
fixture planning and clamping forces Cutkosky [39] suggests the use of limit surfaces in
force/moment space to check whether parts will slip or stick.

Figure 5-3: Friction Cone and Friction Angle

5.3 Formulation of Frictional Resistance

If all the applied forces, excluding the support contact forces, reduce to a single force,
then the problem of planar motion of a body reduces to the problem of the motion of a
point in plane. However, that is generally not the case, specially for deformable objects,
which are as we have emphasized, important for a virtual modeling. Friction force, being a
non-conservative force, renders most of the techniques of classical mechanics inapplicable,
and most of the discussion of planar motion problems with friction are restricted to single
degree of freedom systems, or to systems that reduce to the motion of a point. In this
section expressions for forces and moments due to friction with supports during general
planar motion, will be developed. These formulations, will then be studied with respect to
FEM formulations for contact (Section 4.3) and then attempt will be made to generalize
to more approximate methods for deformable objects (like Section 4.4). First a formal

definition of planar motion,
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Definition 5.2 (Planar Motion) Planar motion is either translation or rotation about
some instantaneously motionless point [37].

Translation and rotation are handled separately for friction. For translation, the system
of forces reduces to a single force through a point. This point is independent of the direction
of translation and is called the center of friction. This type of reduction, however, is not
possible for rotation, as will be shown. For the purpose of this formulation consider that

1k = s = p and sliding contact is the only contact possible.

Figure 5-4: Force and Moment of Sliding Friction

Consider and object in planar motion (Figure 5-4). Let S be the region of contact with
the surface, and let dA be the differential element of the area of S. Let X be the position
of dA, o(X) be the pressure (stress) at X and Vx be the velocity of the object relative to
the supporting surface at X. The normal force at X is 0(X)dA and using Coulomb’s law,
the friction force at X is

V.
Fylx = "‘l_vi'l"(x)"“‘

by integrating over the entire support region S;
Vx
Fy= [ —uEo(X)da 5.3
1= [ -rge®) (53)
The total frictional moment My is

Vx
g 5.4
M; /X@ ulV la(X)dA (5.4)
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where ® signifies cross product of two vectors.

5.3.1 Translation in Friction

During pure translation, all points on an object have the same relative velocity (not true
for deformable bodies), hence the constants could be factored out from the above Equations
(5.3) and (5.4) to get:
Vx
Fy= —ptX / o(X)dA 5.5
1= "E T Js (X) (5.5)

The total frictional moment My is

M; = —u { /S Xa(X)dA} ® I_%-I (5.6)

Let F, be the total normal contact force and X, be the centroid of pressure distribution
o(X):
F, = / o(X)dA
s
X, = J. s X c;SX )dA
]

substitute the above in Equations (5.5) and (5.6) to get

Vx

—F
Vx| °

Ff=—p

M;=X,® F;

From these equations it can be concluded that system of frictional forces of an translating
object reduces to a single force, applied at the center of the pressure distribution (center
of friction), whose direction is opposite the direction of translation. At this moment it
is important to note that the problem now is to determine the pressure distribution at
the contact region, which is usually indeterminate. One of the main purposes of this the-
sis has been to identify and formulate approximate methods for this pressure and stress

distribution, and is presented in Chapters 3, 4, 6 and 7.
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5.3.2 Rotation in Friction

Let X, be the instantaneons center of rotation and © be the angular velocity. The velocity
at X, Vx is therefore given by

Vx =6 (kx (X - X,))

so
VX L X - X?
— = 8gn(O)k X —5—
Val = MO X Tx]
where k in a unit normal in zy-plane. ! Hence k X X indicates a rotation of X by er-
Substitute into Equations (5.3) and (5.4) and simplify to get;
X-X,
= - 5.7
Fy = —p sgn(®)k x/ T oA (5.7)
: X -X
My=-— .e/x r o(X)dA 5.8
1= 4 2gn(®) [ X - FT50(X) (58)

Comparing Equations (5.5) and (5.6) with Equations (5.7) and (5.8) it is seen that the

simplification obtained in the case of translation does not apply to rotation

5.4 FEM formulation

The formulation for contact presented in Section 4.3 is applicable in the case of friction.
While presenting that formulation it was assumed that the contact surfaces were frictionless
and the only forces exerted on contact were normal forces. Using the above mentioned for-
mulations of friction forces based on Coulomb’s law, traction forces can also be incorporated
into the model. In keeping with the notations of Section 4.3, Figure 5-5 shows the friction
and normal forces on segments of the contactor. 2

One of the major difficulties in modeling friction is the decision on whether the contactor

1sgn(z) is defined as following

agn(z) = 1 z>0
INEFI=1 -1 z<0
*For a more detailed description of these derivations see Bathe [5].
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node is releasing (limiting friction case) or is in sticking or sliding condition. Considering
the total and relative magnitudes of nodal point forces leads to numerical difficulties and
it is preferred to establish the condition at a contactor node from accumulated effects and
conditions of the contactor segments, adjacent to the node. The state of the segment is
determined by the tangential and normal forces on the segment, which are calculated from
the distributed tangential and normal forces over a segment, which are in turn calculated
from the nodal point forces. Coulomb’s law (Equations (5.1) and (5.2) is then applied over
the segment to decide on the type of contact. This numerical difficulty was approached
in another way by Lotstedt [40] who recommends a modification to the Coulomb’s law.
This modification states that the tangential force is proportional to the estimate of the
normal force, extrapolated from previous values. This modification resolves the ambiguity
and inconsistency of the problem, though it does not exactly reproduce the behavior as
expected of Coulomb’s law. For the impact problem Létstedt assumes a fixed impulsive
coefficient of friction, and then solves for the impulsive force that minimizes the system

kinetic energy, yielding a perfectly elastic collision.

b k+2

\k-1 . k+1 1
segment |

segment -1

Figure 5-5: (top) Forces on contactor (middle) Friction and Normal on contactor and (bot-
tom) Friction and Normal force distribution over segments.
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5.5 Friction for deformable objects

In dealing with non-deformable objects it is extremely easy to apply the translational model
of friction, where all the forces reduce to one force acting at the center of friction. For rigid
bodies the velocities of all the nodes are the same and hence the relative motion of the
body in translational motion is the same. In case of non-rigid bodies both of the above
statements are good assumptions if the deformations are small. However 2s described in
the previous chapter, for larger deformations the contact and interpenetration of surfaces
effect the distribution of the normal and frictional forces over the surface. In Section 4.4 a
formulation for localized collision and contact response was presented. Since we assumed
frictionless surfaces, the forces considered in the equation were only the normal surfaces.

The same equation is presented here again;

Figure 5-6: The *lass-Spring-Dashpot Model for Collision/Contact/Friction

f 0 k f 0
= 1 c +F | 1 (5.9)
v —— = v b
me me m,

Here the force has components both in the normal and tangential directions and the
Coulomb’s law (Equations (5.1) and (5.2) is then applied to determiue the kind of contact
per contactor segment. By making the contact problem localized the reduction of all the
forces to one is possible and then these forces are applied to the surface in dynamics sim-

ulation of the model, hence the forces are distributed over the whole surface. A crude and
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approximate model of the contact model with friction and normal forces is shown in Figure
5-6.

5.6 Surface Patches and Roughness

Figure 5-7: Normal and Surface Stress distributions

The essential problem in case of friction is the same as for contact. The surface region of
contact needs tc be characterized so that the integration as shown in Equations (5.3) and
(5.4) can be carried out. By using methods of computational and differential geometry as
described in Chapter 2 the surface patches of regular geometric shapes can be determined.
The indeterminacy of the surface pressure or the stress distribution under a contact region
gets to be a bigger problem in the realm of deformable objects. Figure 5-7 shows a two
dimensional view of stress distributions on a contact region. The following chapters will
present some approximate methods for estimation of these stresses. In addition to the stress
distributions, another aspect, which is extremely important for virtual world modeling is
surface roughness. The physical response of a contact of surfaces of various roughness
should account for the perturbations on the surface of the object. This concept is studied
in a stochastic estimation domain and is presented in the following chapter. The use of
estimation techniques for this purpose is warranted if one deems it necessary to obtain

surface and contact regions after collision of deformable objects, specially for virtual world
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modeling.
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Chapter 6

Stochastic Theories For Measure

Of Roughness

The previous chapters presented a discussion of contact detection and response and the
importance of characterizing the contact patch and the stress distribution was discussed.
Throughout this discussion it was emphasized that the computational complexity of these
methods is extremely high. Even though the methods of FEM and DEM are suitable to
completely solve these problems to a reasonable accuracy, the system would be far from
cost-effective. Hence there is a need for efficient algorithms with better computational
complexity.

Currently, extensive research efforts have been directed to describe roughness of surfaces
in terms of random processes. For example fractals, Markov Random fields (MRF) and
Gibb’s distribution functions are being used extensively for this, in both computer graphics,
vision, and in material science. This reasoning has led us into pursuing this concept a little
further and using these surface descriptions for interpenetration and interaction of objects
in a multi-body system. The formulation and explanations of this concept follow.

This chapter will first present the simple concepts of textures and random variables
then discuss the mapping from the stochastic domain to the geometric domain, and then
finally from the geometric domain to the physical domain will be presented. It should be

emphasized here that in this formulation we are presenting a method based on stochastic
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and estimation theories, with the intention that these methods will improve the time and

cost effectiveness of physically based virtual world systems.

6.1 Texture, Fractals, and MRF

Terture is qualitatively defined as a stochastic description of surface geometry. Synthetic
texture was introduced into computer graphics by Catmull in 1975 and since then there
have been many significant contributions for correct and efficient applications of texture to
surfaces [41]. One of the important applications of texture has beer to simulate shape detail
that would be inefficient or difficult to model directly, either by using normal perturbation
[42], or displacement mappings [43]. Texture has also been used by incorporating it into
synthesized images, as a post process, to enhance the understanding of shapes [44]. Tex-
turing may be described in many ways, with a varying degrees of theoretical and practical
considerations. The general approach is to assign a texture value to a point on the surface
based on the distribution of the texture function within the surface region surrounding that
point. This texture value could be a randomly assigned value using,e.g., MRF, fractals,
or other distributions. Note that the intention here is simply not to generate rough sur-
faces, as is done computer graphics but to use the surface roughness from the textures for
characterizing the fine detail of collisions and contact for use in multi-body simulations.
Before getting into the details of stochastic and geometric tools for modeling surface
penetrations some discussion on fractals and MRFs is desirable. Definitions of random

variables, random processes and their stochastic properties are given in Appendix D.

6.1.1 Fractals

The defining characteristic of a Fractal! is called the fractal dimension and is qualitatively
defined as a measure of the degree of roughness or irregularity or brokenness of a surface.
A fractal, technically is defined as a set for which the Hausdorff-Biesicovich dimension is
strictly larger then the topological dimension. A general characterization of a fractal is
that they are the end result of a physical processes that modify shape through local action.

!The word fractal originates form a Latin adjective, fractus fror: the verb frangere, which means “to
break”
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Such processes, after repeated applications, typically produce a fractal description [45].
The quantitative definition of a fractal is in terms of probability distribution of a generated
function. For example, a random function I(z) is a fractal Brownian function if for all z

and Az

I(z + Az) — I(z) _

where F(y) is a cumulative distribution function (see Definition D.2, Appendix D) [46].
Note that z and I(z) can be interpreted as vector quantities and therefore provide an
extension to two or more topological dimensions [45]. If I(z) is defined as a scalar, then the
fractal dimension D of the fractal I(z) is D = 2 — H. Hence, it is obvious that if H = }
and F(y) comes from zero-mean Gaussian with unit variance, then I(z) is the classical

Brownian function. (For further reading on fractals see [45, 46, 47, 48, 49])

6.1.2 Markev Random Fields

Markov Random Fields (MRF') are exactly described by a random probabilistic process in
which all interaction is local and the probability that the cell is in given state is determined
by the probability for the states of neighboring cells [50]. This high sense of locality results
in a distribution energy, which is a summation of terms dependent only on a few variables.

Formally MRF's are defined [51] as; Let Q be the set of all configurations:
Q= {w=(Ts,,%ags---+Tsy) : Ty; EA,1 << N}

the event {X, = z,,,...,X;y = Z,y} is abbreviated as {X = w}, then X is an MRF with
respect to G if .
P{X = w}>0 foralwe N (6.2)

P{X,:z,lX,:z,,r;és}=P{X,=z.|X..=:cr, r€G,} (6.3)

Now we will start our discussion of characterizing surfaces and contacts using random
variables and random processes, like the ones descrited above. The definitions of random
variables and their stochastic and statistical properties, which will be used in the following

formulations are given in Appendix D.
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6.2 Surface Roughness as a Random Process

Figure 6-1: Two Dimensional Shape with Stochastic Distribution (2) Without surface rough-
ness (b) With a random distribution mapped on.

As mentioned above, the standard approach for texture mapping on to a surface is to as-
sign a texture value to each point or the surface by drawing samples from appropriate
distributions. It should be emphasized here that when a random variable is mapped onto a
surface, in essence we are performing a mapping of a statisticas domain onto the geometric
domain. In Chapter 2 geometric formulations for surfaces were established. By mapping on
a statistical surface on top of the geometric surface we get another surface that has some
geometric surface with surface characteristics that on the localized domain are samples from
RVs distribution. Figure 6-1 shows a two dimensional shape with and without a statisti-
cal mapping. Note that these are exaggerated figures used to introduce the formulations.
Consider two principle directions of a surface z, and z,,. (The definition of the principle
surfaces requires orthogonality between the two directions). Consider two random variables
(2s,) and (z,,) (We will denote a random variable by putting () around it). Now if the
surface can be described by (z;) and (z2) after the surface roughness mappingi'then the
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equation of the surface becomes;

() = zg +(2a)

(6.4)
(z2) = 2Zg +(2s)

In the above equations the terms (z,,) and (z,,) could be either a fractal, MRF, random
noise, any cther random process. ‘

Once the surface description is available, (which, as has been previously emphasized, is
not the problem that we are attempting to solve) the problem that comes up is how to use
this surface description for the characterization of surface penetrations and conta<t patches.
One approach is to use the geometric shape of the object, with the mapping for the surface
and try to ascertain the geometric intersection of the surfaces. This, as has been mentioned
in Chapter 2 is not so easy for most cases, specially when dealing with non-rigid objects.
Even though it may be possible to get geometric intersections for surfaces, the complexity
of the problem explodes 2 when some roughness has been mapped onto the surface. The
following sections will describe simpler methods, which will with less computation estimate

the contact surface and stress distributions on the surface.

6.3 Interpenetration of two rough surfaces

The approach that is usually taken to determine the contact surface is to check for the
intersecting surface for two, 3-D bodies. In this section an estimation or stochastic method
for approximating this contact is presented.

For this formulation consider the 2-D contact model of a target and a contactor (see
Figure 6-2). Let the random variables that describe the stochastic surface distribution
along the principle directions of the contactor and the target be (), (25) (z}) and (23)
respectively.

Since we are using the the principle directions of the surface we can use the geometric

concepts of spherical products and distributions of curvatures over surfaces as detailed in

2Buchberger [52] presents a non-linear computational geometry method using Grobner Bases for the exact
calculation of the interpenetrations of superellipsoids and states the problems to be extremely expensive.
For more details on this see [53, 54].
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interpenetrations

Figure 6-2: Contact of two “rough” objects

Chapter 2 to get the estimates of roughness of the surface at any point, in any direction, by
estimating the penetrations in the two orthogonal directions on the surface. This linear com-
bination of estimates in the two orthogonal directions gives the stochastic characterization

for any direction from a point on the surface of the object (see Figure 6-3).
(rp) = (r1) cos*(a) + (ra) sin*(a) (6.5)

where a is the angle traversing the surface at that point from one of the principle directicns
of the surface. Figure 6-3 shows a 3-D body and shows two principle directions on the sur-
face. Both these directions could have different distributions, which are specified, allowing
the surface distribution in any specific direction to be calculated.

For our formulations, we are principally concerned with the direction of motion. Assume
that the relative direction of motion of the target and the contactor is in u direction in space,
which subtends angles of a. and a; with respect to the principle axes of the contactor

and target respectively. Since we know the roughness along the principle directions, the
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t(z)

Figure 6-3: Rough Surface, from two principle directions of the object.
roughness in the direction of motion can be calculated using Equation (6.5);

(28) = (2f) cos*(@) + (25) sin?(ax)

_ (6.6)
(zl) = (2}) cos?(@)+ (23)sin’(ar)

The above operations are carried out by scalar multiplications of random variables and
then additions. The random variables are added by using convolutions as described in
Appendix D. Now we are interested in the intersection between the random variables (25)
and (z;), which will tell us the penetrations between the rough surfaces of the target and
the contactor. | .‘ B '

(2u) = (28 + (=(4)) BN CON

where (z,) is the random variable for the interpenetration of the target and contactor
(see Figure 6-2). As mentioned above, for a siﬂiplga‘ addition of fwd random variables the

convolution of their density function is a most efficient method of ca__lculating the density
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of the sum (see Definition D.4). However, in this case the difference is required, so it is
necessary to flip the density function of one of the random variables. Flipping the density
is not a difficult operation and is explained in detail by DeGroot [55] and Papoulis [56] (see
Appendix D). Method for flipping is built into the convolution algorithms which effectively
uses the covariance matrices to determine the differences of random variables. Applying

convolution we get;

Fau(20) = fag(25) * fz:,(zz) (6.8)

where * means convolution (see Appendix D). Now we need to map the random variable

Figure 6-4: Using a random variable to estimate penetration on contact.

(z4) on to the underlying geometric surface and determine the amount of penetration on
the contactor during contact. Figure 6-4 shows the the density function of the estimated
roughness due to contact. A probabilistic estimate of the amount of penetration of this
roughness with the contactor is desired. To estimate the penetration of (z,) inside the
contactor the expression for the surface description is needed. Essentially, this is where the
stochastic domain is mapped onto the geometric domain. From geometry of the surfaces an

expression for the surface S(X) can be setup (see Chapter 2). Using tkis relation we can

82



estimate the penetrations of the objects as shown by Figure 6-4 using the following relation;

F(z) = PAS(X) S s S oo} = [ :)f(u)du (6.9)

which gives the estimated interpenetration due to roughness. Now we will present an
example, which explain all the above concepts, assuming Gaussian random variables for

roughness.

gaussian

f(z| gaussian

Figure 6-5: Example 6-5: Contact of two spheres, using Gaussian as roughness distributions.

Example 8.1 Consider a collision between two spheres, X, and X (see Figure 6-5). The
tezture mapping along the their principle directions, on both these spheres is a Gaussian
function (see Appendiz D) as given below;

o122 -
2§ = k€7 | 23 = kge c27*

—c3z? —caz?
2 = kze 2 | 2B = keem*

where superscript “a’ denotes sphere A, superscript “b”, sphere B and ky, k,, k3, k4, 1,
¢z, €3, ¢4 are constants. Assume, the direction of motion to be in direction u. Calculate the
roughness distribution of the spheres in the direction of motion using Equation (6.6). As we
are using Gaussian random variables the linear combination of the random variables in the
principle directions is still going to return a Gaussian with a different mean and deviation

83



{ka, kb, ca and cy are constants), hence

Co” —c;,:r2

2g = kqe” , z,': = kpe

are the surface distributions in the direction of motion.

Now using Equation (6.8) and convolving the the densities of the two random variables
(23) and (28), the density of the random variable of the intersection is obtained. Again,
a convolution of a Gaussian is a Gaussian hence we have another Gaussian with some
constants (k,c) as deviations and means.

cx?

zy = ke

This Gaussian distribution can now be used to estimate the penetration in geometric domain
using Equation (6-4).

F(zy) = P{S(X)< 2z, < 0} = s:{)ke-c"zdp

integrating and using the properties of Gaussians;

[ ]
F(zy) = s(x)ke"“"z dp

Fz)=k [ e=dp
S(X)
F(z,) = G(0) - G(KS(X))
where; G (00) = 1 and G (z) = e(z) + § (see Appendiz D). Where e(z) = erf(z) Hence;

F(zy)=1-¢(KS(X))+ %
F(z) = 5 - ¢ (KS(X))

where K is a constant, and S(X) is to be determined as per the surface description. From
FEquation (D.16) (Appendiz D)

0= e [ Fu

Now our system of equations becomes;

1 1 £=S(X) -
F(z) Isx)= 5 = —\/2_”/0 e df

1 €=5(X) g
- — d§ s dX
Vvr ./S(x) {/0 €’ £}
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N =



or in the case of two principle directions .of the surface S(X) = s(z1,22);

1 1 {=a(zx1,73) _g2
F(Z“) IS(X)='2-’-ﬁ‘/‘;l/z2 {/o e":"d{}d:l dz,

o strasses at

the suifacss for

j both conmtacior ard

4 tamet shoukd be
egual and opposite

use the distribution of
the random variable
for approximate
stress distribution

Figure 6-6: Stress distributions on collision and stochastic penetration.

6.4 Stochastic Estimation of Stress Distribution on Contact

So far the discussion was related to how a stochastic functior could be used for characterizing
the contact problem. The same formulation could be extended to determine forces and stress
distributions over surfaces. As mentioned in Chapter 4 and Chapter 5 the difficult problem
with non-rigid body contact and collisicn response is to determine the contact patch and

the stress distribution at contact. Essentially the equation
F= / o(A)dA (6.10)
A

has to be solved, where o specifies the stress at the contact area and varies from poiut
to point. Hence it is essentially dependent on contact region A (see Figure 5-4). Under

most circumstances, specially for rigid contacts it is assumed that the stress distribution
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is constant, and the integration over the area is used to determine the collision or contact
response. Because of the stochastic component of the surface, traditional methods of ge-
ometry and mechanics are almost useless when it comes to determine the area over which
to integrate. Fortunately, the above formulation, when used for approximating the area of
contact using the the texture distributions of the contactors, also provides a good estimation
technique for complementing the information that can be derived from the underlying ge-
ometry and mechanics, without going in to the details of exact penetration patch or surface
of intersection. As it is obvious from seeing the formulation, the computational complexity
of this stochastic method is much lower than that required to characterize a surface patch
using traditional methods.

For this estimation apprcach it is important to recognize that essentially we are simply
pushing the idea of stochastic approximation /abstraction one step forward. The main pur-
pose in characterizing a contact patch was tc determine the penetration. This penetration
is the deforraation on the surface of the contactors and hence develops surface strains which
sets up a stress distributions across the surface where normally stress is proportional to
strain (o x €). By using the random variables (z;) and (2;) as above to determine the pro-
file of the stress distributions and variation, the integration over the area can be extremely
simplified, computational complexity reduced and effects of deformed rough surfaces incor-
porated into real time systems. Thus for each point on the surface we calculate the surface
interpenetration area by Equation (6.9) and applying stress times area, approximate the

total response for a contact (see Figure 6-6).

In this chapter a stochastic estimation approach for a physically based virtual world was
presented. The main desire for introducing this method was spawned by a need for cost-
efficient modeling system, without compromising the realism of simulation. The methods
discussed above are approximate and efficient but quite practical. In the next chapter
another set of techniques will be presented, the emphasis there also to achieve a physical
system that is efficient in response. Procedures for filtering out the error incorporated into
the system due to computational restrictions will be introduced. The concepts of stochastic

estimates and dynamic time response with control theory will be studied.
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Chapter 7

Application of Contrcl Theory

In Chapter 3, formulations for dynamic and static analysis were presented and in Chapters
4 and 5 it was shown how these formulations are used for dynamic simulations. However,
at the same time it was also mentioned that to keep the systems time efficient and real time
the time-step size has to be overly large and the spatial sampling of the objects coarse. This
results in erroneous inputs to the system and hence, instability. The available options are
to either use control theory methods to remove the instabilities or to decrease the time-step.
Since decreasing the time step is not a feasible option for physical modeling in a virtunal

world, the control and filtering methods are presented in this chapter [57, 58].

7.1 Problems with Physical Simulations

The major problem with dynamic physical simulations for real time physically based virtual
worlds is that the input to the system, which are forces, i.e. the contact, collision and
friction forces as described in Chapters 4 and 5, have a very broad frequency distribution.
Unfortunately because of real time restrictions, we are restricted to constant and relatively
large time steps. This resuits in the inability of the system to adequately describe the
response due to these inputs. This can be considered as an eiror and approximated as an
input of a noise signal to the system (see Figure 7-1), resulting in instability of the system
and hence unrealistic behavior. This problem can be solved by smaller time steps or super

time sampling at the time of force input (collision). Similar steps could be taken in terms
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Figure 7-1: System response; expected and observed.

of sampling points of objects about to collide. However the compromise in doing so is loss
of real time response as the simulations slows down every time there is a force input to
the system,e.g., a collision. To minimize these problems, control mechanisms and processes
with discrete-time dynamics. which will impart stability to the system at every time step
are introduced. For this control, the theories of stochastic control using Gaussian filters,
Wiener filters, Kalman Filters and Optimal Observers will be used.

Application of control theory in physically based modeling has been quite limited. Steke-
tee and Badler [59] presented methods for kinetic adjustments and phrasing control for
keyframe animation. Brotman and Netravali [60] used optimal control methods for mo-
tion interpolation for keyframe animation. Both these are strictly dealing with keyframe
animations and hence are far from control of dynamic simulations.

In this thesis only some of the basic and simple concepts of control theory will be
presented. An interested reader is referred to see Karnop and Rosenberg [61], Friedland

[57) and Aoki [58].
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For the purpose of discussion of control and filtering we will use examples from the
Thingworld Modeling System. First a simple example using box filters will be used to reduce
the effects of the error introduced. Then concepts of Wiener filtering will be presented to
impart an improved predictive control, and finally the concept of Kalman filters will be
presented and a Kalman Filter will be designed for our collision model.

(a) E ; : by :

Figure 7-2: An example of contact, A cube lying on the floor (a) Before simulation (time
step = 0) and (b) during simulation (time step = 20) [no contact]

Example 7.1 Figure 7-2 shows a simulation of a cube lying on a flat surface on the Thing-
world Modeling System. This simulation ran for 50 time steps and using Mathematica® [62]
the plots shown in figures 7-4 were generated. Figures 7-§(a),(b) and (c) show the z, ¥ and
z direction forces respectively, and 7-4(d) shows the total force magnitude on the 26 nodes
of the element for the 50 time steps of simulation. Only few of the nodes appear to have
been ezcited in this simulation. These are the nodes that are in contact with the flat surface.
Note that the forces at each node, as the simulation time increases, fluctuate. For ezample
at about the time step of 10, the forces at the nodes appear to be zero. This is because the
contact has been lost. This fluctuation in forces is due to the reasons ezplained above and in
this chapter methods will be described to smooth down the plots shown in Figure 7-4. Note
that the ezpected behavior is a smoothly descending f vs. t curve. The sudden kinks in the
plot are due to the ertraneous forces that were picked up due to coarse quantizations during
the simulations.

Now some important concepts of control theory will be presented.

! Trademark, Wolfram Research
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(e) (h) (i)
Figure 7-3: An example of contact, A cube lying on the floor (a) time step = 5 (b) time

step = 10 (c) time step = 15 (d) time step = 20 (e) time step = 25 (f) time step = 30 (g)
time step = 35 (h) time step = 40 and (i) time step = 45.

il

7.2 Feedback Control

One of the most important aspects of control theory is Feedback Control, which is defined
as a conscious, intentional use of feedback to control the behavior of a dynamic system.
Feedback control plays an essential role in the kind of control that is needed by the
dynamic systems that are used for virtual environments. It is required that a feedback
mechanism should be set up that keeps a check on outputs of the simulation and sends
information if the output is getting unstable. With reference to our Example 7.1, a feedback
mechanism to check if the forces picked up by nodes are getting bigger and/or if the contact
will be lost in the next step is required. Essentially, a system to check what the output was
at the current step and then to adjust and estimate the output at the next step is required.
In next few sections the topics o&' filtering and adding noise to the system to gain optimal

control will be addressed.
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(b)

(d)

Figure 7-4: Forces on the 26 nodes of a cube lying on the floor for 50 time steps (a) Forces in
x-direction (b) Forces in x-direction (c) Forces in y-direction and (a) Magnitude of Forces.

7.3 Filtering

Filtering is one of the most common operations in signal processing, image processing, raster
image synthesis and system dynamics. Its applications include image enhancements, low
pass filtering (blur), antialiasing, image, warping, texture mapping etc. It is used where the
signal (input) needs to be modified to achieve a desired output (filtered). The fundamental
filtering operation is convolution (see Section D.1), in which a weighted function or kernel
is passed over an input signal and a weighted average is computed for each output sample.

As in the case of filtering of dynamic response, the signal is only one dimensional, hence

the formulations for one dimensional filtering are presented.
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Figure 7-5: Repeated box filters of order 1-4 [63]

7.3.1 One Dimensional Filtering

An unweighted average is considered equivalent to a convolution with a box. The average
value of a signal f between a and b is:

F(b) - F(a)

b—a (7.1)

a
/ f(z)dz =
b
where F is the indefinite integral of f. This formula can be used to convolve f with a box
of width W,ifa =z + -‘%’- and b=z - % The above described method, albeit not the most
elegant, would satisfy the filtering requirements of the dynamic simulations as desired. This
same method could now be generalized to higher quality filters. Following is a definition
of repeated filtering, which is essential for higher order filtering methods. Consider a box

with a kernel of width W:

w lel<¥%

boz,(z) =
0 |zl 2%
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(a)

When a box is convolved with itself n times, the result is called a repeated boz filter
boz™™ = boz * boz * - - - * boz (ntimes)

For notations and identities of convolution see Section D.3.

Figure 7-5 shows the first order to the fourth order repeated box filter.

The filters that are shown above, and the filters of higher orders can be ranked in quality
as follows:

boz < boz*? < boz™3 < ... < Gaussian < sine

By the Central Limit Theorem as n increases the repeated box filters broaden and approach
Gaussian [64]. As can be seen from Figure 7-5, where the fourth order box filter almost

resembles as Gaussian.

Forces st Node 11 Forces at node 11, First Order Fiker
—e— Force at Ncde ——e—— First Order
1.0 [ X}
0.8 05 b
3 " 04
2 0.6 g
] 03
4 H
E n.‘. ....... b
02
0.2 k 01
b J
0.0 Dl 00 L A
0 10 20 30 40 S0 60 ] 10 20 30 40 50 60
Time Steps Tims Stepe
(b)

Figure 7-6: Forces on the node 11 of a cube lying on the floor, 50 time steps (a) No filtering
and (b) First order filtering.

Example 7.2 In the previous erample of the cube lying on a flat surface (Ezample 7.1)
the force variations were shown as the simulation was going on. Following from the same
erample, repeated boz filtering will be applied to the same simulation. The graphs of forces
on only one node (node 11) are shown in Figures 7-6, 7-7 and 7-8. These graphs show how
the response was smoo’hed as filtering was applied (see the difference between 7-6(a) and
7-6(b), 7-7 . All of the repeated filters with the initial unfiltered response are plotted on
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Figure 7-7: Forces on the node 11 of a cube lying on the floor, 50 time steps (a) Second
order filtering and (b) Third order filtering.

the same graph 7-8 for a more quantitative comparison. Note that the response has become
smoother and smoother per repeated applications of the boz filter.

In the next section, a special type of filtering technique from the the realms of Con-
trol Theory and Signal Processing is described and its feasibility for dynamics systems is

presented.

7.4 Wiener Filtering

The Wiener filter is a special type of a filter where the goal is to produce a best possible
estimation of a signal from a noise corrupted observation [65]. The discrete form of the

problem that as considered by Wiener is as following. Consider a signal z(n),
z(n) = d(n) + w(n) (7.2)

where d(n) is the signal that is to be recovered from z(n) and where w(n) is contaminating
the observation z(n). Assuming that both d(n) and w(n) are random processes Wiener

presented methods to design filters that would produce a minimum mean square error
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Figure 7-8: Forces on the node 11 of a cube lying on the floor, 50 time steps, First, Second
and Third order filtering and no filtering.

estimate of d(n). Specifically, with
E= E{ez(n)} (7.3)

where;

e(n) = d(n) — d(n) (7.4)

the problem is to design an optimum filter H(s), that minimizes . A wide range of problems
like smoothing and linear prediction can be solved, assuming that z(n) is some signal from
which an estimate d(n), of a desired signal, d(n), is to be found using a linear shift-invariant
Wiener filter H(s). Now we will present a simple formulation for a design of a Wiener
filter, by deriving discrete forms ¢f Wiener-Hopf equations which defines optimimum filter

coefficients as the solution to a set of linear equations.
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7.4.1 Wiener Filter : Formulation

Lets z(n) be a given signal, from which we want to estimate another signal d(n). Assuming
that z(n) and d(n) are random processes with correlation functions (see Appendix D) r,(k)
and rq(k) and a cross-correlation of r4;(k). Consider a linear estimate of d(r) by taking a

linear combination of (p + 1) values of z(n),

d(n) = i a()z(n - 1) (7.5)

=0

Therefore, J(n) is generated as an output of the wiener filter having a unit sample response

a(n),

d(n) = a(n) * =(n) (7.6)
and our goal is to design a filter,
A(s) = }e_: a()z! (7.7)
=0
with the error
e(n) = d(n) — d(n) (7.8)

as small as possible. Since both d(n) and d(n) are random processes the error functional

that has to be minimized is the mean square error
e = Ee*(n) = E{[d(n) - d(m)?} (7.9)

A necessary condition for the set of filter coefficients a(0), a(1), ..., a(p) to minimize
the mean square error in the estimate of d(n) is that the derivatives of ¢ with respect to

each of the coefficients vanish,

35&_)=2E{e(")§22} =0 k=0,1,2,...,p (7.10)

Since, ]
e(n) = d(n) - 3" a(l)z(n - 1) (7.11)

=0
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therefore

de(n)
E(T). =-z(n-k) (7.12)

and Equation (7.10) could be rewritten as

ée
3a(F) = -2E{e(n)z(n—-k)} =0 ; k=0,1,2,...,p (7.13)

E {e(n)z(n-k)} =0 ; k=0,1,2,...,p

which is known as the orthogonality principle or the projection theorem. From Equations

(7.12) and (7.13) we get
P
E{d(n)z(n-k)} =Y _a(DE{z(n-Nz(n-k)} =0 (7.14)
=0
Therefore, with r;(k) = E {z(n)z(n — k)} and rq;(k) = E {d(n)z(n — k)} we get

P

Za(l)r,(k -l =rqg(k) ; £=0,1,2,...,p (7.15)

=0

Equation (7.15) describes as set of (p + 1) linear equations in the (p + 1) unknowns a(l),

1=0,1,2,...,p and may be written in matrix form as follows;

[ r(0) (1) 1@ ... rp) | [a@] [ ra0)]

tz(1) r-(0) rz(1) . 12(p-1) a(1) raz(1)

rz(2)  r(1) r(0) ... r(p-2) a(2) | = | raz(2) 7.16)
@) -1 -2 ... 0 |aw) | | e

This equation is known as the Wiener-Hopf equation and is written in matrix form as;

R.a =rg4 (7.17)

where R; is a (p + 1) x (p + 1) symmetric correlation matrix, a is the vector of Wiener
filter coefficients and rg, is the cross-correlations of between the desired d(n) signal and the

observed signal z(n).
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We now evaluate the the mean square error between the estimate, d(n) and d(n).

e = Efn) = E{e(w)[dn) - Tloala(n— D]} (7.18)
= E {e(n)d(n)} i a(l)E {e(n)z(n - 1)} (7.19)
=0

from the orthogonality principle Equation (7.13) we see that for the Wiener coefficients

E {e(n)z(n — k)} = 0. Therefore the second term in above equation is zero;

P
Emin = Ee(n)d(n) = E’{ {a’(n) - Za(l)z(n - l)] d(n)} (7.20)
=0
taking expected values into account
P
min = 14(0) = Y_ a(D)raz(1) (7.21)
=0
in vector notation
Emin = 1a(0) — L8 (7.22)
Since
a=R]'ry (7.23)

then the minimum error maybe written in terms of the correlation matrix R, and the

cross-correlation matrix rg, as follows

Emin = 74(0) — r3 RI'rg, (7.24)

x

Note if no filtering was to be performed then the mean square error in the estimate, which
is denoted by ¢ is

eo = E{d*(n)} = ra(2) (7.25)

then Equation (7.22) becomes

Emin = €0 — T8 (7.26)

This completes the formulation of the Wiener filters under the assumptions that we
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began with. The application of interest to us in multi-body dynamics for virtual world

modeling is linear prediction and will be explained in the next section.

7.4.2 Linear Prediction with Wiener filters

Linear prediction is an important problem in many applications which require forecasting
the behavior. It is concerned with predicting (estimating) the output z(n) at any time n+1
from the current and previous values of z(n). Specifically, the idea is determine the value

of z(n + 1), given z(k) where k < n, using the predictor of the form,

P
E(n+1)= Z a(k)z(n — k) (7.27)

k=0
The linear filtering problem can be cast into the framework of Wiener filter if d(n) =
z(n+1) in the formulation developed in the previous section. In setting up the Wiener-Hop{

equation all that is needed is to evaluate the cross-correlation, r4-(k), between d(n) and

z(n). Therefore, with
rdz(k) = E{d(n)z(n — k)} = E{z(n + 1)z(n — k)} = rz(k + 1) (7.28)

the Wiener-Hopf equation for the optimum linear predictor is

[ (0) (1) a2 ... r@ |[a@] [ 1) ]

rz(1)  74(0) (1) ... rx(p—1) a(1) rz(2)

r=(2)  rz(1) =(0) ... r(p—2) a(2) | = 2(3) (7.29)
| 72(p) Ta(p—1) ra(p-2) ... 7(0) 11l a(p) | | r(p—1) |

and the mean square error is

Emin = Tz(0) — i a(k)rz(k +1) (7.30)
k=0

Now Lets consider a couple of examples of applying a Wiener filter to a dynamic system
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Example 7.3 Consider Figure 7-1, which shows the actual and observed responses and
a disturbance process that introduces the error. We will try to develop a system using a
Wiener filter for that model.

Using the same notations as above and assuming both the observed and error signals to

be Gaussians we have;
d(t) = Glu(t), o3]

w(t) = 60,02

where the observed response has both mean and variance, while the contaminating response
is zero-mean. From Equation (7.2) we get;

z(t) = d(t) + w(t) =~ Glu(t), o)
the correlations are given by
r2(7) = E{z(t) + 2(t - 7)}
ro(7) = E{d(t) + w(t)}{d(t - 7) + w(t - 7)}
Simplifying and throwing away terms for no correlation between d(t) and w(t), we get;
72(7) = 1a(7) + rw(7)

as w(t) is zero mean the correlation function is simply determined and is in term of its
variance. The correlation function r4(7) can be determined using Equation (D.6). However
it should be noted here that for a dynamic system d(t) is deterministic, in which case the
problem is much simplified and the need for r4(t) vanishes. Therefore the r,(T) can be
easily determined and the linear prediction of Wiener filters can be applied to get the actual
response.

Now another example in which another formulation of Wiener filters is applied [66]

Example 7.4 Consider the case of dynamic simulation, specifically the one of a cube lying
on a flat surface, as was discussed in Ezamples 7.1 and 7.2. A very good assumption of the
profile of the power spectrum of this simulation would be a Gaussian, and we can assume
a random variable of constant density function as the disturbance input to the system. As
per the methods of Wiener filters, we need to determine the actual response of the system
by getting rid of the corrupted input that was incorporated into the system due to large time
steps and course sampling of the object.

We assume the observed signal d(v) to be a Gaussian kie=*2* and the noise signal w(v)
to be k3, where k1, ko and k3 are constants.

Now using the Wiener filtering to remove the noise components from the system in a
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form linear prediction format and using the following equation for a Wiener filter [66];

o) H(o (0|
Prcsai(s) = HIOIHO)I? [IHO)IP + TG] Posrsca)  (31)

Assuming H(v) to be equal to 1 in our case we get;

Ikt 17
3
Pictual(v) = [1 + m] Popserved(V)

-1
[Ixe®2? || + JI&s|]
||k1ek2?*|

as adding an constant density to a Gaussian RV can be considered as adding another Gaus-
sian with zero mean and some deviation, and hence returns a Gaussian and a Gaussian
divided by a Gaussian is also a Gaussian RV, therefore the output of the system after the
filter is a Gaussian as ezpecied.

Pactual (”) = Popserved (v)

7.5 Kalman Filtering

Now another method of imparting control on a dynamic system is approached. The em-
phasis from now on would be adaptive control procedures and attempt would be made to
define formulations to achieve optimal control of the system. Essentially, this formulation
will deal with both the estimation and control parts of control systems, both of which are
discussed below.

Kalman filters (see Appendix E) are used both to forecast and to obtain estimates
of state vectors of dynamic models given a set of data over some fixed period of time.
Estimation part is usually referred to as the smoothing of data [58]. In both of the above
applications, the knowledge of the model dynamics is required and at least the means and the
second moments of noise statistics are needed. Ouiputs from Kalman filter appear to be the
same as that of approximate estimates, when noises are Gaussian and same as the (weighted)
least squares with non- Gaussian noises. Kalman filters provide a computationally efficient

ways for incorporating new or additional information for revising estimates. 2

2For further reading on Kalman iilter and estimation and optimal control, see [58, 57].
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7.5.1 Kalman Filter : Observer

Control
———— B
u Optimum
Observation state
y o/~ ~ estimate
r K X
B Kalman
gain matrix
A j+——9
y
Estimated C
Observation

Figure 7-9: Block diagram representation of Kalman Filter as an optimum observer, from
Friedland [57].

Given a dynamic process

X = AX + BU + FV (7.32)

where Y is a known input and the observations are given by
Yy=CX + W (7.33)

where V and W are white noise prccesses (see Section E.3 and Definition E.9), having
known spectral density matrices. The optimum observer as per Kalman [67, 68] is given by

the following differential equation.
X = A% + BU + R(Y - CX) (7.34)

which defines an observer (see Definition E.6), provided that the gain matrix K is optimally

chosen. One of the remarkable properties of a Kalman filtersis that it is optimum under any
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reasonable performance criterion, provided the random processes are white and gaussian
[58].

The gaussian requirement is a condition on the first-order probability density functions
(see Section D.2) of V and W, e.g.;

1 1 Tw—l.w
f(W)= ——exp W
= anEw

which is the multidimensional gaussian probability density function. Equation (7.34) is the
best possible filter, when the dynamic process and observations are linear, and the random
processes V and W are gaussian white noise. (If the random processes were not gaussian

then a nonlinear filter is better) [57).

7.5.2 Gain Factor and Variance Equation of Kalman filters

The gain factor K (t) in Equation (7.34) which makes the covariance matrix (Definition D.9)
of the error small, is determined by the following method. The optimum value of K(t) will
be designated by K(t).

Define the error as e = X — X and using Equations (7.32), (7.33) and (7.34), the

differential equation for the error is;

¢ = X-2X
= AX+FV—-AX - K(CX+W-CX)
(A- KC)e+ FV — KW (7.35)

Since V and W are white noise processes, their weighted sum is
vy=FV-KW (7.36)
which is also white noise with a covariance matrix @.,. From Equation (D.7)

E{y(®,""("]} = FOE{V&V(r)}FI(r)
- KQE{We)V'(r)} F1(r)
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- FOE {V(t)W'(r)} K™(7)
- KQE{WEHWY(r)} KT(r) (7.37)

Assuming that the expected values on the right hand side of Equation (7.37) are of white

noise then;

Q(t) = FOVHF(r)- K®)XT()F(r)
- F)X(8)KT(r) — K@W(©)KT(r) (7.38)

Let P, be the covariance matrix of the error, and by using the variance equation (Equation

(D.10), Definition D.10),

P = (A-KC)P+PAT-CTKT)+q,

(A- KC)P + P(AT - CTKT) + FVFT
- KXTFT _ FXKT + FWKT (7.39)

If the cross-variance X between the excitation noise V and the observation noise W were
absent, then the above equation would have complete correlation with the optimal control
equations and therefore the analysis as used by Friedland [57] (Chapter 9) for optimal

control formulations 3 can be employed to give
K = (PCT + FX)W™1 (7.40)

where the observation noise spectral density matrix W must be nonsingular. The differential
equation of P is

P = AP+ PAT — pcTw-1CP + FVFT (7.41)

where

A = A-Fxw-lc

“For a detailed handling of this formulation and derivation see Chapter 9, 10 and 11 of [57]
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V = v-xwxT (7.42)

7.5.3 Steady state Kalman filter

The Equation (7.41), known as the Ricaati equation, is valid for any finite time interval. If
time is allowed to become infinite, the solutions may tend to infinity or they may remain
finite. If all the matrices on the right-hand side of Equation (7.41) remain constant then
constant steady state solution might exist, which is given by solving the matrix quadratic

equation, also called the algebraic Ricaati equation [57]
0= AP + PAT - pcTw-lcP + FVFT (7.43)

The algebraic Ricaati equation (ARE) has a unique positive definite solution [57] if
1. The system is asymptotically stable, OR

2. The system defined by the pair [A4, C]is observable (Definition E.7) and the system de-
fined by the pair [4, FV 1], (i.e., the system & = Az+ FV v is controllable (Definition
E.8)

7.5.4 Algorithm for optimal control using Kalman filters

A generalized algorithm for using Kalman to design a filter for control of the dynamic model
is given by Table 7.1. This table is for steady-state Kalman filter. In the following example,

Algorithm for Design of Kalman filters
1. | Set up the dynamic model as a dynamic state space system in the
form of Equations (7.32) and (7.33).
Determine the A, B C and F matrices.
Let P be the covariance matrix and apply Equation (7.43) for steady state to get p1,p2,....
Calculate the Kalman filter gain matrix using Equation (7.40)
Use Equation (7.34) and solve the differential equations
to get the transfer functions and the filters

kW

Table 7.1: Step by step method for designing a Kalman filter.

we design a Kalman filter for the collision response of two bodies using the algorithm shown
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in Table 7.1. The formulation of collision response was presented in Chapter 4 and will be
used here with some simplifying assumptions to show how a Kalman filter can be designed
for a specific application.

Example 7.5 Consider the collision of two objects as described in Section 4.4. Let f and
v (force and velocity) be the state variables. We will also assume damping is zero (c = 0),
(see Section 3.4 for the validity of this assumption). The governing equations are;

mi + kz = F, (7.44)

after further simplification;
i+ Qz= Ja (7.45)

where Q2 = £ gnd f, = E"f In state-space notation we have;

e aalt]) e

Comparing with Equations 7.32 and 7.33 we get;

(2] o[

The reason control is needed in this system is because unnecassarily large forces are being
introduced, because of coarse sampling and large time steps. In this ezample it would would
be better to introduce this additional force as an acceleration disturbance z, which we will
considered to be white noise. We would like to observe the forces at every iteration hence
our observation equation is

YV=Ff+w (7.47)

where w observation noise. Hence from above, C and F are;

L _Jo
c=|1 0] , F_[l]
Let the optimum covariance matriz be;
p=|P1 P2
p2 p3
The by using Equation (7.43) the elements of P satisfy;
1
(k+@p- 2t = 0 (149
1
Vp+Pps-ppr = 0 (7.49)
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(k+ 9%)p, — %pz2 +Z= 0 (7.50)
where W and Z are the spectral density (1 z 1 ) matrices of the observation noise w and
ezcitation noise z, respectively.

Solving Equation (7.50) we get;
p o= (k+0)W % (7.51)
Py = (k+92)2W% (7.52)

where;

4Z
7—1+\/1+m

we don’t need p3 to calculate the gain matriz and will avoid the computation. Note that in
the above computation it was necessary to ensure that P12 0 and p; > 0.
Now we will determine the Kalman gain factor, which is given by Equation (7.40)

o T -1_ | 1 P2 i_ (k+92) %
K = (PCT + FX)W _[pzpa][lo]w_[(ﬂm)%] (7.53)

The closed logp ﬁlter: poles and transfer functions from the observed forces Y to the estimated
state Xy = f and X3 = © are of interest. Assuming input U = f, is zero, and then by
FEquation (7.34),

s¥(s) = AX(s)+ K [W(s) - CR(s)]
= (4-RC) R(s)+ E¥V(s)
R(s) = (sI—Ao) KY(s) (7.54)
where Ag = A — KC is the closed loop observer dynamics matriz;
o= [ o ’5] } [ s ;ﬂ [10]= [ s e ’5]
and

(SI— Ao)_l =

1 [ s Q% - (k+ Q2)%1 (7.55)

As | k s—(k+9?%) ;L]

where As is the closed-loop charecterstic polynomial

As= = sl + )y /T — k(@ - (k4 022
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Combining Equation (7.55) with Equation (7.54) the two filters Hy(s) and Hy(s) are
obtained as follows;

.1:'(8) = [ f{g:; ] = Ii’y(s)

and f'( )
s
Hyi(s) = y és) for force (7.56)
Ha(s) = ;(':)) for velocity

from the charecterstic equations and the above equations the closed-loop poles and the zeros
of the filters can also be determined. The ezcitation noise covariance Z is part of the
equation in terms of v. If Z lends to zero then v tends to 2 and the filters are simplified
into first-order filters. If Z tends to infinity then the transfer function Ha(s) for velocities
behaves like a high pass filter, while H1(8) for forces behaves like a low pass filter. For
further details on Kalman filter design see Friedland [57].

7.6 Filtering In Forward Simulations

One of the essential feature of the control procedures described in the previous sections is
that the filtering is allowed in forward simulation dynamic models (is causal). Convolution
filtering methods described in Section 7.3 filter out the error as the signal (inpnt) is given
to the system, with a lag time enforced on the system, while Kalman filters estimates the
the state by observing the data over some fixed input time and then based on the first order
statistics of the that data, introduces control to the system via means of Kalman filter.
For dynamic simulation models of contact and collision response Equation (4.3) the
application of control systems as defined and formulated above becomes feasible due the
error (noise) that has been incorporated into the system due to restrictions on the size
of time steps. As super sampling of time and the mesh of the bodies is not possible the
instability of the system is essentially inherent. As it is obvious from Figures 7-4 and
7-6 the disturbances or the collision response are extremely random. Now basing it on
the formulation of Kalman filters, if these random disturbances could be assumed to be
white noise then an extremely good filter could be designed, for both linear and non-linear
systems. For the dynamic simulations for virtual world modeling, where time of response

is essential, the assumption of linear system is an extremely good one.
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It should be noted that in all essentiality both the above methods of control are used
to filter out the noise using their own random behavior. Hence in other words this method
is designed to reduce to noise that system itself introduced into itself for the purpose of

dynamic simulations.
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Chapter 8

Conclusions

The preceding chapters have presented many diverse and wide-ranging ideas, for the physical
interactions of the virtual elements in a physically based virtual world. The desire is to
develop and formulate concepts and methods that would give the user a physically based
environment to enter and interact with as he would in the real world. The virtval world that
is desired therefore, has the goals of physical realism, with controlled complexity. Realism
has been defined with respect to response of the system to the user perception of realism,
hence, computationally efficient methods leading to real time or close to real time systems
have been emphasized

A crucial component of such a virtual world is the physical behavicr of interactions of
objects. During dynamic simulations, the objects in the virtual world will will interact
(collide, touch), and if the methods used to impart a physical response are not correct, then
the realism of the virtual world will be compromised. However, in a graphic environment,
an object is nothing but a collection of lines points and polygons. To develop a system
in which a set of lines and polygons would become real (or virtual, in this case) object,
we need to simulate material and physical properties, like mass, volume, surface, etc. For
this object to be physical, however, and by being “physical” it is meant that it has shape,
size, mass, inertia and a non-penetrable surface, an energy or force based description of this
object needs to be wrapped around it. In other words, it is desired that a physical domain
be mapped on to this graphic domain so that if any other object tries to penetrate this
object, a resistance is provided by the object itself. This is the underlying principle that is
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presented in this thesis.

It is important to note that the general and well accepted methods of using polyhedra
for surface and body descriptions are extremely expensive for mapping of physical domains.
A new family of parametric surface representations has been introduced that has proven
to be quite efficient for both the purposes of mapping of physical domains and checking
for interpenetrations. As shown in Chapter 2 superquadrics can be very efficiently used
for contact detection and for mapping of deformations. Since the computations for these
contact detections and deformation mappings are much faster than compared to the point-
or surface-based polyhedra representations, where most of the effort is employed in solving
geometric problems, a major part of the interaction problem is resolved.

The second part of the object interaction problem is characterizing the response to the
interaction after it has been detected. In the past, in virtual world modeling most of the
work done was restricted to rigid bodies, however, many simulations are just not possible
without non-rigid deformable objects. This realization has led to alot of interest in the force-
based models of objects derived by finite discretization of the models. Though finite element
modeling is not a new concept in the theoretical and application worlds of engineering, it has
found new enthusiasts in the graphics and modeling fields. A virtual-work and displacement
based formulation of three-dimensional shapes is presented in Chapter 3 and its mapping
on to a superquadric is presented in Appendix B. The methods of dynamic simulation
of a virtual environments with computational efficiency in mind has been described. The
essence of these formulations is that the response of interactions should be based on the
material and physical properties of the bodies.

In contact and collision, emphasis has to be paid to the types of contact and then the
characteristic transferral of forces between interacting bodies. The methods described in
Chapter 4 deal with this problem in various forms of complexity. Procedures to impart
on bodies the right forces on collision, depending on the their material and deformation
properties are defined. Frictional resistance to motion, a problem that has been avoided
to date in virtual world modeling, is introduced and formulations are presented for both
translational and rotational frictions. The main emphasis here is to develop a method that

is on the same lines as collision response, which characterizes the contact and then applies
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tractional resistance.

The problem with accurate considerations of contact and friction is that the contact
patch for a contact is not easy to ascertain. Specially in the case of deformable objects,
where the contact patch also deforms at contact. For this purpose it is recommended that
the effort of developing visually realistic, surface visualization techniques by surface texture
mapping be employed. A stochastic estimation approach is presented to determine the
roughness of a body with reference to its surface texture and carrying on this estimation to
calculate the interpenetration of two or more surfaces, which is then related to the contact
area or the stress distribution over that area.

The underlying principle, as mentioned above for virtual world modeling is to create a
synthetic physical environment that is physically realistic and of low computational com-
plexity. The desire is to achieve a close-to-real-time, if not a real-time, environment. For
this, certain approximations must be made, which can on occasion intreduce instability into
the system. To remove this instability from the system control theory concepts of observing,
filtering and control are advocated. Since the simulation of a virtual worlds is a forward
simulation problem, only causal filtering approaches are applicable. Emphasis has been
paid on the use of adaptive filtering techniques, because of its ability to impart optimal
control to achieve the desired behavior, by removing from the system the error that was
introduced by approximations. Kalman filtering is introduced as an optimal filter because
of its features of imparting to impart adaptive forward control by using a random noise
input (white noise), which is inherent to the system.

For an overall perspective, this thesis presents ideas and concepts for physically based
virtual world modeling based on concepts picked up from a wide range of disciplines. The
emphasis, however, is on computational efficiency with realism. The decisions regarding
approximations versus loss of realism are user defined and the methods of varying compu-

tational complexity are presented.
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Appendix A

Deformations and Modal Values

A.1 Implicit Function with Deformation Mapping for Mod-
eling Primitives

A major drawback of any point- or surface-based representation is the expense of solving
geometric problems such as a check for a point in space with respect to the surface This
problem can be much improved by using an implicit function f(z,y, z) = d to describe object
geometry, as for such representations the computational complexity of these computations
is O(r), a significant improvement over that of O(nr) where r is the number of points to
check for and »n is tne points for surface representation.

The modal representation of shape can be mapped onto the implicit function shape
primitives by first describing each mode by an appropriate polynomial function, and then
using global deformation mapping to warp the shape primitive into the appropriate form.
The polynomial deformation mappings that correspond to each of the modes are ascertained
by a linear regression of a polynomial with m terms in appropriate powers of z, y, and z,
against the n triples of z, y and 2z that compose a vector ¢; (3n x 1) for the ith node. @

then forms a matrix (3n x m) containing the m, ¢; vectors. The regression is;
a=(BTE) 17 ¢; ‘ (A1)
where a is an (m x 1) matrix of the coefficients of the desired deformation polynomial, g is
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Values of the Modal Deformation Matrix |
doo = || me + ymaz + zmys — (M3 + Mmye)sgn(z) — my4 — my7
dor = || mu1 + 2y(mu3 + sgn(z)m4)
doz = || mio + 2z(my6 + sgn(z)my7)
dio = || mu + 2z(my9 + sgn(y)mzo)
diy = || m7 + z2myg + 2may — (mye + ma2)sgn(y) — mao — ma3
di2 = || mo + 2z(maa + sgn(y)mas)
d2o = || mi0 + 22(mas5 + sgn(z)mgs)
d21 = || mo + 2y(mas + sgn(z)mao)
d22 = || mg + zmay + ymar — (M35 + mag)sgn(z) — mae — Mg
where;

X = [z, y, z]T = Undeformed Point

Table A.1: Modal Deformation Matrix Values in terms of Modal Amplitudes

a (37 x m) matrix whose first column contains the elements of

U = (1"1, Y1,21,22,Y2,225 .- -3 Ty ym,zm)

and whose remaining columns consist of the modified versions of « where the z, y, and/or
z components have been raised to the various powers to achieve higher order modes (See
Pentland [6] for more details).

By linearly superimposing the various deformation mappings one can obtain an accurate
accounting of the object’s non-rigid deformation. In the Thingworld Modeling System (6, 20,
21} the set of polynomial deformations is combined into a (3 x 3) matrix of polynomials, D,
that is referred to as the modal deformation matriz. This matrix transforms pre-deformation

point positions X into the deformed coordinates Xg

deo dor do2
Xg=|do diy diz | X (A.2)
dy dn d2
Because low-order modes change slowly as a function of object shape, the matrix can

be used for a very wide range of shapes, and thus may be precomputed.
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] Modal Amplituaes___ |

mp | x-translaton || m; | y-translation || m; | z-translation
mg3 | x-rotation my | y-rotation ms | z-rotation
me | x-size my | y-size mg | z-size

mg | x-shear myo | y-shear mi1 | z-shear

my2 | xy-taper m;3 | xy-bend my4 | Xy-pinch
mys | xz-taper mye | xz-bend myy | xz-pinch
myg | yx-taper myge | yx-bend myo | yx-pinch
mg; | yz-taper Mgz | yz-bend ma3z | yz-pinch
may | zx-taper mys | zx-bend maes | zx-pinch
may | zy-taper mag | zy-bend mae | 2y-pinch

Table A.2: Physical Basis of Modal Amplitudes

Typical entries of D are in Table A.1 where m represents a (m x 1) vector of
My, Mye.cyMyp

which are the modal amplitude of the objects and describe the amplitudes of the various
modes of vibrations.

The modai amplitudes m; have intuitive meanings and are shown in Table A.2. In m mgo
- mg are the rigid body modes of translation and rotation, me - mg are the x, y, and z sizes,
mg - m1 are shears about the x, y, and z axes and the rest are bends, tapers and pinches
in various axes. Note that because the rigid body modes are calculated in the object’s
coordinate system, they must be rotated to global coordinates before being integrated with

the remainder of any dynamical simulation system.

A.2 From Deformed Space to Undeformed Space

The modal deformation matrix as shown above in Table A.1 is a function of undeformed
space X. This is because the deformations are a linear combinations and superpositions of
different modes of vibrations for a canonical undeformed superquad which are mapped onto
a undeformed superquad to get a deformed model.

In this case even though the deformation matrix is invertible, to change from deformed
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space to undeformed space requires an iterative process of solving a (3 x 3) system of
quadratic polynomials. Newton-Raphson and Secant Methods are extremely good for con-
vergence, except that for Newton-Raphson it is required to calculate the inveise of the
Jacobian of the 3x3 system at every iteration, which is extremely expensive, however the
convergence is faster. This method is described below;

We are trying to calculate X from Xgq, hence from Equation (A.2) we have X4 = DX.
As explained above D is itself a function of X, hence inverting D does not solve the problem.

Essentially we have a system of three polynomials;

z4 = gi(z,9,2)
Ya = 92(z’ Y, z)
2d = 93(3’ Y, z)

or since z4, yq and z4 are already known and are constants;

Gl(z’ Y z) =0
Gz(l‘, Y, 2) =0
G3(z, Y, Z) =0

Using Newton’s Method [32];
XL _Xk) 1+ GrF=0 (A.3)

where J (n x n) is called the Jacobian matriz ! and it contains the first derivatives of %% of
the n (n = 3 in our case) functions G; with respect to the n variables z;. The multiplicagion
J¥(XF+1 _ X*) imparts a first order correction to G. k represents iteration. The resulting
Xk+1 after every iteration has to be checked for the error threshold. For Modified Newton

method, Quasi-Newton method and method of steepest descent see Strang [32].

1The definition of this Jacobian Matrix is the same as the one presented in Appendix B, application a
little different

116



Appendix B

Finite Element Method

Formulations

In this Appendix a method will be shown to develop the mass M, damping C and stiffness
K matrices of three dimensional body. It will be assumed that the bodies are isoparametric.
Examples of one-dimensional bodies are given to give a more intuitive idea of this method.

The equations for calculations of mass M, damping C and stiffness K matrices from

Chapter 3 are;

M=) o HOT,OHE) gy () (B.1)
i=1

c=% o HOTOHE) gy ) (B.2)
=1
m 3 . 5 -

K=Y /V . BOTEOBO v (B.3)
i=1

where
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The displacement interpolation matrix
The strain displacement matrix

The three dimensional displacement vector.
Elasticity (stress-strain) matrix.

The element number

The number of elements in the assemblage
Damping Constant

Density

cax3-HAdWH

and the integrations are over the whole volume V of the element. First we need to

determine the H and B matrices.

B.1 Setting up H and B matrices

To understand how these matrices could be set up lets study a very simple example.

YA
< ad >:
X
>y |
Y, | U, X,

Figure B-1: A simple bar element

Example B.1 A one dimensional bar element In the figure of a beam element shown
in Figure B-1 a new form of local coordinates is iniroduced, which sets up a system that is
easy to integrate. The local coordinates vary from -1.0 to 1.0 in ’r’ in the direction of X.

Transformation from the local r-coordinate system to the global X-coordinate system is
given by

1 1
X = '2-(1 —_ T)X] + ‘2‘(1 + ’I‘)X2
Now let;
hl = %(1 - 1‘)

hg:%(1+r)
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therefore;
X =mhX1+hX,

X = Z h; X;
m
Similarly, as we are dealing with an isoparametric element, the displacements are;
U =hmhU +hU;

Using Equation (3.2) we see that hy and h, are simply the interpolation functions for
node 1 and 2 respectively, hence;

H = [1a-n a+n)]
Substituting into Equations (B.1) and (B.2);
-l1-7)
= 2 —1l0 _ 1
M /L[ 2 ]p l(1-r) 31+r)]Adx
and;

_1(1—p )
Cz‘/Ll: %2(5_1.'.1'))]" —%(1—7‘) E(l-l-’l‘)]Ad.X

where A is the cross-sectional area of the beam. For K we need to determine B, For strains
we have;

_dau
T dx
oo d0dr
dr dX
from Figure B-1;
v U;-U,;
a2
X _X-X _L_,
dr 2 2

The above calculation is for a Jacobian J as we will see later. Now from these ezpressions
we can set up equations for € and from Equation (3.3) consequently for B;
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Substituting into Equation (B.3) for m = 1 and for one-dimensional bar bfE = E, where
E is Young’s modulus element in this case;

1
_ -7 i 1 1
- [ ]s[ 4 1]

One of the reasons of defining a new coordinate system of r was the ease of integration. If
in the above equation of M, C and K we can replace dX by Jdr as calculated above; then
these equations become much easy to integrate;

M= /_11 [ —%%(§1+—,;) ] p[-3(1-r) j@+r) | addr

c=/_11 [ ;%((1155)]»: ~31-r) j(1+r)]ATdr

1
-1 bA
where;
L
T=3
hence;
24Lp | 2 1
M= 3 [1 2}
2ALk | 2 1
Cc= 3 [1 2]
1

From Example B.1 above we can develop generalized equations for coordinate interpo-

lations.

q
z = Zh.'x,'

i=1

q
y = Y hy (B.4)

i=1
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q
zZ = Zh.-z.-

=1

Where z, y, and z are the coordinates at any point on the element (local coordinates) and
Z;,Yi, Zi,i = 1, ..., ¢, are the coordinates of ¢ element nodes. The interpolation functions h;
are defined in the natural coordinate system of the element, which has variables r, s, and
t, each varying from -1 to +1.

Considering the geometry of two- and three-dimensional elements (see Figures B-3, B-
4), note that by coordinate interpolation as per Equation (B.5), the elements can have
curved boundaries. This gives it an added advantage over the generalized coordinate finite
element formulation. Another advantage is the ease with which the element displacement
functions can be constructed. In an isoparametric formulation, the element displacements

are interpolated in the same way as the coordinate.

q
© = Zhgu,'

=1
q
v = Zh,'v,' (B.5)
=1
q
w = Zh.'w;
=1

Note: In this formulation we are dealing with ordinary polynomial interpolants. For many
cases it would be preferable to use Hermetian, Gaussian or Chebyshev’s polynomials. [18]
forms
B.1.1 To set up Interpolation functions and the Interpolation matrix
The two major postulates to set up the interpolation functions are :

1. h; equals 1 at z; and equals 0 at every other node.

2. Sum of interpolation functions is always equal to 1.0 ( 3" h; = 1.0 )

Using the above mentioned postulates, the interpolation functions h;, corresponding to

a specific nodal point layout could be determined in a systematic manner. However, it is
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convenient te set it up by inspection as shown below

Node 1 Noda 2 Node 3

0.3L 0.7L

=-1 re0 r=-1

Xx=0 x=03L x=L

I \\\\ J
\\
+1 h, -~
—
—
\\
v
h!

- +1

r=-1

Figure B-2: One Dimensional Element

Example E.2 Interpolation functions for a 3 node one-dimensional element The
Figure B-2 shows a simple one-dimensional element with three nedes. This figure also
shows the displacement profiles for each node based on the conditions just mentioned above.
If this was a two node element our interpolation functions would have been the same as in
Ezample B.1. Notice how the local r-coordinates are set up, with the variation from -1 to
+1. The displacement curves for unit displacements at nodes 1 and 2 show the interpolation
Junctions as in the previous ezample. Condition 1 is satisfied by both if there was no third
node. With the third node the interpolation functions become quadratic and half of the third
interpolation function has to be subtracted from the first two so that the above conditions
could be satisfied. The three interpolation functions are;

hy = l(1*-1‘) - l(1—1‘2)

hy —z-(l-!-r) - %(1—1‘2)
hy = (1-r12)

From this we can set up an interpolation matriz for this three node one dimensional
model.

H=[}0-n-30-) ja+n-30-r) -]
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r [i=5]i=6[i=7[i=8]i=9]
hy = }(14-1‘)(14—8) —%hs “ee X —%hg —3zho
he = i(l —T)(1+8) —§h5 —%hs e oee —2ho
h3 = §(1-—1‘)(1—8) e -—Ehs —-i-h-] e —;-hg
hy = I(1+r)(1—s) .o —§h7 -—%hs —zho
h5= %(1-—1-2)(14-3) s cos e ves _..h9
h5= ?(1_32)(1_1') ces e e eee _..hg
h7= -(1—1’2)(1—8) P . . s _--hg
hg = l 5(1_32)(1.].,') eos cee e cee —~zhg
h9= (1-. 2)(1_32) cee eee ces ces e

Table B.1: The interpolation functions of four to nine variable number nodes for two di-
mensional elements

Using the the derivatives of interpolation functions and their linear combinations gives us
the strain-displacement matrix, we’ll however postpone the setting up of strain-dispiacement

matrix until our discussion of Jacobians.

YA ® Nodes

x Y

Figure B-3: Two Dimensional Element (Nine nodes shown)

In a manner similar to the one dimensional model, the interpolation functions for two and

three dimensional models can also be calculated. Figure B-3 shows a two dimensional model
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Figure B-4: Three Dimensional Element (Twenty nodes shown)

with its 7 and s local coordinates. The interpolation functions of four to nine nodes for two
dimensional elements are given in Table B.1 Figure B-4 shows a three dimensional model
with 20 nodes. The interpolation functicns of eight to twenty nodes for three dimensional
elements are shown in Table B.2. The three dimensional 20 node element is the one used

for determining the mass M, damping C and stiffness K matrices of superquads.

B.1.2 Jacobians

To be able to evaluate the stiffness matrix of an element (using Equation (B.3)), we need
to calculate the strain-displacement transformation matrix B. The element strains are ob-

tained in terms of derivatives of element displacements with respect to the local coordinates.

T _
€ - [e:l:a: €yy €2z Vry Vzz 7yz]

or;

Ao [l e de dudo b de o do] 5.6
T ldr dy dz dy dzr dz ' dz dz  dy )
Since the strain displacements are related to z, y and 2, we need to use the chain rule
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hy = g1 — (99 + 912 + 017)/2
hy = g2 — (99 + 910 + 918)/2
h = 93 — (910 + 911 + g19)/2
hy = 94— (911 +g12+ 920)/2
hs = g5 — (913 + 916 + 917)/2
he = g6 — (913 + 914 + 918)/2
he = 97 — (914 + g15 + 919)/2
hg = gs — (915 + 916 + 920)/2
h; = g; for j =9,...,20
Using
gi = 0 if node j is not included, otherwise,
gji = G(r,1;)G(s, 5;)G(t, t;)
where:
G(B, Bj) = | 3(1+ B;P) for B; = £1
G(B,B;)=](1—p) for ;=0

Table B.2: The interpolation functions of eight to twenty variable number nodes for three
dimensional elements

to change %lr‘- to 5;—‘;
d ddr dds  ddt

il P i el (B7)
Using Similar relationships for 4, and £.
d dz dy dz d
dr dr dr dr || d
di_|& b &) 4 (8.3)
AR K
dt dt dt dt dz
or in matrix notation,
d d
=91 (B.9)

where J is the Jacobian operator relating the natural coordinate derivatives to the local
coordinate derivatives. Note that using Equation (B.5) one can quite easily calculate the
Jacobian operator. Since we require f;;

a1 d

d
== (B.10)
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Hence by using equations (B.5) and (B.10) we can evaluate %, f‘fé, ..... ,%‘f and construct

the strain-displacement transformation matrix B by using;

é™(z,y,2) = B"™(z,y,2)U (B.11)

Cn converting to local element degrees of freedom, in Equations (B.3), (3.9), (3.10),
(B.1) (B.2) have

dV = det[JY]drdsdt (B.12)

B.2 Numerical Integration

An explicit integration of the volume integral in the above mentioned equations is not very
effective, specially when higher order interpolation is used or when the elements are very
distorted. For this reason numerical integrations should be preferred. All of the integrals
for our formulation are of the forms shown below. These equations can be numerically

integrated by the equations shown below.

/ F(r)dr = Za;F(r.-)
/ F(r,o)dr = Y a;F(ri,s;) (B.13)

/ F(r,s,t)dr = Y aiixF(ri, sj,1k)

i9k
This integration can be carried out by either of the two following methods
e Newton-Cotes Formulas

e Gaussian Quadrature Formulas

In Newton-Cotes Formulas ( which includes Trapezoidal and Simpson’s Rules ) we
need n + 1 points to integrate exactly a polynomial of degree n. While in Gauss

Formula one requires n points to integrate a polynomial of order (2n — 1). It is for
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this reason that Gauss method is preferred over the Newton-Cotes method. The

simple formula for Gauss Method in three-dimensional integration is,

+1 +1 41
f / / F(r, s,t)drdsdt = E a;o;0;F(rg, 35y tk) (B.14)
-1 Ja1 Ja ik
For a more detailed outlook on numerical techniques for integration see Strang [32, 33],

Bathe [18] or any other book in text in linear algebra and numerical methods.

B.3 Implementation with Superquad-

To do any dynamic simulations using deformable superquads, it is essential to set up a
FEM domain for the superquads so that the geometric and shape characteristics of the
superquads could be used for mesh generation and hence for force distributions internal to
the body. Since superquads are three-dimensional geometric shapes we can use an 8 node
to as many nodes as desired, a purely “engineering” decision based on the requirements.
Assuming the body to be isoparametric the mass M, damping C and stiffness K and the

load matrices of a superquad could be set up using the following step by step procedure;

1. Select the number of nodes n required to describe the body, number them, keeping in

mind the minimum bandwidth requirements.

2. Using Table B.2 define the interpolant functions hy,hs,...,h, and set up the dis-
placement interpolation matrix H. Check for the postulates as described in Section

B.1.1.

3. Determine the Jacobian matrix, J. In the case of superquads there are two forms of
deformations, one is the deformation due to the squareness parameters, el and €2 in

the equation

cos® (1) cos®? (w)
-#r<w<s7w
X(nw) = cos®! (n) sin®2 (w) . < (B.15)
= S n< %
sin® () 2 ?
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and other due to the deformation mapping of the various modes of vibration as de-

scribed in Appendix A. Hence,

J=D,D (B.16)
where;
cos® (1) cos®? (w) 0 0
D, = 0 cos® (n) sin®? (w) 0 (B.17)
0 0 sin(n)

and D is given by Equation (A.2) and the values are as in Table A.1. Now by setting
up € as in Equation (B.6) by using the Jacobian matrix J and the differentials of the
shape interpolation functions B could be set up by using Equations (B.10) and (B.11).

. The Elasticity matrix E for a three-dimensional isoparametric element is;

1 &% % 0 0 0
= 1 % 0 0 0
A+v)Q-20) o o o 2 0 0
0 0 o0 0 5% O
| 0 o0 o 0 0 2
where
= Young’s modulus
v = Poisson’s ratio

. Replace all of the above determined matrices and other material properties of the
superquad into Equations (B.1), (B.2) and {B.3) and integrate using the Gaussian
Quadrature methods described in the previous section, to get the mass M, damping

C and stiffness K matrices of a superquad.
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Appendix C

Stiffness Matrices and Stiffness
values

physical significance of the stiffness matrix.

For a spring the force is defined as

F=4is

where k is the stiffness value of the s

pring. In case of a 3-D deformable ob ject the the same
analogy follows, specially since a def;

ormable object on micro level is 3 combination of many
smaller springs
F=KU (C.1)
where F is the force vector, K is the stiffness matrix and U is the displacement vector



Explicitly for an (n x n) system we have;

f1 kl,l kl'z vee kl’j cee kl',, U1
fz k2,l i ’cz'z cee kg’j cee kg',. U2
- . . H M . N . (C.2)
fi kjin kj2 ... kjj ... kjnm uj
R fn 4 L kn,l kn'z e kn'j cee k,.,,-. Jt Up ]

Now to develop an intuitive idea of the stiffness matrix K consider that only one point
(point j)on the whole body has deformed by a unit displacement and all the other nodes
remain fixed (no displacement). Now from Equation (C.2) we can calculate the forces at all
the nodes as we already know the stiffness matrix. Multiplying the stiffness matrix with a
(n x 1) vector where all the values are zero except u; = 1.0. This multiplication returns the
jth column of the matrix. Hence from this we can conclude that the jth row or a column
of a stiffness matrix (linear materials only as the stiffness matrix is not symmetric for non-
linear material) represents the forces on the nodes of the object due to a unit displacement
of the jth node.

A stiffness matrix is always has a heavy diagonal, and one good assumption of the
stiffness value of a node would be the diagonal element for that node in the stiffness matrix.
This assumption is acceptable to a certain extent, however some kind of a weighted sum of
the values of the stiffness matrix for the column of the node would be a little better.

If the bandwidth considerations are taken into account then the approximation at-
tempted by taking the diagonal elements is very good. However, the chances of error are
higher, if the diagonal is not heavy and the stiffness matrix is full. For mass and damp-
ing matrices, since monotonic convergence is observed for diagonal matrices, therefore the
approximations of diagonal matrices is pretty efficient. In case of modal superposition
methods, where the equations are completely uncoupled, the method discussed here is also
acceptable.

Note however, that this is an approximate method and should be used for problems that

do not desire extreme accuracy or as initial guesses for more accurate methods.
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C.2 Stiffness values at any point inside segment

In virtual world environments, our interest is in employing physically realistic models
and at the same time adopt efficient and approximating algorithms. For time efficiency
one of the concerns is sampling of graphic objects. In this section, an approximate method
of distributing the stiffness values of the nodes to the segment defined by the nodes is
presented. Note that since each node has a stiffness value in the three directions, therefore
the problem of determining the stiffress of a point in a segment is essentially a three-fold
process, in which each direction is calculated by its corresponding planes.

We will present a general method for any polygynous shape. Figure C-1 shows a 5 node

Ar = A2+ Az,a + Ay + Ass + As,

edges

point on the
segment 5

Figure C-1: Distribution of Stiffness from nodes to a point on the segment.

segment, and the point of concern is p.

Point i <= (zi,¥i,2)
Point j <= (zj,9j,2;)
Point p <= (Zp,¥p,2p)

Assuming that we are trying to calculate the stiffness in 2-direction, we will determine the

areas in zy-plane only.
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The area of a triangle with known coordinates can be calculated by;

1 1 1
1
A(D) = 3|z 22 23 (C.3)
n Y2 U3

The segment or the polygon under consideration can be broken up into triangles with
the point p and the edges of the segment (see Figure C-1). The area of these triangles
should be calculated using Equation (C.3). These areas are A; ; where i aad j are the node
numbers. The ratio of the each area with respect to the total area has to be calculated so

the weightage can be established. Hence for n nodes per segment (n=3fora triangle)
n
Ar=) Aij i#]
q=0
therefore the ratios are;

r‘.rj = _-_. (C'4)

and if the stiffness of a node g is k,, then the stiffness of the point inside the segment is
given by;
" . -
T g Rl S (C.5)

This method has to repeated in all the three planes to pick up the right kz, ky and k.

for each point.
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Appendix D

Random Variables : Definitions

D.1 Random Variables and Random Processes

Here some basic concepts of random variables are defined which are be used in the formu-

lation of roughness of surfaces: 1

Definition D.1 Consider a sample space denoted by S. A real valued function that is
defined in space S is called a random variable.

A random variable X is a function that assigns a real number X(s) to each possible
outcome s € S [55]. Random variables are usually denoted by (X). This is the notation
that will be adopted in this chapter.

Definition D.2 For any point in the subspace A to S (i.e. A € S) the probability P(z < A)
of 2 is dependent on z and is called the cumulative distribution function of the RV z.

Fi(z)=P{z < A}

! For more details of random variable and random processesand the properties of distribution and density
functions see [56, 55]
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Definition D.3 The derivative of the distribution function is called the density function
(aiso known as the frequency function) of the RV z is;

fla) = 20

Now a definition for the sum of two random variables

Definition D.4 The sum of two random variables x and y, is 2 = z + y. The probability
distribution of the function of two random variables, z is given by;

F&)= [~ [ fa,v)dedy

f‘(X)‘ fy(y) A fx(Z)“ fz(‘z?: (fx:(;).ﬂf)y )

dy vy bid 'z
f ()4 LM\7] | f.(2} 2= 00 + O

A\
*

1Y
o
x

*
N

b x c d 'y ac bid 2
Figure D-1: Convolutions of two random variables

The density of z could be found by differentiating as per Definition D.3 or by direct
methods which gives [56]

fu@)dz= [~ f(z - v,y)dydz (1)

-0

if the RVs z and y are independent then

f(z,9) = fa(2)fu(v)
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which modifies Equation (D.1) to;

fu@z= [ felz- n)fw)ivdz (D2)

the above integral is the convolution of the functions f,(z) and f,(y), and it can be concluded
that if the RVs are independent then the density of their sum equals the convolution of their

densities.

D.2 Statistical Characteristics of Random Processes

There is no practical way of obtaining probability density functions for a physical process,
hence their main use is for mathematical development, like the following first-order and

second-order statistics;

Definition D.5 Mean; o
u(t) = E{z(t)} = /_ o z f(z)dz (D.3)

Definition D.6 Mean Square;

E{a2)} = /_ °; 2 f(z)dz (D.4)

Definition D.7 Variance;

o) = E{le() - w7} = [ o - uf* f(2)iz (D.5)

Definition D.8 Correlation Function;

p(t,7) = E{[z(t),z(7)]} = /_: [_: 7122 f(21, 22)dz1dz, (D.6)

135



The first three definitions of the statistical parameters are first-order, since they entail
only the first order probability density function. The correlation function, on the other
hand is a second-order statistic. The symbol E{ } denotes mathematical expectation, or
the average computed by probability.

The first-order statistics can be defined for vector process. The generalized correlation

function is known as correlation matriz;

E{[z1(t),z1(T)]} -+ EA{lz1(t),za(7)]}
R(t,7) = E{[z(t),27(7)]} = (D.7)

E{[za(t),z2(7)]} --- E{[za(t),za(7)]}

from above we can conclude that;

R(t,7) = RT(1,1) (D.8)

Definition D.9 Covariance Matriz; A special case of the above Equation (D.8) is;

R(t,1) = E{[a(2),27(1)]} = B7(t,1) (D.9)

Definition D.10 Variance equation is the following;
P=AP+ PAT 4+ FQ,FT (D.10)

where P is the covariance matriz of state z(t) at time t. Variance equation is used to
determine how the covariance propagates with the elapse of time, without having to calculate
the state transition matriz. This is extremely important in time-variant systems, where the
state transition matriz is almost impossible to determine and in time-invariant systems to
evaluate steady state covariance matrices.

D.3 Convolution Identities

Following are some of the important convolution identities, the notation used is;
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* = convolution

f™ = n—fold convolution of function f
fen = n—fold integration of function f
fe-n = n—fold differentiation of function f

and the identities are;

fxg = g+f
(f*g)*h = fx(g*h)

JEr9 = ([pra

(F*x9) = (f)Y g

(D.11)

repeated application of the last two identities from above, imply that the convolution of f

with g is equivalent to the convolution of the nth integral of f with the nth derivative of g;

fxg= (/nf(z)dz)*(%) =fn*g-n

D.4 Gaussian Distribution

A Gaussian or a normal function is

G(z) = \/;_xe-—:i

and its integral is

G@)= [ o= \,% [ eFay

For large z, G(z) is often approximated by;
1 ~
G(z)~1- ;y(a:)
G(z) is often expressed as an error function ¢;

e(z) = %;Aze:gdy= G(z) - %
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An RV z is called a normal or gaussian if its density is the normal curve G(z), shifted
and scaled;

_lg(zmmy o1 et
f(-'v)—ag( > )-ame (D.17)

and the corresponding distribution function is

F(z)= G (z = ”) (D.18)
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Appendix E

Control Theory : Definitions

E.1 System Dynamics : Definitions

Following are some important definitions of system dynamics

Definition E.1 A system is an entity separable form the rest of the environment by means
of physical and conceptual boundaries.

Definition E.2 A dynamic system is a system whose behavior is a function of time.

Definition E.3 A state of a dynamic system is a set of physical quantities, the specifica-
tion of which (in absence of external ezcitation) completely determines the evolution of the
system [57].

Definition E.4 The number of first-order differential equations in the mathematical model
of the system defines the order of the system.

Definition E.5 The dynamic variables that appear in the system of first-order equations
are called the state variables
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E.2 Control Theory : Definitions

Following are some of the important definitions of Control Theory;

Definition E.8 A dynamic system whose state variables are the estimates of the state
variables of the system under observation, then the former system is called the Observer
of the system under study.

The concept of an observer was introduced into linear system theory by D. Luenberger
in 1963 [69, 70, 71]. Luenberger showed that, for any observable linear system, an observer
can be designed having the property that the estimation error can be made to go to zero
[57].

Several years before Luenberger’s introduction of observers, R. E. Kalman with R. Bucy
defined a state estimator that is optimum with respect to process noise and observation noise
[67, 68]. This state estimator, called Kalman filters kas a structure of a linear observer,
hence a Kalman filters may be regarded as an optimum observer. Although observers are
useful for estimating the state of a linear system having a known external input, their
main use is in estimating the state variables that cannot be measured but are needed for
implementation of feedback control. Two very important definitions for control systems

are;!

Definition E.7 (Observabilify) An unforced system is said to be observable if and only
if it is possible to determine any arbitrary initial state z(t) = z,; by using only a finite record,
y(7) for t < v < T, of the output [57].

Definition E.8 (Controllabity) A system is said to be controliable if and only if it is
possible, by means of input, to transfer the system from any initial state z(t) = =z, to any
other state z1 = z(T') in a finite time T —t < 0 [57)].

for more reading on Observability and Controllability see Friedland [57] Chapter 5.



E.3 White Noise and Linear System Response

White noise is one of those theoretical abstractions which simplifies calculations but grieves

mathematicians. It is defined as following;

Definition E.9 White noise is simply a random process with an ezpected value (mean) of
zero and with a flat power spectrum [57]. The correlationfunction of white noise is;

p(r) = W§(r) (E.1)

where §(7) is a unit impulse at origin and W is the constant at all w, beczuse of the flat
power spectrum 2 :

As the mean square value of any random process is the integral of its spectral density
over all frequencies and since white noise has constant spectral density for all frequencies,
therefore, theoretically white noise has infinite mean square value. A physical process that
has infinite mean square value is inconceivable and therefore white noise is a mathematical
abstraction.

A vector random process is white noise if its correlation matrix is of the form;

R(r) = Wi(r) = E {a(t)a" (¢ + 1)} (E.2)

where W is a square matrix. white noise is a convenient abstraction because it leads
to a relatively simple expression for a correlation function and the power spectrum of the
output of the linear system into which it is the input. For some examples of white noise as

an input see Friedland [57].

?For more details on this see [57].
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