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1-factorizations of pseudorandom graphs

Asaf Ferber ∗ Vishesh Jain†

Abstract

A 1-factorization of a graph G is a collection of edge-disjoint perfect matchings whose union
is E(G). In this paper, we prove that for any ε > 0, an (n, d, λ)-graph G admits a 1-factorization
provided that n is even, C0 ≤ d ≤ n− 1 (where C0 = C0(ε) is a constant depending only on ε),
and λ ≤ d1−ε. In particular, since (as is well known) a typical random d-regular graph Gn,d is
such a graph, we obtain the existence of a 1-factorization in a typical Gn,d for all C0 ≤ d ≤ n−1,
thereby extending to all possible values of d results obtained by Janson, and independently by
Molloy, Robalewska, Robinson, and Wormald for fixed d. Moreover, we also obtain a lower
bound for the number of distinct 1-factorizations of such graphs G, which is better by a factor
of 2nd/2 than the previously best known lower bounds, even in the simplest case where G is the
complete graph.

1 Introduction

The chromatic index of a graph G, denoted by χ′(G), is the minimum number of colors with which
it is possible to color the edges of G in a way such that every color class consists of a matching (that
is, no two edges of the same color share a vertex). This parameter is one of the most fundamental
and widely studied parameters in graph theory and combinatorial optimization, and in particular, is
related to optimal scheduling and resource allocation problems and round-robin tournaments (see,
e.g., [15], [28], [29]).

A trivial lower bound on χ′(G) is χ′(G) ≥ ∆(G), where ∆(G) denotes the maximum degree
of G. Indeed, consider any vertex with maximum degree, and observe that all edges incident to
this vertex must have distinct colors. Perhaps surprisingly, a classical theorem of Vizing [38] from
the 1960s shows that ∆ + 1 colors are always sufficient, and therefore, χ′(G) ∈ {∆(G),∆(G) + 1}
holds for all graphs. In particular, this shows that one can partition all graphs into two classes:
Class 1 consists of all graphs G for which χ′(G) = ∆(G), and Class 2 consists of all graphs G for
which χ′(G) = ∆(G) + 1. Moreover, the strategy in Vizing’s original proof can be used to obtain a
polynomial time algorithm to edge color any graph G with ∆(G) + 1 colors ([31]). However, Holyer
[18] showed that it is actually NP-hard to decide whether a given graph G is in Class 1 or 2. In
fact, Leven and Galil [26] showed that this is true even if we restrict ourselves to graphs with all
the degrees being the same (that is, to regular graphs).

Note that for d-regular graphs G (that is, graphs with all their degrees equal to d) on an even
number of vertices, the statement ‘G is of Class 1’ is equivalent to the statement that G contains d
edge-disjoint perfect matchings (also known as 1-factors). A graph whose edge set decomposes as a
disjoint union of perfect matchings is said to admit a 1-factorization. Note that if G is a d-regular
bipartite graph, then a straightforward application of Hall’s marriage theorem immediately shows
∗Massachusetts Institute of Technology. Department of Mathematics. Email: ferbera@mit.edu. Research is

partially supported by an NSF grant 6935855.
†Massachusetts Institute of Technology. Department of Mathematics. Email: visheshj@mit.edu

1

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/rsa.20927

http://dx.doi.org/10.1002/rsa.20927
http://dx.doi.org/10.1002/rsa.20927
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frsa.20927&domain=pdf&date_stamp=2020-05-21


that G is of Class 1. Unfortunately, the problem is much harder for non-bipartite graphs, and
it is already very interesting to find (efficiently verifiable) sufficient conditions which ensure that
χ′(G) = ∆(G). This problem is the main focus of our paper.

1.1 Regular expanders are of Class 1

Our main result shows that d-regular graphs on an even number of vertices which are ‘sufficiently
good’ spectral expanders, are of Class 1. Before stating our result precisely, we need to introduce
some notation and definitions. Given a d-regular graph G on n vertices, let A(G) be its adjacency
matrix (that is, A(G) is an n × n, 0/1-valued matrix, with A(G)ij = 1 if and only if ij ∈ E(G)).
Clearly, A(G) · 1 = d1, where 1 ∈ Rn is the vector with all entries equal to 1, and therefore, d is
an eigenvalue of A(G). In fact, as can be easily proven, d is the eigenvalue of A(G) with largest
absolute value. Moreover, since A(G) is a symmetric, real-valued matrix, it has n real eigenvalues
(counted with multiplicities). Let

d = λ1 ≥ λ2 ≥ . . . λn ≥ −d

denote the eigenvalues of A(G), and let λ(G) := max{|λ2|, |λn|}. With this notation, we say that
G is an (n, d, λ)-graph if G is a d-regular graph on n vertices with λ(G) ≤ λ. In recent decades, the
study of (n, d, λ) graphs, also known as ‘spectral expanders’, has attracted considerable attention
in mathematics and theoretical computer science. An example which is relevant to our problem is
that of finding a perfect matching in (n, d, λ)-graphs for which, extending a result of Krivelevich
and Sudakov [24], Cioabă, Gregory and Haemers [9] provided accurate spectral conditions for an
(n, d, λ)-graph to contain a perfect matching. For much more on these graphs and their many
applications, we refer the reader to the survey of Hoory, Linial and Wigderson [19], the survey of
Krivelevich and Sudakov [24], and to the book of Brouwer and Haemers [7]. We are now ready to
state our main result.

Theorem 1.1. For every ε > 0 there exist d0, n0 ∈ N such that for all even integers n ≥ n0 and for
all d ≥ d0 the following holds. Suppose that G is an (n, d, λ)-graph with λ ≤ d1−ε. Then, χ′(G) = d.

Remark 1.2. It seems plausible that with a more careful analysis of our proof, one can improve
our bound to λ ≤ d/poly(log d). Since we believe that the true bound should be much stronger, we
did not see any reason to optimize our bound at the expense of making the paper more technical.

In particular, since the eigenvalues of a matrix can be computed in polynomial time, Theorem 1.1
provides a polynomial time checkable sufficient condition for a graph to be of Class 1. Moreover,
our proof gives a probabilistic polynomial time algorithm to actually find an edge coloring of such
a G with d colors. Our result can be viewed as implying that ‘sufficiently good’ spectral expanders
are easy instances for the NP-complete problem of determining the chromatic index of regular
graphs. It is interesting (although, perhaps a bit unrelated) to note that in [3], Arora et al. showed
that constraint graphs which are reasonably good spectral expanders are easy for the conjecturally
NP-complete Unique Games problem as well.

1.2 Almost all d-regular graphs are of Class 1

The phrase ‘almost all d-regular graphs’ usually splits into two cases: ‘dense’ graphs and random
graphs. Let us start with the former.
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Dense graphs: It is well known (and quite simple to prove) that every d-regular graph G on n
vertices, with d ≥ 2dn/4e−1 has a perfect matching (assuming, of course, that n is even). Moreover,
for every d ≤ 2dn/4e − 2, it is easily seen that there exist d-regular graphs on an even number of
vertices that do not contain even one perfect matching. In a (relatively) recent breakthrough, Csaba,
Kühn, Lo, Osthus, and Treglown [11] proved a longstanding conjecture of Dirac from the 1950s, and
showed that the above minimum degree condition is tight, not just for containing a single perfect
matching, but also for admitting a 1-factorization.

Theorem 1.3 (Theorem 1.1.1 in [11]). Let n be a sufficiently large even integer, and let d ≥
2dn/4e − 1. Then, every d-regular graph G on n vertices admits a 1-factorization.

Hence, every ‘sufficiently dense’ regular graph is of Class 1. It is worth mentioning that they
actually proved a much more general statement about finding edge-disjoint Hamilton cycles, from
which the above theorem follows as a corollary.

Random graphs: As noted above, one cannot obtain a statement like Theorem 1.3 for smaller
values of d since the graph might not even have a single perfect matching. Therefore, a natural
candidate to consider for such values of d is the random d-regular graph, denoted by Gn,d, which
is simply a random variable that outputs a d-regular graph on n vertices, chosen uniformly at
random from among all such graphs. The study of this random graph model has received much
interest in recent years. Unlike the traditional binomial random graph Gn,p (where each edge of the
complete graph is included independently, with probability p), the uniform regular model has many
dependencies, and is therefore much harder to work with. For a detailed discussion of this model,
along with many results and open problems, we refer the reader to the survey of Wormald [40].

Working with this model, Janson [21], and independently, Molloy, Robalewska, Robinson, and
Wormald [32], proved that a typical Gn,d admits a 1-factorization for all fixed d ≥ 3, where n is a
sufficiently large (depending on d) even integer. Later, Kim and Wormald [23] gave a randomized
algorithm to decompose a typical Gn,d into bd2c edge-disjoint Hamilton cycles (and an additional
perfect matching if d is odd) under the same assumption that d ≥ 3 is fixed, and n is a sufficiently
large (depending on d) even integer. For values of d of the form Θ(n), Kühn and Osthus proved
in [25] that every ‘quasi-random’ regular graph has a Hamilton cycle decomposition, and hence, a
1-factorization. Moreover, Glock, Kühn and Osthus [16] also studied optimal edge-colorings in the
dense quasi-random case when the underlying graph is not necessarily regular. Usually, the main
problem with handling values of d which grow with n is that the so-called ‘configuration model’ (see
[4] for more details) is not very useful in this regime.

Here, as an almost immediate corollary of Theorem 1.1, we deduce the following, which together
with the results of [21] and [32] shows that a typical Gn,d on a sufficiently large even number of
vertices admits a 1-factorization for all 3 ≤ d ≤ n− 1.

Corollary 1.4. There exists a universal constant d0 ∈ N such that for all d0 ≤ d ≤ n−1, a random
d-regular graph Gn,d admits a 1-factorization asymptotically almost surely (a.a.s.).

Remark 1.5. By asymptotically almost surely, we mean with probability going to 1 as n goes
to infinity (through even integers). Since a 1-factorization can never exist when n is odd, we will
henceforth always assume that n is even, even if we do not explicitly state it.

To deduce Corollary 1.4 from Theorem 1.1, it suffices to show that we have (say) λ(Gn,d) =
O(d0.9) a.a.s. In fact, the considerably stronger (and optimal, up to the choice of constant in the
big-oh) bound that λ(Gn,d) = O(

√
d) a.a.s. is known. For d = o(

√
n), this is due to Broder, Frieze,

Suen and Upfal [6]. This result was extended to the range d = O(n2/3) by Cook, Goldstein, and
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Johnson [10] and to all values of d by Tikhomirov and Youssef [36]. We emphasize that the condition
on λ we require is significantly weaker and can possibly be deduced from much simpler arguments
than the ones in the references above.

Finally, it is also worth mentioning that very recently, Haxell, Krivelevich and Kronenberg [17]
studied a related problem in a random multigraph setting; it is interesting to check whether our
techniques can be applied there as well.

1.3 Counting 1-factorizations

Once the existence of 1-factorizations in a family of graphs has been established, it is natural to ask
for the number of distinct 1-factorizations that any member of such a family admits. Having a ‘good’
approximation to the number of 1-factorizations can shed some light on, for example, properties of
a ‘randomly selected’ 1-factorization. We remark that the case of counting the number of 1-factors
(perfect matchings), even for bipartite graphs, has been the subject of fundamental works over the
years, both in combinatorics (e.g., [5], [12], [13], [34]), as well as in theoretical computer science (e.g.,
[37], [22]), and has led to many interesting results such as both closed-form as well as computational
approximation results for the permanent of 0/1 matrices.

As far as the question of counting the number of 1-factorizations is concerned, much less is
known. Note that for d-regular bipartite graphs, one can use estimates on the permanent of the
adjacency matrix of G to obtain quite tight results. But quite embarrassingly, for non-bipartite
graphs (even for the complete graph!) the number of 1-factorizations in unknown. The best known
upper bound for the number of 1-factorizations in the complete graph is due to Linial and Luria
[27], who showed that it is upper bounded by(

(1 + o(1))
n

e2

)n2/2
.

Moreover, by following their argument verbatim, one can easily show that the number of 1-factorizations
of any d-regular graph is at most (

(1 + o(1))
d

e2

)dn/2
.

On the other hand, the previously best known lower bound for the number of 1-factorizations of
the complete graph ([8], [41]) is only (

(1 + o(1))
n

4e2

)n2/2
,

which is off by a factor of 4n
2/2 from the upper bound.

An advantage of our proof is that it immediately gives a lower bound on the number of 1-
factorizations which is better than the one above by a factor of 2 in the base of the exponent, not
just for the complete graph, but for all sufficiently good regular spectral expanders with degree
greater than some large constant. More precisely, we will show the following (see also the third
bullet in Section 7)

Theorem 1.6. For any ε > 0, there exist D = D(ε), N = N(ε) ∈ N such that for all even integers
n ≥ N(ε) and for all d ≥ D(ε), the number of 1-factorizations in any (n, d, λ)-graph with λ ≤ d0.9

is at least (
(1− ε) d

2e2

)dn/2
.
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Remark 1.7. As discussed before, this immediately implies that for all d ≥ D(ε), the number of
1-factorizations of Gn,d is a.a.s. at least(

(1− ε) d

2e2

)dn/2
.

1.4 Outline of the proof

It is well known, and easily deduced from Hall’s theorem, that any regular bipartite graph admits a
1-factorization (Corollary 2.8). Therefore, if we had a decomposition E(G) = E(H ′1) ∪ . . . E(H ′t) ∪
E(F), where H ′1, . . . H ′t are regular balanced bipartite spanning graphs, and F is a 1-factorization
of the regular graph G \

⋃t
i=1H

′
i, we would be done. Our proof of Theorem 1.1 will obtain such a

decomposition constructively.
As shown in Proposition 5.1, one can find a collection of edge disjoint, regular bipartite spanning

graphs H1, . . . ,Ht, where t � d and each Hi is ri regular with ri ≈ d/t, which covers ‘almost all’
of G. In particular, one can find an ‘almost’ 1-factorization of G. However, it is not clear how to
complete an arbitrary such ‘almost’ 1-factorization to an actual 1-factorization of G. To circumvent
this difficulty, we will adopt the following strategy. Note that G′ := G \

⋃t
i=1Hi is a k-regular

graph with k � d, and we can further force k to be even (for instance, by removing a perfect
matching from H1). Therefore, by Petersen’s 2-factor theorem (Theorem 2.12), we easily obtain a
decomposition E(G′) = E(G′1) ∪ . . . E(G′t), where each G′i is approximately k/t regular. The key
ingredient of our proof (Proposition 4.2) then shows that the Hi’s can initially be chosen in such a
way that each Ri := Hi ∪G′i can be edge decomposed into a regular bipartite spanning graph, and
a relatively small number of 1-factors.

The basic idea in this step is quite simple. Observe that while the regular graph Ri is not
bipartite, it is ‘close’ to being one, in the sense that most of its edges come from the regular balanced
bipartite spanning graph Hi = (Ai ∪ Bi, Ei). Let Ri[Ai] denote the graph induced by Ri on the
vertex set Ai, and similarly for Bi, and note that the number of edges e(Ri[Ai]) = e(Ri[Bi]). We
will show that Hi can be taken to have a certain ‘goodness’ property (Definition 4.1) which, along
with the sparsity of G′i, enables one to perform the following process to ‘absorb’ the edges in Ri[Ai]
and Ri[Bi]: decompose Ri[Ai] and Ri[Bi] into the same number of matchings, with corresponding
matchings of equal size, and complete each such pair of matchings to a perfect matching of Ri.
After removing all the perfect matchings of Ri obtained in this manner, we are clearly left with a
regular balanced bipartite spanning graph, as desired.

Finally, for the lower bound on the number of 1-factorizations, we show that there are many ways
of performing such an edge decomposition E(G) = E(H ′1)∪ · · · ∪E(H ′t)∪E(F) (Remark 5.3), and
there are many 1-factorizations corresponding to each choice of edge decomposition (Remark 4.3).

1.5 Notation

We use standard graph theory notation. For a graph G, we use V (G) to denote the set of its vertices
and E(G) to denote the set of its edges. Often, we will write G = (V (G), E(G)). We will use δ(G)
to denote the minimum degree of any vertex in G, and ∆(G) to denote the maximum degree of any
vertex in G. For a vertex v ∈ V (G), we denote the degree of v in G by degG(v). For a regular graph
G, we will use deg(G) to denote the common degree of all of its vertices. For disjoint subsets X
and Y of V (G), we use EG(X,Y ) to denote the collection of edges with one endpoint in X and the
other endpoint in Y , and eG(X,Y ) to denote |EG(X,Y )|. Given a subset X of V (G), we let G[X]
denote the graph induced by G on the vertex set X, and given disjoint subsets A and B of V (G),
we let G[A,B] denote the bipartite graph with parts A and B and edge set EG(A,B). Given a
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subset E′ of E(G), we let G[E′] denote the graph induced by the edges in E′. We will often denote
a bipartite graph G with parts A and B and edge set E by G = (A ∪ B,E). We will use

(
V
k

)
to

denote the collection of subsets of a set V of size k. In particular,
(
V
2

)
will denote subsets of V of

size 2, and we will often denote such subsets by xy instead of {x, y}. Finally, we refer to the set
{1, 2, . . . , n} by [n], and say that c ∈ a± b or c = a± b if c ∈ [a− b, a+ b].

1.6 Acknowledgements

We would like to thank the anonymous referees for their careful reading of the manuscript and for
numerous valuable comments.

2 Tools and auxiliary results

In this section we have collected a number of tools and auxiliary results to be used in proving our
main theorem.

2.1 Probabilistic tools

Throughout the paper, we will make extensive use of the following well-known concentration bounds
due to Chernoff (see, e.g., Theorem 2.8 in [20]).

Lemma 2.1 (Chernoff’s bounds). Let X :=
∑n

i=1Xi, where Xi ∼ Ber(pi) are independent, and let
E(X) = µ. Then

• Pr[X < (1− a)µ] < e−a
2µ/2 for every a > 0;

• Pr[X > (1 + a)µ] < e−a
2µ/3 for every 0 < a < 3/2.

Remark 2.2. These bounds also hold when X is hypergeometrically distributed with mean µ (see,
e.g., Theorem 2.10 in [20]).

Before introducing the next tool to be used, we need the following definition.

Definition 2.3. Let (Ai)
n
i=1 be a collection of events in some probability space. A graph D on the

vertex set [n] is called a dependency graph for (Ai)i if Ai is mutually independent of all the events
{Aj : ij /∈ E(D)}.

The following is the so called Lovász local lemma, in its symmetric version (see, e.g., [1]).

Lemma 2.4 (Local lemma). Let (Ai)
n
i=1 be a sequence of events in some probability space, and let

D be a dependency graph for (Ai)i. Let ∆ := ∆(D) and suppose that for every i we have Pr [Ai] ≤ q,
such that eq(∆ + 1) < 1. Then, Pr[

⋂n
i=1 Āi] ≥

(
1− 1

∆+1

)n
.

We will also make use of the following asymmetric version of the Lovász local lemma (see, e.g.,
[1]).

Lemma 2.5 (Asymmetric local lemma). Let (Ai)
n
i=1 be a sequence of events in some probability

space. Suppose that D is a dependency graph for (Ai)i, and suppose that there are real numbers
(xi)

n
i=1, such that 0 ≤ xi < 1 and

Pr[Ai] ≤ xi
∏

ij∈E(D)

(1− xj)

for all 1 ≤ i ≤ n. Then, Pr[
⋂n
i=1 Āi] ≥

∏n
i=1(1− xi).
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2.2 Perfect matchings in bipartite graphs

Here, we present a number of results related to perfect matchings in bipartite graphs. The first
result is a slight reformulation of the classic marriage theorem due to Hall (see, e.g., [35]).

Theorem 2.6. Let G = (A ∪ B,E) be a balanced bipartite graph with |A| = |B| = k. Suppose
|N(X)| ≥ |X| for all subsets X of size at most k/2 which are completely contained either in A or
in B. Then, G contains a perfect matching.

Moreover, we can always find a maximum matching in a bipartite graph in polynomial time
using standard network flow algorithms (see, e.g., [39]).

The following simple corollaries of Hall’s theorem will be useful for us.

Corollary 2.7. Every r-regular balanced bipartite graph has a perfect matching, provided that r ≥ 1.

Proof. Let G = (A ∪B,E) be an r-regular graph. Let X ⊆ A be a set of size at most |A|/2. Note
that as G is r-regular, we have

eG(X,N(X)) = r|X|.

Since each vertex in N(X) has degree at most r into X, we get

|N(X)| ≥ eG(X,N(X))/r ≥ |X|.

Similarly, for every X ⊆ B of size at most |B|/2 we obtain

|N(X)| ≥ |X|.

Therefore, by Theorem 2.6, we conclude that G contains a perfect matching.

Since removing an arbitrary perfect matching from a regular balanced bipartite graph leads to
another regular balanced bipartite graph, a simple repeated application of Corollary 2.7 shows the
following:

Corollary 2.8. Every regular balanced bipartite graph has a 1-factorization.

In fact, as the following theorem due to Schrijver [34] shows, a regular balanced bipartite graph
has many 1-factorizations.

Theorem 2.9. The number of 1-factorizations of a d-regular bipartite graph with 2k vertices is at
least (

d!2

dd

)k
.

The next result is a criterion for the existence of r-factors (that is, r-regular, spanning subgraphs)
in bipartite graphs, which follows from a generalization of the Gale-Ryser theorem due to Mirsky
[30].

Theorem 2.10. Let G = (A∪B,E) be a balanced bipartite graph with |A| = |B| = m, and let r be
an integer. Then, G contains an r-factor if and only if for all X ⊆ A and Y ⊆ B

eG(X,Y ) ≥ r(|X|+ |Y | −m).
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Moreover, such factors can be found efficiently using standard network flow algorithms (see, e.g.,
[2]).

As we are going to work with pseudorandom graphs, it will be convenient for us to isolate some
‘nice’ properties that, together with Theorem 2.10, ensure the existence of large factors in balanced
bipartite graphs.

Lemma 2.11. Let G = (A ∪ B,E) be a balanced bipartite graph with |A| = |B| = n/2. Suppose
there exist r, ϕ ∈ R+ and β1, β2, β3, γ ∈ (0, 1) satisfying the following additional properties:

(P1) degG(v) ≥ r(1− β1) for all v ∈ A ∪B.

(P2) eG(X,Y ) < rβ2|X| for all X ⊆ A and Y ⊆ B with |X| = |Y | ≤ r/ϕ.

(P3) eG(X,Y ) ≥ 2r(1 − β3)|X||Y |/n for all X ⊆ A and Y ⊆ B with |X| + |Y | > n/2 and
min{|X|, |Y |} > r/ϕ.

(P4) γ ≥ max{β3, β1 + β2}

Then, G contains an br(1− γ)c-factor.

Proof. By Theorem 2.10, it suffices to verify that for all X ⊆ A and Y ⊆ B we have

eG(X,Y ) ≥ r(1− γ)
(
|X|+ |Y | − n

2

)
.

We divide the analysis into four cases:

Case 1 |X|+ |Y | ≤ n/2. In this case, we trivially have

eG(X,Y ) ≥ 0 ≥ r(1− γ)
(
|X|+ |Y | − n

2

)
,

so there is nothing to prove.

Case 2 |X|+ |Y | > n/2 and |X| ≤ r/ϕ. Since |Y | ≤ |B| = n
2 , we always have |X|+ |Y | − n

2 ≤ |X|.
Thus, it suffices to verify that

eG(X,Y ) ≥ r(1− γ)|X|.

Assume, for the sake of contradiction, that this is not the case. Then, since there are at
least r(1− β1)|X| edges incident to X, we must have

eG(X,B\Y ) ≥ r(1− β1)|X| − eG(X,Y ) ≥ r(γ − β1)|X| ≥ rβ2|X|.

However, since |B\Y | ≤ |X|, this contradicts (P2).

Case 3 |X|+ |Y | > n/2 and |Y | ≤ r/ϕ. This is exactly the same as the previous case with the roles
of X and Y interchanged.

Case 4 |X|+ |Y | > n/2 and |X|, |Y | > r/ϕ. By (P3), it suffices to verify that

2r(1− β3)|X||Y |/n ≥ r(1− γ) (|X|+ |Y | − n/2) .

Dividing both sides by rn/2, the above inequality is implied by the inequality

xy − (1− γ)

(1− β3)
(x+ y − 1) ≥ 0,

8
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where x = 2|X|/n, y = 2|Y |/n, x+ y ≥ 1, 0 ≤ x ≤ 1, and 0 ≤ y ≤ 1.

Since 1−γ
1−β3 ≤ 1 by (P4), this is readily verified on the (triangular) boundary of the region, on

which the inequality reduces to one of the following: xy ≥ 0; x ≥ 1−γ
1−β3x; y ≥

1−γ
1−β3 y. On the

other hand, the only critical point in the interior of the region is possibly at x0 = y0 = 1−γ
1−β3 ,

for which we have x0y0 − 1−γ
1−β3 (x0 + y0 − 1) = 1−γ

1−β3

(
1− 1−γ

1−β3

)
≥ 0, again by (P4).

2.3 Matchings in graphs with controlled degrees

In this section, we collect a couple of results on matchings in (not necessarily bipartite) graphs
satisfying some degree conditions. A 2-factorization of a graph is a decomposition of its edges into
2-factors (that is, a collection of vertex disjoint cycles that covers all the vertices). The following
theorem, due to Petersen [33], is one of the earliest results in graph theory.

Theorem 2.12 (2-factor Theorem). Every 2k-regular graph with k ≥ 1 admits a 2-factorization.

The next theorem, due to Vizing [38], shows that every graph G admits a proper edge coloring
using at most ∆(G) + 1 colors.

Theorem 2.13 (Vizing’s Theorem). Every graph with maximum degree ∆ can be properly edge-
colored with k ∈ {∆,∆ + 1} colors.

2.4 Expander mixing lemma

When dealing with (n, d, λ) graphs, we will repeatedly use the following lemma (see, e.g., [19]),
which bounds the difference between the actual number of edges between two sets of vertices, and
the number of edges we expect based on the sizes of the sets.

Lemma 2.14 (Expander mixing lemma). Let G = (V,E) be an (n, d, λ) graph, and let S, T ⊆ V .
Let e(S, T ) = |{(x, y) ∈ S × T : xy ∈ E}|. Then,∣∣∣∣e(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |.
3 Random partitioning

While we have quite a few easy-to-use tools for working with balanced bipartite graphs, the graph we
start with is not necessarily bipartite (when the starting graph is bipartite, the existence problem is
easy (see Corollary 2.8), and the counting problem is solved by [34] (see Theorem 2.9)). Therefore,
perhaps the most natural thing to do is to partition the edges into ‘many’ balanced bipartite graphs,
where each piece has suitable expansion and regularity properties. The following lemma is our first
step towards obtaining such a partition.

Lemma 3.1. Fix a ∈ (0, 1), and let G = (V,E) be a d-regular graph on n vertices, where d
is a sufficiently large integer, and n is a sufficiently large even integer. Then, for every integer
t ∈ [da/100, d1/10], there exists a collection (Ai, Bi)

t
i=1 of balanced bipartitions for which the following

properties hold:

(R1) Let Gi be the subgraph of G induced by EG(Ai, Bi). For all 1 ≤ i ≤ t we have

d

2
− d2/3 ≤ δ(Gi) ≤ ∆(Gi) ≤

d

2
+ d2/3.
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(R2) For all e ∈ E(G), the number of indices i for which e ∈ E(Gi) is t
2 ± t

2/3.

We will divide the proof into two cases – the dense case, where log1000/a n ≤ d ≤ n− 1, and the
sparse case, where d ≤ log1000/a n. The underlying idea is similar in both cases, but the proof in
the sparse case is technically more involved as a standard use of Chernoff’s bounds and the union
bound does not work (and therefore, we will instead use the local lemma).

Proof in the dense case. Let A1, . . . , At be random subsets chosen independently from the uniform
distribution on all subsets of V of size exactly n/2, and let Bi = V \ Ai for all 1 ≤ i ≤ t. We will
show that with high probability, for every 1 ≤ i ≤ t, (Ai, Bi) is a balanced bipartition satisfying
(R1) and (R2).

First, note that for any e ∈ E(G) and any i ∈ [t],

Pr [e ∈ E(Gi)] =
1

2

(
1 +

1

n− 1

)
.

Therefore, if for all e ∈ E(G) we let C(e) denote the set of indices i for which e ∈ E(Gi), then

E
[
|C(e)|

]
=
t

2

(
1 +

1

n− 1

)
.

Next, note that, for a fixed e ∈ E(G), the events Ai := ‘i ∈ C(e)’ are mutually independent,
and that |C(e)| =

∑
iXi, where Xi is the indicator random variable for the event Ai. Therefore,

by Chernoff’s bounds (Lemma 2.1), it follows that

Pr

[
|C(e)| /∈ t

2
± t2/3

]
≤ exp

(
− t

1/3

10

)
≤ 1

n3
.

Now, by applying the union bound over all e ∈ E(G), it follows that the collection (Ai, Bi)
t
i=1

satisfies (R2) with probability at least 1 − 1/n. Similarly, it is immediate from Chernoff’s bounds
(Lemma 2.1) for the hypergeometric distribution that for any v ∈ V and i ∈ [t],

Pr

[
dGi(v) /∈ d

2
± d2/3

]
≤ exp

(
−d

1/3

10

)
≤ 1

n3
,

and by taking the union bound over all such i and v, it follows that (R1) holds with probability at
least 1−1/n. All in all, with probability at least 1−2/n, both (R1) and (R2) hold. This completes
the proof.

Proof in the sparse case. Instead of using the union bound as in the dense case, we will use the
symmetric version of the local lemma (Lemma 2.4). Note that there is a small obstacle with choosing
balanced bipartitions, as the local lemma is most convenient to work with when the underlying
experiment is based on independent trials. In order to overcome this issue, we start by defining an
auxiliary graph G′ = (V,E′) as follows: for all xy ∈

(
V
2

)
, xy ∈ E′ if and only if xy /∈ E and there

is no vertex v ∈ V (G) with {x, y} ⊆ NG(v). In other words, there is an edge between x and y in
G′ if and only if x and y are not connected to each other, and do not have any common neighbors
in G. Since for any x ∈ V , there are at most d2 many y ∈ V such that xy ∈ E or x and y have a
common neighbor in G, it follows that δ(G′) ≥ n− d2 ≥ n/2 for n sufficiently large. An immediate
application of Dirac’s theorem shows that any graph on 2k vertices with minimum degree at least
k contains a perfect matching. Therefore, G′ contains a perfect matching.
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Let s = n/2 and let M := {x1y1, . . . , xsys} be an arbitrary perfect matching of G′. For each
i ∈ [t] let fi be a random function chosen independently and uniformly from the set of all functions
from {x1, . . . , xs} to {±1}. These functions will define the partitions according to the vertex labels
as follows:

Ai := {xj | fi(xj) = −1} ∪ {yj | fi(xj) = +1},

and
Bi := V \Ai.

Clearly, (Ai, Bi)
t
i=1 is a random collection of balanced bipartitions of V . If, for all i ∈ [t], we let

gi : V (G) → {A,B} denote the random function recording which of Ai or Bi a given vertex ends
up in, it is clear – and this is the point of using G′ – that for any i ∈ [t] and any v ∈ V (G), the
choices {gi(w)}w∈NG(v) are mutually independent. This will help us in showing that, with positive
probability, this collection of bipartitions satisfies properties (R1) and (R2).

Indeed, for all v ∈ V (G), i ∈ [t], and e ∈ E(G), let Di,v denote the event that ‘dGi(v) /∈ d
2±d

2/3’,
and let Ae denote the event ‘|C(e)| /∈ t

2±t
2/3’. Then, using the aforementioned mutual independence

of {gi(w)}w∈NG(v) and Chernoff’s bounds (Lemma 2.1), we have that

Pr[Di,v] ≤ exp
(
−d1/3/4

)
.

Moreover, using the independence of gi(v) and gi(w) for any w ∈ NG(v), the mutual independence
of {fi}i∈[t], and Chernoff’s bounds (Lemma 2.1) shows that

Pr[Ae] ≤ exp
(
−t1/3/4

)
.

In order to complete the proof, we need to show that one can apply the symmetric local lemma
(Lemma 2.4) to the collection of events consisting of all the Di,v’s and all the Ae’s. To this end, we
first need to upper bound the number of events which depend on any given event.

Note that Di,v depends on Dj,u only if i = j and either distG(u, v) ≤ 2 or uv ∈ M . Note also
that Di,v depends on Ae only if an endpoint of e is within distance 1 of v either in G or in M .
Therefore, it follows that any Di,v can depend on at most 3d2 events in the collection. Since Ae can
depend on Ae′ only if e and e′ share an endpoint in G or if any of the endpoints of e are matched to
any of the endpoints of e′ in M , it follows that we can take the maximum degree of the dependency
graph in Lemma 2.4 to be 3d2. Since 3d2 exp(−t1/3/4) = od(1), we are done.

4 Completion

In this section, we describe the key ingredient of our proof, namely the completion step. Before
stating the relevant lemma, we need the following definition.

Definition 4.1. A graph H = (A ∪ B,E) is called (α, r,m)-good if it satisfies the following prop-
erties:

(G1) H is an r-regular, balanced bipartite graph with |A| = |B| = m.

(G2) Every balanced bipartite subgraph H ′ = (A′ ∪ B′, E′) of H with |A′| = |B′| ≥ (1− α)m and
with δ(H ′) ≥ (1− 2α)r contains a perfect matching.

The motivation for this definition comes from the next proposition, which shows that a regular
graph on an even number of vertices, which can be decomposed as a union of a good graph and a
sufficiently sparse graph, has a 1-factorization.
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Proposition 4.2. For every α ≤ 1/10, there exists an integer r0 such that for all r1 ≥ r0 and m a
sufficiently large integer, the following holds. Suppose that H = (A∪B,E(H)) is an (α, r1,m)-good
graph. Then, for every 1 ≤ r2 ≤ α5r1/ log r1, every r := r1 + r2-regular (not necessarily bipartite)
graph R on the vertex set A ∪B, for which H ⊆ R, admits a 1-factorization.

Proof. Let C be any positive integer and let k = b1/α4c. We begin by showing that any matching
M in R[X] for X ∈ {A,B} with |M | = C can be partitioned into k matchings M1, . . . ,Mk (some
of which may be empty) such that no vertex v ∈ V (H) is incident (in H) to more than αr1 vertices
in ∪Mi for any i ∈ [k]. If C < αr1/2, then there is nothing to show. If C ≥ αr1/2, consider an
arbitrary partition of M into dC/ke sets S1, . . . , SdC/ke with each set (except possibly the last one)
of size k. For each Sj , j ∈ dC/ke, choose a permutation of [|Sj |] independently and uniformly at
random, and letMi denote the random subset ofM consisting of all elements of S1, . . . , SdC/ke which
are assigned the label i. We will show, using the symmetric version of the local lemma (Lemma 2.4),
that the decomposition M1, . . . ,Mk satisfies the desired property with a positive probability.

To this end, note that for any vertex v to have at least αr1 neighbors in someMi, it must be the
case that the r1 neighbors of v in H are spread throughout at least αr1 distinct Sj ’s. Let Dv denote
the event that v has at least αr1 neighbors in some matchingMi. Since v has at least

√
k neighbors in

at most r1/
√
k � αr1 distinct Sj ’s, it follows that Pr[Dv] ≤ k

(
r1

αr1/5

)
(1/
√
k)αr1/5 � k(1/

√
k)αr1/10.

Finally, since each Dv depends on at most r2k many other Dw’s, and since k2r2(1/
√
k)αr1/10 < 1/e,

we are done.
Now, observe that e(R[A]) = e(R[B]). Indeed, as R is r-regular, we have for X ∈ {A,B} that

rm =
∑
v∈X

dR(v) = 2e(R[X]) + e(R[A,B]),

from which the above equality follows. Moreover, ∆(R[X]) ≤ r2 for all X ∈ {A,B}. Therefore, by
Vizing’s theorem, we can decompose R[A] and R[B] into exactly r2+1 matchings NA

1 , . . . , N
A
r2+1 and

NB
1 , . . . , N

B
r2+1, and it is readily seen that these matchings can be used to decompose R[A] and R[B]

into ` ≤ 2(r2 + 1) matchings MA
1 , . . . ,M

A
` and MB

1 , . . . ,M
B
` such that |MA

i | = |MB
i | for all i ∈ [`].

Indeed, consider the collection of 2r2 + 2 matchings NA
1 , . . . , N

A
r2+1, N

B
1 , . . . , N

B
r2+1, and suppose

(without loss of generality) that |NA
1 | ≥ · · · ≥ |NA

r2+1|, |NB
1 | ≥ · · · ≥ |NB

r2+1|, and |NA
1 | ≥ |NB

1 |.
Crucially, since e(R[A]) = e(R[B]), we have |NA

1 | + · · · + |NA
r2+1| = |NB

1 | + · · · + |NB
r2+1|. Let

MB
1 := NB

1 , MA
1 be an arbitrary collection of |NB

1 | edges of NA
1 , and N̄A

1 := NA
1 \MA

1 . Then,
the collection of matchings N̄A

1 , N
A
2 , . . . , N

A
r2+1, N

B
2 , . . . , N

B
r2+1 still satisfies the crucial condition

|N̄A
1 | + |NA

2 | + · · · + |NA
r2+1| = |NB

2 | + · · · + |NB
r2+1|, and the total number of matchings in this

collection is at most 2r2 + 1, so that we may proceed by induction.
Next, by using the argument in the first paragraph of this proof, we can further decompose each

|MX
i |, X ∈ {A,B} into at most k matchings each in order to obtain a collection of edge-disjoint

matchingsM ′A1 , . . . ,M ′As ,M ′B1 , . . . ,M ′Bs such that ∪si=1M
′X
i = R[X] for X ∈ {A,B}, s ≤ 2k(r2+1),

|M ′Ai | = |M ′Bi | ≤ αm/10 for all i ∈ [s], and no vertex v ∈ V (H) is incident (in H) to more than
αr1 vertices involved in any of the M ′Xi .

Consider the following iterative procedure. Let R1 := R, H1 := H, delete the vertices in
∪M ′A1

⋃
∪M ′B1 , as well as any edges incident to them, from H1, and denote the resulting graph by

H ′1 = (A′1∪B′1, E′1). Since |A′1| = |B′1| ≥ (1−α)|A| and δ(H ′) ≥ (1−α)r1 by the choice ofM ′A1 ,M ′B1 ,
it follows from (G2) that H ′1 contains a perfect matching M ′1. Note that M1 := M ′1 ∪M ′A1 ∪M ′B1
is a perfect matching in R1. Next, set R2 := R1 −M1 (deleting only the edges in M1, and not
the vertices), H2 := H1 −M ′1 (deleting only the edges in M ′1, and not the vertices), and repeat the
above process.
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In order to do this for s steps, we need to verify that (G2) can be applied to the resulting graphs
H ′j for all j ∈ [s]. The condition |A′j | = |B′j | ≥ (1 − α)|A| follows as before from |M ′Aj | = |M ′Bj | ≤
αm/10. Moreover, for all j ∈ [s],

δ(H ′j) ≥ δ(H)− αr1 − s ≥ (1− α)r1 − 2k(r2 + 1) ≥ (1− α)r1 − 4α−4r2 ≥ (1− 2α)r1,

where the final inequality follows from the assumption that 4r2/α
4 � αr1. Hence, we can indeed

apply (G2) for s steps.
Finally, after removing all the perfect matchings obtained via this procedure, we are left with a

regular, balanced, bipartite graph, and therefore it admits a 1-factorization (Corollary 2.8). Taking
any such 1-factorization along with all the perfect matchings that we removed gives a 1-factorization
of R.

Remark 4.3. In the last step of the proof, we are allowed to choose an arbitrary 1-factorization
of an r′-regular, balanced bipartite graph, where r′ ≥ r1 − r2. Therefore, using Theorem 2.9 along
with the standard inequality d! ≥ (d/e)d, it follows that R admits at least

(
(r1 − r2)/e2

)(r1−r2)m

1-factorizations.

5 Finding good subgraphs which almost cover G

In this section we present a structural result which shows that a ‘good’ regular expander on an even
number of vertices can be ‘almost’ covered by a union of edge disjoint good subgraphs.

Proposition 5.1. For every c ∈ (0, 1), there exists d0 such that for all d ≥ d0 the following
holds. Let G = (V,E) be an (n, d, λ)-graph with λ < d/4t4 where t is an integer in [dc/100, dc/10].
Then, G contains t distinct, edge disjoint

(
α, r̄, n2

)
-good subgraphs W1, . . . ,Wt with α = 1

10 and

r̄ =

⌊
d
t

(
1− 16

t1/3

)⌋
.

The proof of this proposition is based on the following technical lemma, which lets us apply
Lemma 2.11 to each part of the partitioning coming from Lemma 3.1 in order to find large good
factors.

Lemma 5.2. For every c ∈ (0, 1), there exists d0 such that for all d ≥ d0 the following holds.
Let G = (V,E) be an (n, d, λ)-graph with λ < d/4t4 where t is an integer in [dc/100, dc/10], and
let α = 1/10. Then, there exists an edge partitioning E(G) = E1 ∪ . . . Et for which the following
properties hold:

(S1) Hi := G[Ei] is a balanced bipartite graph with parts (Ai, Bi) for all i ∈ [t].

(S2) For all i ∈ [t] and for all X ⊆ Ai, Y ⊆ Bi with |X| = |Y | ≤ n/2t2 we have

eHi(X,Y ) < d|X|/t2.

(S3) For all i ∈ [t] and all X ⊆ Ai, Y ⊆ Bi with |X| + |Y | > n/2 and min{|X|, |Y |} > n
2t2

,

eHi(X,Y ) ≥ 2dt

(
1− 8

t1/3

)
|X||Y |
n .

(S4) dHi(v) ∈ d
t ±

8d
t4/3

for all i ∈ [t] and all v ∈ V (Hi) = V (G).

(S5) eHi(X,Y ) ≤ (1− 4α)dt |X| for all X,Y ⊆ V (Hi) with n
2t2
≤ |X| = |Y | ≤ n

4 , and for all i ∈ [t].
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Before proving this lemma, let us show how it can be used to prove Proposition 5.1.

Proof of Proposition 5.1. Note that each balanced bipartite graphH1, . . . ,Ht coming from Lemma 5.2
satisfies the hypotheses of Lemma 2.11 with

r =
d

t
, ϕ =

2dt

n
, β1 = β2 = β3 =

8

t1/3
, γ =

16

t1/3
.

Indeed, (P1) follows from (S4), (P2) follows from (S2), (P3) follows from (S3) and (P4) is satisfied
by the choice of parameters. Therefore, Lemma 2.11 guarantees that each Hi contains an r̄-factor,
and by construction, these are edge disjoint.

Now, let W1, . . . ,Wt be any r̄-factors of H1, . . . ,Ht. It remains to check that W1, . . . ,Wt satisfy
property (G2). We will actually show the stronger statement that H1, . . . ,Ht satisfy (G2). Indeed,
let H ′i = (A′i ∪B′i, E′i) be a subgraph of Hi with A′i ⊆ Ai, B′i ⊆ Bi such that

|A′i| = |B′i| ≥ (1− α)n/2

and
δ(H ′i) ≥ (1− 2α)r̄.

Suppose H ′i does not contain a perfect matching. Then, by Theorem 2.6, without loss of generality,
there must exist X ⊆ A′i and Y ⊆ B′i such that

|X| = |Y | ≤ |A′i|/2 ≤ n/4

and
NH′i

(X) ⊆ Y.

In particular, by the minimum degree assumption, it follows that

eH′i(X,Y ) ≥ (1− 2α)r̄|X|.

On the other hand, by Lemma 2.14, we know that for such a pair,

eH′i(X,Y ) ≤ eG(X,Y ) ≤ d|X|2/n+ λ|X|.

Thus, since λ < d/4t4 by assumption, we must necessarily have that |X| ≥ n/2t2, which contradicts
(S5). This completes the proof.

Proof of Lemma 5.2. Our construction will be probabilistic. We begin by applying Lemma 3.1 to
G to obtain a collection of balanced bipartitions (Ai, Bi)

t
i=1 satisfying Properties (R1) and (R2)

of Lemma 3.1, with c playing the role of a. Let Gi := G[Ai, Bi], and for each e ∈ E(G), let C(e)
denote the set of indices i ∈ [t] for which e ∈ E(Gi). Let {c(e)}e∈E(G) denote a random collection
of elements of [t], where each c(e) is chosen independently and uniformly at random from C(e). Let
Hi be the (random) subgraph of Gi obtained by keeping all the edges e ∈ E(Gi) with c(e) = i.
Then, the Hi’s always form an edge partitioning of E(G) into t balanced bipartite graphs with parts
(Ai, Bi)

t
i=1.

It is easy to see that these Hi’s will always satisfy (S2). Indeed, if for any X,Y ⊆ V (G) with
|X| = |Y |, we have eHi(X,Y ) ≥ d|X|/t2, then since

eHi(X,Y ) ≤ eG(X,Y ) ≤ d|X|2

n
+ λ|X|

14

This article is protected by copyright. All rights reserved.



by the expander mixing lemma (Lemma 2.14), it follows that

d

t2
≤ d|X|

n
+ λ,

and therefore, since λ < d/4t4, we must have

|X| > n

2t2
.

We now provide a lower bound on the probability with which this partitioning also satisfies (S3)
and (S4). To this end, we first define the following events:

• For all v ∈ V (G) and i ∈ [t], let Di,v denote the event that dHi(v) /∈ d
t ±

8d
t4/3

.

• For all i ∈ [t] and all X ⊆ Ai, Y ⊆ Bi with |X| + |Y | > n/2 and min{|X|, |Y |} > n
2t2

, let

A(i,X, Y ) denote the event that eHi(X,Y ) ≤ 2dt

(
1− 8

t1/3

)
|X||Y |
n

Next, we wish to upper bound the probability of occurrence for each of these events. Note that
for all i ∈ [t] and v ∈ V (G), it follows from (R1) and (R2) that

E[dHi(v)] ∈ d/2± d
2/3

t/2∓ t2/3
∈ d
t
± 4d

t4/3
.

Therefore, by Chernoff’s bounds (Lemma 2.1), we get that for all i ∈ [t] and v ∈ V (G),

Pr[Di,v] ≤ exp

(
− d

t5/3

)
. (1)

Moreover, for all i ∈ [t] and for allX ⊆ Ai, Y ⊆ Bi with |X|+|Y | > n/2 and min{|X|, |Y |} > n
2t2

,
we have from the expander mixing lemma and (R2) that

E[eHi(X,Y )] ≥ 2
d

t

(
1− 4

t1/3

)
|X||Y |
n

.

Therefore, by Chernoff’s bounds (Lemma 2.1), we get that for i ∈ [t] and all such X,Y ,

Pr [A(i,X, Y )] ≤ exp

(
−d|X||Y |

nt5/3

)
. (2)

Now, we apply the asymmetric version of the local lemma (Lemma 2.5) as follows: our events
consist of all the previously defined Di,v’s and A(j,X, Y )’s. Note that each Di,v depends only
on those Dj,w for which distG(v, w) ≤ 2. In particular, each Di,v depends on at most td2 many
Dj,w. Moreover, we assume that Di,v depends on all the events A(j,X, Y ) and that each A(j,X, Y )
depends on all the other events. For convenience, let us enumerate all the events as Ek, k = 1, . . . `.
For each k ∈ [`], let xk be exp

(
−
√
d
)
if Ek is of the form Di,v, and xk be exp

(
−
√
d|X||Y |/n

)
if

Ek is of the form A(j,X, Y ). To conclude the proof, we verify that

Pr[Ek] ≤ xk
∏
j∼k

(1− xj)
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for all k. Indeed, if Ek is of the form Di,v, then we have (using the numerical inequality 1−x ≥ e−2x,
which is valid for x ∈ [0, 3/4]) that for all d sufficiently large,

e−
√
d
(

1− e−
√
d
)td2 ∏

j∈[t]

∏
n≥x,y≥ n

2t2

(
1− e−

√
dxy/n

)(nx)(
n
y) ≥ e−

√
de−2td2e−

√
d

∏
n≥x,y≥ n

2t2

(
e−2e−

√
dxy/n

)t(nx)(ny)
≥ e−

√
de−2td2e−

√
d
∏
n≥x,y

exp

(
−2te−

√
dn/4t4

(
n

x

)(
n

y

))
≥ e−

√
de−2td2e−

√
d

exp
(
−2te−

√
dn/4t423n

)
� e−3

√
d

� e−d/t
5/3

≥ Pr[Ek].

On the other hand, if Ek is of the form A(j,X, Y ), then we have (using the same numerical
inequality as above) that for d sufficiently large,

e−
√
d|X||Y |/n(1− e−

√
d)nt

∏
i∈[t]

∏
n≥x,y≥ n

2t2

(1− e−
√
dxy/n)(

n
x)(

n
y) ≥ e−

√
d|X||Y |/ne−2e−

√
dnt

∏
n≥x,y≥ n

2t2

(
e−2e−

√
dxy/n

)t22n
≥ e−

√
d|X||Y |/ne−2e−

√
dnt exp

(
−2te−

√
dn/4t423n

)
≥ e−

√
d|X||Y |/ne−8t5e−

√
d|X||Y |/n exp

(
−2te−

√
dn/4t423n

)
� e−3

√
d|X||Y |/n

� e−d|X||Y |/nt
5/3

≥ Pr[Ek],

where in the third line, we have used the assumption that |X||Y | ≥ (n/2t2) · (n/2t2) and hence,
nt ≤ 4t5|X||Y |/n. Therefore, by the asymmetric version of the local lemma, Properties (S3) and
(S4) are satisfied with probability at least(

1− e−
√
d
)nt ∏

j∈[t]

∏
n≥x,y≥ n

2t2

(1− e−
√
dxy/n)(

n
x)(

n
y) ≥ e−nt.

To complete the proof, it suffices to show that the probability that (S5) is not satisfied is less
than exp(−nt). To see this, fix i ∈ [t] and X,Y ⊆ V (Hi) with n/2t2 ≤ |X| = |Y | ≤ n/4. By the
expander mixing lemma, we know that

eG(X,Y ) ≤ d|X|2/n+ λ|X| ≤ d|X|/4 + λ|X|,

so by (R2) we get

E[eHi(X,Y )] ≤ d

2t

(
1 +

4

t1/3

)
|X|.

Therefore, by Chernoff’s bounds (Lemma 2.1), it follows that

Pr [eHi(X,Y ) ≥ (1− 4α)d|X|/t] ≤ exp (−d|X|/100t) ≤ exp
(
−dn/200t3

)
.

Applying the union bound over all i ∈ [t], and all such X,Y ⊆ V (G), implies that the probability
for (S5) to fail is at most exp(−dn/400t3) < exp(−nt)/2. This completes the proof.
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Remark 5.3. The above proof shows that there are at least 1
2 exp(−nt)

(
t
2 − t

2/3
)nd/2 (labeled)

edge partitionings satisfying the conclusions of Lemma 5.2.

6 Proofs of Theorem 1.1 and Theorem 1.6

In this section, by putting everything together, we obtain the proofs of our main results.

Proof of Theorem 1.1. Let c = ε/10, and apply Proposition 5.1 with α = 1/10, c, and t being an odd
integer in [dc/100, dc/10] to obtain t distinct, edge disjoint

(
α, r, n2

)
-good graphs W1, . . . ,Wt, where

r = bdt
(

1− 16
t1/3

)
c. Let G′ := G \

⋃t
i=1Wi, and note that G′ is r′ := d− rt regular. After possibly

replacing r by r − 1, we may further assume that r′ is even. In particular, by Theorem 2.12,
G′ admits a 2-factorization. By grouping these 2-factors, we readily obtain a decomposition of
G′ as G′ = G′1 ∪ · · · ∪ G′t where each G′i is r

′
i-regular, with r

′
i ∈ r′

t ± t ≤ 40 d
t4/3

. Finally, applying
Proposition 4.2 to each of the regular graphs R1, . . . , Rt, where Ri := Wi∪G′i, finishes the proof.

We will obtain ‘enough’ 1-factorizations by keeping track of the number of choices available to
us at every step in the above proof.

Proof of Theorem 1.6. Suppose that λ ≤ d1−ε and let c = ε/10. Now, fix ε > 0. Throughout this
proof, ε1, . . . , ε4 will denote positive quantities which go to 0 as d goes to infinity. By Remark 5.3,
there are at least

(
(1− ε1) t2

)nd/2 edge partitionings of E(G) satisfying the conclusions of Lemma 5.2
with α = 1/10, c, and t an odd integer in [dc/100, dc/10]. For any such partitioning E(G) =
E1 ∪ · · · ∪Et, the argument in the proof of Theorem 1.1 provides a decomposition E(G) = E(R1)∪
· · · ∪ E(Rt). Recall that for all i ∈ [t], Ri := Wi ∪ G′i, where Wi is an (α, r, n/2)-good graph with
r ≥ bdt

(
1− 16

t1/3

)
c − 1 and E(Wi) ⊆ Ei, and G′i is an r′i-regular graph with r′i ≤ 40d/t4/3. In

particular, by Remark 4.3, each Ri has at least
(
(1− ε2) d

te2

)nd/2t
1-factorizations. It follows that

the multiset of 1-factorizations of G obtained in this manner has size at least
(
(1− ε3) d

2e2

)nd/2.
To conclude the proof, it suffices to show that no 1-factorization F = {F1, . . . , Fd} has been

counted more than (1 + ε4)nd/2 times above. Let us call an edge partitioning E(G) = E1 ∪ · · · ∪Et
consistent with F if E(G) = E1 ∪ · · · ∪ Et satisfies the conclusions of Lemma 5.2, and F can be
obtained from this partition by the above procedure. It is clear that the multiplicity of F in the
multiset is at most the number of edge partitionings consistent with F , so that it suffices to upper
bound the latter.

For this, the crucial thing to note is that if E(G) = E1∪· · ·∪Et is consistent with F , then at least
rt−r′1−· · ·−r′t ≥ d−57d/t1/3 of the perfect matchings in F must have all of their edges in the same
part Ei (for some i ∈ [t]) – this is because in the procedure described above, at least rt−r′1−· · ·−r′t
of the perfect matchings arise from 1-factorizations of bipartite subgraphs of W1, . . . ,Wt. Reversing
this, we see that given F , the number of edge partitions of E(G) = E1∪· · ·∪Et consistent with F is at
most

(
d

57d/t1/3

)
td ·t57nd/2t1/3 , and observe that this last quantity can be expressed as (1 + ε4)nd/2.

7 Concluding remarks and open problems

• In Theorem 1.1, we proved that every (n, d, λ)-graph contains a 1-factorization, assuming that
λ ≤ d1−ε and d0 ≤ d ≤ n− 1 for d0 sufficiently large. As we mentioned after the statement, it
seems reasonable that one could, by following our proof scheme with a bit more care, obtain
a bound of the form λ ≤ d/ logc n. In [24], Krivelevich and Sudakov showed that if d− λ ≥ 2
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(and n is even) then every (n, d, λ)-graph contains a perfect matching (and this, in turn, was
further improved in [9]). This leads us to suspect that our upper bound on λ is anyway quite
far from the truth. It will be very interesting to obtain a bound of the form λ ≤ d − C,
where C is a constant, or even one of the form λ ≤ εd, for some small constant ε. Our proof
definitely does not give it and new ideas are required.

• In [23], Kim and Wormald showed that for every fixed d ≥ 4, a typical Gn,d can be decomposed
into perfect matchings, such that for ‘many’ prescribed pairs of these matchings, their union
forms a Hamilton cycle (in particular, one can find a Hamilton cycle decomposition in the
case that d is even). Unfortunately, our technique does not provide us with any non trivial
information about this kind of problem, but we believe that a similar statement should be
true in Gn,d for all d.

• In Theorem 1.6, we considered the problem of counting the number of 1-factorizations of a
graph. We showed that the number of 1-factorizations in (n, d, λ)-graphs is at least(

(1− od(1))
d

2e2

)nd/2
,

which is off by a factor of 2nd/2 from the conjectured upper bound (see [27]), but is still
better than the previously best known lower bounds (even in the case of the complete graph)
by a factor of 2nd/2. In joint work together with Sudakov [14], we have managed to obtain
an optimal asymptotic formula for the number of 1-factorizations in d-regular graphs for all
d ≥ n

2 + εn. It seems possible that by combining the techniques in this paper and the one to
come, one can obtain the same bound for (n, d, λ)-graphs, assuming that d is quite large. It
would be nice, in our opinion, to obtain such a formula for all values of d.

• A natural direction would be to extend our results to the hypergraph setting. That is, let
Hk
n,d denote a k-uniform, d-regular hypergraph, chosen uniformly at random among all such

hypergraphs. For which values of d does a typical Hk
n,d admit a 1-factorization? How many

such factorizations does it have? Quite embarrassingly, even in the case where H is the com-
plete k-uniform hypergraph, no non-trivial lower bounds on the number of 1-factorizations are
known. Unfortunately, it does not seem like our methods can directly help in the hypergraph
setting.
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