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Abstract

Several school districts use assignment systems that give students an incentive to
misrepresent their preferences. We find evidence consistent with strategic behavior in
Cambridge. Such strategizing can complicate preference analysis. This paper devel-
ops empirical methods for studying random utility models in a new and large class of
school choice mechanisms. We show that preferences are non-parametrically identified
under either sufficient variation in choice environments or a preference shifter. We then
develop a tractable estimation procedure and apply it to Cambridge. Estimates sug-
gest that while 82% of students are assigned to their stated first choice, only 72% are
assigned to their true first choice because students avoid ranking competitive schools.
Assuming that students behave optimally, the Immediate Acceptance mechanism is
preferred by the average student to the Deferred Acceptance mechanism by an equiva-
lent of 0.08 miles. The estimated difference is smaller if beliefs are biased, and reversed

if students report truthfully.
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1 Introduction

Admissions to public schools throughout the world is commonly based on assignment mech-
anisms that use reported rankings of various schooling options (Abdulkadiroglu and Sonmez,
2003). The design of such school choice mechanisms has garnered significant attention in the
theoretical literature (Abdulkadiroglu, 2013). Although mechanisms that incentivize truth-
ful revelation of preferences have been strongly advocated for in the theoretical literature (see
Pathak and Sonmez, 2008; Azevedo and Budish, 2017, for example), with rare exceptions,
real-world school choice systems are susceptible to gaming. Table I presents a partial list of
mechanisms in use at school districts around the world. To our knowledge, only Boston and
Amsterdam currently employ mechanisms that are not manipulable.

The widespread use of manipulable school choice systems poses two important ques-
tions. First, what are the costs and benefits of manipulable mechanisms from the student
assignment perspective? Theoretical results on this question yield ambiguous answers. Ab-
dulkadiroglu et al. (2011) use a stylized model to show that strategic choice in the Immediate
Acceptance mechanism, also known as the (old) Boston mechanism, can effectively elicit car-
dinal information on preferences and can improve average student welfare. However, this
potential benefit comes at a cost of violating notions of fairness and stability of the final
assignments. Second, how does one interpret and analyze administrative data on reported
rankings generated by these mechanisms if the reports cannot be taken as truthful? Infor-
mation on preferences can be useful for academic research on the effects of school choice on
student welfare (Abdulkadiroglu et al., 2017a), student achievement (Hastings et al., 2009),
and school competition (Nielson, 2013). Additionally, student preference information can
also be useful for directing school reforms by identifying which schools are more desirable
than others.! However, ignoring strategic incentives for such purposes can lead to incorrect
conclusions and mis-directed policies.?

This paper addresses these two questions by developing a general method for estimating
the underlying distribution of student preferences for schools using data from manipulable

mechanisms and by applying these techniques to data from elementary school admissions

1School accountability and improvement programs and district-wide reforms often use stated rank-order
lists as direct indicators of school desirability or student preferences. Boston’s Controlled Choice Plan
formally used the number of applications to a school as an indicator of school performance in an improvement
program. Similarly, Glenn (1991) argues that school choice caused improvements in the Boston school system
based on observing an increase in the number of students who were assigned to their top choice.

2Previous empirical work has typically assumed that observed rank-order lists are a truthful representation
of the students’ preferences (Hastings et al., 2009; Abdulkadiroglu et al., 2017a; Ayaji, 2017), allowing a direct
extension of discrete choice demand methods. The assumption is usually motivated by arguing that strategic
behavior may be limited in the specific environment. A handful of contemporaneous papers discussed below
allow for agents to be strategic (He, 2014; Calsamiglia et al., 2017; Hwang, 2016).
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in Cambridge, MA. We make several methodological and empirical contributions. First, we
document strategic behavior to show that student reports respond to the incentives present
in the mechanism. Second, we propose a new revealed preference method for analyzing the
reported rank-order lists of students. We use this technique to propose a new estimator for
the distribution of student preferences and to derive its limit properties. These technical
results are applicable to a broad class of school choice mechanisms that includes the systems
listed on Table I, except for the Top Trading Cycles mechanism. Third, we derive conditions
under which the distribution of preferences is non-parametrically identified. Finally, we
apply these methods to estimate the distribution of preferences in Cambridge, which uses
an Immediate Acceptance mechanism. These preference estimates can then be used to
analyze how often students are assigned to their true first choice school and to compare the
outcomes under the current mechanism to an alternative that uses the student-proposing
Deferred Acceptance mechanism.

Interpreting observed rank-order lists requires a model of agent behavior. Anecdotal
evidence from Boston (Pathak and Sonmez, 2008) and laboratory experiments (Chen and
Sonmez, 2006; Calsamiglia et al., 2010) suggest that strategic behavior may be widespread in
manipulable school choice systems. Indeed, our analysis of ranking behavior for admissions
into public elementary schools in Cambridge indicates significant gaming. There are strong
incentives for behaving strategically in Cambridge. Because Cambridge uses an Immediate
Acceptance Mechanism, some schools are rarely assigned to students who rank it second,
while others have spare capacity after all students have been considered. Students therefore
may lose their priority at a competitive school if they do not rank it first. We investigate
whether students appear to respond to these incentives by using a regression discontinuity
design based on the fact that students receive proximity priority at the two closest schools.
We find that student ranking behavior changes discontinuously with the change in priority.
This result is not consistent with a model in which students rank schools in order of their
true preferences if residential decisions are not made in consideration of proximity priority.
Reassuringly, we do not find evidence that aggregate residential decisions or house prices are
affected by this priority.

Therefore, instead of interpreting reported rank-order lists as true preferences, we assume
that the report corresponds to an optimal choice of a lottery over assignments to various
schools. The lottery implied by a rank-order list consists of the probabilities of getting
assigned to each of the schools on that list. These probabilities depend on the student’s
priority type and report, a randomly generated tie-breaker, and the reports and priorities
of the other students. Given a belief for the assignment probabilities corresponding to each

rank-order list, the expected utility from the chosen lottery must be greater than other
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lotteries the agent could have chosen. We begin by assuming that students best respond
to the strategies of other students. This rational expectations assumption is an important
baseline that accounts for strategic behavior. However, we also consider models in which
students have less information or have biased beliefs. First, we consider a model in which
agents are unaware of the fine distinctions in the mechanism between various priority and
student types. Second, we consider a model with adaptive expectations in which beliefs are
based on the previous year. In an extension, we also estimate a mixture model with both
naive and sophisticated players.

Once a model of strategic behavior has been assumed, it is natural to ask whether it can
be used to learn about the distribution of preferences using a typical dataset. To address this
question, we study identification of a flexible random utility model that allows for student and
school unobservables (see Block and Marshak, 1960; McFadden, 1973; Manski, 1977). Under
the models of agent beliefs discussed above, estimates of assignment probabilities obtained
from the data can be substituted for the students’ beliefs. As we discuss later, consistent
estimates of the assignment probabilities (as a function of reports and priority types) can
be obtained using the data and the knowledge of the mechanism. Our results show that,
given estimated assignment probabilities, two types of variation can be used to learn about
the distribution of preferences. The first is variation in choice environments that may arise
when two identical populations of students face different mechanisms or a different number
of school seats. We characterize the identified set of preference distributions under such
variation. The second form of variation assumes the availability of a special regressor that is
additively separable in the indirect utility function. Such a regressor can be used to “trace-
out” the distribution of preferences (Manski, 1985; Matzkin, 1992; Lewbel, 2000). Similar
assumptions are commonly made to identify preferences in discrete choice models. In our
application, we use distance to school as a shifter of preferences. Our empirical specification
therefore rules out within-district residential sorting based on unobserved determinants of
school preferences. This assumption is commonly made in the existing empirical work on
school choice and models of joint schooling and residential decisions is left for future work.?

This analysis naturally suggests a two-step estimation procedure for estimating the dis-
tribution of preferences. In a first step, we estimate the lottery over school assignments

associated with each report and priority type. In a second step, we estimate the parameters

3 We investigated whether house prices or the fraction of residential units occupied by Cambridge ele-
mentary school students is higher on the side of a priority zone boundary where priority is accorded at a
better performing school. Our results suggest that priorities are not a strong enough driver of residential
decisions to generate differences in house prices or the aggregate number of families locating in an area.
These findings are consistent with families not paying attention to the details of the admissions system at
the time of choosing where to live. Details available upon request.



ECTA13615_source [01/16 11:09] 5/72

governing the distribution of preferences using a likelihood based method. Specifically, we
implement a Gibbs’ sampler adapted from McCulloch and Rossi (1994). This procedure is
convenient in our setting because the set of utility vectors for which a given report is opti-
mal can be expressed in terms of linear inequalities, and it allows us to avoid computing or
simulating the likelihood that a report is optimal given a parameter vector. In an appendix,
we prove that our estimator is consistent and asymptotically normal. The primary technical
contribution is a limit theorem for the estimated lotteries. This result requires a consider-
ation of dependent data because assignments depend on the reports of all students in the
market. That school choice mechanisms are usually described in terms of algorithms rather
than functions with well-known properties further complicates the analysis. We solve this
problem for a new and large class of school choice mechanisms that includes all mechanisms
in table I, except the Top Trading Cycles mechanism.

We then apply our methods to estimate student preferences in Cambridge in order to ad-
dress a wide range of issues. First, we investigate the extent to which students avoid ranking
competitive schools in order to increase their chances of assignment at less competitive op-
tions. Prevalence of such behavior can result in mis-estimating the attractiveness of certain
schools if stated ranks are interpreted at face value. Ignoring strategic behavior may there-
fore result in inefficient allocation of public resources for improving school quality. Further,
a large number of students assigned to their first choice may not be an indication of student
satisfaction or heterogeneity in preferences. We therefore also report on whether strategic
behavior results in fewer students being assigned to their true first choice as compared to
their stated first choice.

Second, we study the welfare effects of switching to the student proposing Deferred Ac-
ceptance mechanism. The theoretical literature supports strategy-proof mechanisms on the
basis of their simplicity, robustness to information available to participants, and fairness
(see Azevedo and Budish, 2017, and references therein). However, it is possible that ordinal
strategy-proof mechanisms compromise student welfare by not screening students based on
the intensity of their preferences (Miralles, 2009; Abdulkadiroglu et al., 2011). We quantify
student welfare from the assignment under these two mechanisms under alternative mod-
els of agent beliefs and behavior. This approach abstracts away from potential costs of
strategizing and acquiring information, which are difficult to quantify given the available
data. Nonetheless, allocative efficiency is a central consideration in mechanism choice, along
with other criteria such as differential costs of participating, fairness, and strategy-proofness
(Abdulkadiroglu et al., 2009).

Our baseline results, which assume equilibrium behavior, indicate that the average stu-

dent prefers the assignments under the Cambridge mechanism to the Deferred Acceptance
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mechanism. Interestingly, this difference is driven by paid-lunch students, who face stronger
strategic incentives than free-lunch students because of quotas based on free-lunch eligibility.
A cost of improved assignments in Cambridge is that some students (2-10% depending on the
specification and the student group) have justified envy.* We then evaluate the mechanisms
assuming that agents have biased beliefs about assignment probabilities. These estimates
suggest that biased beliefs may mitigate the screening benefits of the Cambridge mechanism
because mistakes can be costly in some cases.

Finally, we evaluate a mixture model with naive and sophisticated agents to assess the
distributional consequences across agents who vary in their ability to game the mechanism.
We estimate that about a third of paid-lunch and free-lunch students report their preferences
sincerely even if it may not be optimal to do so. Although naive agents behave suboptimally,
we find that the average naive student prefers the assignments under the Cambridge mech-
anism. This occurs because naive students rank their most preferred school first and gain
priority at this school at the cost of sophisticates who avoid ranking these schools. The cost

of not receiving their true second or third choices turns out to be smaller than this benefit.
Related Literature

These empirical contributions are closely related to a handful of recent papers that estimate
preferences for schools using manipulable mechanisms (He, 2014; Calsamiglia et al., 2017;
Hwang, 2016). He (2014) proposes an estimator based on theoretically deriving properties of
undominated reports using specifics of the school choice implementation in Beijing.> Hwang
(2016) proposes a subset of restrictions on agent behavior based on simple rules to derive
a bounds-based estimation approach. Compared to our procedure, these approaches avoid
using restrictions that are implied if agents have information about which schools are more
competitive than others. Calsamiglia et al. (2017) estimates a mixture model in which
strategic agents solve for the optimal report in an Immediate Acceptance mechanism using
backwards-induction from lower- to higher-ranked choices.

There are a few other general distinguishing features from the aforementioned papers
worth noting. First, most papers mentioned above use approaches that are specifically
tailored to the school choice mechanism analyzed, and it may be necessary for a researcher
to modify the ideas before applying them elsewhere. In contrast, we allow analysis for a more

general class of mechanisms, including mechanisms with student priority groups. Second,

4Student 7 has justified envy if another student i’ is assigned to a school j that student i prefers to her
assignment and student i has (strictly) higher priority at j than student 7’

>The estimators proposed in He (2014) that do not assume optimal play are based on a limited number of
restrictions implied by rationality, the specific number of schools and ranks that can be submitted in Beijing
based on the fact that the school district treats all agents symmetrically.
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results on identification and large market properties of the estimator are not considered in
the papers mentioned above. Finally, our empirical exercise investigates the consequences of
specific forms of subjective beliefs on the comparison between mechanisms.

Our technical results on the large sample properties of our estimator use results from the
work on large matching markets by Azevedo and Leshno (2016) and Azevedo and Budish
(2017). The results on identification build on work on discrete choice demand (Manski, 1985;
Matzkin, 1992; Lewbel, 2000; Berry and Haile, 2010). While the primitives are similar, unlike
discrete choice demand, the probability of assignment to a schools may not be 0 or 1. This
feature is similar to estimation of preference models under risk and uncertainty (Cardon and
Hendel, 2001; Cohen and Einav, 2007; Chiappori et al., 2012). Cardon and Hendel (2001)
and Cohen and Einav (2007) model uncertainty in outcomes within each insurance contract
rather than uncertainty over which option is ultimately allocated. Chiappori et al. (2012)
focuses on risk attitudes rather than the value of underlying prizes.

Our paper provides an empirical complement to the large theoretical literature that has
taken a mechanism design approach to the student assignment problem (Gale and Shapley,
1962; Shapley and Scarf, 1974; Abdulkadiroglu and Sonmez, 2003). A significant litera-
ture debates the trade-offs between manipulable and non-manipulable mechanisms (Ergin
and Sonmez, 2006; Pathak and Sonmez, 2008; Miralles, 2009; Abdulkadiroglu et al., 2011;
Featherstone and Niederle, 2016; Troyan, 2012; Pathak and Sonmez, 2013). Theoretical re-
sults from this literature have been used to guide redesigns of matching markets (Roth and
Peranson, 1999; Abdulkadiroglu et al., 2006, 2009).

A growing literature is interested in methods of analyzing preferences in matching mar-
kets, usually using pairwise stability (Choo and Siow, 2006; Fox, 2010, 2017; Chiappori et al.,
2017; Agarwal, 2015; Diamond and Agarwal, 2016). In some cases, estimates are based on
the strategic decision to engage in costly courting decisions (Hitsch et al., 2010). Similar
considerations are important when applying to colleges (Chade and Smith, 2006).

The proposed two-step estimator uses insights from the industrial organization literature,
specifically the estimation of empirical auctions (Guerre et al., 2000; Cassola et al., 2013),
single agent dynamic models (Hotz and Miller, 1993; Hotz et al., 1994), and dynamic games
(Bajari et al., 2007; Pakes et al., 2007; Aguirregabiria and Mira, 2007). As in the methods
used in those contexts, we use a two-step estimation procedure where the distribution of

actions from other agents is used in a first step estimator.
Overview

Section 2 describes the Cambridge Controlled Choice Plan and presents evidence that stu-

dents are responding to strategic incentives provided by the mechanism. Sections 3 and 4
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present the model and the main insight on how to use submitted rank-order lists. Section
5 and Section 6 discuss identification and estimation. A reader solely interested in the em-
pirical application instead of the econometric techniques may skip these sections. Section 7

applies our techniques to the dataset from Cambridge, MA.

2 Evidence on Strategic Behavior

2.1 The Controlled Choice Plan in Cambridge, MA

We use data from the Cambridge Public Schools’ (CPS) Controlled Choice Plan for the
academic years 2004-2005 to 2008-2009. FElementary schools in the CPS system assigns
about 41% of the seats through partnerships with pre-schools or an appeals process for
special needs students. We focus on the remaining seats that are assigned through a school
choice system that takes place in January for students entering kindergarten.

Table II summarizes the students and schools. The system has 13 schools and about
400 students participating per year. One of the schools, Amigos, was divided into bilingual
Spanish and regular programs in 2005. Bilingual Spanish speaking students are considered
only for the bilingual program, and non-bilingual students are considered only for the regular
program.® King Open OLA is a Portuguese immersion school open to all students. Tobin, a
Montessori school, divided admissions for four- and five-year olds starting in 2007.

An explicit goal of the Controlled Choice Plan is to achieve socio-economic diversity
by maintaining the proportion of students who qualify for the federal free/reduced lunch
program in each school close to the district-wide average. Only for the purposes of the as-
signment mechanism, all schools except Amigos are divided into paid-lunch and free/reduced
lunch programs. Students eligible for federal free or reduced lunch are only considered for
the corresponding program.” About 34% of the students are on free/reduced lunch. Each
program has a maximum number of seats, and the overall school capacity may be lower than
the sum of the seats in the two programs. Our dataset contains both the total number of

seats in the school as well as the seats available in each of the programs.
The Cambridge Controlled Choice Mechanism

We now describe the process used to place students at schools. It prioritizes students based

on two criteria:

6A student voluntarily declares whether she is bilingual on the application form.

"Households with income below 130% (185%) of the Federal Poverty line are eligible for free (reduced)
lunch programs. For a household size of 4, the annual income threshold was approximately $27,500 ($39,000)
in 2008-20009.
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(i) Students with siblings who are attending that school get the highest priority.
(ii) Students receive priority at the two schools closest to their residence.

Students can submit a ranking of up to three programs at which they are eligible. Cambridge

uses an Immediate Acceptance mechanism and assigns students as follows:

Step 0: Draw a single tie-breaker for each student

Step k = 1,2,3: Each school considers all students who have not been previously assigned
and have listed it in the k-th position. Students are sorted in order of priority, breaking
ties using a random tie-breaker. Each student is considered sequentially for the paid-
lunch program if she is not eligible for a federal lunch subsidy and for the free/subsidized

lunch program otherwise. She is assigned to the corresponding program unless,

(a) There are no seats available in the program, or

(b) There are no seats available in the school.

If either of the conditions above are satisfied, the student is rejected.

There are a few notable features of this mechanism. First, the mechanism prioritizes
students at higher-ranked options. The effective priority therefore depends on the report
of the student. Second, there is a cutoff for each program/school, and all students with an
effective priority below that cutoff are rejected. This cutoff is set so that the number of
students assigned to the program/school does not exceed its capacity. Finally, students are
assigned to the highest-ranked option for which their effective priority is above the cutoff.

These features of the Cambridge Controlled Choice Plan are shared with a large class
of mechanisms that we will formally introduce below. There are two clear reasons why
there may be strategic incentives in such mechanisms. First, the dependence of the effective
priority on the report provides incentives to skew ranking towards options where priority
is most valuable. Second, if the length of the list is limited, students should avoid ranking
too many schools where their priority is likely to be below the cutoff. We now describe the
ranking behavior and document strategic decision-making in response to these incentives in

Cambridge.

2.2 Evidence on Ranking Behavior and Strategic Incentives

Panels A and D in table III show that over 80% of the students rank the maximum allowed

number of schools and over 80% of the students are assigned to their top-ranked choice in a
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typical year. Researchers in education have interpreted similar statistics in school districts
as indicators of student satisfaction and heterogeneity in student preferences. For instance,
Glenn (1991) argues that school choice caused improvements in the Boston school system
based on an observed increase in the number of students who were assigned to their top
choice.® Similarly, Glazerman and Meyer (1994) interpret a high fraction of students getting
assigned to their top choice in Minneapolis as indicative of heterogeneous student preferences.

Conclusions based on interpreting stated preferences as truthful are suspect when a mech-
anism provides strategic incentives for students. For example, it is tempting to conclude from
ranking patterns in panels E and F that students have extremely strong preferences for at-
tending a nearby school or the same school as their sibling. However, such behavior can also
be driven by strategic incentives if a student “loses her priority” when a school is not ranked
at the top of the list in an Immediate Acceptance Mechanism (Ergin and Sonmez, 2006).

Indeed, table IV shows that the incentive to “cash the priority” is strong. While there
is significant heterogeneity in their competitiveness, panel A shows that Baldwin, Haggerty,
Amigos, Morse, Tobin, Graham & Parks, and Cambridgeport have many more students
ranking them than there is capacity. A typical student would be rejected in these schools if
she does not rank it as her top choice. Indeed, Graham & Parks rejected all non-priority paid
lunch students even if they had ranked it first in each of the five years. Additionally, panels
B and C show that the competitiveness of schools differs by paid-lunch status. Graham &
Parks, for instance, did not reject any free/reduced lunch students who applied to it in a
typical year. Overall, a larger number of schools are competitive for paid-lunch students
than for free-lunch students.

There are two other features that are worth highlighting. First, most schools either reject
all students who did not rank them first or do not reject any students. Therefore, students
must rank competitive school first in order to gain admission but may rank non-competitive
schools at any position. This suggests that, at least in Cambridge, considering which school
to rank first is important. Second, table IV shows that several paid-lunch students rank
competitive schools as their second or third choice. This may appear hard to rationalize
as optimal behavior. However, it should be noted that these choices are often not pivotal
because an extremely large number of students are assigned to their top choice. Another
possibility is that these students count on back-up schools, either at the third-ranked school
or at a private or charter school, in case they remain unassigned. Finally, students may
simply believe that there is a small chance of assignment even at competitive schools. We

further discuss these issues when we present our estimates.

8The argument is based on ranking and assignment data generated when Boston used a manipulable
assignment system.
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2.3 Strategic Behavior: A Regression Discontinuity Approach

We now study whether students are ranking schools strategically. Our empirical strategy
is based on the assignment of proximity priority in Cambridge. A student receives priority
at the two closest schools to her residence. We can therefore compare the ranking behavior
of students who are on either side of a geographical boundary where the proximity priority
changes. If students are not behaving strategically and the distribution of preferences are
continuous in distance to school, we would not expect the ranking behavior to change dis-
cretely at this boundary. On the other hand, the results in table IV indicate that a student
may lose her proximity priority at competitive schools if she does not rank it first. There-
fore, some students may find it optimal to manipulate their reports in order to avoid losing
proximity priority. Strategic students may rank a competitive school at which they have
priority as their first choice instead of their most preferred school.

Figure I and table V present the results of this discontinuity design. The figure plots the
probability of ranking a school in a particular position against the distance from a proximity
priority boundary. Specifically, let d;; and d;3 be the second and third closest schools to
student i. For any school j, the horizontal axis is the difference Ad;; = d;; — %(dm + d;3).
Because Cambridge assigns a student priority at the two closest schools, Ad;; is negative
if student ¢ has priority at school j and positive otherwise. The vertical line represents
this boundary of interest where we assess ranking behavior. The black dashed lines are
generated from a local linear regression of the ranking outcome y;; on the distance from this
boundary, Ad,;, estimated separately using data on either side of the boundary. The black
points represent a bin-scatter plot of these data, with a 95% confidence interval depicted with
the bars. The gray points control for school fixed effects. Table V presents the estimated
size of the discontinuity using the procedure recommended by Imbens and Kalyanaraman
(2011) and their test of whether the outcome studied changes discontinuously at a priority
boundary.

Figure I(i) shows that the probability that a student ranks a school first decreases dis-
continuously at the proximity boundary. Further, the response to distance to school is also
higher to the left of the boundary, probably reflecting the preference to attend a school closer
to home. The jump at the boundary may be attenuated because a student can rank only one
of the two schools where she has priority as her top choice.? In contrast to figure 1(i), I(ii)
and I(iii) do not show a large jump in the probability that a school is ranked second or third.
This should be expected because we saw earlier that one’s priority is unlikely to be pivotal

in the second or third choices. Further, the probability of ranking a school that is extremely

9Figure ??(i) in the appendix focuses on the second and third closest schools and shows that the discon-
tinuity is still discernible.

10
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close to a student’s home in the second or third position is low because students tend to
rank nearby schools first. Table V presents the estimated size of this discontinuity. The
first column shows that the probability that a school is ranked first drops by 5.75% at the
boundary where the student loses proximity priority. This effect is statistically significant
at the 1% level. Further, panels B and C of the table show that this change is larger for
paid lunch students than for free lunch students. This is consistent with the theory that
paid lunch students are responding to the stronger strategic incentives as compared to free
lunch students. The next two columns present these estimates for the second- and third-
ranked choices. As expected, the estimated effects here are smaller and often not statistically
significant.

Strategic pressures to rank a school first may be particularly important if the school is
competitive. Figures I(iv) and I(v) investigate the differential response to proximity priority
by school competitiveness. We split the schools based on whether they rejected some students
in a typical year or not as delineated in table IV. Consistent with strategic behavior, figure
I(iv) shows that the probability of ranking a competitive school first falls discontinuously at
the boundary but less so in figure I(v), which focuses on non-competitive schools. Indeed,
the fourth and fifth columns of table V confirm that the estimated drop in the probability
of ranking a competitive schools first is 7.27%, which is larger than the overall estimate.
Additionally, panels B and C of table V shows that the estimated response to proximity
priority is larger for paid-lunch students at 11.07% as compared to 1.47% for free-lunch
students.!® Non-competitive schools, in stark contrast, have an statistically insignificant es-
timated drop of only 2.06%, which is consistent with strategic pressures being less stringent.
However, we view the estimated effects at non-competitive schools for free-lunch students
as inconclusive because the point estimates are large but imprecise. The findings are there-
fore consistent with paid-lunch students responding to significant strategic pressures in the
Cambridge mechanism, but not free-lunch students because of the lower strategic pressure
they face.

Finally, we consider a placebo test in which we repeat the analysis assuming that prox-
imity priority is only given at the closest school. Figure I(vi) shows no discernible difference
in the ranking probability at this placebo boundary. The estimated size of the discontinuity;,
presented in the last column of table V, is only 0.07% and statistically indistinguishable from
zero. Figure ?7?(iv) in the appendix presents a second placebo boundary, dropping the two
closest schools and constructing priorities at the two closest remaining schools. As expected,
we do not find a discontinuous response at this placebo boundary.

Taken together, these results strongly suggest that ranking behavior is discontinuous at

OFigures ?? (ii) and ?7(iii) in the appendix show the corresponding plots by free-lunch status.

11
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the boundary where proximity priority changes. However, there are two important caveats
that must be noted before concluding that agents in Cambridge are behaving strategically.
First, the results do not show that all students are responding to strategic incentives in
the mechanism or that their expectations are correct. We therefore consider models with
biases in beliefs and non-optimal behavior in addition to a rational expectations model.
Second, it is possible that the response is driven in part by residential choices, with parents
picking a home so that the student receives priority at a more preferred school. While the
previous literature has found evidence of residential sorting across school districts (Black,
1999; Bayer et al., 2007), we are not aware of any research on the effects of priorities on the
housing market within a unified school district. A boundary discontinuity design similar to
Black (1999) suggests that neither house prices nor the aggregate number of families in an
area are related to priorities.!* A more thorough analysis of this issue or a full model that
considers the joint residential and school choice decision is left for future research.

These results contrast with Hastings et al. (2009), who find that the average quality of
schools ranked did not respond to a change in the neighborhood boundaries in the year the
change took place. As suggested by Hastings et al. (2009), strategic behavior may not be
widespread if the details of the mechanism and the change in neighborhood priorities are
not well advertised. Note that the Charlotte-Mecklenburg school district did not make the
precise mechanism clear. In contrast, Cambridge’s Controlled Choice Plan is published on
the school district’s website and has been in place for several years. These institutional

features may account for the differences in the student behavior.

3 Model

We consider school choice mechanisms in which students are indexed by ¢ € {1,...,n},
programs indexed by j € {0,1,...,J} = J, and schools are indexed by s € S. Program
0 denotes being unmatched. Each program or school, £k € J U S, has n x ¢} seats, with
q? € (0,1) and go = 1.'? The school capacities are such that ¢% < Z{j:Sj:s} q}, where s € S
and s; is the school corresponding to program j. We now describe how students are assigned

to these seats, their preferences over assignments, and assumptions on behavior.

HDetails available upon request. Note that the proximity priority system for kindergarten admission is
not used for higher grades in Cambridge.

12This convention will be convenient because we will be considering limits as n — oo, in which q; — qr €
(0,1).
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3.1 Utilities and Preferences

We assume that student ¢’s utility from assignment into program j is given by V' (z;,&;, &),

where z;; is a vector of observable characteristics that may vary by program or student or

both, and &; and ¢; are (vector-valued) unobserved characteristics. Let v; = (v;1, ..., viy) be

the random vector of indirect utilities for student ¢ with conditional joint density fy (v, ..., vis|€, 2i),
where £ = (&1,...,&) and z; = (241, - .., zi7). We normalize the utility of not being assigned
through the assignment process, v;9, to zero. Therefore, v;g is best interpreted as the inclusive

value of remaining unassigned and participating in the post-assignment wait-list.

This formulation allows for heterogeneous and non-additive preferences conditional on
observables. The primary restriction thus far is that a student’s indirect utility depends
only on her own assignment and not on the assignments of other students. This rules out
preferences for peer groups or for conveniences that carpool arrangements may afford.

Except when explicitly noted, we assume that the set of observables z;; € R** can be

partitioned into z7; € R®*~! and z}; € R. The indirect utility function is additively separable

1.

n z;;:

V<Zij7£j7 6i> = U(Z?j’fj’ €i> - Zilj' (1)

We assume that ¢; L (z},...,2};), which implies that any unobserved characteristics that
affect the taste for schools is independent of z!. This representation normalizes the scale of
utilities by setting the coefficient on z}j to —1. The model is observationally equivalent to one
with student-specific tastes, «;, for zilj as long as it is negative for all 7. The term zilj in this
representation is sometimes referred to as a special regressor (Manski, 1985; Matzkin, 1992;
Lewbel, 2000). The combination of the additively separable form and the independence of
€; 1s the main restriction in this formulation.

In the school choice context, this assumption needs to be made on a characteristic that
varies by student and school. We follow a common approach in the school choice literature
by assuming that distance to school is additively separable and independent of unobserved
student preferences (see Abdulkadiroglu et al., 2017a, for instance). The independence as-
sumption is violated if unobserved determinants of student preferences simultaneously de-
termine residential choices. As mentioned earlier, we do not find evidence that school choice
incentives in Cambridge affect house prices or aggregate residential decisions. Nonetheless,
the potential for interactions between school and residential choice warrants further research.
Our empirical approach will include fixed-effects for whether a student has priority at a school
as a determinant of preference to partially control for residential choice.

While our identification results do not make parametric assumptions on utilities, we

13
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specify student ¢’s indirect utility for school ;7 in the empirical application as

K

v = Y Bk — dig + &y (2)
k=1

vio = 0,

where d;; is the road distance between student ¢’s home and school j; z;;, are student-
school specific covariates; fj; are school-specific parameters to be estimated; and g, =
(i1, --,&i5) ~ N(0,%) independently of z,d.!3 The scale normalization is embedded in
the assumption that the coefficient on d;; is —1. Our estimated specification constructs z;ji
by interacting indicators of student paid-lunch status, sibling priority, proximity priority,

ethnicity, home-language, and a constant with school-specific dummies.'4

3.2 Assignment Mechanisms

School choice mechanisms typically use submitted rank-order lists and student priority types
to determine final assignments. Let R; € R; be a rank-order list, where jR;j" indicates that
j is ranked above j'.'> Students, if they so choose, may not submit a report in which the
most preferred schools are ranked in order of true preferences. Let student i’s priority type
be denoted t; € T. In Cambridge, ¢; is defined by the free-lunch type, the set of schools
where the student has proximity priority, and whether or not the student has a sibling in
the school.!®

A mechanism is usually described as an outcome of an algorithm that takes these rank-
order lists and priorities as inputs. It will be convenient for our analysis to define a mechanism

as a function that depends on the number of students n.

Definition 1. A mechanism is a function ®" : R" xT" — (AJ)n such that for all (R;,t;),
R,Z‘ = (Rl, ey Rifl, Ri+1, e ,Rn) andT,i = (th e ,tifl,thrl, e 7tn); (I)Z((R“tl), (R,i,T,i))
denotes the probability that © is assigned to program j.

Therefore, the assignment probabilities for each student depends on her report, her pri-

BQur specification allows for heteroskedastic errors €;; and arbitrary correlation between €;; and ;5. This
specification relaxes homoskedastic and independent preference shocks commonly used in logit specifications.

14The school-specific dummies interacted with the constant subsume the unobservable &;.

15The set R; may depend on the student’s priority type ¢; and may be constrained. For example, students
in Cambridge can rank up to three schools, and programs are distinguished by paid-lunch status of the
student.

16We assume that students take their priority type as given. Cambridge verifies residence and free-lunch
eligibility using documentary evidence. Because most schools are less competitive for free-lunch students
and the classes of instruction are not split by free-lunch status, it is unlikely that not declaring free-lunch
eligibility is beneficial for an eligible student.

14
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ority type as well as the reports and priority types of the other students. In addition, the
final outcome depends on a random number used to break ties between students. As we
demonstrate below, a student can face uncertainty about both the reports of other students
as well as the tie-breaker.

In Cambridge, ®"((R;,t;), (R—i,T-;)) is determined by a cutoff rule and the effective
priority of the student, which depends on her report. Specifically, the priority of student 7
at school j is
3—Ri(j) + bhitu

4
3 )

where v; € [0, 1] is student ¢’s draw of the random tie-breaker, R;(j) is the position of school

eij = fi(Ri, ti,v;) =

J in the rank-order list R;,'” and ¢;; is respectively 0, 1, 2 or 3 if the student has no priority,
proximity priority only, sibling priority only, or both proximity and sibling priority. The
function f chosen for Cambridge ensures that students who rank a school higher than other
students are given precedence, with ties broken first by proximity and/or sibling priority,
and then by the random tie-breaker.

Given the priorities e;; above, let p; be the highest priority student who was rejected at
program j. The algorithm described in Section 2.1 places student ¢ in program j if e;; > p;
and student ¢ ranks program j above any other program j’, with e;; > p;;. Hence, the

algorithm assigns student i to program j if D§R"’ti"ji)(p) =1, where

Ritivi . -
D) (p) = ey > py, jRO} [ iR or ey < pyr}
J'#i

and €ij = fj(Ri7ti7 I/i).

The total fraction of students who would be assigned to program j if the cutoffs were p

1 e .

is therefore given by D;(p) = - > D](-R“t“ ’)(p). Because the number of students assigned to
program j (likewise school s) cannot exceed the number of available seats n x ¢7 (likewise
n % q7), it is easy to verify that the cutoffs determined by the algorithm in Section 2.1 have
the following property.

Definition 2. The vector of cutoffs p € [0,1)’ is market clearing for (D(p),q"), if, for
each program j € 7,
Dj(p) — ¢} <0,

7R, (j) is set to 4 if school j is not ranked.
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with equality if p; > min{p; : j' # j,s; = s;},'% and for each school s € S,

> Dilp)—q; <0,

{j:sj=s}
with equality if min{p, : s; = s} > 0.

The first constraint ensures that program j has a cutoff larger than the other programs in
the same school only if a student was rejected because the program has exhausted its capacity.
The second constraint ensures that the lowest cutoff in the school is strictly positive only if
the school has exhausted its total capacity.

In fact, this representation of the assignments in terms of the market clearing cutoffs
and a priority that depends on a student’s report is not unique to Cambridge. Many school
choice mechanisms prioritize students based on their rank-order list and implement a cutoff
rule that rejects all students below a program/school specific threshold. We now formally

define a large class of mechanisms for which such a representation is valid.

Definition 3. The mechanism ®" is a Report-Specific Priority + Cutoff mechanism
if there exists a function f: R xT x [0,1]7 — [0,1)7 and a measure 7, over [0,1]” such that

(i) ®H((Ri,t;), (R, 1)) is given by

/ S /D(Ri’“’””(p”)dvm A,

where f(R;, t;,1;) is the eligibility score vector for student 1,
1 L
(i1) p" are market clearing cutoffs for (D(p),q"), where D(p) = - > D](-R“t” ) (p).
(iii) f;(Ri, t;,v;) is strictly increasing in vi; and does not depend on vy for j' # 5.1

The representation highlights two ways in which these mechanisms can be manipulable.
First, the report of an agent can affect her eligibility score. Even with a fixed cutoff, agents
may have the direct incentive to make reports that may not be truthful. Second, even if
eligibility does not depend on the report, an agent may (correctly) believe that the cutoff
for a school will be high, making it unlikely that she will be eligible. If the rank-order list is

constrained in length, she may choose to omit certain competitive schools.?’

18We use the convention that min{p; : j' # j,s;; = s;} = 0if {j' # j,s;; = s;} = 0.

We can allow for a single tie-breaker (as in Cambridge) by ensuring that vi; and v are perfectly
correlated.

20The representation extends the characterization of stable matchings by Azevedo and Leshno (2016) in
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Table I presents a partial list of school choice mechanisms currently used around the
world. As we show in Appendix ??, all mechanisms in table I, except for the Top Trading
Cycles mechanism, belong to this class of cutoff-based mechanisms.?! A remarkable feature
is that these mechanisms differ essentially by the choice of f. The techniques we develop

below are applicable to this entire class.

3.3 Agent Beliefs and Best Responses

Evidence presented in Section 2 suggests that agents are responding to strategic incentives in
the Cambridge mechanism. To model this strategic behavior, we assume that agents submit
rank-order lists that are optimal given a set of beliefs about the probability of assignment at
various schools. We assume that agents have private information about their preferences, v;.
For an agent with priority type ¢;, let the lottery L , € A7 consist of the believed assign-
ment probabilities at various schools when other agents in the market follow the strategy o
and she reports R;. Because agents do not know the preferences of others in the market,
these beliefs do not depend directly on the preferences of others, v_;, or on the (realized)
reports of others, R_;. Instead, we specify these beliefs as a function of the mechanism and
the strategies of the other agents in the mechanism but will drop the dependence on these
objects for notational simplicity.

Given a preference vector v; € R’ and priority type t;, the agent’s expected utility from
reporting R; is therefore v; - LRiyti'22 By choosing different rank-order lists, this agent can

choose lotteries in the set £y, = {Lg, ., : R; € R;}. Therefore, this agent reports R; only if
Vi L.y, > ;- Ly, forall Ry € R;. (3)

It is important to emphasize that optimality of R; is with respect to the agent’s belief about
her assignment probabilities, which may or may not be the true assignment probabilities

generated by the mechanism. In our application, we consider specifications with three alter-

terms of demand-supply and market clearing to discuss mechanisms. Particularly, we can use the framework
to consider mechanisms that produce matchings that are not stable. The representation may therefore be
of independent theoretical and empirical interest. For example, Abdulkadiroglu et al. (2017b) use a related
cutoff-based approach for evaluating achievement gains from attending various types of schools for the case
of the Deferred Acceptance Algorithm. Our representation suggests that it may be possible to extend their
techniques to the entire class of RSP+C mechanisms.

21Leshno and Lo (2017) derive a cutoff representation for the Top Trading Cycles mechanism that does
not belong to the class of RSP+C mechanisms.

22 Although our model incorporates social interactions through L, it differs from a multinomial version of
Brock and Durlauf (2001) because we do not specify an idiosyncratic payoff shock for each possible report
R;. Instead, we micro-found the expected utility of a report R; through preferences for schools incorporated
in v;.
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native forms of beliefs below.

3.3.1 Rational Expectations

Our baseline model assumes that agents have correct beliefs about the probabilities of as-
signments given their own type (v,t), the population distribution of types and the ranking
strategies used in the district. Specifically, let o : R7 x T' — ARl be a (symmetric) mixed
strategy used by the students in the district.?® The first argument of o is the vector of util-
ities over the various schools, and the second argument is the priority type of the student.

Each student believes that the lottery when she reports R; € R; is given by

Lr., = Eo[®"((Ri,ti),(R_s, T ;)| Ry, i)
= Z Cbn((Rz,t R uT Hfa letk (4)

(R*’i 7T7’L‘) k;él

where E,[] denotes expectations taken over the random variable (Ry,t;) for i' # i drawn
iid with probability f,(R,t) = fr(t) [ or(V.t)dFyr—:, and Fyr is the joint distribution of
preference and priority types in the population. As a reminder, the dependence of L on the
mechanism, ®” and the strategy, o, have been suppressed for notational simplicity.

In this model of beliefs, the perceived probability of assignment depends on both the
tie-breaker in the mechanism and the distribution of reports by the other students in the
district. Therefore, a student perceives uncertainty due to both the reports submitted by
other students as well the uncertainty in the lotteries within in the mechanism. This contrasts
with models of complete information about the reports submitted by the other students,
where the latter form of uncertainty is not present.?? We believe that this model is more
realistic than a complete information model because students are unlikely to be aware of all
the reports that will be submitted by others. This assumption is commonly made in the
analysis of other non-dominant strategy mechanisms, for example, in empirical analysis of

auctions (Guerre et al., 2000; Cassola et al., 2013, among others).?

23Note that when the distribution of utilities admits a density, a unique pure strategy is optimal except
for a measure zero set of types.

24Complete information Nash Equilibrium models are common in the literature on assignment mechanisms
(see Ergin and Sonmez, 2006, for example). Results based on assuming that agents have knowledge of R_;
are both quantitatively and qualitatively similar to the ones presented here and are available on request.

25Indeed, when all agents optimally respond to such beliefs, the behavior is consistent with a Bayesian
Nash Equilibrium:

Definition 4. The strategy o* is a type-symmetric Bayesian Nash Equilibrium if v; ~L‘}’%:7t > v LR,

for all R} € R; whenever o}, (vi,t;) > 0, where Lg%:,ti and L?%?,ti are given by equation (4).
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It is important to note that agents need not have beliefs over a very high dimensional
object in Report-Specific Priority + Cutoff Mechanisms in order to compute the assignment
probabilities and best responses. It is sufficient for agents to form beliefs over the distribution
of cutoffs for the various programs. Our empirical approach will use this feature to reduce

the dimension of the problem.?8

3.3.2 Adaptive Expectations

Assuming rational expectations implies a strong degree of knowledge and sophistication.
One may reasonably argue that the primary source of information for parents may be based
on prior year information. We address this concern by considering the following alternative

model of agent beliefs:
LRi,ti = ]E‘a‘_l [q)*l,TL((Ri? tl)? (R*h T*z)) |Rl7 t’L] (5)

where the notation —1 indicates the use of previous year quantities rather than the current
year. Specifically, we assume that the agents have knowledge about the previous year strategy
o1, believe the school/program capacities are the same as the previous year, and that the
distribution of other student types are the same as the previous year as well.

Such beliefs may arise if agents form expectations about the competitiveness of various
schools based on the experiences of parents that participated in the previous year. Agents,
in this case, may be systematically mis-informed, for example, about increases or decreases
in capacity. Estimates from this model will be used to investigate whether the potential
screening benefits of manipulable mechanisms hinge crucially on agents forming rational

expectations.

3.3.3 Coarse Expectations

Another form of mis-information in the mechanism may be about the specific use of priorities
and the program quotas based on free/reduced lunch status. If agents are not informed about
these details of the mechanism, their expected probability of assignment given report R; will
not depend on their priority type, t;. For example, beliefs that are based only on aggregate

information about the number of applicants and capacities at each school would have this

property.

26Kapor et al. (2017) use a survey of students in New Haven to construct estimates of students’ beliefs over
these cutoffs. They then extend our methods to estimate the preference distribution using these estimated
beliefs.

19



ECTA13615_source [01/16 11:09] 21/72

To address the possibility that beliefs are coarse, we consider a model in which an agent

believes that the lotteries are given by

LRi = Z EU[(I)n((Ri’ ti)v (R—i’ T—Z))lRZ’ ti]f(ti)’ (6)

t, €T

where o is the strategy used by the students in the district. Such beliefs may have dis-
tributional consequences and may undo some of the goals of the Controlled Choice Plan
of maintaining a diverse student mix within programs. It is possible that schools that are
popular among paid-lunch students, such as Graham & Parks, may be under-subscribed by

free/reduced lunch students because of such coarse beliefs.

4 A Revealed Preference Approach

This section illustrates the key insight that allows us to learn about the preferences of
students from their (potentially manipulated) report and presents an overview of our method
for estimating preferences. Equation (3) reveals that a student’s optimal choice, given her
priority type, depends on the assignment probabilities a student believes she can achieve by
altering her report. The choice of a report by a student is, therefore, a choice from the set
of lotteries,

L=A{Lg, : R, € R;},

where the dependence on t; is dropped for simplicity. The various forms of beliefs described
in Section 3.3 specify particular values for Lp,.

Assume, for the moment, that a student’s belief for the assignment probabilities is known
to the analyst, and consider her decision problem. Figure II illustrates an example with
two schools and an outside option. Each possible report corresponds to a probability of
assignment into each of the schools and a probability of remaining unassigned. Figure I1(i)
depicts three lotteries Ly, Lr/, Lrs corresponding to the reports R, R’ and R” respectively
on a unit simplex.2” The dashed lines show the linear indifference curves over the lotteries for
an agent with a utility vector parallel to the vector a. A student with a utility vector parallel
to ag will therefore find Lg optimal (figure I1(ii)). A student who is indifferent between Ly
and Lg must have indifference curves that are parallel to the line segment connecting the
two points and, therefore, a utility vector that is parallel to ap r (figure II(ii)). Likewise,
students with a utility vector parallel to ag g+ are indifferent between Lr and Lg». In fact,

L is optimal for all students with utility vectors that are linear combinations of ar ' and

2"The simplex is often referred to as the Marschak-Machina triangle.
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ar,pr With positive coefficients. A similar reasoning can be applied to Lg and Lg», resulting
in the vector ap g+ depicted in figure II(iii). We now turn our attention to utility space in
figure II(iv). The rays starting from the origin and parallel to each of these vectors partition
this space. As argued above, Lp is optimal for students with utility vectors v € C}y, for
example if v is parallel to ag. In symbols, for any J and set of lotteries £, choosing Lg is

optimal if and only if the utility vector belongs to the cone:
Cr={veR’:v-(Lr—Lp)>0forall R € R}. (7)

For all values of v in this cone, the expected utility from choosing R is at least as large as
choosing any other report.?® Similarly, reports R, R’, and R” are only optimal for students
with utility vectors in the regions Cr, C'r/, and Cg» respectively. Further, these regions may
intersect only at their boundaries and together cover the utility space. The choice of report
therefore reveals the region in utility space to which a student’s preference vector belongs.
Remarkably, a partition of this form is implied for all school choice mechanisms that
use tie-breakers if a student’s belief for assignment probabilities is identified. The argument
does not rely on uniqueness of equilibria as long as agent beliefs are identified and can be
estimated using the data. Further, these inequalities use all the restrictions on preferences
given the beliefs of the agents and the mechanism. We can use this insight to construct the

likelihood of observing a given choice as a function of the distribution of utilities:

P(R|z,§) = P(R= arg%gg%v-LR\z,g; f) = /1{U € Cr}fvize(v|z, €)dv. (8)

This expression presents a link between the observed choices of the students in the market and
the distribution of the underlying preferences, and it is the basis of our empirical approach.
It presents rich information about utilities because the number of regions is equal to the
number of reports that may be submitted to a mechanism.?

There are three remaining issues to consider. First, we need to show that agent beliefs
over assignment probabilities can be consistently estimated so that the regions Cg used
to construct the likelihood can be determined. The objective is to justify an approxima-
tion to ex-ante student beliefs using a realized sample of reports. Section 6.1 shows that
assignment probabilities for the strategies used by students observed in the data can be

consistently estimated in all RSP+C mechanisms. Therefore, our procedure is robust to the

28We allow for the possibility that Lr = L/ for two reports R and R’. This may occur if the student lists
a school she is sure to be assigned to as her first choice. In such cases, our revealed preference method does
not deduce any preference information from later ranked choices.

29There are a total of 1,885 elements in R because students in Cambridge can rank up to three programs
from 13.
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possibility of multiple equilibria in case one wishes to assume that students play equilibrium
strategies.?® Second, Section 5 provides conditions under which the distribution of utilities
is non-parametrically identified. We can obtain point identification by “tracing out” the
distribution of utilities with either variation in lottery sets faced by students or by using
an additively separable student-school specific observable characteristic. Third, Section 6.2
proposes a computationally tractable estimator that can be used to estimate the parameters

of the preference distribution. Here, we use a first step estimate of assignment probabilities.

5 Identification

Section 4 showed that the choice of report by a student allows us to determine the cone,
Cr C R’ for R € R, that contains her utility vector v. The argument required knowledge of
student’s beliefs for assignment probabilities that constitute Lr;. Knowledge of the mech-
anism and the joint distribution of reports and types directly identifies the forms of beliefs
specified in equations (4)-(6).3! This section presents our results on identification of the dis-
tribution of indirect utilities. Knowledge of this distribution is sufficient for positive analysis
of various types. For example, it allows for analysis of assignments under counterfactual
mechanisms and a determination of the fraction of students who are assigned to their true
first choice. Additionally, certain forms of normative analysis that involve comparing the
proportion of students who prefer one mechanism over another can also be conducted.??

We now show what one can learn about the distribution of utilities using equation (8):

P(R € R|z,t, 57 b) - / 1{” € Cb,R,t}fV\z,t,f(U|Za t?&)dva

where b is a market subscript and the dependence on ¢ has been reintroduced for notational
clarity. This expression shows that two potential sources of variation that can be used to
“trace out” the densities fy|r.¢(v|z,t,&). The first results from choice environments with
different values of Cj g;. The second results from variation in the observable characteristic
z. We consider each of these below. As is standard in the identification literature, we treat

the assignment probabilities and the fraction of students who choose any report as observed.

30We avoid common issues in deriving a likelihood in games with multiple equilibria (Ciliberto and Tamer,
2009; Galichon and Henry, 2011, for example) because we are able to identify and estimate agent beliefs.

31Section 6.1 presents a consistent estimator for L, as defined by each of the forms of beliefs.

32S0lving the social planner’s problem or comparing mechanisms using a Kaldor-Hicks criterion requires
additional assumptions on the transferability of utility or a choice of Pareto weights.
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5.1 Identification Under Varying Choice Environments

In some cases, researchers may be willing to exclude certain elements of the priority struc-
ture, t, from preferences, or they may observe data from multiple years in which the set of
schools are the same but capacities vary across years. Such variation in choice environments
can result in rich information about preferences. Our arguments in this sub-section will
therefore relax the additive separability assumption made in equation (1) by allowing V'(+)
to have a general functional form. Because utilities can be determined only up to positive
affine transformations, we instead normalize the scale as ||v;|]| = 1 for each student . This
normalization is without loss of generality. Hence, it is sufficient to consider the case when
v; has support only on the unit circle.

To gain intuition, assume that a researcher has data from two years with one school adding
a classroom in the second year. If we assume that school capacity can be excluded from the
distribution of preferences, i.e. v|z,&, t,b ~ v|z,£,t,5 for the years indexed by b and b, we
effectively observe students with the same distribution of preferences facing two different
lottery choice sets. For example, let the choice sets faced by students be £ = {Lg, Lr/, Lr/}
and £ = {Lkg, Lg, Lgn} respectively. Figure II1(i) illustrates these choice sets. The change
from Lp to Ly affects the set of utilities for which the various choices are optimal. The
set of types for which Lg is optimal now also includes the dotted cone. The utilities in
this cone can be written as linear combinations of ag g and ag p with positive coefficients.
Observing the difference in likelihood of reporting R for students with the two types allows

us to determine the weight on this region:
P(R[D) ~ P(RID) = [ (1{v € Cr} — 1o € Ca))fule)de,

where explicit conditioning on the vector (z,t,£) is dropped because it is held fixed. Figure
I11(ii) illustrates that this variation allows us to determine the weight on the arc hp — hp.
Carvalho et al. (2017) independently developed a similar identification argument in the
case where there are only two programs (i.e. J = 2) and there is rich variation in the
choice environment. Appendix ?? proves a result for the general case and characterizes the
identified set even when the variation in choice environments is limited.

The discussion suggests that enough variation in the set of lotteries faced by individuals
with the same distribution of utilities can be used to identify the preference distribution.
The arc above traces the density of utilities along the circle when such variation is available.
However, typical school choice systems have only a small number of priority types and
datasets typically cover a small number of years. Therefore, due to limited support, we will

typically partially identify fy,. While this source of variation may not be rich enough for a
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basis for non-parametric identification, it makes minimal restrictions on the distribution of
utilities. In particular, the result allows for the preference distribution to depend arbitrarily
on residential locations through z. Although beyond the scope of this paper, this framework
may be a useful building block for a model that incorporates both residential and schooling

choices.

5.2 Identification With Preference Shifters

This subsection drops the scale normalization, ||v;|| = 1, made in the previous section and
reverts back to the additive separable form with the scale normalization in equation (1). We
describe how variation in z! within a market, fixing ¢ and 22, can be used to learn about
the distribution of indirect utilities. The objective is to identify the joint distribution of
ui; = U(23, &, €) given (€, 2%), where we drop this conditioning for simplicity of notation.

1

Because ¢; is independent of z;;, we have that

iz (vlzh) = g(v + 2"

where g is the density of v and z! is observed on a set (. Therefore, our goal is to identify

9.33

Consider the lottery set faced by a set of students and the corresponding region, Cg, of
the utility space that rationalizes choice R (figure IT). A student with 2} = 2 chooses R if
v =u—z € Cg. The values of u that rationalize this choice are given by z+ajapr r +a2ar, g
for any two positive coefficients a; and as. Figure IV illustrates the values of u that make
R optimal. As discussed in Section 4, observing the choices of individuals allows us to
determine the fraction of students with utilities in this set. Similarly, by focusing on the set
of students with z! € {2/,2”, 2"}, we can determine the fraction of students with utilities in
the corresponding regions (see Figure IV). By appropriately adding and subtracting these
fractions, we can learn the fraction of students with utilities in the parallelogram defined
by (z,2/,2",2"). This allows us to learn the total weight placed by the distribution g on
such parallelograms of arbitrarily small size. It turns out that we can learn the density of
g around any point z in the interior of { by focusing on variation in the neighborhood of z.

The next result formalizes this intuition.

33In recent work, Allen and Rehbeck (2017) study identification in a general class of demand models and
consider the case where v;; = us; — h(z];). Specifically, they study the identification of h(-) and show that
it can be identified up to scale and location without knowledge of the distribution of u;;. Our goal is to
identify the distribution of indirect utilities, which requires knowledge of u;;. It may be possible to combine

these results to relax the restriction that (indirect) utilities are linear in zllj
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Theorem 1. If Cr is spanned by J linearly independent vectors {ag g, ... ,agps}, where
RY,... R belong to R\{R}, then g(-) is identified in the interior of (. Hence, fy(v|z') =
g(v + 2') is identified for all v such that v + z' is in the interior of C.

Proof. Let Ar = [agp:,...,args] and note that Cr = {v : v = Agx for some z > 0}. As-
sume, wlog, |det Ag| = 1. Evaluate h¢,(2) = P(v € Cg|z) at Agx:

hey, (Arz) = /]RJ Hu — Arz € Cr}g (u)du

— /RJ H{Agr(y —2) € Crlg(Ary)dy = /: - /:g (Ary) dy,

where the second equality follows from a change of variables, u = Agry, and the third equality

follows because Agr(y — x) € Cr <= y > x. Therefore,

8‘]th (ARQZ)

=g (Agpx).
0xy...0xy 9(Arz)

J
In particular, for any 2! in the interior of ¢, g(z!) is given by 63};01?—5;1}396) evaluated at
x = AR'z'. The derivative is identified on the interior of ¢ because hcy(+) is observed on

¢ O

Intuitively, z! shifts the distribution of indirect utilities. For example, when zilj denotes
the distance to school 7, then all else equal, students closer to a particular school should
have stronger preferences for attending that school. These students should be more likely
to rank it on their list. The extent to which students who are closer to a given school are
more likely to rank it is indicative of the importance of distance relative to other factors that
affect preferences that are captured by U(-).3*

One drawback of the formal result above is that it places a restriction on Cr, which is
a non-primitive object. However, the condition can be verified in the data because Cj is
identified. Moreover, Theorem A.2 in the Appendix shows that we can identify ¢ under
weaker conditions on Cf if g has exponentially decreasing tails and ( = R7. The proof
is based on Fourier-deconvolution techniques because the distribution of v is given by a
location family parametrized by z!. The conditions on g are quite weak and are satisfied for

commonly used distributions with additive errors such as normal distributions, generalized

34The nature of this identification result articulates the fact that identification of the density at a point
does not rely on observing extreme values of z'. Of course, identification of the tails of the distribution of u
will rely on support of extreme values of z!. Also note that our identification result requires only one convex
cone generated by a lottery and, therefore, observing additional lotteries with simplicial cones generates
testable restrictions on the assumption that z! is a special regressor.
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extreme value distributions, or if v has bounded support.3?

When z}j is assumed to be the road or walking distance from student ¢’s residence to
school j, then the support of z! will be limited by geographical constraints. In this case, such
variation provides partial information on fy,. Our estimator, which is described in the next
section, will use variation from this source in addition to variation in choice environments in

a parametric specification.

6 Estimating Assignment Probabilities and Preference

Parameters

We estimate our preference parameters, § = (f,Y), using a two-step estimator. In the
first step, we estimate the assignment probabilities for each lottery, Lr;. The second step
estimates 6 taking the estimate from the first step L, as given. Although it may be possible
to estimate these two sets of parameters jointly, the two-step procedure is computationally
tractable, albeit at potential efficiency costs. Theorems 2.1 and 6.1 of Newey and McFadden
(1994) show conditions under which a two-step estimator is consistent and asymptotically
normal. These results require that the first-step is consistent and asymptotically normal, and
the second-step is reasonably well-behaved. Our second-step estimator will be equivalent to a
maximum likelihood estimator. The main challenge, therefore, is to show that our first-step
is consistent and asymptotically normal.

The asymptotic framework assumes that the number of students n grows large in a single
year and the number of programs is held fixed. The capacity of the programs, nx ¢, increases
proportionally to the number of students, i.e. ¢j — ¢; € (0,1). These limits are meant to
capture an environment, such as the one in Cambridge, where the number of students is
large relative to the number of schools.?® It is sufficient for the researcher to observe data
from a single year of the mechanism with many students for consistency and asymptotic
normality of the estimator. In our application, the parameters governing the distribution of
preferences given the observables, 6, is held constant across years and multiple years of data
to improve the precision of 0. For simplicity of notation, we omit the dependence of L on

the application year.

35We do not require that ¢ has a non-vanishing characteristic function. Further, when u has bounded
support, we can allow for ¢ to be a corresponding bounded set.
36 Azevedo and Leshno (2016) use similar limits to analyze properties of stable matchings in a large market.
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6.1 First Step: Estimating Assignment Probabilities

The first step requires us to estimate the probabilities in equation (4) for each value of
(R;,t;). The equation highlights two sources of uncertainty facing the student when forming
this expectation. First, at the time of submitting the report, the student does not know
the realization of (R_;,7-;). The agents form expectations for this realization based on
population distribution of types and the forecast strategy o. The second source of uncertainty
is within ®" because of the random tie-breaker used to determine assignments. Even with
rational expectations, these two sources of uncertainty imply that the realized empirical
assignment probabilities differ from the agent’s expectations.

We approximate the first source of uncertainty using a resampling procedure because
the data consists of a large sample of reports and priorities drawn from the population
distribution. For the second source of uncertainty, we can use the fact that Cambridge
uses a mechanism with a Report-Specific Priority + Cutoff (RSP+C) representation. For
each draw of (R_;, T_;), and tie-breakers v_;;, we compute a market clearing cutoff p;'~" by
simulating the mechanism.?” The assignment for a student with priority type t;, report R;,
and a draw of the random tie-breaker v; is given by D(Ri’t“’i)(pg’l), where e; = f(R;, t;,1;).

This reasoning suggests the following estimator, j}, for the rational expectations case:

B
1
Liee = 5D ®"((Riti), (B, T)),
b 1
B
~ 5 [ P,
b=1
- LRi,tw (9>

where (R_;, T_;), is the b-th sample of n — 1 reports and priority types and 7,, is the CDF
of the tie-breaker. The estimator therefore incorporates information on all the submitted
applications, data on school capacities in each year, and knowledge of the assignment mech-
anism. Further, it uses a single set of draws for p’;_l to compute assignment probabilities
for all values of (R;,t;). This makes the computation tractable even with a large number of

possible rank-order lists.?®

370ur estimator approximates the cutoffs by ignoring the report of agent i because, in a large market,
any single agent has a negligible impact on the cutoffs. That the resulting approximation error is negligible
is formalized in Appendix A.3, where we show that the approximation error in using only the other n — 1
agents is of order 1/n.

380ne may instead use observed assignment frequencies conditional on priorities and the rank-order lists
in this step. However, this approach is likely to yield poor estimates due to the curse of dimensionality unless
there are many students relative to the number of rank-order list and priority combinations. In Cambridge,
there are just under 2,000 feasible rank-order lists for each priority type. Our sample consists of 2,129
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Our estimator for the adaptive expectations case is analogous. We draw (R_;,T;)s
from the observed reports in the previous year and calculate pg’l using the previous year’s
capacity. The estimate for Lg, in the coarse expectations case uses the estimate [A/Rz}ti for
the rational expectations case and averages it for each R; using the empirical distribution of
t;.

The equation above highlights why the RSP+C representation is useful for estimating
assignment probabilities, a potentially complicated task for general mechanisms. Because
mechanisms are usually described in terms of algorithms that use the reports and priority
types of all the students in the district, there are few a priori restrictions that prevent them
from being ill-behaved. A small change in students’ reports could potentially have large
effects on the assignment probabilities.?® Moreover, our objective is to estimate assignment
probabilities simultaneously for all priority-types and each possible rank-order list that can
be submitted by a student. The RSP+C representation allows us to obtain results on the

limiting distribution of L by examining the limit behavior of the cutoffs, p;}_l.

Theorem 2. Suppose that ®" is an RSP+C mechanism with a random tie-breaker v;; =

vij = v; that is drawn from the uniform distribution on [0, 1].

(i) If p* is the unique market clearing cutoff for (E[D(p)],q), where ¢ = limq", then for
each (R, 1), |[A/R’t — Lg4| 0.

(ii) Further, if p; > 0 for all j, ||¢" — ql| = op(n™?) and V,E[D(p*)] is invertible, then
for each each (R,t),
Vi(Lrg — Lrg) % N (0,9°)

where Q* is given in Theorem A.S.

Proof. The result is a special case of Theorem A.3 in the Appendix, which relies on less

restrictive assumptions on v, and does not assume that p > 0. O]

This result is based on showing that the cutoffs determining the eligibility thresholds are
close to p* if the number of students is large and then analyzing the limit distribution of

\/ﬁ(pg_l — p*). As discussed in Appendix ??, the uniqueness of the cutoff p* is a generic

students. The knowledge of the mechanism and administrative data on capacities and submitted reports is
helpful in reducing the dimension of the problem to the number of cutoffs, which is equal to the number of
programs.

39Two pathological examples allowed by Definition 1 are instructive. The first example is one in which
the assignment of all students depends only on student 1’s report. The second is an algorithm that depends
on whether an odd or even number of students apply to schools. It is easy to see why the conclusions of
Theorem 2 will not apply in these cases.
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property.’® Uniqueness of p* in the Cambridge mechanism follows if for all j, D; (-) is strictly
decreasing in p; (see Proposition ?? in the Appendix). Results on pg’l can be translated to L
using smoothness imparted by the non-degenerate distribution of v. Finally, as formalized in
Proposition 7?7, our results also imply convergence of finite market equilibria to large-market

limits.

6.2 Second Step: Preference Estimates

The second step is defined as a maximum likelihood estimator and it takes the estimate L
from the first step as given. Specifically, equation (8) implies that the maximum likelihood

estimator is given by
0 = arg max Yo logP(R; = arg maxpeg, v; - [A/thi|zi, ti;0), (10)
€

where R; is the report submitted by student i, z; is the vector of observables that the
distribution of v; depends on, t; is the priority type of agent i, and 6 parametrizes the
distribution of v as given in Section 3.1.

Unfortunately, our model does not yield a simple closed-form solution for this likelihood.
Further, the relatively large number of potential rank-order lists implies that a simulated
maximum likelihood with enough draws to avoid bias is computationally burdensome.*! To
solve this problem, we adapt the Gibbs’ sampler used by McCulloch and Rossi (1994) to
estimate a discrete choice model. It offers a computationally convenient likelihood-based
method for estimating parameters in some cases when an analytic form for the likelihood
function is not available. The Gibbs’ sampler obtains draws of g and ¥ from the posterior
distribution by constructing a Markov chain of draws from any initial set of parameters
0° = (B°,%°%). The invariant distribution of the resulting Markov chain is the posterior given
the prior and the data. The posterior mean of this sampler is asymptotically equivalent to
the maximum likelihood estimator (see van der Vaart, 2000, Theorem 10.1 (Bernstein-von-
Mises)).

As in the discrete choice case, we first use data augmentation to pick a utility vector for
each agent consistent with their choice. Here, we initialize v? € C, for each student i, where

R; is the report chosen by agent i. We set v) by using a linear programming solver to find

40G8pecifically, we use results from Azevedo and Leshno (2016) to show that market clearing cutoffs are
generically unique. Using techniques from Berry et al. (2013) and Berry and Haile (2010), we can also derive
stronger conditions for global uniqueness of the market clearing cutoffs.

41 There are 1,885 possible ways to rank up to 3 schools from 13. This is the potential number of rank-order
list for each student priority type.
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a solution to the constraints v0 - (Lg, s, — Lzry,) > 0 for all R € R.%2
The chain is then constructed by sampling from the conditional posteriors of the param-
eters and the utility vectors given the previous draws. The sampler iterates through the

following sequence of conditional posteriors:

BH{ | Ti,zs
Es+1 | Uf768+1
U;+1 | Ufacha,ﬁs+lyzﬁ+l

The first two steps update the parameters § and ¥ in equation (2) using standard pro-
cedures (see McCulloch and Rossi, 1994, and Appendix ?? for details). The last step, which
draws vit! for each student, differs slightly from McCulloch and Rossi (1994). Specifically,
we need to condition on the regions C'g, and sample from the following conditional posteriors:

vf]*1|vffr1, . ,Uff_ll, Vi1 Vigs Bt Cp,, S5,
This requires us to draw from a (potentially two-sided) truncated normal distribution with

mean, variance, and truncation points determined by g1, 35t Cg. and v; _;.** We can
s+1 s+1
i ]

conditional on v; _; defined by the restriction v;™ - (Lg, — Lg) > 0 for all R € R.

i

ensure that v;™" € Cp, for every student ¢ in every step by calculating the bounds on v

We specify independent and diffuse conjugate prior distributions according to standard
practice. These details and other implementation issues are described in Appendix ?77.
Standard errors in our case also need to account for estimation error in the first step. We

do this using the bootstrap procedure described in Appendix 77.

7 Application to Cambridge

7.1 Assignment Probabilities and Preference Parameters

Table VI presents the assignment probabilities for various schools averaged over various
student subgroups.** As in table IV, the estimates indicate considerable heterogeneity in
school competitiveness. The typical student isn’t guaranteed assignment at one of the more

competitive schools even if she ranks it first. On the other hand, several schools are sure

42A linear programming solver can be used to eliminate linearly dependent constraints with positive
coefficients in order to further simplify the later stages of the Gibbs’ sampler.

43The standard discrete choice model only involves sampling from one-sided truncated normal distribu-
tions.

44Table ?? provides an estimate for standard errors of L constructed by bootstrapping the estimator.
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shots for students who rank them first. The probability of not getting assigned to a school
also differs with paid-lunch status. A comparison of estimates in panel A with those in
panels D and E indicates that having priority at a school significantly improves the chances
of assignment. The differential is larger if the school is ranked first.

Panel A of table VII presents the (normalized) mean utility for various schools net of
distance by student group for four specifications. The first specification treats the agent re-
ports as truthful, while the second, third, and fourth specifications assume that students best
respond to beliefs given by rational expectations, adaptive expectations, and coarse beliefs
respectively.*> In each of these specifications, we find significant heterogeneity in willingness
to travel for the various schooling options. Paid-lunch students, for instance, place a higher
value on the competitive schools as compared to the non-competitive schools. Although not
presented in the mean utilities, Spanish- and Portuguese-speaking students disproportion-
ately value schools with bilingual and immersion programs in their home language. Students
also place a large premium on going to school with their siblings.

A comparison between the first column and the others suggests that treating stated
preferences as truthful may lead to underestimates of the value of competitive schools relative
to non-competitive schools. This differential is best illustrated using Graham & Parks as
an example. Treating stated preferences as truthful, we estimate that paid-lunch students
have an estimated mean utility that is an equivalent of 1.29 miles higher than the average
public school option. This is an underestimate relative to the models that assume students
correctly believe that Graham & Parks is a competitive school. In contrast, the value of
Graham & Parks for free-lunch students is over-estimated by the truthful model relative to
both the rational expectations and adaptive expectations model. The difference is due to
the fact that Graham & Parks is not competitive for free-lunch students and therefore, the
low number of applications it receives indicates particular dislike for the school.

Overall, estimates based on modeling expectations as adaptive are strikingly similar
to those from assuming rational expectations. In part, this occurs because the relative
competitiveness of the various schooling options in Cambridge is fairly stable even though
there is some annual variation in assignment probabilities across schools. This result is
comforting and suggestive of the robustness of our estimates to small mis-specifications of
agent beliefs. Estimates that endow agents with coarse beliefs continue to indicate that
treating reports as truthful underestimates the relative preference for the most competitive
schools such as Graham & Parks, Haggerty, Baldwin, and Morse. The results are more

mixed for the less desirable schools. As in the models that treat preferences as truthfully

45The underlying parameter estimates for the two baseline specifications, rational expectations and truthful
reporting, are presented in tables 77 and ?7.
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reported, free-lunch and paid-lunch students are in broad agreement on the relative ranking
of the various schools.

Another significant difference between the estimates that treat agents as truthful and
those that do not is in the number of schools students find preferable to the outside option.
Panel B shows that estimates that treat stated preferences as truthful suggest that about half
the students have five or more schools where assignment is preferable to the outside option.
On the other hand, treating agents as best responding to one of the three forms of beliefs
studied here suggests that about half the students find at most two schools in the system
preferable to the outside option. To understand these results, note that treating preferences
as truthful extrapolates from the few students (about 13%) that do not have complete rank-
order lists. On the other hand, the model that treats students as being strategic interprets
the decision to rank long-shots in the second and third choices as evidence of dislike for the
remaining schools relative to the outside option.

These results should be viewed in light of Cambridge’s thick after-market. About 92% of
the students who are not assigned through the school choice process are assigned to one of the
schools in the system. Only a quarter of unassigned students are placed at their top-ranked
school through a wait-list that is processed after the assignment process in Cambridge. Most
of the remaining unassigned students are placed in an unranked school. Cambridge also has
charter and private school options that unassigned students may enroll in. The value of the
outside option is therefore best interpreted in terms of the inclusive value of participating in
this after-market.*6

These specifications estimated the preference parameters using the set of students who
submitted a rank-order list consistent with optimal play (i.e. submitted a list corresponding
to an extremal lottery). For the rational expectations model, a total of 2,071 students (97.3%
of the sample) submitted a rationalizable list.*” The large fraction of students with rational-
izable lists may initially appear surprising. However, theorem A.1 in the appendix indicates
that the lists that are not rationalized are likely the ones where assignment probabilities for
one of the choices is zero. Our estimates in table VI suggest that this is rare, except for a few
schools. Most of the students with lists that cannot be rationalized listed Graham & Parks

46Students who are assigned through the process can later enroll in other schools with open seats, ap-
proximately 91% of the students register at their assigned school. Some differences between assignments
and registrations can be caused by changed in student preferences or the arrival of new information (Narita,
2016). Because the wait-list process in Cambridge allows students to choose a set of schools at which to apply,
we explored whether this feature results in significant bias. Specifically, we estimated the probability that a
student is able to ultimately register at a school where she was rejected during the main application process.
Beliefs based on these probabilities resulted in quantitatively similar results to our baseline specifications.
We therefore avoid modeling the after-market.

470One student was dropped because the recorded home address data could not be matched with a valid
Cambridge street address.
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as their second choice. Indeed, the reports can be rationalized as optimal if agents believe
that there is a small but non-zero chance of assignment at these competitive schools. One
concern with dropping students with lists that cannot be rationalized is that we are liable
to underestimate the desirability of competitive schools. Although not reported, estimates
that add a small probability of assignment to each of the ranked options yield very similar

results.

7.2 Ranking Behavior, Out-of-Equilibrium Truthtelling and As-

signment to Top Choice

In this section, we investigate the ranking strategy of agents, whether they would suffer
large losses from out-of-equilibrium truth-telling, and how strategic manipulation may affect
student welfare.

Table VIII presents the fraction of students who find truthful reporting optimal and
losses from truthful behavior relative to optimal play as estimated using the two polar
assumptions on student behavior and beliefs. The first three columns are based on the
assumption that the observed reports are truthful and analyze the losses as a result of such
naivete. These estimates can be interpreted as analyzing the true loss to students from
not behaving strategically if they are indeed out-of-equilibrium truth-tellers. The estimates
suggest that the truthful report is optimal for 57% of the students. The average student
suffers a loss equal to 0.18 miles by making a truthful report, or 0.42 miles conditional on
regretting truthful behavior. We also estimate heterogeneous losses across student groups.
Free-lunch students, for instance, suffer losses from truthful play less often and suffer lower
losses conditional on any losses. This reflects the fact that the Cambridge school system is
not competitive for these students because of the seats specifically reserved for this group.

The last three columns use estimates based on rational expectations and tabulate losses
from non-strategic behavior.#® Again, these estimates suggest that about half the students,
and disproportionately paid-lunch students, have strategic incentives to manipulate their
reports. Together, the observations suggest that markets where students face large compet-
itive pressures are precisely the markets where treating preferences as truthful may lead to
biased assessments of how desirable various schools are.

The estimated losses using both specifications may seem small on first glance, but can
be explained by noting that whenever a student has a strong preference for a school, she will

rank it as her first choice in her optimal report (and potentially manipulate lower-ranked

48These estimates differ from the ones based of truthful reporting only because of differences in preference
parameters.
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choices). The priority given to the first-ranked choice results in a low chance that the student
is not assigned to this highly desired school. This fact significantly lowers the potential of
large losses from truthful reporting.

Our estimates that about half the students find it optimal to behave truthfully is likely
to affect our assessment of how many students are assigned to their top choice. Table IX
presents this fraction by student paid-lunch status. The last column indicates that 85.2% of
the students rank their top choice first. This occurs because many students avoid ranking
competitive schools as their top rank in favor of increasing the odds of assignment to a less
preferred option. As a result, fewer students rank Graham & Parks as their top choice,
instead favoring Haggerty or Baldwin. We therefore see over-subscription to Haggerty and
Baldwin by paid-lunch students relative to the true first choice. The last column indicates
that while 83.4% were assigned to their stated first choice, only 72.3% were assigned to
their true first choice. This pattern is particularly stark for paid-lunch students, who are
assigned to their true first choice only 64.6% of the time. Table VI indicates that assignment
to competitive schools is less likely for paid-lunch students. Together, these results suggest
that calculations of whether students are assigned to their preferred options based on stated

preferences may be misleading and differentially so by student demographics.

7.3 Evaluating Assignments under Alternative Mechanisms

A central question in the mechanism design literature is whether an Immediate Acceptance
mechanism is worse for student welfare compared to strategy-proof mechanisms such as the
Deferred Acceptance mechanism. This question has been debated in the theoretical literature
with stylized assumptions on the preference distribution (see Miralles, 2009; Abdulkadiroglu
et al., 2011; Featherstone and Niederle, 2016). The Immediate Acceptance mechanism ex-
poses students to the possibility that they are not assigned to their top listed choices, which
can harm welfare when they strategically choose not to report their most preferred schools.
However, this possibility has a countervailing force that agents with particularly high valu-
ations for their top choice will find it worthwhile listing competitive schools on top. Hence,
the mechanism screens agents for cardinal preferences and can result in assignments with
higher aggregate student welfare. Additionally, assignments under an Immediate Acceptance
mechanism may be preferable under a utilitarian criterion because they need not eliminate
justified envy (equivalently, they may not be stable). These are situations in which a student
envies the assignment of another student even though the envied student has lower priority
at that school.

Table X presents a quantitative comparison between the Cambridge mechanism and
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the Student Proposing Deferred Acceptance mechanism*’

using the preference estimates
presented earlier. Because the Deferred Acceptance mechanism is strategy-proof, evaluating
the counterfactual market with this mechanism is relatively straightforward because it does
not involve hurdles in computing an equilibrium.?®

An approach that treats agents’ stated preferences as truthful finds that the average wel-
fare is higher in the Deferred Acceptance mechanism. Panels A and B show that although
Cambridge assigns more students to their top choice due to the additional priority awarded
to students at schools that are ranked first, Deferred Acceptance does better at assigning
students to less preferable options, including fourth and fifth choices. Recall that estimates
from this specification indicated that many students prefer these options to remaining unas-
signed (see table VII). However, estimates assuming optimal behavior showed that the
vast majority find less than three schools in Cambridge preferable to remaining unassigned.
Therefore, the conclusion that Deferred Acceptance improves on average student welfare
may be incorrect if strategic behavior is widespread.

In contrast to estimates assuming truthful behavior, results that treat agents as re-
sponding to strategic incentives indicate that the assignments produced by the Cambridge
mechanism are preferable to those produced by the Deferred Acceptance mechanism. The
fraction of students assigned to their true first choice remains higher under the Cambridge
mechanism but, interestingly, the mechanism also places students at their true second choices
with high probability if agents are strategic. This occurs because some students report their
true second choice as their top choice. Indeed, panel C shows that more students prefer the
Cambridge mechanism’s assignments to the Deferred Acceptance mechanism’s assignments
than the other way around. Although the mechanism is effectively screening based on cardi-
nal utilities, the average student prefers the assignments under the Cambridge mechanism by
only an equivalent of 0.08 miles. The table also illustrates differences across student groups.
Paid-lunch students prefer the Cambridge assignments more than free/reduced lunch stu-
dents, perhaps due to strategic pressures. The estimated effects are of similar magnitude to
the difference between Deferred Acceptance and Student Optimal Stable Matching (SOSM)
as measured in New York City High Schools by Abdulkadiroglu et al. (2017a). Unlike SOSM,

49We construct a Deferred Acceptance mechanism by adapting the Cambridge Controlled Choice Plan.
Schools consider students according to their priority + tie-breaking number. A paid-lunch student’s applica-
tion is held if the total number of applications in the paid-lunch category is less than the number of available
seats and if the total number of applications at the school is less than the total number of seats. Free-lunch
student applications are held in a similar manner. We allow students to rank all available choices.

50To evaluate the Cambridge mechanism, we use the beliefs estimated for each model to determine choices
and compute outcomes using the estimated assignment probabilities. Alternatively, it may be possible to
solve for the equilibria of manipulable Report-Specific Priority + Cutoff mechanisms because only equilibrium
cutoffs need to be obtained. These cutoffs can then be used to compute assignment probabilities and beliefs.
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however, the Cambridge mechanism need not result in a Pareto improvement relative to the
Deferred Acceptance mechanism.

Specifications with biased beliefs indicate that the cardinal screening benefits of an Im-
mediate Acceptance mechanism may be further diminished and instances of justified envy
may be larger if beliefs are not well aligned with true assignment probabilities. In the mod-
els with biased beliefs, free-lunch students tend to prefer the assignment produced by the
Deferred Acceptance mechanism relative to the one produced by the Cambridge mechanism.
Further, the benefits to paid-lunch students are lower than the model that treats agents as
having rational expectations. The significant aggregate benefits to free-lunch students un-
der the Deferred Acceptance mechanism is driven, in part, by the large fraction of students
assigned to their top two choices. Paid-lunch students continue to prefer assignments in the
Cambridge mechanism to the strategy-proof counterpart.

Finally, a potential undesirable feature of the Cambridge mechanism is that it may result
in instances of justified envy. Panel C shows that there are few instances of justified envy
if agents have rational expectations, only about 2.5%, because students are often assigned
at one of the top two choices. Under truthful reporting the estimated instances of justified
envy is higher, just under 8%. The other specifications yielded intermediate results.

Our quantitative results contribute to the debate in the theoretical literature about the
welfare properties of an Immediate Acceptance mechanism, which is similar to the Cambridge
mechanism. The results are different in spirit from Ergin and Sonmez (2006), which suggests
that full-information Nash equilibria of an Immediate Acceptance mechanism are Pareto
inferior to outcomes under Deferred Acceptance. This difference stems from our focus on
beliefs that account for ex-ante uncertainty faced by the students. Our results provide a
quantitative counterpart to the theoretical claims in Abdulkadiroglu et al. (2011). They
argue that an Immediate Acceptance mechanism can effectively screen for the intensity of
preferences and can have better welfare properties than the Deferred Acceptance mechanism.
Troyan (2012) shows that the theoretical results in this literature that are based on notions
of interim efficiency are not robust to students having priorities, and he advocates for an
ex-ante comparison such as the one performed in this paper.

Given the small benefits of the Cambridge mechanism, it is important to note that agents
may face costs of strategizing because students may need to gather additional information
about the competitiveness of various schools before formulating ranking strategies. These
costs may weigh against using an Immediate Acceptance mechanism for school assignment.
Additionally, there may be distributional consequences if agents vary in their ability to strate-
gize (Pathak and Sonmez, 2008). While we cannot quantify the direct costs of strategizing

and gathering information with our data, we extend our model to address distributional
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consequences of heterogeneous sophistication and biased beliefs in the next section.

7.4 Extension: Heterogeneous Agent Sophistication

The specifications presented above have modeled a homogeneous population of agents who
make optimal reports given beliefs consistent with the data. However, agents may differ in
their information about the competitiveness of various schools or may vary in their under-
standing of the mechanism. The difficulty in empirically analyzing extremely flexible models
of heterogeneously sophisticated agents stems from the fact that a researcher has to disen-
tangle heterogeneity in sophistication from preference heterogeneity while only observing the
actions of the agents. Theorem A.1 in the appendix shows it is typically possible to ratio-
nalize any rank order list as optimal for some vector of utilities. Simultaneously identifying
preferences and heterogeneity in sophistication will therefore require restricting behavioral
rules and parametric assumptions.

We estimate a stylized model with heterogeneous agent sophistication based on Pathak
and Sonmez (2008).”! They theoretically compare the Deferred Acceptance mechanism to
the Immediate Acceptance mechanism using a model with two types of agents: naive and
sophisticated. Naive agents report their preferences sincerely by ranking the schools in order
of their true preferences. Sophisticated agents, on the other hand, recognize that truthful
reporting is not optimal because schools differ in the extent to which they are competitive
and because of the details of the mechanism. Reports made by sophisticated agents are
optimal given the reports of the other agents.

We model a population with a mixture of sophisticated and naive agents who have the
same distribution of preferences but differ in their behavior. Naifs report their preferences
truthfully while sophisticated agents report optimally given their (correct) beliefs about the
probability of assignment at each option given their report. The distribution of preferences is
parametrized as in equation (2). In addition to parametric assumptions, the model embeds
two strong restrictions. First, it is a mixture of two extreme forms of agent behavior: perfect
sophistication and complete naivete. Second, the distribution of preferences does not depend
on whether the agent is sophisticated. These simplifications allow us to keep the estimation
procedure tractable. Appendix 77 details the Gibbs’ sampler for this model, which needed
to be modified. We use estimates of the beliefs in the rational expectations model for the
sophisticated agents.

Table XI presents the estimated mean utilities and the fraction of agents who are naive.

The estimated mean utilities are similar to the estimates in the other specifications, and

51Gee Calsamiglia et al. (2017) for another empirical model of agents that are heterogeneous in their
sophistication.
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usually in between the specifications treating agents as either truthful or fully sophisti-
cated (table VII). Panel B shows that about a third of paid-lunch and free-lunch students
are estimated to be naive. These results contrast from estimates obtained by Calsamiglia
et al. (2017) in Barcelona, where they estimate that over 94% of households are strategic in
their decisions. One potential reason driving this difference is that the 93% of students in
Barcelona are assigned to their top-ranked choice, while in Cambridge, this number is only
84%.

Table XII describes the differences between outcomes in the Cambridge and the Deferred
Acceptance mechanisms. Because Deferred Acceptance is strategy-proof, both naives and
sophisticates report their preferences truthfully. Therefore, their outcomes are identical.
The fractions of students assigned to their first, second, and third choices are similar to the
results presented previously. We also see a similar overall increase in the fraction of students
assigned to their top choice school in the Cambridge mechanism and a decrease in fractions
assigned at lower-ranked choices. Interestingly, the probability of a student assigned to their
top choice under the Cambridge mechanism is larger for naive agents than for sophisticated
agents even though they have identical preferences (78.4% vs 76.2%). This relatively larger
probability of assignment at the top choice is at the cost of a significantly lower probability of
assignment at the second choice, which is 6.5% for naifs and 12.3% for sophisticates. These
differences are particularly stark for the paid-lunch students, who face a more demanding
strategic environment. Our estimates suggest that, relative to sophisticates, naive students
effectively increase their chances of placement at their top choice school at the cost of losing
out at less preferred choices.

These results can be explained by the difference between the propensity of naifs and
sophisticates for ranking popular schools. While naive students disregard a school’s com-
petitiveness, sophisticates are likely to avoid ranking competitive schools. Therefore, naifs
effectively gain priority at their first choice school relative to sophisticated students with the
same true first choice if the school is competitive. For example, Graham & Parks is estimated
to be the top choice for 17.7% of students, but about a third of the sophisticated students for
whom it is the top choice avoid ranking it first. Consequently, naive students are more likely
to be assigned to Graham & Parks if it is their first choice. Qualitatively similar patterns
hold for the other competitive schools such as Haggerty, Baldwin, and Morse. This increase
in assignment probability at the top choice comes at the cost of a reduction in the probability
of assignment at the second choice. For example, while 14.7% of sophisticated paid-lunch
students are assigned to their second choice school, only 6.6% of naive paid-lunch students
get placed at their second choice. As Pathak and Sonmez (2008) pointed out, naive students

effectively “lose priority” at their second and lower choice schools to sophisticated students

38



ECTA13615_source [01/16 11:09] 40/72

who rank the school first. It is therefore not surprising that the instances of justified envy are
largest amongst naive students, and particularly paid-lunch naifs. About 17% of paid-lunch
naifs remain unassigned while about 6% of paid-lunch sophisticates are unassigned. Further,
of the 27.6% paid-lunch naifs who are not assigned to their top choice, just under a third
have justified envy for another student’s assignment.

The aggregate welfare effects for naive students therefore depend on whether the benefits
of an increased likelihood of assignment at the top choice outweighs the lost priority at less
preferred options. Although the naive agents are making mistakes in the Cambridge mech-
anism, our comparison of assignments under the Deferred Acceptance mechanism to those
under the Cambridge mechanism in panel B of table X shows that only 23.2% of the naive
paid-lunch students prefer the Deferred Acceptance mechanism to the Cambridge mecha-
nism. This compares with 9.4% for paid-lunch sophisticates and less than 22% for free-lunch
naifs and free-lunch sophisticates. Overall, we find that the average naive student prefers
assignments under the Cambridge mechanism by an equivalent of 0.024 miles. Because so-
phisticates are optimally responding to incentives in their environment, their estimated value

for the assignments in the Cambridge mechanism is larger, at an equivalent of 0.094 miles.

8 Conclusion

We show that students in Cambridge respond to the strategic incentives in the mechanism.
Specifically, students who reside on either side of the boundary where proximity priority
changes have observably different ranking behavior. This finding weighs against the as-
sumption that agents are ranking schools in order of true preferences if proximity priority is
not a significant driver of residential choice.

Motivated by these results, we develop a general method for analyzing preferences from
reports made to a single unit assignment mechanism that may not be truthfully imple-
mentable. The approach views the choice of report as an optimal choice from available
assignment probabilities. We show that these probabilities can be consistently estimated
for a broad class of school choice mechanisms, including the Immediate Acceptance and the
Deferred Acceptance mechanisms. We consider models in which agents have biased beliefs
in addition to a rational expectations model. Further, we characterize the identified set of
preference distributions and propose a computationally tractable estimator.

Our empirical results indicate that treating preferences as truthful is likely to result in
biased estimates in markets where students face stiff competition for their preferred schools.
The stated preferences therefore exaggerate the fraction of students assigned to their true

top choice. We then evaluate changes in the design of the market, where we find that the
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typical student prefers the Cambridge mechanism’s assignment to the Deferred Acceptance
mechanism’s assignment by an equivalent of 0.08 miles. These losses are concentrated for
the paid-lunch students, for whom the scarcity of seats at desirable programs results in the
highest advantage from screening based on intensity of preferences. Free-lunch students, on
the other hand, face a less complex strategic environment in the Cambridge mechanism, and
the average student is close to indifferent between the two mechanisms.

Estimates from models in which agents have biased beliefs about assignment probabilities
have a less optimistic view on the cardinal screening benefits of the Cambridge mechanism.
A model with heterogeneously sophisticated agents finds that the Cambridge mechanism is
preferable to naive students because they gain priority at their top choice. Across specifi-
cations, we find relatively few instances of justified envy in the Cambridge mechanism due
to the significant majority of students who are assigned to their top choice in this school
district.

The relatively small welfare advantage of the Cambridge mechanism should be weighed
against potential costs and distributional consequences of strategizing. Quantifying these ef-
fects may be difficult without directly observing differences in information acquisition activ-
ities across mechanisms. More broadly, our results motivate further research on mechanisms
that use the intensity of student preferences in allocation more directly without some of the
potential costs of strategic behavior.

Our methods can be extended to many other settings. Within school choice systems, the
study of mechanisms that use finer priorities or exams is left for future research. Another
important setting where agents make similar trade-offs is when they apply to college. A
challenge in directly extending our approach is that colleges’ admission decisions may be
based on unobserved factors. Also closely related are multi-unit assignment mechanisms
such as course allocation mechanisms. These settings, however, will require a richer space of
preferences with complementarities over objects.

It is worth re-emphasizing that our approach to school assignment is predicated on two
important assumptions that deserve further research. First, we assume that families do
not make residential decisions in response to latent tastes for schools. Future research that
investigates potential sources of residential sorting in unified school districts and jointly
models residential and school choice would be valuable. Second, we infer beliefs based
on observed ranking behavior and assume optimal responses. Further work that directly
measures beliefs and ranking behavior in the field and develops appropriate models can help

us better understand how agents interact with assignment mechanisms.
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Table I: School Choice Mechanisms

Mechanism Manipulable Examples
Immediate Acceptance Y Barcelona!, Beijing?, Boston (pre 2005),
Charlotte-Mecklenberg®, Chicago (pre 2009),
Denver, Miami-Dade, Minneapolis,
Seattle (pre 1999 and post 2009),
Tampa-St. Petersburg.
Deferred Acceptance
w/ Truncated Lists Y New York City*, Ghanian Schools,
various districts in England (since mid ‘00s)
w/ Unrestricted Lists N Boston (post 2005), Seattle (1999-2008),
Amsterdam (post 2015)°
Serial Dictatorships
w/ Truncated Lists Y Chicago (2009 onwards)
First Preferences First Y various districts in England (before mid ‘00s)
Chinese Parallel Y Shanghai and several other Chinese provinces®
Cambridge Y Cambridge”
Pan London Admissions Y London®
Top Trading Cycles
w/ Truncated Lists Y New Orleans®
New Haven Mechanism Y New Haven'?

Notes: Source Table 1, Pathak and Sonmez (2008) unless otherwise stated. See several references therein
for details. Other sources: ! Calsamiglia and Guell (2017); 2He (2014); *Hastings et al. (2009);
4Abdulkadiroglu et al. (2009); 5 de Haan et al. (2016); °Chen and Kesten (2013); © “Controlled Choice
Plan” CPS, December 18, 2001; 8Pennell et al. (2006);
Yhttp://www.nola.com/education/index.ssf/2012/05/new_orleans_schools_say new_pu.html
accessed May 20, 2014. °Kapor et al. (2017)
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Table II: Cambridge Elementary Schools and Students
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Year 2004 2005 2006 2007 2008 Average
Panel A: District Characteristics
Schools 13 13 13 13 13 13
Programs 24 25 25 27 27 25.6
Seats 473 456 476 508 438 470
Students 412 432 397 457 431 426
Free/Reduced Lunch 32% 38% 37% 29% 32% 34%
Paid Lunch 68% 62% 63% 71% 68% 66%
Panel B: Student's Ethnicity
White 47% 47% 45% 49% 49% 47%
Black 27% 22% 24% 22% 23% 24%
Asian 17% 18% 15% 13% 18% 16%
Hispanic 9% 11% 10% 9% 9% 10%
Panel C: Language spoken at home
English 72% 73% 73% 78% 81% 76%
Spanish 3% 4% 4% 4% 3% 3%
Portuguese 0% 1% 1% 1% 1% 1%
Panel D: Distances (miles)
Closest School 0.43 0.67 0.43 0.47 0.45 0.49
Average School 1.91 1.93 1.93 1.93 1.89 1.92

Notes: Students participating in the January Kindergarten Lottery. Free/Reduced lunch based
on student's application for Federal lunch subsidy.
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Table IIT: Cambridge Elementary Schools and Students

Year 2004 2005 2006 2007 2008 Average
Panel A: Round of assignment
First 81% 84% 85% 83% 75% 82%
Second 8% 3% 4% 7% 5% 5%
Third 5% 2% 2% 2% 4% 3%
Unassigned 6% 11% 9% 8% 16% 10%
Panel B: Round of assignment: Paid Lunch Students
First 80% 77% 78% 79% 68% 76%
Second 5% 4% 5% 8% 5% 5%
Third 6% 3% 4% 2% 3% 4%
Unassigned 9% 16% 14% 11% 24% 15%
Panel C: Round of assignment: Free Lunch Students
First 85% 95% 98% 94% 89% 92%
Second 14% 1% 2% 4% 6% 5%
Third 2% 1% 0% 1% 4% 1%
Unassigned 0% 4% 0% 2% 1% 1%
Panel D: Number of Programs Ranked
One 2% 6% 9% 5% 12% 7%
Two 5% 6% 9% 7% 7% 7%
Three 93% 89% 82% 88% 81% 87%

Panel E: Students with Priority at Ranked Schools

Sibling Priority at 1st Choice 38% 34% 32% 24% 34% 32%
Sibling Priority at 2nd Choice 4% 3% 1% 2% 2% 2%
Sibling Priority at 3rd Choice 0% 2% 1% 1% 0% 1%
Proximity at 1st Choice 53% 52% 50% 51% 52% 51%
Proximity at 2nd Choice 42% 34% 37% 33% 37% 36%
Proximity at 3rd Choice 22% 24% 24% 25% 21% 23%
Panel F: Mean Distance (miles)
Ranked first 1.19 1.18 1.24 1.29 1.19 1.22
All ranked schools 1.37 1.41 1.38 1.40 1.34 1.38
Assigned School 1.10 1.01 1.07 1.12 0.92 1.04

Notes: Sibling and proximity priority as reported in the Cambridge Public School assignment files.
Students with older siblings enrolled in CPS receive priority at their sibling's school. Students also
receive proximity priority at their two closest schools. Percentages, where reported, are based on
the total number of applicants each year.
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Table IV: School Popularity and Competitiveness

g 5 8

§ oy £ o 3 o §_ = c % g 2

e & £ ¢ =2 § o § 53 = =2 3 g

= @] [
e 8 5 £ & 5 g2 § ° m & = 9
(O] S S
Panel A: All Students
Ranked First 60 56 53 47 37 34 33 31 25 18 16 12 5
Ranked Second 72 37 66 25 18 44 39 38 17 10 18 20 0
Ranked Third 56 33 46 31 19 44 37 32 20 15 16 15 0
Ranked Anywhere 192 120 166 102 75 113 114 105 64 48 54 51 6
Capacity 41 41 41 42 41 27 51 48 35 38 41 37 15
First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 1-R NR NR NR NR
Panel B: Paid Lunch Students
Ranked First 49 45 40 29 25 24 25 17 13 4 7 4 2
Ranked Second 60 28 56 14 12 29 23 27 10 3 6 6 0
Ranked Third 47 29 33 19 15 34 24 18 11 4 8 10 0
Ranked Anywhere 152 95 128 60 51 87 70 65 33 9 21 20 3
Capacity 29 27 27 29 41 18 36 34 29 35 34 27 15
First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 3-R NR NR NR NR
Panel C: Free Lunch Students

Ranked First 9 12 12 17 12 11 13 10 12 16 10 9 2
Ranked Second 13 8 7 11 5 12 17 12 8 8 14 11 0
Ranked Third 10 4 9 10 4 12 13 13 9 10 11 4 0
Ranked Anywhere 29 24 25 40 20 36 44 38 31 36 34 25 2
Capacity 25 23 26 26 41 17 33 31 19 18 26 24 15
First Rejected NR NR NR 1-R 1-R 2-P NR NR 1-R NR NR NR NR

Notes: Median number of applicants and seats over the years 2004-2008. First rejected is the round and
priority of the first rejected student, e.g., 1-P indicates that a student with proximity priority was rejected in
the first round. S: Sibling priority, PS: both proximity and sibling priority, R: regular/no prioirity, and NR: no
student was rejected in any round. Free/Reduced lunch based on student's application for Federal lunch
subsidy.
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Table V: Regression Discontinuity Estimates

. Non-
Baseline CoSn:: %%tg;ve Competitive Bﬂﬁﬁgg(r)y
School
Rank First Rank Second Rank Third Rank First Rank First Rank First
Panel A: All Students
Estimate -5.75% -2.38% -0.86% -7.27% -2.06% 0.07%
(0.013) (0.012) (0.011) (0.018) (0.019) (0.024)
t-statistic -4.54 -2.02 -0.80 -3.96 -1.10 0.03
Panel B: Paid Lunch Students
Estimate -7.44% -2.65% -0.68% -11.07% -1.22% 1.88%
(0.016) (0.014) (0.015) (0.025) (0.018) (0.031)
t-statistic -4.64 -1.90 -0.46 -4.45 -0.67 0.61
Panel C: Free Lunch Students
Estimate -3.55% -2.59% -3.15% -1.47% -5.23% -3.55%
(0.022) (0.021) (0.022) (0.031) (0.031) (0.033)
t-statistic -1.60 -1.22 -1.43 -0.47 -1.67 -1.06

Notes: Regression discontinuity estimates based bandwidth selection rule proposed by Imbens and Kalyaraman
(2011). All estimates use rankings by 2,128 students. Competitive schools are Graham & Parks, Haggerty,
Baldwin, Morse, Amigos, Cambridgeport and Tobin. Placebo boundary at the mid-point of the two-closest
schools. Standard errors clustered at the student level in parenthesis.
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Table XI: Estimated Mean Utilities using a Mixture Model

Mixture Model

All Students Paid Lunch Free Lunch
Panel A: Mean Utility
Graham Parks 1.19 1.53 0.52
[0.11] [0.12] [0.15]
Haggerty 1.27 1.53 0.76
[0.14] [0.13] [0.22]
Baldwin 1.25 1.45 0.84
[0.10] [0.10] [0.13]
Morse 0.74 0.68 0.86
[0.11] [0.11] [0.13]
Amigos -0.12 0.00 -0.38
[0.21] [0.19] [0.30]
Cambridgeport 0.56 0.68 0.31
[0.11] [0.11] [0.15]
King Open 0.48 0.57 0.32
[0.09] [0.10] [0.12]
Peabody 0.08 0.03 0.16
[0.13] [0.13] [0.16]
Tobin -0.45 -0.81 0.26
[0.16] [0.18] [0.23]
Flet Mayn -1.02 -1.52 -0.04
[0.24] [0.30] [0.18]
Kenn Long -0.07 -0.23 0.24
[0.14] [0.16] [0.15]
MLK -0.68 -0.97 -0.10
[0.14] [0.17] [0.15]
King Open Ola -3.23 -2.96 -3.77
[0.40] [0.43] [0.46]
Outside Option -1.11 -1.03 -1.26
[0.09] [0.09] [0.11]
Panel B: Agent Behavior
Fraction Naive 0.378 0.316
[0.0079] [0.0079]

Notes: Panel A presents the average estimated utility for each school,
normalizing the mean utility of the inside options to zero. Utilities calculated by
averaging the predicted utility given the non-distance covariates. Panel B reports
the estimated fraction of naive agents by free-lunch status. Bootstrap standard
errors in brackets.
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Figure I: Effect of Proximity Priority on Ranking Behavior
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Figure I: Effect of Proximity Priority on Ranking Behavior (cont’d)
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Notes: The graphs are bin-scatter plots (based on distance) with equally sized bins on either side of the
boundary. For each student, we construct a boundary distance, d;, based on her distance to the schooling
options. For a given school-student pair, the horizontal axis represents d;; — d;. The vertical axis is the
probability that a student ranks the school in the relevant distance bin. Range plots depict 95% confidence
intervals. Black plot points are based on the raw data, while the grey points control for school fixed effects.
Dashed lines represent local linear fits estimated on either side of the boundary based on bandwidth
selection rules recommended in Bowman and Azzalini (1997) (page 50). Panels (a) through (e) use the
average distance between the second and third closest schools as the boundary. A student is given
proximity priority at the schools to the left of the boundary and does not receive priority at schools to the
right. Competitive schools considered in panel (d) are Graham & Parks, Haggerty, Baldwin, Morse,
Amigos, Cambridgeport and Tobin. The remaining schools are considered non-competitive in panel (e).
Panel (f) considers only the two closest schools and uses the average distance between the closest and
second closest schools. Only the two schools where students have proximity priority are considered. Panels
(a), (d), (e) and (f) plot the probability that a school is ranked first. Panels (b) and (c) plot the
probability that a school is ranked second and third respectively. Distances as calculated using ArcGIS.
Graphs are qualitatively similar when using only students with consistent calculated and recorded

priorities. Details in data appendix.
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Figure II: A Revealed Preference Argument
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A Appendix

This appendix provides the main results for the paper. Appendices 7?7 to 7?7 appear online

and contain additional results and preliminaries cited here.

A.1 Testable Restrictions of Optimal Behavior

Our empirical methods are based on the assumption that agent behavior is optimal. There-
fore, if agents maximize their utility, they must pick lotteries that are extremal in the set of

lotteries with probability one because ties in expected utilities are non-generic:

Proposition A.1. Let the distribution of indirect utilities admit a density. If Lg is not an
extreme point of the convex hull of L, the set of utilities v such that v- Lr > v - Lg for all

Lg € L has measure zero.

Proof. If Ly is not an extreme point of the convex hull of £, then Cr = {v € R’ : VL €
L,v-(Lgr—L') > 0} has Lebesgue-measure zero. Since v admits a density, [ 1{v € Cr}dFy =
0. [

The result also indicates that the fraction of students with behavior that is not consistent
with optimal play can be identified. This suggests that the assumption that agents behave
optimally is testable. However, as we will show below, we should expect that observed
behavior can be rationalized as optimal in most assignment mechanisms.

Consider a mechanism in which reports correspond to rank-orders over the available
options. Therefore, a report is a function R : {1,..., K} — J such that (i) for all k, k" €
{1,...,K}, R(k) = R(K')#0=k=FK and (ii) R(k) =0 = R(K)=0if k' > k. Let R
be the space of such functions. Therefore, R is a (partial) rank-order list and R(k) denotes
the identity of the k-th ranked school. As discussed earlier, the mechanism produces lotteries
Lg; for each report submitted by an agent with priority type t. Let Lg; be the probability
that a student with priority type ¢ is assigned to program j when submitting R, where we

suppress the dependence on t for notational simplicity.

Definition 5. The set of lotteries L = {Lr € A’ : R € R} is rank-monotonic for priority
type t, if for all R, R € R, R_; € R_; and k < K we have that (R(1),...,R(k —1)) =
(R'(1),...,R(k—1)) implies

Lrrky = Lr rk)-

Further, L; is strictly rank-monotonic for priority-type t if the inequality above is
strict if R(k) # R'(k), and L gy > 0
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Rank-monotonicity is a natural condition that should be satisfied by many single-unit
assignment mechanisms. Specifically, it requires that the assignment probability at the k-
th ranked school does not depend on schools ranked below it, and that ranking a school
higher weakly increases a student’s chances of getting assigned to it. Under strict rank-
monotonicity, ranking a school higher strictly increases the assignment probability unless
this probability is zero.

We now show that in all strictly rank-monotonic ranking mechanisms, all agents that
pick a report that gives them a positive probability of assignment at each of their options

are behaving in a manner consistent with equilibrium play.52

Theorem A.1. Assume that L is strictly rank-monotonic. The report R € R corresponds

to an extremal lottery Lr € L if Lr rpy > 0 for all k such that ), _, Lrrey < 1.

Proof. Consider a report R € R such that for any k¥ = 1,2,.., K, >, Lrrey < 1 and
Lg gy > 0. Take any vector of coefficients A such that:

Ap = 0for every R e R

ZAR:1

> Mplp = Lg

ReR

We will show that A\g = 1. The proof follows by induction. Consider some report R
where R(1) # R(1). Strict rank-monotonicity and our assumption on R imply A5z = 0. We
have shown that for k = 1, R(k') # R(K') for any k' <k == A\ = 0. Suppose that this
statement is true for all I < k — 1 and that ) ,_, Lrrq) < 1. Take any report R where
R(l) # R(1) for some [ < k. If | < k, Ai = 0 by the inductive hypothesis. If [ = k, Strict
rank-monotonicity and our assumption on R imply A5z = 0. By induction, R(l) # R(l) and
ek Lrrpy <1 = Az =0.

Suppose that there is a j € S and R € R such that Lr; # Lz ;; we will show that
Ai = 0. Let k be the minimum k such that R(k) # R(k). Rank-monotonicity and the fact
that either Lr; > 0 or Ly, > 0 imply that

ZLR(Z),R = ZLR’R(” < 1.

I<k I<k

52Strict-rank monotonicity does not rule out that two different reports result in the same lottery, e.g.,
if Ry = (4,B,C) and Ry = (A, B, D) both result in assignment probabilities for A;B,C and D equal to
[¢A7 1-—- ¢Aa 070]
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Thus, our previous results imply that Az = 0.

]

The result implies that every report with non-zero assignment probabilities is rational-
izable as an optimal report for a priority type if the mechanism is strictly rank-monotonic.
Intuitively, this is the case because upgrading any school in the reported rank-order list
strictly increases the probability of assignment and there exists a utility vector for which
such a report is optimal.

Although optimal play is testable predictions, we do not develop a statistical test for the
null hypothesis that play is consistent with optimal behavior. The technical challenge arises
because failing to reject that the probability of ranking a sub-optimal report is zero is not
enough. Rejecting the null of optimal behavior amounts to showing that the probability is

indeed equal to zero.

A.2 Identification with Non-Simplicial Cones

In this section, we consider identification for the case when the cone Cg is not spanned by
linearly independent vectors. We need that there exists a report for which the normal cone

satisfies the following property:
Definition 6. A cone C is salient ifv e C — —v & C for all v # 0.

Our results require that the tails of the distribution of utilities are light. Formally, assume

that for some ¢ > 0, the density of u belongs to the set
Ge={g € L'(R’) : eTlg(u) € L'(R')},

where L' is the space of Lebesgue integrable functions.

Theorem A.2. Assume that g € G. and there is a lottery Lr such that Cr is a salient
convex cone with a non-empty interior. If ( = R’ then the distribution of utilities Fy (v|z')
18 identified from

hey (') = P(Lg € L]2").

Proof. For a fixed lottery Ly such that C'y is salient, define the linear operator A:
Ag(z) = / g(v+ z)dv.
Cr

We need to show that if A(¢’—¢”) = 0 a.e. then ¢'—¢” = 0 a.e. The proof is by contradiction.

65



ECTA13615_source [01/16 11:09] 67/72

Since the cone Cf is salient, its dual T has a nonempty interior. Let ¢ € int(Tg), with
|e| sufficiently small so that g.(u) = g(u)e? & € L', Note that 1{u € Crle 2" ¢ L! for
every ¢ € int(Tg) because (g, u) > 0.

Towards a contradiction, suppose that A(¢’ — ¢”) = 0 a.e. but |¢ — ¢”|; > 0. Since
¢ = R’, we have that for almost all z € R,

Ag(z) = e 22 / 1{v € Cr}e e 2mEvt2) g(y 4 2)dv = 0.

Since e=2™=#) > 0, Ag = 0 for almost all z <= fa,cR(g) - 9.(&) = 0, where fs,CR is the
Fourier Transform of f. o, () = 1{z € Cr}e ?™&*) and g, is the conjugate of the Fourier
Transform of g. (), both continuous functions in .'. Since g, is continuous, the set where
§. # 0 is open. Further, since |g|; > 0, the support of §. is non-empty. It follows that there
is an open Z, where §. is different from zero, and therefore, fe,CR (&) =0 for all £ € Z.. This
contradicts the fact that f&cR is an entire function, as shown in Lemma 77.

’U*Z1

Finally, since g(u) is known for almost all u, we have that Fy(v|z') = [~ g(u)du is

identified. O]

The condition that there exists a lottery Lg such that Cj is salient and has a non-empty
interior is satisfied for all school choice mechanisms in which (i) singleton rank-order lists
are allowed, (ii) the probability of assignment into the top-ranked school is non-zero and (iii)
the probability of assignment into unranked schools is zero. A rank-order list in which only
one school is ranked will then yield a salient cone with a non-empty interior.?3

The key insight is that Fourier transform of an exponential density restricted to any
salient cone is non-zero on any open set. We first show a preliminary which specializes

results in De Carli (1992, 2012).

A.3 Asymptotic Theory for RSP+ C Mechanisms

Our main results in this section derive the properties of our estimator L for L', defined in
equation (9) in the main text where the dependence of L on n is re-introduced in the notation
for clarity. We hold o unless explicitly conditioned on and treat the rational expectations
case. Results for the other forms of beliefs follow as a consequence. We start by introducing

some notation and definitions.

531t is easy to see that the two conditions imply that the convex hull of £ has a non-empty interior. Let Lz
be an extremal point in £. Because the convex hull of £ has a non-empty interior, there exists £ C £ such
that the matrix A = [Lgr — Lg,,...,Lr — Lg,] where each Lg, € £’ has full rank. Consider v # 0. Because
A is full rank, A’v # 0. Therefore, if v € Cg, then it must be that A’v has a strictly positive component. It
follows that —v & C'g. Hence, C'g is salient.
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Although the text stated our result for the uniform distribution, in our main results, we

will assume that the mechanism uses a general /non-degenerate distribution of tie-breakers.

Definition 7 (Non-degenerate tie-breakers). Fiz a function f(R,t,v). The tie-breaker is
non-degenerate if there exists some r > 0, such that for each p, p' € [0,1]7, j € {1,...,J},
and (R,t) e R x T,

Yw({v o AP, < fi(R tv) < p; Vi) < klp; — pjl.

Non-degenerate tie-breakers is a strengthening of strict preferences in Azevedo and Leshno
(2016). The assumption is straightforward to verify with knowledge of the mechanism. For
example, it is satisfied if a random number is used to break ties between multiple students
with the same priority type. It also allows for a situation in which a single tie-breaking
number that is used by all schools to break ties.

Given a sample (R;, t;,v;), for i € {1,...,n}, we can obtain an empirical measure n" =
1 Y iy O(Rytiws), Where O(g, 4, ., is the Dirac-delta measure on (R;,t;,1;). Given n" and a
cutoff vector p, we can define the fraction of students that would be assigned to each program

j as follows:

Dj(pln*) =n" <{fj(Ri,ti,V¢) > pj, GR0} () (R UL fir(Ri b, i) < Pj’]’)) -

J'#3

As a proof device, we will use a continuum economy. Let 1 be a probability measure over
Borel sets in R x T x [0, 1]”. If agents in the economy are using strategy o, then = m° x,,
where m?((R,t)) = fr(t) [ or(v,t)dFyr—. Analogously, define the fraction of students that

would be assigned to each program j in the continuum economy:

Dj(pln) =n <{fJ(Ri,ti, vi) > pj, GROY () (LR} U {fir(Ris tivi) < pj'})> . (1)
J'#i

It is straightforward to see that D;(p|n) is a continuum analog of D;(p|n™) because if
(R;,t;,v;) are drawn i.i.d. from 7, then E[D;(p|n™)] = D;(p|n).

Market clearing cutoffs (Definition 2) embody two sets of constraints, one set for the
programs and another for schools. It will be useful to combine them in a single set. Define
a J x S matrix A with entries a;; = 1 if s; = s, i.e., if program j belongs to school s,
and 0 otherwise. Here, S is the total number of schools. Let A = [I; A], where I; is the
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J-dimensional identity matrix, and
D(pln) = A'D(Apln) € (0,15, (12)

where p € [0,1]7F5. The function D stacks the program and school aggregates of the number
of students demanding assignment given the cutoffs p = Ap. In this notation, we have an

equivalent definition of market clearing cutoffs in terms of p and D:

Proposition A.2. The cutoffs p € [0,1]7 are market clearing cutoffs for D(p|n) € [0,1]7
and q € [0,1)7° if and only if for each k € JU S,

Dk(ﬂn) — qr <0, with equality if p, > 0, (13)

where p = Ap and p = [ps,ps] with pss = min{p, : s; = s} for s € {1,...,5} and
p7=p— Aps.

Proof. Tt’s easy to verify that the inequalities Dy (p|n) — gp < 0 are equivalent to those in
the definition for market clearing cutoffs. Therefore, we only need to verify that the set
of restrictions satisfied with equality coincide. For every j € J, p; > 0 if and only if
p; > min{p; : j° # j,s;y = s;}. Similarly, for every school s € S, pss > 0 if and only if
min{p; : s; = s} > 0. O

In what follows, we will therefore work with p instead of p. Finally, let p, be the sub-

vector of p with strictly positive elements and D, (p|n) be the corresponding subvector of

D(p|n).
We are now ready to state the main result of this section.

Theorem A.3. Suppose that ®" is a RSP+C mechanism that uses non-degenerate tie-
breakers, and for each k € JUS, qif — qx = o(1/+/n). For strategy o, consider n =m° X 7,.
If p* is the unique solution to equation (13), then for each each (R,t),

|Lpe— L, 5 0.
If, additionally, Vﬁifhr(ﬁ*m) is invertible, then

Vi(Lrs — Lh,) % TAVDA'Z
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where Z ~ N(0,Q), T = V,, [ DB (A5*)dy,,
vh— [ (V3 D (5 |m) o]
0 J

o (12 DY ([ o) L 20

The first part of the result shows that if a RSP+C mechanism uses non-degenerate tie-

breakers and the market-clearing cutoff is unique in the continuum economy, then Lisa
consistent estimator for L"™. Non-degeneracy of the tie-breaker is straightforward to verify
with knowledge of the mechanism. Appendix ?? derives conditions on D(p) and ¢ under
which uniqueness is guaranteed, and weaker conditions under which uniqueness is generically
guaranteed using results from Azevedo and Leshno (2016) and Berry et al. (2013).

Under additional smoothness conditions, the result also provides a limit distribution for
L. The expression shows that the variance of the estimator depends on the inherent sampling
variation in the observed reports and priority types. In addition, the estimator also has an
additional independent source of variance due to resampling. This variance decreases with

the number of resamples B used to construct the estimator.
Proof. We first define market clearing cutoffs p™ given that an agent of type t reports R. Let

n—1 4

/A

n' = %5(3,1:7”) +
and " ! = % S Okt With (R, ti, v;) drawn from 7. Define pf such that Dy (p|n™)—
gy < 0 with anality only if p; > 0. Note that p" exists by assumption since ®" is an RSP+C
mechanism.

We define similar objects for a bootstrap sample. Index a draw in the b-th bootstrap

sample from the empirical sample (Ri,t1),. .., (Rn,t,) with 4, and denote the bootstrap

empirical measure m;”" = —— ZZb 1 0(R;, t;,)- Since the distribution of v is known, we
can draw v;, directly from ~, for each ip- Therefore, ignoring the report of one agent, we can
define

1 n—1

n—1 _ —
M = n § :5(Rib7tz‘b,l’ib)’

=1
where v;, is a draw from =,, independently of all other random variables. Let 5 ' be such
that Dk(ﬂng_l) — qp <0 with equality only if ]52;1 > 0.

For each (R, t), consider the difference Ly, — L}, ;. Since " is and RSP+C mechanism,
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we have that

Lre— Ly, = BZ / DU (), [ / DO () dy,

nd]

We will derive the limit properties of the difference in the equation above using the limit

where p’,}_l = 121]5,?_1, and p" = Ap".

distributions of pz_l and p" and smoothness of the integals in the expressions.

By definition of D(p[n™), we have that sup, | D(p|n™)—D(p|n"")|| = O(1/n) and sup, || D(p|n,~

= O(1/n). The definition of D(p|n) and Lemma ?? implies that
D(p | 25 ) U
for each k € J US, sup, | Dy(p n) — Dy(p n™)| converges in probability to 0,
p

1 ~ -
(i) /n (E S D(Ap* i) — D(Aﬁ*|77)) converges in distribution to Z, and therefore,

1 ~ . n— ™ [ ~% d 1
Vn <§ ;D(po\m )= D(p ‘U)) — A'Z,
(iii) For any p* and any sequence of §,, decreasing to 0,

o VallD(@ln™) = D(pln) + D(5"|n) — D |n™)|| = 0p(1),
pfp* >0On
and likewise

sup v/l D(plny~t) — D(Bln) + D(@*[n) — DE [y~ = 0,(1).

lp—p*||<on

Since E[p"] = E[p"|m?] by definition and E[D(p|n")] = D(p|n), Lemma ?? applied to
D(p|n) and p* implies that

20,15 =5 =0

50

b

and
( Z A ”) L VDAZ,

where 5" and ! are respectively market clearing cutoffs for (D(p|n), ¢") and (D(p|n "), ¢").
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Pre-multiplying by A, we have that

P,

1
W a0 Y

b

by the triangle inequality, and because p™ is bounded. Further, by Slutsky’s theorem,
1 .
vn (E > ot E[p”]> 4 AVDA'Z.
b

Since the tie-breaker v is non-degenerate, 7, admits a density. Therefore, [ DWW (p)dry,

Ryt,v) (

is differentiable at every p since D! p) is an indicator for f(R,t,v) belonging to a hyper-

cube:

D‘gR’t’V)(p) - 1{fJ<R7t7 V) > p]ajRO}Hl{fJ'(R7ta V) < pjr or jRj/}

. 1
Hence, Lp, is a differentiable function of 5 >, pi . Therefore, by the Continuous Mapping
Theorem,

sup |[A/R7t — L%ﬂ 20
Rt
and by the Delta Method

Jn (im - ng;> 4 PAVDA'Z.
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