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Abstract

In many robot manipulation tasks, there is considerable uncertainty in the inertial
parameters of the manipulated objects. Such uncertainty can cause significant motion
inaccuracy or even control instability for fixed-parameter controllers. Adaptive control has
been advocated as a prorising approach to maintain good performance in the presence of
parameter uncertainty, but the nonlinear and multi-input multi-output nature of robot
dynamics makes proper adaptive control design difficult. In this thesis, an effective
adaptive controller is developed based on the exploitation of the physical properties of the
robot dynamics and the use of a Lyapunov-like analysis.

The basic adaptive robot controller is composed of a control law in the form of feedforward
plus PD, and an adaptation law driven by motion tracking error. The adaptive control
system is shown to be globally stable and the tracking errors of joint motion are shown to
converge to zero. The proposed adaptiive controlier is experimentally demonstrated on a
two-link high speed robot, with excellent performance achieved. A new method, called
composite adaptation, is also developed to improve the tracking-error-based adaptive
controller by incorporating the torque prediction error into the adaptation.

The adaptive controller, originally developed for free robot motion, is extended to
constrained motion, with the global stability and convergence properties retained. This is
achieved by modeling the interacting robots and environments involved in constrained
motion as an integrated mechanism described by a set of generalized coordinates and then
applying the adaptive control method on the dynamics of the integrated mechanism.
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Chapter 1

Introduction

Many manipulation tasks require accurate tracking of prespecified motion
trajectories. The well-known computed torque (inverse dynamics) method can be
used to control the robot motion in such tasks, provided that an accurate model of
the robot system dynamics is available. However, in many practical applications,
an accurate model of robot system is not available because there is considerable
uncertainty in the inertial parameters of the load or the tool manipuiated by the
robot hand. Such parameter uncertainty can lead to significant performance
degradation or even control instability for robots under computed-torque control.
This problem is especially severe for high-performance robots, such as the

increasingly popular direct-drive robots.

The objective of this thesis is to develop an adaptive control method which
allows stable, accurate and fast robot motion to be achieved in the presence of

parameter uncertainty. Specifically, we shall develop an adaptive tracking control



method for robot free motion, analytically study its theoretical propecties such as
stability and convergence, experimentally examine its performance and extend the

method to robot constrained motion.

In the first section of this chapter, we provide some background for the work in
the thesis. Section 1.2 gives a brief review of the work of other researchers on
adaptive robot control. Section 1.3 summarizes the contribution of the thesis and

section 1.4 provides an outline of the thesis.

1.1 Background

A discussion of some background topics allows us to gain a better

understanding and assessment of the results in the thesis.

1.1.1 Free Motion and Constrained Motion

Robot tasks can be classified by the kind of robot motion involved, either free
motion or constrained motion. Free motion occurs if there are no constraints on
the motion of the robot end-zffector. Examples of free motion tasks include pick-
and-place of objects, laser cutting and spot welding. Constrained motion occurs
when there are constraints on robot end-effectors during task execution. Examples
of constrained motion tasks include a robot pushing a cart or tumning a crank, and
multiple robots manipulating a common object. In this thesis, we shall study the

adaptive control problem in both types of robot motions.

The issue of parameter uncertainty arises in both free motion tasks and
constrained motion tasks. In free motion, the parameter uncertainty arises when a
robot grasps a load whose inertial parameters are not supplied by the computer

database or the human operator (Figure 1.1). Even though the load parameters can



be determined in principle by shaking the object for a while and collectiﬁg the
input-output data, and then estimating the parameters using a parameter estimator,
it is not efficient because it takes time to do the shaking and estimation. It is much
more desirable to pick up the load and move it away immediately, which, of
course, requires a controller capable of handling parameter uncertainty. In
constrained motion tasks, the inertial parameters of the environment, such as the
rotational inertia of a crank to be turned by the robot or the mass of a cart to be
pushed by a robot, may be unknown to the robot control system. For multi-robot
manipulations, the reason for using multiple robots is usually due to the large size
and large mass of the manipulated objects. For such objects, the centers of mass
and moments of inertia are hard to determine accurately and parameter uncertainty

can easily arise.

obstacles

moving belt

Figure 1-1: Tracking Control in the Presence of Parameter Uncertainty



1.1.2 Adaptive Control and Robust Control

Parameter uncertainty can cause severe problems for model-based controllers
like the computed-torque controller [Khosla and Kanade, 1986]. The accuracy of
the computed-torque controller is decreased by the presence of parameter
uncertainty. In fact, motion accuracy quickly decreases as the speed of robot
motion is increased, because the uncertain, and uncompensated, inertiai, Coriolis
and centripetal forces associated with the parameter uncertainty are dependent on
the motion speed in a quadratic fashion. A more serious problem, instability, may
occur if the speed of robot motion is high or/fand the amount of parameter

uncertainty is sufficiently large.

Two approaches have been advocated for dealing with the parameter
uncertainty problem. One is robust control, and the other is adaptive control. A
robust controller is usnally a model-based controller including a high gain term
for suppressing the effect of parameter uncertainty. An adaptive controller is
generally composed of a model-based control law with adjustable parameters, and
an adaptation law for tuning these parameters based on measured signals (Figure

1.2).

Two features of adaptive control make it more popular than the robust control
approach. The first is its learning ability: a robust controller repeats its errors in its
operations, while an adaptive controller improves its accuracy by extracting
parameter information from system signals.The second is its ease of use. A robust
controller usually requires the bounds of parameter uncertainty be known for
stable design, while an adaptive controller usually requires little or no a priori

parameter information. If an unexpected amount of parameter uncertainty is



desired / real
motion motion
_-r confroller F———=1 robot -
adaptation ;
control
parameters

Figure 1-2: Adaptive Robot Control System

present in a task, a robust controller may go unstable, while a2 well-designed
adaptive controller shows larger motion errors only in the initial adaptation

process, having little performance degradation in the long run.

1.1.3 Indirect-drive and Direct-drive Robots

Most current industrial robots belong to the category of indirect robots, which
use gears or belts to drive the links. The gears and belts not only amplify the
effective torque delivered to the links by the motors located at the robot base, but
also reduce the nonlinear dynamic effects of load reflected ai the joints by a large
factor of 1/r2 or 1/r, where r is the gear ratio. Since the gear ratio r is normally a
large number (usually between 20-200), the dynamic forces associated with the
load are usually dominated by the inertia forces of the motor shafts. This means
that the parameter uncertainty associated with the load and links has relatively
little impact to robot dynamics and control. Very often, simple controllers like PID

controllers can effectively control such robots in tasks of relatively low speeds.

However, there is an increasing interest in direct-drive robots which have high-



torque motors directly coupled to the robot joints. Such robots are nppropri'ute for
tasks requiring high speed and/or high accuracy because, unlike indirect drive
robots, they have high mechanical stiffness, negligible backlash and low friction.
Some direct-drive robots have been put into practical industrial use, such as the
Adept-1 and Adept-2 robots which are manufactured by Adept Technologies and
commonly used in precise assembly of electronic components. However, the
performance of direct-drive robots is very sensitive to load parameter uncertainty
because of the lack of gear reduction [Asada and Takeyama, 1983). Unless the
parameter sensitivity problem can be effectively handled, the potential of direct-
drive robots in terms of motion speed and motion accuracy cannot be well

exploited.

Though the adaptive control approach can be used for both direct-drive and
indirect-drive robots in the same way, it is most useful for direct drive robots or
robots with small transmission ratios such as cable-driven manipulator arms. The
usefulness of adaptive controllers for indirect-drive robots is limited by the
relative insensitivity of indirect-drive robots to load uncertainty and the difficulty

in modeling the friction and flexibility at the gear or belt transmissions.
1.1.4 Adaptive Control Literature

The existing adaptive control literature mainly deals with linear, time-invariant,
single-input single output plants [Astrom and Wittenmark, 1989; Narendra and
Annaswamy, 1989). There are few results for the adaptive control of linear multi-
input multi-output plants. There are essentially no results on adaptive control of
nonlinear multi-input multi-output plants. Since robot dynamics is nonlinear and
multi-input multi-output in nature, the existing adaptive control literature offers no

meaningful solution for the problem of adaptive robot control. Fortunately, robot



dynamics have some unique properties, such as the positive definiteness of inertia
matrix and the possibility of linear parametrization, which allows us to develop a

theoretically eiegant adaptive controller in this thesis.

There are mainly two approaches in the adaptive control literature. One
approach is the so called model-reference adaptive control (MRAC), and the other
is the so called self-tuning (ST) regulators. In MRAC system, a reference model is
used to provide the ideal response of the adaptive control system, and the
adaptation law adjusts the controller parameters in such a way that the tracking
error between the plant output and the model reference output is reduced to zero.
Self-tuning control, on the other hand, is simply obtained by coupling a model-
based control law and an on-line estimator (which seeks for parameters that fit the
plant input and output ata). The adaptive controller to be developed in this thesis
basically falls into the category of the MRAC approach. But it is different from

the standard MRAC systems in that no reference model is actually used.
1.1.5 Desired Properties of Adaptive Robot Controllers

Whether an adaptive robot controller is good is determined by a number of

factors. The major factors can be briefly described as follows:

e stability: because an adaptive robot control system is nonlinear, we can

address the stability issue in a local sense or a global sense.

e convergence: There are two types of convergence issues in adaptive robot
control, the convergence of the tracking errors and the convergence of the

estimated (or adjusted) parameters.

® accuracy: Accuracy is one of the most important indicators of contioller

performance. In order to demonstrate the usefulness of an adaptive controller, one



must show that it leads to better accuracy than non-adaptive controllers.

° robustness: Since there are many non-parametric uncertainties which exist in
real robot, but are neglected in dynamic modeling and control design, the adaptive
controller must be reasonably robust to them, so that it can work in practice, not

just in simulations based on the idealized robot model.

e computational efficiency: Since robots under adaptive control are supposed
to perform high speed motion, the control system should have sufficiently high
sampling rate. This implies that the adaptive controller should be computationally
reasonable. Specifically, the inversion of the robot inertia matrix (a 6x6 matrix for
a 6-DOF robot) should be avoided because its computation with a frequency of

several hundred hertz is quite excessive for present-day microprocessors.

Since these requirements are often conflicting, a good compromise should be

sought in developing a practically effective adaptive robot controller.
1.2 Review of Adaptive Robot Control Literature

The subject of adaptive robot control has a short history but a rich literature.
One of the first studies on adaptive robot control was made by [Dubowsky and
DesForges, 1979]. Their method was based on the model-reference adaptive
control approach, with a steepest descent adaptation law for adjusting the
controller parameters. However, the research work assumed the robot dynamics to
be linear, time-invariant, and decoupled, so that the adaptive control methods in
adaptive control literature could be applied. Another early study was made by
[Tomizuka and Horowitz, 1983]. In their scheme, they assumed the robot inertia to
be time-invariant, factored the additional nonlinear terms into a time-invariant

quadratic form of the joint velocities and considered the gravity/friction torques to



be known.

In the next few years, a large number of researchers [e.g. Takegaki and
Arimoto, 1981; I.;eninger and Wang, 1982; Guo and Koivo 1984; Koditschek,
1984; Lee and Lee, 1984, Landau, 1985; Sundareshan and Koenig; Choi et al,
1986] made important contributions by proposing adaptive robot controllers from
various perspectives (discrete-time or continuous time, MRAC or self-tuning,
centralized or decentralized). Such adaptive controllers were all based on
approximations of one kind or another on the robot dynamics mode!, such as local
linearization of robot dynamics, time-invariance of inertia matrix and decoupling
of joint motion. As a result, only local stability could be established for such
adaptive controllers. Since our study in the thesis does not directly rely on the
results in these researchers, they are not reviewed in detail here. Interested readers

are referred to the relatively complete surveys by [Landau, 1985; Hsia, 1986].

Around the mid-1980’s, some researchers started to design adaptive controllers
based on the nonlinear and multi-input multi-cutput model of robot dynamics.
The results belong to one of the two general categories: adaptive high-gain
suppression of the nonlinearities and adaptive full-dynamics cancellation. The first
type includes the notable contributions by [Balestrino, DeMaria and Sciavicco,
1984; Nicosia and Tomei, 1984; Singh 1985; Lim and Eslami, 1985, Seraji, 1987).
These adaptive controllers are similar in that they employ tracking error feedback
with adaptive gains which grow until it is large enough to suppress the non-
linearities. One drawback of "high-gain" feedback is the possibility of actuator
saturation, whose effects are hard to predict. Another major drawback for many of
these schemes is that the control law may chatter, which may lead to the

undesirable excitation of unmodeled dynamics.
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The second type, the adaptive full-dynamics cancellation schemes, is moiivated
by the desire of developing adaptive versions of the popular computed-torque
method which performs well if robot parameters are accurately known. The
distinguishing feature of these adaptive controllers is the utilization of the linear
parametrization property of the robot dynamics. The first work in this direction
was presented by [Craig, et al, 1986]. The resulting adaptive scheme contains a
computed-torque controller and a MRAC adaptation law for adjusting the
controller parameters. The most important contribution of this work lies in its
introduction of the linear parametrization property of robot dynamics into adaptive
robot control design. The adaptive controller, though having the nice computed-
torque control law, has some severe problems. One problem is the need to
compute the inversion of the estimated inertia matrix. This is undesirable because
not only the invertibility of this matrix is hard to guarantee, but also the
computational burden is too excessive for high sampling rate implementation.
Another problem is the requirement of the joint acceleration measurement in the
implementation of the adaptation law. Because joint accelerations usually cannot
be directly measured by sensors, they have to be obtained by the numerical
differentiation of the joint tachometer signals. The noise in the obtained
accelerations tends to cause inaccuracy and drift in the estimated parameters

[Armstrong, 1987].

Ancther notable adaptive controller in the adaptive computed torque category
was developed in [Middleton and Goodwin, 1986). The controller was obtained by
a self-tuning approach, i.e., directly coupling a least-square type paraineter
estimator with a computed torque controller. The adaptive controller, though
possessing the desirable theoretical property of global tracking convergence, also

suffers the computational drawback of requiring the inversion of estimated inetia
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matrix. One notable contribution in this work is that it avoids the requirerﬁent of
joint acceleration measurement by filtering the joint torque before using it for

parameter estimation.

Adaptive robot control is still an actively studied area, with recent work
represented by [Slotine and Li, 1986, 1987a,b,cd, 1988, 1989; Koditschek 1987;
Hsu et al, 1987, Li and Slotine, 1987, 1988, 1989a,b; Sadegh and Horowitz 1987,
Bayard and Wen 1987; Canudas et al, 1988; Spong, 1990].

1.3 Contributions

As seen in the above review, the existing work on adaptive control either relies
on simplifying approxiinations on robot dynamics or requires excessive
computation. The basic contribution of this thesis is the development of an
adaptive control method for robot motion which avoids both of these problems.

Specifically, the following results have been obtained:

® an adaptive controller for robot free motion is derived based on physical
properties of robot dynamics and a Lyapunov-like analysis. Compared with the
previous adaptive controllers by [Craig, et al, 1986; Middleton and Goodwin,
1986]], it is computationally efficient because the controlier does not require the
inversion of the estimated inertia matrix and can be implemented by a modified

version of the recursive Newton-Euler method.

® The theoretical and practical properties of this adaptive controller are
extensively examined. It is shown to have global stability and global tracking error
convergence. The condition for convergence of estimated parameters is found to
be a sufficient richness or persistent excitation condition on the desired motion

trajectories. The adaptive controller is experimentally implemented on a two-DOF
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high speed robot to study its stability, accuracy and robustness, with good results

obtained.

» Alternative techniques of parameter adaptation and parameter estimation are
proposed. A novel technique of using simultaneously the motion tracking errors
and torque prediction errors for adaptation, called composite adaptation, is
proposed, leading to improved adaptive control performance. Two techniques are
also proposed for improving on-line parameter estimation of load parameters,
avoiding the possible "gain explosion” problem in the exponentially-forgetting

least-square method.

® The adaptive controllers developed for free motion control are extended to
control of constrained motion. This is achieved by using a so called integrated
modeling approach foi the constrained robot system. The desirable properties such
as global stability and global tracking convergence are retained. The integrated
modeling concept is believed to be also useful for non-adaptive constrained

motion control.
1.4 Organization of the Thesis

This thesis addresses a diverse variety of topics. The adopted form of
presentation is motivated by two considerations: readability and insights. First, the
results are presented in such a way that they can be understood by robotics
researchers with little or no knowledge of adaptive control literature. Secondly, a
bottom-up style of development (from one DOF joint space adaptive control to
multiple-DOF control in free and constrained motions), instead of top-down
approach, has been used to foster insights into ihe adaptive robot control systems.

This means that we start from adaptive control of a single-link robot, then extend



the results to multi-link robots and to constrained motion control.

Chapter 2 prepares us for the development of the adaptive robot control systems
by providing the unique properties of the robot dynamic model and the
mathematical tools for later analysis. In section 2.4, an adaptive controller is
developed for a simple one-DOF robot (essentially a inass) to highlight the
concepts and techniques which will be involved in later design for general robots.
The procedure used to derive this adaptive controller is formalized into a so calied
Lyapunov-like design method to facilitate the search of appropriate adaptive

controllers in the next chapters.

Chapter 3 provides the most important results of the thesis, the derivation of an
adaptive joint-space controller for robot free motion, and the proof of its tracking
convergence. Some simulations with a 2-DOF manipulator are included to
illustrate the performance of the ad.., ‘ive controller. At the end of the chapter, a
Cartesian-space version of the adaptive controller is derived. Chapter 4 provides
further understanding of the algorithm by studying the conditions for the

convergence of the estimated parameters.

Chapter 5 experimentally examines the performance of the adaptive controller
on a 2-DOF manipulator. The importance of the experimental implementation lies
in the fact that the experimental results reflect the attainable performance of the
adaptive controller in practical applications, since the non-parametric uncertainties
(such as motor dynamics, link flexibility, efc) neglected in the adaptive control
design and computer simulation are present in the hardware implementations.
Chapter 6 discusses various on-line parameter estimators for t estimating the load
parameters. Chapter 7 proposes and analyzes a novel technique, called composite

adaptation, for improving the adaptive control performance.
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Chapter 8 extends the previous adaptive controller to robot control in
coustrained motion. This is made possible by using a so-called integrated
approach for robot modeling. With such a modeling perspective, one can actually
treat the constrained motion control and free motion control in a unified approach
and essentially all results from free motion control, adaptive or not, are all

applicable to constrained motion control.



Chapter 2

Preliminaries

The development of the adaptive control method in this thesis is based on the
unique physical properties of robot dynamic model, and on a mathematical tool
called Barbalat’s lemma. It is the objective of this chapter to briefly review these
materials. Because the next chapter, devoted to the adaptive control of robots with
arbitrary number of joints, is mathematically complicated, the adaptive control
design for a simple one-link robot is discussed at the end of this chapter as a

simple illustration of the concepts and techniques to be used in the next chapter.
2.1 Dynamic Model of Robot Manipulators

Let us briefly derive the dynamic model of a n-joint manipulator. In the
following derivation and throughout the thesis, we make the fundamental
assumption that the links and the joints of the robot are rigid. The robots can have

revolute joints, translational joints or a mixture of them.
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Given an open-chain manipulator with n joints, ‘ts position can be described by
the positions of its n joints, i.e., the n joint positions constitute the generalized
coordinates of the manipulator dynamics, normally referred to as the joint
coordinates. Let the n joint positions q;(t), g,(t), ..., q,(t) be contained in the nx1

vector ¢. Then the total kinetic energy of the manipulator can be expressed as

= %ﬁTH(Q)fI

where q is the joint velocity vector and H(q) the nxn inertia matrix of the robot.
Note that the inertia matrix of the manipulator depends on the Joint position ¢, as
is consistent with our physical insights (a stretched arm has a larger inertia than a
folded arm). The potential energy G associated with the robot links is a function of
the manipulator position q, which can be denoted by

G =G(q)
The Lagragian of this system is thus

1. :
L=T-G=3 qTH(g) ¢ - G(q)

Now using Lagrangian equations,

we can obtain the dynamic equations of the manipulator

HG+b(q.q)+glq =1 (2-1)

where T is the joint actuator torque vector, g(q) is the gravitational torque

vector, i.e.,
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G
g(Q)-ﬁ

and the nx1 vector b contains the Coriolis and centripetal torques of the robot
links, defined by

o s OT
b(q.q)=HG-—
dq
Now let us examine the vector b(q, ¢) more closely. First, we note that each
component of b is a quadratic function of the joint velocity components ¢; (i=1, 2

» --» M). This can be seen be noting that the ith component of b is

jm=nkmn
b (q q) Z Jq_, _qTﬂq = Z Z h,,kqjqk (2_2)

where the coefficiens hijk are functions of only the joint positions and verify

P _l.aHJ"
ljk aqk 2 aq'

Secondly, we note that the quadratic form in (2-2) implies that b; can be written
as the product of a Ixn vector ¢,(q, ) and the velocity vector qie, b;=cq.
Therefore, the vector b(q, 4) can be written as the product of a matrix C and the

velocity vector q, i.e.,
where C is the matrix obtained by stacking up the row vectors C;.

Thirdly, we note that there are many choices of C which can achieve the kind
of decomposition in (2-3). For example, a quadratic  function
by =42 +2§193+ 3,2 can comespond to either ¢y =091, (@ +2q)] or
¢ =[(g + 42), (41 + ¢2)]. A particularly interesting choice of the matrix C for
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(2-3) is given by

lﬂaH'--. 1 aHk aHk
C..=.. _". + - .___’.—_"
y 2;{ qqu 22:{( qj aq‘) k
1o OHy dH,

(2-4)

This choice of C satisties (2-3) because, by reindexing, we can rewrite b in

(2-3) as

b.= l ; i__aHuqé +lii(___aHik—alijk)q q
! 2;&-! 9k 7k 2I=rlJ-I aq] aq, k%

The motivation of this choice is the existence of a nice property associated with
it, as will be discussed soon. In this thesis, we will concentrate on the following

form of robot dynamic model
H@4+C@q.q)q+g(@ =7 (2-5)
where the matrix C is defined by (2-4).

In the above equation, friction forces are neglected. But they can be easily
incorporated into the above model, simply as an extra term on the left side of the
above equation. Usually friction forces are quite difficult to model accurately.
Possible models of the friction are Coulomb friction, viscous friction and stiction,
or their combinations. Coulomb friction has the form of f; = — a;sgn(g), where
f.; is the Coulomb friction force on the ith joint, o is the coefficient of the
friction, and sgn[] is the sign function. Though the Coulomb coefficient is,
according to classic mechanics theory, dependent on the contact force between the
joint and the link, and thus on the robot configuration q and other things, it is

usually assumed to be constant in manipulator control for simplicity. Viscous
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friction is simply a force linear in terms of joint velocity. Stiction is a force. which
occurs at zero velocity and disappears at nonzero velocity. In practice, which
friction model to use depends on the friction situation for the particular robot. If
the friction forces are modeled by Coulumb and/or viscous forms, the adaptive
control design follows an identical procedure as will be seen. Therefore, for
simplicity of notation, we will assume the friction to be absent in the rest of this

chapter.
2.2 Properties of Robot Dynamic Model

Now let us discuss a few important properties of the robot model in (2-5).

These properties wiil be instrumental in the development in the later chapters.

A. The Uniform Positive Definiteness of Inertia Matrix H

The first crucial property associated with the above dynamic model is that the

inertia matrix H(q) is uniformly positive definite, i.e., for all q in robot workspace,

H{q)2 al (2-6)

where o is a positive constant and I the identity matrix with the same

dimension as H.

The positive definiteness of H is an inherent physical property of the
mechanical system. It stems from the physical fact that the kinetic energy of a
manipulator (1/2) T H(q) § must be larger than zero for any joint position q and
any joint velocity q. The positive definiteness of H can thus be simply proven
using the above physical fact and the following mathematical theorem: a
symmetric matrix M is positive definite if and only if its quadratic form xT M x is

positive for any nonzero vector x.
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The uniformity of the positive definiteness indicates that the manipulat(;r must
have a non-zero minimal inertia in its workspace. This part of the property is not
8o obvious. To show this, we can use the technique of contradiction. Assume that
such a nonzero o does not exist. Then, there must be a positicn in the workspace
where the inertia matrix has a zero eigenvalue because the points in the workspace
constitute a closed set. Let x; be the eigenvector associated with this zero
eigenvalue. Then, if the robot arm moves with a unit velocity xg/lixgll, its kinetic
energy is zero. Since this is physically impossible, a positive o must exist so that

(2-6) is satisfied.
C. The Linear Parametrization of the Manipulator Dynamics

Another property crucial to our later adaptive control design is that the robot
dynamics equation is linearly parametrizable. The linear parametrizability is
proven in [Khosla and Kanade, 1985; An, et al., 1985], and it means that each of
the individual terms of the left hand side of {2-3), and therefore the whole robot
dynamics, is linear in terms of a suitably selected set of equivalent inertial

parameters. That is, we can decompose the dynamic forces into

H(q)§ = Yy(q,4)a (2-7a)
C(q.9)q=Y(q,9)a (2-7b)
2(q) =Ys(q)a (2-7¢)

where a is a vector of constant equivalent inertial parumeters and Yy, Y and
Yg are matrices which are dependent on the robot motion quantities but
independent of the paramters in a. The property can also be proven by showing
that the inertia matrix H can be made linea: in terms of a set of constant

parameters.
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Usually 10 equivalent parameters are associated with a rigid-body ohjcét. One
pararneter corresponds to the mass of the object, three to the product of the mass

and the coordinates of the center of the mass, and six to the moments of inertia.
D. the Skew-Symmetry of the matrix (H -20)

Furthermore, earlier researchers [Takegaki and Arimoto, 1981; Koditschek,
1984] pointed out that the matrices H and C in (2-5) are not independent.
Aciually, with the matrix C defined by (2-4), a third property of the robot
dynamics is that the matrix (fl — 2C) is skew-symmetric. This can be shown by
noting that

~ac,= 3120 OHy OJHy .
1¢
zl dq; dg; Ik

and therefore,
H;=2Cy=~[H; - 2C;]
or simply written as
H-2C=-(H-2CT) (2-8)
The skew-symmetry property implies that for any nx1 vector x
xXI'(1-2C)x=0 (2-9)
This can be shown by noting that (2-8) implies that
xT[H-2C]x=-xT[H-2CT|x =-xT[H-2C]x
The skew-symmetry property is not fundamental for the development of the

globally convergent adaptive controller, but using it makes the resulting adaptive

controller computationally-efficient, as can be seen later.
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D. a 2-link Manipulator Example

To illustrate the above properties of robot dynamics, let us consider the

simple two-link manipulator shown in Figure 2.1.

S S S S S

Figure 2-1: A two-link manipulator

With a motor at each joint, the dynamics of this manipulator can be obtained

from Lagragian equations as

Hy Hyp || gy ,| ~ha2 —hai—hg, "11:l+|:8|J=[ﬁ:, 2-10)
Hy  Hy || 42 hq, 0 92| 8] |

where
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Hyp=myl 2+ 1+ myl12 + 1 2 + 21 le,C05q3] +1,
Hyp=ml 2+1,

Hy;=Hy =myl; Iczcosq:._ + mzlcz2 +1,

h=myl, lczsinqz

81=m lclgcosql + ng[lczcos(ql +qp) +1cosq,]
82=myl; gcos(qy + q))

Let us discuss the property of linear parametrization first. Obviously, the robot
dynamics is not linear in terms of the physical inertial pazameters, as reflected in
the terms like m, ’clz- However, if we let a be the vector composed of the

following elements,
aG=m
02 = lecz
a3 = Il + mllclz
a,=1,+m,l. 2
4=l +myic,

one can show that each term on the ieft-hand side of (2-10) is linear in terms of

the equivalent inertia paremeters in a. Specifically
Hyy=ay+a,+ alll2 +2a,l cosq,
Hy=a,
le = H21 = 02 ’1 COSQz + a4

Note that /; and /, are kinematic parameters and such parameters are assumed
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to be known in adaptive robot control. The above expressions indicate that the
inertia torque terms are linear in terms of a. It is simple to do the same for the

other terms.

The four equivalent parameters in a also have physical interpretations. The first
parameter is the mass of the second link. The second parameter is the product of
the mass and the location of the mass center. The third parameter is the inertia of
the first link around the first joint and the fourth parameter is the inertia of the
second link around the second joint. Note that, in the above example, the number
of equivalent parameters is 4 while the number of original physical inertial
parameters is 6 (three parameters for each link, i.e., mass, center of mass, momen
of inertia). This is actually true in general for robots of arbitrary number of links.
This is to say that there are fewer equivalent parameters than physical parameters
and therefore the physical parameters cannot be determined from the equivalent
parameters, i.e., they are unidentifiable. But this does not cause any problems in
control. The reason is that, in computing control inputs, we simply use the
equivalent parameters or their estimated values without any concern about what

the physical inertia parameters are.

Now let us check the uniform positive definiteness of i. The determinant of H

is
H{1Hyy - Hip2 = aza, + a, a4l - ay2a,2cos?q,
Since

ayazl? - ay22cosq,

=mylp 12+ my?1, 21,2(1 - cosqy)

we have
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Hy Hy - H\;? 2 aya,

i.e., the determinant of the 2x2 inertia matrix is strictly positive. This and the

positive nature of H, indicate the uniform positive definiteness of H.

Finally, we note that the matrix H - 2C is given by

. -2G, —-hg, 24, 2ha,+hg
f-2C= "12 ) . 'p) q,thqy
~hg, O ~2hg; O

0 2hq, + hé,
-2hgy-hi, 0

This is obviously a skew-symmetric matrix.
2.3 Mathematical Tools

In this section, we shall describe the important mathematical tool in this thesis,
Barbalat’s lemma. Its application to adaptive control design is illustrated in the

next section.
2.3.1 Barbalat’s lemma

Barbalat’s lemma is a mathematical result concerning the asymptotic properties
of scalar functions. It was introduced into the area of control by Popov in his book

on hyperstability [Popov, 1976]. He stated Barbalat's lemma as follows:

Lemma 2.1 (Barbalat’s Lemma): If a real function f{t) is uniformly continuous
Sor all t 2 0 and if the limit of the integral J' o’ﬂr) dr as t tends to infinity exists and

is a finite number, then
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lim ) -5 0
t— oo
By uniform continuity, we mean that for any positive number € > 0, there exists

3>0, such that for all t; and t, satisfying |r, — ;] < 3,

Rey) —fedl<e

This lemma can be given geometrical interpretation in terms of the plane with ¢
as horizontal cocrdinate and f(t) as vertical coordinate, as shown in Figure 2.2, It
means that if the curve f(t) is reasonably smooth (implied by the uniform
continuity of f) and the total area between the f(t) curve and the positive
horizontal axis is finite, the curve must converge to zero. Note that the function

f(t) does not have to be of a constant sign.

i) b

Figure 2-2: Geometrical Interpretation of Barbalat’s Lemma

Becaus: of the importance of this lemma in this thesis, let us provide a brief

proof for it.

Proof of Barbalat’s lemma: This lemma can be proven using the method of
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contradiction. The proof is based on the following property of a com‘/ergem
function: if a function g(t) converges to a finite limit, then the difference
8(t+m) — g(#), with 1 being a fixed positive constant must converge to zero as

— ©9. In the following proof, we denote

. fryar = g0

We shall show that there exists a positive number 7 such that g(¢ + n) — g()

does not converge to zero. Note that

8+ -g0)=[""A) dr

No'v assume that f{r) does not approach zero as t — 00, This implies that there
exists at least one positive number R, suchthat for VT >0, 3¢>T, If()2 R,.
Based on this, one can find an infinite sequence of t's in the following way:

Suppose we first choose Ty =1 and we find t; which satisfies t, >T and
el 2 Ry
By choosing T, = 2 + t;, we shall be able to find t such that tp) 2 T, and
el 2 Ry

Continuing this process, we can find t3, t4, .... It is important to note that

t;—> > asi— 00,

Since f{t) is assumed to be uniformly continuous, 3 > 0, such that for any ¢

and r satisfying I —"'l <n
’ 12 Ro
IRt )-fe )< 5

This implies that for any ¢ within the n-neigborhood of ¢; (i.e., such that
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lt—ti<n)
RD
) >—
) 3
Hence, for all 4,

t#n RO
g6+ -gy-m= [ fndi=22n> R,

Since #; — o ag ¢ —00, this implies that g(t) does not converge to a limit, a

contradiction to the assumption in the lemma statement. J

Two facts about the uniform continuity of functions are very useful and
summarized into the following lemma.

Lemma 2.2 (Uniform Continuity Lemma): A Junction g(t) is uniformly
continuous if its derivative é(t) is vounded. The product of two uniformly

continuous and bounded functions is uniformly continuous.
Proof: To prove the first part, let us use the middle-value theorem as follows

8(t)) - g(t) = g(§) (¢, - 1)

'vhere t, and t; are arbitrary values and { is a value between them.
Boundedness of the derivative and the definition of uniform continuity

immediately indicate the uniform continuity of the function f(0).

To show that the produci of uniformly continuous and bounded functions f(t)

and g(t) is also uniformly continuous, let us note

Rex)g(ty) - fit)) 8(t1) = g(tm) [Rey) - fit;) 1 + Aey) [g(ty) - gt}

Let the bounds of f(t) and g(t) be My and Mg. For any €>0, there must exist a
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positive constant 8; such that for any t, and t, satisfying |r, — Hl< Sf

- £
Aty ﬂtl)l(er

since f(t) is uniformly continuous. Similarly, there exists a positive constant Sg

such that Jt, ~ 1| <Sg implies that

- _€_
i8(t) — g(eh < M,

If the smaller of 8¢ and 88 is taken to be 9, then for any t; and t, satisfying
Ity — ;] <&

A1) 8(8x) ~ Aey) 8t < IgCIAL) - fr )] + IRe) gty - g(epl <e
This indicates the uniform continuity of the function fOg®. ()

The intuitive meaning of the lemma is clear: a function with bounded slope is

smooth and the product of two smooth and bounded functions must be smooth.

2.3.2 Useful Corollaries of Barbalat’s lemma

It is often inconvenient to use the Barbalat’s lemma for control design. The
following corollary of the Barbalat's is much more convenient to use because it
allows us to use a design procedure analogous to that of Lyapunov’s direct
method. This corollary is sufficient for most problems solvable by Barbalat's

lemma, including the ones in this thesis.

Coroliary 2.1 (Lyapunov-like Corollary): If a real function V(t) (r> 0) satisfies

the following conditions

V() 20;
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V() S O;
V(t) is uniformly continuous,
then V(t)—» 0, as t—0.

One easily proves this corollary by regarding V(i) as the function £(t) in the
statement of Barbalat’s lemma and noting that the monotonic decrease of the
lower bounded function V(t) implies V(t) convergence to a limit smaller than

V(0). Since
[ V) dr = V(©) - V(0)
the convergence of V(t) implies that the integral tends to a finite limit.

Geometrically, this corollary has a very simple interpretation, as shown in
Figure 2.3: the slope of & lower bounded and monotonicaily decreasing curve

must converge to zero if the slope is smooth.

f(t)

!

Figure 2-3: A Non-Negative, Decreasing and Smooth Function
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The seemingly superfluous condition of uniform continuity is necessary to draw
the convergence conclusion, as reflected in the counterexample in Figure 2.4. The
function V in Figure 2.4(a) is ncn-negative and its derivative shown in Figure
2.4(b) is seen to be non-positive, but the slope V does not go to zero. This occurs

because V is not uniformly continuous, i.e., V is not smooth.

L VO b V()

\\\.

(a) (b)

Figure 2-4: A function with not-uniformly-continuous derivative

Sometimes the following corollary of Barbalat’s lemma is also useful.
Corollary 2.2 (L2 Corollary): If the real function f(t) is L2, i.e.,

j:’ Pr)dr<oo
and f2 is uniformly continuous, then f(t) =0 as t— ©.

This corollary can be easily proven by regarding {2 as the function f in

Barbalat’s lemma. Of course, one can state similar results for functions belonging
to LP.



2.4 Adaptive Control of a One-DOF Robot

In this section, we discuss the adaptive control design for a one-DOF robot.
This is done to achieve two purposes. First, it illustrates how to use Barbalat’s
lemma for adaptive control design. Secondly, it illustrates the major concepts

involved in the adaptive control design for general robots in the next chapter.

2.4.1 Tracking Control in the Presence of Parameter
Uncertainty

The dynamics of the one-link robot shown in Figure 2.5 can be written as

follows
mq=1 2-11)

where m is the inertia of the link, q is the joint position and < the joint torque.

Obviously this equation also represents the dynamics of a simple mass.

: T

S S

Figure 2-5: A One-Link manipulator

For this one-link robot, the motion tracking problem can be stated as follows:
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Given the desired position q (1), desired velocity q4(t) and desired acceleration
441}, and given the measurement of joint posision q(t) and velocity §(t), design a

controller so that the tracking error q(t) - q4(t) is small.

If the inertia parameter m is known a priori, a computed-torque controller in

the form
W) =m (G- 205 - A2§] (2-12)

where g = g(f) ~ g (t), can be used, with A being a positive number. The closed-

loop dynamics
23 ,:, /I2~
g+2AG+A°g=0

represents a well-damped dynamics. If initial position and velocity errors are
zero, i.e., §(0) = 0 and §(0) = 0,

iN=3)=0 V>0

i.e., the robot has perfect tracking of the desired motion. If the initial tracking
errors are not exactly zero, the later tracking errors will not be identically zero, but

will be exponentially convergent to zero as ¢ —©o.

If m is unknown, the computed-torque controller canniot be used in principle.
But we can guess a value for m, and plug it into the control law (2-10). Let the

guessed parameter be . Then the control law is
) =[G~ 20§ ~ 127]
and the closed-loop dynamics is

mg+2mAG + mA2G =g,
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where 71 is the difference between the true inertia m and irs guessed value.
Provided that / is positive, this dynamics is stable. But one notes from the cloged-
loop dynamics that tracking error always exists due to the parameter error m. The
tracking error g(t) depends on the "extemnal input” mgqy, i.e., it depends on the
amount of parameter uncertainty and the magnitude of desired acceleration. For
robots with more links, one can similarly show that tracking crrors are dependent
on the amount of parameter uncertainty and the magnitudes of desired velocity and
acceleration. The major difference is that instability, a much more severe
problem, can possibly occur as a result of parameter error due to the nonlinear

nature of multi-joint robot dynamics.

2.4.2 Adaptive Control Design

Now let us design an adaptive controller to control the one-link robot, so that
the tracking error due to parameter uncertainty can be gradually eliminated. The
basic idea of the adaptive controller is to adjust the parameter /n on-line instead of
sticking to the initially guessed value. The adaptive controller is thus composed of
a control law for computing torque for the joint inpnt T and an adaptation law for

adjusting the parameter /.

To obtain a control law and an adaptation law, let us follow an approach similar
to the Lypaunov method of control design, i.e, defining a scalar error function and
then choosing the controller to make this function decrease. We start by

considering the following function

Vo) =%ms2+ %f;ﬂ (2~13)

where v is a positive constant and s is a combination of the position tiocking

error and velocity tracking error, defined by
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s=F+A§ (@-14)

with A being a positive constant. The quantity s, a3 a linear combination of
position error and velocity error, can be regarded as a compact measure of the
tracking accuracy. The function V can be interpreted as a measure of the total
error in the adaptive control system, with the first term in (2-14) reflecting the

tracking error and the second term reflecting the parameter estimation error.
The variation rate of this "error function" is

V=mss+-mm

<

=s5(t—mg,) + %r’r\:ﬁt

where §, =g, - lé and the dynamics (2-10) has been used.

This indicates that the variation of the error function depends on the control

. . A .
input T and the parameter adaptation rate m. If the control law is chosen to be

T=mg, - ks (2-15)
with k being a positive number, then

. ~. 1A
V=-ks2+m[q,.s+?m]

If, furthermore, the parameter variation is chosen to be

A .

m=-yq,s (2-16)
then the variation rate of the error function is

V=—iks2g 0

This means that V() < V(0), and, accordingly,
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s2() s 2V(0)
m

me < 2yV(0)

i.e., s and m are bounded. The boundedness of s implies the boundedness of the
tracking error ¢ and é, since (2-14) defines a stable first-order filter with s as its
input. Therefore, the adaptive controlier defined by (2-15) and (2-16) guarantee
that the tracking errors g and q and the parameter error /mn are all bounded.

The structure of the adaptive one-link control system is shown in Figure 2.6.

-ks
93949y 1 .19q
‘ / T=mgq s
r%ar

Figure 2-6: Adaptive Control of One Link

2.4.3 Tracking Convergence

We can now farther analyze the adaptive control system defined by (2-15),
(2-16), (2-14), and (2-11), using Barbalat’s lemma or, more conveniently,
corollary 2.1 in section 2.2. To start with, ncte that the function V defined by
(2-13) statisfies the first two conditions in corollary 2.1. This irnplies that the

convergence of V, and accordingly of s, to zero, can be shown by proving the



uniform continuity of V.

The uniform continuity of V can be shown by proving the boundedness of V,

according to lemma 2.2, Since

V=u-2si

the boundedness of V can be established by the boundedness of 5. To show thig

boundedness, let us note that the closed-loop dynamics of the tracking error is

defined from (2-15) and (2-11) and can be written as

m + ks = fig,

(2-17)

This defines an interesting stable filter relationship between s (reflecting

tracking errors) and parameter error 71, as shown in Figure 2.7, where p is the

Laplace operator. If the desired trajectories 4. 44 and G, are bounded, the already

shown boundedness of ¢, § and # imply the boundedness of mg,, the right-hand

side of the sbove equation. This boundedness and the stability of the filier imply

the boundedness of s and .

q,m i S

1

Sl

mp+k >

p+A

Figure 2-7: Signals in One-Link Adaptive Contro} System

Thus we have shown that s converges to zero. Since (2-14) defines an

exponentially stable filter, one easily shows that the convergence of s implies
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g =0 and §—0
88 1—°9,

In summary, the adaptive controller defined by (2-15) and (2-16) guarantees the
convergence of tracking error to zero without any a priori knowledge of the link

inertia m.
2.5 A Lyapunov-like Methed for Adaptive Control Design

One notes that Barbalat's lemma, though usable for analysis if an adaptive
controller has been designed, does not provide much clue as to how to construct an
adaptive controller. This indicates the need for a more or less formal procedure of
searching for adaptive controllers. Generalizing the procedure used to derive the
above adaptive controller, we now obtain a semi-formal method of designing
adaptive controllers based on the Corotlary 2.1.

Let all the tracking errors (including position and velocity errors) in the
adaptive control system be denoted by the vector X, parameter estisnation error by

a and control input by t. The method is composed of three steps:

step 1: Cheosing a positive semi-definite or positive definite error function V[X,

al;

step 2: Obtaining a control law T and an adaptation law A so that V is non-

positive;
step 3: showing that V—0 by proving the uniformly continuity of V.

This method is semi-formal because it does not always guarantee the successful

discovery of an adaptive controller. Since our objective is to make the tracking
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error X converge to zero, the third step for asymptotic convergence is meaningful

only when V is a function of the tracking errors.

This design procedure is quite similar to the design method based on
Lyapunov’s direct method. But it differs from Lyapunov’s method in that the
function V here does not have to be strictly positive definite, thus possibly not
qualifying as a Lyapunov function candidate. In view of the similarity and
difference, we call the above design procedure a Lyapunov-like procedure. The
semi-positive error function V is called a Lyapaunov-like function candidate. If V
is indeed shown to be monotonically decreasing along the trajectories of the
adaptive control system, it is called a Lyapunov-like function. Note that the
existence of a Lyapunov function for a system implies the stability of the system,

but the existence of a Lyapunov-like function does not necessarily.

It is important to stress that the concepts of Lyapunov-like method, Lyapunov-
like function, Lyapunov-like function candidate, and, indeed, the above procedure
itself are introduced simply for the convenience of design. In later chapters, we
shall see that such a procedure does lead us to useful adaptive robot controllers for

both free motion and constrained motion.
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Chapter 3
Adaptive Free Motion

In this chapter, we present the most important results in this thesis: the design of
an adaptive controller for robot free motion and the analytical proof of its
tracking error convergence. Insights into the behavior of the adaptive control
system are gained through careful examinations of the system structure and
extensive simulations on a two-link manipulator. Other issues related to this
adaptive free-motion controller, such as parameter convergence, experimental

implementation and further extensions, are studied in Chapters 4-5.

The robots to be considered in this chapter may have an arbitrary number of
joints (thus the robots can be either non-redundant or redundant) and the joints can
be revolute or translational. Though the development of the adaptive controller is
much more complicated mathematically than the one-DOF case in section 2.4, the
major concepts and results are the same. It follows the same three-step procedure

used before. Specifically, we first choose a Lyapunov-like function for the
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adaptive control system, then find a control law and an adaptation law such that
this error function keeps decreasing, and finaily use Barbalat’s Izmma to conclude

asympiotic properties for the adaptive control system.

This chapter is structured as follows. Section 3.1 presents a precise definition of
the adaptive controi design problem. Section 3.2 derives an adaptive joint-space
controller and discusses its basic structure. The global convergence of tracking
errors for this adaptive controller is shown in section 3.3 uging Barbalat’s lemma.
Section 3.4 provides the simulation results of a two-link robot under the proposed
adaptive controller. Some discussions and remarks concemiing the development
and application of the adaptive controller are made in section 3.5. Section 3.6
presents a number of interesting variations of the developed adaptive controller.
Section 3.7 derives a Cartesian-space version of this adaptive joint-space

controller.
3.1 Statement of the Adaptive Control Problem

Intuitively, the objective of the adaptive control design is to provide a controller
which can guarantee stable and accurate tracking control in the presence of
load/link uncertainty. But the development of the adaptive controller requires a

precise statement of this objective, as given below:

Objective of adaptive control design: given the desired position q (1),
desired velocity a4(t), desired acceleration G40, and the measurements of the
Joint position q and velocity §, and with some or all of the manipulator/load
parameters being unknown, design a control law containing variable parameters
for the actuator torques v, and an adaptation law for adjusting the variable

A . .
parameters a, such that the joint position tracking errors asymptotically converge
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to zero, i.e., q(t) — q (1) 50 as r— oo,

In the rest of this thesis, we shall use the word "trajectory” to mean the time
history of a motion quantity. The term "desired trajectories” will be used to mean
the desired position g4(t), the desired velocity 44(t) and desired acceleration G4(t).
Furthermore, we shall use the term “estimated parameters” to refer to the
adjustable parameters in the control law. Note that this actually represents a subtle
abuse of the word "estimated” because the values of these parameters are supplied
by a parameter adaptation law, not by a parameter estimator (a parameter
estimator intends to reduce data-fitting error, while a parameter adaptation law

intends to reduce the tracking error).

The following comments can help clarify the above statement of the design

objective:

© the desired trajectories, including q4, 44 and g, are assumed to be available

from the robot trajectory planning system.

® the measurements of joint position q and velocity q are assumed in this
control design statement. This is not a restrictive assumption in view of the fact
that most industrial robots are equipped with encoders for measuring joint position
and tachometers for joint velocities. In the absence of tachometers, one can
numerically differentiate the encoder signals to obtain joint velocity if the

encoders have reasonably high number of bits.

e the joint acceleration ¢ is not assumed in the control design. The reason is
that joint accelerations normally cannot be measured directly and, unlike encoder

signals, noisy tachometer signals usually do not allow numerical differentiation.

® Non-parametric uncertainties, such as link and joint flexibility, motor
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dynamics and measurement noise are assumed absent in the control design. This
assumption allows the possibility of asymptotic convergence to zero of the joint

tracking errors.

3.2 Derivation of the Adaptive Controller

In this section, we derive an adaptive controlier which achieves the specified
objective. Since the derivation is essentially the same whether some or all the

parameters are unknown, we shall consider the case of all parameters being
unknown.

3.2.1 Definition of Some Quantities

Before deriving the adaptive controller, we define some useful quantities so as

to make the derivation of the adaptiv - ~ontrol law easy to follow.

The position tracking error § is defined to be the difference between the

manipulator joint position q and its desired value qq i€,

a(®) =q(0) - g0

and the velocity tracking error { is its derivative. An important auxiliary signal
q,, called "reference velocity", is formed by modifying the desired velocity g,

using the position error g,
G, = G- AQ (3-1)

with A being a positive definite matrix. Intuitively, the second term on the
right-hand side represents a sort of feedback, which intends to increase q, if the
actual trajectory q lags behind Q4 and vice versa. Correspondingly, the "reference

acceleration" is



4,0 = G40 - AG() " 3-2)

It is important to remark that §, depends on the desired trajectories {iq and 44
and joint measurements q and ¢, but not on the joint acceleration §. We also point

out that, though A is often chosen to be a diagonal matrix, it can be a full matrix.

We also define a quantity s to represent the error between the joint velocity

q and the reference velocity 4., i.c.,

s(®) = G(t) - 4,(» (3-3)

Let a be a constant m-dimensional vector containing the unknown elements
in the suitably selected set of equivalent dynamic parameters. Then, according to
the linear parametrization property of the robot dynamics, the matrices H, C and g
are all linear in terms of the elements in a. Let Q(t) be the estimated value of a in
our adaptive system. Then the matrices ﬁ, 6. and G, which are obtained from the
matrices H, C and g by substituting the esiimated 2 for the actual a, must also be
linear in terms of the elements of 3. Let ﬁ=ﬁ—H, (Z=6—C.§=§—g. This

implies that the following relation exists
H§ +Cq,+2=Y(q, 6,4, 4) 8 (3-4)

where & =A-a is the parameter estimation error vector, Y is a nxm matrix
function which is dependent on the desired trajectory, measured position and
measured velocity, but independent of the joint acceleration and the inertial

parameters.

In the rest of this chapter, we shall often infer properties of the position tracking
error q and velocity tracking error ii from the properties of s. Now let us briefly
discuss such relations between s and  and ii In doing so, we note that, with q,

defined by (3-1), s 1s related to g by
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~

s=q+A§ " (3-5)

It is seen that s is actually the linear combination of the position tracking error
G and velocity tracking error ii Alternatively, this means that the tracking efror
g can be interpreted as the filtered version of s through a first order filter (shown

in Figure 3-1). The following lemma summarizes the relations between s, @, and

;!

-1
s [pl +A } >

Figure 3-1: Filter Relation Between s and §

Lemma 3.1 (filter lemma): With s and q related by s= q + Aq, the
boundedness of s implies the boundedness of q and fl, the asymptotic convergence
of 8 to zero guarantees that of § and ﬁ, and the exponential convergence of s
implies that of § and q.

In the case of n=1, the matrix A is a positive scalar which may be simply
rewritten as A. The filter is 1/(p + A) and the above relations are intuitive clear.
Lemma 3.1 simply indicates that the relations for the scalar case can be extended
to the general case of A being a full positive definite matrix.

Proof: The basic idea of the proof is to note that equation (3-5) can be

rewritten

G=—AG+s (3-6)

Its solution  is
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50 = 50)e=Ar+ ['e=AC=0 50 ar -7

which is composed of an exponentially decaying term due to the initial
condition g(0), and a convolution term due to the "input” s. Using relation (3-7),
and the definitions of boundedness, asymptotic convergence and exponential
convergence, one can straightforwardly show such relations between g and s. The

corresponding properties ofﬁ can then be inferred from (3-6). O

The boundedness relation between the signal vectors s, d and i?i is particularly
interesting and worth some discussion. We now show that the boundedness of s
implies the boundedness of § and §. Assume that s is known to be bounded by a

positive number g, i.e

Isllse

Then, after the exponentiaily decaying term in (3-7) (whose effects disappear
quickly) is ignored, the position tracking error satisfies

HOUS [ e AC-DY sl ar
' =M (t=1) =€ (102
sjoe 1 edr kl(l e~ M)
where A, is the smallest eigenvalue of A. Thus,

a0 <é

where
¢ = _e_
z'l

Therefore, for a tracking task, if we want the position wracking error to be
bounded by a prespecified bound ¢, it can be transiated as a bound A1 on s with
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A, specified in the A matrix. From (3-6), we can conclude that the \;elocity
tracking error is bounded by a related number, because

NGl <lisli + IAGl s e+ A, ?;i= 2¢
1

Since the magnitude of s directly determines the magnitudes of the position and
velocity tracking errors, s can be regarded as an alternative representation of
tracking accuracy. This is similar to the representation in sliding mode control

[Slotine, 1984).

3.2.2 The Choice of the Lyapunov-like Function Candidate

The first step in deriving the adaptive robot controller involves choosing a
Lypaunov-like functic 1 V. However, the choice of an appropriaie Lyapunov-like
function is usually difficult because there is no generally applicable way of
generating such a function. The choice is particularly difficult for nonlinear multi-
input systems like the robot dynamics. In our design problem, physical insights
and trial-and-errors have played a critical role in the successful formulation of an

elegant Lyapunov-like function.
The following Lyapunov-like function will be considered
V() = % [sTHs + 3TP;'5] (3-8)
where Py is assumed to be a constant positive definite matrix. Intuitively, this

function is an "error function”, with the first term reflecting the error in tracking

motion and the second term reflecting the error in parameter estimation.

Some interesting features are noticeable in this function, First, the whole

function V has the appearance of quadratic forms. However, unlike the one-link
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case in (2-13), it is not really a quadratic form because the matrix H(q) fs not a
congtant matrix. H usually contains a lot of sinusoida! or cosine functions of the
joint angles. The first term, with the position-dependent inertia matrix in the
middle, has been obtained from the clue of kinetic energy, and the second term
mctivated by the standard practice of using quadratic forms in adaptive control
design. The unique form of the first term allows us to use the inherent Lagrangian
structure of the robot dynamics and leads to nice propertizs of the resulting
adaptive controller, as will be seen later.

It i3 seen thri the above function is rot a positive definite function for the
adaptive contrci system because nonzero position error § and velocity error
q which satisfy

s=4+Aq=0

can lead to V=0. We stress that it is legitimate to use this semi-positive
definite function instead of strictly positive definite functions because Barbalat's
lemma, instead of Lyapunov theorems, will be used in our analysis. It is also
interesting to note that th= position tracking error § and velocity tracking error E'I.
which are the quantities of real concem, do not appear explicitly in the Lyapunov-
like function candidate. Instead, the function is quadratic in terms of s, the
compact measure of the tracking error. Because of lemma 3.1, the tracking errors

q and J will converge to zeio if s can be shown to cornverge to zero.

3.2.3 Obtaining the Control and Adaptation Laws

Now we come tc the second step of the adaptive controller derivation, i.e.,
choose a control law and an adaptation la'v such that V < 0. The: differentiation of
the error function V is
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V=sTH3 + (112)sTHs + 3TP;'& ' (3-9)
Noting that
Hi=H§-H{, (3-10)

and using the manipulator dynamics, we obtain
V=sT[t-Cg-g-Hi,)+ (l/Z)JI’ls +aTP;'a
In order to use the skew-symmetry property (2-8) of the robot dynamics, let us
add the zero term (37C's — s7Cs) to the right-hand side of the above
V=sT[t-~Cg-g-H{, + Cs] + (1/2)sT[H-2C]s + TP &
The skew-syminetry property and ;ilc constant nature of a lead to
V=5t~ Cq,-g- Hij,] + &P;'4

where the term associated with H has been eliminated. Based on this

expression, let us take a control law in the following form,

¢=ﬁa,+éq,+£-x,,s 3-11)

where K, is a uniformly positive definite and uniformly bounded matrix and
the estimated parameters & involved in ﬁ. é. and 2 are to be generated by the
adaptation law. Substitution of (3-11) into V leads to

V=sT(fg,+Cq,+g-K ) + ETP;'Q
=-sTK, s+ al[F;'a+YTs]
where Y has been defined in (3-4).

In order to get rid of the second term on the right-hand side of the above
equation, the following adaptation law is chosen
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A Te o o o '

a=-PyY¥'(q,4.4,, §,)s (3-12
This leads to

V() =-sTK 850 (3-13)

Note that (3-13) implies that V will decrease as long as s is not zero.
Intuitively, this and the lower boundedness of V irnplies that 8 should tend to zero.
However, the rigorous proof of this convergence requires the uniform continuity
of V, as indicated in Barbalat’s lemma. The detailed convergence proof is provided

in the next section.

In the above design, K4 can be chosen to be any positive definite constant
matrix. Time-varying K4 may also be used, but it must be uniformly positive
definite (so that V is smaller than or equal to 0) and uniformly upper bounded
(required in the tracking convergence proof given later). This implies that it has to
be lower bounded and upper bounded by constant positive definite matrices, i.e.,

ko ISKNSk 1

with ky and k, being positive constants. In practice, Ky is often chosen to be
constant or even diagonal for simplicity. But the possibility of K, being time-
varying will sometimes be of theoretical interest.

3.2.4 Closed-loop Dynamics and Giobal Stability

The closed-loop dynamics of the adaptive control system is of order 3, and
given by the n 2nd-crder equations of plant dynamics (2-5) and n first-order
equations of parameter adaptation (3-12). By noting that the control law (3-11)

can be rewritten ag
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T=Y&-Ks (3-14)
and then substituting it into (2-5), we obtain
Hs+ (K ;+C)s=Ya (3-15)

This is a very convenient form which will be frequently used later. The
complete dynamics of the adaptive control system are thus defined by (3-15), (3-5)
and (3-12).

For the nonlinear adaptive control system, with states being s, q and a (or
equivalently i:], q and @), we can discuss its stability in local and globa! sense.
First, let us discuss the local stability. The definition of local stability can be
found in a number of texts [see e.g., Slotine and Li, 1990]. A system is called
stable (or locally stable in the sense of Lyapunov) if its states can remain

arbitrarily close to the origin by starting sufficiently close to the origin.
We can now show that this adaptive robot controiler locally stable. Expression
(3-13) implies that V(t) is non-increasing and
V(®) S V(0)

Due to the definition of V(t) in (3-8), the uniform positive definiteness of H,

and positive definiteness of P, the above equation implies
o lisli? + BIIEI < V() < V(0)

where « is given in (2-6) and B is the smallest eigenvalue of P;. Therefore the
tracking error measure s and and the parameter estimation error & are uniformly

bounded, i.e.,

v©
a

~1 _ V(0)
<’
flal B

lisll <
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Due to lemma 3.1, the position error § and velocity error q are also bounded.

One notes that the bounds of the states are dependent on 5(0), the initial error in
motion, and a(0), the initial error in parameter estimation. Thus, the states G(t),
é(t). and @(t) of the adaptive control system can be made arbitrarily small by
starting from sufficiently small initial values. ‘This indicates the local stability of

the adaptive controller.

Now let us discuss the global stability. In the nonlinear control literature, only
the definition of global asymptotic stability is given. There exists no formal
definition of the concept of global stability. In our study here, we use the concept
of global stability to mean that the kind of well-behavedness characterized by local
stability actually extends to arbitrary initial values of q, ﬂ. and a. In view of the
fact the previous dis :ussion is not restricted to small initial conditions, we

conclude that our adaptive controller is globally stable.

3.2.5 The Structure of the Adaptive Controller

The structure of the adaptive control system is shown in Figure 3-2. The
controller consists of two parts. The first part, denoted by F.F. and given by
(3-11), is a special form of full-dynamics Jfeedforward compensation, with three
terms corresponding to inertial, centripetal and Coriolis, and gravitational torques.
This part, based on the estimated parameters, attempts to provide the joint torques
necessary to make the desired motions. From the forms of Gy and {,, as given in
(3-1) and (3-2), it is seen that this seemingly feedforward part also contains
additional feedback actions. The second part actually represents PD feedback,

since

—K;8=-K,§-K, A§ (3-16)
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Intuitively, it intends to regulate the joint trajectories about the desired
trajectories, given the incomplete dynamics compensation provided by the first

part (incomplete until the parameters converge).

The required inputs to the controller are the desired joint position g4, velocity

4,4, and acceleration §,;. The required measurements are the joint position q and

velocity q.
controtter: oo
[} L1 . PD .
9 9, U e 1% E T q q
aicomputation| g Robot o
14
PD, -K,s FF. “ﬁ,‘*é‘i;fﬁ

Figure 3-2: Structure of the Adaptive Robot Control System

The structure of the adaptation law is sketched in Figure 3-3 The parameter
adaptation is driven by the tracking error s in a direction determined by the matrix
Y which reflects the system dynamics . As long as s is not zero, the parameters
adaptation will continue. If the tracking errors become zero, the parameter
adaptation stops. This indicates that the parameter adaptation is not direcily
concemned about finding the true parameters. What the adaptation law is concemed |

about is the convergence of the tracking error. However, this does not imply that



54

the parameters from the adaptation law have no connection to true parameters,
since the tracking errors are related to parameter errors. A more detailed

discussion of this point is provided in chapter 4.

..................................................... -

parameter adaptation

: A
s | A a
il Y o P o|med [ -
Figure 3-3: the parameter adaptation law
Note that the adaptation law can also be expressed as
A at
a=-P s 3-17)
033

This form is reminiscent of the intuitive "MIT rule" [Astrom, 1989] in model-
reference adaptive control, with the matrix Py playing the role of adaptation gain
and the output sensitivity function replaced by the torque sensitivity function. For
adaptive controllers based on the MIT rules, stability can be guaranteed only for
small adaptation gains. In the present adaptiQe controller, the magnitude of I" does
not affect the global stability of the system (as long as unmodeled dynamics are
not excited), but it directly conditions the speed of adaptation, and therefore the

system's performance.

In adaptive control, there are two major types of adaptive controllers: the
model-reference adaptive controllers and the self-tuning regulators. One might be

curicus about which category this adaptive robot controlier belongs to. The answer
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is that, in a strict sense, it belongs to neither. Obviously, it is not a seif-tuning
regulator. It is not a model-reference adaptive controller either because it does not
contain a reference model. However, in a generalized sense, it can be regarded as a

model-reference adaptive controller with a unity model.

It is interesting to ponder why we do not need a reference model in our adaptive
control system. To understand this, we have to go to the motivations for using a
reference model in model-reference adaptive control. There are actually two
motives in using reference models. First, a reference model specifies the desired
performance of the control system. Since in many control applications, the
externally provided reference input, such as the position measurement of an
aircraft provided to a radar tracking system, does not directly specify the desired
response of the control system (the control system response cannot possibly be the
same as the external reference signal becanse of its inherent dynamics), a well-
chosen reference model is needed to filter this signal to provide the ideal response
of the control system. Secondly, a reference model, as a filter of the external
input, provides the derivatives of the model output which allows perfect tracking
of the reference signal. In our robot control problems, both motivations of the
reference model are not necessary. On one hand, the desired performance of the
control system has already been specified by the robot trajectory planner. There is
no need of specifying them again. On the other hand, the first and second order
derivatives of the desired position are also available and perfect tracking is
possible without the need of introducing a reference model.

Most researchers [e.g., Horowitz, 1981; Craig et al, 1986] in adaptive robot
control included reference models in their adaptive conirollers, i.e., filter the
desired trajectories between passing them to the adaptive control systems. Usually

it is done simply to follow the tradition in the model-reference adaptive control
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literature. In our adaptive controller here, even though it is straightforward to
incorporate a reference model by simply filtering the desired trajectories before
they are tracked, such a practice is not advocated. The reason is that such filtering
causes distortion of the desired motion signals and causes motion errors in the
execution of the practical tasks. For example, if a robot is required to draw a

circle, a control system with a reference model can at best draw a "filtered circle".
3.3 Proving Global Tracking Convergence

In this section, we apply Barbalat’s lemma (or Corollary 2.1) to show the global
convergence of the tracking errors in the adaptive robot control system. By global
tracking convergence, we mean that starting with arbitrary values of initial errors
in q(0), i](O) a(0), the tracking errors §(t) and ("i(t) will converge to zero

asymptotically. The result is summarized in the following thecrem.

Theorem 3.1: (global tracking convergence theorem) Under the adaptive
controller (3-14) and (3-12), the position tracking error q(t) and velocity tracking
error i'[( t) of the robot joints are guaranteed to be globally convergent to zero, and
the estimated parameters guaranteed bounded, provided that the desired

trajectories G4, 44 and G4 are bounded functions.

Proof: The boundedness of a, § and q have already been proven in subsection
3.2.4. To prove the global convergence of § and i'j, we only have to prove the
convergence of s, according to lemma 3.1. The convergence of s can be proven by
showing that Vo 0, based on (3-13). Since V is a non-negative function and
V has been shown to be non-positive, it follows from Corollary 2.1 that we only
have to show that V is uniformly continuous in order to conclude the convergence

of V to zero. Now let us prove the uniform continuity of V by showing that its
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derivative V' is bounded, which can be dernonstrated using a long cfnain of

boundedness arguments.
From (3-13), one obtains that
V() =-2sTK 4§

Since s is bounded, the boundedness of V can be guaranteed by the

boundedness of §. § can be determined from (3-15) as
$§=H1[-(K;+C)s+Ya] (3-18)

Therefore, the boundedness of $ can be asserted by showing the boundedness of

every term on the right-hand side of the equation.

The inverse of the i: .ertia matrix, H-1, is upper bounded, i.c.,

H-lg é 1

because of (2-6). The matrix K4 has been chosen to be bounded in the design
of the adaptive controller, and s and 3 have been shown to be bounded. Therefore,
we only have to show the boundedness of C(q, §) and Y(q, G, @ G,). Their
boundedness is guaranteed by the already shown boundedness of § and §, as we

explain in the following.

Since q4, G4 and {, are assumed to be bounded, q, §, g, and §, are also
bounded, from their definitions. From the derivation of the Lagrangian equations,
one can observe that the matrix C contains only bounded terms like products of
the sine (and cosine) functions and the joint velocities. One can aiso conclude the

boundedness of the matrix Y(q, q, §,., §,) by examining its composition.

In summary the convergence proof is achieved by the following chain of
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arguments: $ bounded — V bounded — V uniformly continuous — V convergent

— 8 convergent — § and § convergent.

Cl

Note that parameter error a has been shown to be bounded, but has not been
shown to be convergent to zero. in fact, additional conditions are required for the

convergence of the estimated parameter. Such conditions will be investigated in

chapter 4.

3.4 Simulation With a 2-DOF manipulator

Because the adaptive robot control system represents & highly nonlinear and
complex dynamic system, theoretical analysis can only provide limited
understanding about its behavior. Therefore, computer simulation represents a
very important and useful tool in examining its behavior. This section presents the
simulation of the proposed adaptive controller on a 2-DOF robot. There are a

number of specific objectives in presenting the simulation results:

1. to verify the proven global stability and tracking convergence;
2. to gain insights into the adaptive control system;

3. to examine the effects of various factors on adaptive control;

The simulations are done on the robot model shown in Figure 3-4. We now

discuss various aspects of this simulation study.
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3.4.1 The Robet Dynamics

The manipulator shown in Figure 3-4 has a somewhat strange appearance. It is
composed of four-bars but has only 2 degrees of freedom. It is assumed to be
located in the horizontal plane and thus there is no gravity effect in the dynamics.
This robot actually represents the model of the semi-direct-drive manipulator in
the Whitsker college of MIT which we used for experimentally implementing the
adaptive controiler developed above. It is semi-direct drive because its second link
is driven by a four bar link algorithm instead of gears or direct motor drives.
Simulation results on this manipulator are presented because they will help us to

gain insights into the experimental results in chapter 5.

The dynamics of this manipulator is quite similar to that of the manipulator in
Figure 2.1. The appropriate generalized coordinates of the robot are the joint
angles q, and q,. After reparametrization by the equivalent parameters, the

dynamic equation of this manipulator can be obtained to be

ay Gy + (a3691+a,455;) Gz — (8353 — a4¢90) g = T (3-19a)
(@3Co1+a4521) Gy + axdiy + (a35) ~ asep) Gt =1, (3-19b)

where ¢, = cos(qy—q;). Sy1 = Sin(q,—q,). It is clearly linear in terms of the
four equivalent parameters a;,a,,a5,a,, which are related to the physical
parameters of the links in Figure 3.4 through

ay=Jy+J,+myl2 (3-20a)
ay=Jy+Jy+m,r,? (3-20b)

ay=myhylycosb—m h,r, (3-20¢c)
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ag=myhyly siné (3-20d)

Note from Figure 34 that the robot has "grasped" a load in its hand. In the
ebove equations the load lias been convenienily regarded part of the second link.
This implies that if the inertial parameters of the load is uncertain, the physical
parameters associated with the second link, i.e., my, hy, 8 and J, are unknown.

Correspondingly, the equivalent parameters &y, a3 and a 4 are unknown.

It is useful to point out that, though the knowledge of robot link parameters is
not cssential for adaptive control, such knowledge is helpful to reduce the
parameter uncertainty and, thus, the initial tracking errors. For example, for the
above robot, if the parameters of the load are unknown but those of the robot links
known, the first equivalent parameter a is known because it only depends on the
physical parameters of the robot itself. Though the last three parameters are
unknown due to the uncertainty in load parameters, the knowledge of robot
parameters can be used to provide the useful initial estimates of the parameters a,,

aj and a,.
The C mairix for this manipulator is
C _l: 0 “46‘21"12‘“352142]
352141 — 94¢21 4, 0

In our simulations throughout this thesis, the parameters of the model (3-19) are
assumed to have the following values

a; =0.15 (Kg.m?) ay=0.04 (Kgm?) a;=0.03 (Kgm?) aq=0.025(Kg.m?)

These values are chosen because they are the approximate values of parameters
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of the manipulator in the later experimentation.

3.4.2 The Adaptive Control Design

Since the structure of the adaptive controller has been determined in the
previous sections, the design here only involves the choice of the design
parameters which are contained in the three matrices K; A, Po - All of these
matrices have to be positive definite according to the previous design and analysis.
For simplicity, they are chosen in the following simulations to be the product of

positive numbers and unity matrices, i.e.,
A=Al
PO = 'Yl

The explicit form of the control law 7= q, + ¢ G, —~ K s in terms of the

parameter vector a is

'tl=Y“a1+Y13a3+}’14a4-kdsl (3-21a)

Ty=Yyay+Yy3a3 + Youa, - kys, (3-21b)
where

Yi1=4n

Y13=¢214r2-521424,2
Y14=521G,2+ 21924,2

Y=4,
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¥23= 211 + 5214010

Y24 = 521451 — 219n1$1
and

4r1 =4a1 — M

42=4n~ A3,

$1 =4, +AG;

S5 = 2}’2 +Ag,

The adaptation law can be explicitly written as

a; =-YY 15 (3-222)
a.Az ==-YY5,5, (3-22b)
é.; ==Y 351 + Y355) (3-22¢)
cﬁ == Y(¥145) +Ypy5)) (3-22d)

3.4.3 Intuitive Interpretation of the Adaptation Law

The above equations have strong intuitive appeal. The rate of adaptation is
linearly proportional to the tracking error measure s. The estimate 31 is driven
only by the tracking error of the first joint, This is, according to (3-17), due to the
fact that @; eppears only in the first joint motion 2quation (3-19a) or the torque
input equation (3-21a); similarly for 32. On the other hand, 33 is driven by a
combination of the first joint error and the second joint error, because ay appear in

both (3-19a) and (3-19b); and similarly for 3 .
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Let us take a closer look at (3-22a) and see how the adaptation mec'hanism
extracts information about parameter uncertainty from the tracking error measure
s. Consider for instance the case when Y|y is positive. If s, is negative, meaning
a lag behind the desired motion in the first joint, adaptation law (3-22a) increases
the estimate 31 - The reason for this increase is that the adaptation mechanism
interprets the lag as indicating an insufficient joint torque T, , and since
(ar,/aa,) ¥y, >0, this is in tum interpreted as an insufficiency in a, On the
other hand, this increase in ‘11 leads to an increase in the torque T, , as seen from
(3-21a), and, accordingly, to a reduction in the lag behind the desired motion. The
adaptation mechanism of 32 can be explained using the same argument. The
variations of 5\3 and 34 can be explained similarly, with the difference that these
paramcter estimates are driven by weighted averages of s5; and s, . The weighting
factors for 5‘3 » for instance, are Y3 and Y,, ; their magnitudes reflect the extent

of the contribution 33 to Ty and 7, , a: ' the corresponding lags in the joints.

Thus, the adeptation law generates the parameter estimates in an intuitively

reasonable or "intelligent" manner.
3.4.4 Resuits from Adaptive and PD Controllers

Let the desired position trajectories to be followed be given by the following

L 2(1-cos3t
/NG 4
= = (3-23)
l;ldz(‘):' E-t + (1 = cos5t)

There is one sinusoid component at each joint. The desired positions are plotted

functions

in Figure 3-5. The initial values of the positions and veiocities are zero. But note



64

that the initial desired accelerations are not zero.

Let us consider the control of the manipulator under the above adaptive
controller. To provide a reference point for the adaptive control performance, a PD

controller is also simulated. The PD controller has the following form
T == kydy - kA G,
T ==k - kyAg,

This means that the PD controller is identically the same as the PD part of the
adaptive controller. Thus the difference in the performance of the adaptive
controller and PD centroller is atiributable to the adaptive feedforward past of the
adaptive controller.

For both the adaptive controller and the PD controller, the values of the design
parameters are taken to be

Y=0.03 (Kg.m2.sec?) ky=3.(Nm.sec) A=10.(N.m)

The initial position and velocity tracking errors are taken to be zero. To
highlight the effects of the adaptation, we take the initial values of the estimated

parameters to be all zero, i.e.,
31(0) = 3,(0) = 33(0) = 3,(0) = 0

This implying that there is no a priori knowledge in the parameters of the links
and the load, and thus the adaptive controiler is initially the same as the PD
controller. In understanding the following results, It is helpful to remember that a
PD controller t = - Kdﬂ - Kpﬁ is physically equivalent to a set of joint dampers
and springs with coefficients given by the gain matrices Kqand Kp.
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The results of the manipulator under the adsptive controller are plotted in
Figures 3-6 and the results under PD control are shown in Figures 3-7. It is noted
from Figure 3-6(a) that the position tracking errors and velocity tracking errors
(the slopes of the position error curves) of the adaptive controlier are both
asymptotically convergent, as predicted by the analysis. The comparison of the
position trucking error of the adaptive and PD controllers, shown in Figure 3-6(a)
ad 3-7(a), are quite interesting. We note that in the initial period the tracking
errors of both controllers show the same tendency of growing negatively
(implying the robot motion lags behind the desired motion). This tendency is due
to the passive nature of the PD control (mimicking joint dampers and springs).
This tendency is reversed for the adaptive controller after a short time, with errors
reaching only —0.70 for the first joint and —3.10 for the second joint, while it
continues for the PD controller until the errors reach —2? and —6.50 respectively.
The reason for the reversal of the tracking error growth and subsequent decay of
the tracking errors in Figure 3.6(a) is the increasing effects of the adaptive
feedforward compensation. The tracking errors of the PD controllers stop growing
negatively and roil back because the desired joint accelerations change directions.
The tracking errors of the PD controller do not converge because FD controlier,
mimicking dampers and springs, cannot fully compensate the dynamic forces
during robot motion.

The estimated parameters of the adaptive controller for this particular
trajectories, shown in Figure 3-6(c) and Figure 3-6(d), are seen to converge to the
true parameters a = ((.15, 0.04, 0.03, 0.025) T (Kg.m2). It is seen that they change
fast when there are large tracking emrors and change slowly when tracking errors
become small, as expected from the form of the adaptation law. It is important to
note that the joint torques of the adaptive conlrbiler. shown in Figure 3-6(b) has
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comparable magnitudes as those of the PD controiler shown in Figure 3-7(b). This
implies that the adaptive controller gains the better tracking motion not by stronger
control authority but rather by "smarter" use of the input. Note that the 7, in
Figure 3-6(b) has a somewhat sharp peak (larger than 4 N .m) at about 0.! second.
This is the only time when the joint torques of the adaptive controller are visibly
larger than those of the PD controller. This peak occurs because the system has
accelerated {noting that the initial desired accelerations are not zero) before the
proper estimates of the pararaeters are found by the adaptation law. For desired
trajectories which have zero initial desired accelerations, this effect is much

relieved, as will be seen later for a different trajectory.

3.4.5 Effects of Design Parameters

Though the stability and convergence of the adaptive controller is guaranteed
for any positive values of the design parameter matrices Kq Aand T, the
quantitative behavior, such as the speed of convergence and magnitude of the
maximum tracking errors, of the adaptive controller is dependent on magnitudes of
these matrices. In this section, let us use simulation results to study the effects of
the design parameter choices. In the following, we simulate the adaptive
controller on the desired trajectories of sinusoid type shown in Figure 3-5, with
different values of the design parameters. Thus the results in Figure 3.6 provide a

reference point for comparison.

A. the adaptation gain

It is expected that larger adaptation gains correspond to better adaptive control,
because it implizs faster adaptation. To verify this, the gain matrix in subsection

3.44 (P =0.0310) is increased to
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P=0.11

with the rest of the adaptive controller being unchanged. The results are plotted
in Figure 3-8. It is observed that the tracking errors are now considerably smaller
than those in Figure 3.6. The estimated parameters rise more quickly, and
converge faster. We also note that the results in Figure 3-8 are more oscillatory

than those in Figure 3-6.

However, this relation of increasing convergence with increasing gain is true
only to certain point. With further increase of the adaptation gain, the
convergence of the adaptive controller is found to be worse, as shown in Figure
3.9. The explanation is that the the adaptation is of a gradient nature, and too large

gain leads to overshooting in the gradient search of the ideal parameters.

Therefore, it is important to use proper adaptation gain in using the adaptive
controller. This is sometimes difficult to do because the optimal gain value may
depend on the trajectories. This problem will later be avoided in an improved
version of the adaptation law, called composite adaptation law, where the gain can
be pushed much higher without incurring severe parameter oscillation. The
improved adaptation law is useful for enhancing tracking performance and

handling parameter variations.

B. the gain matrices K4

Next, we examine the effects of the Ky matrix on the performance of the
adaptive controller. If K is increased with all other design parameters fixed, one
naturally expect the adaptive control performance to improve, because the action
of the PD part in the controller is strengthened. Note that in increasing K4 the
gain of proportional feedback term (K ;A §) is also increased. To see the effect of
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increasing the D (derivative) part alone, let us maintain the proportional feedback
part of the controller unchanged while Kg is varied. This implies that A is varied

inversely. Now, we consider the following values of K4 and A,
Kd = 6. l
A=51

with the adaptation gain still being I" = 0.031 and the initial parameters still
zero. The above implies that the gain of the derivative part is doubled compared

with that in subsection 3.4.4.

The simulation results are shown in Figure 3-10. Compared with the results in
Figure 3.6, it is noted that the initial tracking errors are considerably smaller. The
first joint torque has a smaller initial peak corresponding to the larger initial errors.
It is interestilng to note that the . -timated parameters are more sluggish. A
plausible explanation for this sluggishness is that the increased PD action leads to

the reduced error in the joint position and thus a reduced need for adaptation.

Simulations with a reduced K4 show converse effects on the adaptive control,
indicating the consistency of the above relations between K4 and the adaptive
control results.

C. the gain matrix A

Finally, let us examine the effects of the gain matrix A. A larger value of A

than that in subsection 3.4.4 is simulated,
A=201

The results of the adaptive control are given in Figure 3-11. Compared with
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Figure 3.6, one notes that the tracking error is better but the estimated pam'ameters
are scmewhat worse. This decrease in the quality of the estimated parameter is

explained as before for the case of increased K ;.

It is found that smaller A leads to converse effects on the adaptive conirol. Thus
we can conclude that larger A leads to better tracking error but worse parameter

€ITOT.

3.4.6 Effects of Desired Trajectories

One of the factors affecting the behavior of the nroposed adaptive controller is
the features of the desired motion trajectories. First, the convergence of the
estimated parameters in the adaptive control system depends on the complexity of
the desired trajectories. Secondly, the tracking errors of the system are dependent
on the speed and acceleration of the desired trajectories. For a given amount of
parameter uncertainty, desired trajectories with higher velocity and/or
accelerations lead to smaller tracking errors. This is reasonable intuitively, and can
also be seen from examining the closed-loop dynamics (3-15) whose left-hand
side is related to the desired velocities and accelerations. In this subsection, we
shall illustrate the relations between the desired trajectories and the adaptive
control behavior, particularly the relation between the trajectory complexity and

parameter convergence.

A. polynomial+rest desired trajectories

We now consider a desired motion different from that for the previous
simulations. The desired position trajectories are plotted in Figure 3-12.
Physically, it represents a back-forth motion between the point A and B shown in

Figure 3.13. The four-second moticn is composed of four paris: one-second
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motion from point A to point B, one-second rest at point B, one-second motion
back to point A, and one-second rest at point A,

This motion more or less emulates the industrial robot motions in pick-and-
place tasks. The resting periods are introduced to let the robot seitle down around
the final positions. For this motion, the point A corresponds to the joint angles
(20, 70°) and point B to (1000, 140°). In the first-second motion from A to B. the
desired position histories are defined by the following first-order polynomials

9@ |
a0

where Aq; = (g1 — 4a1): A2 = (4p ~ 442 and

o] ]

Expression (3-24) implies that the desired velocities and desired accelerations

[in +4g,(10- 15¢ + 6:213)J (326

da2+Agy(10~ 151+ 64273)

are zero at point A and point B are both zero. In the third-second motion, the

desired position histories are similarly defined by fifth-order polynomials.

B. the control results

The results of the adaptive controller on this set of desired trajectories arce
plotted in Figure 3-14. From 3-14(a), the tracking errors of the adaptive controller
are seen to display convergence tendency. But, from the 4-seconds simulation
results, it is not obvious at all whether the estimated parameters converge to the
true parameters a = {0.15, 0.04, 0.03, 0.025). To see how the estimated
parameters look like after a long time, we let the robot repeat the motion specified
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by Figure 3.11 for ten times. The position tracking errors and es;imated
parameters during the last 4-seconds are shown in Figures 3-15. It is seen that the
tracking errors have converged to small values but the estimated parameters are far

away frorm the true parameters.

To see the comparison of performance, the PD controller is also run on this set
of desired trajectories. The position tracking errors and joint totques are shown in
Figure 3-16. Comparing 3-13(a) and 3-15(a), one notes that the difference in the
tracking errors in the first second of motion is not very much for the tow
controilers, unlike the quick improvement shown in Figure 3-6(a) corresponding
to the fast sinusoid trajectory. The reason is that the desired trajectories here are
relatively slow and it takes longer time for the adaptation to have substantial
effects on the tracking errors. Another interesting observation is that the joint
torques shown in Figure 3-14(b) and (3-16(b) are very similar. The initial peaks
seen in Figure 3-6(b) are not present in Figure 3-i4(b). This absence of torque
peaks is attributable to the fact that the initial desired accelerations here are zero
(which allows the adaptation law time to find reasonable parameters before the

motion speed and acceleration reach considerable magnitudes).

C. Polynomial trajectories

One might suspect that the lack of parameter convergence is due to the resting
periods in the above desired motion. To see that this is not true, the adaptive
controller is simulated on the desired trajectoriés shown in Figure 3-17, which
corresponds to motions back and forth between point A and B without any resting
periods. The results of the adaptive controller are shown in Figure 3-18. They are
.. seen to be quite similar to the results in Figure 3-14, though the tracking errors

: converge faster due to the lack of the pauses. The adaptive controller is also run on
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this set of desired trajectories for ten times. The results in the last four s:econds
display the features of having small tracking errors but large parameter errors,
similarly to the case of the polynomial+rest trajectories. It is interesting to note
that the desired position histories in Figure 3-17 look quite similar to those in

Figure 3-5, but the joint torques and estimated parameters look very different.

The main lesson to be leamed from the simulation results in this subsection is
that for certain trajectories, it is possible for the adaptive controller to control the
motion accurately with inaccurate estimated parameters. The issue of parametey

convergence will be studied in in detail chapter 4.

3.4.7 Effects of Non-Parametric Uncertainties

In the previous sin:ulations, we have assumed the absence of non-parametric
uncertainties. Now let us examine the performance and stability of the adaptive

controller when non-parametric uncertainties are present in the plant.

A. Effects of Disturbances

A common disturbance in robot control is the often neglected Coulumb friction.
Suppose there is an unmodeled Coulumb friction of 0.3 N.m in each joint, i.e.,

with disturbance torques of
dy()=-0.3 sgn(c']l) (N.m)
dy() =- 0.3 5gn(g,) (N.m)
The results of the adaptive control on the sinusoidal-type trajectories in Figure

3.5 is shown in Figure 3.19. It is seen that the tracking errors now converge to

within 1 degree for each joint, instead of to zero. The estimated parameters now
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oscillate around the true parameters.

The sinusoidal-type trajectories used in the above simulation are expected to be
persistently exciting and lead to robust performance (to be explained further in
Chapter 4). It is therefore of interest to see the adaptive control performance on the
less exciting polynomial-type trajectories. This is done in Figure 3.20 which
shows the results when the polynomial+rest trajectories in Figure 3.12 are used. It
is seen that the adaptive controller still performs well, with little parameter drift

observed.

B. Effects of Motor Dynamics

Now let us assume that the joint actuators have first order filter dynamics of
bandwidths 30 (rad/sec), i.e.,

30
p+30

7= uy

30
p+30

Try= Uy

where u; and u, are the joint torque commands given by the computer, and T,
and T, are the joint torques delivered by the actuators (note that no other non-
parametric uncertainties included). Note that now u, and u, are computed by the
adaptive controller by (3-11).

The results of the adaptive controller for the sinusoidal-type trajectories are
shown in Figure 3.21 and the results for the polynomial-rest trajectories in Figure

3.22. It is seen that the adaptive controller performs well in both cases.

C. Effects of Qther Non-parametric Uncertainties



74

The effects of a number of other non-parametric uncertainties have also been
examined by simulations. The adaptive controller has been found to perform well
in general. However, when measurement noise is present and the trajectories are
not persistently exciting (on polyrniomial-type trajectories, for example), the
estimated parameters are found to drift slowly, though tracking errors remain
small. This can lead to adaptive controi instability if the unmodified adaptive

controller runs for a long time and the estimated parameters drift to huge numbers.

It is useful to point out that the problem of parameter drift is not a significant
problem in the practice of adaptive robot control for two reasons. First, in most
robotic manipulations using adaptive control, the manipulations usually last only
for a few seconds and parameter drift cannot pose a serious threat in such a short
time. Secondly, if long-time manipulation is desired, the problem of parameter
drift can be greatly relieved by incorporating a small dead-zone in the adaptation
law, as verifiable by simulations. We remark that, if an unknown load has to be
manipulated wiih a long time, it might be advaentageous to use parameter
estimation followed by non-adaptive control, i.e, shaking the load for a couple of
seconds and estimating the parameters on-line. The on-line parameter estimators

in chapter 6 may be used during the shaking motion.
3.5 Discussions Regarding the Adaptive Controller

To gain insights about the derivation and application of the above adaptive

controller, let us now discuss a few interesting points.

Number of parameters te be adjusted: Since the link parameters do not
change when a robot picks up a new load, it is possible to accurately estimate the

robot link parameters beforehand and take them as known in the adaptive control.
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In this way, only the ten parameters associated with manipulated load are
unknown (one for mass, three for center of mass and six for moments of inertia)

and need be estimated on-line,

Sampling frequency: The adaptive controller has been designed in continuous
time, but its implementation has to be in discrete time because of the use of digital
computation. In order to best use the limited computational power, a good strategy
is to use different rates for the update of various parts of the adaptive controlier.
Because of its simplicity, the PD control part in the control law should be update
with a rate much higher than those of the feedforward part and the estimated
parameters.

One interesting question is the appropriate choice of sampling rates. A number
of factors affect the values of appropriate sampling frequencies for an adaptive
robot control system. One of the major factors is the speed of the desired
trajectories: faster desired trajectories require the control system to respond faster,
and thus require higher sampling rates. If the sampling rate is too slow compared
with the desired trajectories, the control system will have large tracking errors or
even instability. Another factor is the bandwidth of the motors: performance is not
further improved much with the increase of sampling rates after the sampling is
already faster than the motor bandwidth. The reason for this is that the motors are
basically filtering devices which do not respond to high frequency components of
its input. The implication of the filtering is that too fast sampling wastes

computational power.

Recursive computation of the adaptive controiler: It is important to point
out that the adaptive controller (3-14) and (3-12) is computationally efficient. In

[Walker 1988], a recursive computation technique was developed for the above
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adaptive controller and appiied to a closed-chain robot.

For computed-torque controller, the recursive Neuton-Euler scheme is known
to provide efficient control computation. In [Niemeyer and Slotine, 1988}, a
modified version of the Neuton-Euler scheme is develeped to carry out the
computation of the adaptive controller proposed above. The required
computational effort of the control law (3-14) is roughly the same as that required
for the recursive Neuton-Euler implementation of a computed-torgue controller.
With this recursive computational method, the implementation of the proposed
adaptive controller on 6-d.o.f. robots is within the computational capacity of
current microprocessors. If fact, the adaptive controller has been implemented on
a 4-link high-performance robot at the Antificial Intelligence Laboratory of MIT,
with good experimental results achieved. What is most interesting about this
implementation is that a total of 40 parameiers are assumed to be unknown, and
three microprocessors operating in parailel were able to accomplish the required
control and adaptation computation. In practice, the parameters to be estimated
are only the ten parameters of the load, and therefore, the compuiational burden

will be substantially smaller than that in the 40-parameter experiments.

Unique features of the the adaptive controller development: Compared
with what is generally done in adaptive control literature, the development of this
adeptive coniroller has some unique features. First, the state-space model of the
robot dynamics is not used. If we rewrite the robot dynamics in terms state-space

representation, i.e.,

Xy _ X1
X | | H'(x-Cq-g)

with X; = q, X, = §, not only the dynamics becomes much more complicated,
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the lack of insights with this representation would have probably rendered the
development of the globally tracking-convergent adaptive controller impossible.
Secondly, the physical properties of the dynamic systems are carefully employed.
In view of the fact that current research in adaptive control tends to consider
mathematically classified plants, the successful development of the above adaptive
controller for the complex robot dynamics seems to suggest a new direction of

adaptive control research: study particular classes of physical systems instead.

Design based on a Lyapunov Function: Though the above derivation has
been based on Barbalat’s lemma and a Lyapunov-like function, it is possible to
derive a somewhat restricted version of the previous adaptive controller based cn
Lyapunov’s direct method and Lyapunov functions, as we now show. Consider the

following

V=%[sTHs +2§TAK,§ + 3TT-13] (3-25)

where K and A are positive definite and diagonal matrices. Note that this is a
strictly positive definite function in terms of the closed-loop system states and thus
is qualified to serve as a Lyapunov function candidate. The same forms of control
law and adaptation law as given by (3-14) and (3-12) lead to the following

derivative along system trajectories
V=-sTKys+2§TAK,§
= ~qTK4 8- T ATK A
This non-positive nature of V indicates that (3-25) provides a Lyapunov

function for the adaptive control system and thus guarantees the global stability

and tracking convergence of the adaptive system.

As will be seen later, it might be desirable to allow K4 to be a full matrix. This
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can be achieved if A is restricted to the product of a positive number and a unit

matrix, i.e., A = AL In this way, the Lyapunov function candidate is

V=1[sTHs +2Aq7 K, G + aTr-13)

N

and the corresponding derivative is
This also guarantees the convergence of the tracking errors.

Note, however, that when both Kg4 and A are positive definite full matrices, the
function V in (3-25) may not be positive definite (both KA may not be positive
definite) and thus may not be qualificd as a Lyapunov function candidate. This
implies that the design in section 3.2 based on Lyapunov-like function leads to an

adaptive controller with more flexible design parameters.

The Concept of Reference Velocity: The definition of reference velocity given
in (3-1) may seem to be somewhat strange. It is motivated by our desire of making
position tracking error converge to zero. A discussion of its origin is interesting.

Initially, we had chosen the following form of Lyapunov-like function candidate
Vi) = (ID)ATHG + §TK, )+ (172 aTr'a (3-26)

with K being a positive definite matrix, which is strictly positive definite and
the first two terms has the appearance of mechanical energy By choosing the
control law to be

t=Hij,+ Ciy+ g~ K il - K, (3-27)
the derivative of V along the system trajectories is easily found to be

- qT dq (3-28)
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The control law (3-27) has a nice form which contains the explicit PD feedback

terms, but only the velocity convergence is guaranteed by (3-28), i.e.,
él - (.]d -0

Position tracking convergence is not guaranteed, as was verified by simulation
results. The concept of reference velocity is introduced in place of Gq in (3-26) so
that (3-28) leads to

q-q4,-0

This guarantees the convergence of both q and i] In doing so, it is also found
that the second term ( lﬂ)ﬁTKpfi on the right-hand side of (3-26) can be
eliminated without affecting V. Then we end up with the Lyapunov-like function
(3-8).

Adaptation in position control problems: There are two types of control
problems in robot free motion, one being the position contro! problems (only the
initial and final positions of the robot are specified) and the other being the
tracking control problems (the whole desired trajectory is specified). It is useful to
point out that adaptive control is primarily concemed with the tracking control
problem. Although position control problems can also benefit from adaptive
control by adaptively compensating the gravity term, the tracking control
problems are the real targets of adaptive control approach. The reason is that the
position control can be often handled by PID controllers which do nos rely on
robot model and thus are insensitive with respect to parameter uncertainty. ‘The
problem with PID controllers is the overshoot around the final position. Jn tasks
such overshoot is undesirable, one can either use a modified version of PID
control or translate the position control problem into a tracking control problem.

One way of translating the position control probiem is to filter the desired final
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positions, and let the output of the filter by tracked by an adaptive controller.

Role of (H - 2C): the above adaptive controller used the skew-symmetry
property of the matrix (fﬁ - 2C) so that the term associated with I in (3-9) can be
removed. However, the use of this property is not essential for the formulation of
globally convergent adaptive controller for robots. If we change the definition of

the matrix Y in the previous control and adaptation laws to be
g, +Cq +§+(1/2)(i5|s- Hs)=Y_ 3
then the resulting adaptive controller can be easily shown to have the same
global convergence property using a similar analysis. Specifically, from (3-9),
V=sT[t~Cq~G-Hi, - (12)fs) + &Tr'&

Using the control law

t=ﬁii,+(':‘(1 +§+%ﬁs—de

and the adaptation law
a=- ryJTs
we also obtain (3-13) and the associated properties.

Known Parameter Case: When there is no parameter uncertainty, there is no
need for adaptation. The control law in (3-14) can be used with the unknown
parameters & substituted for by the known parameters a. The resulting controller is
not the same as the computed-torque controller. It may be regarded as an
alternative to the computed-torque controller for the non-adaptive control of

robots.
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For this non-adaptive controller, the control system can now be shown to be
exponentially convergent. In the following let us consider the choice of the gain

(damping) matrix being

This choice of adjust K4 according to the inertia matrix H is intuitively

appealing: larger damping for joints of larger inertia.

To show the exponential tracking convergence, let us consider the same

function V as befbre, ie.,

V=%STHS

Differentiation of V vields
y=-AsTHs=-2AV (3-30)

This implies that V(f) = V(0)e~2A!, Due to the aniform positive definiteness of
H,

o lIsl? < V(1) = V(0)e— 2
Therefore,

st 20 -2

This means that s is exponentially convergent to zero with a rate A, which,
according to lemma 3.1, implies the exponential convergence of tracking errors
Gandq.

It is interesting to note that the control law can be rewritten as
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T=H[§;-204-22§]+Cq, +¢ (3-31)

This control law is aimost the same as the standard computed torque controlier,
except for a minor difference in the second term. This control law is interesting
because it does not exactly cancels the robot dynamics due to the form of the
second term in (3-31) but it can guarantee exponential convergence at the same
rate. This may be attributed to the fact that the control utilizes the inherent
structire of the robot dynamics.

3.6 Variations of the Adaptive Coniroller

A number of variations of the adaptive controller in (3-14) and (3-12) can be
simply obtained. Such variations maintain the desirable stability and convergence
properties of basic adaptive controller and introduce new and interesting features
into the adaptive control system. Whether such variations have fundamental
advantages over the the adaptive controlier in section 3.2 is still to be decided by
more examination, particuiarly experimental study.

A. Choose K ;= Al

The matrix K contains design parameters to be chosen by the user. As seen in
section 3.2, the matrix can be time-varying but must be uniformly positive
definite. Motivated by the choice of Kg4 at the end of last section, one might be

interested in using
Ky=Af (3-32)

in the adaptive case. However, there is a problem with this choice: the matrix
ﬁ may not be always positive definite in the course of parameter adaptation. We

now show that, with a simple modification in the adaptation law, this proticm can
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be neatiy handled.

Let us still consider the Lyapunov-like function candidate (3-8). With

controller gain K ; determined by (3-32), its derivative is
V=sT(f§,+Cq, +g-Alis)+arr15
= sT[~AHs+ H(d,-As)+C g, + gl +aTr 13
If we let Y, denote the modified Y matrix, defined by
H(i,~25)+C4,+8 = Y,(0, 4.4, §) &
then
V=~AsTHs + ﬁ'r[l"lé +Y,,s]
It is obvious that the adaptation law
=-TY,Ts (3-33)
leads to
= —AsTHs (3-34)

Since the inertia matrix H is always uniformly positive definite, the above
expression guarantees the global stability and the global tracking convergence of
the adaptive control system, using similar reasoning to that in section 3.3. Note

that with the matrix K determined by (3-32), the control law is given by

1:=Y,,,3

B. PI type adaptation

Other variations of the algorithm can be easily derived. For instance, one may
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add a "proportional” term to the parameter update
a=8 - I, ¥'s (3-35)
where I, is a (perhaps time-varying) symmetric positive definite matrix, with
A
8y (=-TYTs
as before. Indeed, using

V() = % [sTHs + 5714y |

as a Lyapunov function candidate, where i = Qo - &, we now get
V@ =-sT(Ky+ YI,¥T)s<0

While such modification may thus increase the convergence rate of the
algorithm, it may also lead to noisier estimates, since & now incorporates the term
YTs directly. Note that this modification of the adaptation law, originally inspired
by a passivity interpretation of the sdaptive controiler, is found to be equivalent to
replacing the gain matrix K4 by K, + YT, YT.

C. Incorporating Integral Feedback

Examining the derivaticn in section 3.2 and the convergesnce analysis in section
3.3, it is noted that the convergence of s to zero, i.e., q to @, is guaranteed
regardless of the definition of §,. In the above development, the reference velocity
q, is obtained by modifying the desired velocity by position tracking emrors. Based
on the above point, integration of position error may also be incorporated in the

reference velocity,

A= dg= Ay - Ao [ () dr (3-36)



the definition of s is
s=d-4,=q+A, G+ Ay [[G(r)dr

One can easily show that, with the above definitions replacing §, and s in the
previous sections, the resulting adaptive controller can guarentee the global
convergence of s and thus of fc"[. q. and j’ Jﬁ(r)dr to zero, provided that the desived
trajectories are bounded.

One notes that this adaptive controller is composed of an inverse dynamics
compensation part and a PID feedback part. The inclusion of integral term in the
controller may have the possibility of improving the accuracy of the controlier in
the presence of unmodeled low frequency disturbances. But it is niot studied later
because inclusion of integration has to tendericy of slowing down the response of a

controller.
3.7 Extension to Cartesian Space Adaptive Control

Robot control can be achieved in either joint space formulation or Cartesian
space (or called operational space) formulation. There are proponents for both
formulations in robotic community [see Craig, 1986; Khatib, 1987]. It is the
objective of this section to show that the adaptive controller derived in section 3.2
in joint space can also be extended to Cartesian space control. This extension,
besides being interesting for free-motion control tasks, might be useful in
developing adaptive versions of the hybrid force-motion controller for compliant

motion control.

One may define a Cartesian-space controller as a controller which achieves
robot motion controf by feedbacking the Cartesian-space tracking error instead of

Joint-space tracking emrors. In this section, two ways of extending the previcus
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joint-space adaptive controller io Cartesian space are described, but their detailed
examination is not carried out because of our emphasis on the joint space
formulation. To avoid technical difficulties, we assume that the robot is non-

redundant in the following.
A. Redefining the reference velocity q,

Since, as mentioned in section 3.6, § — q, converges to zero regardless of the
definition of q,, a simple way of doing this extension is to redefine the reference

velocity q, in the basic adaptive controller in section 3.2 to be
G =J"1ky - A(x-x,)] (3-37)

where x is the Cartesian-space position of the robot end-effector, X4 the desired
Cartesian position and J(q) is Jacobian matrix between the Cartesian coordinates

and the joint coordinates defined by the kinematic relation
x=Jq (3-38)

In doing so, we leave the forms of the control law (3-14) and adaptation law
(3-12) unchanged. Corresponding to the above redefinition, let s still be the
difference between the real joint space velocity ¢ and the reference velocity q,,

which means that
s=q-q,=J"1[X+AX) (3-39)

Thus s is closely related to the tracking errors in Cartesian space. Then by

using the same form of Lyapunov-like function candidate as (3-8), we obtain

=-sTK s =~ [X + AXITJTK J-1 [R + AR] (3-40)

Provided that J is non-singular, we obtain as before



87

R+AT—0 (3-41)

This implies that the Cartesian space tracking error ¥ — 0 as f—» o, This
convergence resuit has been indeed demonstrated in the simulation resulis

presented in [Slotine and Li, 1986).
B. Using Cartesian-space coordinates to describe robot position

Another way of doing the extension is to start from a Cartesian-space
description of robot position and generate the adaptive Cartesian-space controller
in the same way as that described in section 3.2 for the adaptive joint-space
controlier. This means that we choose the Cartesian coordinates (e.g., end-effecior
coordinates) x as the generalized coordinates for the robot dynamics. The
derivation of the robot dynamics and the derivation of the adaptive controller are

parallel to those for the joint space.

First, by using the kinematic relation (3-38), the kinetic energy of the robot can
be expressed as

T=%i7'.l" HJ %

Using the Lagrangian equations, one obtain the dynamics of the robot in

Cartesian space to be
H ()X +Cx, %)% +g.(x)=JTe (3-42)
where

H.(x)=JTH(g)J!

C, is similarly defined as C in (2-4) and [flc-ZCc] is similarly skew-
symmetric. It is important to note that the left-hand side of (3-42) can also be
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linearly parametrized, because H_ is linear in terms of the same inertial parameters
a as before (noting that } contains only kinematic parameters which are assumed

to be known).

Let us define a Cartesian input force vector I (an intermediate variable

introduced for design purpose) to be
F=JT¢ (3-43)

The dynamics (3-42) are then in the same form as the joint-space dynamics

(2-4) with similar properties. As a result, we can obtain the contrel law
F= ﬁc'yi,+éci,+£- Kys (3-44)

with the reference velocity now being

X, =X;—AX . (3-45)
and s being
s=X—-% =X+AX | (3-46)

The adaptation law is now
A
a=-TYJTs (3-47)

with Y, defined similarly to Y before. By using a similar form of Lyapunov

function candidate as that in (3-8), we obtain
‘., =- ST de
which implies that s—0, X—0, and ¥—0 as 1—00,

In implementing the adaptive controller, one computes the joint torque input by
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reveming the relation (3-43), j.e.,
t=J7F (3-48)

with F defined by (3-44). The structure of the adaptive Cartesian-space
controler is sketched in Figure 3-19. The PD term in the Figure is the Cartesian
PD which has the form

- de=— Kdé- KdA;

One might wonder about the relations between the two kinds of extensions.
First, one note that the two schemes are different if the same gain matrix K, is
used, since the PD term in the former extension is — K,J~! [¥ + A% ] while the PD
term in the joint torque of the latter extension is — JTKd[ R+ AX]). Secondly, it is
easy to prove the they are identical if the gain matrix K in the first extension is
chosen to be

Kdl = JTKJZJ

where K, is the gain matrix in the second extension. Finally, we point out that
a number of issues associated with these Cartesian-space algorithms, «uch as the
extension to redundant manipulators, have not been addressed yet.

Comment 1: The adaptive Cartesian-space controller shown in Figure 3-19 has
been implemented in the 4-DOF high performence robot at the Atificial
Intelligence Laboratory of MIT, as reported by [Niemeyer and Slotine, 1989). The
computation was performed recursively and the control results were found to be
desirable.

Comment 2:For manipulation tasks which require tracking of not only the end-
effector position but also the end-effector orientation, the computation of the
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orientation error components in X (which is composed of end-effector position
errors and orientation errors) is not a trivial issue. In computing these components,
one can use the simple technique described in {Lubh, 1981] and improved in [Yuan,
1988].
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Figure 3-5: Desired motion trajectories--- sinusoid
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o (p) w2 () 2 (@) b ©)
(smmo0es ¢ 137) SsL0tosfer, 8oy +ETEOuAlo] WO [Onto)) oandepy :HI- 24n814

») )
IR S°€ [ S'¢c g'c G°1 %21 S0 ‘@ B b st (. S S 2 @2 (SR ¢ g1 S'8 i :) -
~ _ T ' ! T T 1a°9 T T —T T T — T €-38
_ 5] i -G
[~ RN
] B - a1
- !\I& 3 120°0
- v q¢cee - 15t
B -4 +0°0
B \« R 165¢°0
B 49289
[ 1 I 1 1 ] ! Lo ¢
73y
1 S'¢ 8¢ S ¢ 0°c Gl 21 (o] "}
T T T T T T T G I-
det-
4cg-
)
4S50
401
1 1 1 1 1 i 1 G




(epu0s08 § 198]) seLroIcefRI],
P
¥ S¢ 8¢ gz gz I s@8 g

T .v_ _\l,.ﬂ’ T T—] €-3«

- a2+

4ot

H ag

- sg

- a9

)

— -4 8L

< T
1 1 1 1 | £-3n
3y
St P'€E Gz @z c'9 @

T T T T T S I-
- Q.ﬁu
— msn

. -Q

)

‘ do1

1 1 1 L | Sl

’ .ma @ .Ne. ua () 3(g) b »
189y +erdusiog vo 1Salic) oandepy :51-¢ 2andig

C))

g

G

T nlwl

—1 ¥

- 92
1 8¢
- éc
- c€
+ €
- 9¢€
- 8¢
- 9+

! £-3»

Sl

: si-e-

a1°a-

SB°0-

SO°0




2. 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(b)
Figare 3-36: PD on polynomial+rest trajectories (s) §; (b) <

99



100

149

120

100

80

60

40

@ 1 1 1 i 1 1 1
a. 8.5 1.6 1.5 2.6 2.5 3.6 3.5 4.9

Figure 3-17: desired trajectories --- polynomials without rests



Y2 0 () Tp'lp (9) a.(9) b (&)

‘o (spuoes $ 18]) ssuoldefB], —SEo:xmom uo} _ohcoU o>§¢ ‘81-¢ 2an8s g
®) ®)
2+ St 2€ S @82 Sl 91 g0 ‘o v St 9¢ G2 @2 S1 @1 <@ @
T T T T T T T 16°9- T T T T T T T £-30
‘908
46
- i
0 L - at
‘@ - - G}
'8 - l\m\ 4 @
‘9
- <
‘@ < gmm
) '_lu\’\.l—u\; l@ﬂ
‘9 | 1 _. 1 | ) 1 n-u-

2+ S'¢ 0°¢ m,.N @'c 61 @1 S0 ‘9

S'0-

S0

8’1




ouRqIMISIp
im seu0139fen add-pprosnuss vo [onuoo Jandepe :gi-¢ aumByy

® 5 8 8 8 ® @ ®

S ¢€-
B t-
S'e-
6 2-
S'l-
g't-
S 0-



g ol oatakc:  bdisGe.  cRMNT o

- - B . . e AN ESk  oe e - & - o - a - MR w ow e e = = e St B B el
oUBQITSTP
M ssuoiRlen adi-piuoudjod Bo [0GTEOD sandepe :j7-¢ 34nSig
P) ®)
8+ <S¢ @9¢ G2 @2 ST @81 S @ 34 S€ @€ Ge¢ @2 ST @81 S8 '@
Y T T T T T T 19°@- 1 . r . - . . £-38
- © B 4s
_ 4100
- - ot
- A ¥ 4200 0
—e
- i H¢co0 o J st
. 7
- \/\ o
v0' @ i \m U 1 52
- g B {se e AN Lt
i 1 an - N 4 s
= S 90 @ : N
L 1 ' ] 1 1 | LO'@ 1 1 1 1 1 1 1 €-3w
@ (e)
v St @€t S22 B2 Sl @1 G0 @ @+ G€ @€ G2 @2 s1 o1 G632 as.m-
T T T T T T T S'1- T T T ! ! ! !
T 4o 1- = 46 1-
— _ WQI = - @—u
lln!\ilj -
4 £ ‘2 B 4 s @-
- \ \ \ Hse e
— N
- / _ Q—. - W.Q
1 ] 1 1 ] ] ] /\ G 1 1 o't




SOTUIBUAD J0J0ud
i :ssuclsefen 2d{-jpp1osnuls Uo [0RUO3 3AN

depe :1z-¢ 3mBd

)
s'c @€ ..AM @2 st : , ®)
: . ® @1 se8 @ ... ¢g¢ @g s e s1 @v c@e 0
20 9- O o
1 [ 1 1 1 1 1
‘o N o
- 208
e L——a -~ o
a8 1 90°0
- {8@@
e | _Hora
T Heee I 4210
/ .
I~ \}ll/.—\ -4 1@
| 1 1 1 1 1 1 Qu.@ ; llw‘! _/l\\\ :—l\— . _. — wﬁ.a
(e
o4 cc¢ @€ &e¢ @2 sv ev <@ ‘9
T T 1 T | T 1 S-
I~ - ¥-
- - ﬂl
- Nl
L ) 1-
» /
y,UOﬂQ»%J.m/Df_ Wal 8
o~ ” o
i 1 1 1 i 1 1 N




sorureup Jo10uW

QIa :souoalen addy-jpruouljod uo [onuos sandepe gz-¢ amBry

P)
(% G € g c (S 8¢ (= g1
v 1 { 1 T ||
I ~ v
T ——
I 4
z .
B £ T
I 1 1 il { 1 1
@
0 ¢ [“RE > 8¢ [~ @2 S'lI a1 c'o ]
T T T T T T T ST
- q4o1-
- \ - m.su
‘9
- \d 1eo
- N 4ot
-~ 4651
{ ] | 1 1 1 1 Q.N

S'¢

()

g2

19’
e’
£e’
142
=
30°
Le’
80"

Q@ @O &8 O & O & 8

N*(D(DQN#_
[
)



108

Xg Xy X, # PD P

T
S ——— — JT i—«FRobot

/

A ..
PD; K s FF.. Hx

Figure 3-23: Cartesian-Space Adaptive Control
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Chapter 4

Parameter Convergence

Simulation results in chapter 3 indicate that the the estimated parameters in the
adaptive control system converge for some desired trajectories but not for others.
This raises the question of when exactly the estimated parameters converge to the
true parameters. It is the objective of this chapter to study the analytical
conditions which the desired trajectories have to satisfy in order for the estimated

parameters to converge.

Although we are most concemed about the accuracy of tracking errors in
tracking tasks, it is still of considerable interest to study the convergence issue
associated with the estimated parameters. On the theoretical side, studying the
convergence of estimated parameters allows us to gain insights about the
functioning of the adaptive control system. On the practical side, convergence of
estimated parameters has desirable implications on tracking accuracy, because it
leads to reduced tracking errors in the long run and to system robustness with
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respect to noise. The practical implications of parameter convergernice will be
explained further in section 4.4.

This chapter is organized as follows. In the first section, we discuss the
concepts of sufficient richness and persistent excitation which will be used to
characterize the kind of trajectories which can lead to parameter convergence. In
section 4.2, the conditions of parameter convergence are established. Section 4.3
discusses the practical implications of the persistent excitation condition, i.e., how
persistent excitation of desired trajectories affect the accuracy, robustness and
other aspects of the adaptive control operation. In view of the useful
consequences of persistent excitation, section 4.4 provides a discussion on how to

generate persistently exciting trajectories for adaptive robot control.
4.1 Sufficient Richness and Persistent Excitation

In this section, we discuss the concepts of sufficient richness and persistent
excitation, to prepare for the rigorous proof of parameter convergence under these
conditions. Before we give precise definitions of these concepts, let us provide the

intuitive motivation for such definitions.
4.1.1 Trajectory Excitation and Parameter Convergence

It is interesting to see why the convergence of estimated parameters is
dependent on the features of the desired trajectories. To do this, we note that the
adaptation law in the adaptive robot controller adjusts the variable parameters in
the control law to reduce the tracking errors. Since this adjustment is done
without direct concem for the convergence of the variable parameters to the true
parameters, it may or may not lead to parameter convergence. More specifically,

if the desired motion trajectories are very simple in excitation (the word
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"excitation” is used because the desired motion trajectories represent a source of
motion for the otherwise immobile robot) so that many possible values of the
variable parameters allow the tracking errors to converge, the parameter
adaptation may eventually drive the estimated parameters to values other than the
true parameters. If the desired trajectories are so rich in excitation (ie., so
complex) that only the true parameters can resuit in tracking error convergence top
zero, the parameter adaptation law will drive the estimated parameters to the true
parameters to lead to tracking convergence (note that true parameters can
guarantee perfect tracking for any desired trajectories). Now let us see such
relations between the trajectory excitation and parameter convergence on the one-

link robot in section 2.4.

With the robot dynamics given by (2-11) and the control law by (2-15), the

closed-loop dynamics of can be written as (2-17), or more explicitly as
mq + (A + k) + kA G =g, @-1)
First let us consider the case when the controller parameter m is of constant

value. A few of observations can be made about the tracking convergence

condition for the dynamics (4-1);

w
® For any bounded desired acceleration, the tracking erfor s converges to zero

if the controlier parameter is the true parameter m, i.e., m= m;

o If the desired acceleration § 1) is zero or converges to zero, the tracking

error 8 will converge to zero for any value of m which satisfies

A +ky>0 (4-2)

Obviously, any positive constant can satisfy (4-2). Furthermore, if the desired

acceleration is zero and initial tracking errors are zero, perfect tracking (g(t) = 0)
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will result for any of such parameter values.

e If the desired acceleration is not convergent to zero and is smooth, the
tracking error will converge to zero only if the controller parameter is the trye
parameter, i.e., m=m. Note that a certain smoothness is required on gy to draw
the above conclusion, because (4-1) can be regarded as a filter which can filter out
the high frequency components in the input mg,. The property that the Jesired
acceleration does not converge to zero will later be more accurately described as
sufficient richness or persistent excitation. The smoothness can be characterized

by uniform continuity.

Now let us consider the case when the true parameter m is unknown and 7 is
adjusted by the adaptation law. Since the tracking error of the adaptive control
System converges to zero, the parameter adaptation rate converges to zero. This
implies that after some time, the estimated parameter m will be essentially
constant. Using observations similar to the above ones, we expect the estimated
parameters must converge to the true parameter m if the desired acceleration is not
convergent and is smooth, because otherwise the tracking error wiil not be
essentially zero in the long run. If the desired acceleration converges to zero, we
cannot expect the estimated parameter M to converge to the true parameter,
because values other than the true parameter value can also maintain the tracking

error to be essentially zero.

In the general case with multiple robot links, the nonlinearity of robot dynamics
and the coupling of the joints introduce a lot complexity into the above kind of
reasoning. Despite the complexity, the basic relation between the desired
trajectory excitation and parameter convergence is the same. However, in order

the precisely characterize such relations for multi-link robots, we need concepts
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like sufficient richness and persistent excitation.
4.1.2 The Concept of Sufficient Richness (SR)

The definition of sufficient richness below is similar to that in [Morgan and

Narendra, 1977].

Definition 4.1: A fime-varying matrix M(z) is sufficiently rich (SR) if there are
positive numbers T, €. and 8¢ such that for any 1,20 and any unit vector

we R™, there exists tye [t,, t,+T,] satisfying

I M@warl 2¢ (4-3)

Intuitively, the sufficient richness implies that, in an integral sense, the
magnitude of the matrix Y is larger than a positive number in any direction. The

relation between the various times is shown in Figure 4-1.

I————

]
t 1790 & 5% T, :

To

Figure 4-1: Times in Sufficient Richness Condition

The parameter convergence condition for our adaptive controller will be shown
to be the sufficient richness of the matrix Y(q, q, q,, §,). However, this condition
is not convenient because q(t) and (t) are generated on-line and therefore there is
no way of checking whether the estimated parameters will be convergent before

the control operation starts. It is therefore more desirable to express the sufficient
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richness condition in terms of the desired trajectories. The following lemma is

useful for this purpose.

Lemma 4.1: With § -0 and ii —0, the sufficient richness of Y(q, §, q,.d,) is
equivalent to the sufficient richness of Y(q,, 4, dq. Gy

where Y(q,. 4,, 4, §,) is obtained by substituting the desired trajectories into
the matrix Y. This substitution leads to the peculiar double appearance of desired

acceleration {4 the above notation.

Proof: The proof can be made based on the intuitive understanding that the
tracking error convergence implies that q and § will be essentially the same as q
and 4, after some time. For convenience, we shall denote Y(q4, 44, 44, G by
Y4 To stress the fact that Y and Y 4 are (implicit) functions of time, we shall often
write them as Y(t) and Yq0).

We show below that the sufficient richness of Y4 implies that of Y. The

converse property can be derived using the same procedure.

From (3-1), (3-2), and § —0 and i'i->0, we have q,—q, and 4,y

Therefore,
" Y(qi(.liilr:iir)_Y(qd’fldt(ldiiid) "_’0 ‘88 t—eo (4"4)

Let eygand 8y and Ty be the positive constants required in the sufficient
richness definition for Y, i.e.,

N[ ™ Yawdel) 2 & (4-5)

Then, given the positive number €9/(2 3), (4-4) implies that there exists an
integer ny, such that Vr > nyd
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Y-y, II<;§—O (4-6)

Now take T0'=T0+n0T0. Then for any positive t; and any unit vector we R™,
(4-5) and (4-6) implies that there exists tz'e (4 ,tl+T0'] such that

; .+a° .+80
1) “hywdll 2| [ ¥ war ) - j"j (Y~ ) w llde
] n 2

& . &
280_2—5080— 7

where t2' is taken to be the t2€[(ty+ngT) , (ty+nyT)+T;] corresponding to the
sufficient richness condition of Y(q;,4,,49, G,). This shows the sufficient
richness of Y(q,q,q,,d,).

]

4.1.3 The Concept of Persistent Excitation (PE)

Given a time-varying function M(t), it is not very easy to check whether it
is indeed persistently exciting because (4-3) involve arbitracy unit vectors w. A
more convenient condition, which also characterizes the property that a function is

non-zero in an integral sense, is the so called persistent excitation condition,

Definition 4.2: If there exist positive constants 5, o, and o, such tha for all
120

oyl s J’"‘“ MT(t) M) dt < o1 47

the matrix M is said to be persistently exciting (PE).

The left-hand-side inequality indicates the smallest magnitude of the matrix
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among all directions while the right-hand-side indicates the boundedness of the
matrix.

4.1.4 Relation Between SR and PE

The persistent excitation condition is closely related to the sufficient richness

condition, as reflected by the following lemma:

Lemma 4.2: If a marrix M(¢) is uniformly continuous (with respect to time),

and persistently exciting, it is sufficiently rich.
Proof: From (4-5), for any unit vector w,

o < j"'“u M) w [12ds < o, 4-8)

Based on this relation, we can now straightforwardly show that (4-3) is
satisfied.

First, we note that the uniform continuity and the persistent excitation of M
implies the boundedness of M, because otherwise one can show that the right-
hand-side inequality in (4-8) would be violated. Due to this boundedness,

IM@®Ow| <M,

V't 20, where M, is a positive constant. Therefore, the left-hand side of (4-8),

1,48 | oy
M dtz —
J T imMewi o

This indicates that the average value of the scalar function IMw || over the &
interval is larger than o, /(Myd), i.e.,
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1 1,48 oy
= Mw|lde> —
sf., IM@Owlde2 oo

Therefore 3, [t1,¢,+8] such that

(11
M@ >
IM@)w My

Now let us find three positive constants Ty, 50, and &, which guarantee the

satisfaction of (4-3) for any unit vector w. Take Ty=3 and

a 1 80
28M,,

where &, is a positive constant to be determined, then

1 M@wae 21" M war -1 [“* M) - M1

o i
2 So320 =1 [ (MO - M1

H

Next, we choose 8¢ so that the second term in the last inequality be smaller than

one half of the first term. This can be done by using the uniform continuity of the

matrix M. Given the positive number

oy
F0= 250,

the uniform continuity impiies that we can find a positive number 8 , such that
Vie[ty, t3+8y),

I M(0) - M(t,) | s g

Use of this in the previous inequality leads to
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1> Mowary e,

The definition of sufficiens richr=ss for M is thus satisfied.

]

Conversely, if a matrix M is bounded and sufficiently rich, it can be casily
shown to be persistently exciting.

4.2 Conditions for Parameter Convergence

We now study the conditions for the convergence of the estimated psrameters
for the adaptive controller proposed in the last chapter. The sufficient richness
condition will be shown to guarantee the parameter convergence and then this
condition will be translated into the more convernient persistent excitation
condition.

4.2.1 Parameter Convergence under SR condition

This condition of parameter convergence for the adaptive robot control system
i8 similar to that for the adaptive linear-plant control systems in literature. Since
our closed-loop dynamics of adaptive robot control system, due to the nonlinearity
of the robot dynamics, is different from and more complicated than that of
adaptive linear-piant control systems, the proof in the literature [Mosgan and
Narendra, 1977] cannot be used here. An independent and miore complex proof
has to be devised. Let us provide a detailed statement of the parameer

convergence result firse,

Theorem 4.1: If the desired trajectories q4, 4,4, and 4y are bounded, and such
that the matrix Y(qq, G4, 44, Gy) is sufficiently rich, the estimated parameters are

P JRE e
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guaranteed to converge asymptotically to the true parameters.

Proof: We shali use a method of contradiction to prove the above theorem, i.e.,
if parameter error does not converge to zero, we can infer from the closed loop

dynamics (3-15) that the tracking error s does not converge to zero. A complex

sequence of reasoning is needed to accomplish this.

To start with, let us note that the assumed SR condition on Y, implies the
sufficient richness of the matrix Y, according to lemma 4.1. Therefore, there exisi

positive numbers T, €9, and 8 such that V¢, >0, 3ty €lty, 1y + Ty satisfying
+8,
1> Y@ iz e (4-9)
2

Now, let us consider the change of s over an interval [£5, t; +8y] with 8 being

the positive number associated with the sufficient richness of Y.

From (3-15),
d ~ S 0
E[Hs] =Y()a(t) - (Kp+C+H)s
Integration of this equation is

[ iHs)ar = [“*vwyawar - "™ (Kp +C+ Mysar
e, dt t '

Repeated use of the triangular inequalities leads to
"H(fz + 80) S(fz"' 80)"
+8 ~ 1+8, , -~ -
21 YO e - 1 VO 1) -F 01t |

- ||J-,'1+5°( Kp + C + H)s dt|| - [|[H(rp) s(z,) | @1
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where H{q(t)] has been denoted by H(t) to stress its time-dependence.

Now let us examine the terms on the right-hand side of inequality (4-10). Due
to the proven boundedness q, q and the assumed boundedness of the desired
trajectories, the upper boundedness of the matrices H(q), fl(q). C{q.q) and Y can
be shown, as explained in the Iast chapter. Since s has been shown to converge to
zero, the third (integration on a fixed interval) and fourth terms will converge to
zeroast, tends to infinity. Since the adaptation law (3-12) and the convergence of
s imply that a. the rate of change of the estimated parameters, asymptotically

converges to zero, the difference
8(r) -8 =8E)(1p-1) 1 SESLS1y48y

converges to zero as ¢,— ©o. Therefore, the second term on the right-hand side
of (4-10) also converges to zero. If we use L3(t,) to denote the sum of the last
three terms on the left hand side of (4-10), i.e.,

L3t = [Vt -1 ™Ky + C.+ H) sl - 1M (1 5 |

then L3(t5)— 0 as r,—o0,

At this point, we are ready to make an intuitive sketch of the proof itself. Let
the time t, be extremely large, so that the last three terms on the right-hand side of
(4-10) be essentially zero. Then, (4-10) is essentially,

HH(ty+ 8 s(ty + 5 2 | j{"’“"v(z)s(:,) drl|

If a(t,), does not converge to zero, then the above relation together with the
sufficient richness of Y and the lower boundedness of H will be shown to indicate

that s does not converge to zero either. This would constitute a contradiction to

m a— ———— —
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the shown convergence of s.

Let us now formalize the above intuitive arguments. Assume that a(f) does
not converge to zero as ¢ — o, This implies that there exists at least one positive

number €, such that V T;> 0, >, we can find ¢ >T; which satisfies

Namlize, (-11)

On the other hand, because of the asymptotic convergence of L3(t,) as rp) — oo,
for the positive number

€18

€E=—>0
2

with €, given by (4-9), 3T,>0, Vr> T,

HL3(0) li<e (4-12)

Similarly, due to the asymptotic convergence of Hy, for the above ¢, ar;>0
such that for any T,

IH@®s®ll <€ (4-13)
i.e., the magnitude of H(¢)s(t) is smaller than ¢ if t is sufficiently large.

Now take the T to be the largest among Ty, T) and Ty, ie, T =
max(Ty, Ty, Ty), then 3r>T such that (4-11), (4-12) and (4-13) are all satisfied.

Now let t be chosen this way and ty chosen according to the sufficient richness
definition, i.e., ;€ [t, t + Tyl and (4-9) is satisfied. Then since thy+8p>1>T;, we
have

" H(tz + 80)3(‘2 + 80) " <Ee (4-14)

similarly to (4-13).
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However, with the above inequalities satisfied, inequality (4-13) and’ (4-11)
lead to

a(ty)
(ELCY))

ITHGey + 8)s(ey + S N2 N[ ™ V() ) -

2 el EO —E=¢g
where the definition of sufficient ricliness has been used with the unit vector
being

we 30
Il a(e,l)

This contradicts the condition (4-14), implying that trecking error s wiil not
converge to zero if parameter error does not converge to zero. Therefore

() >0 ast—oo, O

Note that the above theorem also explains why condition (4-8) is called
“sufficient richness" condition: it is sufficient to guarantee the convergence of the

estimated parameters.
4.2.2 Parameter Convergence Under PE Condition

In view of the comparative convenience (no need of dealing with arbitrary
vector w) of checking persistent excitation, it is of interest to restate the above

theorem in terms of the persistent excitation condition:

Theorem 4.2: [f the desired trajectories are such that the matrix
Y(a4. 94, 44, Gy) is persistently exciting and uniformly continuous, then the

estimated parameters asymptotically converge to the true parameters.

This theorem results straightforwardly from theorem 4.1 and lemma 4.1. For
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convenience, when Y, is persistently exciting, we shall also say that the desired
trajectories are persistently exciting. It is also interesting that the condition of
uniform continuity appears in the above theorem. The necessity of this condition
can be explained in view of the integrator-type adaptation law: the excitation
contents of the signals will be filtered out by the integrator unless tie signal- are
smooth. The necessity can also be seen in the discussion in subsection 4.1.1, It is
useful to remark that, from examining composition of the matrix Y(q, §, 4, G,)
as given by (3-4), one easily conclude the uniform continuity of Y, is guaranteed

by the uniform continuity of §.

4.3 Practical Implications of Persistent Excitation and
Parameter Convergence

The concept of persistent excitation has useful and interesting interpretations.
The simplest interpretation of persistent excitation is that the trajectory is so
complex (or rich in excitation) that only the true parameters can guarantee exact
tracking. Alternatively, the persistent excitation of a trajectory means that, during
the operation along this trajectory, the parameter error in any direction of
parameter space, i.e., any combination of the errors in different parameters, will
always cause error in tracking motion. This is seen in the closed-loop dynamics
(3-15), where the parameter error, multiplied by the matrix Y, is seen as the cause
for the tracking error s. Of course, from an information point of view, we can also
say that persistent excitation implies that the tracking error contains adequate

information about parameter errors.

Although the convergence of estimated parameters appears to be a purely
theoretical issue, in view of the fact that the objective of motion tracking is to

make the tracking errors to be small, it is indirectly and but closely related to the
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practical performance of the system. First, if the desired trajectorics are
persistently exciting, parameters wiil be close to the true paramefers after some
time. Thus the controller will be using basically correct parameters and the
tracking errors will be small thereafter regardless of the feature of the later portion
of the desired trajectories. The relationship of warameter convergence and
tracking convergence is clearly seen in Figure 3-6(a) and Figure 3-13(a). In 3-6(a),
the tracking error remains small after the estimated parameters get close to the true
parameters, while, in 3-13(a), the tracking errors become large each time the
desired trajectories encounter some excitation. simply speaking, parameter

convergence implies better tracking error convergence.

Secondly, parameter convergence is particularly useful for operations on more
than one set of desired trajectories. Consider a robot carrying the an unknown load
(e.g., a tool) which is supposed to move along a straight line for a while and then
required to draw a circle. If the motion along the straight line is persistently
exciting, the estimated parameters will soon be close to the true parameters. This
implies that the estimated parameters at the end of the straight line motion can be
used for the non-adaptive or adaptive control of the following circular motion,
leading to accurate tracking even in the beginning of the circular motion. If the
first trajectory does not have persistent excitation, the estimated parameters at the
end of the first path operation will be meaningless, and use of them as initial
parameters in the control on the new trajectory is likely to cause large initial
tracking grrors or even excitation of unmodeled dynamics. This discussion also
suggests the usefulness of monitoring the persistent excitation of a trajectory
which indirectly gives the indication of parameter convergence (note that one does
not know the true parameters and therefore the closeness of the estimated

parameters to the true ones). It is useful to point out that the parameter
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convergence condition in theorem 4.1 is expressed in terms of the desired
trajectories. Therefore, one can check off-line whether a trajectory is persistently

exciting and parameters will be converging.

Thirdly, on persistently exciting trajectories which lead to convergent
parameters, the adaptive control system is more robust to non-parametric
uncertainties. On trajectories without persistent excitation, the tracking errors do
not contain adequate information on parameter errors, and the adaptation
mechanism may interpret the noise and disturbance components as parameter
information, leading to the so called "parameter drift". Note that the level of
robustness of the adaptive control system is dependent on the ievel of persistent
excitation in the desired trajectories, implying that the adaptive controller can
withstand larger disturbances and have smaller steady-state efrors on trajectories
with strong persistent excitation. There is currently no standard measure of the
persistent excitation level. One meaningful measure is the condition number of the

persistent excitation matrix

T
P= J‘o Y/ Y, dr

where T is the total time for executing the desired motion ( the conditioning
number is the ratio of the largest eigenvalue over the smallest eigenvalue).
Condition number close to 1 implies good persistent excitation and large

conditioning namber reflects poor persistent excitation.

4.4 Generation of Persistently Exciting Trajectories

After satisfying other requirements such as torque limits and path
constraints, the desired trajectories should be planned to be as persistently exciting

as possible. The generation of persistently exciting desired trajectories is an
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interesting research topic because of its relevance fto system performance,
particularly the robustness of the adaptive system to noise, disturbances and
unmodeled dynamics. If the desired trajectories are persistently exciting, we can
expect the resulting adaptive motion to be accurate, the estimated parameters
convergent and the adaptive system robust to non-parametric uncertainties. Note
that, in saying so, we do not imply that the adaptive controller will not perform
well on non-persistently exciting trajectories (the tracking errors are convergent

and the system can be robustified by simple techniques such as dead-zones).

However, the issue of generating persistently exciting trajectories is a difficult

one because of the following reasons.

o there are no simple rules on what specific forms of desired trajectories can

make the matrix Y 4 persistently exciting;

e there is no efficient numerical method of planning persistently exciting
trajectories;
o there are many other constraints which the desired trajectories have to satisfy

besides persistent excitation;

Now let us discuss each of these aspects of the trajectory generation problem.

A. Persistent Excitation and Sinusoids

In adaptive linear-plant control, the condition of parameter convergence is also
a persistent excitation condition like (4-7). There is a simple result on satisfaction
of persistent excitation condition for that case: persistent excitation is guaranteed

for an adaptive controller with m unknown parameters if the desired trajectories
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have (m/2) or more sinusoid signals. However, this simple result canror be shown
true for our adaptive robot control system because the technical difficuity caused
by the fact that the matrix Y contains a Iot of nonlinear functions (which are
mostly quadratic functions of joint velocities due to the Coriolis and centripetal

forces, trigonometric functions of joint positions, and their products).

It is possible that a weaker condition is possible for our persistent excitation
condition due to the presence of the nonlinearity in Yy, since passing a sinusoidal
function through a nonlinearity may generaily generates higher harmonics and
subharmonics and thus more excitation. Consider a noniinear function f(x) with x
being a sinusoid function of frequency w, i.e., x(f) = A sinwt. Then, (sinwt) is also
a periodic function. Using Fourier series, one can expand this nonlinear function
as the sum of many sinusoids. Specifically, it is interesting to note that quadratic
functions have the property of altering the sinusoid frequency instead of
generating a lot of other harmonies, as seen in the relation sinz(t) = (1 - cos20)/2.
This implies that if the desired trajectory contain G4 contains one sinusoid
frequency ®, the matrix Y (which includes quadratic functions of velocities due to
Coriolis and centripetal forces in robot dynamics) will contain both frequency w
and frequency 2 .

In the Y4 matrix, the terms corresponding to the Coriolis and centripetal forces
are nearly quadratic. For example, for the 2-DOF robot in Figure 3.1, the
component Y4(1, 3) is

YdL,3) =cp1Gm - Sp1dm
where
€21 =c05@p—qq1) S5 = Sin(gz — q4q)

Assume that the desired position is
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a4 25int
90 sint

Y(1,3) = - cos(sint) sint + sin{sin t)cos?t

then

= —cos(sint)sint + sin(;r’n 4

(1 =cos2t)

That is to say, that desired positions with only one sinusoidal component leads
to Y4 matrix with two sinusoidal components. If we use intuition from adaptive
linear plant control, this suggests that-m sinusoidal signals might allow us to

estimate more than 2m parameters.

Even though the nonlinearity in the Y matrix may allow more excitation to be
produced, there are no clear rules on the number of sinusoids and the number of

estimatable parameters.

B. Computational Methods

In practice, polynomial trajectories are often selected because of their
simplicity. However, polynomial trajectories have poor persistent excitation
because they are too smooth. This indicates that there is a need for algorithms
which can find trajectories with good persistent excitation. Currently, there are
few algorithms which can achieve this purpose. In [Armstrong, 1988], a
optimization method was proposed to choose persistently exciting trajectories.
But this method was mainly developed for parameter estimation tasks using least-
square-type estimators. Furthermore, the computational burden of this trajectory

generation method seems to be excessive for adaptive control problems where the
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trajectory planning should be finished very quickly.

C. Constraints in generating persistently exciting {rajectories

In trying to plan persistently exciting desired trajectories for the adaptive robot
control system, we must keep in mind that many other constraints should be
accounted for. In tasks where the path has been given, one only has freedom in
choosing the motion variation pattem along the path. In tasks where the path is
not given, one has to meake sure that the planned trajectories do not encounter
obstacles in the robot workspace. There are other factors such as torque limits,
acceleraticn jerks and computation requirement. Torque limits shouid be observed
because actuation saturation should be avoided. Acceleration jetks should be
reduced as much as possible to avoid the excitation of unmodeled robot dynamics.
Computational burden should be considered because of productivity requirement.

In terms of trajectory excitation, it is useful to make some rematks. On one
hand, it is clear that the level of persistent excitation bears certain relation to the
complexity of desired trajectories. Therefore, one has to make the desired
trajectories reasonably complicated in order to have certain level of persistent
excitation and, accordingly, adaptive control robustness. On the other hand, one
should not choose too complex trajectories. The reason is that toco complex
trajectories tends to excite unmodeled dynamics and thus pose thue danger of
contro! instability. Complex trajectories also tend to be haid to follow, leading to
large initial tracking errors in adaptive control.
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4.5 Summary

The estimated parameters in the adaptive controlier are shown to be convergent
to the true perameters if the desired motion trajectories are sufficiently rich or
persistently exciting. Intuitively, persist excitation means that the degired
trajectories are so complex only the true parameters can result in tracking error
convergenice. Though it is desirable for the desired trajectories to be persistently
exciting, generation of such trajectories is difficult. This is partly due to the
complexity of the nonlinear matix Y4 and partly to the multiple constraints on the
desired trajectories. In practice, desired trajectories should be generated such that
the various constrairts on the trajectories are satisfied and there is as high a level

of persistent excitation as possible.
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Chapter 5
Experimenta] Implementatiop

However, in Practice, robot contro] Systems contain all sortg of non-parametric
uncertainties, such ag joint and link flexibility, motor dynamics, measurement
noise, computationa] delay. 'I'herefore. it is natura] for one to wonder how the
Proposed adaptive controller wil] perform in real-world implementations: Will the
adaptive contro] System still be stable? Will the motion tracking be accurate?
From a Practical point of View, these are indeed the most important questions
about the adaptive controller.
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manipulator which moves with high speeds and has high uncertainty in inertial
parameters. The consistent results of the adaptive controller under various loading
conditions demonstrate the effectiveness of the adaptive controller in practical
applications. To provide a reference point for comparing the performance of the
adaptive controllers, the results of the PD and computed-torque controllers are also

presented.

This chapter is arranged as follows. Section 5.1 presents ihe experimental
setup. Section 5.2 descries the adaptive control system for the robot, Section 5.3
provides the experimental results of the adaptive controller and the PD controller,
highlighting the effects of adaptation. Section 5.4 shows the comparison of
adaptive and computed-torque controllers, given the same amount of initial
knowledge about the link/load parameters. Secticn 5.5 shows the performance of
adaptive, PD and computed-torque controllers when the robot carries a large
unknown load. Section 5.6 provides a sketchy analysis of the factors ncgiected in

the basic stability and convergence analysis.
3.1 Experimental Equipment

The arm used for the experiments is a 2-dof manipulator developed at the
Whitaker College of Health Sciences at MIT. Its physical structure is shown in
Figure 5.1. The arm was originally designed to be used as an experimental
apparatus for investigating human arm movements [Faye, 1986]. Because it is
capable of high speed movement and there is significant nonlinearity and coupling
effects among the two degrees of freedom, it is well suited for the study of the

performance of the adaptive robot controller.

The arm involves a somewhat peculiar mechanism, more clearly seen in

i HEE.eERiERe S
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Figure 5-1: the Whitaker College robot

Figure 3.1. The robot is called a semi-direct-drive robot because the second link is
indirectly driven by a motor located at the base through a four-bar mechanism.
This unique design represents a compromise between the conventional geared-
driven (or beli-driven) robots and the genuine direct-drive robots, avoiding the low
stiffness and low accuracy problems caused by the gears and the necessity of

installing heavy motors at the joints.

The robot control system hardware consists of a two-link arm, two DC servo
motors with amplifiers, two optical encoders, two tachometers and a
microcomputer PDP 11/73. The composition of this system is symbolically showi:

in Figure 5.2.

The arm lies in the horizontal plane, and therefore the effects of gravity are
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Figure 5-2: the robot control system

absent (originally constructed this way for reasons unrelated to adaptive control
implementation. In fact, the presence of gravity would further demonstrate the
advantages of adaptive parameter estimation). The two links are made of
aluminum, with lengths of 0.37 m and 0.34 m, and masses of 0.9 kg and 0.6 kg,
respectively. Although it uses a four-bar linkage mechanism, the ann is not
dynamically mass-balanced, and therefore presenis full coupling effects. The
motors are driven by PMI SSA 40-10-20 pulse-width-modulated swiiching servo
amplifiers. The inductance of the motors is low enough so that the amplifiers be
considered current sources to the motors. The two JR16M4CH motors, mounted
on a rigid supporting frame, are rather large and heavy (16 kgs each), but this does
not represent a practical problem since they are both located at the manipulator
base and do not move with the arm. The four-bar linkage mechanism is used to
transmit the torque from the upper motor to the outer link. The motion of the
relative angle between the inner and outer links can range from 39° to 139°. This
range is made possible by using an offset in the elbow of the manipulator. Due to
the fluctuation and nonlinearity limitations of the amplifier capacity, the maximum

torque which each motor can generate is restricted to be 9 N.m. In the controller
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implementation, the motors together with the amplifiers are regarded as héving a

constant of 1.12 N.m/volt as their transfer function.

The joint positions are measured by incremental optical encoders atiached
to the output shaft of each torque motor, with a resolution of 12 bits/180°, ie.,
0.045°. The joint velocities are directly measured by tachometers. The
tachometers, built in the motor housings, were originally designed for high speed
operations of motor shafts, and therefore have low output voliages for the
comparatively low speed rotations of the direct-drive arm shafis. Rather than
modify the tachometers themselves, their output signals are amplified. Since
tachometer signals tend to be noisy, this amplification makes the resulting signals
even more noisy. Another problem with the tachometers is their sensitivity to the
vibrations of the supporting frame of the arm, which exhibits naturel structural
modes at about 400 Hz. Analysis in [Faye, 1986] suggests the use of a lowpass
filter consisting of a cascade of four passive firet-order filters, each with a nominal
cutoff frequency of 50 Hz. While this filter is very effective in eliminating the
noises in the amplified tachometer signals, it leads to significant phase lag at low
frequencies (about 5 degrees at 1 Hz). This phase lag is believed to be one major

source of residual tracking error for the adaptive control implementations.

Position and velocity measurements, after proper A/D conversions, are sent
to the PDP 11/73 for torque computation. The control programs in the PDP
computer are written in the C language. In order to reduce the computational
delay, the computer programs are written to be as efficient as possible. However,
since the PDP 11/73 computer is quite old and slow, we only managed to obtain a
sampling frequency of 200 Hz. Though sampling frequency is relatively low, it
still allows the benefits of adaptive control to be clearly observed in the following

experiments.
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5.2 Overview of the Experiments

Before presenting the results in the specific experiments, we discuss some

general issues,

A. Adaptive Controlier Design

The robot in Figure 5.1 is schematically represented by the diagram in Figure
3.1. The adaptive control design in the experiments is based on the dynamic
model in (3-19).

The adaptive controller is almost the same as the adaptive controller in section
3.3. The difference is that the gain matrices Kp. A, P are now chosen to diagonal

matrices,
Kp = diag(ky, k) (5-1a)
A = diag(\,, A,) (5-1b)
L =diag(yy, Y5, 13, Vg) (5-1c)

instead of choosing them as the products of positive constants and unit
matrices. This is done to allow more flexibility and , therefore, better control
performance. However, the matrices are not chosen to be full matrices to avoid the
complexity associated with too many parameters.

As a result of the gain choices in (5-1), the control law in the adaptive
controller has the form

T =Yyay+Y 303+ Yigaq - by sy (5-2a)

B=Yyar+Yy383+Yya,-kps, (5-2b)
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where quantities 11y Y, 3 Y140 Y,,, Y23,Y24, 81, 8, are all defined in section 3.3,

The adaptation law can be explicitly written as

A-

ay =-py Yy

A

a3 =—py Y775,

A

a3 =—=p3(Y(35) + Yp355)
A

aq4= —p(YMsl + Y2452)

The initial values of the estimated parameters will be chosen in the specific
experiments. The sampling frequencies of all the controliers, including the PD
controller and the PD part of the adaptive controiler, are kept at 200 hz.

B. Fairness of comparison

It is important to note that the performance of a controller depends not only on
the form of the controller, but also on the design parameters of the controller. This
implies that, in comparing different controllers, it is necessary to make sure that
the best achievable performances of the controllers are compared. Otherwise, the

comparison is not fair.

For our adaptive controller, the design parameters are contained in the gain
matrices I', K and A. As indicated in section 3.3, larger values of these
parameters lead to higher accuracy of the adaptive controller. But these parameters
cannot be increased to arbitrarily large values because of the possibility of exciting
unmodeled dynamics. There is a tradeoff of tracking accuracy and control stability
involved. In the experiments, the design parameters are chosen by trial and errors.

Specifically, the design parameters are initially chosen to be relatively smali
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values, and then gradually increased until some shakiness is detected in the system
signals. The values obtained by discounting the maximum values by 20% are
regarded to be the optimal parameters and the corresponding performance is
regarded as the best performance of the adaptive controller. The design

parameters of the PD and computed controllers are chosen similarly.

C. The Desired Trajectories

In the experiments, the desired trajectories lasted for one second, such that the
robot moved from point A (Figure 3.8) to point B in the first half second and then
stays at the end point for the next half second. The positions of the points A and B
are defined by the joint angles following equation (3-24). The desired position
trajectories are plotted in Figure 5.3. The desired positions in the first half second
are constructed by interpolation with a fifth-order polynomial for each joint. The
velocities and accelerations at the beginning and the end of the half second are all
specified as zero. These trajectories are essentially the same as the first two
seconds of the trajectories in Figure 3.7 except that the time is reduced to one

second now.

These trajectories are very fast. The maximum value of the desired velocities

occur at t=0.5 sec and have the values
ilm = {300 262.5)T (deg./sec.) (5-3)

In fact, these are essentially the fastest polynomial trajectories the robot can
follow without running into the possibility of motor saturation. Slower polynomiial
trajectories were also considered in the experiments, but the results are not

presented in this chapter because they are similar to ones here.

These polynomial trajectories are interesting because they resembie the smooth
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Figure 5-3: the desired position trajectories

trajectories frequently chosen in practical tracking tasks. They are also interesting
from a control point of view because their lack of persistent excitation represents a
challenge to the adaptive controller. We remark that more complex trajectories
such as those obtained by superimposing sinusoids would have been useful in
demonstrating parameter convergence. But at the time (late 1986) the experiments
were carried out, the issue of parameter convergence was not understood and it
was not known what kind of trajectories could lead to convergent parameters. By
the time the parameter convergence conditions were found and understood, the
experimental equipment was no longer available.

5.3 Comparison of Adaptive and PD) Controllers

The first set of experiments intends to illustrate the effects of adaptaticn on the
tracking errors. Therefore, the adaptive controlier is compared with a PD
controller. In these experiments, no load was attached to the second link of the
manipulator and the parameter uncertainty for the adaptive controller came from
the two links of the manipulator. For the adaptive controller, the initial values of
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the parameter estimation were taken to be zero, that is, the parameters of the robot
links were assumed to be totally unknown at the beginning. Thus, similarly to the
simulations before, the adaptive controller started as a PD controller and the
feedforward part became more active as the parameter adaptation was driven by
the tracking errors. Good values of the adaptation gains y; were found to be all
equal to 0.02, i.e.,

N1=Y=Y3=74=0.02

As seen in the experiments, smaller values tended to lead to larger tracking
errors while further increase of the gains tended to iead to oscillations in the torque

and motion signals, indicating the tendency of exciting unmodeled dynamics.
The PD controller has the following form
T ==~ ky G-k, 3, (5-4a)
t == knds~ ki, (5-4b)

For both controllers, proper choices of the feedback gains Ky, and Kp (for
the adaptive controller, Kp=KpA) were determined by graduaily increasing their
values and monitoring the control operations. The two controllers were found to
become unstable at essentially the same values of these matrices. This suggested
that the adaptive controller had basically the same level of robustness to noises
and high-frequency unmodeled dynamics as the PD controller. The following
feedback gains

« _[200
471 0 15
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or, equivalently for the adaptive controller, A, = 20 and A, = 15, were found to

yield the best accuracy while avoiding noticeable excitation of the vibrational
modes of the links.

T
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Figure 5.4 : PD Control : (a) position errors ; (b) joint torques %

The results of the PD controller are plotted in Figure 5.4, while those of the
adaptive controller are given in Figure 6. The maximum joint errors for the PD
controller are 6.57° and 4.9, but those for the adaptive controller are only —2.12°
and —29. As expected, the errors and control torques of the two controllers are very
close in the initial period, but at roughly ¢ = 0.15 second, the tracking errors in the
adaptive controllers stop growing due to the effects of the adaptive feedforward
action (which would otherwise reach —5.2 and -3.7°, respectively). It is seen that

parameter estimates of the adaptive controller are quickly driven by the tracking
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errors.  The parameger estimates in Figure 5(c) are seen to be very smooth though
the measurement signals contain noises. This smoothness is due to the integrator
strecture of the adaptation law. It js desirable because the smocthness of the
estimated parameters avoids the excitation of the vibrational modes of the links.
At the end of the tracking operation in the first-half-second, usuatly an important
instant in applications like pick-and-place tasks, the joint errors of the adaptive
controller are only —.49 in both angles, while the PD controller is suffering
almost maximum joint errors, In the last-half-second, the joint errors are regulated
by the controllers and the arm settles down to the end position q, -

Since these polynomial trajectories do not have good persistent excitation, as
seen in the simulation results of section 3.4, the estimated parameters can not be
expected to be convergent. In the presence of non-parametric uncertainties, it is
possible for the parameters to drift if long-time operation or repetitive motion is
made. To avoid such parameter drift effect, small dead zones can used in the
computation of s (i.e., replacing 81 by zero in the adaptation law if Isyl < §;, and
similarly for the second joint). The sizes of the dead zone are determined based on
the resolutions of the encoders and the A/D converters for the tachometers. With
small dead zones used, experimental results indicated relatively litdle drift of
estimated parameters in o 20-times repetition of the same motion,

It is useful to make a remark about reducing the steady-state errors due to
stiction. Smali steady state joint errors of ~0.09? (2 encoder counts) and ~0.135°
(3 encoder counts) are observed in Figure 5.5 for the adaptive controller. These
errors arise from the stiction effects of the static frictions at the motor shafts of this
manipulator. The magnitudes of stiction were determined to be roughly 0.17 N.m
at each joint. Small stiction-compensation terms [-0.155gn(s, ), —0.105sgn(s,) |
were actually added in the contro] laws for Figure S.5 and 3.6, otherwise the

ke L b e e
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Figure 5.5 : Experimental Results of adaptive control:
(a) position errors §; (b) joint torque ;

(c) estimates @,, dy; (d) estimates Gy, 44

transient errors would be basically the same but steady-state errors would have
been about —0.3°. The magnitudes of these compensation terms are limited to
small values by the condition that the system should not cross the dead zones in s
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in less than two sampling periods, thus avoiding small-magnitude chattering. The
PD controller has the same level of steady state errors, although they can not be

clearly seen in Figure 5.4 due tc the larger scale used.

5.4 Comparison of Computed Torque and Adaptive
Controilers

The purpose of the set of experiments in this section is to show how to use a
priori parameter information in adaptive robot control and, to show the advantage
of adaptive control over computed-torque control when given the same amount of

initial parameter knowledge.

In practice, one always has some a priori knowledge of the physical parameters
of the robot and load. possibly by computation based on design data or computer
vision information. Based on this knowledge, one may obtain a set of rough (not
very accurate) estimates of the parameter values. These "rough estimates" can be
used to initialize the estimated parameters in the adaptive scheme and to
temporarily stop adaptation on a parameter if the bound of an equivalent parameter

is known and the estimated parameter reaches that bound.

With initial information available on the parameters, one may altematively use
the computed torque method to contro! the robot with the "rcugh estimates” as
parameter values in the inverse dynamics computation. The computed torque
method is a fairly standard approach, whose formulation can be found in a number
of papers [e.g., Luh, et al., 1980; Khosla and Kanade, 1986; An et al., 1987]. For
the 2-DOCF robot at hand (which is not subject to the gravity), its input torque can

be written as

t=H (i,-k,q-k, )+ C g
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We now use a set of experiments to compare the adaptive controller and the
computed-torque controller. Let us take the following choice for the design

parameter matrices in the computed-torque controiler

r20)1 0 ]
kl =

L [ ©,20
2 0 (')22

as is commonly done in robot control, where ®; and @, are two positive

constants. With this choice of k; and k,, a critically damped error dynamics
would be obtained if the exact parameters were used. Selecting k;, and k,
experimentally as before, the best values of ©; and @, are determined to be
®; =20and w, =30.

For the adaptive controller, the design parameters are the same as before
except that " is doubled. This doubling is made because reasonable initial
parameters are already available and less oscillation will be encountered in
estimated parameters (magnitude of the adaptation gain is limited by the excitation
of the modeled dynamics through the oscilation of the estimated parameters). In
the experiments, the parameter values used for the computed torqué method and as

initial values of the adaptive control are
a; =0.11 Kg.m?
a, =0.0285 Kg.m?

a3 =0.033 Kg.m?
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a4=0.

These values of the parameters were determined by Faye in his unrelated worl
on the impedance control of the manipulator [Faye, 1986]. They were computed
from the engineering drawings of the arm links. In addition to the discrepancies
between the real quantities and those on the drawings, the mass of the force sensor
attached to the endpoint were not accounted for in this computation and caused
some inaccuracy in the above values. A rough estimate indicates that the above

values of the initial parameters had an error of 20% or so,

05 e

4. -
e

Figure 5.6 : Computed-Torque control: (a) position errors §; (b) joint

torque ¢

The results are shown in Figure 5.6 for the computed torque method and Figure
5.7 for the adaptive controller. The maximum joint tracking errors for the
computed torque are 1.2 and -2.5° , respectively, while those for the adaptive
controller are 0.95¢ and -0.96°. The tracking error of the first joint is smalier
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because the parameter uncertainty is larger in the four-bar mechanism associated

with the second link.

0.14—

0.05¢

Figure 5.7 : adaptive control with initial parameter information:
(a) position errors ¢; (b) joint torque T;

. A A . A A
(c) estimates a;, d,; (d) estimates a3, dy



148

3.5 Comparisons in the Presence of a Large Load

This section studies the effectiveness of the adaptive controller in a realistic
setting.

To start with, we note that the purpose of using adaptive control for
manipulation is to maintain tracking accuracy in the face of significant parameter
uncertainty in load. To emulate such a situation, a large load was attached to ihe
end of the second link of the atrm. The load was a clutch which had roughly half

the size and weight of the second link. The attachment of this load to the last link
was unknown to the robot control system.

The same trajectory was successively controlied by the PD , the computed
torque, and the adaptive controllers. The PD controller was identical to the one in
section 5.3 and the computed torque and adaptive controllers were the same as the

ones in section 5.4, both in design parameters and initial parameters. The results
are plotted in Figures 5.8-5.10.

For the PD controller, the maximum tracking errors increase to 10.2° and
7.4°. Even at the end of the last-half-second regulation, the tracking errors are still
far from settled down (1.3° and 0.9°, respectively). The maximum tracking errors
of the computed torque controller are 1.9° and —4.7° representing increases of
0.9° and 2.2° . The much larger increase in the second Joint is due to the fact that
the attached clutch causes a larger increase in the uncertainty of the second joint
dynamics than in that of the first joint. The maximum tracking ermrors for the
adaptive controller are now 0.9° and -2.0°, with the second joint error increased by

1.04° but no increase in the first joint error.

When the parameter estimates obtained at the end of this run are used for a
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Figure 5.9 : Computed-Torque control of the large load:

(a) position errors ; (b) joint torques ¢

second run, the maximum errors of the adaptively controlled robot are found to

stay within 1° for both joints. The PD and computed-torque controllers would, of
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Figure 5.10 : adaptive control of the large load:
‘.
(a) position errors §; (b) joint torque *;

(c) estimates 4 1 32; (d) estimates 33, 34

course, essentially repeat their errors. In further adaptive experiments along
varied and longer trajectories, long-term parameter drift was found to be virtually

absent, due to the stopping of adaptation in the dead zones described in section
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5.3.
5.6 Error Sources in the Experiments

The theory in section 2 predicts that the tracking errors of the adaptive
controller globally converge to zero, while the tracking errors in the second and
later runs along the same trajectory merely stay within the one degree range,
without exact convergence. The discrepancy is due to various noises, disturbances
and unmodeled dynamics, which are inherent in the experiments but ignored in the
theoretical analysis. The tracking ervors observed arise from many hardware or

software sources. These include, in particular:

a. Am Modeling Errors: The substantial Couloumb frictions at the motor shafts
are not modeled. The Coulomb and viscous frictions at the linkage joints are not
compensated at all in the experiments. The neglected frictions are believed to
contribute a significant portion of the tracking errors. Furthermore, the vibrational

dynamics of the links may also have contributed a certain amount of error.

b. Actuation Errors: For simplicity, the amplifiers and the motors have been

modeled as constant gains, while they actually have dynamics of their own, which
may not be negligible for this half-second fast operation. Furthermore, preliminary
testing indicates an error of about 3% in the amplifier gain specified by the
manufacturer and used in this experiment, in addition to & small torque ripple . In
the absence of joint torque sensors, no attempt has been made to compensate for

the torque inaccuracies.

¢. Measurement Ermors: Joint velocity measurements contain a considerable
amount of error. The tachometer signals are small and therefore are sensitive to

noise. The signals after amplification and filtering contains quite severe phase lag.
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In addition, the A/D converters for the velocity signals create a certain amount of
error. For this high accuracy controller, the relatively low resclution of the op:ical
encoders (0.045°, i.e., 12 bits/180°) does not allow numerical differentiation to

advantageously replace the tachometer signals.

d. Real-Time Computing Limitations: The relatively low sampling frequency

(200 hz) is believed to be one of the major sources of residue tracking errors. To
obtain a rough idea of how much tracking errors the computaticnal delay can
introduce, let us perform a simple calculation. For this polynomial trajectory, at
the instant ¢ = 0.5 (sec) when the desired speed reaches its maximum (given by

(5-3)) , the change of desired position in one sampling interval is

300 1.50
0.005 =
262.5 1.31°

This implies that the desired trajectories could change this much without any
compensation reaction from the controller. These reflect the largest effects the
computational delay can have on the tracking errors, and this tracking errors have
comparable magnitudes as those of the residue tracking errors in the experiments.
Thus, computational delay contributes a considerable portion of the tracking
errors. Roundoff errors and, especially, sampling limitations, are further sources
of error at these high speeds.

5.7 Summary

The proposed adaptive controller was implemented on a 2-DOF robot. The
experimental results confirmed the insights gained in the theoretical and
simulation studies in Chapter 3 and 4. The adaptive controller was shown to be

superior to either PD and computed-torque controllers in practical applications.
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Even though the desired trajectories in the experimenis were of polynomial type
and had little persistent excitation, the adaptive controller has been seen to work
well and parameter drift was relatively insignificant due to the incorporation of
small dead-zones.
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Chapter 6

On-Line Parameter Estimation

On-line parameter estimation is one approach for dealing with parameter
uncertainty or parameter variations. On one hand, it can be used to provide
parameters for seif-tuning control. On the other, it can be combined with the
previously derived adaptive controller to yield improved adaptive control
performance, as will be shown in the next chapter. It can also be used to monitor

load change or slippery in robot hands.

In this chapter, we describe various parameter estimation schemés, emphasizing
two new schemes we propose to improve the classical least-square method.
Specifically, we shall examine the drawbacks of the standard least-square method,
propose two new variations, analyze the performance of the estimators in the
presence of disturbance and parameter variation. Note that the results in this
chapter can be used to any system identification problems with linearly

parametrized models, including those in robotics.
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6.1 Introduction

In this section, we shall describe the framework of parameter estimation.
A. Linear Parametrization Model

A fendamental problem often encountered in system identification involves
the on-line estimation of the mx1 parameter vector 2 from the following linear

parametrization model:
yO=W()a (6-1)

based on the measurement or computed values of the nx1 vector y and the mxm
matrix W. Model (6-1), although simple, is actually quite general. Any linear
System can be rewritten in this form after filtering both sides of the system
dynamics equation through an exponentially stable filter of proper order, as shown
in [e.g., Astrom and Wittenmark, 1989]. For instance, consider the first-order

system
y=—a;y+ byu {6-2)

where the parameters a; and b; are unknown, and the output y and input u are
measured. To avoid y in the above equation, let us filter both sides of the equation
by 1/(p + Mg (where p is the Laplace operator and A¢ is a known positive constant),
and rearranging, which leads to the previous form

y(‘) =yf(Xf-al) + “fbl (6-3)

where

with the subscript f denotes filtered quantities. Note that, as a result of the
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filtering operation, the only unknown quontities in (6-3) are the pardmeters
(lf'al) and bl'

The nonlinear dynamics of robots can also be put in the form of (6-1), as

we now show. From equation (2-5), we can write
t=Yl(qo (.lo 6)3 (6-4)

with Y, being a nonlinear matrix function of q, q and @, and a being a mx|1
vector of equivalent parameters, using the linear parametrization property in
section 2.2. This relation cannot be directly used for parameter estimation because
of the presence of the unmeasurable joint acceleration §. To avoid the joint
acceleration in this relation, we can also use the filtering technique. Specifically,
let w(r) be the impulse response of a stable, proper filter (for example, for the first
order filter A/(p + M), the impulse function is e ). Then, convolving both sides
of (2-5) by w yields

L:w(t-r)‘l.'(r)dr= L:w(t—r)[ H§+Cq+G jdr (6-5)

Using partial integration, the first term on the right-hand side of (6-5) can be

rewritten as
t e s (1 g
J[Hildr=we-nHig - [ ZIwHlqdr
= w0) H@4q - WO HIqO)14(0)- || tw(e-r) Hi - - Hlar

This means that equation (6-5) can be rewritten as
y©=W(q,9)a (6-6)

where y is the filtered torque and W is the filtered version of Y,. Thus, the
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matrix W can be computed from available measurements of q and . The filtered
torque y can aiso be computed (assuming no actuator dynamics) because the

torque signals issued by the computer are known.,

B. Prediction-Error-Based Estimation

Assume that the parameter vector a in model (6-1) is unknown and to be
estimated. A prediction of y(*) can be made based on tke estimated parameters 3(:)
and the measurable matrix W() at time ¢

3 = W(nh() 6-7)

The difference between the predicted value 9(() and the measured y is the

prediction error
e=Y(1)-y(=Wa (6-8)

where a(f)= ﬁ(t)—a is the parameter estimation error. Equation (6-8) indicates
that the prediction error e, which can be easily computed, contains information on
the parameter error. Various methods can be used to extract this information. The
estimators to be discussed belong to the prediction-error-based approach, all
having the following form of parameter update law

A=—PWe (6-9)

where P(f) is a (possibly time-varying) positive definite (p.d.) gain matrix.
Note that a (possibly time-varying) p.d. weighting matrix R(r) can be incorporated
in front of e in (6-9), in order to reflect the relative reliability of the prediction
errors in different joints and at different times, but it is omitted here for simplicity.

The gain matrix P may be generated from different perspectives, leading to



158

different estimators and performances.

C. A Lemmma for Convergence and Robustness
Later discussion will involve the following linear time-varying dynamics
x(N=—A®)x(5) +d(t) (6-10)

where the vector x(r) is the state, A(?) a symmetric and uniformly p.d. matrix,
the vector d denotes disturbance. By uniformly p.d., we mean that the mairix is
lower bounded by a constant p.d. matrix, i.c.,

Ve20, A(r) 2¢,I
where &, is a positive constant and I the identity matrix.

Lemma 6.1: If the disturbance d(t) in (6-10) is zero, then x(t) converges to zero

exponentially; if d(t) is bounded, so is x(t).

Proof: In the absence of disturbance, the exponential convergence can be
shown using the Lyapunov function V(f) = xT x. Since

V() =-2xTAX < —gxTx

one has V(1) < V(0)e~€.f and therefore x is exponentially convergent. One can
easily show that this exponential convergence in tum implies that the state
transition matrix G(t,r) associated with (6-10) satisfies

NGl s ey e -2 | (6-11)
with €, denoting another positive constant. By using the explicit solution

x(®) = G(1,0) x(0) + L:G(t. r)d(r)dr (6-12)
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together with the boundedness of d(t) and (6-11), one easily verifies the
boundedness of x(t), with the bound being proportional (in norm) to that of the
disturbance. i

D. Least-Square and Its Modifications

The motivation for on-line estimation, instead of off-line estimation,
usually stems from the need to deal with parameter variation or sudden parametey
change during the operation, which requires that the estimator continuously track
or monitor the varying parameters. The well-known standard least-square method
(without data forgetting) cannot be used for this purpose, because it terds to
gradually tum .itself off due to diminishing estimation gain matrix. Several
techniques have been studied in the literature to enable the estimator to handle
both constant parameters and slowly varying parameters. A simple way of
modifying the standard least-square method [Goodwin and Sin, 1984] is to directly
reset the gain matrix in standard least-square :cheme whenever its largest
eigenvalue decreases to a prespecified lower bound. Another popular approach is
to incorporate data exponential forgetting into least-square method. Despite the
intuitive appeal of data forgetting, the proper choice of forgetting factor is an
unresolved issue. If a positive constant forgetting factor is used, which is a
seemingly natural choice, then unbounded gain growth may result in the absence
of signal persistent excitation [e.g., Astrom, 1980]. This may imply excessive
sensitivity to noise and disturbances, as can be seen from (6-9) (any disturbance in
the prediction error will be multiplied by the huge gain, leading to violent
oscillation of the parameter update). [Irving, 1979; Lozano-Leal and Goodwin,
1985] studied variable forgetting factors leading to constant-trace gain, and other

modifications of the gain update. However, such modifications are quite complex
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in computation, and ths performance of the resulting estimators in the face of

parameter variations and disturbances are difficult to analyze,

Based on a detailed examination of the gain wind-up problem associated
with least-square estimator with constant forgetting factors, we recently proposed
two schemes for maintaining data forgetting while pieventing gain wind-up [Li
and Slotine, 1987, 1988a,b]. In this chapter, a detailed analysis of the convergence
and robustness properties of the new schemes is provided. The first scheme
involves a novel and simple way of automatically tuning the forgetting factor
according to the norm of the gain matrix. The resulting exponentially-forgetting
least square estimator, called bounded-gain-forgetting method, will be shown to
have exponentially convergent parameters under p.e. signals and upper bounded
(by a specified bound) gain matrix regardless of signal excitation. The other
scheme is obtained by adding & simple “cushioning” term into the gain update
equation, thus leading to upper boundedness of the gain independently of the
signal excitation. Section 6.4 analyzes the performance of the new estimators in
the face of parameter variation and disturbance. Section 6.5 presents a result
stating that the filtered version of a persistently exciting (p.e.) signal is also p.e.
under fairly weak conditions. This result is often useful in establishing global
stability conditions for self-tuning and composite adaptive controllers based on the
estimators reviewed and proposed in this chapler. Simuletion results iilustrating
the performance of the new estimators are presented in section 6.6. Section 6.7
offers concluding remarks.
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6.2 Conventionat Estimators

In this section, we briefly review and analyze the three major types of
existing estimators. This will not only illustrate the shortcomings of the methods,
but also suggest ways of improvements. In sections 6.2-6.4, we assume that the

parameter vecior a is constant. The performance of the estimators in the presence

of time-varying parameters a(¢) is analyzed in section 6.5.
A. Gradient Estimator
In the gradient e.stimator, the gain matrix is simply held constast
P(=P, (6-13)

where P, is a constant p.d. matrix. The estimator is calied a gradient estimator

because the parameter update law can be written as

with the partial derivative representing the gradient of the squared prediction
error. It is well known {Anderson, 1977; Morgan and Narendra, 1977] that the
gradient method leads to exponential parameter convergence if the signals are
persistently exciting (p.e.), by which we mean that there exist positive constants
o, 0 and §, such that

ve20, oyl< L”‘WT(r) W()dr<a,l (6-14)

The drawbacks of the gradient estimator are that the convergence rate of the
estimated parameters is generally small and also difficult to evaluate, and that the
estimated parameters tend to be oscillatory for large estimation gain, because of
the gradient nature of the search direction.

e EEeas R TREBECE™ PRSI ST
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B. Standard Least-Square Estimators

The least square estimate of the parameters is generated by minimizing the

total prediction error
I= !l )= WO)AW |Pdr (6-159)
with respect to a(t). The estiamted paramter a satisfies

[j' wTWdr] ﬁ(x)=j'w7‘ydr (6-15b)
o 0

Define

P-l(1) = j;wT(r)W(r)dr

We obtain

%[P“(r)]= W7 () W) (6-16)

Differentiating (6-15b), we find that the parameter update gatisfies (6-9), with
P(t) being the gain matrix. In using (6-9) and (6-16) for on-line estimation, we
have to provide an initial parameter value and an initial gain value to the
estimator. Based on a Kalman-filter interpretation of the least-square estimator, the
initial gain P(0) should be chosen to represent the covariance of the initial
parameter estimates 3(0). In the implementation of this estimator and those in

{ater sections, the identity relation

PP + %[P"(x)]l’(:) =0

may be used to avoid matrix inversion, leading to the following gain update

P()= -PWT WP
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The behaviour of the estimator can be best understood by solving the
differential equations (6-9) and (6-16). From (6-16), (6-9) and (6-8), one easily
shows that

P-1l(n) =P~ 0)+ j(; WT(nW®@ dr (6-19)

d 1 p-1(\a()]=
E[P (Na@®]=6

Thus,

a() = (P~1(0) + [!WT() W(r)dr]~! P-1(0) (0) (6-20)
If W is such that

Aind [[WTWdr}) — o as (- oo (6-21)

where A,,,.[-] denotes the smallest eigenvalue of its argument, then the gain
matrix converges to zero, and the estimated parameters asymptotically (but
unsually not exponentially) converge to the true parameters. Note that the
“infinite-integral” condition (6-21) is a weaker condition than the persistent
excitation (6-14). To prove this, one notes that, for any positive integer £,

[* *wrwar = ’gj“” WIW dr 2 koy I

Thus, if W is persistently exciting, (6-21) is satisfied, and P~! — 00 and P—» 0.
This implies that the standard least-square estimator cannot be used to estimate
time-varying parameters because of the tendency of the estimator to gradually tum
itself off (implied by P—0).

C. Exponentially-Forgetting Least-Square Estimators

If exponential forgetting of data is incorporated into least-square
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cstimation, by minimizi
I = [t [ M0 y(s)-W()he) IPds

instead of (6-15), then the parameter update law is generated by (6-9), and the
gain update law by

di: [P=1]=-A()P-! + WT()W(p) (6-22)
where A(?) 2 0 is the time-varying forgeiting factor. The estimator gain in the

least-square estimator with any constant or time-varying factor can be explicitly
solved to be

P-1()=P-1(0)e- [ Mr)dr ,. [lepl-[M)dIWT(YW(dr  (6-23)

To solve the explicit form of the parameter error, let us note that one can casiy
obtain

dip-131- _ap-iz
d:[P al AP-ia

Therefore,

a() = exp[- JMrdr)P@)P~1(0)i(0) (6-24)
That is,

a0)=[P~1(0)+ [lexn( [Av)dv) Wi(r) W(r)dr}~'P-1(0)&(0)

Comparing this and (6-20), and noting that exp(]'o’l(v)dv) 21, one sees why
exponential forgetting improves parameter convergence over standard least
square. It also shows that the "infinite integral” condition (6-21) for standard

least-squares guarantees the asymptotic convergence of the estimated parameters.
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Unlike the SLS method, the exponential forgetting leads to exponential
- convergence of the estimated parameters, provided that A(t) is larger than or equal
to a positive constant, and signals are p.e. . Specifically, assume that A(f) 2 A, with

A, being a positive constant. Then, we have, from (6-22),
d% [P11=-A,P~1+ WTW + (A1) - ) P!
P-l(5)=P-1(Q)e 2ot + [l (WTW 4 (M) -A) P~ ) dr
This guarantees from (6-14) that P=!(f)2 e=*8; I and, accordingly, that

Ad
P(< €1
oy

for f2. This and (6-24) show the exponential convergence of a(t) to zero with a
rate of at least A,,. It is interesting that the exponential convergence rate of the
estimated parameters is the same as the forgetting factor in case a constant
forgetting factor is used. However, a constant forgetting factor may lead io
diminishing magnitude in certain directions of P~! (and accordingly, unbounded
magnitude in certain directions of P) in the absence of p-e., due to the exponential
decaying components in (6-23). Unboundedness (or even large magnitude) of the
gain matrix is undesirable since it implies that the disturbance and noise in the
prediction error may, through the update law (6-9), lead to violent oscillation of
the estimated parameters, as seen in many experimental results involving

insufficiently-rich signals in set-point control [e.g., Suzuki, 1988].
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6.3 New Estimators

A good estimator should have the following characteristics:
e exponential convergence and non-vanishing P in the presence of p.e.
® upper bounded P and @ in the absence of p.e.

In the presence of p.e., the signals contain rich information about the true
parameters and a good estimator shouid be able to identify constant parameters
exponentially fast. A vanishing gain means that the estimator can not estimate
time-varying parameters. The upper boundedness of the gain matrix ensures that
the estimator will not be too sensitive to measurement noise in the absence of p.e.
A zero forgetting factor (standard least-square) results in the lack of the first
quality because of its vanishing gain, while a constant positive forgetting factor
leads to the lack of the second quality because of its possible gain explosion in the
absence of p.e. Since an estimator may encounter trajectories with various levels
of p.e., it is desirable to tune the forgetting factor automatically according to the

excitation of the signals in such a way that the estimator has both afore-mentioned

qualities.
6.3.1 Bounded-Gain-Forgetting (BGF) Estimator

We recently proposed the following forgetting facior tuning technique

w>=z,,u-“7';'!> (6-26)

with Ag and k&, being positive constants representing the maximum forgetting
rate and prespecified bound for gain matrix magnitude, respectively. The
forgetting factor in (6-26) implies forgeiting the data with a factor Mg if the norm
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of P is small (indicating strong p.e.), reducing the forgetting speed if the norm of P
becomes larger and suspends forgetting if the norm reaches the specified upper
bound. Since a larger value of A; means faster forgetting (which implies both
stronger ability in following parameter variations, but also more oscillations in the
estimated parameters due to shorter-time averaging of noisy data points), the
choice of A represents a tradeoff between the speed of parameter tracking and the
level of estimated parameter oscilation. The gain bound k;, affects the speed of
parameter update and also the effects of disturbance in the prediction error, thus
involving a similar tradeoff. To be consistent with our gain-bounding intention, we
choose ||P(0)]I < kg (hence P(0)< kol). We shall refer to the least-square
estimator with the forgetting factor (6-26) as the bounded-gain-forgetting (BGF)
estimator, because the norm of the gain matrix can be shown to be upper bounded
by the pre-specified constant k regardless of persistent excitation.

We now show that the form (6-26) of forgetting factor variation guarantees
that the resulting gain matrix satisfies P(f)< kol and, accordingly, that A(r) > 0.
With the forgetting factor form (6-26), the gain update equation (6-22) can be

expressed as

G P I=- 2P Qg IPIP-1 + WTW 6-27)

This leads to
P-l(t) = P-1(0)ePotdr + jo e~ Mo (=N %’ummv-! I+ WTwj

2 (PO kg De o= + (kg 1+ ["e~ho-NWT War (6-28)
0

where we used the inequality || P(r)|| P~1(r) 2 I , obtained from the fact that
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IPIP-1-1=P-12{jPi-PIP-1220¢

Note that ||P(0)[I< ky guarantees the positive-definiteness of (P~1(0)~ky~"1),

therefore

V20, P12 L1
ko

hence P(t) < kg1, and, from (6-26), A(f) 2 0.

If W(t) is p.e. as defined by (6-14), we can further show that A(r) 2 A;>0,
and, thus, the estimated parameters are exponentially convergent. To show this,
note that, from (6-28) and (6-14),

P-1(n2 [L + eModa, ]I
kO 1

P < %o I (6-29)
1+kya, e~Md
This in turn leads to the uniform lower boundedness of the forgetting factor by
a positive constant,
oy e Mod
M= k- 2 201 =My (6-30)
ko L+kyoy e

This implies the exponential convergence of the estimated parameters, as
pointed out in subsection 6.2. Note that, if W is strongly p.e., i.e., a, is very large,

Mo = Aq.

Under p.e., one can also show that P(t) is uniformly lower bounded by a
constant p.d. matrix, a property which is desirable for estimating time-varying
parameters Indeed, from (6-23) and (6-30),
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Pl s P-i(0) + J:e.tp[-ll t-1)] WTWdr

The second term on the right hand side can be regarded as the output of the
stable filter

M+ML,M=WIW (6-31)

hence M is bounded if W is bounded. Thus, from (6-31) and (6-29), if W is p.e.
and upper bounded, P will be upper bounded and lower bounded uniformly, i.e.,

kzl SP@< kll
where 0 < k)< ky < k.
The properties of the BGF estimator are summarized below:

Theorem 6.1: In the bounded-gain-forgetting estimator, the parameter errors
and the gain matrix are always upper bounded,; If W is persistently exciting, the
estimated parameters converge exponentially and P(t) is upper and lower bounded

uniformly by positive definite matrices.

Note that if a prespecified lower bound is desired for the smallest
eigenvalue of P for tracking parameter variations, one may simply stop updating P
when the computed gain update goes below the specified bowid, and resume
updating P when the computed update goes back up. This amounts to temporarily
run the estimator in a gradient mode.
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6.3.2 Cushioned-Floor Estimator

In view of the fact that the problem with the non-zero forgetting factor is the
possibility of P*! diminishing, we may, as an alternative to variable-forgetting
approach, use the following medification

5‘( P 1)0)=-M(P' -Ky 1)+ WTW (6-33)

where K, is a symmetric p.d. matrix specifying the upper bound of the gain
matrix P, and A(f) is a constant or time-varying positive forgetting factor
independent of P. A(t) is chosen to satisfy A, < A(t) SA; with A and A, denoting
two positive constants. The first terma in (6-33) acts as a "cushion” on the floor
P-1=0, so that P~! is maintained higher than K , i, P-12K, "1, PSK,
Indeed, the solution of (6-33) is

P-1() - K, ™! = [P~1(0) - K, Ve~ [MI4r 4 ['e= [MOVWT(r) W(r)dr (6-34)

which, given P(0)<K, , shows that P-1(n2K,-!, and accordingly,
0 < P()<K, . Unlike the BGF estimator, the estimator resulting from this gain
update law, called cushioned-floor (CF) estimator, is not a special case of least-
square estimation, but rather includes least-square-type estimators as special cases,
with A(f) =0 corresponding to the SLS meéthod, K,—» ©° to the exponentially-
forgetting least-square method, and A(f)— °© to the gradient method with
P(©)=K,. P will be uniformly lower bounded by a p.d. matrix if W is bounded. A
prespecified p.d. lower bound on P may also be achieved by temporarily stopping
the gain update, as mentioned for the BGF estimator.

Theorem 6.2: The parameter errors from the CF estimators are

guaranteed to be bounded, and the gain matrix is guaranteed to be uniformly
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upper bounded by a pre-specified p.d. matrix. Furthermore, if W is p.e., the
estimated parameters converge exponentially, and the gain matrix P(2) is upper

and lower bounded uniformly by positive definite matrices.
Proof’: Consider the following Lyapunov function candidate

V=_alp-lg

1

2

Its derivative is
V=aTP13+ ET 2PN E = A ET (P! - Ky E

Since P*1 s lower bounded by Ky'! and P~1()-K, ™! is a symmetric and

positive semi-definite matrix, V <0, and, thus, &(t) is bounded. If W is p.e., then
from (6-34) and (6-14),

V2§ P-1-K, 12 a,e 281 (6-35)

Thus, one can easily show that V, and accordingly &, converges exponentially
to zero, with a rate depending on A, §, and o;.

By noting that the last term on the right-hand cide of (6-34) is smaller than or
equal to the output of a stable first-order filter with bandwidth A, i.e.

[l [MIB Wy Wrdr < ['e =D Wy W) dr

one can also conclude that P-!(r) is uniformly upper bounded and P(t)
uniformly lower bounded if W(t) is bounded. £l

Similarly to the BGF case, the design parameters A, and K, should be
chosen to reflect the speed of parameter variation and the noise characteristics. For

processes with time-varying noise characteristics, one may want (o use time-
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varying bounds on the gain matrix. For example, if we want P(1)< k(o) 1, with k()

being a scalar positive function, we can chocse the gain update law to be

d%[l’ () —k=1 () ] =—A(0) | P 1)) —k-1(r) ] + WT W (6-36)

ie.,

%[P-'(z)1=-x(z) [P-1(0)=k1(0)] + WTW -%l (6-37)

6.4 Robustness to Disturbances and Parameter
Variations

The previous analysis characterizes the basic features of the BGF and CF
estimators. However, the analysis is based on two assumptions: constancy of the
true parameters and absence of disturbances. In practice, the true parameters are
usually time-varying, which is one of the main original reasons for on-line
estimation rather than off-line estimation, and furthermore the real dynamics
always contains disturbances such as noise and unmodeled friction forces. Can
parameter variations and disturbances drive the parameter errors to infinity despite

the exponential convergence resuit obtained before?

This section provides some reassuring answers to this question. The central
result states that the parameter estimation error in BGF and CF estimators will be
bounded as long as the true parameters have bounded rates of variation, the
disturbance (in additive form) has bounded magnitude, and W is p.e. and bounded.
Specifically, we consider the following form of system dynamics

y(O)=W(t)a(?) + d(r) (6-38)
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where d(t) is the bounded disturbance and the time derivative of a(t) is
bounded, i.e.,
ld®lIlsB, la®lisB,

with B; and B, denoting two positive constants. Note that the gain matrix
update is not affected by the introduction .. parameter variation and of the above
additive disturbance.

Let us analyze the BGF estimator first. Suppose the estimator has the
parameter and gain update laws (6-9), (6-22) and (6-26) as before. Then, from
(6-7) and (6-38), the prediction error is

eM=y-y=Wi-d (6-39)

The relation between the parameter estimation error and disturbance and

parameter variation is given by the interesting first-order expression

%[P‘1§]+Mt)P"§=-P"é+Wd (6-40)

obtained from (6-9), (6-22), and (6-39). Equation (6-40) describes a first-order
filter of bandwidth A(¢) with input (-P~1a + Wd) and output P ~1(n)a(s).

If W is p.e. and bounded, then P~1(r) will be upper bounded, and A(¢) lower
bounded by a positive number A as shown in section 6.3. Then, the filter output
is easily shown to be bounded, which, together with the upper boundedness of P,
shows the boundedness of the parameter error 3, i.c.,

&) s y,B8, + 1,8,

where the positive constants vy, and y, depend on the design parameters k, and
Ag: and on the constants o, o), and 8, which quantify the p-e. strength as given
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by (6-14).
The same global stability resuit can be proven for the CF estimator. Now,

4 P-15)+ MO(P1-K, HE=-P i+ Wd (6-41)

Multiplying both sides by the p.d. matrix K172 leads to

di‘ (K, Y2P~1 §] + A(1) [Ko V2P~ &] = d(1)

This is in the form (6-10) with
D()=Ky ' [-P~1a + W d]
A@®) = MK, 12[K,- P]K,12
In the presence of p.c., from (6-35)
P@)SIK, 1 +al]!

with o being a positive constant. This implies that

{

K
I+ok, °

PO Sl +aKy) 1K, s

with k, being the smallest eigenvalue of K. Therefore, A(t) is a symmetric and
uniformly p.d., matrix, i.e.

1

|
1+ o0k,

A()2

Lemma 6.1 then indicates the boundedness of parameter error. We can
surmmarize the above global stability resuits as

Theorem 6.3: If the parameter variation rates, the signal matrix W(i), and
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the disturbance are all bounded, then the parameter estimation errors in BGF and

CF estimarion are guaranteed to be bounded under persistent excitation.

In other words, the estimated parameters a(t) will always remain in a
neighboihood of the true parameters a(t), the size of which is proporticnal to the
bound B, of disturbance and the bound B, on the parameter rate of variation. This
represents a fairly powerful result, since the algorithms thus provide bounded-
error estimates even for parameters linearly increasing or decreasing with time (to
infinity), as long as the signals in W are p.e.. If W is strongly p.¢. (which implies
A(t) = A, as indicated in section 3), and a(t) changes only siowly, then (6-40)

suggests that the steady state estimation error is, in the absence of disturbance,
AP-la=-P-13
that is,
a(r) = -a(/h,

This implies that the estimated parameters ac) lag behind the true parameters
a(t) by (a(t)A,). The faster the data forgetting (A, larger), or the slower the
parameter variation (a(t) smaller), the smaller the estimation error. Similar

intuitive resuits exist for CF estimator.

One important way of using theorem 6.3 is to regard the disturbance as a
time-varying parameter and augment the parametrization accordingly. Theorem
6.3 suggests that the estimated parameters will be bounded as long as the
disturbance has a bounded derivative (even if the disturbance has an unbounded
magnitude). In the case that the disturbance is composed of & slowly-varying but
possibly large-magritude part and a small-magnitude but fast-varying part, the

extra parameter can be regarded as characterizing the slowly-varying part, and the
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high frequency, small magnitude components of the disturbance can be considered
as the nominal disturbance.

What will heppen if W is not p.e.? The estimators can no longer guarantee the
boundedness of parameter errors in the presence of paramecter variation and
disturbances. But P (being independent to the additive disturbances and parameter
variations) is bounded and the parameier errors cannot diverge too fast. Using
simulations, onve can show that parameter estimates may drift slowly when there
is measurement noise. One effective technique to relieve the parameter drift

problem is to use dead zones.
6.5 Effects of Filtering on Persistent Excitation

It is clear so far that the exponential convergence of estimated parameters
in the previous estimators hinge upon the persistent excitation of W in the model
(6-1). Note that model (6-1) usually results from dividing both sides of the originai
system dynamics by an exponentiaily stable polynomial A(p). The original
dynamics can be written in the form

Y1 =W|a

with (in the frequency domin) y,=A(p)y and W =A(p) W. It is interesting to
see what properties the original matrix W, must have in order for the filtered
version W to be p.e. and for the parameters to be convergent. In the following, we
prove that the persistent excitation and uniform continuity of W, are sufficient to
guarantee the p.e. of the filter output W. In the case of the first order plant (6-2),
because the original dynamics can be written as

y+ lfy= [Zf—al]y+ byu
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this implies that ({y,u)T should be persistently exciting and uni‘formly
continuous. In the case of the robotics, this implies that Y, in (6-4) should satisfy
the p.e. and u.c. conditions.

This result is particularly useful in establishing the exponential convergence
condition for our composite and self-tuning adaptive controllers for robot
manipulators [Slotine and Li, 1987, 1988; Li and Slotine, 1988). The uniform
continuity (u.c.) requirement is intuitively reasonable because it means that the
input to the exponentially stable and strictly proper (hence low-pass) filter is
smooth, and therefore that its excitation will be largely retained through the filter.
Lack of uniform continuity suggests that the signal has sharp fluctuations that the
low-pass filtering may wipe out, thus leading to possible loss of persistent
excitation. In the special case where the input signal is composed of superimposed
sinusoids and the plant is linear, the following results are obvicus since the output

of the filter is composed of the same frequencies.

Lemma 6.2: Let u(t) be the uniformly continuous and persisiently exciting
signal, and x = L(p)u, with L(p) being an exponentially stable, strictly proper and

minimum phase linear transfer function. Then x(t) is also u.c. and p.e.

Proof: By persistent excitation of u(t), we mean that there exists positive
constants §,, o) and &, such that Vr20

oy < [ u(drs o, (6-42)

The u.c. of u, together with the right-hand-side inequality, can be used to show
the boundecness of u by contradiction, by noting that an unbounded yet u.c.
function must violate the right-hand-side inequality at some points.

The boundedness of u(f) guarantees the uniform boundedness and u.c. of
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the output x(¢) , because of the exponential stability and strict propemess’ of the
filter [Desoer and Vidyasagar, 1975]. In section 6.9, it is shown that, V120, there
exist positive constant ¢4 independent of r, such that, with the same &, as that in
(6-42),

Ir"‘- X2(tde 2 oy (6-43)

We conclude from (6-43) and the uniform boundedness of x(t) that x(t) is also
p.e.. D

We now extend this result to the vector and matrix cases.

Theorem 6.5: If a matrix (or vector) U(t) is p.e. and uniformly continuous, the
matrix (or vector) X(t) is obtained from x = L(p)u, with L(p) being a exponentially
stable, strictly proper, and minimum phase linear transfer function. The : x is also

p-e.and u.c.

Proof: Let U(t) be the u.c. and p.e. input and X(t) be the output. The p.e. of U
implies that there exist positive constants §, B; and B, such that ¥r20 and for any

constant unit column vector v
Bis[ vIUTU(vdr < B, (6-44)

Now we proceed to show that there exist positive constants ; and 8, such that
Vr20, and the same interval length §,

Bal < [ VIXT (X () vdr < y] (6-45)

The right-hand-side inequality in (6-45) can be established as in iemma 6.2
based on the u.c. and p.e. of U and the filter’s properties. Only the left-hand-side
inequality has to be proven below.
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If U and X are vectors, this is easy to show by noting that the scalar
function X(t)v is the filtered output of the scalar U(t)v. Since U(t)v is a p.e. and

u.c. scalar, lemma 6.2 shows the p.e. of X(t)v , and therefore satisfaction of (6-45).

If U and X are nx/n matrices, as is the case in robot parameter estimation,

then we can write
uTu= zu Ty,
in terms of the row vectors u, u,,..., u,, and correspondingly
XTX=§X,"'X,
Therefore, Vr20 and for any constant unit column vector v
I:“ vIUT(rn\U(r)vds = ZLM (vTu()2dt
Because of (6-45), among the n terms on the right side, there is at lesst one
term, say the second term, larger than 8,/n , i.e.,
L”'(vruz(t))zdt 2By /n

Since the scalar function vTx, is the filtered value of the scalar vTu, , the result
in the Appendix indicates that
[ vTxpn)2dr 2B,

where B, is a positive constant independent of r. Therefore,

| " TXT(0) X (t)vde 2 | ™ (vTxy(0)2de 2B,

r

Note that, in general, B; represents the smallest positive number in the few
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possible situations, and depends both on the input and on the filter's
characteristics. £l

6.6 Simulation Results

Let us illustrate the performance of the new estimators using some simulations
on the 2-link robot in chapter 3. To generate the data for estimation, we run the
tracking the desired sinusoidal-type trajectories in Figure 3.5 using the PD
controller there. This means that the input and motion data for estiamtion can be
found from Figure 3.7 and Figure 3.5. In avoiding the joint acceleartion in
prediction, a first order filter with bandwidth 30 (rad/sec) is used for cach joint.

The estimation results of the gradient estimator, with gain matrix being
P =041, are given in Figure 6.1. The estimated parameters are seeen to be very
oscilatory and converge slowly. The results of the standard least square estiamtor
with initial gain being P(0) =0.4 are shown in Figure 6.2, with smooth
convergence observed. The results of the GBF estimator, with gain bound being
0.4 and maximum forgetting factor being 4 (i/sec), are shown in Figure 6.3. The
parameters are seen to be very smooth and the convergence is faster than that of
the SLS estimator. Figure 6.4 shows the results of the CF estimator, with the
bounding matrix being K = 0.41 and forgetting factor being A =4 (1/sec.) The
results of the BGF and CF estimators look very similar.

The results of the parameter estimation are affected by the design parameters
associated with the estimation gain matrix P. For gradient estiination, this relation
between the gain magnitude and estimtor performance is somewhat complicated.

Figure 6.5(a) and Figure 6.5(b) show the estimated parameters from a gradient
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estimator when the gain matrix is changed to be a smaller gain, PP =0.03. One
notes that the parameters are actvally smoother and converge faster than those in
Figure 6.1 comresponding to a much larger gain. This reflects the characteristics
that the convergence rate of the gradient estimator improves as the estiamtion gain
is increased but, beyond some point, further increase of the gain matrix may lead
to slower and more oscilatory parameter convergence. This means that a good
gain shouild be not too large and not too smali. But the problem of determining
good gain value for egradient estimator is difficult, particularly because the vaiue
may also depend on the signals.

The relations between gain maginitude and estimator convergence are simpler
for the other estimators: larger gains always lead to faster convergence. for
Figures 6.5 (c) and 6.5(d) show the estimated parameters of the standard least
square method, which converge slower than those in Figure 6.2 but are still
smooth. Figure 6.6 show the estimated parameters of the GAF and CF estimators,
and they are seen to be smooth and converge faster than the gradient and SLS

estimators.
6.7 Implementation Issues

In order to have good estimation performance, a lot of implementation issues

have to be carefully considered, ¢.g.,

1. choice of the bandwidth of the model filter;

2. choice of initial parameter and initial gain matrix;
3. choice of forgetting rate and gain bound;

4. choice of excitation signals;

Tradeoffs and judgement have to be used in making the above choices. The
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filter bandwidth should be chosen to be larger than the plant bandwidth so that the
system signais are able to pass through. But it should be smaller than frequency
range (usually high frequency) of the noise. The initial parameters should be
chosen to be as accurate as possible, of course. The initial gain matrix should be
chosen as large as possible, preferably to be the maximum allowable upper bound
for the gain. The forgetting factor should be chosen to be large enough so that
parameter variation can be tracked sufficiently accurately. However, it cannot be
chosen too large lest the gain matrix is too large or too oscillatory. The gain bound
is chosen based on the knowledge of the noise magnitude and the allowable level
of estimated parameter oscillation, with larger noise leading to smaller gain bound.
The excitation signals should contain sufficient spectrum lines to allow parameter
convergence, and their frequencies should be within the bandwidth of the plant so
as to be able to excite the plant. Note that, though unknown parameters can be
time-varying, the speed of the variation should be much smaller compared with
the plant bandwidth, or the parameter dynamics should be modeled.

6.8 Summary

Te avoid the gain-diminishing problem in standard least-square method and the
possible gain explosion problem in exponentially forgetting least-square
estimation, two simple but effective schemes, called the BGF and CF methods,
were studied. The methods, besides guaranteeing the boundedness of the gain
matrix, have desirable exponential convergence properties, and good robustness
properties with respect to parameter variation and disturbances. They can
guarantee bounded parameter errors in the presence of persistent excitation if the
parameter variation rate and disturbances are bounded. Such properties imply that

the estimators are well-suited to estimate time-varying parasneters. The simulation
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results indicate that they consistently perform better than the gradient and standard

least-square estimators.

6.9 Proof of an Inequality

In this section, we want to show the inequality (6-43), i.e., given the uniform
continuity of u(t) and x(t), and (6-42), that there exists a positive constant 0,3, such
that Vr 20,

Ir"" 2 de 2 o, (6-43)

The proof of (6-43) is done in three steps. The first step shows that, because
of the lower boundedness of the integral in (6-42) and the u.c. of u(t), there must
exist a subinterval, within {r, r+8], where |u(r)| is larger than a positive constant
(and therefore where u(¢) has a constant sign). This, in tum, is used in the second
step to show there is another subinterval in which |x(r)] is larger than another
positive constant. Integration of Ix(t)l in this subinterval then guarantees the
satisfaction of (6-43).

Let h(t) be the impulse response of the filter and the positive number T, the
first instant at which h(t) is equal to zero, i.e., #(T,)=C. Then h(t) is nonzero and
of constant sign on {0, T,]. It can be casily shown from the exponential stability of
the filter that

\h(e)Sh,e~tt <h,
with &, and / being positive constants.
From (6-42),

(1/8,)[ "% uXn)drz o8, (6-46)
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Step 1: There must be at least one point t, in the intervai [r, r+3,] at which the
value of u? is larger than the above average, i.c.,

ul(t 12043,

ie., Iu(tl)IZ‘Jodﬁo. Using the uniform continuity property of u(t), there must
exist a positive number 8, (made §;<5,/2 ) independent of r, such that
Vie [11—81. tl+5l]

(e} 2(1/2)Voys, (6-47)

Note that u(r) in this subinterval has a constant sign, because of its uniform
continuity. Since [r, r+3,] includes 7, it should encompass either [¢;—8,, #;], or
[),4;+8,]. We can assume , without loss of generality, that [7,r+5,] includes
[ty.;+8,]. Step 1 is accomplished.

Step 2: We rnow show that there exist another subinterval in which p(t)| is
larger than a strictly positive number. To do so, we first find one point in
[#;.¢;+8,;] at which |x(s)] is strictly positive, and then use uniform continuity to
translate this point property to an interval property. Let 8,=min(8,,T,). Then,
V t€ [t;,4;+06,], both u(t) and h(t;+5,-t) have constant signs. From the filter input-

output relation, we have
x(ty+8,)=x(t,) h(8,) + L:-*‘z u(e) h(ty+8,~1) dt
therefore,
Le(ey +8,)1+ be(e A1 2 1 L:-“zh(:,+52—:)) u(r)dnl
= L:-*‘:lh(¢,+82-r)|lu(:)|d: 2 (6-48)

where {=(§;/2)Va,/5, and
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£,= _[o'tih(r)ldr >0

From (6-48), either | x(t,+5)12({/2) or I x(t))Ih(B)i2(L/2) .

In the first case, Lx(t;+3,)I2({/2) , because of the u.c. of x(t), there must
exist a a positive constant 83 such that (r))>{/4 on the subinterval [t,+8,,
t;+8,+8,] (or [t;+85-85, t;+3,]) enclosed by [r, r+3,).

In the second case, namely Ux(¢))IIh(3,)128/2, we have (e 128/(2h,) .
There must exist a similar subinterval (¢, t;+83] in which Le(s)1> /(4 h,) .

Step 3: Consider the first case. We have
[ e(lde 2 Jieih x(e)ldr 2 8,4/4

Therefore, using Schwarz inequality, [ 8, x2(1)dt2(8,4/4)2/5, . The treatment
of the second case is similar.

In summary, there exists a strictly positive constant 0 (the smallest lower
bound among the previous possible situations) such that

[ty de 20y

Note that o, is independent of . l:’l
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Chapter 7
Compesite Adaptation

For the adaptive controller developed in chapter 3, the adaptation law extracts
information about the parameters from the joint tracking errors. However, the
tracking errors are not the only source of parameter information. Prediction errors
on the joint input also contain parameter information, as reflected in the parameter
estimation schemes in chapter 6. The main questions in this chapter are the
following: can the different sources of parameter information be combined for
parameter adaptation while preserving the stability of the adaptive control sysiem?
Dozs such a combined use of information sources indeed improve the performance

of the adaptive controller?

The answers to the previous questions are both positive. In section 7.1 we
propose the concept of composite adaptation which means the use of both tracking
errors in joint motion and prediction errors in joint torques for parameter

aduptation (Figure 7.1). Section 7.2 is devoted to the convergence analysis of the
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composite adaptive control systems. Section 7.3 provides simulation results,

showing the improved performance of the composite adaptive controllers.

S
=1 Composite a
£ | Adaptation >

Figure 7-1: Composite Adaptation

7.1 Composite Adaptation

The key to extracting information from both the tracking errors s and prediction
erTors e is to create a parameter update law which is driven by both s and e. In this
chapter, we propose a so-called "composite adaptation law" for this purpose,

which is defined to be
é(r)=-P(:)[ YTs+WTR(n)e] (7-1)

where R(r) is a uniformly p.d. weighting matrix indicating how much attention
the adaptation law should pay to the parameter information in the prediction error,
and the adaptation gain P(t) is a uniformly p.d. gain matrix determined by the
techniques to be described below. The quantities Y and s are the same as those in
chapter 3, while W and e the same as those in chapter 6. In filtering the dynamics
to avoid the joint acceleration (i.e., in generating the matrix W), we use a first-

order filter, i.e.,

A
W(q, 9 =—L_[Y,(q, 4, i (7-2)
(q,9) pr[ (4, 4, 9)]
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with Y; defined by (6-4). We thus obtain a new class of adaptive controllers.
Note that we propose to use the same form of control law as (3-1 1), and thus the
closed-loop tracking error dynamics have the same form as (3-15). Note that the
adaptive controller in chapter 3 is a special case of the above proposed composite
adaptive controller, with R()=0 and P being constant. That adaptive controlier
will be called tracking-error-based (TEB) adaptive controller. For simplicity, we
shall take R(f) to be the unity matrix in the following.

In the composite adaptive controller, we may use the gain update
techniques of various parameter estimators in chapter 6 to generate the gain matrix

P. Let us summarize some gain update laws and their relevant properties:

The constant gain (CG) method
P()= Py (7-3)

where P is a constant symmetric p.d. matrix.

The "bounded-gain-forgetting" (BGF) method

The BGF method uses the least-squares gain update

g; P-1(=-A() P14+ WTW (7—4)

with the following variable forgetting factor

MO=2g(1-IP||/kg) (7-5)

where k; and A are two positive constants specifying the upper bound of the
gain matrix norm and the maximum forgetting rate. This gain update has been
shown to guarantee that V>0 ,A(f) >0, and P(0)s kgl for any signal W, and
A, >0,Vt20,M2A,if Wisp.e..
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The "cushioned-floor" (CF) method

The gain-update is

‘%(p 1) )=-A@O (P! =Ky 1)+ WTW (7-6)

where K is a constant p.d. matrix specifying an upper bound of the gain
matrix, and A(f) is a uniformly positive design parameter, i.e., AD 22, >0. W is
p-e. as defined by (6-14), then for all ¢ 28y,

P-l()-Ky 'z o e P28 1 (7-7

Let us also point out some results on persistency of excitation relevant to our
later discussion. If tracking errors q and ﬂ converge to zero, then the persistent
excitation. of W, = W(q,, q,) implies the p.e. of W, as shown in chapter 4. Also,
as explained in section 6.4, the p.e. of W, is itself guaranteed by the p.e. and
uniform continuity of the matrix Y 4, which is defined by

Yia=Y1(a4, 44, §p)
Interpretation of Composite Adaptation
To give an intuitive interpretation of the composite adaptation law, let us

consider, for simplicity, the gain matrix to be P(f) = yI. The TEB adaptation law

is of a kind of gradient nature becausc it can be written as
§=—v2%s
Jda

This gradient nature of the search direction is the reason for the oscillatory

parameter convergence when large adaptation gain is used.
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Using (6-8), one can rewrite the composite adaptation law as
) +yWTW3 =—y YTs

This means that the parameters errors are now a filtered version of the gradient
direction, with the filter being time-varying. Thus, the parameter search in the
compesite adaptation goes along a filtered, or averaged, direction. This can be
used to explain why parameter and tracking error convergence in composite
adaptive controlier is smoother and faster than the TEB adaptive controller, as will

be seen in simulations in section 7.3.
7.2 Global Asymptotic and Exponential Convergence

In the following, we show the global asymptotic and exponential convergence
of the tracking errors and parameter errors for the adaptive controllers based on

the composite adaptation law (7-1), using a Lyapunov-like analysis.

The convergence analysis for the composite adaptive controllers based on

various gain-update techniques will all rely on the following scalar function
V) =5 [sTH s + P15 (7-8)

This is the same function as that used for the tracking-error-based (TEB)
controller in chapter 3, though we now allow P to be possibly time-varying.

7.2.1 The CG Composite Adaptive Centroller

The constant gain (CG) adaptive controller is defined by (7-1), (7-3) and (3-11).
The derivative of Lyapunov function can be obtained, using (3-15), (7-1), and the
skew-symmetry of (H -2C),as
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V() =—sTKps—aTWT W3 - (1-9)

This implies that V(r)< V(0) and, therefore, that s and 3 are upper bounded from
the construction of V, since H is uniformly p.d. and Py is p.d.. It is interesting to
note that the scalar function here is the same as that in (3-8) used for the earlier
tracking error-based adaptive controller, while its derivative now contains an
additional negative term (—eTe), indicating that V(r) will decrease as long as either

the tracking error or the prediction error is not zero.

Theorem 7.1: If the desired joint trajectories are bounded, then the tracking
errors q and q and the prediction errors e in the CG composite adaptive
controller all globally converge to zero, and the parameter error & remains
bounded. If, in addition, the trajectories are persistently exciting and uniformly
continuous, the estimated parameters asymptotically converge to the true

parameters.

Proof: The boundedness of s and & has already been pointed out. The
boundedness of ¢ and ﬁ follows from the boundedness of s. We now prove the
convergence of the tracking error measure s and prediction error e by showing the

convergence of V to zerc for bounded desired trajectories through the use of

Coroliary 2.1.
Let us first show the boundedness of i./(t) which is
V=-25TK § - 2¢Té
since this in tum guarantees the uniform continuity of V(). The boundedness
of §, §, 4, 44 and i implies that of q, §, 4, and &, . Examination of the terms in

Y(q,q, q, iir) and C(q,q) reveals that they are all bounded, reflecting the physical

fact that, for a mechanical manipulator, bounded motion quantities cannot
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correspond to unbounded forces. Given the closed-loop dynamics (3-15),
§=H1[Ya-(Kp+C)s] | (7-10)

and the upper boundedness of H %, § is bounded. This also implies that § is
bounded.

From (6-8), we have
e=Wa+wa

The second right-hand term is bounded because W, Y, a and s are all bounded.
Note that the boundedness of g, q and § implies the boundedness of the torque ©
and that of the matrix Y,. Based on the facts that the filter in (7-2) is
exponentially stable and strictly proper, and that Y, is bounded, one can easily
show the boundedness of W. This in tum guarantees the boundedness of é.

The boundedness of s, e, € and § implies the boundedness of V(o).
Straightforward application of Corollary 2.1 then leads to V(1) =0 as t—oo .
Therefore, both the tracking error s and the prediction error e asymptotically
converge to zero. The convergence of s to zero in turn guarantees the convergence

of ﬂ and q to zero, according to lemma 3.1.

If W, is persistently exciting, then W is also p.e.. The convergence of the
estimated parameters to the true parameters can then be shown easily by noting
that the adaptation law

=-PyWTWa - P,YTs (7-11)

represents an exponentially stable dynamics [Anderson, 1977, Morgan and
Narendra, 1977] with convergent input Y7 s. 1
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It is interesting to note that composite adaptive control guarantées the
convergence to zero of both tracking error and prediction error, while direct
adaptive control only guarantees that of the tracking error. This is a reflection of
the fact that composite adaptation explicitly pays attention to both tracking error

and prediction error.
7.2.2 The BGF Composite Adaptive Controllers

The adaptive controller with P determined by expressions (7-4) and (7-5) is
called the bounded-gain forgetting (BGF) composite adaptive controller. For
convenience of exponential convergence analysis, we require the simple

modification corresponding to (3-33) (3-34), i.e., replacing Y by Y.

Theorem 7.2: The BGF composite adaptive controller has globally
convergent tracking errors § and d and prediction error e if the desired
trajectories are bounded. Furthermore, if the desired trajectories are persistently
exciting and uniformly continuous, the parameter estimation errors and tracking

errors are globally exponentially convergent to zero.

Proof: For the BGF adaptive controller defined by (3-33), (3-34), (7-1) and
(7-4), cne has

V©)=-AsTHs - (M»/2) aTP-15~ aTWIW3 <0 (1-12)

The convergence of g, q and e can be shown as before. Note that, additionally,

the convergence of f’(t) to zero leads to that of A(f)a” P ~13 to zero.

As pointed out in section 6.3, P()<kyl, and the persistent excitation of W,
(and consequently, that of W) guarantees that A(f)2A; > 0. These imply

MnaTP-13> A, aTalk, (7-13)
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Therefore the convergence of A() 37 P =13 to zero implies that of 3. In fact, we
can more precisely show the exponential convergence of the tracking and
estimation errors. Indeed, let y, be the strictly positive constant defined by

Yo=min(2A,A,) . In view of (7-11), we can write
V() +yo V() < 0

Therefore, V(t)<V(0)e~Yo!. This, in tum, implies the exponential
convergence of s and a to zero. The exponential convergence of q and E] to zero

follows as a result of exponential convergence of s, according to lemma 3.1. ]

The exponential convergence of an adaptive controller is an attractive
property, since it favors robustness to noise and other disturbances, as indicated by

the so-called total stability theory [Slotine and Li, 1990]. Note that only global

asymptotic convergence can be shown for the standard least squares gain update.

7.2.3 The CF Composite Adaptive Controller

The cushioned-floor CF composite adaptive controller, obtained by using the
CF gain update (7-6), has properties similar to those of the BGF adaptive

controller.

Theorem 7.3: The CF composite adaptive controller has globally
asymptotically convergent tracking errors § and ﬁ and prediction error e if the
desired trajectories are bounded. If the desired trajectories are persistently
exciting and uniformly continuous, the tracking errors and parameter estimation

errors exponentiaily converge to zero.

Proof: For the CF adaptive controller defined by (3-33), (3-34), (7-1) and (7-6),

we can obtain
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V() = - A sTHs ~ AM(0)/2) TT[P 1Ky~ 115~ aTWTW3E <0

since the CF gain update equation guarantees that P! —Ko" 20. This
indicates the boundedness of s and &. Similar reasoning as before shows the global
asymptotic convergence of V(r), and accordingly, of the tracking errors q, fi, and

the prediction error e.

If W, is persistently exciting, then the parameter estimation errors and
tracking errors can also be shown, by using (7-14) and (7-7), to be exponentially
convergent to zero with a rate equal to min(2A,, A, o, e~ *2%), (.

7.3 Simulation of the Composite Adaptive Controllers

The main objectives of the simulations here are to- veruy the results in the
above analysis and demonstrate the advantages of the composite adaptive
controllers over the tracking-error-based adaptive controlier in chapter 3. The
robot is the same as that in the simulations in chapter 3 and the first-order filter
used to avoid joint acceleration in torque prediction is chosen to have the
bandwidth 30 (rad/sec). Three sets of simulation results are presented in this

section.
7.3.1 Basic Features of Composite Adaptive Controllers

This set of simulation results is intended to illustrate the basic features of the
composite adaptive controllers. We have used the same K4, A matrices as those

for Figure 3.6.

For the CG composite controller, the adaptation gain Py =0.031 is the same as
that for Figure 3.6. Thus, the only difference from the adaptive controller in
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chapter 3 lics in the addition of the prediction error rerm to the adaptation law. The
simulation results are shown in Figure 7.1. It is noted that the the tracking errors
and the parameter errors all converge beiter than the TEB controller. Less

oscillation is noted in these plots.

For the GAF composite controllers, the gain bound is chosen to be ko =10.03
and the maximum forgetting factor is Ao = 4 (1/sec). Therefore, P(r) <0.031. The
simulation results are shown in Figure 7.2. It is seen that the signals are all very
smooth and converge fast. The CF adaptive controller is also simulated with
Ko =0.031 and A(¥) = 4.(1/sec). The results, shown in Figure 7.3, are essentially
undistinuguishable from those of the GAF controller.

To show the performance of the composite adaptive controllers on non-p.e.
trajectories, the BGF controller is simulated on the polynomial+rest trajectories in
Figure 3.12, with results shown in Figure 7.4 (the gain bound is still 0.03). Itis

seen that the results are very similar but somewhat better than those in 3-14.
7.3.2 Results With Large Adaptation Gain

The fundamental advantage of the composite adaptation is that it allows large
adaptation gains to be used with good results, unlike the TEB adaptation which

has pour performance when large adaptation gain is used, as shown in Figure 3.9.

For the CG controller, the adaptation gain is now increased to Py = 0.4 and the
results are plotted in Figure 7.5. One sees that the convergence is now much
better than those in Figure 7.1 from the smaller adaptation gain. For the BGF
controller, the gain bound is changed to ko= 0.4, with the maximum forgetting
factor unchanged. The results are plotted in Figure 7.6, with smooth convergence

clearly seen. The results for CF controller are very similar. One interesting thing
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about to note is that the CG composite adaptive controller leads to quite émooth
estimated parameters despite the large adaptation gain, unlike the gradient
estimator in Figure 6.1. If fact, the variation of the gain matrix does not seem to
introduce too much performance improvement in the composite adaptation

context.
7.3.3 Performance in the Presence of Unmodeled Dynamics

In the presence of unmodeled dynamics, the composite adaptive controilers
perform much better than the TEB controller. To demonstrate this, we included a
first-order filter in each joint motor, representing motor dynamics. The first order

filters have bandwidths 30 (rad/sec).

With an adaptation gain of P =0.21, the TEB adaptive controller have poor
results, as shown in Figure 7.7. Further increase of the adaptation gain will lead to

instability of the adaptive controller (the simulation crashes).

With the adaptation gain P = 0.21 for the CG adaptive controller, however, the
control results are still quite quite good, as shown in Figure 7.8. The tracking
errors after the initial adaptation process stay within one degree for both joints.

The estimated parameters are also close to the true parameters.

For the BGF adaptive controller, the results are shown in Figure 7.9. It is seen
that the results are similar to but somewhat better than those of the CG controller.

The CF controller again is found to have very similar results.
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7.4 Summary

The composite adaptive controller is obtained by properly combining the
tracking error and prediction error for pnrame'tcr adeptation. It is shown to retain
the desirable characteristics of the tracking-error-based adaptive controller in
chapter 3, such as global asymptotic convergence of tracking error and avoidance
of measuring joint acceleration or of inverting the estimated inertia matrix.
Furthermore, the composite adaptive controller has global exponential
convergence in the presence of persistently exciting trajectories, and its improved
performance is reflected by faster parameter convergence and better tracking
accuracy in simulations. The incorporation of the prediction error into the
adaptation allows the adaptation gain to be increased much higher than the
tracking-error-based adaptation, leading to better tracking accuracy and stronger
robustness to unmodeled dynamics. The possibility of using large gain is very
useful for the adaptive control of time-varying plants. The composite adaptive
manipulator control is demonstrated experimentally in [Niemeyer and Slotine,
1989].  Finally, we point out that the idea of composite adaptation can be
straightforwardly extended to adaptive control of general linear systems.
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Chapter 8

Adaptive Constrained Motion

In chapter 3, we have developed an adaptive control method for robot free
motion. But it is not clear whether and how the method can be used for adaptive
control of constrained motion, the other category of robot motion. The basic intent
of this chapter is to extend the adaptive free motion controller to the control of
constraired motion in the presence of parameter uncertainty. Particularly
interesting are constrained tasks with mobile environments, such as turning a
crank, pushing an object along a surface, multiple manipulators carrying a
common load, multiple robots pushing one object along a surface or turning cne
crank, and multiple finger manipulation. In such tasks, the dynamics of the
environment are not negligible and uncertainty in the inertial parameters can cause

uncertainty in dynamic forces.

In this chapter, the extension of the adaptive control method to censtrained

tasks is achieved by modeling the robot and its constraining environment as an
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integrated mechanism and applying the adaptive control method on the dynamics
of this mechanism. It is important to point out that the same inodeling approach
not only allows adaptive controller but also the non-adaptive controllers, like the
computed-torque method, to be applied to constrained motion control. Although
the focus of this chapter is on adaptive constrained motion control, we will also
present the parallel results on non-adaptive constrained motion control, because it
is convenient to do so and the non-adaptive results seems to be new and useful.
Note that in extending the adaptive and non-adaptive controllers to constrained
motion control, we assume that the geometry and dynamics of the constraining
environment can be modeled (with geometry, such as the length of a crank,
measured by a vision system, for example). This is different from impedance
control method [Hogan, 1985] or active stiffness method [Salisbury, 1980] which
do not require an explicit model of the environment. However, the added effort in

modeling allows us to gain more accuracy in constrained motion.
8.1 Integrated Modeling

This section discusses some general issues in modeling interacting systems
composed of robots and their environments. The motivation for the integrated
modeling is explained in subsection 7.2.!, and the kirematic and dynamic
modeling presented in subsection 7.2.2 and .7.2.3 provides the basis for the later

control design.
8.1.1 Robot Motion: Constrained or Unconstrained ?

Whether a motion is constrained or unconstrained is subjective: it depends on
the perspective one uses. Consider, for instance, a robot in free motion. If one

looks at the individual links, the motion is definitely constrained because the
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motion of a link is constrained by other lirks connected to it. Even if oné treats
the cellection of links as a whole system, its motion is still constrained by the
attachment to the base. But when one looks at the generalized coordinates (often
chosen to be the i~int angles) for the integrated system composed of ail the links
and the base, the system becomes unconstrained and allows us to Iabel the motion

as free motion, because the generalized coordinates can taka arbitrary values
(within hardware limits).

The same subjective distinction of constrained or unconstrained motion
appears in the so called "constrained” robot motion. If one looks at the motion of
a robot separately, it is a motion constrained by the interacting environment. If
one looks &t the generalized coordinates of the integrated system composed of all
the interacting mechanical members including robots and environments, the
motion is unconstrained. From a motion control point of view, it is advantageous
to take this integrated approach, because the interaction forces between the robot
and tke environment become internal, just like the forces between the links. The

same perspective can be used for multi-robot manipulation.
8.1.2 Kinematic Analysis

The kinematic anaiysis of an integrated mechanism involves the calculation of
the number of degrees of freedom, the selection of generalized coordinates, and
the determination of the geometrical relationship between the robot joint angles
and the generalized coordinates.

The number of degrees of freedom (d.o.f.) of the integrated mechanism can be
determined from the numbers of d.o.f. of the robots and mobile environment and

the number of constraint equations at the contact point, or using a standard
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procedure known as Gruebler's rule. After the number of d.o.f. of the integrated
mechanism has been determined, one has the freedom of choosing a set of
generalized coordinates among many possibilities. The choice should be based on
a number of considerations such as the efficiency of control computation or the
relevance to task specification. For the crank-tuning (through a rotatablie handle at
the crank tip) example of Figure 8.1(a), the integrated mechanism has 1 d.o.f. If
the task is to turn the crank angle to follow a desired trajectory, it i8 convenient to
choose the crank angle to be the generalized coordinate. For a two-link
manipuletor following a hard surface, as shown in Figure 8.2(b), there is 1 d.o.f,,
and the curvilinear position along of the surface may be used as the generalized
coordinate,

Figure 8-1: (a) manipulating a crank; (b) following a surface

Once the generalized coordinates have been chosen, the joint angles of the
robots involved can be expressed as functions of them. Assume that the
generalized coordinates are contained in a nyx 1 vector 8. The joint positions of

all the robots can be put into a n x 1 vector q,
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a=Q(®) (81
where Q is a nx 1 nonlinear vector function. This implies that
q=29 (8-2)

where Z is the n X n; Jacobian matrix betwcen the generalized coordinates and
the joint coordinates. If the generalized coordinates and their derivatives are not
measured directly, they can be determined from inverting (8-1) and (8-2), since the
joint position and velocity can usually be conveniently measured by joint encoders

and tachometers.
8.1.3 Dynamic Equations

Lagrange’s equations can be used to determine the dynamics of the
integrated mechanism. The total kinetic energy of an integrated mechanism is the
sum of the kinetic energy of the individual robots and mobile environment, and
can be written as E = (1/2) 8TM, with M being the total inertial matrix which is
easily determined by the inertia of the robots and the environment. For example,
in the crank-turning task, the scalar total inertia is

M=1+2TH, z (8-3)

with H, being the 2x2 joint space inertia matrix of the 2-d.o.f. robot, /. the
rotational moment of inertia of the crank, and z the 2x 1 Jacobian matrix between
the joint angles and the crank angle.

Lagrange’s equations easily lead to the following nonlinear dynamics for an

integrated mechanism,

Mé+CO+g=2Tt (8-4)
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where the 1y X 1 vector T contains the joint torques of all involved robots, the
vector C(O,é)é contains the centripetal and Coriolis forces, and g contains gravity
(and possibly also friction) forces. The Jacobian matrix appears on the right-hand
side of (8-4) because the virtual work by the joint torque T corresponding to a
virtual displacement in @ is t7 8¢ = ©7 Z 0.

Note from (8-4) that the motion is determined by the generalized forces

ZT<. For convenience, let us define
F=2Tx (8-5)

and call F the motion input. Depending on the specific tasks and robots, the
number of degrees of freedom of the integrated mechanism can be equal to, or
larger than the number of joint actuators (though it is theoretically possible to have
more d.o.f. than the number of joint actuators, such is the cese for a two-link robot
manipulating a triple pendulum, such a situation is rare in practice). For the first
class, which appears most often in compliant tasks, the Jacobian matrix Z iz non-
square, and the joint input vectors in the null space of ZT have no effect on the

motion, though they affect the intemai forces in the mechanism.

The unique properties of the robot dynamics, which are essential for
adaptive free-motion control in chapter 3, are retained in the dynamics (8-4) of the
integrated mechanism, and will be useful for adaptive compliant' motion control
design. First, the inertial, gravity, and Coriolis and centripetal forces are all linear

in terms of a suitably selected set of robot and environment parameters, i.e.,
F=Y,0,0,8)a (8-6)

where Y, is a nonlinear matrix function of the motion quantities and

geometrical parameters, and the vector a contains the set of (possibly unknown)
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constant inertial parameters of the robots and environment. To see this, note that
the total inertia matrix is the sum of the transformed inertia of individual robots

and the environment, i.e.,
M = Z"lTHi"l +Me

where H;’s are the joint space inertia matrices of individual robots, Ji's are the
Jacobian matrices between the joint positions of the robots and generalized
coordinates, and M, is the inertia matrix of the environment. Since the joint space
inertia matrices H,’s, and similarly, M., can be lineerly parametrized [An e al,
1985; Khosla and Kanade, 1985], the total inertia, and therefore the motion
equation (8-4), must be linearly parametrizable. For instance, this linearity can be
seen in the crank-tuming example by noting that the total inertia in (8-3) is linear
in terms of the crank inertia /. and of the robot link parameters (becauge the the
robot inertia matrix H, is linear in terms of them). Second, as pointed out by
[Takegaki and Arimoto, 1981; Koditschek, 1984], the matrices M and C are not
independent; specifically, the matrix M—-2C is skew-symmetric, as is simply
shown in chapter 3.

8.2 Motion Control

In constrained motion control, the control design is decomposed into a motion
control part and an input-resolution part. The motion control part focus on the
accurate control of the constrained motion by Z7t while the input resolution part
utilizes the remaining input freedom (in the null space of ZT) to maintain good
intemal forces between the robot end-effector and the mobile environment, This

section is devoted to the motion control part.

The motion control design problem can be stated as follows: given the
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desired motion trajectory 0,(r) and its first two derivatives, and given the joint
measurements q and q, design a control law for joint torque % so that the actual

motion &(t) closely track the desired motion 84(0).

This control statement is quite similar to that of the free motion control. A
few remarks should be made. First, the desired trajectory for the generalized
coordinates has been assumed known. In the crank-tuming example, this amounts
to assuming that the desired history of the crank angle has Seen given. Secondly,
the availebility of joint position and velocity implies the knowledge of the
generelized coordinates and its derivatives, from inverse kinematics. Third, we
implicitly assume the availability of a model of the integrated mechanism, with or
without inertial parameter uncertainty. Finally, our approach does nor assume the
availability of a force sensor. If a force sensor is available, its measurement can
be used to for the accurate control of internal forces in the presence of model
uncertainty, based on a new technique celled "uncertainty cancellation” method, as
willed be discussed later.

8.2.1 Exponentially Convergent Non-Adaptive Control

Given the knowledge of M, C and g in (8-4), one choice of the motion

input F is
F=Mu+CO+g (8-7)
where
u= iid-l(lé— K,

with K; and K, being constant positive definite matrices, and the tracking error

6 defined by 9=0- 8,. The choice (8-7) is in the same form as the computed-
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torque method for free space motion [see e.g., Asada and Slotine, 1986]." Upon
substitution of (8-7) into the dynamics (8-4), the resulting tracking error is found

to verify 6= u,ie.,
§+K,8+K,6=0

The positive definiteness of Ky and K, can be easily shown to guarantee the
exponential stability of the error dynamics and, accordingly, the exponential

convergence of § and 6

For position control, in which the desired trajectory is & comstant point,
proportional plus derivative feedback (in terms of any set of generalized
coordinates) can be used to guarantee globally stable control, as can be shown
using the total equivalent mechanical energy as a Lyapunov function. The steady-
state error caused by gravity forces can be eliminated by the addition of either

gravity compensation or an integral term.
8.2.2 Asymptotically Convergent Adaptive Control

The controller design in the last section assumes the kmowledge of the the
kinematic and inertial parameters of the mobile environment. In practice, it is
possible that the kinematic parameters (such as the length of the crank) be known
reasonably accurately (either a priori, or e.g. using a vision system), while the
inestia parameters of the mobile environment (e.g, the rotational moment of inertia
of the crank or the moments of inertia of the large load carried by multiple-robots )
are not. Then the computed torque method can no longer be used because of
unknown M, C and g, but the adaptive control method developed in chapter 3 can
be used to achieve giobally convergent tracking in the presence of parameter

unceriainty.
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Similarly to chapter 3, the "combined error" s is defined by
s=8+A8 (8-8)

with A being a constant positive definite matrix. The "reference velocity" ér is
defined by adjusting the desired velocity according to the position tracking error,
0, = éd‘ A®. The reference acceleration 6, is the derivative of é, , l.e.,

6= A A8 A nonlinear matrix function Y is defined by the relation
MO, +CO8,+g=Y(9,8,6,8)a
from the linear parametrization property.
The control law now is chosen to be
F=Y(6,0,,8,)8-Ks (8-9)

where @ is the estimated parameter vector, and K is a (possibly time-varying)
positive definite gain matrix. The estimated parameters a are obtained from the
adaptation law

Aa=-T'YTs (8-10)

with T being a constant positive definite gain matrix. One can use the
following Lyapunov function candidate to establish to global stability and tracking

convergence of the above adaptive compliant motion controlier
V=sTMs+alIr1a (8-11)

where & is the parameter estimation error, i.e., a=A-a. The estimated
parameters are guaranteed to be bounded in general, and converge to the exact
parameter values if the matrix Y is persistently exciting, as for the free-motion

adaptive control [Slotine and Li, 1987b). Different ways of improving the basic
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control and adaptation laws in (8-9) and (8-10) are discussed in chapters 3 and 7.
We also remark that the control law (8-9) is a good alternative to the computed-
torque control law (8-7) even when the parameter vector a is known (and therefore

adaptation is not necessary).
8.3 Resolution of Input Redundancy

The discussion in section 8.3 indicates that as long as the motion input F is
chosen in the form of (8-7) and (8-9), exact or convergent tracking of the desired
motion can be achieved. In order to obtain the joint input T from the relation
F=2Tx, the "same d.o.f." class and the "reduced d.o.f." class have to be

considered separately.

In the "same d.o.f." case, the number of d.o.f. of the integrated system is the
same as the total number of joint actuators, as is the case for a two link robot
manipulating a double pendulum. Therefore, the n, x n Jacobian matrix Z is
square. The joint input < is then solved from F uniquely, i.e., t= Z~TF, assuming
non-singularity. In this case, the mobile environment does not really constrain the
motion of the robot. Its presence only serves to modify the dynamics. In the
“reduced d.o.f." case, the d.o.f. of the integrated system is smaller than the
number of joint actuators, i.e., n < n,. The n,Xxn Jacobian matrix is not square,
and infinite sets of joint torques can satisfy (8-5), i.e., guaran.teeing the same
convergent tracking motion but leading to different internal forces. This
flexibility, or redundancy, in choosing the input, can be resolved in a number of
ways depending on the structure of the environment. We now discuss two of them:

minimizing the joint torques and specifying constraint forces.
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8.3.1 Minimizing the Joint Torques

One simple way of resolving the joint torque redundancy is to minimize the
joint input under the constraint (8-5). This can be used when there are no
unidirectional constraint surfaces, as is the case for the crank turning problem and
multiple arms rigidly holding a common load. In order to account for the possible
difference in the actuator saturation limits among the joints, a weighting matrix
can be incorporated into the minimization, leading to the performance index
P,=vTQx, where = diag (1/c) , with the C;'s representing the saturation
lirnits of the joints. The solution of the above constrained minimization problem is

t= Q1 Z[ZTQ-1Z]t F 8-12)

where the matrix Q™! Z [ZTQ-1Z]! is the weighted pseudo-inverse of the
matrix Z7. The motion input F is determined by the various methods in section
8.2,

8.3.2 Specifying Forces in Constraint Directions

If there are unidirectional constraint surfaces in the compliant motion task,
as is the case for contour following and multi-finger manipulation, the above
method of resolving input redundancy may possibly result in the detachment of the
mobile components from the contacting surfaces. In this kind of situation, the
input redundancy can be resolved by specifying the reaction force components on
the surfaces to be preselected values. Let the reaction force components in the
constrained directions be R,. then R, must be a function of the motion quantitics
and the joint input, i.e., R, =R, (0, @, 6, 7). Since the acceleration ® can be
expressed as a function of the position, velocity and joint input, and because R,
must be linearly dependent on the joint input from equilibrium consideration

(virtual work principle), the reaction force can be rewritten as
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R,=¢,(0,8)+C,8,8)< '(8-13)

where ¢, is a vector function and C,; a matrix function. Past or all of the
flexibility in choosing the joint torque can be used to set the reaction forces to be

equal to (possibly time-varying) nominal value ¢
R,=¢€ (8-14)
The joint torque T can then be solved from (8- 14) and (8-7) or (8-9).

If there is no model uncertainty, the real reaction force will equal the
nominal value. In practice, there will bz some unknown terms in (8-13) due to
model uncertainty, and the real reaction force will be different from the nominal
force. Suggested below are two ways of specifying the nominal forces so as to

guarantee contact in the presence of model uncertainty.

The first way is simply to choose a reasonably large nominal force to
overcome the unmodeled uncertainty effects, similarly to the idea of bias force in
the active stiffness method of [Salisbury, 1980]. The resuliing interaction force in
the constrained direction wili then be larger than zero. An example of this way of
specification is given in the contour-followir:z example in section 8.4.3. Humans
seem to use this force feedforward method in many compliant motion tasks, such
as sweeping floors, i.e., the person simply pushes with a certain bias force normal

to floor while sweeping it.

The second way, which requires a force sensor, is an on-line specification
method which uses force measurements to infer the uncertain forces in the static
equilibrium relation (8-13), and incorporate the detected uncertainty in a periodic
modification of the nominal force so as to cancel the unmodeled low-frequency

forces. This "uncertainty cancellation” method can be used to achieve accurate
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control of contact force around a prespecified desired force, as we now exglain

using the 1 d.o.f. force control problem in Figure 8.4.

d(t)

Figure 8-2: force balance

The mass is pushed against a stiff surface by a motor force F and also acted
upon by an low frequency unknown disturbance force d. The disturbance force
may be due to the unmodeled friction force at the motor joint and/or, in the case of
multi-d.o.f. compliant motion, due to the motion in other directions. The objective
is to design the motor force F to control the contact force S between the mass and
the surface around a desired value f4 in the presence of the uncertain force d. In
this case, the nominal model (8-13) is

F=f (8-15a)

But, with the presence of the disturbance d(t), the forces satisfy the equilibrium

condition
F-d-f=0 (8-15b)

If the input is designed based on the nominal model (8-15a),i.e., F = S the real
interaction force will force will be f= Jfq— d. Contact will be lost if f; is specified
to be & value smaller than d. In order for the contact force f to be fq. the input F
should be F=f,+d. With a force sensor, the unknown disturbance 4 can be
detected and used to compute the above input vaiue. If d is a constant disturbance



228

force, one can simply try a relatively large input F and measure the com:spbnding
contact force f, which will lead to the detection of the value of d (=F - f). This
disturbance force can then be combined with fy as input to obtain the desired
centact force fq. In case, d is time-varying, as is the case in multi-joint robots,
such computation should be updated periodicaily. In order to avoid exciting and
amplifying unmodeled high frequency dynamics, it is useful to average a few
samples of (or filter) force measurement to remove noise and vibration before
computing the disturbance value. We remark that the basis of this "uncertainty
canceliation” method is a static-equilibrium view of the interaction in the
constraint direction which assumes that the high stiffness of the surface and the

arm allows the high frequency vibration to be a negligible factor in the modeling.

Note that, in the hybrid motion/force control method, the force control is
achies »d using proportional feedback, which is equivalent to taking the nominal
forcetobe e=(, - K(R, —f;), where f; is the desired force and K a gain matrix.
However, this method leads to steady-state force control error which in the mass-
pushing case is d/(1 + k), where k is the force feedback gain. Furthermore,
proportional force feedback may excite and amplify the unmodeled high frequency
vibration in the constraint directions, [e.g., Eppinger and Seering, 1986], unless

soft force sensors are used or filtering techniques are employed [An et al, 1988].
8.4 Design Examples

In the previous sections, we have proposed a three-step procedure of designing
constrained motion controllers: i.¢., modeling the integrated mechanism, designing
motion input and then resolving the input redundancy. In this section, the
proposed design approach is illustrated on three constrained motion problems. The

three problems represent three subclasses of constrained motion: interaction with a
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mobile environment, interaction with a fixed environment, and multi-robot
cooperation. Using the integrated control design approach, comtrollers are

designed for all of them in the same straightforward fashion.
8.4.1 Manipulating A Mobile Environment

When a robot manipulates a mobile environment, the environment not only
introduces geometrical constraints but glso dynamic forces. A representative task
is the crank-turning problem in Figure 8.1(a) where the crank is turned by a two-
d.of. robot and the specification of the task can be stated as manipulating the
crank such that it rotate with its rctational angle 0 accurateiy following a given
motion @,(¢). With the crank angle 6 chosen as the generalized coordinate, the

dynamics is found to be
MO+(1/2)ME+g=7T¢ (8-16)

with M defined in (8-3), where T contains the two joint inputs and g contains

gravity (and possibly also friction) forces.

In the absence of parameter uncertainty, the computed-torque method given

by (8-7) can be used to achieve exponentially convergent tracking, i.e.,
F=Mu+(1/2)M6 + g : 8-17)

with u = 64 —20§-22 6. In the presence o parameter uncertainty, say that the
moment of inertia of the crank /. is unknown, the adaptive controller can be used
to guarantee global tracking convergence, with control law having the form in
(8-9) and thg adaptation law (8-10) for estimating the unknown i, having the
following explicit form

A
I.=-Yus
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It is reasonable to use torque minimization to resolve the input redundancy
since there are no unidirectional constraints involved in this task. Then the joint
torque is determined by (8-12) and (8-17) or (8-9). Note that, if hybrid
motion/force controller is used for this problem [Mason, 1981], time-varying

constraints have to be explicitly considered and larger joint inputs have to be used

than the minimal here,

8.4.2 Controlling Muitiple Robots

Multiple robot cooperation (or multi-finger manipulation) is useful for ha.n;ﬂing
large and heavy loads. Recent contributions by [Zheng and Luh, 1987, Tarn, et
al., 1988; Kreutz and Lokshin, 1988] on multiple-robots have used a similar
integrated modeling for non-adaptive control of load-carrying. The approach
presented here, while being motivated and applicable in a more general contex,
also allows globally stable and convergent adaptive control to be achieved in th=

presence of parameter uncertainty.

Figure 8-3: Two Robots Manipulating One Crank
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For the multi-robot cooperation problem in Figure 8.3, using the imégmied
contml design method, the dynamic equation of the (still i-d.o.f.) integrated
mechanism, the adaptive or non-adaptive design of motion input and torque
minimization resolution of input redundancy are ali identical to the single robot

case in section 8.5.1 except for the difference in total inertia which is now
= T
M=1I.+2TH,2, +2,7H,,7,

where H |, is the joint space inertia matrix of the first robot, H, is that of the
second, and z; and z, are the Jacobian vectors between the joint positions and
generalized coordinate for the two robots, respectively. We remark that, in multi-
robot cooperation involving non-rigid contacts, the input redundancy should be

resolved pﬁiﬂy or fully using force specification.

8.4.3 Following A Contour

A large number of compliant motion problems, such as object-pushing,
grinding and finishing, belong to the class of contour-following, in which the
manipulator end-effector (or the object or tool in it) is required to move along a
rigid surface while maintaining contact with the unidirectional constraint surface.
To be specific, let us examine the application of the integrated control design for
the 2-d.o.f. problem in Figure 4. There are a number of interesting issues involved
in this problem though the motion input design is quite straightforward, The first is
the generation of constraint equation, i.e., how to obtain the static equilibriam
equation (its symbolic form given in (8-13) based on reasoning) required for force
specification. The second is the behavicr of the controlled robot during o
bouncing motion, i.e., whether the controlier designed fos a swbot in contact
remains stable in case the contact is lost momentarily after a sudden impact. The

third is the effect of unmodeled disturbance forces on robot motion and contact
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force. These issues are discussed because they appear in all constrained motion

tasks involving unidirectional constraints.
A. Dynamic mode!

Let us take the curvilinear position x along the surface, measured with
respact to a certain starting point A, as the generalized coordinate (Figure 8.1(b))
for this 1 d.o.f. integrated mechanism. Though the dynamic equation may be
derived from the Lagrangian method, it is preferable to obtain it from the robot
dynamics by transformation because it also gives us the needed constraint force

equilibrium equation.

It is well known that the dynamics of the robot under extemal forces r is in

the following form:
H.g+b =t-J7r (8-18)

where q is the joint position vector, J is the Jacobian matrix between the end-
effector position and the joint position, r in this case includes the tangential and
normal forces on the surface, and the second term on the left side represent the
centripetal, Coriolis, gravity and friction forces. Then, the joint acceleration and
the end-effector acceleration is related by
w=Jq+Jq
where w is the end-effector acceleration w = (¥, §)T.

Solving ¢ from above, sutstituting it into (8-18) and multiplying both sides
of (8-18) by J-! leads to

Mw+b=JTg-r (8-19)
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where M = .5"TH,.J‘! and the vector b is defined obviously. Since the surface
and arm are assumed to be stiff, the motion elong the direction normal to the
surface can be neglected in our modeling, J = 0. The first equation in (8-19) is the

motion equation along the surface,
Mllf"'bl +rf= zlrt (8'20)

with r; being the friction force along the surface and the vector 7, being the first
row of the matrix J-1. The second equation is the static equilibrium equation in the
direction normal to the surface,

My i+by=2,"Tx-r, (8-21)
Using (8-20), this equation can be writien in the form of (8-13)

rpn=2y'T—by~My M~V (2, T~ b, ~1)

n=% 2= MMy (7 177y

In case the surface is very soft, it should be modeled as a spring and an
additional mass. Then the integrated mechanism has two degrees of freedom and a
corresponding design should be made following the same three-step procedure.

B. Joint Input Control Design

If the following discussion, the robot mode! and parameters are assumed to
be known, and therefore non-adaptive control design is considered only. If the
parameters of the links (or the tool or load grasped to the endeffector) are
unknown, one can linearly parametrize the dynamics in terms of these parameters

and use adaptive control to achieve globally convergent tracking motion.
Given the dynamic model in (8-20), the motion input can be chosen to be

zlrt=Mnu+b1+rf (8-22)
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according to subsection 8.2.1, where u=3%y— k¥ -k, %, with Xy being the
desired position along the surface and ¥ the motion tracking error, X = x—ux,.
With this motion input design, the motion tracking error of the robot along the

surface is given by
X=u (8-23)

The resulting motion tracking error expenentially converges to zero, and, from

(8-21) and (8-23), the resulting nommal contact force is simply
Iy '—'ZZT‘t—MZIM— b2 (8'24)

Now, let us resolve the input redundancy by making the contact force to be
equal to a nominal value € (to be chosen)

2T v =My u+b, +¢€ (8-25)

The joint inputs can be easily solved from (8-22) and (8-25). The controller is
quite similar to that of [Khatib and Burdick, 1986], but no force feedback is
required here,

The above controller is designed for the robot in contact with the surface.
However, as shown below, it can also suppress bouncing motion at impact without
switching between compliant motion mode and free motion mode, provided that,
similarly to [Khatib and Burdick, 1986], a velocity damping term (—k33) with
proper damping coefficient is added to the left side of (8-25). On the surface, this
term will antomatically be zero due to lack of motion in that direction. OFf the
surface, the y is no longer zero, and, from (8-18), (8-22) and (8-25), the dynamic

equations in x and y directions are

M113+M12?=M11M (8-260)
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MZI:X. +M22y =€~ ksj’ - M21 u (8-26b)

Substituting (8-26a) into (8-26b), the motion off the surface in the y direction is
obtained as

Mp~My 7 IM12)F + kyy =€ (8-27)

Note that (Mpy—M,,~1M,,2) is positive because of the positive definiteness of
M. Since (My;-My,™1M},?) is time-varying, the stability of the dynamics in
(8-27) is unclear for general choices of damping coefficient k, and nominal force
€. However, if the damping coefficient k3 and nominal force € are chosen to be in
the following time-varying forms

ky = (Myp—M, "1 M,52) ky
e=Mxn-M)"'M,2) g

with kg and g being two positive constants, the off-surface dynamic equation

becomes

y+kyy =g, (8-28)

and the stability of  is guaranteed. At the instants of impact,  is abruptly
reduced due to energy absorption by the rigid surface. By regarding (8-28) as
describing a unit mass falling to a rigid floor in viscous air under "gravity" €5, one
can visualize the bouncing mass settling down on the surface under the combined
effects of viscous damping (k) and the intermittent energy absorption. In the x
direction, the tracking error during off-surface motion is determined by

X-u=MymIM ;5 =M " My, (g - k)

Since one can easily show that j is bounded from (8-28), the tracking error ¥ is
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therefore bounded during the bouncing motion.
C. Model Uncertainty and Guaranteeing Contact

If all the forces in (8-18) are modeled exactly, the above controller will
guarantee the tracking of desired motion along the surface to be exponentially
convergent, and the contact force normal to the surface to be €. Since in practice
there is always be some modeling ervor, it is natural to wonder whether the
existence of unmodeled disturbance forces may lead to loss of contact with the
unidirectional constraint surface or loss of stability in the tangential motion. It is
shown in the following that contact is guaranteed as long as the nominal contact
force is specified to be larger than a certain value which reflects the medel
‘uncertainty. It is assumed that the robot links and contact surface are rigid, and
that the joint positicn sensors can accurately locate the contact surface.

Assume that, after initial impact is settled down, there exist unmodeled
forces d, in the x direction, and dy in the y direction. These may be due to
inaccuracy in the friction model, gravity or due to actuator torque ripple. Then, in
the presence of modeling uncertzinty, the motion equation in the x direction and
static equilibrium equation in the y direction are

M“}E-l-bl +rf= ZITT'Fdx (3-29)
Myi+by+r,=2,Tt+d, (8-30)

With the previously designed controlier in (8-22} and (8-25), the motion in the
x direction is

i-u=M;"1d, (8-31)

The normal contact force is found from (8-30), (8-25) and (8-31)
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ra=€+d,—M"1M,,d, (8-32)

It is seen from (8-31) and (8-32) that the tracking error in the x direction does
not converge to zero any more due to the unmodeled force d,, and the normal
reaction force is equal to the sum of the nominal force value and terms due
unmodeled disturbance forces in both x and y directions. However, if the
unmodeled forces are bounded, the tracking errors and the normal force are

bounded.

Equation (8-32) indicates that in order to maintain contact, the nominal
force must be larger than the uncertainty ferms in (8-32). This implies that, if the

bounds of model uncertainty in the x and y directions are known,
[dd<Dy®  ld|<D,)

where D, and D,, are known positive functions, the contact with the surface can
be guaranteed without using force sensor and force feedback by choosing the
nominal force to be

€2Dy+M;"IM,, D,

In the presence of a force sensor, one may use the uncertainty-cancellation
method to achieve accurate force control based on the static equilibrium equation

in (8-32).

8.5 Summary

This chapter provides a simple and general approach, integrated control
design, for designing non-adaptive and adaptive controllers for various robot
compliant motion problems (as well as free motion problems). It involves a three

step procedure: integrated modeling of robots and environments, motion control
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design and input redundancy resolution. The problems may.involve a singlé robot
or muitiple robots, non-redundant or redundant manipulators, fixed or miobile
environments, rigid contacts or plane contacts. The controllers designed from this
approach can guarantee global stability and convergence of the compliant saotion
given a desired position or trajectory. Some patticular contributions of the chapter
are the extension of the free-motion alaptive control method to compliant motion,
so that globally convergent tracking can be achieved in the presence of large
parameter uncertainty, and the proposition of a new force control method, which
uses force sensors to detect uncertain forces in constraint directions and allows the

actuator inputs to cancel them.
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Chapter 9

Conclusion

In this thesis, adaptive control design for robotic dynamics, an important class
of multi-input-multi-output nonlinear dynamics, has been developed. This, unlike
most previous studies on the topic, has been achieved based on the full nonlinear
(rigid body) model of the robot system, without approximations or assumptions
such as local linearization, time-invariance, or joint decoupling. Compared with
the more recent adaptive control methods by [Craig and et al, 1986; Middleton and
Goodwin, 1986), the proposed adaptive control design requires neither inversion
of the estimated inertia matrix nor the measurement of joint accelerations. The
controller design is made by using a Lyapunov-like analysis and exploiting the
unique physical properties of the robot dynamics. The resuiting adaptive control
system is shown to have global stability and the global tracking error convergence
under the mild condition that the desired trajectories are bounded. It is also shown
that the parameter estimation error will be bounded in general, and convergent (o
zero if the desired trajectories are sufficiently rich or persistently exciting.
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As demonsirated by the experimental results on a a 2-DOF high-speed robot,
the adaptive controller has better accuracy than the PD and computed torque
controllers. The advantages of on-line adaptation are pamicularly clear when the
robot speeds and/or the parameter uncertainties are high. Even though the desired
trajectories used in the experiments, being of polynomial type, have very liitle
persistent excitation, the adaptive controlier is found to work very well, indicating
good robustness with respect to unmodeled dynamics. Though some amount of
parameter drift is observed in the experiments, it is not a serious problem for short
time operations of a few seconds. When the adaptive controller is run for long
time on a non-p.e. trajectory, the use of a dead zone was seen to avoid parameter

drift well.

The adaptive control is a practical approach to deal with parameter uncertainty
in robotic manipulations also because it requires very reasonable amount of
computation. Indeed, because the link parameters can be estimated before adaptive
control operation, only ten parameters of the load have to be adjusted on-line by
the adaptation law. Furthermore, the control law and adaptation law in the
proposed adaptive controller can both be computed recursively using & modified
version of the well-known Newton-Eular method, as shown in a recent paper by

[Niemeyer and Slotine, 1988].

In some tasks, it is desirable to deal with the uncertainty in the load parameters
by using on-line parameter estimation. We have shown that it is possible to modify
least-square estimators so that both good parameter convergence and good
estimator robustness can be achieved. Two new estimators, called BGF and CF
estimators, have resulted from this effort. The data forgetting feature in these

estimators allow them to deal with time-varying parameters.



241

Siice both joi: motion tracking error and the joint torque prediction error
contain information of load parameters, it is desirable to extract parameter
information from both sources. We have developed a novel technique called
composite adaptation to achieve this purpose. As analysis and simulation suggest,
such a combined use of information sources not only retains the global stability of
the tracking-error-based adaptive controlier, it also leads to faster and smoother
convergence. The improved performance is obtained through the possibility of
using much larger adaptation gains, without encountering the oscillatory behavior
in the tracking-error-based adaptive controller. Note that the improved
performance is obtained at the expense of increased computational effort. We also
remark that the concept of composite adaptation can be straightforwardiy extended
to the adaptive control of general linear systems.

Most of this study, as well as the adaptive robot control literature, has focused
on the free motion control. However, it is shown that the results can all be applied
to adaptive control of constrained robot motion. This is made possible by
modeling the robot and its environments as an integrated system, using
generalized coordinates for description of its motion. In fact, the adaptive control
of constrained motion is essentially the same, except for the possible need of using
the input redundancy to guarantee the contact (between a robot end-effector and a

uni-directional surface) in the presence model uncertainties.

There are still a number of unresolved issue in adaptive robot control. One
such probiem is the study of the robustness of the adaptive controller in the
presence of disturbances and unmodeled dynamics. Although some simulations
have been carried out, no systematic study of the robustness issues in the adaptive
robot control has been carried out. Another problem is the generation of
persistently exciting trajectories for robot. This is currently limited by the
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computation requirements. We believe that use of physical insights or physical
properties may be useful to simplify the computational difficulty. Integration of
adaptive control with trajectory planning, i.e., using the information gathered
during adaptation io modify the planned trajectories, is also a very important topic
of research. In adaptive control of constrained motion, many issues, such ag
experimental implementation, force measurement utilization, geometrical
uncertainty and nominal force specification, deserve careful investigations.
Finally, we point out that the adaptive control of flexible link robots is still a rarely
studied topic, with existing work all relying on local linearization. It is interesting
to see whether and liow physical properties can be utilized to achieve adaptive

flexible robot control based on nonlinear models.
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