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ABSTRACT

A space vehlcle with no thrust termination control, must
expend a Plxed amount of energy and sti1ll meet specified
trajectory requirements. Velocity uncertainties introduced by
ending powered flight via fuel depletion require that the
terminal thrust direction lie along a range insensitive
direction. This thesls proposes several guidance schemes for
solving the problem described above. Particular emphasis of
the analysls is placed on a parabolic guidance law. The law
1s evaluated for terminal fuel depletion conditions for various
condlitions of excess fuel and trajectories. In addition, a
straight line-~circular arec scheme 1s proposed and an optimal
law which minimlzes the mean squared value of the anvular
veloclity 1s discussed.
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CHAPTER I

INTRODUCTION

1.1 Cut-0Off Insensitive Guidance

The subject of this thesis is the development and analysis
of control laws for a high performance rocket vehicle in vacuum
flight for which there is no control of the thrust termination.
Deletion of thrust termination mechanisms may be desirable in
applications where weight, electrical complexity, and system
Interfaces are to be minimized.

Because no thrust termination control is assumed, the
rocket engine must consume a given amount of fuel to end
powered flight. The amount of velocity change (delta velocity
or AV) imparted to the vehicle‘is a function of its thrust
force and maSs characteristics. The desired trajectory objec-
tives of attaining the proper velocity in order to free-fall
to an inertial point in a fixed time must then be met at or
near the time of fuel depletion. Rocket engine anomalies and
mass and fuel uncertainties limit the knowledge of the actual
delta velocity introducing a substantial velocity error in the

trajectory. This obstacle may be overcome by commanding the

thrust axls of the vehicle to be in an insensitive direction

at the time of thrust termination. The insensitive direction



is defined as the direction along which incremental velocity
errors may be Introduced while still meeting the desired
trajectory objectives.

The velocity which 1s required in order that the vehicle
free-fall to a pre-selected point in a fixed time is defined
as the correlated velocity (Yc), The additional velocity
required is

V=Y, -1, (1.1)

where Kg is the velocity-to-be-gained

Xh is the present vehicle velocity

The dynamic equation for Eg isl
o= - - 1.2

where a, is the vehicle thrust acceleration

Q= RV, 3 X 3 matrix of partials
or

r 1s the present position vector

In many applications the relative contribution of the

Q Yy, term is small compared to an and may be treated as a

perturbation to the solution of the problem which assumes



Q@ = 0. With this assumption the problem of the thesis is

diagramed in two dimensional form in Figure 1.1.

I.S.D. A
V arc
\ g
\
\
\ (to)
a to
ap(te) T
V (¢t
_g( 0)
tb tb — burn time
: I.S.D. - Insensitive
Direction

- - - Perturbed Trajectory

Cutoff Insensitive Guidance

Figure 1.1

Figure 1.1 1s presented using only zg as defined by

Equation 1.1, thus avoiding selecting a particular Ec and !m'

The problem begins at time t = t, where !g =!g + The AV to

be 1mparted to the vehicle i1s represented by the AV arc.

The



arc may be of any chosen contour but must have an arc length
of AV and a slope which lies along the insensitive direction

(I.S.D.) at the end of the burn time t The commanded di-

b
rection of aj is then tangent to the AV arc as shown at
points t,, t,, and tb. The motion of the tip of the Yg vector

along the V arc is a function of the thrust acceleration pro-

file QT(t). At t = t_ the total AV has been expended and an

b
lies parallel to the I.S.D. The shape of the AV contour and

the magnitude of am

acceleration cof unit(gT) in order that the desired profile

then determine the angular velocity and

be traced. The particular AV trajectory to be followed then

imposes requirements on the vehicle autopilot and structure.

During the burn time tb’ the change in position r will
introduce a perturbation in Yg. In addition, thrust accelera-
fion variances and autopilot dynamics will cause the desired
AV trajectoryvto change as illustrated in Figure 1.1 by the
dotted line arc. Consequently the AV trajectory must be
periodically updated to accommodate the perturbations men-

tioned above.

A control scheme must be implemented which will maintain
the vehlcle on the commanded AV arc trajectory. The law

could be of the form



where

P x Ec is the alignment error between P and P,.

|0

|ro (L"U

~

commanded vehicle angular velocity
commanded direction of unit(gT)
present direction of (ag)
proportional steering gain

integral steering gain

(1.5)

proportional plus integral control of Equation 1.5 allows P

to follow P, with zero error when gc is a constant input.

Proper choice of the gains kP and kI give the required res-

ponse demanded by the AV curve.

In summary,the problem may be stated as

1.

slope.

Expend a known AV along an arc of selected
contour and length with a desired terminal

Accomplish 1 by commanding an tangent to
the arc as shown in Figure 1.1 using

\')

~g = T3
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3. Account for perturbations by periodic up-
dating of the arc length and contour.

b, TForce the vehlcle to follow the commanded
unit(gT) direction via an appropriate
control law.

1.2 Thrust Termination Control

Control laws presently in use require accurate control
over tle termination of powered flight. Turano.2 analyze s
the cross-product methods of steering. Th cross-product

steering laws attempt to align a

T with Yg and may be imple-

mented 1n several forms as

Q. = K, an X unit(!g) ‘ (1.3)

K2 unit(ap) X unit(zg) (1.4)

where gc 1s the commanded angular velocity ki, k2 are
steering gains. Equations 1.3 and 1.4 command a vehicle
angle rate which 1s proportional to the misalignment of am
(or unit(an)) and unit(yé). As V, > 0 high angular rates
are commanded as the unit(yg) direction rotates to the

Q Xg direction. A way to avoitd this rate 1s to implement
(see Figure 1.2)

, = ks (-V_rg X unit(V,)) | (1.5)



where yg 1s defined by Equation 1.2
ks 1s a steering gain

Equation 1.5 malntailns —yg aligned with Yg eliminating the

rotational problem at yg near zero.

Cross Product Steering

Figure 1.2

Thrust termination is commanded when yg = 0 in
Equations 1.3, 1.4 and 1.5. Good cut-off velocity accuracy
may be achieved byvhigh-speed sampling for zg = 0 and/cr
utllization of low level or vernier thrusting during this
phase. This accuracy 1s required because the terminal thrust
acceleration direction is nominally in a range sensitive di-
rection.

Variations of the cross-product steering law command

the thrust acceleration vector ap to lie part way between
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V_and —ig. Motivations for these forms might be to minimize
fuel consumption or to facilitate mechanization. All of the
forms of the cross-product steering law are explicit and
closed-loop in nature. Perturbations in initial conditions
and thrust disturbances are taken into account by periodic
updating of zg.

The baslc dlfference between the presently used cross-
product steering laws and the cut-off insensitive iaw
described. in Section 1.1 is the requirement to expend the
total AV of the rocket. The problem can be visualized as
having a curved Yg instead of being defined by a straight
line (Vc -~ Vm). The unit thrust acceleration dlrection (E)H
is commanded tangent to the curve. A control scheme is re-

quired to steer the vehicle thrust direction P in accordance

With“gc, the commanded direction.

1.3 Optimal AV trajectories

With a fixed amount of fuel to deplete, the problem as
stated in Section 1.1 can be handled as one of specified
time. An optimal AV trajectory over a specified burn time
can be generated which satisfies the requirements. Suppose

the performance index J is

b b ~
= - 1 n2
J j L dt = 5 [ Qc‘dt (1.6)



where

QC - commanded vehicle angular veloclty
L - cost function over time tb

tb - burn time

Optimization of J minimizes the mean-square value of the
angular velocity over the burn time. Choose a state vector

p- auy

v
gx

X = Vey (1.7)

LB

where B 1s the angle of thrust‘acceleration with respect to

the x coordinate,V ng are the components of yg in two

gx’
dimensions.
The terminal constraints on zg and B can be satisfied

by specifying

¥ (6) = x (6,) -C=0 (1.8)

where

c = (a, b, Bt DT

B(tb) is specified

a, b are constant terminal tolerances

for Vgx and ng
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The necessary conditions for the solution to the problem
outlined above are presented in Chapter II. The resulting
trajectory for x(t) reduces Yg to zero in time tb and com-
mands the terminal direction of ap by g(t,). In additlon, the
angular veloclty requirements imposed on the vehicle are

minimized.

Assuming for the moment the existence of the thrust termi-
nation control, the minimum time solution with hard 1limit on
vehicle angular velocity (L = 1) is a straight line-circular

arc combination for the AV arc as shown in Figure 1.3.
I.S.D,

‘_I'g(t )

t
b Minimum Time Solution

Flgure 1.3

This trajectory reduces Yg along a stralight line untill a maxi-
mum rate turn is commanded to turn the thrust direction into
the desired terminal direction. Thils solution assumes Q = 0
and [|ap| constant quring the turn. Discussion of the minimum

time solution 1s presented in Chapter II.
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Optimal solutlons are generally open-loop solutions
which satisfy only a specified set of initial condiltions,
terminal constraints, and state vector and control vector
time histories. Deviations 1n the above lead to sub-optimal
or undesirable performance. The optimal trajectory solution
can be developed Into closed-loop control by use of perturba-
tion feedback control. Control is done in the vicinity of the
nominal path. Thls approach computes neighboring extremal

3 to an optimal trajectory. The necessity of storing

paths
state vector and control vector time histories is a distinct
disadvantage. Additionally, significant computation is re-
qulred to generate the nominal path. Further discussion is

presented 1n Chapter II.

1.4 Explicit Feedback Laws

An explicit feedback technique to generate the AV trajectory
1s to fit an appropriate curve. The restrictions on the curve
are that 1ts arc length 1s easlly computed and that thé cur-
vature may not 1lmpose excessive angular rates on the vehicle.

The constraints on the trajectory are

l. Specified arc length
2. Specified final slope (I.S.D. direction)
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3. Final value of (0, 0) for zg

4. Initlal value of Vv, given

The four constraints define uniquely a parabola arc
segment. The parabola arc length 1s reasonable to compute.
A line-circle comblnatlion may also satisfy the constraints
and deflne an arc segment along which the thrust must be
directed during the burn. As perturbations alter the AV
trajectory, a new one 1s calculated. The remaining AV arc
length and the present value of Yg are required for the up-
date. Derivations of the AV trajectory generation for the
parabola and the line-circular arc'combinaﬁion are given in

Chapter III.

1.5 Additional Remarks

The computatlon of the insensitive direction is discussed
in Chapter IV. Chapter V presents and analyzes results ob-

talned from digital simulation.



- 13 -

CHAPTER II

OPTIMAL AV TRAJECTORY SOLUTIONS

2.1 The Minimum Time Solutilon

This section derives the minimum-time solution to the
problem introduced in Chapter I with Q = 0 assumed. The
minimum time solution implies that zg is driven to zero as
quickly as possible (final time unspecified) with the final
thrust direction specified and not exceeding a maximum
vehicle angular rate.- Although this is not the exact specified
final time problem of Chapter I; the results are educatioral
and glve inslight into the specified burn time problem

solutilon.

yAI’S.D.

locus of tip of Yg

' Minimum Time Solution

Figure 2.1
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Assume Q = 0 in Equation 1.1. Define the state vector

X as
u
?_E:
Yy
v'x
where u = & the components of yg
v
gy
-a
y=u = ™ =| -ap cosph
-aTy -an siné

Assume the control is §, the vehicle angular velocity

and that it 1s bounded

-Qmax < Q € + Qm

ax
Q=B

The system differential equations are then

vy y
5 - . -
v am sing (2.1)
_—aqn cosB 2
- ¥ v
2[_ = - = _
QKy a
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whe re

For minimum time problems the cost L 1. Thus, the

Hamiltonian is wrltten as

H=1l+y v+y Ky (2.2)

where ¥ and ¥ are the costate vectors for u and v

respectively.

A necessary condition for optimality is

Q)

_H=1T Kz:O (2-3)

Q

Since the control appears linearly in the Hamiltonian,
Equatlion 2.3 does not determine the optimal control and may
be determined by a singular arc. Thr Pontryagin minimum princi-
pleB may be applied to Equation 2.2 to determine the optimal
control q. :!Tij! acts as a switch function and determines

the sign of'® g is then defined as

; T = ¢
If y“>Kyv , @ = qﬂmax

(2.4)

max



Equation 2.4 defines Q as the optimal control since it
minimizes H over the set of all possible controls Q.
If I? K Y= (, the control @ may be determined.by

the requirement  that the time derivates of HQ be equal

to zero. Differentiating 2.3 with respect to time

Hy=y KY+y K

a | (2.5)

A necessary condition on the costate vector y for optimality
is

y=-m=-u -y Ky (2.6)
oy
Using 2.6 in 2.5, and a =:Q K.v
T T . T
Hp = -u Kv-y K*y@+y K*'Q (2.7a)
- T o
HQ- -u K v=20 (2.7p0)
Equation 2.7b does not determine £ and 2.3 must be
differentiated again.
Hy =-4 KY-u Ka (2.8)
Tre necessary condition on the costate vector u is
«T _ - 3H =0 (2.9)
s 3



From 2.7b and 2.9 and

U Kv=u Ka=0 (2.10a)
or
yI Kv=0ap K2 v =0 (2.10b)
De fine
0 -1
vy, =Kv= v (2.11)
4 - 1 0
Note that K v = - v. Then 2.10b with 1? K v = 0 becomes
T R - _ onl o =
Y v, = pyvgs-uyv=0 (2.12)

Equation 2.12 determines that the optimal @ = 0 slnce
v and v , are orthogonal vecto:s. The above results define
the commanded angular velocity £ to be zero when v and the
costate vectors y and y are collirnear. When the vectors are
‘not collinear, 2 is commanded as specified by 2.4, See

Figure 2.2.
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Figureb2.2

The minimum time solution using a bounded angular
velocity as the contrcl specifies Q to be elther zero or at
its positiye or negative maximum values. In Yg space the
curve is a straight line or a circular arc as shown in

Figure 2.1 wien Q is assumed equal to zero and |§T| is constant.

If Q is not assumed to be a null matrix

Xg = - er ~ Q Eg (2.13)
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i<
]
e
[}

|
.I_:IFJ

|
|©
I=

| >

[
—
< I
H

= -
i
|
)
!
o
c

v=a =0Kyv=0K(-a; -Qu
The Hamliltonian is then written as

H=1+ ' (-ap -Qu +y (-2 Kap-2 K Q )

The differential equation for the costate is

. =‘§—§__= (-7 - y" Ke) Q

With Q nonzero, u 1s not a constant vector. The ef-

fect of the (Q zg) term can be treated as a perturbation

(2.14)

(2.15)

(2.16a)

(2.16b)

(2.17)

(2.18)
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of the costate vector H. In yé Space the (Q Yg) term is a
perturbation of the AV trajectory solution which assumes

Q= 0.

2.2 Final Time Specifieqd

The requirement of expending a prescribed amount of
fuel and the assumption that the rocket motor is not
throttable, allows the problem to be handled as wne of final
time specifieqd (tf). The state vector can be written in a

different form from Section 2.1 as

\
x J ex (2.19)

-V
gy

L8

where B is the angle of the thyust acceleration from the b'¢
axls. (Refer to Figure 2.3.) Tpre differential equation for

the state in this form is
AN |
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; -an cosB
X = = f(x) (2.20)

sinB

A performance index J 1s chosen to minimize the mean-

square of the vehicle angular velocity over the burn

J = %j Q2 dt (2.21)

Using 2.21, the Hamiltonian of the system is written as

time

H=2 Q2+ A f (2.22)

where A is the costate vector or Lagrange multiplier.

The necessary conditions for J to have a stationary

value are:

X=- jaf .A-(g (2.23a)
!ﬁ! 3%

SH f A+ L =0 (2.23b)

aQ Iy a0
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Initial condition x(0) - given (2.23c)

Terminal constraints of state vector
v (z(tf)) = (X - a, X2 - b, X3 —c) =0 (2.234d)

where a, b are constant tolerances and c = B(tf).

Altp) = 1T 32==1T (2.23e)

dx

The necessary conditions stated in 2.23 form a two-point
boundary value problem. The optimal control history of 2(t)
can be solved for using a technique such as the steepest
descent method. A program using the gradient projection
method5 was developed to solve the problem stated above.

The gradlent projection method is described in Appendix A.

It was used as a comparison with the performance of the
exblicit guidance laws which were devéloped and are presented
in Chapter III. The primary goal of this formulation was to
malntaln the vehicle rates as low as possible while satisfying

the terminal constraints of Yg (tf) = 0 and B(tf) specified.
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2.3 Perturbation Feedback Control

The solution to the two-point boundary problem presented
in Section 2.2 generates an open-loop control history for
2(t) which appllies only to a particular set of initial condi-
tions, nominal acceleration profile and terminal constraints.
Perturbations to the above will result in a sub-optimal
performance. It is deslrable to have a closed-loop control
law which is insensitive to the presence of these anomalies.
This section outlines a scheme using neighboring external

3
paths:

Suppose a control function Q(t) which satisfies the
problem stated in Section 2.2 has been determined. Along
with Q(t), there are corresponding time histories x(t)
and A(t). Consider small perturbations from the extremal
path produced by small perturbations in the initial state °
§xo and in the terminal conditions 8y. These perturbations
glve rise to perturbations 8x(t), A (t), §Q(t), and
A on the basis of linearizing around the extremal path.

The perturbations are

s$Q (2.24)

8Q (2.25)
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- T T
0 = -Hy ~ 6x - (8% "£5)° - Hoo6Q (2.26)
_ T
0 =Hy, 6x+ fo = 8\ + Hyo 60 (2.27)
§xo specified
sx(t.) = |7 sx+y T 4 (2.28)
—_ f 1 i = Ix I _ .
XX t=t
f
sy =[Qx GxJ (2.29)
= = t=t,

An augmented performance index J may be written

from 2.21 as

t

f
- J = AT $(to) +[(H - f i) dt (2.30)

where

and A? is the Lagrange multiplier for the final value of

constraint Q(tf). Consider expansion of the performance

index J and constraints to second order (since all first

order terms vanish about a trajectory satisfying 2.20, 2.21,

2.22 and 2.23). This may be accomplished by expanding the
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augmented criterion J of 2.30 to second order and all con-

straints to first order'.'3 This leads to

§% J = (% 6x' x' v, 65)

t=t,
e
+%f[5£Tﬂ Bex  Hxa[°2] at
0 Hox HopdlL @
Subject to
§x = £ &x + I 6Q

sy = (¥, 6,)

where 8y is specified

(2.31)

(2.32)

(2.33)

(2.34)

A neighboring extremal path is determined by evaluating

62 such that 623 is minimized subject to 2.32 through

2.34. It is now clear that equations 2.24 through 2.29 repre-

sent a linear two point boundary-value problem since the

coefficlents are evaluated on the extremal path.

2.27 can be solved for 8Q provided H

0 <t gt

“

f.

Equation

Q0 1s nonsingular for
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- -1 T
6@ = - Hoo '(Hg, 8x + fo 8)) (2.35)

3
Equation 2.35 may be put in the form
6@ = - K; (t) 6x - Kz (%) ] (2.36)

Equation 2.36 may be regarded as a neighboring optimum
feedback law since it will produce desired small changes
in the terminal condition 8¢y while minimizing the performance

Index J of 2.21.

The method of neighboring extremals carries the distinct
disadvantage of having large storage requirements. Nominal
time historieS§f state and control vectors are required in
addition to the storage of the gain matrices K,(t) and X, (t)
of 2.36. Substantial calculations are also requlired to
generate the nominal profiles. For these reasons this method

was not pursued further in this thesis.
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CHAPTER III

EXPLICIT CLOSED-LOOP GUIDANCE LAWS

3.1 Introductilon

The discussions of Chapters I and II point out the
desirability of the control law being explicit and closed-
loop in nature. Perturbations in initial and final condi-
tions, varlances in thrust acceleration, and autopilot
dynamics are the baslc considerations. In addition, there
are requlrements for mathematical simplicity and reasonable

computer storage needs.

Since the rocket motor is assumed to have no cut-off
mechanism, the expendable fuel on board must be burned off.
The energy transfer imparts a delta velocity (AV) change to
the vehicle. If the AV occurs in a carefully controlled
manner, Yg can be reduced to zero in the burn time and the
terminal direction of an can lie in a preferred direction.
The uncertainties 1n burn time and burn rate appear as a
veloeclty error. The veloc}ty error 1is directed in the termi-
nal insensitive direction 1f conservative estimates are used

in the vehlcle energy model.

A dlrect method of controlling the nature of the AV curve

1s to fit 1t to a curve. This curve would then have a known
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% .Y cum:ucs
' 1 STEERING LAWS

-

[t

AUTOPILOT
AND
MISSILE

¥ DISTURBANCES

Fig. 3=1 System block diagram,
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initial value (Xg(ﬂ)), a final value cf zero, a desired

final slope, and au arc length equal to AV. Figure 3.1 shows
the system block dlagram.. The‘guidanCe‘law.uses’Aytand Yg
information to compute the AV trajectory in order to obtailn
the commanded thrust direction Bc‘ The function of the auto-
pilot 1s to generate commands based'on the attitude error
hetween gc and P. .Le missile section represents vehicle
dynamics. The thrust acceleration & is fed back and is

used to update both yg and the AV trajectory. Here the Q yg
term of ﬁg 1s treated as a perturbation. AV uncertainty and

thrust and autopilot disturbances are also shown.

Two types'of curves were considered based primarily on
ease of computation of arc length. The curves are the para-
bola and the straight-line-circﬁlar arc combination. Deriva-
tions associated wilth these profiles are presented in the next

two sectilons.

3.2 Parabola Guidance

The general conic equation can be written as

Ax* +Bxy +Cy? #Dx+Ey+F=0 (3.1)

Divide (3.1) by A

x2 + Bxy + C*y2? 4+ D?x + E*y + Fe= 0 (3.2)



- 30 -

Equation 3.2 has five coefficients allowlng five con-
straints to'determine the curve. Refer to Figure 3.2 for
the followlng discussion. If the final point 1s chosen as
(0, 0) then F = 0. Equatlion 3.2 represents a parabola if
the filrst three terms are a perfect square.' (Drop prime

notation.)

ke 2fTy)t 4 Dx b By = 0 (3.3)

B2 = 4 ¢, B =+ 2V

Change the nomenclature
(x + ay)2 + by + cx =0 (3.4)

At (0, 0) the slope 1is in2
Tz =m (3.5)
At initial point (x,, yi1), solve for b

b =_(x; +ay;)? '
CTEEETT TV N (3.6)
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'a'is the last coefficient to be determined. It 1is
uniquely defined by the arc length constraint. ‘'a' will

be computed using an iterative procedure.

1. Guess a, arc length S given
2 Solve for b using 3.6 and c using 3.5

Solve for the slope at the initial point
ml

w

ml = =(2x; + 2 a y1 + ¢) (3.7)
(2 ax,+2a?y, +0b)

4y, The coefficient 'a is the tangent of
the angle between the y axis and the
principal axis of the parabola as
shown in Flgure 3.3. Rotate the
slopes ml and m2 into the coordinate
frame parallel to the principal axis

m3 = (ml - a)/(1 + ml a)
, (3.8)
md = (m2 - a)/(1 + m2 a)
5. Compute the parameter of the parabola
2y /2
P = (b - ac)/(1 + a?) (3.9)
where P 1is invariant
6. Compute the arc length of the parabola
m4 m4
-— . 42‘ N - »
Se =[vas, =] B@+y)/2ay (3.10)
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where

y> = dy/dx (3.11)

then

1/, 1/2
Sy = % [mU(1l + mb?) + log (m4 + (1 +mi?) )

(3.12)

1/2 1/2
- m3 (1 + m32) - log (m3 + (1 + m32%) )]

7. The error in arc length is

Err, = S - S (3.13)

8. Compute a numerical derivate AS/Aa
where AS = SAa - Se

Spa” S(atAa)

Aa = numerically appropriate constant
(approximately 10™*%)

9. Update 'a' by

a = a

new old ~ Errs / (AS/Aa) (3.14)

10. Repeat starting at 2 until arc length
error 1s less than a prescribed amount.
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The method outlined above rotates the princlpal axis
of the parabola and adjusts the shape (parameter) until the
arc length constraint 1s satisfied. With a reasonable
inltlal giess of Y the coefficients of the parabola should
be found in a few iterations. Subsequent updates of the
coefficients would use the last solution value for 'a’'.
Perturbations from the desired parabola will cause the co-
efficlents to change requiring a periodic update. The de-
sired direction of the thrust acceleration 1s tangent to
the arc as shown in Figure 3.3. The value of this slope is
ml from Equation 3.7. The rate of change along the AV
trajectory is of course the thrust acceleration. The vehicle
angular veloclty and acceleration required is that needed to

keep a, tangent to the curve. The angular velocity Q of the

T
vehlcle is then a function of the curvature and the thrust

acceleration at a particular point on the parabola. This

function is

Q= aT/RADCURV (3.14)

where RADCURV is the radius of curvature

ap = |ap|
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The AV trajectories for AV/h!g(0)|= AV,, ratios of 1.1,
1.3, and 1.5 are shown in Figures 3.4, 3.5 and 3.6. The
deslired terminal direction in all cases is along the positive
vertical axis.® The initial zg positions were chosen at
various angles at a radius of 1 from the final (0, 0) condition
for yg. Comparing identical starting positions for the dif-
ferent AVr ratios leads to the obvious conclusion that the
more excess fuel avallable to waste in the turn, the slower
the turning rate allowed. Looking at Figure 3.4, for example,
as the initial !g position is swung toward the final desired
thrust direction, the required vehicle rates become lower. At
the higher AVr ratios, and as the initial position swings
counter-clockwise, the vertexz of the desired parabola moves
toward the initial Yé position. As 1s expected, as the initial
point moves clockwise away from the terminal thrust direction,

the curvature of the parabola becomes more severe.

If one assumes that the horizontal axis of Figure 3.3
represents the down range direction, the initial Yé positions
which allow lower vehicle rates, incur larger penalties in
terms of range capability. Thus the longer the range re-
quired, the less energy available for the turn, which impliles

higher vehlicle rates near thrust termination.

¥Tre T.S.D. 1s an arbitrary direction lowever.
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An estimate of the required vehicle rates can be made
with knowledge of the thrust acceleration. The thrust ac-
celeration may be modeled using reasonable values of Mi/Mf
and T,/T, where Mi/Mf is the initial to final mass ratio and
Ti/Tf is the initial to final thrust force ratlo. Constant

mass flow rate will be assumed.

Let the thrust acceleratlion be modeled as

=T, 4+ Tt

i e S (3.15)
M, + M t

where T 1s the thrust force rate of change and M is the mass

flow rate. With the model of 3.15, control of the engine ex-

haust vel®elty or specific impulse is assumed.

M=M, - M T=T,-T

Since f i, f i
tp ty
ap = Ty (1+ Tf-T“‘E_”
W, AL (3.16)
‘1 ol L Mj’ (t_)
M, B
or
a, =T 1 -J1-T1T t
" ?) [53)
= o J17)
My T, B (3.17
[ (5]
M B
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Let
T = Ti/Tf
R = Mi/Mf
Ka = Ti/M1
Then

1-[(T-1)/T] (£/t,)
8 7 %2 I-T(R-DI/RT(E/%,)

Ka may be calculated by use of the AV and integrating 3.20

fromt =0 tot =¢ Let = T. Then dt = t, dr.

b

wrf

b b

Integrating 3.20 using T from 0 to 1 results in

AV = K R(T-1) + { T

T-1 - R-l)
a

R
TZR-lS l ‘R"'l 2
R

(3.18)

(3.19)

(3.20)

1og(1/n)] t,  (3.21)
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Therefore Kais determined by

K= AV (3.22)
35,

Using 3.22 in 3.20 and dividing by lygl

oty o ov [ 1o %)
L . T (3.23)
|Yg| [ ] 1 (R-l)x ’
T
Define am tb as the normalized ap Or ap oo
V]

—g

Normalized aq profiles are shown in Figures 3.7, 3.8 and
3.9 for a mass ratio of 3 and 6 and thrust force ratios of 1.0,

.5 and 1.5.

With the gstiméte of 2 the calculation of the required
2 can be made. One can approach the design problem by
starting with the nominal value of |Xg|to be encountered. Then
the effects of different values of AVr can be examined. The
angular velocity @ can be calculated using 3.23 and the ex-

pression for the radius of curvature at a point on the curve

RADCURV = (1 + y»)° /% (3. 215

e
y
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where

y~ = dy/dx, y°° = d?y/d?%x (3.25)

Using 3.24 @ 1s found by

Q= ag radlans/sec (3.26)
RADCURV S
Figures 3.7, 3.8 and 3.9 are plots of Qﬁorm using

R=3, T=1, and different values of AVr.

Where Qnorm 1s deflned as

rorm = 8 aTnorm radians/burn time (3.27)

' : #
The final angular velocity & has great importance

fnorm
and as polnted out by comparison of Figures 3.10, 2.11 and

3.12 increases with decreasing values of AVr. Notice

anorm
that the -45° position for initial yg poses a problem. The
curvature for the trajectories are severe and with the vertex
located falrly near the terminal. As a result the angular

acceleration 1s high traversing the nose of the parabola.

#* -
fig "~anorm
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to the final position. ﬂf is the value of the angular velocity
at Yg = (0, 0). The Qmax curves represent a worst on worst
case sltuatlion wlere the maximum t lrust acceleration occurs
at a point of minimum radius of curvature (which is the
vertex of the parabola). Wken the vertex of the curve 1s far
from the terminal point, then the acceleration must be ad-
Justed to present realistic maximum angular velocities. Tte

Q are nearly equal for the -45° initial Yg position.

max,ad]
TIE'gf 1s quite low for AVP equal to 1.3 and 1.5. Qf for
BVr equal to 1.1 1is rather high until the initial Xg direction
approache s 45°. It must be remembered that the curves are

for particular values of R= 3 and T = 1.

As dlscussed in Section 3.1 perturbations effects will
requlre periodic updating of tte.parabolic trajectory. Be-
cause of the time‘required for the update, the computation
must be done at a rate slower than the thrust direction
command Ec to the autopilot. Th sequence may be that as

shown in Figure 3.13.

Major Update . Major Update

P LT

Parabola Update Rates

Figure 3.13
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The slow rate time intervals compute the desired slope
based on the present values of !g and AV. Tre faster P,
command rates are based on an estimate of the slope change
m3 during the time interval. m3 is estimated to first

order by

Am3 = (ARC1-ARC2)2 (3.28)
(1 + m32)3% P

where

ARC1 - last value of AV arc expended
ARC2 - present value of AV arc expended

P - parameter of parabola
Each high rate interval updates m3 by
m3 = m3 + Am3 (3.29)

Am3 1s invariant between coordinate systems and can be

treated as a small rotation of gc.

Tre new P, 1is calculated by

P, = P, + (P x am3) (3.30)

wlere

m3 = m3 UNIT (I.S.D. x P) (3.31)

Summarizing the dliscussion of 3.2, the parabola proves

to be & flexible contour with an arc length which 1s readily
computed. Tk slope 1s conveniently updated at faster sampling

rates between the majJor parabolic update times. Th iteration
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procedure converges rapidly with a good initial estimate.
The parabola does in some cases impose a severe curvature
on the trajectory, particularly as the 1nitial Yg direction
approaches -45°. Tl parabola cannot be curve fit if the

initial yg direction is +90° and the I.S.D. is +90°.

3.3 Circle-Line Guidance

Another expliclit method computes a AV& trajectory which
is a combination of straight- line and clrcular arc to pro-
vide the proper arc length of AVr. It is interesting to
note that this is the trajectory solution for the optimal
minimim-tigme problem discussed in Chapter II. In the minimum-
fime solution the straight line was tangent to a clircle of
minimum radius which represented the maximum turning rate of
the vehicle. 1In the applicationé being considered in this
thesis (no terminal thrust control) the combined arc length
must be controlled which implies the radius of the circle will

vary to satisfy the arc length constraint.

Refer to Figure 3.14 for the following derivation.
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(XI)YI)

Figure 3.14
Given: S, X1, ¥

where S is the arc length and (xi1, yi1) 1is

the initial V osltion
L p

Find:
r, 6 such that r L1 S and the arc

length S constraint 1s satisfled

From Figure 3.14

S=1r6+ (x; - r (l-cosf))/sind (3.32)
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cos® = (y; - r sine)/(x; - r(l-cosg)) (3.33)

Solve :3.27 for r

r = (x1co80+y,;81in6)/(cos6-1) (3.34)

The derivative of S with respect to 6 1is

%% - %% (e- (1-::22) 4 r(l-cos@) cosp (3.35)
sin2@
- X3 cosf
sin?%6
where
= (y: (cos® - 1) + x; sin6)/(cosb-1)2 (3.36)

Q'Qa
D|H

Tre procedure to calculate r and 6 is the followlng:
l. Guess 6, given x1, y1, and S.

2. Calculate
r from 3.28

S, from 3.26

3. Compute 806 by

80 = (S-S,)/(ds/ds) (3.37)
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. Repeat with 6 = 6 + 66 until S-S, is

less than a specified tolerance.

Then the desired direction of the thrust acceleration
i1s along the straight line defined by 6 until |yg| is less
than r6. Wren |V, | < re, the direction is defined by the

tangent to the circular arc.

The AVr trajectories for the line-circle combination
were analyzed in the same manner as was done in Section 3.2
for the parabola. The data for AVr = 1.1, 1.3 and 1.5 is
presented in Figures 3.15, 3.16 and 3.17. Again the insensi-
tive direction is chosen arbitrarily along the positive
vertical axlis. As the initial Yg direction swings toward
the I.S.D., the 1limit of tle problem solution is approached.
Notice in Figure 3.17 that 0° 1s very near the . solution of
being on the circular arc the entire trajectory. As the
!g direction rotates toward -90°, there 1s great flexibility
with an attendant penalty in arc curvature. If there 1s no
circle-line solution for a yé direction, the I.S.D. may be
chosen 180° from the present ene. Tre solutions would then
be a mirror image of the curves shown in 3.15, 3.16 and 3.17.

Notice that +90° solution are possible.
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The normalized angular velocities are slown in Figure
3.18. For the line-circle, Q. and Q o4 are the same. The
angular velocity commanded from the line into the circle is

a step input.

Comparisons of the parabola and the line-circle methods
results in the following:
1. The line-circle requires considerably
less computation.

2. Tre parabola is generally more flexible
in terms of being fit {rom a Yg direction.

3. An exception to 2 is the +90° direction
which the line-circle can handle but the
parabola cannot.

4y, The parabola exhibits less terminal angular
velocity.

5. The maximum angular velocities required are
essentially the same for AVr = 11. At
larger AVr, the line-circle has lower
maximum rates as the yg direction » -45°,

Tre line-circle slope could be updated periodically as
in the parabola method to account for perturbations. 1In
the line-circle case the radius of curvature is r when on

the circular arc. Th slope is then updated by

Ssip = Sarc/T (3.38)

slp = slp + Gslp (3.39)
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where

8 is the expended AV over the
arc

update interval

GSLP is the change in slope

SLP is the value of the tangent to
the circle of radius r at present

AVr position
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CHAPTER IV

INSENSITIVE DIRECTION COMPUTATION

4,1 Null Range Direction

The null range direction 1is defined as the direction of
thrusting on a body in an inverse square central force fleld
such that the trajectory of the body is not displaced from a
preselected inertial destination point. Thrusting in the
null range direction changes the characteristics of the orbit,
the time of flight (tff), and the velocity vector at the desti-
nation point. The null range direction varies in flight so

that null range thrusting requires continuous alignment.

R = present position

Rp = target position
1, = unit(R)

lg = unit (RxR;xR.)
6, = range to go

vy = flight path angle

= correlated velocity
0 = null range ahgle

RE = earth radius

1 = null range direction

Null Range Direction Definition

Figure 4.1
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There are a number of ways of defining the null range
direction. In this thesis the null range angle o will be

defined from the -1, direction as shown in Figure L4.1. 1., 1s

the null range dlrection.

Define » ,
V.. = |y | siny
(4.1)
Vc = chl cosY
4
Wheelon derives the 'hit!' equation which may be put
in the form
= - - 2 -
Vcr E R (1 coser) R Vce (Rm R, coser) (4.2)
3 -
Rm Rt Jce 31ner
where
E is the gravitational product of the earth
Rp = IR |
R, = [R|
er is the range angle to go
Therefore, Vcr is the function
Vcr = Vcr (Rt’ Rm’ Vce) (4.3)
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Holding R, and Rm constant and taking the partial of

t
4.3 with respect to V, gives

CA -(R_-R_ cosb ) E(l-cos6 ) |
W, Ry sinB. gy 251n9 (4:5)
¢ m c6 r
From 4.2
-E(l—coser) -V (R_-R_ cos®_)
- = 'er - "m t r’ (4.5)
Rm VCe siner VCe Rt 51nBr
Using 4.5 in 4.4
BVcr - -Vcr -2 (Rm-Rt cos0) (h.6)
BVCB Vce Rt sinGr
Using the geometry of Figure 4.2
avcr = —tany -2 cot¢ (4.7)
avcé
Ry sin9r
Figure 4.2

Definition of ¢




- 62 -

Therefore

a = tan cr (”.8)

defines a direction along which an incremental velocity
change may occur and still allow the body to intersect
the desired inertial destination point. Since we are

defining @ from the élr direction

+ a (4.9)

Notice in Equation 4.4 through 4.9 that tff is free to vary so
that velocity changes in the a direction change the time

of free-=fall.

Graphs of the null range angle a versus the range-to-
go 0p are shown in Figures 4.3, 4.4, and 4.9. At shorter
ranges (under 10°) a is a more volatile function of altitude
and range. At longer ranges, a is well behaved and nearly

linear with altitude.
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CHAPTER V
RESULTS

5.1 Introduction

A digital simulation of the parabolic guidance law was
developed to pursue further analysis. Basic objectives of
the analyses were to establish broad autopilot requirements
and to determine suitable intervals for the major parabolic‘
update and the faster intermediate slope computation. The
parabola trajectory was tested for various conditions of
initial Yg direction, AVr.ratios, and thrust force profiles.
In addition, the effect of the ng contribution was tested.
A run demonstrating the sensitivity to an initial offset be-

tween P and P, was performed.

The problem of terminal settling dynamics into the I.S.D.
1s not covered in this thesis, and is an area of further investi-
gation. The vehicle terminal angular velocity has to be re-
duced to zero, and the Zg nulled along the I.S.D. One possible
approach 1s to estimate the effect of the terminal dynamics
on !g and to allow for this in the guldance calculation.
Another approach might use a curve fit which exhibits zero
curvature at the terminal point. This would impose computa-

tional difficulties on the arc length computation.
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A third scheme could be implemented which nulls the
yg along the I.S.D. near the time of fuel depletion.
This would requlre switching between control laws at the

proper time.

The line circle guidance law was partilally checked
under simulation conditions. The basic problem encountered
was a sultable guldance scheme to handle perturbations during
the circular arc segment. This also is an area of further

development.

An illustration of the performance of the optimal
specified time problem which was discussed in Chapter II 1s

presented in Section 5.4.

5.2 Autopilot Requirements

The steering control which was discussed in Section 1.1

was used in the simulation. A block dlagram is shown 1in

Figure 5.1.
0 0 0
¢ :1r e - K r 1 —
———JKI

Figure 5.1
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where Bc is the angle of P referenced to the x axis

-C

6, 1s the angle of P = Unit(ap) referenced to
the x axis

The closed~loop performance function is

K. + K s
el ZI P (5.1)
S + KpS + KI

PF

The Laplace transform of ee is

o = (5.2)

If Oc(s) = Eg » the following error is

=0 (5.3)

Therefore the control law follows a ramp ec(t) input with

zero error. Values of Kp = 21 rad, and KI = 225 rad® were

sec Secz

found to perform satisfactorily under the simulation condi-

tions. These values correspond to a bandwidth or break



frequency of 10 rad/sec and a damping ratio of .7. When the
bandwidth was lowered to 5 rad/sec, the autopilot response
was not fast enough for the cases involving a small radius of
curvature and the slmulation failed. The initial Zg directlon
of -U45° 1s an example. In such cases the negative insensitive
directiqn:can be used.

A high value of Q. 1s undesirable in terms of autopilot
requirements. As dilscussed in Section 5.1, the vehicle must

settle into the I.S.D. while nulling the V_.
(=]

5.3 Parabolic Guidance Simulation Results

The parabolic guidance law was tested in the digital simu-
lation using AVr ratios of 1.1, 1.3 and 1.5. For these three
ratios initial Yg directions of -45°, 0°, and U45° were chosen.
During these runs, the parabolic update was performed at the
fast update period of .01 seconds. The terminal conditions at
fuel depletion are presented in Table 5.1. As discussed in
Section 5.2, values of Kp = 21 rad/sec and KI = 225 rad?/sec?
were used along with a mass ratio of R = 3 and a thrust forée
profile T = 1. A rate limit of 2 rad/sec was imposed on the
autoplilot. The simulations made from the -45° initial yg
direction failed because of the rate limiting. The failure
occurred in the parabola guldance which could not successfully
converge on a parabola which exhibited extremely sharp curva-
ture. The remaining runs proved successful as demonstrated
by Table 5.1. The very small number for the terminal conditions
reflect the fact that there is no computer word length

quantization in the simulation.
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Note the values are not zero in Table 5.1. This

fnorm
points out the fact that the figures in cthe table do not in-
clude the effect of settling into a flxed thrusting orienta-
tion along the insensltive direction. As discussed previously,

this problem is not solved in the thesis.

Table 5.1 also demonstrates the penalty of a larger

as the AVr becomes smaller. ' For the 0° case,

9I‘norm fnorm

for AVr = 1.3 is less than one-third of that for AVr = 1.1.
Another observation, which was discussed in Chapter III, 1s
that as the initial Yg direction swings toward the I.S.D.,
anorm is reduced dramatically. Note for AVr = 1.1, the
Qerorm ©F 45° i1s 25% that of the 0° case.

Graphs of some typical runs from Table 5.1 are shown i1in
Figures 5.2 through 5.7. In Figure 5.3 when AVr = 1.1, the
parabola vertex is quite close to the terminal and consequently
© fnorm 1s quite high. As AVr is increased (Figure 5.5), the
Qnorm(t) profile 1s much less severe and the maximum angular
veloclity requirements are spread further from the terminal
point. The measure of unit(gT) misalignment at fuel depletion
in Figure 5.2, 5.4, 5.6 is Px. The Px profiles reflect the

angular veloclty histories mentioned above. As AVr increases

the slope of Px is less steep near the terminal.



TABLE 5.1 PARABOLIC SIMULATION RESULTS (1)*
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V_(0)

2V, 3R, o] Vax (tn) gz ) Py (ty) fnorm | REMARKS

r . mrad RAab/B.T.
1.1]| -45° FAILED
1.1 0°] 3.5 E-7 3.5 E-4 1.5 - 8.7
1.1 45°| -2.6 E-8 8.6 E~-4 .5 - 1.9

1.3| -45° FAILED
1.3 0°| -5.8 E-8 5.2 E-4 .2 - 2.4

1.3 45°| -3.6 E~8 7.8 E~4 9 E-2 Y

1.5| -45° FAILED
1.5 0°f -3 E-8 4 E-4 .3 -1

1.5 45°| -3.5 E-8 5.1 E-4 -1.3 E-2}| - .47

* E symbolizes exponent to base 10
TABLE 5.2 PARABOLIC SIMULATION RESULTS (2)
V_ (0]

AV —g

r DIR. Ygx(tb) ng(tb) P (tb) Rﬁg?ng REMARKS

mrad *T
1.1 0° l.1 E-6 4.2 E-4 2.3 - 11.6 Q!q
1.1| G° 1.2 E<8 2.9 E-4 1 - 7.6 T=1.5
1.1} 0° 1.0 E-6 5 E-4 2.7 - 11.2 T=',5
1.1 0° 9.2 E-6 5 E-4 .3 - 1 TPARAB=
30°
-] - - - -

1.1 0 1.8 E-7 3.7 E-6 .3 .9 OFFSET
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The variable ETH is the misalignment between the commanded
vector gc and the thrust acceleration vector unit(gT). The
maximum value of ETH encountered in the runs of Table 5.1 was

was less than 10 mrad.

Conditions for a standard run were selected as AVr = 1.1

values were kept

and initial Yg direction = 0°. Kp and K

the same. A run which introduced the ng perturbation was
= = 1

performed using Qxx = sz =-,001 sec’® and all other matrix

elements zero. The terminal conditions are given in Tabie 5.2.
The perturbation contribution slowly changed the coefficients
of the parabola. Note, however, the 30% increase in the

i1s significant

terminal € The effect of QV, on Q

fnorm® fnorm

at the lower values of AVr. Since the direction of the I.S.D.
1s arbitrary, the effect of ng will vary with the changing

I.S.D. direction.

Progressive and regressive thrust force profiles were
tested and the terminal fuel depletion conditions are given
in Table 5.2. The only significant difference from the

standard run (T = 1) was the value of Q The progressive

fnorm*

burn resulted in a 30% increase in Q while the regressive

fnorm

burn decreased Q by 10%.

fnorm
A fast sampling period of .01 sec was found to be

satisfactory. Successful runs were made using a parabola

update period of .25 sec. The slope between major updates

was computed as described in Chapter III. Fuel depletion
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conditlions for the standard simulation conditions are shown in
Table 5.2. There 1s a 10% increase 1n anorm caused by

differences in autopilot behavior and the approximation made

in the slope update.

The effect of an initial offset between unit(a;) and
Bc was tested using the standard run. An offset of 30° was
used. The simulation ran successfully as verified by the
results in Table 5.2 and the graph in Figures 5.7 and 5.8.
ETH in Figure 5.8 has a large overshoot because the damping

ratio 1s set at .7. ETH settles in a time constant

4

sSec

|
~| =

There 1s about a 5% 1lncrease in S%norm (when compared to
~a zero initial offset) caused by the AV expended during the

initial settling period.

Summarizing the results of the simulation analysis of

the parabola guidance

1. The -45° cases resulted in failure due
to the rate limiting. This problem
can be overcome by using the -I.S.D.
direction.

2. Generally the simulation results are satis-
factory fop 0° and 45°. Zero degrees 1s not
the limiting case. Runs approaching
-45® which would not exceed the rate

1imit could have been made.
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7.

The data presented does not reflect
the problem of terminal settling.

The'Qzg perturbation is handled
without any problem.

A slow parabola update interval of
.25 seconds was found to be satis-
factory.

Initial offsets such as the 30° case
may be tolerated with proper autopilot
response.

Regressive burning lowers terminal
angular rates.

5.4 Optimal Specified Time Problem Results

The optimal specified burn time problem discussed in

Chapter II was solved using a method of steepest descent

i1teration.

An example of a solution is presented here.

The specifications of the problem were

Vgx(o) = 3500 ft/sec

ng(o) = 700 ft/sec
IgTI = 200 ft/sec’'= constant
-tf = "burn time = 20 sec

The terminal constraints which were used are

B(tp) = %radians
CANCIRERY
(V, (Eg)=.1)

0
0



The initial control Qo(t) which was assumed is

it
o

Qo (t) 0 ¢t <15 sec

Qo (t) .3 rad/sec 15 sec <t £20 sec

The algorithm initially satisfied the constraints by
starting the constraint gain Cp at .l and incrementing by -1.
until a maximum of 1 was reached. After satisfying the terminal
constraints, the cost J was reduced by a specified amount AJS.
The value used initially was -.001 rad/sec. When the actual
linear change in cost was less than the AJS, AJS was set

equal to the actual change.

The results of the run are shown in Figures 5.10 and
5.11. The initial control history Qo (t) is shown in Figure 5.11
aloné with the (t) after 76 iterations of the algorithm. The
rms value of 92(t) was reduced from .1l42 radianysec to .126
radian/sec, a reduction of about 15%. Figure 5.10 displays
\'

the time histories of V and B converging on their

gr’ gz’

terminal values.
The problem solution for the specified time worked well.
Viewing the problem of terminal angular velocity, a pénalty

function on the terminal £ might have proved useful.
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5.5 Conclusions

The parabolic guldance law provées to be acceptable 1n
terms of computational complexity, flexlibility, and auto-
pilot requirements. The fact that it is explicit and
closed loop in nature allows perturbations in initial
conditions and thrust acceleration to be accommodated.
Additional development of the steering law to follow the

commanded trajectory is needed.

With additional development, the line-circle guidance
technique should prove to be feasible. Guidance while on
the circle arc 1s the major problem. The circle is less
flexible than the parabola, and perturbations from the
commanded trajectory result in either no solution being
possible for the specified conditiong,or the straight line

segment direction varying rapidly.

5.6 Areas of Additional Work

1. The problem of settling into the I.S.D.
direction while continuing to null yg
along this direction needs further develop-
ment and analyslis. Several approaches
were discussed in Section 5.1.

2. The technique of thrusting along the
yg direction until a higher AVr
ratlo 1is attalned is a possible area
of study.



The line-circle guidance technique

with additional development of the guid-
ance technique along the circular arc,
should prove to be practical.
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APPENDIX A

GRADIENT . LJECTIGN METHOD SOLUTION TO

TW. cOINT BOUNDARY VALUE PROBLEM5

Given initial conditions

Integrate from 0> T

|

1}
I
~~

»4
N

Using stored history of Q(t)

_ T -1
Qn+l(t) - Qn(t) - Cy G A Tyy En

T - .
Oy |Hy - @ ATyt Iy

Using from memory
o', GT A, 2 (t)

Store

(A.2)

(L.3)

(A. L)

(A.6)



U

8.

At T evaluate

pu(T) = (x,(I) - a, x,(T) = b, x,4(T) - c)

Exercise step size control if necessary

Test: to stop

If ¢ # 0 Continue:

Integrate from T to 0 picking up from memory

a(t),x(t)"

J(T) = 3~ (T)

- 89 -

A(T)

A(T)

IJJ(T)

IW(T)

Typ(T)

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

Ta

Tb

8)

9)

1C

11

12

14
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L =-pL )
Iy5 = -Hg
Hy = Ly = @
S T T
. T T
= - A A
Tyy G G
F=23f ,G-=0f
3x Q0
. T
9. Store Hg(t); G~ A(t)
10. At t = 0, evaluate
Tow I, @ I
v L Iy $J

11. Step Size Control

Choose C¢’ CJ where C¢ is the control for

the constraints and CJ 1s control for cost change

in J.

(a) Start CJ small and increment to 1

= -c T -
(0} 05 = 35 -0y Tys" Tyy oy

T -1
IJJ - IwJ I¢¢ I‘pJ

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)



12.
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where AJS is the specified change in the

cost.

If C;, < 0, set C; = 0

J J

Toward solution point, denominator of

A.22 » 0. Then let CJ = constant.

(¢) With large increase in cost - cut back

on CJ -

Repeat cycle
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