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ABSTRACT

It is shown that the system of equations which governs the unsteady

flow of a radiating gas in chemical nonequilibrium is hyperbolic, and
standard methods are applied to the solution of situations in radiation
gasdynamics (RGD) which are restricted neither in optical depth nor the
radiation-convection parameter. Absorption of shock layer radiation by
the upstream gas is included in a nume rical method of characteristics,
and it is proved that only a Mark-type radiation boundary condition is
appropriate to the lowest order full-range differential approximation of
one-dimensional radiative fields. To illustrate the method, the flow fields
generated by planar and cylindrical pistons inserted into ideal gases with
arbitrary absorption properties are investigated both with the differential
approximation and the full transfer equation. The results obtained are
believed to be the first in a realistic aerodynamic situation and show that
the differential approximation predicts surface pressures and heat transfer
rates very accurately and general flow fields within ten percent for the
cases considered. It was found that linearized theories of piston'insertions
may be in error near the start of motion. In addition, nonmonotonic
(entropy layer induced) surface pressure histories have been noted, and it
is observed that variable surface emissivity and wall temperature may
exert "blowing" or "suction" upon entropy layers. Upstream absorption
is shown to be a dominant mechanism in the evolution of unsteady flow
fields, and contrary to previous predictions it is shown that the effects of
radiation upon pressure and velocity may be comparable to those upon
temperature in many cases. A rigorous hypersonic piston analogy has
been developed so that the results of the investigation may be interpreted
in terms of corresponding steady situations in RGD.
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CHAPTER 1

INTRODUCTION

1.1 The Importance of Thermal Radiation

The design of vehicles for entry into planetary atmospheres from
deep space missions is a compromise between aerodynamics and gas-
dynamics. It has long been recognized that the surfaces of such
vehicles will have to be protected from the potentially severe aero-
dynamic heating. Since practical considerations which obviate the use
of minimum energy orbital transfer dictate that reentry must occur at
greatér than parabolic speeds, conditions within the shock layers of
these vehicles will be favorable for appreciable excitation of internal »
degrees of freedom of the gas, for dissociation, and for ionization.
Once these processes occur, radiation of the energy whichthey
required becomes possible. It has been pointed out (Allen, 1962)
that considerations of radiative heating will dictate the philosophy of
future spacecraft design. Although slender vehicles present decelera-

tion problems because of their low drag relative to bluff ohes, the

concurrent weak shock wave may provide a sufficient reduction of

radiative heat transfer to justify their use, Through an admittedly
crude analysis Allen has attempted an optimization of conical bodles
with ablative surfaces. Almost w1thout exception, those who have
undertaken the gasdynamic analysis of h1gh speed atmospher1c flight

have cited these preliminary results. Trustworthy quantitative

"investigations of slender bod1es st111 do not exist, however, and if

the situation is ever to be truly optlmlzed the deta1ls of both viscous



and inviscid flows in chemical and radiative nonequilibrium must be
better understood, Unless one is willing to make approximations
that seem sometimes rather drastic, the complete problem cannot
yet be attempted—even numerically. It is hoped that the 1nvest1gat1on
to be described will lead to a better understanding of the coupling
between radiative transfer and fluid mechanics in realistic aerody-

namic circumstances,

Emphasis shall be placed upon self-consistent problems as
Sherman (1966 b) defines them. These are problems in which the
absorption properties and radiant energy source function are not.
s‘pecified A priori but are obtained from the simultaneous solution of
the governing radiative, fluid mechanical, and thermodynamic rela-
tions. The most general non-self-consistent problems, in which the
radiative source is specified and fluid mechanics is determined to be
compatible with it, are usually found in neutron physics. (See e.g.

Podney, et.al., 1966).' However, any problenﬁ in which radiation is

. uncoupled from fluid mechanics satisfies the definition of non-self-

consistency. Part of the emphasis of this investigation rests on the
development of new methods for the solution of problems in radiation
gasdynamics (RGD), thus a summary of existing schemes and some
of the most representative problems to which they have been applied
is appropriate. The shortcomings of these methods —many of which ,
were developed without aerodynamics in mind ~ will be poihted out, and
the pz;esent analysis will be justified. Some familiarity with gas-
dynamics and radiative transfer is assumed; therefore, theuninitiated L
reader may wish to scan Chapter 2 and Section 3.1 before reading the

remainder of this introduction.

1.2 Review of Problems in Radiative Transfer

1.2.1 Nonaerodynamic Applications ”
The theory of radiative transfer in astrophysms is well docu-

mented (Kourganoff, 1952, Chandrasekhar, 1960). Although there are

e e
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numerous variations of the problem the astrOphys1c1st is fundamentally

interested in the pred1ct1on of temperature distributions within and

energy fluxes emergmg from stellar atmospheres (which may be assumed
planar.because of their enormous radii of curvature). With this informa-
tion, observations of intensities may be 1nterpreted in terms of surface

temperatures. The analysis is quite complicated, even though the situa-

tion is one of radiative and mechanical equilibrium with the interior of

the star providing a limitless energy source which maintains the emer-

gent flux. Since neutrons of a given energy travel at a constant speed in

'a manner analogous to that by which photons travel at the speed of light,

it is not surprising that the theoretical aspects of the motion of neutrons

- through absorbing and scattering media closely parallel those of astro-

physical radiative transfer {(Davison, 1958; Weinberg and Wigner, 1958).
Problems of reactor design are complicated by the wide range of
material and geometric boundary conditions which the neutron flux must
satisfy. Only the mathematical techniques of astrophyeics and neutron
transport are similar, the individual problems are quite different.

The disciplines of meteorology and chemical engineering must be

given credit for the first attempts at analysis of the coupling between

‘radiation and other forms of heat transfer in fluids. Radiation is the

primary mode of energy transfer to and from planetary atmospheres.
These atrhospheres are usually in a state of mechanical equilibrium,

and radiation plays a dominant role in the maintenance of atmospheric
temperature gradients. Should one disrupt the concentration of absorbers

present (say by burning fossil fuels), energy which would have been lost

or at least dispersed over large distances, due to an ordinarily weaker

absorption, may be trapped in the lower layers of the atmosphere,
hence the 'greenhouse' effect. The works of Goody (1956, 1960) and

of Murgai and Varma (1965a,b) are perhaps the most recent meteoro-
logical applications of interest to the aerodynamicist. In these, the
effects of radiation upon such natural phenomena as gravitationa‘llvy'
induced cellular convection and the rising of hot gas plumes were inves-
tigated. An extensive treatment of atmospheric radiation may be found

in Chapters 5 - 7 of Brunt's classical work (Brunt, 1952). Chemical
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engineers ha;ve been concerned with similar problems, but their interest
lies with fluids which are véry viscous and geometries which are bounded Pl
(e.g., channels and containers). For instance, radiation is of importance
in glass furnaces. Beyond the pioneering efforts of Hottel (see e.g. Hottel
and Cohen, 1958), Cess (1964a,b) has analyzed the effects of radiation

upon viscous, heat conducting fluids in various simple flow situations.

Whereas he makes judicious use of perturbation procedures when radiative
transfer is large or small relative to whatever other mode of heat trans-
fer is present (conduction, natural or forced convection, etc, ), Viskanta, et
al. (Viskanta, 1963, 1964a; Viskanta and Grosh, 1961, 1962; Viskanta and
Merriam, 1967) have attempted more general solutions of similar §ituations
as has Greif (1964, 1965a,b). Sparrow and Cess (1966) present the chemical
engineer's viewpoint. * A considerable background exists in the n'ori-aerody-
namic applications of radiative fluid mechanics. Although the aerodynami-
cist is a relative néwcomer to radiative transfer, there have also been

many aerodynamically oriented works,

1.2.2 Radiation in Aerodynamics

When it was realized that radiative energy transport might be
of great aerodynamic import, experimental and theoretical investigation
of the physical processes which contribute to thermal radiation were
embarked upon in earnest. Clearly, phenomena which predominate in
stellar and atmospheric rédiation ére not always those which contribute
most to radiation from shock layers; therefore the catalog of informa- -
tion which existed required elaboration, For instance, scattering,
diffuse reflection, and absorption By dust and water vapor are of extreme
importance in meteorological radiation (Brunt, 1952, Chapter VI), where-

as they are insignificant in aerodynamics. One of the most detailed

The analysis of radiative transfer between sources and surfaces in

vacua is: of little interest in the present context.




a 1nvest1gat10ns appropnate to shock heated air is that of Kivel and Bailey
(1957). The works of Armstrong, et al. (1961) and of Churchill (1966)

are repreSentatlve of more recent theoretical analyses, Experiments

conducted to date are summarized by Gruszczynski and Warren (1967),

Zeldov1ch and Raizer (1966) present both the theoretical and experlmental
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S aspects of radiation physics and Bond Watson, and Welch (1965) provide
- a useful compendium of results, The spectral, or frequency dependent,
aspects of radiation lead to cumbersome formulations. One usually
ignores the fact that radiation of different frequencies is absorbed
d1fferently and employ's mean absorption properties over the entire
spectrum. This '"gray gas" approximation is employed in almost all of

~ the investigations to be mentloned An improvement of this assumptmn

has been suggested (Finkleman,and Chien, to be publlshed) and will be
commented upon in Section 2.6 and in Appendlx A,

The formulation of the radiation coupled dynamics of gases was under-
taken by Goulard in his now classic papers (Goula.rd 1962, 1963a)..
Sampson (1965b) has placed particular emphasis upon the radiation field
of gases in motion while fairly general summaries are presented by
Zhigulev et al. (1963), Vincenti and Kruger (1965), Bond, Watson, and
Welch (1965), and Pai (1966). Sections 2, lthrough 3.2 present the essen-
tial concepts.

Aerodynarmcally oriented forays into rad1at10n have been a good deal

less general than astrophysmal or chemical engineering 1nvest1gat10ns.

Astrophysmlsts need not be particularly concerned with the presence of
intervening solid boundarles the aerodynamicist is, however, ultimately
concerned with the interaction of complicated boundaries with the radia-
tive field so that heat transfer rates may be predicted. He must also
account for the fact that the fluid is moving whereas astrophysmltsts
need not. As opposed to chemical engineers, he must consider a fluid
in complex motion whose composition and state are not at his disposal.
Furthermore, relative to the size of bodies of aerodynamic interest,

flow fields are unbounded since radiation is global and affects all of the

—



spade occupied by the fluid. It is quite easy to understand whjr gas-

dynamicists who deal with radiation often seek simplifications.

1.2.3 Limiting Cases
The most familiar simplification results when the gas emits
much more strongly than it absorbs. The justification for this so- |
called Moptically thin® assumption will be discussed in Section 2.5,
To this approximation radiative quantities are isotropic. The only

complication over nonradiating representations is the addition of a

nonadiabatic term in the energy balance. The energy loss is of the
form of Stefan's Law, Z2(%)o7? where the effective 'ierriis-éivity
per unit length", &/¢ , depends upon the emission (absorption) proper-
ties of the gas. At worst some additional non-linearity is introduced
in the formulation. If, in addition, convection is predominant (as
determined after identification of the appropriate dimensionless para-
meters) the radiation may be uncoupled from the now adiabatic gas-
dynamics, and the nonradiating temperature and pressure distributions
may be used to predict radiative quantities. The earliest attempts at RGD
adopted this non-self-consistent approach.

% Thin®? analyses of both blunt and slender bodies have been per-
formed. One of the first uncoupled blunt body investigations was that
in which Yoshikawa and Wick (1961) compared radiative and convective
heat transfer rates. They used an average shock layer temperature and
assumed the layer to be an isothermal, planar slab. This analysis and
others similar to that of Kennet and Strack (1961) probably laid the
foundation for Allen?s conclusions. Kennet (1962) used the predictions
of a Lighthill constant density solution to arrive at 'uncoupled' radiative .
losses, and Koh (1962) used Newtonian predictions of the nonradiating
flow to observe that convective heat transfer coefficients decreased with
increasing blunt body nose radius while radiative heat transfer increased.
All of the latter made the planar slab assumption, and Wing (1962) cor-
rected them by considering the shock layer to be spherical, concentric
with the body.
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Uncoupled results must overpredict radiative effects when
radiation and convection are comparable. If all surfaces present
are cold and black, the shock layer can only lose energy if
emission alone is allowed. Thus the temperature levels at which
emission occurs will be reduced. Goulard (1961) carried out a
perturbation analysis of the radiation coupled flow about a blunt body
for small values of the parameter which measures the importance of
radiation relative to convection (the Boltzmann number). He obtained
quantitative estim ates for the reduction in shock layer thickness and
radiative heat flux due to cooling of the shock layer. Bird (1960) also
considered the coupled flow field under the assumption of a linear
variation of velocity along the surface from the stagnation point to
the sonic point. From this investigation there came the widely accepted
conclusion that coupling of radiation and convection has a large effect
upon temperature and density distributions, but relatively little effect
upon velocity and'pres sure as compared with those of nonradiating flows.
It shall be shown (Chapter 6) that this is not generally the case. More
recently Wilson and Hoshizaki (1964) and Hoshizaki and Wilson (1965)
have attempted both viscous and inviscid analyses of optically thin blunt
body flows.

The thin assumptidn is best motivated within the shock layers of
slender bodies. Koh and DeSilva (1962) examined the flat plate boundary
layer within this approximation, while Chin and Hearne (1964, 19 65)
have considered both unyawed and'yawed cones. Romishevskii (1963)
has obtained similarity solutions applicable to slender bodies, and
Kischke (1966) has applied an integral method to wedge flows. Olfe
(1966)khas investigated wedge flows in the thin limit with a perturbation
expansion in the den’sity ratio across the strong shock wave. The
relative ease with which optically thin analyses may be cavrbried out allows
one to gain considerable insight iﬁ_to the qualitative implications of RGDﬁ

the applicability of these solutions to realistic situations is another matter.




Unless radiative transfer is in fact small in some sense, the shocked
gas must eventually lose all of its energy because there is no absorption
mechanism. In addition, the energy emitted from the shock layer must
be absorbed in part by the surrounding gas. Implicit in the thin approximation
is the fact that energy losses are spread over large distances, but f losses
are appreciable or if the gas ahead of the body is strongly absorbing the
oncoming flow must be aware of the disturbance and the field will be greatly
modified.

At the opposite extreme, considerable complication is avoided if
the medium is strongly absorbing and nearly in radiative equilibrium.,

In this case variations in the temperature field must be small, “and

since absorption and emission are balanced radiation becomes a localized
phenomenon. The heat flux may then be expressed in a manner analogous
to FOﬁrier conduction,with the thermal conductivity depending upon the
absorption properties of the gas. It is well known (Cess, 1964) that this
approximation will also overpredict heat fluxes when applied outside

of its region of validity. For instance, Goulard (1963b) has demonstrated
that a square root singularity exists in the flux at the surface of a flat
plate as predicted in this "optically thick' situation. Obviously (see Sect1on 2.3)
the flux can be no larger than the black body value,o 7%, which must be
bounded. Just as in molecular transport problems, the effects of boun-
daries upon the radiative field to this approximation will be confined to
small regions near those boundaries. ‘

The close resemblance of radiative transfer to molecular conduction
and the limited influence of bounddries first led investigators to apply
the thick approximation to the structure of shock waves propagating at
constant speed into undisturbed gases. Sucha situation might obtain,
for instance, in the late stages of motion of a planar piston into a
gas at rest. The shock wave is sustained by the agency which does
work on the piston, but it has reasonably little knowledge of the

existence of either the piston or its source of energy. The effects of
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‘molecular transport phenomena on such a situation arennderst'ood (see
‘e.g. Landau and Lifschitz, 1959) thus the method of attack is well

documented. Sachs (1946) was probably the first to consider optically

thick shock structure in any detail. There then followed the analyses

~ of Sen and Guess (1957), who employed standard phase plane analyses,

and Mar‘sha.k (1958), who obtained similarity solutions. All of the
latter con81dered the complete v1scous, heat conducting problem and
noted the fact that the gas upstream of the shock wave is forewarned
of its»approach. Scala and Sampson (1964) have examined the effects
of both '"thin"' and "thick" radiative transfer upon shock structure

and boundary layers, while Steiger and Khosla (1965) have investigated

the possibility of the existence of similarity solutions in both extremes

in viscous shear flows. They found, however, that conditions under

which similarity was possible were quite unrealistic.

1.2.4. The Full Formulation — Planar Methods

Because of the inherent isoti'opy of both limiting cases, the

| geometrical complication of the problems attempted has been minimal,

When one is forced to con51der the complete radiative process—both
absorption and emission—analysis becomes increasingly difficult.
In Section 3.1 it will be shown that the general formulation of radiation

gasdynamics involves a system of coupled, non-linear, integro-

-differential equations. The differential portions account for the fluid

mechanical conservation of mass, momentum, and energy, while
integral terms arise from the global effect of radiation upon the energy
balance and from the possibility of the scattering ofphotons in the radia-

tive transfer equation, The integrals involve the radiative source dis-

~ tribution weighted over space and frequency, hence also the variation

of both temperature and pressure. Further complicating the picture is
the fact that the radiative properties of intervening boundaries enter
the governing equations directly (as is indicated for planar situations

by Goulard, 1960,and further mentioned in Sections 2.7 and 2.8).
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In fact, only for radiative trran,‘s,f‘e'r{ inyp‘lana.x‘- media have the geometrial
aspects of the general formulation been resolved,

" The simplest analyses of the complete problem are those which
prediction of shock structure integro-differential equatlons must be
solved. Moreover, the kernels of the integral terms are not separable

therefore, successive differentiation will not remove the integrals from

the formulation. The most common means of overcoming this difficulty

'is to approximate the exact kernel by one which is gseparable. Any such

kernel may be approximated arbitrarily clos ely by an expa.ns1on in terms
of a set of functions complete over the range of the variable of interest
(Murty, 1965); however, the more terms one includes the greater is the
number of differentiations which are required, and a differential
equation of infinite order results. Usually only one term is retained,

and the analysis is rendered more reasonable. More will be said of

this in Section 3.2.1.

The fact that successive differentiations raise the order of the govern-

ing equations and’,‘ therefore, require more boundary conditions is
immatgrial in shock structure since infinitely many derivatives of all
physical quantities must vanish far up- and downstream and there is no
radiative input from these regions in the absence of external sources.
An example of the kernel substitution approach may be found in the work
of J.F. Clarke (1962) who concluded that inviscid radiating gases were
capable of susté.ining discontinuities only in the derivatives of physical
properties and not in the properties themselves. Heaslet and Baldwin
(1963a) using the same scheme qualifiedthis conclusion and further
demonstrated that discontinuous prbﬁles were possible for a wide range
of up- and downstream conditions. They noted also that the upstream
flow field for sufficiently strong shocks may be quite optically thick
whereas downstream an optically thin layer might obtain. Thus
a.narlyses based on either extreme would be in error. These conclusions

have since been verified by numerous independent analyses. The

influence of molecular transport phenomena upon the situation within
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the framework of kernel substitution was c'ons‘idei-ecrl by Cohen and J. H.
Clarke (1965). Apart from shock structure, kernel substitution has been

widely used in aerodynamic problems. Yoshikawa and Chapman (1962)

e e B BT

applied it to the blunt body problém but were unaware of the simplification
which it afforded and treated the approximate kernel only as a convenient
numerical device. The method has been applied to Hn{earized problems
by Lick (1964, 1965‘), Vincenti and Baldwin (1962), Moore (1'964)‘, and

g ; Rrhyming (1965a.,b). The linear models will be commented upon in

3 Section 5.5. When kernel substitution is not appropriate, there are

5 other approximations which may be relied on.

The integral terms may be simplified in nearly "thick®? ‘planar sit-
uations if the "local temperature® concept is appliéd This is accomp-
lished by assummg the temperature distribution to be accurately
represented by the first few terms of a Taylor series about the point of
interest. Then the integrals become a series of derivatives of the tem-
perature distribution, each weighted by a coefficient proportional to a
moment 6f the kernel, and a purely differential form ensues. Yoshikawa
and Chapman (1962) us éd this in the investigation noted above, and
Chisnell (1966) employed it iﬁ fhe study of the stagnation region of a
blunt body for the case in which radiation is less important than

‘convection. Both endeavors considered only "cold" walls., Shwartz (1966)
has studied boundary layers in this manner. The method is not appro-
priate when the derivatives of temperature are la.rge and this precludes

‘application near a shock ane if upstream absorptmn is included. For this

- reason, local temperature expansions are of limited value in general,
Integral or "strip" methods, in the sense of Belotserkovskii (1959),
have also been tried. In these the governing equations are first expressed
in as nearlydivergence forms,apbl/a‘lxj = (R | as possible and are then
integrated in one of the less important coordinate directions (across a

shock or boundary layer). Suitable profiles with free pa:sameters are

assumed for the quantities, Pj; ¢X) s €.8. Pijlxyi: ?oak(xit)w\e ty)
where the W) are specified a priori. The number of separate strips

required depends upon the number of free parameters Qy, k=N, and

suitable matching conditions at the boundaries of the strips are devised.
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When the radiation integrals may be written in a reasonably straight-
forward manner, the inteérations may be carried out so that only the '
appropriate a.K' s each weighted by a moment of the kernel with respect
to the W“l s, remain. The effect upon the radiative transfer is analogous
to that of the local temperature approximation, but in this case the prob-
lem is reduced to the solution of a éystem of equations in one less
independent variable than before. Sforza (1963) has formulated the
solution of the radiatiﬁg flat plate boundary layer by such an integral
method, and Viskanta and Lall (1965", 1966) are particularly fond of
this approach in cylindrical gas masses whose absorption properties
are constant,
A summary of methods in planar radiative transfer must mention

the Shuster-Schwarzschild or ForwardQReverSe approximation (see e.g.
Zeldovich and Raizer, 1966, and Section 3.2). This scheme is well
known in astrophysics. The assumption that there exist at each point
two separate isotropic radiation intensities in the forward and reverse
directions along the single axis of variation of propertiés‘makes two
coupled differential equﬁtions of the radiative transfer equation. These
equations provide the properties which would ordinarily require integrals
in the energy equation. They are, however, coupled to that equation by
the appearance of temperature. Adrianov and Polyak (1963) discuss
this approximation in non-aerodynamic situations as do Heaslet and
Baldwin (1963b). Traugott and Wang (1964) have suggested improvements
in the model, and Wang (1963) has applied it to the similarity solution of
planar, piston generated flow fields.

Although there are several methods for the solution of planar
prdblems, (kernel subsfitution, local temperature expansions, strip

' . . .k . .
methods, and a forward-reverse approximation } many investigators

* The application of the Ambartsumian-Chandrasekhar invariance
principles (Chandrasekhar, 1960) has not been mentioned. These

rely on the fact that the addition of a small slab of absorbing gas to a
planar medium should have negligible effect upon emergent fluxes and
internal temperature distributions as the thickness of the slab vanishes.
Bellman, et al. (1965a,b) have applied these to non-astrophysical

situations, but the possibility of their extension to aerodynamics is
doubtful.

£
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disdain the use of such approximations. Some of these problems may,
in fact, be solved exactly with iterative schemes, and this was done by

Hoshizaki and Wilson (1966) for blunt bodies with mass transfer cooling

R R I

and by Howe and Viegas (1963) for the detached viscous shock layer into

which an absbrbing gas was injected. Neither inciuded upstream

B
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absorption, and both used 'planar!' radiation models in nonplanar
situations. Hoshizaki and Wilson did, however, include ‘the spectrél
av5pects of radiation. There are numerous uncertainties in the previous
approximate methods. The physical implications of the essentially

mathematical procedure of kernel substitution are not immediately clear.

It is not known how nearly optically thick a flow field must be for local

temperatures to provide accurate results. Strip methods are notoriously

D

sensitive to the profiles one assumes even in simple situations. Jischkels

3
i

"thin'' analysis (1966) assumes, for instance, different p'rofiles for a
quantity proportional to temperature, T, and for T4, which is an obvious
inconsistency in the radiation. Furthermore the sources of inaccuracy

in the forward-reverse approximation are not apparent. Perhaps most
important is the fact that there seems to be no systematic extension of
these essentially 'planar'' methods to nonplanar situations. One is forced,
therefore, to apply a planar radiative formulation to flow fields which are

- two or three-dimensional.

1.2.5 Nonplanar Methods 4

At this point an important distinction must be made between the
terms fplanar" and "one-dimensional." Most investigators have used
these terms interchangeably, and planar radiative transfer is commonly
referred to as "one dimensional? in the literature. In fact Sampson
(1965) uses such loose terminology. Single dimensionality is, however,
a more general situation which encompasses cylindrical and spherical
geometries as well as planar ones. The geometrical complication of.
even cylindrical or spherical radiative transfer makes straightforward,
closed-form expression prohibitive except when the variation of the »
absorption properties of the gas may be neglected. Cuperman, et.al.

(1963), Viskanta and Lall (1965), and Davison (1958) give the expressions
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for spherically symmetric media, and quite recently Heaslet and Warming
(1966) have presented the cylindrical case (See Appendix C). The addi-
tional difficulties of multi-dimensional problems and the inapplicability

of most planar methods to them will be examined in Sections 2.7 and

3.2.1. At present it seems that only three models may be conveniently E
applied to problems involving multi-dimensional radiative transfer.
These are Hottel’s zoning technique (Hottel and Cohen, 1958; Einstein,
1963) Monte Carlo schemes, and the various modifications of the so-
called moment methods.

The first involves the derivation of " exchange factors®™ which ac-
count for the mutual interaction of the elemental portions of the flow
field after division into cells for numerical purposes. These exchange
factors include the effects of geometry and thus must be rederived
separately for each situation encountered. The method is currently
being investigated in aerodynamic situations by th‘is author'!s colleague,
M. Jischke,, and will not be discussed further. The second method is
statistical in nature and traces selected photons through their inter-
action with matter. The philosophy of this approach is summarized
by Kahn (1954), and Campbell (1967) outlines its most recent applica-
tion to radiative transfer in addition to citing earlier attempts. The
additional complication of fluid mechanics in Monte -‘Carlo radiative
transfer pres ents’ a formidable numerical Kproblem and has not yet
been atfempted. The methods above are essentially nume rical devices ,

and their physical implications are difficult to assess without consider-
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able computational effort. Thus, moment methods, although not
inherently as exact, seem to be the most reasonable approach to multi-

dimensional problems.

S i i

It is the anisotropy of radiation that leads to the major problems —
especially the geometrical difficulties —encountered in ra_.dia.tive trans-
fer. The gross properties of the radiative field (e.g., the heat flux)
which are of primary concern are averages (or moments) of the specific
’intensi»ty of radiation weighted over the range of the angular variables.
If these moments could‘ be obtained without fegard for the intensity

itself, considerable simplification would ensue. The circumstance is
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analogous to the dynamics of gases; all gross properties (density,
temperature, mass velocity, etc.) of a medium may be deduced if

the distribution functions of its constituent particles are known,

but one need not necessarily know the diet;ibution function to deter -
mine these properties qﬁite ac'eui'ately. Examination of only a few
moments of a velocity distribution function allows one to obtain all

of the necessary macroscopic information he 4desires. This philosophy
can lead to the governing equations (Navier-Stokes) with which the gas-
dynamicist is familiar. Such equations are merely the first members -
of an infinite hierarchy, and simplifying assumptions were required

before the system could be closed. The similarities between radiative

~transfer and molecular gasdynamics have been pointed outby Eckert

(1963) and by Heaslet and Warming (1963b). The analogy cannot be
carried very far, however, for reasons to be stated. |

In kinetic theory the distribution function may be approximated
arbitrarily closely by a series of functions complete over the range of
the velocity variable. These turn out in general to be Lagu_erre
Polynomials or functions related to them which are orthogonal over
( o, a ). Analogously one is led to the choice of spherical har-
monics which are complete over the range of the angular variable in
radiative transfer. Juet as the series is truncated in kinetic theory,
the series representation of the’ photon distribution function (which is
related to the more fundamental quantity, specific intensity, as will
bel discussed in Section 2.1) may be truncated. Similarly each of the
time and space dependent coefficients of the terms in the series is
related to the moments of the specific inteﬁsity with respect to the
angular variables just as the coefficients of the kinetic theory expan-
sion are related to velocity moments of the distribution function.
Sﬁccessive integration of the geverning equation, weighted over the
unit sphere, results in a hierarchy of equa‘tioﬁsf.\ Because of the
explicit eppearahce of an angular variable in the fundamental
relation, these equations are coupled one order with the next. When

the expansion of the intensity is truncated at a given stage, it is
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implicitly assumed that all successive terms vanish, and this provides
unique relations among higher and lower moments of the intensity thus
closing the system of equations. When “n” coefficients are retained,
the integral terms (even those which describe scattering) are removed
from the system and are replaced by “n-1" additional first order
differential equations. This is the essence of the differential approximation
(see Section 3.3). The analogy between the specific intensity and a
velocity distribution function is no accident, as will be shown in Section 2.1.
The differential approximation is common in neutron transport
theory (Davison, 1958; Mark, 1944, 1945). Kourganoff (1952) refers to
the planar analog of the general moment approach for problems in radi-
ative equilibrium, and Traugott has applied it to gasdynamics. The
approach adopted by Chou (1967), which requires selective averagmg
over specified regions of solid angle, is very closely related to this
formulation. If the validity of the differential approximation is accepted
there is no longer a need to solve integro- -differential equations. The
complications of geometry are removed, and completely general problems
may be formulated once and for all.
On the other hand, some ifnportant “rnacroscopic" information
has been hidden. Molecular gasdynamics possesses the a.dvantvage of
a good deal of macroscopic experience that is not available in radiative
transfer. The first few moments of a velocity di stribution function are
physic_ally very meanbingful, and observation of the interaction of fluids
with surfaces leads to unambiguous formulation of boundary conditions
for the equations normally encountered. Since one may frequently assume
the gas to be a continuum, the phenomena of temperature and velocity
slip, which may only be predicted on a microscopic scale, may often
be neglected. This is not the case in radiative transfer since even the
thick formulation possesses a greal deal of slip (see Section 3.4). Moreover,
physical understanding of the angular moments of the specific intensity

rapidly diminishes as the order of the moment increases. Photons are only
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remotely like material particles, and macroscopic experience cannot be

relied upon to dictate appropriate boundary conditions (i.e., photons may

be annihilated in the course of their interaction with material particles;

thus the number of particles is not necessarily conserved). The inter-
action of radiation with surfaces requires special consideration and will
be investigated in Section 3.4. '

Because of the comphcatmn of boundary conditions attention has

“even in this appr0x1mat1on been brought to bear upon shock structure.

Traugott (1962, 1964) has extens1vely investigated the problem in a viscous,
heat conducting gas. It w111 be shown Section 3.2.3, that in such planar
problems the "moment method" is formally equwalent to a kernel substitution.
Goody (1956, 1960) has employed a d1fferent1a.l approx1mat1on, derived from
the forward-reverse approach, in his meteorological studies. Cheng (1964,
1965) has attempted linearized two-dimensional problems with this scheme,
and Cheng and Vincenti (1966) have applied the method to a two-dimensional
blunt Body flow by the method of series truncation (Swigart, 1963). Cohen
(1967) has used the moment method (with incorrect surface interactions)

to sketch the structure of a blunt body flow field at large Mach numbers
when radiation is predominant.' His investigation exploits the analytical

possibilities that the differential approximation offers. Wang (1965a,

'1965b) considered slender body problems, and Sherman (1966b) has examined

various moment methods and assessed their errors in mainly astrophysical
situations. _ A
' In summary, moment methods are convement for the study of
nonpla.nar situations unrestricted in optical depth, and they provide a
tractable system of differential equations. However, the effects of the
omission of highe'r order coeffi‘cients in the e:;paheion are not as well
known as in kinetic theory, where they are ‘certainly' very small in most

situations. Also, the formulation of the interaction of radiation With sur -

~ faces, consistent with the differential approximation, is not yet systematic.
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1.2.6 The Cpmplete Problem

In this brief description of the methods which have been applied
to the solution of problems in RGD no mention has been made of the numerous
perturbation schemes which simplify the integral terms in planar problems

since these are most closely related to the limiting thick or thin approxi-

mations. In addition, little reference has been made to the spectral aspects
of radiation or to the physical proceéses which contribute to the emission
or absorption of radiant energy. The fact that the significant contributions
to the study of radiation gasdynamics can be summarized in these few
paragraphs is testimony to the need for further investigation.

If completeness in a problem of RGD includes simultaneously
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(a) no restriction on optical depth, (b) the effects of emitting, absorbing,

AR

and reflecting surfaces, (c) allowance for absorption (by the gas upstream)
of energy emitted from the shock layer, and (d) the consideration of

geometries more realistic than simply planar, then no analysis to date is

complete. Chien (1967) has come close by including effects (a) and (c).
‘Although there are many approximate methods of solution available, there
are no complete exact soiutions at all. ""Exact! in this context includes

not only the full transfer equati’on> but also the varibus approximafe models,

e.g., moment methods. Without exact solutions the error involved in the

various approximate schemes cannot be estimated. Indeed perturbation
schemes, although useful, yield little insight into cases in which all fluid

mechanical and radiative effects are comparable; only exact solutions
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yvield information of that type. Part of the purpose of this investigation
is, therefore, to ascertain whether exact solutions of '"complete'

problems in radiation gasdynamics are possible,

1.3 The Usefulness of Unsteady Gasdynamics

Recently much attention has been focused updn the prediction df

steady flow field through the observation of an unsteady flow, beginning

from arbitrary initial conditions. The advantage of this approach is that

the unsteady equations of inviscid gasdynamics are always hyperbolic
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whereas steady flows need by locally supersonic in order to be hyperbolic
(see e.g., Stan}'ukovich 1960; Von Mises, 1958). Thus, by analyzing

the development of a flow field until temporal changes are sufficiently

- small, quite general flow f1elds, including imbedded subsonic regions, ‘
g may be determined in a stable computational manner. Because of their
L elliptic character, such subsonic regions force the Cauchy problem to

E be ill-posed in the steady state. In RGD the situation in the steady state

is even worse, because the global nature of radiation prevents the system

of equations from being sufficiently hyperbolic for hyperbolicity to be used
to advantage — even if the flow is locally supersonic (see Section 4.1,2).
Methods for the numerical solution of hyperbolic problems have

been explored extensively. Burstein (1964) comments critically on the
various rﬁethods available. The investigation conducted by Bohachevsky
and Mates (1966) is representative of what may be referred to as ''strict
finite difference'' methods in wh1ch the first step is the choice of a
difference scheme. These may be modified and sta.b111ty improved by
judicious choice of the difference formulae. The Lax-Wendroff scheme,
which is very closely relateci to pseudo viscositY methods (see e.g., Lax

and Wendroff, 1962; Richtmeyer, 1957), has been most widely applied.

Difficulty arises in the prediction of weak solutions, those which contain
imbedded discontinuities. Just as in truly viscous situations, in the
Lax-Wendroff scheme sharp discontinuities are smoothed, and any shock
waves present are spread over several mesh elements (see Burstein,

op. cit.). A characteristics approach, while a good deal more complicated
for systems of equations’in several independent variables (e.g., Holt, 1956;
Sauerwein, 1964, 1966), predicts these sharp discontinuities exactly.

In this approach the equations are written in characteristic form (s-:,ee ‘
Section 4.2) before a différence scheme is applied. The use of characteris-
tics has in the past allowed the solution of quite general inviscid real

gas flows with few complications over other nonisentropic situations (see
Sedney, South, and Gerber, 1962; Sussman, 1966) There seems, also,

to be less controversy concerning numerical stab111ty among the adherents

of characteristics calculations then among those who favor finite difference




20

approaches. It will be shown, however, in Section 7.2 that one of the
greatest advantages of multi-dimensional characteristics calculations -
that large matrices need not be inverted at each stage - may be lost

when radiation is included. Sauerwein (1964) has compared ''strict" finite

difference schemes with the method of characteristics on ten different
points (stability, ease of handling fixed and free boundaries, computation
J time, programmer effort, etc.) and has concluded that the method of

characteristics is potentially the most powerful. F

In a general unsteady situation the radiative field is established
on a much shorter time scale than is the fluid mechanics since photons
travel at the speed of light. Although temporal derivatives appear in the
equations which govern radiative properties, they are usually neglected.

The radiation then becomes ''quasi-steady'' and depends upon time only

implicity through the temporal variation of temperature ‘and pressure.
It is not clear, therefore, whether the same advantages may be gained
from unsteady flow fields in RGD that obtain in other real gas flows.

. This question was probably first raised by Nemchinoy (1960), who
recognized the hyperbolic nature of even the equations of unsteady RGD
and formulated and solved numerous linearized f.nﬁoblems within the
framework of a forward-reverse, planar formulation of i:he Lagrangian
equations of which Russian investigators are so fond. The work of ‘
Nemchinov provided much of the background for this investigation. 4

Most of the methods which have been applied to problems in RGD
stem from astrophysics or chemical engineering. The application of
a method of characteristics benefits from its deve’lc;prnent in an aero-
dynamic context, but such an approach in RGD raises many questions.
This is not the first time that a characteristics approach to RGD has been
suggested. Besides Nemchinovls comments, Khosla (1966) briefly mentioned

the possibility after the start of the present investigation.

1.4 The Purpose of the Investigation

Detailed general solutions of the coupled integr-differential

equations of RGD have not been presented heretofore. For the most part,

B s
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~investigations carried out to date have been limited to restricted ranges

of optical depth, to instances in which rad1at1on is in some sense 1n51gn1f1cant
or predornma.nt, or to planar cases (in which the representation of the

~ radiative field or approximations thereto are greatly simplified). There

have been'ﬂ investigations of nonlinear problems in RGD which have
included the effects of absorption of shock layer radiation by the gas
upstream in the presence of impermeable surfaces of arbitrary opacity.k

It is apparent that more general situations must be investigated. Many
questions still exist concerning the applicability of planar methods to
nonplanar s1tuat10ns, and the amblgl.uty in the modehng of the interaction

of radiation with solid surfaces consistent with the various differential

' approximations must be resolved.

: The exp11c:1t purposes of this 1nvest1ga.t1on are, therefore, clear.

They are: ’ -

l. To develop a method, baSed upon the theory of characteristics,
with which general multi-dimensional problems in RGD, including
upstream absorption, may be treated.

2. To examine critically the questlon of boundary conditions
- appropriate for use with the differential approximation.

- 3. To solve, using the above method, some of the planar problems
which have as yet not been investigated in their full, nonlinear
sense, and

4. To assess the applicability of one-dimensional (not necessarily
planar) approximations to radiative transfer in two-dimensional
or cylindrically symmetric radiating hypersonic slender body
theory.

Before these may be accomplished, one must be aware of the fundamentals

of radiative transfer.
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CHAPTER 2

R e e :
S T e PR TR

FUNDAMENTALS OF RADIATIVE TRANSFER

2.1 A Kinetic Theory for Photons — The Transfer Equation

Because the relationship between photons and material particles

s ey

has been stressed, the point of view taken by Sampson (1965) and Simon (1963)
¢ s adopted and radiative transport is treated in the light of kinetic theory.
The reader must be aware of the elements of radiative transfer if he is to
appreciate the present inve stigatién, thus the most fundamental concepts
f ' are discussed first. The basic discussion may be found elsewhere in
| more detail, and the experienced reader may wish to move immediately
to Section 2.4 in which some new concepts are infroduced. All which
shall be presented in this chapter is necessary for reference in the

subsequent analysis.

Planck's idea that emission and absorption of radiant energy take
place in quanta and Einstein's idea thé.t these quanta travel at the speed
of light led to the acceptance of the concept of photons. Photons belong
to the general class of entities which have the characteristics of both
waves and particles, but they are unique 4ar'nc‘>rng Bosons in that they have
zero rest mass and chemical potential, The particulate quality of
photons is of greatest concern here, since their interaction with matter
relies most on this aspect of their nature. Their wave-like behavior
cannot be disregarded since it is important in such phenomena as
refraction and polarization, and it enters strongly into the interaction of
radiation with obstacles. o ‘

Photons of a given energy have associated with them a frequency
characteristic of the state of the source from which they were emitted

and the process involved in their emission. The frequency and energy
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of course, are related by E=hy , where h is Planck's constant. If 7
is the unit vector in the direction of motion of a photon, then its velocity

and momentum are:

Following Samson (1965), one may consider the distribution function
for photons. Let f. (B7 ¢) be the number of photons per unit volume
in the frequency interval dy about » , propagating in direction Within an
element of solid angle 4L about the direction 7 ata position in physical
space ¥ and at a time € . (This differs from the distribution function
employed by Simon (1963) by a factor (Cg/h".P")since he considers the distri-
bution in photon momentum space). These will be referred to as photons
of class (v, d»), (:17-\, JR). Just as for material particles, a Boltzmann
equation may be written for photons. Consideration of the flux of

photons through an elemental volume in phase space leads to

%fé’+'\7jméfy= W,,(T’\,T"ﬂ:) . (2.1)

upon omission of the perturbing influence of external fields. W) accounts
for all losses or gains to the class of interest due to absorption (i. e., the
fact that radiant ener'gy.of frequency J has been transformed into another
form of energy or into radiant energy of a different frequency), due to
emission, and due to scéttering. .The distribution of particles in momentum
space now involves only an angular distribution since all of them move
with the same speed. The behavior of photons is already unlike that of
material particles.

The same restrictions apply as for any Boltzmann equation. It is
really only one of a BBGKY hierarchy of coupled equations which govern
the n-particle distribution functions. It applies, for instance, when the
time between encounters with other particles is much greater than the

duration of those encounters. A general discussion of the numerous
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restrictions may be foun_d in Wu's recent text (Wu, 1966) and the
specialization to photons is given by Sampson (1965).

Although distribution functions illustrate the material nature of
photons, it is more common to deal with the specific intensity, I,.
This is defined as the amount of radiant energy flowing through a unit
area of a surface per unit time which is carried by photons in (v, dp)
travelling in directions within solid angle element JdJ centered about YL ,
the outward normal to the surface. Since the number of photons of the

class mentioned which cross dA in an interval 4t is,

f, (A7) (cdt dr) AR

the energy carried by these must be

dE,= £(A ) we (R dndt

Thus the specific intensity is related to the photon distribution function

through

T, (A8 = hve £ (Z 71 (2.2)

A good deal of the specification of the source function, W, , may be
carried out without specific regard for the atomic and molecular processes
involved in the absorption, emission, or scattering of photons.' One must,
however, be aware of the consequences of these processes.

Absorption in general raises the energy level of the absorber and
m’é.y cause rotational, vibrational, or electronic excitation in molecules.
More rarely, it rhay cause dissociation of the molecule. It may also
cause electronic transitions in atoms, or it may lead to ionization. On
the other hand, if for any reason a molecule, an atom, or combinations
of these with electrons emit radiation, energy is lost through processes
which are the inverse of those just mentioned. The number of photons in

(v, d»)» (JT_' J:{t\emitted in the volume 4V per unit time due to any molecular
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or atomic process is indicated by
' 4 JP 7 ’_" | . | ‘
4, - (5] dv 4R dv ., (2.3)

J, is referred to as the emission cdefﬁcient.

Assume for now that the gas of atoms and molecules in which the
photon gas resides is stationary. If a photon encounters a particle of
the background gas, it may be either scattered or absorbed. Scattering
is interpreted herein as that interaction in which the direction of motion
of the photon changes as a consequence of encounter but in which
there is negligible exchange of energy between the photon and the scatterer.
This is, for instance, nearly the case in the elastic collision of material
particles which have greatly different masses but nearly the same kinetic
energy, say an electron and an atom. The resultisa large‘ change in
momentum of.the scattered particle due to the change in direction,
Experiment and theory dictate that the loss of photons to the class

due to absorption and scattering are respectively
4 - = '
d'n, = ok, f, (T,7t) dvds - (24)

d* hy“_)=/0'<y, £,(2,74 dvds (2.5)

That is, if/o K”r and/ok,,s are the volumetric true absorption and scattering
coefficients, then the respective losses to the class of interest are pro-
portional to the number of photons of that class which are present in

and to the path length,ds , which a photon travels throughdV . The
symbolism which Cheng (1965a) and Vincenti and Kruger (1965) use

renders the notation less ambiguous
d}) E/OKPT
/7» = /OK"B
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In general &, and % do not depend upon_—ﬁ. and the sum/GyEd,ﬁ /;[V,. is
referred to as the volumetric extinction coefficient since it accounts for
all losses from the class in question (Goulard, 1962, employs =4, for
the volumetric extinction coefficient). From Eq. (2.5) the number of

photons in (»Jr), (A d¥)which are scattered into other directions is
o —
7, 58) £ ()7 t) Juﬁyygs

Of this, a fraction 0711’-’1' f,"'-') is d1rected into (_(\-,J-‘?-) @l’iﬁ,fiﬂis
Goulard!s phase function, F/d) (Goulard, 1962). Accounting for all of

the scattered contributions, the total number of photons scattered into

L theclass by &), (B, diis
| n, =Y (# ‘ (2.6)
d ﬂ,(s* 7Zp(rlt7[ L (ERTH L, (8 f‘t)4.n-’:|c))’ dsd3 .

1
In order that photons not be annihilated in the scattering process, (ﬁ) (R3,70¢)

must be normalized to un1ty. _ .
-y > —
f(ﬂ, (.n.-xt,v,t) AR - 1
Il

Chandrasekhar (1960, page 7) indicates the following Legendre Polynomial

*
expansion for the phase function

m .
& VAT 4= /Z by, BT (2.6a)

=0
In an interval dt the net increase of photons of class [V, v, (X,dRN)
due to emission is given by Eq. (2.3), that due to scattering by Eq. (2.6).

The net loss due to extinction is the sum of Eq. (2.4) and Eq. (2.5). Since
c._J,taJs', the function Wy may be evaluated with the result

* Since all absorpt1on processes, 1nc1ud1ng frequency rearrangement,

have been lumped into the absorption coefficient, albedos (Chandrasekhar,
1960) need not be defined. This means that Rayleigh or Thompson
scattering are by definition true scattering processes, whereas Raman.
scattering, in which there is energy exchange, must be grouped among
absorption processes. The entire question is academic, however, since
scattering will ultimately be neglected (see Section 3.3).
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a'F | ~ -
..-_E + U—Jrad'f'y = —;3—))— +c_')IJ@P[3;_/3_)_F (i,)i.“_ "/6;:'; (2.7)

Multiplication by hv and use of Eq. (2.2) results in

1 9Ty - ,
L I+ Agrd T, =, -6y I, +’7, &R TS ‘m (2.8)

In the above the derivative along the photon path may be written in the

following forms

— 3 32
J:_-de = 3% =/e;' 5;(‘:

(2.9)
~where S is the distance variable along the photon path, and the A; are
direction cosines of the photon world line relative to a Cartesian system
of coordinates. These are the governmg equations of radiative transfer.
Equations (2.7) or (2.8) represent a doubly infinite set of equatmns, one
for each frequency, ¥ , and each d1rect1on,—n- . Each is coupled with
all others through absorption and scattering. Photons do not interact
among themselves, thus all possible contributions are included (at least

symboiically) in the equations above.

R P

The difference between the kinetic théqry of material particles and
that for photons is now more precisé. Material particles are neither
absorbed nor emitted (except perhaps at very special kinds of surfaces),
their interactions occur mainly among themselves, and (if anly elastic
encounters are considered, as is usually the case) scattering is the
major contribution to the source term. In fact, (é— ) may be interpreted
as a collision frequency and the phase function ¢ i; related to the product

of the scattering particle distribution and a differential scattering cross-

section which may be obtained from the laws of classical mechanics once
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the interaction potential is known. Many investigators note the similarity
of Eq. (2.7) or (2.8) in the absence of scattering to the Krook kinetic
equation. The similarity is, however, purely mathematical since the
physical processeé which remain have, in general, no counterpart in the
kinetic theory of ideal gases. Since the equations above are merely

a symboli’s‘m for the actual physical processes involved in radiation,
further postulates are necessary in order to proceed.

It is of interest to outline what sort of knowledge is required to
determine the absorption properties of a gas. The most simple models
consider the radiating system to be hydrogenic and to consist of an
electron harmonically bound to a massive positively charged nucleus.
The energy radiated by this constantly accelerating charge is what is

referred to as 'radiation'. Unfortunately, genefal atomic and molecular

systems are not so simple,and correction factors are introduced to make

5 them fit such a model. The most common of these is the oscillator

strength or f-number which is the number (perhaps nonintegral) of such
oscillators which an atomic or molecular system undergoing a given
transition must correspond to if it is to be represented by the simple

model., The oscillator strength may be a function of a discrete variable, vV ,
for line radiation or of a continuous L for processes involving free

electrons. The ''strengths'' for upward (absorptive) and downward (emissive)

transitions are not necessarily the same, just as the relation between
absorption and emission is not that of a positive to a negative photograph.
The restriction on the fls is that their sum over all pairs of states between
which radiation is possible must-be the number of excited electrons which
may participate in the radiation. (The sum in this context is taken to
include integrals over continuous spectra). Often the oscillator strength
may be factored into vibrational, rotational, and electronic portions
corresponding to the separability of the wave functions of the systems
which enter various matrix elements of the dipole moment. One may also
introduce a Gaunt factor which accounts for the honhydrogenicity' of

many electron systems. In addition, a shape factor is necessary in

order to correct the oscillator model for the perturbing influences of
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interparticlé encounters, external fields (that of a passing ion may have
- an appreciable effect), and the fact that the system is in continual

thermal motion, These are the mechanisms of collisional, Stark, and

Doppler broadening respectively. Since while the oscillator moves it
continually loses energy through radiation, the oscillation is damped.
This leads to the natural line width. Bro'adening is quite important,
since the energy content of a given line in the spectrum can be significantly : E
increased if it is broadened. It may have a marked effect upon the
various mean coefficients to be defined shortly (Section 2.4.2). All of

the terminology mentioned above stems from Einstein's original success
in making the Planck formula consistent with the Bohr theory of the atom
and has been retained mainly for compatibility with the earliest investiga-
tions. If the quantum mechanics of the systems of interest were resolved,
then-all of the properties mentioned above could be ca_lculafed. Un-

fortunately, such a wealth of information is unavailable, and various

approximations must be invoked. Chapin (1962) discusses the processes
involved in atomic radiation, and Hunt and Sibulkin (1966a,b,c) present a

summary of the calculation of absorption coefficients in molecular

S —

systems.
Consider nonequilibrium molecular radiation. Einstein postulated
that the probability per system in state ''n'' that such will make a transition

downward (to state ''m'') while spontaneously emitting radiation in (3, J=®)

during an interval dt is

Pamg = AamdtdR | (2.10)

Furthermore, he assumed that the probability that the transition downward

may be induced by the radiative field itself is
PY\H\I= Bnm Iy“m Atdﬁ (2'11)

where

AVmn = En-Ew (2.12)
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Similarly, the probability per system in state "'m'" for upward transition

to state ''n' upon absorption of radiation of frequency Lj,,in (I, dIX) is:

anﬂ' anIynm dtdxt (2.13)

Therefore, the nonscattering terms in Eq. (2.8) are

Jrm%T- dS(Tp- 1) (2.14
Ny A
IR g:‘n {I o (2.14b)
where ‘ 5 _
Vm’BmmN.y %]—N“' _E::“'“\s (2.14c)

In detail J:, and o(,' should be sums over all pairs of states which may
emit or absorb radiation of frequency V,,. This will be assumed to
have been done. Knowledge of the radiative field of a gas in thermo-
g* dynamic equilibrium yields still more information about the quantities

above, and this is described in the next section.

2.2 Kirchoffls Law and Local Thermodynamic Equilibrium

As was pointed out by this author (Finkleman, 1964) and by

Cheng (1965a) there seems to be widespread confusion in the literature

concerning the definition of equilibrium. One must be careful to
distinguish between mechanical equilibrium and thermodynamic (or
thermal) equilibrium. It is known that Kirchoff!'s Law holds in the latter
situation, in which homogeneity and isotropy prevail. The most general
statement of this law is that the ratio of the '"disposition'' of a black body
to emit thermal radiation of a given frequency to that to absorb depends
only upon temperature when the body is in thermal equilibrium. There

has been considerable confusion in the interpretation of this 'law!'',




Agassi (1967) points out that there are three restrictions implicit
in this statement. The radiation must be thermal, the radiating body

must be black, and the system must be in equilibrium. There are, how-

ever, no universally accepted definitions of these terms. By omitting
one, two, or all of the restrictions one may interpret the law in eight

different wayg Kirchoff!s Law, which depended upon no spe cific mechanism

for radiation, attracted Planck because of its utter generality. .
Agassi gives a very interesting account of the evolution and

interpretation of Planck's well known formula for equilibrium radiation

hy? , B2\t :
(T,), - 22 (¥ 219

This relation and the constants "h'" and "h/k'" were recognized by Planck
well before he had thought of quantization. They arose Whenl he attempted
to explain Kirchoff!s Law by means of the first and second laws of
thermodynamics. It remained for Einstein to assume the existence of
induced emission and to correlate Planck's ideas with Bohr's theory of
the atom. The original re'a,soning which Einstein employed may be
found in the work cited (Agassi,' 1967) among other sources. The
relation above is accepted henceforth,and its interpretation and severai
‘derivations are left to the reader. _ '

In thermodynamic equilibrium, the scattering terms in Eq (2.8)
are obviously irrelevant because of isotropy. Isotropy and homogeneity
then cause the left hand side to vanish as well. Hence an alternate

statement of Kirchoff!s Law is
Jry
(I")e = [d_,',)c = I‘,e(‘r')

From equilibrium statistical mechanics

(‘l‘&) . I T (2.16)

R s ¥ - ne— W
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Therefore the relationship between the Einstein coefficients is
(Bhlﬂ/B'h") = (SM/JV\) : (2.17&)

(Ao /B = (21 YA / ) (2.17b)

where the g's are degeneracies of the upper and lower states. Note that
these relations depend only upon microscopic properties of the radiating

systems, thus they must apply in general. Equation (2.14b) is, therefore

3
_ 2hVam Ny Nvp ~-% (2.18)
J-;) - P Nen {I"’ %h:N: . : .

The main difficulty one encounters in nonequilibrium situations lies
in the definitions of the macroscopic concepts of temperature and entropy.
On the microscopic level this difficulty stems from ignorance of the
nonequilibrium distribution of‘ particles among the available states.

Suppose a temperature, 6,, is defined as follows

‘ =_”f‘.— NM "~
6})‘;7%»‘ /Ciy [Nhjm) (2.19)

The specification of a,is not arbitrary, but depends upon the physics of
the problem. From Eq. (2.19) it follows that

Jr - T oy (B, -TL,,) (2.20a)
where
3 h
: - Zhh F%" * ' (2.20b
5, (8,) CL"’[C <) )

o h ¥,
dp': h}zm. an, Nm {/" € Tz{""} (2.20c)
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where the astrophysical symbolism , B., has been introduced for the
Planck function. Since it is under stood that the effect of induced emission
is to decrease absorption, the prime may henceforth be deleted from the
volumetric absorption coefficient. It is important that the nonequilibrium

temperature, &, must depend upon 4/ . It is clpse to the translational

. - temperature of the gas for frequencies at which & is small, but not

otherwise (Sampéon, 1965).

If the various energy levels are always populated according to a

Boltzmann distribution at a temperature characteristic_: of the local

average translational energy of the medium, then Eq. (2.19) implies that
©,=7. This is the assumption of local thermodynamic equilibrium (LTE).
Physically such an assumption is unwarranted unless the populations of
levels from which radiation may occur is maintained by some external
agency. In many cases the rate equations which govern the number

densities of the various species of hrnateria.l{particl,es and their energy

level populations are predominated by interactions with other material

-particles (collision dominance) and the interaction with radiation is

insignificant. Thus LTE may exist if the rate at which energy is lost _

through radiation from atomic or molecular systems is balanced by
collisional excitation such that Boltzmann distribution at the local trans-

‘ lational temperature is fna.intained. Collision dominance should not be

\, ' confused with LTE. Usually the two do occur together, but not always.

' For instance if the photon free path is sufficienfly small\(an‘ optically
thick gas) then LTE may hold even if the gas is not collision dominated.
For a more complete discussion of LTE and its irnplicationé, see Chapter
10 of Sampson?s monograph (1965). The symbolism &, will hereafter bé
employed for the source function. It is understood, however, that this
Planck function will depend upon a suitably defined nonequilibrium
temperature, 9‘, » in the most general situations. This is a matter of

convenience only; in fact the source function is not necessarily the Planck
function at all, |

Thus far the elemental properties of the radiative field source |

function, absorption and scattering coefficients, specific intensity.have

e A R
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been defined. These will now be related to the '"observable'' quantities

of thermal radiation.

2.3 Macroscopic Properties of the Radiative Field

Just as the mass flux, heat flux,and stresses {momentum fluxes)
in a material gas are averages of properties of individual particles,
~ corresponding quantities may be defined for a photon gas. These include
the spatial density of radiant energy, the radiant heat flux, and the
radiation stress tensor. ' , N
Since the number of photons in (¥ dv), (R, J5)per unit volume is
£, JIL, the net density of energy due to the presence of photons is frequency

at any point and time rmust be

W =[ ot = 2 T 221
7 4T

Note that the first moment of the intensity which appears above
T, E!,,I»f:euﬁ' : (2.22)

is quite important in RGD.
If b(V) is some property of an individual photon, the net flux
of b per unit frequency from all photons which may cross a unit area

with outward normal It is
Y - - N -~
Bn-= I:Lb{:ﬁ) ﬂ,t.n.,v,ﬂ < Aﬁ:l- e
JL

If b=hy the energy-or heat-flux vector follows

?%ﬁichu*&,utwﬁ - IJ;IJJ": (2:23)

Similarly if bs= —5,, is the momentum of a photon, the radiation stress

tensor results

A ———a st gt e m—ut ka © & ' v e e
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)-ﬁ c.ttq(:ﬁf- —fl;jt.?i JR (2.24)

0
WE
t\,
-~
nP’

These may be expressed in a Cartesian coordinate system in which

=_08-_»r b &+ Hhe +-.Je (2.25)

3

— .
where the ©; are unit vectors along the coordinate axes, If ﬁs is the

azimuth measured from the X,axis and @ the declination measured from

the Xzaxis then

Ay = sine cos B (2.25b)
Jz_ = s5ind sinﬂ (2.25¢)
A5 = cos® (2.25d)
I = sine oo deS 7 (2.25¢)
In this scheme |
u'®- fI, A (2.21)

(%), - fzy,@ Jd (2.23a) .
(/STR%:/ =EL fIP’e’g a1 | (2.24a) L v

It follows that the fundamental quantities may be interpreted as moments
of the specific intensity with respect to the angular variable or as
"momentum' moments of the photon distribution function. The general

moment may be written

(1.”). f/,f ) LR)dR |

’J'b -
“ﬂrf¢¢--- ar
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Beyond (Iv?;-these have no simple physical interpretation.

It is important in some of the arguments to follow that one distinguish
between photons incident upon an elemental area whose unit normal is 7
and those which are emergent from it. The superscript notation (+), (=)
is employed to denote quantltles referred to those photons moving in
directions, _7Z. , such that _ﬂ_ }1>0 or < O respectively. One may 1nfer
that

(%)

-~ /-t,_s_s —
L, (7t)=- ) LR EH)d
An2o v
g - £ [ L0507 (2:26
oty 3 Yo
where IV =I},(-t) as ..?L\)-’l‘io Also

=N 'k .> SR
Lo, (Ft)= AT + L, (T,t)

g (F4)= g:*’

These quantities and the radiation stress tensor (Eq. (2.24, 2.24a)) are, how-

(2.27)

>

(Pt — %‘f’('fi#)

ever, only the contributions due to photons of a single frequency (or energy).
If ‘/’p is any property for a given frequency then the net effect of photons

of all frequencies is

W= | Lo Y

and these integrated influence the fluid dynamics.
Suppose now, that the field were isotropic; since -Iy would no longer
depend upon direction Eq. (2.26) would become '

L7 = 27 I, ()

— =>(1)

g o, = T I (F¢)
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where 1 may be in any direction whatever. Also
I"p’ AT T, (T ¢t)
—
gp=o
and, the stress tensor would be diagonal _ g
— = ‘f‘:
R =5 Lo 1 | :
If, furthermore, the situation were one of thermal equilibrium, XI,= B,(T), and

-~ 3
I,- prJv = AT BLT) = c U™
o

PO Lo L
P = 3¢ L.(%®) (2.29)
where
q;w‘ A 4
T)= f—-’"‘ e - - = r._._.-T
o B¢ ) S CL( N dy TT (2.30)

N GLALYIE Y

is the Stefan -Boltzmann constant. Note that, for any isotropic situation

= ==
Pce)_ _é_ uuelvl , | (2.31)

as may also be deduced frqm‘ Lambert!s law. The flux émergent from

a surface in an isothermal 'black' body in either direction is incidentally
?“‘)—_ _g&(‘) = o_/?‘f

which is the Stephen-Boltzmann law.

All of the properties of the radiative field which will be necessary

to the formulation of RGD are now available.




39

2.4 Formal Solution of the Transfer Equation — Asymptotic Situations
and Semi-Gray Radiative Transfer

2.4.1 The Solution of the Transfer Equation
The source function includes scattering when Eq. (2. 8)

is written in the following form

2L . iz’—/éy (S.-T,) (2.32a)

ia
¢ ot

where ‘
S = e {7 fdgl ‘R 1’(.4)"'“4—0{ B (2.32b)

The fact that S, depends upon T, and that the solution of the differential
equation may lead ohly to an equivalent integral equation is not important,
The solution of Eq. (2.32a) is readily deduced (see e.g., Zeldovich and
Raizer, 1966, pg. 132) '

A (5% )ds s
List)= L, t-3 "-)ef f/gy(;y,j*(a,t_ )Cf’é A Hils’ (2.33)

where some boundary is located at a distance S, along the ray of interest.
It is convenient to express Eq. (2.63) in a more compact form by choosing

the origin of coordinates arbitrarily and defining
‘t (SJ't j% (Sll_t S 5 )Jsll (2.34)

TJhen
T

(1) LT,
T, (%)= L.(t)e ~ °)+f.5',, (e’ dn (2.35)

%,
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This expression belies several important points. First, the source
function, SP is not known in general. It must bé deduced from energy
balances and ma.ster equations which in turn depend upon the radiative
field through I,, . Second, the relationship between the photon path
length, S , and the coordinate distances of interest is not apparent. This
relation emphasizes the anisotropy of the specific intensity, Nevertheless

the problem has been simpliﬁed somewhat,

The spectral intensity is insufficient 1n RGD, since all frequencies

must be allowed If the integrated spec1f1c 1ntenS1ty is defined by

@®
T (R 7¢)= fI, (3, 7¢) dv

(2.36)
o
then the transfer Eq. (2.32) becomes
Z‘;t* a, )/6 I+7,.5; | (2.37)
where ' ; ]
© :
Bre) = fB,,fa,,)Jp [e:e (7] (2.38a) !
© X
d=x’ '
S(ﬁ,f,t) fc[l/ f (_r‘LJI,)_LP[J'L) 77’—— (2.38b)
Three mean properties of the medium must be introduced after 1ntegrat1on.
The mean emission coefficient is ;

&, =!% 8.dv / Bre) (2.39)

a/e reduces to the Planck mean emission coefficient (Zeldovich and Raizer,
pg. 166) in LTE. The remaining mean properties are dependent upon

the unknown intensity.




41

a
/éaff;‘r,“fPf A LA 0dr /T (R7¢) = #+d, (2:40a)

. a .
%(ﬁ/fﬂ:f:ﬂﬁ,(fﬁ I,[J"i,‘it)c)»/_r(_;—,;r—jf) (2.40b)
s D
7q =,£ T L (70 de /1 (2,7 (2.40c)

The existence of such mean coefficients has been recognized by Kourganoff
(1952, pg. 27) and by Viskanta (1964b). Both seem to have 1gnored the
inherent anisotropy of C\’,’)/,,even in a nonscattering medium as was pointed
out to the author by Dr. D.H. Sampson (1967).

Several of the approximate treatmentsof O in a nonscattering
gas (Finkleman and Chien, to be published) are presented in Appendix A.
The terminology '""Semi-Gray Radiative Transfer' has been applied to
problems investigated with Eq. (2.37). This is in contrast to the common
assumption of a completely gray gas in which ,, is in fact independent

of frequency so that o, = Aa=9. The general solution of Eq. (2.37) is

%- ~ (0T
Lis)= I (Tr,,,)e f = S(G)e 45’ (2.41)

7. ’f/‘6 5jt-) o (2.42)
S- L5 de

when this is compared with Eq. (2.35) the only effect that semi-gray
transfer has upon an otherwise gray problem is to modify the effective
source function. Reference may be mﬁde to Appendix A for further
comments on the absorption coefficient a{,_. Although the concept of
an absorption mean is not new, the recognition of its implications in
subsequent remarks are original,

The terms '"large' and ""small' which have been used require

qualification in accord with appropriate normalization. In order to
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examine the asymptotic situations, (Section 1.2.3) it is supposed that there
) . »

is some reference level of absorption, Q:', physical length scale,/ ,

and reference material velocity, u;". In terms of the normalized

quantities (asterisks denote dimensional quantities)

o = G/a) L[fen0e]

t= t.uo‘_,e'
S = .54'//:4
Eq. (2.35) becomes
T
: - (T, - (%-T)
Tist1= Tig)e” "™z | sqe™ " Tyn (24
%%

where

S |
T- [a s tponds’ LA G- 4]

A corresponding form may be found for Eq. (2.41). Since the expression is
homogeneous in the dimensions of the specific intensity and the source
function, their normalization is immaterial. The magnitude of the
parameter 2':6 will determine the simplifications allowed. For simplicity
the boundary term is ignored for the moment either because I,/7;)<< 7, (7,)
or ’(_:( (t.-T,)»1. However, it can be important, and its implications

will be discussed shortly.

2.4.2 The Optically "Thin" and "Thick" Limits
Suppose that the physical length scale of interest is much
smaller than the reference photon free path, ’/d(,,', i, e.,’_t_e« 1. Then

L (T-T))
e = 1-T (%-T) + oY

hence Tt
Zely

I, (%) ='f§,5’,,/z;’J dn’ +0(T,’)
2%
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The transfer equation is, to lowest order

31, ary

TS nas

The scattering term is neglected on the basis that it is O(1), so that
Sp < B.+o/T,), Equations (2.9), (2.22), and (2.23), in a nonscattering

gas lead to

9 (/]
St

+ div o, _g,,-'— (174, B,) + o0 (%,> (2.44a)

Upon integration over all frequencies, the divergence of the net radiative

heat flux is
] = 2L, 2 (2.44b)
div 2= T4 8- 2 5F +0(T,)
which for a steady flow (or fo%«.t ), in LTE reduces to

c//V%: 2, Ao, 77 colTY) | [ae=] (2.45)

This is the most common form of the optically thin limit. The analogy with
the Stefan -Boltzmann law is clear, and the appropriate mean emission
coefficient is C/P

Except very near to a surface, the boundary condition term may
certainly be omitted if f>>1 Because the origin of coordinates is
arbltrary the lower limit of 1ntegrat10n, Eq. (2.43a), may be allowed to
approach—a, Since the photon free pa.th is much larger than the length
scale of interest, it may be assumed that all physical properties, in
particular the temperature, vary little over an optical path ~ '/A’*
Because of the dominance of the absorption emission process scattering
ignored and B.(T.)) may be expanded in a Taylor series about T with

the result
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! ® - (T, u'/
=T E—BP L“(.-—Tu]".gg, £ ¢tip ,
L -5 (e renadb - 2 15 e
or
I, L . a_’,é [
: —°
The definitions (Eq. (2.34)) yield
J 2 a2
T " e [/697-“*5’_5} (2.47)

so that Eq. (2.46) is in fact a particular solution of Eq. (2.32). In LTE,
Eq. (2.46), (2.21), (2.23), and (2.24) lead to

uylﬂ)_: ' {I 8. + 0/:{{;—) (2.48)
7" 3rd( ) qrad(T)+ o/—r | (2.49)

= (R —=> / |
53] U, gram
"= 5 1 +0 /Tp/ (2.50)

where Eq. (2.49) is a consequence of the fact that the average value of

any direction cosine vanishes and of Eq. (2.9). The radiative field is
nearly isotropic since Eq. (2.50) holds only if that is the case, and this
justifies the complete emission scatterings. In LTE the net heat flux
is

- i

7= 54 jm/(T)Jfo/T) (2.51)
R.

" where the Rosseland mean absorption coefficient (Zeldovich and Raizer, /966,

pg. 153) is defined by
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e
1 dg,
1 _ /;\';- _J?JV mJBp
dR = e a—chP (2.52)
)
t JdB

The condition ’(_,’c»lis equivalent to By ar, << 1, which is the manner
in which Vicenti and Kruger (1965) choose to derive the expressions, The
similarity with Fourier conduction is obvious. It has been recognized
that the '"thick" limit is singular (Olstad, 1965). Sufficiently close to a
boundary variations may not necéssarily be small over distances less than
a radiation free path. The singular nature of this approximation will be
interpreted in a new light in Section 4.2.

There are at least two different ways in which mean absorption
‘properties of the gas may be defined. The‘ choice of an effective o in
the gray approximation thus presents a problem. The general case is
neither '"thin' nor ''thick', thus neither Xpnor Ag is universally
appropriate. Recognition of this fact prompted the investigation of
- which is summarized in Appendix A. If it is assumed that O does not
depend upon?L (the "q&asi-'iéot'ropic” assumptioh) then to a first approxi-

mation in a nonscattering gas

L]0

* i + -
A, (Ft)= dP(Ef)'/%)?l-Zfa?{: /7—.?./1/[’79"(} | (2.53)
(%)
which yields the correct thin and thick cases. Its effect on intermediate
~situation has not yet been assessed, but it should be better than either
0(,,or A, . However, Eq. (2.53) fails to include the effects of boundaries
or the possibility of appreciable anisotropy.

In this section it has been shown that the familiar lirniting results
apply in a gas which may scatter photons as well as emit and absorb them.
Futhermore, the extension of these results to unsteady cases has been
indicated. These facts are well known in astrophysics (see Sampson, 1965b),

but they are less widely recognized by gasdynamicists.
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2.5 Useful Expression for Radiative Transfer and Exact Formula
for the Planar Case

In this section expressions useful in a future context (e.g., Appendix C)
are derived. The detail with which Goulard (1962) treats the problem can
hardly be improved.upon. Referring to Fig. 1, Eq. (2.35) may be written

P-m

-7 -T } :

L= 2@e™ [ 5 ™y, S
. P 7_

where, analogous to Eq. (2.34)
P s-s"
Copep = [ 3052 50 (2.55)
Y M ,

It may be shown that

L (@) &, B,/Q)+f o0 Iy (U) T, 3;“‘61_?5’ (2.56)

ar

where the first term accounts for emission from the surface at @, € .
being the directional emissivity. %”9 sp 1is the true reflection
coefficient and is analogous to the phase function previously defined. It
represents that fraction of the 1nc1dent energy in directions &% cos (A7)
reflected into the d1rect10ns © = cos/Re¥) and is normalized to unity.
/09;,, is the directional reflectivity which may have both specular and
diffuéeparts In general Eg 0 J fe ‘6,1 ) /09, are properties
of the surface and of the radiative field in question. Similar expressions
| may be derived in analogy with Eq. (2.41).

It will subsequently be clear that the most important radiative

contribution to RGD is the divergence of the heat flux. Equation (2.32),

the definitions (2.23) and (2.9), and the fact that (E. is normalized to unity
lead to

1 I - |
—C— o'?;_?‘ -+ div%y = o(y {477‘81)"‘1—0}_)) (2o57) I
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so that the fact that scattered energy is not ""stored (scattered photons
are not annihilated) appears consistent in the formulation, Figure 1
requires that the incremental solid angle subtend by 49 at M and the

incremental radiating volume be

-~ d47;
dTT = =

Mp*

dVie) = d9; ds

whence

d PMF C{_ﬂ_ /HJS ‘ —;_‘— /_6:,_ C/Y/P)
Sirﬂilarly
/7 4=
] T
C/O; = -—:4:’3_'
-

is the elemental area on the boundary surface which subtends a solid angle

increment d3 at M. 1Itis, then, a simple matter to write

..L‘;)ic,"m).l_ cjiV /z'P(M)):—:

c X2t
TH
=<47d, B, /M)~ ’/MZ//’J € 'MQYII’/' & [MI:[L/O)C "8 AR JO’/Q) _
AP Mg > (2.58)

Although the formulation of the surface interaction is no longer so clear

the analogous result from analysis of Eq. (2.37) is

-~ &——SQM)+ c/iy[zw)) =

c

= Tomp,_ | I
= JTd, BiM) —fq{‘m}%wﬁfje -_JVYPJ —fOCIM)I/@)J"" e__cld'ﬂm
- mp* M
(2.59)

ey Y g AT e e - e At et i b o et e Tt D T st AT B oo n
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or s'lmp\)'

3::: ) L div( ’_gm)) = 4T, B(M) — f%‘WI dR

(\'_

(2.60)

In this case & must be retained in the integration since it receives con-
tributions from the entire volume occupied by the gas and from the whole

surface. Alternately, an angular mean of &x may be defined

‘ ’_-[dq,ﬁ)rmdst /T (2.61)

In this case djm) inHueslmay be replaced by de“)[ﬁ} which may be carried |
outside of the integration if the integrand is carefully redefined with

Eq. (2.41) and Eq. (2.21) and (2.28). The transition from solid angles to
areas and volumes may seem pointless at first glance since Eq. (2.58)
and (2.59) are equivalent to Eq. (2.57) and (2.60). However, the volume
and area forms permit rather straightforward formulation of cylindrical
- and spherical transfer problems, as will be shown in Appendix C.

In an entirely equivalent manner,

-
(%) T 1006 MY IJV-",.)ern)a/o‘fQ))
- [5 ase 2

+f/6,1P)5 pe ’ﬁi )G’Vf/’) (2.62)

Tie Z fI/ce)e‘ e (A (S WEICY
Mo *

AR 2.63
+fa(:{,°)5[p)€?°;”"(_ﬂ ) dY (57 ( )

Nyt X
v MP
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where dn',,-'_'i is interpreted as the component of 2‘ in the direction 77':,_ .
In all integrals N is the outward normal from the surface A at

point & , and all integrations are carried out over the entire volume
occupied by the gas and over all portions of bounding surfaces which
are ''seen' by point M .

It may be stated without qualification that in all but planar geo-
metries and a few cases in which the absorption coefficient o is a
constant a general reduction of the integrals which appear is not possible
(see e.g., Heaslet and Warming, 1966). The reduction of the planar
expres sions is carried out in all standard texts. A presentation closely
related to RGD (Vincenti and Baldwin, 1962) follows as a prelude to the
general problem.

Consider Fig. 2 where the coordinate Xz is referred to simply as

A . Suppose that at some point X, there is a surface of infinite extent
in the X, X, plane and that no properties depend upon X, or X, , hence
that the radiative field cannot depend upon the azimuth, /¢ . The distance

along a ray in a direction & is related to distance along the x-axis through

dj: ﬂ E/L(.-" 60591

o~ (2.64)

It follows that, if x

where the origin is taken at the surface, then in Eq. (2.54)

Twp =/74/— {7 tpr= T ()}

Thus
4;& /4’ A
Yoy -
+ + ’ </
Iy ( J/Y/‘f): {Iy%o,t) +-£“$J/Z,/)e/aj ge/u
M e ”

» % oo
Il/{/jx/t)= —6/‘4%5,,/%/6 ‘j/__f
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where I,,eI,_Q") accordiﬁ‘g as ﬁ‘-ﬁr-/u.ﬁo. The heat flux in the x-direction

is
. 1
fl}/ 4T =21 flyju.
4T I
Lo . ® o/
=a177’_[/ul;f9;a,ﬁe‘"‘&/« -,wrfs /%/fd/(e"‘ 75,-, ’)jt‘") e"“c/ J({,
or

% (xt)= JFf/Al;,/ﬂof)e@,‘ +2”:[‘S;‘/Z"/EL/Z,'%’}JZ,/+
_27.7/75;{7’75 44" (2.66)

also, it may be shown that
1

Mt - ®
To,= .171:[ 3;,"’%0,{-)6/94 - 21rj5, WIE, (Y-4) J’/,,'Hﬂ'j; SHIE, 17, )J%, (2.67)
(] ¥

where E,(X) and E; (X) are the exponential integrals of order unity and two

which are members of the general class of exponential integrals,

1 x
E, (x) Efe {"/)U""}/z& (2.68)

These functions are discussed at length by Kourganoff (1963) and

extensive tables may be found in NBS AMS No. 55 (Abramowitz and
Stegun, 1964). The quantity Ifyﬁ 0,t) contains emission from the sur-
face as well as specular and diffuse reflection. The emission is

isotropicjif the wall is in LTE:

IP+(/“I o)'e) = é‘f@ BP L-rw)
E
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The specular contribution is easily determined

/
» + B e ’ _ZJ ’
I, (uotr- BT, Luot) = r,),_[S,l};)e a7,

If the heat flux into the wall is examined, and the diffuse reflection

coefficient is indepehdent of direction,

" A ‘
I,fd (Mot)= Z L;,fs,,/%’l EL/%')J%'

Thus, if €&, and rs/a).,. are independent of @ , the angular integration

yields

: (==}
- 7 fE8.m5 m) vy, jspfz')E;mr%'M/ .

+ZZP.[SP”_’r')5’%')J7V/5 a)+
. f S ) s E {144} c”/»’} (2.69)

Similarly Eq. (2.67) and (2.57) result in

= i‘—zjﬁ divgp=-all { (&8 lTw)'*ZQ,J: SUIEMEYT E, (9,) +

-2 D )
+15y f S )EL (Y457 I + f s, 17")5{.%.14;,]31,;_15,m,)}
‘ ° (2.70)
Analogous expressions follow for the semi-gray approximation in a quasi-

isotropic gas. The only modification necessary is that all 7optica1 variables
involve @ and the source function appears always in the weighted form

%% 5{%} . If quasi-isotropy does not hold, exponential integrals do not
necessarily appear. Of course, the emissivity and reflectivities in the
modified form are not necessarily the same as those in Eq. (2.69) and (2.70).

Examination of thermal equilibrium reveals the corrollary of Kirchoffs law.

(2.71)
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" which is, the most common form in which the law is stated.

In this brief summary it has been shown that photons may be treated

as material particles up to a point. The equation which governs radiative
transfer in an absorbing, emitting and scattering medium at rest has been
written,and the implications of Kirchoffs law have been examined. In
addition some of the physics which is involved in the calculation of
absorption coefficients has been indicated. The concept of local thermo-~
dynamic equilibrium has been introduced in the framework of general,
nonequilibrium radiation. The macroscopic properties of the radiative

field have been defined. Furthermore the full transfer equation has been

solved (or at least reduced to an integi-al equation), and it has been used

to obtain the limiting optically ''thin" and "thick'" approximations and to

justify a semi-gray model for radiative transfer. This model should be
better then a gray one and significantly easier to apply in practice then the
full nongray formulation. Finally the general, multidimensional ex-
pressions for the heat flux and its divergence have been indicated,and the
planar forms were written explicitly, All of the definitions and derivations

stated in this chapter will now be adapted to the problems at hand.

R R R D T e e
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CHAPTER 3

THE FORMULATION OF RADIATION GAS DYNAMICS

3.1 Radiative Contributions to Gas Dynamics

The derivation of the equations which govern non-radiating real gas
dynamics is well documented and will not be pursued herein. By the
same procedure that the conservation relations are obtained from the
Boltzmann equations of material particles, analogous relations may be
obtained for the photon gas. Simon (1963) treats matter and radiation
consistently within the assumptions of special relativity (see Sampson,
1965), Sampson's " simplified method" of obtaining the equations of
RGD involves decoupling the radiative and material Boltzmann equations
and then adding the right and left hand sides of the equations for photon
momentum and energy transport to the corresponding members of the
respective equations for material particles. This is valid if, and only
if, the gas is collision dominated, which is very often the case; but if it
is not, the approach must be reéxamined. The radiative transfer equa-
tion applies generally only in inertial systems while o is computed in
the non-inertial system which is moving at the local mass velocity.
Sampson (1965) indicates that errors involved in neglecting this fact are
usually insignificant (of order MRS/ 1* which shall
ultimately be neglected).

The governing equations of RGD as derived by Simon (1963) are as

follows:

* -
g—% +=l‘w((0*u‘)=o (3.1)
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P W*JIV(P'*'?.)*’O{_%'%(P "“'+u" a~)+ud %."‘l_

(R —ay(R)
*? divis T ' }

(3.2)
‘Vfg )+ q Jraelu

¥ —=im )
/ g:, g_z,-r u‘sdvu= u (JwP’) dav(P" ")*—-{’%‘

+ud-v%+ %Jndu +u

—n d,yu = [ sz.u\r‘_ u,ll)a**]}
ot (,!')

2 ET™

wry (3.3)

_ chV % (R)

The possibility of N non-equilibrium chemical processes is included
symbolically in the form:

De__ wWF

+ S A lf
—_— e LL‘],)N W': W (PTJCJI)J) (3_4)
D‘t‘ /0 )) [ L [ J | ]

are the rates of progress of reactions involving the chemical '
parameters C; . Alse

L aL) .
T ST (3.5)
hence:
®) (R @
au, - ¥
3% @t [ of ‘“L/@ (== (3.6
(R)
LT, L (B - [ [gan
S5 v (P7) <[ 'API;I““ ¥ (57 -T)) (3.7)
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To these must be added the state and thermodynamic relations:

N (3.8)
pPY=r (PTHT)
k% hY(PiTre) (3.9)

Since radiation depends most strongly upon temperature, T must be
included in the speciﬁcation. Although the choice of P or }0* for
the remaining variable of state is arbitrary, pressure has been chosen
in this work. Only the properties of the material gas are included in the
‘enthalpy, h*, pressure, p* , etc.; since the radiative contributions have
been grouped separateiy in the equafions. The integro-diffei-ential nature
of the equations is clear. For instance, the divergence of the radiative
heat flux required for the energy-Eq. (3.3) is expressed as an integral
involving the temperature distribution through Eq. (3.6). Eq. (3.5) is

¥

*
integro-differential as well since Sy involves integrals of I, in

the'scattering terms. In general, Eq. (3.4) will involve integrals in
¥

the radiative interaction which must be allowed in the W' rate terms.
Such integrals must also incorporate the nonequilibrium parameters. .
(This is clear if some of the C;\ .a.re rﬁass fractions since the absorp-
tion coefficients must depend on concentration.) Therefore Eq. (3.3),
(3.4), and (3.5) may all be integro-differential equations.

 Since present interest lies in the study of the unsteady flow fields
generated by bodies moving into gases initially at rest, a nor malization

which depends only upon the undisturbed state has been chosen. Thus

r Mach numbers do not enter the governing equations but do appear in the
} boundary conditions. Molecular transport phenomena are neglected,but
L no restriction is yet made upon the caloric or thermal properties of the

medium. The appropriately normalized variables are:
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P= PYpS I - TV
U= U'/u;“ Sp= '5:/3‘;,

T- T} o Pt /»‘44}.

PePep ES AR
e W/cis? o 3

W W pTED “‘1 ur (% e
[}

(3.10)

tr tw et ) X = X e

The reference velocity is taken to be the isothermal speed of sound so
that ratios of specific heats enter the formulation as infrequently as pos-
sible. The other quantities employed above are, ‘tg_: , the reference
chemical relaxation time for proc?ss nin  and the frozen specific heat
of the reference state Cp;' %»-';-)
(R)

x The normalized quantities w!
. .

~and I, , 71; and 3:: , ém and T, are used interchangeably. In

cases in which confusion will not arise the superscript, R | will be
deleted as well. o
The normalized forms of Eq. (3.1) through (3.9) are

2+ iy (e =0 (3.11)

()

/o +3rqu+(P )J-v(.P ) +

(ﬂ)

+ uq.u""" ) +U-qrad 7] P B+ T divg ®), du =0(3. 12)
¥5){%% ,u:(P U ™13

ol

;- Sl e DU 5o v (B - g div (P 0) 4

Dt
RES ~‘i”+7>“’d'v“+“o'“‘% KR
| Fai u+u“"uj—%=l 3

22

ﬁi

(3.13)

o

Dic=_ __LC_(‘/KVZ) (3.14)

e
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/6c; +_Q-JPQAIV Jﬂ“ (SP"IP) (3.15)
pogv =i v
Val 3’ % ,Jd”fdn-/@,, (s -:r;,) (3.16)
)
a1 ==(f) N
/A ? + v P = Ie..[d”,l’rdxﬁ/@,,(sp-ry)_ (3.17)

The dimensionless parameters which appe_é.r have been discussed by
Goulard (1963a). They are

%K
E ‘/60*/8
= U /c* (3.18)
/e =% 7 i :

T; = é"o ! //2*
r=0r-1) /v,

Z:( , the Bouguer number is the ratio of the reference physical length
scale to the extinction length of the radiation;/é is a measure of the
propagation velocity of acoustic waves relative to that of light; Beo ,
the Boltzmann number, indicates the importance of convective relative
to radiative energy fluxes, and the ('/‘Q)are rate parameters which
compare the time that fluid elements reside in the region of physical
interest to the appropriate relaxation time. Goulard has grouped these
into intrinsic parameters (which affect only the formulation of the radia-
tion) and extrinsic parameters (which affect only the interaction of
radiation with fluid mechanics). It has been noted (Section 2. 4, 2) that
'_Z_:t is an intrinsic parameter. The most important extrinsic parameters
are the combination ’Ec/ao and T: , while/é may be considered both
intrinsic and extrinsic. The distinction is purely academic.

It is common to neglect all terms ©¢&) and higher. This is not
necessarily the case in the cui';'en'p formulation since in stellar structure
or during the initial stages of intense blasts, temperatures may be suffi-

ciently large, T~ 107K , {see Bethe, 1965) that/o-vlsj’ ﬁmi and must be retained.
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Contributions of order/éa- are almost always negligible and are henceforth
omitted.

The W, functions disguise many progesses about which little is known .
They may contain parameters which are quite significant and may depend
upon the radiative field. Often such dependence is ignored (e.g., Scala and
Sampson, 1963) for the purpos’e of the prrediction of qualitative trends in the
limiting cases. Suchasasumptions are no longer sufficient since definitive
works are now needed. In fact, the scaling chosen may not be at all appro-
priate when specific ghemical processes are decided upon (Penner, Thomas

and Adomeit, 1963). The solution of the system of Eq. (3.11) through (3.14)

Ppresents formidable difficulties unless certain approximations are invoked.

Several of these are examined in the following sections.

3.2 Approximate Methods in Planar Problems

3.2.1 The Forward-Reverse Method and Kernel Substitution

For simplicity, the medium is assumed to be semi-gray

‘and non-scattering unless it is stated otherwise. The non-gray and gray

analogs are obvious in all cases, and the normalization remains that of
Section 3.1.

The most widely applied method in planar problems is the kernel sub-

~ stitution referred to in Section 1.2.4. In the steady state of the non-

scattering formulation, the integral expression for div({), Eq. (3. 16),
presents the greatést difficulty. Equation (2.70) confirms that fhe inte-
grals cannot be removed from the expressions by successive differentia-
tion since the E_ functions are not separable. '

Murty (1965) proposed the formal ekpansion ’

N o nt |
E,(x)= 2 m € (3.19)

=/

Of course, once any one of the E 's is known the others follow from the
recursion relations, The manner in which the /7 and 7; parameters

are chosen is at best ambiguous. As AN-= o the choice is na de least
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arbitrary since matching, say N moments of the exact £, (x) and the
values its first N derivatives at a given point with those obtained from
Eq. (3; 19) provides ZN equations for the m; and X, . If N is finite,
only a few of the moments or derivatives may be chosen. (Baldwin, 1962,
indicates how the choice may be optimizéd.) It will be shown (Section 3. 4)
that the mathematical procedure does. not always yield physically reason-

able expressions. Furthermore, no number of terms will correctly

reproduce the logarithmic singularity of & (X)=- ‘g;g‘ at the origin.
Consider the one term expression
-nX ‘
E,(x)=me  (3.20)

Then, in the steady state of a non-scattering gas in LTE

@ ! -2, 2 - ] ’
-2 Leny e, %4’/,»5"3;] = +V{,?7’?77n2"9’73'?5+ [gfﬂ?yy/”ymé"g"f/ffj (3.21)

The integral may now be eliminated by successive differentiation of Eq.
(3.21) with the result:
2
o2
6 —nzt_g #m 7/ <7 (3.22)

97"
Since if 5»1 this reduces to
ar’ .o /,L)
Z - Lr ‘V/e x T (3.23)

Equation (2.51) requires that
o, . | '
m=35n> (3. 24)

if the correct thick limit is to ‘ensue. Therefore the parameters /1 and

/L are not independent. Note that the limit of Eq. (3.22) as
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is a singular perturbation since the highest order derivative is lost.

A "boundary layer" of thickness O (@) may be expected;
however the situation is much more complicated than is indicated (see
Olstad, 1965). It shall soon be pointed out that the use of Eq. (3.21)
alone is in violation of the physics of the problem and that neither of the
parameters m  or M may be chosen arbitrarily. In Section 3.2.3 it
will be shown that different " chmces" of 1 and 1 imply drast1ca11y

different phys1ca1 restrictions upon the radiative field.

3,2.2 Moment Methods
The analysis of problems in astrophysical radiative equili-
brium forms the foundation for most approximate methods in radiative
transfer. Since stellar atmospheres have negligible curvature, the
basic formulations are all planar. Furthermore in all such problems there
is no iﬁcoming photon flux at the edge of the atmosphere (which is taken as

the origin of coordinates with X increasing inward). This is indicated by

- the condition I, (-4, 0,t):0. For a non-scattering atmosphere in LTE

radiative equilibrium exists when absorption and emission are balanced;
hence, the right hand side of Eq. (3.16) vanishes and, in the steady state,
the heat flux is constant. Then Eq. (2.37) and the definitions Eq. (2.22)
and (2.23) may be combined into an integro-differential equation for the
integrated intensity I. Since the integral involved is that in Eq. (2. 22)

over the angular variable © , Eddington (1926) was led to assume the

expansion

N |
I tuxt)= > A GEIR () (3. 25)
A=s0 T

This expansion is exact in the least square sense as N == @ because

the Legendre polynomials 5 (M) are complete over (?1, 1) corresponding

to © in (O,77). This approach is useful in RGD as well as in astrophysics.
There are two philosophies in the use of Eq. (3.23), The first, which

is preferred by Traugott (1962), involves taking moments of Eq. (2.37)

with respect to/u. . These entail expressi‘.ons of the form
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L
= AT : ' 3.26
L,z ZT_'-[/“ I%,\'/f)j/{ ( )

Since/a appears explicitly in Eq. (2. 37),the equation for a general
moment I, will involve Z,, as well, thus the system is not
closed. Another complication arises in the ‘most general case, since dw;
depends upon/‘& The successive moments of Eq. (2.37) require

angular averages of & o
1;10(0'1 ..,szf/t a\{,/g/-g)_[/q,x-% 4 (3.27)

For the moment the isotropic form of . ,Eq. (2.53), is assumed
so that '

)

Ay = Foralln | (3.28)

One may express/U-"' as a linear combination of the "n + 1

Legendre polynomials of order "n'" and lower, therefore the I,._-moments,
(3.26), may be expressed as linear combinations of the 4, coefficients

in Eq. (3.25). If the expansion is truncated by setting ,ﬂ;o,.ﬂ)'/)/(the Py -
approximation), relationships between the I,, , >N and those for n=N result
This condition closes the system of equations obtained from Eq. (2.37).
This ap'proach is most convenient only in the planar case, and the alternate
procedure will be employed in general..

If Eq. (3.25)1is inserted directly in Eq. (2.27) before moments are
taken, the recursion relations among the Legendre polynomials:

Al = EXB L) 4 o) B L] fr2te) (3.29)

may be used to obtain the following system of equations for the coefficients,

/6.%* S 2Agn, £ Ay (3.30)
(2413 Tx {z..l-/) ax =

='T{__=L:' —(a(,f-'V)ﬂ +4,B4S,, }




i
135
1

62

Now the truncation, AJ‘ o , JP>N closes the system of equations
directly. For instance from Eq. (2.22) through (2.24) and (2. 28)

I, (x4 = .z7rfI/u, x¢) = A, (31)
g0t er/I/gx+)/a 24, (x1)
P(x,fr)— Z”f/n‘I/«,H'}cyl 1-% (” t5 ﬂ;)i

(3.31)

In general

1
ZA+1 .
Ay v T,C Feiw Tygntr dum (3.32)

so that '4!—’-0) H=K , will specify a linear relation between all
of the & for £=K . The astrophysical equivalent of Eq. (3.29) is
obtained by omitting the unsteady term and noting that the statement of

radiative equilibrium is:

T A, = c(c B (3.33)

Because the moments of L which are involved in Eq. (3.31) are taken
over the complete range of the angular variable, the formulation‘consis‘t'inj of
Eq. (3.25),(3.30) and (3.31) is referred to as the planar, full-range
moment method. Caution is required since the consistent formulation
of boundary conditions has not been investigated.

Because boundary conditions are often specified in terms of by
or ‘', the half range intensities, a formulation in terms of half range
moments is also instructive in some cases. Since the B (z/a-l) are
<omplete in (o,1) and B(ﬁ‘“-ﬂ are in (-1,0), an expansion of
the form below is applicable.

@

(1) (£)
I JZ”';C?( (xe) b, Ruri) | (3.34a)
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where:
' 1
5 A,,M!fytn /lk+/)f° Fe (2pe-1) I '7/,#%4 (3.35a)
1 o o
Ap (Xt) = (z/w_)[ F,’((;w/)I"’wa)/a’a (3. 35b)

The operations of the full range problem result in:

Iy ot 3B g g op gty (336
ot +Z. 3 Tx :ur *JJ—/ ;g;f"_t “9 ':t({deBJu‘qq@}

ina anSCq‘H‘er'mj gas.
Sherman (1967) and Traugott and Wang (1964) are in agr'eément that

half range moments are best suited when boundary conditions are applied

at the interface between a radiating and a -nonradiating medium. For

instance the condition I~ (yot) =0 is simply AE (ot)=0
: u\
! for all K . The specification of the A (51 ~ is not clear,

however. In fact their specification in astrophysical problems would
provide the " Law of Darkening " (Kourganoff, 1952) which is one of the
more important quantities to be determined. Krook (1955) has discussed
3 the astrophysical counterparts of both full-and half-range moments.

There is yet another moment method which although not as rigorous.
as the previous two is nevertheless just as widely applied. The original idea
is due to Schuster and Schwarzschild, but their formulation is only one
mer'nber of a general class of forward-reverse formulations. The para-
metric nature of these approximations has to this author's knowledge not
been recognized previously. The intensity itself is sacrificed in favor of

its lowest moments through Eq. (2.26) and (2.27).

(:I:)
[ I(I xﬂ.’)d_ﬂ_ z-”—f_z(t) y‘ E.ZT”{IJI“:) (3.37)
Mzo

g@ = f_n._zm,x,f)d_sz zwf 1% ﬁ‘

In’o

wI (3.38)

\;\
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where
)
! = / Iﬁ/fwy /¥ (3, 39a)

=2f uT%nd (%) 3.39b
A= T g0 du /T (3.39b)

Integration of Eq. (2.37) over the half-ranges results in:

Scrh S N e NS R S Do e e e S e e

J 1, 2 £) ) (%) 3. 40
L (T4 2o (WL ) =, (214, B-zau ATy OO
If /u.‘*"/’ -z mt = m = ,and/z and /At are constants:
* /6 at *ox T L {4, 8-AuZ,] (3.41)
| LA *2Z, |
4 / / 7 q’,g, (3. 42)
I
! ‘ s -
i By definitions, Eq. (2.26), (2.27), and (2.28), Eq. (3.41)is an
; exact relation. Equation (3.42) is, however, only approximately correct.
3 In fact Eq. (3.17) indicates that the approximation is:
a0 . = | | b
P =-3(£) L 1 (3.43) |
Since Eq. (3.4l) and (3.42) form a complete system for T, and _g ,
| 4
a two-parameter-family of approximations has been obtained. If the :
optically thick limit must be reproduced when ‘EC »>1 , then:
_/’41 z_ 4
(%) * 5 (3. 44)

_ Equation (3. 43) reduces to the isotropic relation, Eq. (2.2 2) in this case,

and there is only a one-parameter-family of approximations. Although the

remaining parameter does not appear in the equations, it will enter the
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boundary conditions. Historically, equations (3.41) and (3.42) with
assumption, Eq. (3.44), constitute the Milne-Eddington approximation
(Eddington, 1926, p. 100). The original Eddington approximation in an
astrophysical context consisted not only of the assumption stated, but
also of an approximate boundary condition, Z, /9%) -ZZ (9g¥) = O )
but both of these cannot be found consistently from the forward-reverse
formulation (Section 3.4). '

There are, therefore, at least three approximate methods for
the study of planar radiative transfer. The first two, full- and half-
range moment methods, possess the advantage of being mathematically
systematic; the last, the forward-reverse approximation, while not
nearly as systematic is perhaps physically.more clear. Criteria for
the suitability of a given approximation to the integro-differential
equations (specifically to the integral formulation of div q ) must now be
developed. One which has been noted is that the optically thick and thin
limits must always be reproduced. This requires a second criterion,
namely that that the first of the moment equations obtained from Eq.
(2.37), Eq. (3.41), must always be satisfied. Having established these
criteria, the desirability of the various orders of approximation in all

three methods above may be examined.

3.2.3 The Suitability of Planar Moment Methods, and Their
Relation with Kernel Substitution .

Kernel substitution will be examined first in order to
bring its physical interpretation to light. It has been noted that the
use of Eq. (3.21) alone when assumption, Eq. (3.20), is involved is
not appropriate. This is clear if it is noted that the exact heat flux,
Eq (2'.'6;'9")' or its dlverg_e;u:e, Eq(—Z 70),' s'peci“fies an exact I,
through Eq. (3.41). If assumption, Eq. (3.20), is invoked in both %
and 1, an inconsistency arises which can be resolved if, and only if,
/71 =41 . Then one is forced to choose 7=VZ ., There are many reasons

for employing Eq. (3.20) in the form:

| _VFx |
E (0= & (3. 45)
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Although this relation corresponds with the exact result &£@=1 , the

recursion relations require that £&Ep,(¢)= J(I-EJJ n>z , which are
wrong. Rhyming (1965a) has justified Eq. (3.45) when radiation is
weak ( Bo > ) by forcing the approximate and exact solutions to be
the same near a shock wave. However, his exact solution near the
shock was obtained with a Neumann series of doubtful convergence,
The consequences of the full range moment method to various
approximations are displayed in Table I. It is evident that none of the
even approximations (4;7,? > N-even) yield the correct optica;ly thin limit.

For instance,

divy= () 474, 8 [v=2] (3.46a)
c/;v"ia 2 é—’;‘é}ﬁdﬂ LN<4] (3.46b)

Thus all even orders of approximation may be eliminated except for

expository purposes (Section 4.2). This line of reasoning seems not to

have been pursued before, and the justification for neglecting even orders
usually relies upon vague analogies with neutron transport theory. Since
Eq. (3.41) is always satisfied, the odd orders of approximation are all
acceptable. Of course all orders display the correct optically thick behavior.
The P1 equations are identical with the forward-reverse equations accord-
ing to Eq. (3.41), thus the physical implications of the moment methods
become more clear. |

When half-range moments are examined, both of the A;(:t) must
vanish for >N in order for the approximation to be consistent. The
tabular form is no longer appropriate, but the first two approximations
are:

A”(’t)= o, n>0

2T zg(-tjg Ioril - ,27/74’,“} (3,47a,b)
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{t) (2)
,oc?t m—i L {74 8(n- oy g 7 ~ (3.47c,d)
Ay=9 771 (3.48a,b)
/72 +) .48a,
V722 8 5 4%) = T'
0
,Dl‘t),— _g (1) _ 2./_1;(1') (3.48c,d)
_zli) () o) (4
/691: _ﬁ =<, {24, 8 - ol T f , (3.48e, f,
(z) %) .
,?z ¢ 5 (1) .
B ,l— = T, {rd.8- % Z 7 (3.48g,h)

Equations (3.47c,d) in light of Eq. (3.47a,b) are in fact Eq. (3.41) as are
Eq. (3.48e,f). Thus both are acceptable on that count. Of course, the
correct optically thin limit is always a consequence of Eq. (3.41).
However, Eq. (3.47a,b) are equivalent to Eq. (3.37) and (3. 38) if
m=1 and/u-i which is in fact the case if Eq. (3.47a,b) hold. The
reason for the terminology forward reverse is that Z“ana
assumed to be isotropic ¥ streams " of radiation in the respective unit
hemishperes about a point. Since the first half-range moment approxi-
mation corresponds with the forward-reverse approximation if Wﬁ) =1,
it is obvious from Eq. (3.44) that the wrong optically thick limit follows.
The next order of approximation, Eq. (3.48),is difficult to analyze since
I,fi) may be eliminated completely from the last moment equation
which one retains. It may be shown through the first moment procedure
which was outlined that in all even orders of the full-range moments and
in all odd orders of those over the half range one of the moment equations
may always be reduced to a relation for the operation /ﬂ;t +‘5°(°"’)
on I, or Io(i) respectively in terms of all of the other moments but not
of their spatial derivatives (see Table I). This has serious effects upon
the characteristics apprbach to be outlined in Chapter 4 and is in fact
the reason for the erroneous "thin" behavior. The half-range moment
method introduces two equations for each order, thus its application to

the same order as a full-range formulation will be twice as cumbersome.

)
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Sherman (1967) has compared the full- and half-range methods in various
simple situations. He has found close correspondence between the R
full-range and P, half-range methods, but his conclusions cannot
necessarily be accepted since the situations he examined were non-self-
consistent, hence unrealistic in RGD. The investigation conducted by
Nemchinov (1960) employed the F, half-range formulation given by

Eq. (3.47c,d) as @> 0.

It is noted that the insertion of the kernel substitution Eq. (3.45)
into Eq. (2.69) and the determination of I, through Eq. (3.41l) yields
identically the P -approximation of the planar moment method. There-
fore the simple mathematical artifice corresponds to the Eddington
assumption that the isotropic relationship exists between radiation
pressure and energy density. Zeldovich and Raizer (1966) refer to this
as the diffusion approximation, since the P, -approximation contains

the dimensional equation:

-gue)_____:g_;{,’;é_;r__ - (3.49)
which rriay be interpreted as the photon gas analog of Fick's Law.
Fortunately the analogy is not complete, and its effect upon the equa-
tions of RGD is quite different from that of a mere molecular transport
process. From previous comments concerning Eq. (3.37) and (3. 38),
it is clear that the case zZi=/m = 4 of the forward-reverse approxima-
tion corresponds to the‘kernel substitution Eq. (3.20))with mel n=2,
It is instructive to consider the case in which the temperature
field is uniform and any walls present are at the same temperature as

‘the gas. Since there can be no heat flux

€ + 5 -f-,Z); Ea/o) -1 =0 (3.50)

With Eq. (2.71), Eq. (3.50) may be reduced to:

t3{ 2E,c0) -1] = O o (3.51)
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HoWever, according to the one-term kernel substitution:
‘ ., :
- E =) - (352)

Therefbre, only if Y = ’/2-‘ can diffuse reflection be considered.
Since Eq. (3.24) must hold the result is 5= 3/2 , = 3/4
Therefore, diffuse reflection may be included only at the expense of
either the optically thick limit (/t=/, 222 ) or the satisfaction of
Eq. (3.41) (if m'3/#,l1= Y2 }. It must be pointed out as well that at

large distances from regions of radiative disturbance, all radiative pro-

perties behave asymptotically as E,,(X), which for all n is ~ 6—7;(

To this there corresponds me'"x , therefore the nearer n is to unity
the better the approximation will be in the far field. Clearly an é.pproxi—
mation which is consistent with diffuse reflection will decay in almost the
correct manner in the far field. The physical implications of this phenom-

enon may be deduced from Chandrasekhar's (1960) comments concerning

" the polarization of a beam of photons upon interaction with a surface. Crudely,

any kernel substitution corresponds to the assumption of different isotropic
intensities in different regions of the unit sphere about each point in spé.ce.
Since the effect of diffuse reflection is to smooth anisotropies in the incomihg
beams, the photons isotropically reflected into the "right" half sphere
(assuming as always that the surface is on the left)'will not match the isotropic
distribution(s) already assumed to exist therein unless the kernel substitu-

tion leads to the exact relation £E;00)= 72 . The ultimate choice,

Eq. (3.45),does not satisfy this relation. Because of the formal equivalence of
kernel substitution, forward-reverse approximations, and moment me thods

to lowest order, diffuse reflection must be omitted in all if an approximation

which satisfies Eq. (3.41) is to yield both "thick" and "thin" limits con-

sistently and decay in approximately the right manner far from regions

of radiative disturbance. Higher order methods are not necessarily so
restricted. The difficulties a.‘ssociated with them (see e.g. Murty, 1965)
do not seem to justify the additional refinement, however. Since the impli-
cations of the omission of diffuse reflection upon a physically realistic

situation cannot yet be determined, when the differential approximations

T ——t——— gy 8 1 [ o O
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are employed in the subsequent analysis it will be understood that diffuse

reflection is ignored.

3.3 Non-Planar Methods

- The extension of the methods above to more general,situ'ations is
by no means straightforward. Heaslet and Warming (1966) indicate the
! extension of the forward-reverse method to cylindrical and spherical
! cases. The treatment is very much like that presented previously ‘
except that angular variations become more important. The transfer

equation (2.37) may be written

2L n.-v) //41 2
B3t /P/[/‘ / T, {#TE,B- A L] (3.53)
where V=/2 for the cylindrical and spherical cases respe ctively.
i Here = Cos O expresses the same relation between S and r

as that between $ and A in Eq. (2.64). In the cylindrical case the
angular variable ;0 is necessary to account for the inclination of the
photon path with the cylindrical axis. Since /& = A Sin (z'v)(p)

is the single direction cosine of the problem, Eq. (2.22), (2.23),
(2.24) become:

I, [ z@dz -  (3.54a)
ar
g=[ usin"up) L) (3. 54b)
! ue; f ) (3.54c)
: fusin™ g I/x)d= '

The heat flux is in the radial direction,and Eq. (3.41) follows for all cases.
The second moment equation, that obtained by averaging Eq. (3.53) over

A after multiplying by _¥#; , is, however, different in each geometry.

= P / :
Eé :;:2,— *‘F/5P’I.)=-Ed¢c:)-g [v=2] (3.55a)
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9 ()
/607i g ¥ {“P ﬁf/-‘f@f)m foc/;ﬁ]- AN AUNER 55b)

If the Eddington assumption, Eq. (2.50), is applied it follows that

Q.z ’_/é"__f}_ _ )
R 15 ar - %A & (3.56)

for both cylindrical and spherical geometries in analogy with E_ -
planar methods. The derivation above still does not represent a system-‘
atic approach. |

‘The planar full-range moment method is the specialization of a

more general multi-dimension approach. Since the spherical harmonics

" m
YJ/JL L__.’:‘ e wP’lyx) (3.57)

form a complete orthonormal set over oéP-—lﬂ' -1< <u<{ these are

the functions which must be used in an angular expansion., In analogy
with Eq. (3.25), ’

I(ﬁf,ﬂ—Zg A (f)l’ () - 3es8)

,‘P—'Dm_,(

The derivation of the eqﬁations is best outlined by Davison (1958, pp 157-
163) in the context of-neutron transport theory. Indeed the method appears
in its most general form in problems of neutron diffusion. The expansion .
was first applied in a manner consistent with RGD by Cheng (1964,a,b, f
1965a,b). The formulation is easily extended to semi-gray radiative
transfer. ’ _ . ‘

If the phase function (?,,- is independent of frequency, the

frequency integrated equations, Eq. (2.37), are:

. I —_ _ -~ N N jt’
E“;"%’ +_n_JmJI-f@/e3 - d“I+7a Ad’(g,mj;m);‘_;] (3.59)
Al




Application of the theorem:

P, g_‘/ *f;(gtf) (3. 60)
and the expansion:
@© .
(&1 -Eow‘eﬁ':t) ?, (IUR) (3. 61)

in addition to Eq. (3.58)and the various recursion relations, results in

‘lAJ VI(2+ma2) g4mm) SR_,,, aﬂm} Vi@-m)(&- m-l){an.r- JH:;‘."
FC 2 (20+3) ERTRRAS AP Ay 7w =) B A F A X, }

™m-! o
S DR LA IRELIN } - (g A 2A% ]+

REIEYEY) &X Ay Lize-17 -5-;"% %, (3.62)
VB oman I Ay, ™ M)
Nt-ma) 9 gy \/(_Q-\-m)[_ﬂ -m) IRy {a,a = pu A o
20+73 X, 22-) 2 X2 2.0+ ﬂq A +d€ Bém"‘éo.t

it is easvily shown that WO, =4 because G is normalized to unity.
imirtherinore WD = 3747 , where Pz the average ang}(e of scatt’(-sll)'—
ing, vanishes if scattering is isotropic. The quantities ’74) J/6 «
are-defined i'v 3 -aanner similar to Eq. (3.27) and will be discussed
shortly. Equations (2.25b,c,d) may be expressed compactly in the

forms.

-1
/
2 = sinbeos = (V- Y, (3. 63a)
' 2 1,47 (3. 63b)
Z, =5,m9s;,,f= Tf-;[r‘ +‘}_") , .

o A
Ay = 5O 1/'1 (3.63c)

e e op e < - e eme s . - - — — SUNEERES.
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Although the equations above are restricted to a cartesian coordinate
system, once the coefficients are grouped to form moments there will
be no complex quantities, and the equations may be expressed in uni-

versal notation. Consider, for instance, that:

[~} 4
. -1 ] ' ’ l&,
%1“4%:;{3?(”, -4} (3. 64b)
- 2\’" -
%L- ﬂ'[ﬂ / /7’) (3. 64c)
%fﬂ'/" (3. 64d)
Ptﬂ) ,.,,,—{ /7 - /': *”;& | (3. 64e)
3 57 ) '
m ‘ [ AR
= . 3. 64f
U =7 ( )
R :
P( ﬁ— .3/} +E A } _ » (3. 64g)
R) (R} . 2 -2 {
P = P, L /41."4;)/5/2 (3. 64h)
(R) (%) ” - _—
P,3 =P3,=—1‘///A1’+AL’)/5’/3 (3. 64i)
m) R o
P - (A -4, )/ﬁf’ (3. 64j) -
Note that Eq. (3. 64a aﬁd d) correspond exactly with the planar formulation, _
- Eq. (3.31la and b). It follows immediately that the multi-dimensional »
analog of Eq. (3.41) results from Eq. (3.62) for =0 , m=0©
~ With the aid of Eq. (3.64a,b,c,d)
2L, . — o | /) — g% 3.6 | P
poE t vy =g md,e-41 + 3,7 L] (3. 65)




The generalized Pg. approximation may be developed by setting
ﬂ_’::o) #>1 . The immediate consequence of this is that the radia-
tion stress term is reduced to the frequency integrated form of the
1sotropic relation Eq. (2.50)

P | | (3. 66)
Py-3%9

Truncation at £+ 1 allows equations (3, 62) for #/, el oL to be
. ~ o !
combined in the form: 7 . o , :

5T o ) s ] :
w— I’ -
% v grad, T, {87+ 7 L] g (3. 67)
whzch corresponds to the Py planar approximation, to the pla.nar forward-
reverse equaticns (3. 42), with (%)% (?/3)  and to the planar, cylindrical,
and spherical Eddington approxxmatlons, Eq. (3.56). As is noted in ‘
| Appendix A and Eq. (3.27) for any function }f (2,7, Z) the following .
E» ., angular averages may be defined.
3 » : ( N . - » ’ (|
T, 9.3 t) fsﬁ (BTt T(RFHIIR (3. 68a) 4
§ ]
] ﬂ. i
- [7) _ 5 —_— e i
72 ¥ alit)= f}e (T t) T (5 T¢) 42T (3. 68b) |
where }b may correspond to q’ /é %‘ . In general, the "tensor™ 4

imoments of will be tensors as well (e.g. the averages of with
a g Q

respect to each direction cosine in Eq. (3, 68b) are not necessarily the
same),

o e e

The notation will not be further complicated with this fact.

Analo gous to the entry at the top of Table I, the intensity is, to this approxi-
mation

I=‘7‘/f (T, + 3_722‘) | (3. 69)

E‘quations (3.65) and (3. 67) constitute the first approximation of a purely
differential formulation of the equations of radiative transfer. Although

the scheme is mathematically systematic, it is obvious that extension to




e e,

~of &, , the effect upon the governing equations is the same as if

" differential formulation contained all of the infqrmajcioh necessary to
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higher orders will prove cumbersome. ‘In view of the comments’ o,f‘ :
Section 3.2.3, even orders of approximation need not be considered. In
the future the general full—range method will be referred to as "the"
differential approﬁmation. It will shortly be pointed out that the formu-
lation is in fact not " purely" differential at all.

As long as one distinguishes among the various angular moments

Scatterin'g were included. For instance, Zo and £ are weighted by different

effective absorption coefficients. The reader is referred to Sampson(1965)

for the justification of the omission of scattering in a given situation. For
complete generality scattering should be allowed, but since so little physi-
cal information about scattering in ‘aerodynamic situations is available it

may be omitted.

3.4 A Critical Analysis of Boundary Conditions Appropriate for Moment 3
~-Methods - _ . 4 3

Throughout the discussion of approximate methods in radiative trans-

fer, care was taken not to consider boundary conditions., Since the integro-

determine, say, the heat fiux once a temperature distribution was specified,
somewhere in the formulation the relative simplicity of the interaction of
radiation with surfaces> has been lost. The reader may recall the intro-
ductoryrco’mments offerred in Chapter I. The problem is related to the
fact that boundary conditions are specified for the intensity itself and not
for its individual moments. Any expansion of the intensity in the governing
equations must also be applied to the boundary conditions, and different
conditions should be specified for the various moments in different orders
of expansion. It is well known that inconsistencies often arise in the choice
of boundary conditions once one truncates the appropriate expansion
(Davison, 1958, p. 129; Chandrasekhar,1944; Marshak, 1947). Further-
more, since the governing equations are never satisfied exactly, the

boundary conditions will never be precise either. The importént point
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is that even though the boundary conditions are inexact, they must remain
consistent with the approximate equations, The boundary conditions
appropriate for the various approximate methods in RGD have not been
investigated exhaustively previously. Cheng (1964a,b; 1965a,b) ga\}e‘ them
only passing comment. A modification of the so-called _“-Mark" boundary
condition will be shown to be the only formulation of the interaction o.f 
radiation with absorbing and specularly reflecting surfaces which is con-

sistent with a ?4_ differential appreximation.

3.4.1 The Method of Solidification ,

' Consider the R equations in a planar, cylindrical, or
spherical medium as @+ © ., Suppose that there are no boundaries
present but that the temperature and pressure are nevertheless non-
uniform. The equations which govern the radiative field may be written

in the form:

divg = T, {9 B - ofa” L.} (3.70)
_gradi- 3% .."’_? (3.71)

A heat flux potential similar to that used by Cohen (1965) and
Traugott (1966) may be defined as follows:

Z- 07{7, gradd (3.72)

Eq. (3.71) then requires that

—'37,¢ | (3.73)

and both of these lead to

/ 2 .0
% /qﬁjkacw—-j’;o('” = ‘ff_?'e a/ga - (3.74)
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‘In a .one-di.mensiqnal situation the appropriate optical depth is

I/Q""/{tm’"’/;;f) 45 | | (3.75)

“ K(t)

where a parameter ﬁlt) has been introduced for reasons which will soon

~~~~~~

become clear. Equation (3.74) may now be written

Y R
>, P = = Bj _L_f,, :((‘j,,;,? ,)] (3.76)

where

7: K?'fe 7. | (3.77)

and ,- R 74’_4/7 V » :
rey)- /?lt)-r/ ad"’ o (3.78a)

Ré¢) "'ﬂz
72’1 = Vet ) A F) I

Henceforth the subscript @ will be suppressed.

(3. 78b)

Under conditions previously stated, Eq. (3.76) may be reformulated. v

~ If symmetry is invoked in all cases, it may be assumed that i
| >0 a5 F-> C @

Since data is specified on ‘9¢/97 , the Green's function appropriate for the

solutlon of Eq. (3.76) is

v

=/ = —-/—f—”
e g) T g g

6/77 _ (3.79) |
(% %) e
cosh /71‘7”)5 Y<Y
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so that the solution may be written as follows

(-~
/ o |
o -5 [errmzmar
~Fw

where

(’)
j/ 7) = a(u)B .’(u) v5077 {/ejﬁ, /a( (!))/} (3.81)

Suppose that the gas contnmed within © =< r = £/(t) (or an
isolated slab of gas (—4.52(43,) ir the planar case) is sem rated from its
- z
sorroundings by a fictitious memUrane. Assume further that by some

means the absorption properties of the isolated mass are controllable

~and that the gas therein is maintai.ed isothermal at tempecrature 7w, .

——— ez 3

If the properties of the solitary gas are manipulated so that all
. . . . . M-’Q) .L ro) =’ cr)
incident radiation is absorbed, °/0(a"’ -1, 0\; - oA, =g ~> a0,
There follow

WLy “ET Y |
_T;fﬁz,zm[z,,)eﬁ;'l‘—ggf.cﬁ‘t‘, {3'/7/417 (3.82)

3

O LY L

Since 7”760 , and the body of gas is isothermal, a black surface
of radius R/fZ) has been simulated. At the surface, the following
relationship between Lo and _g exists,

Z,,V"q = #T8i%) (3.84)
This is Mark's Boundary Condition of Neutron Transport Theory. Mark
assumed the isolated medium to be black and applied matching conditions
at the surface. It has never been demonstrated that his condition is in
fact consistent with general non-gray radiative transfer to a Pg_'

approximation. The current modification of Mark's ideas may be

*The solution, Eq. (3.62) with Green's function, Eq. (3. 61) and
in fact the equivalent of kernel substitution in the spherical case when
p= o q = constant. (See Appendix C.)
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extended to non-black mteractmns as well ‘

Suppose that the space prevxously 1solated is void. One may object
to the use of an ’)Z plane in this case since the entire isolated region
degenerates to a smgle pomt However, since 4(, - a(m__’ . — o,

—Z = © everywhere therein so that the distinction is immaterial. The

‘effect of this assumption is merely to let 7”,-' o, and the result is

. l - 174 '
I./]/- g [Cosl:[ﬁgq’/e 1:}7/:/7 +;f' ﬂos/z/ﬂq)c (/,/,/7’ (3. 85)

Y 2 -
-/— / —ﬁ_’ /
_g/7/= _[ cwh/ﬁ’}ﬂé J”}‘,%/f//’ — | sinh5z,9)e ’%5;./,}/7’ ' (3.86)

Obviously 5/7'07 = . Since all radiation incident on the surface along

a given ray emerges at an antipotal point unattenuated, the effect upon the

~ field is as though it were normally incident and specularly reflected.

Similarly, radiation along rays which do not pass through the origin may
be identified with reflection as well, so that a specularly reflecting surface

has been constructed.
Lighthill has suggested (Lighthill, 1960) that, analogous to accomo-

dation coefficients in kinetic theory, one may use the emissivity to write

{@w} f[gwj + (1-€) {l?wj - . (3.87)

8lack Re F/ecfi:y

Of course, "black™” corresponds to a Mdiffuse" in kinetic theory; i.e. a
reemission of "particles" with energies characteristic of the temperature
of the surface.

This implies the following expressions:

L +(55) G = 77 B(T)

(3.88)
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where

‘ @
. P -6,y
_z;w =2 EB(Ty)+ ()- z/fog e Jf/]7d7/

~Because this artifice amounts to the solidification of '{he isolated volume,
the procedure has been called the Method of Solidification ( MG3),
In general, the semi-gray forms of Eq. (2.69) and (2.70) for the planar

(3.89)

case when T =0 lead to
-& ' ' o
I, + /fé—}czw = AMB(T){E, 1) +4E,(0f + (3.90)

+2 /z-éi,_;/; grra/f/fE[(p Vel-CELAp Y de

- where C may be a function of time at most, It is necessary to retain the
notation E_z_ /0)/ EJ (o) because a consistent kernel substitution will
not yield the exact values 7 and ¥z respectively. Thus if W«21 ,

N-¥F in Eq. (3.20), the relations above reproduce Eq. (3.8%) and
(3.89). In particular if the constants fn and N are left unspecified,
then the only consistent results follow if ¢c=n. Furthermore‘, the

correct emission, 4743 (Tw), results if, and only if, m=1 .

[

So far the entire medium outside of the surface has been affected
by radiation. What if another impermeable membrane were inserted at some
distance, RJ (t) , from the su:-face? Such a situation is ¢ importance
in application to shock layers. Suppose the gas in Ay <€ r <@ is non-

abs-orbing, l.e. odp = a(q”.’r 2750, It follows that

Shock

Shocx
Equation (3, 69) still holds, of course, but
i

4
-— -3 0 Jas?
L)~ TEB)+ 15 1)-£) [ € TFpy’ 69
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Since if q;r’(? the gas does not emit, thls case entails ne1ther upstream

absorption nor emission. If, however o(’ q’“’ a’ << 1 (i.e., small

but non-vanishing) then it may be assumed that the temperature level of
the upstream ‘medium is una.ffected by absorptmn of radiation from the

shock layer. The geometnc complication represented by ( ,,) térms

'is negligible in such an approximation, hence:

— " - - 3.93
Lfﬁock ‘%S‘nck \/j A 4 ( )

in addition to Eq. (3.88) and

'r— 7 oc
+ 2 /2-€)€e Shock (3.94)

° W'//)N,ﬂ. *wall )ﬂ E.

These appear to be the only boundary conditions consistent With the -
approximation. | |

The implications of Eq. (3.88) - (3.94) are quite important. First,
this method of deriving boundary conditions yields not only relationship
between I, a.nd___z ~but also an explicit expression for either one in
terms of the temperature (and pressure) fields. That the entire field at
the time of interest is involved is dis concerting but validly reﬂects the
physics of the situation. The solution of quasi-steady problems (those
unsteady problems in which/é"o) must always involve iteration in the sense
that relationships between Z, and _g exist at the boundary and far from it
(perhaps at a shock wave through Eq. (3.93)). One must choose the correct
value of, say, I . at one boundary in order for proper behavior to ensue at
the other. The integral expressmns provide a means whereby reasonable
guesses may be made.

It is clear that the geometry of the medium does not affect the sur-
face interaction.  This is conéistent with Davison's comments (Davison,
1958) that the interaction is a purely local phenomenon and should not
depend upon geometry. It shall be demonstrated {(Section<.2) that it does not
depend upon the time scale either. The effects of upstream emission and

absorption can be appreciable. With neither process present Eq. (3.91)
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indicates that, for comparable temperature distributions, (_1",)\,‘4"311 will be
smallest. Since I, is always greater than zero, it is possible that the
heat flux into the wall will be drastically underpredicted because the gas
upstream offers no resistance to the heat flux from the shock layer. If the
free stream is allowed to emit, the resistance of the true situation is more
nearly simulated since the upstream gas radiates back as a black body.
The full formulation includes not only this effect but also the fact that the
~ free stream radiates at a higher temperature than the undisturbed value.
The energy flux incident upon the shock wave from the undisturbed gas is
attenuated through the shock layer but must always affect the surface
interaction. The boundary condition term in an exact planar formulation
would in fact be v V |

war E (TN + Loy BAT - )} _
Therefore the upstream emission term is less important the "thicker™"
the shock layer and the cooler the free stream. However, there is always
a "boundary layer™ near the interface in which the term in question must
be important. It has not been previously observed that the lack of upstream
absorption forces the solutions one might obtain to be invalid over ™ largen
distances along slender bodies (or "times™" inApisto.n problems). No matter
how small the energy lost by the shock layer is relative to that remaining,
large amounts of energy may be lost over large periods of time, and the
resistance offered by the upstream gas must eventually be significant no
matter how strong the shock wave may be initially. This is the mechanism
by which equilibrium is attained. Similar remarks have been made by
Thomas (1965) and Olfe (1967). Upstream emission cannot be ignored
at all in situations such as the piston problem mentioned earlier since
the shock layer is not much warmer than the upstreém gas. The inter-
pretation is elucidated further if the relationship of the MOS to a method
of images is pointed out. In reality a distribution of radiative sources -
inside the body has been found which will allow the satisfaction of given
boundary conditions. These source (sink) distributions will obviously
be different if any portion of the medium is altered (say by omission of

free stream emission).
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Despite the fmdmgs of this section, the relationship of the general |
Mark-type boundary condition to others which may be formulated is not '
clear. In the next section several other approximate boundary conditions
shall be derived and the relationships among them and inconsistencies

inherent in them will be indicated.

3.4.2 The Ambiguity in Full-Range Boundary Conditions

: Suppose that some expansion scheme has been imposed upon
i L , the specific intensity, in order to simplify the formulation. As has
i been noted, the boundary conditions must be expanded as well. Consider
i the planar, Legendre polynomial expansion, Eq. (3.15), for simplicity,

since geometry has been shown to be unimportant in any event. Then:

20

I luqt) = Z Alen P (3.95)

The expansion scheme dictates that

: L
2
Zre fpnt) [ Liyxt) f, (pdu

Thus, if the boundary condition is of the form

I//ej/p/f)'*' B(7) y "1}4{4'0 | (3.97)

f there lfollows

| . . |
‘I,Ii Z 41 ’.‘.’f/ng') = é( + % /4/;1 /91‘)/ La) m/ﬂ/( (3.98)

i

/ where

! 3

= 8 (T
)lgyjju (3.99)
From Eq. (3.98)

2 A = 3(r)r,4°+:,:’/4,—5L'43 o (3.100a)
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i

Z 4,- -L 8w ;Z’A,,+—3i,4,+g’nl+..- (3.100b)
é‘—/’:f _8/_/,/ ""31/’:.*?"45"""' (3.100c)

If the expansion is truncated at vlawest order, 4,;’0, either
Ao = 24 + 38 (3.101a)

or
2{;,4, = A, - B (3.101b)
In terms of more familiar quantities these are

_Z;—-f;g = 475 (3.102a)
Z, —2g - 2778 (3.102b)

Thus there are two conditions to choose between if non trivial solutions
are desired. Of these two, the latter is most commeonly us ed, but there
 is no particular reason for choosin either. Expression Eq. (3.93) fails
almost midway between Eq. (3.102a) and (3.102b). Davison (1958) points
out the source of inconsistency in the methods. Suppose that the expan-
sion is truncated at En (wherein all even orders of approximation are
excluded), then if a?, = &a = const there are (N+/( ) non-trivial coeffi-
cients in the boundary conditions (#-Ze-/). If solutions of the form J,,‘“j,,e
are sought, then if R is even, there exist (N ) roots, M, . If, however,

R is odd then there are only M <&N*’)ij{0)]kroots, which is N , and
one of the boundary conditions cannot be satisfied. The Mark-type
boundary condition previously derived aveids any arbitrariness because
the only data us ed‘(i. €. those inveked in the specification of Green's

functions) were homogeneous. If the expansion is truncated at @h.

% aX



86

a Mark-condition is, in fact, equivalent to choosing :é- (Y*?) values,/blg- >
at which

I}/lo t) = EBIT)-4AT *+ (/—t:'):zf”(}z—(,-J o,t) (3.103)

if the/l{j are the roots of PN'H ///4)’0. (Since N 4is even, the roots are
two-fold; thus there are N#+/ equations.) This is also equivalent to evaluating
the a;ngular integrals in the full formﬁlation by Gaussian Quadrature.
Marshak's bbundary conditibn as Cheng (1965a) uses it is derived from a
general rule which requires the choice of —-’— (N+1) functions, Z-/} in
the half range /‘ /7 (or -z/az © as appropriate) and forcing
e MELBIT) - //-g)z to be orthogonal to them in their range of definition.

If these functions are Legendre polynomials in the planar case or the cor-
responding spherical harmonics for planar surfaces in a multi-dimensional
field, this insures conservation of the associated moments at the boundary.
There is, however, no rule for the choice of the weight function /\Z/%) .

If, however, Eq. (3.25) is forced into

f{Ir ot) -MEB -(/'ilI//ao-f)lzb_////d D, krz g (3.104)

then, the 4_ approximation yields

I, +/%=5 é)Z_g 478 (7o)  (3.105)

which is Eq. (3 88) if f-z is replaced by ,Z._Z . This is Marshak's
boundary condition (1947) Although the half-range schemes are poten-
tially much less general than the differential approximation, half-range
boundary conditions can provide some interesting full-range effects. They
will be shown to yield useful results in regard to Marshak's boundary
conditibn, Eq. (3.105).

3.4.3 The Relationship Among Full - and Half- -Range Boundary
Conditions

Suppose that boundary conditions are specified in the

general manner

" _
lﬁ/f/v,ﬂ = re8(7) +(1-&) I J_éa/ o t) (3.106)
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then the half-range equations (3.34), (3.35a,b) result in

(=)
2Rt A/g lot) = 47725(7)[?1/-/)/4»«(/ é)ZAfﬂtlff”ﬂ:")&y-/)/m 107)

The first few of these are;

.fﬁ/o/é) = ITEB +(/-€] [,4:'»‘.2 A,("+ e f (3.108a)

! ¢ { At
$A gts = (1-€1 {54+ F (3.108b)

To lowest order, . P, half-range, Eq. (2.27) states that

(-I

g- T (A = 4, (3.109a)

—ff 7 /,46‘ '_,_Ab")) (3.109b)

whence Eq. (3.105) is recovered. However, this approximation yields an
incorrect thick limit. Thus the factor of Z on g is not consistent with
the correct "thick¥4 and "thin" limits. From the remarks made after
Eq. (3.90), Marshak's condition is consistent only with the approximation
E, (x)= e"'x :

Consider further the family of forward-reverse approximations
defined by Eq. (3.36) - (3.42). Equations (3. 37) and (3. 38) yield

g = (T Y (3.110a)

Z _27},{ —— (% 1) (3.110b)

From Eq. (3.106) there follows

13*/ L<€)/22 /g STBT) - I (3.111)

which corresponds to Eq (3.88) if .%;—' a4 and #/ <L . But this
yields & = Z//5 which is greater than unity, hence impos sible. Since

/(7-‘-1/ 7 will be > L , and this cannot be allowed since it would imply
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emission at a rate gredter than that of a black body.

Helliwell (1966) has forrnulated the half-range equations from a full-
range>expan51on equ;va.lent to the P -approximation. With this artifice
he has obtained the correct thick limit. His approach cannot be used to

formulate boundary conditions of the type Eq. (3.106) since while the half-

range moments can be found from a full-range expansion, the half-range

intensities cannot. ‘

- One of the reasons that Gé.ussian‘ quadrature is most suitable for
the evaluation of the moment integrals is that the Gaussian o‘rdinates are
symmetric about the midpoint of the interval. Furthermore, the end
points are not necessai-y. Since odd orders of approxifnation (those which
require an even number of points) do not require the use of values at the
midpoint (M=¢ ) where I is discontin‘ubus, this is another reason for the
omission of even orders. According to Krook (1955) the planar Legendre

polynomial expansion Eq. (3. 25) is equivalent to

PRI N
_Z;, (X¢) = 27T !1 /u"I //glgﬂju =zrrJ% w}nc&.}:[%,;f)ﬂ-/)"_z’%;,ﬁ}(3. 112)

where the QJ' are Gaussian weights (see Chandrasekhar, 1960), and the
_/({/ are Gaussian coordinates, the zeros of the Legendre polynomials.

‘If one eliminates I(/J x,¢t) from Eq. (3.106) and then employs the
closing condition which relates /ﬂ_’,lfﬂ,lm,-o- to Ao, # , ees, Any, it follows
that '

=, (9¢) 1 - - - - . <1

o

=, (o¢) M | Hn
. 3

(3.113)

I
O

L= o v s o

. (ot) U")H' . (/U,,)H
= glo/t) y“)»{' o pu')
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where
- | = ; ; (3.114)
- n (X/t)= 1+(_1)’1 € {-2-”101*)-2' j=1t %) a,)EB ‘

To lowest order, _f= 1L , this reproduces Eq. (3.88), and indicates
what form the extensions to higher orders may take. Krook's idea has
never been displayed in the general form above. The P. -approximation
is equivalent to assuming that I™nd T are two discrete streams of
radiation incident from angles ceos™' (.t—'ﬁ—-) respectively, and each is
proportional to /I, > = glf.;) . The successive PN a.ppi-oximations
may be thought of as representing / by N discrete streams each
(Chandrasekhar, 1960). In the multi-dimensional case, each stream
has both a declination, & , and an azimuth, /Q’ ; hence in the spherical
harmonic expansion there are (.ZJH) individual streams in 1&) to a
E[ approximation. Chou's (1967) method involves the choice of optimum
regions of the unit sphere for averaging. His approach isnot general,
although it has been demonstrated that it is more accurate than the -
differential approximation in a few cases.

Some comments concerning the MOS in more general situations are
now offered without proof. Extension of the method to higher orders of
approximation in one-dimensional cases will require the solution of dif-
ferential equations of higher and higher order. If these were carried out
the result would be:

1. n-1 linear combinations of the n moments related to a function

 which would depend upon the temperature of the boundary, and

2. A single condition which would relate the value of one of the
moments at the boundary to integrals of the temperature and
pressure distributions.
Thus the differential approximation is not purely differential at all, The
integra‘ls have been removed from the governing equations at the expense
of their appearance in the boundary conditions, but this is a considerable
simplification. The application of the MOS to multi-dimensional situations

should be straightforward but cumbersome.’ Particular difficulties will
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arise if the‘ bounding surfaces are concave outward so that ‘t>hey can "see®
themselves. It is hoped that such extension will not be necessary, since
it has been amply demonstrated that in at least three different geometries
the boundary con‘dit‘idns are the safne. The prob‘lebrh could easily have
been solved in terms of retarded coordinates (just as the transfer equation
was solved to obtain Eq. (2. 33)). In this manner it could be verified that
Eq. (3.88) and its analogs Eq. (3.92) and (3.94) hold even when 8# o
This shall be justified in another context in Section 4. 2.

Kourgan'off (1957) has studied the effects of several boundary con-
ditions upon the ¥, -planar approximé,tion‘in asfrophysics. He has shown

that for stellar structure the errors in the Eddington approximation
) o
P -3Te 5 Teto)= 27 (o,%) (3.115)

- compensate each other at large optical depths so that the discrepancies
from the exact solution are approximately 3 percent. However, at the
interface the approximation is 15 percént in error. The boundary con-
dition, Eq. (3.88), is exact at small optical depths, but diverges by a
consistent 8 percent‘for 7 2 2 . Even &though the specific intensity
is hopelessly anisotropic at the interface, Mark's boundary condition
gives good results thereat. Since aerodynamic interest lies partially in
the predictioh of. heating rates, it seems that a Mark-type boundary
condition is best for this applicétion. In fact if emission from all depths is

considered, it may be shown that at the edge of the atmosphere (Eddington,
1926, p.333). ‘ |

I, ‘-‘Z_g//v‘z';'(a:e) ' (3.116)
SO thafc‘ '
T 19¢)- F grae) BRIt

which differs from Eq.: (3.88) by only a fraction of one pércént.
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3.4.4 A Consistent Derivation of Optically Thick "Slip' Boundary
Conditions

The analogy between Moptically thick" radiative transfer
and molecular vonduction has been pointed out previously (Chapter 1).
' Probstein (1963) and others (e.g. Tien and Greif, 1964) realized that
the phenomenon of molecular slip had an analog in radiative transfer

and sought expressions of the form

7o)~ Ty = K gred7 A - (3.118)

pt where T70) is the temperafure of the gas at the wall and ~, fhe slip
| coefficient, was to be determined from matching with the black body
result in the "thin® limit before the optically thick catastrophe could
occur. It shall be shown that an expression with a definite value of X
follows fron: "general? boundary conditions of the form of Eq. (3.88)

and (3.105) which are written symbolically as
I+ (25)c, 9= #7B(T) | (3.119)
© & I.g . ‘

for a gas in LTE. Recall E‘:q. (3. 65) and (3. 67) in a non-scattering, quasi-

osotropic, semi-gray gas.

25 L= AL ’
/@Z‘%*‘/’VZ'Q(4“;’T”4’I°) ~(3.120)

' ;" - Wz a_ e
/6;"2‘%- .,ijJI, ILp o g Lt a] (3.121)
In the thick l'i.mit T, = 4922741‘ o /é_) | (3.122)

and

—
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Thus Eq. (3.119) in light of Eq. (3.122) and (3.123) is

37,04

Since gradients must be small and Ti0) is not too different from Tw

(PETI AR = () Ly gnirs 01

c_;_’ff =~ | (3.125)

770) T/ / _

= = |+ 7, *0 /-f;) (3.126)
so thvat

¢ 97 2-€ 47w N

I j2-€) G ‘7 | (3.127
'OI‘ T = J_Z:(o(ﬂ j)’qc/T A | ( . )

and by Eq. (3.126)

2-& C/ — o
- z [—0—) —— d7 N 3,128
7000 =T = ([ Z e I (3.128)

Equation (3.128) is the gehéral form of»Probstéin' s "slip" boundary
condition. In fact‘, for a black wall and Marshak's boundary condition
(¢=2), Eq. (3.128) is identically Probstein's result! Itis, therefore,
not surprising that his results agree with those of the diffex:ential approxi-
mation to which Lick applied Marshak's boundary condition! We claim,

however, that the most aﬁpropriate slip coefficient is

K=(F)ma . I

Equation (3.129) is again in direct analogy with the molecular result if &
is associated with the thermal accomodation coefficient (See Eq. (3.87)).
There is no arbitrary matching required. The non-linear condition ,

Eq. (3.124),was derived by Deissler (1964) in a very elegant manner
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but unfortunate’ly only for the case of a constant o, . His formula

to 0(-%:;.,) corresponds to Marshak's boundary condition, ¢, =4

Slip is always present when molecular transport phenomena are ignored,
thus no "special" treatment is necessary if one is consistent. The

previous comments do, however, clarify the concept of radiation slip.
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CHAPTER 4

THE METHOD OF CHARACTERISTICS IN
RADIATION GASDYNAMICS

4.1 The Characteristic Surfaces of the Unsteady RGD

The governing equations which will be discussed are those con-

sistent with a F; differential approximation to o(/éz/ in a semi-gray

medium which is not necessarily in LTE,
BE +/%he D rpdiT = Z (25
/”P)'r,t Ot /0” pt ot /° wa = /0c AT LT .

D]-‘-2 _ T 0=
/0 th- Fjradp—/@(g{)“nt}‘g

/7/,-"— p
(/i—r,!-’ "1jp /hr)fc _Q_E é!-( )I,J/VU-J.E (0- 90 ?

' 21, e
ﬁg—z +JIV‘3

¢l =

27 . 4 __
/gjéfjjma'l'o_ fe”(aé

.DC‘_'-___—’V‘_/}'_
Dt tp

where

]
R
N

N
Qs

<

’(4.1)

(4.2a,b, c)

(4.3)

(4.4)

(4.5a, b, c)

(4.6)

(4.7)
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The equations of state and thermodynamics have been used in the form

o=l BT E) (4.8)

=4 (B77) (4.9)

The mathematical character of the above will be exa.mined according to
a procedure similar to that outlined by Von Mises (1958).

Consider the quasi-linear system of equations

/@/ - o
) )= O 4,10
Z Z:— 7 6}/&}* ¢ (ay , ( )

which are "m!' equations for the determination of "m' unknowns W;, (= 1 to 7

s : . (e
in ”n” independent variablels yk , #=/to . The 14 )(U }’) are three

dimensional matrices whose general elements are the coeff1c1ents of the
derivatives of (,b with respect to ) in the i.th governing equation. Con-

sider further a surface, ,§, described by
wiy)=o

in which the coordmatesf f ,{;_, are defined such 'chatf° =0 is
the surface .5 . The,{. > L= 1,7 are coordinates in,S' . In the new
coordinate system Eq. (4.10) is

'Z’th[ZA J‘{ Jq} ZZ /AMJ;#) %4 (4.11)

o U J/,Q 5'{ Gt ket - ke

Given initial data upon all of the U‘. s {=L,m on the su.rface,S" , a solufion
~may be initiated locally in Taylor series if the normal derivatives of the
(4; onf:o, i.e., the 9‘{%{0 » can be obtained from Eq. (4.11). Once
this has been accomplished the Cauchy-Kowalewski theorem (Garabedian,,

1964, pg.6 ff.)assures a unique solution. The required derivatives cannot
be obtained if
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dR =0 (4.123.)

where
(4.12b)

A manifold whose description satisfies Eq. (4.12) is, therefore, exceptional
for the specification of initial data and is called ''characteristic'. A

h‘ : manifold is characteristic at a point if the direction cosines of the normal

‘ to its tangent plane satisfy Eq. (4.12). Equation (4.12) is a homogeneous
polynomial of order '"m' in the direction cosines, Hp. If it yields a
relation from which real values of any one of the o, may be found for

any real values of all of the others, the direction defined by that eis
time-like, and the surface to which that direction is normal is space-like.
If there are ''m'' real and distinct roots of this type the system of equations
is totally hyperbolic., On the other hand, if the )4,--“

J
for each K or if any linear combination of them is definite the system is

are symmetric

termed symmetric hyperbolic (see Jeffrey and Taniuti, 1964). Maxwellls
equations are of the latter type. Finally, if some of the roots of Eq. (4.12)

are real and some are imaginary, the problem is ultrahyperbolic, and if
all are complex, it is elliptic. To be hyperbolic in the weakest sehse a
5ystem need have only one sipace-like characteristic manifold at every point,
These are merely convenient names and bear little relation to the ease of
solution of the re'spective cases, |

A hyperbolic system may be simplified if one makes use of its
characteristic surfaces., Since derivatives normal to these surfaces are
indeterminate, the governing equations may be written upon them in one
less independent variable than the original system requires. The systematic
method of forming combinations of the equations which allow this involves
first multiplying the system (Eq. (4.10)) by some unspecified vector v; Iﬂ,‘y')
so that '
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t")o?{ } t*—)o?f Y,
Z 2 2 (54, a//e) ZZ{"?“ FEEV a5 | (1

The normal derivative °2u-"/e?fp will be indeterminate on the characteristic
manifold, thus tenable equations follow only if the components of T are
such that

?-;{. w3 B (4.13b)

The right hand side of Eq. (4.13a) then provides the simplified Vequations
in (n-1) 1ndependent variables. These are referred to as compatibility
relations, and one is assured that there will be as many of them as there are
dependent variables only if the directions dkare all distinct. The geometry

— —
of the tra.nsforrnation/ to { is very difficult, but it has been undertaken

- with some success (Holt, 1956; Butler, 1960; Chu, 1964, 1967; Sauerwein,

1964, 1966).

It is obvious that Eqs. (4.4), (4.5), and (4.6) do not enter the
specification of the fluid mechanical characteristic surfaces. That is,
the radiation and the fluid mechanics are not coupled through differentiated

terms, but rather through 1nhomogeneous terms, such as . For three-

"dimensional unsteady flow Eq (4.12) is

-—-=--00-—--- o
I [ :
] | P ,
F ! [ :
| 1 !
| !
0--— -06o-- --0
o---—- 0 ©--~7Q
I I — M =
l | ' | = O
! [ R : I
! L
TN &
| (ol : C (4.14)
: o |
1
o-———o00———0
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=
where F , R , and ¢ are the fluid mechanical, radiative, and chemical

submatrices given by

bl Y ot

*<

Ly

O

i}
I
\0\\ N~ '\l-
NS o€
Q

153

1[4{
"N
i

gl
\

O

Py Ph
© o o

o O O

O
O

Pl O

O Lk

T- diag (SY)

B’ is the Eulerian derivative

b’: o% + T,(\JraJ

The part of Eq. (4.14) due to fluid mechanics yields the following

L, B

-

(4.15)

(4.16)

(4.17)

(4.18)

Coa i i
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/.(9}"}1.—. a;(j"na’ﬁf’)- {]ma/y/) (4.19)
(D¥) =0 (4.20)

where
, | r/’c— ‘
Q" _Q_f hr}ﬁz—;f'%ﬂ/é)fo
FrpsE T -
7 Freforbs =l ol + 120

is the frozen propagation velocity in the presence of equilibrium radiation.

+0(8°) (4.21)

(In the above and in all that follows, subscript notation is employed for
partial differentiation.) That Eq. (4.21) is correct may be verified through
the second law of thermodynamics if one is careful to identify the radiative

contributions to energy and pressure. The quantity & is the same as the '

propagation speed formed by Sachs (1946) and cited by Sen and Guess (1957)
and Marshak (1958). The determination of characteristic surfaces will
always specify the propagation speeds under the conditions of interest since

characteristic surfaces may alternately be interpreted as wave~fronts

x\ (Staniukovich, 1960). This seems quite the easiest way to approach the

situation since all of the requisite thermodynamics is already in the

governing equations. The application of standard methods (see e.g.,
~Garabedian, 1964) to Eq. (4.19) and (4.20) yields the equations of the

generalized Mach cones and particle world lines.

AR

e A s S
S e i

((r)-da-tf-jerR-dew)=aia-t"

S =ddl | (4.23)

The particle paths are, in fact, NtZ fold degenerate if there are N
. =
chemical processes since det/C)= & requires that (£ ‘;")N= 0. {

and
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Equation (4.22) verifies the time-like nature of the variable ¢ ., These
results and their consequences in real, nonradiating gases are well
known, and more detail may be found in the works of Sauerwein (1964)
and Sussman (1966), Of greatest interest in the present context are
the consequences of Jet (f)"o. If moments of the transfer equation

=
had not been taken, then det R=0 would, have been merely

@4 (¢) = [aj—t ,«jtjr..,/)y/ =0 (4.24)

which yields the nondegenerate photon path line,

o7 = /%; St (4.25)

When only moments of the specific intensity are considered, the situation
changes drastically. Consider the infinite, unclosed system of moment

equations

/@ %ﬁ" * div f’:_ = 5 [47/'@@ 8- q{,ﬂfl—o} (4.26a)
Z = w F
ﬂi“ v div I, = T, I, (4.26b)
== = =
i + v i—; = 5('-? A 8 1 - qﬂ)_z;_ (4.26¢)

where the moments of L are defined according to Eq. (3.68), The

determinant R for this system is of the form
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-
ABY ke (’I; yjao T
o B O O %
= o O A O
R - iz
O O O B¢ o
. c
| : : o —  (4.27)

Even though the system is unclosed, R must be a square matrix of infinite

‘dimensions, All nonzero elements appear above the major diagonal, thus

det (%):o yields the infinitely degenerate characteristic

S _
,/{1::; //é%_) =0 . (4.28)
which is a cylindrical surface ¥ = % (F) . The effect is that of
instantaneous propagation even though the speed of light, ’/ﬁ » is finite,
This characteristic has no obvious physical interpretation but will be
referred to as the pseudo photon path. Obviously the confluence of

all of the cylinders must be the photon path line. In fact, the system is
parabolic since there is only one compati'bilityArelation, the transfer
equation, which a.pplies along the pa.th line.

The implications of the truncation of a spherical haromic expansion
are now apparent, SlnCe the clo sing condition relates higher order moments
to those of lower order, it transfers nonzero__elements from the right of |
the d1agonal to the left in the ''N thy, row if _f” is the last moment

retained. This provides only cone-like characteristic surfaces in odd

~orders of approximation and "#-1”cones in addition to a pseudo photon path

in even orders. In fact, it is truncation which makes the system of
moment equations hyperbolic. Since the closing condition relates the
highest order moment to all of the lower ones the characteristic directions

th

are solutions of an N or N+ degree polynomial because that number

of elements will be moved to the opposite side of the diagonal. For instance,
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Eq. (4.14) leads to Eq. (4.28) once and to

6" (%) e [grad §)- (grad ¢) (4.29)
the solution of which is

t-t)= (38) (7). (7-7) (4.30)

The se shall be called I"light cones.” As opposed to Mach cones, they have
straight generatrices. Their projection on physical space is a sphere
of radius /‘L‘-f,)/'g\g whose center is fixed whereas the projection of a
Mach conoid on physical space is a sphere whose center moves along the
i projected path line. The characteristic surfaces of two-dimensional
unsteady flow are indicated in Fig, 3. As the elements to the left of
the diagonal move downward in &R the semi-angle of the light cone is
more nearlyZé’)rather than a fraction of it. This will be demonstrated
in Section 4.2. Since the time axis lies within the light cone, distur-
4 bances must eventually extend over all of space.

The difficulty with steady flow is now obvious, since Eq. (4.28)
then defines no time-like directions. The system of equations becomes
ultra-hyperbolic (Jeffery and Taniuti, 1964, p. 37). Ultra~hyperbolic
) systems allow discontinuities not only in space-time but also in ordinary
. space, thus the nature of the problem is drastically altéred. Nevertheless,
in unsteady situations the characteristic surfaces are always real since
as/g->o a solution of Eq. (4.29) is %¥—T= wwst. The situation will be
clarified in one-dimensional unsteady flow. In Appendix B the implications
of radiative transfer in two (or three)-dimensional steady flow are briefly

investigated.

4.2 One-Dimensional Unsteady RGD

4.2.1 Verification of Hyperbolicity
The essence of hyperbolic methods which involve the use of

characteristics is best illustrated by problems in only two independent
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variables. The Von Mises approach is particularly instructive in these

cases. The appropriate form of Eq. (4.10) is

o’)V

57 +M- °)V =NV re (4.31)

Premultiplying Eq. (4.31) by the unspecified vector, U, one sees that if

U.(M_:_Af)s_é (4.32)

Equation (4.30) is

7 /2% ) (4.33)

which are ordinary differential equations in the directions

gr 4
JE = —i—- (4.34)
This is an equivalent definition of characteristic. Since differentiation ‘

only along the line, Eq. (4.34) is involved, one can never move away

from it if data 1s spec1f1ed on it alone. The directions, A , are the 3

eigenvalues of M and once the left hand eigenvectors of —75 (the D& )
are found the compatibility relations are specified by Eq.(4.33). This is

the advantage of dealing with two independent variables.

The specializations of the previous classes of hyperbolicity
follow directly. A system of equations is hyperbolic if all of the
directions, A , are real and if there are as many compatibility relations
of the form (4.32) as there are dependent variables. This is assured
if all of the A are distinct, in which case the system is clompletely
hyperbolic. If there are ''m'' distinct eigenvectors even though some of
the A are degenerate then the definition of a symmetric hyperbolic system
is satisfied. However, if there are insufficient eigenvectors even though {
the A which exist are real, the system is parabol»ic. The one-dimensional
analogs of Eq. (4.1)-(4.6) may be written in the form (4. 31) if the following
are identified. In all equations /=0, 1, or 2 for planar, cylindrical, or

spherical geometries,

V= (hU 7,7, 8,6, Cnf (4.35)
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where

A= by ‘C;:"/ ) Va2t

51+ 3(2)5 phs -2

8 phi _ A
=56 G T u/f)fJ

It is also useful to note that
A (U™ G5
A s 7:""7_ —_—
/oP Te u 0;

where ﬂ; is given by Eq. (4.21). With the information, the following

characteristic directions and eigenvectors are found.

A= 1 S tux gy

._~. o), /z)

{1 044, 0, 048%, O/é‘) 0,...,08
}131: %{
_:.{!) {
54, 0,4,008%, 08,6, -0}
(9), (5)
A = 2 4/F
__-(4)(5)

{001+f | /oj

) (6) A/ffﬂ) . //

— (6) —»(531) [

-» U =90, ....... jok_,).t o,

) bt ) 0”} ) k=&, 5N

(4.38a)
(4.38b)

(4.38¢c)

(4.38d)

| (4.39a)

| (4.39b)

(4.40a)

(4.40b)

(4.41a)

(4.41b)

(4.42a)

(4.42b)
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(* 5) _— —_— (S)
A }=2/ becomes degenerated, but U’M and ¢~ “remain

If/@-m ,
distinct so that the hyperbolic nature of the problem is retained. The
gasdynamic relations including terms of a/é) will be of no further interest
in this investigation; however, those which govern the radiation contain

significant information. Equations (4.41a,b) and (4.37) reveal that
L /_Z'z WBf=tT [7, 8- z & (4.43a)

on /
dr — (4.43b)
1‘/6@'
Since the characteristic of negative slope carries information from up-
stream, far from any disturbance Eq. (4.43a) indicates that Eq. (3.93)

holds even in the unsteady case. Therefore, the boundary conditions

derived in Chapter 3 hold always. ,
Examination of the next approximation will reveal additional dis-
crepancies inherent in ""even'' truncation of moment approximations. The

governing equations are listed in the second row of Table I. They are

!
2% 2g "
T ax= G 147, - 974, 8 (4.44)
R)
g +§§- = —5,(4"’5 (4.45)

(R)
e /; J;é {a( }o"” A, B] (4.46)

The characteristic directions and compatibility relations associated with

these are
P s rg} /T[[QP["f4’:g "ﬂ—a’ 5} (4.47a)

on

5’%= z ;’)5@ (4.47b)
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A j‘/E[Ir rsb:ffn-)/z -z, {[%“Z*fa{,/‘)wt?_ %z;,e&} (4.48a)

on (4.48b)

A= const.
The limit/é-vo is singular since it implies that the right hand
side of Eq. (4.48a) must vanish. The system remains hyperbolic however,
",
since Z, may be eliminated completely in favor of PI,)B . Far from regions
of disturbance the right hand sides of these equations must vanish. Since
. . . . . ¢o) 172 7%)
the field at these points is nearly isotropic o, — Ae —>d = dy—>le
so that |

-ZzP". /%rg - (4.49)

pm_gg__ g R (4.50)
These two imply that | o ‘ B
7. - ;/J_f_g =273 A (4.51)

a form which is familiar. In the far field, isotropy ensues as Z”D . To aext

order the characteristic directions are 2=§él/§~—_ V70/3 where the

negative sign within the outer radical corresponds to the '"light cone''.
All even orders possess a characteristic which carries information about
the moments from far in the past, whereas other characteristics possess
only a slight delay. When @-» o there are bits of information which cannot
be accepted. The effects must eventually decay, hence the singular
behavior is serious only on scales of o/B) .
Even though/é is not entirely negligible, it is nevertheless small

50(/0'1}. Therefore the time increments of a numerical scheme would
have to be 0//6) and several time increments would be required before
any effect would appear in ‘flu:'rld mechanicg. Although 0{/6)Will henceforth
be neglected, it is again stressed in the study of stellar structure or the

initial stages of nuclear blasts o(8) and 0//%0)may' not be entirely negligible.
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Another consequence of the omission of Oﬁé)is best illustrated by the
planar forms of Eq. (4.26).

jf’ =T {97 B - A" T, (4.52a)
;1;: -G QI (4.52b)
:? =T, {%"rﬂ’eﬁ— Ao T, ] (4.52¢)

In the moment space these may be written in the form

RI, . I - 4Td. B

= (4.53a)
JIL °(¢UJ I,

QI; = _ a( c’)I . . . .
=y (4.53b)

"""de B - {‘)_[

As an undisturbed state is approached, the numerators and denominators
of these expressions vanish simultaneously, so that regions of radiative
equilibrium are singular in the sense that to approach them a saddle point
must be traversed. Therefore, arbitrarily small errors in Z, at the wall
will lead to arbitrarily large divergence in the far field. This is not to
be confused with Hadamard?’s definition of an ill-posed problem which
~ requires large changes in the solution everywhere for infinitesimal changes
in data. It is noted that if all moments of the specific intensity were
retained, the confluence of the saddles would be a regular point since the
full transfer equation is regular as equilibrium is attained. Truncation of
the moments forces one always to deal with saddle points. Sherman (1967)
has recognized the "stiff'' nature of these equations but his techniqueé
for handling the saddle are inapplicable in the present treatment.

The domain of dependence of the solution at a given point in space-
time now includes all of the past and the present. This is absolutely the

largest domain of depencence allowable in any physical problem. The
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compatibility relations are

%P I *u
7% % JE -

=He 2 (""’f’”’ J’rﬁf,./ﬂ#ﬂ/nf)-

/7 07 /fc

ﬁl' ITI f'/O
on ‘ (
,j,'::_. ut a; (4.54b)
7_TBdP. Te /1 W |
jt /oA JET B, / /(P Z[ )A /7‘:4/»79 (4.54c¢)
and 3/{:‘.= _’—'% (4,544d)
& p
on ‘
jJ—g = Y (4.54e)
and
;;_’g - _ {—g’?*‘}_g__] (4.55a)
3’%_:: 2 ~37,a"% (4.55b)
-~ on 2= comst r ’ ' (4.55¢)

i Of course Eq. (4. 55a) is merely the energy equa.t1on con51dered previously.
The singular nature of the optically thick limit is illustrated by the
characteristics approach. When the result a’"i[ YA o B to 0(/7')

is applied, one of the compatibility relations is lost, and still another is
PP Y

required because q//vg must be found. The problem then becomes truly
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parabolic, and a method of characteristics will never be suitable. No
matter how small & , Eq. (4.7)ymay be, its retention in the system
through Eq. (4.55a) serves as a bridge between 7 and 2 and renders

the problem hyperbolic, Therefore ©( //_'Z;") need always be retained

in unsteady problems (and the propagation of shock waves falls into this
category). The thin limit is not singular because two dependent variables
and two cempatibility relations are lost simultaneously. These results

have never been examined in the manner above.

4.2.2 The Existence of Shock Waves — Generalized Rankine
Hugoniot Relations

It is well known (see e. g Gara.‘bedian,.1964) that
hyperbolic systerﬁs of equations admit solutions with strong discontinuities,
that is discontinuities in the variables themselves rather than just in
derivatives. When such discontinuities occur; the derivatives of the
dependent variables are locally ill-defined; hence the governing equations
cannot be satisfied. Consider the following quasi-linecar system of

equations written in divergence form
—?— A(,) — 2 __7") . — - _ .
2 {P (x,t,v)_} T Sx {P (;gf,v)]+n (%t,¥)= 0O (4.56)

If the vector V is defined in some domain, D, a solution is weak if
for any vector U which vanishes outside of some region of D and

which has continuous first derivatives everywhere:
=) QT 20
g = (2 —

If the line across which the discontinuity may exist is examined in detail
—
and it is recognized that ¢ is arbitrary, one finds that the line is

determined by

/ [Pw] (4.58)
a’{' [P"J
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where brackets denote the discontinuity in the variable of interest.

L=

If the equations were linear, these lines would 1n fact be characteristics.

‘That the line of discontinuity is not a characteristkis a manifestation of

nonlinearity. Equation (4.58) represent, of course, as many equations
as there are elements of the dependent variable vector, —\7 ; and these
equations relate the discontinuities in all of the variables to the ''slope"
of the discontinuity. (For further details see Jeffrey and Taniuti, 1964,
Ch. III; Courant and Hilbert, 1962, Vol. II, pp. 486-490).

Fortunately, the equations of gasdynamics, with or without

rad1a.t10n, may be cast in the form Eq. (4.56). This is fundamentally so

- because the equations may be derived from a control volume considerations

which require the application of the divergence theorem in order for a
system of pui'ely differential equations to result. Since the Divergence
(Gauss) Theorem may be applied only in regions in which the dependent
variables have continuous first derivatives, it is obvious that the governing
equations cannot apply near stfong discontinuities. As was mentioned
earlier, radiation and fluid mechanics are not coupled by derivatives,
therefore the ordinary arguments for the existence of shock waves still
hold. If o;e) is included it follows that

/4/‘4__‘{,) ."—'/oz_ /Nz"ug) (4-59)
(B+ 281, )a0-8)= B+ 5 GT.) 444 (4-4)
(4.60)
R L ) TR U T, [0 -
= gflgl%//’-/”:“é)*ﬂ@%*'ﬁ/é/ 2 /34;”2- %} (4.61a)

where

L ht zﬂw. (4.61b)

| [(bf ‘3_;“&] {?} iy Ei’ ;;%] {2:; (4.62,4.63)
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where Us = 3—/—;[5 is the slope of the line across which the discontinuity

R T OB F weE

occurs. This line is hereafter referred to as the shock wave and its
slope, U, as the shock veloc1ty Equations (4.59), (4.60) and (4.61)
were derived by Sachs (1946) and Marshak (1958) through quite different
arguments. Equations (4.62) and (4.63) imply, however, that Z, and g
are continuous across allnonrelativistic shocks d ﬁ . Therefore
radiation pressure can do no work upon the dlscontmmty, and the energy
dens1ty must be the same in both sides. ThlS is readily justified since

in the /4 approximation the intensity 7 is a linear combination of J;and.s.

Physically, the specific intensity must be continuous across all

nonrelativistic shock waves because the mean free path for photons

is always much larger than that of material particles and the shock

is a discontinuity on the latter scale. The heat flux must be continuous
since there is no mechanism whereby energy may be dissipated in

the (mathematical) discontinuity. Thus L, must be continuous as
well. Thege arguments would not hold in a viscous, heat conducting
gas, but as long as transport phenomena are neglected the ordinary

Rankine-Hugoniot relations hold across a shock wave in a real,

radiating gas if effects of order /‘6/30 are neglected. If that order

is important, the energy density of radiation is convected across the
shock by the fluid at an effective velocity,( w- U’)

_ It is easily demonstrated that the nonequilibrium chemistry must
be frozen across the shock wave because the continuity and rate equations
lead to

U = —Z———Z « &l (4.64) ’

e

while continuity alone yields Eq. (4.59), which may also be written as

Loul |
_ __L— , 4,65 A
Us = Lpel ( ) y

It is clear that all of the ¢; must be cont1nuous across the shock. Again,

if transport phenomena were a.llowed the existence of diffusive fluxes

- would obviate the approach, since the velocities of the individual species
would not be the same as the mass velocity of the gas. These arguments
hold for two-dimensional steady flow as well. Tirumalesa (1967) has

transcribed the mathematical formulation. He fails to notioe, ‘however,

- e w - - - P—————————— A o s Yot o bl
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that frozen flow must hold across any inviscid shock.

- In summary, across a shock wave propagating at velocity Us the

following hold

Ve /q;%)s,o;/az; us) (4.66)
Ftod ) = %+ 8 4 (4,~ts) (4.67)
oA ) + Ty = o ol )+ 7R (4.68)
z, -2, | - O (4.69)

8= 2. | - @)

(@) = (¢), (LN (4.71)

Any assumptions other than frozen flow (Eq. (4.63)) across a transparent
shock (Eq. (4.69),(4.70)) are inconsistent with the govefning equations.
Note that the shock wave does not propagate into an undisturbed medium.
Since external sources of radiation are not allowed , the only way in
which Eq. (4.69) and (4.70) may be satisfied is through a loss of energy
through the shock. '
The mathematical analysis is quite rigdrous, but one must not

forget the phy-sicalrassumpt'ionks involved in practical problems. Although
the restriction has not yet been made, it must often be assumed that LTE
exists, In light of introductory remarks, almost every condition for the
existence of LTE is violated within the shock wave. Collision dominance
is obviously impossible. However, this local failure is insu.ﬁ_'icient to
invalidate the solutiohs which one might obtain. Indeed, even the Navier-

Stokes equations do not apply within the shock. Since concern lies only

' with what happens across the shock wave and not within it, sufficient

justification exists for the assﬁmption of LTE everywhere. Ultimate
justification rests, however, with the investigation of non-LTE shock

structure.
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In this chapter it has been proved that the equations of RGD are

i ae hew e e

hyperbolic and that methods based upon the use of characteristics may
be applied to the insolution. The singular nature of the optically thick
limit in unsteady RGD has been interpreted in terms of the hyperbolic- b
parabolic transition of the governing equations. It has been demonstrated |
that the one-dimensional formulation of RGD remains hyperbolic as e»o ,
but that saddle points simultaneously appear in regions of radiative
equilibrium. The existence of shock waves in RGD has been verified,

and consistent shock relations have been derived. All of this has been

done with the use only of the hyperbolic nature of the equations, These £

L observations must now be applied to the solution of realistic problems

in unsteady RGD.
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CHAPTER 5

THE INVESTIGATION OF A SPECIFIC PROBLEM

5.1 The Piston Problem in One Spatial Dimension

In order to determine the practical implications of the hyperbolic
nature of unsteady radiation gasdynamics, the case of a planar, cylin-
drical, or spherical piston, impulsively started, and moving in an
arbitrary manner into a gas which was initially é.t rest will be examined.
The piston velocity is taken to be ;—% = Up#)which is normalized by the'
free stream isothermal speed of sound according to Eq. (3.10). The
radiative aspects of the problem are emphasized through the omission
of chemical nonequilibrium and consideration of a perfect gas. In this
manner one is led to assume that LTE holds throughout, but the gas is
allowed to be semi-gray. TheApiston problem is a model for various
realistic flow situations. However, the greater the complication of the
gas model, the more restricted is the class of analogies. At least one
steady flow analog will be developed subsequently,

Nonlinear piston problems have been investigated in 1dea1 gases
(Taylor, 1946), in real gases (Chu, 1957), and even in radiating gases
(Wang, 1963). Wangls investigation of the inverse problem is perhaps
the most general to date. However, his analysis rests upon the omission
of upstream absorption, the presence of only cold, black walls, and the
assumption that the shock wave must be strong for radiation to be
important. It will be shown (Chapter 6) that none of these are required
in general. Above all, his search for similarity solutions forced the
consideration of nonuniform upstream gases (just as did Romishevskiils,

1963,optically thin solutions). Marshak (1958) has pointed out that the
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stages of flow development which one observes through similarity

"solutions depend upon the approximations he is forced to make and that

different similarity treatments of the same situation lead to results
which differ even qualitatively. There is certainly sufficient justification
for the examination of general piston problems in radiating gases -

even though Wang has claimed that the similarity approach is the only
way in which the nonlinear problem may be solved.

In this chapter the numerical procedures required for the solution
problem described above will be formulated. Chemical equilibrium
could easily be incorporated but it shall not be attempted at this time.

It is admitted that the exclusion of nonequilibrium phenomena precludes
direct prediction of real situations in.all but a restricted range of the
parameters of the problem (59/ T2,6, 7w, Up) . In particular, any con-
clusions concerning upstream absorption of shock layer radiation must
be made with the reservation that precursor ionization may pla.y‘a.
S1gn1.f1cant role in the disposition of this energy.

‘The formulation of the problem requires Egs. (4.1)= (4 9) in their

one~dimensional form

BrUR ~E(FruT)r Pl rjE) -0 (5.1a)
Uy +Uldy +F B =0 (5.2a)
. s

77 e )= (B tuk) = 5, @ (5.3a)

gr = tue +J'_,.§.} (5.4a)
=;JL%I-I/5. ' (5.5a)

where

u
Q XL, T
These are discarded in favor of the equivalent compatibility relations

(Eqs. (4.54)-(4.55)) and the following thermodynamic and state equations
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for a calorically perfect gas.

Tp _P_& J T - Cp Pu '

CQLE (F)5E at = (“n-1) 3 @YU T—j on SE = U+Q () (5.1b)
P yPaydu . L — Cp Pl o drl - r-) (5.
4T (B2 - (B ) o dreuea )

[ L]} =~ % (@) mew e

& - (ganid) e
dT, . | »
dr = ~37T,4, { | (5. 5b)

/0' - £ | (5.6)

-
h=h, +f75 Co (19T | (5.7)
where

a« /") (5.8)

Cp -
The types of data which are necessary to completely specify the

problem may be determined once the characteristics and the information
which they convey have been recognized (Jeffrey and Taniuti, 1964, Ch.II)
Eq. (5.4b) and (5.5b) indicate that initial data on radiation is irrelewant.
However, special consideration must be given to times or order/e . It

 follows that initial data is called for on the fluid mechanics B 4,7, boundary
data on W or P , and boundary data on I., and g . Since the fluid must

move with the piston, the surface is a particle path and data must be

~specified on a characteristic. This is why initial as well as boundary data
on {{ are necessary. The fact that boundary data onZ, and g are '
necessary is misleading, since a11 one knows is the relationship .

~ between the intensities z and z° Jat the piston and far fmm it. The
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relationship is given in terms of 7, and g in Eq. (3.88) and (3.89); therefore

a two-point boundary value problem must be solved. Unlgss the correct
value of Z, (or_z ) is chosen at the wall, the radiative saddle point in the
gas '"far' upstream cannot be traversed. Even though arbitrarily small
errors in Z, at the wall will cause an arbitrarily large divergence from

the true solution, the problem is not ill-posed because the smaller the
error in initial data, the farther the computation may be carried into the
flow field before‘diveqrgence occurs. By Hadamard!s definitidn, the solutions
‘of‘ill-posed problems ché.nge by é.rbitrarily large amounts everywhere

if arbitrarily small changes are made in initial data. Equations of the

type which govern I, and 4 are often classified as "stiff", The appearance
of a two point boundary value problem in a characteristics scheme is
apalling since the use of characteristics requires that one "march' away

from data lines. To march from the free stream downward would require

knowledge of the asymptotic behavior of derivatives since an undisturbed

state is not unique to any particular piston motion; therefore iteration is
re'vquired. _ o

All nonlinear hypelrbolic. problems have in common the fact that
their characteristic surfaces are unknown until the solution is obtained.
The radiative equations are linear as a consequence of their foundation in
Maxwell's equations, thus the radiative characteristics may always be
drawn a priori. The gasdynamic characterisfics muét be determined
simuitaneously with the dependent variables, thus the system of equations
is enlarged. The various numerical approximations which may be made

in practice are considered next.

5.2 Numerical Approximations and the Inclusion of Upstream Absorption

5.2.1 Averaging Schemes

‘The compatibility relations and the equations which
determme the characteristic curves are indicated sy'rnbohcally by the
fact that ‘ ‘ ‘

du; -
4 22 = b (Gre) j Gjeim (5.9)
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on the curve

ar _ 73 (5.10

JE= A (4,5¢) )
Suppose that Eq. (5.9) are integrated along the appropriate lines (Eq. (5.10))
from the points ({,’-,t,,_,} from which characteristics emanate up to the

point (&,t,.) at which properties are desired. These relations are of the

form
tn tl
LM aya/%, =£Hb‘,‘/t (5.11)
‘tq .
51 =] % It (5.12)
ths

An as yet unspecified quadrature formula is applied, and these are written as
]
| 1 ‘
(4r); = /),-)14' At | (5.13b)

where ()1,;.‘i denotes some average along line (5.12) between its end points

and

<
@4); = Yntn) -4 (5, 2.) (5.14)

The time increment of the difference scheme is 4t Equations (5.13) and
(5.14) now constitute 2/ algebraic equations in 277 unknowns, the de-
pendent variables L{J /’7/ t,) and /7 coordinates, which may be those of the
points (/J' 1t4.,) if  # is specified or those of (/M-1) of those points and
the point [l;} t,) if one of the K is specified, Inquiry is made first into
the choice of averaging scheme.

Such a choice was made when a quadrature formula was needed in

order to evaluate the radiation integrals, Here there is the disadvantage

- that only the values of the variables at the end points may be used.

w

.
i
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Podney, et. al. (1966) have assumed that all quar;tities vary linearly along
a
the characteristics. Consider the coefficient (—7‘-'-') which by Eq. (5.8)

S
is £ (7-r)* . 1If both £ and 7 are assumed to vary linearly along

V=

whatever line is of interest, then

1

th (4P);
2 } /_L) A+ % (¢-¢4) Jt
[‘?—‘Jx,j - lat V7% r%f (t-%)

or
P Pa) [z 5y, T /I
[5],,- (%) (5/+4%)2 %} (7;3)—;) +

. z
() fr0m2 )< E )
| (5.15)

e /
Division by the potentially small quantity (A T/J- is required. Similarly,
for a quantity of the form ( 17a), it follows that

| b"é I—’J‘\' o9 g‘

a,-9 (a-9%)) ~ia-ay) (5.16)

which requires fhe quotients and Elifferéﬁces of small Qﬁantities. Such
formulae are undesirable for numerical analysis, and they present
difficulty in the formulation of iterative schemes. A simpler‘ formula
in which the entire coefficient is assumed to vary linearly over the

range (ﬁ',,.,/'é,,) is,
/
[}”JJM- = Z-[Vf*’f;} (5.17)

. ) 124
In fact, for the quantity [";7/ , say, the difference between the formulae
analogous to Eq. (5.15) or (5.16) and (5.17) is -
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tn
et - 10 (% ot +
% +0 [fﬂg-r%!(g’. +#)1at)f «
, , :
M O[E;J-‘P)i’t/ %%’*Jz (5.18)
so that if is small enough the two are equivalent. Still a'third method

requires averages of all quantities in a given term. For instance

where the brackets on the right hand side are evaluated according to

Eq. (5.17) (since Eq. (5.17) and the method of Eqgs. (5.15)‘and (5.16) are

equivalent for the average of a single quantity). This method, which was
used by Sussman (1966), cannot be justified in the sense of a quadrature

~ formula applied to Eq. (5.11) and (5.12). As Chou and Karpp (1965) and

Makino and Shear (1961) have shown, the errors associated with the

last two methods are of the same order, O[Af}z. Their analysis is

outlined in Appendix D* . This is as far as one can proceed without

specifying the overall numerical procedure to be used.

5.2.2 The Computation of Properties at Field and Bou.ndairy Points
The method of characteristics as it is most often applied
(see Hoskin, 1964) requires a characteristic mesh. That I:LS, known
points are allowed to determine the locations of points in the 'future'. If
initial data is specified, the envelope of points determined by a charac-

teristic mesh becomes increasingly skewed and the flow field last known

* The advantage of the schemes indicated in Eq. (5.16) and (5.19) appears

to be that no difficulty arises near the origin, » in cylindrical or
spherical cases. None of the situations investigated exhibited anomalous
behavior near the origin even though Eq. (5.17) was used because of
compensating radiative and geometric effects in the compatibility relations,
This is a minor point, and those who pursue similar problems in the future
may choose whatever scheme they prefer.

Sy e e
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consists of points scattered in space -time. Such a scheme is ill-suited for

the radiation problem smce it is imperative that a flow field be deter-

mined in all of space at a given time if the radiation is to be included in
a self-consistent manner. Therefore the only choice available is the
constant-time increment scheme developéd by Hartree some fifteen years
ago (Hartree, 1953, 1958). Recently Chou, Huang, and Karpp (1967) ' I
compared both methods in a simple 1sentrop1c flow. They found negligible
difference between them. The basic cornputatmn scheme is outlined in
Fig. 4 and is described below. ‘
According to the scheme of Eq. (5.13) and (5.14), Egs. (5.1b) - (5.5b)

may be written in the following difference forms to .
(5-8)- (), (14-uy) = R At (5.20)
M |
(5-4) +/ ),, (Y-uy) = R, At (5.21)

A(T) ") o AE
R {/Z)ZFFJ T o
2,-4s5 = (S)Ar (5.23)

L@ ‘
-7;1—Io, =-R, Aar (5.24)
4§ where pdints 2,3, and 4 are determined according to
v :
‘:g ' 4= —(U-a) At (5.25)
o
.
i k-t = —(u), 4T (5.26)
- = '(“"a),,‘ﬁt | (5.27)

and

R(M) [J_,) {B & - -,—,Z(f,f—‘}} (5.28) »
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R = -(%)/—,‘;2—) (5.29)
R¥= Z, @-r.j(—-,g:} (5.30)
R = IL,4.7 4 (5.31)

The spatial increment 4y in Eq. (5.23) and (5.24) and the time increment
AT are only weakly dependent upbn each other, and the radiative equations
need not necessarily be written in this manner. Equation (5,22) has been
chosen over any other form of the path line relation because it requires

no averaging on the left hand side and eliminates a possible source of
error in the all-important temperature distribution. Equations (5.20) and

(5.21) may immediately be solved for A, and ¢ .

™) M) '
U {'?'):3 T Ugq /f._’jﬂ_-)n +[K 2 -R (rsjm + -5

Y= . , (5.32)
/';"Q)/a 7 /#},4
Pa A)
Fa= Bt (F) (U-4)+ R, 4t (5.33)
whence
r
G

KA _elv
T-(z)" [?i' € K"At} (5.34)

In the framework of the system of equations above, one is forced
to assume properties at point 1 in order to initiate the calculation.
Fewest assumptions need be made if the following general procedure is
employed. If only a velocity and temperature are assumed at point lb',
enough information exists to determine the locations of points 2, 3, and
4 to a first approximatioh by ""searching'' the data known at time 't,,., .

The most obvious step once properties at these points are known is to
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assume that all of the average coefficients and inhomogeneous terms are
simply the values at the respective '"known'' points. Then Eq. (5.32),
(5.33) and (5.34) yield A, «, , and 7, independent of Zs or 2 at 1 which
are found from the properties at point 5 with Eq. (5.23) and (5.24) under
the same assumption. Equations (5.32),(5.33),(5.34),(5.23), (5.24) may be

written more clearly in the form

‘ (n-v p n-9 m-v ﬁ, ) ) m) LT
w? = 4 2 g jote 57 g
22 ) g Payorn) (5.36)
( r),, /m |
n -y Pa; i, tn)_ M 4 (n} (n-1)
A T B SV 5L

m)

(n-1) /,(n) _R(/,(Irzt‘_} ?’;)

17y ) e

2."- g, - R st (5.39)

(5.38)

/5
m (L), (n-1) , ¥
L, =L, —R,, At (5.40)
zﬁ,

where the superscript /7-1) denotes quantities which depend upon a previous

iteration. The superscript is necessary for the properties at points 2, 3,

4 as well, because these points move about in space as iteration progresses.
v In a characteristic mesh calculation, the points at the extremes of the
domain of dependence at point 1 are fixed while point 1 and the (rm-2)

points from which characteristics emanate move. Courant, Isaacon,,

Reés (1952) have demonstrated the convergence of the procedure‘dutlined
above. The nonlinearity is built up on each iteration, and the first step

is a local linearization, At a point on the surface (Fig. 4b), the velocity

is specified, but there is no /*characteristic available. Therefore,' the
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relations along /® and /* are sufficient to determine the pressure and
temperature through Eq. (5.37) and (5.38). However there is no point
from ''below'' at which L, and 2 are known. All that is really available
is the relation Eq. (3.88) between 7 and g » thus Eq. (3.89), (3.92),
or (3.94) become important. More will be said of this subsequently.

5.2.3 Computation of the Shock Point: The Inclusion of Upstream
Absorption ‘

The analysis of a poinf on the shock wave is by far the
most important consequence of a characteristics treatment of one-dimen-
sional RGD. From Fig. 4c and Eq. (4.66)~(4.71) it follows that fifteen
simultaneous equat1ons must be solved for £, , Uy, 7 VAN _? 5 l, 77, ‘
Zeyy Uy, and § , 55 , 44 , % ,Us . Equations (4.69) and (4.70) eliminate
two of the unknowns trivially. The location of point 1 follows from the
integration of

¢
di‘ L/() : (5.41)

which leads to

R le,,) = [H,.Zé At (5.42)

h} M-

As before, it is assumed that /[ & jé U, (&) to a first approxi-

»,'t.,-,g
mation. The relations along f""{,f’*’, and /™ from points 3, 2, and 4
immediately determine &, ¢, and 7, if 4, 4 , and /, are located
according to the previous scheme. The Rankine-Hugoniot relations may
be solved by inserting Eq. (5.6) and (5.7) into Eq. (4.66), (4.67) and (4.68).
Equations (4.66) may be used to eliminate/»y from Eq. (4.67) and (4.68)

in favor of &4 and &; . Then Eq. (4.69) yields 7, in terms of Uy and Uy,
whence Eq. (4.68) may be solved for U (Us, B, u, 7;) or U (Uz, P, s, T2)

The results are

/ Rty o
Uy, P,4,T)= 5 {E_, + 4‘*465} (5.43a)
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where
B = //'E)U;""U:U7+/1!"’)U/L (5.43b)
s (1-r) (Uy -4,) )
c wy LT 4y + (£-1uy,] - fT+£%7
S (- ( Uy -t4;) (5.43¢)
or
/
- £{8,+VE7 -4z, §
Uy ,z.[ 7tV Z7+4L, (5.44a)
where
5
_ (=108 + U ls - (THU?)
57 (1-r72) (Ug-u,) (5.44Db)
F ,
7 Tl (r-ralus-u,) (5.44c)

Initial guesses for &4 , U, , and 7, were necessary to locate 1,
hence 2, 3, and 4. Thus Eq. (5.44a-c) yield a consistent assumption
for U; and 7, which in turn allow a first estimate of the location of

point 6. The analog of Eq. (5.21) may then be written along the /*-charac-
teristic 6-7. '

otn) ) P 0] o,
P7= Pé -"/“7'-_67 U, —L/é +£‘71 At (5.45)

L)
But Eq. (4.67) with Eq. (5.43) inserted in it is another equation for / and

H7”) which may be combined with Eq. (5.45) to yield the following nonlinear

algebraic equation for 07,7)
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n-i) n-1)

() i gy
() (m,n- i ra -
PRy () (T T (Fhy e

-,

) (n-1}
mPU P _ 7 -0 m

where U _/4/7{”9 is given by Eq. (5.43). A new value of /05(%,)= / may

be determined with an averaged shock velocity and jteration may commence.
l: and % still follow from Eq. (5.37) and (5.38). Similar procedures are
used, for instance, in the determination of the flow field near the trailing
shock wave of a slender body of finite length. A nonuniform upstream flow
field may be handled with little more difficulty than a uniform one since
even if /f » 4, 77, are known, the nonlinear algebraic equation (5.46) must’
always be solved. The most striking advantage of the use characteristics

b
in RGD is the ease with which upstream absorption may be included .

5.2.4 The Overall Iterative Solution
The specific manner in which the radiative properties A
Z,and Z are to be found may now be considered. It has been decided that
fluid dynamics determines P, &, and 7 at each point independent of the

* % )
current iteration upon_7, and g thereat . This suggests two possible

* Note that G4 above hence the flow is chemically frozen everywhere.
The inclusion of chemical equilibrium results in the loss of Eq. (4.71);
hence discontinuities in the ¢; are allowed. Equations (4.66), (4.67) and
(4.68) must then be solved iteratively with an appropriate Mollier Diagram
(i.e., #=4(#7)is known only implicitly). Although the formulation is not
as '"simple'' as that above, the inclusion of chemical equilibrium should
present no conceptual difficulties.

** This is not the only assumption possible, since Z, and €, may be found
immediately if only a temperature is assumed at point 1 ( 7 would be most
appropriate). These may then be used in the averages of Eq. (5.36) and
(5.37). Similarly Eq. (5.36) and (5.37) provide enough information that only
T need be averaged in the solution of Eq. (5.38). The possible schemes are
infinite in number, and they cannot all be mentioned. Any reasonable
iterative scheme should converge.
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iterative schemes. In the first (Method 1) one would assume a value for
at the wall (say, with the aid of Eq. (3.89), (3.92), or (3.94) and the

temperature distribution of the previous time increment). Then %o and %

would be determined at each point along with P,u and 7 to a first approxi-
~mation by integrating upward. The various coefficients and inhomogeneous
terms in the compatibility relations would be averaged, new points in the

past located, and the equations iterated at each point individually in the

standard manner. Of course, the saddle point could not be apprbach‘ed

arbitrarily closely; thus when divergence in Z,or g appeared the calcula-
tion would be reinitiated at the boundary, this time with revised temperature 1
and pressure distributions with which the integrals might be computed

more accurately. The process would then be iterated, a whole flow field

being required for each iteration.

The second (Method 2) makes best use of the _1: and % independence,
Because of this independence one might calculate #, & , and 7 to a first
approximation at each point in space. The temperature distribution
could then be inserted in thé integral boundary condition, and in the planar
case .Z, and 4 could be determined consistent at all points with P, ¢ , 7~

while leaving those properties unchanged. In spherical or cylindrical cases

this procedure would be cumbersome, because a heat flux distribution

would have to be assumed for insertion in the integrals (of course if &= consz-.
‘the problem is simpler). However, in the planar case the independence

allows solution of the integro-differential equation by the procedure above.
This is why the symbol @ has been used in all of the relations. Instead

of using Eq. (4.7) as the definition ofv\Q one could just as easily use Eq. (2.70). '
Each iteration would yield a complete flow field to a consistent order of
approximation whereas Method 1 could not be truncated arbitrarily,

Both methods are severely limited by the finite'acéuracy of numerical
quadrature. In Method 1, the integral boundary condition cannot be com -
Puted accurately enough for the radiative field to approach equilibrium
arbitrarily close. Therefore another method must be found to guess I,,
at wall. In Method 2 errors compound in the heat flux because divq has

been obtained from partial integration of Eq. (2.70). Thus, near regions
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of radiative equilibrium quantities of like order must be subtracted,
Equation (2.70) could be integrated numerically to obtain _g but then
triple and quadruple quadratures would be necessary and accuracy would
be lost through interpolation and round off. . The procedure would be
very time consuming as well, Nevertheless, both Methods 1 and 2 have
been investigated. Before solutions may be attempted, initiating pro-
cedures must be decided upon and, for Method 1, some approximate

scheme for traversing the saddle point must be formulated.

5.3 Starting Procedures

5.3.1 The Existence of Entropy Layers
When radiation is important in the establishment of a

flow field a "frozen flow' does not necessarily apply for "small' times
as it does in the case of chemical nonequilibrium (Sussman, 1966; Sedney,
South, and Gerber, 1962). Gradual acceleration of the piston in order

to force the shock to form spontaneously- is not practical. Even though
the effect of initial conditions must decay exponentially along characteristics,
the growth of "entropy layers' near the piston and the shock may be affected
by starting solutions. These entropy layers are the manifestation of the
history of the flow and in an analogous steady flow are due to vorticity
production from finite shock radii of curvature and whatever nbnequilibriurn
processés (chemical or radiative) are of interest. When radiation is considered,
the entire concept of entropy layers must be re-evaluated because the ther-
modynam1c system which consists of only the gas is open and energy may
flow from the gas to the wall if the emissivity does not vanish. ‘The

system made up of only shocked gas is always an open one, since even
without upstream absorption entropy leaks through the shock. Just as
suction or blowing can change the properties of a viscous boundary layer,
emission and absorption at the wall may thicken or bleed off an entropy
layer. The only place that classical intuition may be trusted is at the shock,
which is locally ad1abat1c. The only requirement on the flow across the

shock is that entropy must mcrease. In addition the shock must propagate
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supersonically relative to the gas immediately ahead of it, and the isen-

tropic Mach number immediately downstream must be subsonic. Because
of the complicated nonadiabatic nature of the field, overall phenomena
cannot be predicted intuitively. For instance if the piston were cold, black,
and moving with constant velocity, the temperature of the gas at the wall
would be very small (see e.g., Yoshikawa and Chapman, 1962). However,
the velocity of the gas at the surface must be that of the piston; therefore,
the flow somewhere behind the shock might be locally supersonic. How-
ever, the regions of influence of disturbances are not affected, since all
disturbances are communicated everywhere instantaneously as B>o.
This implies that Mach numbers are no longer meaningful; they account for
the ratio of kinetic energy to thermal energy of random motion but completely
ignore the energy which is always transit -~ the radiation. Wang (1965) fails
to allow for this possibility in some of his conclusions.

Although the radiative field forms almost instantaneously beneath
the fluid mechanics, it is conjectured that fluid mechanical shock formation
predominates initially. At least for moderate wall temperatures, this
assumption is justified because the shock is necessary to produce the
- elevated temperatures that make radiation possible. This is not the case
in situations which involve large energy inputs (blast waves), but it should
"~ be true for piston problems. In addition, no matter how fast the piston
moves, in a tirﬁe of 6(8)only a small amount of energy has been introduced
into the flow through work done on ‘the piston. It is assumed, therefore,
that the number of photons (none at all if external sources are excluded)
is frozen at the initial instant Z=0 . With this assumption the effect of
initiating procedures upon the growth of entropy layers may be investigated

Consider a time of O/é) after the instant of shock formation.

W1th1n the frame of inner and outer expansions the inner region in which
t t&é is of order unity may be developed by expandmg all properties
in asymptotic series. LTE should not hold on a scale during which few
collisions occur, but it is accepted nevertheless. The gas is assumed a
continuum as well, If/é is sufficiently small, fluid mechanical properties

cannot vary on this scale, and to first order P, ¢, and 7 are the same
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functions of the spatial coordinate which they were initially. The radiation
is governed by the linear system (Eq. (4.43)) which is reproduced below

in a somewhat modified form for a quasi-isotropic gas.
)

<~ 2 A A A A P .
(57752) GEHr6 BH-Br-iz san

where 43 , &p , and 7 are their "initial'" values as functions of For X

and
Gy = _Z'o_t%\/.?— (5.48a)
A r 4
T = :/3‘:5 fa’a(f)Jf ~ (5.48b)
. |
J = z, d,r) t* (5.48¢)
A
B - 45—2% 71%) (5.48d)
*- "Zg'voa} | | (5.48¢)

In the planar case (Fig. 5a)

A z
2N -7 A A -? = 7’
G_.;,_/‘gf =€ G‘; ( ~5,0)+ e .?_;3/7 e J7/ o (5.49a)
A 247 - >0
" A -7 A A z T ¥y’
6_:// )= & _/‘C’ﬁ:ojq— e 4 s8¢ 0/7’
(5.49b)
; 2% 4
2 2= 5 S no?
G lr)=e & (0 1-T)+e ;_?8/7/3 iy (5.50a)
A A T-f<0
A "c? ApTHS /
G128 =e o % Y o Bue )y
) _/,r+:}+e£5 1 e 0/7 (5.50b)

1
1
1
4
¥
1
i
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where, since the lower boundary is at /g,:/ou,-t"—f- 096?)

G, 16%) = 7€ T,,,4+ (1-€) (;__/0/9\) (5.51a)
7 N |
iy A A -
G loF)=€ G_/J;o)+f BliyY)C Y’ (5.51b)
[~

The ordering of the series is in doubt (at least as far as the fluid
mechanics in concerned) within distances of 0}6) of the piston and the shock
and in these regions entropy layers begin to grow. In regions near the

x_r - R(Y)
e

shock or piston in which /7= ~ 0(/J, where t= S for shock or

P for piston Eq. (5.1a)-(5.9a) may be written as follows

. - d -
'T’:)t*"'(u"‘?‘:){;rf*[;){urf *J?T:'/_E_Ej'o (5.52)
. T
Upk + (U-R;) Uy = ~ (75/ F}g* _ (5.53)
(R} 77 (T RITH) < @ (554
/é'{Iat*_/El"I’r‘."} +/‘Zr‘# fJ",?-ZTA,‘,/;—jsﬁE—I Q (5.55)
L8Rt} 3 Loy =8548 (5.:56)

However, to lowest order

R

¢ Rt + R"'({'o)' t+ -

= R.,L +/t“;éib +o(s") (5.57)
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so that if
A o
then
24 _ 24 o 5.5
2t*  at* /é) (5.59)

This allows Eq. (5.52)-(5.56) to be written to lowest order as follows.

(‘7'@,:» + 0 (L) + Elim = oy8) (5.60)
Qtr t Z/\b/!\,;r =~ ;:6-"' -f—Ofé) (5.61)
_-;, < 7.,,/' >to0 t*) +0f6) | (5.62)

= ) 5.62;
g,‘# o (e (5.62a)
Loop = (5.62b)
oy opé)
But these are the ordinary equations of isentropic planar gasdynamics.

Furthermore, the radiative quantities do not vary appreciably in these

regions (which are below Z-F=o .). In Fig. 5b the entropy levels of flow

field in Regions I, above the shock, and II, between the shock and the piston,

are specified completely by initial and boundary data. Regions IIla, IIIb,

and IV are isentropic but at different entropy levels in general If solutions

were requu-ed the equation would first be 1ntegrated from r, —» 20, where

data from Reglon Iare known, down to )"f = ©, The Rankine Hugoniot
relations apply to #, 7, and U , and /{, at this point, and an eigenvalue
shock velocity would be determined such that the values of ? , 7, and &

in Region II were approached as I’f-’ —®, This would fix the entropy

level in Region II, and that level would apply in Region IV as well. Region IV
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would then be determined by £ and 7 in Region II (f’;"d’) and by the fact
that I (5%o, #¥=0, Therefore Regions II, Illa, IIIb, and IV would be
coupled. If the current initiating assumption holds, the eigen shock

velocity is the frozen valve, thus the entropy level of the entire initial
solution is that of the nonradiating flow, and this specifies the entropy levels
of the initial numerical solution which applies is tr’a’. Therefore, the
application of the appropriate nonradiating starting solution will not affect

the growth of entropy layers within the limits of the present physical model.

5.3.2 Quasi-Steady Starting Solutions
5.3.2.1 Moderate Piston Velocities

In order to begin the numerics, initial flow fields -
including radiation, if possible — are required. These will be applied at
some time/o<< tc‘ <<Z . Upstream absorption may be neglected since the
shock layer is extremely thin, and matters are further simplified by
consideration of only a gray gas. First, frozen solutions are attempted
in the usual manner (Sussman, 1966) by searching for a conical flow. If
piston velocities are "moderate', Up~0Cr) ,To~0(/) , BsZ 0¢/), and the
piston does not accelerate rapidly, )'E’;, >> ,é;,, T , the following series solution

is appropriate.

Pr3et)= Blr)+tRp18)r (5.63a)
T738)= T(T)+¢ Tig)r -+ , |  (5.63b)
Uige) =u/f+t4.04)+ (5.63c)
AT A | | (5.63d)

2, (34 = 9+ f/ff‘, (L. )+t L+ (5.63e)

The last relation is a consequence of Eq, (3.93) and the conical variable is

j=/{—) | (5.64)
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The starting solution will be nonself-consistent to this approximation.

Equations (5.1a)-(5.9a) may be reduced to the following form to O(/é)

gt A (e

EEA TE A5 (5.65)
A Al | 0’,‘ ,
4 | I B A [ .
31‘ =5 {‘:IT (#1) * 7 (g +~1)} (5.66)
4, a4 b (5.67)
‘J% = 4T, (T} -0 3
é%u ~o(t) (5.68)
where
‘N ' 6
" = (Lol - = ) 5.
D(’}uj) '?;'{r' ’J rn ( 9)
A, = U3 | (5.70)
These are subject to
A .
7. (3-4,)=0 (5.71)

and to the Rankine Hugoniot Equations (4.58)-(4.62) which, in the absence

of upstream absorption take the form
L n 73
) -z Fz\* 2 4
U= {LT—T')U',_, N [(T-F') YW, :—r] - . (5.72)

P,

n
—
+
<

Us (5.73)

= _ U ~
T =% —J;) (5.74)

-0 T WS D M B TS eerer————— e % D ot T Gex B B N e DR N -
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at 3= u|(.) . The planar problem may be solved ltrivia.lly, but the
cylindrical and spherical cases require numerical solution. A value of

Uy must be ''guessed" at J= U;,., such that mtegratmn backwards
to J=Up will lead to satisfaction of the condition ”74 . This is the
same problem which was investigated by Taylor (1946). In light of forth-
coming remarks concerning iteration schemes the solution may be easily
carried out with linear influence coefficients. The numerical analysis
is straight forward, and representative starting data are indicated in
Figs. 15g,h,1i,].

Since the radiation is uncoupled from the fluid mechanics, Eq. (5. 67)

is readily solved subject to Eq. (3.88) if
To(t)=1+ /o) -t +0(tY) (5.75)

Equations (3.88) and (5.63d, e) indicate the following two point boundary

condition

/¢

-—é . [ .
/g‘&'ﬁxk * [ég—)/‘g‘)wﬂ// 3 TW | (5.76)

The heat flux is merely a quadrature

[ 5 4]
9,19 "{f{'ﬁf)cff T 0 ‘

(5.77)

where ’
f/f):4§,q;,[7}"11] | (5.78)

In the planar case,j=©

7" 1L (Fu)+ (- E)ty-g )+ 2 eFo  (5.79)
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where 7¢ is found from Eq. (5.74) with U, = Up

- The solutions obtained by the procedures above are more nearly
correct the smaller the time at which they é,re applied. However, there
is a limit beyond which the initiating time cannot be decreased, since
if £~0(@)the situation is clearly different. This is in contrast to flows
with chemical nonequilibrium where the uncoupled solution must be
correct as t>o . Any scheme will eventually predict a very small heat

flux for small £, and intuitively this is correct.

5.3.2.2 Large Piston Velocities: The Assumption of
Impulsive Radiation

The previous solution certainly does>not hold if
; _ :

the piston moves rapidly. Suppose that &p £ Z] >>1 and that for t~océ&,)
the piston path is approximated by its tangent. For simplicity the gas

is taken to be gray and the absorption coefficient is described by

b __b,
o= P T , (5.80)
Consider the scaling

t,,{,c(edj o< F1€ )1 , (5.81)

Since Rp<#+ < Ry, and Us/Up~3(7) as a result of the Rankine-Hugonoit
equations, it must be assumed that
= Fl&)
r=r =z (5.82)

so that, for small times
T £7 2412 _ (5.83)
where ‘
Ly
/é_,: —‘7"—\/0/1) (5.84)

The Rankine-Hugoniot relations also require that
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pore Lz P 001) (5.85)
é“' / ~ .
3 ). T — |
I T =5 Focs) (5.86)
fﬂ since
! U= u/él. J 7—*0(/)
This states merely that P and 7 behave as Mach number squared. Suppose
that
Z,-#= T, h/e,) (5.87)
7= g'jféz) ‘ (5.88)

then Eq (5. 4) and (5.7) in conjunction with Eq. (5. 80),(5 81),(5.82),(5.85),
and (5.86) lead to

b = b+ ) ’
/;y//ﬁj//g 1—./_-—/-' T/é.zz(b,*b,) 8 (5.89)

&Ry —
CE o~ _‘Z—-— 5é =4 —
(,c Loz =~ Zmu) POTHZ © (5.90)
hence
9
gle) = £r&) /&l (5.91)
2 bty )+/0
bee) = ) /) € | (5.92)

The energy equation indicates that

/é}’// 4577;-—'/ iz(_é_:.) -~ {}

L FlE) B f/é,') (grvz (5.93)

B M i S A s e Lt e T S AR AL
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Therefore, the scaling is completely determined

9= 5/6:" (5.94)
(beb)06

£=8 & (5.95)
2 .

/7 = Bol-é,l ' (5.96)

These results are summarized in the following exact analogs of Eqgs. (5.13})-
(5.9a)

- SN B tGR)-(PrE)(Tpra T o (PraN TN 4 Z)=0 (5.97)
(Pre?) (Fz+07:) = - (T+&"5 ),D. | (5.98)
- (Tverf ) a2 5»’/r-w7,-)=—/ﬁa;%)/z’; v£) (5.99)
s u’-,i = +&*) (f‘—sz L) {-ﬂrﬁs‘/ 76%8'¢°7,}  (5.100)
7_ = -3z, (F'f—g‘)"’(ﬁefz—f—';}*‘ _‘g’ (5.101)

Subject at 7-74,1’: to

/”' )[/‘;;1 —_ 2 ,' /és"{/—ﬁ)] ﬁ (/__/71) (5.102a)

é.l.

/-////éé' /:f" (5.102b)

— _&*
U = /_%///6_,. /6’;‘,7_,.)) (5.102c)

F— g 1¢£°
B &1, = gV3+ 2 | (5.102d)
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and at F=t1
=1 - (5.103a)
5T » _:f,fa'—-= 7&* * )
B, 4 (=)%% =, (Tw 1 (5.103b)
where s
r= Bo.és'd.(é;*b;)r— (5.103¢c)
. bralbrey) — ,
t= B, & Z (5.103d)

To lowest order Eq. (5.100) is

1/6,+b‘_+4)/ (5.104 )

C/,-Vé' -z, FhFh 47 0/ &
which is merely the optically '"thin'' result, Eq. (2.45). In fact, reabsorption
is 0[6'7 ./ Furthermore, the enefgy lost to the wa.il is of order f;_z at most
if 7,,%0l). Romishevskii (1963) has sought similarity solutions for the
system Eq. (5.97)-(5.101) to lowest order. Such solutions are possible
for the boundary conditions above if and only if =0, (#/). Wang (1963)
has verified these statements. In fact, if the previous conical flow is
assumed then, near the piston {J"(f~é;) %ﬂ"iﬁ » so that all of the
energy of a fluid element would be radiate‘d awlay as it approached the
surface. The ''thin' equations apply here even thoﬁgh the \normalized

: —2(b+b,)
absorption coefficient is "1arge"[d~ 0/6)_'2 Qi >>.1.J . The

flow is not really ''thin" but is more appropriately emission dominated.

The optically thin eﬁ_uations'cannot be solved as trivially as the
conical Eqs. (5.65)-(5.67) could. Therefore, it is not worthwhile to

pursue the present approach if MP>51 . The predictions of the conical

“equations were poor in some cases; therefore because of the labor involved

for all but moderate piston velocities it was best to assume that radiation was
turned on impulsively at the initiating instant, ¥¢; . This is accomplished
by forcing 4, to vanish for all ¥ at times Z<€; so that initial distri-

butions of 7, and % are immaterial. In accordance with the previous section,
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B = -

"impulsive radiation' will not affect the growth of entropy layers as long
as f‘<‘1 and the initial solution is the correct nonradiating one rather

than one arbitrarily chosen. Unfortunately these statements must be

Sa e e

examined more closely in nonplanar geometries.
Since a specific radiative behavior will be imposed upon the flow

1n1t1a11y. the time requ1red for the field to 'forget' must be pred1cted

Use of a nonrad1at1ng solution at time €; produces a shock layer with

ST

too much energy. Once rad1at1on_ is begun this energy, which is-f/oE/éI_,"t{.)t-c s ;

is radiated away. The time required is

<LF) (Us—tUp)
z‘;‘ ~ I8 [AT9-1]

where the brackets denote some average levels of pressure and temperature

(5.105).

e

within the shock layer. Naturally, it must take longer to discard the 4 2
excess energy the longer one waits to turn the radiation on. Also, if
~is small, the free stream is hot and will resist the energy loss from the
shock. It is expected that the flow field will be rather unpredictable for [
'f'<t,¢. Despite all of these arguments the effect of initiating time upon 1

the resulting solutions must be investigated. Before this can be done

the manner in which the saddle point is to be dealt with must be decided

upon.

5.4 Passage Through the Saddle Point

It was pointed out in Chapter 4 that the approach to radiative
equilibrium is singular if t»/é . Equations (4.55) and (4.56) clearly
indicate that this behavior is not a result of a.ny approximations other than
the omission of terms of 0/6) Truncation of the system of moment
equatlons aggravates the phenomenon Since the problem is self consistent,
the method outlined by Curtiss and Hirshfelder (1952) is not very useful; *

A ""movable upper boundary" techmque, similar to that used by Scala and
Gordon (1967), has been adopted

* See Appendix G
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Suppose that a value of £, at the Piston Surface, %,, , has been
'"'guesseqn and that integration has Proceeded upward to SOme point

the far fielq will be affected mainly by Tadiation ang not by Convection,
Eq. (5.1a)-(5.5a) indicate that if

/-‘4—4)~g ~0r6)

then
ClP-t)~otry) ~p (&%

as I’w is not toq MUCh in erpgp, It may pe Verified that 4 Consistent

1;:'7*53—2-,* (5.106&)
g_ §£f+ (5.106b)
P= 74 & P/ (5.106¢)
T=74+ 63%7,/* (5 106d)
L= 6,’/—%’-)”’7‘ (5.106e)

Equations (5.4a)-(5.5a} then leag to

7
B e, 5.107)
4 rd
-Z;r="55 * ocg) (5.108)
hence
/ J /
2, * T, =3 L (5.109)
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which is of standard form. However, this equation admits solutions which

are exponentially divergent. For instance, if j«© the solution is, naturally

" kY4 V3L X
T-4€ “rpe’" (5.110a)
-V¥rx 270 1 _ ‘
VZg'=4e 7 _Be™ (5.110b)

Since integration upward from the boundary predicts both L, (%) and g('i) )

both A,and B, may exist. Unless the condition
/ /
L/;)=g/4)-//3+0/é,) | (5.111)

is satisfied B, will not vanish, and the solution must diverge. This is an
alternate statement of the boundary condition, Eq. (3.93). It reflects the
fact that once the integration has reached a station which is effectively
undisturbed, the gas from there onward radiates as a black body. Condition
(5.111) may be generalized for cylindrical and spherical geometries as

follows

NI~ Y)E5) - V5205 —0/(57) (5.112)
j Ja—o
Flk)= A’,”-"’".’:'S)/Ko(,/f_r‘,;, J= 1
4
(1*;(;'5;;) J =2 (5.113a, b, c)

where the K}, are modified Bessel functions. The additional geometric
factors are a consequence of the fact that nowhere has it been assumed that
g>>1 %,

*1f upstream absorption is neglected, £ is unity for allj and % is the
shock location. If upstream emission is ignored the ¥ in(Z;-#must be
deleted. Unless upstream emission is deleted radiative equilibrium

- is not attained in the free stream and there is, in fact, no saddle.
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Analogously
T tpe)- 7
1,4 % ft)- J)@('m’ (5.114)
{Z"»“)f (5 7) (5.115)
where
VST (753)
e - J= O
Glrn)e ) Ko b3gr) /X (g n) Je !
o\ o=V, (r-13) .
() & TR J=2 (5.116a, b, c)

At this point a further assumption is necessary, since if Z~ 0(r) there
is no small parameter available. Consider, however, that for ¥5> & >%
A>/>2 while as ¥/, /"-7-0* . Therefore, one may make use of the fact
that /7 is reasonably small (Moore, 1964, 1966; Vicenti and Baldwin, 1962).

When &€3= /7 the orders of approximation of # and ¢ are larger than before

Pragy = 1% &P (5.117a)
Uper) = GV )es? 5.117
ver) = (7, Wit - (5. b)
In general
. [é'

/—/'_7 fI// )t " (5.118)

% %

R
y’= Z;.%] a/j o’ /fq,z/) (5.119)

I /'+othe radiative and gasdynamic fields are in fact always uncoupled
(see Section 7.2).
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where Ak=f if f”ofé_,)l l'~0¢s) and k=o if M~o/4), T~ocr) ,

As these relations stand, the point /% (%) at which Eq. (5.112) is
satisfied for a given value of & must be found and the integrals must be
evaluated in Eq. (5.118) and (5.119). This is not necessary, since if K (t)
is known only approximately, an & may be chosen to match. With

negligible additional error, it may be assumed that

utr) _ Pr)-L ., Tir)od P Lf_____{r)—‘f "".g—{:, = G:(5%) r>’ (5.120)

A" Py-r Tt Zwm-t g ) Y
The relations above are not really necessary since the quantities which they
yield are most always small, Obviously the numerical integration could be
carried to infinity if 1:», were known, but that certainly is not the pragmatic
approach, Condition (5.112) indicates when the solution may be terminated
safely. Furthermore it proves that boundary conditions must be chosen
consistent with the governing equations since if they were not divergence
from radiative equilibrium in the far field would be ineyitable.

Although the accuracy with which the integral expressions Eq, (3.89),

(3.92), or (3.94) may be foufld is limited, they may provide good initial
estimates for I‘w . Conditions (5.112) provide a single parameter
whose behavior will indicate how good a given value of _Z,y, may be. One

must solve the equation

A - [Z0)-1]Elea,)) - r3gm) =057 (5.121)

where now the explicit dependence upon _Zwmay be indicated. Naturally,
iteration is required, and each iteration involves an entire flow field.

The most obvious approach is to assume that A is linear in Zow SO
that the method of linear influence coefficients (implicit Newton-Rhapson

iteration) may be employed. New values of :Z;w could be obtained from

/)

(I’W]m/), (Iw)m’__ %’/f__n;_{n) (;5.122)
(3%,

B S S
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where the derivative is approximated by a difference quotient. Unfortunately,
/'l/was found to be a highly nonlinear function of I:w; therefore, the method
of Xerikos and Anderson (1962) was applied. The scheme was devised in
conjunction with the sonic singularity in the integral approach to blunt body
perfect gas flows, but the techniques are appropriate to many situations
with saddle points. ‘
| The method involves bracketing the correct value of _Z;Wand then
computing a new guess from Eq. (5.122). Since X is in general nonlinear,
these guesses may be greater than the high bracket or less than the low
one. If this be the case, the next guess is taken as half the sum of the high
and low brackets. The prdcess is continued until a sufficiently small portion
of the 2’(—3}},) curve has been isolated wherein the variation is indeed linear.
In the problem at hand, the first guess was taken either from the integral
or 'an approximation to it drawn from the value of Iw at a previous time.
The second guess was made iarbitr’arily larger or smaller than the first
(depending upon whether _I.:) was too small or large) so that a bracket could
be found. Once the bracket was obtained, the next two guesses were;,
typically, forced to halve. Thisledto A ~o (76"Y after which influence
coefficients were appropriate, and accuracy was improved by an order of
magnitude upon each successive iteration. Normally four to five iterations
were suffiéient,ndt ohly to achieve reasonable asymptotic be‘havior but also
to cause the flow field within the shock layer and the shock slope to be
reasonably insensitive to the value of Z, . In no case were more than
ten iterations required.

Physical intuition determines whether a guess at ..Iow is too large
or too small., Recall that Z, and _g are continuous across the shock wave
but that temperature, hence ‘Jiv(f) , is not. Since tbere are no external
sources of radiation, a’/v/f) must change sign near the upstream side of the
shock., Suppose, without loss of generality, that the shock layer is everywhere
hotter than the free stream. The larger _T,W is taken, the algebraically
smaller will 5W be. The growth of Z, is determined by the initial value of
the heat flux; therefore, if %4 is too large at the wall it will be even worse

at the shock.so that Jr'y/g)might not change sign. It is proposed that the
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integration be carried out beyond the shock until either the divergence of
the heat flux or the flux itself change sign from that which they had
immediately upstream of the shock., If /7 at that point is positive, Zo,,
was chosen too large, and conversely. Analogous arguments hold when
the wall is cold and the shock layer may be cooler than the undisturbed
gas (upstream “éodling" was observed by Chien, 1967),

There are several different ways in which X may be written, As
Eq. (5.121) is stated it seems that qliantiti’es which are in fact of the same
order will be subtracted and this can lead to a loss of accuracy. Several

different forms were investigated. Two possibilities are X, = 7%(4) or
7 I/’a) 7 No one form converged more rapidly or gave more accurate

results than any other, therefore Eq. (5.121) was retained. As stated, an
asymptotic solution is theoretically redundant because one should always be
able to guess a better value of —Z;,Vand thus carry the solution a bit further.
The limits of the computer are rapidly approached in this manner, since L
must be accurate within /6 /5 if Zistobe £ /67, Solutions which joined
with the asymptotic forms, Eq. (5.120), were compared with others in which
I,wwa.s iterated into double precision. It was confirmed that the saving
in computer time and storage more than balanced the loss of accuracy
(which is o /53) ). Thus all of the techniques necessary for one to attempt
the numerical investigation of radiating piston problems have been developed.
Before the detailed investigation is outlined, the methods currently available
for the solution of these problems will be reviewed, and their steady flow

analogs will be developed.

5.5 The Linearized Analysis

The predictions of linearized theories in gasdynamics are generally
quite accurate and have revealed many interesting phenomena. The linearized
analysis of ordinary gasdynamics (OGD) is quite simple since only the two
velocity variables need be considered, and they may be combined into a

single velocity potential. Pressures follow from Bernoulli’s equation and
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temperatures, if they are necessarily, from the constancy of total enthalpy.
When nbnequilibrium chemistry is included, the analysis becomes much
more complicated since at least one more dependent variable need be
accounted for. Instead of the second order Prandtl-Glauert equations of
OGD, a third order equation governs the velocity potential (see e.g.,
Sussman, 1966; Vincenti and Kruger, 1965). Although the planar case has
previously been invesﬁigated (Lick, 1964; Cheng, 1964a,b; Moore, 1966;
Vincenti and Baldwin, 1962; Baldwin, 1962) in this section it will be shown that
the equations of RGD (to the T;_- approximation) lead to a linearized problem
which is governed by a fifth order partial differential equation. The refine-
ment offered is the consideration of a semi-grey gas and the trivial inclusion
of cylindrical and spherical geometries. Rhyming (1965) has considered
weakly nongrey situations in diatomic gases, and Baldwin (1962) has in'dica.ted‘
how a general nongrey planar theory might be carried out. ‘

Suppose that the piston is inserted (or retracted) in a manner such
that displacement from its initial position and deviation of its wall temperature

from unity are never large for #~o0¢/).

K w)=3, fé) + A, O<d, <<t | (5.123)
Twlt)= L +8,7,/(8)

All quantities are linearized about their undisturbed values as follows

Pz 1+&P 4 o =1+ & X P]T) +-
“zd’l ' o(P;_- 1 *JM{,?’;,,T')*“‘
7’-‘-’1‘*5,7"*"' _E; I+E T (5.124)

Id
g9z .
-
cer G rimh 2 Plg,
These are consistent with the governing equations (5.1b)-5.9b) which now

become, to lowest order

7/
Q’_‘%'fu;tj/_‘_i,:o (5.125)

/ 7
Uy + Freo (5.126)
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’ Vi T
e R= 2o (5.127)
VY 44 ,
L A 77 (5.128)

Z, /- -37,2° | (5.129)

. where the parameters &, Z,, and /7 are assumed to be at most of order

unity. From Eq. (2,53) it follows that

ad’= ap e #1-)T (5.130)

In general a > 1 (in fact Scala and Sampson, 1963, are quite fond of <=83,.

Goody, 1960, suggests that for meteorological applications @ ~100). Furthermore

le-zl"/érlM/‘q ‘_ df/)
hence, with Eq. (5.130)

/ - (5.131)
Q= -/627'
Therefore, the essential effects of a nongrey gas appear through the
difference between the Planck and Rosseland means. The stream function,
7” , and heat flux potential, ¢ are introduced through

u'= % (5.132)

, g’,;ﬂr (5.133)

so that Eq. (5.126) and (5.129) lead to

Ple- % (5.134)

=L P ' (5.135)
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if the field is initially undisturbed. The remaining equations are

V;//— %t - Tt: (5.136)

Py f,’f'%t=--’—;§’/3'r£?9+/42-r’) (5.137)

VP -37,'0 1627, T’ (5.138)
o 4 € . ‘

z <R
where V= 7~ 57- /f"’;‘;-) as usual. Note that the operations upon 4 in
Eq. (5.136) and (5.137) are isothermal and isentropic Prandtl-Glauert
operators respectively. (The isothermal wave speed is unity and the isen-

tropic one is V¥ in the current normahzatmn) In accordance with the

accepted notation these operators are

W, (¥) - )}& (5.139)

W (¢) = (7* %;'f»)}” (5.140)

Although Eq. (5.136)-(5.138) are sufficient, they may be combined in a single
equation, Application of the operation 7" to Eq. (5.137) and the use

Eq. (5.138) allows elimination of % . Differentiation of the result with
respect to time, permits removal of the temperature perturbation through
Eq. (5.136) with the result

55 () - 2 9% G2 )z TH (5.141)

If Traugott!s equations (1965) had been used the factor ¥ would have

appeared in the second term rather than the last one. These equations




153

are subject to the boundary conditions

# = /':/t/ (5.142)

—3L P (LE)FL ~/éTatt) | ez r-k, (5.143)
and
%¢ ;""’.f‘/' W}#"O as r-=>co (5.144)

where X,=Z in all but the planar case, in which A£,=© without loss of generality,

As an aside, it is mentioned that the linearized analysis of meteoro-
logical problems (2»1) is considerably simplified when quasi-isotropic,
semi-grey radiative transfer is employed. Equation (5.138) requires that
T~ 0(S,) so that « T~ 0¢/). Then Eq. (5.136) forces the gasdynamic
field to be determined only of isothermal propagation. Therefore ¥ may
- be readily determined whence Eq. (5.137) allows w to be found in terms
of % . The analysis is straightforward in all respects,

The linear model includes none of the interaction of the nonlinear
problem. For instance, the characteristics Eq. (4.44b),(4.45c) become
straight lines, therefore individual ''pulses'' may never coalesce to form
a shock wave. They must always coalesce in reality, thus the omission of
their curvature leads to nonuniformity in the far field. In Section 4.2.2 it
was-indicated that strong discontinuities are still allowed across the leading
Mach wave. Therefore, one must allow for the possibility of discontinuity
‘relations such as Moore (1966) employs and Baldwin (1962) justifies rigorously.
Linearized solutions are in general not uniformly valid for large times or
distances,and more sophisticated perturbation procedures will be required.

The system (Eq. (5.136)-(5.138)) as incorporated in Eq. (5.141) has

been analyzed on many occasions. If one assumes that

ckx

‘ ' e ‘ t Jro
}V-'- Yoo f HY (ker) é‘w Jg=1
_,l,e-'k' e (5.145)
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a,
where /"7’,, is the Hankel function of the first kind, the dispersion

relation obtained by Vincenti and Baldwin follows. In their notation -

C,fﬂ—z(’i:—)-wc;‘[/-/o,‘_;;/a,at}—/afro (5.146)
where | |
¢ =i (%) © (5.147a)
B, - ;@‘x{%’) (5.147b)
i A = -}g:/%;—‘— |  (5.147¢)

All comments made by Vincenti and Baldwin are appropriate withoﬁt

-iwt

| modification. - They apply directly to pistons which oscillate, £/¢) ~ & )

so that ohly a single Fourier component may participate. Vincenti and
Baldwin were forced to assume that /<<l in order to perform their analysis.

Cheng’s wavy wall analysis (1965a, b) proceeds in the same manner. The

effect of the steady flow may easily be inferred from the unsteady- analysis

f 4 if a Gallilean transformation is applied.

| Baldwin has investigated the equations by a Laplace transform
method as have Lick (1964) and Moore (1966). Unfortunately they have
inve st1ga.ted only the case of an impulsively started and instantaneously

- stopped black wall, f{f}- HIE) = { o,t<o This case is particularly

1,t>0°
simple because all Fourier components participate equally. It does, however,

have a d1scont1nuous solution. The phenomena due to a pulsed wall tempera-
ture for a stationary surface have been investigated by Solan and Cohen (1966).
The case of a general /) has not yet been investigated since, even though

the Laplace transform solution is easily obtained, its inversion to the

physical plane is almost impossible. This is illustrated if Eq. (5.136)-(5.138)
are considered rather than Eq. (5.141) since the boundary conditions are

obviously better suited to those.
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If the ordinary Laplace transform is performed upon Eq. (5.136)-(5.138),

7 ‘may be eliminated. The result is

—_ — 2 —
JEVY =P pprerrg} ¥ - 2 o e (5.148)
TOVG - #30,°F - 16rT,q(Fpt) F=o (5.149)

= L T spt -
7-,30;'7;) {(rjf’ Y- %4- §,9)7 (5.150)
where
G T /—‘—’;{ﬁ_‘— (5.151)
and
— ® _pt
}p/;;,.)=f ;Vlgt)efa/t (5.152)
o

for instance. These are subject to

W = pfip) (5.153)
L () Ee ke T , @A (5.154)

ﬁ//—iﬁ""f‘f/ }"/;//7"’0 as r->»>co

Since the effect of geometry appears only through A, Bessel functions or
an additional (/r) decay, attention is confined to the planar case. Itis
understood that Z,=1 because the planar case lacks a physical length scale.
Obviously Eq. (5.148) and (5.149) admit solutions of the form
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pe= _‘.'e'”"x (5.155)
. t - . ‘
P = =g | (5.156)
[ .
then _ -
{x~ 19"[11--3’-?_” %L;’p ¥, O
) ®
. . ?
- 1ML Z /P 57,'P ¢
"a‘r"’z/a' K 5w

(5.~1517)‘

so that nontrivial solutions exist if and only if the determinant of the
coefficient matrix vanishes.

Of the four roots above, at least two will yield solutions which do
not behave properly as 74(-""4’ . Then Eq. (5.157) relates the ¥ to the

;c) #jafter which Eq. (5.153) and (5.154) allow solution for either 71’-,

and Q’—; or Z and ?;, . The expressions for the A%, ?;g , and p; ’s
themselves are cumbersome and without additional simplifying assumptions
‘one cannot hope to handle the problem analytically. Since almost every
simplification has been pursued extenéively and because the purpose of
this investigation is not the exhaustive analysis of linearized problems,
the matter will not be pursued further. |

It would, of coi;rse, be interesting to compare thle linearized and
nonlinear solutions of the same problem.just as Sussman did when considering
chemical nonequilibrium. In the present investigation the flow field does
not terminate at the wavehead as his did; therefore only asymptotic solutions
are available without considerable labor, and general comparison is in-
appropriate at the present time. It has been argued that large time solutions

to the linearized problem are not valid unless special precautions are taken.

T mme———— i 1t e e MeeReG—e B e b e ¢ i T
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Also, large time solutions to nonlinear problems are not worthwhile
because they closely parallel the study of inviscid radiating shock
structure which is well understood. It was discovered that the nonlinear
solution of situations which would allow linearization possessed noticeble
radiative fields for small times only if the Boltzmann number were small,
Examination of g(p), Eq. (5.151) reveals that small time (large P)
approximate linear solutions are possible in all cases except Bo<<1,
Similarly, any approximation based upon Bo<<{ will not be valid for small
times., The small time behavior is easily obtained if &,2 8¢ since the
radiative and fluid mechanical fields are almost uncoupled. If

k]
and go—*i(i,e., tel)
J

_,/rzM)(W& LT (5.158)
) -

Bo

S|
R
|

Y~
Xy
Yy
)
L
Q

?’, _ /5 ém__ 'ﬁgz% (5.159)
3«’; fc‘-{-/z-e/,/ff':;)}

Note that since only one root remains in each of J-and };, fmust vanish

if the wall temperature is unperturbed. That is, the fluid mechanics has

not had time to influence the radiation whereas the radiation has some

influence upon the fluid mechanics. This casts some doubt upon the

"initiating'' assumption which claimed that just the opposite must happen.

The anomoly is easily resolved, because if %J" is neglected vrelative

to k? then Abshould neglect relative to P, in which case an ordinary

uncoupled flow results. The inversion of Eq (5.158) will be indicated so

that there is at least some comparison available.

/ - —‘Xﬁ' - A

. 2 ]

N -=€ f x "z‘l' / (5.160)
r T~ -

/k A flt-t ﬁ,)c 1;{1/’,/2‘/71«%)}) JT

There is no upstream tail to this approximation because pulsed wall

temperatures are not considered in this analysis, the inversion of
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Eq. (5.159) is not of interest. From Eq. (5.157) it may readily be inferred
that for very small or very large P, the wave head travels at the isentropic
propagation speed. At intermediate times it slows to nearly the isothermal
speed and then accelerates to the isentropic speed when ©¢>1

Because closed form linear analyses of general piston paths are
prohibitively difficult, the numerical investigation of nonlinear piston
motions is clearly necessary. Furthermore, piston histories which allow
linearization produce hardly enough radiative to cause noticeable effects
in practice. Even though piston insertions bear a close relation to shock
tube phenomena, it is instructive to think in terms of a realistic steady

situation. In the next section the appropriate analogy is derived.

5.6 A Hypersonic Piston Analogy

Piston analogies of ideal and real gas problems have been developed |
in considerable detail (Hayes and Probstein, 1959; Su-ssrna.n, '1966), but
an analysis of this type in a radiating gas has not yet been approached
rigorously. Khosla (1966) has developed the method in linearized situations
and his analogy compares quite favorably with Cheng's two dimensional
solutions (Cheng, 1965a,b). It is hoped that the following analysis will
prove at least as useful for nonlinear problems.

Since the previous normalization Eq. (3.10), is inappropriate for
steady ’situations, one must begin with the dimensional equations (Eq. (3.1)-

(3.4)) for a general gas.

D" Z W
)‘:,—c e T TI?c D‘t‘ T(O dwu® /d:‘ '?T,c_, /v‘) (5.161)
Du” C 3

+ AR
ip , )n 1}Dt'*/’ hr I tpe T A'vg *ZA/ W (5.163)

o v
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g B - 2 .16

s
jm,/_z;"’_— P P Ant Z“* (5.165)

/D-D__tﬁ,'.-— weTrE) . (5.166)

where
D_ 2 2
pe” YT Ex T VT oy

Consider a slender body Bgxr)= /- SKX) = 0.

The conditions under which a steady analog of one-dimensional
unsteady flow exists will be determined by the assumptions which must be
'made to force the steady equations into the unsteady form. Since the shock

layer is thin, the following may immediately be assumed.

Z= X% " |  (5.167)
r=r*/sp¥ (5.168)
U= U*uUg (5.169a)
o=t S U (5.169b)

The parameter g may be, for instance, the fineness ratio of the slender
body of interest, o< J<<Z, Normalization of the continuity equation.

introduces no factors of order o). Therefore if

| /:/‘/ﬁ;" | (5.170a)

P= 27/’0~ (5.170b)
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7= T'/f;‘r (5.170¢)

« R :
Wi - W/ﬂ.. ¢l (5.170d)

the continuity equation is

| 2P or L We (511
ﬂ}ﬂé‘ D +/"4.’? bt 1P IU = & il Pt !

where

¥ » -
The normalization of most of the variables.,is irrelevant so far, since the

expression is homogeneous in all but the dimensions of velocity and length.

Since the oncoming axial flow predomainates,

u= 1+J8 & , (5.172)

at most. Then Eq. (5.171) corresponds with the unsteady continuity equation

if transverse motion is identified with that of the piston. To this approximation
D 2 o
oE “Fe*rVvE -

The momentum equations (5.162) and (5.165) are

/_ e
autf' U U = —a—%‘ /7#) (5.175)
/ 2
o+ Uvp s - — I
U r a,/%&).,//,) (5.174)

where a perfect gas at infinity has been assumed. Under assumption

Eq. (5.172), (5.174) will correspond with the unsteady momentum equation
if

P= kP (5.175)

e e W e e %) ' - . B
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where !(,,-/‘{cc d must be of order unity. This implies, however, that the
information obtained from Eq. (&/%) will yield higher order corrections
to the axial field and it is neglected for now. ¥4z, 4, a5, and g, 2=

are normalized as follows

E }"/(&: % (5.176a)
Z.- 2%/ (5.176b)
Hor - od’:/aé: (5.176c)
212 21 /%" | (5.176d)

the energy equation is

bply e bripe D 2r _ 1.8
[ 5 157 B - B ey 24824y (%) (5.177a)

where

(5), = /ft_ﬂr—') (5.177b)
T 7t?

Clearly it must be assumed that

T= k' T (5.178a)

&7 5.178b
Z- o0 T (5-1780)
Thus Eq. (5.177) corresponds with its unsteady analog if

f‘ii = (Z_,)« (5.178¢)
i, (b)), Zag)“
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where the subscripts J,« denote the corresponding parameters of the

stéady and unsteady problems. The unsteady situation is assumed to

possess a characteristics time, t: » at which the motion is terminated,
~corresponding to the finite length of a body in steady flow. The unsteady

Bouguer number is, therefore

(T =t VRgt ay (5.178d)

The radiation governing equations must now be examined. Normali-

zation is no longer arbitrary, therefore Eq. (5.165),(5.166) and (5.167)

become :
S@), + (&), +J'—;Z} = -3, (ol L -1, 8) (5.179) |
7z, = - 37, a/.,")gz (5.180)

) :
_2:'_ - —,_3/;&:) ,(q g'_ (5.181)
Equation (5.181) indicates that steady-unsteady correspondence ensues if

SG, =7, (5.182)

and _
Lo %o VK6 (5.183a)
Then Eq. (5.180) indicates that

P Ut (5.183b)

and yields information of a higher order. With the above; Eq. (5/73) becomes

(B I el 5 54,5 f 015 (5.184)

Once continuity has been forced into steady-unsteady correspondence,

the rate equations, (5.168), correspond as well if (f:-'):s' (‘é:,z The normalization
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of the nonequilibrium variables depends upon the specific temperature and
pressure dependence of the W, and, by virtue of Eq. (5.178 ) and (5.178%),

is not arbitrary. According to Eq. (5.173), the x-momentum equation becomes

2
/ﬂ

which is a single partial differential equation of first order whose solution

D't I d U_E’- == (5.1853.)

if found from

9'_;7, - P tre (5.185b)
/'5 vnt)
on
. |
5/'{’ Ut €) (5.185c¢)

where all of the terms on the right hand sides are known so that integration
may immediately be carried out along the characteristic. The physical
interpretation of Eq. (5.18%) is that the rate at which first order pressure
P does work on each slab of fluid is balanced by the convection of first
order transverse rnoment/'a'U' in the axial direction.

In summary

- pl_’- — F e s Fy_ — _"_
e Bt ke SR PTG )T iy (e (5.186)

2o = - Fr (5.187)
4,

L

Phle 2DF. Lk ) p7 - — w
/Sy -t "/0 T/ V7 - (QJ) ‘7 _ 2 .lvl .
{ 7 ]pt —_— Vit [Pla Z, Ma}+_ 4& /t:)(s 188)

(?&), = - (@] - 44,8 ]+ é’] (5.189)

oy
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F =
I, = -3 65 )% 2.

- D¢, wW;
Zt = - T
/° D¢ z!

where, for correspondence

(S57,) = T

Y

/ /

————

|

(éf:)s" 6f:)q

In addition

(T) = €A% %!

Bo = /OQJF (m’)h/a—%-p 7
(é:ZS = L45‘¢;;,{£e

(¢}), - (f;; A)

by M S

(5.190)

(5.191)

(5.192a)

(5.192b)

(5.192c)

(5.192d)

(5.192¢)

(5.192f)

(5.192g)

(5.192h)

(5.192i)
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Equation (5.192a) indicates that the optical depth should have been based

upon shock layer thickness instead of body length since traverse radiation

is most significant. The normalized variables illustrate that the usual

hypersonic small disturbance assumptions have appeared naturally from

the search for steady-unsteady correspondence.
= x7*
re rt/sAr

U> U= L+ 3T

P AN e

VAR AT = R A

(5.193a)

(5.193b)
(5.193c)

(5.193d)

(5.193e)

(5.193f)
(5.193g)

(5.193h)

('5.1931)

In addition higher order information is furnished by Eq. (5.183), (5.185), and

(5.180) which takes the form

27 “Smae Tt

(5.194)
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These allow. the determination of the axial velocity and heat flux pertur-
bations immediately after one obtains the other variables. The velocity

boundary condition on the surface is

DB,
o »” )

which becomes.
T = Blt) §1+005M] | (5.195)

Obviously the system (5.186)-(5.191) above must allow the same kind
of discontinuity (shock wave) that the corresponding unsteady equations
did. This could be verified through an expansion of the two-dimensional
steady Rankine-Hugoniot équatibns, but in light of the comments in
Section 4.2.2 this is not necessary. The radiative boundary conditions
do not depend upon the A>¢ relation, hence they are still Eq. (3.88), and
(3.89), (3.92) or (3.94). The correspondence is, therefore, complete.

‘ This scheme must be modified in situations without physical length
or time scales (cones and wedgés). It is best to shrink the axial extent
of the field rather than to expand the traverse one in these cases. The

appropriate normalization of the independent variables is

2= XS/ px ‘ (5.196a)

r=r¥ e« (5.196b)

That of the dependent variables remains the same. The equations and

boundary conditions are invariant if 87, is replaced by unity and

FEr) = (¢7), (5.197)

which indicates that the corresponding unsteady flow field due to a piston
in linear motion is very nearly in chemical equilibrium. This is said
with reservation because in general the normalizations of the W, are not

known,and they might introduce factors which would change the conclusions.
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It is interesting to note that the definition of Z., Eq. (5.192f), is consistent
with both steady and unsteady cases so that fhe two have comparable values
of .that> parameter. |

Several comments on the mathematical and physical assumptions
implicit in the analysis are in order. Initially the system of.equations was
seventh order, ultra-hyperbolic, while after reduction the formal repre-
sentation is hyperbolic and of fifth order. The order of the system has
not been reduced, however. Two equations were merely uncoupled from
all of the others, and this was possible because data upon "81 and &« were
chosen so that they could be satisfied within the current ordering. Even
though the mathematical structure of the problem has changed, it is not
a singular perturbation.

Implicif in all of the relations derived is the assumption that the effect
of adjacent slabs of gas one upon all of the others is of higher order than
the outward effect of radiation upon the flow field. Axial upstream absorption
and emission have been omitted in favor of the cbrresponding sidewise effects.
This is justified by the overwhelming importance of axial convection and
could also have been accomplished with the full transfer equation. In that
instance the omission of “%jyrelative to 2T/3r is jusf as easily justified
as was g,) << Z,, + Then the heat flux and its divergence might be, for
instance, the planar expressions Eq. (2.69) and (2.70) in the r-direction.
This was done by Khosla (1966).

Although Eq. (5.188), (5.185¢), and (5.194) allows the determination
of the axial heat flux and velocity perturbations, this is not so simple in
practice. To accurately determine P—t- and _ie Eqs. (5.186)-(5.191) and
their boundary conditions must be differentiated with respect to % . The
solution for the temporal derivatives could be carried out in the same
manner as that of the original system, and the later solution would enter
through in homogeneous terms and coefficients. Even though the system
‘would be linear, the labor involved seems hardly worthwhile. There is
a strong analogy with the method of parametric differentiation (Rubbert, 1966)

since € is only a parameter as far as the radiative field of lowest order

B ER e
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is concerned. _
Equation (5.194) confirms that the analogy is invalid near discon-

tinuities in the piston path or its temperature history since if =:".‘Ztis large

‘the governing assumptions are violated. In particular this will occur at

the impulsive start of motion. Since the dominant mode of axial heat trans-

fer has been assumed to be convection it must always follow that

2x* 3%

, .
/a'u* ——-— >5 — ___{‘ (5.198)
The Rosseland formula, Eq. (2.51), overpredicts worst, therefore, a con-
servative result will be given by
_ /6 ar’ar’

(Z‘VM; 2 o;e Ix*

If 5 is distance along the surface of a slender body measured from the nose
’7‘. - ’~L7" hel AT.
ot — 2 4 G Ed

— él* ~ /( 0__7—,)3 AT*
* ERr7A .
X Ve .5

so that Eq. (5.198) becomes

agts* L& _...———- - (5.199)

Thus, the more 4importa.nt radiation is the farther from the nose the analogy
holds. A consistent analogy must always include self-absorption since it
is certain that the shock layer is not necessarily optically thin., The unique
result the approach outlined above is that it is not restr1cted to non self -

absorbing shock layers as most analyses are.
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5.7 The Choice of an Absorption Coefficient Model and Radiation
Similarity Parameters

Since the model proposed omits some important physical processes,
it is best to choose a description of the absorption coefficient consistent
with this omission. The calculation or measurement of absorption
coefficients is quite difficult, and one cannot at present hope to be able
to include all possible phenomena in a given gas. At 'low' temperatures
(1 ev and less) molecular radiation dominates the spectrum, thus attention
should be confined to models which favor molecular processes. To this
author’s knowledge only the work of Armstrong, et.al. (1961) includes
tabulation of both Planck and Rosseland mean absorption coefficients for
air at reasonably low temperatures. All others present K, as it
dependsupon frequency (or wave-number) under given conditions. From the
definition of the Rosseland mean, Eq. (2.52), it appears that the greatest
uncertainties arise from frequenciés in the wings of broadened lines. This
may be particularly true for low frequencies., At "ow!! temperatufes
“the peak of the weight function de‘/meoves toward lower frequencies as well.
However, most tabulations nleglect low frequencies; therefore the calculation
of Rosseland means may be quite difficult. Since most tabulations of the
Rosseland coefficient are, furthermore, suitable only for high temperatures
(> 1 ev) it seems that the distinction between Planck and Rosseland means
is bette;r motivated in future investigations, in which the temperaturé range

of interest may be expanded. There are in addition many uncertainties in

semi-grey radiative transfer, particularly in the quasi-isotropic apprdximation,

that woﬁld be better resolved in more simple situations than those which

shall be considered. Therefore, even though a semi-grey analysis has been

maintained up to this point, it must be abandoned in favor of a grey one for

the sake of simplicity. All of the computer programs to be described allow

for the inclusion of semi-greyness, but henceforth only the Planck mean

absorption coefficient is considered. At least qualitatively, the Planck and

Rosseland means display the same behavior as temperature and pressure vary.
The trends of the Planck mean are well understood. It increases

almost linearly with density, but its behavior with temperature in nonmonotonic,
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iﬁcreasing when T <1 ev but decreasing rapidly when 7> 10 ev because
processes involving free electrons (e.g., Bremsstrahlung) predominate.
Many investigators have sought formulae which approkirﬁate this behavior.
Fortunately the store of data is growing quite rapidly* . Nevertheless only
~a crude approximation can be expected, and the results obtained from this

investigation must be regarded as qualitative rather than quantitative.

Thid does not in any way detract from the method or the numerical analysis
since any absorption coefficient model may be used.

Among others, Traugott (1964) and Shwartz (1'965“)' have investigated
the choice of an appropriate absorption coefficient model. Both agree
that the data of Kivel and Bailey (1957) are representative of most
investigations. Traugotf incorporates an extensive correlation of data
including that of Brownlee (1963), Nardone et.al (1963), and Meyerott et.al.
g (1960). Since Traugott!s formula validly reflects the essential phenomena

in the low temperature regime, in the future the general form

= PET ™ (5.200)

shall be used. Both Traugott and Shwartz arrive at

$-7 | (5.201a)
b= (5.201b)

for 7 < 1 ev in air. At higher temperatures, when the gas in nearly
completely ionized it may be shown that &~ 2, 5;""//1* (Pai, 1966, pg. 79;
Zeldovich and Raizer, 1966, pg. 260). Gruszczynski and Warren (1967)

indicate that under conditions of superorbital entry short wave length

radiation is predominant. Furthermore, Biberman et.al. (1964 ) have shown
that the majority of total gas radiance over.wide ranges of conditions comes
from atomic line radiation (in the vacuum uv, 500-1600 A° ). Therefore an
atomic model is adopted in most cases and )1""73 //"0-4213 employed.'*
Because of the manner in which the Boltzmann number was defined, the

parameters 2:( and 8B,are not independent once an absorption coefficient l

*
See Appendix F for a concise discussion of the labor involved in the
computation of absorption coefficients.

*¥ For expository purposes such a model is qualitatively correct. In
choosing the absorption coefficient model above, one weights line
radiation over that in the continuum, nevertheless the empirical
formula is obtained from experiments in air, which is an essentially
dlatomic gas at the temperatures of interest.




171

model has been chosen. Furthermore, they depend only upon properties
of the undisturbed gas. According to Eq. (5.192f) and (5.201a,b)

B, = UW) 5 Pineh (>-2022)
&, [Ty )7 T %o ok
(5.202b)

oy, = (FE)NE)

where the sea level values are

3.,“ * 3 /2x07 . (5.203a)

Ap = &5930°5 7t

Sc (5.203b)
Thus Goulard's radiation-convection parameter is
N /5/2_ '
Le. Zes /I—- ‘ (5.204)
eb 50" V .

which may be reasonably large at high altitudes. The variation of (8"/3»,,_)
and ap/Mp, with altitude are presented in Fig. 6.
The parameters governed by surface properties are the wall emissivity,

&, its temperature, 7,, and the piston velocity, ({p. Because the
ternpérature downstream of the shock is fuo/({,’}and attention is restricted
to 7< 1 ev, the motion is confined to #4,%3. 1If the wall were very cold
or very hot this value might be higher or lower, but it is most instructive
to examine ‘7;\,*'0(/). In fact, if Tw were not-~v 0 (/) then there would be
another temperature scale, Ay, in the problem. The only obvious effect
which emissivity might have is that the heat flux into the wall must diminish
as & does. The limiting process & ®o is, however, another singular
perturbation since in that case no matter how cold the wall may be there

will be no heat flux into it and the temperature slip will always be significant,
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4Visk‘anta and Grosh (1962) have examined the effect of emisSivity in a simple

situation, but their conclusions do not necessarily apply to cases of interest
herein. For completeness one should examine several emissivities.

The region in which physically realizable situations may be modeled :
by'the present equations is indicated schematically in Fig. 7. The (#8,,Tw)
and (Up, 7;7) planes and the appropriate surface of constant wall emissivity
delineates the volume of interest. If equilibrium thermodynamics were
included, another decade in P/ could be allowed without straining the
gas model.

The purpose of the present investigation is not orﬂy the study of
specific instances in a given gas but also the prediction of the effects of
radiation (and the worth of the numerical program) over a wide range of
conditions. The specific parameters discussed apply only for air, but
reentry problems are not necessarily confined to the earth. In fact, one
of Jupter?s satellites has an atmosphere of methane, whose absorption
coefficients in the temperature range considered are a good deal larger
than those of air (see Main and Bauer, 1967). A complete investigation
would involve the study of all permutations of small, moderate, and
large Boltzmann numbers; small and moderate wall temperatures; wall
emissivities near zero and unity, and both small and moderate piston

velocities. It would be interesting also to investigate the effects which

‘radiation may have upon aerodynamics through the modification of pressure

distributions on slender bodies. Such an investigafion would require at
least fofty separate cases, and this is beyond consideration. Therefore,
parameters were chosen first to simulate situations which might be en-
countered in the atmosphere, but second to produce situations in which the
effects of radiation are if not predominant then at least pronounced. The
problems to be presented accomplish these goals. Before the cases
studied are described, sbme comments on the numerical experience

acquired are of interest.
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5.8 Numerical Requirements

5.8.1 Stability
The numerical stability of hyperbolic problems in only
two independent variables is seldom questioned. The Courant-Friedrichs-
Lewy (CFL) stability criterion for hyperbolic systems in any number of
dependent variable requires that the domain of dependence of a point
according to the difference equations must contain the domain of dependence
of the differential equation. It is well known that in all simplical network s*
the CFL condition is sufficient for stability, Of course the only network
available in a problem in two independent variables is simplical since it must
use the ends of a line segment (two points in a one-dimensional data .surface)
to determine each new point. However, a characteristic mesh might be
only "marginally" stable whereas a constant time increment scheme is
unconditionally so. This happens because in the Martree schenﬁe in a
nonradiating situation the properties at points from which characteristics
emanate are found by interpolation which includes points from outside the
true domain of dependence. When radiation is included, stability in
space-time is assured since the difference and differential equations possess
exactly the same domain of dependence. This conclusion follows for
multidimensional problems as well. Since errors are of order (Ar)t spatial
inc‘rements in the radiative equations must not be too large. It is easily
shown that errors oscillate with exponentially increasing amplitude unless
ar JEN).
2 2hHn
Once the numerical stability of the system is assured, the manner
in which time increments may be chosen must be determined. This is
dictated by the requirement that the domain of dependence of all points at
the current time, 't,, » must include only points at the previous time, 'ﬁ,,_, .
Consider Fig. 8 in which properties at a point arbitrarily close to either
the piston surface or the shock wave are desired. Let that point be at a
distance 6,0@'”,)/ 0<&<1 from either 'boundary'. Then, to a first

approximation either

Lt (Y gy = K- & (1108, - Hs,,

o - . ‘ ,
Simplical networks are those that determine a new point by using L+ 1 points
of an L.-dimensional simplex in an initial data surface of dimension L.

R
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or

At-(c/,,+ez4)),,-, =&, + & (H-R)n

where the subscripts (-) or p denote propert1es Just downstream of the
shock and at the p1st0n face respectwely. If all properties are linear over

the increment, 4t , and the piston does not accelerate too rapidly

<f4 [/(5 "Pf)n-‘l_
qﬁ,., - f; /”5'%)»-'

At £ Min
Cy [ES - /PP)h-l ,
%ﬂ-l - /@J-q(-J)n—,ﬂré /qf- f)ﬂ; ’

(5.205)

Usually, the first estimate (that which allows an arbitrarily close approach
to the piston) is smailest. Nevertheless, if the body accelerates or
decelerates this will not always be the case. 4 '

As the shock layer grows optically th1ck there must be regions near
the piston or the shock in which rapid variations may occur over short
distances (entropy layers). Therefore, it is best to cause ‘points within
the shock layer to accumulate near the piston and the syhock. If there are
N points within the shock layer r,=Rpand /=%, one procedure which

allows this is the following

-
_t £ _ - (¢ -
y L[1+/zf /)(os[r -3)]J €8 M-/

(5.206)
t
In this manner the second and (¥#-1)° points are é, (Rs-/%) from piston

and shock respectively and the other points become farther apart as one
moves inward or outward toward ([£W4. An obvious choice for M is

that integer nearest to /# %, . In the calculation to be cited points were
chosen symmetrically about the shock wave until "N/ 2" upstream points
had been determined. Thereafter the spatial increment between points

was increased by a factor, D, until the largest increment allowed by

spataal stability was approached. Beyond that station all spatial increments

were equal. These procedures are incorporated in the numerical programs
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described in Appendix E.

5.8.2 Accuracy and Numerical Experience

Chou, Karpp and Huang (1967) were able to determine
the accuracy of their characteristics scheme through comparison with
an exact analytic solution. Since there are no solutions available for
comparison in RGD, some other method must be devised. If energy
is conserved by the numerical procedure within a reasonable tolerance,
then one may have confidence in the solutions obtained. Since the increase
in energy of the flow in a given time is the difference between the work
done upon the piston and the energy lost through radiation, energy is

conserved if

Anlts) Ry (41
f E{/;%/(rf’dr'—f Etr)rrdr' =
/’,Cf_,} RpCtJ "
=7 £ L, (29 R (e)dt’ —
rf g

— _f_’ b J ' » oYrer ’
SR W

(5.207)

where J =@/, 2 for planar, cylindrical or spherical cases and for a perfect

gas
P 7, |
E==l0r7+£u*f | (5.208)

If upstream absorption is included, AMax = @ and &n‘x‘o, otherwise

wasf““k and gmx isj'b«. The heat flux is taken positive outward from the
piston.

This criterion was applied in several planar and cylindrical cases.

Without exception energy was conserved with 1 percent in planar and within
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L5 percent in cylindrical cases over approx1mately f1fty t1me mcrernents.

This is certamly acceptable, since the radiative transfer equation is

‘never satisfied exactly. Errors of this type could be blamed upon either

the quadratures or the linear interpolation which was used.

The program required a good deal of '"knowhow'" in the choice
of parameters. Generally, the integral boundary condition was used as the
initial guess only when the program was begun. After that it was much
easier to strip the final, iterated value of I.Wof all terms dependent upon

Tw/ € or 7,7”“ (if upstream absorption were neglected). The information
remaining was the integral, and this was used as the first estimate for the
integral of the next time increment. The parameters A(4R1 and AcCuUrz
(see Appendix E) help establish the high and low brackets for 2, once
an initial guess is made. Generally these may be taken to be 0.2 or less,
fhe higher values being necessary for more rapidly moving pistons. The
parameter XD/ is a measure of the largest allowable spatial increment, and
XDZ is the factor by which the increment outside of the shock is increased
with each step. Both of these must vary inversely as (V) since smaller
increments are necessary in 'thick' situations. The dummy variable k¢uP
allows one to monitor intermediate results interspersed judiciously 't}irough—
out the program. Caution forces allowance for possible difficulties for
combinations of pardmetersnot yet investigated.

In general, three iterationsupon the compatibility relations were
allowed in program A (see Appendix E) although up to five were used
sometimes. Of course an error criterion could have been built into
the individual subroutines, but this was not deemed necessary. In the initial

stages of flow development the procedure described above for guessing Z,,, con-

- verged on ‘the first or at most the second iteration, but as the shock layer grew

more optically thick the far field behavior became more and more sensitive
to l;w. On the average four or five iterations were required upon the
entire flow field (these shall be referred to as Grand Iteratidns), but at
times eight were necessary. At no time were more than ten iterations

required, and never did the procedure fail to converge. If the shock layer

were very optically thick the boundary condition, J;w » would have to be
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guessed into double precision in order to obtain convergence to the degree
called for thus far. Fortunately this can be avoided since very opticallyb
thick behavior is reasonably well understood and may be amenable to
perturbation analyses in order to determine the structure of the optically
thin layers near shock and surface. Also, radiation plays a relatively
minor role in the compatibility relations since a’iyg is small; therefore
the flow field becomes insensitive to small errors in =z, Just as rapidly
as the heat flux distribution becomes sensitive to them. Th1s behavior
has been confirmed in practice.

The smaller the initiating time the more rapidly will the field
forget discrepancies in the initial data. However, the allowable time
increments are also smaller the smaller €; is. Therefore about the
same amount of computer time is required for the solution to settle out
regardless of what % might be. The initial time is, in fact, the parameter,

A, which is characteristic of the allowable step site even though & plays
just as important a role. The reason for this is that <4 must be continually
decreased if "entropy layers' are to be monitored. If the same value of <4
were used throughout, the points in the shock layer would grow farther
apart as time progressed. Usuaily é:? was taken to be 0.25 (five points in
the shock layer) at the start of motion, but values as small as 1/15 (17
points in the shock layer) were necessary at times in order to monitor
steep gradients. The size of the time increment depends upon the para-
meters chosen, but usually four or five time increments could be covered
in one minute of computer time. If upstream absorption is neglected, the
time required decreases by roughly an order of magnitude. Another
crude estimate is that about forty-five minutes of 7094 computation are
necessary to travel to a time ~ .25 if f‘N 10°%

The location of the point % /#) at which the solution is terminated
is an indication of the extent of upstream absorption., This station always
remained well ahead of the shock ,2nd as the shock layer grew it occurred
fewer and fewer shock detachment distances upstream. Generally th1rty'
to f1fty points were necessary in the flow field. Only the last two or three

came from the asymptotic solution. Thus that solution serves only to

i
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complete the data set thereby making interpolation in the far field less
ambiguous. The reader will note in Appendix E that one-hundred points
were allowed in the flow field. In a very optically thin situation
more points then this might be required because of the slow radiative
decay. Unfortunately, the storage capacity of the MIT IBM system which
existed when this investigation was terminated allowed the use of no more
than 100 points. Therefore the study of very thin situations or very large
tin;les (when the shock layer would be so thick physically that many points
would be required) was not possible. The current MIT IBM Model 360-65
might handle as many as two hundred points but not many more.
Unfortunately, program B (the full transfer equations) is not nearly
as rapid as program A. Quadrature is required in order to obtain the
optical depth, 7 s Which is needed for the quadratures involved in RAD
and QTAU. Since the quadrature must be performed at each of points 1,
2;3, and 4 in each Grand Iteration, it is understandable that up to five
minutes of 7094 time were required for the three grand iterations necessary
to complete a single time increment.’ Only a few time increments in a
single problem were cbmputed. This is sufficient, however, to have
proved that "exact' solutions of ""complete' problems in RGD are possible,
and to obtain estimates of the computational effort involved. If the physics
of radiation and its interaction with other nonequilibrium phenomena
were corhpleteljr resolved, the inclusion of chemical nonequilibrium would
involve very few operations in addition to those which are now necessary.
Therefore, estimates arriired at are representative of more general

calculations as well. Further comments are reserved for the next

chapter, in which specific results and difficulties will be discussed.
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CHAPTER 6

RESULTS AND DISCUSSION

The computer program allows investigation of one-dimensional
piston motions with or without shock wave s, and without restriction on
surface properties, piston paths, or the upstream state of the gas.

Of course, exhaustive investigation of all possible situations was not
feasible. The cases considered are outlined in Table II. Indicated are
the parameters of the problems and the extent of the investigation as
measured‘by the "times" at which computation was terminated. In

all cases the wall was at the free stream temperature and all are planar,
include upstream absorption, and use the Planck mean absorption

coefficient given by Eq. (5.200) and (5.201) unless it is stated otherwise.

TABLE II
Piston Path| Bo T, €, tmax Comments
R,(t)
%
0.5t 0.5 1.00 1.00 0.050 Q=constant
: : Q=constant
1.5t 0.5 1.00 1.00 0.284 without upstream
absorption
0.1t 0.1 1.00 0.50 0.060
t(2.0-t) 10.0 0.02 1.00 0.163
t(2.0-t) 1.0 1.00 1.00 0.443
1.5t 2.0 1.00 0.25 0.313 cylindrical
1.5t 2.0 1.00 1.00 0.356 cylindrical

e b
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These situations were chosen because they employed varied
combinations of the radiative parameters, thereby insuring efficient
operation of the program in general. Most important, regimes which
are unapproachable with perturbation procedures were investirgated.

A restricted comparison with the linearized theory of Section 5.5

was attempted, and with the aid of programs B and C (see Appendix E)
the error inherent in the use of the differential approximation has
been determined. This is believed to be the first such comparison in
a self-consistent gasdynamic problem.

No attempt was made to investigate the effects of various
approximations upon a single situation. For instance, no case was
investigated both with and without upstream absorption. It became
clear that the effects of upstream absorption could be seen even with-
out comparison with the more restricted solutions. Close examination
of Table II reveals that large and small valﬁes of all parameters have
been considered so that qualitative trends may be prédicted; The sole

nonplanar case studied is of such importance that a complete‘ subsection

- is allotted to it.

6.1 Planar Investigations

The starting solutions of Section 5. 3. 2 predicted radiative
propertiés quite well in general, but due to their lack of self-consistency
were quite poor otherwise. Virtually no approximation could be greatly
in error at small times since as the shock layer thickness vanishes so
does the volume of radiating gas. Furthermore, if a ‘tangent wedge
solution is applied to any piston near the initiation of motion, then the
flow field is uniform, and there are no driving gradients within the shock
léyer. This is true only in planar instances.

The effects of inconsistency in initial solutions are illustrated
in Figures 9a-9e. Although the effects of radiation upon velocity and
Pressure are less than those upon température, the former two best

demonstrate transient behavior. In general, the gas should be com-
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pressed within the shock layer as the piston is approached. Even
though a uniform profile is applied initially, the opposite situation
(expansion from shock to piston) ensues. In spite of the discontinuity
in temperature at the shock wave, most of the energy liberated from
the shock layer initially is given up by the gas near the piston, and a
rarefaction moves from the piston toward the shock. Finally, the
optically thin region near the shock radiates both toward the piston and
the upstream gas, and the behavior which was anticipated occurs.
Even though velocity perturbations upstream of the shock wave are
small, slight nonmonotonic behavior occurs during the transient with
a boundary layer-like region near the shock wave, and this is the
first indication of the formation of an entropy layer. These phenomena
are a consequence of the starting procedure and do not necessarily re-
present physical occurences. Nevertheless, they provide insight into
the effects of radiation upon nonlinear wave propagation. If the end of
the transient is taken to be that time at which continual compression
from shock to piston occurs, then the estimates provided by (5.105)
are very good. |

The case presented in Figures 9a-9e was the first to be studied
and was used primarily to determine the influence of initiating time upon
the solutions; therefore, it was not carried very far temporally. The
dashed lines in Figure 9a indicate pressure profiles for a starting time
of 0.001 as opposed to 0.005 which the solid lines represent. Transient
effects upon pressure are significant; however, those upon velocity
within the shock layer and temperature are scarcely noticeable. The
heat flux distributions display the almost linear felatiop with distance
that is expected from nearly optically thin isothermal shock layers.
Even though radiative effects are enhanced by the choice Bo = 0.5,
the flux is always small because the shock is weak. It is observed
that values of the physical variables near the piston surface are rather
insensitive to the initiating procedure. Even though the surface pressure

reaches the correct asymptote within a time the order of the initiating




182

time (Figure 9d), the heat flux at the wall adjusts almostAinstantaneously.

The shock layer attémpts to rid itself of excess energy as rapidly as
possible, but the wall can accept this energy only at a rate which is

fixed by its temperature and emissivity. This accounts for the rarefaction
previously mentioned and is the major reason that it takes 1ongei- to

forget the later the radiation is turned on. The classical exothermic
weakening of the shock wave is displayed in Figure 9e. The analysis
shows that the radiation induced transient gasdynamics rapidly decays

and that the initiating assumption of Section 5.3.2 is justified in planar
flow fields.

Figures 10a-10e illustrate the effects of the omission of upstream
absorption. Since a large piston velocity, UP=1.5, was chosen, the shock
wave is reasonably strong, and radiative effects are more pronounced
than they were in the previous case. The pressure transient, Figure
105., decays very rapidly because unlimited amounts of energy maly be

lost to the nonabsorbing free streamn, These pressure distributions

and the velocity and temperature histories of Figures 10b and 10c indicate

a tendency toward invariance as functions of the conical variable
:J’-XX;H /tf:%)t -—/”:4%), hence a rapid approach to radiative equilibrium.

In fact, this is the only instance in which a steady state absorption-
emigsion balance was even close. Since thin solutions decay most

rapidly, situations which ignore upstream absorption should attain

equilibrium mo=e rapidly than those which include all effects. _
The evolution of the heat flux at the wall and the surface pressure
is given in Figure 10d. The effect of initiating time is slight, and
‘ resﬁlts have been extrapolated to t =0. The nonmonotonic pressure
distribution is well-documented in non1sentrop1c flows and has been
observed in flow fields in which shock waves are suff1c1ent1y curved to
produce marked entropy layers. Traugott (1960) comments on non-
monotonic pressure distributions on blunted cones, and Sussman (1966)
has observed them in flow fields which incorporated chemical non-

equilibrium. To this author's knowledge, the phenomenon has not
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heretofore been reported in radiating flows. Since the behavior is
intimately associated with nonlinearity no linear theory could predict
it. In addition, most nonlinear analyses to date have considered only
cold, black walls so that entropy layers were “sucked" away before

this interesting phenomenon could occur. It has been demonstrated that
the rise in surface pressure does not depend upon the inclusion of
upstream absorption, hence a nonlinear hypersonic small disturbance
theory should predict it even in a less than “complete’ approximation.
In fact Lee (1965) has made similar qualitative observations in flows
with chemical nonequilibrium with a small disturbance approach.

Comparison of Figures 9e and 10e reveals that, consistent with
a rapid approach to equilibrium, the omission of upstream absorption
leads to a very rapid shock wave decay. The investigation of each of the
cases mentioned thus far involved twenty minutes of IBM 7094 computation,
even though the latter was examined ten times as ''long. Lack of upstream
absorption led to more 'rapid computation not only because fewer points were
necessary but also because convergence of the numerical iteration was
greatly enhanced. Aside from the physical information derived, these
cases may be regarded as a critical examination of the applicability
of the numerical techniques to situations both w.th and without upstream
absorption. However, the capabilities of the program were not determined
without difficulty, and some limitations were noted. The most severe of
these is discussed in Section 6. 2.

Since the most interesting aspects of radiative transfer are not
illustrated by sﬁuations which allow linearization, very little computer
time was allotted to the comparison with linear theories. Furthermore,
the pulsed pistons which are readily attacked analytically are impos-
sible to reproduce numerically. At least a few cycles of a high frequency
piston oscillation could have been examined, but this would have pre-
cluded the existence of a shock wave, and the radiative field would have
been very weak. The best choice was, therefore, a piston moving with

a small, constant velocity. Unfortunately, radiation was insignificant
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over the interval of interest in all cases except those with very small
Boltzmann numbers; thus, only the sxtuatlon in which small time ap-
proximations to the linear theory are doubtful (see Section 5.5) could
be investigated.

A wedge-like piston, Up=0.1, was initiated at t;=0.0001,
Representative flow field perturbations, as computed by the non-
linear program, are presented in Figures lla and 1lb. The heat
flux is again that of a thin radiative field. The shock wave, which
initially traveled at Ug=1.359 was considerably stronger than the
Mach wave which linear theory would have, a= Af =1. 276. The shock
wave decayed negligibly during the interval of interest. Eq. (5.160)
yields the following linearized predictions for the surface pressure and

velocity perturbations:

P/{-] -—*( = 87T |
0 ™ Z,, (7t) ; st | (6.1).

U —J(lf/F t-ﬁt ' .
_{,%'Hz He Jc []{:,/EKWJ—ZTL/)E’IVIYT*J r}]} 4+ (6.2)
* e €L fn e

The perturbations to surface pfessure and velocity downstream of the
wavehead are c.ompared with the results of the nonlinear calculation
in Figures llc and 11d. The nonlinear theory predlcts a much more
rapid decay, and even for such small tlmes four or five percent errors
are evident. It is difficult to say whether discrepancies arise because
of the use of Eq. (6.1) and (6.2) and the approximations inherent in them or
because of discrepancies in the linear theory itself. The parameter #= 5’26
is, however, not very large because N%¥g, is still of order unity,
thus the assumptions are not badly violated. Even though definitive
comparison cannot be achieved, it is clear that large errors may arise
as the motion progresses; hence, nonlinear interactions may play a
much more important role in RGD than in other nonequilibi'ium situations.

Because of excessive computer requirements, program B was
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used sparingly. Nevertheless, the order of error introduced by the
differential approximation to radiative transfer has been predicted.

The acceptable error depends upon the properties which are of interest.
If prediction of the effect of radiation upon aerodynamics is important,
then Ip is crucial since it is the only radiation variable that enters the
divergence of the heat fluwihich in turn determines the fluid mechanics.
Program C was used to determine the error in Ip. Since the differential
approximaﬁon’ should be at its worst in nearly thin situations (Olfe, 1967),
the flow fields of the three previous investigations (Figures 9, 10, and 11)
were employed. Flow fields were chosen at representative times, and
the exact values of Iy were compared with the values predicted by the
approximate method (Figure l12a). When upstream absorption is neglected
Ip is underpredicted, the worst underprediction occurring “far’ from
boundaries. On the other hand, when upstream absorption is included

I, is overpredicted. Overprediction is to be expected because the exact
formulation has an algebraic decay in addition to the exponential (Section

3.2.3). The overprediction is least near the piston and is small every-

" where. The largest error in Iy is less than eight percent, and this lack

of appreciable error is attributed to the use of the consistent boundary
conditions, Eq. (3.88). This is in agreement with Kourganoff’s‘( 1957)
astrophysical investigation and with the results of Heaslet and Warming
(1965). Since is nearly correct at the surface, the divergence of the
heat flux, hence the flux itself, should be accurate as well. A program C
comparison confirms this as well. Therefore, all variables are predicted
accurately at the wall, and both aerodynamics and heat transfer as given
by the differential approximation are quite good. The comparison is not
complete because the error may be cumulative in time, and this is the
next point which must be considered.

In order to determine the cumulative nature of the error, the
first case mentioned (Figures 9), which included upstfeam absorption,
was investigated with program B, The calculation was initiated with a
solution based upon the differential approximation and was allowed to

progress until the degree of error growth could be determined. The
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results of the last time increment are shown in Figure 12b. The
velocify field and shock slope are underpredicted by the differential
approximation whereas the temperature and pressure fields are over-
predicted. The errors in Figure 12b are smaller than would be ex~
pected based upon the apptroximations inherent in the differential
approach. The investigation indicates that error growth is extremely
slow, the levels shown in the figure having changed very little over
several time increrhents.

One may inquire into the excellence of the differential approximm tion.
The main assumption is near isotropy, Eq. (3.66). Following Zeldovich
and Raizer (1966), it is observed that the quantity |q| /Ip is an excellent

index of anisotropy. If the radiation were unidirectional, maximum

anisotropy, g* =c* U.(R)’:< , since the radiant energy density would be
convected with the speed of light. If complete isotropy prevailed, the
heat flux would vanish. Therefore the radiative field progresses from
isotropy to complete anisotropy as 0 élql /1051. Examination of all
numérical results proves that in no case is the anisotropy index greater
than 0.25. It can only be concluded that one-dimensional piston generated

radiative fields are appreciably anisotropic only near surfaces and that

the boundary condition Eq. (3.88) accounts for that anisotropy as well. In
fact, Eq. (3.88) is the exact relationship betweenZ, and g along the ray &/=0.
Thus the gasdynamicist is justified in relying upon the differential ap-
proximation. Its inherent simplicity more than counterbalances the
attendant errors. 4

The flow fields generated by retracted and inserted pistons may be
combined according to a piston analogsr to simulate a two-dimensional
airfoil at angle of attack. Beside the fact thét the piston analogy fails
near discontinuities in slope, such discontinuities may not be allowéd
because the formulation of the difference equations of the numerical pro-
cedure requires that there be no appreciable variations over each time
increment. Therefore, the upper surface of an airfoil (retracted piston)
must begin and the lower surface (inserted piston) must end with zero

slope. A combination of piston paths which accomplishes this is
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kf)bo'/l‘oms Ut (1- -‘E) (6.3a)
Redewy = ~ 2 t" /4.84)

which corresponds to a biconvex airfoil whose angle of attack is four
times its thickness ratio. The upper surface may also correspbnd to

a boat-tail while the lower one to the ogival nose of a body at zero angle
of attack, The value Uy=2.0 was chosen since it generated a reasonably
strong shock wave but did not cloud radiative cooling with a very rapid
deceleration. The specific heat ratio y=1.2 is indi cative of a hypersonic

environment, and Eq. (5.202) and (5.203) predict that realistic aero-

dynamic situations in air at moderate altitudes require Ee--lb"' and
Bo~/0 .
The study was begun on the lower 'surface' with %,= 0. 0Z and

B o=/0. Unfortunately, the program was not written so that a nonrad-

' iating calculation could be performed for comparison; therefore, shock -

expansion theory (Mahony, 1955) was used to predict the corresponding
idealized flow. It was found that the difference between solutions with
the parameters above and those of shock-expansion théory were of the
order of the error inherent in the latter procedure. The upper surface
is, therefore, not worthy of investigation since the gradual acceleration
would not require significant radiation, and simpler theories would
predict pressures rather well,

Figures 132 and 13b show the evolution of pressure and velocity
distributions for the parameters noted above. Even though the shock
has a finite radius of curvature from the outset, the solution was initiated
at t;=0.001 with a tangent wedge. There is no indication of the formation
of entropy layers, and the deviation from nonradiating values is probably
no more than a few percent. The deceleration over this period of time
is insufficient to have such marked effects, therefore, radiation is

certainly not insignificant.
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Radiative phenomena are enhanced by éetting ’ECS b1,
Although this is no longer a realistic situation in air, it might be
appropriate to gases rich in hydrocarbons.* Comparison of
Figures 13a and 13b with 14a and 14b proves the importance of the
parameters ’;/6 ‘and Bo. A noticeable entropy layer begins to
devélop near the shock wave very early in the motion when radiation
is strong, and the entire character of the profiles is altered. Temp-‘_
erature distributions are presented in Figure l4c, but the entropy
layer is much more prominent in the velocity and pressure d1str1but1ons.
Thus, the commonly accepted conclusion that radiation affects temp-
erature substantially more than it does velocity or pressure is perhaps
premature. |
A significant upstream flow field can be detected in Figure l4c.
This is expanded upon in Figure 14d in which the upstream température
profile is presented explicitly. Since upstream velocity disturbances |
are smalland the température is not too far from unity, continuity
requifes that the pressure and temperature profiles behave qualitatively
- the same, hence the figuré is représentative of both \}ariables.
The most convenient distance for n‘ormalizatiOn is the shock layer '
thlckness, but its use can be mlsleadmg. The upstream extent of the
d1sturbance may appear to decrease with time, but in reality the shock :
layer grows thick much more rapidly so that the upstream influence of
radiation will aiways grow. Figures l4c and 14d prove that upstreai'n
absorption is prévalent for the order of three free stream opfical |
" path lengths . Note that at moderate times temperature levels upstream
of the shock wave may be greater than those at points within the shock
layer. The flow evolves slowly initially with both piston deceleration

and radiation contributing to the weakening of the shock wave. The

* The computations of Main and Bauer (1967) in hydrocarbon=-air
mixtures indicate that Planck and Rosseland mean absorptmn coefficients
may be as much as five orders of magnitude hlgher in a mixture which is
half methylene (CH}) and half air by volume than in air alone.
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upstream gas absorbs energy at first, but when the piston has under-
gone considerable deceleration the upstream gas begins to radiate

back toward the shock layer and helps sustain the shock wave, This

is indicated by the slight decrease in upstream temperature when€~2.35
(see Figure 14c). The effects of radiation are quite strong even though
the shock is only of moderate strength, and this refutes Wang's
statements (Sectibn 5.1). It is clear that upstream absorption cannot

be neglected in general. Indeed in this case it is a dominant mechanism.

Nowhere is the evolution of the radiative field better described
than in the heat flux distributions of Figure l4e. For small times the
field is the linear one of a thin shock layer with a slow decay upstream.
As time progresses an optically thin layer grows near the shock while
the heat flux becomes ''thick'' elsewhere. A slight thin behavior appears
near the piston as well. Thus the radiative field is characteristically
optically thick, and the shock wave and piston can be '"seen' only by the
gas very close to them. This is in contrast to the case with less important
radiation ( 44_1_) The flux profiles at two times for both sets of param-
eters are compa.red in Fig. 14f. Long after the case with /-g-‘: ~9(7) has
ceased to look thin that for which %«1 still remains so, and the heat
flux levels at both piston and shock are drastically different.

In Figures 14g, 14h, and 14i nonmonotonic (entropy layer induced)
behavior of surface properties is investigated. The surface pressure
distribution for both sets of parameters is presented in Figure l4g.

As is the case when almost any nonequilibrium process is considered,
the variation of surface pressure is reasonably insensitive to significant
changes in most parameters. The greatest deviations, approximately
twelve percent, occur near the 'nose', but farther back along the surface
'the shock la.yer is suff1c1ent1y thick that d.lsturbances reflected from

it are rapidly attenua.ted and an essent1a11y isentropic expansion ensues.
The pressure distribution is monotonic only because the piston is
deceleratmg, but it is clear that there may be significant alteratmns

of aerodynamic moment coefficients ¥ the situation is taken to represent
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an airfoil. Since the trend in reentry vehicles is toward slender bodies,
this can have important consequences in aerodynamic stability. The
variation with time of the temperature of the gas at the wall is shown
in Figure 14h. When radiation is more important, the temperature
decreases very rapidly initially and tends asymptotically to the wall
temperature as the field grows increasingly optically thick. The
behavior of the heat flux into the wall, Figure 14i, is quite different,
since as the shock wave decays and the piston decelerates the rate of
loss of energy to the wall must decrease. As the temperature of the
gas at the wall approaches the wall temperature and the shock layer
grows thick, the gas at the wall cannot radiate toward it and the fluxes
from elsewhere are attenuated significantly before they reach the wall.
Thus it is verified that radiative heating of the surfaces of slender bodies is
most severe near the nose. The effect of Boltzmann and Bouguer numbers
upon shock decay is shown in Fig. 14j, while the complete history of the
motion is given in Fig., 14k, Obviously the decay is more rapid the larger
the radiation-convection parameter, Q':e/&,, .

The reasons for termination of solutions prior to the attainment
of radiative equilibrium are apparent; since all 6f the significant effecté
had appeared by ©~0.35, The last curves in Figures l4c and l4e prove
that the qualitative aspects of the flow had ceased to change. More
important, large velocity gradients had begun to appear. This required
the insertion of more and more points in the flow field with a concurrent

decrease in step size and increase of computation time. This forewarns

- of the fact that molecular transport phenomena would become 1mportant

so that the present inviscid analysis would be 1nappropr1ate. The

investigation of this case alone involved approx1rnate1y 2.5 hOurs of

- 7094 computation,

6.2 Specific Difficulties

Although most difficulties mentioned have been resolved, that
associated with the study of large piston velocities is serious. Despite

the fact that the study of Up < 3 may be justified on various physical
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grounds (Section 5.7) the analysis must eventually be extended. The
study of pistons with large velocities leads rapidly to numerical
difficulties. The non-self-consistent initial temperature distributions
of Section 5.3.2 predict large values of I at the wall; hence large

heat fluxes exist as well. Consider that if UpN 3.0, the temperature
downstream of the shock is ~ 10, hence «(p7#~10°% The initial guess
for I, at the wall is extremely critical because the field is emission
dominated. and the numerical approximation to the piston path is
discontinuous, the driving force being applied in discrete pulses at each
step in time. Therefore the field may radiate so strongly while it waits
for the next input that it may lose more energy than is available. One
obvious cure for such behavior is to shrink the time increments. This
radiation limitation is, in fact, the most stringent stability criterion,
since one would expect the allowable time increments to be larger when
the shock and piston move rapidly. Physical shrinking of time increme nts
is not the proper approach.

When quantities of order 109 appear, the normalization scheme
is obviously inappropriate. The difficulty can be traced to the fact that
there are two disparate length scales: the upstream and downstream
absorption lengths. Neither is universally appropriate, and since
the shock will continually weaken the levels of temperature and pressure
downstream of the shock, which are appropriate for normalization, are
not known. Suppose, however, that these are assumed to be the nonrad-
iating values. The Rankine-Hugoniot relations in the form (5.102) require
that

usrv (b:;_-')ur (6-4a\
To~ () ug ( 6.4b)
Ry~ () U (c.4¢)

if UP>> 1. Therefore, the governing equations may be renormalized

by the quantities above.
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T = WY 6.A4d)
T =T/ ' ( 6&.4€)
P= P/Tt-) (6.4+F)
t = tvT, o (P, Ten ("4‘3)
X

= X 0(? ( R—)JT‘..Q » (L‘“‘)

If the parameters Y_.:e and Bo are based upon properties downstream
of the nonradiating shock wave the form of the equations is unchanged.

Upstream of the shock the emission condition (5.112) requires that
—_ r 4 A7
I,,-%v?:ff[—;)'vf[;;f";;) <<1 (¢.5)

=) T ”ﬁ

so that unless the ratio of specific heats is near unity the upstream
gas hardly emits or absorbs. The same is true at the wall if T“’;OCI').
However, nonemitting, nonabsorbing upstream states are singular for
large times. Thus either upstream absorption is neglected so that
nonuniformity may ensue as the motion proceeds, or it is retained at
the expense of keeping track of exceedingly small quantities, This

suggests perturbation procedures, but their consideration must be

‘withheld at this stage since even the qualitative trends are not clear.

6.3 A Cylindrical Investigation
Cylindrical situations may lead to geometrical difficulties since
near the cylindrical axis the (j/r) term in the compatibility relations Egs.

(5.20), (5.21), and (5.23) may outweigh the other terms. Examination

~of (5.28) and (5.30) reveals that the potentially dangerous terms may

be balanced by radiative effects, and this was in fact the case. The
nonplanar investigations were begun just as the planar ones wereg with
the study of the effect of the initiating assumption. The results are
shown in Figures 15a-151.

Since the difficulty mentioned above was expected at the outset,
lérger initiating times (tj~0.025) were used than were appropriate for

planar cases. Although Figure 15e indicates an inflection in the shock
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wave, this behavior may be shown to be consistent with previous
remarks (Section 5.5). It has been pointed out that the wavehead
first moves rapidly (at the isentropic propagation speed), then
more slowly (at nearly the isothermal speed), and finally at the
larger speed; hence an inflection. This leads to consideration of

two possible long time behavior patterns for a general wedge or

cone-like situation.
The patternv exhibited by the last planar case discussed, the
ogive, presages one possibility. The field is optically thin initially

so that energy is given up by the shock layer and is absorbed upstream.
As the shock wave moves frather ahead of the piston, the radiative
field grows optically thick so that eventually the shock cannot Ysee"

the radiative disturbance generated at the piston face. Eventually there

is no radiative input to the upstream gas from the piston, and the shock
layer may regain the energy which it lost by engulfing the preheated

gas. In such a case the shock at large times from the start of motion
must move at nearly the nonradiating shock speed. Therefore there

must be an inflection somewhere, If radiation were strong, it is

possible that so much energy would be lost in the initial stages that
sufﬁciéntly large upstream disturbances would be induced for compression
from the free stream to the piston to be possible without a shock wave.

It has been noted in Chapter 1 that the analysis of Heaslet and Baldwin
(1963a) allows for such behavior. Which of the two situations wi 11

obtain depends upon the evolution of the flow field at intermediate times.

If the radiation were turned on at a fairly large t; the radiative field

would be optically thick from the outset. There would be a large,

almost instantaneous loss of energy which would then be rapidly re-
absorbed. Thus the early inflection in Figure 15c is justified. This
situation would not occur physically unless the motion were {nitiated

(in a shock tube, say) with a weakly absorbing gas and at some later

stage large amounts of a strdng a bsorber were introduced. The

possibility is interesting.
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Figure 15a indicates extreme nonmonotonic behavior in surface
pressure, After the initié.l dip, all of the curves coalesce‘ within a
timeof order tj. Figure 15b 'shows’ quite different trends in the gas
temperature at the wall. The distrib utions obtained for different init-
iating times do not coalesce for quite a long time. The reason for
this is seen in Figure 15d which presents the history of the ,heat flux to
the wall. The non-self-consistent starting solution underprédicts the
heat flux, thus all solutions begin with essehtially zero flux no matter
when the radiation is begun. The greater the excess energy in the
shock layer the greater is the instantaneous loss. Because of fixed
wall temperature and emissivity ( € =0. 25 in this case) the maximum
heat flux is rapidly achieved, and the gas near the wall must cool at
the same rate independent of the excess energy which remains after
the initial loss.

As the time at which radiation is turned on, ti’ i;s decreased,

a near vanishing heat flux is more nearly correct. This is illustrated
by the fact that the shock slope has no inflection for t; < 0.025. The

overshoot in surface pressure and heat flux disappear, and the correct
behavior may be deduced. The results, extrapolated to zero initiating

time, are presented in Figures 15e and 15f. Solutions were carried

out both for black and nearly reflecting piston surfaces in order to

insure that what was observed was due mainly to cylindrical geometry.
Naturally the heat flux to the wall is considerably less when emissivity
is small than when it is nearly unity. Furthermore, nonmonotonic
behavior in pressure is very pronounced and the gas temperature at
the wall is nonmonotonic as well, Figure 15f illustrates the “suction”
exerted upon entropy layers the nearer the wall is to being a perfect
absorber. Nonmonotonic behavior is much more pronounced when the
flux into the wall is highly constrained ( €<« 41 ),

It is noted that surface pressure eventually rises above the
nonradiating conical flow value where as the shock continually decays.

A similar phenomenon occurs on blunted cones (Traugott, 1960)
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wherein the surface pressure rises above the pressure at the junction

of the conical frustrum and the blunt nose. This behavior is independent
of emissivity. As the shock layer grows thick more energy is reflected
from the wall if the emissivity is not unity. Eventually radiative cooling
takes place exclusively near the shock; energy reflected from the wall

is absorbed very close to it, and the gas located there grows warmer.
Note that ét small times, when the heat flux is always small, emissivity
has little effect upon the flow field.

The phenomena which have been noted lead one to distrust the
initiating assumption in nonplanar flows. Pressure, velocity, and
temperature profiles at selected intervals for both emissivities are
presented'ih Figures 15g, 15h, and 15i. The conical starting solution
(which is indicated on each of the figures by t=0) requires continual
compression from shock to piston; therefore, the Pressuype distribution
no longer can reflect the transient as it did in the planar case. Velocity
is rather insensitive as well, thus the temperature distribution is now
the key to the explanation of the difficulties. Since the conical flow is
isentropic, the temperature must behave qualitatively exactly as the
pressure does. Thus the starting solution in Figure 15i possesses
highest temperatures near the piston. This is cont rary to what the
radiative field would prefer, and large heat fluxes are required.,
Temperature gradients did not exist in the tangent wedgé planar starting
solutions, and those solutions always maintained a near zero flux into
the wall after radiation was begun. The interaction between radiation
and convection is, therefore, much more important in nonplanar than
in planar situations. From the outset the radiation will resist the
formation of adverse temperaure gradients. Nevertheless, if the
shock layer is thin enough there can be no appreciable energy loss,
and very close to the “nose" the conical flow is still appropriate.

The pressure distributions of Figure 15g do not respond to
changes in emissivity. It has been shown that the effect of a small

emissivity is to force the majority of the energy loss to occur at the
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shock wave thus the entropy layer near the shock should be more pro-
nounced when r4 =0.25 than when E= 1 0 This is demonstrated m
F1gure 15i. The deve10pment of the temperature prof11es was rnomtored
very closely, and the inflected prof11e 1s correct. (The appearance
of such prof11es precludes any 1ntegra1 spproach.) The heat flux ,
distributions given in Figure 15j are qualitatively the same as 'those
' observed in Figure 14e. The (j/r) term in the continuity and heat
ﬂux equat1ons re s1sts optically thick bel'avmr, and gradlents near the
shock are less steep than in the planar case. The flux distributions
are displaced when emi'ssivi'ty is increesed, but the same net energy
losses occur, The loss is redistributed between the wall and the up-
Kstrearn gas, hence the differences in the magnitude and extent of up-
stream absorption in Figure 15k. It must be realized that if energy
is lost to the wall ( é’“l ) it may not be recovered whereas it is still
available if it is lost to the upstream gas ( £ <<1 ). This may have
serious consequences in the subsequent motion. The extent of upstream
absorpt1on is relatively less than that of the planar case, but dimensional
considerations alone dictate that the precursor must extend the order
of a free stream absorption length (Cohen, 1967). Since the energy loss
from the shock layer is insensitive to emissivity, it is not surprising that
the shock layer th1ckness, Figure 158 , is insensitive as well

The insensitivity of the pressure and velocity f1e1ds induced by
cylmdnca.l p1stons to var1at1ons in wall em1ss1v1ty is predlcted by
Eq (3. 70)

ow zefy, *+ (/- é)V’f ,,{f;{fr’— qufaly’ (6.6)

As the em1ss1V1ty decreases the second term is we1ghted more heavily
than the first. In addition the heat flux is constrained for small values
of the optical variable, » where the weight 6-65' 1 is largest,

so that the integral itself will be larger. Thus geometrical effects
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may compensate for changes in emissivity. Since only I, affects the
fluid dynamics, it is clear that nonplanar fields will be less sensitive
to emissivity (and wall temperature) variations than planar fields will
be.

It is conjectured that the rise of surface pressure above the
nonradiating value (Figure 15e) and the decay of the shock velocity to
nearly the piston velocity are harbingers of the loss of the shock wave.
The imminent loss can be traced to upstream absorption, Furthermore,
upstream absorption delays the approach to radiative equilibrium suf-
ficiently that it is not computationally feasible to pursue it. The inclusion
of semi-grey radiative transfer might improve the situation since in
general p > g and the approach to equilibrium might be more rapid
if a smaller absorption coefficient (hence greater cooling) were required.
The cone and wedge-like flow fields o bserved may not be interpreted
as those over the corresponding portions of finite bodies because the
characteristic length scale, %(w , forces the field to be aware of its

finite termination from the very start of motion. The piston analogy
reveals that although the previous investigation was terminated at
the corresponding distance along a slender cone is the order of 103
meters in air and this is quite far indeed.

‘ The distributions of Iy have not been discussed in detail in -
any of the investigations since they have no clear physical meaning.
The character of the vd ocity field induced upstream has been neglected
as well. Representati ve values of these variables are presented as
they came from the computer in Section E.3. It is obvious that the

upstream velocity perturbation is not important.

6.4 Conclusions

- The suitability of a characteristics approach to general
problems in unsteady RGD has been demonstrated through the
investigation of one-dimensional piston problems in ideal, radiating

gases. The following general conclusions have been deduced as well.
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Only the Mark-type boundary condition is consistent

with a Pj differential approximation if upstream absorption
of shock layer radiation is allowed,  If any other data are
applied, divergence in the far field is inevitable.

The singular nature of the optically thick limit is related
to the transition of the character of the governing equations
from hyperbolic to parabolic. Furthermore, recognition
of the hyperbolic nature of the equations of unsteady RGD
has proved that only transparent shock waves across which
nonequilibrium chemical processes must be frozen are
allowed in general,

The manner in which the radiative field is initiated cannot
affect the entropy levels of the subsequent flow fields. The
coupling between radiation and convection in the early stages
of motion is, however, more important in nonplanar fields
than in planar ones.

The nonlinear interaction of disturbances may be more
important in RGD than in other nonequilibriurn flows. Thus
linear theories may not be as appropriate as they are in
other situations.

The differential approximation to radiative transfer is quite
adequate for most investigations of slender body flows in RGD.
What is believed to be the first self-consistent comparison

of the full transfer equation with the differential approximation
in RGD indicates that surface properties are predicted quite
well by the approximate method, and although errors as high
as ten percent occur in the velocity field error growth is slow.
The differential approximation is most accurate when upstream
absorption is included.

' Nonmonotonic behavior of surface properties may occur in

radiating flows. Variable surface emissivity and temperature
may exert ''blowing' or 'suction'' upon entropy layers and
thus inhibit or enhance nonmonotonic (entropy layer induced)
effects,

The pressure distributions along the surfaces of slender
bodies are insensitive to large variations in Boltzmann
and Bouguer numbers and to changes in wall emissivity.
The observable motion, as indicated by the shape of the
shock wave, is insensitive to variations in wall emis sivity.
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8. Upstream absorption of shock layer radiation may be a
dominant mechanism even in slender. bhody flows with
reasonably weak shock waves., The extent of the upstream

F precursor is the order of a free stream radiation absorption

length and is less in cylindrical than in planar geometries.
9. Contrary to previous observations, the effects of radiation
L‘ upon pressure and velocity may be comparable to those upon
temperature

The investigation presented required approximately twelve

The inclusion of chemical processes should accentuate the phenomena
which have been observed. It is hoped that the present approach will

aid in the refinement of the design of slender reentry vehicles.

hours of IBM 7094 computation of which five were required for debugging.
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CHAPTER 7

EXTENSIONS AND FUTURE DEVELOPMENTS

Previous results indicate the utility of a characteristics approach
to unsteady RGD.  The possibilities have hardly been explored, and
future investigation can take either of two courses. Either one -
dimensional problems may be pursued in great detail with improved
gas models and numerical techniques, or the "simple" analysis may be
extended to multi-dimensional cases. Both types of extensions will be
discussed below in addition to new approaches suggested by the difficulties

which have been encountered.

7.1 Improvement of the Physical Model

The first steps in a more realistic description of one-dimensional
situations should include equilibrium chemistry. The most severe com-
plications arise in the solution of the Rankine Hugoniot equations. The
most accurate determination of the changes across shock waves
in gases in chemical equilibrium requires iteration with the aid of a
(nufnerical) Mollier diagram. If curve fits to Mollier charts are excluded,
the shock relations become a set of nonlinear algebraic and functional equa-
tions, and although their solution is not difficult in principle it requires
reasonably long computation times. A model which involves a mixture of
atoms, ions, and electrons is particularly suitable because the radiative
processes admissible in such a system are well understood and because
the equilibrium thermodynamics is reasonable. The use of a semi-gray
gas with such a model is still justifiable. It may be assumed that little
difficulty will be encountered in the pursuit of these analyses, and a more

sophisticated approach will now be considered.
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Recently Ferrari and Clarke (1964) and Clarke and Ferrari (1965)
have suggested a model for nonequ111br1urn radiation in an ionized gas.

Their study was prompted by observations in shock tubes and in reentry

-phenomena ‘of rather large electron precursors. The situation is not

yet resolved, but it has been proposed that the electron precursor may
be due to ambi- polar diffusion to photoionization, or to both., Lederman
and Wilson (1967) claim to have resolved some of the experimental |
uncerta1nt1es and they conclude that precursor ionization is caused by
radiation from the shocked gas. Furthermore, they observe that the
precursor can extend for several meters ahead of the shock (roughly

~ l/“/P.) and that the farthest extent of the precursor moves at nearly -
the shock velocity. Both of these observations agree with the present
ideal gas results (Sections 5.9.2, 6.3).

Space does not permit the presentation of the details of the Clarke
and Ferrari analysis. Their nonequilibrium model may, however, be
incorporated in a semi-gray analysis. The authors mention that one
might attempt a differential analog of their nonequilibrium médel, but
they do not indicate how this might be done. The procedure will be
described in the following pages.

The radiative heat flux is divided into contributions from atomic

lines, from their wings (the part to which broadening contributes), and

from the continuum. Clarke and Ferrari then argue that some suitably
chosen frequency averaged absorption coefficient is associated with each
contribution and that the extent of the ionization preéursor region will be
of the same order as the reciproycal of the continuum average. They
conclude further that the line contribution is almost always optically
thick (hence, a minor effect), and that the contribution of the wings is
extremely optically thin in the temperature range 7¢fev. Only the con-
tinuum radiation, which is contributed to by bound-free processes,
enters the production or destruction of ions. This is because a photon
of greater than a certain miﬁimum‘frequency is requiréd to free an
electron from a given shell. All three contributions enter the energy
balance, however. The "thick" line contribution may be neglected if
temperature gradients are moderate. Therefoi'e, radiative properties
for ¥< ) , the frequency which corresponds to the ionization potential,

are hardly of consequence.

wr
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The following dimensional transfer and rate équations may be

derived if induced radiative recombination is neglected.

£3F g s ontroflSS)( LS8 - 1 -1

o a?‘t +'u7JmJC] S—MlefLJV-F __ {Z"ZJ o - l] (7.2)
c =2 . N : | ' (7.3)

/o (Ne+7)

The quantity C is the mass fraction of ions and it is assumed that

T (%) T
Furthermore, A is assumed to have been corrected for induced
emission. The last term in Eq. (7.2) is the familiar " Freeman Rate®

expression (Clarke and McChesney, 1964), and the collisional relaxation

time is »
Cne 7 Lt 7.4
Tc: Sac’l [1 z,(r).;-o(/} ( )
The local equilibrium ionization fraction is given by the Saha equation
C. C,,c }
a (7
wherein the relevant parameters are
L. (aﬂ/%/ e’
Cic e, A 6‘ (7. 6a)
3 1
! A Qv) e )
— cmm—— —— —————— 7- 6b
e (;rg//Q‘. i€ ( )

where éthJ? is the ionization potential for the lowest electronic statev, e
and /7?7, /%; are electron and atom (ion) masses, and Q. and @ are
the electronic partition functions of atoms and ions, Note that if the
collisional relaxation time is "small", o/~ o and the source function

is given by the Planck Function, These equations will now be incorporated

in a semi-gray model.

|
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Suppose Eq (7.1) is 1ntegrated over the frequency ranges (o, 4),

(¥ 43). The followmg two- group quantltles are des1gnated

5.
19:[ L0 (7.92)
qu.-/ Idv (7.9b)
.
J
so that
7- T T ' o ‘ (7 10)

The quantities I, and are apl roximated analogously. If the reasonin
q P g y g

of Chapters 2 and 3 is applied and one assumes quasi-isotropy in af,,

then:
, 21,™ e )pr-c e )
T +JvZ (/—C)[/,_c//’?c;_eﬂr"éig—ﬂ'gz-z;] (7.11)
-t f2)
o { /2-)__ _ _ —=-1r)
£S5 v FgrdLts - asalrelg

(7.12)

and similarly for the quantities in the lower range. The subscripts on the

absorption coefficients denote the respectlve group averages. Clarke and

Ferrari examme the quantities f(hv) "I, dv and conclude that (their
Corollary II): 7
@ —‘{l—) .
» ~
j, & dy = _£__ (7.13)
Y hy hl{/
whence

/o{é—i: ;I-MJ"AJC =- 1, c//v///+ -—-—[/ )(e c} (7.14)

- In addition, the two—group volumetric energy gain is:

J;y2= (/-c)%%// %}’/ﬂfﬁg,a"k%e"_’/—[«t@, I+ e, 2,7 J? (7.15)
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If the lines are weak and .7_7_.->>1 ,‘ one may safely assume that for L2 L.
p3
Z or
B= =1 C (7. 16)
Therefore:
s T
(Zk‘.ﬁ'/rer (7.17)
The Clarke and Ferrari assumption
V.2
b= i (F) | (7.18)
leé.ds to
o = e (5] 2 £
J
= (7.19)
ATV TPV,
Similarly

LaZ) L /-?)iu/f'/ﬂz
‘(Pz / (r/{ ‘{J/‘ & & ___/f,}’ ‘-‘(.4/ Lé/r/ ) (721

The fact that the gas is nearly gray for #24 *follows for all power laws

of the form, Eq. (7.18). If line radiation is neglected and the gas is
assumed to be grey, Eq. (7.11), (7.12), (7.14), and (7.15) complete the
system. The thermodynamic and state relations are:

M | (7.22)

o (l1+c) 7T

In Appendix A it is shown that the Rosseland mean is not necessarily

appropriate.
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/%)7'1»5 * c/,,, )5 +0(7_,)

where E‘_ is the electronic energy of atoms and ions

—(&*
T,
*n,’fi. Q,c'

The indices a,¢ include all electronic levels of atoms and ions.
If all variables are normalized according to the Scheme of

Chapter 3, the rate equation becomes

7 J’ /° IR ;k
/G{E+UJraJc:f—— Vg-f'f‘( X —c]
where |
t’,‘, G, T VAT
N
Also
£
P T T+0)
h-Tr5E+Fc(E)
where

(%), = £ ()

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

~ The transfer equations remain unchanged. In the limit &% 0 the signifi-

cant one dimensional compatibility relations, Eq. (4.44) - (4. 46) are:

cl* d¥u (‘Q) ?{z)kﬂﬂ)q,

f o J/-e‘!q"-g':qf‘ z
=P dt B (ir I-dE) ¥ T ) /—‘/
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d< /5)dt ~ 3. 3 (7.30)
bt £ IR T
whe‘re
/o3 T
a5 +5 dr
Q- §raraf
foJ /+E/E-¢) (7.31)
and W is the negative of the righthand side of Eq. (7.25)
Tw| divg / c
- — L LE L‘__é = _ 2
W= /-5 'Tif' * T T ;/’(’)ce kcj (7.32)

In accordance with previous assumptions, Eq. (7.32) shows that unless
Bo <<1 the effect of radiation upon ionization is of higher order in
( f“’/g ) than is the effect of ionization upon radiation. Therefore, line
radiation may be included according to the scheme suggested previously.
As long as the gas is assumed grey, even for V<)J- no difficulties arise,
and a two-group model may be handled with reasonable ease. In fact
if odg is evgluated in a region of chemical equilibrium and radiative near-
equilibrium then Eq. (2.53) still holds. Even the most sophisticated
attempts at a non-gray analysis (Smith and Hassan, 1966; Stone and
Gaustad, 1961) use no more than a two-group model in the ensuing compu-
tations.

Clarke and Ferrari had little success in predicting ionization pre-
cursors with their model. This may be due to their rather drastic simpli-
ficétions » €.8. €<« 1 , and the model outlined above should predict more
realistic effects. Since it has been demonstrated that the MOC may be
readily applied to radiating flows, the investigation of a flow with a chemi-
cal and radiative nonequilibrium is quite feasible, even in the two-group

approximation.
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7.2 Extension to Multi- Dimensional Radiative Transfer and Other
Proposals

With the general approach outlined in Section 4.1.1 it has been
shown that the fluid dynamic variables ( Fju,v;w, 7,'C,~--,C,,) lead to ordinary
Mach conoids and particle path lines. Note, however, that the compatibility
relations from which A u, v; w are found apply along generatrices

of the Mach conoid”™ . There are infinitely many such lines, and depending

upon which three are chosen different answers may result. If more than
three are chosen the network becomes non-simplical and stability problems

may arise. Chu(1967) has proposed a novel scheme whereby many lines

e R R e e

may be used, and he has employed an error minimization technique which

O e S,

is quite satisfying. In this way one may arrive at unambiguous solutions.
Time scales of order/é are excluded because they would require numen-
cal time steps 0/6) as well, As B+ 0O ina Pe ) N-odd , approximation,
the characterlstlc surface for the radiative properties is merely t = const

(see equation (4.29)). On that surface the three equations of the differen-

t1a1 approximation apply:

e e PO U MCRED¥ LN

a’iv'_'g*= G, {77, 8- 41} (7.33)

3

iE
]
&
i
e
%

ngID = -354’."’7?‘ (7.34)

Thus there are still as many compatibility relations as there are dependent
variables,-

| In a given surface of constant time, each point is affected by every
other point; therefore only an 1mp11c1t scherne is justifiable. The geometry
for the solution of a two-dimensional unsteady problem is indicated in |
Fig. 16. A body moving along the x-axis with constant velocity is shown
in the figure. Several Mach conoids are shown as is a constant time
surface, but the shock wave has been omitted. An iterative scheme similar
to that of Chapter 5 is now proposed. The surface t = const is divided

with an appropriately chosen grid (not necessarily evenly spaced), and

The temperature would follow from the relation along the path line.
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to a first approximation, £, 7 may be found at each node independent
of Zo, g‘ , and g‘ . With the properties of the gas now specified,
the linear system, Eq. (7.33), (7.34) may be solved implictly for Z.,

2, and 2z, at each point (say with a relaxation method) after
which another iteration could be made on 2, & , o, and 7. The method
employs "hyperbolic" techniques through the use of characteristic sur-
faces for #, « ,¢rand 7, and "elliptic" techniques for the radiation.
Although the scheme is simple in principle, there are certainly many
hidden difficulties. Obviously a part of t};e advantage of unsteady gas
dynamics is lost since large matrices must be inverted at each stage.
In addition, numerical stability has not yet been investigated. It seems,
however, that there should be no problem with P, « , U, or 7 since
the CFL criterion is certainly satisfied. Rather, spatial instabilities in

Z, , _g, , and %l will probably be the most serious difficulty .

Since integration over all of space is required, one may justifiably
question the use of the differential approximation. In fact, the multi-
dimensional technique for radiation appears very much like Hottel's zoning.
However, the use of the approximate formulae avoids the geometric diffi-
culties which one would most certainly encounter otherwise. - The situation
in more than one spatial dimension and time is very much different than
that which was investigated in detail previously, but if one-dimensional
experience is at all indicative of computational trends, it must be concluded
that the solution of even a two-dimensional problem must await a new
generation of high speed computers.

In addition to elaboration of the gas model and extension of the scheme
to more spatial variables,the physical difficulties which have arisen must
be examined. The need for the study of the region near initiation of motion,
/5<< t«1 , is obvious. Furthermore, if pistons with discontinuous paths
are to be investigated, the regions near these discontinuities must be

~examined analytically. A perfectly reflecting wall is in a sense singular,
thus it might be of considerable interest to formulate a perturbation
scheme based on a small emissivity. The phenomena associated with
large piston velocities suggest a perturbation approach to the inclusion
of upstream absorption. The appropriate parameter for expansion would
be (R7x)/ b(;' . Such a perturbation might well be singular for large

times.
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The fact that /L"F,: is small presents some interesting possibilities.
Moore (1966) and Mahony (1955) have considered the implications of #
~ near unity. In all of fluid dynamics this limit leads to great simplification.
Equations (3.1) - (3.7) clearly show that, no matter what the nonequilibrium
processes might be: ‘
Dh
Z_ =0 (7.35)
Tt
if f';o . Thus tempelrature is constan’tralong a particle path. Since all
particle paths originate in the undisturbed gas, it follows that 7=l
everywhere. The radiative equations are immediately uncoupled from the

fluid mechanics. For in]stance; in the planar case it follows that

RERRE x |
Ioijf)= 4+.Z€/7;,1—/) exp[—ﬁ_@fq/‘”gf)%? (7.36)
| | Bott)
z 1 {_ﬁrf‘”m/ S (7.37)
Z (3 = V-;zé(rw 1) exp _,ef"fq £,¢) ff
A :

The fluid dynamics may then be handled readily in the framework of

Reimann invariants which in this case are

- |
;} =_t(P) U (7.38)

3
They are constant respectively on the isothermal Mach lines

dr_ |  (7.39)
ZE= u*t

The system may be inverted for the solution of X and € in terms of JSe

- and ’x .
Al . ) . :
| Ot /| ,0t ot
Ssar 1 /95 ;)=0 (7. 40)
This equation may be solved by the standard technique of Reimann-Green's '

Functions (Garabedian, 1964). Equation (7.40) may be reduced to

A\ ;/ N _
s, 73 U =0 (7.41)




211

where

f[= A (7.42)

Just as hypergeometric functions are the fundamental solutions for ideal

gas dynamics, the fundamental solution of Eq. (7.41) is

/Fm/’jyt‘J):j,;{%m] (7.43)

where the modified Bessel functions, kp;" Z,

the types of data specified. Therefore, given sufficient boundary data,

, are chosen depending upon

the entire solution of the non-linear problem may be written to lowest
order in /7 in closed form. These observations are independent of what
specific nonequilibrium processes are present.

Consider next a local linearization about the non-linear, radiating

solution. Let

fP= 3—5 ; (7.44a)
ng (7.44b)
= §—,‘f (7. 44c)
T-= g-ﬁ' (7.44d)
7= f—fé. (7. 44e)
[<Xe) that, e.9 .
(7.45)

P=F (x¢t;r=0) + P I+ o(r?)

A characteristics solution for # , 7 |, ©7, I, and g is easily

formulated. It may be shown that

G E0GTT) e e yow (746

<.. .
3 g

-
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S [Pt 7 {R-RG £ 5] o Fir wceas (.

T REACTIY A S (7. 48)
F(T) =5y RT ) )
where:
% (7.
E"WH.X)—%/T——E) (7.50)
£ o= = Plu) - U () (7.51)
T
=Bl Zanr){ 9L +16T-I] (7.52)
4 =7 /4‘13)2&‘2?*:';‘?7’]) *Tdp { T —If (7.53)

5= LGP )7+ a, g) (7.54

Since the characteristics are known, the solution is somewhat simpler than

‘that outlined previously. The expansion must nevertheless be non-uniform,

since the characteristics of the "uncoupled" solution will appear at each
stage. However, the shock wave will be altered each time. In detail, the

exact compatibility relations and characteristic equations must be perturbed

-accdrding to the standard PLK technique, and all quantities —including X

and £ —must be considered functions of the characteristic variables.

' The resolution of the difficulties will be worthwhile.

Many areas for investigation have been openéd me rely by
recognition of the hyperbolic nature of unsteady RGD. The methods which

have been proposed, while complicated, are far simpler than most which

- - . R - - e A e . .
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have been suggested. Furthermore, the use of characteristics provides

insight into the non-uniform nature of various perturbation procedures.

SRR e A e e
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Figure 1. Geometry of general radiative transfer
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APPENDIX A

SEMI-GREY RADIATIVE TRANSFER

The assumption of grey radiative transfer is inadequate in most
situations since a single mean absorption (emission) coefficient is con-
ceptually correct only at the optically thick or thin extremes. If the
gas is non-grey, several mean absorption coefficients appear when the
transfer equation is integrated over all frequencies. In this note a mean
absorption coefficient is defined in addition to an emission coefficient, and
both means are employed in the formulation of radiant heat exchange. It is
demonstrated that when local thermodynamic equilibrium (LTE) is not
invoked several mean absorption properties must be defined. The result-
ing approximations are meant for specific application in radiation gas

dynamics and has been termed "semi-grey" radiative transfer.

A.l Non-Grey Absorption in Local Thermodynamic Equilibrium

In a non-scattering gas which is unencumbered by material bound-

aries or unsteady effects the assumption of local thermodynamic equilibrium

leads to the following transfer equation for the specific intensity I.v ,

_7era./ (L) = (8,~T,) (A. 1)
where
2s0% A o . | (A.2)
8, == [e.r'ji .

= mom = s

57 8 B W B memgeee

A T
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&, = ok, (/- e ~ (A.3)

o _
and 4 is the unit vector in the direction of propagation. When Eq. (A.1)
is integratevd over frequency, both mean "emission® and Mabsorption®

coefficients must be defined in the integrated formulation.

___z_tjrac/ /rjgal/,,é’/r)—q’, ya (A. 4)
where :
Z(Z,7) =£L¢/u (A.5)
B =£ Bud¥ (A.6)
XP(’—)):LQ/,,B,JV/B(f) (A.7)
-3 ' : ‘
ozq(.r'i,‘r‘)=£°(eL dv /T (A.8)

Viskanta (1964) refers to Xa and C(p as mean volumetric absorption and

emission (Planck) coefficients. Unlike the emission mean, the absorption

mean depends upon the solution of a specific problem; e.g., upon an

entire flow field. In addition, it is anisotropic in general (Sampson, 1967).
All properties are normalized as follows (asterisks denote dimen-

sional quantities)

— .-' » *~

= T 7.‘- T/T
4 g/r F=TF e - = @ ,
=Yy, Z,= 1, /a7,

where ¢ is an appropriate length ccale, ()a, denotes some reference
state in an undisturbed gas, and the corresponding Bouguer number is
’5'%./?. The moment equations which hield the macroscopic properties

of the radiative field are:

g = Tl a L] (4.9)
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)

c//v/’l-':)=—‘§,q{. £ (A.10)

= : (n) =
eliv(I,)= E[C,‘-‘VXPT"— Ha Iﬂ-:] (A.11)

where the Cx result from appropriate angular integration.  Since
is not isotropic, the angular moments of the absorption coefficient

as well as those of the specific intensity must be defined.

N T = T eaH I @D a2
j_: =LI"I{Z‘,?JJE 7 (A.13)

where it is understood that I‘n is an nth order tensor. The moments

are tensors as well, but the notation will not be cofnpli,cated with that fact.
The notation i is used interchangeably with f;_ which is the radiative
heat flux. Similarly?wgéi is the radiation stress tensor and I, = cu"')
is related to the radiative energy density. It is clear that the correct

optically thin limit must always follow independent of A 4, thus examina-
tion of the thick situation may clarify the meaning of the absorption mean.

If the absorption length is much smaller th‘an. the dimension of the

physical region of interest, the following Taylor series is a particular

solution of Eq. (A.1) (Goulard, 1963a)

1 B‘,-h __]_"“ L d s 7 e
I-g- g5 B fw il Ty (414

Hence the first two spectral moments of the specific intensity are

o %y

B! 2 _ > r
PR ACILIE s VRS Tt e A

7 e/ ‘!—8",_7’"‘"7' #oee (A. 16)

gy = T 3qa T
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From Eq. (A.12) it follows that

3
a( 4(,*3#3{{"7;“1 7= "3, ‘:'!f‘)r‘ﬂjg"dﬂ _%é-«%ﬁmfd”m. 17)

)

-,
o= oA +0(FF) (A.18)

where the Rosseland mean absorption coefficient is

o o .
[ dE /r.f a:r’jé&
= _[-( 7w/ () ) 7—”941’""’ (A.19)

i;’(;‘» =‘[°7L‘”” dJv (O'T/) G;T'fj,ﬁclﬂ  (A.20)
ﬁ:’ _-.-.[Dé,-gf;fdigc{u/(f%" (A.21)
selasse/m)
% =[°213 by / (5T) (A.23)

where o4 (B7) is a known property of the gas. If the moment equations,
Eq. (A.9) - (A.1l) are truncated in the usual manner (see Section 3.2.2),
the result consistent with a P, differential approximation is, to lowest

order in Bouguer number

(A.27)

divg = Z, «,{477-1.§
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jraa’(I;) = =37, ae ? (A.28)

which are identically Traugott!'s equations (Traugott, 1966). They must
be in error far from regions of radiative disturbance since as gradients
vanish, «/y does in fact become isotropic so that Ay XA wap,
Nevertheless the implication is that the various moments of &, might
not all be the same. '

Examination of the optically thick solution of Eq. (A.4) leads to

7= B(T/ Ta( AJ’“J/&Q)’LD/’) - (A. 29)

whereas the exact frequency integrated expression from Eq. (A.14) is

/

I; g(T)_-——— _A_jrqa'[e)‘fo/z'l-) (A.30)

Compatibility of these expressions requires that

] — I ____/__—s ~ v d
. o (7).
— r,
Y (#Z,7)= a”.(..., 8(7) (A.32)

theﬁ Eq. (A.31) may be recast in the form

Y Rgeudl ) ~(3 )8 Togrodle) = - 28§ Y- B} (4.33)

Eq. (A.33) is a nonlinear Abel equation (Murphy, 1960) and has closed
form solutions only for certain special functional forms of ;ﬁ 8 . Itis
an indication of the manner in which &/, depends upon the familiar pro--
perties &) and 4,( and upon the flow field. In general, Eq. (A.33) can
be solved only numerically.

Suppose that o(q is independent of zZ (quasi-isotropy). Equation

(A.33) may be averaged over the unit sphere and easily solved with the




276

result
1

- ap .
Y(F) = [1—&!;7,5[’*"/,#] T'Dr"j * (A. 34)

The Steiltjes representation is necessary mathematically because the
temperature will not have continuous derivatives in general, (Henceforth
the Steiltjes form is implied in all cases.) Eq. (A.34) satisfies the con-
dition L, 8» as7=1. If Q/%R depends only upon temperature, which
is a reasonable approximation, then &4 may be determined from Eq.(A.34)
once and for all. If Y were expanded in a series of spherical harmonics,
the approximation indicated above would occupy the same position in the
truncated system that the Milne-Eddington approximation does in the dif-
ferential formulation of radiative transfer.

‘The optically thick limit has long been known to be singular, and
the consequences of carrying out a matching procedure in a singular
limit are not clear. The anisotropy of &a is evident when boundaries
are present since in that case a solution such as Eq. (A.34) could not

be found because the values of Y on the boundary would be necessary.

Since those values would depend upon the direction in which the bound-
ary was "seen", it is proposed that a first approximation might be
2 YAZY) ,
Yi#?) = X)) -2f Llre  (a.35)
- .

Consisteﬁt with Eq. (A.33) the unknown constant might be determined from
] {Yd)-g}da =0 (A.36)
4

The analysis has not been restricted to specific geometries thus
far. However, a procedure for correcting Eq. (A. 34) in the planar
case has been considered. In analogy with Olfe's (1967) recent modifi-
cation of the differential approximation, even in the thick case terms
dependent upon radiative interaction with boundaries must be retained.

When there is a black boundvary at =0, to lowest order, there result:

X
By !
gf-zv[;fz 3,—; -~ 8(RIE(TY), %i&fyf (A.37)
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= ;r[z. 8. (1) + B; (TELIT, )+ ] (A.38)

Z,

(4

It is assumed that the gas is nearly grey, without ambiguity o = g in
the above. The manipulations carried out previously then yield the follow-

ing integral equation for a quasi-isotropic Y.

Y -7z f{_L -g; z.‘ﬂ- 7-1[5{‘J%Tlf)df},z{-‘[dffﬂ{]y]x (A.39)

It is suggested that Eq. (A.34) may be inserted in the argurn‘erit of the
first exponential integral, so that a second approximation to Y, including
boundary effects, may be found.

Contrary to the approach which may be taken in a.‘str ophysics
(Sampson, 1965a) consideration has nowhere been restricted to a speci-
fic situation or an assumed temperature distribution. No general con-
clusions can be drawn from such comparisons in RGD because the

- nature of the flow field can seldom be predicted in advance. The impli-

cations of semi-gray radiative transfer upon the general formulation of

RGD have been examined in Chapter 2. For instance, even in the planar
case the geometrical aspects of the radiative field cannot be resolved
and exponential integrals do not appear in general. It is stressed that
neither (A.34) nor (A.39) may offer improvement in all cases.

If the gas were truly grey, d’=¢,, and complete gre.yness,a{,-‘ﬁfﬂfp,
is in fact a particular solution of Eq. (A.32). If

/!
= (% | (A.40)

then a solution of Eq. (A.33) is, to a quas i-isotropic approximation.

Ko = Vimendpdg | (A.41)
It often happens that 6<m<1(Scala and Sampson, 1964); thus

alr < g < Ap , | '  (A.42)
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if 5>l ., Eq. (A.41l) does not lead to the correct undisturbed result A>p
If m = 0, Traugott's equations may be reproduced if I, is redefined within
a multiplicativé constant. When derived in this manner, the approximation
is not restricted to near thick situations. The use of a square root mean,
Eq. (A.41), is often acceptable (Goody, 1960). It is further noted that
Eq. (A.4) is similar to Stewart's non-grey transfer equation (Stewart, 1964).

In planar situations of pure radiative transfer in gray gases B(T) is
sought as a function of the -opfical variable, 7 . It is suggested that exist-
ing solutions may be reinterpreted by considering B(T) to be ::—:{-Jt‘f) and

carrying out the transformation to the physical plane according to
[% * ‘
2"" A (A.43)

In radiative equilibrium absorption and emission are balanced so that

2:.‘ —3':%; j”‘J(r4} = COHS-IL. ‘ | (A 44)

The same result follows for quasi-isotropic, semi-grey radiation as a
consequence of the matching procedure. Thus the same temperature

distributions would be predicted by Eq. (A.34) and by Traugott's equations

even though the former assumed isotropy in &a . The behavior of Zo

'would, of course, be different.

A.2 Semi-Grey Transfer in Non-LTE Gases

The inclusion of the effects of non-greyness in an e‘ssentially grey
system of equations was aided substantially by consideration of gases in
LTE. It will not be shown that the concept may be extended to non-LTE
situations. For expository purposes the model of Clarke and Ferrari
(1965) was chosen. If induced radiative recombination is neglected in a

gas of atoms, ions, and electrons, the transfer equation is
- — z /- C
_/Ljrac/ (L)= T, (I c)[/;:‘-; -?e;’/B,(T) - L} (A.45)

where C is the mass fraction of ions, and the subscript'e"denotes the
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Saha equilibrium state at local conditions. Before the concept of a(q_
may be examined, the modification to the mean abs orption properties of
the gas must be examined.

Since C does not depend upon frequency the Planck mean is un-
affected by the nonequilibrium nature of the radiative field. If the optical
depth is

7, =[(/‘C)¢(,(ﬂJ£ - (A. 46)

then the familiar approximations lead to

~r 1 —n -
I =25 A 29I (B) + - - (A.47)
where
~ c? - (e
4 = “"/-c)//—(;'f) 8, (7) | (A.48)

° —
Since the source function, B, , is not a function of temperature alone

_d.J"cJ/Q )= (/-5)37[[ )‘vﬁcj"ﬁ*/cié/ﬁz”zj’d@* (A.49)
(/— )gyap[ (e,]-n'Jan

Thus it follows that

—

Z° Jr (/-e)

(2-¢) :
[;,;—jmdf-f- L (-(——- rad[hyc)

o L 20 /L8 ZZjnJ(P)}fo/z‘;’l.)(A.SO)

where

_-_f B dv (A.51)
=f(,,y)8 dv /B (A.52)
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L= L2 ) |
wr o il (5E)f - = (A.53)

The détailed model incorporates a heat flux dependent reaction rate, thué
the gradient of the atom mass fraction depends upon the heat flux (or at
least upon part of it). This bears a striking resemblance to the Hall effect
in MHD. Eq. (A.50) proves that concentration and pressure gradients as
well as temperature gradients may produce heat fluxes. Since the Saha
equation forfn(zzjls proportional to (7%/7), where T is the temperature
which corresponds to the ionization potential, an approx1mat1on consistent
with the assumptions (._;,— >>1 ) must omit the. Rosseland mean completely.
In a non-LTE situation optically thick radiation no longer is directly related
to molecular conduction, and even the limiting case may involve more than
a single mean absorption coefficient.

If Eq. (A.45) is integrated over all frequencies and the procedure

outlined previously is applied it may be shown that

& By (28)-B- iAo [f3Ryta ¢ e
+ Sl )} -"'-J"‘"'_’J

Furthermore, if quasi-isotropy is assumed and the referen,ce state is one

of chemical as well as radiative equilibrium and
F. 25
Aa (A.55)

then

Y 1- Z,f,_‘[ _’mdlr)-f-i)l[l- )jndu:vf.) P/j,/ﬁfrzfgnJﬂ} 7 (A.56)

]
Eq. (A.56) can never be e\}aluated once and for all just as Eq. (A.34)
cannot unless #4/ar depends only upon temperature. In both cases, only
iterative solutions of general problems are possible. Thus Eq. (A.56)
lacks the potential simplicity of Eq. (A.34). In chemical equilibrium
Eq. (A.56) and (A.34) are identical.
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A3 Conclusions

Considerable caution is necessary in the physical interpretation
of the absorption coefficient, @, . The demonstration of the firm physical
foundation of Traugott!'s equations is but one of the many implications
that it may have. The formulation is quite general, but relies upon the
assumption if isotropy in (g . Even though only iterative schemes may
be ué ed in general, this approach is simpler than the inclusion of the
numerous detailed radiative processes which participate in non-grey
radiative transfer. Either experiment or exact solutions in non-gray
gases are necessary before the usefulness of the quasi-isotropic
assumption may be determined. In any event the systematic specifica-
tion of mean absorption coefficients is a good deal more complicated

. *
than has heretofore been recognized .

* . . _

An independent analysis similar to the one presented herein has recently
come to our attention (Patch, 1967). Although the basic concepts are
indeed very closely related, the detailed formulations are quite different

as are the purposes for which the mean coefficients are intended.
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APPENDIX B

TWO-DIMENSIONAL STEADY FLOW: A POSSIBLE APPROACH
BY THE METHOD OF GARABEDIAN AND LIBERSTEIN

Consider the appropriately normalized equations of two -dimensional,
steady RGD. For simplicity only a perfect gas is employed, but similar
results would follow if the general case of Chapter IIl.were considered.

The equations are:

Pluxtoy) + B o B~ ()7~ (£)5 =0 | (B.1)
Ulhy +Uthy = —/_})gf (B.2)

Yok + vy =-/77-),jv (B.3)
Tt ) 1w futsyr vy )1 uGroy,) = f'/{-:f Z3 )@ (B.4)
(Lt (&) =T @ (B.5)
(Lo )y =-37, 404, (B. 6)

(L) =-FLa §a (B.7)

where
Q= eI, - 9,77 (B. 8)
/7.— (a;’l)/az

Following Cohen (1965), in a quasi-isotropic gas one may assume that
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Z= 2 grdf

Then Eq. (B.5) may be written in the form

sz -@PGJUHQS)_Z:]"J% = - e T, f

It follows from Eq. (B.6) and (B.7) that

ro=-ag,;ﬂ

if all arbitrary constants are absorbed into the definition of

Eq. (B.1) - (B.7) may be cast in the following form

—
Tue

A' u-ﬂ)
1-/Pv'

-;%'u-n) -

NI
RAS™{ s
+

where

Ld'g
A

Yo
TUn \

TV
El\r A,
o..-.. -

v

I

5
"
o

S8
&

_pu
&

J

(B.9)
(B.10)
(B.11)
o o © Q— fﬁ
o ' : S I R
: 24T { =
: B
v o (o) [o) ¢
- o o 1 o
: -1 e o f
i o o ol (B.12)
o ]
Ze &
o
-2 (3)Q
T2 TwWin
&% PuU R
~GRr e ) +ltes), f,_
o
@
— — (B.13)
(B.14)
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A= T-UMi-r)=(1-r) (q*v?)

(B.15)
The characteristics of this system are
uv
dx YU u - mtym=i .
= 0, 77 -— a
AR A= s

Therefore the problem is not fully hyperbolic even if AM>Z , The zero
characteristic is redundant since it is merely a consequence of the comutative -
nature of the differentiations performed (see von Mises, 1958). The

corresponding compatibility relations for the fluid mechanics are

+v;)-,}P+/o{u§;‘+¢r——} [ ) - = (B.17)
{u!—#U}f}Tf | 2—+u—"]/":"”/ ;3'. { o jff-—;‘ﬁ, (B.18)

-"-'V/;‘—— { [f-lw'krj?ﬁ Luvtrys Tf"/J }P /a(f[r //-n)v_];,' #[ur(ry ¢ iy 2 f/ ‘f,’-:—'
== L o uF o) ”’;{: - L i (B.19)

/4 /- Ut

Bernoulli' s equation, Eq. (B.17), is unchanged by radiation because
radiation pressure has been ignored. The Mach and path line relations
h are modified by emission locally and by the integrated effect of the

component of the heat flux along them since

S
p- [ gt
o
along any line the distance along which is S . It may be shown that there
is no analog to Crocco' s theorem. The compatibility relations which

govern the radiative properties are complex. It is proposed that the

problem be continued analytically into the complex domain just as




i
£
i
]
;
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Garabedian (1957) and Garabedian and Liberstein (1958) have done. The
method would best be applied to subsonic regions, since then most of

the characteristics watld be imaginary. The difficulty introduced by
subsonic regions in the real domain is that they force the problem to

be ill-posed with respect to initial data. In the complex domain

such problems are well posed (see especially Garabedian, 1964, Chap. 16).
The difficulties are traded, since the continuation of the initial data from
the real to the complex domain may well be unstable (Lin, 1957). Because
of the mathematical uncertainties associated with the approach, it has

not been pursued. Nevertheless, the method may prove wcrthwhile,

and its advantages must be weighed against those of the unsteady approach

to a steady flow.
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APPENDIX C

CYLINDRICAL AND SPHERICAL RADIATIVE TRANSFER
WHEN /ojgls CONSTANT

Consider Eq. (2.59) in the steady state when o4 is a constant

and there are no boundaries present. In the notation of Figure 1,

3 - 4T, T Ir8(7)E "
, — T = - 2
a’lvg L7 £§a TNPE dviee) (C.1)

The geometry of Figure 17 in the cylindrical case is considered first.
Heaslet and Warming (1966) note that

Tomp = AIF-7)

167p)*= J7-7
Clearly,

Vp) = 1 drdedz (C.2)
F-F)t= urr 2t (C.3)

where

U= r*#rn* 2rr s (C.4)
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A
1f JF-7/ is denotedby T , then

Jz = tdt , (C.5)
VFo
whence
) @ T o _d'? » _
I, = d‘[‘flfB/r,)-i;Jr,fdef-?e——" A Jt (C.6)
» It can be shown that
( aeolt A o("' [ /] :
[mw oy f (y-0"" ks )y (c.)
Thus
WI, (r) = ff;o(f”/c)/if/(/dgdr,jc/f; (C.8)
(2]

where the symmetrized kernel is

L D
o VFT
K twtyar) = %[a’&[}(,/alaa)/)éx (C.9)

One of the standard texts (Watson, 1944) may be employed to show that

-
Ko (dVy) Zp\ /7, y) F>r

[ Ko {eico)s] 40 = T s ’ (C.10)

> A, /4/,')«} _E/(A’w rzr,

where L‘)above is the modified Bessel Function. Thus:

| Koldry) L, (d’.)')apr r>r,
Kidyar) = «frr § (C.11)
/

/(.{-(:;/)J;/xr//c// r<r,




289

The analogous expression to a P; differential approximation may
be derived as follows. In the cylmdrlcal or spherical cases the heat flux

potential may be applied

1 of
2° % 5r (C.12)
Z, =~ (C.13)
to yield

2 8P , ‘ .
55 /55 ) -39 73" AT

where ‘
J: sV AVF (C.15)

I'he solution of Eq. (C.14) is
@O .
&
Prs)= —[ J 611,37 :;ff 754y’ (C.16)

where 6 /J -f) satisfies

& _
=3, /,J;’?j)- £Y6= -g05-8)

(P

[G/f,,f)] T

r/(‘l
JI6 f-: th
] uj'//

(C.17)

3 37,

and 6(,J’) must decay exponentially as J % and be regular at J, =0 ,
In the cylindrical case
Lo (57K (3,) 53
G5,1)= (C.18)
Z,/3) K 139 J <7’

It follows that

a
Z,1%) =[ 366,37 57394y’ (C.19)
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"This is equivalent to Eq.(C. 8) if

@
,[ Ko tary) Ipy tary) oy ror’
G(nri)= © (C. 20)
_[ Ky X"y) T, /a(r)f)cb/ rer/!
As long as o/ is not too small, it may be assumed that for Y&l
- &P,
~ =< ” c.z2l
e (C.22
T, ) ~ -22)

Verary

(see e.g. Abramowitz and Stegun, 1964). Thus

P
G 1rr)= z7 Ly (Vr-+1) (C.23)
If
-y3x
E, tx) = V3e (C.24)

then Eq. (C.21) and (C. 22) lead to (C.18) exactlyz Therefore the

relationship between kernel substitution and the differential approximation
holds in cylindrical as well as planar geometries if &(,is a constant.

Since the Bouguer number is implicit in &£ , the comments below Eq. (C. 20)
indicate why the differential approximation can be expected to diverge most
from the exact formulation in the optically thin situation.

The formulation of the spherical problem may be found in detail

‘in the works of Cuperman, et, al. (1964) and in Davison (1958, pg. 96).

In this case Eq. (C.3) becomes

VP = ridridy du (C.25)
where
s = TP
M= c0sS = 7 (C.26)
Therefore R
CL N lled (C. 27)

JEE/ T
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It follows that

rT, = 4]; 2r' 7""/"7[E1 (o//r—r'/)- E /d["":])_} dr’ (C.28)

Application of the differential approximation in the same manner as before

(see e.g. Eq. (3.66)) yields,
wr -V3ar
rz, = V?fo Cosh(V3Ar)C "~ GATYr) dr’ +

-4

—VFdr!
+ V3 Lr Cosh (Y3&Y) € . MT*/r’)Jr’
which is identical with (C.28) under assumption (C.24). The equivalence

(C.29)

of kernel substitution and the differential approxima.tion is thus further
extended. The differential approximation is, however, quite general and
applies even if ol is not constant. The integration involved in the exact
formulation cannot be attempted unless A is a constant. Because of the
simplicity of the differential approach, no other approximation can be

justified for the initial investigation of nonplanar RGD.
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APPENDIX D

ERRORS ASSOCIATED WITH THE FINITE DIFFERENCE ANALYSIS

In this appendix it shall be shown that the errors involved in all
of the methods of solution indicated in Section 5.2 are O(At)" For
expository purposes, consider Eq. (5.2b) which applies a.long the ¢/
Mach line

. Lp P .
AP~ poaldu =5y {2 L3471~ S 2] It (D.1)
’In the notatlon of F1gure 4, Eq.(5.20) may be reproduced |

(5-1) - (B), t4-1) = 7, § T iz 94775 723,

A point is inserted between 1 and 3 at a distance -/45)/3 s m>2 from 1.
Only one of the inhomogeneous terms on the right hand side of Eq. (D. 2)
need be retained, since the effectsof all are the same. All properties

may be expanded in Taylor series about the intermediate point, 3' as

follows
Ju AS)+_L/ /,,07155 2
Uy = ty 932”’ s =) (D. 3a)
L
' - (5 (%) +L=L/77‘:' (L)t - (D. 3b)
Then
— {2, > ' .
uJ’ = L(,J > '7(#-2#1'&)/2??/, /%"/L'l" d/’;é‘-’)f (D 4a)
= =4 _ | (r%anra3n.a) A% 7 {D.4b)
(ds /gr ,-? B .__(_;_)}_"__1) Z;;)(As)"f@(di)
where

——

/
u/J‘ I/‘% f‘”") (D-4C)
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Performing the same operations on P and inserting the result in
Eq. (D.1l) written at point 3', one finds that

4 _—
(A5 73, @5, 4 () T (D.5)

AS 773 AJ [J/)

at a
—_—=
)_—;.‘ X5 /AS)

Suppose the entire coefficients and inhomogeneous terms

in Eq. (D.1) were averaged. Then the Taylor series yield

J
(2)<(2), + {5/2), (2)as » | (D. 6a)
/h/ // {ds )? L (D"f’b)

so that

/ ) / /Ilehﬂ) x /Pf)] (A5) - -

(D.7)

It is clear that this will lead to the same error, &/a5)%, as the previous
procedure did. Since Js% % the result is proved. In fact, even

the method of Podney, et. al. (1966) is equivalent to the previous two

in this sense. If h is some parameter which determines the size of

the allowable time increments, these are said to contain errors of ¢(4*),
Once h has been decided upon, solutions may be corrected by extrapolation
to A=& (see Chou, Karpp, and Huang, 1967).
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APPENDIX E

DESCRIPTION OF COMPUTER PROGRAMS

E.l The Calculation of Flow Fields According to the Differential
Approximation -- Program A *

Since it is the most general tool employed in the investigation,
Program A will be described in detail. The entire Fortran II listing

is included in section E.3 and Method I of Section 5.4.2 is employed.

~Just as in the schemes of Sauerwein (1964) and Sussman (1966) an

Executive program calls upon three subprograms which calculate
individually points on the boundary (BDYPT), within the field (FLDPT),
and on the shock (SHKPT). The overall flow chart is presented in
Figure 18. Table E.I lists each of the programs and those subprograms

which they must have access to. Generality was sought, sometimes at

‘the expense of expediency. This philosophy is certainly justified.

Rather than endure recompilation of the numerous programs in order to
make minor corrections, some check procedures are retained which,
in light of experience with the program, areno longer necessary. These

anachronisms will be pointed out as they appear. The description begins

with the simplest subprograms ard builds toward the Executive. Mnemonics

are used throughout.
Function subprograms
- The functions PISP@2S(AT), PISVEL (AT), and PISTMP (AT)

represent piston position, velocity, and wall temperature respectively

as functions of time. Their specification is arbitrary. Chemical non-
equilibrium may be inclded if ¢ = external function AIS(T) is considered
the frozen speed of sound. That which was employed computes a_
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