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ABSTRACT

Numerical methods are used to investigate turbulence-combustion
interactions 1in shear flows. The reaction 1is governed by finite rate
Arrhenius kinetics, the flow field is ccompressible and at high Reynolds
number, heat release is moderate and molecular heat and mass diffusivities
are finite. The scheme used in this study, the vortex element method, is
grid-free, Lagrangian and adaptive, 1i.e., more computational elements are
utilized to discretize the vorticity as a strong strain field develops in the
flow. A similar Lagrangian scheme 1is formulated to compute the transport of
scalars in the same field. This scheme, the transport element method, is
based solely on the kinematical relations between the distortion of the flow
map and the local scalar gradients. The numerical scheme is validated by
applying it to study tke evolution of the Kelvin-Helmholtz and the Rayleigh-
Taylor instabilities in density stratified flows and comparing the results
with the linear theory. In the non-linear range, the simulations are verified
against experimental and theoretical observations.

Simulations were performed over a range of Damkohler numbers for premixed
as well as non-premixed combustion in order to resolve the flow-combustion
interactions and to understand the effects of this mutual feedback on the
burning rate. The flow field affects the propagation of the flame through the
mechanisms of entrainment and stretch while the reaction influences the flow
through thermal expansion and the generation of baroclinic wvorticity.
Volumetric expansion due to heat release reduces the growth rate of the
instability while the baroclinic vorticity generation enhances the
entrainment of the low density fluid into the eddies and biases the motion of
the structures in the direction of the heavy fluid. For a shear layer with
non-premixed combustion, the reaction 1is extinguished in regions of large
positive strain and the product concentration is maximum inside the large
vortex structures. The total product formation increases with the Damkohler
number. For a shear layrr with premixed reactants, results indicate that the
flame thickness is reduced in regions of positive strain leading to slower
propagation speeds. However, the thickening of the flame due to entrainment
within the large structures enhances product formation. In contrast to the
non-premixed case, the product formacion in premixed combustion approaches
that of the laminar flame as the Damkohler number increases.
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I. INTRODUCTION

Turbulent reacting flows have been attracting increasing interest in
recent years. The requirements of increased combustion efficiency and
decreased pollutant emissions from a variety of devices, from power plants to
jet engines, have led to the need for improved methods of analyzing and
prediction for flows involving chemical reactions. It is important for any
combustion system to release as large a fraction of the available chemical
energy in the fuel as possible within the given volume of the combustion
chamber. This can be achieved only by what is known as a turbulent burning
process. Turbulent reactive flows occur in practically all combustion devices
and in order to be able to control and optimise the burning process, it is
necessary to have a clear understanding of the flow-combustion interactions
and to be able to determine the effects of this interaction on the burning
rate. Therefore turbulent flames have been studied intensively from both
experimental and theoretical points of view. However turbulent combustion is
now so multifaceted that there exists no complete or impartial review of it.
Although a well understood theory has been developed for laminar flames
(1,2,3,4], there has been little success in providing a better understanding
or ar accepted conceptual framework for turbulent flames. The need for a
complete theoretical description of turbulent flames 1is strong because any
progress in this direction would result in a better utilisation of scarce
enerqgy resources in the times to come.

Generally, experimental measurements in reacting flows involve
significant difficulties and potential sources for error. As a consequence,
the combustion literature contains important discrepancies among experiments

that should apparently be in accord. Experimental difficulties frequently



limit the quantities accessible to comparison. While a theoretical analysis
would yield distributions throughout the flow of all the aerothermodynamic
variables, only a few of these can be experimentally measured and, perhaps,
only at few spatial locations. ‘lhus, accurate simulations of the flow may
reveal very interesting aspects of the flow field and reaction that may not
be obtained through conventional experimental techniques.

The difficulty in analyzing turbulent reactive flows arises due to their
inherent unsteady nature. Moreover the complex nature of the interaction
between flow and reaction has made the solution of the governing equations
very difficult. The process of combustion 1is greatly influenced by the flow
field through such effects as strain rate, flame elongation and curvature
while the flow field in turn is affected by combustion through thermal
expar sion and the generation of baroclinic vorticity. This close feedback
between the flow and the chemistry must be resolved in order to develop a
theory for turbulent flames. These difficulties have led to the development
of simplified models applicable only in certain regimes. The activation
energy asymptotics model [4,5] is one such approach wherein the activation
energy is assumed to be infinite, i.e., the flame thickness is very small
compared to the length scales of the flow. This approach has yielded a great
deal of insight into the problem and has been able to explain some of the
phenomena that have been observed experimentally. Other attempts at modelling
turbulent flames include the assumption of low heat release (6] or that of a
constant density reac~ion and the use of a temperature independent reaction
term [7]. While these models have been successful in identifying certain
significant aspects of turbulent flame behavior, a great deal of work is
still required in order to extend their predictive capabilities to other

regimes.



The focus of this study is on the development of schemes for the
numerical simulation of turbulent combustion. In this approach, accurate
numerical methods are used to integrate the unsteady, unaveraged equations
without modelling. Thus, the need for a priori assumptions abocut the flow is
eliminated. Therefore, numerical simulation can be applied to study flow
fields with complicated interactions in which priocr knowledge about the
physics of the problem is lacking. The validation of the numerical scheme is
achieved by comparing the results of the simulations with ¢ ailable
experimental data or with results of previous investigations. Once the
validation of the scheme is complete, it can be used for obtaining
predictions of different physical quantities as a function of time and space.

The numerical method used in this study is the vortex/transport element
method. This scheme is Lagrangian and grid free and is based on discretizing
the flow field in terms of the gradients of the primary variables. This has
the advantage of optimizing the computational effort by distributing
computational elements only in regions of large gradients. The governing
equations for reacting flows are presented in section II. The development and
formulation of the method is described in detail in section III. The scheme
is then applied to study five different flow fields, of the kind found in
most practical cases of interest. Section IV deals with the density
stratified Kelvin-Helmholtz instability, section V 1is the study of the
Rayleigh-Taylor instability in a gravitational field, section VI deals with
the instability modes in a density stratified jet flow and sections VII and
VIII present the results for jet diffusion flame and the premixed shear layer
respectively. A general discussion and the conclusions of this work are

presented in section IX.



II. FORMULATION

II.1. GOVERNING EQUATIONS

The non-dimensional governing equations for an unsteady, two dimensional
reacting flow are summarized in Table 1. For all the cases considered in this
study, it is assumed that the flow is at a very small Mach number.
Therefore, the spatial pressure variation caused due to the acceleration or
deceleration of the fluid is small in comparison to the total pressure and
hence does not significantly affect the 1local density of the fluid. Under
these conditions, the pressure term in the state equation can be assumed to
be a function of time only and not of space. Expressed in different terms,
the assumption of low Mach number flow states that the velocity of sound is
much larger (infinite in the 1limit) than that of the flow and hence the
pressure reaches equilibrium with inertial forces instantly across the
flowfield (8,9). Furthermore, if the flow 1is in an infinite domain, the
pressure can be assumed to be independent of time and the simplified state
equation can be expressed by Eqn. (1). Therefore, the pressure term in the
energy equation is neglected in comparison to the other terms. Although the
low Mach number assumption is wused to decouple the density from spatial
pressure variations, the pressure term is still retained in the equation of
motion to balance the momentum changes in the flowfield. This is because the
pressure term is of the same order of magnitude as the fluid acceleration and
cannot be neglected in the momentum equation. The fluid is assumed to behave
as a perfect gas with equal molecular weights and constant specific heats.

The thermal and mass diffusivities are constants but not necessarily equal.
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The Reynolds number is assumed to be high and hence the effect of viscosity

is neglected.

STATE

VELOCITY

ROTATION

EXPANSION

VORTICITY

PREMIXED FLAME:

TABLE 1

p T ~ constant

u -uv+up+ue

2

T v=-w ; uv = Uxyvy
2 1 dp 1 dr
V*‘"EHE'TaE'“e'W

¥ o Lwxw-w(v.u
P

k= A exp(-E/RT)

Reactants > Products
ENERGY g{ = —%— V2 T + Af QW
e

dac 1 2 .

dc 1 2 y
SPECIES(P) aEP = Pe Le v CP + Af W

y n-1 n
REACTION RATE W = »p CR exp (- Ta/ T)
DIFFUSION FLAME:

Reactants (1) + Oxidizer (r) ——5——> Products (1l4r)

dT 1 2 g
a-t-_— = T v T+(Af/f)QW

e

(1)

(2)

(3)

(4)

(5)

(6a)

(7a)

(8a)

(9a)

(10a)

(6b)

(7b)
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SPECIES(F) Tr - 15;—11; e, - (agr) W (8b)
SPECIES(O) 4 - F;l“f,; 9% Cy - Ap W (8c)
SPECIES(P) T - Pel - V¥ cp v A (14 11) W (9b)
REACTION RATE W = pC.Cyexp(-T/T) (10b)

The definitions of the symbols are as follows: d/dt = 3/3t + u .V is the
Lagrangian derivative along a material line, t is time, p is the local fluid
density, u = (u,v) is the fluid velocity, x = (x,y) is the space co-ordinate,
x and y being the streamwise and cross-stream directions respectively. ¢ is
a velocity potential, ¢ = y e, is a streamfunction defined such that u - v x
v where w = ¥ x u is the vorticity. e, is the unit vector normal to the x-y
plane and up is a potential velocity, V¥ .up =0, added to satisfy the normal
boundary conditions across the boundaries of the domain. ¢ and v2 are the
gradient and the laplacian operators respectively. All the variables are non-
dimensionalized with respect to an appropriate combination of a
characteristic velocity Us and length Ly These characteristic values depend
on the problem and are assigned separately for each case. C is the
concentration per unit mass normalized with respect to the free stream
concentration values. The subscripts R, P, F and O refer to reactants,
products, fuel and oxidizer respectively. k is the reaction rate for the
chemical reaction and is of the Arrhenius type. T is the temperature and is
non-dimensionalized with respect to Ty the tempertaure of the unburned

reactants or fuel. The Peclet number is defined as Pe = UO Lo/a where o =
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xk/pcp is the thermal diffusivity and Ak the conductivity. Le= o/D is the
Lewis number and D is the mass diffusivity.

For the premixed flame, Ag W is the rate of formation of products per
unit mass per unit time and n is the order of reaction. Q is the specific
enthalpy of reaction non-dimensionalized with respect to Cp T, where Cp is
the specific heat at constant pressure. T, is the activation energy (E/R To)
non-dimensionalized with respect to R T where R 1is the universal gas
constant. A single step, first order, irreversible reaction is considered in
which reactants go to products according to the rate constant k. For the
diffusion flame, the rate constant is proportional to the product of the
concentrations of the fuel and the oxidizer and exponentially dependent on
the temperature. Therefore, the source term is of the second order for the
diffusion flame. It is assumed that a wunit mass of fuel combines with ‘r’
units of oxidizer to form (1l+r) mass units of products.

With the assumption of low Mach number combustion, the state equation
reduces to Eqn. (1). The velocity is decompcsed into three components in
accordance with the Helmholtz decomposition, the wvortical velocity u the
expansion velocity u, and the potential component up added to satisfy the
normal boundary conditions. u is obtained from Egn. (3) and u, from Egn.
(4). For a compressible, inviscid flow, the vorticity equation is as shown in
Egn. (5) [10]). The energy and species equations and the reaction rates for
the premixed flame and the diffusion flame are given by Egns. (6) to (10)

respectively.
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IIT. NUMERICAL SCHEMES
III.1. THE VORTEX METHOD

Vortex Methods are used to solve the equation of conservation of
vorticity which is obtained by taking the curl of the Euler equations. The
vorticity equation for a compressible flow in two dimensions is written as

[10]):

W 1
tu- W+ wlus= —;2 (Vp x Wp) (11)

Given an initial distribution of wvorticity, Egn. (11) is solved to
obtain the vorticity as a function of time and space. The stream function y

is found from the vorticity using the following equation:

V¥ = —w (12a)

If the domain is unbounded then the solution of y from the above equation

can be written as:

v(x) = [ G(x-x') w(x’') dx’ (12b)

where G is the Green’s function of the Poisson equation. In two-
dimensions, G= -1/2n (ln r) where r2 = x2 + y2 .

The solution of Eqn.(12) yields the streamfunction at all points in the
flow field. The vortical component of the velocity is obtained from the

streamfunction as follows:
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u = Vx v (13a)
u, (x) = [ K{x-x') w(x’') dx’ (13b)

where K = —1/2nr2(—y,x) is the kernel of the Poisson equation. The above
equations form the basis of the vortex method. The vortical component
obtained from Egn.(13) is complemented with the potential velocity (to
satisfy the normal boundary conditions) and an expansion velocity (if the
flow is compressible) to get the fluid velocity which 1is then used in
Egn.(11l) to update the vorticity and the solution proceeds as before. One of
the main advantages in solving the flow in terms of vorticity is that regions
of wvorticity are wusually confined to a small part of the flowfield
(especially so in highly turbulent flows) and all the computational effort
can be used in resolving this region rather than solving the equations over
the entire flow domain. Thus the numerical resolution for a given
computational expense is maximized.

An important development in improving the accuracy and extending the
application of vortex methods to highly unsteady flows with large strain
rates, is the formulation of the vortex element method [11]. In this method,
the vorticity is accurately discretized among finite elements that move along
particle paths. Each of these elements transports a finite amount of
vorticity. Therefore this scheme 1is Lagrangian in nature wherein the
particles are followed in time and space. The main advantage in using a
Lagrangian frame of reference is that it eliminates the necessity to deal
with the non-linear convective terms explicitly. The distribution of
vorticity associated with each element is described by a radially symmetric
function, f&’ with a characteristic radius 5 such that most of the vorticity
is concentrated within r < § where r is the distance measured from the center

of the element. Vortex elements are initially distributed over the area of



the flow where |w] > 0 such that the discretization error is Jess than a
predetermined tolerance parameter €. Typically ¢ 1is around 10'5. A detailed
discussion of the initialization 1is presented in Ghoniem et al [11,12,13].
The strength of the vortex element located at X, denoted by w; 4 is obtained

from the solution of the system of equations:

N
WX,0) = I w h? £4(X -X;) (14)
i=1

where w(X,0) is the vorticity distribution at t=0 . f6 , the core
function, is chosen to be a second order Gaussian given by f'5 (r) = (1/n 82)
exp(—rz/sz . The importance of the core function in stabilizing vortex
computations was realized, among others, by Chorin (14] and was shovn to be
necessary for the convergence of the method by Hald [15) and Beale and Majda
(16). Egn.(14) is equivalent to expanding a function w(x) in terms of a
number N of kernel functions, f&' located at X, and with weights Fi = wihz.
The accuracy of the discretization deperds on: (1) the choice of the core
function f£; (2) the initial distribution of the particles which are used to
transport the vorticity; (3) the method of determining the initial values of
values of w; or Fi, i=1,2, ..., N; and, (4) the ratio §/h. The selection
of the core function for a particular accuracy was extensively discussed in
the work of Leonard (17) and Beale and Majda [(16], who show that a second-
order Gaussian, which is used here, leads to a second-order discretization.
Accurate discretization and long time accuracy of the computed flow field
require that 8/h > 1 (a recent review of the theory is given in Anderson and
Greengard (18])). For an initially smooth distribution of vorticity, &§/h =

1.1-1.5 is sufficient to limit the discretization error to the desired value.

Note that although the core function is constructed as a fast decaying
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function, such as an nth order Gaussian, the fields of individual vortex
elements are strongly overlapping due to the choice of §/h. Thus, according
to Eqn. (14), the local value of the vorticity at a point is determined by
the contributions of many surrounding eler2nts. Therefore, the vorticity at
any point in the flowfield at any time is determined by:

N

w(x,t) = 'El ri(t) fa(x"'xi(xilt)) (15)
1=

where r, = wihz is the total circulation of an element and is obtained as a
function of time from the solution of the vorticity equation, i.e., Egn.(1l).
h is the geometric average of the distance between the centers of neighboring
elements in the two principal directions, hz-hxhy. X; is the trajectory of
the particle or the partcle path. The velocity field of a distribution of
vortex elements is obtained by substituting Eqgn.(15) into Egn. (13) and the

resulting expression is:

N
I Ti(E) Rylxox (X, t) (16)

u (x,t) =
w ' im]

where

Rg(x) = - e 2y (17)

anr
k(§) = 1 - exp(-r?/8?) (18)

The velocity obtained from Egn.(16) yields tne vortical component.
Depending on the nature of the flow domain, a potential component has to be
added to u, in order to satisfy the normal boundary conditions. For all the
cases in this study, the flow is assumed to be infinite in the y-direction

and infinitely periodic in the x-direction with a periodicity length X .
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Therefore, the potential component is obtained by taking into account the
velocities generated by the infinite images in the x-direction for each

ccputaional element in the domain. Therefore, the total velocity is given as:

N +1 . (y 1y 2 2
u= I r, (I (ay, -(&x+3jX)) exp( _((8x+3N)" + ay™) )
i=1 2n "0 (axein)? + ay?) 82

n  (-sinh(2n Ay/)\), sin(2n o&x/)\)) bl
"X {cosh{Z2n By/X) - cos(2n &x/\))

+

o, (19)

where Ax = X-X;, by = y-y,, N is the total number of combutational
elements in the domain 0 < x < X and u is the boundary condition for the
velocity. Since the core function, f&' is a fast decaying function, its
effect is included only for the nearest images on both sides of the domain.
If the flow is compressible, an expansion component Uy has to be added to
the velocity u. The computation of u, is explained in the section describing
the Transport Element method. The above expression is used to compute the
velocity at the center of each computational element in order to displac: the

elements along the particle path according to:

9 - u(x (X, ,t),t) (20)
at X%

For a barotropic flow or an uniform density flow, the vorticity w is
conserved along the particle path and hence is independent of time for each
element and hence wi(t) -y (0). The vortex elements are displaced according
to the velocity calculated at the centers of the elements. As time
progresses, the generation of strong strain with the growth of perturbations
into the non-linear stage increases the distance between neighboring

elements, 8x, beyond the "target" value of h. Thus, the accuracy of spatial
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discretization, which is governed by &/h, 1is adversely affected. 1In the
computations, deterioration of accuracy is observed in the form of generation
of disorganized, random motion on the scale of h which grow as time
progresses. To avoid this problem, more elements are introduced in areas
where 8§X > gh where 8 ~ 1.5, and the circulation of the original two elements
is locally redistributed among the newly introduced elements. Since the
circulation of each element is wihz, and since the vorticity is conserved
along a particle path, the redistribution of circulation is accomplished by
dividing the value of h2 of the original two elements equally among the newly
generated elements and the original elements.

For consistency, and to minimize numerical diffusion, the value of 52
should also be adjusted so that the ratio of 82/h2 is maintained constant in
Egn.(15). Thus, the core radius of an element is effectively decreased as
the element is exposed to strong positive strain. By increasing the number
of vortex elements, we insure that the wunderlying grid of computational
elements can capture the instantaneous vorticity distribution as it evolves
with the motion of the flow. The need to increase the number of elements
becomes clear when realizing that as the flow develops strong strains, the
streamlines become strongly convoluted and require more particles to describe
their geometry accurately. On the other hand, reducing the size of the cores
of vortex elements help in minimizing the numerical diffusion which may
accumulate to unacceptable levels if the area on which the vorticity exists
is allowed to grow far beyond its original size.

The redistribution of vorticity in the direction of maximum tensile
strain requires maintaining a 1list of near neighbors in the direction of
maximum strain, and updating this 1list each time step according to the

changes in the vorticity distribution along the layer. This process is
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equivalent to wutilizing a one-dimensional Lagrangian grid along each
individual layer of vortex elements to preserve the organization of the
computations. It is also used to provide information about the flow map at
any time step since, according to the condition of incompressibility, one can
compute the changes in the length of the material layers normal to the layer
of vortex elements by knowing the extension of the elements in the direction
of maximum strain. Similar tricks were applied by Krasny [19] and by Zabuski
et al [20] in numerical simulations of a similar nature.

For a compressible baroclinic flow, the vorticity is no longer conserved
along the particle path. The interaction between the density gradient and the
pressure gradient leads to the generation of baroclinic vorticity and the
existing vorticity is further modified by the expansion term. Although the
expansion term, (V.u), does indeed change the local vorticity, it is found
that the circulation remains unaffected. This is because the circulation is
the product of the vorticity and the material area and while expansion
reduces the local vorticity, it increases the material area or volume by the
same ratio such that the product, the circulation, remains constant.
Therefore the expansion term does not appear explicitly in the circulation
equation. However, the circulation is affected by the baroclinic term and
the circulation equation is derived by wusing Fi = w hi2 in the vorticity

equation:

afy = _ ¥y,

dt Py

2x (W), (21)

Thus the circulation of each element is a function of time and is found by
integrating the above equation. The pressure gradient in the baroclinic term

is replaced by the material acceleration from the momentum equation. Tthe
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material acceleration of an element is computed by numerically
differentiating its velocity between two time steps, and the local value of
the density gradient and the density is computed using the transport element
method. The computations of vorticity transport proceed in a fractional step
scheme as follows: (1) vortex elements are transported according to the value
of the velocity at their center without changing the circulation or the size
of individual elements; (2) the elements that experience strong strain are
split (or combined if the strain is negative) and their size and circulation
are distributed among the new elements; and, (3) Egn.(2l1) is integrated for
each element according to the 1local acceleration, density and density

gradient.

III.2. THE TRANSPORT ELEMENT METHOD

Another important development in the application of particle methods to
reacting flows is the formulation of the transport element method to compute
the scalar distributions in a Lagrangian form. In this scheme, the gradient
of the scalar field is discretized into a number of finite elements using
Egqn. (14) with w replaced by g = Vs wherc s is a generalized scalar such as
the temperature or species concentration. Similar to vortex elements, the
transport elements are distributed where |s| > 0 and are displaced along the
particle path with the velocity computed at the centers of the elements. Each
transport element transports a finite value of the scalar gradient and the
value of the scalar is recovered as a summation over all the particles. The
strength or the scalar gradient transported by each element is updated by
solving the gradient transport equation which is obtained by taking the

gradient of the scalar transport equation. The conservation equation for a
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generalized scalar (such as the temperature or the species concentration) can

be written as:

= +u.Vs = o VZ s + é (22)

where s is the generalized scalar, avzs is the diffusion term and S is
the source term. The transport equation for the scalar gradient is obtained

by taking the gradient of the above equation:

39 L u Vg+g.W+gxw = aVzg + gg g (23)

ot

where g= Vs is the gradient of the scalar. Eqn. (23) is inteqgrated for g

as a function of time for each element. This can be done in fractional steps
where the convective, diffusive and the source term effects on g are
considered separately. The vorticity is obtained from the solution of the

vorticity equation and Wu is obtained by taking the gradient of Egn. (19).

The components of the velocity gradient tensor are given as:

N +1l . 2
u _ I -Ii_ { I (ax+3A) by ( 1 + 1 ) exp( - __F' )
ox =0 ) ) ) 34—
i=1  n ] r5 r5 § §
, ™ (sinh(2n &y/A) sin(2n &) (24)
»2  (cosh{(Zn By/\] - cos(2n Ax/2\))“
N +1 (02 2 2 2
g; - L Fi ( '2 ( (Bx+3jN) by _ by ) exp( - r. )
i=1 n 3=0 2r§ r?&2 6%
2
+ 0 (cosh(2n Ay/\) cos(2n B8x/A)- 1) b (25)

3 Tcosh(2n By/N) - cos(2n &x/N))2



N +1 22 2 2
%; - Ll Fi { .£ ( (Ax+3N) by + (Ax+jAN) ) exp( - L )
i=1l = 3=0 2:? r%&z s%
. n°  (l-cosh(2n y/A) cos(2n Ax/A)) (26)
2 T(cosh(Zn By/X) = cos(7n &x/X))°
N +1 . 2
_g_; - Tl I‘i (- .II (Ax+3jA) Ay ( 1 + 1 ) exp( - re, )
i=l n 3=0 r? ::? 8° s%
B n2 (sinh(2n Ay/A) sin(2n Ax/A)) ] (27)
2 Tcosh(Zn By,\) = cos(2n Bx/N))*
2 2 2
where Ax= X=X, Ay-y—yi and rj = (Ax+jA\)” + A8y~ . Therefore, the

velocity gradients are obtained as a summation over all the elements in the
domain. This process can be compuationally very expensive if the number of
elements in the field becomes 1large. It can be shown that for very small
values of the diffusion coefficient, the value of g can be evaluated without
explicitly integrating Egn. (23). The information obtained from the flow map
is used to update g. This results in considerable saving of computation time
since the velocity gradients, as given by the above expressions, need not be
evaluated. This method is described below in detail [12,13]. For simplicity,

the equation for a non-diffusive, non-reactive passive scalar is considered:

3s

3t +u .Us =20 (28)

and the corresponding gradient equation is:

%g +u.9g+g. W+gxw=20 (29)

It is observed that while the scalar s is conserved along the particle

path, its gradient g changes due to the action of the strainfield and the
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local vorticity. If the material is exposed to a strong strain in the
direction normal to the gradient, the value of g must increase by the same
amount as the stretch in the material element. Fig. 1 (a) shows the
schematic of a rectangular fluid material element with the initial scalar
gradient perpendicular to the material length everywhere. Fig. 1 (b) shows
the same element after it has been deformed by the flow field. Since the
scalar is conserved, all material lines must be isioscalar lines, i.e., the
gradient must still be perpendicular to the material lines everywhere.
However, the magnitude of the gradient increases in regions of positive
strain and decreases in regions of negative strain. Also, since the material
lines are rotated due to the action of the flow field, the direction of the
gradient is also rotated so as to maintain g perpendicular to the material
lines. The direction and magnitude of g are indicated in Fig. 1 (b). The
direction and magnitude of g can be calculated by deriving an equation that
governs g = |g]|. To do this, Egn. (29) is expanded in terms of g n,
implementing kinematical relations that describe the variaticns of n = g/q,
the unit normal vector to the iso-scalar line. After some manipulations, the

following expression is obtained:

g% =-gn.(n -+ V) (30)

Moreover, g = (dp/dn) n -~ (8p/8n) n, where 8p is the variation of p across a
small material line &n. Furthermore, according to Egqn. (28) a material line
which is initially aligned with an iso-scalar line will remain aligned with
the same iso-scalar line. The variation of a material vector element 81 is

governed by ( Batchelor [21]):

d 21 =5l - Yu (31)
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where 81 = 81 1 and 8l= |81 , 1 being the unit vector along the
material line and perpendicular to n. For an incompressible flow, i.e., V .

u =0, it can be shown that the equation for 81 is given by:

icrg_l = - 581 (n .(n.%)) (32)

The equation governing the variation of &1 1is the same as that of g.
Thus, it follows that g/81 = constant along a particle path. Since g ~
8p/8n, the constant turns out to be Sp/h2 where h2 = §1 8n is the material
area of the fluid element. Therefore, the magnitude of g is proportional to
the magnitude of 81 and its direction is always normal to the vector 1 .
Since the Lagrangian calculations involve tracking the material interface,
the magnitude and direction of 681 are always known. Thus g is completely
determined as a function of time without having to integrate Egn. (29). For

a compressible flow, ¢ .u » 0, it can be shown that:

id%il = - 08l (n .(n.%u)) (33)

Therefore, g/(p 81) = constant along the particle path. Including the
effect of the source term in the scalar transport equation, the gradient

equation now becomes:

d ds
ag =-g. Wu-gxw+ 3 9 (34)

and taking the dot product of n and the above equation:

g% =-g (n. (n.W)) + gg g (35)

n. 3

From Eqn. (33), :
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-(n. (n.W)) =

1 d(p 81)
o851 —dt (36)

t

substituting for (n. (n.%Wu)) into Egn. (35):

S - § ho (37)

From the scalar transport equation, it can also be written as:

_d_d Es - gg 8s (38)

where 8s is a variation of the scalar. Comparing Egns. (37) and (38):

(B_%I—EE) = constant (39)

Therefore, it is observed that g is a function of 81, p and &8s. The value
of 8s is updated in time by integrating Eqn.(38). It is interesting to note
that the direction of the gradient is still perpendicular to the material
lines inspite of the effect of the source term in the transport equation.
This is because the source term is a function of the scalar and since
material lines start out as isoscalar lines, the magnitude of the source term
along the 1aterial line is also the same. Therefore, although the scalar
changes as a function of time, this change is the same for all points on the
material line thus maintaining g perpendicular to the material layers.

Therefore, a very general expression for the scalar gradient can be

written as:

p(t) &s(t) 81(t)

g (t) = n (t) (40)

0(0) h%(0)
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where p(0) h2(0) is the 1initial mass at t=0 associated with the fluid
element. These relations can be used to construct a scheme which is
compatible with the vortex method to compute the evolution of the scalar
field. The scalar gradient field 1is discretized among a number of elements
which are transported along the particle path while the gradients vary

according to Egn.(40). Thus:

N
gixt) = I g;(t) he () £(x - X;(X,,t)) (41)

i=1

where xi(xi't) is, as before, the particle path. Egqn. (41) is based on the
expansion of g in terms of the core functions f&' All the comments made
before regarding the accuracy of such a representation apply to Eq. (41).
Since an iso-scalar line is a material line in a non-diffusive field, 81i can
be updated as: Sli(t) = (xi+1_xi—l)/2’ while ni-li = 0. 1 is the unit vector
in the direction of the material 1line and normal to the vector n. Thus, it
suffices to move the centers of the transport elements, while rememberirg the
near neighbors at t = 0, to compute the scalar flux. When an element is
inserted between two neighboring elements, the values of 81i are
redistributed between the three elements and h2 and 82 are adjusted so that
the total material area is conserved. The gradient for each element is

updated in time according to:

p; (t) 8s,;(t) 81, (t)

g;(t) = 5 n, (t) (42)
p; (0) h, (0)
where the subscipt i refers to the element i. This is a very general

expression for evaluating g . For a conserved scalar 8s is independent of
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time and is constant and for an incompressible flow, p is constant. In order
to simulate the effect of the diffusion term in the scalar transport

equation, the diffusion equation is written for each element:

M -av’g (43)
substituting Eqn.(41) into the above expression:
2
d $§
—a-E— =4 at (44)

and the solution of this equation is:

§2 = 502 + dot (45)

where 80 is the initial core radius of the element. Thus, the effect of
diffusion is simulated by expanding the core radius as a function of time
according to Eqn. (45). This is done without changing the shape of the core
function or the value of g; - If the diffusion coefficient is large, the
direction of the gradient vector need not necessarily be perpendicular to the
material lines and the above expressions for g become invalid. In this case
it becomes necessary to directly integrate the equation for the gradient in
order to obtain g. Given the location and strength of the transport elements,
the scalar concentration is computed by direct integration over the fields of
the transport elements. The divergence of the vector g can be written as st
=9 .g. In analogy to the streamfunction vy, the solution for s in an
infinite domain is given by s= [ V. g G dx where G=-1/2 n 1ln r is the Greens
function of the Poisson equation. Thus, the transport elements act as sources
of strength equal to the divergence of the scalar flux, V.g . After
integration by parts, it can be shown that s= [ g . WG dx. The equation for

g, Egqn.(41), is substituted into the above expression to get:
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N
s(x,t) = L

1

2

where
Wy (x) = XY () (47)

where k(r/8) is as defined before. Including the effect of the images:

N 2 il - (02 2
s(x,t) = £ [ 9 hi. (1 -((8x+jX), ay) exp! C((ax+FN)C + ay©) )
i=1  2n 1=0 ((Ax+jX)2 + Ayz) 52

n (sin(2n Ax/\), -sinh(2n Ay/\))

] + Sb (48)
"X (cosh{Zn dy/A\) - cos(2n Bx/\))

where Sp is the boundary condition for the scalar. Note that this formulation
is fully compatible with the vortex method since all the information needed
to compute the scalar transport are already a part of the vortex
computations, including all the expressions for the Green functions. The
expansion field generated due to the reaction can also be simulated using the
transport elements. The velocity field associated with the expansion can be

described by:

2 1 4T
Ve, = T, (3t (49)

where
u. = Vo, (50)

ei i
This is similar to calculating the velocity from the vorticity field and
hence the expansion velocity is calculated as:

N

u (x,t) = V4(x,t) = _%E (G5); hi(t) W (x-x;(X;,£))  (51)

i=1

and including the effect of the images:
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i=l 2 3=0 ((aarin)? + oy%) 52

+ 7 {sin(2n A&x/\), -sinh(2n 8y/A)) b

X (cosh(2n 8y/\) - cos(2n Ax/\))

(52)

Thnvs the volume source strength of each element is given by 1/T dT/dt h2

for each element. This strength is obtained by numerically differentiating
the values of the temperature at every time step. The material area of the
element is updated according to the expansion term in order to maintain the

mass of the element constant, i.e., CH hi2 (t) = constant.

Therefore, the algorithm of the transport element method is as follows:
(1) The velocity at the centers of the elements is calculated by summing the
vortical, potential and expansion components. This velocity is used to
displace the elements alnng the particle path. (2) The magnitude and
alignment of sli is found for each element. If the transport equation has a
source term , Eqn.(38) is integrated to find the new value of &8s. Using this
information, the new value of g is calculated from Eqn.(42). (3) The ccre
radii of the elements are updated according to the diffusion coefficient as
given by Eqn.(45). (4) The scalar is computed as a summation over all the

elements according to Eqn.(48).
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IV. THE DENSITY STRATIFIED SHEAR LAYER

IV.1l. INTRODUCTION

This section deals with the study of the dynamic effects of density
stratification in shear flows. The presence of a density gradient is the
first deviation from the incompressible, uniform density approximation and it
is of great interest to study its effects on the flow stability, the growth
of the coherent structures and fluid mixing. Flows with density variations
have attracted considerable attention over the years [22]). Contrary to the
homogeneous case, the evolution of pressure gradients in a density stratified
flow leads to the generation of baroclinic vorticity which alters the
dynamics of the flow. From a practical standpoint, this phenomenon has
applications in combustion systems where the heat release establishes a
density gradient in a highly unsteady flowfield. It is necessary to
understand how baroclinicity affects flow stability and mixing and hence, the

efficiency of burning.

IV.2. DESCRIPTION OF FLOW GEOMETRY

This study is an investigation of the effects of density stratification
on the development of the temporal Kelvin-Helmholtz instability. Fig. 2(a)
shows the schematic of a spatial shear layer formed due to two streams of
unequal velocities coming together at the edge of a splitter plate. This flow
becomes unstable downstream of the plate and the development of the
characteristic large scale structures 1is observed. However, in order to

minimize computational time and to simplify the problem, the governing



32

equations are solved in a frame of reference (or window) moving with the mean
velocity of the free streams and periodic boundary conditions are applied in
the x-direction [23,24,30). The periodicity 1length is chosen to be the
horizontal length of the window. Thus, the problem is reduced to one of
temporal analysis wherein the spatial growth of a structure is approximated
by a structure growing in time. Fig. 2(b) shows the schematic of the temporal
shear layer. It can be shown that the temporal solution converges to the
spatial solution as 8u/u -->0, where 8U=U, -U, and Un -0.5*(Ul+02). This
means that the temporal solution is reasonably accurate as long as AU << Up-
This condition is satisfied for most practical shear flows and hence the
temporal analysis can be used to gain a good qualitative insight into the

mechanism of the flow without having to expend too much computational time.

IV.3. GOVERNING BEQUATIONS

The governing equations for the density stratified shear layer are shown
below. The flow is assumed to be isentropic, i.e., all diffusion coefficients
are zero and there is no reaction. The Mach number is assumed to be very
small so that the effect of spatial pressure variations on the denisty are
ignored and since the flow is in an open domain, the pressure term in the
state equation is assumed to be constant with space and time. Under these
conditions, the equation of transport of density is represented by Egqn. (53),
i.e., the density is conserved along the material path. Thus, the flow is
incompressible although there is a density gradient in the flowfield. This
implies that at any time t, each fluid particle has the same density it had
at t=0 even though the density of one fluid particle may differ from that of

another.
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dp
dw Yo du
d =" s X ( 3t ) (54)

The equations are non-dimensionalized with the characteristic values U
for velocity, L, for length and o for density. Us is defined as 0.5*AU and
L° is the characteristic thickness (=/2 o, ¢ = std. deviation) of the initial
Gaussian vorticity distribution. Po™PL+ P bei: 7 the density of the upper

stream. Subscripts 1 and 2 refer to the top and bottom streams respectively.

IV.4. LINEAR STABILITY THEORY

In this section, the 1linear stability theory for inviscid flows is
reviewed and the modified Rayleigh equation which accounts for both the
density stratification and the material acceleration is applied to study the
evolution of the K-H instability. Results are then used to investigate the
effect of the presence of a finite density gradient on the initial stages of
evolution of the {low as a preliminary step to the numerical solution. These
semi-analytical results are also be used to validate the results of the
numerical simulations during the early times.

The governing equations of conservation of mass, mcmentum and entropy for

the flow are written as:

LR R L (55)
ol B+ +vg—; ) + 38 - (56)
p(% +u%§+vg—; )+%§ +p9, =0 (57)
g_§+ug_§+v-g§ =0 (58)
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Gravity (gr) is considered in the v-eguation in order to make the
derivation more general. The dependent variables, u,v,p,s and p, are expanded

as a mean and a fluctuating component as follows [25]:

u(x,y,t) = Uly) + u(x,y,t) (59)
vix,y,t) = ;(x,y,t) (60)
s(x,y,t) = S(y) + ;(x,y,t) (61)
p(X,y,t) = R(y) + p(x,y,t) (62)
p(x,y,t) = B(x) + p(x,y,t) (63)

where the upper case letter indicates a mean and the tilde quantity denotes a
fluctuation. By definition, the mean component of v is zero, while that of
the pressure is P(x). The expanded variables are substituted into the
governing equations, which are then linearized around the mean components to
derive linear partial differential equations governing the fluctuating
components. The linearization is done by ignoring the higher order terms
involving the fluctuating quantities. Therefore the linearized equations are

written as:

3% + R(%% %g ) + U%; + ;%g = 0 (64)
R( %% + U%; + ;%3 ) + %é =0 (65)
R(g—‘;' +u§—;)+§§+39r=o (66)

—g-;s-+u%:+;%§=o (67)
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Solutions are sought for the fluctuations 1in the fcrm of propagating waves

and the fluctuations can be expressed as follows:

:x(x,y,t) - \}(y) explia(x-ct)] (68)
v(xX,y,t) = v(y) explia(x—ct)] (69)
p(x,y,t) = ply) explia(x-ct)] (70)
p(x,y,t) = ply) explia(x-ct)] (71)
;(X.y.t) - ;(y) exp[io(x-ct)] (72)

where i = V-1, « is the wave number, o = 2n/\ where )\ is the wavelength of
the perturbation, c = cr+ici is the wave speed, c, and c; are the phase
velocity and amplification rate divided by the wavenumber, respectively. The
bold letters imply that the quantities are complex. In the temporal
analysis, solutions are obtained for a real wave number, «, and a complex
wave speed, c.

The expressions for the fluctuations are substituted into the linearized
equations and the resulting ordinary differential equations for ;,;, p and ﬁ

are then reduced as follows:

ie (U-c) £ + R'll; +icu+v =0 (73)

ie (u-c)ﬁ+u'3+ia§ =0 (74)
~ A' ~

ia (U-Cc) v + g + £§9r =0 (75)

i (Uc) 8§ +85 v=0 (76)
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where the prime indicates a derivative with respect to y. Since the flow is
incompressible, i.e., V.u =0 and dp/dt =0, the above expressions can be
further simplified into the following expressions(the hats over the variables

have been dropped):

icu+v =0 (77)
: —c) P 'y .
iax (U-c) R + R R 0 (78,
’
ia (U-c) u + U v+ia§ =0 (79)
(4
ix (U-c) v + g + £§9r =0 (80)

Differentiating Eqn. (79) with respect to y and substituting into
Eqn.(80) and using Eqns.(77) and (78), the above system can be reduced, after
some manipulations, to the modified Rayleigh equation for a density-
stratified flow with gravity:

' "

r 14
R ' U RU Rg 2

where the double prime denotes a double differentiation with respect to Y
and U and R are the known mean streamwise velocity and density distributions.
The solution of this eigenvalue problem depends strongly on satisfying the
boundary conditions. For the K-H instability, gravitational effects are
ignored. Therefore, the Rayleigh equation reduces to :

' " "o

[
U‘_’c Rf(‘u‘_’c) + o )v (82)
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Far from the instability, all mean derivatives decay to zero and Egn.
(82) can be simplified to v" - az v . With proper boundary conditions at +
o, namely that v -+ 0, it can be shown that v' = —/+av as y ?* +/- », If v(-
yo) = Vgr then v'(—yo) - o, and from symmetry the value { = - 1/«
(v’(yo)/v(yo)) should be 1. The solution proceeds as follows: an arbitrary
value of Yo is defined and Yo is taken as 1 and Egqn. (82) is integrated until
Y, and the value of { is checked. If { » 1, the solution of the eigenvalue
problem continues by iteration to obtain the complex velocity c for each
given wavenumber o.

Fig. 3(a) and (b) show the growth rate, « Cy o and the phase velocity, Cpo
respectively, versus the wavenumber for the temporal K-H instability for
different values of the density ratio. Calculations were made for a mixing
layer with error function distributions for the streamwise velocity and
density, with equal spreads in the y-direction. The spread, or the nominal
layer thickness is defined as the standard deviation that characterizes the
Gaussian curve describing the corresponding vorticity and density gradients
within the layer. The top stream, moving to the right, is heavier than the
bottom stream which is moving to the left. The continuous lines are results
of the linear theory, while the symbols are obtained from the numerical
simulations results using the schemes described in the previous section when
the layer was perturbed by a sinewave with an initial amplitude € = 0.01 A.
More on the numerical solution will be presented in the next section.

Results of the linear theory for the temporal shear layer indicate that
the wavenumber of the most unstable mode depends weakly on the density ratio,
and that the maximum growth rate is almost independent of the density
stratification. As the density ratio across the shear layer increases, the

most unstable mode, which corresponds to the most probable structure to be
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shed, becomes smaller and is shed at higher frequency. The growth rate of
the most unstable mode increases very slightly as the density ratio, r, =
pl/p2 increases, indicating that density stratification causes, at best, a
very weak destabilization of the flow. Moreover, perturbations with
longer/shorter wavelengths than that of the most unstable perturbation behave
differently; they grow slower/faster as the density ratio increases. The
results also suggest that the range of unstable waves increases as the
density ratio is increased, indicating another destabilizing effect for the
density stratification with shorter waves becoming more unstable as L,
increases. However, a cut-off wavenumber, which is a function of the density
ratio, still exists though at higher values for higher rp.

A more visible effect of the density ratio is in the phase velocity of
the waves; for the same wavenumber the phase velocity increases with
increasing density ratio. Thus, Kelvin-Helmholtz waves in a density-
stratified flow are dispersive, with longer waves propagating at higher phase
velocities in the direction of the heavy stream. For stable waves in the
density stratified case, i.e., o > o, where o, is the cut-off wavenumber, the
phase speed is finite and approximately constant. The finite velocity is due
to the finite generation of vorticity even if the wave does not grow. The
fact that these waves are stable explains why their phase velocity, for a
particular density ratio, is independent of the wavenumber. With a finite
but growing deflection of the streamlines, a finite amount of vorticity is
generated causing the finite propagation velocity of the structure. Evidence
of vorticity generation will be shown in the numerical simulation results in

the next section.
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IV. 5. RESULTS OF NUMERICAL SIMULATIONS

The simulation of the Kelvin-Helmholtz instability in a density-
stratified flow is based on the solution of Egns. (53) and (54) using the
vortex element and transport element methods described in Section III.
Computations were done for density ratio r, = PPy = 1, 2, 3, 4 and 5.
Results were obtained with the shear layer initially perturbed at a
wavelength A= 13,2 L, using a sinewave displacement of the vortex elements
with an amplitude € = 0.01 A, This wavenumber is very close to the most
unstable wavenumbers for all the density ratios considered, as seen from the
results of the linear theory. The initial vorticity and density gradient
distributions are Gaussians, i.e., the velocity and density distributions are
error functions. In all cases, the bhigh-density fluid is the top, fast
stream, and the low density fluid is the bottom, slow stream. In this
temporal analysis, the normalized value of the velocity of the top stream is
1 and that of the bottom stream is -1. Therefore if the density profile is
inverted, i.e., the bottom stream is made the heavier stream, the consequent
development of the eddy also takes place in an inverted reference frame. The
initial number of elements in the field is N(t=0)=600 and the parameter B for
the injection distance is 1.4 . The value of the time step used is At= 0.1 .
for r, =1 & 2 and Aot =0.05 for L= 3,4 & 5. A fourth-order Runge-Kutta
scheme was used to integrate the equations.

Figs.4-8 show the location and velocity of all the vortex-transport
elements used in the computations for the five values of the density ratio,
respectively. The non-dimensional times are t= 5.5, 11.0, 16.5 and 22. 1In
each case, the number of elements in the field increases with time as the

interface is stretched due to the action of the strain field. The material
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interface plots show that for all values of r,e as shown before from the
linear analysis, the vorticity layer is unstable to small perturbations. The
growth of the initial vorticity pertuibation leads to the roll-up of the
vorticity layer into a coherent elliptical structure that entrains all the
initial vorticity within the layer and, for rp > 1, engqulfs the newly
generated vorticity. Contrary to the case of L= 1, the vorticity generated
by baroclinicity, the only extra dynamic process in these computations,
causes a definite asymmetry in the developing structures, and advances the
structure at a finite velocity in the direction of the high-density stream.
This phenomenon can be attributed to the pressure gradient that forms in the
flow field due to the perturbaticn of the streamlines. For example, a
negative pressure gradient on the top part of the interface would serve to
accelerate the heavier stream and, assuming this pressure gradient is
transmitted through the interface, its effect on the low density bottom
stream would be more severe, i.e., the bottom stream would tend to reverse
its direction. Therefore, in a density stratified flow, the heavier fluid
tends to drag the structures along with it. This motion, also predicted by
the linear analysis in the form of a finite phase velocity, indicates that
the vorticity distribution within the structure does not exhibit the point-
symmetric character observed in the uniform-density -case. The motion
indicates that the development of the instability occurs in time and in space
simultaneously, i.e., a stationary structure like the case of rp = 1 is not
observed. It is also observed that this convective velocity is a strong
function of rp and increases with increasing density ratio. An interesting
feature of the results for cases with large rp revealed by the plots, is the
strong concentration of vorticity around the outer edges of the large

structure. 1In contrast to the case of rp = 1 in which the elements are
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almost uniformly distributed within the structure, an uneven distribution is
observed with higher concentration of elements along the boundaries of the
large eddies for rp > 1. The development of waves, and small scale
structures, along the boundaries of the 1large eddies during the final stages
is associated with the growth of perturbations, numerically introduced,
within these layers of intense vorticity. Furthermore, for rp> 1, the
material lines at the lower part of the eddy undergo a greater amount of
distortion. The plots clearly indicate that, unlike the uniform density case,
the density stratified eddy entrains fluid asymmetrically from the free
streams. More of the low density, bottom stream fluid is entrained than that
of the heavier top stream. This is shown by the presence of a deeper tongue
of lighter fluid into the core than that of the heavy fluid. This asymmetric
entrainment has been observed in experiments on shear layers in density-
stratified flows [26,27]. It is also observed that the entrainment ratio or
the degree of asymmetric entrainment between the two fluids increases with
the density ratio. It should be noted that all these effects are dynamic
consequences of the generation of vorticity by the baroclinic torque due to
the interaction between the pressure field and the density gradient. A final
observation to be made from the material line plots is that the instability
appears to be stronger, particularly in the non-linear stages, for higher
values of L

Figs. 9-13 show the corresponding streamline contours for the five cases.
The streamlines show the development of the eddy and also give a gquantitative
estimate of the volume of the fluid entrained within the eddy. The motion of
the eddy, for rp)l, is clearly observed from the plots. The finite phase
velocity of the structure in the linear range is obtained by calculating the

mean motion of the stagnation point in the braid region over the time
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interval 0<t<15. A pattern similar to a "cat’s eye" is formed due to the
roll-up of the vorticity into a single cohezent structure (see Corcos and
Sherman [23]). Since, the domain over which the streamfunction is being
calculated is the same for all values of L the fluid entrainment rate in
each case can be estimated by taking the difference between the minimum and
the maximum value of the streamfunction. This quantity Ay is calculated for
each case at different time frames. The value of Ay at t=0, i.e. (Aw)0 is
chosen as a reference value. Any increase of Ay beyond this reference value
is because of the entrainment of fluid into the structure. Therefore I= Ay -
(Aw)0 is directly used as a measure of the volumetric entrainment into the
eddy. In all cases, it is observed that the eddy grows by entraining fluid
from the free streams, i.e., the value of { increases with time. The maximum
volume of fluid entrained into the structure is reached with the maximum
growth of the instability, around time t = 20 for the r, = 1 case. Beyond
this stage, fluid starts to leave the structure and rejoins the free streams.
This collapse is associated with energy being fed back to the free streams
due to the saturation of the instability [11]). At t=22, the values of C are
1.68, 2.21, 2.46, 2.77 and 2.96 for rp= 1, 2, 3, 4 and 5, respectively. This
supports the earlier observation that the degree of instability and hence the
total volumetric entrainment into the eddy, increases with increasing density
ratio. Also to be observed is the fact that the density stratified eddy
appears to be "sinking" deeper into the low density fluid with increasing rp.
The aymmetric growth and the movement of the eddy into the low dencity stream
have been observed in heterogeneous spatial shear layers [26]). Thus, the
results of the simulations are consistent with the experimental observations.
The reason for these phenomena will become clear from the vorticity contours

for these flows.
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Figs. 14-18 show the corresponding normalized temperature contours, T =
' l/p, for the five cases at the same time frames as before. In all cases, the
temperature contours are normalized between zero for the heavy, top stream
and unity for the light, bottom stream. The formation of strong gradients
due to the strong strain within the braids is shown in the plots. The
relative entrainment of the fluid into the large structure is also clear from
these plots. Since the formulation conserves the scalar, the temperature
centours are essentially the same as the material line contours. The effect
of molecular mixing can be investigated by including molecular diffusion in
the governing equations. However, the temperature contours indicate that,
barring very high diffusivities, there will still be inhomogeneity within the
eddy even if molecular diffusion is active. This is apparent from the
presence of large blobs of light fluid on both the upper and lower sides of
the structure at the late stages of roll-up.

To complete the description of the flow, Figs. 19-23 show the plots of
the corresponding vorticity contours for the five cases. The vorticity is
calculated by summing over the effects of all the vortex elements as expresed
by Eqn. (15). The wvorticity is initially distributed in the form of a
Gaussian in the y-direction with the peak value at the central layer. The
vorticity decays from this peak value above and below this layer.
Unfortunately, this confiquration appears to be ill-conditiored zs far as
plotting the contours is concerned. The contour plotter dzaws the contours
joining points of identical vorticity in the vertical direction rather than
in the horizontal direction. This difficulty was eliminated for the uniform
density shear layer since the vorticity is conserved along the particle path
and the vorticity for each layer is completely determined from initial

conditions. However, this argqument is not applicable to the density
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stratified cases. This is the reason for the appearance of a number of closed
contours in the central part of the shear layer during the early stages of
development of the eddy for the density stratified runs. Negative, clockwise
vorticity is indicated by continuous lines while positive vorticity, which
forms due to the action of the baroclinic torque, is shown by broken lines.
The fiqgure caption indicates the range of values of vorticity at the final
time in each case. It is to be noted that the maximum of the absolute value
of the negative increases with time, while the minimum of the absolute value
decreases and then becomes positive. The contours reveal that as the eddy
grows, a layer of intense negative vorticity forms on the lower side of the
structure while positive vorticity, which leads to the reduction of the
absolute value of the negative vorticity, forms on the upper side of the
structure. The negative vorticity is constantly being entrained into the
core of the eddy in a clockwise direction while the positive vorticity forms
a "wing" on the top side of the eddy that penetrates the eddy core from the
right-hand side. From these vorticity contours it is easy to formulate
simple kinematical arguments as to why the eddy moves in the direction of the
heavy stream and why it entrains more light fluid than heavy fluid by volume.
The vorticity-concentration imbalance across the cross-stream direction, with
a bias towards strong negative vorticity in the lower side and weak negative,
or positive vorticity on the upper side leads to a net positive velocity
conponent at the center of the eddy. It is also easy to see how the eddy
retains its strength longer into the non-linear range. The increased
intensity of vorticity in the eddy core helps in maintaining the coherence
beyond the maximum entrainment stage.

As indicated by the linear analysis, the effect of the density gradient

is felt as soon as a pressure gradient, or a material acceleration develops
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during the growth of the instability. Concnmitantly, a convolution of the
iso-scalar lines produces a density gradient which is not aligned with the
pressure gradient. The growth of the velocity perturbation, defined as I = [
I |u(x,t) - U(x)| dx where the integration is performed over a single
wavelength in the x-direction and over » » y » -», is shown in Fig. 24 for
the same wavelength and for different values of the density ratio. It is to
be noted that it is Log I that is plotted versus time. From the linear
analysis, it 1is clear that the initial growth of the instability is
exponential in nature and hence the slope of Log I versus time should
directly yield the growth rate of the perturbation. The jrowth of the
instability, as determined by the value of I, shows that: (1) the exponential
growth rate within the linear range is almost the same at this wavelength for
all density ratios, as shown by the results of the linear theory; (2) The
non-linear growth of the density stratified cases reach higher values of I,
indicating stronger total entrainment into the evolving structure; and, (3)
the decay, or collapse of the density-stratified eddy is slower than that of
a uniform density eddy. While the end of the 1linear range is identified
better from the growth of the velocity perturbation, I, Figs. 4-8 indicate
that it is closely related to the formation of a vertical interface at the
center of the growing structure. The curves in Fig. 24 show that the stages
of evolution of the large structure can be divided into three phases: (1)
fast, exponential, small amplitude growth, the linear range, during which the
streamlines and iso-scalar lines experience small deformation. This phase
ends around t = 10.0; (2) moderate, almost linear, large amplitude growth,
the non-linear range, during which entrainment is large and the streamline
and iso-scalar experience strong deformation. This phase ends at tm' where

tm increases with the density ratio; and (3) slow, almost linear, small
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amplitude decay, the collapse range during which negative entrainment, or
fluid leaving the structure and joining the free streams, is observed with
the flattening of the streamlines. While the boundaries between these stages
are not sharp and must be based on several aspects including the growth of
the instability, it is useful to differentiate between these stages in the
analysis and in drawing conclusions regarding the effect of baroclinicity on
the flow development. The beginning of the non-linear phase and the collapse
phase depend on the value of L, In all cases, the end of the non-linear
growth while being a function of rp, is around t ~ 20. It is also observed
that a longer delay in both ranges accompanies larger density ratios (it
should be mentioned that the exact value of the time when a range ends
depends most strongly on the amplitude of the initial perturbation; in all of
this analysis, the calculations were started with the same amplitude, ¢ =
0.01 )\, which was shown by Ghoniem et al. [11] to lie within the linear range
of instability for the uniform-density case. Since according to the linear
analysis, density stratification slightly decreases the growth rate and
delays the end of the linear range, this perturbation is still within this
range for high density ratios across the layer). Fig. 24 indicates that for
rp > 1, there is a plateau after which the eddy reaches its maximum size or
its point of maximum entrainment, tm, before the collapse period starts. It
is also obseirved that this plateau occurs later in time for higher density
ratios. Thus, the vorticity generated due to acceleration, or baroclinic
effects, leads to the formation of a stronger eddy that can entrain more
fluid and survive longer before it collapses and fluid starts to leave the
structure.

Another measure of the total entrainment into the large eddy is the mean

length of the interface which is obtained as an average of the length of all
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the material layers. This length 'L’ is plotted as a function of time for
different values of the density ratio in Fig. 25. The length of the interface
remains almost constant during the linear range where the deformation of the
streamlines is very small. The earlier and faster rise of L in the case L=
1 is due to the stronger linear instability of this flow over that of rp > 1
(see Fig. 3). However, cases with L, > 1 exhibit stronger non-linear
instability and L reaches higher values as the density ratio increases. With
higher L, more fluid is entrained into the large eddies, as indicated before
by the streamline plots. The stronger non-linear instability is associated
with the redistribution of the vorticity within the large structure by the
action of the baroclinic torque.

To quantify the above arquements regarding the effect of baroclinicity,
the generated circulation is plotted as a function of time in Fig. 26 for r,
=1, 2, 3,4 and 5 respectively. The generated circulation is obtained as
Z(Ari) where Ari- ri(t)—ri(t—At) and [ represents summation over all the
elements. The positive and the negative values are summed separately. It is
observed that the generation of vorticity takes place right from the
beginning although the amount generated is very small for t<5.0. For t>5.0,
equal amounts of positive and negative circulation are generated thus
maintaining the total circulation constant. For higher values of rp, the
amount of circulation generated at any given time is larger, particularly in
the non-linear stages.

The cumulative circulation in the field, T = L ri, was found to stay
constant for all cases, indicating that the total positive circulation
generated on the top side of the eddy is equal to the total negative
circulation generated near the eddy core. Again, the positive and negative

values of the circulation are summed separately. The total positive
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circulation, rt= ¢ Fi if T > 0, and the total negative circulation, I', both
plotted in Fig. 27, exhibit interesting trends: (1) both values change by the
same amount so as to maintain the total circulation constant ; (2) both
values rise sharply at the late stages of the non-linear regime; and (3) both
values depend strongly on rp in the non-linear regime. It is observed that
for ro" 5, the negative circulation in the flow field at the final time is
almost five times the value at t=0. Fig. 28 shows the circualtion as a
function of time for four individual material layers for L, =3, Layer 1 is
the bottom most layer and layer 15 is the topmost layer (see transport
element location plots). Again, positive and negative circulation along the
layer are summed separately and the values are normalized with respect to the
layer circulation at t=0. The topmost layer undergoes the least distortion
and this is reflected in Fig. 28 where the generated circulation is the least
for layer 15. The bottom and the middle layers wundergo considerable
distortion due to the rollup of the eddy and this leads to greater generation
of vorticity along these layers. For layers 1 and 7, it is seen that the
generated negative circulation at the final time is about three times the
initial negative circulation. Figs. 29,30 and 31 show the vorticity along the
interface for the material layers (for rp =2) 1,8 and 15 respectively at
t=5.5,11,16.5 and 22. For layer 1 which is the bottom most layer, the
generation effects are apparent only at t=22.0 when a large spike of negative
vorticity is observed. For layer 8, which is the central layer, the vorticity
along the interface undergoes a considerable amount of change indicating the
severe distortion in the layer. The topmost layer, i.e., layer 15 shows very
little change in vorticity since it wundergoes the least distortion among the

material layers. Thus , it is observed from the above results that the
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generation of vorticity is directly related to the extent to which the
material layer is twisted and stretched.

At later times, during the collapse stage, we observe the development of
a number of small scale structures within the large eddies in the density-
stratified cases. As mentioned before, the outer edges of the eddies, being
zones of high-density gradients and strong strain, is where most of the
baroclinic vorticity has been generated. This "layer of intense vorticity"
is susceptible to an instability mechanism that is different from the K-H
instability since these layers are exposed to strong planar strains. As
indicated by Figs. 26-28, most of the vorticity is generated after the strong
deformation of the streamlines and within the non-linear stages. Following
this stage, the K-H instability matures and the eddy starts to flatten in the
streamwise direction. This flattening produces a strain field which is
almost aligned with these vorticity layers on the outer edges of the large
eddies. The growth of perturbations along this layer under the effect of
aligned strain leads to the formation of smaller scale structures within the
large eddy. The plots of the vortex-transport elements at t = 24 for the
five case presented before are shown in Fig. 32. The strength of the small
scales is clearly indicated by the 1local concentration of vortex elements
around the structures. The plot shows that the number and intensity of these
small scales rises as rp increases. The shapes of the small scales which
form at the late stages of the instability are reminiscent of the mushroom
structures computed by Corcos and Lin (28] for a strained, perturbed
vorticity layer. The corresponding temperature and vorticity contours at
t=24.0 for the five values of tp are shown in Figs. 33 and 34 respectively.
The temperature plots reveal the highly heterogeneous composition within the

structure and the vorticity contours indicate the highly spotty nature of the
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distribution. If molecular diffusion were to be included in the governing
equations, the presence of high scalar gradients and many small scales inside
the eddy provides the ideal environment for efficient mixing.

The large vortex structures which form as the K-H instability grows in a
density-stratified shear layer move streamwise in the direction of the high-
density fluid attaining a constant velocity. This velocity is slightly
different from the phase velocity predicted from the linear analysis since it
is dominated by non-linear effects. The computed velocity of the structure
within the non-linear range is shown for various density ratios s = p2/p1 in
Fig. 35. The structure convection velocity is calculated by measuring the
mean motion of the core of the eddy (from the streamline contours or the
transport element plots) over the time interval 15 < t < 24, i.e., after the
instability has matured and the structure has attained a constant velocity.
These values are smaller than the phase speeds calculated in the linear
range. The computed convection velocities are shown by dark circles. Applying
Bernoulli’s equation along a stagnation streamline in a reference frame
moving with the eddies in a spatially-growing mixing layer, Dimotakis [26,27)

derived the following formula for determining the structure velocity:

172
Uc - (1 + ru s ) (83)
(1+ 51/2)

where r, = UZ/Ul and s= l/rp are the velocity ratio and density ratio across
the spatial shear layer, respectively. This formula can be used to calculate
the structure velocity in a temporal frame of reference by substituting AU =
(Ul—Uz)/Z =1 in the above expression . The resulting convection velocity in
a temporal frame of reference is U= U = Uy ( where Um = (U1 + Uz)/2 ) and

is obtained by simplifying Egn. (81):
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U, = 1-2 51/ (84)

ct
( 1+ 872

This convective velocity is plotted as a function of s = 1/rp in Fig. 35 as a
continuous line. The symbols represent the results of the numerical
simulations. There is a good agreement between the predicted velocity and
the measured velocity [29].

Dimotakis [26,27] also obtained an empirical expression for the
volumetric entrainment ratio as a function of the density ratio and the

velocity ratio in a spatial shear layer. This expression is given as:

E, = 72 (1.0 + 0.68 (1 — Ty) ) (85)

(1 + cu)

where E, is defined as the ratio of wvolume of fluid entrained from the
heavier top stream to that entrained from the lighter bottom stream. For a
temporal shear layer the velocity ratio, r, is unity and the above expression

is reduced to [29]:

(86)

This expression is plotted as a function of s-l/rp in Fig. 36 by the
continous line. The symbols represent the entrainment ratio estimated from
the numerical simulations at a non-dimensional time of 24.0 after the
maturation of the instability. The entrainment ratio is evaluated by
integrating the concentration of the light fluid and the heavy fluid over the
area of the eddy where the eddy itself is defined as the zone of non-zero
gradients. This is calculated by considering the region where |T—Tf|> 0.02,

where T is the normalised temperature and the subscript £ refers to the free
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stream value. Results of the numerical simulations compare very well with
the empirical results. It is to be emphasized that the only effect of
density stratification in this model is the generation of vorticity and that

the entrainment asymmetry and the motion of the eddy are due to this effect.

IV. 6. CONCLUSIONS

The vortex-transport element method has been used to study the effect of
density stratifictaion on the evolution of the K-H instability. The results
obtained are validated using the linear theory in the initial stage of the
growth of the perturbation and comparisons with experimental and theoretical
work are used to support the results in the non-linear regime. The generation
of vorticity due to baroclinicity in a density stratified temporal shear
layer leads to the asymmetric development of the large scale structure and
simultaneously imparts an extra convective velocity to the eddy in the
direction of the heavier stream. The entrainment ratio and the convection
velocity of the eddy calculated from the numerical simulations compare well
with experimental results. Since the entrainment ratio is found to be a
strong function of the density ratio, the effect of baroclinicity becomes
very important in studying and understanding chemical reactions occuring in
flows dominated by large scale structures. These structures serve to entrain
the reactants and bring them into contact with each other thus promoting
mixing and hence the reaction. Therefore the relative entrainment of the

respective fluids will have an important effect on the reaction.
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FIGURE CAPTIONS

Fig. 2. (a) A schematic of the density stratified spatial shear layer; (b) a
schematic of the temporally growing shear layer with periodic boundary
conditions.

Fig. 3. (a) Plot of the 1linear growth rate versus the wavenumber for
different values of the density ratio; Curves 1,2,3,4 and 5 represent
r =1,2,3,4 and 5 respectively. (b) the corresponding linear phase speeds
v8rsus the wavenumber. The phase speed for r =1 is zero for all wavenumbers.
The symbols represent results of numerical sfmulations.

Fig. 4. Transport element location and velocity vectors for the temporal K-H
instability for r, = 1 at t=5.5, 11.0, 16.5 and 22.0 respectively.

Fig. 5. Transport element location and velocity vectors for r = 2 at t= 5.5,
11.0, 16.5 and 22.0 respectively. P

Fig, 6. Transport element location and velocity vectors for r = 3 at t= 5.5,
11.0, 16.5 and 22.0 respectively. e

Fig. 7. Transport element location and velocity vectors for r = 4 at t= 5.5,
11.0, 16.5 and 22.0 respectively. e

Fig. 8. Transport element location and velocity vectors for r = 5 at t= 5.5,
11.0, 16.5 and 22.0 respectively. e

Fig. 9. The streamline contours for r = 1 at ¢t= 5.5, 11.0, 16.5 and 22.0
respectively. P

Fig. 10. The streamline contours for r = 2 at t= 5.5, 11.0, 16.5 and 22.0
respectively. e

Fig. 11. The streamline contours for r = 3 at ¢t= 5,5, 11.0, 16.5 and 22.0

respectively.

Fig. 12. The streamline contours for r = 4 at t= 5.5, 11.0, 16.5 and 22.0
respectively.

Fig. 13. The streamline contours for r = 5 at t= 5.5, 11.0, 16.5 and 22.0
respectively.

Fig. 14. The normalised temperature contours (T=1/p) for r =1 at t= 5.5,
11.0, 16.5 and 22.0 respectively. P

Fig. 15. The normalised temperature contours (T=1/p) for r = 2 at t= 5.5,
11.0, 16.5 and 22.0 respectively. P

Fig. 16. The normalised temperature contours (T=1/p) for r = 3 at t= 5.5,
11.0, 16.5 and 22.0 respectively. P

Fig. 17. The normalised temperature contours (T=1/p) for r = 4 at t= 5.5,
11.0, 16.5 and 22.0 respectively. P
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Fig. 18. The normalised temperature contours (T=1/p) for r =5 at t= 5.5,
11.0, 16.5 and 22.0 respectively. e

Fig. 19. The vorticity contours for r = 1 at t= 5.5, 11.0, 16.5 and 22.0
respectively. The continuous lines reprsent the negative vorticity.

Fig. 20. The vorticity contours for r = 2 at t= 5.5, 11.0, 16.5 and 22.0
respectively. The continuous lines and® the dashed lines represent negative
and positive vorticity respectively.

Fig. 21. The vorticity contours for r = 3 at t= 5.5, 11.0, 16.5 and 22.0
respectively. The continuous lines and® the dashed lines represent negative
and positive vorticity respectively.

Fig. 22. The vorticity contours for r = 4 at t= 5.5, 11.0, 16.5 and 22.0
respectively. The continuous lines and® the dashed lines represent negative
and positive vorticity respectively.

Fig. 23. The vorticity contours for r = 5 at t= 5.5, 11.0, 16.5 and 22.0
respectively. The continuous lines and® the dashed lines represent negative
and positive vorticity respectively.

Fig. 24. Plot of log(I/Io) versus time. Curves 1,2,3,4 and 5 represent values
for r =1, 2, 3, 4 and ~5 respectively. I is defined as I= []|(u(x,t)-U(x))|
dx. 10" = I at t=0.

Fig. 25. Plot of the average length of the interface versus time for r =1,
2, 3, 4 and 5 respectively. P

Fig. 26. Plot of the circulation generated as a function of time for r = 1,
2, 3, 4 and 5. The positive circulation and the negative circulatiofl are
shown separately.

Fig. 27. Plot of cumulative circulation versus time for r = 1,2,3,4 and 5.
The positive and negative circulation are shown separately.

Fig. 28. Plot of circulation versus time for individual mat:rial layers 1,
7,9 and 15 for the case r = 3. The values are normalised by initial values
and positive and negative irculation are shown separately.

Fig. 29. Plot of the vorticity along the interface for material layer number
1 for t=5.5,11.0,16.5 and 22.0. The density ratio is 2.0 and the interface
length is normalized by its length at each time.

Fig. 30. Plot of the vorticity along the interface for material layer number
8.

Fig. 31. Plot of the vorticity along the interface for material layer number
15.

Fig. 32. Transport element location and velocity vectors for r = (a) 1, (b)
2, (c) 3, (d) 4 and (e) 5 at t= 24.0. e

Fig. 33. The normalized temperature contours at t=24.0 for r = (a) 1, (b) 2,
(c) 3, (d) 4 and (e) 5 respectively. P
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Fig. 34. The vorticity contours at t=24.0 for r = (a) 1, (b) 2, (c) 3, (d) 4
and (e) 5 respectively. P

Fig. 35. Plot of eddy convective velocity versus s= 1/r . The symbols
represent results of numerical simulation and the continuous 1fne is obtained
from Eqn. (84).

*ig. 36. Plot of the entrainment ratio versus s=1/r . The symbols represent
results of numerical simulations and the curve is obfained from Eqn. (86).
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V. THE RAYLEIGH-TAYLOR INSTABILITY

V.1l. INTRODUCTION

This section deals with the study of the Rayleigh-Taylor instability that
develops when two fluids of different densities are unstably stratified in a
gravitational field. This problem is of great practical importance and has
wide ranging applications. Some of the phenomena involving the occurence of
the R-T instability are (i) the establishment of a density gradient in the
atmosphere, due to a temperature gradient, with the air near the earth being
hotter than the air far from it. This results in a downwash of the heavier
air leading to high levels of turbulence (ii) in fires and explosions where
the enormous heat release results in strong density gradients. The familiar
mushroom formation that is observed in nuclear explosions is the result of
the R-T instability (iii) in buoyant jet diffusion flames when the flow is at
low Froude numbers. Due to its far ranging applications, numerical simulation

of buoyancy dominated flows are of considerable interest [31,32,33,34,35].

V. 2. DESCRIPTION OF FLOW GEOMETRY

The schematic for the R-T instability is shown in Fig. 37. The density of
the top fluid is higher than that of the bottom fluid. The density varies as
an error function in the y-direction. The fluid is stationary at t=0 and the
initial vorticity is zero. The fluid interface is perturbed by a cosine wave
as shown in the Fig. 37 . The gravitational force is acting in the negative

y-direction. The flow is assumed to be periodic in the x-direction with the
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periodicity length being equal to the wavelength of the pertubation. The flow
domain is assumed to be infinite in the y-direction. The perturbation of the
interface leads to the generation of vorticity due to the interaction between
the density gradient and gravity and the flow becomes turbulent. The
generation of vorticity represents the conversion of potential energy in the

field into kinetic energy of the flow.
V. 3. GOVERNING EQUATIONS:

The governing equations for the problem are essentially the same as those
for the density stratified K-H instability except for the inclusion of the
gravity term in the vorticity equation. Again, the flow is assumed to be
isentropic and at a low Mach number so that density is conserved along the
particle path. Also included is the assumption that cthe hydrostatic variation
in pressure does not affect the density. The fluid is a perfect gas with
constant specific heats. This formulation allows the solution for large
values of the density ratio without being limited by the Boussinesq

approximation.

dp
5t 0 (87)

de _ _Vp
P

P ox (P4 (88)

The flow variables are non-dimensionalized with the characteristic values
L0 for length, to for time and Po for the density. The initial velocities are
Zero. Lo is the characteristic thickness (= V2 ¢ ) of the Gaussian

distribution for the density gradient and to is given by /Lo/qr, where 9, is
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the gravitational acceleration. Po ™ P+ P being the density of the top

fluid. The subscripts 1 and 2 refer to the top and bottom fluid respectively.
V. 4. LINEAR STABILITY THEORY

The Rayleigh equation for the linear stability of the R-T problem is
derived in the same manner as was done for the K-H instability except that
the effect of gravity is included in the equation of motion. Using the fact
that the initial velocity is zero everywhere in the domain, the Rayleigh

equation is simplified as:

v" = - g v' + ( —5——95— + a? v (89)

where ¢ is the fluctuating v-velocity and R is the mean cross stream
density gradient. 9. is the gravitational acceleration and c =c_ + ici; in
this case c, =0 since the initial wvelocity distribution is zero. For a given
value of «, the solution for c (=i c; ) is obtained by iteration as was done
in the case of the K-H instability.

The results of the linear stability theory are shown in Fig. 38 where
the growth rate (= —aci) is plotted as a function of the wavenumber o . Three
cases are considered with the density ratio rp = 2,3 and 9 rerpectively. It
is observed that the growth rate increases monotonically with the wavenumber.
Therefore, in the absence of stabilizing mechanisms like riscosity or surface
tension, the linear theory predicts that higher wavenumbers grow faster than
smaller wavenumbers. In practice however, the effect of viscosity has to be
consideraed as the wavenumbers become large and under these conditions, the

growth rate decreases and a bell shaped curve is obtained. At low
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wavenumbers, i.e., o < 0.5, the effect of viscosity is negligible. The linear
growth rates are also plotted for a =zero thickness interface where the
density distribution is a step function (i.e., a density jump) in the y-
directioni. The exact expression for the growth of a zero thickness interface

is given as [36]:

n = ¢”7Y7§;_K_ (90)

where n is the growth rate, A is the Atwood number, 9, is the non-
dimensional gravitational acceleration (equal to wunity in this study) and k
is the non-dimensional wavenumber. The dashed curves in Fig.38 represent 'n’
as a function of k. It is observed, for all values of rp, that the effect of
smoothening the density distribution leads to decreased values for the growth
rate. At very small values of k, the solutions for the step function
distribution and the error function distribution converge to the same values.
This is to be expected since for k-->0, the wavelength A\ --> « and the ratio
of the interface thickness to A is almost zero. At moderate to high values of
k, the finite thickness of the interface results in a viscous like effect and
tends to increase the stability of the layer. The growth rate of the
instability is also a function of thr density ratio with the interface heing
more unstable for higher values of L, It is to be noted that the difference
between the curves for different rp decreases as r, increases. Thz phase
velocity c, is zero for all the waves since the initial velocities in the

domailn are zero.
V. 5. RESULTS OF NUMERICAL SIMULATIONS

The simulaticn of the Rayleigh-Taylor instability was done, using the

vortex/transport element method, for rp = 2,3 and 9. The corresponding Atwood



numbers, defined as A = (pl—pz)/(p1+p2), are 0.33, 0.5 and 0.8 respectively.
The initial perturbation to the interface is in the form of a negative cosine
function. The wavelength of the perturbation is taken to be A = 13.2 L, and
the amplitude of the perturbation is € = 0.1A. Calculations were also done
for very small amplitudes (¢ = 0.0005 X) of perturbation 'n order to make
appropriate comparisons with the linear theory. The results of the numerical
simulations in the linear range are represented by the symbols in Fig. 38 .
It is observed that the predictions of the numerical calculations compare

very well with those of the linear theory.
(i) Case I : Density ratio = 2

The location and velocity of the vortex/transport elements are shown in
Figs. 39 for rp =2 at t= 5.0, 8.0, 10.0 and 11.5 respectively. Since the
elements are always on the material lines, these plots can be used to study
the deformation of the material interface. Tne figures show the instability
over two wavelengtl.s in order to present a clear picture of the growth of the
interface. It is observed that the initial perturbaticn of the interface is
amplified due to the gerieration of baroclinic vorticity and the light fluid
rises into the dense fluid while the dense fluid falls into the light fluid.
The development of the familiar mushroom shaped instability is observed at
the later stages with the interface rolling up to form two symmetric
structures. The two eddies develop as a result of the Kelvin-Helmholtz
instability and have opposite signs of vorticity and therefore the total
vorticity in the domain is always zero. The part of the interface that moves
into the dense fluid is referred to as the 'bubble’ and the one that moves

into the light fluid is referred to as the ’'spike’. For all values of L the



simulations were performed till the spike of the high density fluid reached a
height of approximately -10.0 in non-dimensional units. Simulations beyond
this point required a very large number of elements and a very small time
step due to very large values for the strain rate and the material
acceleration. It is clear from the material interface plots that the
coherent eddy entrains more of the low density fluid by volume as was
observed in the case of the density stratified shear layer. The bottom most
raterial layer undergoes the most distortion due to the instability. It is
also observed that the coherent structures form very close to the line y=0 in
this case. Fig. 40 shows the corresponding streamline contours over a single
wavelength of the instability for rp-z, The streamlines show the development
of the instability with time as more number of streamlines close around each
other indicating increased volumetric entrainment. The central streamline is
assigned a value of zero so that the streamfunction at the center of the
structures can be used directly as a measure of volumetric entrainment. For
L, = 2, the non-dimensional streamfunction at the core of the eddy at t =
11.5 is calculated to be 7.85 .

Fig. 41 shows the normalized temperature ( T= 1/p) contours for the
corresponding time frames. Since the scalar is non-diffusive and conserved,
the temperature contours essentially follow the material lines. It is
observed that most of the interface is experiencing large positive strain
with negative strain occurring only in the cores of the eddies. Therefore, if
a diffusion flame reaction was allowed to occur, it is obvious that all or
most of the burning would be inside the coherent eddies since the flame would
blow off in the regions of high positive strain. The scalar contours also
indicate that more volume of the low density fluid is being entrained into

the structures. The vorticity contours for this case are shown in Fig. 42.
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At t=0, the vorticity is zero everywhere and the generation of vorticity
takes place according to Eqn.(88). Positive vorticity is generated on the
left side of the domain while negative voricity is generated or the right
side. At later times, however, due to the effects of material acceleration,
small amounts of negative/positie vorticity are also generated on the
left/right part of the domain respectively. The dashed contours represent
positive vorticity and the continuous lines the negative vorticity. For rp=
2, it is observed that the vorticity that is generated on the braide between
the eddies is entrained into the eddies leading to the rollup of the
interface. The maximum values of vorticity are observed to be at the center
of the coherent structures.

Fig. 51 (a) shows the cumulative circulation in the field as a function
of time. Fig. 51 (b) shows the same plot on different scales for the
circulation. The positive and the negative comprnents are summed separately.
Curve 1 represents the results for rp =2 . It is observed that the
circulation in the field increases from its initial value of zero to very
large values at later times. Equal amounts of positive and negative
circulation are generated so that the total circulation in the flow field is
always zero. It is seen that the slope of the circulation curve increases
with time indicating that the rate of generation of circulation ( or
destabilization of the flow) is increasing as time progresses. The length of
the material interface is shown as a function of time by Curve 1 of Fig. 52 .
The length is obtained as an average over the length of all the material
layers used in the calculations. The material interface length is normalized
by the length at t=0 . It is observed that the mean length of the interface
increases as the instability develops in time. The final length of the

interface is about seven times the initial length for L, = 2. Also to be
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observed is the fact that the slope of the curve also increases with time
indicating that the rate of elongation is increasing with time. Fig. 53
shows the least squres fit of the vorticity distribution along the central
layer for t= 5.0, 8.0, 10.0 and 11.5 respectively. The vorticity values and
the locations along the layer are normalized by the corresponding maximum
values at each time frame. It is observed that the vorticity distribution
develops smoothly at the initial times with the peak values occurring at the
edges of the coherent structures. The twin peaks of vorticity on the both
halves of the domain occur due to the entrainment of vorticity from both
sides of the eddy. It is observed that the peak close to the midsection of
the domain is smaller than the peak at the edges of the domain. The reason
for this phenomenon can be understood by looking at the material line plots.
In one case the material acceleration term is in phase with the gravitational
term, thus giving rise to strong local vorticity generation. This corresponds
to the bigger peak. In the other case, the material acceleration term and the
gravitational term are out of phase and thus oppose each other to reduce tha
amount generated. Hence a smaller peak is observed in this region.

The mean positions of the spike and the bubble are plotted as a function
of time in Fig. 56 (a). The mean position of the bubble is calculated by
taking the average of the topmost locations of all material layers and that
of the spike is calculated by taking the average of all bottom most locations
of all the material layers. Therefore, this represents the average location
of the bubble and the spike respectively. For rp=2, it is observed that the
bubble and the spike grow almost symmetrically in time, i.e., the rise of the
bubble is almost equal to the fall of the spike. Fig. 57 (a) shows the
topmost and the lower most points of the bubble and the spike as a function

of time. The positions of the lower most pcints on the bubble and the spike



96

are shown by the dashed curves and those of the topmost points by the
continuous curves. At late times, it is observed that the dashed and
continuous lines approach each other indicating that the total layer
thicknesses at the tips of the bubble and the spike are becoming very small.
It is also seen that different layers move with different velocities until
the asymptotic value is reached. Curve 1 of Figs. 58 (a) and (b) shows the
bubble and the spike velocities respectively as a function of time. The
bubble velocity is estimated as the vertical velocity of the topmost point on
the topmost material layer and the spike velocity is taken to be the vertical
velocity of the lower most point on the bottom layer. Fig. 59 (a) and (b)
show the average bubble and the spike velocities as a function of time. The
average bubble velocity is obtained Ly taking the average of the velocities
at the topmost points on all the material layers. The average spike velocity
is cbtained by averaging the velocities of the bottom most points on all the
material layers. It is observed from Fig. 58 (a) and 59 (a) that the bubble
velocity approaches an asymptotic value at late times. It can be shown that
the spike velocity also has an aymptotic value (except for A=1.0 or rp= )
although the calculations have to be continued for very long times in order
for the spike velocity to approach this value. It is to be noted that the
flow around the bubble and the spike is similar to a separated flow around a
bluff body. Thus there is a certain amount of pressure drag on the bubble and
the spike as they move into the dense fluid and the light fluid respectively
[32]. This pressure drag is proportional to the size of the body (defined
approximately by the radius of curvature), the density of the medium it is
moving into and the velocity of the body. For rp= 2, the size of the bubble
is slightly larger than that of the spike and since the bubble is moving into

a denser fluid, the pressure drag on the bubble is slightly larger than the
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drag on the spike. Thus the bubble reaches its asymptotic value faster than
the spike as is obvious from Curve 1 of Figs. 58 and 59. The calculations
were stopped after the bubble reached its asymptotic velocity in order to
limit the computational time. The velocities of the bubble and the spike for
the R-T instability have been calculated by other investigators, in
particular, Kerr [34] and Trygvasson [33]. The asymptotic velocities are
usually normalized as Ubn - Ub/(/hgr A) which is similar to a non-dimensional
Froude number. A is the wavelength of perturbation, A is the Atwood number
and 9, is the non-dimensional gravitational acceleration, equal to 1 in the
present calculations. For an Atwood number of 0.5, the aymptotic value for
the bubble velocity, Ub' is found to be 0.66 from the numerical simulations,
which corresponds to Un = 0.27 . Kerr [34] obtained a value of 0.27 for this
quantity in his calculations of R-T instability using the vortex sheet
method. The mean bubble asymptotic velocity from Fig. 59 (a) is obtained as
Uy = 0.29. The discrepancy between the tip value and the mean value for the
bubble velocities can be attributed to the relative movement among the
material layers during the growth of the instability. Experimentally, the
asymptotic bubble velocity is measured to be between 0.2 and 0.3 [35]. It is
observed from Curve 1 of Fig. 58 (b) that the spike accelerates from rest at
t=0 and the velocity increases until the pressure drag becomes significant.
The spike velocity overshoots its asymptotic value and starts decelerating to
a velocity where the downward gravitational force on the spike is matched by
the pressure drag. The peak value for the spike velocity from Fig. 58 (b) is
0.89 which corresponds to USn = 0.43. This peak occurs at t= 8,5 . Kerr [34]
obtained a value of 0.44 for the peak spike velocity occurring at t=8.5 from

his calculations.
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(ii) Case II : Density ratio = 3

The location and velocity of the vortex/transport elements for r, =3 is
shown in Fig. 43 for t= 5.0, 7.0, 7.85 and 8.6 respectively. It is observed
that the instability develops faster in time compared to Case I. The tip of
the spike reaches y=-10.0 at t=8.6 as compared to a time of 11.5 for rp-2.
This is to be expected since the top fluid is heavier in this case and falls
faster into the low density fluid. It is observed that the development of the
K-H instability or the extent of the rollup is decreased with respect to Case
I. Also, the size of the bubble in this case is much larger than that of the
spike, i.e, the instability does not develop symmetrically with respect to
y=0. Moreover, the coherent structures are formed at a lower elevation with
respect to Case I. Again, it is obvious from the material line plots that
more of the low density fluid by volume is being entrained into the eddies.
Fig. 44 shows the streamline contours at the same time frames. The
development of the streamlines is very similar to what was observed for Case
I. However, the motion of the eddies into the low density fluid is clearly
observed, The volumetric entrainment, as obtained from the value of the
streamfunction at the center of the eddy, turns out to be 9.3 . This value is
larger than that for Case I indicating that the entrainment currents set up
by the development of the instability are larger for higher values of rp . It
is to be noted that the entrainment parameter is large inspite of the fact
that the rollup has been significantly decreased. This 1is particularly
important in studying fires since fire spread is determined by the intensity
of circulation or entrainment currents that are set up in the flow field as a

result of buoyancy.
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Fig. 45 shows the normalized temperature contours at the respective
times. The scalar contours reveal that the volumetric entrainment of the low
density fluid is larger than tiat of the high density fluid. Also to be noted
is the thickness of the scalar contours around the bubble and the spike. It
appears that the scalar thickness in the region of the spike is smaller than
that in the region of the bubble. This is contrary to Case I where the
thicknesses were nearly the same. It will be shown later in this section that
the reason for this phenomenon is the accumulation of vorticity in the lower
part of the spike. This leads to smaller interface thickness in the region of
the spike. The vorticity contours for rp-3 are shown in Fig, 46 . The
development of the K-H instability at a lower elevation is clearly observed.
Once again, the vorticity that is generated at the braids is entrained by the
eddies. The intensity of vorticity generation in this case is much higher
than in Case I. This is because of the higher value for the Vp term in the
vorticity equation.

The generation of circulation in the flow field with time is shown in
Fig. 51 (a) and (b) . Curve 2 represents the results for r, = 3. Again, the
results show a larger generation of circulation for rp-3 as compared to rp-2.
The final slopes of the circulation curves are almost equal for Cases I and
IT although this slope is attained at an earlier time for Case II, Curve 2
of Fig. 52 shows the material interface length as a function of time. The
faster development of the instability for rp =3 is obvious from the fact that
the curve is always above the curve for Case I. The final length of the
interface is about five times the initial length. The slope of the curve is
also increasing with time and it is interesting to note that the final slopes
of the curves for Cases I and II are almost equal although this stage is

reached earlier in time for Case 1II., Thus, for large values of £, avery
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high rate of elongation of the interface is reached at earlier times as
compared to the cases of low rp. In other words, as rp increases, the rate of
destabilization of the flow also increases and therefore the calculations for
large rp have to be highly refined, i.e., a small time step and more
elements, in order to resolve the large material acceleration and strain
rate. Fig. 54 shows the least squares fit of the vorticity distribution along
the central layer. The vortcity is normalized by its maximum value at each
time frame and the distance along the layer is normalized by the total length
of the layer. The same pattern of twin peaks, as was observed in the case of
rp-z, is also seen here. However, the relative size of the peak closer to the
midsection of the is smaller than what was seen in the case of rp-2. This can
be attributed to larger values of the material acceleration term. Furthermore
the larger peak appears to have shifted closer to x=0 .

Fig. 56 (b) shows the mean displacement of the bubble and the spike as a
function of time. Unlike Case I, a near symmetric displacement of the bubble
and the spike is no longer observed. It is clear that the spike is falling
faster into the light fluid and the bubble is rising at a slower rate into
the heavy fluid. Fig. 57 (b) shows the bubble and spike displacement in
terms of the topmost and the lowermost points on the bubble and the spike as
a function of time. The dashed curve represents the positions of the
lowermost points on the bubble and the spike. Again, it is observed that the
dashed and the continuous curves approach each other indicating that the
total interface thickness at the edges of the bubble and the spike become
smaller with time. However, it is seen that the interface thickness in the
spike region is smaller than that in the bubble region. The bubble and the
spike velocities are shown by Curve 2 in Figs. 58 and 59. Once again it is

observed that the bubble reaches its asymptotic value earlier in time as
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compared to the spike. Also to be noted ios the fact the bubble reaches its
asymptotic value faster than in the case for L= 2. This is because the size
of the bubble is much larger for e 3 and it is moving into a relatively
heavier fluid than in Case I. Thus the pressure drag on the bubble is higher
than in Case I and hence it attains its asymtotic value faster in time. The
spike on the other hand takes longer to reach its asymptotic value since,
from the above arguments, the pressure drag on the spike is smaller than in
Case I. For r, =3, the value of Ubn for the bubble from Fig. 58 (a) is 0.255
which compares well with the value of 0.26 obtained by Trygvasson (33] in his
simulations using the vortex-in-cell method. The mean bubble asymptotic
velocity obtained from Fig. 59 (a) is 0.28. Although the calculations had to
be stopped before the spike could attain its asymptotic velocity, the peak
spike velocity from Fig. 58 (b) is obtained as 1.3 which corresponds to Ugn™

0.5 . The peak value for the spike velocity obtained by Trygvasson is 0.48.
(iii) Case III : Density Ratio = 9

The location and velocity of the vortex/transport elements are shown in
Fig, 47 at t= 3,0, 4,25, 4.75 and 5.25 respectively. Due to the top fluid
being much heavier, the interface falls faster into the light fluid as
compared to Cases I and II. The spike reaches y=-10.0 at t= 5.25 in this
case. It is observed from the material interface plots that the rollup is
almost completely inhibited. Thus, at higher values of Lo the faster growth
of the spike into the light fluid allows very little time for the growth of
the structures due to the K-H instability. As the density ratio goes to
infinity, i.e., the case of a fluid falling freely into vaccum, the net

pressure gradient and hence the baroclinic term would be zero everywhere in
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the fluid and thus there would be no rollup of the interface. It is also
observed that the bubble is now very large compared to the spike and the K-H
instability forms at a lower elevation as compared to Cases I and II. As rp
increases, the spike becomes thinner than the bubble and falls faster into
the light fluid. Fig. 48 shows the corresponding streamline plots for Eo= 9.
Although there is very little rollup of the interface, the amount of
entrainment or circulation of fluid in the flow field increases with L The
value of the streamfunction at the center of the structure at t= 5.25 is
9.75. This value is greater than what was calculated for Cases I and II. This
indicates a greater destabilization of the flow. The migration of the
structure to lower elevations is clearly observed from the streamline
contours.

Fig. 49 show the contours for the normalized temperature at the
corresponding times. Again, it is seen that the scalar thickness in the spike
region is much smaller than in the bubble region. For rp-9, the scalar
thickness at the spike is about half that at the bubble. The intensification
of scalar gradients in the spike region can lead to numerical complications
if proper resolution is not provided. Fig. 50 shows the corresponding
vorticity contours for rp- 9, The vorticity that is generated in the upper
part of the interface appears to be advected to the lower part of the spike.
This is shown by the higher concentration of vorticity in the spike region.
It is also observed that the vorticity concentration around the bubble is
very small, This leads to the formation of a shock or a zone of very steep
gradient of vorticity in the spike region, wherein the vorticity goes from a
large negative value to a large positive value across a very small distance.
This singularity makes it very difficult to continue the calculations very

far in time. Some amount of diffusion or artificial viscosity has to be



103

introduced in order to stabilize the calculations beyond this point. Thus,
for large values of rp, one should expect the gradients of vorticity and the
scalar in the vicinity of the spike to go to very large values and in the
limit lead to a sinqularity in the calculations.

Curve 3 of Fig. 51 (a) and (b) shows the generation of circulation in
the flow field as a function of time. It 1is observed from Fig. 51 (a) that
the final slope of the curve is almost infinity. The amount of circulation
generated is about five times that for Cases I and II. The same curve is
shown in Fig. 51 (b) with the latter portion of the curve removed. The final
slopes of all the three curves in Fig. 51 (b) are almost equal. The
elongation of the material interface with the growth of the instability is
plotted as a function of time in Curve 3 of Fig. 52 . As expected, the
instability grows faster in time and the final length at t=5.25 is about four
times the initial length., Again, it is observed that the slope of the curve
at t=5,25 is almost the same as the final slopes for Cases I and II. Thus the
same elongation rate is reached earlier in time with increasing Lo Hence,
the calculations for higher r, have to be greatly refined, temporally as well
as spatially. Fig. 55 shows the vorticity distribution along the central
layer at t= 3.0, 4.25, 4.75 and 5.25 respectively. The vorticity is
normalized by its maximum value at each time frame and the distance by the
total length of the layer. In this case, it is seen that the smaller peak is
much smaller relative to the larger peak than was observed for rp=2 and 3,
Also, the vorticity peaks for rp =9 occur very close to x=0, i,e., the
central portion of the spike. The formation of a very steep gradient in
vorticity is clearly observed in the figure. Also to be noted is the fact
that the vorticity in regions other than that of the spike is nearly zero,

This is another evidence to the fact that the vorticity is being advected
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into the lower portions of the spike. The advection of the vorticity takes
place due to very large values for the material acceleration.

The mean positions of the spike and the bubble are plotted as a function
of time in Fig. 56 (c). The spike falls at a very fast rate into the light
fluid. The figure shows that the bubble and the spike grow very
asymmetrically. Fig. 57 (c) shows the positions of the topmost and the
lowermost points on the bubble and the spike as a function of time. The
interface thickness in the region of the spike at late times is smaller than
that in the region of the bubble. Curve 3 in Figs. 58 and 59 shows the bubble
and the spike velocity plotted as a function of time. It is seen that the
bubble tends to its asymptotic value at a much earlier time as compared to
Cases I and II. This is because the pressure drag on the bubble is quite
large since it is moving into a very dense fluid and the size of the bubble
itself is very large., Although the tip of the bubble does not appear to have
reached its asymptotiv velocity, it is observed that the mean bubble velocity
from Fig. 59 has reached a constant value. Again, the discrepancies between
the two values is due to the relative movement between the material layers.
The velocity of the bubble at the final time from Fig. 58 (a) is obtained as
0.8 which correpsonds to Ubn = 0.24 . The value obtained by Kerr (34] for L=
9 is 0.23. The mean bubble asymptotic velocity from Fig. 59 (a) is 0.27 . On
the other hand, it is observed that the size of the spike is very small and
it is moving into a fluid of very low density and hence the pressure drag on
the spike is very small. Therefore, the spike falls very fast in this case as
is seen in Curve 3 of Fig. 58 (b). The downward gravitational force is
matched by the pressure drag only at very large velocities of the spike and
hence the approch to an asymptotic value for the spike velocity requires

running the calculations for very long times. The calculations had to be
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stopped long before the spike could even approach this value in order to
limit the amount of computational time. In the limit of r, going to infinity,
the spike would have a constant acceleration equal to that of gravity, i.e.,
the slope of the curve would be unity. In fact, for rp =9, the slope of the
curve from Fig. 58 (b) is 0.94, suggesting that the pressure drag in the

system is very small.
(iv) Case IV : Density Ratio= 3 (with Boussinesqg Approximation)

Since these calculations were done for large values of the density ratio,
the results are also compared with those obtained using the Boussinesq
approximation in order to establish the limits of the approximation. This is
implemented by neglecting the effects of material acceleration (dus/dt), with
respect to the gravitational acceleration, on the growth of the instability.
The simulations were conducted for rp=3 and the results for the locations and
velocities of the transport/vortex elements are shown in Fig. 60 . The non-
dimensional times are the same as in Fig. 43. Comparing the two cases (with
and without the Boussinesqg approximation), it is seen that the neglect of the
inertial terms leads to a symmetric growth of the structures which remain
centered at y=0. Equal volume of the heavy and the light fluid are being
entrained into the eddies. This behavior is characteristic of the R-T
instability at values of rp close to unity. Thus, the results obtained using
the Boussinesq approximation would be accurate only for low values of Foe
Fig. 61 shows the least squares fit of the vorticity distribution along the
central layer. In this case it is observed that the peak closer to the
midsection of the domain is slightly larger than the peak close to the edge

of the domain. Although, one would expect the two peaks to be equal in



magnitude with the neglect of the inertial terms, it should be noted here
that the difference in density between material layers leads to a small
degree of asymmetry. In the Boussinesq approximation for the zero thickness
interface, the density is approximated by the mean density, 1i.e., p=
(p1+p2)/2 . This leads to perfect symmetry in the growth of the structures.
However, for the finite thickness interface, each layer has a different value
for the density and the structures develop a small degree of asymmetry. The
mean bubble and the spike displacement with time for this case is shown in
Fig. 62 (a). Again, it is noted that the bubble and the spike grow almost
symmetrically, i.e., they rise and fall by the same amount respectively. This
is a characteristic feature of the R-T instability for low Ly Fig. 62 (b)
shows the topmost and the lowermost points on the bubble and the spike as a
function of time. Again, a symmetric development is observed with the layer
thicknesses at the tips of the bubble and the spike being equal. The mean
bubble and spike velocities are plotted as a function of time in Fig. 62 (c).
The curve on the top represents the velocity of the spike and the bottom
curve represents the bubble. It is seen that the two velocities are almost
equal for all times and have almost the same value for the asymptotic
velocity. Thus the Boussinesq approximation is not able to predict the faster
fall of the spike for moderate and large values of the density ratio. The
symmetric development of the structures is observed only at very small values
of rp (e.q. rp< 2) and in this regime the Boussinesq approximation may be
used to yield reasonably accurate results for the growth of the instability.
Therefore the inertial term plays an important role in the vorticity dynamics
for moderate and large values of the density ratio and ignoring it can lead
to erroneous predictions. The Boussinesq approximation is strictly valid only

for small values of rp



V. 6. CONCLUSIONS

The results of the numerical simulations yielded accurate predictions for
the growth of the R-T instability over a wide range of values for the density
ratio. At high values of tp, it is found that the K-H instability along the
sides of the interface is completely inhibited. Although no significant
rollup of the interface occurs, it 1is important to realize that the
entrainment currents (as seen from the streamlines of the flow) set up by the
instability are much larger than in the cases with low rp. The generation of
entrainment currents and fluid circulation is of great importance in
analyzing fires and fire spread.

Also to be noted is the versatility of the vortex/transport element
scheme in resolving flows with large strain rates. A crucial issue in the
simulation of such problems is the accurate tracking of the material
interface long after it has deformed and elongated far beyond its initial
state. This scheme is able to preserve accuracy by the process of injection
and simultaneous redistribution of material elements along the interface. The
R-T instability is an ideal candidate problem to test the scheme, since it is
highly non-linear and very sensitive to initial and boundary conditions.
Furthermore, the linear growth of the R-T instability is well documented. The
predictions of the linear growth rate from the numerical simulations compare
well those of the linear theory. The characteristic features of the R-T
instability in the non-linear range for different values of the density
ratio, as predicted by the simulations are consistent: with what has been
observed in other investigations. The numerical values for the asymptotic

bubble and spike velocities compare very well with previous results on the R-



T instability. The simulations were also used to check the accuracy of the
Boussinesq approximation. It was found that this approximation does not
correctly predict the advection of vorticity into the spike region, which is
a dominant phenomenon, particularly at high Atwood numbers. Also the
aymptotic bubble and spike velocities obtained using the Boussinesq
approximation were almost equal and this behavior 1is true only at very low
values of £y The spike velocity is much larger than that of the bubble at

high rp.



FIGURE CAPTIONS

Fig. 37. A schematic of the Rayleigh Taylor instability in a gravitational
field. The density of the top fluid is greater than that of the bottom fluid.

Fig. 38. A plot of the linear growth rate of the R-T instability as a
function of the wavenumber. The curves 1, 2 and 3 stend for r =2, 3 and 9
respectively. The continuous curve represents the results 8f the linear
theory for a finite thickness interface. The dashed curves (1’, 2’ and 3')
are the results of the linear theory for a zero thickness interface. The
symbols are results of numerical simulations.

Fig. 39. The locations and velocities of the vortex/transport elements at t =
5.0, 8.0, 10.0 and 11.5 respectively for o 2.

Fig. 40. The streamline contours at t= 5.0, 8.0, 10.0 and 11.5 respectively
for r = 2,
P

Fig. 41. The normalized temperature contours ( T= 1/p) at t= 5.0, 8.0, 10.0
and 11.5 respectively for o= 2.

Fig. 42. The vorticity contours at t= 5.0, 8.0, 10.0 and 11.5 respectively
for r =2. The dashed contours represent positive vorticity abd the
continflious contours represent negative vorticity.

Fig. 43. The locations and velocities of the vortex/transport element methods
at t= 5.0, 7.0, 7.85 and 8.6 respectively for rp = 3,

Fig. 44. The streamline contours at t= 5.0, 7.0, 7.85 and 8.6 respectively
for r = 3,
[

Fig. 45. The normalized temperature contours ( T= 1/p) at t= 5.0, 7.0, 7.85
and 8.6 respectively for L= 3.

Fig. 46. The vorticity contours at t= 5.0, 7.0, 7.85 and 8.6 respectively for
r = 3. The dashed contours represent positive vorticity abd the continuous
c8ntours represent negative vorticity.

Fig, 47. The locations and velocities of the vortex/transport element methods
at t= 3.0, 4.25, 4.75 and 5.25 respectively for rp =9,

Fig. 48. The streamline contours at t= 3.0, 4.25, 4.75 and 5.25 respectively
for r = 9,
p

Fig. 49. The normalized temperature contours ( T= 1/p) at t= 3.0, 4.25, 4.75
and 5.25 respectively for L= 9.

Fig. 50. The vorticity contours at t= 3.0, 4.2%5, 4.75 and 5.25 respectively
for r = 9. The dashed contours represent positive vorticity abd the
contifuous contours represent negative vorticity.

Fig. 51. (a) The cumulative circulation in the flow field as a function of
time. The positive and the negative components are summed separately. Curves



1,2 and 3 represent r = 2, 3 and 9 respectively; (b) same figure as in (a)
but on different scalls.

Fig. 52. The mean length of the material layers as a function of time. Curves
1, 2 and 3 represent rp = 2, 3 and 9 respectively.

Fig. 53. The least squares fit of the vorticity distribution along the
central layer at t= 5.0, 8.0, 10.0 and 11.5 respectively for rp = 2,

Fig. 54. The least squares fit of the vorticity distribution along the
central layer at t= 5.0, 7.0, 7.85 and 8.6 respectively for = 3.

Fig. 55. The least squares fit of the vorticity distribution along the
central layer at t= 3.0, 4.25, 4.75 and 5.25 respectively for r, = 9.

Fig. 56. The mean position of the bubble and the spike as a function of time
for r, = (a) 2, (b) 3 and (c) 9 respectively.

Fig. 57. The positions of the topmost and the lowermost points on the bubble
and the spike as a function of time. The dashed curve represents the
positions of the lowermost points. (a) r, =2, (b) £y, = 3 and (c) r, = 9.

Fig. 58. (a) The magnitude of the velocities at the topmost point on the
bubble as a function of time. (b) the magnitude of the velocities at the
lowermost point on the spike as a function of time. Curves 1, 2 and 3
represent r, = 2, 3 and 9 respectively.

Fig. 59. (a) The magnitude of the mean velocity of the bubble as a function
of time. (b) The magnitude of the mean velocity of the spike as a function of
time. Curves 1, 2 and 3 represent rp = 2, 3 and 9 respectively.

Fig. 60. The locations and velocities of the vortex/transport elements at t=
5.0, 7.0, 7.85 and 8.6 respectively for r = 3 witn the Boussinesq
approximation. e

Fig. 61. The least squares fit of the vorticity distribution along the
central layer at t= 5.0, 7.0, 7.85 and 8.6 respectively for r = 3 with the
Boussinesq approximation. e

Fig. 62. (a) The mean position of the bubble and the spike as a function of
time for case IV; (b) the positions of the topmost and the lowermost points
on the bubble and the spike as a function of time; (c) the wmean bubble and
spike velocity as a function of time.
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VI. THE STUDY OF DENSITY STRATIFIED JET FLOWS

VI. 1. INTRODUCTION

The dynamics and mixing in a turbulent heated jet emerging in a cold
environment are analyzed using the results of numerical simulations conducted
using the vortex/transport element method. The model is considered as a
first idealization of a turbulent jet diffusion flame at moderate Reynolds
number. Several cases are considered: a uniform-density jet, a density-
stratified jet with infinite, finite and =zero Froude number, and a density-
stratified jet with unequal momentum and thermal shear layer thicknesses.
The role of each dynamical process: momentum, density stratification and
gravity, as well as their interactions are analyzed in detail. It is shown
that density stratification and gravity play very important roles in mixing,
and that the interactions between the various dynamical processes in this
flow depend on physical parameters such as the density ratio, the vorticity
layer and density gradient thicknesses, the Froude number and the form of
perturbation.

Recent experimental observations on vertical turbulent jet diffusion
flames reveal that gravity plays an important role in determining the flame
structure, its stability and the rate of fuel consumption when the Reynolds
number, as determined by the fuel jet conditions, is moderate ( Roquemore
[37), Eickhoff and Winandy [38], Strawa and Cantwell ([39] ). The study of
turbulent jet diffusion flames is complicated by the interactions between
three important mechanisms determined by the following features: (1) the

velocity difference between the fuel jet and the ambient environment which



establishes a shear layer; (2) the density differential between these two
streams which strongly affects the dynamics of this shear layer; and (3) the
role of gravity which has a strong effect on the growth of the jet for small
to moderate Froude numbers. In this study, the fuel jet is modelled as a
column of high velocity hot gas surrounded by a stationary cold environment,
while the ratio of the shear layer to the thermal layer thickness is varied
to simulate different flame conditions.

An important mechanism in the physical model is the vorticity generation
due to: (1) the interaction between the density gradient and the material
acceleration, i.e., the baroclinic vorticity; and (2) the interaction between

the density gradient and gravity, i.e., the gravity-generated vorticity.

VI.2. DESCRIPTION OF FLOW GEOMETRY

The schematic for the jet flow is shown in Fig. 63 (a) and (b) . It is
assumed that at some point downstream of the exit of the spatial jet, the
density and velocity profiles evolve from a top-hat distribution into the
twin-error function distribution due to the action of viscosity. The error
function profiles are used as initial conditions for the problem. The
calculations are performed in a frame of reference moving with the mean
velocity of the jet and the ambient. Thus, the growth of the jet is observed
in a temporal frame. Periodic boundary conditions are applied in the y-
direction and the domain is unbounded in the x-direction. The periodicity
length is chosen as the wavelength of the perturbation that is imposed on the
jet shear layers. The density of the jet fluid is assumed to be lower than
that of the ambient fluid. This problem is analyzed for two kinds of

perturbations (1) The varicose mode, where the perturbation is symmetric



across the centerline of the ijet, i.e., it is equivalent to imposing a no
flow boundary condition across the center of the jet [40]), and (2) The

sinuous mode, where all the material layers are perturbed in the same manner.
VI.3. GOVERNING EQUATIONS

The non-dimensional governing equations for this problem are as given in
Eqns. (91) and (92). The flow is isentropic and at a very low Mach number.
Thus the density is conserved along the material path. All the other
assumtions made with regard to the K-H and the R-T instabilities apply to

this problem as well.

dp
i - 0 (91)

P--Lx(F+ £ (92)

The flow variables are non-dimensionalized with the characteristic values
U, for velocity, L, for length and Po for density. For the jet flow, U= U1/2
where Y is the velocity at the centre of the jet, L, is taken as AS where AS
is the vorticity thickness and p is the ambient density ( Fig. 63 ). The
Froude number is defined as Fr = Uoz/(gr Lo) where 9, is the gravitational
acceleration. j is the unit vector in the y-direction. Therefore, the Froude
number can be thought of as the ratio of the existing vorticity in the jet
shear layers to that generated due to the action of gravity. Thus, for low
Froude numbers, gravitational effects will be expected to dominate the
physics of the problem. As F becomes higher, the jet flow becomes momentum

dominated.



VI.4. RESULTS OF NUMERICAL SIMULATIONS

Computations were performed to understand the mechanisms of formation of
large scale structures and their role in the mixing process for the following
cases: a uniform-density turbulent jet, a density-stratified turbulent jet
when gravity effects are negligible, i.e., Fr = <, a density-stratified jet
with negligible momentum, i.e., Fr = 0, and a density-stratified turbulent
jet with a finite Froude number. For each case, the computations were done
for two modes, the varicose and the sinuous modes, of perturbation. The
purpose of partitioning the problem up in this way is to identify the role
played by each single process individually and to characterize the modes of
interaction between these processes when they occur simultaneously. The term
"turbulent jet" is used here to describe an unstable flow which has been
subjected to finite, although very small, perturbations that subsequently
grow beyond their linear range and cause substantial irreversible distortion
beyond the initial state of the flow.

In all cases, except for the jet with negligible momentum, the
calculations are started with an initial vorticity distribution made of two
Gaussians of opposite signs connected by a zero vorticity zone at the core of
the jet (Fig. 63 (a) ). The corresponding velocity distribution is two error
functions connected with a uniform velocity zone, as shown in the figure. A
density stratification such that the jet fluid is hotter than the ambient
fluid is superimposed. The density distribution is shown in Fig. 63 (b), and
is formed of two error functions separating the jet fluid from the ambient
fluid. The density ratio is four so that pjet = 0.25 and Pamb. = 1.0. The

vorticity distribution and the density distributions initially overlap. The
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same functions are used to generate the velocity distribution and the density
distribution.

In all cases, the two shear layers and/or the twc zones of density
gradients on both sides of the jet centerline are perturbed using sinewaves
with the maximum amplitude being € = 0.02 X\ where X\ = 6.6 A4S and AS is the
characteristic thickness of each vorticity layer. A symmetric perturbation
is imposed to study the growth of the varicose mode of the jet instability
which is believed to be the most important mode in the initial stages of the
spread of the jet. The sinuous mode is simulated by perturbing the material
layers in phase with each other on both sides of the centerline.

For all cases, the evolution of the flow is shown in terms of: (1) the
instantaneous location and velocity of the vortex/transport elements; (2) the
temperature contours; and (3) the vorticity contours. The locations of the
computational elements are used to define the flow structure, the temperature
contours are utilized to study entrainment, and the vorticity contours are
employed to determine the flow dynamics and the contribution of both momentum

and gravity to its evolution.

Vi.4.1. THE VARICOSE MODE

The varicose or the odd mode of instability in jets is studied in this
section. The material layers are perturbed in a symmetric manner across the
centerline of the jet. Thus the jet centerline acts as a potential wall that

does not allow any flow across it. The following four cases are considered.

(i) Case I : A Uniform-Density Jet
This is the reference case in which the jet is driven by momentum only,

i.e., Fr = o, The baroclinic vorticity generation due to density
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stratification is neglected and so is the gravity generated vorticity. Thus,
vorticity remains constant along a particle path. Fig. 64 shows the evolution
of the jet structure in terms of the locations and velocities of the vortex
elements at t = 2.5, 5.0, 7.8 and 9.8. The material layers are plotted for
two wavelengths in order to show the development clearly. The vorticity
layers on both sides of the centerline roll up to form two large-scale
structures with opposite signs, generating strong entrainment currents that
pull the ambient fluid into the jet core. The large eddies exhibit a strong
degree of symmetry with respect to both the jet and the ambient fluids. It
is also observed that the large eddies acquire a finite velocity in the
direction of the jet due to the mutual interaction between the eddies across
the centerline of the jet. This finite velocity, which resembles the self-
induced velocity of a vortex ring in an axisymmetric jet, is small in this
simulation due to the fact that the vorticity within the core of each eddy is
distributed over a large area between the jet centerline and the ambient (in
the case of a vortex ring, the self-induced velocity is proportional to
1n(R/0) where R and ¢ are the radii of the ring axis and the ring core,
respectively). The corresponding streamline contours are shown in Fig. 65 .
The streamlines show the development of the instability and the formation of
the coherent structures due to the entrainment of the ambient and the jet
fluids. The volumetric entrainment increases as a function of time until the
instability saturates upon which fluid begins to leave the structures. The
entrainment into the structures is estimated by calculating the entrainment
parameter { defined as { = Aw—(Aw)o. Ay is the difference between the minimum
and the maximum value of ¢ in the domain. (Aw)0 is the value at t=0. Since
the domain used for the calculation for y is the same for all the cases here,

g can be used to compare volumetric entrainment between each case. The



142

entrainment parameter { is estimated from the streamline plots to be 0.5 at
t=9.8.

The entrainment within the large eddies is shown more clearly in the
plots of the temperature contours in Fig. 66 . In this uniform-density case,
the temperature is a passive scalar. The figure indicates that with the
roll-up of the vorticity layer and the formation of the large-scale
structures on the two sides of the jet centerline, the ambient fluid is
entrained into the cores of these eddies forming a spiral around the jet
fluid, The strain field that develops during this process causes a
substantial thinning of the original shear/density gradient zone in the
region that separates the large eddies, the braids. The contours indicate
that at the later stages of development of the varicose mode, the jet stream
is formed of a series of puffs of pure jet fluid separated by lumps of well-
mixed fluid in the form of symmetric mushrooms (assuming that the entrainment
will be followed by molecular diffusion to complete the mixing process within
these mushrooms). This situation gives rise to the experimentally observed
phenomenon of intermittency in which widely disparate values of the mixture
quality can be measured at the same point in space at very close moments in
time. Clearly, this instability mode is unable to achieve full mixing
between the jet and the ambient fluids and pure jet fluid can be detected far
dowstream of the nozzle.

The dynamics leading to the establishment of these mixing contours can be
revealed by inspecting the vorticity contours shown in Fig. 67 . A zone of
strong concentration of vorticity forms at che center of the initial
perturbation and acts as a focus for attracting vorticity which is initially
distributed in the streamwise direction. This focus is transported slowly in

the original direction of the jet due to the mutual interaction between the



143

eddies on the two opposite sides of the centerline. By the end of roll-up,
the large eddies span the zone between the centerline and the ambient. Curve
1 of Fig. 80 (a) shows the circulation in the flow field as a function of
time. Since there is no generation of vorticity in this case, the circulation
in the field remains the same as at t=0, i.e., the curves are horizontal. The
positive and the negative circulation are shown separately. Curve 1 of Fig.
80 (b) shows the mean length of the material interface as a function of time.
The material length is calculated as an average over the length of all the
material layers used in the calculations. The length is normalized by the
length at t=0. It is observed that the length of the interface increases with
the growth of the instability and the final length is more than twice the
initial length. The linear growth rate of the instability is estimated by
calculating the initial slope of the curve of log I versus time where I = I
udx dy and u is the fluctuating transverse velocity component. The linear
growth rate for Case I is shown in Fig. 81 as a function of wavenumber. The

shape of the curve is similar to what was obtained for the shear layer.

(ii) case II : A Density-Stratified Hot Jet Without Gravity

The second case that is considered is the same jet as in Case I, same
initial vorticity distribution, however, the density gradient is allowed to
affect the dynamics of the flow. Gravitational effects are still neglected,
i.e., Fr = ®, Vorticity generation in this case is due to the interaction
between the fluid acceleration and the density gradient, i.e., due to
baroclinic effects. The locations and velocities of the vortex elements are
shown in Fig. 68 at time t = 2.5, 5.0, 7.8 and 9.8, Here, the large eddies
do not exhibit the same symmetry with respect to the jet and the ambient

fluid as in the uniform-density case. To the contrary, the large eddies
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entrain more of the hot jet fluid by volume than the cold ambient fluid as
indicated by the fact that there is « deeper penetration of the jet fluid
than that of the ambient fluid into the eddies. The large eddies propagate
in the direction of the ambient cold fluid contrary to Case I in which they
propagate in the direction of the jet fluid. This is consistent with the
behavior of a density-stratified shear layer and is due to the baroclinic
generation of vorticity. It is also seen that each large eddy structure
contains a smaller structure within it, which rotates in the same direction
as the large structure. Results show that the rate of generation of elements
is much higher within the smaller structure than outside it. This is the
first sign that a double structure may be observed when density
stratification is dynamically significant. Fig. 69 shows the corresponding
streamline contours. The value of the streamfunction at the core of the
structure is { = 2.6 at t=9.8 . It is observed that the total volumetric
entrainment of fluid into the structures has increased with respect to the
uniform density jet. This is again consistent with the results obtained for
the density stratified shear layer.

Entrainment in this case can be studied from the temperature contours
plotted in Fig. 70. The motion of the structures in the direction of the
cold fluid is seen clearly in these plots (in a frame of reference fixed to
the jet nozzle, the structures propagate at a slower velocity than the mean
jet velocity). The structures are slightly larger in the streamwise
direction than those in Case I, but they are also smaller in the cross-stream
direction. This indicates that the rate of spread of the jet is reduced in
the density-stratified case as compared to the uniform density case. The
structures are also more biased towards the hot jet f£fluid, i.e., each

structure contains more hot jet fluid than cold ambient fluid. This bias is
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similar to the mixing asymmetry due to density stratification which was
observed in the shear layer experiments and calculations [26,27]. The ambient
fluid still reaches the centerline of the jet squeezing the jet fluid to the
outer edges of the large structures. It is observed that the small structure
which exists within the large structure is formed of cold ambient fluid which
penetrages the jet and establishes a density gradient within the large
structure. The inside of the large eddies is less convoluted than in the
uniform density case. It is also observed that there is less of the jet fluid
by volume in the region between the eddies in the streamwise direction. This
is consistent with the observation that more of the jet fluid has been
entrained into the eddies. The vorticity contours, shown in Fig. 71 , exhibit
a substantial deviation from those of a uniform density jet. The plots show
that as soon as roll-up starts, the rate of depletion of vorticity within the
braids exceeds that for the uniform density case. This depletion is actually
a result of the generation of vorticity of the opposite sign to the initial
vorticity within the layer. This baroclinically-generated vorticity,
expressed by the term -Vp/p x a in the vorticity transport equation, leads to
a quick destruction of the vorticity in the braids. The same process occurs
on the outer edges of the large structure, forming a vortex rotating in the
direction opposite to that of the large eddy. Meanwhile, vorticity of the
same sign as the initial vorticity is generated within the core of the eddy,
leading to the formation of a stronger eddy than in the uniform density case.
Most of the vorticity generation within the large eddies occurs around the
density gradient, giving rise to the small structure seen within the large
structure in Fig., 71 . The redistribution of vorticity within the large

structures is what leads to the downward motion of the large eddies.
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Curve 2 of Fig. 80 (a) shows the total circulation in the field as a
function of time. The positive and the negative components are summed
separately. The curves show that the generation is very small for t< 3.0 .
Beyond this time equal amounts of positive and negative circulation are
generated in the flowfield. Therefore the net circulation in field is
conserved and is the same as in the uniform density case. The elongation of
the material interface with time is shown in Curve 2 Fig. 80 (b) . It is
observed that the mean length of the interface is longer than that of Case I
in the non-linear range. This is consistent with the observation that the
density stratified jet is more unstable (due to vorticity generation) than
the uniform density jet. The same phenomenon was observed in density
stratified shear layers. Fig. 81 shows the linear growth rate of the
instability over different wavenumbers for Case II. It is observed that the
maximum growth rate is shifted to the right with respect to the uniform
density jet. Again, this behavior is similar to what was observed for the

density stratified shear layer.

(iii) Case III : A Very Slow Hot Jet in a Gravitational Field

The effect of gravity on the development of a hot jet is studied in this
section. The initial momentum of the jet is assumed to he negligibly small,
i.e,, Fr = 0.0. Computations were performed for a stationary vertical column
of hot, low-density gas surrounded by a cold, high-density environment. The
velocity and the vorticity are =zero everywhere at t=0. The density
distribution is the same as shown in Fig. 63 (b) . Since U0 = 0 in this
case, the velocity scale is taken as U, = /Logr, and the time scale is t, =
/Lo/gr, where 9, is the gravitational acceleration. Gravity induces an

upward motion of the hot fluid with respect to the cold fluid. This relative



motion between the fluid elements also produces vorticity, gravity-generated
vorticity, as will be seen in the results. The generation of vorticity due to
gravity represents the conversion of potential energy in the field into
kinetic energy of the flow.

Fig. 72 shows the vortex elements and their velocities at time t = 3.75,
5.37 , 5.75 and 6.0. During the early stages, the density gradient is
perpendicular to the direction of gravity and the source term in Eqn. (92),
Vo/p % j, is at its maximum value giving rise to strong gravity-generated
vorticity within the density gradient zones with opposite signs on the two
sides of the jet. with the applied perturbation, the generated vorticity
rolls up and two symmetric eddies form as the buoyant column continues to
accelerate upwards under the influence of gravity. The large-scale
structures resemble those formed in the momentum-driven jet and they
propagate in the direction of the accelerating hot jet. The structures also
exihibit a high degree of symmetry with respect to the hot and cold gases. It
is interesting to observe that there are two zones of high concentration of
elements inside each large eddy, one near the leading edge and one near the
center of the structure, These structures are more spread out in the
streamwise direction as compared to the uniform density case. The plots also
show that there are zones of very strong shear between the inner edges of the
structures and the hot jet; this is due to the continuous acceleration of the
buoyant jet. The streamline plots at the corresponding times are shown in
Fig. 73 . Since the initial velocity is zero everywhere in the computational
domain and the heavy ambient fluid is always stationary, the streamlines
exist only in the region affected by the jet fluid.

The entrainment of cold fluid in this case is shown by the plot of the

temperature contours in Fig. 74 . The large eddies, initially formed of jet



fluid, grow by entraining fluid from the ambient towards the core of the jet
and then towards the eddy center. The inner spirals observed in Cases I and
II are only seen in the early stages. As soon as the cold fluid reaches the
center of the eddy, it traps a blob of hot fluid inside the large eddy and
the overall structure tends to continue its motion upwards. Moreover, the
contours show that more hot fluid by volume than cold fluid is entrained
within the large eddy and although in a geometrical sense the structures are
symmetric, their composition is certainly asymmetric with bias towards the
hot fluid. This is similar to the case of a density-stratified flow without
gravity, i.e., Case II. In order to investigate the dynamics of this jet, the
vorticity contours are plotted in Fig. 75 . As expected, vorticity is
continuously being generated due to the gravity term in Egn. (92). As the
material acceleration in the direction normal to the density gradient becomes
finite due to roll-up, baroclinic vorticity is also generated. However, as
apparent from the plots, except for small areas within the domain, the
gravity term dominates and the vorticity generated maintains one sign on each
side of the jet centerline. Roll-up leads to the formation of the observed
large structures. At later stages, the vorticity within the large structure
accumulates within two smaller eddies, one at the leading edge and the other
at the center of the large structure. These structures are, however, much
more spread out than before and small-scale roll-ups are observed everywhere.
It is interesting to observe that the intense vorticity generation at the
leading edge of the large structure is associated with the motion of the cold
fluid blob into the hot jet £fluid there. Gravity-generated vorticity tends
to render the large eddy very spotty and somewhat incoherent generating a

large structure more stratified than observed before.



The generation of circulation with time is shown in Curve 3 of Fig. 80
(a). The initial circulation in the field is zero. Equal amounts of positive
and negative circulation are generated for t>0 . It is observed that the
magnitude of the gravity generated vorticity is considerably higher than that
of the baroclinic vorticity in Case II. For t>5.0, the slope of the
circulation curve is very large indicating that the instability is extremely
strong in the non-linear stages of its growth. The mean length of the
interface is plotted as a function of time in Curve 3 of Fig. 80 (b) . Again
it is observed that the development of this instability is highly non-linear.
For t< 4.0, the interface elongation is negligible. In the time interval, 4<
t < 6, the interface undergoes considerable elongation and the final slope of
the curve is much larger than those observed in Cases I and II. This
indicates that the rate of elongation is much larger which once again

ascertains that the effect of gravity is highly destabilizing.

(iv) Case IV : A Density-Straitified Hot Jet at Moderate Froude Number

This case combines the complexities of all the previous cases. The
initial distributions of vorticity and density are as shown in Fig. 63 (a)
and (b), and the effects of gravity are considered as well. The thicknesses
of the shear layers and the density gradient layers are the same. The Froude
number used in these calculations is Fr = 4.0 . Thus, momentum should play
the dominant role but with finite contribution from gravity. The results of
this case are compared with those of Case II in which gravity was neglected.
Fig. 76 shows the vortex elements and their velocities at t = 2.5, 5.0, 6.8
and 7.8. The calculations for this case were stopped at an earlier time of
t=7.8 as compared with t=9.8 for Case II. This is because the inclusion of

gravity destabilizes the jet to a greater extent (see previous section) and



the instability develops faster and saturates at an earlier time. The large
eddies are moving upwards in the direction of the hot fluid in this case,
similar to the gravity driven jet in Case III, and contrary to Case II in
which they were moving downwards in the direction of the cold fluid. The
downward motion in Case II is due to the generation of baroclinic torque
while in Cases III and IV, the upward motion is due to the buoyancy effects
associated with the hot jet fluid. Similar to Case II, however, there is an
outer large structure which contains an inner smaller structure that becomes
more intense as the jet continues to rise due to the gravitational
acceleration of the jet core fluid. The intensification of the inner
structure is similar to what was seen in Case III where gravity-generated
vorticity around the inner density gradients was found to be responsible for
this development. The inner structure exists close to the leading edge of
the outer structure, indicating that its fluid is hotter than that of the
outer structure. The streamline contours for this case are shown in Fig. 77 .
The entrainment parameter { is calculated as 6.4 . Thus the entrainment into
the structure has increased substantially due to the added destabilizing
effect of gravity.

The entrainment enhancement due to the generation of these large scales
is shown by the contours of the temperature depicted in Fig. 78. There is
more entrainment in this case than in any previous case and the entrainment
is more strongly biased towards the hot fluid than in Case II. The
entrainment bias towards the hot fluid was observed in Cases II and III, and
is stronger here since the two effects are present. The figure shows that
the mixing structures are bigger and more convoluted than before. The
convolution results from the successive entrainment of blobs of hot fluid and

cold fluid as gravity-generated vorticity roll-up follows the roll-up of the



initial vorticity. It is observed once again that the amount of hot fluid
between the eddies in the streamwise direction is much less compared to Cases
I and II. This indicates that more of the jet fluid by volume is entrained
into the eddies. The vorticity contours shown in Fig. 79 reveal the strong
generation of vorticity around the corivoluted surfaces where density
gradients are highest. At the early stages, the vorticity rolls up in a
coherent form leading to the establishment of strong entrainment currents
observed in Fig. 77 . At later stages, baroclinic vorticity becomes
important supporting the formation of small scale structures within this
large eddy. The presence of small scales explain the very patchy look of the
mixing structures at the later stages.

The generation of circulation with time is shown in Curve 4 of Fig. 80
(a). Comparing Cases II and IV, it is immediately observed that the effect of
gravity is very dominant even at a Froude number of 4. The amount of
circulation generated is considerably larger than in Case II and perhaps more
important is the final slopes of the curves. The slope of the curve for Case
1V at t=7,8 is orders of magnitude larger than that for Case II at t=9.8. The
mean material length plot in Curve 4 of Fig. 80 (b) shows that the length of
the interface increases in a dramatic manner in the non-linear stages. The
final length of the interface is about six times the initial length as
compared to a factor of 2 for Case II. Also, the final slope of the curve for
Case IV is greater than that for Case II. Fig. 81 shows the linear growth
rate as a function of wavenumber for Case IV. It is observed that the
inclusion of gravity makes the jet more unstable. As the Froude number goes
to infinity, the curve for Case IV approaches that of Case II. Thus, the

presence of gravity is highly destabilizing.



(v) Case V : The Double Structure

In many cases of interest, as in the case of a vertical jet diffusion
flame, the vorticity layer forms as the jet boundary layer separates at the
nozzle lip while the density gradient forms as a results of the presence of
the flame which exists outside the vorticity layer. This situation can be
modeled by the vorticity and density profiles shown schematically in Fig. 82
. The thickness of the density profile is twice that of the velocity
profile, a case which is encountered when the heat from the flame zone
diffuses at a faster rate into the ambient. The momentum-vorticity layer is
perturbed by its corresponding most unstable mode which amounts to three
waves. Meanwhile, the density gradient layer is perturbed by a single wave
and the evolution of the flow is followed as before. Both perturbations are
symmetric around the‘jet centerline. The Froude number in these simulations
is two.

Fig. 83 shows the locations and velocities of the vortex elements at
t=5.0, 6.07 and 6.57. It is observed that the momentum vorticity layer rolls
up into three structures drawing both the hot jet fluid and hot fluid from
the "flame" zone into the eddy core. Since both =zones are at the same
temperature, these small structures are symmetric as seen before in the
simulations of the uniform-density jet. These small structures are moving
upwards in the direction of the jet, as seen in Case I. Meanwhile, the
interaction between the density-gradient zone and gravity produces a gravity-
generated vorticity layer outside the momentum vorticity layer. The rollup
of this layer into a large-scale structure is observed just outside the jet
vorticity layer. This is a gravity-generated structure which resembles that
observed in Case III. At later times, however, the gravity driven vorticity

layer appears to dominate the flow field by distorting the inner small



structures and then entraining them into the core of the large structure.
This results in a complicated double structure which strongly resembles
experimental observations ( Roquemore[37].) The acceleration of the hot
fluid produced by the action of gravity is clearly observed from the upward
convective motion of the large structures. In an experimental realization
of this flow, the jet fluid must be clearly marked by seeding, if these
structures are to be visualized ( Vandsburger et al. [41] and Chen &
Roquemore [42]). Fig. 84 shows the streamline contours at the corresponding
time frames. It is observed that all of the entrainment is completetly
dominated by the large scale gravity driven structure. The smaller momentum
driven eddies do not appear in the streamline plots.

The temperature contours are shown in Fig. 85 . Since the temperature
gradient is well outside the momentum vorticity layer, the small eddies do
not leave a trace on these contours. The rollup of the gravity-generated
vorticity over the zone of finite density gradient is responsible for the
convolution of the temperature gradients into the large outside structure.
This structure is formed of hot £luid from the flame zone and cold ambient
fluid. As observed before in all cases with a density gradient, there is an
entrainment bias towards the light hot fluid. This bias is manifested in
what appears to be a process in which the large structures swallows the small
structures. The large structure, formed of more hot fiuid, is moving upwards
due to gravity. The dynamics of this flow can be explained by inspecting the
vorticity contours in Fig. 86 . The momentum vorticity layer and the
gravity-generated vorticity layer are both observed in these figures. Even
though the structures associated with the rollup of the momentum vorticity
layer develops quite rapidly, the values of vorticity within the density-

gradient layer are consistently higher by an order of magnitude. At late
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times, the rollup of the gravity-generated shear layer completely dominates
the flow field.

The circulation in the flow field is plotted as a function of time in
Fig. 87 . The positive and negative components of circulation are shown
separately. It is observed that the initial increase in circulation is almest
linear. For t> 5.5, the circulation increases at a faster rate indicating
that the gravity driven structures are beginning to dominate the flow. The
mean length of the interface is plotted against time in Fig. 88 . Again it is
observed the elongation rate increases significantly towards the final time.

The final length is about twice the initial length.

(vi) Discussion:

One of the most important phenomena in turbulent diffusion flames is the
interaction between the flow field and the reaction process. Since the
reaction takes place after the reactants, fuel and oxidizer, have been
molecularly mixed, it is important that there exists a mechanism for
enhancing the mixing process to achieve higher rates of burning. The
formation of large scale structures in shear layers and jets is one such
mechanism. The study of the formation and growth of these structures is thus
necessary to form a clear understanding of how they form and how they affect
the mixing process and how they can be manipulated.

In this work, numerical simulation has been used to study the dynamics
and mixing in a vertical hot jet in a cold environment with and without the
effect of gravity as an idealized model of a vertical jet diffusion flame.
In order to approach this complex problem systematically, solutions were
obtained for increasingly more involved models. The major observations are

summarized in the following paragraph.
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The results of numerical simulations have revealed some interesting
consequences of the presence of density gradients in a flow field:
(1) A density gradient leads to more volumetric entrainment of the light
fluid than the heavy fluid, which results in a different mixture fraction
within the mixing zone than in the uniform-density case. Calculations which
do not account for the density variation are likely to yield wrong
predictions for the flame location, which appears at the =zone of
stoichiometric composition.
(2) A density gradient causes the structures to move with a velocity biased
towards that of the heavy fluid. In this study, it was found that the
convection velocity of the structures were less than the mean velocity of the
jet.
(3) The generation of baroclinic vorticity leads to the formation of small
intense eddies within the large structure which results in further mixing
enhancement. The vorticity contours reveal the presence of a number of these
small eddies.
(4) The effect of a density gradient was to always decrease the spread of the
layer in the cross-stream direction as compared to the uniform density case.
The addition of gravity in the model gave rise to more interesting
dynamics due to the generation of vorticity by gravity:
(1) Gravity-generated vorticity further increases the volumetric entrainment
of the light fluid and intensifies the small scale structures within the
large eddy. Thecefore, one might expect an increase in mixing due to the
presence of gravity.
(2) Gravity destabilizes the jet shear layers to a greater extent as seen by
comparing Cases II and IV. Gravity tends to increase the growth rate of the

eddies making the shear layers grow faster and hence reaching the collapse
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stage earlier. Thus complete mixing and burning can be achieved for a smaller
length of the combustor with the help of gravity.

(3) The hot light fluid at the center of the jet is accelerated upward with
respect to the ambient cold fluid and hence the structures move upward under
the influence of gravity.

Thus gravity leads to faster growth of the shear layers, enhanced mixing
at the cores of the eddies and an acceleration of the structures in the
streamwise direction. At low and moderate jet velocities gravity is expected
to play an important role in the development of the jet.

when the density gradient occurs well outside the momentum shear layers
as in Case V, it was shown that the gravity-generated shear layer develops
outside the momentum shear layer. These large scale structures play an
important role in transporting the ambient £fluid (air) to the reaction zone
which is located between the two shear layers. Since the flame is outside
the momentum shear layer, the small eddies are not capable of affecting the
burning rate. On the other hand the large gravity-generated structures do
have a dominant effect on the flame.

The results of the numerical simulations of Case V yielded good
qualitative agreement with Roquemore’s experimental results [37]). liore
importantly, the numerical study shows that the physical parameters of the
problem, such as the density ratio, the thicknesses of the jet shear layers
and those of the density gradient zones, the Froude number and the forms of
the perturbation play very important roles in determining the dynamics of the
problem. This also indicates that these flows can be effectively controlled
to yield desired results by changing these parameters.
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FIGURE CAPTIONS

Fig. 63. Schematic of the initial profiles for (a) the velocity and the
vorticity; (b) the density and the density gradient.

Fig. 64. The locations and velocities of the vortex/transport elements at t =
2.5, 5.0, 7.8 and 9.8 respectively for Case I.

Fig. 65. The streamline contours for Case I at t= 2.5, 5.0, 7.8 and 9.8
respectively.

Fig. 66. The normalized temperature ( T = 1/p) contours for Case I at t= 2.5,
5.0, 7.8 and 9.8 respectively.

Fig. 67. The vorticity contours for Case I at t= 2.5, 5.0, 7.8 and 9.8
respectively. The contnuous curves represent negative vorticity and the
dashed curves signify positive vorticity.

Fig. 68. The locations and velocities of the vortex/transport elements at t =
2.5, 5.0, 7.8 and 9.8 respectively for Case II.

Fig. 69. The streamline contours for Case II at t= 2.5, 5.0, 7.8 and 9.8
respectively.

Fig. 70, The normalized temperature ( T = 1/p) contours for Case II at t=
2.5, 5.0, 7.8 and 9.8 respectively.

Fig. 71. The vorticity contours for Case II at t= 2.5, 5.0, 7.8 and 9.8
respectively, The contnuous curves represent negative vorticity and the
dashed curves signify positive vorticity.

Fig. 72. The locations and velocities of the vortex/transport elements at t =
3.75, 5.37, 5.75 and 6.0 respectively for Case III.

Fig. 73. The streamline contours for Case III at t= 3,75, 5.37, 5.75 and 6.0
respectively.

Fig. 74. The normalized temperature ( T = 1/p) contours for Case III at t=
3,75, 5.37, 5.75 and 6.0 respectively.

Fig. 75. The vorticity contours for Case III at t= 3,75, 5.37, 5.75 and 6.0
respectively. The contmuous curves represent negative vorticity and the
dashed curves signify positive vorticity.

(B

Fig. 76. The locations and velocities of the vortex/transport elements at t =
2.5, 5.0, 6.8 and 7.8 respectively for Case IV,

Fig. 77. The streamline contours for Case IV at t= 2.5, 5.0, 6.8 and 7.8
respectively.

Fig. 78. The normalized temperature ( T = 1/p) contours for Case IV at t=
2.5, 5.0, 6.8 and 7.8 respectively.
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Fig. 79. The vorticity contours for Case IV at t= 2.5, 5.0, 6.8 and 7.8
resgectively. The contnuous curves represent negative vorticity and the
dashed curves signify positive vorticity.

Fig. 80. (a) The cumulative circulation as a function of time. The positive
and negative components of circulation are represented separately; (b) The
average material length as a function of time. The length is normalized by
the value at t=0. Curves 1, 2, 3 and 4 represent cases I, II, III and IV
respectively.

Fig. 81. The linear growth rate of the instability as a function of
wavenumber for cases I, II and IV respectively.

Fig. 82, The schematic of the velocity and density profiles for Case V.

Fig. 83. The locations and velocities of the vortex/transport elements at t=
5.0, 6.07 and 6.57 respectively for Case V.

Fig. 84. The streamline contours for Case V at t= 5.0, 6.07 and 6.57
respectively.

Fig. 85. The normalized temperature ( T= 1/p) contours for Case V at t= 5.0,
6.07 and 6.57 respectively.

Fig. 86. The vorticity contours for Case V at t= 5.0, 6.07 and 6.57
respectively. The continuous contours represent negative vorticity and the
dashed curves signify positive vorticity.

Fig. 87. The cumulative circulation as a function of time for Case V. The
positive and the negative components are plotted separately.

Fig. 88. The average material length as a function of time for Case V. The
length is normalized by the value at t=0.
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t = 5.0

t =2.5

t=9.8

t=17.8

Figure 66
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VI.4.2. THE SINUOUS MODE

(i) Case I : The Uniform Density Jet

The vortex/transport element plots for the sinuous mode are shown in Fig.
89 at t = 2.5, 5.0, 7.5 and 10.0 respectively. Unlike the varicose mode, the
sinuous instability grows in an antisymmetric manner. The centerline of the
jet in the varicose mode does not undergo any distortion. However, in the
case of the sinuous instability, the core of the jet is twisted into a
snakelike form and hence the name "sinuous" is used to describe this mode. It
is observed that the initial perturbation of the shear layers is amplified
and the resulting coherent structures resemble the Karman vortex street
pattern in wake flows. The linear analysis for two-dimensional jets [25]
predicts the sinuous mode of the instability to be more unstable than the
varicose mode. However the growth rate of the jet shear layers depends on a
number of factors such as (1) the ratio of the thickness of each shear layer
to the distance of separation between the shear layers (2) the ratio of the
wavelength of perturbation to the thickness of the shear layer (3) the
distribution of vorticity in the shear layers and (4) the Froude number.
Therefore, if the distance of separation between the shear layers is very
large, the growth of one does not affect that of the other and hence the
growth rate for the varicose and the sinuous mode may very well be the same.
In this case, since the shear layers are close enough to influence one
another, it does appear that the sinuous mode is the more unstable mode. The
arguments supporting this observation are discussed below. The corresponding

streamline contours for this case are shown in Fig. 90 . There exists a
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direct correlation between the degree of destabilization of the flow and the
amount of volumetric entrainment into the coherent structures. The volumetric
entrainment is estimated by calculating the entrainment parameter { as was
done for the varicose mode. The value of { at t=10.0 is found to be 0.8 which
is greater than what was calculated for the varicose mode. Thus there appears
to be a greater destabilization of the flow field for the sinuous mode.

The normalized temperature contours are shown in Fig. 91 for the same
time frames. Tempertaure is a passive scalar in this case since the effects
of baroclinic vorticity are ignored. It is interesting to note that most or
all of the jet fluid is entrained into the coherent structures at late times.
This is in contrast to the varicose mode, wherein most of the jet fluid at
the center of the jet did not get entrained. Thus one might expect more
mixing and higher burning rate for the sinuous mode. The vorticity contours
for the same case, shown in Fig. 92 , reveal that most of the vorticity is
accumulated within the structures. The vorticity is conserved along the
particle path since generation effects are absent. Thus the two shear layers
retain vorticity of the same sign as the initial vorticity.

The total circulation in the field is shown as a function of time in
Curve 1 of Fig., 105 . The positive and the negative circulation are shown
separately. Since there 1s no geaeration, the circulation curves are
perfectly horizontal. Curve 1 of Fig. 106 shows the mean length of the
interface as a function of time. It is observed that the elongation of the
interface is slightly larger for the sinuous mode than the varicose mode
which is consistent with the earlier observation that the sinuous mode is

more unstable than the varicose mode.
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(ii) Case II : The Density Stratified Jet, without Gravity

The initial velocity and density profiles are as shown in Fig. 63 . The
density ratio is 4.0 . Therefore, the extra dynamic effect is the generation
of baroclinic vorticity due to the interaction between the density gradient
and the material acceleration., Fig. 93 shows the locations and velocities of
the vortex/transport elements in the flow field at t=2.5, 5.0, 7.5 and 10.0
respectively. The convective motion of the eddies in the downward direction
is clear even at very early times. A similar behavior was observed for the
varicose mode and the density stratified shear layer, wherein the heavy
stream tends to drag the structures along with it. At late times, it is
obvious from the material interface plots that less volume of the high
density fluid (in comparison with Case 1I)is being entrained into the
structures. This observation is again consistent with what has been cbserved
before. Denisty stratification reduces entrainment from the high density
stream and increases entrainment from the low density stream. Also to be
noted is the presence of an intense zone of vorticity within the large scale
structures at late times leading to the formation of a 'double structure’.
This inner structure is solely the result of baroclinic vorticity generation
which enhances the vorticity within the core of the eddy while counteracting
the vorticiéy at the outer edge of the eddy. Fig. 94 shows the corresponding
streamline contours for Case II. The entrainment parameter { is calculated
from the streamfunction values in the flow field. The value of { at t=10.0 is
3.7 . This value is higher than the { for Case II of the varicose mode. The
greater destabilization of the flow is clearly observed from the streamline
plots. It is seen that the inner zone of intense vorticity within the

structure sets up stronger entrainment currents,
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The normalized temperature contours (T=1/p) are shown in Fig. 95 at the
corresponding time frames. In this case, the temperature is an active scalar
since temperature gradients lead to the generation of vorticity. At late
times, it is seen that the size of the eddy itself is larger than what was
seen in Case I. This suggests increased volumetric entrainment into the
structures. Fig. 96 shows the corresponding vorticity contours. The early
development is similar to what was observed for Case I. At late stages, as
the material acceleration becomes significant, the generation of vorticity
results in the formation of a number of small scale srtuctures. It is
observed that negative vorticity is being generated at the top side of the
positive eddy and positive vorticity is being generated around the bottom
side of the negative eddy. The intensification of vorticity in the centers of
the coherent structures is clearly seen. This leads to a stronger eddy and
delays the saturation of the instability.

Curve 2 of Fig. 105 shows the total circulation in the flow field as a
function of time. The positive and the negative components are summed
separately. The circulation increases from its initial value due to the
effects of generation. Equal amounts of positive and negative circulation are
generated so that the net circulation in the field remains unchanged. Curve 2
of Fig. 106 shows the mean length of the material layers as a function of
time. It is observed that density stratification del.ys the growth of the
interface initially as compared to the uniform density case. A similar
phenomenon was observed in the case of the shear layer where the effect of
density stratification was to decrease the linear growth rate. At late times,
i.e., in the non-linear range, the density stratification produces a greater
destabilizing effect, Fig. 106 shows that the density stratified curve

'catches up’ with the uniform density curve at about t = 10.0. More



importantly, the final slope of t(he growth of the density stratified
interface is larger than that of the uniform density interface. Thus the rate

of destabilization is higher with density stratification.

(iii) Case III : A Very Slow Moving Density Stratified Jet

This case is similar to Case III of the varicose mode. The initial
momentum in the flow field is neglected, i.e., the initial flow field is
stationary under the influence of gravity. The initial density profile is as
shown in Fig. 63 (b) and the flow variables are scaled in terms of the

characteristic values t_ = /Lo/gr and U, = /L . L, is the density

o 9r
gradient thickness and 9, is the gravitaticnal acceleration. The perturbation
of the density gradient interface leads to the generation of vorticity and
the flow becomes unstable. Fig. 97 shows the locations and velocities of the
vortex/transport elements at t=2,5, 3.75, 5.37 and 6.0 recpectively. The
effect of gravity is to accelerate the column of hot fluid upwards with
respect to the cold ambient fluid, This is observed in tie transport element
plots wherein the the elements at the center of the jet possess a higher
upward velocity than those on the side of the ambient. At late times, the
interface goes unstable by rolling up to form the coherent structures. The
structures also propagate in the upward direction due to the effect of the
accelerating fluid. Once again, the development of an intense inner structure
is observed within the eddies. The corresponding streamline contours are
shown in Fig. 98. The initial streamlines are =zero since the flow field is
stationary. The flow is set into motion due to the generation of vorticity

and the streamlines show the development of the flow in the initial stages

and the subsequent rollup and entrainment of fluid into the structures.



Fig. 99 shows the normalized temperature contours at the corresponding
times. Since the scalar is non-diffusive and conserved, the contours reflect
what was observed in the material interface plots. Fig. 100 shows the
vorticity contours for the same time frames. The initial generation of
vorticity is due to the interaction between the density gradient and gravity.
The figure shows the smooth development of the contours at the early times.
As the interface goes unstable, the effects of material acceleration also
become important and the vorticity distribution begins to take on a patchy
appearance. The presence of a large number of small scales and large scalar
gradients would lead to an efficient mixing process if molecular diffusicn
were allowed to be active.

Curve 3 of Fig. 105 shows the total circulation in the flow field with
time. The initial circulation is zero since the flow is stationary. The rate
of generation of circulation in this case is much larger than what was
observed for Case II. This indicates a greater destabilizing effect of
gravity with respect to material acceleration. Also, the rate of
destabilization, i.e., the slope of the curve, increases with time. Curve 3
of Fig. 106 shows the mean elongation of the interface with time. The highly
non-linear development of the instability is clearly observed. For t< 4.0,
the interface elongation is negligible., But for 4.0< t < 6.0, the interface
length increases by about thriee times the initial length. Also the final
slope of the curve is very large compared to Cases I and II. This large
degree of non-linearity is a characteristic feature of gravity dominated
flows.

(iv) Case IV : A Density ftratified Jet at a Finite Froude Number
The initial velocity and density profiles for this case are as shown in

Fig., 63 (a) and (b). The density ratio between the ambient and the jet fluid



is 4 and the Froude number is 4.0. Therefore, this case is the same as Case
II except that gravity plays a role here. Fig. 101 shows the locations and
velocities of the vortex/transport elements at t= 2.5, 5.0, 6.5 and 7.5
respectively. The calculations were stopped at an earlier time compared to
Case II because gravity causes the structures to develop faster and leads to
an earlier saturation of the instability. It is observed that the downward
motion of the structures seen in Case II is counteracted by the effect of
gravity. The structures appear to be more or less stationary. It is
interesting to note that in the case of the varicose mode, gravity not only
counteracted the downward motion but also propagated the structures in the
upward direction at a small, but finite convection velocity. This effect of
gravity is slightly diminished for the sinuous instability. The faster growth
of the instability is clearly observed by comparing Cases II and IV at t=5.0
and 7.5. At late stages of development, zones of intense vorticity are
observed within the large scale structures. These intense structures appear
earlier in time for Case IV and are more in number as compared to Case II.
Fig. 102 shows the streamline contours for the corresponding time frames.
The entrainment parameter  as calculated from the streamfunctior values
turns out to be equal to 5.0 at t=7.5 . This value is less than what was
observed for Case IV of the varicose mode. This phenomenon is consistent with
the earlier observation that gravity is less effective for the sinuous
instability. One possible explanation for this effect could be that the
heated central portion of the jet in the varicose mode remains without
distortion or entrainment. This provides a constant impetus for the central
portion to accelerate upwgrds. In the case of the sinuous mode, the central
portion of the jet is entrained into the eddies and is not able to provide

the upward moticn.



Fig. 103 shows the normalized temperature contours at the corresponding
time frames. The faster development of the instability as compared to Case II
leads to larger entrainment into the structures. Fig. 104 shows the vorticity
contours at the same time frames. The effects of gravity generated vorticity
are obvious from the plots. The intensification of vorticity in the centers
of the eddies at late times is clearly observed. Thus the effect of gravity
even at a moderate Froude number is to destabilize the flow to a greater
extent.

Curve 4 of Fig. 105 shows the total circulation in the domain as a
function of time. It is observed that the initial part of the curve for t <
2.0 is similar to that of Case II. But the curves begin to deviate from each
other around t= 4.0 and the highly non-linear feature of gravitational
effects becomes evident at later times. The amount of circulation being
generated increases at a fast rate and the amount of circulation in the field
at t=7.5 is about five times that for Case II at t=10.0 . Also, the slope of
the curve keeps increasing with time and is an order of magnitude larger than
the final slope for Case II. Curve 4 of Fig. 106 shows the change in the mean
length of the interface with time. Again, the highly non-linear development
is observed. For t < 4.0, the 1length is almost equal to the initial length
and in the time interval 4.0 < t < 7.5, the interface length becomes five

times its initial length.
IV. 5. CONCLUSIONS
The results for the study of the sinuous instability essentially supports

all the observations made for the varicose mode. Gravity destabilizes the

flow to a greater extent and leads to an earlier saturation of the



instability. The effect of baroclinicity is to produce a large number of
small scales which can be very effective in enhancing mixing.

Comparing the varicose and the sinuous modes of the jet instability, it
is observed that sinuous mode is more unstable in the absence of gravity.
This observation is supported by the results of linear analysis for two-
dimensional jets [25] wherein the sinuous mode was found to more unstable
over the entire range of wavenumbers. On the other hand, when gravity is
included into the simulations, it is not obvious as to whether one mode is
more unstable than the other. The generation of circulation for the two modes
are very similar. However, the entrainment parameters and the motion of the
eddies suggest that the varicose mode might be more unstable in the presence
of gravity. Unfortunately, neither experimental nor theoretical results are
available to support this hypothesis.

The simulations were successful in providing qualitative insight into the
effects of density stratification on jet flows. The interactions between the
existing vorticity in the field and that generated due to baroclinic effects
(material as well as gravitational acceleraticn) were studied in order to
assess the amount of entrainment and mixing within the structures. It is
found that entrainment is a strong function of the density ratio and

gravitational effects.



FIGURE CAPTIONS

Fig. 89. The locations and velocities of the vortex/transport elements at t =
2.5, 5.0, 7.5 and 10.0 respectively for Case I.

Fig. 90. The streamline contours for Case I at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 91. The normalized temperature ( T = 1/p) contours for Case I at t= 2.5,
5.0, 7.5 and 10.0 respectively.

Fig. 92. The vorticity contours for Case I at t= 2.5, 5.0, 7.5 and 10.0
respectively. The contnuous curves represent negative vorticity and the
dashed curves signify positive vorticity.

Fig. 93. The locations and velocities of the vortex/transpcrt elements at t =
2.5, 5.0, 7.5 and 10.0 respectively for Case II.

Fig. 94. The streamline contours for Case II at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 95. The normalized temperature ( T = 1/p) contours for Case II at t=
2,5, 5.0, 7.5 and 10.0 respectively.

Fig. 96. The vorticity contours for Case II at ¢t= 2.5, 5.0, 7.5 and 10,0
respectively. The contnuous curves represent negative vorticity and the
dashed curves signify positive vorticity.

Fig. 97. The locations and velocities of the vortex/transport elements at t =
2.5, 3.75, 5.37 and 6.0 respectively for Case III.

Fig. 98. The streamline contours for Case III at t= 2.5, 3.75, 5.37 and 6.0
respectively.

Fig. 99. The normalized temperature ( T = 1/p) contours for Case 1II at t=
2.5, 3.75, 5.37 and 6.0 respectively.

Fig. 100, The vorticity contours for Case III at t= 2,5, 3.75, 5.37 and 6.0
respectively. The contnuous curves represent negative vorticity and the
dashed curves signify positive vorticity.

Fig. 101. The locations and velocities of the vortex/transport elements at t
= 2.5, 5.0, 6.5 and 7.5 respectively for Case IV.

Fig. 102. 7The streamline contours for Case IV at t= 2.5, 5.0, 6.5 and 7.5
respectively.

Fig. 103. The normalized temperature ( T = 1/p) contours for Case IV at t=
2.5, 5.0, 6.5 and 7.5 respectively.

Fig. 104. The vorticity contours for Case IV at t= 2.5, 5.0, 6.5 and 7.5
respectively. The contnuous curves represent negative vorticity and the
dashed curves signify positive vorticity.



Fig. 105. The cumulative circulation as a function of time. Curves 1, 2, 3
and 4 represent cases I, II, III and IV respectively. The pcsitive and
negative components of circulation are represented separately.

Fig. 106. The average material length as a function of time. Curves 1, 2, 3
and 4 represent cases I, II, III and IV respectively. The length is
normalized by the value at t=0.



195

i~
’
, Xz
Ve Pt RARE ' — M P .l',"I’I"-" y
Lt ey r -— 4 G '
R L KA N LN s ‘",
O \l\'|l\|ll'\"-llf v ."".“‘I\A“".-‘«:l//
(AN NN RN AR [N o "'"‘\":_ ~u
BEIRNAY ‘ . '
h\ ’
YAy
k Vo,
Vo
Al

(o]

f

RAAYIRARIL) — N

. ‘e .I"I' —
- v

f ; ARYY
I 1A M N '
O TN SO S e
’ R R
",' ° -‘\\ ‘\.\\\\\Q‘ ~
y - NORARE AN

0.0

Figqure 89






197

t = 2.5 t=5.0

T

T

t=7.5 t = 10.0

Figure 91



l':,, "r.-l '
'y Ml
' h.’\l\.ul '
[ TR T I
l’q.’ .':pl \
l"ﬂl‘,i\!\" \
||...,; A\t Y
'l ~ ‘\‘ ‘
' ‘:\"\,‘:\‘\'ﬂ\ '
T A IIINY
L T 1) |
ke orl
' “\.‘.. ,' Ou,' ]
\ “‘u-‘\"u,. ]
Viteag b, ¢
Ul
[T T LI
1 i 1
' ’Jo “'l '
Lot 1
L 'Uo"
(L3 (Y
|,-m\‘ ‘siq 1
EI
n"u‘lﬁ,\‘.‘ W
) by ”\‘“u \
) o] v )
(RN 'n“\u \
RIS
v vy \" Moy
1l lew |
Vi Dideng
1 1 8y
1 1onai T Sy g
| tiner Yom |

R ICLIK

t = 2.5

198

Figure 92

t = 5.0




'l'| I“'
'*. P '/"".
. o
I ..'||l""' N
Ciae ..--'u-:,.. SN
lnn.' ,-"""'u "|l"
. ! I
Vi :\‘.:!\\"\\ ',I‘
L »\\\\‘\‘\" A} ".’
e >.""“\\.- ot
(LN .“v'.\\l““. L
R . |
'I'. \“‘\‘\ '|I
) R et g
X Lyt Py L
L N \,..\,\ 0
AR R RN b .
' .
N ,”ifIl(,.‘: o
eh .'u"“”l""‘ iy
[ ,',';Illl"'l" e
L .l',““I', '
.,u-',lul/l'l" o
LI "ltll"lI’.' NN
N "'.lfll"'ll' A
S .clllil“"' O
,ive _ulll'|”|ln )
||l: -\"‘.”'l ""
P ERRRERAL v
' yvar v Y L
IERY) \~\\\\"'. ."'
Nl RSN s
1 v ‘4 L :
R N N "'
n I\“\“\\\' s
A u\“\\. ]
A EER LN Wi !
L\"'. “"“\H‘\‘ L
AN ’”'””:h"' e,
) * .
l\‘,\ ,-n"'“:". b
'
T ,4|I”H/:" [
.
v .'/,Huuu. e
, A/ul“""
I ITERN N
¢ (NUAN

199

0.0

Figure 93

t =5.0







201

t =5.0

t = 2.5

t = 10.0

t =7.5

Figure 95



202

o
o, Lt
1At
b
Vi el
llln"g “"\.:'l lt
L)
: lm.ll \‘_..\\ \‘
||'rr‘_' _\;\!‘\\ \
|‘|~ o '
LR
bR N e oy
‘ \ Jl‘ 1) |"
VIt ml
N
4
e
e TN
1 Vdd' ¥ ‘I
i !
;v..u’-' ‘t}:‘l ,'
et
"l n:-l'"!l :
B g
iy
' sm:' ACIL IR
1 Wiy ) XWEBY |
Viwh LBl
\‘\::-. [ 3 1]
wLum
| vy’ eS|
KWL T

t IRy V97 /
S

t = 2.5 ' t = 5.0

Figure 96



203

. :::.,“
'\ 'lv.\"‘|'- ~
..‘.,“\\'. "~
‘-""'nl"l _ .
-""' [ r
l||l.:‘-\'l —_—
\"u,:'u'
,.l"v, vt "
..u"-.:"‘ . .,h\”‘-,,
'I."'Il C J"“"'ll"".
' e e TR R
[ i
"llllf,l'l' ".||/‘|l|"|'
W
. J"Ill‘| 'r,,ll"”(l,-,l
! l".‘lt o B l{('t"'l B
) [ (] Vil X
. .""Hu’ S RN
.,','un.“ A f lll(lf| P
et Yy .',,“” I
. 'Zu..""," _.(, |l|/|"‘f/
T:\-\f""' "'lllﬂl'lﬂﬂ
».\-n"“'w '(;\llu'lan
.\\o,l"u\v._. ',I|l|“:||=’
}“"'-'.“"-a Fe) '\\‘-\\}!'n'llt
.'l\'l|"‘|'. . \'u‘.\\"l'\\'c:
."\"'I e Je} A \‘I.\\"\\-
! eyt Y VALY IR
. LI ] N \\‘\ \‘\,\‘
'”'"'I'"' "~~.‘\\\\\\'\““"
l":"t,:':.. .I“\II‘\\\"“
st Ve vaan i Vi \]'|lll,.
”,u.“.’v:,‘ ,|||‘|l\|‘\"",
,l-""'l;"' "'.'l"'/lll"- .
/““I""': :’.'l';ll'l‘l:"
"qu.,“;_' ”I({ ’Ii“,,"
lllllll"lll, :,,I(f IRRT N H
"'|II1||' ' "'(’"lll|"l,/
','.Iln|‘|"l ,,”I|fllll,v'l
e "|||||"'.' 'u,’llI'(l,'Il
".llg' [ ("f"/[
' R P v !
' L it
’ \I\l"\.: -"ll’|||l”|'n"“
T 1, .f:\l”,l'u\.
() P '\'l\'\'l‘l”;'
. ‘\\‘\'I‘l\'!l :
..r_o AL l\\\"u.‘
RN ARRRRE
\\m'\\‘\‘,m--
R A
| [Py ‘\\l“‘\l\'a'“.
‘ L
I

o
-0
Te]
—‘D'
\'Q‘\\ ‘~.€

A
an“
e

0.0

Figure 97






205

T T T T T T T T 1 ¥ T T
\ 1 '- -
1E|2
- - -1
% N - -1
3" |
\
[134
i b B 1
!
l
1 1 1 [ 1 1 L 1 1
t = 2.5 t = 3.75

t = 5.37 t = 6.0
Figure 99



206

L

[N Q\ﬂ't\

' mgavantd

11w T\

WV oaag, Ve ah s

Vs < Tl I\s L
1] .

R

t = 2.5 t = 3.75

Figure 100



~
.
! [N v —r\
N 'l.'l" 'I' e —
|,,'I,|ll'.', PRI
g LT B B R .
y .
' ,:,mnn.':- '
Lt A‘n«nlln'-. .‘
Ve '.,.\\\‘l'\\'.' )
. "',""\\'.‘
. C'\l\\\“"‘
Ve Vet
e \‘\\\I\\.\'\\_ .
R l|‘ll\,'l',\
AN “\illl‘\‘a"
P «||III|.|I‘
v AN NI R ,
L et o
. "ll“l’|l:,',. A
(] ’
. o teen! sl e
. T v ! L
X "',,.'l",. et [Te}
‘ L ‘ (I .
. rt i )
’ . -
’ celiiente, 0
LN e, f
[ ‘y .
. A IR IS N I I [
. ey ! i .
. .,I.nulll‘\v ,
A _-‘\|\l||\\‘l::
N L L NN !
f \|"'|\\“.\. .
.,\\'\\|‘ AR
e ,‘\\\\l“l‘\‘..
et '\“"“':‘.‘
Ve Tantbvagy e
1
[ ”illl.\‘,.' i
RN RN )
v o .
s e e,
. :
. ,I',I"::;'l R
R PR T DS ERR O
v, ! ‘
. Y] I’I”l(l,, ve, .
. RN P , . o)
’ Ll i I XN ——
"’ .0 9.”
53°C- 0 C
t = 2.5
(ad]

\
AT TN
l.iﬂ‘. o

<o

\wms? e

R
N

-
= e
-
.
' 'y %

- %
- %",
DAY

'l
i
‘0

0.0

Figure 101

e . .
// r//ﬂ‘- N~ Y A
LA "..‘\“

g

-2

C







t-z's

. t-6.5

209

t- 5.0

o | C , n}élLkﬂﬂa*\\
7 ’

t = 7.5




210

'mr’b-\ 3

- IR wwh

i Vimag!yigeemit
"m.,.umv
s
- :!sc:‘ﬁ"v
Jlecrtannt
,,J“u,wl,
5 e midd
s bl
hinEiucr!
- I'“'hl"“‘.‘l
R
I NPT \\EH
Ay W
\

1.
el
= ] \d\‘\‘.-ll
um.‘,-u
Ve 1 s
) g Jamd)
o 11t 0ol 7 Sumee |

t = 2.5 t - 5.0

Fiqure 104



211

CUNMDLATIVE CIRCULATINN .va. TIHME

0.0

I

110.0
—

ACUILAT TON

\

\
\
\

et

1R
|l ..'.
\.
\
!

J.0

sSSTaTT

UMULATIVE
0

-110.
i

-

[aw]

=)

£l

' 0.0 2'.0 1.0 5.0 3.0 In.0

TIME
Figure 105
MEAN LENGTH NF INTERFACE

]

0 4

~

|

L b

e ———
-
~

ri

.0

TIME

1 1 1
n.0 2.0 1.0 6.0 8.0 10.0

Piqure 106



212

VII. THE NUMERICAL SIMULATION OF A JET DIFFUSION FLAME

VII. 1. INTRODUCTION

A generic example of a diffusion flame is that of a fuel jet issuing out
of a nozzle and mixing with the ambient air followed by chemical reaction and
heat release. The diffusion flame is therefore governed by the amount of
mixing that can be accomplished between the fuel and the oxidizer. From this
point of view, it is crucial to understand the dynamics of mixing in a
turbulent flow field in order to improve the burning efficiency. Also, the
effects of turbulence-combustion interactions are very important. It is
necessary to understand how the heat release affects the flow and
consequently the mixing process. The effects of buoyancy are also considered
in the physical model. The role of large scale structures in enhancing mixing
and chemical reaction has been the subject of a number of studies [43,44].
Recently, the effect of buoyancy on jet diffusion flames has attracted a
great deal of attention [37,45].

VII. 2. DESCRIPTION OF FLOW GEOMETRY

The schematic of the flow is shown in Fig. 107. The velocity profile is
similar to the one used in the study of the non-reacting jet. However, the
initial temperature, or the density, is the same throughout the flowfield
since the fuel as well as the oxidizer are at room temperature before the

onset of reaction. The low velocity stream is the oxidizer and the high
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velocity stream is the fuel. The shear layer between the two streams goes
unstable and rolls up to form the large scale structures. The role played by
these coherent structures in enhancing mixing and promotirig chemical reaction
is studied in detail. For the sake of simplicity, only the varicose mode of
the jet instability is analyzed.

VII. 3. GOVERNING BQUATIONS

The non-dimensional governing equations for the jet diffusion flame are

given below.

®e Lwexwm-ww.w (93)
P
Reactants (1) + Oxidizer (r) —-5-—> Products (1l+r) (94)
g%'._%,_ v2T+—I—;‘f QW (95)
e
dc 1 2 A, -
e e
dc 1 2 .
$O= 7= Y Co-ReW (97)
e e
W o= GG, (98)
W = pCpCyexp(-T/T) (99)

The chemistry is governed by a single step, second order reaction wherein
a single unit of mass of fuel reacts with r mass units of oxidizer to form

(1+4r) units of products. r is assumed to be unity in all the cases considered
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in this study. The vorticity equation has an additional term that includes
the effect of flow divergence. The equations are non-dimensionalized by the
characteristic values Uo for velocity, Lo for length, T, for temperature and
C, for concentration. Uy is given as U= AU/2, AU being the velocity
difference between the jet and the ambient; Lo is the characteristic
thickness of the shear layer given by L= 2/2 o, o being the standard
deviation of the Gaussian vorticity distribution. T, is the room temperature
and C_ is the free stream concentration of the species. A, is the pre-
exponential factor and is given by A = (A L, °o)/Uo . A is the constant in
the Arrhenius rate expression. The non-dimensional activation energy is
defined as Ta = E/(R To) where E 1is the dimensional activation energy and R
is the universal gas constant. The non-dimensional heat release parameter Q
is the enthalpy of reaction normalized by Cp To and signifies the increase in
temperature caused by the complete burning of one mass unit of fuel.

Simulations are conducted for two source terms; one without exponential

dependence , Eqn.(98) and one with exponential dependence on temperature,

Egn.(99).
VII. 4. RESULTS OF NUMERICAL SIMULATIONS

The flow field is perturbed symmetrically in order to simulate the
varicose mode. The amplitude of perturbation is 0.05 X, A being the
wavelength of perturbation. Simulations were conducted for the non-reacting
as well as reacting flow fields in order to draw appropriate comparisons. The
initial set of simulations for the reacting flow are done without temperature
dependence. The Peclet number for all the reacting cases is assumed to be

equal to 1000 and the non-dimensional heat release parameter Q is 3.0 .



215

VII. 4. 1. ZACI'IVATI(NWM(W-;:CFCO)

(i) Case I : Non-Reacting Flow:

The velocities and locations of the vortex/transport elements at t=2.5,
5.0, 7.5 and 10.0 respectively are shown in Fig. 108. The development of the
flow is very similar to what was observed for the uniform-density jet flow in
section IV. However, in this case, the amplitude of perturbation (€ =
0.05)\)is higher than what was used in section IV. The instability grows by
entraining fluid from both streams and ultimately saturates upon which fluid
begins to rejoin the free streams. The structures appear to be convecting in
the streamwise direction due to the effect of the induced velocity across the
line of symmetry. Fig. 109 shows the corresponding streamline contours. The
volumetric entrainment within the structure increases with time until the
instability saturates. This is indicated by the increasing number of
streamlines that form closed contours around the structure. The motion of the
centers of the eddies is also clearly shown by the streamline plots.

Since the temperature is wuniform throughout the flow field, the
normalized temperature contours are not shown for this case. Fig. 110 shows
the fuel concentration contours for the different time frames although there
is no reaction in the flow field. Thus, the fuel concentration can be thought
of as a passive, conserved scalar in this case. By tracing the Cp= 0.5
contour, it is found that more of the jet fluid by volume is being entrained
into the eddies. Fig. 111 shows the vorticity contours at the corresponding
times. Since the flow has no density gradients, the vorticity is conserved
along the material path. Therefore, the total circulation in the flow field

in unaltered and the vorticity contours essentially follow the material line
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plots. Therefore, the cumulative circulation curves are horizontal as shown
in Curve 1 of Fig. 132. Curve 1 of Fig. 133 shows the mean length of the
interface as a function of time. The mean length is obtained as an average
over the length of all the material layers wused in the calculations. The

final length is about three times the initial length.

(ii) Case II : A, =0.0625, W = p Cp o

The source term for the reaction is proportional to the concentrations of
fuel and oxidizer and is independent of the temperature. The Damkohler number
or Af is assumed to be small, i.e., the flow is fast compared to the speed of
reaction. Fig. 112 shows the location and velocities of the vortex/transport
elements at t=2.5, 5.0, 7.5 and 10.0 respectively. Since the speed of
reaction is very slow compared to the flow, the growth of the structures is
very similar to what was observed in the non-reacting case. Although, after
close inspection of the material lines, some effects of chemical reaction do
become clear. The eddies appear to have expanded due to the heat release
taking place inside. The vorticity at the center of the structures appears to
be diffuse in contrast to the concentrated structures in Case I. From
observing the material lines at the late stages of development, it is clear
that heat release has slowed down the growth of the instability. There is
less entrainment of the ambient fluid into the eddies due to the effects of
the expansion field. Fig. 113 shows the product concentration contours at the
corresponding time frames. Due to the nature of the source term, the initial
reaction takes place in zones where concentrations of fuel and oxidizer both
exist. Since the reaction rate is independent of the temperature, the initial

reaction is very strong inspite of the reactants being cold, i.e., there is



Lo

no ignition delay. As the structures begin to rollup, a strong strain field
is generated in the flow. It is observed that the product formation in zones
of large positive strain is inhibited. At late times, all of the products are
present in the cores of the eddies and the braids are completely devoid of
reaction. The srong strain in the flow field blows out the flame and the
reaction proceeds in zones of negative strain, i.e., the centers of the
eddies. Also, the maximum amount of mixing takes place in the cores and since
the reaction rate of the diffusion flame is critically dependent on mixing,
most of the combustion is limited to the cores. Fig. 114 shows the
corresponding fuel concentration contours. It is observed that some of the
fuel in the center of the structure has been consumed as a result of the
reation.

Fig. 115 shows contours of the source term W for a single structure at
the same time frames. The contors are shaded to indicate the magnitude of the
source term. The darkest shade indicates a value between 66% and 100% of the
maximum value of W. The lighter shade indicates a value between 33% and 66%
of the maximum value of W. The magnitude of the source term can be thought of
as a potential for chemical reaction. It is interesting to note that the
source term always has a finite value even in regions of high strain although
there is no product formation. This can be explained by looking at the
governing equations for the species concentrations. The amount of reactants
consumed at a point in the flow field is a sum of the convective, diffusive
and the source terms. Although the source term may have a finite value in
regions of high positive strain, the convective and the diffusion may
counteract the effect of the source. Thus there is no net effect on the
formation of products. The reaction appears to be taking place in a

distributed zone inside and around the large scale structures. The turbulence



in the field has resulted in an increase in the burning area or reaction
zone. From Fig. 115, it is observed that the magnitude of the source term is
smaller in the centers of the eddies as compared to the edges of the
structures. This is because the cores have already reacted to form products
and the reaction rate in these regions are smaller. The vorticity contours
for this case are shown in Fig. 116. The initial development of the vorticity
field is very similar to what was seen in Case I. The effects of vorticity
generation are insignificant since both halves of the jet more or less
maintain their initial signs of vorticity. However, at late times, it is
observed that the magnitude of vorticity within the structures is smaller
with respect to Case I. This is because the expansion field within the
structures tends to weaken the local vorticity. In this case, the magnitude
of reaction being small, the effects of expansion are not very obvious.

Curve 2 of Fig. 132 shows the cumulative circulation in the flow field as
a function of time for this case. The initial density gradients in the field
are zero. Therefore, the generation of circulation takes place only after a
certain amount of products have formed. It is interesting to note that the
magnitude of generation for the jet diffusion flame is much smaller than that
for the non-reacting density stratified jet studied in section IV. Curve 2 of
Fig. 133 shows the mean length of the jet shear layers as a function of time.
The effects of expansion are more obvious in this plot. It is observed that
the reacting eddy grow slowly compared to Case I. The expansion within the
structures stabilizes the flow and leads to less elongation of the material
layers. Fig. 134 shows the mass of products formed as a function of time for
the turbulent and the laminar flame. The laminar product formation is
calculated as the amount of products formed if the flow field were to remain

completely stable and planar, i.e., the instability is completely suppressed.



Therefore any differences between the laminar and the turbulent product
formation rates are due to effects of turbulence in the field. Curve 1
represents the laminar flame and Curve 2 represents the turbulent flame. The
initial product formation rate for the laminar flame is very large and at
late times the slope of the curve approaches zero. Thig is because the source
term for the reation is maximum at t=0 and as the reaction proceeds, less of
the fuel and oxidizer are present for the reation. At very late times, all of
the fuel and the oxidizer are _consumed and the reaction rate goes to zero.
Hence the slope of the curve keeps decreasing with time until it approaches
zero. As is expected, the initial product formation is identical for both
the turbulent and the laminar flame. However, as time progresses, it is
observed that the amount of products formed by the turbulent flame becomes
smaller than that of the laminar flame. This is because the developing strain
field blows out or extinguishes the flame in regions of positive strain.
However at late times, the amount of mixing due to entrainment within the
structures increases and the turbulent flame curve increases beyond the
laminar curve. Thus the two contradictory effects of flow turbulence is
observed here. One is that of the strain field extinguishing the flame and

another is that of turbulence enhancing mixing and hence the burning rate.

(iii) Case III : Ag = 0.25

The speed of the reaction in this case is increases by a factor of 4
compared to Case II. Fig. 117 shows the locations and velocities of the
vortex/transport elements at t=2.5, 5.0, 7.5 and 10.0 respectively. The
effects of the chemical reaction are very apparent in this case. The
volumetric expansion within the cores of the eddies inhibits the rollup to a

great extent and the structures appear to be expanding out at late times. The



cores of the eddies appear to be more diffuse than those in Cases I and II.
It is also observed that the total volumetric entrainment into the structures
is decreased considerably. Fig. 118 shows the product concentation contours
at the corresponding time frames. Again, most of the product formation
appears to be within the cores of the eddies. The strain field extinguishes
the flame in regions of large positive strain. In this case, however, the
magnitude of the strain field is much smaller compared to those in cases I
and II due to the effect of the volumetric expansion stabilizing the flow
field. The fuel concentration contours are shown in Fig. 119. It is observed
that the values of the fuel concentration are smaller in the cores of the
eddies than around the circumference of the structures. The consumption of
reactants within the structures is shown clearly by the contours.

Fig. 120 shows the contours for the source term at the corresponding time
frames. Again, it is observed that the source term has finite values in zones
of large positive strain inspite of the product formation being very small.
Although the reaction takes place in distributed zones at the :arly stages of
development, the reaction zone at late times is in the form of a sheet around
the eddies. The circumference of the eddies are =zones of large positive
strains and the reaction is especially sensitive to strain at this stage.
The centers of the eddies are comprised mainly of products and hence the
value of the source term in these regions is very small. The vorticity
contours for this case are shown in Fig. 121. The stabilizing effect of
volumetric expansion is clearly observed in these plots. The peak values of
vorticity at late times are smaller compared to those in cases I and II
indicating the reduction in vorticity due to expansion. The damping of the

instability due to heat release has been observed in experiments [45,46,47].



The cumulative circulation in the field is plotted as a function of time
in Curve 3 of Fig. 132 . It is interesting to note that although the flow is
more stable in this case, the amount of circulation generated is slightly
ymore than what was observed for Case II. This is due to that fact that the
higher heat release in this case leads to larger values for Vp although the
value of Wp is decreased due to the inhibition of rollup. The net effect is a
small increase in the amount of circulation generated. The mean length of the
material layers is plotted as a function of time in Curve 3 of Fig. 133 . The
curve for the mean length is below the curves for cases I and II. The effect
of a larger source term is to stabilize the flow and to decrease the
elongation of the material layers.

Fig. 135 shows the laminar and the turbulent product formation rates for
this case. Since the magnitude of the souce term is larger, the initial
slopes of the curves are larger than in Case II. However, the same
qualitative features are observed here. The development of the strain field
causes the turbulent product formation curve to decrease below that of the
laminar curve. It is observed that the decrease below the laminar flame is
larger in this case compared to that in Case II. This is because the reaction
zone aligns itself with the strainfield and the reaction rate becomes very
sensitive to the local value of strain. At late times, the increased mixing
due to the instability causes the turbulent curve to increase above the

laminar product formation.

(iv) Case IV : Ag = 0.5
The magnitude of the chemical source term is increased by a factor of two
as compared to case III. The locations and velocities of the vortex/transport

elements are shown in Fig. 122 at t=2.5, 5.0, 7.5 and 10.0 respectively. Due



to the large degree of heat release, the rollup is almost completely
inhibited. The volumetric entrainment from both streams into the structures
is very small compared to the previous cases. The volumetric expansion
within the cores leads to a very diffuse appearance of the stru~sture as a
whole. The product concentration contours at the corresponding time frames
are shown in Fig. 123 . It is immediately obvious that the strain field is
very weak due to the stabilization of the flow. Most of the produc: formation
takes place in the centers of the structures with a negligible amount in the
braids between the eddies. The fuel concentration contours for this case are
shown in Fig. 124. It is observed that the higher value of the Damkohler
number has resulted in greater consumption of the fuel within the eddies.
Fig. 125 shows the contours for the source term at different times. The
maximum values of the source term occur at the edges of the eddies. This is
because the cores of the eddies are comprised mainly of products and the
value of the source term is close to zero in these regiors. Thus, moct of the
reaction zone is present in regions of strong strain. The vorticity contours
for this case are shown in Fig. 126. The inhibition of the flow field due to
the local dilatation of the flow is clearly observed. The vorticity values in
the domain are smaller than in the previous cases. The generation of
circulation in the domain is plotted as a function of time in Curve 4 of Fig.
132 . Again, it is surprising to see that the circulation generated is
slightly more than in Cases II and III despite the fact that there is very
little rollup in Case IV. However, a stronger chemical source term leads to
larger values for Vp which counteracts the decrease in Vp to produce a small
increase in the generation of circulation. The elongation of the material

layers is plotted as a function of time in Curve 4 of Fig. 133. The degree of
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elongation is much smaller thun what was observed in the previous cases. The
stabilization of the flow field leads to smaller strain rates.

The amount of products formed is plotted as a function of time in Fig.
136 for both the laminar and the turbulent flame. The initial slopes of the
curves are very large due to the larger magnitude for the source term.
Although the strain field in this case is considerably weaker than in the
previous cases, it is observed that the turbulent flame is almost completely
extinguished at about t=6.0 . The slope of the product formation curve is
almost zero in this region. The reason for this phenomenon is that the large
initial reaction rates quickly depletes the amount of reactant and oxidizer
in the reaction zone which then aligns itself with a strong strainfield that
thins and stretches out the area of reaction. Therefore, the value of the
source term in these zones is very small and even a relatively weak strain
field is able to cause a blow out of the flame. At late times, however, due
to the enhanced mixing within the cores, the turbulent product formation

increases above that of the laminar flame.

(v) Case V : Af = 0.5, Fr = 2.0

It is quite clear from the previous simulations that any increase in the
effective Damkohler number beyond that of Case IV is going to completely damp
the instability in the flow field. In order to destabilize the flow at this
high value of the chemical source term, buoyancy is included in the
simulations in the form of a finite Froude number of 2. The locations and
velocities of the vortex/transport elements are shown in Fig. 127 at t=2.5,
5.0, 7.5 and 10.0 respectively. During the early stages, the flow develops

quite similar to what was observed for Case IV. However, as more and more
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products are formed due to the reaction, buoyant forces become active and
lead to an increased destabilization of the flow field. It is clear that at
the late stages, the eddies are entraining more fluid from the free streams
leading to increased mixing and enhanced reaction within the cores. The
structures have an expanded appearance at late times due to the volumetric
expansion taking place within. The precise mechanism for the extra
destabilization of the flow is the gravity generated vorticity. Fig. 128
shows the product concentration contours at the corresponding time frames. At
the late stages of development, inspite of the large strain rates, some
amount of product concentation is observed in the braids. Due to the
Damkohler number being high, the flame is able to survive the effects of a
stronger strain field. Higher values for the product concentration are
observed within the structures indicating that more amount of products have
been formed relative to Case IV. The fuel concentration contours are shown in
Fig. 129. It is observed that most of the fuel within the eddies is consumed
in the reaction and the fuel concentration is the highest in the braids
between the eddies.

The contours for the source term are plotted in Fig. 130 at the
corresponding times. Most of the initial burning takes place within the cores
of the eddies and at late times the value of the source term in the cores
goes to zero. Large values for the source term are observed around the edges
and the braids of the eddies. Fig. 131 shows the correspondin§ vorticity
contours for Case V. The generation of vorticity is quite apparent even in
the early stages of development. Vorticity of opposite signs 1is being
generated on both halves of the flow domain. This leads to an additional
destabilization of the flow. The vorticity values within the structures are

considerably larger than what was observed for Cases II, III and IV. The
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cumulative circulation in the domain is plotted as a function of time in
Curve 5 of Fig. 132. It is observed that the generation of circulation takes
place at a higher rate compared to the previous cases. The final circulation
in the field is about twice that for Case IV. However, the total circulation
in the flow field is zero because of the symmetry across the center line. The
mean length of the material layers is shown as a function of time in Curve 5
of Fig. 133, Initially, the curve is quite similar to Curve 4 of Case IV. At
late stages, however, the effect of buoyancy becomes dominant and the
elongation rate of the material layers increases even beyond that of the non-
reacting eddy.

Fig. 137 shows the product formation as a function of time for the
laminar and the turbulent flame. The initial stage of development resembles
closely that of Case IV. The enhanced entrainment and mixing due to buoyancy
at the late stages leads to additional product formation as is seen in Fig.
137. Thus buoyancy is very effective in destabilizing the flow field and

generating more amount of products due to enhanced turbulent mixing.

(vi) Discussion :

The above simulations of the jet diffusion flame under conditions of
different Damkohler numbers have brought out some rather interesting physics
regarding the interaction between the flow and the reaction. It is observed
that for large values of the reaction rate, the combined effects of
baroclinicity and volumetric expansion in the flow field tends to dampen the
growth of the instability. To separate the effects of baroclinicity and
volumetric expansion, simulations were conducted for case IV (A; = 0.5), one

with baroclinicity but without expansion and one with expansion but without
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baroclinicity. The results for the mean material length are shown in Fig.
138. The mean material length is an indicator of the degree of instability in
the flow field. Curves 1 and 4 are reproduced for cases I and IV
respectively. Curve 2 represents the simulation without heat release and
curve 3 represents the case without baroclinicity. It is observed from curve
2 that baroclinicity by itself tends to stabilize the flow to a small degree.
However, it is obvious from curve 3 that most of the stabilization of the
flow is due to the volumetric expansion term which reduces the local
concentration of vorticity.

Also, the product formation in a diffusion flame is very sensitive to
the local strain rate. At large values of the strain rate, the convective and
the diffusion terms counteract the production term and the flame is locally
extinguished. However, the mixing in the cores of the eddies is greatly
enhanced due to stretch and diffusion and most or all of the reaction takes
place in these zones. At high Damkohler numbers, the addition of bunyancy
counteracts the stabilization of the flow due to volumetric expansion and
greatly increases the degree of instability in the flow field. Under these
conditions, the turbulent flame produces significantly more products than the
laminar flame. However, in cases II, III and IV , the turbulent flame product
formation is more or less equal to that of the laminar flame. It is to be
noted that the nature of the source term that has been used in these
calculations is not very realistic since the reation rate is completely
independent of temperature. This may lead to some rather erroneous

predictions of the flow-combustion interactions.
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FIGURE CAPTIONS

Fig. 107. Schematic of the jet diffusion flame. (a) the initial velocity and
vorticity profiles; (b) the initial oxidizer and fuel concentration profiles.

Fig. 108. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 abd 10.0 respectively for Case I.

Fig. 109. The streamline contours for Case I at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 110, The fuel concentration contours at t = 2.5, 5.0, 7.5 and 10.0
respectively for Case I.

Fig. 111. The vorticity contours for Case I at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 112. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 and 10.0 respectively for Case II.

Fig. 113. The product concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case II.

Fig. 114. The fuel concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case II.

Fig. 115. The source term contours for Case II at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 116. The vorticity contours for Case II at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 117. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 and 10.0 respectively for Case III.

Fig. 118. The product concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case III.

Fig. 119. The fuel concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case III.

Fig. 120. The source term contours for Case III at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 121. The vorticity contours for Case III at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 122. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 and 10.0 respectively for Case IV.
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Fig. 123. The product concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case IV.

Fig. 124. The fuel concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case IV.

Fig. 125. The source term contours for Case IV at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 126. The vorticity contours for Case IV at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 127. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 and 10.0 respectively for Case V.

Fig. 128. The product concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case V.

Fig. 129. The fuel concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case V.

Fig. 130. The source term contours for Case V at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 131. The vorticity contours for Case V at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 132. The cumulative circulation in the flow field as a function of time.
The positive and the negative components are shown separately. Curves 1, 2,
3, 4 and 5 represent Cases I, II, III, IV and V respectively.

Fig. 133, The mean length of the material layers as a function of time.
Curves 1, 2, 3, 4 and 5 represent cases I, II, III, IV and V respectively.

Fig. 134. The mass of products formed as a function of time for Case II.
Curves 1 and 2 represent the laminar and the turbulent product formation
respectively.

Fig. 135. The mass of products formed as a function of time for Case III.
Curves 1 and 2 represent the laminar and the turbulent product formation
respectively.

Fig. 136. The mass of products formed as a function of time for Case IV.
Curves 1 and 2 represent the laminar and the turbulent product formation
respectively.

Fig. 137. The mass of products formed as a function of time for Case V.
Curves 1 and 2 represent the laminar and the turbulent product formation
respectively.

Fig. 138. The mean material length versus time. Curves 1 and 4 represent
cases I and IV respectively. Curve 2 is the result of the simulation without
heat release and curve 3 that of the simulation without baroclinicity.
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VII. 4. 2. FINITE ACTIVATION ENERGY MODEL

The simulations were conducted using a Arrhenius chemical source term of
the type shown in Egn.(99). The non-dimensional activation energy for all the
cases is taken to be 10.0 . Since the presence of the exponential greatly
reduces the magnitude of the source term, the pre-exponential factor, Ag is
increased in order to obtain significant product formation. Results were
obtained for A; = 150.0, 300.0 and 750.0 . Again, the results are compared

against the non-reacting case in the previous section.

(i) Case I : A.f = 150.0

The locations and velocities of the vortex/transport elements are shown
in Fig. 139 at t=2.5, 5.0, 7.5 and 10.0 respectively. Since the rate of
reaction is exponentially dependent on the temperature, the initial product
formation is very small, i.e., there is an ignition delay. In fact for this
low value of A_, the growth of the shear layers is exactly similar to that of
the non-reacting flow. There is very little volumetric expansion in the field
as is evidenced from the material line plots. The product formation contours
at the corresponding time frames are shown in Fig. 140. The initial product
formation is very small as shown by the very small values for the product
concentration in the plots. Again, it is observed that the product formation
is very sensitive to the local strain rate. Most of the reaction is taking
place inside the eddies and there is very little product formation in the
braids between the structures. The fuel concentration contours are shown in

Fig. 141, It is observed that there is very little difference between the
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reacting fuel concentration and the non-reacting fuel concentration contours
in the previous section. Again, the small value of the Damkohler number and
the ignition delay result in a very small amount of reaction taking place
within the structures.

The contours for the magnitude of the source term are shown in Fig. 142,
It is observed that the source term has a finite magnitude in the braids
although the product formation in this region is zero. Most of the reaction
zone is concentrated within the structure even at the late stages of
development. This is unlike what was observed in the zero activation energy
model wherein most of the reaction zone at the late stages was concentrated
around the circumference of the eddies. The initial reaction increases the
temperature in the core and since the reaction is temperature dependent, the
reaction rate increases within the core. At the braids, the cooling effect
caused due to the strainfield reduces the magnitude of the source term in
these regions. Fig. 143 shows the vorticity contours at the corresponding
time frames. It is observed that there is very 1little difference in the
vorticity distribution between this case and the non-reacting case. Since the
product :ormation is very low, the volumetric expansion and the generated
vorticity are very small thus 1leading to negligible change in the vorticity
distribution.

The cumulative circulation in the domain is plotted as a function of time
in Curve 2 of Fig. 154. A finite amount of circulation is generated as seen
from the plot but the magnitude is too small to significantly alter the
dynamics of the flow. Curve 2 of Fig. 155 shows the mean length of the layers
as a function of time. This curve is slightly below that of the non-reacting
case indicating that the growth of the layer has been slightly reduced due to

the reaction. The amount of product formation is plotted as a function of



avoa

time for the laminar and the turbulent flame in Fig. 156. Curves 1 and 2
represent the laminar and the turbulent product formation respectively.
Unlike, the zero activation energy model used in the previous simulations, it
is seen that the Arrhenius model with finite activation energy predicts very
little product formation in the initial stages. This period is known as the
ignitior: delay. As the strain field develops, the flame is extinguished in
certain regions of the flow resulting in the turbulent product formation
becoming smaller than that of the laminar flame. However, at late stages of
the flow, due to the enhanced mixing and reaction within the eddies, the

turbulent product formation increases above that of the laminar flame.

(ii) Case 1I : Af = 300.0

The magnitude of the source term is increased by a factor of two compared
to Case I. The locations and velocities of the vortex/transport elements are
shown in Fig. 144 at t=2.5, 5.0, 7.5 and 10.0 respectively. The development
of the flow field closely resembles that of the previous case indicating that
the effects of reaction are still negligible. A close inspection of the cores
of the eddies reveals the effects of volumetric expansion, but its magnitude
is too small to affect the large scale dynamics of the flow field. The
product concentration contours at the corresponding time frames are shown in
Fig. 145. Again, the major qualitative features are similar to what was
observed in the previous case. Larger values for the product concentration
are seen in the cores of the eddies as compared to Case I. This is due to the
magnitude of the source term being larger in this case. Once again, most or
all of the reaction is within the cores of the eddies and the flame is

extinguished in regions of large positive strain. The contours for the fuel



concentration are shown in Fig. 146. Increased fuel consumption within the
structurc is observed as a result of the increased Damkohler number.

Fig. 147 shows the contours for the magnitude of the source term at the
corresponding times. It is interesting to note that the magnitude of the
source term appears to be decreasing in regions of positive strain. This is
because of the temperature dependence in the source term. In regions of
positive strain, the cooling effect due to diffusion is very strong and as
the temperature decreases, the magnitude of the source term decreases
exponentially. Therefore, with an arrhenius model for the chemical reaction,
it is expected that the reaction rate will be extremely sensitive to the
local strain field. The vorticity contours at the corresponding time frames
are shown in Fig. 148. Again, the development of the vorticity field is very
similar to that of the previous case, although the small but finite
volumetric expansion leads to smaller values for the vorticity at the centers
of the structures. However the feedback from the reaction to the flow field
is very small in this case.

The cumulative circulation in the flow field is plotted as a function of
time in Curve 3 of Fig. 154. The curve is slightly above that of Case I
indicating that the larger product formation leads to a small increase in the
amount of circulation generated. The mean length of the material layers is
plotted as a function of time in Curve 3 of Fig. 155. It is seen that the
increased volumetric expansion slows down the growth of the layer as compared
to Case I. From Figs. 154 and 155, it is clear that the amount of reaction
is not sufficient to cause any significant changes in the flow field. The
mass of products formed with time is shown in Fig. 157 for the laminar and
the turbulent flame. The same qualitative features observed before are seen

here too. The developing strain field causes the turbulent product formation



to decrease below that of the laminar flame and at the late stages, the
turbulent curve increases above the laminar curve due to increased product
formation in the cores of the eddies. It is to be noted that the decrease in
turbulent product formation with respect to the laminar flame is less in Case
II than in Case I. This indicates that the flame is more resistant to strain

at higher Damkohler numbers.

(iii) Case III : Af = 750.0

The magnitude of the source term is increased by a factor of 2.5 compared
to Case II. It is to be remenbered that the source term is highly non-linear
and an increase in its magnitude by a small factor can lead to an order of
magnitude increase in product formation. Fig. 149 shows the locations and
velocities of the vortex/transport elements at t=2.5, 5.0, 7.5 and 10.0
respectively. The initial development of the flow field is similar to that of
the previous cases, however, at the late stages, it is observed that a strong
volmetric expansion is taking place inside the eddies. The non-linear nature
of the interaction is clearly obvious from the plots. All or most of the
reaction takes place in the time interval 7.5<t<10.0 . This is because the
flow field is very cold initially and the chemical reaction is very small. As
the temperature increases due to the reaction, the magnitude of the source
term increases exponentially which leads to greater heat release and rise in
temperature. Thus, the cycle goes on with the source term and the temeprature
increasing exponentially. The central zones of the eddies look very diffuse
due to the effects of expansion. Although the heat release in the final
stages of the flow is quite large, the instability is not damped due to the

expansion. This is because of the ignition delay that occurs in the initial
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stages of development during which expansion effects are negligible. Thus
the flow develops strongly and is not affected by the reaction. The effects
of reaction become significant only after the fluids have been entrained into
the structures. The contours for the product concentration are shown in Fig.
150 at the corresponding time frames. It is observed that the product
f~rmation rate is very sensitive to strain and flame blows off in regions of
positive strain. Very large values for the product concentration are observed
at the final stages of development of the eddies indicating that a large
amount of reaction has taken place. The contours for the fuel concentration
are shown in Fig. 151. The increased value of the Damkohler number results in
complete consumption of all the fuel within the structure.

Fig. 152 shows the contours for the magnitude of the source term at the
corresponding times. It is observed that most of the eddy is comprised of
products and the value of the reaction rate in *he regions within the eddy
are nearly zero. The reaction zone is concentrated around the circumference
of the large scale structures. The value of the source term in the braids is
very small due to the cooling effect of the cold reactant streams. Fia. 153
shows the vorticity contours at t=2,5, 5.0, 7.5 and 10.0 respectively. The
values of the vorticity in the initial stages are not affected due to the
ignition delay and hence the flow field is not damped by the reaction. At the
late stages, the large volmetric expansion within the eddies causes a
substantial weakening of tl.e vorticity field.

The cumulative circulation in the domain with time is shown in Curve 4 of
Fig. 154 . It is observed that the greater product formation at the late
stages leads to higher values for Vp in the field which in turn leads more
generation of circulation compared to the previous cases. Curve 4 of Fig.

155 shows the mean length of the material layers with time. The curve is
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below those of the previous cases indicating that the volumetric expansion
has a stabilizing effect on the flow field, particularly at the late stages.
The mass of products formed with time is shown in Fig. 158 for the laminar
and the: turbulent flame. Although the development of the strain field does
lead to the flame blowing off in certain regions of the flow, the enhanced
reaction in other regions make up for it and the turbulent product formation
curve never decreases below that of the laminar flame. At the late stages,
the turbulent product formation increases rapidly compared to the laminar
flame and the final products ratio between the turbulent and the laminar
flame is almost two. Comparing cases I and III, it is seen that a factor of 5
increase in the source term leads to a factor of 25 in the final amount of
products formed. This illustrates the highly non-linear dependence of product

formation on the source term.

VII . 5. CONCLUSIONS

Simulations were conducted for the jet diffusion flame with two source
terms, one with a zero activation energy source term and one with a finite
activation energy source term. Both sets of simulations yielded a great deal
of insight into the outcome of turbulence-combustion interactions. For the
zero activation energy model, it is seen that the effect of heat release is
always to stabilize the flow field and if the Damkohler number is too large,
the instability is completely damped. Due to this phenomenon, the turbulent
product formation never increases significantly above that of the laminar
flame.

with the Arrhenius temperature dependence, the turbulent product

formation at low Damkohler numbers is almost the same as that of the laminar
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flame. At large values of the Damkohler number, the turbulent flame produces
an order of magnitude increase in product formation above that of the laminar
flame. This behavior is more in agreement with experimental observations and
thus the Arrhenius model for the reaction is more accurate. When turbulence-
combustion interactions are significant, the assumtion of a source term
without temverature dependence can lead tc large errors in the predictions cf
the reaction rate.

In both cases, it is observed that at low Damkohler numbers, the reaction
takes place in a distributed zone within the large scale structures. In this
regime, the flame or reaction is not very sensitive to the strain field. At
large Damkohler numbers, however, the flame exists as a reaction sheet around
the circumference of the eddies. Since the reaction 2zone is more or less
aligned with the strainfield, the reaction rate becomes sensitive to the
local value of strain. It is interesting to note that the product formation
curves for the diffusion flame are in stark contrast to what is cbserved in
the case of the premixed flame. For the premixed flame, the turbulent product
formation curve approaches that of the laminar flame as the Damkohler number
increases. On the other hand, for the diffusion flame, the two curves

approach each other as the Damkohler number decreases.
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FIGURE CAPTIONS

Fig. 139. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 and 10.0 respectively for Case I.

Fig. 140. The product concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case I.

Fig. 141. The fuel concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case I.

Fig. 142. The source term contours for Case I at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 143, The vorticity contours for Case I at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 144. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 and 10.0 respectively for Case II.

Fig. 145. The product concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case II.

Fig. 146. The fuel concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case II.

Fig. 147. The source term contours for Case II at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 148. The vorticity contours for Case II at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 149. The locations and velocities of the vortex/transport elements at t=
2.5, 5.0, 7.5 and 10.0 respectively for Case IiI.

Fig. 150. The product concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case III.

Fig. 151. The fuel concentration contours at t= 2.5, 5.0, 7.5 and 10.0
respectively for Case III.

Fig. 152. The source term contours for Case III at t= 2.5, 5.0, 7.5 and 10.0
respectively.

Fig. 153. The vorticity contours for Case III at t= 2.5, 5.0, 7.5 and 10.0
respectively. The continuous contours represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 154. The cumulative circulation in the flow field as a function of time.
The positive and the negative components are shown separately. Curves 1, 2, 3
and 4 represent the non-reacting case and cases I, II and III respectively.
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Fig. 155. The mean lergth of the material layers as a function of time.
Curves 1, 2, 3 and 4 represent the non-reacting case and cases I, II and III
respectively.

Fig. 156. The mass of products formed as a function of time for Case I.
Curves 1 and 2 represent the laminar and the turbulent product formation
respectively.

Fig. 157. The mass of products formed as a function of time for Case II.
Curves 1 and 2 represent the laminar and the turbulent product formation
respectively.

Fig. 158. The mass of products formed as a function of time for Case III.
Curves 1 and 2 represent the laminar and the turbulent product formation
respectively.
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VIII. THE STUDY OF PREMIXED COMBUSTION IN A SHEAR LAYER

VIII. 1. INTRODUCTION

Premixed combustion is of great importance both from practical as well as
fundamental considerations. From a practical standpoint, the understanding of
premixed flames is crucial in order to improve burning efficiency in
automotive and jet engines and to reduce pollutant formation. Fundamentally,
the study of turbulent-combustion is a complex and challenging problem
because of the inherent feedback between the flow and the reaction. The flow
field affects the burning rate through the mechanism of flow stretch and
curvature while the reaction in turn affects the flowfield through volumetric
e~pansion and flame generated vorticity [48,49]. Moreover, experiments [50,
54) and simulations [51] have revealed that the nature and magnitude of these
interactions are a function cf the relative speed of the reaction with
respect to the flow as defined by an appropriate Damkohler number. Other
dimensionless param=ters that govern this problem are the Peclet numher, the
Lewis numker, the Activation Energy and the Enthalpy of Reaction. Thus the
solution to this problem can be interpreted on a five dimensiona.i gspace, one

for each of the afore-nentioned non-dimensional groups.

VIII. 2. DESCRIPTION OF FLOW GEOMETRY

Fig. 159 shows the schematic for the reacting shear layer. The velocity
field is similar to the one considered for the study of the density
stratified shear layer. The initial vorticity is distributed in the form of a

Gaussian and the velocity distribution is an error function. The initial
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temperature profile is also an error function as shown in the figure. The
bottom stream is the product stream and the top stream consists of reactants.
The movement of the flame is in the upward direction, i.e., towards the
reactants. Thus the flame that is considered here is a thick flame whose
length scale, as estimated from the thickness of the temperature gradient
profile, is of the same order as the scale of the flow. As the flame moves
upwards, the flow (or the vorticity field) is allowed to become unstable due
to the Kelvin-Helmholtz instability. This leads to the formation of a
turbulent eddy producing a strong strain field. The effects of the strain
field and curvature on the burning rate of the flame and the reverse efrects
of volumetric expansion and baroclinic vorticity on the flow are studied in
detail. Previous investiga.ions of the effect of strain cn the premixed flame
iniclude the stagnation point flow model [52,53] wherein a steady, planar
strain is imposed on the flame. Although, a relation was established between
the strain rate and the flame speed as a result of this work, these results
cannot be directly extended to a turbulent flow field in which the strain
rate is highly unsteady and curvature effects are important. The present
model is closer to simulating these effects since the physics of the highly
unsteady flow field is already built into the model. Computations are also
done for a laminar flame ( i.e., the flow field is stationary except for the
flow generated due to expansion) in order to understand the effects of

stretch on the reaction.

VIII. 3. GOVERNING EQUATIONS

The governing equations for the premixed shear layer are given below and

in Table 1. The reaction is a one step, first order irreversible reaction in
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which reactants go to products. The chemical souce term is of the Arrhenius

form and is a function of the reactant concentration and the temperature.

k= A exp(-E/RT)

(PREMIXED FLAME) Reactants > Products (100)
g{-_%,; Pr+aQw (101)

r - PelLe ey - AW (102)

e - PelLe Vo, + AW (103)

& = CR exp (- Ta/T ) (104)

The variables are non-dimensionalized by the characteristic values U, for
velocity , L, for length, To for temperature and C_ for concentration. Uy is
given by AU/2 where AU is the velocity difference between the free streams
and L, = V2 ¢ where o is the standard deviation of the initial Gaussian
vorticity distribution. To and Tp are the temperatures of the reactant and
the product streams respectively and C_ 1is the reactant concentration in the
reactant stream. Ag is the pre-exponential factor and is given by Ag = (A Lo
)/Uo . A is the constant in the Arrhenius rate expression. The non-
dimensional activation energy is defined as Ta = E/(R To) where E is the
dimensional activation energy and R is the universal gas constant. The non-
dimensional enthalpy of reaction is given by Q = (Tp—To)/To and signifies the
increase in temperature due to the complete burning of one mass unit of

reactant.
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VIII. 4. RESULTS OF NUMERICAL SIMULATIONS

The shear layer is perturbed sinusoidally at a wavelength A = 13.2 L, -
This is close to the most unstable mode for a non-reacting layer. However, in
this case, the additional effect of heat release is present and this modifies
the dynamics of the growth of the instability. The temperature ratio between
the products and the reactants is 5. The non-dimensional activation energy is

taken to be equal to 10.
(i) Case I : Ag = 2.0, € = 0.01 X

The first case that is considered is that of the reacting shear layer
that is initially perturbed at an amplitude equal to 0.01 A. The Peclet
number is 1000 and the Lewis number is wunity. This case can therefore be
compared to the non-reacting density stratified shear layer for rp = 5. Fig.
160 shows the locations and velocities of the vortex/transport elements at t=
5.5, 11.0, 16.5 and 22.0 respectively. These correspond to the same time
frames that were considered for the non-reacting layer. Comparing the two, it
is immediately obvious that the the growth of the instability in the reacting
shear layer is diminished. The layer remains more or less flat with some
rollup in the center. The only extra dynamic effect in the physical model is
the inclusion of the flow divergence term in the vorticity equation. The
effect of volumetric expansion or flow dilatation due to combustion is to
weaken the concentration of vorticity. This effect has been observed during
experiments on reacting mixing layers wherein the volumetric expansion

stabilizes the flow and leads to delayed growth and pairing [46]. Although
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the vorticity in the field is reduced due to expansion, the area integral of
the vorticity, i.e., the circulation, is conserved during this process. This
is because the vorticity decreases by the same factor as the increase in the
fluid area (or volume in a three dimensional sense) and hence the product,
the circulation. is unchanged.

Fig. 161 shows the normalized temperature (or product concentration)
contours at the corresponding times. Again, it is obvious from the contours
that the deqree of rollup is very small compared to non-reacting shear layer.
The area of burning is more or less equal to that of the laminar flame, i.e.,
the effects of flow stretch are very small. Fig. 162 shows the corresponding
vorticity contours at the same time frames. It is clear from the first time
frame that the vorticity layer is much thicker than that of the non-reacting
layer. This is a consequence of the volumetric expansion in the flow field.
Also, for this thick layer, the imposed perturbation may no longer be the
most unstable one. The growth rate of the layer, as inferred from the linear
theory, is smaller for a layer that is thinner or thicker than the one
correspnding to the most unstable mode. Therefore, the instability for the
thicker layer grows at a slower rate. It is also observed that the amount of
vorticity generation in the flow field is very small. This is because the
layer undergoes very little distortion and the magnitude of the (Vp x Vp)
term is very small. Towards the late stages of growth, some amount of
positive circulation is generated on the top side of the eddy as seen from
the plots. Fig. 163 (a) shows the cumulative circulation in the domain as a
function of time. The positive and the negative components are summed
separately. Comparing the amnunt of circulation generated for a non-reacting
density stratified shear layer for r, = 5 and the reacting shear layer, it is

clear that the inhibition of the rollup has reduced the amount of circulation
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generated. Density stratification in the non-reacting shear layer leads to
greater destabilization in the non-linear range, but with reaction, the
generation effects are suppressed leading to further stabilization of the
flow. Fig. 163 (b) shows the mean length of the material layers as a function
of time. It is observed that the final length of the interface is about 1.6
times the initial length. This value is smaller than what was obtained for
the non-reacting shear layer. Thus the elongation of the flame or the
vorticity layers is suppressed due to the expansion field.

Therefore, it is obvious from the above simulation that the effect of
heat release is to stabilize the shear layer instability. This is highly
undesirable since the mixing efficiency is greatly reduced which in turn
leads to a lower burning rate. One way of avoiding this problem is to perturb
this layer at a higher amplitude. This causes the shear layer to grow and
rollup at a faster rate. The destabilization of the flow field leads to
improved mixing and a larger burning rate. The effect of the instability on
the burning rate can be estimated by comparing the total mass of products
formed in a turbulent flame to that in a laminar flame. In case of the
laminar flame, the shear layer is not allowed to grow, i.e., the flame
remains flat and planar and propagates into the reactants at the laminar
flame speed. The laminar flame problem is an eigenvalue problem with the
flame speed being the eigenvalue that satisfies the differential equation and
the boundary conditions. The laminar flame speed is a function of the
Damkohler number, the Peclet number, the Lewis number, the enthalpy of
reaction and the activation enerqgy. Therefore, once the above parameters are
specified, there is one and only one flame speed that satisfies all the
constraints. In the present case, an initial temperature and concentration

distribution are specified along with all the dimensionless groups. These
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distributions may not be the steady state distributions of the laminar flame.
As the integration in time proceeds, the distributions converge to that of
the steady state laminar flame. Once this condition is reached, the problem
essentially reduces to one of steady state in a frame of reference moving
with the flame. Therefore, depending on the initial conditions, the flame may
not initially propagate at the laminar flame speed. However, the speed of the
flame converges to the eigenvalue solution in time. This is very similar to
starting the problem with an arbitrary solution and iterating to get the
correct solution.

The fact that the laminar flame solution is not known a priori may cause
some complications in the solution of the turbulent flame problem. The effert
of stretch is to change the local speed of propagation of the flame. Thus, if
the initial conditions are arbitrarily specified, two kinds of transient
behavior may be observed; one due to the effects of flow stretch and another
due to the laminar flame converging to its eigenvalue solution. The
interactions between these two transient modes may further complicate the
physics of the problem. Since this study is an effort to understand the
effect of the flow field on the burning rate, it would be desirable to
eliminate the transient due to the convergence of the laminar flame speed.
This can be done by starting with the laminar flame profile (as obtained from
the solution of the laminar flame problem) as the initial condition to the
turbulent flame problem. This approach is adopted in the next few cases to be
studied.

It is found that tha initial distributions of temperature and
concentration correspond to the solution of the laminar flame problem for the
parameters Af =0,125, Le-l.o, Pe =10000.0, Q= 4.0 and Ta = 10.0 . In order to

make appropriate comparisons, the same laminar flame is used for all the
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cases to be studied. The relative speed of the reaction with respect to the
flow can be varied either by changing the speed of the flow or by changing
the speed of the reaction. The speed of the reaction is contrnlled by Ag and
since the source term is highly non-linear, the reaction rate it not directly
proportional to Ag. The speed of the flow can be changed by scaling the
magnitude of circulation in the flow field. Therefore, if the circulation is
scaled down by a factor of five, the flow develops five times as slow and
vice versa. Thus, in order to make appropriate comparisons, the effective
Damkohler number of the probler is changed by merely changing the speed of
the flow. Ce is the factor that indicates the ratio of total circulation in

the flow field to that in Case 1I.

(ii) Case II : Af = 0,125, Cf = 0,25

The magnitude of the toatl circulation in the flow field is four times
less than in Case I. Therefore, the speed of the flow is reduced by a factor
of four. In order to avoid the suppression of the instability due to the
volumetric expansion, the shear layer is perturbed at a higher amplitude of ¢
= 0.05 X\ =0 that the instability grows quickly. Fig. 164 shows the locations
and velocities of the vortex/transport elements at t= 16.87, 33,75, 50.62
and 68.75 respectively. The instability develops rapidly and the interface
rolls up to form the large scale structure. The characteristic features of
the growth of the instability for density stratified shear layers are
observed he.e too. The structure propagates at a finite convection velocity
in the direction of the heavier reactant stream. Also, the eddy entrains more
of the low density products by volume. At the late stages of growth, the

appearance of concentrated small scale structures is observed. Fig. 165 shows
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the product concentration contours for the corresponding time frames. Since
the Damkohler number is realtively small in this case, the amount of product
formation is also small. The product concentration contours can also be used
to identify the flame area or the region over which combustion is taking
place. It is observed that at the initial stages, the flame is more or less
flat and planar. As the strain field develops, the flame becomes thinner in
the braid region and thicker in the core of the eddy. At late times, most of
the burning takes place in the core of the structure. Fig. 166 shows the
shaded contours for the magnitude of the source term W over the flow field.
The darkest shade indicates a value between 75% and 100% of the maximum value
of W and the lighter shade indicates a value between 50% and 75% of the
maximum value of W. It is observed that the burning area becomes very thin in
the braids where the strain rate 1is positive. However, the combination of
entrainment and diffusion within the core increases the net burning area and
at late times it is observed that the burning is taking place in a
distributed zone within the structure.

Fig. 167 shows the vorticity contours at the corresponding times. The
initial vorticity in the flow field is negative and as time proceeds,
positive wvorticity is generated due to baroclinic effects. Since the
Damkohler number is small, the effects of volumetric expansion do not appear
to be significant. The total circulation in the flow field is a conserved
quantity. Therefore the generation of positive circulation is offset by an
equal amount of negative circulation generated elsewhere in the flow field.
Fig. 176 (a) shows the amounts of positive and negative circulation generated
in the domain as a function of time. The generation effects increase with the
growth of the instability. Figs. 177 and 178 show the mean material length

and the flame length respectively as a function of time. The flame length is
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calculated as the length of the interface corresponding to the maximum
reaction zone, i.e., the contour at which the Arrhenius term is maximum.
Curve 1 in Figs. 177 and 178 represent the results of tris case. It is
observed that the mean material length increases by a factor of 3.9 with
respect to the initial length. It is observed that the flame length also
increases by a similar factor. In fact the final slopes of material and flame
curves are almost equal suggesting that the flame is experiencing almost the
same strain and elongation as the material layers. Thus, the instability is
very effective in increasing the burning area and hence the product formation
rate. This was already observed in Fig. 166 where the final burning area is
much larger than the initial area.

Curve 2 of Fig. 179 shows the mass of products formed with time. Curve 1
is the product formation for the corresponding laminar flame. It is observed
that the initial product formation in the turbulent flame is very similar to
that in a laminar flame. As the flow becomes unstable, the strain field
elongates the flame thereby increasing the burning area and hence the product
formation rate. At the final time, it is observed that the turbulent flame
has produced twice the amount of products compared to the laminar flame.
Curve 2 of Fig. 180 shows the slope of the product formation curve as a
function of time. Curve 1 is the slope of the laminar flame. It is observed
that the slope of the turbulent flame decreases below that of the laminar
flame in the initial stages. During this stage most of the flame is
experiencing positive strain ¢nd the rate of product formation is reduced due
to thinning of the flame. At late stages, however, the slope of the turbulent
product curve is about four times greater than that of the laminar product
curve. This correlates directly with the increase in burning area observed in

Fig. 166.
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(iii) Case III : Ag = 0.125, ¢, = 0.125

£

The speed of the flow is reduced by a factor of two compared to Case II,
i.e., the effective Damkohler number is increased by a factor of two. Fig.
168 shuws the locations and velocities of the vortex/transport elements at t=
33,75, 67.5, 101.25 and 137.5 respectively. These time frames correspond to
those in Case II with regard to the development of the flow field. The flow
becomes unstable with time and leads to the development of the coherent
structure. At late stages of the flow, more number of small scale eddies
appear on the edges of the large structure. Fig. 169 shows the product
concentration contours at the corresponding time frames. The effect of the
increased Damkohler number is immediately obvious. The contours in the
central region of the structure are very sparse indicating that the core
consists essentially of the products formed due to reaction. Again, the flame
is thinner in the braid region and thicker in the core of the eddy. The flame
appears to exist on the edges of the structure and the burning area at late
times is much larger compared to the initial flame area. Fig. 170 shows the
contours for the source term W. The characteristic features observed here are
similar to what was observed in case II. However, the chemistry being faster
than the flow, the turbulence is not able to stretch and entrain the flame as
much and is thus less effective in increasing the total burning area inside
the eddy. Although the burning at the final stages takes place in a
distributed zone, the amount of burning area generated is less compared to
that in case II.

Fig. 171 shows the vorticity contours for this case. The development of

the vorticity field is very similar to what was observed before. Positive
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vorticity is generated on the top side of the structure and an equivalent
amount of negative vorticity is generated in the center and on the under side
of the eddy. Fig. 176 (b) shows the cumulative circulation in the domain as a
function of time. The positive and the negative components are shown
separately. The circulation curves are very similar to those of Case II.
Curve 2 in Figs. 177 and 178 show the elongation of the material layers and
the flame as a function of time. From Fig., 177, it is observed that the final
length of 3.78 for Case III is slightly smaller than that for Case II. If
there were no feedback between the reaction and the flow, the final lengths
would be exactly the same. However, in this case, due to the increased
Damkohler number and the subsequent volumetric expansion, the flow field
experiences a small degree of stabilization. Hence the final material length
for Case III is smaller than that of Case II. From Curve 2 of Fig. 178, it is
seen that the elongation of the flame does not follow the elongation of the
material layers. At any given time, the slope of the material length curve is
greater than that of the flame length curve. This indicates that the strain
field is less effective in stretching the flame as compared to Case II. At
higher Damkohler numbess, the flame is stronger and 1is able to resist the
effects of the flow field to a greater degree.

Curve 3 cf Fig. 179 shows the product formation curve for Case III. The
initial product formation is similar to the laminar flame. At late times, the
effects of the strainfield become apparent as the turbulent product formation
increases above that of the laminar flame. At the final time, the turbulent
flame has produced about 1.6 times the amount of products as the laminar
flame. This factor is smaller than what was obtained for Case II, indicating
that the turbulence in the flow was less effective in increasing the amount

of products. Curve 3 of Fig. 180 shows the slope of the product formation
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curve as a function of time. The initial decrease below the laminar burning
rate due to strain is again observed; however, the decrease in this case is
smaller than in case II. This may be due to the flame heing more resistant to
strain as a result of the increased Damkohler number. Although the rate of
burning increases in the later stages, it 1is observed that the increase is
smaller than what was seen for case II. This correlates well with the earlier
observation that the turbulence is not successful in generating as much of

the burning area as was done for the lower Damkohler number.

(iv) Case 1V : Af = 0.125, Cf = 0.0625

The speed of the flow is further reduced by a factor of two in this case,
i.e., the effective Damkohler number is again increased by a factor of two.
Fig. 172 shows the locations and velocities of the vortex/transport elements
at t= 67.5, 135.0, 202.5 and 275.0 respectively. The effects of increased
reaction and volumetric expansion are more obvious in this case. Closes
inspection of the development of the instability reveals that the flow field
grows at a slower rate and at late times, the center of the structure looks
more diffuse indicating that chemical reaction has occurred in these zones.
The structure has an expanded appearance due to the local dilatation of the
flow field as a result of reaction. Fig. 173 shows the product concentration
contours for the corresponding time frames. It is immediately obvious that
more amount of chemical reaction is taking place inside the eddies. The
center of the structure looks very sparse since it is comprised essentially
of products. The flame exists on the edges of the structure and there is very
little burning at the core of the eddy. Fig. 174 shows the shaded contours

for the source term W. It is observed that the burning area at the late
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stages exists on the circumference of the eddy. Unlike the distributed
burning zone that was observed for the lower Damkohler numbers, the flame
zone appears to be in the form of a reaction sheet. Although, the burning
area appears to have increased compared to the initial flame area, it is
observed that this increase is smaller for Case IV as compared to Cases II
and III, i.e., the turbulence is not able to generate more burning area due
to the flame being much faster than the flow.

Fig. 175 shows the vorticity contours for this case. It is observed that
the vorticity in the center of the structure is very sparse. This is due to
the effect of volumetric expansion which tends to weaken the local vorticity.
Fig. 176 (c) shows the generation of circulation with time. The circulation
generation is very similar to what was observed for cases II and III.

Curve 3 in Figs. 177 and 178 show the mean material length and the flame
length as a function of time.. It is observed that the final material length
of 3.28 in this case is less than those obtained for cases II and III. The
stronger volumetric expansion in this case causes the flow field to develop
at a slower rate. Curve 3 of Fig. 178 shows that the slope of the flame
length curve is smaller than the slope of the material length curve at any
given time. This indicates that the flame itself is experiencing less
elongation than the material layers, i.e., the flow field is not very
effective in stretching the flame.

Curve 4 of Fig. 179 shows the product formation with time for Case IV.
The initial mass of products formed by the turbulent flame is slightly less
than that of the laminar flame. The developing strain field thins the flame
in regions of positive strain thus reducing the flame propagation speed in
these zones. Although the flame speed increases above the laminar flame value

in regions of negative strain, this increase does not completely counteract
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the decrease in flame speed due to positive strain. The reason for this
behavior is the highly unsteady nature of the flow-combustion interactions
and the highly non-linear source term. However, at late times, the turbulent
product formation increases above that of the laminar flame. It is to be
observed that the amount of products formed at the final time is only about
1.23 times that of the laminar flame. Also, the final slopes of the two
curves are almost equal. Curve 4 of Fig. 180 shows the rate of product
formation as a function of time. It is observed that the initial decrease due
to strain is smaller than what was observed for the earlier cases. Thus, at
this high value for the Damkohler number, the flame is very resistant to the
strain field. Although, the slope of product formation does increase, this
increase is much smaller as compared to the lower Damkohler number cases.
Thus the turbulence in the flow is unable to increase the burning area of the
flame due to the flow being much slower than the chemistry. It is quite
obvious that the product formation for higher Damkohler numbers can be

approximated very well by the laminar flame.

VIII. 5. CONCLUSIONS

The simulation of premixed combustion in a shear layer has revealed some
rather interesting outcomes of turbulence-combustion interactions. First and
foremost, it is observed that the growth of the instability is completely
damped for low amplitudes of perturbation. The reason for this phenomenon is
the local dilatation of the flow which weakens the local vorticity
concentration and inhibits the roll up of the shear layer. The amplitude of
perturbation had to be increased to a higher value in order for the flow

field to become unstable. Secondly, it 1is observed that the effect of the
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growth of the instability is to increase the product formation in the shear
layer relative to the planar laminar flame. The precise mechanism by which
flow stretch increases product formation is discussed below.

A flat planar flame of 1length L and thickness & is considered. For
simplicity, a constant strain rate 'k’ in the horizontal direction is imposed
on the flame. Therefore, the length of the flame increases as a function of
time due to the longitudinal strain. Since the strain rate is constant, the

expression for L is obtained from:

1 du
= IF - k (105)
which implies
L =L, exp (kt) (106)

where L, is the initial length.

Assuming that the thickness of the flame decreases as the length

increases, i.e., L8 ~ constant, the above expression can be written as :

80 exp (-kt) (107)

where 80 is the initial thickness of the flame. Therefore, the thickness
of the flame de¢-reases exponentially with time. However, at some value of §,
say sd, the effect of diffusion becomes dominant and prevents the decrease of
the flame thickness below this value. Therefore, the flame thickness remains
constant at sd while the length L is increasing exponentially according to
Egqn. (). Thus, the total burning area (=L8d) also increases exponentially
with time causing an increasing in the product formation rate. Therefore, the
effect of flow stretch in the presence of diffusion leads to increased

burning rates. However, in a turbulent flow field, the strain rate at any
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point is highly unsteady and the above arguments may not hold precisely. But
the basic mechanism by which strain increases the burning rate is still the
same.

A third feature of turbulence-combustion interactio. that is observed in
the simulations is that the flow field is very effective in increasing
product formation above that cf the laminar flame at low Damkohler numbers.
This is not the case at higher values of the Damkohler number. This is
because, at high Damkohler numbers, the flame is more resistant to the strain
field and the flow is not able to strain the flame to a great degree. Hence
the observed increase in product formation above that of the laminar flame is
very small. As the Damkohler number goes to infinity, the turbulent product
formation curve converges to the laminar flame curve, i.e., the flame is so
fast that it hardly feels the perturbations in the flow field.

In order to separate the effects of baroclinicity and the heat re.ease,
simulations were conducted for case 1III, one without heat release and one
without baroclinicity. The degree of instability in each case was measured by
calculating the mean material length as a function of time. The results are
shown in Fig. 181. Curve 1 stands for the non-reacting uniform density shear
layer, curve 2 represents the case with baroclinicity but without volumetric
expansion, curve 3 represents the case with heat release but without
baroclinicity and curve 4 are the results reproduced for case III (with both
baroclinicity and heat release). It is interesting to note that for the
premixed shear layer, baroclinicity by itself is highly destabilizing. Heat
release or volumetric expansion results in the stabilization of the shear

layer due to the decrease in local vorticity.
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FIGURE CAPTIONS
Fig. 159. The schematic for premixed combustion in a shear layer.

Fig. 160. The locations and velocities of the vortex/transport elements at t=
5.5, 11.0, 16.5 and 22.0 respectively for Case I.

Fig. 161. The product concentration contours for Case I at t= 5.5, 11.0, 16.5
and 22.0 respectively.

Fig. 162. The vorticity contours for Case I at t= 5.5, 11.0, 16.5 and 22.0
respectively. The continuous curves represent negative vorticity and the
dashed contours signify positive vorticity.

Fig. 163. (a) Cumulative circulation versus time for Case I. The positive and
negative components are shown separately. (b) The mean material length as a
function of time.

Fig. 164. The locations and velocities of the vortex/transport elements at t=
16.87, 33.75, 50.62 and 68.75 respectively for Case II.

Fig. 165. The product concentration contours for Case II at t= 16.87, 33.75,
50.62 and €8.75 respectively.

Fig. 166. The source term contours for Case II at t= 16.87, 33.75, 50.62 and
68.75 respectively.

Fig. 167. The vorticity contours for Case II at t= 16.87, 33.75, 50.62 and
68.75 respectively. The continuous curves represent negative vorticity and
the dashed contours signify positive vorticity.

Fig. 168. The locations and velocities of the vortex/transport elements at t=
33.75, 67.5, 101.25 and 137.5 respectively for Case III.

Fig. 169. The product concentration contours for Case III at t= 33.75, 67.5,
101.25 and 137.5 respectively.

Fig. 170. The source term contours for Case III at t= 33.75, 67.5, 101.25 and
137.5 respectively.

Fig. 171. The vorticity contours for Case III at t= 33.75, 67.5, 101.25 and
137.5 respectively. The continuous curves represent negative vorticity and
the dashed contours signify positive vorticity.

Fig. 172. The locations and velocities of the vortex/transport elements at t=
67.5, 135.0, 202.5 and 275.0 respectively for Case IV.

Fig. 173. The product concentration contours for Case IV at t= 67.5, 135.0,
202.5 and 275.0 respectively.

Fig. 174. The source term contours for Case IV at t= 67.5, 135.0, 202.5 and
275.0 respectively.
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Fig. 175. The vorticity contours for Case IV at t= 67.5, 135.0, 202.5 and
275.0 respectively. The continuous curves represent negative vorticity and
the dashed contours signify positive vorticity.

Fig. 176. Cumulative circulation as & function of time for (a) Case II, (b)
Case III and (c) Case 1IV. The positive and negative components are shown
separately.

Fig. 177. The mean material length as a function of time. Curves 1,2 and 3
represent cases II, III and IV respectively.

Fig. 178. The flame length as a function of time . Curves 1, 2 and 3
represent cases II, III and IV respectively.

Fig. 179. The mass of products formed as a function of time. Curve 1
represents the laminar flame. Curves 2, 3 and 4 represent cases II, III and
1V respectively.

Fig. 180. The rate of product formation as a function of time. Curve 1
represents the laminar flame. Curves 2, 3 and 4 represent cases II, III and
IV respectively.

Fig. 181. The mean material length versus time. Curve 1 represents the non-
reacting uniform density shear layer, curve 2 represents the case with
baroclinicity but without heat release, curve 3 represents the case with heat
release but without baroclinicity and curve 4 is reproduced from the results
of case III.
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IX. DISCUSSIONS AND CONCLUSIORNS

The vortex/transport element method was applied to study five typical
problems in turbulent flows. The scheme was developed from first principles
and validated by applying it to study the density stratified Kelvin-Helmholtz
instability and the Rayleigh-Taylor instability in a gravitational field.
Validation was done by comparing the results of the simulations with the
predictions of the linear theory in the iritial stages of growth of the
instability. In the non-linear range, the results of the calculations were
compared with experimental and previous theoretical results. On both counts,
the results of the simulations yielded accurate results. Once validation was
complete, the scheme was used to study problems such as the density
stratified jet, the jet diffusion flame and the premixed shear layer.

It was shown that density stratification has a negligible impact on the
linear growth rate of the most unstable mode. However, the effects of density
stratification is particularly important in the non-linear stages of growth.
The presence of a density field destabilizes the flow to a much greater
extent in the non-linear range. Also, the effects of buoyancy play a very
important role in destabilizing the flow field. It was found that flow
developed in a highly non-linear manner under the influence of gravity, more
so than with pure baroclinic effects. For the density stratified K-H
instability, comparisons were made with empirical results for the convection
velocity of the structure and the entrainment ratio. The numerical
simulations were able to predict with great accuracy both the above
quantities for a shear layer. The asymptotic velocities of the bubble and the

spike for the R-T instability were compared with those obtained by other
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investigators and again it was found that the numerical results were in good
agreement with those of the other investigaticns.

The study of the jet diffusion flame revealed that the effect of heat
release is to weaken the vorticity field and to damp the growth of the
instability. The diffusion flame, with temperature dependence, was found to
be very sensitive to the local strain rate in the flow field. The flame was
extinguished in regions of large positive strain and the reaction was
confined to zones of negative strain. At low Damkohler numbers, the product
formation in a turbulent diffusion flame is very similar to that of a laminar
flame. For high Damkohler numbers, the turbulent product formation at the
late stages of growth showed a significant increase above that of the laminar
flame. A contrasting behavior was obtained for the premixed flame. At low
values of the Damkohler number, the turbulent premi:ed flame yielded a large
amount of products compared to the laminar flame. As the Damkohler number was
increased, the turbulent product formation curve converged to that of the
laminar flame. In a qualitative sense, all of the above features have been
observed in experiments.

The numerical method was able to resolve the complex non-linear
interaction between the flow field and the reaction. The future extension to
this work lies in applying it to study three dimensional instabilities and

more realistic flow fields with boundaries.
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