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We present the FastEMRIWaveforms (FEW) package, a collection of tools to build and analyze extreme
mass ratio inspiral (EMRI) waveforms. Here, we expand on [A. J. K. Chua et al., Phys. Rev. Lett. 126,
051102 (2021).] that introduced the first fast and accurate fully-relativistic EMRI waveform template
model. We discuss the construction of the overall framework; constituent modules; and the general methods
used to accelerate EMRI waveforms. Because the fully relativistic FEW model waveforms are for now
limited to eccentric orbits in the Schwarzschild spacetime, we also introduce an improved augmented
analytic kludge (AAK) model that describes generic Kerr inspirals. Both waveform models can be
accelerated using graphics processing unit (GPU) hardware. With the GPU-accelerated waveforms in hand,
a variety of studies are performed including an analysis of EMRI mode content, template mismatch, and
fully Bayesian Markov Chain Monte Carlo-based EMRI parameter estimation. We find relativistic EMRI
waveform templates can be generated with fewer harmonic modes (∼10–100) without biasing signal
extraction. However, we show for the first time that extraction of a relativistic injection with semirelativistic
amplitudes can lead to strong bias and anomalous structure in the posterior distribution for certain regions
of parameter space.

DOI: 10.1103/PhysRevD.104.064047

I. INTRODUCTION

Gravitational wave observations from ground-based
detectors are providing many new insights into the rela-
tivistic universe [1,2]. The future space-based Laser
Interferometer Space Antenna (LISA) will complement
this science by enabling observations in the milliHertz
regime [3]. This region of the spectrum is rich in sources
including Galactic double white dwarf (WD) binaries,
massive black hole binaries (MBH), and stellar origin
black hole binaries (SOBH) early in their evolution.
Another key class of sources are extreme mass-ratio
inspirals (EMRIs). These are compact binaries with a mass
ratio μ=M ≃ 10−4–10−7 where μ ∼ 1–100 M⊙ is the mass
of the orbiting secondary andM ∼ 105–107 M⊙ is the mass

of the MBH. EMRIs are expected to form in dense stellar
clusters of galactic nuclei [4,5] where their formation rate
ranges from ∼1–104 per year with observable signal-
to-noise ratios (SNR, ρ) expected to be ∼20–100 over
the duration of the signal [6–8]. The details depend on
the precise formation mechanism but it is anticipated
that the majority of EMRIs will be highly eccentric,
precessing binaries [6]. This means that EMRIs have
some of the richest and most complicated gravitational
waveforms of any compact binary system. The small
mass ratio of EMRIs also means that they evolve slowly
and they typically have ∼104–105 orbits over a period of
years while in the LISA band. The long lasting, complex
waveforms of EMRIs presents a substantial challenge for
both the modeling of these binaries and the LISA data
analysis task.
The rewards for modeling and extracting the EMRI

signals from the LISA data stream are high. The properties
of the binary can be determined to subpercent level [6]
which enables precision tests of general relativity in the
strong field regime [9,10]. Measuring EMRI parameters
will also inform our understanding of the MBH mass
function [11], dense stellar environment in galactic cores
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[7], and gas disks around massive black holes [12–17].
Gravitational waves from EMRIs will also help constrain
cosmological parameters [18], including the dark energy
equation of state [19].
Extracting this wealth of information from the LISA data

stream will be a challenging task for two key reasons: (i) we
require the waveform templates to have a phase error
ΔΦ≲ 1=ρ; this can be as small as ΔΦ≲ 1=100 for a loud
EMRI [20], and (ii) in order to search across the large
parameter space we need waveforms that can be generated
in less than a second. These two requirements have led to
the development of two classes of EMRI models: gravi-
tational self-force models for accuracy and “kludge”
models for speed.
Gravitational self-force models employ black hole per-

turbation theory. In this approach the metric of the binary is
expanded in powers of the mass ratio around the metric of
the MBH. It is known via a two-timescale analysis that this
expansion must be carried out to second order (in the mass
ratio) in order to meet the sub-radian accuracy goal in the
GW phase [21]. The GWamplitudes on the other hand only
need to be known to first order [21]. The first-order
gravitational self-force is now known for generic orbits
about a Kerr black hole [22] and significant progress is
being made with second-order calculations [23,24].
To date, development of the gravitational self-force

approach has focused on calculating the inspiral motion
of the secondary. The numerical computation of the gravi-
tational self-force is slow but can be precomputed and
interpolated in an offline step before the inspiral is rapidly
generated (after appropriately averaging terms that oscillate
on the orbital timescale if needed [25,26]). Once the
inspiral is known, the associated waveform can be com-
puted. These waveform calculations tend to take tens
of minutes to hours depending on the computational
approach [27–29].
Contrasting with the slow gravitational self-force wave-

form models are the fast EMRI “kludge” models which are
designed to be rapidly evaluated for use in LISA data
analysis studies [30–33]. These models capture the phe-
nomenology of generic EMRI waveforms but only have an
approximation to the correct phasing and amplitudes. They
achieve this by computing the inspiral using (post-
Newtonian inspired) analytic fits to pieces of the gravita-
tional self-force and then approximating the waveform
using a “semirelativistic” quadrupole formula (possibly
with octupolar corrections [31]). This weak-field approxi-
mation fundamentally limits the improvements that can be
made to these models. Nonetheless, kludge models are
currently the only EMRI templates available for use in data
analysis studies that encompass the full 14-dimensional
parameter space of EMRIs (neglecting the spin of the
secondary). For this reason they are the only EMRI models
to have been used so far in LISA data analysis stud-
ies [34,35].

For future LISA data analysis, we need to combine the
speed of kludge models with the accuracy of gravitational
self-force models. One waveform acceleration technique
that has been highly successful for comparable-mass
compact binaries are reduced-order-model (ROM) surro-
gates. Recently this approach has been pursued in the
small mass-ratio context [36] but it is not clear if these
models will scale to the long signal duration of the EMRI
problem.
In this work, building upon our recent Letter [37], we

present the FastEMRIWaveforms (FEW) computational
framework. This framework allows gravitational self-
force-based waveform models to be computed about as
rapidly as kludge models, while retaining their inherent
accuracy. The key observation in our approach is that only
the waveform phase needs to be known to very high
precision; the amplitudes of the thousands of harmonic
modes in an EMRI can computed to a much lower
accuracy. Through a combination of ROM and deep-
learning techniques, we produce a sufficiently accurate
global fit for these amplitudes that returns the full set of
modes simultaneously at each sampling time. As our mode-
amplitude model is composed of simple linear-algebra
operations its implementation is highly parallelizable on
graphics processing units (GPUs). As a result we are able to
construct the first fully relativistic, analysis length EMRI
waveforms in less than 500 milliseconds.
To showcase the FEW framework we build a module

that can compute EMRI waveforms for eccentric inspirals
into a non-rotating black hole. In calculating the phasing
for these inspirals we use orbit-averaged pieces of the first-
order gravitational self-force which produces an “adiabatic
inspiral” [21,27]. These inspirals will dephase by tens to
hundreds of radians over a radiation reaction timescale with
respect to the true waveform [38]. The FEW framework is
designed so that many of the most important higher-order
gravitational self-force corrections can easily be incorpo-
rated as they become available; some effects, such as the
impact of resonances [39] (which will make relatively large
contributions to EMRI phase evolution at a small number
of moments during an inspiral), may be more challenging
to include. The adiabatic inspirals we use in this analysis
may nonetheless be useful for searches for loud EMRIs
[33,40], or for binaries with a mass ratio with μ=M < 10−7

for which the LISA mission duration is less than a radiation
reaction timescale [41,42].
Our first fully relativistic EMRI waveform model is for

nonrotating black holes but our modular computational
framework is set up for generic inspirals. To showcase this
we add the augmented analytic kludge (AAK) to the frame-
work with an updated 5PN inspiral model and GPU
acceleration. Both the relativistic and kludge models can
be computed in the detector frame and are accessed via a
common application programming interface (API) which
streamlines interaction with LISA data analysis software.

KATZ, CHUA, SPERI, WARBURTON, and HUGHES PHYS. REV. D 104, 064047 (2021)

064047-2



All the code is publicly available as open-source soft-
ware [43].
Finally, with our new model we provide the first

Bayesian posterior analysis with LISA on relativistic
EMRI waveforms. From this we discover that only a
relatively small number of harmonic modes are required
to faithfully represent the waveform. By reducing the
number of harmonic modes our waveform model runtime
decreases to tens of milliseconds on a GPU. We also take
the opportunity to make the first study of the biases
introduced in kludge models by their use of semirelativistic
waveform generation. To do this we use the modular
framework of FEW to drive the AAK model with an
adiabatic inspiral and compare the associated semirelativ-
istic waveforms with the fully relativistic one. We find that
the AAK waveform generation results in significant biases
in some parts of the parameter space.
The rest of this paper is structured as follows. We begin

with a brief description of and equations related to building
an EMRI waveform in the detector frame in Sec. II. In
Sec. III we discuss the overall framework of FEW. In
Sec. IV, the first example of a relativistic waveform built
within the FEW framework is described. In Sec. V, a new
and improved version of the augmented analytic kludge
[32,33] is presented using an improved trajectory model.
This waveform is also implemented in the FEW frame-
work. In Sec. VI, we analyze the mismatch, mode content,
and generation of these new waveforms. We also provide
the first Bayesian posterior analysis with relativistic EMRI
waveforms. To conclude we discuss the future direction of
the FEW framework and these models as we move toward
the LISA mission in Sec. VII. In this article we will use
geometrized units with G ¼ c ¼ 1.

II. EMRI WAVEFORM OVERVIEW

EMRI waveforms are represented by the complex time-
domain dimensionless strain hðtÞ ¼ hþ − ih×, where hþ
and h× are the normal transverse-traceless gravitational
wave polarizations. At a large distance from the source, h is
given by [44]

h ¼ μ

dL

X
lmkn

AlmknðtÞSlmknðt; θÞeimϕe−iΦmknðtÞ; ð1Þ

where t is the time of arrival of the gravitational wave at the
solar system baricenter, θ is the source-frame polar viewing
angle, ϕ is the source-frame azimuthal viewing angle, dL is
the luminosity distance, and fl; m; k; ng are the indices
describing the frequency-domain harmonic mode decom-
position. The indices l, m, k, and n label the orbital angular
momentum, azimuthal, polar, and radial modes, respec-
tively. Φmkn ¼ mΦφ þ kΦθ þ nΦr is the summation of
decomposed phases for each given mode. The amplitude
Almkn is related to the amplitude Z∞

lmkn of the Teukolsky
mode amplitude far from the source. It is given by

Almkn ¼ −2Z∞
lmkn=ω

2
mkn, where ωmkn¼mΩφþkΩθþnΩr

is the frequency of the mode, and Ωr;θ;ϕ describe the
frequencies of a Kerr geodesic orbit. These frequencies are
determined from [45] using the dimensionless spin of the
MBH, a, and the quasi-Keplerian orbital parameters of p
(semi-latus rectum; hereafter “separation”), e (eccentricity),
and cos I ≡ xI (cosine of the angle I which describes the
orbit’s inclination from the equatorial plane). See Ref. [27]
for further discussion and more detailed definitions. The
phases Φφ;θ;r given above are the integral over time of the
orbit’s fundamental frequencies:

Φφ;θ;r ¼
Z

t

0

dt0Ωφ;θ;rðpðt0Þ; eðt0Þ; xIðt0ÞÞ: ð2Þ

The function Slmknðt; θÞ is a spin-weighted spheroidal
harmonic. Because these harmonics depend on the orbital
frequencies, and the frequencies evolve with time, the
resulting harmonics evolve as well [44].
For a geodesic orbit, Almkn and Slmkn are determined by

solving the Teukolsky equation [46]. The wave field h is
related to the Weyl curvature scalar, ψ4, at null infinity by
its second derivative: ḧ ¼ 2ψ4. The curvature scalar can be
determined for each unique set of geodesic parameters
fa; p; e; xIg by decomposing in the frequency domain and
separating the radial and angular dependencies. In this
representation, ψ4 is given by [46]

ψ4 ¼
X
lmkn

RlmknðrÞSlmknðt; θÞeimϕe−iωmknt: ð3Þ

As r approaches the event horizon and infinity, the
radial solution RlmknðrÞ takes a simple limiting form, with
Rlmkn ∝ ZH;∞

lmkn. It can then be shown that the complex
amplitudes ZH;∞

lmkn encode the rate at which an orbit evolves
due to the orbit-averaged dissipative backreaction of
gravitational-wave emission; the amplitude Z∞

lmkn, in addi-
tion, Eq. (3) describes the contribution to the harmonic
lmkn of the gravitational waveform. These quantities are
computed for specified geodesics, and are then interpolated
from geodesic to geodesic and combined with an accu-
mulated phase to build a full waveform. More information
and details can be found in Refs. [27,44].

A. Generating detector-frame waveforms
for data analysis

The full EMRI parameter space for a detector-frame
EMRI waveform is 17-dimensional: fM; μ; a; a⃗2; p0; e0;
xI;0; dL; θS;ϕS; θK;ϕK;Φφ;0;Φθ;0;Φr;0g. The parameters
fM;μ;a;p0; e0;xI;0;dL;Φφ;0;Φθ;0;Φr;0g are defined above;
θS and ϕS are the polar and azimuthal sky location angles
given in the solar system barycenter frame; θK and ϕK are
the azimuthal and polar angles describing the orientation of
the spin-angular momentum vector of the MBH, Ŝ; and a⃗2
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is the three-dimensional spin angular momentum vector of
the CO. a⃗2 is currently ignored in waveform generation, but
will be necessary for full waveform descriptions [47].
To introduce detector-frame waveforms, we follow the

constructions and bases used for the kludge models [33].
Diagrams containing source frame, solar system baricenter
frame, and polarization conventions are shown in Fig. 1.
The sky-position vector along the line-of-sight to the EMRI
system, R̂, is given by,

R̂ ¼ ðsin θS cosϕS; sin θS sinϕS; cos θSÞ; ð4Þ

where the three components are with respect to the
ðx̂s; ŷs; ẑsÞ unit vectors defined by the solar system bari-
center coordinate frame basis. Similarly, Ŝ in the solar
system baricenter coordinate frame is given by,

Ŝ ¼ ðsin θK cosϕK; sin θK sinϕK; cos θKÞ: ð5Þ

When the MBH has no spin (a ¼ 0), Ŝ is equivalent to the
orbital angular momentum unit vector, L̂. The wave-frame
basis (denoted by a w subscript) is given by [33]

ðx̂w; ŷw; ẑwÞ ≔
�
R̂ × Ŝ
SR̂;Ŝ

;
Ŝ − ðŜ · R̂ÞR̂

SR̂;Ŝ

;−R̂
�
; ð6Þ

where ẑw points along the propagation direction of
the wave from the source to the detector and SŜ;R̂ ≔
ð1 − ðŜ · R̂Þ2Þ1=2. Within the kludge model framework, x̂w
and ŷw represent the polarization unit vectors used to
determine the hþ and h× contributions.

For the relativistic waveforms, the source-frame
(denoted with •) viewing angles, θ• and ϕ• [equivalent to
θ and ϕ in Eq. (1)], are determined by projecting R̂ into the
source frame. We define the source frame in the same way
as the kludge models:

ðx̂•; ŷ•; ẑ•Þ ≔
�
R̂ × Ŝ
SR̂;Ŝ

;
R̂ − ðR̂ · ŜÞŜ

SR̂;Ŝ
; Ŝ

�
; ð7Þ

where ẑ• points along the spin axis of the MBH and x̂•

aligns with x̂w. This convention leads to ϕ• ¼ −π=2
always. With ϕ• fixed, the phasing of the wave is deter-
mined with initial phases fΦφ;0;Φθ;0;Φr;0g. The polar

viewing angle is then determined by cos θ• ¼ −R̂ · Ŝ.
In the source frame, the polarization vectors are given by

êθ;• and êϕ;•, the conventional spherical coordinate unit
vectors. To align the polarization angles of the relativistic
source framewith the kludge models, a rotation angle of π=2
is applied. This rotation is equivalent to a phase shift of π.
Following this procedure, both relativistic and kludge

waveforms are aligned and require a transformation to the
solar system baricenter frame. The rotation to the solar
system baricenter frame is twice the polarization angle, ψ ,
given by,

ψ ¼ cos θS sin θK cosðϕS − ϕKÞ − sin θS cos θK
sin θK sinðϕS − ϕKÞ

: ð8Þ

III. FAST EMRI WAVEFORMS FRAMEWORK

The FEW framework was created to generate fast and
accurate EMRI waveforms in the form of Eq. (1) with high

(a) (b) (c)

FIG. 1. Conventions for the source frame, solar system baricenter frame, and polarization angle are shown in the schematic diagram
above. For the source-frame diagram (a), the coordinate basis is defined in Eq. (7). The direction toward the solar system baricenter
ð−R̂Þ is shown as the red arrow which defines ẑw. The source-frame polarization vectors are shown in blue and the basis vectors in the
wave frame [see Eq. (6)] are shown in orange. Note the rotation by π=2 to align the source-frame polarization vectors with the wave-
frame basis. Also, due to conventions chosen, ϕ• ¼ −π=2 always. In the solar system baricenter frame (b), the solar system baricenter
frame polarization basis is shown in blue. The red arrow shows the angle to the source (þR̂). Finally, in plot (c), the polarization
determination is illustrated. The polarization angle represents the rotation down the line-of-sight from the wave-frame (red) to the solar
system baricenter polarization basis (black).
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fidelity when compared to slow waveform calculations.
The framework was designed with specific goals in mind:

(i) Fast waveforms must maintain a sufficiently high
fidelity to accurate waveforms so as not to bias
source search and parameter estimation.

(ii) It must be modular so that pieces of code can be used
as stand alone tools, as well as combined in a variety
of ways to minimize extraneous source code.

(iii) A high level of flexibility is needed so that as new
physics are added to EMRI waveforms or new
computational methods are devised, FEW can
readily adapt and accept these changes.

(iv) The user interface must be simple at all levels so that
it is easy to use and contribute to.

(v) Underneath the user interface, acceleration and
paralellization techniques must be utilized to make
FEW waveforms as fast as possible.

The general FEW framework is visualized in Fig. 2. In
this section, we will discuss the base modules necessary to
build the FEW framework. Each module that has GPU
capabilities is available in both a CPU and GPU form.

To change between the two the user needs only change a
keyword argument in the PYTHON-based user interface.

A. Fast trajectory module

The initial part of EMRI waveform creation is the
determination of the CO’s phase space trajectory. This
orbit-averaged trajectory is determined over time in
terms of GðtÞ ≔ fpðtÞ; eðtÞ; xIðtÞ;ΦφðtÞ;ΦθðtÞ;ΦrðtÞg.
These quantities satisfy (coupled) ordinary differential
equations (ODEs) that we solve via numerical integra-
tion. As will be discussed in Secs. IV and V, the ODEs
are specific to each trajectory implemented. For a flux-
driven trajectory, these time derivatives are determined
from f _E; _L; _Qg, where these three quantities represent,
in order, the time derivatives of the orbital energy, axial
orbital angular momentum, and Carter constant. These
quantities can be determined from the Teukolsky ampli-
tudes ZH;∞

lmkn [27,48]. In the present work, we implement
a flux-driven trajectory while post-adiabatic trajectories
are developed.

FIG. 2. The overall modular framework for FEW is shown in the top schematic diagram. This diagram describes the high-level
progression of module usage during waveform production. Each segment of waveform production is labelled at the top of each column
and assigned a color. The bottom diagram shows the waveforms and modules that have been implemented to-date in the FEW package.
Stock waveforms are shown in yellow in the first column. Their individual module progression toward the final waveform is shown with
arrows. The modules are assigned the color of the segment of waveform production they belong to. The utility functions that are used
both for waveform production and overall analysis are also shown toward the bottom in gray.
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The computation of the amplitudes ZH;∞
lmkn is too slow to

be implemented on the fly and, therefore, impractical for
any trajectories generated for data analysis. These quan-
tities will instead need to be precomputed on a grid in
fa; p; e; xIg space and matched with a fast interpolation
method for online calculations. In Sec. IV, we will discuss
the specifics of the first implementation of this scheme in
the Schwarzschild eccentric regime.
For the numerical integration, we employ an adaptive

eighth-order Runge-Kutta integrator from the GNU Scien-
tific Library (GSL) [49]. The integrator outputs the tra-
jectory at a small number of time steps (∼100) as the
trajectory is very smooth. This is a key component of the
overall waveform speed and architecture. These sparsely
sampled trajectories are heavily leveraged so as to reduce
intermediate computations prior to the final waveform
build. These sparse trajectories, when upsampled with a
cubic spline, show negligible absolute error when com-
pared to densely sampled trajectories with small fixed
time steps. These methods will also be applicable to
postadiabatic trajectories, but adjustments will be required
to incorporate resonances.
For maximal flexibility and verification, the base tra-

jectory module in the FEW package allows the user to
customize the trajectory output. For example, users can
densely sample their trajectories; resample the trajectories
using cubic splines; and/or convert from coordinate to
dimensionless time scaled by the mass of the MBH. Due to
the serial nature of trajectory computations, these modules
are currently only implemented on the CPU.

B. Amplitude module

As stand-alone parts, amplitude modules take in
fa; p; e; xIg in vectorized form, returning a two-
dimensional array of individual complex mode amplitudes,
Almkn, for each parameter set provided. In a Schwarzschild
eccentric background, the harmonic basis consists of 3843
harmonic modes. When expanding to the generic Kerr
regime, the polar harmonic index k will be introduced, and
the number of modes will expand by roughly an order of
magnitude. In Sec. VI, we show that waveforms with
purposefully and strategically reduced harmonic content,
in many situations, will be sufficient for data analysis
purposes.
Within a larger waveform model, the amplitude module

will take a specific set of orbital parameters given by the
trajectory outputs. These will generally be sparse trajecto-
ries that will produce sparse amplitude computations at the
same time cadence as the input trajectories. Since ampli-
tudes vary slowly on the radiation reaction timescale their
spare sampling is once again an important component of
maintaining the speed of the overall waveforms (see Fig. 8).
The amplitudes Almkn are determined for each orbital

parameter set, independent of all other orbit points along a
trajectory. This facilitates parallelizable computations for

the amplitude modules; where methods are parallelizable,
they will be available in both a GPU and CPU option.

C. Waveform summation module

With the constituent parts in place, the waveform
summation module takes trajectory and amplitude infor-
mation and forms the final waveform. This is done by
upsampling the sparse arrays to the true sampling of
the data stream. This is a crucial step in the waveform
creation process; even with various improvements des-
cribed in this paper, it remains the bottleneck in terms of
accelerated EMRI computations. For this reason, as well as
the parallelizable nature of this large-dimensional com-
putation, accelerator hardware is necessary to bring the
compute time of this process down to reasonable levels for
data analysis.
There are two types of summation modules provided in

the FEW package. They are both generic to most wave-
forms that will be implemented in the FEW model (an
exception to this is the new AAK discussed in Sec. V). The
more basic option provided performs a direct summation
with amplitude and trajectory information at the array
density provided. This type of summation is slower than the
second type of summation, and is usually employed when
densely stepping trajectories and amplitude calculations.
The faster waveform summation is performed by using

cubic splines to interpolate the sparse array information.
Therefore, this is referred to as the “interpolated summa-
tion.” This process begins with a special cubic spline
interpolation implemented for efficiency on GPUs. It
leverages cuSparse from the NVIDIA library to quickly
compute spline coefficients in a tridiagonal banded matrix
representation. The specific spline implemented is the “not-
a-knot” spline in terms of its boundary conditions. This
spline implementation assumes all arrays to be interpolated
exist on the same sparse time grid. The parallelized spline
fitting allows us to quickly determine the spline coefficients
simultaneously for all phases and individual mode ampli-
tudes (∼102–104 separate splines based on overall mode
content). This cubic spline, available in both CPU and GPU
versions, is also a stand alone piece of the FEW framework
and can be leveraged in other projects where similar spline
computations are needed.
Once the spline coefficients are determined, the actual

summation kernel evaluates the spline at the sampling rate
of the output data stream. Then, the output phase and
amplitude values are combined within each mode accord-
ing to Eq. (1). In this step, we exploit a symmetry: the
amplitude relation

Al;−m;−k;−n ¼ ð−1ÞðlþkÞA�
lmkn; ð9Þ

where the superscript � denotes complex conjugation. This
allows us to only compute modes for m ≥ 0; modes with
m < 0 can inferred using Eq. (9). Once the final complex
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contribution to the waveform is determined at each specific
time value within each mode, the modes in a single time
step are combined. This is effectively the cause of the high-
dimensional computational difficulty of the problem. For a
year long data stream sampled at 0.1 Hz, a typical sampling
rate chosen for LISA data, this creates a summation across
∼102–104 modes at each of the ∼3.15 × 106 time steps. As
can be seen in Fig. 8, the GPU accelerator makes this step
tractable for data analysis with LISA.

D. Utility modules

In addition to the base modules discussed above, the
FEW package provides many utility modules that are
important to the overall waveform creation model, includ-
ing, but not limited to, a separatrix calculator in generic
Kerr spacetime; a generic Kerr fundamental frequency
calculator; spin-weighted spherical harmonics; and a basic
mismatch calculator. The interested reader can find docu-
mentation on these utilities in the FEW package [43].
The most important of these modules that is not specific

to any individual waveform model is the “mode selector”
module. The mode selector performs an online calculation
to determine which of the individual harmonic modes
contribute power to within a user-defined threshold of
the total power emitted by all modes (denoted as ϵ). This
begins by taking arrays of the power within each mode at
each sparse time step determined from the complex
amplitudes output by an amplitude module. It then operates
entirely within each time step. It sorts the individual modes
in descending order and computes a cumulative summa-
tion. From this sorted array, it is determined where the
additional power contributed by an individual mode falls
below a user provided threshold related to the total power
emitted (ϵ) at that time step (the final entry in the
cumulative sum). This gives a set of contributing modes
within each time step. We then take the union of all
contributing modes across all time steps to maintain
continuity across time. There is a very small loss of
accuracy in this procedure since we are not performing
this calculation at each and every dense time step. However,
this would only lead to the inclusion of fringe modes that
contribute only slightly to the overall waveform power. As
indicated by the overall waveform mismatch determined
empirically in Sec. VI B, this loss in accuracy is negligible
across our parameter space. Within the mode selector
module is the option to include noise-weighting. We find
this does not make a major difference in terms of the
specific modes chosen and do not use this method in
this paper.

E. Overall code design

The FEW code was carefully designed to enhance its
modularity, flexibility, ease-of-use, and acceleration capa-
bilities. Here, we will discuss the overall code structure
from the top user interface down.

The user accesses everything in FEW through a PYTHON

interface. At the highest level is a generic waveform
generator where the specific waveform is provided as an
argument during instantiation. This generic interface allows
for seamless transitions between waveform backends for
fast waveform comparisons.
Below the top-level genericgenerator are thespecificwave-

form models. We currently provide three complete wave-
form models: FastSchwarzschildEccentricFlux
(Sec. IV), SlowSchwarzschildEccentricFlux
(Sec. IV C) and Pn5AAKWaveform (Sec. V). The first
two are provided in the source frame. The latter is built in
the detector frame. The generic interface accounts for this
difference when comparing two different generation frames
(see Sec. II A).
Each of these waveforms is then broken down into

PYTHON modules as detailed above. Within the full wave-
forms and their constituentmodules, PYTHON is leveraged for
providing the overall code and package structure, performing
simple operations, and preparing input for the low-level C++/
CUDA code. Each module containing a calculation in C++/

CUDA uses a thin, customized CYTHON interface [50,51].
At the lowest level lives the C++/CUDA functions that are

built for speed. Our main goal is to limit the amount of code
in C++/CUDA to only necessary bits that require speed and
enhanced acceleration capabilities. The implementation of
parallelization and acceleration capabilities is provided in
both PYTHON modules and C++/CUDA code. In PYTHON,
CPU/GPU agnostic code is designed using NumPy [52] and
CuPy [53]. In C++/CUDA, functions are first designed for
GPUs to ensure enhanced performance and acceleration
and are then adapted for CPUs using OpenMP [54]. The code
is specifically designed to minimize duplication of code
across the different hardware, leveraging compiler direc-
tives specific to each device only when necessary.

IV. ADIABATIC SCHWARZSCHILD
ECCENTRIC WAVEFORMS

For the development of the first fully relativistic EMRI
template waveforms, we focused on the initial task of
performing these computations for eccentric inspirals
into a Schwarzschild black hole. In this regime, we can
exclude various parameters from the full EMRI description.
The MBH is nonrotating allowing us to set a ¼ 0 and the
spacetime is spherically symmetric. This leads to the
removal of the inclination parameter (xI ¼ 1 for complete-
ness) as we can consider any orbit to be in the equatorial
plane. This also allows for the removal of polar phases (Φθ)
and indices (k) from Eq. (1) reducing the summation to a
sum over the lmn indicies. Combining the spheroidal
harmonic Slmknðt; θÞ with eimϕ and then taking the limit
in the Schwarzschild background reduces these terms to the
regular -2 spin-weighted spherical harmonics, −2Ylmðθ;ϕÞ
[46]. Equation (1) in the Schwarzschild eccentric regime
then becomes:
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h ¼ μ

dL

X
lmn

AlmnðtÞ−2Ylmðθ;ϕÞe−iΦmnðtÞ: ð10Þ

Notice this means the angular harmonic term is no longer
time dependent, but constant over the whole orbit (see
Sec. VII for more discussion).
Here we will detail how specific implementations of the

various modules presented in Sec. III were combined to
create the first fast and fully relativistic EMRI waveforms.
With the trajectories and amplitudes determined according
to the following sections, this information was combined
with the spin-weighted spherical harmonics and then put
through mode selection, both of which are described in
Sec. III D. Following mode selection, the waveform is built
using the interpolated summation (see Sec. III C). This
eccentric Schwarzschild adiabatic model is valid for pmin ≤
p ≤ ps þ 10 and 0 ≤ e ≤ 0.7, where ps is the separatrix
[55] and pmin ¼ maxðps þ 0.1; 7ps − 41.9Þ.

A. Flux-driven trajectories

The first specific piece of a relativistic waveform is a
relativistic trajectory. This module was built under the
generic fast trajectory formula described in Sec. III A. For
this waveform, we operate with a flux-based adiabatic
trajectory. To do this we must calculate ð _p; _eÞ from ð _E; _LÞ.
The energy and angular momentum flux must be calculated
quickly for generic eccentric geodesics (limited to our
domain of validity) in a Schwarzschild background as the
numerical integrator evolves the trajectory forward in time.
This is not possible to do by directly computing Teukolsky
amplitudes and fluxes because the duration of this calcu-
lation is orders of magnitude larger than the time we require
for the entire trajectory (∼ms). We therefore rely on
accurate and efficient interpolation techniques.
The first step to evaluating the trajectories is to compute

a grid of flux values using a Teukolsky code. In order to
efficiently interpolate the fluxes with bicubic splines, it is
helpful to place place the data on a grid with uniform
spacing. As in Schwarzschild spacetime the separatrix is
given by ps ¼ 6þ 2e [55], we instead introduce u ¼
lnðp − ps þ 3.9Þ [37]. This allows us to build a uniform
grid in ðu; eÞ space with 1.37 ≤ u ≤ 3.82 in steps of 0.05
and 0.0 ≤ e ≤ 0.8 in steps of 0.025. This parametrization
allows for more points closer to the separatrix where the
orbital quantities vary more rapidly. The grid coordinate u
corresponds to separations of ps þ 0.03 ≤ p ≤ ps þ 41.6.
Rather than a two-dimensional interpolation over this

grid of the actual flux values, we subtract out the leading
PN behavior and instead interpolate over an effective flux
residual to reduce error in the interpolation. We then
construct bicubic splines over ðu; eÞ of ð _Espl; _LsplÞ given by

_Espl ¼ ð _E − _EPNÞΩ−4
φ and

_Lspl ¼ ð _L − _LPNÞΩ−3
φ ; ð11Þ

where the PN behavior is given by [56]

_EPN ¼ ð96þ 292e2 þ 37e4Þ
15ð1 − e2Þ7=2 Ω10=3

φ and

_LPN ¼ 4ð8þ 7e2Þ
5ðe2 − 1Þ2 Ω

7=3
φ : ð12Þ

At evaluation time, the integrator determines the funda-
mental frequencies (Ωφ, Ωr) [57] based on ðp; eÞ, followed
by the PN contribution to ( _E, _L). It then converts (p, e) to
ðu; eÞ and evaluates the interpolant to get the effective
adiabatic residual of ( _E, _L). With ( _E, _L) in hand, ( _p, _e) are
computed using [57].
The integrator begins at ðp0; e0;Φφ;0;Φr;0Þ and integra-

tes until it takes a step that is within 0.1 of the separatrix. As
the integrator steps over ps þ 0.1, the integrator reverts
back to its previous value and walks in smaller steps until it
reaches within 10−8 of ps þ 0.1. Therefore, the trajectories
that reach the separatrix end at p ≈ ps þ 0.1þ 10−8.
Without this small stepping operation at the end, trajecto-
ries finish at whatever point the integrator finds within
ps þ 0.1. This causes inconsistencies in the time and
separation at the end of the waveform. Before considering
this effect, we found the likelihood computations in
Sec. VI D to be noisy and not smoothly varying as would
be expected over small scales in parameter space.
As mentioned in Sec. III A, this integration produces

∼100 points along the trajectory as ðpðtÞ; eðtÞ;ΦφðtÞ;
ΦrðtÞÞ. An example of the trajectories in ðp; eÞ space
can be seen in Fig. 6.

B. RomanNet amplitude generation

Following the generation of orbital parameter trajecto-
ries, the complex amplitudes of the many harmonic modes
must be produced. To accomplish this task, we implement a
version of a reduced-order-model with artificial neurons
(ROMAN) [58] within the amplitude module framework
discussed in Sec. III B.
Complex amplitudes were generated along the same grid

as the total flux values discussed in Sec. IVA. In our mode
set, we analyze l ∈ ½2; 10�, m ∈ ½0; l�, and n ∈ ½−30; 30�,
which totals 3843 modes. Mode amplitudes with m < 0
were determined using Eq. (9) with k ¼ 0. To prepare this
group of 3843 modes per ðu; eÞ pair for use in our neural
network amplitude generation scheme, we first compress
the information using the method of reduced order model-
ing (ROM) [59]. ROM is a powerful technique that is
used within gravitational wave analysis to build efficient
surrogate waveforms [60], and to accelerate likelihood
calculations through the method known as reduced-order-
quadrature (ROQ) [61]. ROMAN as originally proposed
fulfils the same function as surrogatesþ ROQ, by using
neural networks as waveform fits and working natively in
the reduced-order domain. Here, however, we use ROMAN
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to fit the set of mode amplitudes instead, which leverages
the strength of neural networks for global regression over
high-dimensional complex spaces.
With the 3843 modes per ðu; eÞ cast as a vector Ai ¼

vecðAlmnÞ ∈ C3843 ≃R7686, we compress our dataset using
a greedy algorithm from the PYTHON package RomPy [62].
The data is compressed to a reduced basis B representing
the span of the uniform grid of complex amplitude data.
The reduced-order basis is represented by reduced-order
basis coefficients, αj:

Aiðu; eÞ ¼
X
j

αjðu; eÞBji ≡ αjðu; eÞ: ð13Þ

The data is compressed by a factor of ∼40 with
αj ∈ C99 ≃R198.
We then trained the neural network with inputs equiv-

alent to the grid of ðu; eÞ values and outputs equivalent to
αj ∈ R198. The neural network architecture is a basic fully-
connected neural network. It consists of 20 hidden layers.
The first hidden layer has 4 nodes with the subsequent five
layers increasing each node count by a factor of 2 until the
node count reaches 256. The remainder of the hidden layers
all employ 256 nodes. To incorporate nonlinear behavior
we activate each hidden layer with a Leaky ReLU function
[63] (the output layer is not activated). The training is
performed in minibatches [64] of 810 with the ADAM
gradient descent optimizer [65]. The loss function is the
standard L2 loss function: L ¼ hjα − α̂j2i, where h·i rep-
resents the average over a minibatch and j · j is Hermitian.
The neural network is trained over 3 × 104 epochs.
At run-time, the RomanNet module is given the arrays of

ðp; eÞ determined from the trajectory module. It then
converts these pairs to ðu; eÞ and inputs these values into
the trained neural network. The network outputs αj, which
are then transformed back to the full amplitude space with
α · B. The amplitude vectors output by the module are then
renormalized to a more accurate vector norm generated by a
bicubic spline during and output by the trajectory module at
each time step.

C. Slow reference waveform

To verify that our new waveforms are accurate, we must
compare against more accurate, slowly generated wave-
forms. Generally, waveforms produced directly from the
modeling community are too slow to produce ∼year of
consecutive data, which is the duration needed for proper
data analysis-related tests. Therefore, we have constructed a
“slow” version of our Schwarzschild adiabatic waveform
by implementing trajectory, amplitude, and summation
modules that focus on accuracy rather than speed.
The trajectory for this comparison waveform is deter-

mined in the same manner as the fast trajectory modules in
terms of evolving the trajectory forward in time from
ðp0; e0Þ to within ∼0.1 of the separatrix. The difference is

that the time steps are fixed to the time step in the data
stream (∼10 s). This allows for a maximally accurate
calculation of the orbital and phase trajectories without
performing any large steps via adaptive methods.
The amplitudes are determined by using the same set

of Almnðu; eÞ used for the underlying training set of the
neural network. However, rather than using advanced
methods for fitting the data, we instead settle for a simple,
but highly accurate bicubic spline over the real and
imaginary pieces of each individual mode. This is ineffi-
cient in terms of memory storage and speed of evaluation,
but is necessary to create highly accurate generic EMRI
waveforms to compare against our more advanced gen-
eration methods. Additionally, amplitudes are not calcu-
lated at sparse points, but rather at each point in the dense
trajectory output by the slowly evolving trajectory module
just previously mentioned.
The final waveform summation is calculated using the

direct summation method described briefly in Sec. III C.
This is performed by combining the phase and amplitude
information at each time point in the data stream without
interpolating any of these quantities.

V. AN IMPROVED AUGMENTED
ANALYTIC KLUDGE

Another addition to the FEW framework is a new version
of the augmented analytic kludge (AAK) first presented in
[32,33]. AAK waveforms remain useful even with fast
relativistic waveforms under development, since they are
extensive in their coverage of the generic Kerr parameter
space by construction. These waveforms are still useful in
ongoing data analysis studies for LISA to understand the
extraction of the spin of the MBH, as well as the complexity
associated with generic orbit configurations. Here, rather
than detailing the AAK formalism, we will describe what
has changed in our new version of the AAK. We refer the
interested reader to [32,33] to understand the foundations
for generating AAK waveforms.
The new AAK effectively glues together a more accurate

and robust trajectory module with the old AAK’s waveform
generator (or summation module in the FEW framework).
The new trajectory, built in the fashion of the fast trajectory
module described in Sec. III A, integrates through the
parameter evolution using 5PN flux values for deriva-
tives f _p; _e; _Yg (Y ¼ cos ι) [66]. Note that Y ¼ cos ι≡
Lz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z þQ

p
where ι is different from the angle I used

in this paper to describe the orbital inclination angle in the
relativistic construction. The parameter ι is included
here because it is explicitly used in the semi-relativistic
formulation. For the time derivatives of the phases, we
employ the same fundamental frequencies as in the
relativistic waveforms, ðΩφ;Ωθ;ΩrÞ, which now includes
the polar frequency, Ωθ, required in the generic Kerr
regime. This indicates an important update to the original
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AAK waveform: ι is now an evolving quantity whereas in
prior versions it was taken to be a constant. Additionally, a
key distinction here with respect to the Schwarzschild
trajectory described in Sec. IVA is that the separatrix is no
longer simply given by ps ¼ 6þ 2e. Instead, we employ a
numerical computation of the separatrix that depends on
ða; e; YÞ given in [55]. We implement this calculation in
C++ leveraging the GSL library [49] for root finding. Once
the trajectory has reached within 0.1 of the separatrix, it
stops and performs the finishing integration step described
for the relativistic trajectory in Sec. IVA. This higher-
dimensional trajectory computation still outputs arrays that
are ∼100 points in length.
The old AAK built a trajectory by using frequency

evolution from the numerical kludge [31] and mapping it
onto the frequency basis used in the original analytic
kludge [30]. This actually resulted in a time evolving
effective mass and spin of the MBH, along with a few
ad hoc additions within the waveform building step that
ensured the AAK would maintain roughly the same
frequency evolution as the NK.
With the new 5PN trajectory, we do away with the

mapping and ad hoc steps within the waveform build.
Instead, we directly calculate the fundamental frequencies
along the trajectory and convert these to the basis used in
the AAK waveform generation step:

_Φ ¼ Ωr;

_γ ¼ Ωθ − Ωr; and

_α ¼ Ωφ − Ωθ; ð14Þ

where _Φ is the rate of change for the quasi-Keplerian
mean anomaly, _α is the rate of Lense-Thirring preces-
sion, and _γ þ _α is the angular rate of periapsis precession.
The phases in this basis, fΦ ¼ Φr; γ; αg, are given byR
t
0 dt

0ð _Φðt0Þ; _γðt0Þ; _αðt0ÞÞ. In the original AAK, a calculation
was performed at each time step to determine the proper
Ωφ. Since we already have this quantity, we have removed
this computation and instead feed the Ωφ array directly into
the waveform summation step.
Similar to the interpolated summation described in

Sec. III C, all time evolving information necessary for
the final waveform summation is interpolated with a cubic
spline. After preparing all the necessary quantities along a
sparse trajectory, the quantities that require interpolation
are ðe; ι;Φ; γ; α; _Φ; _γ;ΩφÞ (pðtÞ information is included via
_Φ, _γ, and Ωφ). The actual waveform summation step is
exactly the same as the old AAK, with the exception of the
interpolation of these quantities and the aforementioned
direct input of Ωφ.
The new AAK summation is coded as a separate module

from the actual trajectory determination. Therefore, in
sticking to the FEW framework, these modules are

interchangeable and usable as stand-alone tools. If a user
builds their own trajectory in generic Kerr, they can attach
this AAK summation to it in the current absence of a fully
generic relativistic Kerr model. This waveform summation
module is also GPU-accelerated in keeping with the
CPU/GPU agnostic nature of the FEW framework.

VI. GRAVITATIONAL WAVE ANALYSIS

A key difficulty with the lack of fast EMRI waveforms
was the inability to perform detailed data analysis studies
in a tractable amount of time. We show how the accele-
rated FEW framework can be leveraged to study EMRI
systems including basic underlying EMRI waveform
information, as well as tests of EMRI detectability and
parameter characterization. A variety of fast FEW wave-
forms were studied with differing settings: one waveform
uses a mode content parameter set to 10−5 (FFϵ5) to
represent a relativistic waveform with a large amount of
harmonic modes; another with relativistic mode content,
but a small number of modes with ϵ set to 10−2 (FFϵ2);
and a relativistic quadrupolar waveform with only the
ðl; m; nÞ ¼ ð2; 2; nÞ modes (FF22). Additionally, we tested
a waveform that combines the trajectory module from the
fast relativistic Schwarzschild waveform with the AAK
waveform summation module. This produces a waveform
with a relativistic adiabatic trajectory and AAK-generated
amplitudes limited to the Schwarzschild eccentric regime.
This means when we compare this Schwarzschild AAK
(SchAAK) waveform with the fast Schwarzschild FEW
models, the phase trajectories are exactly the same. There-
fore, the focus of these comparisons is on the amplitude
difference between the models in order to understand
how accurate the amplitudes of EMRIs need to be in
practice to perform data analysis. Future studies with these
models will help illuminate these questions. Here, we
provide an initial look at the Schwarzschild eccentric
adiabatic regime.
We use the generic FEW waveform interface to produce

detector-frame waveforms with the same conventions
across all models. While these waveforms are produced
in the detector frame, we do not use a LISA response
function as accurate versions are not yet available; there-
fore, we focus on intrinsic parameters during any compar-
isons. All angular quantities are chosen one time and used
for all tests. They are chosen from a random uniform
distribution across their domain. The values tested were
ðθS;ϕS; θK;ϕK;Φφ;0;Φr;0Þ ¼ ð0.54; 5.36; 1.73; 3.20; 3.23;
4.72Þ. As we are in the Schwarzschild eccentric regime, we
set ða; Y0;Φθ;0Þ ¼ ð0.0; 1.0; 0.0Þ. All waveforms are two
years in length with a measurement cadence of 10 seconds.
The following studies employ common gravitational-

wave metrics to further understand the use of relativistic
waveforms in EMRI analysis. The conventional gravita-
tional-wave likelihood L between a set of strain data, dðtÞ,
and a template waveform, hðtÞ, is given by
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lnL ¼ −
1

2
hd − hjd − hi; ð15Þ

where we have introduced the noise-weighted inner
product:

hajbi ¼ 4Re

�Z
∞

0

ãðfÞ � b̃ðfÞ
SnðfÞ

df

�
: ð16Þ

Here, ãðfÞ is the Fourier transform of aðtÞ, and SnðfÞ is the
power spectral density (PSD) of the noise. The SNR of a
given source is equivalent to

ffiffiffiffiffiffiffiffiffiffiffihdjhip
. The analysis in

Sec. VI D is based on the LISA mission. Therefore, the
PSD used was the “SciRDv1” version of the LISA noise
curve [67] without Galactic binary foreground noise for
convenience and to focus on the waveform-model bias.
Sections VI A and VI B instead focus directly on the
waveform model, setting the PSD to 1 for all frequencies
to avoid noise-weighting for a specific detector. For these
computations we use the “overlap” or “mismatch” ¼ 1−
overlap. The overlap is a normalized inner product:

overlapða; bÞ ¼ hajbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihajaihbjbip : ð17Þ

A. Harmonic mode analysis

The overall accuracy and speed of the FEW waveform is
user controlled by setting the fractional mode power
parameter, ϵ, as described in Sec. III D above. This controls
the number of modes built into the waveform. Mismatch

values, mode count, and generation speed across ϵ values
are shown in Fig. 3. Three points representing the boundary
of the FEW domain of validity are shown: ðp0; e0Þ ∈
½ð10; 0.7Þ; ð17.4; 0.7Þ; ð16.2; 0.1Þ�. The mismatch behavior
across waveforms is effectively the same. At the high end
near ϵ ¼ 10−1, the mismatch is ∼10−2. The mismatch
decreases in a power-law behavior as ϵ is decreased until
ϵ ∼ 10−5. It then asymptotically approaches ∼10−4 as ϵ
tends toward zero. This behavior is due to the effective
noise floor of the ROMAN network amplitudes at about
a factor of ∼10−6 relative to the maximum amplitude mode.
The slight dip in mismatch for ðp0; e0Þ ¼ ð16.2; 0.1Þ at
10−4 is also due to this noise in the neural network
amplitudes. For these lower eccentricity sources, where
power is concentrated in fewer modes, smaller ϵ values
result in many noisy (albeit low power) modes added to the
waveform. At ϵ ¼ 10−4, the noisy mode contribution is
minimized while the true mode contribution is maximized.
The mode count behavior is similar across initial

parameters. The lowest eccentricity source shown with
ðp0; e0Þ ¼ ð16.2; 0.1Þ has 1453 modes in the waveform
at ϵ ¼ 10−9. At ϵ ¼ 10−1 it contains only 6 modes. The
system with ðp0; e0Þ ¼ ð10; 0.7Þ contains 1883 and 56
modes with ϵ ¼ 10−9 and ϵ ¼ 10−1, respectively. The
waveform generation speed follows closely with the mode
content because this mode count in the waveform summa-
tion is the most important contribution to the overall timing.
This is discussed further in Sec. VI C.
The harmonic structure of relativistic EMRI waveforms

is rich and complex. Even in Schwarzschild eccentric
where the k-indexed polar modes are ignored, there is

FIG. 3. The effect of adjusting the ϵ parameter on the mismatch, mode count, and waveform generation time. This parameter
determines the threshold for the fractional added power of the harmonic modes. For each plot shown, three sets of parameters are run,
labeled in the legend of the central plot as ðp0; e0Þ. The left graph shows the mismatch versus ϵ compared against slow FEW waveforms
(Sec. IV C). The mismatch asymptotically approaches a minimum value specific to each set of parameters. This minimum value above
zero is due to the noisy floor of the RomanNet. The center and right plots show the corresponding number of modes and speed,
respectively, for each set of parameters tested. A dashed vertical line at ϵ ¼ 10−5 is added to each plot to indicate the ϵ chosen for the
base injection waveform in the following sections.
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not a clear set of relations to succinctly describe the
structure. This may be a topic of future work. However,
the mode structure can be qualitatively visualized. Figure 4
shows a gridded visualization of the power in every
ðl; m; nÞ mode for different values of eccentricity (the ϵ
mode selection parameter was not employed here). The
grid structure is explained in the caption. Note that m < 0
modes are not included because the power is equivalent
in the �m modes (if angular harmonics are not included).
The power in each mode is shown as a fraction of the
total power until the fractional mode power falls below
10−10. This visualization is created with the bicubic spline
amplitude calculator to make sure to remove any noisy,
lower power modes. As the eccentricity is increased, the
mode power spreads out to a larger number of modes as
well as to higher n modes (or lower n modes for m < 0).
The contributing n modes within each l subset also tend
toward a smaller number of n modes located at larger n
values as l is increased.

An additional mode content visualization is shown in
Fig. 5. However, this visualization fixes ðp0; e0Þ ¼
ð7.5; 0.5Þ. Instead of varying parameters, it shows how
the mode selection parameter ϵ affects the mode content
from a singular geodesic. When building a waveform,
mode selection is performed for each instantaneous
geodesic in the sparse trajectory. However, please note
the final waveform is constructed with the union of all
selected modes across the entire sparse trajectory. The top
row in the figure shows the fractional mode content
in all modes. Many (l, m, n) modes are highlighted in
this highly relativistic orbit. When selecting modes with
ϵ ¼ 10−5, all modes with l > 7 are eliminated from
consideration with the strongest modes in l ≤ 7 remain-
ing. For ϵ ¼ 10−2, a much higher fraction of modes are
eliminated with only l ≤ 3 modes remaining. However,
these l ¼ 3 modes are crucial for comparison against
quadrupolar (l ¼ m ¼ 2) waveforms like the AAK (see
Secs. VI B and VI D).

FIG. 4. The mode power content as a fraction of the total power emitted for a given geodesic orbit with various eccentricities and
p0 ¼ 10. The mode data was computed with bicubic spline-generated amplitudes (see Sec. IV C). Plots in each row have the same
eccentricity (labeled along the left edge). Columns represent a singular l mode value (labeled along the top edge). Within each plot, m
and n mode values are given along the horizontal and vertical axes, respectively. We show n ∈ ½−30; 30� and 0 ≤ m ≤ l. Form < 0, the
plot would be the mirror image of above reflected around n ¼ 0. Modes with Plmn=Ptot < 10−10 are not shown.
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B. Mismatch analysis

In the original FEW model paper [37], we performed an
initial analysis on the mismatch of the FEW model over
time. In this section, we expand on that analysis to test more
waveforms against the slow FEW Schwarzschild eccentric
waveform presented in Sec. IV C.
For this test we analyze 12 EMRI systems with M ¼

106 M⊙ and with initial parameters that outline the valid
parameter space within the FEW model (see the caption of
Fig. 6 for (p, e) values). After setting ðM;p0; e0Þ for each
EMRI, μ is adjusted to fix the trajectory duration to 2 years
from start position to separatrix. Figure 6 shows the
mismatch results for these EMRIs over time for the four
waveform models (FFϵ5, FFϵ2, FF22, SchAAK) compared
against the slow FEW waveform. The curves in the plot are
drawn through ðp; eÞ-space and show the mismatch from
t ¼ tðp0; e0Þ ¼ 0 to t ¼ tðp; eÞ. Therefore, as ðp; eÞ
evolve, the length over which the mismatch is calculated
increases until it reaches the full 2 year waveform at the
separatrix.

The difference in the various models and settings is clear.
FFϵ5 displays the best mismatch values as expected with
a maximum mismatch of ∼5 × 10−4 in the worst-case
waveform scenario with ðp0; e0Þ ¼ ð10; 0.7Þ. As ðp0; e0Þ
move toward further separations and lower eccentricities,
the mismatch drops to and falls slightly below 10−4.
By adjusting the mode content parameter to 10−2 (FFϵ2
waveform), the mismatch increases by a full order of
magnitude. Based on Fig. 3, this waveform uses approx-
imately a factor of 10 fewer harmonic modes than the FFϵ5
waveform. The FF22 waveform has 61 modes in it
regardless of the input parameters. At lower (higher)
eccentricities, the mode count for the FF22 waveform is
more (less) than the FFϵ2 waveform. This FF22 waveform
shows mismatch values between ∼0.05–0.1. This is 3
orders of magnitude higher than the base FFϵ5 waveform.
The fourth and final waveform, SchAAK, showed the worst
mismatch values as expected due to its semirelativistic
construction. Mismatch values for SchAAK range from
∼0.05–0.62. The high mismatch seen for SchAAK at high

FIG. 5. Similar to Fig. 4 but for ðp0; e0Þ ¼ ð7.5; 0.5Þ and different values of ϵ which controls the mode content in the waveform.
Geodesic output from all modes, modes selected with ϵ ¼ 10−5, and modes selected with ϵ ¼ 10−2 are shown in each row from top to
bottom, respectively. In Sec. VI D, we show waveforms built with ϵ ¼ 10−2 show high fidelity against more accurate waveforms
indicating building waveforms with less modes will increase speed without sacrificing much accuracy.
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eccentricities will have strong implications on parameter
estimation shown in Sec. VI D.
Waveforms comparing each fast model to the slow

FEW Schwarzschild eccentric waveform for the ðp0; e0Þ ¼
ð10; 0.7Þ trajectory are shown at the beginning and end of the
inspiral in Fig. 7. This figurevisually confirmswhatwe see in
the mismatch results. The FFϵ5 and FFϵ2 waveforms show
strong visual overlap with the slow FEW Schwarzschild
eccentric waveform model; these models are also visually
almost identical. The quadrupolar relativistic model (FF22)
deviates slightly compared to the slow FEW Schwarzschild
eccentric waveform model, especially near higher peaks in
the strain amplitude. The semirelativistic SchAAK wave-
form has difficulty matching the slow FEW Schwarzschild
eccentricwaveformmodel at this higher eccentricitywhich is
consistent with the high mismatch values discussed above.

C. Waveform timing

Given the sufficient accuracy of a waveform model, the
generation time is extremely important to the success of the
search for and parameter estimation of gravitational wave
sources. For proper Bayesian Markov Chain Monte Carlo
(MCMC), greater than ∼106–109 waveform evaluations are
necessary for converged posterior distributions. The com-
bination of interpolation methods and acceleration tech-
niques allow the FEW waveforms to be readily used in
MCMC studies.
Figure 8 shows the timing of various pieces of the fast

(FFϵ5) and slow FEW waveforms, with the GPU timing
included for the fast waveform. This timing is computed for
a two-year waveform in our worst-case configuration (in
terms of mode count): ðp; eÞ ¼ ð10; 0.7Þ. The CPU com-
putations are run on one core of a Xeon Gold 6132

FIG. 6. For EMRI signals, the harmonic phases and amplitudes create mismatch between comparison waveforms, with the phase
strongly dominating. Here, we show the mismatch stemming mainly from amplitude differences between template waveforms (FFϵ5,
FFϵ2, FF22, SchAAK, which are listed in the title of each plot) and the slow FEW model from Sec. IV C. All template waveforms for a
given ðp0; e0Þ use exactly the same trajectory, but differ in their amplitudes. The trajectories for the slow injection waveforms are slightly
more accurate because they use dense-stepping integration, but this small difference does not contribute to the mismatch values shown.
The initial values are chosen to outline our parameter space: ðp0; e0Þ ∈ ½ð10; 0.7Þ; ð11.48; 0.7Þ; ð12.96; 0.7Þ; ð14.44; 0.7Þ; ð15.92;
0.7Þ; ð17.4; 0.7Þ; ð16.2; 0.1Þ; ð16.4; 0.2Þ; ð16.6; 0.3Þ; ð16.8; 0.4Þ; ð17.0; 0.5Þ; ð17.2; 0.6Þ�. These initial trajectory points are shown with
gray dots. The central black hole mass,M, is set to 106 M⊙ and the secondary’s mass, μ, is determined using FEWutility tools so that the
inspiral takes two years to evolve from the initial orbital parameters to the separatrix (shown as the grey line). All other parameters are
identical to the injection waveform parameters given at the beginning of Sec. VI. The partial mismatch is shown from t ¼ 0 to
t ¼ tðp; eÞ according to the color bar. As the lines move from the initial gray points to the separatrix, the mismatch is determined over an
increasing amount of time. The FFϵ5 and FFϵ2 waveforms show strong overlap with the slow and accurate waveform. The FF22
waveform performs marginally and the SchAAK waveform compares poorly, especially at high eccentricity. These differences are
visualized in Fig. 7.
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2.60 GHz processor. The GPU timing is computed with an
NVIDIA V100 GPU.
The trajectory for the fast FEWwaveform is the same for

the CPU and GPU versions because the trajectory is always
computed on the CPU. The large steps in the integrator are
a clear advantage of ∼104 × faster compared to the dense
stepping slow model integrator. Angular harmonics are

calculated in the same way for all FEW models, so this
timing is always equivalent and faster than 1 ms. The CPU
fast model amplitude determination is slightly slower than
the GPU implementation because the neural network
calculations are performed in parallel on the GPU (CPU
computations are tested on a single core but are paralle-
lized when multiple cores are available). However, these

FIG. 7. Waveforms corresponding to the four waveform models tested in Fig. 6 are shown here. Each waveform follows the top-left
trajectories in the sub-panels in Fig. 6 which have ðp0; e0Þ ¼ ð10; 0.7Þ and a final eccentricity ≃0.5. Each row contains a different fast
waveform model labeled along the vertical axis shown with a dashed orange line. These fast models are compared against the slow
waveform model appearing as a solid blue line. The left and right plots represent the beginning and end of a two-year waveform. As is
expected from the mismatch results, the FFϵ5 and FFϵ2 waveforms provide the strongest match to the slow waveform model. The visual
difference between these two models is almost indistinguishable. The FF22 quadrupolar waveform begins to have difficulty resolving
the higher peaks in the waveform and visually shows a clear separation from the top two rows. The bottom row, with the SchAAK
waveform model, clearly reveals the issues related to generating EMRI waveforms with semirelativistic amplitudes: the overlap is very
poor both quantitatively and visually.
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computations on both hardware are of order ∼10 ms
because of the sparse trajectories and efficiency of the
neural networks. The slow model amplitudes are deter-
mined with the bicubic spline for all modes, a much slower
operation: ∼105 × slower than the CPU neural network
computation. Following the trajectory and amplitude cal-
culations, modes are selected online in the fast FEW
models. The sorting operation is the bottleneck here.
The GPU sorting algorithm, and, therefore, the mode
selection step, is ∼30 × faster on the GPU.
The waveform is then evaluated at the density of the

data by interpolating the sparse array information. The
summation is the main bottleneck for the fast waveforms,
and the piece of waveform generation where the GPU
truly separates itself from the CPU implementation. The
GPU summation is ∼3000 × more efficient than the CPU
summation. The summation bottleneck can be easily
understood by examining the number of individual mode
computations necessary to build a single waveform. With a

conservative data length of 106 points, and each point in the
waveform requiring generation of ∼102–103 harmonic
modes, a single waveform requires ∼108–109 mode com-
putations. This large number leads to a close similarity in
summation times between the fast FEW model CPU
version and the slow FEW model with the slow model
taking ∼5 × longer. The full waveform timings are domi-
nated by the summation, meaning the comparison of the
summation timescales is strongly indicative of the full
waveform generation comparison.
Following the summation, the frame transformation is

performed. The frame transformation is the same in the
slow model and the fast waveform CPU version, but the
timing of this step is a small fraction of the summation
timescale. However, the GPU maintains its efficiency
difference at ∼200 × faster than the CPU-based models
for the transformation.
We also show the timing of the 5PN AAK waveforms

(Sec. V) in Fig. 8. To be clear, this subsection is the only
part in our results where we test the full 5PN AAK
waveform including ða; Y0;Φθ;0Þ ¼ ð0.5; 0.77; 0.0Þ. The
5PN trajectory is slightly longer than the relativistic
adiabatic Schwarzschild trajectory because of the long
analytic formulae necessary for 5PN calculations (rather
than a basic interpolation in the relativistic trajectory) and
the necessity of computing two more derivatives ( _Y, Ωθ) in
the higher dimensional parameter space.
The AAK piece of the waveform is implemented as a

special summation module. There are no specific angular
harmonic, amplitude, or mode selection computations in
the AAK waveform, so those parts of the computation are
excluded. The AAK summation shows a similar timescale
ratio to the relativistic waveforms between its GPU and
CPU versions. However, the AAK summations are gen-
erally ∼2 × faster than the worst-case relativistic wave-
form. Since the frame transformation computations are the
same as the relativistic waveform, the overall waveforms
show similar timing comparisons to the summation time-
scales. However, it is interesting to note that at higher
ϵ≳ 10−2, where less harmonic modes are required, the fast
relativistic waveform can become faster than the 5PN
AAK. This is simply explained since the AAK summation
involves a longer sequence of computations for each
harmonic mode at each time point. The fast waveform
summation, on the other hand, is much simpler, employing
straightforward interpolation and complex multiplication to
determine each individual mode value.

D. Intrinsic posterior analysis

It is helpful to transform the mismatch information into
actual metrics for data analysis. Here, we will focus on
determining measurement precision and bias for the wave-
forms analyzed in this section. Rather than using the typical
Fisher matrix [e.g., 68] and Cutler-Vallisneri bias [69]
calculations, we leverage the efficiency of the GPU

FIG. 8. Timing benchmarks for various waveforms discussed in
this paper. Timing for the trajectory, angular harmonic, ampli-
tude, mode selection, summation, and frame transformation
modules is shown from top to bottom, respectively. The sum
of those timings is also given. The CPU and GPU versions of the
fast FEWwaveforms (with ϵ ¼ 10−5) (Sec. IV) are shown in light
and dark blue, respectively. The slow FEW waveform is shown in
green (Sec. IV C). The 5PN AAK waveform (Sec. V) is shown in
light and dark red, representing the CPU and GPU versions,
respectively. ðp0; e0Þ ¼ ð10; 0.7Þ for all waveforms, depicting the
worst-case in our domain of validity in terms of the number of
modes necessary to represent the waveform. The central black
hole massM is set to 106 M⊙ and μ is chosen to represent a two-
year inspiral from the initial ðp0; e0Þ to the separatrix. Note the
slow waveform does not perform any mode selection. Also, the
5PN AAK waveform does not specifically employ angular
harmonic, amplitude, or mode selection modules. The AAK
waveform piece (not including the trajectory) is treated in its
entirety as a summation module. Timings were computed using a
single CPU core on a Xeon Gold 6132 2.60 GHz processor and
an NVIDIAV100 GPU. The fast FEW waveform GPU version is
∼2500 × faster than its CPU counterpart.
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implementations to generate full Bayesian posteriors from
basic standard parameter estimation runs.
The focus of this paper is on the new waveform models.

Therefore, we only briefly describe our parameter estima-
tion techniques and settings; we refer the interested reader
to cited papers for more information.
The posterior distribution represents the product of

the prior distribution and likelihood distribution. The prior
and likelihood terms are normalized by an intractable nor-
malization factor. Markov Chain Monte Carlo (MCMC)
methods sample from the posterior to build posterior
distributions from the density of samples. Since all samples
are normalized by the same value, it is not necessary to
calculate this normalization factor for accurate posterior
results. We employ uniform priors spanning large fractions
of the parameter space and the typical gravitational wave
likelihood as defined above.
For sampling, we use a slightly modified version of the

EMCEE [70] package that helps account for periodic
parameters. Initial starting points for runs were sampled
from a multivariate normal distribution with mean equal to
the injection parameters and covariance matrix determined
with Fisher methods for the template model (not the
injection model). The burn-in allows these walkers formed
tightly around the true point to spread out and properly
cover the posterior. The proposal used is the default affine-
invariant or stretch proposal [71]. We used 32 walkers in
each run. The average autocorrelation time, τ̂, is determined
across chains using [72]. The burn-in used was chosen to be
2τ̂max. Chains were thinned by a factor of 12 τ̂min [72], where
min and max indicate the minimum and maximum auto-
correlation times across the D ¼ 6 dimensional parameter
space. The sampler was run until chains were longer than
50τ̂, providing an effective sample size (ESS) of ∼3000 for
each case tested. The particular sampling method used will
keep walkers from moving far from the main mode of the
posterior. Therefore, our study does not comment on any
posterior phenomena away from the main posterior mode.
Given the FFϵ5 waveform shows excellent agreement

with the slow waveform, we inject waveforms with this
model. Signals are injected without noise in order to
understand the pure systematic bias resulting from the
different waveform models. All injections are scaled to a
chosen SNR of 30 (this effectively means scaling the
distance) over 2 years of inspiral. The SNR is chosen to
represent an astrophysically motivated source [e.g., 6]. All
sources analyzed are located at a sensible distance with
most distances at ∼1 Gpc. The closest source is located at
∼0.2 Gpc. Once injected, we perform independent param-
eter estimation runs for all parameter sets using FFϵ5, FFϵ2,
FF22, and SchAAK waveforms as templates.
The parameters tested were only the intrinsic parameters:

fM; μ; p0; e0;Φφ;0;Φr;0g. The initial phases ðΦφ;0;Φr;0Þ
used for the injection were set to (3.23, 4.72). ðM; μ; e0Þ
were chosen from a 3 × 3 × 4 grid. We choose M from the

set f3 × 105 M⊙; 106 M⊙; 3 × 106 M⊙g; we choose μ
from the set f3 M⊙; 10 M⊙; 30 M⊙g; and we choose e
from the set f0.1; 0.3; 0.5; 0.7g. After (M, μ, e0) are set, p0

is determined to be minðp0ðt ¼ 2 yrsÞ; 16.0þ 2eÞ. p0ðt ¼
2 yrsÞ indicates the p0 value at 2 years before reaching the
separatrix given the chosen (M, μ, e0).
This parameter and waveform grid amounts to 144

separate posteriors. We remove from this four sets of para-
meters, corresponding to ðM; μ; e0Þ ¼ ð3 × 106; 3.0; 0.7Þ,
ð3 × 106; 10; 0.7Þ, ð3 × 106; 30.0; 0.7Þ, and ð106; 3.0; 0.7Þ.
In these cases, the parameters correspond to p0ðt ¼
2 yrsÞ < 9.9, which is outside of our domain of validity
at e ¼ 0.7. With the GPU acceleration, most runs were
∼1–2 hours in duration. Posterior runs with multimodality
were longer at ∼6–10 hours due to larger autocorrela-
tion times.
When comparing models to each other, a clear behavior

is observed. Figure 9 shows one example comparing all
waveform models tested at various M with ðμ; e0Þ ¼
ð10; 0.5Þ. The posterior distributions plotted in the bottom
row of the figure are the two-dimensional marginalized
posterior distributions in the e0-lnM plane. The contours
shown correspond to the 3σ value for a two-dimensional
Gaussian distribution (described as the 3σ contour below).
For a given orbital configuration the mass M sets the
frequency band over which an EMRI radiates. The relation
of the frequencies in the radiation to the noise curve of
LISAwill effect the behavior of the posterior distributions.
At M ¼ 3 × 105 M⊙, the EMRI radiates most of its
power between ∼3–40 mHz, which is considered the high-
frequency end of the LISA noise curve. Here, the noise
increases as the frequency is increased. This means that
higher frequency modes will experience more noise sup-
pression than lower frequency modes. Since the FF22 and
SchAAK waveforms are built from only quadrupolar
radiation, these waveforms will contain less signal at the
higher frequency end when compared to FFϵ5 and FFϵ2
waveforms. This is especially true with higher eccentricity.
This concept is illustrated in the top row of Fig. 9. The top
row of plots shows comparisons of the Fourier transform
(h̃ðfÞ) of the time domain signals built with the FFϵ5 and
SchAAK models in the characteristic strain representation:
h2c ¼ f2jh̃ðfÞj2 [73]. With the higher frequency modes
suppressed by the noise, we find similar posteriors for
all models as expected. The differing models show effec-
tively no bias on this source with close, concentric posterior
distributions of the FFϵ5, FFϵ2, FF22, and SchAAK
models in that order from middle to outer ellipse. To
ensure our analysis was appropriate, since we do not
include the Galactic foreground noise expected for
LISA, we repeated the tests shown in Fig. 9 while including
the Galactic foreground and found no significant changes to
the results that follow.
As the mass of the MBH is increased to M ¼ 106 M⊙,

the waveforms shift toward the center of the LISA band,

FAST EXTREME-MASS-RATIO-INSPIRAL WAVEFORMS: NEW … PHYS. REV. D 104, 064047 (2021)

064047-17



peaking directly over the most sensitive portion at ∼4 mHz.
Here, both higher and lower frequency modes are similarly
suppressed. In this case, there is no “enhanced weighting”
of the lower frequency modes. This leads to a stronger
difference in posterior distributions with the FF22 and
SchAAK models spreading further away from the injection
point compared to the FFϵ5 and FFϵ2 waveforms.
The highest mass case with M ¼ 3 × 106 M⊙ shifts the

radiation frequencies to the lower frequency end of the
LISA sensitivity band. At this end, the noise decreases as
frequency is increased. Therefore, here, the lower fre-
quency modes are now further suppressed by the noise
compared to the higher frequency. This results in a further
widening of the posteriors from the quadrupolar waveform
templates.
For all masses tested, the FFϵ2 model strongly mirrors

the behavior of the FFϵ5model. This is an initial indication
that higher mode counts may not be necessary for accurate
parameter estimation of EMRI sources. However, what is
necessary is that the modes be intelligently chosen to
represent the relativistic behavior of the EMRI system
rather than simply fixing a predetermined set of modes at
low order in l.

Figure 10 shows an example of a full posterior with
injection parameters ðM; μ; e0Þ ¼ ð106 M⊙; 3 M⊙; 0.5Þ.
The blue and black posteriors represent the FFϵ5 and
SchAAK template models, respectively. Therefore, the
blue posterior shows a direct test against the injection.
All blue output distributions are unimodal, Gaussian, and
centered around the true point with no bias, as expected.
The black posterior shows what can happen when trying to
fit a relativistic injection with a semirelativistic template
model. There is a strong bias resulting in the true injection
point positioned far outside the 3σ posterior contours.
The posterior is multimodal, displaying one-dimensional
multimodality in the lnM, μ and e0 parameters. In general,
the gravitational wave likelihood function is negatively
affected by mismatch in the phase and the amplitude of
a signal; but, the relative effect of each can vary, with the
phase dominating. Since the phasing in both models shown
is identical, we expect and observe the posterior weight
to be located close to the injection point. However, the
amplitude-based mismatch for the SchAAK waveform
against the relativistic injection across our domain of validity
is of order ∼0.1–0.6 (see Fig. 6). At higher eccentricity, the
mismatch approaches ∼0.62. This amplitude mismatch can

FIG. 9. Characteristic strain (top row) and two-dimensional 3σ posteriors in the e0 − lnM plane (bottom row) for three different binary
configurations. Above each top row plot the parameters are listed as ðM; μ; p0; e0Þ and each plot is made with μ ¼ 10 and e0 ¼ 0.5.
From left to right, injections have M values of 3 × 105, 1 × 106, and 3 × 106. Within each bottom row plot, the FFϵ5, FFϵ2, FF22, and
SchAAK models are shown in blue, green, red, and orange, respectively. Black horizontal and vertical lines indicate the location of the
injection point. The top plots illustrate the spectral difference between FFϵ5 (blue) and SchAAK (orange) waveforms at the injection
point compared against the LISA sensitivity curve. For completeness, we also tested all parameter sets in this plot again with the noise
contribution from the Galactic foreground. It did not change the results by any significant amount.
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produce points in parameter spacewith distinct differences in
the intrinsic parameters from the injection that show better
alignment with the injected waveform. In fact, in the case
shown in Fig. 10, there is effectively no posterior weight at
the injection point. This results in posterior modes at slightly

higher (lower) lnM, higher (lower) μ, and lower (higher) e0,
which can beobserved in theparameter correlations shown in
the two-dimensional marginalized posteriors.
The SchAAK template at the injection and best-fit

(maximum likelihood) parameters are visually similar,

FIG. 10. Corner plot showing one- and two-dimensional marginalized posteriors for an injection with ðM; μ; p0; e0;Φφ;0;Φr;0Þ ¼
ð106 M⊙; 3 M⊙; 8.99; 0.5; 3.23; 4.72Þ. The histograms and contours for the ϵ ¼ 10−5 fast FEW (FFϵ5) and Schwarzschild AAK
(SchAAK) template waveforms are shown in blue and black, respectively. The true injection parameters are denoted with the red vertical
and horizontal lines. Note the sampling methods used concentrated near the true value. The samplers are not be able to access secondary
modes with a strong separation from the injection point. Due to the inaccuracy of the semi-relativistic amplitudes in the SchAAK
waveform, a strong bias and multimodal behavior are observed when fitting a SchAAK waveform template against an FFϵ5 relativistic
injection. The consequences of this behavior are further discussed in Sec. VII.
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except for near the separatrix where the best-fit waveform
begins to dephase from the injection. The SchAAK wave-
form at the injection does not dephase compared to the
FFϵ5 injection because their trajectories are identical. The
best-fit waveform has different intrinsic parameters mean-
ing its trajectory and, therefore, the time at which it reaches
the separatrix is different from the injection causing this
dephasing. Consequently, it is interesting that despite the
slow dephasing of slightly different trajectories, the best-fit
parameters still provide a better match to the relativistic
injection waveform. The best-fit parameters produce a

mismatch of 0.50, a lnL ≈ −313 (lnL ¼ 0 for the injection
against itself), and an extraction SNR of ∼22.3 (SNR of
the injection is 30). A SchAAK waveform generated at
the injection parameters has an associated mismatch of
0.53, lnL ≈ −347, and an SNR of ∼21.8. Therefore,
Δ lnL ≈ 34, indicating the injection point is not expected
to be within the explored posterior (the minimum lnL value
included in the posterior is ∼ − 330).
Similar multimodal behavior is observed for the

SchAAK template with ðM; μ; e0Þ ¼ ð106; 10; 0.7Þ. This
is shown in Fig. 11. In this figure, we show, for the

FIG. 11. Two-dimensional 3σ posteriors forM and μ parameters are shown for all injections tested using the SchAAKwaveform as the
fitting template to the FFϵ5 relativistic injection. Each two-dimensional posterior is arranged horizontally and vertically according to the
M and μ injection values, respectively. Within each subplot, posteriors are shown for every injection value of eccentricity tested with
eccentricities of 0.1, 0.3, 0.5, and 0.7 shown in blue, green, red, and orange, respectively. Vertical and horizontal black lines indicate the
true values of the injection. Please note injections with ðμ; eÞ ¼ ð3; 0.7Þ and M ∈ ½1 × 106; 3 × 106� do not fall within our domain of
validity and, therefore, are not shown.

KATZ, CHUA, SPERI, WARBURTON, and HUGHES PHYS. REV. D 104, 064047 (2021)

064047-20



SchAAK template, a 3 × 3 grid of plots arranged according
toM and μ of the injection. Within each of these nine plots,
the two-dimensional M − μ 3σ posterior is shown at all
four eccentricity injection values. This figure shows the
multimodal and bias behavior across all injections tested.
However, it must be noted there is multimodal behavior for
ðM; μ; e0Þ ∈ ½ð3 × 106; 3; 0.5Þ; ð3 × 106; 10; 0.5Þ�, which is
shown for ðp0; e0Þ parameters in Fig. 12 (other parameter
pairs do show multimodality, but only ðp0; e0Þ is shown to
be succinct). In the ðM; μ; e0Þ ¼ ð3 × 106; 10; 0.5Þ case,
multimodality is observed in M, μ, and e0, but the bias is
not as strong as the first two cases discussed with two
posterior modes observed at the level of the 1σ contour
with the 2σ contour surrounding the two 1σ modes. For
ðM; μ; e0Þ ¼ ð3 × 106; 3; 0.5Þ, the multimodality is found
only in the p0 parameter and the bias is small: the injection
point does fall within the 2σ contour.
It is hard to predict exactly when and how the bias and

multimodal behavior will manifest. From our results, we
expect it to occur at higher M, lower μ, and higher e0. This
manifests from the spread in harmonic modes toward lower
frequencies, similar to the previous discussion around
Fig. 9. However, these behavioral expectations are not
fixed rules as the case with ðM; μ; e0Þ ¼ ð3 × 106; 10; 0.7Þ
shows no visual bias or multimodality, indicating it is not
easy to predict exactly when or how this behavior will

occur. This uncertainty is due to the inherent difference
between the SchAAK waveform manifold and the relativ-
istic waveform manifold, making it hard to directly under-
stand waveform comparisons at each location in parameter
space. However, it must be noted that no posteriors
generated with the FF22 quadrupolar template exhibit
any multimodal or biased behavior. The key point here
is that the semirelativistic amplitudes of the SchAAK
model can result in a reasonable extraction of posterior
distributions, but includes the risk of producing extraneous
posterior structure and potential bias.

VII. DISCUSSION AND FUTURE OUTLOOK

The modular FEW framework is designed to facilitate
updates to the waveform models. Future work will focus
on extending the fully relativistic models to Kerr space-
time, improving the phase accuracy of the waveforms, and
computing the waveforms in domains other than the time-
domain. Furthermore, the speed of the FEW model allows
for efficient exploration of the LISA data analysis problem.
These tasks can be carried out in parallel with each other;
we discuss each task in the subsections below.

A. Extending the fully relativistic waveform
amplitude model to generic Kerr inspirals

From Schwarzschild inspirals it is natural to first extend
the amplitude model to eccentric, equatorial or spherical
orbits in Kerr spacetime as this only increases the dimen-
sion of the parameter space by one. The model can then be
extended to the four dimensional parameter space of
generic (eccentric and inclined) inspirals into a Kerr black
hole. Frequency domain Teukolsky codes exist which can
rapidly compute the waveform amplitudes across these
expanded parameter spaces [27]; data sets providing wave-
form data for spherical and equatorial eccentric orbits for
many spins can be found in the Toolkit [74], and work is in
progress to generate similar data for generic orbits. We
expect that the RomanNet method presented in Sec. IV B
will extend well to efficiently interpolate the amplitudes
across higher dimensions.
To model Kerr inspirals the spin-weighted spherical

harmonics, −2Ylm, will also need to be adjusted to the
spin-weighted spheroidal harmonics, Slmknðt; θÞeimϕ. The
spheroidal harmonics add both an additional two harmonic
indices and time-dependence compared to the spherical
harmonics. Both of these complications can be modeled
by using the fact that the spheroidal harmonics can be
expanded in spherical harmonics:

Slmknðt; θÞeimϕ ¼
X∞
j¼lmin

bjlmknðtÞ−2Yjmðθ;ϕÞ; ð18Þ

where lmin ¼ maxð2; jmjÞ. Appendix A of Ref. [48] dis-
cusses this further, and describes how to compute the

FIG. 12. Multimodality in the p0-e0 plane is shown above for
injections with ðM; e0Þ ¼ ð3 × 106; 0.5Þ and μ values of 3 and 10
in the top and bottom plots, respectively. In each plot, the 1σ, 2σ,
and 3σ contours are shown for the SchAAK template waveform.
Black horizontal and vertical lines give the true injection values.
The two cases shown here exhibit only a slight bias with the true
injection point contained within the 2σ contour.
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spheroidal-spherical mixing coefficients bjlmknðtÞ. Over
most of parameter space, we find the approximate scaling
bjlmknðtÞ ∼ ðaωmknðtÞÞjj−lj. The expansion coefficients thus
peak at j ¼ l, and fall off as powers of aωmknðtÞ away from
this peak. By knowing these coefficients over the inspiral,
we can project the waveform amplitudes onto a spherical
harmonic basis, rewriting Eq. (1) as

h ¼ μ

dL

X
lmkn

AlmknðtÞ−2Ylmðθ;ϕÞe−iΦmknðtÞ: ð19Þ

It is worth noting that, especially in the strong field and for
large a, there are many orbits which have aωmkn > 1. In
such cases, the approximate scaling of bjlmkn does not hold.
We nonetheless find even then that the expansion (18)
converges with a finite number of terms, making it possible
to implement Eq. (19). See Appendix A of Ref. [75] for
further discussion, and an explicit relation between the
spheroidal amplitudes Almkn and the spherical amplitudes
Almkn. Once the data are organized in this way, the
summation module can be easily extended to generic Kerr.
For Kerr inspirals the amplitude determination and mode

sorting is expected to take longer relative to Schwarzschild
eccentric computations due to the increase in the number of
harmonic modes. However, we expect these computations
to be faster than the final waveform summation, as is the
case in the current implementation. Like the amplitude
and mode sorting modules, the waveform summation is
expected to increase in duration as the number of modes
required in generic Kerr substantially increases. This
expectation indicates that a deeper analysis on how to best
include amplitude information will be useful.
A key component of online waveform generation effi-

ciency is the ability to select harmonic modes based on their
contribution to the total power. Currently, this involves
both generating amplitudes for and sorting every harmonic
mode. This operation is expensive; however, the waveform
summation bottleneck is worse and would be much worse
if every waveform was produced with every mode. As the
speed of the waveform summation is improved, mode
selection will become the bottleneck. Improved methods of
online mode selection will be required. We expect a useful
form of this would be an effective precomputed “mask”
applied prior to generating the amplitudes.

B. Improvements to the phase accuracy
of the models

Whereas the waveform amplitudes only need to be
known to adiabatic order [26] to enable the full potential
of EMRI science, the waveform phase must be computed to
postadiabatic order [21]. This presents three challenges:
(i) the adiabatic contributions to the phase need to be
interpolated to a precision better than 1=q (q ¼ μ=M)
across the, up to, four dimensional parameter space [38],

(ii) the inclusion of orbital resonances, and (iii) postadia-
batic corrections must be computed. The latter includes
conservative corrections to the orbital dynamics [22,76],
second-order in the mass ratio corrections [23,24], and
corrections due to the spin of the secondary [28,77–80]. As
all of these contributeOðq0Þ radians to the waveform phase
they do not need to be interpolated as accurately as the
adiabatic contributions [38]. Substantial work is required to
complete these calculations and to sample the parameter
space efficiently, but, as these results become available,
they can be seamlessly incorporated into FEW.
One challenge with the postadiabatic phase corrections is

that some of them introduce oscillations on the orbital
timescale. This can drastically slow down the numerical
integration of the phase trajectory from seconds to minutes
or hours depending on the mass ratio [38]. Fortunately this
can be overcome with the use of schemes that average over
the short orbital timescale while capturing the correct long
term phase evolution of the binary [25,26]. With these
implemented the calculation of the inspiral trajectory takes
milliseconds [25]. When using averaging methods such as
those described in Ref. [22], a final phase refinement step
on the orbital timescale may be required. We have begun
developing this computation and our early findings show
the timing of this calculation is a small fraction of the
overall waveform summation speed.
Finally, our models need to include the effects of orbital

resonances [81–83]. These produce a short-lived kick to the
orbital phase whenever the polar and radial frequencies of
the orbit are in a low-integer ratio. Precisely modeling the
resonances requires knowledge of the postadiabatic cor-
rections to the phase but approximate models [e.g., 39] can
already be incorporated into the FEW framework while the
full resonant model is developed.

C. Signal and data analysis

Two immediate benefits of the FEW framework are the
waveform acceleration and useful set of flexible tools and
modules. The GPU acceleration allows us to test search and
parameter estimation algorithms in a tractable amount of
time. This is shown in force above by the ability to run
∼100 independent posterior analyses on the timescale of a
week. Prior to and following these analyses we also used
the FEW tools and modules to prepare information for
sampling runs or to analyze and understand their outputs.
Our investigations of posterior distributions show impor-

tant information for future tests of EMRI search and
parameter estimation. The main finding was expected:
the phasing of the EMRI is the leading order effect on
the posterior distributions when comparing models. Since
this phasing was the exact same for all models, it is clear the
differing amplitudes generally cause a small or negligible
bias. Certain cases at higher eccentricity, higher M, and
lower μ show a variety of multimodal behaviors when
analyzing the relativistic injection with a semirelativistic
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template. The lack or presence of multimodality and bias
across the various models has implications for parameter
estimation: using a kludge model may artificially inflate the
number of posterior modes making both search and
parameter estimation more difficult. Conversely, settings
in FEW that analyze fewer harmonic modes show that the
sacrifice in accuracy (and remaining lack of close multi-
modality) is worth the improved speed.
A transition to plunge and inclusion of the merger-

ringdown is still required to more accurately model these
waveforms. It is true that the SNR contained near and after
plunge is small compared to the overall SNR for an EMRI
since the signal SNR is effectively linearly increasing
with time. However, it would still be useful to model
this piece of the waveform to maximize SNR and have a
fuller picture of the morphology of the EMRI signal in the
strong-field regime. Additionally, we anticipate that the
FEW framework will be extend to model intermediate
mass ratio inspirals (μ=M ∼ 10−2–10−4) by the inclusion of
post-adiabatic corrections [24]. In this regime, the merger-
ringdown will play a more important role in characterizing
the signal.
The merger-ringdown cannot be directly added into

the existing FEW framework because, near plunge, the
approximation of modeling the waveform as a sequence of
bound orbits breaks down. This piece of the waveform
would be implemented as an independent module that will
be attached to the original waveforms. For more informa-
tion, see [84–86].
Future gravitational wave data analysis may take place in

domains other than the time domain. We plan to expand
FEW beyond computing time domain waveforms to also
compute waveforms in the frequency, time-frequency, and
wavelet domains [87]. FEW is designed to handle this
change. We expect waveforms computed directly in the
frequency domain [27] to be more efficient to generate.
Waveforms built in the time domain require the evaluation
of all contributing modes at every time point. This means
the waveform is built with ∼nt × nlmkn separate mode
evaluations. When building the frequency-domain wave-
form, modes need only be evaluated at their contributing
frequencies. Since each harmonic mode evolves in fre-
quency over only a small subset of bins in the Fourier
transform, the number of harmonics associated with each
frequency bin will vary. This indicates less total mode
evaluations are necessary, therefore, improving the overall
speed of waveform generation. The time-frequency and
wavelet domains will also play a crucial role in gravita-
tional wave analysis due to nonstationary effects [e.g., 87].
EMRIs are long-lived signals, meaning the non-stationary
effects may strongly bias measurements. Studies of this
nature for EMRIs are topics of future work. EMRIs may
also uniquely benefit from time-frequency-type methods
due to their rich harmonic structure. Therefore, these
domains will be implemented in FEW as soon as they
are available.

As new domains are implemented, it will generally mean
slight changes to the FEW summation modules and the
information supplied to those modules. Therefore, we
expect only small changes to the code. However, after
these methods are added, the bottlenecks in the code may
change to areas other than the waveform summation. This
would require further innovation in specific operations
where less effort has been concentrated so far.
For a full analysis of EMRI signals with LISA, effort will

be needed to create efficient implementations for the LISA
response. The LISA response is time-dependent as the
detector orientation to the source rotates throughout its
orbit. Constructing the LISA response accurately in the
variety of domains will be paramount to maintaining
analysis speed and accuracy.

VIII. CONCLUSION

We presented the FastEMRIWaveforms framework and
package in detail, expanding on the original article that
introduced the FastEMRIWaveforms Schwarzschild eccen-
tric waveform template for data analysis [37]. The frame-
work is built in a highly modular structure that contains
stand-alone modules that are combined into full waveform
models. These individual modules provide great flexibility
for future applications where methods or physical infor-
mation is further developed. The user interface for this
package is in PYTHON and provides a single argument to
switch to the use of GPU accelerators, which can greatly
enhance the computational scalibility of EMRI analysis.
The currently available fast waveform models are

the FastSchwarzschildEccentricFlux and
Pn5AAKWaveform. The former is a fully relativistic
waveform limited to the Schwarzschild eccentric regime.
The latter combines a 5PN-integrated trajectory module
from [66] and the semirelativistic AAK waveform build
methods from [33] to produce a new AAK waveform that
is available for generic Kerr inspirals, as well as more
accurate and more robust than the original AAK waveform.
Both waveforms can be accessed through a generic high-
level waveform generator that provides a common inter-
face to all waveform models generated in the source or
detector frame.
We then studied these waveforms to further understand

the effect of harmonic mode content and their basic
performance and characteristics when used in actual
Bayesian posterior analysis. Leveraging GPU acceleration,
we were able to move beyond Fisher matrix-type analysis
and produce ∼130 full posterior distributions. The first
main finding is that lower mode content chosen properly
will lead to faster waveforms without sacrificing much
accuracy in parameter estimation. However, this mode
content must be relativistic and beyond just the quadrupolar
mode, indicating the need for efficient mode selection
tools. The second main takeaway is that using semi-
relativistic amplitudes may strongly hinder the success
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of search and parameter estimation algorithms. Especially
at higher MBH mass and higher eccentricity, strong biases
and multimodal behavior are observed when injecting
a relativistic waveform and attempting to extract that signal
with a semirelativistic template. With that said, a key
point we have shown is the importance of phase overlap
compared to amplitude overlap. The fact that a small
number of modes that are relativistic and beyond the
quadrupole can still provide successful tests shows the
importance of matching phase over the duration of
the inspiral.
The FastEMRIWaveforms framework was originally

built to bridge the gap between EMRI waveform modeling
and data analysis. For the first time, we can generate
fully relativistic waveforms at speeds fast enough for data
analysis. While these waveforms are available in the
Schwarzschild eccentric regime, the framework was
designed to be flexible and adaptable to future exploration
toward the generic Kerr background and postadiabatic
phase corrections. These new developments in EMRI data
analysis with LISA provide an important step toward the

goal of accomplishing the many forms of EMRI science
within the LISA mission.
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