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['-Optimal Control:
Solution Software and Design Examples

by

David M. Richards

Software is developed to solve the ! optimization problem in the context of
!'-optimal control theory. The software is tested, and the space station atti-
tude control/momentum management problem and the X29 forward swept wing
aircraft pitch control problem are presented as design examples to evaluate the
performance of the software on real problems as well as to determine what parts
of the I theory need to be further researched to allow more efficient computation
of solutions. Through these examples it is shown that {!-optimal theory does
not always lend itself to simple and straightforward computation of results. Par-
ticular problem areas are identified, and reccommendations are made for future
research in the calculation of {!-optimal controllers.
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Chapter 1

Introduction

1.1 Background and Outline

A recently proposed design methodology for multivariable feedback control
systems is [!-optimal theory [1]. This methodology arises from the problem
of designing a stabilizing controller to minimize system output magnitude for
arbitrary bounded persistent disturbances. The realization of this objective is

the minimization of the {! norm of the closed loop system impulse response.

Because of the newness of this methodology, /!-optimal design has not been
applied in real situations, and no software package is available to set up and
solve the {! optimization. These two things, a convenient means of calculation
and concrete design examples, are necessary for a theory to become accepted in

practice, and therein lies the motivation for this thesis.

The first objective is to develop software to generate and solve the ! opti-

mization problem from the designer’s system description. The algorithm and



details of implementation are presented in Chapter 2.

The second objective is to use the software to carry out actual /! designs.
While some simpler examples are used to demonstrate that the code works as
intended, two main examples are used. These are the pitch control of a forward
swept wing aircraft and the attitude control and momentum management of a
space station. The space station example is presented in Chapter 3 and the

aircraft example in Chapter 4.

Finally, Chapter 5 presents conclusions and comments. The purpose of this
research is not so much to develop the best possible control systems for the
example problems, but rather to take a look at the I! problem from a practical
viewpoint. Specific concerns are the simplicity (or difficulty) of calculation in
real problems, the elements of a control problem which are important for !

design, and the areas which need further attention.

1.2 The Example Problems

The first example treated in this thesis is the attitude control and momen-
tum management of a space station. This problem arises from using momentum
exchange devices such as control moment gyros (CMG’s) to perform attitude
maneuvers such as counteracting disturbance torques [2,3,4,5]. Reaction torques

are produced on the station by altering the momentum of the CMG’s. Uncon-
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trolled, the CMG’s will eventually saturate (reach some upper limit of accumu-
lated momentum) and desaturation maneuvers are necessary. Desaturation is

accomplished by applying external torques to reduce the stored momentum.

A desirable method of controlling the accumulated momentum is to use
gravity-gradient torques which result from unequal gravitational forces across
the body of the station. In this scheme, a controller will try to drive the sta-
tion to a torque equilibrium attitude (TEA) in which the disturbance torque is

balanced by the gravity-gradient torque.

The major disturbance torque is the aerodynamic torque from atmospheric
drag. This is a constant offset with sinusoidal components from density devia-
tions and articulating components of the station such as solar panels or antennas.
The constant offset will dictate a constant TEA, but the cyclic components of

the disturbance will cause a cyclic attitude profile.

Under these conditions, the job of the controller is to seek the constant
TEA while minimizing the cyclic excursions around this constant. Another
desirable quality of the controller is robustness since other disturbances may be
encountered or the properties of the station may change as people or equipment
come and go. Finally, the controller will be designed using a linearized version
of a non-linear model. Since the linearization is only valid for small deviations
away from the linearization point, it is desired to minimize excursions away from

this point. For the space station case, variable values are nominally zero, so the
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objective is to keep all values as small as possible at all times.

For these reasons, ['optimal control seems like a good choice for the space
station. {! controllers are designed to minimize the maximum magnitude of sys-
tem response to arbitrary /* signals and include some guarantee of robustness.

These properties are just what is called for in the space station problem.

The second example is the forward swept wing aircraft example as presented
by Quinn [11]. This problem concerns the pitch control of the X29 aircraft
using the canard and flaperon control surfaces. The interest in this problem
stems from the fact that the X29 will not fly without sophisticated controls as
it is unstable. The pitch problem is further complicated by the presence of a

non-minimum phase zero which limits the possible performance of any control

system.

In the context of this thesis, the X29 problem is used as an example of a more
difficult problem (notably the non-minimum phase zero). Also, the X29 has more
sharply defined performance specifications than does the space station, so the
controller design has more specific goals. This will test the ability to include the

performance specs in the controller design.
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Chapter 2

Software Development

2.1 Software Objectives

The goal of the software development was to produce a software package
which would accept a state space description of a system and return a state
space description of the /*-optimal controller. For compactness of computation
(and to take advantage of matrix manipulation routines generally available),
it was desired to keep all calculations in state space representation whenever
possible. Since the linear program, which is the heart of the ! optimization,
involves the actual time sequences of the !!-optimal impulse response matrix,

state space representation must be abandoned at certain points.

As implemented for this project, the code is written partly in MATRIXx' and
partly in FORTRAN as subroutines which are linked into MATRIXx through

the USER function. This was done mainly for convenience as MATRIXx was

IMATRIXx (©1988, Integrated Systems, Inc., is a commercial software package for linear

»;.1em aunalysis and control design
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being used throughout the project. With a good library of matrix functions, the
code may be easily translated wholly into FORTRAN, C, or another language
of choice. Other than matrix inversion, the only complex functions used are

generalized eigenvalue/vector calculation and minimal system realization.

2.2 The Algorithm

Following standard notation for controller design, a two input two output
system description is taken as the input. A block diagram of such a system is
shown in Fig. 2.1. G represents a 2 x2 block matrix with the four blocks being
the transfer functions (possibly matrices) from w and u to z and y. The inputs
u are the control inputs and y are the measured outputs. The outputs z are
the regulated outputs, and w are the exogenous inputs. For the /!- optimal
problem, the objective is to find the stabilizing controller K which minimizes
the /! norm of the closed loop transfer functions from w to z. The input to the

algorithm is the state space system matrix G shown in Eqn. 2.1.

X A B1 Bg X

z = C1 Dj;; D3 w (2'1)

Yy | C» Dg; DzzJ u
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Figure 2.1: Two Input Two Output Block Diagram

The following is a basic outline of the procedure for calculating an /’-optimal
controller for the system described by Fig. 2.1. For a full treatment of I! theory,

see [1].

1. Using a parametrization of the controller K in terms of known system pa-
rameters and an arbitrary stable factor Q, the closed loop transfer function

H,, from w to z is written as:
H,, =T, - T.QT, (2.2)

where the T,’s are known and Q is from the parametrization of K (6,9].

2. The interpolation points are calculated. Since Q is stable, it cannot cancel
the left unstable zeros of T, or the right unstable zeros of Ts. Theﬁe are
multivariable zeros and as such, each has an associated vector. The zeros
of T, will be denoted a; with associated vectors ﬁ. for:=1,...,N and
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the zeros of T3 by b; with associated vectors Gfori=1,...,M. These
are found by solving the generalized eigenvalue/vector problem for T7

(remember the left zeros are needed) and for Ts.

Since the problem is in discrete time, the unstable zeros are those which
are outside the unit disk, assuming a z-transform defined such that z-! is

the unit delay.

. At this point calculations cannot be done in state space. H,,,, an mxn
matrix, is expandéd into its time sequence representation h,,. Denote
H,, as ® and h,, as ¢. The elements of ¢ will be sequences of length /.
In some cases the optimal solutions are of infinite length and truncating
will achieve a suboptima.l solution. Larger ! will achieve a solution closer
to the optimum, so a compromise between solution length and solution

optimality must be made.

The interpolation conditions shown in Eqns. 2.3 and 2.4 are set up as
constraints of a linear program which solves for the elements of ¢ Since
standard linear programming requires positivity of variables, each element
of ¢ is represented as ¢;;(k) = z;;(k) — yi;(k) with all z,y > 0. The linear

program is shown in Fig. 2.2.

Bid(a;) = BiT1(a;) \ﬁ':l,...,N (2.3)

D(b)G = Tyb)G Vi=1,....M (2.4)
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max (4 s.t.

EZ% ) + vij (k) < Vi=1,...,m

k=0j5=1
mod Vp=1,...,N
Zzﬂﬂ‘z'l 6Ply|J Zﬁm iy a,,, <
F=1 k=0 LV].=1,...,71
L Vr=1,...,M
Z Z g'Jz'J — $rj¥iy k)b -k EQ., §,-, <
T=1R=0 Vi=1,...,m

Figure 2.2: Linear Program for {! Solution

4. After solving the linear program, the elements of ¢ are known. At this
stage the solution can be transformed back to state space. If only H,, is
desired, the procedure is complete. Generally the optimal controller is of

interest, however, and an additional step is necessary.

5. The optimal solution & = T; — T;QT; can be manipulated to solve for

Q as shown in Eqn. 2.5.
Q="T;YT,-®T;' (2.5)

Q can then be inserted into the factorization of K to yield the final result.

The procedure just outlined is complete as long as T; is not “tall” (more
rows than columns) and Ty is not “wide” (more columns than rows). In either
of these latter cases, there wiil Lo infinitely many interpolation points and the

algorithm must be altered slightly.
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The iirst modification is to Step 2. Rather than calculating the interpolation
points for the entire T; and Tj, each of these is partitioned into square blocks
(and possibly a non-square remaining block). The interpolation points are cal-
culated for each of these blocks and the zero vectors are augmented with leading

and/or trailing zeros to multiply T,.

The second modification is also to Step 2 to reflect the fact that there are
actually infinitely many zeros of T, and/or T3. A set of relations are defined
. ) N T
which multiply T; or Tj to yield zero. For example if T, = [ U, U, ] where

U, and U, are polynomial ratios, then the relation is described by Eqn. 2.6.

[—Uz Ul] Zl =0 (2.6)

If T; had more than one column the relations would become more complex but
will still be a vector of polynomial ratios. The number of relations for each
matrix is equal to the dimension of the null space of that matrix. If all the
elements are left in full form (no pole-zero cancellation), then they all have the
same denominator, and the relations may be described using only the numerator

polynomials.
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2.3 -Implementation

A flowsheet and code listing for the [! software implemented in this thesis is
contained in Appendix A. Excep the portion of the code which sets up the LP,
MATRIXX user functions are defined to solve the problem. With a good library
of matrix functions and some knowledge of control theory, however; these may
be easily translated entirely into FORTRAN (used here for the LP portion of

the code) or any convenient language.

This algorithm is intended for discrete time systems, and the z-transform is
defined such that z~! is the unit delay. With this definition, stable systems are
those that have all poles p; inside the unit disk (||pi|| < 1). For systems in state
space representation, the equivalent is that all eigenvalues of the A matrix are

inside the unit disk.

The two keys to this software are a robust set of matrix functions and a
robust LP solver. The necessary matrix functions include eigenvalues, gener-
alized eigenvalues, inversion, and multiplication. The LP solver is perhaps the
more difficult part as the LP’s are sensitive to such things as tolerances, initial
guesses, variable limits, and the conditioning of the problem itself. It is often
necessary to change some of the problem parameters one or more times in order
to obtain convergence to a solution. As a result, this usually turns out to be an

iterative step.
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The first step in the program is the calculation of T, T3, and T3. These
quantities are determined using the plant (Ggzz) and any pair of associated

regulator and estimator gains.

A first attempt was to select the gains such that the resulting poles were
all at the origin. This results in polynomial matrices which are easy to deal
with in subsequent steps. It may happen, though, that one §r more of the
states is uncontrollable or unobservable, thereby making it impossible to perform
such placement. This is true, for instance, if the w inputs are weighted. Also,
extremely large gains may be required which may introduce numerical difficulties
at later stages. Finally, due to roundoff errors, the eigenvalues never ended up
exactly at the origin. In fact, the higher the order of the system, the more severe
these problems become. For example, suppose the coefficient of the z° term of
the characteristic polynomial is 10~ instead of 0. The 2" coefficient is always
1. For n = 2 the poles are at £10~8i. For n = 8 they are at v10-16 which have

magnitude 10~2 compared to 1078 in the n = 2 case.

A more practical system is to input a set of state and input/output weights
and to solve the corresponding regulator and estimator problems. This gets away
from the simplicity of having polynomial matrices, but offers some freedom in
the choice of gains which may allow some fine tuning to eliminate the problems

described above.

Given a parametrization, the next step is to determnine the interpolation

20



points. .This is done by solving the generalized eigenvalue problem for T, and
T,. If T, is tall or T3 is wide, then the interpolations are found for each nxn
block of T; and each px p block of T3 where T; is mxn and T3 is pxgq.
The interpolations of any leftover blocks are also found. The associated vectors
are found by evaluating the singular value decomposition (SVD) of the system
at each interpolation point. The null vectors are given by the columns of V
(Gsvp = UQV*) associated with the zero singular values. This seems to be a

more robust calculation than finding the eigenvectors associated with the zero

eigenvalues.

Multiple zeros as interpolations impose derivative conditions. Each zero after
the first implies a derivative with respect to z~!. For lack of a state space
method of calculating system matrix derivatives, each componernt is transformed
into a numerator and denominator polynomial whose derivatives can easily be

calculated.

Another method of finding the derivatives is to calculate the derivatives of
the system pulse response. This is equivalent to carrying out the divisions of
the polynomial ratios and is simpler because the rule for derivatives of ratios
does not need to be used. The drawbaclk, though, is that the pulse response is
not necessarily finite. An approximation may be made by truncating the pulse
response, but if the pulse response decays very slowly, a prohibitively large

number of elements may be necessary for an adequate approximation.
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A special case of multiple zeros is when there are common zeros between
T; and T3. These impose derivative conditions also as can be best seen in the
simple SISO case. In a SISO system, the factors T,, Q, and T, cornmﬁte. Thus,
T:QT3 = T'Q where T' = T,T;. If T, and Ts had a common zero, T' will
have that zero with a multiplicity of two which gives a derivative condition. The
MIMO case is not so simple because one of the zeros is from the left and the
other is from the right. In this case both the right and left vectors must multiply

the derivative system to produce zero.

For systems with common multiple zeros between T; and Ts, the search
strategy is somewhat complicated. If there are p repetitions of a zero z in T,
and q repetitions in T3, the correct approach seems to be to start with max(p, q).
If p > g, then the left vector is the one associated with the pth occurence of the
zero in T;. This should be used with all ¢ of the right vectors associated with
that zero in T3. For p < g, the roles of T:; and Ts should be reversed. It is not
entirely clear that this is really the appropriate strategy, so this is an aspect of

the theory which should be explored.

The next step is the calculation of relations for non-square systems. Although
the relations could in fact be calculated in state space, they are currently calcu-
lated using polynomial transfer functions and pulse responses. Since pole-zero
cancellations are not carried out on T; and Ts, the elements of these matrices

have identical denominator polynomials. Thus, only the numerators are used
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for the relations.

To find the relations, a matrix Mp of the numerator polynomials is formed,

and Eqn. 2.7, where 7 is the desired result, is solved using Cramer’s Rule.
Mpr=0 (2.7)

For “tall” T, and “wide” T3, Mp will be an m x n block matrix with m < n.
Each of the m x n blocks is the 1XNS numerator polynomial coefficient vector
of the corresponding transfer function of T2 or Ts. NS is the number of states
used to represent T, and T3 in state space. It is assumed that this matrix has
rank m which means that there will be (n —m) linearly independent solutions to
Egn. 2.7. Since multiplying polynomials amounts to convolving the coefficient

vectors, a special routine was written to do the determinant calculaticns for

Cramer’s Rule.

A final detail in setting up the problem is to get zeros at infinity since the
generalized eigenvalue problem does not return these. To do this, the minimum
relative degree (# of poles - # of finite zeros) of the elements of each row of T
and each column of Ts are calculated. The minimum possible relative degree
of each element (i,7) of T;QT; is then the sum of the corresponding minimum
values from row ¢ of T; and column j of Ts. This is a result of the fact that
through Q, each entry of row ¢ in T, multiplies each column of Ts in the ijth

entry of T:QTs.
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The relative degree of a ratio of polynomials is exactly the number of zeros
at infinity — the desired quantity. If a function has r zeros at infinity, then
the first r elements are zeros. Translated into LP constraints, these mean that
the first r coefficients of an entry in @ are equal to the first r qoefﬁcients of the

corresponding entry in T;.

The LP itself is the heart of t‘he I! optimization. Typical LP solvers require
tolerances to determine whether constraints are considered to be satisfied, limits
on variable values, and initial guesses for variable values. All of these have an
impact on convergence to a solution and may need to be adjusted one or more

times to achieve a satisfactory solution. The NAG FORTRAN library routine

EO4NAF is used in this thesis.

The solution to the LP is the closed loop pulse response of the transfer
function from the exogenous inputs to the regulated outputs. In general, this
is not the only item of interest. For example, the optimization may have been
done on the sensitivity, but it is desired to know the transfer functions from plant
inputs to plant outputs. In such a case additional calculations are necessary to

obtain the desired results.

One item of interest is usually the optimal controller. An optimal objective
function is not useful in practice unless one knows the controller to realize it.
The controller is calculated using the Q parameter and the factors M,N,X,

and Y. These factors are part of a doubly coprime factorization of the plant as
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shown in Eqs. 2.8-2.10.

Gn = NM—I = M-IN (2.8)

X -Y MY I0
= (29)

-N M N X 01
K=(Y-MQ)X-NQ'=X-QN)'(¥-QM)  (2.0)

Although the calculation seems rather straightforward, there are several
things which need to be wauched. Firﬁst‘, T, and/or Ts may be strictly proper
when solving for Q, in which case the inverses will not be representable in state
space form. Since these are discrete time systems, the sequences can be advanced
(multiplied by z) until the system is proper and the inverse can be calculated.
Since each multiplication by z becomes a time delay (27! ) when the system is
inverted, the end result (after multiplication by the modified inverse) must be
advanced appropriately. That this can be done without creating a noncausal
system is ensured since the zeros at infinity were included as interpolations,

creating an appropriate number of leading zeros in the expression for T, — ®.

Secondly, if either T; or Ts had no interpolations (generally because they
were either wide or tall, respectively), it is necessary to be sure to use a stable
inverse when calculating Q. If there were interpolations, then any inverse can
be used because any unstable poles will be cancelled by zeros created by the
interpolations. As implementcd, the software does not check to be sure the

inverse is a stable one. It is necessary for the user to check this. A method of
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ensuring that a stable inverse is found should be devised for this step.

Another factor to consider is that the (X-NQ) or (X—QN) term is inverted
when calculating the controller. For some systems, numerical difficulties will be
encountered when trying to invert matrices. Thus, the choice of pa;ametriza—
tions should be influenced by ease of calculation in later stages. This will become

apparent in the space station example in Chapter 3.

Also, it may occur in simpler systems that the system becomes degenerate
(reduces to a constant and thus requires no states for a state space represen-
tation) at some point in the calculations. This condition will cause MATRIXx
to signal an error and stop execution and so must be watched‘ for in order that

appropriate action can be taken before the calculations fail.

Special considerations and prnblems encountered when implementing the {*

algorithm were presented in this section. For the actual code, see Appendix A.
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2.4 Software Performance

As implemented, the code is able to return an [!- optimal controller for a
system given the two-input two-output state space description as input. Ex-
amples 4.2, 5.5, and 6.6 from Dahleh [1] were used for initial debugging, and
all produce the expected results. These problems are rather simple and do not

correspond to any particular real control problems.

On more complex examples, however, some problems did manifest them-
selves. There were two basic types of problems — the example-specific and the
software or algorithm inherent problems. The inherent problems are discussed

here and the example specific problems are discussed in the following chapters.

The first problems encountered were with the MATRIXx software. One dif-
ficulty was with the calculation of the system zeros via the ‘ZEROS’ command.
In some cases not all zeros were found, and in some cases different zeros were
found for single-input single-output (SISO) systems when the system was trans-
posed. Since SISO systems are identical when transposed, the zeros should be

identical.

Another problem with MATRIXx is the limited ability to program. Particu-
larly notable are the limited conditional statement which does not have logical
operators (‘AND’, ‘OR’, etc.) and the lack of conditional looping. Another

drawback is the limited ability to check for or recover from errors which may be
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correctible. If a MATRIXx error is encountered, the procedure must be restarted
from scratch after having made the necessary adjustments. For these reasons,

it appears that translation wholly into FORTRAN or C would be a useful step.

Another difficulty is that with the current algorithm the {! problem uses a
large amount of memory for even a fairly small system. This was in fact a
limiting factor in several of the examples which were attempted. In other cases
the example would not encounter memory problems but would overwhelm the

capabilities of the LP solver that was used.

As an example of typical problem dimensions, consider the problem of a
modified F18 aircraft [10] which was a candidate problem for ! application.
This system had three control outputs and six regulated variables — a total
of eighteen transfer functions. Now assume that an impulse response of ten
elements was desired. This yields a total of 18 x 10 = 180 & elements. Each
element becomes two variables in the LP using the convention éij (k) = zi;(k) -
vij(k) where the z’s and y’s are positive variables. Add in the optimization

variable u and the total becomes 361 variables.

Now the constraints must be considered. First there are six constraints
stating that the /! norms of the rows are less than or equal to the optimal value
‘. For each interpolation there are either three or six individual constraints as
each null vector multiplies either the three columns (left zeros) or the six rows

(right zeros). Assume a total of nine interpolation constraints for simplicity.
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NextAare the relations which form the bulk of the constraints. There will be
three relations since there are three more rows than columns. The F18 system
has four states which leads to relation elements of length 10 (resulting from the
use of Cramer’s Rule). Each of these relations is multiplied with each column

-of T; for a total of 3x3 = 9 relations. Since the system is in polynomial
form the multiplications become convolutions of coefficient vectors. Thus, each
relation comprises 10 + 10 — 1 = 19 separate constraints in the LP for a total of

9x19 = 171.

Finally there are about 30 constraints for zeros at infinity, giving a total of
approximately 216 (= 6 + 9+ 171 + 30). The total problem is thus about 80,000
elements and is sparse, a problem beyond the capabilities of typical LP solvers.
Also consider that a roughly equivalent space is needed for work spa.ée by the LP
solver. Each of these elements is represented as a FORTRAN double precision
real number which occupies 8 bytes of memory. The problem data alone is seen
to occupy over 1,000,000 bytes meaning that a reasonably powerful computer

is needed.
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Chapter 3

Space Station Example

3.1 Space Station Model

For examining the problem of space station attitude control and momentum
management, a dynamic mode!l of the station’s orbital movement was necessary.
It was desired to use as simple a model as possible while retaining the essential
features of the system. These main features are the rigid body dynamics of the

station, the CMG dynamics, and the gravity gradient effects.

For space station analysis, three coordinate frames are utilized for conve-
nience of reference. First is the body frame, denoted by zp, yp and zg. This
coordinate frame is aligned with the principal axes of the station and is con-
venient for looking at quantities associated with the station itself such as the

CMG torques.

Secondly, there is the local vertical local horizontal (LVLH) frame, denoted

by zp, y. and z;. This frame is referenced to the earth and the station orbit.
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The line from the center of the earth through the space station defines z;. The
line perpendicular to z, in the direction of the orbit defines z;, and y; completes

a right-handed coordinate system.

The final frame is the inertial frame, denoted by z;, yr, and 2, which is fixed
in space. Notice that both the body and LVLH frames are functions of ofbita.l
position. The inertial frame is necessary as a fixed reference for the moving
frames. The inertial frame is usually fixed as being coincidental with the LVLH
frame at some initial time T,. The LVLH frame then rotates at orbital frequency

with respect to the inertial frame (after one orbit they are again coincident).

It will be desired that the space station orbit in LVLH attitude. That is,
the body coordinates should be aligned with the LVLH coordinates at all times.
This means that, in the inertial frame, the space station must be rotating with

‘orbital frequency wq as it orbits.

The basic equations for the space station rigid body dynamics are Eqns. 3.1
and 3.2 where H is the momentum of the station, I is the inertia tensor, and &

is the station rotation in the body frame.

H = Io ' (3.1)

= S r=10+0x15 (3.2)

Eqn. 3.2 relates the change in momentum of the station to the external torques

(7ez) acting on the system. 7., can be expanded as shown in Eqn. 3.3, where

31



Teme is the reaction torque of the CMG’s on the station, r,, is the gravity
gradient torque, and 74 is a disturbance torque (which may itself have several

contributing terms).

Z Tex = TCMG + Tgg + T4 (33)

The final set of simplified dynamic equations is reached after substituting
an expression for the gravity gradient torque, referencing all quantities to the
appropriate frames, and assuming small cross products of inertia and small

- angular deviations. The results are shown in Egs. 3.4-3.6.

L6, + 4w3(12 —I3)6; — wo(l, — I, + 13)0.3 = —u;+uw (3.4)
Ly + 3wi(h — Is)8; = —up+w, (3.5)
Iifs + wi(I — 1)6s + wo(ly = L+ I)8;, = —us+ ws (3.6)

The u;’s represent the body axis components of the control torques, the w;’s
represent the disturbance torques, and the 6;’s are the roll, pitch, and yaw (1-2-
3) Euler angles of the body axes referenced to the LVLH frame. Similarly, the

simplified CMG dynamics are given by Egs. 3.7-3.9.

u; = h:]_ - thS (3.7)
u; = hy (3.8)
us = hs+ woh (3.9)

These sets of equations are standard for the problem and a detailed derivation

can be found in Bishop [4] or Wie [5].
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Othe.r than the assumptions of small angles and small products of inertia
made to simplify the equations, the other main assumption in the model is that
flexible body dynamics can be ignored. This is not really a major approximation
for attitude control since the flexible body dynamics are generally not in the
same frequency range as orbital dynamics. Also, this example is not intended

to contain such great detail.

The actual values for the I; and w; were taken from Wie [5] and are typical
numbers for most proposed space station models. They are essentially similar
to the numbers used in Bishop [4]. Looking at Eqn. 3.5 it is seen that the pitch
dynamics are decoupled from the roll and yaw dynamics. This allows control

design to be done on two smaller systems rather than on one large system.

3.2 Pitch Axis Controller Design

The matrices A, B, and C for the state space description of the pitch dy-
namics described by Eqn. 3.5 and Eqn. 3.8 are listed in Appendix B. Both the
continuous time and discretized versions are given. The four states in the pitch
axis dynamics are the pitch rate, the pitch, the CMG momentum, and the in-
tegral of the CMG momentum. The integral of the momentum is included to

ensure that the momentum settles to zero for a step disturbance.

The first attempt at an ! controller design was for the pitch axis dynamics
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Block Zeros

pitch 1,1, -1
h 1, 1.3732

[h 1.3732, -1

control | 1, 1, 1.3732

Table 3.1: Interpolations on T,

since this was the simplest system. Initially, the regulated variables were the
pitch angle, the CMG momentum, the integral of the momentum, and the control

input. Scalar weights were used to scale the variables to approximately unity.

For this particular configuration, both T; and T3 are 4 x 1 ruatrices. T3
has no interpolations, and for T, interpolations are found for the four SISO
blocks since it is a “tall” matrix. The interpolations for each block are listed
in Table 3.1. The interpolations are listed to point out one of the MATRIXx
problems that was found. For the [ A block, the ‘ZEROS’ function of MATRIXx
does not find the zero at z = —1. This turned out not to be a problem since
this is apparently a redundant constraint and was satisfied despite the fact that

it was not explicitly included in the LP formulation.

The regulated variables, the assigned weights, and the resulting I’ norms for

several solutions are given in Tablc 3.2. The first noticeable feature of these
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Regulated Variables

pitch | CMG momentum (k) | fhA | control
weight 1.0 104 1076 1072
optimal
norms
=9 0.1164 1.2577 1.2653 | 1.2653
=16 0.0975 0.9332 0.9482 | 0.9482
=20 0.0973 0.9305 0.9454 | 0.9454

Table 3.2: Optimization Results With Scalar Weights

results is that as expected, a larger length of solution (/) yields a lower norm.
This will be the case whenever there are interpolations on the unit circle or
relations. Note also that the norms in Table 3.2 are the scaled norms. To
get the actual values, these numbers should be divided by the scale factors.

The units for the unscaled norms are radians, ft-lbs, ft-lb-sec, and (ft-1b)/sec,

respectively.

The ! norms of the responses represent the largest possible co-norm of the
responses to any ! signal of unit magnitude. For the | = 20 case, then, the
largest possible magnitudes of the regulated variables would be 5.6 degrees, 9305

ft-1bs, 945400 ft-1b-sec, and 95 (ft-1b) s:c. Of more direct interest, however, is
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the response to the particular disturbance used in this model:
w(t) = 4 + 2sinwgt + 0.5sin 2wot. (3.10)

Figures 3.1 and 3.2 show the pitch angle responses for the ! = 9 and | = 20 cases.
Figures 3.3 and 3.4 show the CMG momentum responses, and Figures 3.5 and

3.6 show the control input.

An interesting characteristic of these solutions is that while the peak magni-
tudes of the responses decrease with increasing /, the steady-state peak values
actually increase. Presumably this trend would continue until the two quantities

were equal. These responses are nearly identical to the LQR synthesized results

of Wie [5].

A feature of the I! optimization revealed by this initial design is that some
of the LP constraints are redundant. The optimization was done neglecting
the derivative conditions (multiple zeros were ignored) and neglecting the [ &
interpolation at z = —1 (MATRIXx problem), and the solution was identical
to the case with these interpolations included. It is unknown whether any of
the relation constraints were redundant, but tilis is a possibility. A means of
eliminating the redundant constraints before starting the optimization would be

very helpful, particularly in larger problems, since it would reduce the size of

the LP.

Calculating the optimal controllers turned out to be very difficult. For the
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=9 an;i [ = 16 cases, controllers were calcﬁlated, but did not simplify as they
should have. In the [ = 20 case, the controller could not be calculated at all.
The problem is with determining the minimal realization for a system. Even in
the cases for which results were obtained, the controllers had many poles and
zeros which should have been canceled but were not. With increasing ! this

problem became worse until the controller was no longer stabilizing.

For calculating the controller the code implemented here was nearly useless.
The process had to be carried out one step at a time with careful intervention
by the user at each step to manually perform the appropriate cancellations and
simplifications. This is a laborious task and is all but impossible beyond SISO

systems.

To explore the effect of changing the problem, the scale factors were varied
and different combinations of the regulated variables were used. This particular
problem was relatively insensitive to such changes. The solutions were essentially

identical in all cases.

The next design approach was to specify rejection of the sinusoidal compo-
nents of the disturbance in the pitch output. To do this, a sinusoidal weight
was introduced on the pitch output of the station as shown in Fig. 3.7. After
optimization, this weight was included as part of the controller rather than as
part of the plant. The effect of this is to leave the transfer functions of the un-

weighted variables unchanged while including the denominator of the weighting
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Figure 3.7: Weighted System

function in the numerator of the weighted transfer function, giving the desired

rejection of the sinusoid.

The actual weighting function was Eqn. 3.10 which is the disturbance model.
The effect of this weighting can be seen in the frequency response of the system.
The scalar weighted system is shown in Fig. 3.8 and the sinusoidally weighted
system in Fig. 3.9. The w-transform is used in Figs. 3.8 and 3.9 to scale the

frequency axis to approximate the continuous time frequency. The relation is

described by Egn. 3.11.

1+ wAt/2

= — 3.11
= 1 - wat /2 (3.11)
Fig. 3.9 exhibits notches at orbital frequency (0.0011 rad/sec) and twice orbital
frequency. This is the result of the weighting to reject the sinusoids at these

frequencies. The result in the time domain is a non-cyclic response to inputs at

these frequencies.
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The ;'irst iteration of this design used only the weighted pitch as a regulated
variable. The resulting system possessed the desired property of rejecting the
sinusoidal disturbance, but the transients at startup from zero initial conditions
were excessively large as were the required maneuvering rates. As a result, other

combinations of variables were explored in an attempt to achieve better values.

Since the system regulating the weighted pitch was designed to reject the
cyclic portion of the disturbance, the large magnitudes in the disturbance re-
sponse must have been a result of the step component. To cure this, the
regulated quantity was changed to the sum of the weighted and unweighted
pitch. This had a profound effect on the disturbance response as can be seen
in Fig. 3.10. After rearranging the system to include the weighting function
in the the controller (K — K'), the ! norm of the pitch pulse response is 12
degrees. This is the maximum pitch deviation for any arbitrary I* signal of unit

magnitude.

The fast oscillations during the startup transient indicate that large control
magnitudes are necessary at these points and saturation limits may be exceeded.
This situation could be rectified by including the control as a regulated variable
to smooth out the peaks somewhat. This, of course, would have the effect of

raising the magnitude of the pitch response slightly.

An interesting issue arose from the weighted pitch designs. One system

was scaled to radians and one was scaled to degrees. It was expected that
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these would yield identical results (scaled by 180/m, of course), and did in the
majority of cases. In several cases MATRIXX would calculate different zeros for
the two systems yielding different optimizations. This of course was an error,
but in the radian system, the solution had a curious property. The solutions
for | = 27,1 = 28,1 = 29, and | = 30 were precisely identical and the solutions
for | = 45 and | = 60 decreased as expected. The issue is whether the {! norm
strictly decreasing with increasing . If it is, then a plateau as observed in the

above problem cannot be a va'id solution.

3.3 Roll-Yaw Axis Controller Design

The roll/yaw control design for the space station was carried out for only the
unweighted case because of difficulties obtaining the parametrization in the very
first step. The discretized system is such that it is extremely difficult to obtain
a stabilizing set of regulator gains. Only after many trial-and-error iterations
was a set finally obtained. The discretized system and the regulator gains are

shown in Appendix C.

Initially, the design was done regulating only the roll and yaw angles. The
roll and yaw axis disturbances were both taken to be 1 + sin(wot) + 0.5 sin(2wo)
as in [5], and the resulting responses are shown in Fig. 3.11. In this case =15

and the optimal norm is 1.49 degrees. It was not reasonably possible, however,
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to derive the controller from the optimal solution.

Different values of | were used and the same trend was observed here as was
seen in the pitch control design. Larger ! yielded smaller norms (for example,
| = 20 gives a norm of 1.25 degrees compared to 1.49 degrees at [ = 15) but
slightly larger peak values for the oscillations in steady state. It should also be
noted that although the control and momentum variables were not regulated,

their values fell well within the saturation limits.

Although the momentum and control variables fell within limits, an attempt
was made to regulate the momentum in addition to the angular deviations.
This was done to test the operation of the algorithm on a more cofnplex system.
The problem appeared to be formulated correctly, but the LP solver could not

converge to a solution. More powerful LP software would probably overcome

this difficulty.

The next step would be to specify rejection of the sinusoidal disturbances.
This was not accomplished because of the difficulty in finding a stabilizing set
of gains for the parametrization. Rejection cannot be done on the roll and
yaw simultaneously, however, as shown in [5|. It is also shown that a cyclic
disturbance at orbital frequency cannot be rejected for roll attitude. Such a

disturbance can be rejected for the yaw attitude and roll momentum, however.
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Chapter 4

X29 Example

4.1 X29 Model

The model for the X29 was taken directly out of [11]. A diagram of a forward
swept wing aircraft is shown in Fig. 4.1. The model describes the use of the
canard and flaperon to control the pitch angle and angle of attack. The pitcbh
angle 6 is the angle of the nose of the aircraft with respect to horizontal, and
the angle of attack « is the angle of the nose with respect to the direction of
the aircraft’s velocity. The flight path angle v is § — a and is the angle of the

velocity with respect to horizontal. These quantities are all shown in Fig. 4.2.

Three different systems are presented in [11]. The first has the canard deflec-
tion as input and the angle of attack as output. The second has pitch attitude
as output, and the third system uses both the canard and the flaperon to control
the pitch attitude and the angle of attack. In this work, only the first case is

treated.
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4.2 Control Design

The challenge of the control design in the case of the X29 is to meet the
various design specifications. For the first design case with the canard controlling
the angle of attack, the specifications are that 10% error or less is i'equired in
command following for 0.01 < w < 1 rad/sec, disturbances must be attehuated
by at least a factor of 1.5 for w < 1 rad/sec, and the system must be robust
in the face of multiplicative errors. Multiplicative errors are introduced from

ignoring the high frequency wing torsion mode and from the scaling.

A final objective is to avoid exciting the wing bending mode at about 60
rad/sec. To accomplish this, it is desired to have the system bandwidth less than
6C rad/sec. This will cause attenuation of any excitation of the bending mode.

In the design, this spec is approximated by requiring the crossover frequency of

GK to be below 60 rad/sec.

All together, these specs require that the sensitivity be small and that the
closed loop transfer function rolls off sufficiently at high frequency to guarantee
robust performance. To meet these requirements, a good strategy is to minimize

the sensitivity function, particularly in the range w < 1.

- Minimizing the sensitivity is also a good objective in that the constraints of
the optimization problem can easily be checked. The Q parametrization of the

sensitivity has the property that it is equal to unity at the interpolations for
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T, and zero at the interpolations for T3. Thus, a quick and easy check was

available while the code was executing.

With no weighting of the sensitivity, the design specifications were not quite
met. The results are shown in Figs. 4.3-4.4. The sensitivity was sufficiently
small in the appropriate range at low frequencies, but the bandwidth of the

system was too high and did not satisfy the robustness requirements.

In fact the requirements were not met even with several weights which were
used, an example of which is depicted in Fig. 4.5. The weighting was the dis-
cretized equivalent of 25. Compared to Fig. 4.3, Fig. 4.5 demonstrates the

effect of the higher weighting at low frequency. The low frequency sensitivity

has been decreased at the expense of the high frequency sensitivity as expected.

After using several weighting functions, it was determined that the require-
ments could not be met (or would be difficult to meet) using only the sen-
sitivity function. The next step was to use the complementary sensitivity
GK(I - GK)-1 in the objective function. The sum of the sensitivity and the

complementary sensitivity was used as the objective.

The results of the new optimization are shown in Figs. 4.6-4.8. The low
frequency sensitivity has increased slightly and GK crosses the 0db point at
about 40 rad/sec. This new system meets the design specs. Various weights

were used to try to tune the system better, but none were found which produced
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much improved results.

For a step command, the system here has about 6% error, which is slightly
better than the LQG/LTR design of 4. For other signals, however, it is not clear
what the outcome will be since the two designs use very different methods of

arriving at a controller.
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Chapter 5

Summary and Conclusions

5.1 Conclusions

Software has been implemented to solve the {!-optimization in the context
of the I'-optimal control problem. This software has been applied to two real
control problems — the attitude control and momentum management of a space
station and the pitch and angle of attack control of the X29. Although the
design examples did not work out as well as was hoped, several interesting and

important observations can be made.

First of all, I!-optimal solutions do not in general lend themselves well to
calculation using high level software like MATRIXx. There are many special

cases which need to be checked for and this is not convenient in MATRIXx.

The first area of difficulty is the very first step of determining the closed loop
parametrization. For fully controllable and observable systems, it is possible to

place all poles at the origin, whic. is preferred because it is easier to check such
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a system for correctness. In some situation it is necessary, or simply desirable,
to solve the regulator and estimator problems to obtain the parametrization.

Currently, the user must choose at run-time.

A more serious problem is the transformation of the problem back and forth
from state space and time domain. Calculating in state space is for the most
part more robust than using the transformed polynomials or time sequences.
This is a factor in the calculation of system derivatives and relations. The
derivatives are the main problem as the largest errors seem to occur there. A
consistent method of calculating the derivatives would be a significant addition

to the reliability of the algorithm.

Another significant improvement would be a means of eliminating the redun-
dant constraints of the LP before attempting a solution. This would first of all
decrease the size of the problem, and in addition it would help the reliability
of the LP. In many of the large examples attempted, the constraint matrix suf-
fered from serious ill-conditioning when certain constraints were added during

calculation.

A final area where improvement can be made is in the calculation of the
optimal controller from the optimal closed loop solution. Much of the problem
here is once again the transformation from time domain to state space and
back. Errors incurred in these transformations move around the poles and zeros

sufficiently that cancellations are not correctly carried out at later steps. This
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leaves many near cancellations in the final system. The system ends up not only
of higher order than it should have, but in many cases the calculated controller

is not even stabilizing as a result of the uncancelled poles and zeros.

It should be noted that a very good LP solver is required to obtain any results
from the I! optimization in many cases. The NAG subroutine EO4NAF was used
for this study and was limited to systems of less than about 150 variables and

100 constraints.

As far as actual execution, the code works very well for square systems and
for systems which transformed easily from state space to polynomial representa-
tions. Systems which did no* .ranstorm easily led to bad relations and infeasible
LP’s. Also, systems for which the poles could b= placed at the origin with rea-
sonable (“reasonable” being somewhat ill-defined) also worked very well with

the software.

For the space station, pitch axis control design was successfully carried out.
This design encorporated rejection of sinusoids at orbital frequency and twice
orbital frequency. Within this constraint, the optimization was done on the
combined weighted and unweighted impulse responses of the pitch. Including
the unweighted impulse response reduced the peak magnitude of the distur-

bance response by an order of magnitude compared to the case where it was not

included.
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Roll and yaw axis control design was done without the cyclic disturbance
rejection. This design was kept simple due to limitations of the current software

for solving the problem and the inherent numerical difficulty of dealing with the

space station system.

It is expected that this design would possess properties superior-to a simple
LQR design with a cyclic disturbance rejection filter as in [5]. The controller,
designed for a linearized model of a non-linear system, would actually operate
in the non-linear environment. The linear model is only valid in a small region
around the point of linearization. The I!'controller is designed to minimize ar-
bitrary bounded disturbances as well as providing cyclic disturbance rejection.

This should give it superior performance in the non-linear environment.

This assumption could not be tested, however, because the controllers could
not be extracted from the problem solution in the roll/yaw case. If the controllers
were calculated, a simulation of the full non-linear model could be carried out.

This would make an interesting continuation of the present work.

The final design example was for the angle of attack control for the X29
forward swept wing aircraft. This design was required to meet certain perfor-
mance specifications. Using the /! optimal design, the specifications were met
with relatively little design effort. Although the design specs were met .with
the illustrated design, it may be possible to further tune the system with more

complex weights and objective functions.
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5.2 'Summary and Future Direction

The overall project of software development and meaningful control design
was in the end a little overambitious. By the end of the project, the software
was more under control in that the problem areas had been identified and could
be worked around somewhat. The original simple translation of the.theory into
computer code did not work very well and underwent much ‘revisiovn to get even

to the point that it is at now.

More effort needs to go into the software in order to deal with problems of
practical dimension and complexity, particularly in the areas noted previously.
Currently the success or failure is very problem dependent, though small changes

to the right place in the code can sometimes allow a particular problem to be

dealt with.

Finally, based on the results presented here, further investigation into the [!-
optimal control of the space station appears worthwhile. Particularly of interest
would be to derive the optimal controllers and to carry out simulation of the
full non-linear model with these linear system controllers. It is felt that the

’-optimal controllers would possess good robust performance properties.
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Appendix A

Computer Code

This appendix contains the details of the software written for this thesis. The
first section is a block diagram showing the functional blocks of the program and
a table of the routines associated with each block. The second section contains

actual listings of the routines.

A.1 Flow Diagram

Fig. A.1 shows the basic outline of the /! algorithm. Notice that there is no
logic in this sequence. All the logic is contained in the appropriate subsections

of the code.

Table A.1 lists the names of the routines used in the program. The controlling
routine, LONE.UDF, is not listed. The function of LONE.UDF is simply to call

the other routines in the appropriate sequence.
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Section | Main Routine Auziliary Routines
1 HUV.UDF
2 ZERCON.UDF GETSVD.UDF
GETRHS.UDF
3 GETCMN.UDF
4 ZINF.UDF RELDEG.UDF
5 RELAT.UDF SEQDET.UDF
6 USER.FOR SIMPLX.FOR
7 CLSS.UDF BLDK.UDF
8 KCALC.UDF COPRIME.UDF
KSS.UDF
PTOSS.UDF
Miscellaneous Routines
CHECK.UDF FACT.UDF
SSADD.UDF SSMUL.UDF
SSMUL.UDF

Table A.1: List of Subroutines
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A.2 Code Listings

Following are listings of the complete set of routines used in the /! algorithm.
Each contains a brief description of its function and comments in the code itself
which have been added for readability. Comments marked by %’s are not part

of the code itself.
LONE.UDF

Routine LONE.UDF is the main routine which calls the functional routines

in the correct sequence.

//[SCL,NSCL,SKOPT,NSK]=LONE(S,NS,IW,IZ)
//

// CALCULATE THE L1 OPTIMAL CONTROLLER
//

// begin code here ...

// GET H,U,V for G = H - UxQx*V

//

// Choose pole placement or
// regulator/estimator

//

display(' Enter [1] for pole placement’)
inquire i 'or other to enter gains.’

if i=1, [t1,t2,t3]=huv(s,ns,iw,iz);

else (t1,t2,t3]=huvtnp(s,ns,iw,iz); end
//

// HOW LONG IS PHI?

//

tot=0;11=0;12=0;

x=size(t2);

diff=x(1)-x(2);
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if diff>0, li=diff#*ns+1; end
x=size(t3);

diff=x(2)-x(1);

if diff>0, 12=diff*ns+l; end

//

// ASK FOR LENPHI

//

display('default lenphi is:')
lenphi=max([l11+ns-1 12+ns-1 2*ns+1])
inquire x 'enter lenphi (0 for default):’
if x<>0, lenphi=x; end

clear x diff

//

// SET UP LP, SOLVE LP, AND GET Q,K
//

(row,coll=size(tl1);

TOW=row-2*ns;

col=col-2*ns;

nphi=lenphi*row#*col;

!/

// 1) suml(xij(k)+yij(k)| over j,k <= OPTNORM for all i
//

tot=user([row col 2:nphil],1,0)

/1

// 2) constraints of form uzvec(a,i)*H(a)=uzvec(a,i)*PHI(a)

// for each zero ’'a’ and associated vectors 1 to i.
// H(b)*vzvec(b,i)=PHI(a)*vzvec(a,i).

//

// ¥*x get left zeros of U xx*x

//

display('*xx INTERPOLATIONS ON T2 **x')
(nuz,uz,uzvec,tot]=zercon(ti,t2,ns,1,lenphi,tot);
tot

//

// **x get right zeros of V *xx

//

display('**x INTERPOLATIONS ON T3 #**x')
[nvz,vz,vzvec,tot]=zercon(ti,t3,ns,2,lenphi,tot):
tot

//
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// Take care of common zeros of T2,T3
//
if nuz>0, if nvz>0,
tot = ...
getcmn(ti,ns, (nuz nvz], [uz;vz],[lenphi tot],uzvec,vzvec),
end, end
clear nuz uz uzvec nvz vz vzvec

//

// 3) constraints of form lefvec*H = lefvec*PHI.
/7 H*rigvec = PHI*rigvec.

//

display(’'*** RELATIONS ON T2 #**x')
tot=relat(t1,t2,ns,lenphi,1,tot)

//

display('*#* RELATIONS ON T3 #%x')
tot=relat(t1,t3,ns,lenphi,2,tot)

/7

// 4) Take care of zeros at infinity

//

tot=zinf(t1,t2,t3,ns,lenphi,tot)

//

// *x% GET LINEAR PROGRAM OPTIMAL SOLUTION #*xx
//

display('*** SOLVING LINEAR PROGRAM *x*x*')
phi=user(O*ones(1,nphi+1),2,tot)

//

// x*x GET STATE SPACE CLOSED LOOP XFER FUNCTION x*x*x
//

[SCL,NSCL]=c1lss(phi,lenphi,row,col);

clear phi

retf

//
%% Code after this point does is not useful %%
wh for any meaningful problems W

//

// **%% GET STATE SPACE (T1-PHI) =*x*x

//

display(’' -- (T1-PHI) --')

//[SKOPT ,NSK]=kss(t1,ns,phi,lenphi,nphi);
[SKOPT,NSK]=ssadd(t1,2*ns,scl,nscl,-1);
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[phi.npl=minimal(skopt.nsk);
if np<nsk, SKOPT=phi; nsk=np; end
clear phi ' np

NSK

//

// x%% FINISH CALCULATING CONTROLLER **
//

display(’ -- inv(T2)(T1-PHI) --')

(t2inv,iadv]=ssinv(t2,ns);
[SKOPT,NSK]=ssmul(t2inv,ns,SKOPT,NSK) ;
[row,col)l=size (SKOPT);
row=row-NSK; col=col-NSK;
if iadv>0,
[num,den)=tform(SKOPT,NSK) ;
[i,inum])=size (num);
inum=inum/col;
if iadv>(NSK+i-inum),
for i=(nsk+2-inum):iadv,
if max(abs(num(:,[1:co0l]l)))>1e-15, .
display('-- BIG TROUBLE --'), end,
[i1,i2]=size(num);
num=num{:, [col+1:12]);
end, end,
for i=1:iadv,
num=[num O*ones(row,col)]; end,
[SKOPT,NSK]=sform(num,den,col);

NSK;
end
[SKOPT,NSK]=minimal (SKOPT,NSK) ;
//
if NSK>0,
display(' -- Q --'),

[t3inv,iadv]=ssinv(t3,ns);
[SKOPT,NSK]=ssmul (SKOPT,NSK,t3inv,ns) ;
[row,col]l=size (SKOPT);
row=row-NSK; col=co0l-NSK;
if iadv>0,
[num,den]=tform(SKOPT,NSK) ;
[i,inum]=size(num);
inum=inum/col;
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if iadv>(NSK+1-inum),
for i=(nsk+2-inum):iadv,
if max(abs(num(:,[1:coll)))>1e-15,
display(’'-- BIG TROUBLE --'), end,
[i1,i2]=size(num);
num=num(:, [col+1:i2]);
end, end, .
for i=1:iadv,
num=[num O*ones(row,col)]; end,
[SKOPT,NSK]=ptoss (num,den,col);
end,
[SKOPT,NSK,t)=minimal (SKOPT,NSK) ;
end
if NSK>O,
ei=eig(skopt([1:nsk],[1:nsk]));
ei=diag(ei);
for i=1:nsk, if norm(ei(i))>=1,
display(' Warning: Q not stable.'),
end, end, .
end
//
[m,n]=size(s);
if NSK=0, SKOPT=0; end
[SKOPT,NSK] = ...
kcalc (SKOPT,NSK,s8([1:ns ns+iz+1:m]),[(1:ns ns+iw+1
//
retf
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HUV.UDF

This routine determines the Q parametrization of the closed loop system. Gains
are chosen to place all poles at the origin. An alternate routine, HUVTMP.UDF,
allows the input of weights and then solves the corresponding regulator and
estimator problems. HUVTMP must be used if the poles cannot be placed
arbitrarily and should also be used if excessive gains are needed to place the

poles at the origin.

//[T1,T2,T3]=huv(S,NS,IW,IZ)
//
// CALCULATE T1,T2,T3 (aka H,U,V)
//
(a,b,c,d)=split(s,ns);
[i,m1)=size(b);
b1=b(:,[1:iw]); b2=b(:,[iw+1:m1]);
[n2,il=size(c);
c1=c([1:iz],:); ¢2=c([iz+1:n2),:);
di1=d([1:iz],[1:iw)); d12=d([1:iz], [iw+1:m1]);
d21=d([iz+1:n2],[1:iw]);: d22=d([iz+1:n2]),[iw+1:m1]);
//
// TRY PLACING POLES AT ORIGIN (SO MATRIX WILL
// BE POLYNOMIAL)
//
p=real(poly(a)); for i=1:ns, pm(i,:)=p’'; end
bp=O*ones(ns,1); for i=iw+1i:m1, bp=bp+b(:,i); end
sc=bp; scc=eye(ns);
for i=2:ns,
sc(:,i) = ...
a*sc(:,(i-1)); scc=scc+diag(pm([1:ns+1-i),i),(i-1)); end
t=sc*scc; tinv=inv(t);
f1=p(2:ns+1) '*tinv,
for i=iw+1:m1, £(i-iw,:)=f1; end
evcnt=eig(a+b2xf)
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//
cp=O*ones(1,ns); for i=iz+1:n2, cp=cp+c(i,:); end
sc=cp’'; scc=eye(ns);
for i=2:ns, ...
sc(:,i) = .

a'*sc(:,(i-1)); scc=scc+diag(pm([1:ns+1-i],i),(i-1));

t=sc*scc; tinv=inv(t);
hi=tinv'*p(2:ns+1),
for i=iz+1:n2, h(:,i-iz)=h1; end
evobs=eig(a+h*c2)
Whh .
%%% The following section is part of HUVTMP.UDF
%4% and replaces the preceding pole placement
%% algorithm in that routine.
W
"Wh%
%W% // ASK FOR WEIGHTS AND SOLVE REGULATOR AND
Whh 1/ ESTIMATOR PROBLEMS.
WA 7/
W% for i=t:ns, ...
%4%  inquire f 'enter state weight:', ..
Wah o n@i)=f; ...
W% end
Wa% for i=1:mi-iw, ...
4%  inquire f ‘'enter input weight:', ...
wWhh o g(i)=f; ... :
%%% end :
Wh% [e,fl=dregulator(a,b2,diag(h),diag(g));
W% £=-f
W% event=eig(a+b2+f)
wWhh /7
%% for i=i:ns, ...
%%% inquire e ’enter state weight:', ...
%% h(i)=e; ...
%% end
Wh% for i=1:n2-iz, ...
%%% inquire e ‘'enter output weight:’, ...
wWhE o g(i)=e; ...
% end
%% [e,h]l=destimator(a,c2,diag(h),diag(g)):
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%W4% h=-h

%% evobs=eig(a+h*c2)

Wi
//
// CALCULATE H,U,V for G = T1 - T2*Qx*T3
//

af=a+b2xf;

ah=a+h*c2;

ti=[[af -b2xf ; O*a ah] (bl ; bi+h*d21]
cl+d12*f -di12xf d11];

t2=[af b2 ; c1+d12+f d12];
t3=[ah bil+h*d21 ; c2 d21];
retf
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ZERCON.UDF

//[NZ,20,ZVEC,NCON]J=ZERCON(S1,S2,NS,IFL,LENPHI,NCON)
-/
// GET THE ZEROS OF A MATRIX
//
nz=0;
if ifl=1, s82=82'; end
(a,b,c,d]=split(s2,ns);
[nrow,i]=size(c); [i,ncol]l=size(b);
eval=eig(s2([1:ns],[1:ns)));
clear 82
if ncol<nrow,

zl=zeros([a b;c d],ns);

if exist(’'z1')=0;

z0=0; zvec=0,; retf,

end
[row,col)=size(sl);
rowsSrow-2%ns;
col=col-2*ns;
nphi=lenphi*row*col;
if ifl=1, ni=col; n2=row,;

else nil=row; n2=col; end

//

// Get zeros and associated vectors.
//

tol=1d-10;

ncns=ncol+ns;
NINS=Nrow+ns;
nzi1=0;
n=ncol/nrow;
if nrow=ncol, n=1; end
if nrow>ncol, n=0; end
for i=1:n+i,
if n>0, i1 = (i-1)*nrow+1; in = i*nrow; end,
if i=(n+1),
if ncol>(i-1)#*nrow, ii=(i-1)*nrow+!; in=ncol;
else i1=0; in=0; end, end,
if i1>0,
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if nrow=1,
zi=zeros([a b(:,[i1l:in]); ¢ d(:,[i1:in))]',ns8):
else,
zi=zeros([a b(:,[ii1,in]); ¢ d4(:,[i1,in])],.ns);
end, ...
if exist('z1')<>0,
[m,jl=size(z1);
z1=(2z1;100); ii=0;
for j=1:m, .
x1=z1(j): x2=z1(j+1);
if abs(imag(x1))<1d-15, xi=real(xi): end,
21(j)=x1;
end, ...
clear zblk,
for j=1i:m, .
x1=z1(j); x2=z1(j+1);
for k=1:ns,
if check(xl,eval(i),2,1e-6)=1, x1=0; end,
end, ...
if check(x1,1,4,1e-6)=1, if abs(imag(xl))<be-4,
x1=real(xi)/abs(real(x1)); end, end,
if check(x2,1,4,1e-6)=1, if abs(imag(x2))<5e-4,
x2=real(x2)/abs(real(x2)); end, end,
if norm(x1)>=(1-tol),
if ii=0,
if check(x1,x2,1,t0l)=0,
ii=1; zblk(ii,:)=[x1 1 O]; end,
else,
nz=1; .
for k=1:ii,
if check(x1,zblk(k,1),2,tol)=1,
nz=zblk(k,2)+1; end,
end, ...
if check(x1,x2,1,tol)=0, ...
ii=1i+1;2zblk(ii,:)=[x1 nz 0O];
end, end, end,
end, ...
m=ii;
for j=1l:m,
z=zblk(j):
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[sv,v] = ...

getsvd([a b(:,[il:in]):c d(:,[i1:in))],ns,zblk(j,:))

kr=0;
ndim=max(size(v));

for ii=1i:ndim, if sv(ii,ii)>le-12, kr=kr+1; end, end,

if kr=0, v=eye(ndim): end,
for jj=(kr+1):ndim,
tmp=0*ones(ncol,1);
top(it:in)=v(:,jj);
top=tmp/max(abs (tmp));
for ii=1:ncol,
if norm(tmp(ii))<le-15, tmp(ii)=0; end,
if abs(imag(tmp(ii)))>o0,
l=abs(real(tmp(ii))/imag(tmp(ii)));
if 1>1e10, tmp(ii)=real(tmp(ii)); end,
if 1<1e-10, tmp(ii)=imag(tmp(ii))*jay; end,
end, end,
ii=zblk(j,2);
rhs=getrhs(s1,2*ns,tmp,z,ii,ifl);
for 1=1:ii, tmp1(1)=0; end, tmpi(ii)=fact(l,ii-1);
for 1=ii+i:lenphi,
tmpl(l)=fact(l-1i+1,1-1)*(z**(ii-1)); end,
for kk=1:ni,
if abs(rhs(kk))<ie-15, rhs(kk)=0; end, end,
for kk=1:n1,
const=0*ones (1,nphi) ;
for k=1:n2,

if ifl=1, off=(k-1)*lenphi*col+1+(kk-1)*lenphi;

else off=(kk-1)*lenphi+1+(k-1)*lenphi; end,

const (1, [off:off-1+lenphil)=conj(tmpl’)*tmp(k);

end,
[const rhs(kk)],
ncon=user(real([const rhs(kk)]),0,ncon):
if imag(z)<>0,
ncon=user (imag([const rhs(kk)]),0,ncon);
end,
end, .
nzi=nzi+1; zvec(:,nzi)=tmp;
zblk(j,3)=zblk(j,3)+i;
end, ...

74




end, ...
if exist(’'zblk')<>0, nz=nz+m;
if exist('zo0')=0, zo=zblk;
else, zo=[z0;zblk]; end, end,
end, end,
end
if exist('zvec’)=0, zvec=0; end
if ifl=1, zvec=conj(zvec');
if exist('zo0')=0, zo0=0; end
if nz=0, display('NO UNSTABLE ZEROS'), end, end
retf
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GETRHS.UDF

// RES = GETRHS(S,NS,ZVEC,ZRO,DER,F)
//
// RETURN THE RIGHT HAND SIDE FOR INTERPOLATION EQUALITIES
//
(row,coll=size(s);
row=row-ns; col=col-ns;
if der=1,
(a,b,c,d]l=split(s,ns);
rhs=c*inv(zro*eye(a)-a)*b+d;
WY
%A% This section calculates derivatives by
%4% using the pulse response. This cannot be
%4% used if the pulse reponse does not decay
Wi%  fast enough.
W%
else, rhs=0*ones(row,col);
for j=1l:row, for i=1l:col,
(t.yl=pulse(s([i:ns ns+j],[1:ns ns+il),ns,5*ns);
for k=der:B*ns,

rhs(j.i) = .
rhs(j,i)+y(k)*fact(k-der+1,k-1)*zrox*(der-k);
end,
end, end,
end
Wi

%%% An alternate method is the following which
%%% uses the numerator and denominator of the
%%% transfer function. IT IS ONLY CAPABLE OF
%%%  CALCULATING FIRST DERIVATIVES however.
Wi%

\\else, ths=0*ones(row,col): if der=2,

\\ for j=1:row,

\\ for i=1:col,

\\ (num,den]=tform(s([1:ns ns+j],[1:ns ns+il) ,ns);
\\ d=0; dd=0; n=0: dn=0;

\\ for k=1:ns+1,

\\ d=d+den(k)*zro**(1-k);
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\\ - dd=dd+den(k)*(k-1)*zro**(2-k);
\\ end,

\\ [k,i1)=size(num);

\\ for k=1:i1,

\\ n=n+num(k) *zro**(ii1-ns-k); .

\\ dn=dn+num(k)*(ns-i1+k) *zro**(il-ns+1-k);
\\ end, ...

\\ rhs(j,i)=(d*dn-n*dd)/d/d;

\\ end, end,

\\ else, display(’ #*** Three zeros? **x'), end,
\\end

if f=1, rhs=conj(zvec')*rhs;

else, rhs=rhs*zvec; end

retf
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GETSVD.UDF

//[SV,V]=GETSVD(S,NS,Z)
//
// GET ZERO VECTORS FOR G(S) AT Z
//
zro=z(1);
der=z(2)-1;
clear z
[nrow,ncol]l=size(s);
if nrow=ns+1, sv=0; v=1; retf
sv=eye (8) *0;
for i=1:ns, sv(i,i)=1; end
Nrns=nrow;
nrow=nrow-ns; ncol=ncol-ns;
if der=0,
[u,sv,v]=svd(zro*sv-s);
dmin=min(size(sv));
sv=sv([ns+1:dmin}, [ns+1:dmin]);
v=v([ns+1:dmin], (ns+1:dmin));
else,
[t.y]l=pulse(s,ns,30*ns);
ans=0*ones (nrow,ncol);
for i=der+1:30*ns,
fi=fact(i-der,i-1);
for j=i:nrow,
for k=1:ncol,
ans(j,k) = ...
ans(j,k)+f1*y(i, (j-1)*ncol+k)*(zro**(der+1-i)):
end, end, end,
fu,sv,v])=svd(ans);
end
retf
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GETCMN.UDF

//NCON=GETCMN(S,NS,NZ,ZZ,INFO,VEC1,6VEC2)
//
// COMMON ZEROS
//
display('**x COMMON ZEROS OF T2, T3 *%*')
nuz=nz(1); nvz=nz(2); clear nz
lenphi=info(1); ncon=info(2); clear info
uz=zz([1:nuz),1); vz=zz([nuz+l:nuz+nvz],1);
uinfo=zz([{1:nuz],[2 3]): vinfo=zz([nuz+1:nuz+nvzl,[2 3]);
uinfo=[uinfo;-99 0]; vinfo=[vinfo:-99 0]:
(row,col]=size(s); row=row-2*ns; col=col-2*ns;
nphi=lenphi*row*col;
totu=0;
for i=1:nuz,
common(i,:)=[0 0 0];
if uinfo(i,1)>=uinfo(i+1,1),
totv=0;
for j=1:nvz,
if check(uz(i),vz(j),2,1e-10)=1,
if vinfo(j)>=vinfo(j+1),
common(i,:)=[j totu totv]; end,
end, ...
totv=totv+vinfo(j,2); end,
end, .
totu=totu+uinfo(i,2);
end
for i=1:nuz,
no=common(i,1);
if no<>0,
uu=common(i,2); vv=common(i,3):
start=max([uinfo(i,1) vinfo(no,1)]);
for j=start+i:uinfo(i,1)+vinfo(no,1),
for k=1:j, tmp(k)=0: end, tmp(j)=fact(1,j-1):
for k=j+1i:lenphi,
tmp(k)=fact(k-j+1,k- 1)*uz(1)**(1 k): end,
for k=1:uinfo(i,2),
rhe=getrhs(s,2*ns,vecl(uu+k,:),uz(i),j,.1);
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for 1=1:vinfo(no,2),

rhsi=rhs*vec2(:,vv+l);
const=0*ones(1,nphi);
for aa=i:row,
for bb=1l:col,
off=(aa-1)*lenphi*col+(bb-1)*lenphi+1;
const(1, [off:off+lenphi-1]) = .
conj(tmp’)*vecl(uu+k,aa)*vec2(bb,vv+l);
end, end,
[const rhsi],
ncon=user(real([const rhsi]),0,ncon),
if imag(uz(i))<>0,
ncon=user(imag([const rhs1]),0,ncon),

end,end,end,end,end

retf
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ZINF.UDF

//NCON=ZINF(S1,52,S3,NS,LENPHI,NCON)
//
// CALCULATE ZEROS AT INFINITY
//
[a,b,c,d]=split(sl,2*ns);
[row,i)=size(c);
[i.col)=size(b);
nphi=lenphi*row*col;
display(’'*x* ZEROS AT INFINITY *x*x')
for i=1l:row,
rdt2(i)=reldeg(s2([1:ns ns+il, :});
end
for j=1:col,
rdt3(j)=reldeg(s3(:,[1:ns ns+jl)’);
end
for i=1:row,
off=(i-1)*lenphi*col;
for j=1:col,
rdtot=rdt2(i)+rdt3(j);
for k=1:rdtot,
tmp=0O*ones(1,nphi);
[xx,zz]=pulse([a b(:,j);c(i,:) d(i,j)],2*ns,rdtot);
tmp((j-1)*lenphi+k+off)=1;
ncon=user ([tmp zz(k)],3,ncon);
end,
end, end
retf
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RELDEG.UDF

//[RD}=RELDEG(S)

//

// Get maximum relative degree (demon)-(num) of a row
// of a matrixx of polynomial fractions

//

[m.nl=size(s);

ns=m-1;

n=n-ns;

rd=ns;

for i=1:n,

z=zeros(s(:,[1:ns ns+i]) .ns);
if exist(’'z')=1, [m,pl=size(z);
else, m=0; end,
rd=min(rd,ns-m); end

retf
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RELAT.UDF

// NCON=RELAT(S1,S2,NS,LENPHI,IFL,NCON)
//
// CALCULATE RELATIONS
//
[nrow,ncol]=size(s2);
NIOW=NIrow-ns;
ncol=ncol-ns;
ni=nrow; n2=ncol;
if ifl=1, ni=ncol; n2=nrow; end
if ni1>=n2, display('NO RELATIONS'), retf
nm=ni;
(a,b,c,d)=split(s2,ns);
mult=poly(a);
md=0;
if max(abs(d))>0, md=1; end
n=ns+md;
z=0*ones(ni,n2*n) ;
for i=l:nrow,
- for j=l:ncol,
[seq.tmpl=tform([a b(:,j):c(i,:) d(i.j)].ns); clear tmp;
(jj.iil=size(seq);
if ii<ns+1, for jj=ii:ns, seq={0 seq]; end, end,
if ifl=1, i1=j; i2=i; else, il=i; i2=j; end, .
if j>nm, z(i1,[(i2-1)*n+1:i2*n]})=-seq(2-nd: ns+1)
else, if i>nm, z(i1,[(i2-1)*n+1:i2*n))=-seq(2-md:ns+1);
else, z(i1,[(i2-1)*n+1:i2*n])=seq(2-md:ns+1);
end, end, end, end
z=real(z);
nuldim=n2-n1;
totlen=(n-1)*ni+1;
vec=0*ones(n2,nuldim*totlen);
indO=n*nli;
vecl=seqdet(z(:,[1:ind0]) ,n);
for i=1:nuldim,
nili=ni+i;
ind1=(i-1)*totlen+1;
ind2=i*totlen;
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ind3=(n1li-1)#*n+1;
ind4=n1i*n;
vec(n1i, [ind1:ind2])=vecl;
if ni=1, vec(1,[ind1:ind2])=z(1,[ind3:ind4]):
else, vec(1,[ind1:ind2]) = ...
seqdet(z(:,[ind3:ind4 n+1:ind0]),n); end,
if n1>2,
for j=1:(n1-2),
ind5=j*n;
ind6=(j+1)*n+1;
vec(j+1,[ind1:ind2])
seqdet(z(:,[1:ind5 ind3:ind4 ind6:ind0]),n);
end, ...
vec(n1,[ind1:ind2]) = ..
seqdet (z(:,[1:(ind0-n) ind3:ind4]),n);

end,
end
clear z vecl nrow ncol
n=totlen;
nrhs=lenphi+totlen;
(a,b,c,d]l=split(s1,2*ns);
[row,il=size(c); [i.coll=size(b):
nl=row; n2=col;
nphi=lenphi*row*col;
if ifl=1, nl=col; n2=row; end
for ii=1:nuldinm,
for i=1:n1,
tmpi=O*ones(1,nrhs+n-1);
for j=1:n2, _
top=vec (j, [(ii-1)*n+1:ii*n]);
if ifl=2,
[xx,zz]=pulse([a b(:,j):c(i,:) d(i.j)).2*ns,nrhs);
else,
[xx.,zz]=pulse([a b(:,1):c(j,:) d(j.i)].2*ns.nrhe);
end,
tmpi=convolve(tmp,zz)+tmpl;
end, ...
for jj=1:nrhs+n-1,
if abs(tmp1(jj))<ie-15, tmp1(jj)=0; end, end,
for jj=1:n+lenphi-1,
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tmp=O*ones (1,nphi) ;
for j=1:n2,
if ifl=1, il1=j, i2=i; else, il=i; i2=j,; end,
off=(i1-1)*lenphi*col+(i2-1)*lenphi;
nn=min(n,jj);
mm=max(1,jj+1-lenphi);
for kk=mm:nn, .
tmp(jj-kk+1i+off)=vec(j,(ii-1)*n+kk); end,
end, ...
if max(abs(tmp))>ie-15,
ncon=user([tmp tmp1(jj)].O,ncon);: end,
end,
end,
end
retf
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SEQDET.UDF

//[A]l=seqdet(Z,N)
// get determinant of z, with n=length of each sequence
//
[row,all)=size(z);
col=all/n;
last=all-n;
if row<>col, display('ERROR - MATRIX NOT SQUARE'),retf
if row=1, a=z; retf
if row<3,
a = convolve(z(1,[1:n])),z(2,[n+1:211])) - .
convolve(z (1, [n+1:al11]),z(2,[1:n])):...
else ...
a=convolve(z(1,[1:n]),seqdet(z([2:row], [n+1:211]),n));
a=a+((-1)*x(col-1))*convolve(z (1, [last+1:all]),
seqdet(z([2:row],[1:1ast]).n));...
for i=2:(col-1),
of1=(i-1)*n;
of2=ix*n;
a=a+((-1)*x(i-1))*convolve(z (1, [of1+1:0£f2]),
' seqdet(z([2:row],[1:0f1 of2+1:all1]),n));end,end
retf
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USER.FOR

This is the FORTRAN routine which links into MATRIXX through the 'USER’
function. This version, rather than calling an LP solver, writes a data file which

can be read later by an LP solver.

SUBROUTINE USER ( XLOCAL, NRX, NCX, SLOCAL, TLOCAL )

c | MATRIXx TM Software V7.0 (C) Copyright 1987 |
c | INTEGRATED SYSTEMS INC., Santa Clara, California |
C I Unpublished Work. All Rights Reserved Under |
C I The U.S. Copyright Act. I
c | |
C I !

This routine is part of the ANSI subset of MATRIXx.

(@]

Subroutine USER allows personal Fortran subroutines to be
linked into MATRIXx. The MATRIXx statement

<>Y =USER ( X, S8, T)

CALL USER ( XLOCAL, NRX, NCX, SLOCAL, TLOCAL )

where XLOCAL, SLOCAL, and TLOCAL are local copies of X, S,
and T; and NRX, NCX are the number of rows and number of

columns of X. If S and T are omitted in the invocation,

SLOCAL and TLOCAL are set to zero. The contents of XLOCAL, |
NRX, and NCX may be reset within the subroutine. The |
final contents of XLOCAL (which is NRX-by-NCX) is returned|
to the MATRIXx data stack as Y, with dimensions NRX-by-NCX|
which may have been changed (i.e. Y can have different |
dimension than X I

I
|
I
I
!
I
causes subroutine USER to be called in the following way: |
I
I
|
|
I
I

OO0 OO0 00O00a00O00O0000n

Q
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OO0 aon

aaaaon

Q

50

100

IMPLICIT REAL#*8 (A-H,0-2)
DIMENSION XLOCAL(NRX,NCX)

COMMON /USERLP/ MLT,ZZCON (100000)
DIMENSION IEQ(1000)

DIMENSION B(1000)

CHARACTER*10 FNAME

LEN=2*NCX

NCONST=TLOCAL
IOFF=(NCONST+1)*LEN

IF (SLOCAL.EQ.ODO) THEN

COPY RHS AND CONSTRAINTS FROM MATRIXX.
EXPAND TO PHI(i)=X(i)-Y(i).

RHS=XLOCAL (1,NCX)
DO B0 I=1,LEN
ZZCON(IOFF+I)=0.0
NCONST=NCONST+1
ZZCON(IOFF+1)=DABS(RHS)
DO 100 J=2,NCX
IF (RHS .GE. 0.0) THEN
COEFF=XLOCAL(1,J-1)
ELSE
COEFF=-XLOCAL(1,J-1)
ENDIF
ZZCON(IOFF+J)=COEFF
ZZCON(IOFF+J+NCX-1)=-COEFF
CONTINUE
ENDIF

NOW PUT IN sum(|phil) < u

- IF (SLOCAL .EQ. 1DO) THEN

NROW=XLOCAL(1,1)
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310

300

350

NCOL=XLOCAL(1,2)

NPHI=(NCX-1)/NROW/NCOL

DO 350 J=1,NROW
DO 310 I=1,LEN

ZZCON(IOFF+I)=0.0

I0F1=(J-1)*NCOL*NPHI+2

DO 300 I=IOF1,IOF1+NCOL*NPHI-1
ZZCON(IOFF+I)=1.0
ZZCON(IOFF+I+NCX-1)=1.0

CONTINUE
NCONST=NCONST+1

IOFF=(NCONST+1) *LEN
ZZCON(IOFF)=-1.0

CONTINUE

PUT IN OBJECTIVE FUNCTION

500

101

.WANT TO MINIMIZE U

DO 500 I=1,LEN
ZZCON(I)=0.0
ZZCUN(LEN)=1.0
MLT = NCONST
ENDIF

IF (SLOCAL .EQ. 2DO) THEN

DO 101 I=1,IQFF
IF (DABS(ZZCON
M=NCONST
N=LEN-1
MP=M+2
NP=N+1
MEQ=NCONST-MLT

.WRITE DATA FILE.
IF DESIRED.

(1)).LT.1D-11) ZZCON(I)=0.0

INSERT LP SOLVER HERE
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PRINT *, M," ',N
PRINT *,'WRITING DATA FILE’
OPEN( UNIT=15, FORM='UNFORMATTED', TYPE='NEW',
1 ERR=9000, RECORDTYPE='VARIABLE',RECL=2000)
REWIND 15
WRITE(15) 8,M,N,8
DO 10 I=1,M
IOFF1=I*LEN+2
IOFF2=I0FF1+LEN-2
WRITE(15) 8N, (ZZCON(J),J=IOFF1,I0FF2),8%N
B(I)=ZZCON(IOFF1-1)
IF (I.LE.MLT) THEN
IEQ(I)=-1
ELSE
IEQ(I)=0
ENDIF
10 CONTINUE
WRITE(15) 8x*N,(ZZCON(I),I=2,LEN),8*N
WRITE(15) 8+M,(B(I),I=1,M),8*M
WRITE(1B) 4x*M, (IEQ(I),I=1,M),4*M
CLOSE(15)
ELSE
NCX=1
NRX=1
XLOCAL(1,1)=NCONST
ENDIF
RETURN
9000 PRINT *, 'HORRIBLE ERROR’
RETURN
END
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CLSS.UDF

//[SCL,NSCL])=CLSS(PHI,LENPHI ,ROW,COL)
//
// CALCULATE STATE SPACE XFER FUNCTION
//
NSCL=lenphi-1;
nscli=nscl;
ka=0*eye(NSCL); for i=1:NSCL-1; ka(i+1,i)=1; end
b=O*ones (NSCL,1); b(1)=1;
off=1;
for i=1:col,
for j=1l:row,
c(j,[1:NSCL])=phi(off+1l:0ff+lenphi-1);
d(j.,1)=phi(off);
off=off+lenphi;
end, ...
if i=1, SCL=[ka b; ¢ d]; .
else, [SCL,nscl1])=bldk(SCL,nscli,[ka b;c 4] ,NSCL); end,
end
NS’L=nsclli;
//
retf
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BLDK.UDF

//[KNEW,NSN]=BLDK(S1,NS1,S2,NS)

//

// GETS MINIMAL REALIZATION FOR K

//

(a1,b1,c1,d1]=split(si,nsl);

(a2,b2,c2,d2]=split(s2,ns);

KNEW=[[al Oxeye(al);Oxeye(a2) a2] [b1:;0*b1] [0*b2;b2]
cl c2 d1 42];

nsn=nsi+ns;

(KNEW,nsn]=minimal(KNEW,nsn); end

retf
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KCALC.UDF

//[SK,NSK]1=KCALC(Q,NSQ,G22,NS)
//
// Calculate Controller from G22 and Q
//
(m,n,x,yl=coprim(g22,ns);
if NSQ@>0,
display(’ -- MQ --'),
[m,nsm]=ssmul(m,ns,q.nsq);
[m1.nsm]=minimal(m,nsm);
if nsm<ns+nsq, m=ml; end,
clear mi, .
display(’' -- NQ --"),
[n,nsn]=ssmul(n,ns,q,nsq);
[ni,nsn]=minimal(n,nsn);
if nsn<ns+nsq, n=nl; end,

clear ni; .

display(’ -- Y-MQ --'),
y=ssadd(y,ns,m,nsm,-1);
display(' -- X-NQ --'),

x=gssadd(x,ns,n,nsn,-1);
[x1,nsx]=minimal(x,ns+nsn):
if nsx<ns+nsn, x=x1; end,
clear x1,
{y1.nsyl=minimal(y,ns+nsm);
if nsy<ns+nsm, y=yl; end,
clear yi,

end

if exist(’'nsx’')=0, nsx=ns; end

if exist('nsy’)=0, nsy=ns; end

x=s8inv(x,nsx) ;

display(' -- (Y-MQ)/(X-NQ) --')

[SK,NSK]=ssmul(y,nsy,x,nsx) ;

[SK1,NSK]=minimal(SK,nsx+nsy) ;

if nsk<nsx+nsy, SK=SK1; end

//

retf
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KSS.UDF

// [SKOPT,NSK])=KSS(T1,NS,PHI,LENPHI,NPHI)
// '
// TURN PHI (FROM LP) INTO STATE SPACE
//
// if len=lenphi, for k=1:(len-2*ns), yy=[yy:0]: end, end, ...
[row,col]=size(t1):
TOW=TOW-2%*ns;
col=col-2+*ns;
len=max([lenphi 2*ns+1]);
for i=i:row,
for j=l:col,
[xx,yy]l = ...
pulse(t1({1:2%ns 2*ns+i],[1:2*%ns 2*ns+j]),2*ns,len);
for k=1:len,
if k<=lenphi,
ugv (i, (j-1)*len+k) = ...
yy (k) -phi((i-1)*lenphi*col+(j-1)*lenphi+k);
else, uqv(i,(j-1)*len+k)=yy(k); end,
end, end,
end
//
// TURN K INTO STATE SPACE
//
NSK=len-1;
ka=O*eye(NSK); for i=1:NSK-1, ka(i+1,i)=1; end
b=0O*ones (NSK,1); b(1)=1;
for i=1:col,
clear ¢ d;
for j=1l:row,
c(j.[1:N8K))=uqv(j,[(i-1)*1len+2:(i*len)]):
d(j.1)=ugv(j.(i-1)*len+1);
end, ...
if i=1, [SKOPT,nskil=minimal([ka b;c d],NSK);
else, [SKOPT,nsk1]=bldk(SKOPT,nskl,{ka b;c d] ,NSK); end,
end ‘
NSK=nskl;
retf
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COPRIME.UDF

//{M,N,X,Y]=COPRIM(S,NS)
//
// GET COPRIME FACTORIZATION OF PLANT
// FOR K=(Y-MQ)/(X-MQ)
//
(a,b,c,d]l=split(s,ns);
[row,coll=size(d);
//
// TRY PLACING POLES AT ORIGIN for factorization
//
p=poly(a); for i=t:ns, pm(i,:)=p’; end
bp=O*ones(ns,1); for i=1:col, bp=bp+b(:,i); end
sc=bp; scc=eye(ns);
for i=2:ns,

sc(:,i) = ...

a*sc(:,(i-1)); scc=scc+diag(pm([1:ns+1-i],i),(i-1)); end
t=sc*scc; tinv=inv(t);
f1=p(2:ns+1) '*tinv;
for i=1:col, f(i,:)=f1; end
evcnt=eig(a+b*f)
cp=O*ones(1,ns); for i=1:row, cp=cp+c(i,:); end
sc=cp’; scc=eye(ns);
for i=2:ns,

sc(:,i) = ...

a'*sc(:,(i-1)): scc=scc+diag(pm((1:ns+1-i],i),(i-1)); end
t=sc*scc; tinv=inv(t);
hi=tinv'*p(2:ns+1);
for i=1:row, h(:,i)=h1l; end
evobs=eig(a+h*c)
n=[a+b*f b; c+d*f d];
n=[a+b*f b; f eye(col)]:
x=[a+b*f -h; c+d*f eye(row)]:
y={a+b*f -h; f 0%d’'];
retf
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PTOSS.UDF

//[S,NS]1=PTOSS(NUM,DEN, IN)
//
// Put NUM/DEN into State Space doing
// MINIMAL along the way. (Because
//  SFORM creates too big matrix.
//
[i,jl=size(den):
NS=j-1;
[i,jl=size(num);
j=j/in;
ka=0*eye(NS); for k=1:NS-1, ka(k+1,k)=1; end
c=0O*ones(1,NS); c(ns)=1;
for k=1:i,
b=O*ones (NS,in) ;
d=O*ones(1,in);
for 1=1:in,
if j=NS+1, ist=2; else ist=1; end,
for m=ist:j, .
b(m-ist+1,1)=num(k, (j+ist-m-1)*in+l);
if ist=2, d(1)=num(k,1);
end,
end, ...
if k=1, [S,ns1]=minimal([ka b;c d],NS);
else, [S,ns1]=bldk(S,nsi1,[ka,b;c d],NS); end,
end
NS=ns1i;
retf
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CHECK.UDF

//IFL=CHECK(Z,Z1,F,TOL)

//

// F=1 CHECK FOR CONJUGATE PAIR

// F=2 CHECK FOR EQUALITY

// F=3 CHECK REAL PARTS FOR EQUALITY
// F=4 CHECK FOR NORM=1

//

if tol<0, tol=1d-14; end

IFL=0;

rz=real(z): riz=imag(z);
rzi=real(zl); rizi=imag(zl);
if £=1,

if abs(rz-rzi)<=tol*abs(rz),

if abs(riz+rizi)<=tol*abs(riz),
if abs(riz)>tol, IFL=1;

end,end,end,end
//
if £=2,

if abs(rz-rzil)<=tol*abs(rz),

if abs(riz-rizil)<=tol*abs(riz), IFL=1;

end,end,end
//
if £=3,

if abs(rz-rzl)<=tol*abs(rz), IFL=1;
end,end
//
if £=4,

if abs(norm(z)-z1)<=tol, IFL=1;
end, end
retf
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//[NUM]=FACT(N1,N2)

// FINDS Nix(N1+1)* ... *N2
//

if n2<ni, num=1; retf
num=1;

for i=ni:n2, num=num*i; end
retf

FACT.UDF
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SSADD.UDF

// [SSUM,NSUM]=SSADD(S1,NS1,52,NS2,FAC)
//

//
(at1,b1l,c1,di]=split(si,ns1);
[a2,b2,c2,d2]=split(s2,ns2);
b2=b2x*fac;

(m,n)l=size(a2);
[i,n)=size(al);

ssum = [[al O*b1(:,1)*c2(1,:);0%b2(:,1)*c1(1,:) a2Z]

[c1 c2]
nsum=nsi+ns?2:
retf

SSMUL.UDF

//[SPROD,NSP]=SSMUL(S1,NS1,S2,NS2)

// GIVES [A',B',C',D']=[A1,B1,C1,D1]*[A2,B2,C2,D2]

//
[a1,b1,c1,d1)=split(sl,nsl);
(a2,b2,c2,d2)=split(82,ns2);
[m.n]=size(a2);
[i.n]=size(al);

// GIVES (A’,B',C',D']=[A1,B1,C1,D1]+FAC*[A2,B2,C2,D2]

[b1;v2]; ...
di+facxd2 J;

sprod = [ [al b1*c2;0%b2(:,1)*c1(1,:) a2) [bixd2; b2];...

[c1 dix*c2]
NSP=nsi+ns2;
retf
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SSINV.UDF

//[TINV,J}=SSINV(S1,NS1)
//
// GIVES [A,B,C,D]J=INV([A1,B1,C1,D1]))
// GENERATES AN APPROPRIATE LEFT OR RIGHT
// INVERSE IF S1 NON-SQUARE
//
[a,b,c,d]=split(si,nsl);
(nrow,ncoll=size(s1);
nrow=nrow-nsi;
ncol=ncol-nsi;
j=0;
if max(d)=0,
[num,den)=tform(si,nsi);
[i,jl=size(num);
i=j/ncol;
for j=i:nsi,
nun=[num O*ones(nrow,ncol)]; end,
[s1i,ns1)=sform(num,den);
[a,b,c,d]=split(si,ns1);
j=nsi+1-i;
end
if nrow=ncol, tinv=[a-b*inv(d)*c b*inv(d);-inv(d)*c inv(d)]; retf
if nrow>ncol,
n=nrow/ncol;
for i=1:n,
clear cc;
ind1=(i-1)*ncol+1;
ind2=i*ncol;
cc=cond(d([ind1:ind2],:)):
if exist(’'cc’)<>0,
if cc>1e8,
display(®' -- Condition number > 1e8 --'), end,
x=c([indi:ind2},:);
y=d([ind1:1ind2],:);
dp=0x*d’; dp(:,[ind1:ind2])=inv(y);
bp=0*c’; bp(:,[ind1:ind2])=b*inv(y):
tinv=[a-b*inv(y)*x bp;-inv(y)#*x dpl;
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retf,
end,
end
if ncol>nrow,
n=ncol/nrow;
for i=1:n,
clear cc;
- ind1=(i-1)*nrow+i;
ind2=i*nrow;
cc=cond(d(:, [indl,ind2]));
if exist(’'cc’)<>0,
if cc>1e8,
display(' -- Condition number > 1e8 --'), end,
x=b(:,[{ind1:ind2]);
y=d(:,[ind1:ind2]);
dp=0*d'; dp([ind1:ind2],:)=inv(y);
cp=0*b’; cp([ind1:ind2],:)=-inv(y)*c;
tinv=[a-x*inv(y)*c x*inv(y):cp dpl:
retf,
end,
end
retf
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Appendix B

Space Station Pitch Axis System

Matrix

Figures B.1 and B.2 show the continuous time matrices describing the space
station system, and Figures B.3 and B.4 show the discretized versions with

At = 190 sec. Both C matrices are 4 x4 identity matrices and are not listed.

0 2.7864x10°% 0 O

{11 0 . O00O _

A =S} imanvids rC Invee Lo aT
0 0 00
0 0 10

Figure B.1: Continuous Time Pitch A Matrix

= > 1e8 =i .
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B,

r

9.2593 x 108

F 9.2593x 1078

Figure B.2: Continuous Time Pitch B Matrices

1.0507  5.3833x10°* 0
1.9320 x 10? 1.0507 0
0 0 1

_ 0 0 1.9000 x 102

Figure B.3: Discrete Time Pitch A Matrix

B,

Figure B.4: Discrete Time Pitch B Matrices

.

1.7889x10°%
1.6854x 1073

0

0

-
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Appendix C

Space Station Roll and Yaw System

Figures C.1 and C.2 show the A and B matrices for the discretized space station
roll/yaw dynamics. In the B matrix, the first two columns are for the distur-
bance inputs and the last two columns are for the control inputs.The stabilizing

regulator gains are listed in Fig. C.3.
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Columns 1-4:

.

1.0115 x 10°  4.1115 x 10"! 8.7707 x 1074
—3.5296 x 107! 9.4297 x 107! —1.5352 x 10~*
1.9074 x 10  3.8889 x 10!  1.0832 x 10°
—3.3385 x 10  1.8640 x 10* -9.7057 x 1073
0 0 0
0 0 0
0 0 0
i 0 0 0
Columns 5-8:
0 0 0
0 0 0
0 0 0
0 0 0
9.7824 x 107! 2.0748 x 107! 0
—2.0748 x 107! 9.7824x 107! ©
1.8862 x 10>  1.9783 x 10! 1
—1.9783 x 10 1.8862 x 10> 0

3.1719 x 107°

1.5203 x 1074

2.0053 x 1073

1.0146 x 10°
0

0

Figure C.1: Discrete Time Roll/Yaw A Matrix
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3.7935 x 107 6.6398 x 10~7 3.7935 x 10~ 6.6398 x 10”7
—6.6398 x 1077 3.1825 x 10~® —6.6398 x 10~7 3.1825 x 10~°
3.5969 x 10™* 4.1978 x 10~° 3.5969 x 10~* 4.1978 x 103

—4.1978 x 107° 3.0526 x 10™* —4.1978 x 10~% 3.0526 x 10~*

0 0 —1.8862 x 10* —1.9783 x 10!
0 0 1.9783 x 100  —1.8862 x 10?
0 0 —1.7984 x 10* —1.2547 x 10°
0 0 1.2547 x 10°  —1.7984 x 10* |

Figure C.2: Discrete Time Roll/Yaw B Matrix

Columns 1-4:

1.1595 x 10® 4.9158 x 10* 2.5428 x 102 —4.1107 x 10!

2.5914 x 10* 1.0981 x 10° 1.8354 x 10* 6.0033 x 10!
Columns 5-8:
4.1508 x 1075 5.2889 x 10~%* —1.0000 x 10~7 —1.0000 x 10~7

—2.1350 x 10°% 3.1989 x 10~®  1.0000 x 10~® —1.0000 x 1078

Figure C.3: G Such That (A — BG) Is Stable
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