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Abstract

A systematic procedure for the design of a class of marine propulsors is presented. This
class of propulsors includes traditional propellers, ducted propellers, contrarotating pro-
pellers, vane-wheel propulsors and propellers operating with pre or post-swirl stators.

The topic of optimum propulsor load distributions is discussed at some length. An
algorithm for the determination of optimum radial distributions of circulation for these
devices is presented. This algorithm is incorporated into a vortex-lattice. lifting-line
model for lightly to moderately loaded marine propulsors. This computer model also
incorporates algorithms for the determination of minimum propeller chord lengths and
thicknesses as well as to determine optimum values of propeller RPM and diameter.
Parametric studies and comparisons of various propulsor configurations can be carried
out with this lifting-line model. '

Once a propulsor configuration and radial distributions of circulation, chord, thick-
ness, etc. have been arrived at, existing propeller design and analysis procedures can be
used to determine the blade pitch and camber in order to produce the desired circulation.
A discussion of how these procedures can be used, or modified, for the design of ducted
and multiple stage propulsors is provided.

Several propulsor designs are presented. They include the design of a traditional pro-
peller, a propeller operating behind a nonaxisymmetric stator, and ducted propellers. In
each case the design process is described in some detail in order illustrate the procedures.
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Chapter 1

Introduction

Typically screw propellers are used to supply the thrust needed to overcome the resistance
experienced by a moving ship. Such propellers produce thrust through the production
of lift on their rotating blades. In this thesis procedures for the design of a class of
propulsion devices, typified by the screw propeller, are described.

The design of marine propellers has traditionally been performed on the basis of
systematic series of model experiments. Such procedures have served, and continue
to serve [27], propeller designers well for the design of typical ship's screws. but do
not readily allow for the investigation of less traditional propulsor alternatives, such
as contrarotating or ducted propellers. The use of series data also does not allow the
designer to properly tailor the propulsor to the wake and physical arrangement of a
particular ship. .

Over the past several decades analytical procedures for the design of marine pro-
pellers have become well established. These procedures rely on computer models of the
propeller. Typically the hydrodynamic design of a propeller is carried out in two steps.
First, a lifting line model is used to establish the basic propeller geometry and operating
conditions as well as to determine a radial distribution of circulation over the blades that
will produce the desired total thrust, subject to considerations of efficiency and cavita-
tion. In the second step the shape of the blade that will produce this desired distribution
of circulation is determined.

Figure 1.1 illustrates the propeller design process. The lifting line model of the pro-
peller, in which the blades are considered to be concentrated lines of bound vorticity,
is used to estimate propeller forces and determine the radial distribution of circulation.
Lifting line theory can also be used to carry out parametric studies in order to determine
an optimum propeller design from the point of view of efficiency, cavitation, strength,
cost, etc. Much of the propeller geometry can be estimated on the basis of lifting line
results. ' _ '

Lifting line theory alone cannot. however, provide the actual blade geometry which

12
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CHAPTER 1. INTRODUCTION | »

produces the desired circulation distribution. For this purpose more elaborate represen-
tations of the propeller are employed. Lifting surface methods, in which the blades are
modelled as sheets of singularities. are usually used for this purpose. More sophisticated
lifting surface or surface panel representations of the propeller can then be used to analyze
the performance of the resulting blade geometry. Consideration of the unsteady forces
or cavitation predicted by these methods might then lead back to new design constraints
at the lifting line level.

Multiple stage propulsors have been proposed as an alternative to traditional pro-
pellers. Much as a wing experiences a drag force as well as lift, not all of the energy
input to the propeller is recovered as thrust. Some portion of the energy goes to vis-
cous losses, another is lost to an undesired rotation of the downstream flowfield. The
employment of multiple stage propulsors can be used to reduce these rotational losses.
The induced losses can further be reduced through the use of ducts or tip fins.

Procedures for the design of these less traditional propulsor alternatives are not so
well developed. Design of such propulsors have generally been performed on an ad hoc
basis. Multiple stage propulsors have been considered by coupling single propeller codes
together in an iterative manner. A number of procedures have been developed for ducted
propellers, but few, if any, appear to capture all of the important duct effects. The pres-
ence of the propeller shaft or hub is also seldom considered in current design procedures.

It was therefore deemed worthwhile to develop a new lifting line procedure which could
handle a wide variety of propulsor configurations in a consistent manner. A description of
the theory behind, and the elements of, such a code makes up much of the work presented
here. This code, referred to as PLL (Propulsor Lifting Line), can handle single propellers,
contrarotating propellers, propellers with pre or post-swirl stators, propellers with vane
wheels, ringed propellers, ducted propellers and ducted multiple stage propulsors.

Included in the code is an optimization procedure which enables one to determine
both the division of loading between propulsor components and the corresponding radial
distributions of circulation. PLL also includes a variety of procedures which can be .
used to assist in the determination of the optimum propeller geometry and operating
conditions. In order to be useful for preliminary design purposes and for performance
~ estimates all of the procedures included in the code were required to be computationally
efficient. Further, it was required that inputs be kept flexible and outputs comprehensive.
The theory employed in the PLL code makes use of a vortex lattice representation of
the bound and trailing vortex distributions representing each lifting line. There is no
fundamental limit to the complexity of the propulsor which can be analyzed and/or
optimized under the framework developed here. : :

Existing lifting surface design codes can be used to determine the blade geometries
of multiple stage propulsors. Interaction velocities between propulsor stages can be pre-
dicted through use of the lifting line model. A description of the design process for such
propulsors is provided in this work. The importance of modelling the presence of the hub
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is also investigated.

In order to illustrate the overall propulsor design process using the tools and proce-
dures described here the design of a propeller for a rather unusual application, a human
powered submarine. is presented. The design of this propeller is followed through to the
construction of the actual propeller. This design illustrates the importance of a proce-
dure based on hydrodynamic considerations as opposed to the use of series data. The
final propeller design looked little like that of a traditional marine propeller, but was
predicted to have a propulsive efficiency of over ninety percent.

A comparative study of various propulsor alternatives using the PLL algorithms is
also presented. This study illustrates how PLL can be used to evaluate their potential
.performance. It also provides insight into when, for example, a ducted propeller might be
more appropriate than a contrarotating pair of propellers, or a propeller/stator a better
choice than a vane-wheel propulsor. The ability to perform such a study using a common
set of algorithms to evaluate the various propulsor alternatives is of primary importance
if nontraditional propulsors are to be realistically considered.

Nonaxisymmetric pre-swirl stators have been proposed in order to reduce unsteady
propulsor forces due to asymmetries in the propeller inflow. PLL includes procedures for
the design of such nonaxisymmetric stator/propeller systems. The stator blade geome-
tries which develop prescribed blade circulation distributions can be determined through
use of a recently developed lifting surface design procedure. A description of these pro-
cedures is provided along with an example of design process for a propeller operating
behind a nonaxisymmetric stator.

The design of a ducted propeller provides an additional challenge. In addition to
the propeller blade geometry the geometry of the duct must also be determined. In
this work a procedure for determining propeller and duct geometries which provide a
desired distribution of thrust between duct and propeller and have a specified circulation
distribution on the propeller blades is developed. This procedure makes use of existing
lifting surface and panel method analysis codes in an iterative manner. Sample ducted
propeller designs are presented. ’

The primary goal of the research described in this thesis has been the development
of tools for the propeller designer which make possible the design and, perhaps of equal
importance, the realistic performance evaluation of a wide range of marine propulsors.



Chapter 2

Optimum Circulation Distributions

2.1 Introduction

In lifting line theory the propeller blade is replaced by a concentrated line of bound
vorticity. The strength of this vorticity is given by the circulation, I', developed about
the blade. It is assumed that this radial distribution of circulation is related to the actual
blade geometry is some predictable manner. It is further assumed that forces developed
on this bound vortex system approximate those of the actual propeller.

- In this chapter methods for determining optimum circulation distributions for both
single and multiple stage propulsors are developed. Optimum distributions discussed
here are those for which the energy not expended in the creation of thrust is minimized.
Before beginning this development, a brief. historical review of some of the work done
on this problem is appropriate.

Betz [4] extended the lifting line theory developed by Prandtl [92] [91] to the case of the
propeller. Betz determined a condition for minimum energyv loss on the flow downstream
of the propeller. The Betz condition considers the geometrical surfaces passed through
by the blades of the propeller. Infinitely far downstream of the propeller, these surfaces
must, for the optimum propeller. translate as rigid surfaces in the downstream direction.
This translation velocity is related to the thrust developed by the propeller.

The Betz condition is the correct, inviscid, linear result for the case of a propeller
operating in uniform inflow. Davidson [26] and Sparenberg [99] used the calculus of
variations to show that the Betz condition is a general result for this class of lightly
loaded propulsors which deliver thrust by means of lift on their blades. Sparenberg
[100] also showed that, under linear theory, an upper bound on the efficiency of such a
propulsor is given by that of the actuator disc.

The vorticity needed to realize the flow required by Betz condition is the free vor-
ticity of the optimum propeller. The free vorticity uniquely determines the circulation
about the lifting lines. Goldstein [10] developed expressions for the potential field of an

16
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infinite helical surface translating with uniform axial velocity. This potential field was in
turn used to determine optimum propeller circulation distributions. Goldstein presented
laboriously calculated numerical results for the optimum circulation of the two bladed
propeller.

Lerbs (73] presented efficient algorithms for the calculation of velocities induced on
the propeller lifting lines. Lerbs’ algorithms were based on an analytical expression for
the velocity potential due to Kawada [54]. Lerbs also derived criteria on the induced
velocities for the optimum propeller operating in nonuniform inflow. These criteria were
in turn used to numerically determine the optimum propeller circulation distribution
for the wake adapted case. Lerbs also originated moderately loaded propeller theory, in
. which the pitch of the helical trailing vorticity is aligned with the induced velocities.

Yim [123] and Achkinadzhe [2] have extended Lerbs’ results to include the effects of
viscous and cavity drag through an application of variational calculus. Alternate con- .
ditions on the optimum propeller circulation distribution have been proposed by Burrill
[11] and van Manen [112].

Brockett and Korpus [9] [8] apply a nonlinear, numerical, constrained optimization
approach to various propeller lifting line models in order to find optimum circulation
distributions. They also apply this method to the case of a propeller operating behind a
set of nonrotating vanes. Similar techniques have been implemented by Chang [16] [17]
to determine optimum twist distributions for aircraft propellers. Chang’s approach has
also been extended to the case of contrarotating propellers [74].

Theodorsen [105] [106] developed a theory for the optimum circulation distribution
for contrarotating propellers based on the assumption that an electrical field of uniform
resistance obeys the same field equations as an ideal fluid flow. Theodorsen tabulated
actual measurements of the electrical field around “helical wakes” constructed of insulting
material inserted into a conductive liquid and subjected to an electrical field in the
direction of the axis of the helix. These measurements were then used to determine
optimum. circulation distributions for single and contrarotating propellers.

Van Manen and Sentic [116] designed contrarotating propellers as two independent
propellers with corrections on the inflow velocities and the speed of rotation of the aft
‘propeller. These corrections were determined from mutually induced velocities derived
from the results of model tests. Van Gunsteren [108] and Honkanen [48] developed
analytic and numerical expressions for these correction. A similar technique has been
employed by Glover [38]. These approaches ignore the nonlinear dependence of the
circulation distribution on the induced velocity, but they only requlre slight modifications
to design methods for single propellers. :

Lerbs [72] outlined a lifting line method for predicting the optimum circulation dis-
tributions of contrarotating propellers. Lerbs’ method for contrarotating propellers was
an extension of his method for single propellers [73] with the inclusion of the effects of
the mutual interaction velocities. Lerbs’ approach treats the interacting propellers in an
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iterative manner. Morgan [79]. Morgan and Wrench [83] and Caster and LaFone [14]
have extended and improved the approach adopted by Lerbs. Reed and Cox [24] de-
scribed their own advances and provided a review of lifting line theory for contrarotating
propellers.

The possibility of using a stage of nonrotating blades to increase propulsive efficiency
has long been recognized. Both Glauert [37] and Betz [5] have considered such a possi-
bility. Betz described a procedure for determining circulation distributions for the stator
blades under the assumption of light loading and uniform inflow.

In the approach presented here the lifting line model for the propeller is discretized
with a vortex lattice. Variational calculus is then applied to the discretized problem. This
results in a general procedure for determining optimum circulation distributions. This
procedure can be readily extended to increasingly complex combinations of interacting
lifting lines.

Equations for optimum load distributions for the wing problem are first presented.
This is done in order to illustrate the vortex lattice and optimization procedures for a
problem without the added complexity of the propeller’s helical vortex system. Optimiza-
tion equations for a traditional propeller are then derived. The vortex lattice model for
multiple stage propulsors is described. Finally optimization equations for two component
propulsors are presented.

2.2 The Wing Problem

In this section the optimum circulation distribution will be determined for a straight
lifting line, as modelled by a vortex lattice. The solution to this problem will be seen to
be identical to that from classical lifting line theory. This discretized representation also
provides a general procedure which can be readily expanded to complex combinations of
lifting lines. The development given here closely follows that presented by Kerwin [56].

As illustrated in figure 2.1 the span of the lifting line is divided into M equally
spaced panels of length Ay. The continuous distribution of circulation over the span is
replaced by a stepped distribution which is constant within each panel. The value of
the circulation in each panel is set equal to the value of the continuous distribution at
the panel midpoints. The location of these control points is denoted by y.(n) and the
corresponding circulation by I'(n) = T,,.

Since the circulation is piecewise constant, the free vortex sheet is replaced by a
set of concentrated vortex lines shed from each panel boundary, with strength equal
to the difference in bound vortex strength across the boundary. This is equivalent to
replacing the continuous vortex distribution with a set of discrete horseshoe vortices,
each consisting of a bound vortex segment, and two concentrated tip vortices. The y
coordinate of the panel boundaries. which are the coordinates of the free vortices, will
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Figure 2.1: Notation for a Vortex Lattice Lifting Line

be denoted by y.(n). If there are M panels there will be M + 1 free vortices.

The velocity field of this discrete set of concentrated vortices can be readily computed
at points on the lifting line by an application of the law of Biot and Savart. The velocity
induced at a given point is a summation of the velocities induced by the individual vortex
horseshoes.

M
W (y(n)) =w) = Z L(m)wam (2.1)
m=1 .
where w, , is the velocity induced at the control point y.(n) by a unit horseshoe vortex
surrounding the point y.(m). Since the bound vortex segment of the horseshoe does not
induce any velocity on the lifting line itself, the influence function. w, ., consists of the
contribution of two semi infinite trailing vortices of opposite sign,

1 1
T A [y (m) —ye(n)]  Am [y(m + 1) —ye(n)]
The lift and induced drag on the lifting line can now be written as sums of the

elementary lift and drag forces on each panel, found from a local application of the
Kutta-Joukowski law.

(2.2)

Wn,m

M
F. = pU Y T(n)Ay. | (2.3)
n=1
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“(n)T(n)Ay. | (2.4)

uMz

The goal of the optimization procedure is to find a set of discrete circulation values.
Iy.....T . such that the induced drag. F., is minimized. subject to the constraint that
. the total lift. Fz, has a prescribed value, L,.

This problem can be solved using the method of the calculus of variations, as de-
scribed, for example, in Hildebrand [47]. We begin by forming the auxiliary function, H,
where . .

H=F +XF,-1,), (2.5)
“and then find T'; and A such that

oH
— = r=1....,M; 2.
aT, 0 fori=1....,M; (2.6)
oH '
el : 9
R 0. (2.7)

Equation 2.7 recovers the lift constraint. The Lagrange multiplier. A. introduces an ad-
ditional unknown which must be solved for along with the discrete circulation strengths.

Introducmg equation 2.1 for w* and combining equations 2.3, 2.4, 2.6 and 2.7 yleld
the expressions

OH _,_ 9 %Zr rA+AL§:rA 2.8
o, ~ = 3T p | & mWn.m y+ Ap 2 y (2.8)
o0H 0 , o

a =0= Ta_A' "'}. . (2'9)

If these differentiations are carried out, bearing in mind that the index of either or both
of the sums in equation 2.8 can take on the value i. the following is obtained.

M
Y [wiaAy + wa Ayl + AUAYy = 0; fori=1,...,M. (2.10)
n=1
M _
pU Y T,Ay = L. (2.11)
n=1

Equations 2.10 and 2.11 together form a system of M + 1 simultaneous equations
which can be solved for the discrete values of circulation on each panel. For the constant
panel spacing employed in this presentation, equation 2.10 can be considerably simplified
if a reciprocity relationship is noted.” In the case of constant spacing this relation is
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w; , = W,,;. Equation 2.10 then becomes

M ‘
o _ 2Y wi L +AU=0 fori=1,....M
ar‘. n=1
= 2w ()+AU =0 for:=1,...,M
= w (i) = —%q. | (2.12)

Thus the downwash. w*, must be constant over the span for the optimum circulation
distribution. The value of the constant is proportional to the Lagrange multiplier, ),
.which is set by the required lift. This result of constant downwash can be recovered
from classical lifting line theory [92] [91] and corresponds to an elliptical distribution of
circulation.

Equation 2.12 is also valid if the inflow velocity. U. is a function of span. This could
happen. for example. if the lifting line represented a control surface immersed in the
boundary layer of the hull. or a sail operating in a wind gradient. Equation 2.12 then tells
us that the induced angle. w*/U. should be constant. The circulation distribution will
not be elliptical. but will be whatever is necessary to generate a downwash proportional
to U(y).

Equations 2.10 and 2.11 can readily be made more general. The restriction of con-
stant spacing can be relaxed if suitable locations for control points are determined. For
example, cosine spacing may be emploved. In this case the vortices and control points
are spaced equally in the angular coordinate 3.

-2y
§ = cos™! (—J) : - (2.13)

S

where s is the span of the lifting line. For other than constant spacing Ay also becomes
a function of radius, Ay = Ay(n).
For the case of cosine spacing, Kinnas [65] has given a proof for the following reci-
procity relationship.
| w; n Ay(n) = wn;Ay(n). (2.14)

A different proof of this relations is presented in appendix D. If this reciprocity rela-
tionship is applied to equation 2.10 the result of constant downwash, equation 2.12, is
recovered for the cosine spaced vortex'lattice. It is expected that this will be the case for
any consistent spacing algorithm.

The arrangement of the lifting line can also be made more comphcated Greeley and
Cross [42] have presented optimum circulation distributions for lifting line representations
of winged sailboat keels and for various arrangements of keels and rudders.
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Figure 2.2: Propeller lifting line notation.

2.3 The Propeller Problem
2.3.1 Propeller Lifting Line Theory

The lifting line theory emploved here represents the propeller as a set of Z, straight,
radial. lifting lines. one for each blade of the propeller. The blades are assumed to
have equal angular spacing and identical loading. The geometry (pitch, camber, chord,
thickness. -etc.) of the physical propeller blade is replaced by a radial distribution of
circulation. This circulation, I'(r), is the total strength of the bound vorticity. The
lifting lines rotate with angular velocity w about the r-axis. The lifting lines start at a
hub radius. r,. and extend to the maximum propeller radius, R. The presence of the hub
is, for the time being. ignored.

A coordinate system rotating with the propeller is employed. since the flow is unsteady
relative to a ship fixed coordinate system. The chosen coordinate system is cylindrical
(x,7,0), with 8 measured clockwise as seen by a viewer facing downstream, the positive
r direction. This coordinate system. as well as other notation is illustrated in figure 2.2.
The inflow to the propeller is assumed to consist of an effective axial inflow, V,(r),
and .an effective tangential inflow, V(). Since we are presently concerned with steady,
or time-averaged, propeller forces. these inflows are assumed to vary radially, but not
circumferentially.
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Figure 2.3: Combined velocity and force diagram on an ex.panded cylindrical section of
radius r.

The geometry of the free vortex wake is assumed to be purely helical. Under linear
lifting line theory the pitch. 8(r). of the helixes is determined by the propeller’s rotation
and the undisturbed inflow. :

B(r) = tan™! [WT‘%] . (2.15)

Under moderately loaded theory the geometry of the helixes is additionally aligned with
the induced velocities at the lifting line.

Expressions for the forces acting at radius r on the lifting line can be developed from
a local application of Kutta-Joukowski’s law. Figure 2.3 shows a combined velocity and
force diagram. The axial and tangential induced velocities due to the free vortex system,
ux(r) and u}(r), combine with the effective inflow components, V,(r) and V;(r), and the
propeller rotational speed, wr, to produce a total velocity V* oriented at an angle 3; with
respect to the plane of rotation.

Ve(r) = VIVa(r) + uz(r)]? + wr + Vi(r) + ui(r)])s (2.16)
[ Valn) + )
(r) = tan™" 2 2.17
Bi(r) = tan L‘" V1w (2.17)
The force per unit radius on the vortex. F(r), is therefore given by
F(r) = pV=(r)L(r), (2.18)

and is directed at right angles to V=,
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The effect of viscous drag can be included by adding a force F,(r) acting in a direction
parallel to V*. This force may be estimated on the basis of an experimentally determined,
or theoretically calculated, two-dimensional, sectional, drag coefficient Cp,(r). This
means, of course. that the section chord lengths, ¢(r), must be specified. The viscous
drag force will then be

’ Fv(l‘) =

[V N

p V()] e(r)Cpu(r). (2.19)

These forces can be resolved into components in the axial and tangential direction,
integrated over the radius and summed over the number of blades to produce the total
propeller thrust, T, and torque, Q.

. R .
T = pZ/ [V'F cos f; — %(V-)QCCD,, sin B,] dr; (2.20)
R 1
0=z / [v*rsin B+ 5(V*)2eCop, cos ﬂ,] rdr. (2.21)
Th -

Note that V* cos f; is simply the total tangential velocity acting at the lifting line, (V| +
wr + uy). and that V*sin f3; is the axial velocity, (V, + uZ).

2.3.2 The Vortex Lattice Model

The continuous distribution of vorticity along the lifting line is discretized by a lattice
of vortex elements of constant strength. The element arrangement in the present work
employs constant spacing. This is done in order to facilitate the alignment of the dis-
cretized vortex sheets when more complicated propulsor geometries are examined. As
shown by Kerwin and Lee [63], this is not quite as accurate as “cosine” spacing, but the
difference is extremely small. As shown by James [33], the panels at the endpoints must
be inset one-quarter interval in order to properly represent the square root singularity in
trailing vortex strength. The induced velocity is calculated at control points located at
the mid-radius of each panel. The location of these control points is denoted by r(n).
Thus the radius of each of the Z lifting lines is divided up into M panels of length
- Ar. As was the case for the wing. the continuous distribution of circulation over the
radius is replaced by a stepped distribution. The value of the circulation in each panel,
['(n), is set equal to the value of the continuous distribution at the control points. Since
the circulation is piecewise constant. the helical free vortex sheet is replaced by a set of
concentrated, helical, vortex lines shed from each panel boundary. The strength of these
trailing vortices is equal to the difference in bound vortex strength across the boundary.
Therefore we can again consider the continuous vortex distribution to be replaced by a
set of vortex horseshoes. Each of these horseshoes consists of a bound vortex segment
and two helical trailing vortices. '
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The velocity induced at the lifting line by this system of vorticity is computed using
the very efficient asymptotic formulas developed by Wrench [122]. These formulas are
reproduced in appendix A. The velocity induced at a given point is a summation of the
velocities induced by the individual vortex horseshoes.

M ¢

ui(r(n)) = ui(n) = 3 T(m)ui(n,m). (2.22)
"

ui(r(n)) = uj(n) = > [(m)a;(n,m). (2.23)

‘u; and u; are the axial and tangential components of induced velocity. %}(n,m) and
@;(n,m) are the axial and tangential components of velocity induced at the control point
at radius r(n) by a unit, helical. horseshoe vortex surrounding the control point at r(m).

Under this discrete model the integrations of equation 2.20 and 2.21 for the forces
are replaced by summations over the number of panels. The total forces acting on the
propeller can therefore be expressed as

M ' - :
T=pZ > { (ViOm) + wr(m) + ui(m)] T(m)Ar

- %V'(m) [Vo(m) 4+ u;(m)] e(m)Cp,(m)Ar }; (2.24)

-

M
Y { (Va(m) + ws(m)]T(m)r(miAr
m=1
+ %V"(m)‘[\f’,(m) + wr(m) + u;(m)] ¢(m)Cp.(m)r(m)Ar } (2.25)

Here V*(m) is the magnitude of the total velocity at the control point located at ra-
dius 7(m). ¢(m) is the chord at this ¢ontrol point and Cp.(m) is the value of the two-
dimensional sectional drag coefficient there.

2.3.3 Variational Optimization

In section 2.2 ‘we used a variational approach to determine the optimum circulation
distribution for a simple lifting line. In a similar manner an optimum propeller circulation
distribution can be determined. As was the case for the planar hydrofoil, the problem can
be formulated for the discretized vortex lattice representation of the propeller. This will
provide a general procedure which can then be extended to more complicated problems,
such as contrarotating propellers.
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For the time being the wake geometry is assumed to be frozen and the viscous force
is ignored. The goal of the optimization procedure is to find a set of discrete circulation
values, I'(1)....,[ (M), such that the torque,

g ‘
= Z_: (m) + w;(m)]r(m)T(m)Ar, (2.26)

is minimized. subject to the constraint that the thrust,

M
T =pZ Y [Vi(m) +wr(m) + u;(m)] T(m)Ar, (2.27)
m=1
has a prescribed value, T,.

As in the simple lifting line case, we form an auxiliary function, H, and set its partial
derivatives with respect to the unknowns equal to zero. Here # = Q + A(T — T;). The
Lagrange multiplier. A, introduces an additional unknown and must be solved for along
with the discrete circulation strengths. the ['(1)’s.

0H
- = 1 =1,...,. M 2.28
ERO) 0 for ,Z 1,..., | (2.28)
oH '
— - , 2.2
R 0. _ (2.29)
7 Combining eduatmns 2.28 and 2.29, with expansions for the thrust and torque, 2.26,
and 2.27, and the velocity expansions. 2.22 and 2.23, and after carefully carrying out the
partial differentiations, the following system of equations is obtained:
oH e g
ar =0 = Va(i)r(D)Ar
M
+ Y [D(m)ay(i, m)r(m)Ar + T(m)a;(m, 1)r(i)Ar]
m=1
+ ,\[V )+.br )] Ar
+ A Z (m)a; (i, m)Ar + T(m)a;(m,i)Ar],
for i=1...:,ﬂ-f; : (2.30)
M '
T. = pZ Z Vi(m) + wr(m Z Fnu m, n)] C(m)Ar. (2.31)
m=1 - n=1

Equations 2.30 and 2.31 form a nonlinear system of M + 1 equations with M un-
known values of circulation. and an unknown Lagrange multiplier, A. This system can
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be replaced with a linear system of equations. if the Lagrange multiplier is assumed to
be known in equation 2.30 where it forms quadratic terms with the circulations. and the
tangential induced velocity in equation 2.31 is also assumed to be known.

oH
(i)

=0 = V,(i)r(i))Ar

M
+ Z[F m)ws(i, m)r(m)Ar + D(m)as(m, i)r(i)Ar]

m_

+ A [Vt + wr(i)] Ar

4 XZ_ [C(m)@; (i,m)Ar + T(m)a;(m,i)Ar],

for 1=1....,M; ‘ (2.32)
M

T. = pZ Y [Vilm) +wr(m) + u;(m)]T(m)Ar. (2.33)
m=1

The solution to the nonlinear system of equations 2.30 and 2.31 can be found by
iteratively solving the linear system of equations 2.32 and 2.33. On each iteration the
frozen Lagrange multiplier, X, in equation 2.32 and the tangential induced velocity, u}(m),
in equation 2.33 take on values from the previous iteration. In most instances this
procedure was found to converge quite rapidly (5 or 6 iterations) to a solution of the
nonlinear system. Initially setting the induced velocities equal to zero and the Lagrange
multiplier equal to —1 proved to be a suitable initial estimate of these quantities.

This iterative process can also be used to partially account for the effect of viscous
drag. On each iteration, the required thrust in equation 2.33 can have an additional
thrust equal to the viscous term of equation 2.24 added to it.

M .
T, = pZ Z [V;(m) + uJT(m) + U:(Tn)] — Tiscous

m=1
. M
= pZ Z [Vi(m) + wr(m) + u} (m)]
m—'l
+ % ) Z V*(m) [Va(m) + u;(m)] e(m)Cp,(m)Ar. (2.34)
= m=1

Equation 2.34 ignores the partial derivatives of the viscous terms with respect to the
unknown circulations, but does recover the desired total thrust.

Under moderately loaded lifting line theory, the induced velocities are used in the
determination of the wake geometry. However, during the circulation optimization pro-
~cedure the wake is frozen. Since the velocity influence functions, @;(m,n) and a;(m,n),

s
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are themselves functions only of geometry, they are fixed throughout the procedure.
Therefore. the nonlinear variations of these quantities with respect to changes in the
wake geometry are neglected. This avoids the tip-loaded optimum solutions presented
by Brockett and Korpus [9] [8] and Loukakis [75]. This matter was discussed at some
length by Kerwin. Coney and Hsin [60]. Their arguments are reproduced in appendix B.

Velocities and forces consistent with moderately loaded lifting line theory can be
obtained, however, by an iterative approach. An optimum circulation distribution is ob-
tained with a frozen wake geometry. The wake is then aligned with the velocities induced
by this circulation distribution. A new optimum circulation distribution is determined,
..., and so on, until convergence. This approach still neglects variations with respect to

changes in the wake geometry inside of the circulation optimization, but does provide

wake aligned velocities and forces. This is especially important when the propeller is
required to produce relatively large amounts of thrust or is operating at small advance
ratios.

The convergence of the solution with the number of vortex panels is also addressed in
appendix B. Converged values for both forces and circulation distributions are generally
obtained with a relatively small number of panels. For most purposes a 10 panel solution
is sufficient. Unless otherwise noted, numerical results presented in this thesis are for 10
panel solutions, M = 10. 7

The optimization equations 2.30 and 2.31 are not dependent on the assumption of
constant spacing. Any spacing algorithm which produces correct values of the induced
velocities may be employed. Both constant and cosine spacing have been implemented
with satisfactory results. If the spacing is not constant the length of the vortex panels,
Ar, is also a function of radius, Ar = Ar(n).

Equations 2.30 and 2.31 are also somewhat more general then previously indicated.
Any algorithm for determining the velocity influence functions, @%(m,n) and @}(m,n),
may be emploved. The assumption that the trailing vortices follow helixes of constant
radius allows for very fast computation of these induction factors. The wake geometry
can be allowed to contract and roll up if such a calculation is desired. The wake geometry
must, however, be frozen during the solution of the nonlinear system in order to avoid
the tip loaded solutions discussed in appendix B. "

2.3.4 Some General Results for the Propeller

Figure 2.4 shows some typical optimum circulation distributions for a free-running (V,(r) =
V, = constant), hubless propeller. In this case viscous effects are ignored and the lightly
loaded model is employed (the wake is aligned to the undisturbed inflow). Note that the
circulation falls off to zero at both the hub and tip radius. In this respect the optimum
propeller circulation distribution is similar to the elliptical optimum distribution of the
planar hydrofoil.
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Figure 2.4: Optimum radial circulation distributions for a frce-running, hubless propeller
for varying values of Js = V/nD. Each circulation distribution was required to generate
the same value of C7 = 2T/(pV'2Ap) = 0.512. Viscous effects are ignored. The propeller

is 5 bladed with a hub diameter 20% that of the propeller diameter.
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Some physical insight into optimum load distributions can be obtained by noting how
the distributions vary with the advance coefficient,

Vs

=D

(2.35)
where n is the propeller rotation rate in revolutions per second. Each of the curves of fig-
ure 2.4 are optimum distributions for propellers operating at various advance coefficients,
but each is required to generate the same thrust.

For a fixed ship speed. Vs, and propeller diameter. D, the rotational velocity increases
with decreasing advance coefficient. The thrust developed by the propeller is related
to the product of the total tangential velocity and the circulation as can be seen in
equation 2.27. Thus. the innermost curve of figure 2.4. the one with the smallest values
of circulation. corresponds to the lowest value of Js and. therefore. the largest tangential
inflow velocities. As Js increases the loading must increase in order to produce the same
thrust.

As Js increases the load also moves out toward the propeller’s tip. It can be seen
in equation 2.26 that the torque is a function of circulation and the axial velocity, with
a weighting from the moment arm, r. For larger Js the relative magnitude of the axial
velocity is increased. Thus. a larger “penalty” is paid for added circulation. Since more
thrust is available to an increment of circulation placed at the outer radii, where the
tangential velocity is high. the distribution becomes more tip loaded. For each propeller
operating condition a balance between the prescribed thrust and minimum torque results
in the optimum load distribution.

Figure 2.5 gives propeller efficiency as a function of advance coefficient for a free-
running propeller. Here the propeller’s efficiency, 7, is defined as

TV,
-4 9.
where V), is the volumetric mean effective inflow,
/7 2 R 4 )
Vi= m /;h rVa(r)dr. (2.37)

One curve of figure 2.5 gives inviscid results that correspond to the circulation distribu-
tions of figure 2.1. The lower curve gives results for a propeller generating the same total
thrust with typical drag coefficients and chord distributions assumed. Note that in the
inviscid case the efficiency increases as Js is lowered.

At zero Js the propeller has infinite rotational velocity and the identity of the indi-
vidual blades is lost. In this limit the propeller has become an actuator disc. A brief
description of actuator disc theory can be found in Principles of Naval Architecture [21].
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Figure 2.5: Propeller efficiency as a function of advance coefficient for a 5 bladed, free-
running propeller. The thrust coefficient is held to a constant value of Cr = 0.512.

Curves are given for an inviscid case and for a case with typical values of chord and drag
coefficient.
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Figure 2.6: Optimum circulation distributions for a free-running and a wake adapted
propeller. In both cases Cr = 0.307 and Js = 1.377. The propellers are 5 bladed.
Moderately loaded lifting line theory was used for these predictions.

For an actuator disc the optimum load distribution is a constant across the span, and
the efficiency is given by

2
= — 9
ey (2:38)
In figure 2.5 the inviscid efficiency appears to be headed to the actuator disc efficiency of
n: = 0.9 as the advance coefficient is decreased. Referring back to figure 2.4, the optimum
circulation distribution becomes more nearly constant and, thus, more like that of the .
actuator disc, as Jg is reduced. '

However, it is clear from figure 2.5 that viscous drag takes its largest toll at low Js.
This is because the relatively large rotational velocities, wr, lead to large total velocities,
V*, and thus to larger values for drag. Note that the viscous losses can easily account for
50% or more of the total losses. Finally, note in figure 2.5 that when viscous losses are
included in the efficiency, there is some optimum value of the advance coefficient where
the efficiency is highest, even though the efficiency curve is relatively flat. )

The effect of the axial inflow on the optimum circulation distribution can be seen
in figure 2.6. Results for a free-running propeller and a propeller operating in a radi-
ally varying wake are presented. Both propellers have the same number of blades. are
operatlng at identical Js, and are required to develop the same thrust. In the case of
the “wake adapted propeller. the axial inflow velocities are lower at the inner propeller
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Figure 2.7: Axial inflow velocities for the wake adapted propeller of the previous figure.

radii than at the propeller’s tip. The effective inflow is shown in figure 2.7. The reduced
axial velocities at the inner propeller radii result in an inward shift of the optimum load
distribution. More circulation is placed where the axial velocities are lower, and thus a
smaller torque penalty is paid.

The circulation distributions of figure 2.6 were determined under moderately loaded
lifting line theory. This was done using the previously described iterative procedure. An
optimum circulation distribution was found from equations 2.30 and 2.31 with a frozen
wake geometry. The wake geometry was then aligned with the velocities induced by this
circulation distribution. A new optimum distribution was determined, and so on, until a
converged circulation distribution is obtained.

A similar process was carried out using Lerbs’ method [73] for the wake adapted
case. The circulation distribution so obtained is also shown in figure 2.6. The Lerbs
optimum distribution is very nearly the same as that from the variational procedure.
As the propeller’s load is decreased the two distributions become more nearly the same.
The difference in the optimum distribution determined from the two procedures may
be attributed to a linearizing assumption made in the derivation of the Lerbs optimum
criteria. as well as to differences in the numerical implementation of the two procedures.
In the limit of light loading both methods recover the classic Betz condition [4] in the
case of a free-running propeller. '
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2.3.5 Torque Limited Propellers

The optimization equations 2.30 and 2.31 solve for minimum torque and a prescribed
thrust. This is the appropriate problem if the ship's operating condition has been deter-
mined, but the powering has not yet been fixed. If the torque is known, and the thrust
is to be maximized. it is a simple matter to reformulate the optimization equations.

In this case the auxiliary function to be minimized is H = T + M@ — Q,). Expanding
H with equations 2.27, 2.26, 2.22, 2.23, taking partial derivatives with respect to the
unknowns, and setting these derivatives equal to zero, results in the following system of
equations.

oH N,
_F(i—_):O = AV (O)r(2)Ar

+ A E_ [T(m)@;(i,m)r(m)Ar + T(m)a;(m, )r(1)Ar]

+ [V, )+ wr(i)] Ar

+ Z (m)a;(i.m)Ar 4+ T(m)a;(m,i)Ar],

m=1
for i=1,...,M; (2.39)
M M ’
Q: = pZ Y |[Va(m)+ Y_T(n)ai(m,n)| [(m)Ar. (2.40)
m=1 n=1

Equations 2.39 and 2.40 form a nonlinear system of M +1 equations with Al unknown
values of circulation and an unknown Lagrange multiplier, \. These equations can be
linearized in the same manner that equations 2.30 and 2.31 were linearized. The nonlinear
system of equations 2.39 and 2.40 can be solved by iteratively solving the linearized
equations and updating the frozen variables, the Lagrange multiplier where it forms a
product with unknown circulations in equation 2.39 and the axial induced velocities in
~ equation 2.40.

A sample result from this procedure is shown in figure 2.8. Also shown is an optimum
distribution determined from equations 2.30 and 2.31, in which the thrust was required to
be the same as that produced by the torque limited procedure. For propellers at identical
operating conditions, providing the same thrust and torque, the optimum circulation
distributions from the two optimization procedures are, as expected, identical.



CHAPTER 2. OPTIMUN CIRCULATION DISTRIB['TIOA\'S 35

80'04 '} — thrust constrained

- ]¢°*+* torque constrained
3..

C: .

o ;

5 0.02

« .

"5 ,

o 001 7

Pt B

5 0.00 3 —

0 rvyrTT T AELS 1L AR ‘rlll\l1‘l|¥ll‘11’l|]‘flr TP

0.00  0.20  0.40 0.60 0.80 1.00

Radius (r/R)

Figure 2.8: Optimum circulation distributions from torque and thrust limited optimiza-
tion procedures,

2.4 Multiple Stage Propulsors

2.4.1 Velocities}ar_ld Forces

For a multiple stage propulsor, not only must the self-induced velocity be calculated, but
also the interaction velocities between components. Here the self-induced velocity is de-
fined as the velocity induced by a set of lifting lines, lying in a plane at one axial location,
on these same lifting lines. Calculation methods appropriate for a single propeller can be
used to determine this velocity. For straight, radial, lifting lines, that have equal angular
spacing and identical loading, the self-induced velocity will come only from the trailing
vortex sheet. For a purely helical wake geometry, the asymptotic formulas developed by
Wrench [122] can be used for the computation of this velocity.

The interaction velocity is the velocity induced at the plane of one of the propul-
sor components by the lifting lines at the plane of another propulsor component. For
the determination of steady propulsor forces the time-averaged interaction velocities are
those of interest. If the components are rotating at different speeds, these time-averaged
velocities are equivalent to the circumferential mean interaction velocities calculated in
the rotating reference frame of the inducing component.

The interaction velocities come from both the bound and tlalhng vorticity. Using
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Figure 2.9: Combined velocity and force diagram for one component of a two stage
propulsor.

either a simple geometrical relationship. or by a formal application of Biot-Savart’s law,
one can show that the circumferential mean interaction velocity induced by the bound
vorticity has only a tangential component. Thus, the circumferential mean interaction
velocity consists of axial. radial and tangential components induced by the trailing vor-
ticity, and a tangential component induced by the bound vorticity. ’

Hsin [51] compared a number of methods for the computation of the circumferential
mean interaction velocity. He found the formulas developed by Hough and Ordway [49]
to be the most computationally efficient for the part due to the trailing vorticity. The
circumferential mean velocity due to the bound vorticity can be found directly through
an application of Kelvin's theorem. Formulas uscd for the calculation of these velocity
components are presented in appendix A. '

If the propulsor components are rotating in lockstep together. as is the case for tandem
propellers. the time-averaged interaction velocity is no longer the circumferential mean.
In this case the relative positions of the trailing vorticity and the field points do not change
with time. Here, the velocity induced by the bound and trailing vortex lines can be found
by numerical integration of the Biot-Savart velocity integral. This process is much less
computationally efficient than that used for the self-induced and circumferential mean
velocities. For approximate tandem propeller force calculations, it may be appropriate
to replace the actual interaction velocity with the circumferential mean velocity induced
at the same axial plane. _ ' '

Forces acting on the lifting lines are again developed from a local application of the
Kutta-Joukowski law. Now. however. the total velocity includes contributions from both
“the self-induced and interaction velocities. A combined velocity and force diagram for
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one component of a two stage propulsor is given in figure 2.9. The axial and tangential
components of induced velocity on propulsor component j are given by

K
=3 ug,,(r), (2.41)
%
'ut'j(r) = Z ut]_k(r). (2.42)
k=1

Here there are K propulsor components. u, , and u,, , are the axial and tangential com-
ponents of the self-induced velocity whenever j = k, otherwise they are the interaction
'velocities. The thrust and torque acting on each component can again be found from the
integrals of equations 2.20 and 2.21.

2.4.2 The Discretized Model

The lifting lines of each propulsor component are discretized by a lattice of constant
strength vortex elements. One of the propulsor components, denoted by the subscript
“17, is selected as the key component. The span of each of the Z; lifting lines, which
represent the blades of the key component, is divided up into M, panels of length Ar;.
The lifting lines of each of the other components are then segmented into an integer
number of panels, M, of length Ar;. M, is selected so that Ar; is as nearly equal to
Ary as possible. In order to simplify this panel arrangement, the radius of the hub, r,,
is assumed to be the same for all components. As for the single propeller, converged
results are obtained with a relatively small number of panels. Unless otherwise noted all
numerical examples in this thesis are for M; = 10. _

The continuous distribution of circulation on each component, I';(r), is replaced by
a stepped distribution, I';(n). Thus. the continuous vortex distributions are replaced
by sets of vortex horseshoes, each made up of a bound vortex segment and two helical
trailing vortices. The radii of the helical trailing vortices are slightly adjusted whenever
interaction velocities are needed. The helixes are moved so that they correspond with
~ the radii of the vortex lattice of the component on which the velocity is being induced.
This results in a consistent vortex lattice system for the computation of the interaction
velocity.

Moderately loaded hftmg line theory gives reasonable results for velocities induced
at, or upstream of, the plane of the lifting lines. However, the accuracy of velocity
predlctlons downstream of the propeller is not as good. This is, to a great extent, due to
the contraction of the slip stream, which is not modelled by a purely helical wake. This
wake contraction is due both to considerations of mass flow conservation and to the rolling
up of the tip vortices. Since the actual wake contraction occurs over a short distance,
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compared to the propeller diameter. a better approximation to the wake geometry is to
again model it as purely helical. but contracted to some new radius.

An empirical slipstream contraction ratio, the radius of the contracted wake divided
by the radius of the propeller. can be employed. Water tunnel measurements of slipstream
radii indicate that the contraction ratio is close to 0.83 for a wide variety of propeller
types, over a reasonable range of advance coefficients [63]. If a wake contraction is
employed. the radii of the trailing vortex helixes. used for the computation of downstream
interaction velocities, are moved to be as close as possible to the desired contracted
radii. The self-induced velocity and the velocities induced on upstream components are
computed from the uncontracted helixes. |

The velocity induced on a given control point is a summation of the velocities induced
by the individual horseshoe vortices.

ug (n) = (n,m), (2.43)

:t
(1 k

|i [\’]:x: W M«

m)ut L [(nym). (2.41)

M
I
v
u; (n) Z

g ,(n. m]) is the axial velocity induced at control point n of component ; by the horse-

shoe vortex of unit strength surrounding control point m of component k. uy (n,m)
is similarly the tantrentlal velocity. Tx(im) is the strength-of the horseshoe surrc;undmg
control point m of component k.

The force acting on each propuisor component is the sum of the forces acting on
the individual vortex elements. The inviscid thrust and torque acting on a propulsor
component can be expressed as:

T, = pZ, Z[ L (1) +wirs(n) + uf (n)] Tj(n)Ar,, (2.45)
Q= 023 [V (m) 4+, (n)] my(m)T (m)Ar, (2.46)

The viscous thrust and torque is similarly found to be:
M,

Iv, = —-PﬂZV n) [Va,( )+u;,] c;(n)Cp,, (n)Ar;, (2.47)

1 MJ
Qv, = 5rZ; 3 Vi (n) [V}J(n) +wrj(n) + u;'J] ri(n)e;(n)Cp.,(n)Ar;.  (2.48)
= n=1

Here cj(n) and Cp,, (n) give the chord and two-dimensional sectional drag coefficient
at control point n of component ;. The total thrust on a component is given by T; =

T;, + Tv,. and the torque by Q; = Qr, + Qu,.
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2.4.3 Two Component Optimization

In the case of two propulsor components, the goal is to find the discrete circulation
values. T'y(1)..... Ii(My).Ty(1)..... I',(M;). such that the total power. P = w,Q+w2Q>,
absorbed by the propulsor is minimized. The propulsor is additionally required to develop
a prescribed thrust. 7,. In addition two component propulsors are often constrained to
have a specific division of torque between the two components. Therefore. a torque ratio,
q = Q2/Q., is also specified.

These three conditions are used to form the auxiliary function, H.

H = (01Q1+«2Q2) + A\r(Th + T = T2) + Ao(¢@Q1 — Q2). (2.49)

Partial derivatives of H with respect to the unknowns are taken and set equal to zero.
If variations of the viscous terms with respect to the-unknown circulation strengths are
neglected, the following system of equations is ohtained.

oH _ _ an 0Q, 0T, 0T,
(i) 0= ”“ ar,G) 2 ar () AT [arj(i_) * arj(z')]
Qs Q-
T e [qafj(i) - al“j(i)]
_ Q1 o 0Q.
= (w; + q/\Q)()Fj(i) + (w2 )‘Q)arj(l')
T, T,
oA [arj(z?)*arj(z‘)]’
for j=1,2 and 1=1,...,M,, (2.50)
H .
. gT =0 = (Th + Tvl) + (TI'_) + TVQ) - Tf, (251)
. |
OH
g 0 T 9(Qn +Quv) +(Qn + Qv,). (2.52)

This is a nonlinear system of M, + M, + 2 equations for the M; unknown values of
circulation on component 1, the M, circulation strengths of component 2, and the 2
Lagrange multipliers. '
Upon expansion with equations 2.43 and 2.46, the partial derivatives of the torque
with respect to the circulation are given by:
0Q; R oM .
EF_(JZ) = pZ; |V, () + D Ti(m)a;, (i,m)+ ¥ Tu(m)a; (i,m)| r;(:)Ar;
. J\" m=1 m=1
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MJ
+ P2, 3, (m T, (m)rs(m)Ar,. (2.53)
m=1 »
0Q, NN N
8rk(]i) = P~jm=1la)'k(m.z)rj(m)rj-(m)Arj_ (2.54)

Similarly. expanding the partial derivatives of the thrust with equations 2.44 and 2.45
results in:

8TJ‘ M

= = pZ; |V, (i) +wr(i) + Z TL;(m)a; (i,m)+ Z Ti(m ut (i,m)| Ar;
arj(l) me1 J- mel
AL
+ pZ; Z l—l;;'](rn.ll)r‘j(nl).ﬁrj, ' (2.55)
-0—?‘%3 = pZ; Z g (m. Ol (m)Ar;. (2.56)

Substituting these expressions for the partial derivatives into equation 2.50 and ex-
panding equations 2.51 and 2.52 with the expansions for thrust 2.45, torque 2.46, and
with the velocity expansions of equations 2.43 and 2.44. results in the following system
of equations. ’

0H oM
3T, 0) = 0 =(w+ q/\Q)P31{[Val(z.) + mz=1 (m)ag,  (i.m)
M2
-+anmgm%wmn
m=1

M

+ Z 17:1_](751., i)rl(m)rl(m)Arl}

M

+(w2 — Ag)p Z a“(m,i)l"z(m)rg(m)Arg(m)

. M
+ArpZ, {[Vt]( )+ wri(7) + Z I'y(m)ug,, (7, m)

m=1

Ma ]
+anmgmﬂml

m=1

My
+ Z ﬂ:l‘l(m,ijl"](m)Arl}
m=1
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Al
+ArpZ2, Z iy, (m. )T (m)Ar,.
m=1
fori=1,...,AM,.
My
= (w1 +qAQ)pZ, Z iy, ,(m, T (m)ry(m)Ar
m=1 '
Mo
Hor = alo2af [Vl + T Tatm)i (i)
A et o
+ Z Ty(m)ay, (z.m)|ra(i)Ar,
m=1

Ao

+ Z us, . (m.)y( m)rr_,(m)Arz}

1‘!1

+Arp2r S @, (mo)Ti(m)Ar
m=1
Mq
+\T/’-’2{[‘ ( )+u.27'2(l)+ Z.I‘Z(nl)&i‘gvg(iﬂlrn)
m=1
] AN
+ Z Ty (m)ag,, (/. III)]AT‘2
m=1

Al

+ Z ut,,q m,1) m)Ar;}

fori=1,...,M,.

‘ AL AL ,
=pZ ). [Vn(n) +wiri(n) + Y Ti(m)ug,  (n,m)
n=1 m=1
Al
+3 Fg(m)ﬂ;’m(n,m)}ﬂ(n)_’krl + Ty,
m=1
Mo '
+02, Z[ (n) + wyra(n) + z Ty (n m)
m=1
M)
+ Z Ti(m)ag, (n, m)] Co(n)Ary + Ty,
m=1

-T..

(2

41

(2.58)

59)
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My My
— = 0 = q{le Z[‘-";l(n) + Z Ly(mja;,  (n.m)
a’\Q n=1 m=1 : .
M2

+ Z Ty(m Uy, , (n m)] Fy(n)ri(n)Ary — QVI}

11!2 Al
"{Pzz > [v@(n) + 3 Ta(m)ig,(n,m)

A

+ Z ['1(771.)&;,_,’1(n,m)] Fa(n)ry(n)Ar, + QV._,}._ (2.60)
m=1

Equations 2.57-2.60 form a system of M; + M3 + 2 nonlinear equations for the un-
known values of circulation on each component, and the Lagrange multipliers. This
system can be replaced by a linear system of equations, if the Lagrange multipliers are
assumed to be known constants where they form quadratic terms with the unknown cir-
culations, and if the induced velocities in the constraint equations are also assumed to

be known. Equations 2.61-2.64 are the result of these assumptions and a rearrangement
of equations 2.57-2.60.

(RHS), = —le{wll";l(i)-F:\Qq‘r’“(i)—}-).\T[V}l(i)+w1r1(i)]}

M .
= > rl(m){(wl + Q/\Q)le [f‘;l_l(i~"1)7‘l(i)-ﬁr1
m=1 ’
+ﬂall(“’ I)rl(m AT'l]

+Arp2, Uy, (6, m)Ary + 15, (m, 1)_\7'1}}

Mo
+ Z Fz(m){ “"'l + QAQ Gl,‘l(i’ nl)rl(i)Arl
m=1
+ [»4-'2 - :\Q] pzzu'a.g,l (m,z)rg(m)AT‘z

+ArpZiuy, (i, m)Ary + AppZay, (m, i)ArQ},

+ for i =1,..., M, (2.61)

(RHS), = —p2Z, {wz‘aw( ) + AogVas(i) + )\szggl[l 22 (1) + wrira(e )”
' M

Z P1(771 {[""1 + qAQ]P'ZluaI ')(m'. i)rl(m)Arl

m=1
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+ [wz + q}Q] p2aiy, (1, m)ra(i)Ar,

+;\1-p31a,'1|:,(m, DAr + Arp2, tigy, (24 m)Arg}

Mo

+ rnzzl r2(771){ <w2 - iq) pZ, [&;m(i. m)ra(i)Ar,
+ﬁ;,_,’,_,(m,'i)r2(m)3r2]

+:\'T/)221_l;2‘2(l', m)Ar, + j\szgﬁ,'m(m, i)ArQ},
fori=1,..., M,, (2.62)

Ay
T.+ T+ Tv, = pZ Z [Hl(m) + wyri(m) + u;'l(m)] I'(m)Ar,
m=1

A

922 3 [Vialm) + wrra(m) + ug,(m)| Ta(m) Ars (2.63)

M
Qv, —qQv, = qpZ, Z [I{u(m)'-}- uzl(m)] Ly(m)ry(m)Ar,

m=1

A% )
—pZ: Y [\ aa(m) + u;:,(m)] TCa(m)ra(m)Ar, (2.64)

m=1

The solution of the nonlinear system of equations 2.57-2.60 can be found by iteratively
solving the linear system of equations 2.61-2.64. On each iteration the frozen Lagrange
multipliers, Ar and Ag, and the induced velocities, u; and uj, are updated with values
from the previous iteration. The viscous thrust and torque, Ty and Ty, can also be
updated with equations 2.47 and 2.48 on each iteration. In most instances this procedure
was found to converge rapidly (less than 10 iterations) to a solution of the nonlinear
system. An initial estimate of zero for the induced velocities and ;\@ and of —1 for Ar
was found suitable.

The wake geometry is assumed to be frozen in equations 2.57-2.60. Velocities and
forces consistent with moderately loaded theory can be obtained by iteratively solving
these equations, aligning the wake, solving the equations again,..., and so on. This
approach neglects variations with respect to changes in the wake geometry, but does
provide wake aligned velocities and forces. ‘

As was the case for the single propeller equations 2.57-2.60 are not dependant on
the ‘details of the vortex lattice model or the algorithms for computing velocities. For
components of equal diameter both constant and cosine spacing have been successfully
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Figure 2.10: Optimum circulation distributions for a pair of contrarotating propellers.

implemented. For nonconstant spacing the length of the vortex panels, Ar;, is also
a function of radius, Ar; = Ar;(n). Difficulties arose with the cosine spaced panel
arrangement when the components were of different diameter. This led to the adoption
of constant spacing. ‘

It should be possible to extend the methods described here to address the case of
three or more propulsor components. The present work is limited, however, to the case
of one or two propulsor components.

2.4.4 Contrarotating Propellers

Equations 2.57-2.60 can be solved in order to provide optimum circulation distributions
for contrarotating propellers. Figure 2.10 gives optimum distributions for a pair of free-
running. contrarotating propellers. In this case the propellers have the same diameter
and the contraction of the wake is ignored. The propellers are rotating at the same speed
in opposite directions. Their advance coefficient is 0.89 and the contrarotating pair is
required to develop a thrust corresponding to C7 = 0.69. Both propellers are four bladed
and are required to develop equal torque, ¢ = 1.0. The moderately loaded model is
emploved and viscous forces are neglected.

Also shown in figure 2.10 is an optimum circulation distribution for a single propeller
operating at the same advance ratio and required to generate the same thrust. The
single propeller is eight bladed. so that each blade generates approximately the same
thrust as the blades of the contrarotating pair. Note that the circulation distribution of
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L | Kr | Ko | n |
forward propeller | 0.1084 | 0.0181
after propeller 0.1062 | 0.0181

contrarotating pair | 0.2146 ' 0.0362 | 0.841
8-bladed propeller | 0.2146 | 0.0376 | 0.809

Table 2.1: Forces acting on a pair of contrarotating propellers.

‘the contrarotating propellers is more uniform and less tip loaded than that of the single
propeller. »

Forces and efficiencies for each of the propellers is presented in table 2.1.! Note that.
as anticipated, the contrarotating propellers are predicted to be more efficient than the
single propeller. The efficiency of a two stage propulsor is defined here to be

— TIVAl + T2vAz
W@ + w2 @2

V4, is the volumetric mean effective inflow as defined by equation 2.37 at the plane
of component j. Note that while the contrarotating propellers develop equal torque,
the thrust they produce differs by about 2%. This is due to differences in the induced
velocities, and the resulting hydrodynamic pitch angles at each propeller.

Figure 2.11 presents circumferential mean tangential velocities induced far down-
stream by the contrarotating pair of propellers and by the single propeller. Note that the
total tangential velocity induced by the contrarotating pair is very nearly zero, much less
than that induced by the single propeller. This provides some insight into the increased
efficiency of the contrarotating propellers, since these swirl velocities do not represent
any thrust, only losses. Finite blade effects and the required torque balance prevent the
tangential velocities from being identically zero for the contrarotating pair.

Figure 2.12 similarly presents the circumferential mean axial velocities induced far
downstream. Note that the total axial velocity induced by the contrarotating pair is
more uniform and less concentrated toward the tip than that of the single propeller.
This effect is also connected with the increased efficiency. The axial velocities induced by
the contrarotating pair are closer to those of the actuator disc. Sparenberg [100] showed
that, in the limit of light loading and the absence of viscosity, the efficiency is bounded by
that of the actuator disc. As the circumferential mean induced velocities approach those
of the actuator disc. zero tangential velocity and uniform axial velocity. the efficiency
should increase. .

(2.65)

1The forces presented here, and throughout this chapter, do not include any viscous forces und should
not be used to determine the relative merits of various propulsor types.
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Figure 2.13: Optimum circulation distributions for a vane-wheel propulsor.

2.4.5 The Vane-Wheel Propulsor

The vane-wheel. as proposed by Grim [45] [44]. is a freely rotating device placed behind a
conventional propeller. The vane-wheel propulsor increases efficiency by reclaiming part
of the energy lost in the propeller’s slipstream and converting that energy into additional
thrust. The rotor of the vane-wheel propulsor performs as a conventional propeller,
whereas. the vane-wheel has an inner part which acts as a turbine, and an outer part
which acts as a propeller. producing thrust.

Equations 2.57-2.60 can be used to find optimum circulation distributions for the vane-
wheel propulsor. Since the vane-wheel is freely rotating, it can sustain no total torque.
Thus, if the rotor is considered to be component #1 and the vane-wheel component #2,
the torque ratio for the vane-wheel propulsor is ¢ = Q2/@; = 0. The vane-wheel rotates
in the same direction as the rotor, typically at about 40% of the propeller’s rotation rate,
and is somewhat larger in diameter than the rotor. '

Figure 2.13 shows optimum circulation distributions for a vane-wheel propulsor. Note
that, as expected, the inner part of the vane-wheel acts as a turbine with negative loading,
while the outer part has positive circulation and acts as a propeller. In this example both
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r Fr | Ko | 1]

rotor 0.2030 | 0.0364
vane-wheel 0.0116 | 0.0000
vane-wheel propulsor | 0.2146 | 0.0364 | 0.833
4-bladed propeller 0.2146 | 0.0389 | 0.781

Table 2.2: Forces acting on the vane-wheel propulsor.

the rotor and vane-wheel have four blades. The diameter of this vane wheel is 25% greater
than the rotor’s diameter. The lifting lines representing the components are separated
by a distance of 20% of the rotor diameter. The vane-wheel is required to rotate at 40%
of the rotor’s rotation. Here the propeller’s advance coefficient is 0.89 and the propulsor
is required to produce a thrust corresponding to Cr = 0.69. Moderately loaded theory
was employed and viscous forces neglected. A wake contraction of 0.83 was assumed. An
‘optimum circulation distribution for a four bladed propeller with the same characteristics
as the rotor is also presented.

Table 2.2 gives the forces acting on the vane-wheel propulsor? and the single propeller.
Note that the torque on the vane-wheel is zero, as desired. Also note the increased
efficiency of the vane-wheel propulsor over the propeller operating alone.

2.4.6 Pre and Post Swirl Stators

Propeller/stator combinations are a special case of the two component propulsor. There
is no rotation of the stator blades and. therefore, no power applied to the stator. Also
the ratio of torque between the propeller and stator is not typically constrained. The two
component optimization equations 2.57-2.60 can be greatly simplified if all terms involv-
ing the stator’s rotation and the torque ratio constraint are removed. If the propeller is
assumed to be component #1 and the stator component #2 the equations become:

OH Mi

= =wipZ o
aT, (1) 0 . ""llp 1{[‘ () +mZ_:IF 011 (2, m)
Z Ta(m)ay, (7. rn\.'m(?)Arl

m=1

M
+ > @t (m, T (m)rl(m)Arl}

m=1

2Vane-wheel forces are nondimensionalized with the diameter and rotation of the rotor.
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M
+ArpZ,; { [Vu(i) +wry(2) + Z Pl(m)ﬁ’t'lll(i, m)
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+ Z a(m um(z m)] Ary

My
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m=1

Mo .
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fort=1,...,M;. (2.66)
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—= 0 =wpZ; Z ﬂ;lz(m‘,i)Fl(m)rl(m)Arl
ar2(L m=1 '
M
+ArpZy Y a5, (m, ))Ti(m)Ar

m=1

~—

-|-,\Tp22{[ + Z [a2(m ut22 (z,m)

1W1
+ Z Fl(m)ﬁ;u(i, m)] Ar,

m=1

M»
s a:z,,(m,z')n(m)mz}
m=1

fori=1,...,M;. (2.67)
8H M . M |
Fyvle 0 —pZIZ[‘ (n) +wiri(n +EF1 m)ig, , (n,m)
n=1

+ Z Ly(m)ag, ,(n,m ]Fl(n YAr; + Ty,
m=1
Mo

M2
0222 [m(n) + 3 Talm)i, (nym)

+ Zr m)um(n m)] (n)Ar + T,

m=1

-T. (2.68)

Equations 2.66-2.68 form a nonlinear system of M, +A,+1 equations for the unknown
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Figure 2.14: Optimum circulation distributions for a propeller and pre-swirl stator.

circulations and the Lagrange multiplier, Ar. These equations can be linearized as before
and the linear system iteratively solved for the solution to the nonlinear system.

Figure 2.14 gives optimum circulation distributions for a propeller operating down-
stream of a stator. The propeller and stator have the same diameter and are separated
axially by 20% of this diameter. They both have four blades. The moderately loaded
model was employed and viscous forces were neglected. The propulsor sees uniform in-
flow and the propeller is operating at an advance coefficient of Js = 0.69. The propulsor
is required to develop a thrust corresponding to Cr = 0.69. The optimum circulation
distribution for a propeller operating alone under the same conditions is also presented.

Note in figure 2.14 that the stator’s circulation has sign opposite that of the pro-
peller. Further note that the propeller’s loading is shifted inboard as compared to that
of the propeller operating alone. Table 2.3 gives the forces for this propeller/stator.
propeller/stator.® Note that the total efficiency is increased even though the stator gen-
erates drag rather than thrust. '

Some insight into this increased efficiency may be provided by figure 2.15. This figure
gives the mean tangential velocity induced by the propeller/stator far downstream of the

3The stator forces are here nondimensionalized with the propeller’s rotation.
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| [ Kr | kg [ n ]
rotor 0.2216 | 0.0375
stator -0.0070

propeller/stator 0.2146 | 0.0375 | 0.811
4-bladed propeller | 0.2146 | 0.0389 | 0.781

Table 2.3: Forces acting on the propeller/pre-swirl stator.
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propulsor. The propeller cancels the swirl induced by the stator, resulting in reduced
- downstream tangential velocities. and. therefore, decreased rotational losses.

Figure 2.15 gives the mean downstream tangential velocities for propeller/stators with
varying number of blades. In each case the circulation distributions are required to be
optimum. The propulsors are each required to generate the same thrust as the four bladed
case. and the propellers all operate at the same advance coefficient. As the number of
blades is increased in figure 2.15, the tangential velocity becomes more nearly equal to
zero. Not surprisingly. the actuator disc result is approached with increasing number of
blades. Note that for finite number of blades, the optimum circulation distribution does
not generate zero mean tangential velocity far downstream.



Chapter 3
Hubs and Ducts

A

3.1 Hub Effects

3.1.1 Hub Loaded Optimum Circulation Distributions

Up to this point the lifting line theory employed here has not considered the presence of
the hub as a solid boundary. The hub has been modeled in a number of ways within lifting
line procedures. Lerbs [73] and Tachmindji [102] treated the hub as an infinitely long
cylinder with two boundary conditions imposed on its surface. They required that both
the circulation and the radial velocity component be zero at the hub. Tachmindji solved
the potential problem for the Betz condition with the addition of these hub boundary
conditions. Circulation distributions presented by Tachmindji are similar to optimum
distributions from the Betz criteria in which the presence of the hub is neglected.

Lerbs and Tachmindji justify their boundary condition on circulation by arguing
that, when approached from inside the hub, the circulation at the hub must vanish.
They further argue that the circulation must vanish at the hub when approached from
outside the hub in order to preserve a continuous circulation distribution. From a modern
perspective it is clear that there is no such requirement on the interior flow. Therefore,
this argument does not justify a requirement of zero circulation at the hub. Lerbs and
Tachmindji also argued physically that pressures from the pressure side of one blade would
equalize with those from the suction side of the next, resulting in vanishing circulation
at the hub. However, this argument has not been borne out experimentally. Wang
[118] measured propeller circulation distributions with substantial amounts of circulation
maintained well within the hub’s boundary layer.

McCormick [77] also modelled the hub as an infinite cylinder. He solved for the poten-
tial flow which satisfied the Betz condition and a condition of zero velocity normal to the
hub cylinder. Circulation distributions presented by McCormick show finite circulation
at the hub. These distributions also appear to tend toward zero slope at the hub.

54
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Figure 3.1: Schematic showing a vortex and its image.

Betz [5] considered a reflection inside of the hub of the flow outside of the hub when
determining optimum load distributions for guide vanes placed downstream of a propeller.
Similarly, Kerwin and Leopold [64] proposed the use of an image system of vorticity,
located within the hub cylinder, to represent the hub. The image system they adopted
was based on the known result that a pair of two dimensional vortices, of equal and
opposite strength, located on the same line, induce no net radial velocity on a circle of
radius r;, providing , ‘

Th

r = - (31)

”
Here r is the radius of the outer vortex, r; the radius of its image and rj the radius of
the hub cylinder. This is shown schematically in figure 3.1.

It is assumed that the same result will hold approximately in the case of two helical
vortices of equal and opposite strength, provided their pitch angle is sufficiently high.
Kerwin and Leopold demonstrated numerically that the required cancellation of radial
velocities at the hub radius, for such a pair of helical vortices, is excellent for vortices
near the hub. The cancellation is not as good for distant elements. However, the velocity
induced on the hub by these elements is small.

The vortex lattice model of the previous chapter is readily adapted to accommodate
such an image system. this is done by adding to the velocity induced by each vortex
lattice the velocity induced by a corresponding image horseshoe.

[ﬂ;_(nvm)]total = ﬁ;(n‘lm) + [a;(n’m)]image ’ (32)

[} (n, m‘)]mtal = @(n,m) + [@] (7, m)]inage - (3.3
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Figure 3.2: Optimum hub loaded circulation distributions.

If the influence functions in equations 2.30 and 2.31 are replaced by the total influence
functions of equations 3.2 and 3.3 which include the velocities induced by the image
system, optimum circulation distributions which include the effect of the image hub can
be solved for.

Figure 3.2 shows such circulation distributions for hubs of various diameter. Note
the finite values of circulation at the hub. Also note that the circulation distributions
have zero slope at the hub. This must be the case in order for there to be a continuous
circulation distribution at the junction of the lifting line and its image. Finally note
that the hub circulation increases with the hub diameter. These results agree, at least
qualitatively, with those presented by McCormick. The results presented here are for a
5 bladed propeller, operating at Js = 0.89 in uniform inflow and required to develop a
thrust corresponding to Ct = 0.69. |

Caja [12] combined the previous chapter’s vortex lattice, lifting line representation
of the propeller with a panel method. representation of the hub. Velocities induced by
the hub panels, in the presence of unit strength helical vortex horseshoes, on the lifting
line control points were determined. Figure 3.3 shows a single vortex horseshoe set on
a panel representation of a cylindrical hub.! A similar problem is solved for each of the

The trailing vortex horseshoes are represented by quadfilateral panels, consisting of constant dipole
sheets. The panels which make up each horseshoe are assigned identical strength. Mathematically. these
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Figure 3.3: Panel method representation of a single vortex horseshoe set on a cylindrical
hub. Here the pitch angle of the horseshoe is 80 degrees. For this figure 25 circumferential
and 40 longitudinal panels were used on the cylinder.

M vortex horseshoes representing the propeller. The velocities induced at the control
points by the unit strength horseshoe vortices, in the absence of the hub, are added to
velocities induced by the hub in the presence of such vortices

[ﬁ;(n‘ m)]tota.l = ﬂ;(n, m) + [ﬁ;(nv m)]panel me‘thod ’ (34)
[ﬁ':(n"’n)]total ﬁ:(n’m) + [a:(n3m)] (35)

panel method *

Details of the panel method are supplied by Caja and in [62]. Caja solved equations 2.30
and 2.31 with the total influence functions of equations 3.4 and 3.5 to determine optimum
circulation distributions in the presence of the hub.

While a procedure such as that employed by Caja is much too computationally in-
tensive for most design purposes, it does allow for accurate computation of the velocities
induced by the propeller/hub interaction. Caja found good agreement between velocities
predicted by an image representation of the hub and those of the panel representation for
panels near the hub, confirming the findings of Kerwin and Leopold [64]. Figure 3.4 gives
optimum circulation distributions from velocity influence functions determined from the
image representation of the hub and from Caja’s panel method representation. The pro-
peller is 5 bladed and is operating in uniform inflow. Js = 1.1. Cr = 0.48. Viscous
effects are neglected and the lightly loaded wake model is employed. Note the excellent
agreement between the two hub models.

dipole sheets are equivalent to constant vortex segments along the panel boundaries. Thus, the vortices
on the interior of each strip cancel, leaving horseshoes made up of straight line segments.
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Fi’gure’ 3.5: The Rankine vortex model used to determine the hub drag.

3.1.2 Hub Drag

In actuality the hub does not extend infinitely far downstream. A force can, therefore, act
on the end of the hub. On actual propellers a vortex associated with the circulation on
the propeller blades is shed from the downstream end of the hub. The hub experiences a
force in the drag direction due to the decreased pressure associated with this concentrated
hub vortex. Wang [118] experimentally determined that a Rankine vortex structure was
an appropriate model for this hub vortex.

In Wang’s simplified model for the hub drag, the hub is considered to be an abruptly
truncated cylinder of radius r,. The hub vortex is considered to be a vortex core of
strength T’y and radius rq, extending infinitely far downstream from the end of the hub
cylinder. A sketch of this model is given in figure 3.5.

The circulation distribution of an infinitely long Rankine vortex is given by

: L9r? for r < ro;
Tay = ¢ '3 - 3.6
RV { Ty otherwise. (3.6)
The corresponding velocity distribution is
-—Qgr for r < rg;
umv = { _ZE’D. ! (3.7)
Tk otherwise.

The velocity induced at the end of a semi-infinite Rankine vortex is simply one-half that
of the infinite vortex. The pressure corresponding to this velocity distribution is

(3.8)

2,2 2
pao+f—@% Zly for 1 < ro;
e + -EE}H otherwise.
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L [ro/rn | Kr | Ko | 7 |
hub drag not included

hubless propeller 0.215 | 0.0384 | 0.791

hub loaded propeller 0.218 | 0.0389 | 0.792

hub drag included

1.000 | 0.215 | 0.0387 | 0.785

0.500 | 0.215 | 0.03838 | 0.7382

hub loaded propeller | 0.250 | 0.215 | 0.0389 | 0.780
»10.167 | 0.215 | 0.0403 | 0.752

0.125 | 0.215 | 0.0426 | 0.709

Table 3.1: Forces with and without hub drag.

If this pressure is integrated over the hub disk, the following force in the drag direction
is obtained. .

L (m 4 3) r2, ‘ (3.9)
Note that this force is proportional to the strength of the Rankine vortex squared. Tg
is assumed to be equal to the total blade circulation at the hub. In this case there is a
drag penalty associated with the presence of finite circulation at the hub. The radius of
the hub vortex core must be empirically estimated or determined experimentally.

Table 3.1 gives forces on 3 bladed propellers in uniform inflow operating at Js = 0.89.
Forces are given for an optimum circulation distribution with the presence of the hub
neglected, for a distribution determined by use of the image hub model and for this same
circulation distribution with the hub drag included. Forces are given for several hub
vortex core diameters. The diameter of the hub is 20% of the propeller diameter. The
circulation distributions for this case are shown in figure 3.2.

If the hub drag is neglected, the hub loaded circulation distribution shows slightly
- increased efficiency over the hubless propeller. This efficiency gain is not realized when
the hub drag is included, in fact the efficiency is reduced by an amount which depends on
the hub vortex core diameter. For small hub vortex diameters the reduction in efficiency
can be substantial. An investigation into what parameters determine the size of the hub.
vortex would be of considerable interest.

3.1.3 Hub Vortex Cancellation

The hub drag of équatiqn 3.9 can be reduced, or eliminated entirely, in the case of multiple
stage propulsors. If the circulation shed onto the hub from each propulsor component is
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of opposite sign, a cancellation of hub vorticity results. Since, under the model employed
here. the hub drag is a function of the strength of the concentrated hub vortex, a reduction
in the strength of this vortex results in a decrease in the predicted hub drag.

An indication of the effectiveness of a stator in reducing the strength, and hence the
associated losses, of the hub vortex can be seen from a comparison of the photographs
shown in figure 3.6. These photographs are of the propeller tested by Bowling [6] op-
erating with and without a preswirl stator. Both photographs were taken at the design
operating condition, with the tunnel set at the same cavitation number.

The hub drag can be included in the optimization equations for multiple stage propul-
sors. In the case of two propulsor components, the hub drag is given by

Fh ].GT (11] — + 3) [Fol + T02]2 , (310)

where 'y, and g, are the circulation shed onto the hub by component #1 and component
#2, respectively. If the circulation shed onto the hub is assumed under the discrete vortex
lattice model to be that of the innermost control point of each component, the hub drag
can be rewritten as

Fu= £ (1n:—’;+3) [F30) + T (UEa(1) + T3] - (3.11)

If this hub drag term is included, the auxiliary function for the two component opti-
mization becomes

H=(uQi+w@Q)+ (T +T,-F,-T,) + /\Q(Qz - qQh). (3.12)

When derivatives with respect to the unknown circulation strengths are taken two addi-
tional terms arise from the hub drag.

01(21{1) =0= "'_m_n(1“—+3> 2l + LD +..., = (3.13)
0H .
ara(1) =0= ""1_6;(ln—+3)[F1(1)+21“2(A1)]+.... (3.14)

The hub drag must also be added to the thrust constraint. The resulting system of
equations is identical to that of equations 2.57-2.60 with the addition of terms involving
the hub drag.

This system of nonlinear equations can be solved for optxmum c1rcula,t10n d1st11but10ns
as in chapter 2. Figure 3.7 gives optimum circulation distributions so determined for
a pair of contrarotating propellers. The propellers are rotating at the same speed in
opposite directions. their advance coefficient is 0.89 and the total thrust corresponds to
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| Without Stator

Figure 3.6: Propeller operating with and without a preswirl stator. The tunnel pressure
is lowered in these pictures in order to visualize the hub vortex.
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Figure 3.7: Optimum circulation distributions for a pair of hub loaded contrarotating
propellers.

Cr = 0.69. Both propellers are 4 bladed and are required to develop equal torque. The
moderately loaded model is employed and viscous forces neglected.

Note that the circulation distributions reach their maximum values at the hub. Fur-
ther note that the circulation developed at the hub by the two propellers is equal. This
results in a nearly complete cancellation of the hub drag term. The hub loaded circula-
tion distributions presented here are predicted to yield an efficiency of 0.847 vs. 0.841
for a hubless propeller from the model used in chapter 2.

In a similar manner hub drag terms can be added to the optimization equations 2.66-
2.68 for the propeller/stator. Figure 3.8 gives circulation distributions from this proce-
dure. Again note the large hub loading. As for the contrarotating pair, there is a nearly
complete cancellation of the hub drag term. The particulars for this propeller stator
are the same as those for the propeller/stator of chapter 2. The hub loaded circulation
distributions give an efficiency of 0.829 vs. 0.811 for the hubless model.

3.1.4 The Equivalent Propeller

For the single propeller there is no possibility of such circulation cancellation. Therefore,
in order to reduce the hub drag, the circulation at the inner radii is usually arbitrarily
reduced from the optimum distribution predicted under the hub loaded model. This
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Figure 3.8: Optimum hub loaded circulation distributions for a propeller stator.

1s often accomplished by simply neglecting the presence of the hub altogether when
determining the desired circulation distribution. The requirement of zero circulation at
the hub imposed by Lerbs [73] and Tachmindji [102] seems more attractive in the light
of a consideration of hub drag.

The addition of hub drag terms to the 6ptimization equations proved unsuccessful
for the single propeller. In the formulation employed here, the hub drag is linked to
the circulation at the innermost control point. The optimization process consistently
found the circulation at this control point to be zero, while not significantly altering the
circulation of the other control points from that of the hub loaded optimum. This resulted
in a procedure which was not convergent with increased numbers of vortex horseshoes.

Wald [117] pointed out that the treatment of the optimum propeller with a hub as an
infinitely long cylinder, was not correct, since this did not correspond to the geometry
of the ultimate wake where the Betz condition must be imposed. Wald assumed that
the Betz condition for optimum propeller loading must apply in the ultimate slipstream
where the inner boundary has shrunk to zero radius. Wald presented a solution for the
infinite bladed propeller, as well as approximate solutions for finite numbers of blades.
In Wald’s solutions the circulation at the hub of the optimum propeller was zero.

Andrews and- Cummings [3] proposed the use of an equivalent propeller, of zero hub
diameter, located far downstream. Optimum circulation distributions were determined
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Figure 3.9: Hub loaded circulation distribution and a circulation distribution unloaded
through use of an equivalent propeller.

i

for this equivalent propeller and the streamlines were traced back to the desired hub
diameter to find circulation distributions of the actual propeller. This procedure had
the advantage of allowing the use of existing lifting line tools for the determination of
optimum circulation distributions.

A similar idea is proposed here. Rather than zero hub diameter, the hub diameter of
the equivalent propeller is taken to be that of the concentrated hub vortex. This will result
in small, but finite, circulation at the hub. Since vorticity is convected downstream with
the flow, an application of continuity can be used to relate the circulation distribution
of the equivalent propeller to that of the actual propeller. If velocities induced by the
propeller are neglected, and the inflow is assumed to be circumferentially uniform,

| / " rrV, (r)dr = / " xrV, (r)dr. (3.15)
The Th

The subscript e here is used to refer to the equivalent propeller, p to the actual propeller.
In the case of uniform axial inflow, this is simply reduced to a conservation of area
TL = Te, =Th—Th (3.16)

Figure 3.9 shows an optimum, hub loaded circulation distribution and a circulation
distribution unloaded by finding an optimum distribution for an equivalent propeller
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Figure 3.10: A sketch of a two stage propulsor whose components have different hub
diameters.

and then relating that distribution back to the diameter of the actual propeller. The
propellers are 4 bladed, operate in uniform inflow at Js = 0.69, have a hub diameter of
30% of the propeller diameter and are required to develop a thrust of corresponding to
CTt = 0.69. The diameter of the concentrated hub vortex was assumed here to be 5% of
the propeller diameter. Viscous forces were neglected and the moderately loaded wake
model was employed. The diameter of the hub vortex was also used as the hub diameter
of the equivalent propeller. Note that the equivalent propeller procedure did result in
the desired unloading of the hub, as well as preserving the condition of zero slope of the
circulation distribution as the hub is approached. In this case the efficiency of the hub
loaded propeller is predicted to be 0.752 when the hub drag is included, while that of
the hub unloaded propeller is 0.777. This is an increase in efficiency of over 3 percent
associated with unloading the hub.
~ It should be pointed out here that similar results can be obtained simply be ignoring
the presence of the hub when determining the optimum circulation distribution, and
then forcing a zero slope condition at the hub of the resulting circulation distribution.
Of course, deciding how much of the circulation distribution to modify and what the
loading at the hub should be, can prove problematic with such an ad hoc procedure. In
chapter 4 a procedure is presented whereby the propeller designer can unload a circulation
distribution to suit whatever requirements are imposed.
The idea of an equivalent propeller can also be used to address the problem of multiple
stage propulsor components which do not have a common hub diameter. Such a propulsor
is sketched in figure 3.10. This situation is not uncommon. However, in the present lifting
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line model, components are assumed to share a common hub. It is appropriate to change
the diameter of one of the propulsor components so that an equivalent propulsor with a
single hub diameter is obtained. The optimum circulation distribution of the modified
component can then be related back to the diameter of the actual component by a
application of equations 3.15 or 3.16.

3.2 Ducted Propellers

The idea of surrounding a propeller by a duct or nozzle is quite old. Ducted propellers
came into practical use after Stipa [101] and Kort [67] showed experimentally that propul-
sive efficiency could be increased by use of a duct in the case of heavy propeller loading.
- The use of ducted propellers on ships which require such propeller loadings, tugs, push-
boats, trawlers, etc., has become common practice. These ducted propellers are often
referred to as “Kort” nozzles.

Some insight into the increased efficiency of heavily loaded ducted propellers over
propellers operating alone, may be obtained from the actuator disc arguments put forth
by Kiichemann and Weber [69]. In this theory the propeller is modelled by a constant
pressure jump at the actuator disc, and the propulsive system of duct and propeller
imparts a uniform acceleration to all the fluid passing through it. The fluid is assumed
to be inviscid and incompressible and there is an unlimited, uniform, steady inflow of
fluid to the propulsor. The thrust developed by the propeller is allowed to be different
from the net thrust of the system. Therefore, a thrust ratio, 7, is defined as

T, _ Propeller Thrust (3.17)
T =~ Total Thrust i

Kichemann and Weber show that the efficiency of such an actuator disc system is
given by

T =

2
= = . 3.18
i 1 + \/1 + TCT ( )
The thrust coeflicient is determined from the total thrust.
| oT »
= . 3.19
Cr pAcVE (3.19)
The velocity at the actuator disc is given by
V. ' |
St U _ Cr (3.20)

VS —2\/1+TCT—2‘

When 7 = 1, equation 3.18 and 3.20 recover the actuator disc results for a traditional
propeller. Note that an increased efficiency is predicted when 7 is reduced. As the thrust
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ratio is lowered. the portion of the total thrust carried by the duct is increased. This
corresponds to an acceleration of the flow at the actuator disc over that from actuator
disc theory for a traditional propeller. Such a duct is known as an accelerating duct.

Decelerating ducts, 7 > 1, have also been proposed. While the efficiency from equa-
tion 3.18 is reduced for such a ducted propeller. the lower velocities at the propeller plane
may prove advantageous for reasons of cavitation reduction. A ducted propeller system
of this type is sometimes referred to as a pumpjet. In this case the duct experiences a
negative thrust, or drag, force.

Equation 3.18 also shows why ducted propellers have most often been applied in
the case of heavy loading. Since the term which describes the effect of the duct. 7, is
multiplied by the thrust coefficient, the duct effect is largest for large values of C'r. If the
actual duct must develop enough thrust to provided an efficiency gain once duct viscous
losses are accounted for. such gains can be readily realized only in the case of heavy
loading.

Numerous practical and experimental investigations of ducted propellers have been
performed. Those of van Manen [113] [115], Oosterveld [88] and Dyne [29] serve as
examples. As methods for the design and analysis of traditional propellers have become -
more sophisticated so have those for ducted propellers. This trend can be seen in the
reviews by Sacks and Burnell [95] and by Weissinger and Maas [120], and by way of
example in the increasingly sophisticated procedures of Dyne [28], Morgan [81] [82],
Glover and Ryan [39]. Tsakonas and Jacobs [107], Falcio de Campos [31], van Houten
[109] and Kerwin et al {62]. B

3.2.1 Lightly Loaded Ducted Propellers

Several researchers have proposed procedures for determining optimum circulation dis-
tributions for ducted propellers in the limit of light propeller loading. Tachmindji [103]
solved the potential problem for the circulation distribution which satisfied the Betz
condition on the vortex sheets, and the condition of zero normal velocity on an infinite
cylinder representing the duct. He presented load distributions which showed increased
tip loading as the gap between duct and propeller tip was decreased. In the case of zero
gap between duct and propeller, Tachmindji presented a circulation distribution which
fell off rapidly from its maximum value to zero in the vicinity of the propeller tip.
‘Sparenberg [97] [98] solved the potential problem for the circulation distribution which
satisfied the Betz condition on the vortex sheets shed from both the propeller and duct.
In this case the duct vorticity was assumed to rotate with the propeller. Sparenberg
presented optimum bound circulation distributions for the duct and propeller for the
zero gap case. This result had finite loading at the propeller tip, with the maximum
circulation achieved there. Sparenberg demonstrated that in the limit of light loading
any acceleration or deceleration of the flow due to the duct is of second order and, thus,
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does not change the efficiency of the optimum propeller under linear theory. Sparenberg
[100] also showed that, in this limit, the propulsor efficiency is bounded by that of the
traditional actuator disc.

George [35] made use of the Lerbs criteria to determine optimum circulation distribu-
tions for a zero gap ducted propeller. In George’s model the duct was represented by ring
vortices which varied in strength both axially and circumferentially. The circumferential -
variation is strength of these ring vortices neccesitated the use of vortices shed from the
duct cylinder to model the trailing duct vorticity. For this purpose George employed
axially oriented, semi-infinite, line vortices. He presented circulation distributions which
had finite loading at the tip, but did not reach their maximum value there. George made
no mention of forces experienced by the bound ring vortices used to represent the duct.

In the present theory the duct will also, for the time being, be modeled as an infinite

cvlinder. As for the hub, an image system of vorticity is used to represent the duct. In

this case the radius of the image vortices is chosen such that

— (3.21)

Here r is the radius of the helical trailing vortex shed from the lifting line, r; is the radius
of its image, and 7, is the radius of the duct cylinder. It is assumed that such a system
will approximately satisfy the condition of zero radial velocity on the duct cylinder.

As was the case for the hub, the velocity influence functions must be modified to
account for the presence of the duct: This is accomplished by adding to the velocity
induced by a unit strength horseshoe vortex, that induced by its image.

2)

[@(nym)lga = #aln,m) + [@5(n,m)]inage » (
| 3)

3.
(@ (7))o = (7 m) + [ (2, ) image - (3.

These influence functions which include the effect of the image vortex system can then -
be used in the optimization equations of chapter 2.

The vortex lattice itself must also be modified. When there is no duct, the outermost
panel is inset one-quarter panel length in order to correctly capture the singular behavior
of the circulation distribution. This is clearly not the correct tip inset when there is zero
gap between duct and propeller. In this case there should be no inset. In the case of
a propeller operating inside of a duct with small, but finite, gap, there should be some

“optimum” tip inset between zero and one-quarter panel length, as the gap varies from
zero to infinity. :

Van Houten [109] performed numerical experiments with a lifting line approaching a
wall in order to determine this “optimum” inset. His experiments were performed on a
lifting line foil with optimum loading, in the sense that the induced drag was a minimum
for given lift. The “exact” circulation distribution was found for this case by using a

lO IO
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Figure 3.11: Optimum circulation distributions for propellers operating inside of cylin-
drical, “image” ducts.

large number of vortex segments (400) and requiring the downwash to be a constant at
all control points. The solution was then repeated with a small number of vortices, and
the inset was varied until a solution was obtained with the smallest mean squared error
between the calculated vortex strengths and the “exact” solution at the corresponding

control points. Fitting a curve to his results van Houten obtained the following formula
for the tip inset.

Ar
Ar; is the tip inset, Ar is the length of the panel and g is the gap length. This is the
spacing algorithm employed with the present theory in the case of ducted propellers.
Figure 3.11 shows optimum circulation distributions for propellers represented by such
“a lifting line/image system. In this case the inflow is taken to be uniform. Js = 0.89.
Cr = 0.69. The propellers are 5 bladed. Viscous forces are ignored and the wake is
aligned under the moderately loaded model. The individual curves are for different gaps
between the propeller tip and the duct cylinder. Note that for large gaps the circulation
approaches that of a propeller operating without a duct. As the gap is decreased, the
circulation distribution becomes more tip loaded. In the limit of zero gap the circulation
at the tip is finite, reaching its maximum value there. These results agree qualitatively

Ar; { 0.30(g/Ar)1™ for g/Ar < 0.359,

0.25 . otherwise.

(3.24)
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L e | kr | Ko | n |
no duct | 0.2147 | 0.0384 | 0.791
50% gap | 0.2147 | 0.0384 | 0.792
10% gap | 0.2147 | 0.0381 | 0.799
1% gap | 0.2147 | 0.0377 | 0.807
0.1% gap | 0.2147 | 0.0376 | 0.809
0.01% gap | 0.2146 | 0.0373 | 0.815
0.001% gap | 0.2146 | 0.0372 | 0.818
no gap | 0.2148 | 0.0369 | 0.825

Table 3.2: Forces acting on optimum propellers operating inside of cylindrical “image”
ducts. The gap between propeller tip and the duct surface is given as a percentage of
the propeller diameter.

with those presented by Tachmindji [103] in the case of finite gap, and Sparenberg [97]
in the zero gap case.

' Table 3.2 gives the forces generated by the circulation distributions of figure 3.11.
Note that as the gap is decreased the propeller efficiency is increased. This efficiency
gain is due the increased tip loading brought about by the presence of the duct images.
This tip loading is made possible by a cancellation by the image system of the axial
induced velocities near the propeller tip. In the case of zero gap, the tip vortex is
cancelled altogether by its image. Thus, the finite value of circulation at the tip. Similar
results are found for a wing approaching a wall [62].

The lifting line representation of the propeller can also be combined with a more
sophisticated representation of the duct. Kinnas and Coney [66] do so by using a potential
based panel method to represent the duct. Figure 3.12 shows such a panel method
representation of the duct and propeller lifting lines. Velocities induced on the lifting
line control points, by the duct panels, in the presence of unit strength, helical. vortex
horseshoes, are determined. These velocities are added to those induced by the vortex
horseshoes in the absence of the duct as determined by the present lifting line model.

[l—l;(nt Tn)]totﬂ = 1_.‘;("1 Tn) + [ﬁ;(ntm)]pmel method * (3
[ﬁ;(n, m‘)]total = ﬁ't.(n’ m) + [ﬂ:(n, m)] 3

o o

3)
panel method * ( 6)
The inflow to the propeller lifting lines is further modified to account for the veloci-
ties induced by the duct in the absence of any horseshoe vortices, as predicted by the
panel method. This modified inflow and influence functions can be used inside of the
optimization equations of the previous chapter.
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Figure 3.12: Panel method representation of the duct and lifting line.

The described procedure finds the optimum radial circulation distribution on a pro-
peller operating inside of a given axisymmetric duct. The panel method provides the
thrust or drag generated on the duct, however, variations of the duct force with the
propeller circulation distribution are neglected in the optimization procedure.

Figure 3.13 gives a comparison of optimum circulation distributions for a zero gap
ducted propeller with induced velocities from the panel method and from an image vortex
system. Js = 1.143. Cr = 0.45. The inflow to the duct is uniform. The wake is aligned
under linear theory. Viscous effects are neglected. The duct geometry used in the panel
method is described in [66]. The inflow velocities to the propeller in the image model are
those induced by the duct operating in the absence of the propeller. Note the excellent
agreement between the two models. This agreement is reassuring, since the panel method
procedure is much too computationally intensive to be of great utility when performing
parametric studies of various propulsor configurations. '

Further confidence in the image model can be gained by comparing the velocities
induced by the image system with those from a more complete representation of the pro-
peller and duct. It is hoped that the image system correctly captures the local interaction
velocities between the duct and propeller at the lifting lines. Figure 3.14 shows velocities
at the plane of the propeller operating with zero gap between the propeller tip and the
duct surface. The geometry and operating conditions for this case are described in chap-
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ter 6. The velocities shown in this figure do not include the propeller’s self induction, but
do include the inflow and all duct effects. Velocities calculated by the analysis method
described in [62] are shown, as are velocities calculated with the system of image vortices.
The inflow to the image system is taken to be the flow at the plane of the propeller in
a duct subject only to the uniform incoming flow, without the presence of the propeller.
Note that while the fully analyzed flow differs quantitatively from that predicted by the
image system of lifting lines, the images capture the local tip effect reasonably well. The
differences in the overall flow can be attributed to details of duct geometry.

3.2.2 Duct Forces

Under the linear, lightly loaded model of the ducted propeller the aceleration or decel-
- eration of the flow due to the duct does not change the efficiency of the propeller/duct
system. This result was obtained by Sparenberg [97] and can be readily deduced from a
Trefftz plane analysis. Lightly loaded theory relies on forces acting on elements of circu-
lation placed in the flow infinitely far downstream of the propeller, the Trefftz plane. The
addition of a rotationally symmetric flow at the plane of the propeller does not create
~any disturbance velocities far downstream. Thus the optimum circulation distribution
and the propulsor efficiency determined by an analysis carried out there is not effected
by the accelerating or decelerating nature of the duct. ‘

This result stands in sharp contrast to the duct model of actuator disc theory, in
which any efficiency gains associated with the duct are linked to the thrust developed
on the duct. In the combined lifting line/panel method representation of the duct, duct
forces are predicted [66]. This method is of limited practical usefulness, however, due
to its computational expense. Some other, more computationally efficient, approach
which combines lifting line theory with a simple representation of the duct is, therefore,
necessary.

In order to provide an estimate of the total duct forces, and to predict any acceleration .
or deceleration of the flow at the propeller, a system of ring vortices at the radius of
the duct cylinder is added to the lifting line/image duct model. The continuous axial
distribution of duct vorticity is modelled by a system of discrete ring vortices. The
location of these ring vortices is selected so that the distance between them is nearly
the same as the lengths of the bound vortex segments used to represent the propeller.
the location of these duct rings is further chosen so that the lifting lines representing
each propulsor component fall at the center of the interval between a pair of vortex rings
representing the duct bound vorticity. A schematic of this vortex system is given in
figure 3.15. The strengths of these ring vortices are selected such that they are a discrete
representation of either a NACA a¢ = 0.8 meanline [1] or a sinusoidal distribution of
vorticity over the length of the duct. ' '

The duct ring vortices model the axisymmetric mean modification of the inflow to the
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propeller due to the duct’s vorticity. as well as providing duct forces. The image system
models the nonaxisymmetric effect of the duct on the velocity influence functions. A
similar representation of the duct bound vorticity was employed by Oosterveld [88] with
a much simpler representation of the propeller. George [35] also modelled the bound
vorticity in a similar manner. but made no mention of duct forces.

The velocity induced at the propeller by each of the ring vortices is calculated in terms
of elliptic integrals as described by Kiichemann and Weber [69]. Under the discrete model
employed here, the axial component of velocity at the propeller lifting line control point
¢ is given by a summation of the velocities induced by the individual ring vortices.

Uayy(1) = E a; ,(i,n)Ta(n). (3.27)
n=1

Ny is the number of ring vortices used to represent the duct. I'q(n) is the strength of
the nth ring vortex. ﬂ;pd(i,n) is the velocity induced by the nth vortex ring, of unit
strength, on the ith propeller lifting line control point. The ring vortices induce no
tangential velocity component and the radial velocities do not create any force on the
propeller lifting lines.

' The force acting on the rings is found from an application of the Kutta-Joukowski
law with the viscous drag estimated through use of a two-dimensional airfoil sectional
drag coefficient. The total thrust force acting on the duct is simply a summation of the
axial forces acting on the individual rings.

T y— Z{[ )+ ur(nyra) | Ta(n) + [Va(ra) + ua(n,rd)]ch'Dd}As. (3.28)

The axial and radial component of velocity, u,(n,rq) and u.(n,ry), induced by the pro-
peller on the nth ring vortex is considered to be the circumferential mean induced velocity.
This velocity is efficiently computed from the formulas of Hough and Ordway [49]. As is
the spacing between the rings, ¢, is the duct chord length and C’Dd is the duct sectional
drag coefficient.

Optimum circulation distributions for such a duct/propeller system are determined
by use of the previous chapters optimization equations. The inflow velocities are modified
to include the velocity induced by the duct rings, and the influence functions include the
effects of the image horseshoes. The thrust developed on the duct is subtracted from
the required thrust in the same manner that the propeller’s viscous drag is added to
the required thrust. An iterative procedure is employed such that a specified ratio of
propeller thrust to total thrust, 7, is achieved. On each iteration of the solution of the
circulation optimization equations, a new estimate of the total duct circulation needed to
provide the desired duct thrust is employed. While the optimum circulation distribution
determined in this manner arrives at the desired thrust distribution it does not take
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Figure 3.16: Efficiency vs. thrust ratio for optimum ducted propellers as determined by
the current procedure.

account of the variation of duct thrust with respect to the unknown propeller circulation
distribution. ‘ ‘

This model for the ducted propeller is in some respects analogous to the moderately
loaded and wake adapted theories for a propeller operating in the absence of a duct. The
pitch of the trailing vortices shed from the propeller is here aligned with the inflow and
the velocities induced by the system of ring vortices. The wake can be further aligned
with the lifting line’s self induced velocity field. Since the pitch of the helices changes
with the velocity induced by the ring system, we expect the propeller forces and the
overall propulsor efficiency to change as the duct circulation is varied.

Figure 3.16 gives the overall propulsor efficiency vs. thrust ratio, as determined by
the present model for ducted propellers with optimum circulation distributions. Jg =
0.60. Cr = 1.20. The inflow to the propeller is assumed to be uniform and moderately
loaded wake alignment is employed. There is zero gap between the duct cylinder and the
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propeller blade tip. The duct length is one-half the propeller diameter and the propeller
is located at the midchord axial location of the duct. The chordwise distribution of duct
vorticity is assumed to be that of a NACA a = 0.8 meanline [1]. Results with the viscous
forces neglected and with viscous forces included are presented. When viscous drag is
considered tvpical propeller chord lengths and drag coefficients are assumed. The duct
drag corresponds to a two-dimensional sectional drag coefficient of 0.0085.

Note in figure 3.16 that the efficiency for both the viscid and inviscid cases is reduced
as the thrust ratio is increased, for 7 > 1. This trend agrees qualitatively with the
actuator disc result also presented in figure 3.16. As the thrust ratio is lowered from
7 = 1 the efficiency increases until a maximum value is reached and then falls. This is
not in agreement with the actuator disc model, in which the efficiency continues to rise.
As the thrust ratio is decreased, the thrust generated by the duct must increase. and,
thus, the duct loading and the velocity induced by the duct at the propeller plane are
increased. The actuator disc model and the ring vortex model both predict increased
axial velocities at the propeller plane as the thrust ratio is lowered. In the actuator disc
model no penalty is paid for this increased axial velocity. This is not the case, however,
when finite blade effects are considered in the lifting line model. As the axial velocities at
the lifting lines increase the “effective” advance ratio increases. As seen in the previous
chapter propeller efficiency is reduced as the advance ratio, and, thus, the finite blade
effects, is increased. ‘ ' '

The tradeoff between this finite blade effect, and reduced propeller loading as it is
taken up by the duct, results in the efficiency maximum. This yields an optimum value of
duct loading of approximately 7 = 0.9 in the presented case. Previous investigators [115]
[88], who relied on actuator disc models of the propeller, have used arguments involving
separation from the duct surface to explain experimental results which show this same
trend. ‘

The efficiency of unducted propellers under both the viscid and inviscid models is
also given in figure 3.16. When viscous forces are neglected, a clear gain in efficiency
is predicted for the ducted propulsor over the open propeller for most thrust ratios. At
7 = 1 this efficiency gain is due entirely to the increased loading at the propeller tip made
possible by the tip vortex cancellation. Efficiency gains are nowhere near as dramatic
when the viscous drag is considered. This is because a relatively large drag force is
experienced by the duct. Larger gains over the open propeller are anticipated for lower
Js and larger Cr.

It should be noted that in the present procedure the effect of duct thickness has so
far been neglected. Since ducts are often quite thick relative to their chord, 15% or more,
thickness effects on the velocity field can be significant. A simple method for including
this thickness effect is to modify the inflow velocity field at the propeller plane, so that
it is the same as that produced by a duct with the desired thickness distribution and
zero angle of attack and camber. This propeller inflow velocity field can come from
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| H Kt | Kg |[Crduct|Crtotal [ 7 |

zero gap case

lifting line | 0.283 | 0.0514 | 0.1051 2.105 | 0.950
full analysis || 0.286 | 0.0509 | 0.1027 2.126 | 0.952

five percent gap case
lifting line | 0.193 | 0.0515 | 0.0690 0.690 | 0.900
full analysis || 0.191 | 0.0515 | 0.0743 0.690 | 0.892

Table 3.3: Total forces acting on two optimum ducted propellers.

experiment or be calculated by a procedure such as a panel method. Since a single panel
“method run can be used for all duct and propeller geometries which share a duct thickness
distribution, the computational expense of such a procedure should not be prohibitive.

Table 3.3 presents forces acting on two ducted propellers with optimum circulation
distributions determined through the described procedure. In one case there is no gap
- between the blade tip and the inner surface of the duct, in the other there is a gap
of five percent of the propeller diameter. Details of the operating conditions and the
propeller and duct geometries are provided in chapter 6. In both cases the axisymmetric
inflow due to the duct thickness alone was found by use of the panel method described in
[62]. Forces are presented for optimum lifting line circulation distributions, and from the
analysis method of [62] with blade and duct geometries chosen to, as near as possible, have
the lifting line circulation distributions. Again, more details can be found in chapter 6.
Note that the lifting line results compare favorably with those of the full analysis.

3.2.3 Multiple Stage Ducted Propellers

Multiple stage ducted propellers are also of interest. Ducted propeller/stator combina-
tions are perhaps the most natural, since the stator blades can also serve as the struts
- which support the duct. Such combinations have been proposed for the purpose of in-
creasing propulsive efficiency [104] and to protect the propeller from ice damage [121].

The image/ring representation of the duct can be combined with the vortex lattice
model of chapter 2 for multiple stage propulsors. In the present work this has been done
for the case of two propulsor stages. It is also a relatively simple matter to include an
image representation of the hub in addition to that of the duct. Since’hub loading resulted
in efficiency increases under the lifting line model for the case of two stage propulsors,
the image hub model is incorporated in the present work.

Figure 3.17 presents optimum circulation distributions for a propeller/preswirl stator
operating inside of a duct. There is no gap between the tip of the stator blades and the
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Figure 3.17: Optimum circulation distributions for a ducted propeller/preswirl stator.

duct while there is a gap of one percent of its diameter for the propeller. Note that,
as anticipated, the stator circulation is nonzero at the tip, while that of the propeller
vanishes. Since the image hub is included here, the circulation at the hub of both the
propeller and stator is nonzero, but the circulation distributions have zero slope there.
The circulation distributions of figure 3.17 are for a 5 bladed propeller and a 4 bladed
stator. The inflow to the system is uniform with Jg = 0.6 and Cr = 1.2. The wake was
aligned under the moderately loaded model. Viscous forces were considered with typical
values of ¢ and Cp assumed for the propeller. The chord length of the duct is one-half the
diameter of the propeller. Cp, = 0.0085. The stator is located at the one-quarter chord
location of the duct, the propeller at the three-quarter chord location. The chordwised
duct distribution of vorticity is assumed to be that of a NACA a = 0.8 meanline [1].
Ten percent of the total thrust is generated on the duct, 7 = 0.9. The efficiency of this

ducted propeller/stator is predlcted to be 0.671 vs. 0.641 for an open propeller at the
same operating condition.



Chapter 4

Other Considerations

In this chapter algorithms which have been added to the previously described lifting line
model are described. These algorithms allow the propeller designer to estimate such
quantities as chord lengths and thickness distributions. These algortihms, and the lifting
line model and optimization procedures of chapters 2 and 3, are together implemented
in a computer program [23] called MIT-PLL, referred to here as PLL. PLL can be used
to evaluate forces produced by a given circulation distribution, as well as to determine
optimum circulation distributions with the methods of chapter 2.

PLL was conceived as a tool for the preliminary design and evaluation of marine
propulsors. As such, much effort was expended in making this code both fast and simple
to use. The procedures described here were required to be both computationally efficient
and to need a minimum of additional data.

4.1 Minimum Chord Lengths

The radial distribution of chord length is a necessary input to the viscous force calcula-
tions of the circulation optimization procedure, as well as to any final propeller design.
In order to minimize viscous drag forces it is desirable to keep propeller chord lengths as

short as possible. However, strength and cavitation considerations place limits on how B

short these chord lengths may become. PLL can compute a radial distribution of chord
length which minimizes viscous drag and ensures a fair blade shape, while meeting some .
simple constraints on cavitation and strength.

Smooth chord distributions are obtained by defining the chord shape with a third
order b-spline [93]. The b-spline is described by either four or five vertices which, in the
case of an unducted propeller or nonzero gap between duct and propeller, define a chord
distribution varying from a root chord length at the hub to zero at the tip. The location
of the b-spline vertices are adjusted until the chord lengths are everywhere greater than

82
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Figure 4.1: Illustration of a cavitation “bucket” with the optimum operation point indi-
cated.

the minimum values obtained from the strength and cavitation considerations described

below. For a ringed or zero gap ducted propeller, the chord is no longer zero at the
propeller tip.

4.1.1 Cavitation Constraint

For the purpose of determining minimum chord lengths, the propeller foil section is
assumed to be a NACA 66 (TMB modified nose and tail) thickness form [7] with a
NACA a = 0.8 meanline [1]. Brockett [7] presents figures showing minimum pressure
coefficient versus angular variation in angle of attack for these sections. These figures are
known as “bucket” diagrams. Optimum values of the minimum pressure coefficient which
allow for the largest variation in angle of attack, for the smallest value of the minimum
pressure coefficient can be read from these bucket diagrams.

Brockett generated a figure giving the thickness to chord ratio and camber to chord
ratio as functions of the minimum pressure coefficient, such that the optimum location in
the bucket diagram is achieved. Kroeger [68] mapped this figure to the following equation,
setting the local cavitation number, o(r), equal to the minimum pressure coefficient.

o(r) = 26.6.7(%)2 + 8.09(%) + 100(’;((:))) (Zi—%) + 3.033(%) . (4-.1)

¢(r) gives the chord distribution as a function of the radius, 7, f(r) gives the camber,
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and t(r) the thickness. Solving for the chord distribution we have:

[8.09f(r) + 3.033t(r)]

e(r)

o) L (49)

If the camber is approximated with a linearized. ideal, two-dimensional camber then

fr) L)
Moy - CHn = LoV (r)e(r)’

(4.3)

with & = 15.035 for this section [1]. Cr(r) is the local lift coefficient, L(r) the lift
force and V*(r) the local velocity. Under the lifting line model used by PLL, L(r) =
pV*(r)L(r), thus f(r) = 2I'(r)/[«V*(r)]. With this approximation for the camber and
equation 4.2, a minimum chord length at each radius can be found given the section
thickness. circulation, local velocity and cavitation number. The local cavitation number
is itself simply a function of these quantities and the shaft centerline depth.

4.1.2  Additional Constraints

~The thickness to chord ratio is additionally constrained to be less than some value,
typically 0.2. In other words, the section thickness is required to be less than twenty
percent of the chord. This is done in order to ensure the validity of typical propeller
design and analysis methods to be used after the lifting line design is complete. This
also allows for the use of approximate methods when computing the stresses acting on
the propeller blade.

A further constraint on the chord length is supplied by placing a limit on the local
lift coefficient, Cr. This has the effect of constraining the camber to chord ratio to
be less than some value. This constraint is intended to model local strength and flow
considerations. The maximum value of the local lift coefficient is usually chosen to be
about 0.6. ' '

A minimum chord length at the propeller root must also be specified. This is intended
to reflect propeller strength considerations since stresses are usually greatest at the hub.
It is suggested that either approximate stress calculations be carried out in order to
determine this root chord length, or that previous propeller designs be used as a guide.

- 4.1.3 Chord Length Optimization Procedure

Since two of the described constraints on chord length are functions of circulation and
induced velocity, and since these quantities are to some extent themselves functions of
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Figure 4.2: Typical chord length distributions.

the chord length, it is a natural step to make the selection of chord lengths part of the
circulation optimization procedure. This is done by using the procedure described above
to determine chord lengths after each circulation optimization iteration. If chord lengths
are optimized, they are also updated after each iteration of the wake alignment procedure.
This means that the chord lengths may be optimized even if the circulation optimization
is not employed.

Figure 4.2 presents some typical radial distributions of chord length from the described

prodedure. Curves are presented for a range of required thrust. Note that as the propeller
loading is increased the chord is increased.

4.2 Blade Strength and Thickness

A radial distribution of thickness is needed for any final propeller design. It is also
necessary for the chord length optimization procedure described in the previous section.
For this reason a simple procedure for the estimation of a minimum root thickness has

been added to PLL. The ability to modify an input thickness distribution or have one
supplied by PLL has also been included.
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4.2.1 ABS Rule Calculation

The minimum root thickness is provided from an application of the American Bureau
of Shipping rule on propeller strength [20]. This rule uses quantities which describe the
propeller geometry, material and loading to determine a minimum root thickness. The
needed quantities are either estimated by PLL or supplied by the user. Two rules are
implemented, one for controllable pitch propellers the other for “normal” propellers. This
is because of the large hub diameters associated with controllable pitch propellers.

4.2.2 Selection of the Thickness Distribution

'Once a minimum root thickness has been determined the input thickness distribution may
be scaled so that the root thickness becomes the minimum required by the ABS rule, or
some other value desired by the user. PLL can also supply a thickness distribution. The
PLL thickness distribution varies linearly from the root thickness to a specified thickness
at the propeller’s tip. If optimum chord lengths are being determined with PLL. it is
suggested that they be reoptimized after modifying the thickness distribution, since the
optimum chord lengths may change with the thickness distribution.

4.2.3 Approximate Stress Calculation

An approximate calculation of stresses acting on the foil has been included in PLL. The
method used is that of Morgan [30] as implemented by Kroeger [68]. Stresses acting
on the blade section at the leading edge, trailing edge and point of maximum thickness
are computed. The section is assumed to be a modified NACA 66 thickness form (7]
with an a = 0.8 meanline [1]. This method assumes that centrifugal stresses are small
enough to be neglected and uses a simple correction to change the local lift coefficient to
a three-dimensional camber.

4.3 Hub and Tip Unloading

For a variety of reasons including cavitation, strength and efficiency it is sometimes
desirable to reduce the loading near the hub or tip of the propeller. For this reason
a means to redistribute propeller circulation has been built into PLL. This process is
carried out by subtracting a hub/tip unloading function, T, from the given circulation
distribution. Tyaleaded(r) = I'(r) — f(r) The wake is then aligned, and the circulation
scaled, until the desired forces are obtained.
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4.3.1 Series Representations of Circulation

We have found that under the vortex lattice model used by PLL the circulation distri-
bution must be fair and have the proper square root singular behavior at the ends of the
lifting lines. If this is not the case, large discontinuities in velocity may result. A small
discontinuity in circulation was found to produce a large one in velocity. We were pleased
to find that the PLL optimization procedures always produce circulation distributions
which behave properly.

In order to modify circulation distributions in a manner which maintains fairness
while also maintaining the proper singular behavior at the root and tip a set of series
expansions for circulation have been employed. By adding or subtracting proper amounts
of terms in these series the desired hub or tip unloading can be achieved. '

In the case of a propeller whose blades are modelled by lifting lines with two free
ends, the circulation distribution has a square root singularity at both the hub and tip.
In this case a sine, or Glauert, series is used to represent the load distribution. Individual
terms in this series can be written as

' = Asin(nr7) ; F= (4.4)
rs is the radius of the hub, A gives the size of the unloading term and the integer n
gives its “order”. If n = 2 then I'(r) can be used to shift load from the hub to the
tip or vice-versa depending on the sign of A. » = 3 unloads both the hub and the tip
simultaneously. These sine series unloading functions are shown in figure 4.3

If the hub is modelled as a solid boundary and the tip is free the circulation has zero
slope at the hub and is square root singular at the tip. In this case the following function
is used to unload the hub.

[=AVI -1 =732, (4.5)

A again gives the size to the unloading term. n now determines how globally the effect -
of the unloading is felt. The larger n the more the unloading is localized to the region
~ near the hub. A similar function is used to unload the tip.

I'= AVl — /22 (4.6)

In this case the unloading is increasingly localized to the tip with increasing n. The
unloading functions used when the hub is modelled as a solid boundary are shown in
figurefig:hseries.

If a solid boundary is present at the tip, but not the hub the c1rculatlon distribution
is now square root singular at the hub and has zero slope at the tip. In this case the hub

unloadmg term is given by
= A1 —p?p*~? (4.7
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Figure 4.3: Sine series terms used for hub and tip unloading.

Figure 4.4: Hub and tip unloading functions used when the hub is modelled as a solid
boundary. ' : .
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Figure 4.5: Hub and tip unloading functions used when there is a solid boundary at the
blade tip.

and the tip unloading term by

['=A4\/1-p*(1-p*)?, (4.8)

where p = 1 — 7. The unloding functions used when there is a solid boundary at the tip
are shown in figure 4.5.

No unloading has been implemented in the case where the circulation distribution at
both the hub and tip have zero slope. ' ‘

4.4 Effective Wake Calculation

The velocity field that describes the ship’s wake in the absence of the propeller is defined
as the nominal inflow. With the propeller present, the flow through the propeller plane
is contracted and accelerated through the interaction of the propeller induced velocities
and the ship’s wake. If the nominal inflow is not a potential flow, then superposition of
the nominal inflow and the induced velocities does not accurately model this flow. The
effective wake is a modified nominal inflow which can be added to the induced velocities
to give the correct total velocity field. This effective inflow is defined as the total velocity
in the presence of the propeller, minus the potential flow velocity field induced by the
propeller itself. If there is no vorticity in the inflow field, this definition reduces to the
usual result that the total velocity is the linear superposition of the inflow in the absence
of the propeller, and the velocity induced by the propeller
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Figure 4.6: A nominal inflow wake and an effective wake from the algorithm implemented
in PLL.

The effective wake calculation implemented in PLL is a modified version of that
developed by Van Houten and used in WKPROC [110], which was in turn based on a
method developed by Huang and Groves [52].

To analyze the mean flow, the assumptions of steady, inviscid, incompressible flow
about an axisymmetric body leads to an equation of motion that is further modified by
some assumptions about the flow upstream of the propeller:

e the induced velocities are irrotational,

o the axial velocity gradient is small compared to the radial velocity gradient as in a
- boundary layer, ' '

e the energy in a stream tube is constant.

Under these assumptions the governing equations for the flow can be written in a finite
difference form. In WKPROC and PLL the axial induced velocities needed for this finite
difference effective wake calculation are approximated with actuator disk theory. The
finite difference effective wake calculation as implemented by Van Houten is described in
an appendix. Van Houten also added the ability to handle tunnel wall effects and higher
wake harmonics to the method of Huang and Groves.
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Figure 4.6 gives results from the effective wake calculation implemented in PLL. The
nominal inflow and its effective wake corresponding to a Cr of 0.69 are shown. Note that
velocity from the outer radii is redistributed inward as the streamlines are contracted
by the actuator disc. For typical inflow wake profiles this procedure results in increased
velocities “seen” by the lifting lines.

4.5 Optimum Operating Conditions

The previously described procedures for determining the propeller load distribution and
chord lengths require the input of the propeller diameter and its rate of rotation. Often
'one or both of these quantities is not known at the outset of the propeller design process.
For this reason a procedure for determining the propeller diameter or rpm which provides
a given thrust for the highest propulsive efficiency at a given ship speed is included in
PLL

Figure 4.7 gives efficiency vs advance coefficient for optimum, 5 bladed propellers as
determined by the optimization procedure. In one case the advance coeflicient is varied
by changing the rpm and holding the propeller diameter fixed. In the other J is varied by
changing the diameter for a fixed rpm. In the results presented here both the circulation
and chord distributions are determined by the optimization procedures. For the fixed
diameter case Cr = 2T/(pVZAo) = 0.69. When the rpm is held constant, it is fixed
to the value which corresponds to J = Vs/(nD) = 0.89. In each case the propeller is
required to generate identical thrust.

The procedure implemented in PLL allows for either the rpm or the diameter of a
propeller to be optimized while the other quantity is held fixed. It is assumed that the
variation of rpm for a fixed diameter will produce a unimodal (single maximum) curve
of efficiency vs rpm. Such a curve is generated by a balance of high induced drag at low
propeller rotation rates and large viscous drag at high rpm’s. A similar assumption is
made concerning efficiency and propeller diameter. In this case the induced drag is large
for small diameters and the viscous drag is high for large diameter propellers.

The optimum rpm or ship speed can be determined by iteratively applying the circula-
tion and .chord optimization procedures. Kroeger [68] determined the Fibonacci method
to be the fastest procedure available for determining the optimum propeller rpm for a
fixed diameter. This method determines the optimum diameter or rpm to within some
specified range of uncertainty. Upper.and lower bounds on the quantity to be varied are
determined, and then a Fibonacci series is used to provide new estimates of the optimum
value. A detailed description of this process is given in [68]. ‘

In the case of multiple stage propulsors, the optimum rpm or diameter of one compo-
nent can be determined, while the diameter and rpm of the other is held fixed. PLL does
not currently allow for the determination of an optimum diameter for a ducted propeller,
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Figure 4.7: Efficiency vs advance coefficient for “optimum” propellers as determined by
PLL. Results are given for fixed propeller diameter and for fixed rpm. The propellers
were required to generate identical thrust and were free-running.
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and, naturally, the rpm of a stator cannot be optimized.

4.5.1 Determination of Ship Speed

Another typical problem is that of finding the maximum ship speed for a specified pow-
ering. Here the designer is given the available horsepower, the propeller's rotation rate
and a relationship between the required thrust and the ship's speed.

The fixed torque procedure of chapter 2 can be used to determine a propeller cir-
culation distribution producing the largest possible thrust for a fixed propeller torque
and rotation. Given an initial estimate of the ship speed, a maximum thrust may be
obtained. A new ship speed corresponding to this thrust can then be found from the
relationship between thrust and ship speed. This process can be carried out iteratively
until the ship speed has been determined to within some specified value.

Such a procedure has been implemented in PLL for the case of a single propeller.
The relationship between thrust and velocity is provided by assuming that the thrust
coefficient, Cr = 2T/(pVZAy), is a specified constant. This is approximately true over
small velocity ranges. This procedure could be easily extended so that the designer
provides a more exact relationship as well as to the case of multiple stage propulsors.

4.6 Non-Axisymmetric Pre-Swirl Stators |

It is well known that the placement of stators upstream or downstream of a propeller can

result in a reduction of rotational energy losses, and therefore higher propulsive efficiency.

In addition a nonaxisymmetric arrangement of stator blades can alter the inflow to a

downstream propeller in such a way that unsteady forces and cavitation are reduced.

Both of these concepts are well established. Papers by Larimer, et al [71] and Gearhart

and Marboe [33] review patent literature on pre-swirl guide vanes extending back to the

first decade of this century. They also describe their experience with a nonaxisymmetric
pre-swirl stator arrangement on a United States Coast Guard boat.

While the methods of previous sections can be used to determine optimum circulation
distributions and performance estimates for a propeller operating downstream of a stator,
they do not account for nonaxisymmetries of the inflow or the stator blades. The lifting
line model can be readily adapted, however, to handle such nonaxisymmetric stators.

4.6.1 The Nonaxisymmetric Lifting Line Model

The inflow velocities to the nonaxisymmetric stator are not required to be circumferen-
tially uniform, rather they are allowed to vary both radially and circumferntially. The
lifting lines are also allowed to differ in loading and angular spacing. If the interaction
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between the propeller and stator is ignored, the velocities induced by this system of lift-
ing lines are steady since the infow velocity seen by the stator blades does not vary with
time. :

The lifting lines representing the stator can be discretized with a vortex lattice. The
trailing vortices are considered to be straight, semi-infinite, line vortices aligned in the
axial direction. An application of the law of Biot and Savart provides formulas for the
velocities induced by both the bound and trailing vorticity. These formulas are provided
in appendix A. The velocities induced by this vortex system on control points on the
stator lifting lines is computed. These velocities are added to the inflow velocity and the
velocity induced on the stator by the propeller. The velocity induced by the propeller is
assumed to be that of the axisymmetric model. Forces and moments acting on each of
the stator blades is calculated from a local application of the Kutta-Joukowski law and
the usual viscous drag relations.

Velocities induced by the stator are also calculated at a number of circumferential
locations at the axial plane of the propeller. The calculation of these velocities is sub-
stantially more time consuming than that of the axisymmetric case, since the velocities
must be found at a large number of circumferential locations, and the velocities induced
by each blade must be calculated independently. The resulting velocity field can be added
to the nonuniform inflow to give the total nonuniform velocity seen by the propeller.

4.6.2 Nonaxisymmetric Circulation Distributions

A nonaxisymmetric pre-swirl stator can be used to modify the circumferential distribution
of tangential and radial velocities seen by the propeller. If the undisturbed inflow velocity
field varies about the propeller disk, a properly chosen set of pre-swirl stator blades can
be used to reduce this variation. Reduced velocity fluctuations at the propeller can result
in a reduction of cavitation and unsteady forces. The location of stator blades and their
radial distributions of circulation must somehow be chosen in order to provide both a
high propulsive efficiency and obtain a reduction in the velocity fluctuation.

While methods for automatically determining such a circulation distribution have
not yet been developed, tools for assisting the designer in selecting circulation distribu-
tions have been implemented. If the foremost design consideration is one of propulsive
efficiency, the stator circulation distribution averaged over the blades should be the opti-
mum distribution of the axisymmetric stator. The PLL code allows the designer to scale
the optimum axisymmetric stator circulation distribution for each blade of the nonax-
isvmmetric stator. If the goal is a reduction in the variation of tangential velocity the
load distribution might be scaled by a factor proportional to the tangential component
of inflow at each blade’s angular position. ,

Examples of how this lifting line procedure can be used for the design of a nonax-
isymmetric stator are provided in [22] and [59], as well as in chapter 6 of this thesis.
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Figure 4.8: Tangential velocities at the plane of the propeller.

4.6.3 Experimental Verlﬁcatlon

An experlment was performed by Bowling [6] in the MIT Water Tunnel in order to provide
data for correlation with the theory. The goal of Bowling’s nonaxisymmetric stator test
was to generate a flow inclination by a circumferential variation in the loading of the
stator blades. The lifting line code was used to determine the required circulation for
each of nine stator blades. The actual stator model was designed with nine adjustable
pitch blades with symmetrical sections. The pitch angle of the blades was set so as
to best approximate the desired circulation distribution as predicted by the MIT-SSF1
stator lifting surface code [50].

The model was placed in the tunnel and the circulation at several radii was determined
for the most heavily and most lightly loaded blades. This was accomplished by measuring
the velocity at a large number of points along closed contours surrounding the stator

" blades. The circulation was then calculated by numerical evaluation of the integral

1"=}{I7-ds". | (4.9)

The result, together with the lifting surface predictions of circulation was used in the
lifting line model to predict velocities at the plane of the propeller.

Laser doppler velocimeter measurements were made of the tangential velocity field
induced by the stator at the plane of the propeller. A plot of the data at r/R = 0.75 is
given in figure 4.8. Note the velocity fluctuations associated with the individual stator
blades. These are typical of the lifting line predictions. The effective flow inclination
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Figure 4.9: Nonaxisymmetric stator operating in the MIT Water Tunnel. Note the flow
inclination. '

can be deduced from the first harmonic of the tangential velocity and is approximately
4 degrees at this radius. This result is comparable with the lifting line prediction.

A direct impression of the flow inclination can be seen from the photograph in fig-
ure 4.9 which shows the cavitating hub vortex generated by the stator.



Chapter 5

Determination of Blade Geometry

The methods of the previous chapters can be used to determine much of the blade
geometry. Optimum radial distributions of circulation can be found from the procedures
of chapters 2 and 3. Chord and thickness distributions can be estimated from the methods
of chapter 4. The radial distributions of rake and skew are also assumed to be known.
Skew are usually determined through consideration of unsteady forces [25] [89] and rake
through considerations of strength [87] and physical arrangements. The selection of
these quantities will not be discussed in the present work. The problem is, therefore,
one of finding the blade pitch and camber which produces the prescribed distribution of
circulation.

In this chapter the use of existing propeller design methods to determine the geometry
of nontraditional propulsors, such as contrarotating propellers, is described.

5.1 Propeller Blade Design

A brief digression to explain the propeller blade geometry is, at this time, appropriate.
We here consider a propeller consisting of Z identical, symmetrically arranged blades,
attached to a hub that is rotating at constant angular velocity w about the z-axis. As
shown in figure 5.1, the blade is formed starting with a midchord line defined paramet-
rically by the radial distribution of skew angle 6,,(r) and rake X, (r). By advancing a
distance +3c(r) along a helix of pitch angle ¢,(r), one obtains the blade leading and
trailing edges. The surface formed by these helical lines at each radius gives a reference
surface upon which the actual blade sections are developed. These sections can be de-
fined in standard airfoil terms by a chordwise distribution of camber f(s), and thickness
t(s), where s is a curvilinear coordinate along the helix.

Kerwin [57] gives a review of analytical methods for the design of marine propellers.
Much of the following discussion is adapted from his presentation.

97
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Figure 5.1: Propeller blade geometry.

If the aspect ratio of the blades is high, the lifting line theory originated by Prandtl
[91] is appropriate. In this case the three-dimensional flow is considered to be two-
dimensional at each radial blade section, with the inflow velocity field there altered with
the velocity induced by the vorticity shed from the lifting lines. The blade geometry is
then determined by combining the lifting line results with theoretical or experimental,
two-dimensional, section data. This approach succeeds for aircraft propellers, which
generally have very high aspect ratio blades and operate in relatively uniform inflow.

Marine propeller, however, are usually constrained to have low aspect ratio blades,
since they are limited in diameter, and considerations of strength and cavitation limit
the lift per unit blade area that they can produce. As a result, marine propeller designs
based on lifting line theory have not been found to be satisfactory. For this reason marine
propellers were long designed on the basis of systematic series of model experiments.

A number of researchers developed design methods based on combining lifting line
theory with lifting surface corrections to section camber and angle of attack. The methods
of van Manen [112] and Eckhardt and Morgan [30] are examples of this approach. This
was followed by the development of numerical lifting surface methods. Pien [90], Kerwin
[58] and van Manen and Bakker [114] made early contributions toward such computer
based methods. - . _

Such efforts have continued to the present time. Here, a brief description of one
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Figure 3.2: Vortex lattice representation of a propeller.

lifting surface design code, PBD-10, is given. PBD-10, developed by Kerwin, along with
an analysis procedure developed by Greeley, was published jointly by these two authors
[43].

Under lifting surface theory the blades are idealized as sheets of singularities. usually
sources and either normal dipoles or vortices. This idealization is a linearization of the
governing equations for the velocity potential for an inviscid, incompressible flow about a
lifting body in the limit of zero thickness. The source strengths are directly proportional
to the streamwise derivative of the thickness function. In a design method such as PBD--
10, the vortex strengths are prescribed.

Expressions for the velocity can be found by differentiation of the velocity potential.
The resulting singular integrals can be evaluated by direct numerical integration. This
is done, for example, in the PROPLS code developed by Brockett [10]. Alternatively,
a vortex lattice procedure may be employed, as is done in PBD-10. In PBD-10 the
continuous distribution of vortices and sources are replaced by a set of concentrated
straight line elements, whose end points lie on the blade surface. Velocities are computed
at suitably placed control points between the elements. As for the lifting line problem,
care must be taken in setting up the geometrical arrangement of lattice elements and
control points in order to ensure proper convergence. An example of such a lattice
arrangement is given in figure 5.2. Convergence of a propeller vortex lattice system with
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Figure 5.3: Propeller blade geometry as determined by PBD-10.

increased numbers of lattice elements in both the chordwise and spanwise directions is
illustrated by Greeley and Kerwin [43]. For such a vortex lattice the computation of the
induced velocities is reduced to a geometric problem of finding points on the mean blade
surface, and then summing the velocities induced by the source and vortex lines.

In PBD-10 an initial estimate of the blade pitch is used to compute the total fluid
velocity at the blade control points. The surface of the blade is then adjusted in such a
way that the normal component of velocity is zero at the control points. This process
is repeated, using the adjusted surface as the new reference surface, until convergence is
obtained. The trailing vortex wake is similarly aligned with the resultant flow. Details
of these procedures are given in [13].

Figure 5.3 gives a typical propeller blade geometry as determined by PBD-10. In this
case the circulation, chord and thickness distributions were determined from the PLL
lifting line model. The distributions of skew and rake used here are somewhat arbitrary.
The vortex lattice representation of this propeller is that shown in figure 5.2.

5.1.1 Consideration of the Hub

The presence of the hub as a solid boundary is ignored in the PBD-10 procedure. In
chapter 3 we saw that when hub effects were considered the optimum circulation distri-
bution was, in the vicinity of the hub, substantially different from that of the hubless
case. Similarly, we expect the circulation distribution of a given blade geometry to be
influenced by the presence of the hub.
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If the presence of the hub is considered, the result is a mixed design/analysis problem.
The hub is considered to be a body of revolution of known shape on which the normal
component of total fluid velocity must vanish. However, the shape of the blades which
produces the prescribed circulation distribution is still to be determined. Wang [118]
modified the PBD-10 procedure to account for the presence of the hub. Wang’s procedure
is known as PBD-11.

In PBD-11 the hub is represented by a distribution of dipoles. The hub surface is
tiled with quadrilateral and triangular panels whose vertices lie on the surface of the
hub. Each panel is considered to be a constant dipole sheet with unknown strength.
Mathematically such a dipole sheet is equivalent to constant vortex segments along the
panel boundary [46]. Therefore the hub, as well as the blades, is represented by a vortex
lattice. The mixed nature of the design/analysis problem is. perhaps. now more apparent.
The vortex elements representing the hub are of unknown strength, but their geometry
is fixed. The vortex and source elements representing the blades have known strength,
but their geometry is not determined. ,

An iterative solution procedure to this problem is employed. The velocity field gen-
erated by the initially hubless blades is used as the onset flow for the hub solution. The
boundary value problem for the unknown hub vortex strengths which provide for zero
velocity normal to the hub in this onset flow is then solved. The velocity field thus
generated is added to the onset flow used for the next iteration of the blade solution.
This process is continued until a converged result is obtained. Typically three or four
iterations are necessary.

In PBD-11 the hub is considered to be a body of revolution, closed both upstream
and downstream of the propeller, as illustrated in figure 5.4. The vortex elements repre-
senting the hub are positioned so that at the hub/blade junction they are aligned with
corresponding elements of the blades. The hub panelling is further arranged so that
a similar alignment occurs with the elements of the trailing vortex wake. After each
iteration of the blade solution the hub must be repanelled, since the blade shape has
changed. '

The hub geometry of PBD-11 differs from that of the usual hub in that, typically,
the actual hub extends upstream into the hull. In this case the hub is usually modelled
as extending infinitely far upstream. In order to cancel the increase in the axial velocity
due to PBD-11’s artificially closed hub, the inflow to the propeller can be modified with
that of an axisymmetric body operating in uniform potential flow.

A comparison of the blade geometries generated by the PBD-10 and PBD-11 proce-
dures is of interest. For this purpose the lifting line code, PLL, was used to generate three
circulation distributions, for which blade geometry would be determined. An optimum
distribution from the hubless model, an optimum hub-loaded distribution, and an un-
loaded hub distribution created through use of an “equivalent” propeller were generated.
These circulation distributions are shown in figure 5.5. In each case the lifting lines are
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Figure 5.4: PBD-11 hub and blade geometry.
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Figure 5.5: Circulation distributions used for the PBD-10/PBD-111 comparisons.
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Figure 5.6: Blade geometries determined by PBD-10 and PBD-11 for the “hubless”

circulation distribution.

considered to be operating in open water with Jg = 0.89. The thrust from the lifting
line model corresponds, under moderately loaded theory, to Cr = 0.69 for each of these
circulation distributions. Viscous forces were included with typical values of the drag
coefficient assumed. The chord, rake and skew are the same as those of the propeller
shown in figures 5.3 and 5.2.

Figure 5.6 gives radial distributions of pitch and camber as determined by the two
codes for the “hubless” circulation distribution. The quantity describing the camber
in figure 5.6 is the maximum value of the camber at each blade section divided by
the chord length there. The pitch is given as a ratio of pitch to diameter, P/D, where
P = 27rtan(é,). Note that, as expected, the distributions from PBD-10 are quite similar
to those of PBD-11 at the outer radii, but differ near the hub. When the presence of
the hub is considered, the PBD-11 algorithm, the pitch and camber at the hub must be
significantly reduced from that determined by PBD-10 in order to obtain zero circulation
at the hub. This implies that a propeller with the roughly constant pitch and camber
distribution predicted by PBD-10 would have substantial loading at the hub.

In figure 5.7 a similar comparison is performed for the hub loaded circulation of
figure 5.5. Again the blade geometry at the outer radii as determined by the two models
is similar. Near the hub, however, the pitch and camber goes up dramatically for the
PBD-10 prediction. This is not unexpected, since in the PBD-10 formulation there is
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Figure 5.7: Blade geometries determined by PBD-10 and PBD-11 for the hub loaded

circulation distribution.

no boundary at the hub and, without such a boundary, the circulation must fall to zero
there. In fact, it is somewhat of a surprize that a converged result was achieved for
the hubless formulation at all. Note that the PBD-11 geometry which provides this
hub loaded circulation distribution is not dissimilar from the PBD-10 prediction for the
hubless distribution. This reinforces the idea that if the hub is neglected altogether the
resulting blade geometry will produce large loadings at the hub.

Figure 5.8 gives the blade pitch and camber for the hub unloaded circulation distri-
bution. In this case the blade geometry predicted by the two methods is very nearly the
same over the entire span of the blade, although PBD-11 predicts slightly higher values
of pitch at the inner radii. The geometries for the hub unloaded circulation distribution
do not show marked differences between the two models because the hub unloading re-
sults in bound vorticity being shed into the wake away from the hub, where it does not
produce strong blade/hub interactions.

Figures 5.6-5.8 indicate that if the hub is not included in the design procedure, large,
unanticipated hub loadings may result. However, if a hub unloaded circulation distribu-
tion is desired, the PBD-10 model may be sufficient. It should be noted that the forces
developed by these three circulation distributions under the three models, PLL, PBD-10
and PBD-11, differ only by a few percent.



CHAPTER 5. DETERMINATIO.\' OF BLADE GEOMETRY 105

’: £.50 ] Pitch Distribution

™~ |

hm 1 // K

¥ 1004/,

-] 1/

~— A

= 0.50 A

- - Camber Distribution

=~ /;/,‘\_ - _ _ = =

} A/

8 0.00 4 /

™~ iV _ _ PBDIO

o 1/ — PRDII
—0.50“||1r|r1||||1||||IT_r]_r_rrrrTrrr|lllr]

0.30 040 050 0.60 070 0.80 0.90 1.00

Radius (r/R)

Figure 5.8: Blade geometries determined by PBD-10 and PBD-11 for the hub unloaded

circulation distribution.

5.2 Blade Design for Multiple Stage Propulsors

The design of multiple stage propulsors is complicated by the mutual interaction between
the propulsor components. Lifting surface methods which account for these interaction
velocities have been developed. Nelson [86] used such a procedure to design contrarotating
propellers for torpedoes. Nelson’s design had the finite circulation at the hub anticipated
from the lifting line results of chapter 3.

Chen and Reed [18] adapted the PBD-11 code to the case of contrarotating propellers.
In their procedure the single propeller lifting surface model is used in an iterative manner
to determine the blade geometries and interaction velocities. Chen and Reed compared
the from their lifting surface model with results for propellers designed with PBD-11
for the onset flow predicted by a lifting line model. They concluded that interaction
velocities calculated from the lifting line model are sufficiently accurate for design use
when the propeller loadings are moderate, and the propellers are not too close to each
other. , ' ‘

In the approach adopted here lifting line results are used for the interaction veloc-
ities. Circumferential mean interaction velocities from the PLL code are added to the
inflow velocity field to form the total onset flow used in the lifting surface model. Since
hub loading was found to be of importance for multiple stage propulsors, the PBD-11
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~ Figure 5.9: A vortex lattice representation of a nonaxisymmetric stator.

procedure, in which the presence of the hub is considered, is used for the lifting surface
calculation. Chen and Reed [18] describe the use of such a procedure to design contraro-
tating propellers. These authors collaborating with Kim [19] also describe the design of
a vane-wheel propulsor. '

It should be noted that in the described design procedure only steady propulsor forces
are considered. Since the velocity field induced on the downstream component is expected
to have considerable circumferential variation, an estimate of unsteady forces is necessary
for any final propulsor design. The development of reliable methods for the prediction of
such unsteady forces for multiple stage propulsors is an area for future research.

5.2.1 Propeller/Stator Design |

Lifting surface design methods can also be used for the design of propeller/stator com-
binations. Nelson’s method for the design of contrarotating propellers [86] has been
modified to allow for an upstream set of nonrotating blades [76]. In chapter 4 the pos-
sibility of nonaxisymmetric stators is discussed. In the present work a vortex lattice,
lifting surface code for the design and analysis of nonaxisymmetric stators, SSF-1, is
used in conjunction with existing propeller design and analysis codes for the design of
propeller/stator combinations. '

The SSF-1 code, developed by Hsin [50] [59], makes use of a vortex lattice repre-
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sentation of the nonaxisymmetric stator. Figure 5.9 shows the lattice arrangement for
such a stator. An image vortex lattice is used to represent the hub in SSF-1. The core
routines of Hsin's procedure solve the analysis problem for the stator. In other words
these routines find the unknown source and dipole strengths, and thus the circulation,
for a given blade geometry operating in a specified onset flow.

The design problem of determining the blade geometry which produces a prescribed
distribution of circulation on each blade is attacked through an iterative application of
this analysis procedure. In addition to producing the desired circulation distributions, in
SSF-1 the stator blade sections are further required to operate at ideal angle of attack.
This is equivalent to requiring that the leading edge suction force be zero at all radii of
each stator blade.

Two constraints have thus been established: that the local value of the lift coefficient,
Cp = 2I'/Vsc, be equal to a prescribed value and that the leading edge suction force. C,,
be equal to zero. Lan [70] gives the following formula for the leading edge suction force.

W(hm‘ﬂr '*)\/—)) (5.1)

where A;(r) is the leading edge sweep angle at radius r and 4(r,s) is the vortex strength
per unit area vy = Ju/0s.

Under the assumption that C.(r) and C,, r) are functions of two unknown variables,
section angle of attack, a(r), and maximum camber, fo(r), the nonlinear equations cle-
fined by the constraints can be solved iteratively by repeatedly solving the nonlinear
system.

Crs =

6CL a d afo df07 (5"")
_ Bcl.s a_cls
5y = tdat S, (5.3)

Equations 5.2 and 5.3 are solved with a Newton-Raphson method. The chordwise dis-
tribution of camber is given by some specified meanline. At each iteration of the overall
procedure, §Cr(r) is set equal to the difference between the current lift coefficient and
the required value. Similarly, §Cj,(r) is set equal to —Ci,(r). In order for this scheme
to converge quickly a good first guess at the final solution is necessary. One method to
obtain such a guess is to linearly extrapolate or interpolated a(r) and Fy(r) until the
prescribed loadings are achieved. The leading edge smgulamty can then be removed in
the solution of equations 5.2 and 5.3.

The circulation distributions and onset flows used in the SSF-1 procedure are obtained
from PLL. The lifting line model is also used to generate input quantities for the propeller
design code. Propeller/stator geometries from this procedure are presented in chapter 6
and in [22].
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Figure 5.10: Ducted propeller with five percent gap between blade tip and duct.

5.3 Ducted Propeller Design

Several methods have been developed for the analysis of the flow around ducted pro-
pellers. Such methods have advanced in parallel with methods for the analysis of con-
ventional propellers. '

In the first generation of these methods the propeller was modeled through use of
actuator disc, lifting line or lifting surface theories. The duct was represented in linear
theory by distributing ring vortices and sources on an approximate mean surface. Rep-
resentative works in that area have been published by Morgan [81], Caster [13] and Dyne
[28]. . :

In the next generation of analysis and design methods the duct was treated in non-
linear theory by distributing surface vorticity on the duct and the propeller was treated
with actuator disc or lifting line theory. Ryan and Glover [94], Gibson and Lewis [94],
and Falcao de Campos [31] have made contributions in that area.

In all the previous methods the interactions between the duct and the propeller were
assumed to be axisymmetric. This assumption was relaxed in the next generation of
analysis methods where the nonaxisymmetric problem is solved for the duct and propeller.
Van Houten [109] and Feng and Dong [32] have published works in that area.

Recently, Kerwin, Kinnas et al. [62] have developed an analysis method where the
duct is treated by using a potential based panel method and the propeller by using
a lifting surface method. This method provides predictions for the nonaxisymmetric
pressure distribution on the duct and the duct thrust. Figure 5.10 gives a panel and
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lattice arrangement from their model.

The design methods for ducted propellers have followed the evolution of the analysis
methods. They mostly consist of a “trial and error ” procedure. For a specified advance
coefficient, thrust coefficient and a given thrust division between duct and propeller, a
preliminary design is determined. That design is then consequently modified and verified
by using any of the previously cited analysis methods, until the design requirements are
satisfied. ' '

In the present work a systematic method for determining the appropriate propeller
and duct geometries, which will develop the optimum propeller loading and the required
propeller and duct thrust is described. The propeller and duct sections are also required
to work at near ideal angles of attack so that the occurrence of flow separation and/or
cavitation is minimized.

The initially determined duct and propeller geometries are analyzed through use of
[62]. The resulting propeller and duct loadings are compared against the initial design
objectives. The propeller and duct geometries are then appropriately modified until the
design objectives are met within acceptable accuracy.

5.3.1 The Ducted Propeller Design Procedure

The goal of the procedure presented here is to design a ducted propeller which develops
a required total propulsor thrust with a specified distribution of thrust between propeller
and duct. The propeller is to have an optimum radial distribution of circulation, with the
blade sections operating at, or near, their ideal angles of attack. The duct should also be
operating at its ideal angle, in some average sense. The propeller’s operating condition
and many geometric quantities: the propeller’s chord, rake, skew and thickness; the
duct’s chord and thickness; and the meanlines and thickness distributions for the duct
and propeller blade sections, are given. The optimum propeller circulation distribution,
the blade pitch and camber and the duct angle and camber are to be determined.

First, the propeller lifting-line model is used to find an optimum propeller circulation
distribution. The inflow to the lifting-lines is taken to be the velocity field seen at the
plane of the propeller created by a duct with zero angle and camber and a specified -
thickness distribution as analyzed by the method of [62]. This duct is subject only to
the incoming flow, without the presence of the propeller. In the lifting-line model the
duct, as described in chapter 3, is represented by the combined effects of this inflow from
the duct operating at zero angle and without a propeller, the velocities induced by an
image system of lifting lines, and the velocities induced by ring vortices representing duct
circulation.

The remainder of the design procedure can be broken into two halves. In the first half
of the design process a duct/propeller generating the desired propeller thrust is obtained.
The duct is further required to have only a small amount of total, circumferentially
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averaged circulation. We will refer to this as the design of a neutral duct. In the second
half of the design procedure the angle of attack of the duct and its camber are modified to
achieve the required distribution of thrust between duct and propeller. In both parts of
the design procedure the propeller should have the “optimum” circulation distribution.

5.3.2 The Neutral Duct

As well as determining the radial distribution of circulation on the propeller blades, the
lifting-line model is used to calculate circumferentially averaged radial velocities induced
by the propeller on a cylinder at the duct’s nominal radius. These velocities are used to
predict approximate streamlines, which are used to provide a first guess at the neutral
duct’s angle of attack. If these streamlines are also used to provide duct meanlines, the
ducts take on “S” shapes similar to those predicted by Morgan [80].

Next, the propeller pitch and camber distributions which produce the desired circu-
lation distribution must be estimated. In the case of a relatively large gap between the
duct and propeller, this can be done with an existing, lifting-surface, propeller, design
code [43]. The velocity field of the zero angle duct operating without a propeller is taken
to be the inflow to the propeller in this case. In the case of small or zero gap between
duct and propeller, two-dimensional wing theory applied to the lifting-lines may produce
adequate estimates. In either case, the propeller pitch and camber determined at this
stage is only a first guess at the final distributions.

This first estimate of propeller/duct geometry is then analyzed using the previously
described, duct/propeller, analysis code. This analysis provides us with the forces acting
on the current duct and propeller, as well as distributions of circulation and velocity at
the propeller plane. At this point the angle of attack of the duct is modified in order to
more nearly achieve zero total circulation about the duct. A reasonable estimate of how
much to change the current duct angle can come directly from two-dimensional wing
theory. The duct circulation can be related to a flat-plate lift coefficient and the hft
coefficient can then be related to a change in angle of attack. In the same manner the
propeller pitch and camber are also modified in order to obtain the desired circulation
~distribution as determined by the lifting-line optimization procedure. '

The duct/propeller is once again analyzed, now with the updated values of duct angle
of attack and propeller blade pitch and camber. This process of analysis and correction
can be repeated until the total circulation about the duct is negligible and the propeller
achieves the required radial distribution of circulation.

5.3.3 The Thrusting Duct

The propeller/ neutral duct is the starting place for a propeller/duct which develops the
required distribution of thrust. The current propeller should already develop the desired
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propeller thrust. The neutral duct also has a total thrust or drag force operating on it,
not necessarily the desired amount. The duct experiences a viscous drag force, which in
the current method is simply assumed to be that associated with the duct’s velocity of
advance and an empirically obtained duct drag coefficient.

The*duct also experiences a force associated with the propeller/duct interaction. This
force is present, and can be substantial, even when there is zero total circulation about
the duct. The propeller/duct analysis code provides us with an estimate of this force.

At this point the total thrust acting on the duct is determined by subtracting the
viscous drag from the inviscid duct thrust. This is then compared with the amount of
thrust desired from the duct. The difference is the additional required duct thrust. An
estimate of camber and additional angle of attack which must be added to the neutral
duct can be made from 2-D wing theory as before.

Once again propeller blade pitch and camber distributions are estimated. The analysis
code is used to predict velocities and forces acting on the new duct/propeller. The duct
angle and camber and the propeller pitch and camber are modified to achieve the desired
duct thrust and propeller circulation. This process is repeated until the desired values
of thrust and circulation are obtained. Figure 5.11 provides a flowchart for the design
procedure.

Examples of propeller/duct geometries determined through use of this procedure are
given in the next chapter. '
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Figure 5.11: Flowchart presenting an overview of the ducted propeller design procedure



Chapter 6

Illustrative Examples

In this chapter several propulsor designs are presented. Each is intended to illustrate
specific aspects of the design process, or the design of a certain propulsor type. With the
exception of the first example, only selected portions of the overall design procedure are
described. ‘

In the first example a propeller is designed for a human powered submarine. In
this case the design process is followed from the initial powering estimates through the
construction of the actual propeller. ’

Next a comparative study of various propulsor types is presented In this study
the relative efficiencies of propulsors designed for the same ship operating condition is
examined.

In the third example the design of a nonaxisymmetric pre-swirl stator/propeller is
presented. Here the ship’s power plant is assumed to be fixed and the design must
‘proceed accordingly. Special emphasis is placed on the nonaxisymmetric aspects of the
stator design.

Finally several duct/propeller designs are presented. In these examples duct and
propeller geometries are determined so that specified distributions of thrust hetween
duct and propeller are achieved.

113
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Figure 6.1: Exterior view of HPS Icarus.

6.1 The Design of a Propeller for a Human Powered
Submarine |

In order to illustrate the overall propulsor design process using the tools and procedures
described in this thesis, the design of a propeller for a rather unusual application. a human
powered submarine, is presented. The human powered submersible Icarus, designed, built
and powered by MIT students with the support of the Sea Grant College Program, was
the MIT entrant in a race for such submarines sponsored by the H. A. Perry Foundation.
Here the design of the propeller for this submarine is followed from the first conceptual
design through to the construction of the actual propeller.

6.1.1 The Submarine Hull and Power Train

The submarine was required to be free-flooded and house two SCUBA equipped divers.
Two race formats were anticipated: a 100 meter dash and a one-kilometer closed loop
course. Submarines were also to be judged on cost effectiveness and innovation. The
submarine was additionally required to have a turn radius to both port and starboard
of less than 50 feet. Several other requirements dealt with safety concerns but did not
significantly impact the overall submarine or propulsor design.

One diver was required to pilot the submarine, the other would serve as its power
plant. Early in the submarine design process it was decided that the diver acting as the
“engine” would transmit power to a propeller shaft by pedalling on a bicycle gear like

apparatus. In order to minimize the diameter of the submarine, and thus its drag, the
divers would lie either prone or recumbent.
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Hull Shape Gertler 58-4165
Length Overall 200.0 inches
Diameter ~ 28.5 inches
Length/Diameter 7.0
Location max. diameter 40% of LOA
Prismatic Coefficient 0.60
Displacement 44.5 cu. ft., 1.27 tons
Wetted Surface 90.9 sq. ft.

Table 6.1: Characteristics of the human powered submarine hull.

Drive Shaft Hub (normal to the page)
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Figure 6.2: The propulsion drive train.

The hull shape of the submarine was selected on the basis of the Gertler/DTMB
Series 58 data [36]. The size of the submarine was determined by the volume needed for
the two occupants, their life support, and their propulsion and control activity. Table 6.1
gives some characteristics of the selected hull and figure 6.1 a sketch of the submarine
exterior. '

The design team considered a variety of power transmission schemes ranging from
- sprocket and chain to shafts and gears. The system which was finally settled upon was
unconventional, utilizing a cable and pulley system. Such a system provides a number
of advantages including reduced cable drag and bearing losses, low cost, long life and
maintenance free operation. Figure 6.2 illustrates the propulsion design train.

The stern of the submarine was articulated in order to provide enhanced maneuver-
ability. Figure 6.3 shows a cutaway view of the articulated tail section. Further details
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Figure 6.3: Articulated tail section (top view).

| Speed | Resistance | Power |

5 kts 17.4 lbs | 0.27 hp
7 kts 34.11bs | 0.52 hp

Table 6.2: Preliminary powéring estimates.

of the submarine design and fabrication are provided in [41]. A number of other unique
design details or special purpose devices, including buoyancy compensators and an un-
derwater ergometer are described in this paper.

6.1.2 Preliminary Propeller Design

Based on the series data, the resistance estimates of table 6.2 were provided for the
propeller design. The two speeds were thought of as cruising and sprint conditions. The
power figures presented in table 6.2 simply come from the product of resistance and ship
speed. The project organizers considered these to be reasonable estimates of the available
power for the purposes of preliminary design. Since the actual power levels depended
entirely on a diver's ability to pedal underwater while breathing through a regulator,
there was more than a little uncertainty in these powering estimates. When reduced to a
nondimensional thrust coefficient both conditions reduce to Cr = 2T/pAocVZ = 0.0553.
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Figure 6.4: Inflow velocities used for the human powered submarine design. Radius is
nondimensionalized with that of the submarine.

An almost clean slate was presented to the propeller designer. There were no def-
inite restrictions on the propeller diameter, number of blades or rotation rate. Those
constructing the submarine and its drive system were willing to confront the challenge
of designing and building a drive system for a multiple stage propulsor if a significant
performance enhancement could be obtained. '

The PLL lifting line procedures were used to provide initial estimates of propulsor
efficiency and operating conditions. Lacking an actual inflow velocity profile at the plane.
of propeller, that shown in figure 6.4 was assumed. For this preliminary design it was
further assumed that the diameter of the hub would be 20% of the body diameter.
The blade thickness at the root of the propeller was assumed to be 2% of the propeller
diameter. -

First single propellers were investigated. The PLL optimization procedures were
used to determine spanwise distributions of chord length and circulation. Two and three
bladed propellers and propellers of varying diameter were investigated. In each case PLL
was used to determine the optimum propeller RPM. A summary of the results of this
investigation for the five knot operating condition is shown in table 6.3. Horsepower was
used as the figure of merit for this investigation since efficiency, as defined for this thesis,
is a function of the wake and would vary with propeller diameter for propellers absorbing
identical horsepower.
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Diameter | RPM | Horsepower
feet
Two bladed propellers
2.4 150 0.281
3.0 94 0.279
4.0 35 0.280
Three bladed propellers
» 2.0 177 0.285
) ‘ 2.4 123 0.282
2.6 102 0.282
3.0 78 0.283

Table 6.3: Preliminary single propeller performance estimates.

The results in table 6.3 are for the five knot operating condition. Over the range
of ship speeds considered here the nondimensional thrust coefficient has been assumed
constant. Since cavitation is not an issue for this propulsor, due to its relatively small
diameter and thus rotational velocity, the propeller geometry for an optimum propeller
will be the same for the entire range of ship speeds. The nondimensional forces and the
advance coefficient are also the same as long as the thrust coefficient is fixed. The RPM
scales with Vs and the horsepower with V3.

The results of table 6.3 show that a two bladed propeller of approximately three
feet in diameter is expected to be the best choice. This propeller is predicted to have
an efficiency of over 91%. This high efficiency is not unexpected due to the very light
loading allowed by the lack of a constraint on the propeller diameter.

A contrarotating propeller was also investigated under the same set of design assump-
tions. First, an estimate of the potential efliciency gains for a contrarotating propeller
was made. Results presented by Cox and Reed [24] indicate that in the limit of light
loading a contrarotating pair of propellers can recover approximately one-half of the in-
duced losses of a single propeller. All of the induced losses are not recovered because
some percentage is associated with finite blade effects. For the three foot diameter, two
bladed single propeller roughly one-half of the predicted losses were viscous. When vis-
cous forces were neglected the propeller efficiency jumped from 91% to 95%. If viscous
forces are assumed to be approximately the same for the contrarotating pair, only a two
to three percent increase in efficiency for the contrarotating propellers is indicated.

To confirm this estimate PLL was used to design a contrarotating pair of propellers.
The diameter of both propellers was set to three feet. Both propellers were two bladed.
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The RPM of the forward propeller was fixed at 90 and the optimum RPM of the aft
propeller was determined. The propellers were required to develop equal torque. The
efficiency of this contrarotating pair was found to be n = 0.932 vs 0.912 for the single
propeller, a 2.2% gain. :

It was felt that when an actual propulsor was constructed such a small efficiency
gain could not be realized. Bearing and power transmission losses associated with the
more complicated mechanical system necessitated by contrarotating propellers would
not be negligible. Since the torque generated by the propulsor is so small any benefit
due to a potential torque balance for contrarotating propellers would also be small. It
was, therefore, decided not to further investigate the contrarotating alternative. At this
time it was also decided to dismiss the consideration of other nontraditional propulsor
alternatives such as a propeller/stator combination because of the small potential gains in
efficiency. Of course, these decisions would have to be reconsidered if a smaller diameter,
more heavily loaded propeller was required for some reason.

6.1.3 Detailed Propeller Design and Fabrication

As the construction of the submarine progressed decisions were made which impacted on
the propeller design. The location of the propeller at the stern of the boat was fixed and
this resulted in the hub diameter being set to 3 inches in order that the hub be flush
with the hull. Data on the inflow to the propeller also became available. The Gertler
58-4165 hull shape is often used as a test case for boundary layer studies (for ezample
see [15]), and extensive testing and predictions have been made of the flow about this
body. The details of the boundary laver depend strongly on the Reynold’s number and
surface roughness, however, the boundary layer thickness at the propeller plane could
be estimated on the basis of the available literature to be about 1 inch. This is small
enough when compared to the propeller diameter to be ignored in the present design. The
potential flow solution about the hull was used to estimate the inflow to the propeller and
is shown in figure 6.4. Note that this wake is much less severe than that of the original
estimate. : _

The thickness of the propeller blade sections was also examined. Rough estimates of
the strength of materials which might be used for the propeller led to a decision that
a blade thickness of one-third of an inch at the root would suffice. Since PLL imposes
a maximum value on the ratio of thickness to chord when determining the blade chord
lengths, the blade thickness distribution had an impact on the chord lengths for such a
lightly loaded propeller. These chord lengths in turn influenced the viscous losses. When
these new parameters were used to evaluate optimum propeller performance the results
shown in table 6.4 were obtained.

A diameter of three feet was no longer found to be optimum. The use of an even
larger diameter propeller was indicated. However, there was some concern over a propeller
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Diameter | RPM | Horsepower
feet
Optimum RPM
3.0 106 0.285
3.5 83 0.283
4.0 67 0.282
4.5 57 0.282
Fixed RPM

35 | 90| 0.284

Table 6.4: Estimated single propeller performance.

diameter considerably larger than the diameter of the hull. It was estimated that the
control surfaces would extend to a diameter of slightly over 3.5 feet and this was chosen as
a limiting diameter for the propeller. A slightly higher than optimum propeller rotation.
rate of 90 RPM was selected in order to better match what was expected to be the
“engines’s” most efficient pedalling rate.

' Optimum circulation distributions for this operating condition were determined with
and without consideration of the presence of the hub. These distributions are shown
in figure 6.5. Differences in performance between the two cases were predicted to be
negligible. The predicted chord lengths for the propeller were quite small, varying from
just under two inches near the root to one-half inch near the tip.

The next step in the propeller design process was to determine the propeller blade
geometry. Since the aspect ratio was found to be relatively large, the blade pitch and
camber could be estimated on the basis of classical lifting line theory. To do so the
velocities acting at the lifting lines are used as inflow to two-dimensional wing sections.
The local pitch and camber of these sections is selected so as to produce the desired radial
distribution of circulation. PLL provides such pitch and camber distributions under the
assumption that the blade sections have an NACA a = 0.8 meanline. Figure 6.6 gives
the radial distributions pitch and camber for the hubless and hubloaded models. Note
that these distributions are very similar.

Pitch and camber distributions which include the three-dimensional, lifting surface
effects were also calculated. Included in figure 6.6 is the pitch and camber predicted by
the PBD-10 lifting surface design code. Note that these distributions differ only slightly
from those predicted by PLL. This is due to the high blade aspect ratio. In many respects
this propeller is more like an aircraft propeller than a typical marine propeller. The pitch
of all these distributions falls off at the hub due to the lower inflow velocities there. In
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the case of uniform inflow the pitch would be very nearly constant.

The pitch and camber distributions predicted by PBD-10 were faired in order to
obtain smooth distributions. These faired distributions were used for the final propeller
and are also shown in figure 6.6. Figure 6.7 is a one-third scale plan view of the final
blade design. Figure 6.8 is a computer depiction of the final propeller design.

A table of offsets and full-scale drawing of the propeller blades were produced. Profiles
of the two-dimensional blade sections were also generated at a number of radii. These
profiles were used to construct gauges, which were, in turn, used to check the dimensions
of the actual blade sections.

Two propeller blades were fabricated from .25™ by 2" aluminum bar stock, by Derek
Moss, an undergraduate student at MIT. The rough planform was cut by a band saw.
Next, the suction side was milled until the desired thickness distribution was approx-
imately achieved. The suction surface was then hand filed for smoothness. The half-
completed blade was then carefully twisted until the desired pitch distribution was ob-
tained. The nearly flat pressure side was then hand filed to the design overall thickness.
This process led to blades which were within one-thousandth of an inch of the design
geometry at the measured stations.

Additional blades were made from carbon-fiber. The mold used for this purpose was
created from one of the aluminum blades. These carbon-fiber blades proved reliable, and
most of the submarine operations have utilized these lighter, more flexible blades.

6.1.4 Postscript

The team racing the submarine seemed quite satisfied with their propeller. Alas, the race
itself did not go well. Sea conditions and underwater visibility on the day of the race
were not good by the time the MIT submarine was called on to perform. The submarine
experienced maneuvering difficulties which those present attributed to the current and
poor visibility. The propeller became fouled in an anchor line while rounding a mark and .
the MIT boat did not complete the course.

However, the race team seemed convinced that they had one of the fastest boats
present. Further, the boat was selected the best student design and was awarded the
perpetual trophy of the American Society of Engineering Education. In view of the
cancellation of most of the in-the-water speed events at the Florida competition, this
design award was one of the few prizes awarded by the Perry Foundation not clouded by
the weather-induced controversy. At the time of this writing there are tentative plans to
perform a time trial. The possibility of another race held in better conditions has also
been discussed. .

The propeller designed for the human powered submarine is striking in its resemblance
to an aircraft propeller. This resemblance should not be surprising since the diameter
limitations, which force typical marine propellers to much higher loadings and smaller
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. Figure 6.8: Computer depiction of human powered submarine propeller.

blade aspect ratios, were not present in this case. This propeller illustrates the importance
of an analytical approach to propeller design. The use of series data would have led
to a more traditional marine propeller, of smaller diameter, with a significantly lower
predicted efficiency. The fact that the PLL algorithms led to what appears to be the
appropriate design for this problem provides increased confidence in the design procedures
presented here.
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Figure 6.9: Computer depiction of a vane-wheel propulsor.

6.2 A Comparitive Study of Marine Propulsors

The comparative study presented here is loosely based on the parameters used for the
design of a vane-wheel propulsor described by Chen, Reed and Kim [19]. The design
procedure which they employed was generally that described in this thesis. They made
use of an early version of the PLL code for their performance estimates and to determine
optimum circulation distributions. The lifting surface theory developed by Brockett [10]
was used to determine the propeller blade geometries. They found relatively good agree-
ment between the predicted performance of the vane-wheel propulsor and that measured
in model tests. '

In this study the current PLL code is used to examine the relative efficiencies of various
propulsor alternatives for the same ship operating condition. PLL is used to determine
optimum distributions of circulation and chord length. Typical values of blade thickness
and drag coeflicient are assumed. The propulsor is required to generate a thrust of
553,600 Ibs. and is to operate in a uniform inflow velocity of 34.81 ft/sec. The centerline
of the shaft is assumed to be submerged to a depth of 30 ft.

First a baseline propeller was considered. This propeller was taken to be five bladed
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Figure 6.10: Circulation distributions for the baseline propeller.

L | Js | Kr | Ko | n |
hubless 0.762 | 0.3022 | 0.0572 | 0.640
hub loaded | 0.747 | 0.2905 | 0.0549 | 0.629
hub unloaded | 0.747 | 0.2904 | 0.0547 | 0.632

Table 6.5: Baseline propeller forces. '
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and have a diameter of 21 ft. The rotor of the vane-wheel propulsor described in [19] is
also five bladed and of like diameter. The required thrust corresponds to Cr = 1.325.
Optimum circulation distributions determined with and without the presence of the hub
considered are shown in figure 6.10. In both cases the PLL code was also used to deter-
mine the optimum propeller rotation rate. When the presence of the hub was considered
a hub unloaded circulation distribution was also examined and is shown in figure 6.10.

Table 6.5 gives a summary of the performance results.

The efficiency of the baseline

propeller will be assumed to be 7 = 0.632, that of the hub unloaded distribution. This
value for efficiency agrees almost exactly with that given in [19] for the rotor operating

alone, n = 0.633.

The efficiency of vane-wheel propulsor for this operating condition was then examined.
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Figure 6.11: Vane-wheel circulation distributions.

The rotor was assumed to be five bladed and have a diameter of 21 ft. The rotor RPM
was chosen to correspond to Js = 0.75, very near that of the optimum single propeller.
Nine bladed vane wheels with diameters 10, 20, 30 and 40 percent larger than that of
the propeller were considered. Optimum circulation distributions for the rotor and vane-
wheels were determined. Figure 6.11 gives the vane-wheel circulation distributions. A
contraction ratio of 0.83 was assumed for the propeller’s slipstream and the vane-wheels
were located one-quarter of the rotor’s diameter downstream of the rotor.

Table 6.6 gives the forces acting on the vane-wheel propulsors. All forces are nondi-
mensionalized with the diameter and rotation rate of the rotor. While the propeller’s
RPM was fixed for each propulsor, the optimum vane-wheel rotation was determined and
is also given if table 6.6. The overall propulsive efficiency of each propulsor is given in
this table along with the percentage increase in efficiency as compared with the base-
line propeller. Note that as the diameter of the vane-wheel is increased the efficiency
increases. :

The vane-wheel designed by Chen et al [19] was 30% larger than the rotor and rotated
at 40% of the rotor’s rotation rate. Forces for this vane-wheel propulsor are also given
in table 6.6. The rotation selected for this propulsor is quite close to the optimum value
as determined by PLL. In the design presented in [19] the circulation distribution of the
vane-wheel and propeller were unloaded at the hub. Forces from PLL with a similar
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| Js | Kr | Ko [ n |%An]

Vane-wheel 10% larger 0.686 8.5

rotor 0.750 | 0.2683 | 0.0509

vane-wheel | 1.672 | 0.0239 | 0.0000
Vane-wheel 20% larger 0.700 | 10.8

rotor 0.750 | 0.2641 | 0.0499

vane-wheel | 1.931 | 0.0288 | 0.0003
Vane-wheel 30% larger 0.705 | 11.6

rotor 0.750 | 0.2608 | 0.0494

vane-wheel | 2.010 | 0.0317 | 0.0003
Vane-wheel 40% larger 0.708 | 12.0

rotor 0.750 | 0.2619 | 0.0494

vane-wheel | 1.999 | 0.0308 | -0.0001
30% larger (hub unloaded) 0.696 | 10.1

rotor 0.750 | 0.2697 | 0.0504

vane-wheel | 2.010 | 0.0235 | -0.0001
30% larger (DTRC experiment) 0.692 9.5

rotor 0.771 | 0.2970 | 0.0537

vane-wheel | 1.928 | 0.0170 | 0.0004
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Table 6.6: Vane-wheel propulsor forces. Values are nondimensionalized with the diameter

and rotation of the rotor.
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Figure 6.12: Circulation distributions for the contrarotating propellers.

unloading are also presented in table 6.6 for a vane-wheel of the same diameter. The
efficiency increase of 10.1% over the baseline propeller predicted by PLL is quite close to
the 9.5% measured by Chen et al.

Of course, in order to obtain the efficiency gains from the vane-wheel the physical
arrangement of the ship and considerations of unsteady hull excitations must allow for
the larger vane-wheel diameter. If a vane-wheel with diameter greater than that of
the propeller is acceptable, a larger diameter propeller might also be indicated. PLL
was, therefore, used to consider a propeller with diameter 1.3 times that of the baseline
propeller. The optimum rotation rate for this propeller was found to be 65% that of the
baseline propeller. The efficiency of the large diameter propeller is predicted to be 0.709
a 12% increase over that of the baseline propeller and a slight increase over the vane-
wheel propulsor of like diameter. It should be noted that this large diameter, low RPM
propeller would incur shaft diameter and weight penalties, including the need for larger
reduction gears, etc. The hull excitation from such a propeller might also be increased.

A contrarotating pair of propellers was also considered. They were assumed to have
the same diameter as the baseline propeller and be separated by a distance of one-quarter
propeller diameter. The forward propeller was five bladed, the aft four. The propellers
were required to have equal and opposite rotation and torque. The rotation rate was
specified to be Js = 0.935 which corresponds to the optimum rate for a single propeller
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Figure 6.13: Circulation distributions for a propeller/stator.

required to generate one-half the thrust of the contrarotating pair. Figure 6.12 gives the
circulation distributions for the contrarotating pair. The propulsor efficiency is n = 0.724,
a 14.5% increase over that of the baseline case. ,

Similarly a stator operating downstream of the propeller was considered. This post-
swirl stator was taken to be nine bladed and have the same diameter as the propeller.
PLL was used to determine the optimum circulation distributions on the propeller stator
as well as the propeller’s rotation rate. Figure 6.13 gives the circulation distributions.
The propeller’s rotation was found to correspond to Js = 0.86, 86% of the baseline
propeller’s rotation rate. The efficiency of this combination was found to be n = 0.696,
a 10% increase over that of the baseline propeller. The efficiency is comparable to that
of the vane-wheel propulsor without the increased propulsor diameter.

A ducted single propeller was also considered. The propeller diameter was that of the
baseline propeller. The gap between the tip of the propeller blades and the inner surface
of the duct was taken to be zero. The duct was assumed to develop 15% of the total
thrust and to have a chord length of one-half the propeller’s diameter. The propeller
operating condition was Js = 0.75. The efficiency of this ducted propeller was predicted
to be n = 0.679 a 7.5% increase over that of the baseline propeller.

Finally a ducted propeller/stator was investigated. The stator was taken to have
the same design characteristics as the earlier propeller/stator combination. As for the



CHAPTER 6. ILLUSTRATIVE EXAMPLES 131

Cr=0.6625 || Cr=1.325 Cr =2.65
n | %An n | %An n | %An
i Single Propeller 0.733 0.632 0.508

Vane-\Wheel Propulsor 0.779 6.3 | 0.705 | 11.6 || 0.607 | 19.5
Contrarotating Propellers || 0.303 9.6 || 0.724 | 14.6 |{ 0.614 | 20.9
Propeller/Stator 0.779 6.3 || 0.696 | 10.1 || 0.591 | 16.3
Ducted Propeller 0.746 1.8 || 0.679 7.4 || 0.576 | 13.4
Ducted Propeller/Stator || 0.797 | - 8.7 || 0.737 | 16.6 || 0.636 | 25.2

Il Actuator Disk 0874 192]0.792 | 25.3 [ 0.687 | 35.3 |

Table 6.7: Performance summary for various propulsor alternatives. C'r is based on the
diameter of the single propeller.

ducted single propeller, the gap between the propeller blades was assumed to be zero as
was the gap between duct and the stator blades. Again the duct was required to develop
15% of the total thrust and to have a chord length of one-half the propeller’s diameter.
The propeller operating condition was taken to be the same as that of the unducted
propeller/stator, Js = 0.86. The efficiency of this ducted propeller/stator was predicted
to be n = 0.737 a 16.6% increase in efficiency over the baseline propeller.

Similar studies were performed for the same conditions, but with required thrusts
of one-half and twice that previously described. Efficiencies for the various propulsors
for the three required thrusts are given in table 6.7. Percent increases over the baseline
propeller for each Cr are also given in this table. The ideal or actuator disk efficiency
for each thrust coefficient is also presented. A

All of the propulsor alternatives examined show the trend of decreased efficiency with
increased thrust coefficient apparent in the actuator disk results. The percent difference
in efficiency between that of the single propeller and the ideal efficiency, the actuator
disk result, increases with the thrust coefficient. This is an indication that the induced
losses increase with the required thrust. If this is the case we would also expect the
percent increase in efficiency of the other propulsor alternatives to increase with the
thrust coefficient, since the idea behind these propulsors is one of decreasing these losses.
This trend is borne out in the results presented in table 6.7. Note that all of the propulsor
alternatives show an efficiency gain over the single propeller. 4

Of the unducted propulsors the contrarotating propellers show the largest efficiency
gains for each thrust coefficient. The efficiencies of the vane-wheel propulsor and the
propeller/stator combination are comparable for small Cr, however, for larger thrusts
the vane wheel shows an efficiency advantage. Since a propeller/stator arrangement is
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likely to be mechanically much simpler than a vane-wheel propulsor such an arrangement
is probably preferred for small thrust coefficients. While the ducted single propeller
shows efficiency gains over the propeller acting alone, these gains are smaller than those
predicted for the multiple stage propulsors. At all but the smallest value of C'r the
ducted propeller/stator combination showed the largest gain in efficiency. For lightly
loaded propellers the viscous drag of the duct is a not insignificant part of the total
drag. Since the stator blades could be used to attach the duct to the shaft a ducted
propeller/stator is not an unlikely combination. .
The results shown in table 6.7 are far from comprehensive. A number of the design
parameters used here were chosen arbitrarily. The gains in efficiency predicted in table 6.7
-should, however, provide an indication of general trends for various propulsor alternatives.
They also give a realistic indication of the magnitude of the efficiency gains which might
be expected. _ _

The actual selection of the propulsor type for a given application must also include
consideration of many factors in addition to efficiency. Considerations of the ship’s
physical arrangement, the cost of manufacture and maintenance of the various propulsors
and of shafting and reduction gears in the case of contrarotating propellers, considerations
of unsteady forces, etc. must all be taken into account. For this reason the efficiency
results of this section will be allowed to stand alone, without a discussion of the relative
merits of the various propulsor alternatives considered here. '
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Figure 6.14: Computer generated depiction of a propeller operating behind a nonaxisym-
metric, pre-swirl stator.

6.3 Design of a Nonaxisymmetric Pre-swirl Stator

In order to compare the performance of an optimum propeller with an optimum pro-
peller/stator the described procedures are here used to carry out a sample design. The
design presented here is for a United States Coast Guard, 41 foot utility boat. Larimer, et
al [71] reported on their experience with a propeller/stator on this boat. Further testing
and an economic analysis of the results has been presented by Sedat et al [96]. Analysis
of their propeller/stator and additional details of the design presented here are provided
in [22].

In this example a new propulsor was designed for a given shaft arrangement and
powering. The propeller rotation rate was selected to be 1250 RPM at the design ship
speed of 23 knots. This operating condition was selected so that the engine would be
operating near the optimum point on its fuel map. From a regression of the full-scale



CHAPTER 6. ILLUSTRATIVE EXAMPLES 134

trial data it was determined that the propulsor must generate 2835 lbs. of thrust in order
to achieve the design ship speed.

The inflow to the propeller was assumed to be radially uniform. Due to an inclination
of the propeller shaft and the trim of the boat, the flow at the propulsor was assumed to
be inclined by 13 degrees. This flow inclination results in a once per propeller revolution
variation of 22.5% of ship speed in the tangential and radial inflow velocities seen by
a propeller operating alone. This fluctuation of the tangential inflow velocity in turn
produces unsteady forces and the possibility of unsteady propeller cavitation. The non-
axisymmetric stator was to be designed in such a way so as to both increase the overall
propulsor efficiency and reduce the variation in tangential inflow velocity at the propeller.

6.3.1 A Propeller Design

A propeller for operation without a stator was designed for comparative purposes before
going on to the design of the propeller/stator. The PLL lifting line code was used to
investigate the effect of different numbers of propeller blades on propulsive efficiency.
Propellers of 3, 4, 5 and 6 blades were investigated. In each case PLL was used to
determine the optimum propeller diameter as well as the circulation distributions and
chord lengths. The distributions of blade thickness, skew and rake as well as the hub
diameter was chosen to be the same as that used for the baseline propeller tests of [71].
These quantities along with the chord, pitch and camber of the new design are given in
table 6.8 '

The optimum propeller diameter, required horsepower and efficiency of the various
propellers is given in table 6.9. The design process was continued with the three bladed
propeller. The PBD-10 code was used to find the blade pitch and camber needed to
generate the load distribution determined from PLL. The geometry of this propeller is
given in table 6.8. The geometry of this propeller is further 1llustrated in figures 6.15
and 6.16. .

1 6.3.2 Propeller/Stator Design

For this example much of the propeller/stator geometry was assumed to be known. The
stator was specified to be five bladed with a diameter of 20 inches. Table 6.10 gives other
specified stator geometric quantities. The propeller chord, thickness, skew and rake are
taken to be that of the baseline propeller tests of [71] and are given in table 6.11. PLL
was used to determine the optimum propeller diameter as well as optimum circulation
distributions for both the propeller and stator. The stator was here assumed to be
axisymmetric and to have the same hub diameter as the propeller.

Since an image system of vorticity was used to represent the hub in PLL, the cir-
culation distributions for both the propeller and stator showed the expected hub load-



CHAPTER 6. ILLUSTRATIVE EXAMPLES 135

radius || pitch rake skew | chord | camber | thickness
r/R P/D | rake/D | degrees | c/D folc t/D
0.1255 || 1.2304 | -0.0173 0.00 ] 0.1626 | 0.0244 [ 0.0346
0.2000 || 1.1708 | -0.0161 -4.48 1 0.2078 | 0.0313 | 0.0321
0.3000 || 1.1608 | -0.0144 -5.38 | 0.2670 | 0.0286 | 0.0288
0.4000 | 1.1624 | -0.0128 | -4.65 | 0.3241 | 0.0285 | 0.0255
0.5000 || 1.1496 | -0.0111 -3.56 | 0.3780 | 0.0244 | 0.0222
0.6000 || 1.1381 | -0.0095 -2.24 1 0.4271 | 0.0211 | 0.0189
. 0.7000 || 1.1272 | -0.0079 -0.20 | 0.4671 | 0.0196 | 0.0157
: 0.8000 || 1.1027 | -0.0062 2.81 | 0.4809 | 0.0173 | 0.0124
0.9000 || 1.0534 | -0.0046 7.01 { 0.4385 | 0.0204 | 0.0091
0.9500 || 1.0160 | -0.0037 9.63 | 0.3700 | 0.0267 | 0.0074
1.0000 || 0.9681 | -0.0029 12.63 | 0.0000 { 0.0336 | 0.0058

Table 6.8: Geometry of propeller designed for 1250 RPM at 23 knots. This propeller is
25.44 inches in diameter and has 3 blades. It is predicted to develop 2835 lbs. of thrust
for 286.3 SHP.

Number || Diameter SHP | efficiency
of Blades feet

3 2.12 286.3 0.710
4 2.03 286.6 0.709
3 1.97 287.8 0.707
6 1.92 289.4 0.703

Table 6.9: Optimum propeller diameter, SHP and efficiency as determined by PLL for
propellers with varying number of blades.



CHAPTER 6. ILLUSTRATIVE EXAMPLES 136

= — =
AN | X
\ \ N
\ N\
Nl | N
\ NI

Figure 6.15: Plan view of the 3-bladed propeller geometry as determined by PLL and
PBD-10.

Figure 6.16: "A depiction of the PBD-10 vortex lattice for the 3-bladed propeller.
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radius || chord rake skew | thickness
r/R c/D | rake/D | degrees t/D
0.2375 || 0.5222 | -0.2611 0.00 0.0393
0.3000 || 0.4862 | -0.2431 -0.82 0.0377
0.4000 || 0.4286 | -0.2143 | -2.14 0.0352
0.5000 || 0.3710 | -0.1855 -3.45 0.0327
0.6000 )| 0.3134 | -0.1567 | -4.77 0.0301
0.7000 || 0.2556 | -0.1278 | -6.09 0.0270
0.8000 || 0.1982 | -0.0991 -7.42 0.0234
0.9000 || 0.1406 | -0.0703 | -8.75 0.0190
0.9500 || 0.1118 | -0.0559 | -9.41 0.0165
1.0000 || 0.0830 | -0.0415 | -10.00 0.0138

Table 6.10: Stator blade chord, rake, skew and thickness at radii for input to the computer
codes.

radius rake skew | chord | camber | thickness
r/R | rake/D | degrees | c¢/D fo/c t/D
0.123 | -0.0173 0.00 | 0.1239 | 0.0961 0.0346
0.200 | -0.0161 -4.48 1 0.1731 | 0.0789 0.0321
0.300 || -0.0144 -5.38 | 0.2349 | 0.0598 0.0288
0.400 || -0.0128 -4.65 [ 0.2927 | 0.0444 0.0255
0.500 || -0.0111 -3.36 | 0.3442 | 0.0327 0.0222
0.600 {| -0.0095 -2.24 { 0.3852 | 0.0245 0.0189
0.700 || -0.0079 -0.20 | 0.4063 | 0.0194 0.0157
0.800 || -0.0062 2.81 1 0.3898 | 0.0162 0.0124
0.900 || -0.0046 7.01 | 0.3128 | 0.0138 0.0091
0.950 || -0.0037 9.63 | 0.2318 | 0.0127 0.0074
1.000 | -0.0029 12.63 | 0.0000 | 0.0113 0.0058

Table 6.11: Nondimensional rake, skew, chord, camber and thickness as a function of
radius for propeller of the propeller/stator pair.
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Figure 6.17: Optimum circulation distributions as predicted by PLL for propeller/stator.

ing. Figure 6.17 shows these circulation distributions along with distributions for a pro-
peller/stator pair for which the presence of the hub was ignored. The optimum propeller
- diameter was found to be 22.5 inches. The propeller was predicted to absorb 270.4 SHP,
corresponding to an efficiency of 0.752. This is an increase in efficiency of just under six
percent over that of the optimum three bladed propeller.

Next the propeller pitch and camber needed to generate the desired circulation dis-
tribution was determined. At the time this design was carried out the PBD-11 code
was note available. Therefore, the PBD-10 code was modified so as to include an image
system of vorticity in order to represent the hub. This modified version of PBD-10 was
used to determine the blade pitch and camber presented in table 6.12. The inflow to the
propeller was taken to be the velocity field induced by the stator as determined by PLL.
Figure 6.18 gives a plan view of the propeller.
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radius || pitch | camber
r/R P/D fo/c
0.1432 || 0.8674 | 0.0352
0.2000 || 0.9518 | 0.0604
0.3000 || 1.0609 | 0.0483
0.4000 || 1.1328 | 0.0339
0.5000 || 1.1709 | 0.0251
0.6000 || 1.1918 | 0.0199
0.7000 || 1.2028 | 0.0180
0.8000 || 1.2035 | 0.0185
0.9000 || 1.1956 | 0.0231
0.9500 |} 1.1911 | 0.0306
1.0000 || 1.1489 | 0.0503

Table 6.12: Pitch and camber distributions as determined by the version of PBD-10
modified to include an image representation of the hub.
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Figure 6.18: Plan view of the propeller designed for operation with the pre-swirl stator.
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Next PLL was used to investigate the effects of nonaxisymmetry in the stator design.
The stator blades were placed on the side of the propulsor disk which experienced de-
creased tangential velocity due to the flow inclination. Blades were placed at angular
positions of 27 degrees, 72 degrees, 117 degrees, 162 degrees and 207 degrees from top
dead center. The circulation on each of the blades was taken to be the mean circulation
of the axisymmetric design multiplied by a scale factor. The two outer blades. located
at 27 degrees and 207 degrees, were given 90 percent of the mean per blade circulation.
The blades at 72 degrees and 162 degrees carried the mean per blade circulation and the
central blade 120 percent of the mean. Thus, the overall mean per blade loading was
that of the axisymmetric stator as determined by PLL.

PLL was then used to calculate the velocities and forces of the nonaxisymmetric
stator. Total stator forces predicted for the nonaxisymmetric stator were found to be
in good agreement with those of the equivalent axisymmetric stator. Figure 6.19 gives
the mean tangential inflow velocities at the plane of the propeller operating with and
without the stator. Note the substantial reduction in the tangential velocity fluctuation
at the inner radii. , .

In an effort to further quantify how much the stator “evened out™ the inflow to the
propeller, the unsteady variation in the propeller’s angle of advance was calculated. This
pitch angle includes the inflow velocity, the propeller’s rotation and the velocity induced
by the stator on the propeller, but does not included the velocity induced by the propeller

on the stator.
‘/u(r- 0) + Ua(r, a)stator >
“’t(re 0) + Ut(T, o)st'a.l.or + wr )

This angle can be thought of as the local blade angle of attack.

Figure 6.20 plots the maximum variation in advance angle vs. radius. One curve is
for the propeller operating alone. Note that the magnitude of the variation in pitch angle
is much larger at the hub than at the tip. At the outer radii the rotational velocity is
dominant. Results for the propeller operating in the mean tangential velocity field of the
stator are also presented. Since the tangential velocity field near the hub is increased,
the fluctuation of the advance angle is somewhat reduced. Finally results are shown for
the propeller operating downstream of the nonaxisymmetric stator. Note the further
reduction in the fluctuation of the advance angle, especially in the vicinity of the hub.

The current stator clearly reduces the excursion in tangential velocity near the hub,
but has little effect near the tip of the propeller. If a reduction of unsteady cavitation or
forces were an overriding concern a larger diameter stator with more blades and increased
tip loading could be designed. Such a stator would, however, result in a substantial
decrease in the overall propulsor efficiency due to increased viscous losses associated
with a necessary increase in blade area. ,

Finally the actual blade geometry of the nonaxisymmetric stator had to be deter-
mined. Before the stator analysis and design code, SSF-1, could be used for this pur-

,3(r,e) = tan™! (‘ (6.1)
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Figure 6.19: Angular variation in tangential velocity at the plane of the propeller pre-
sented at a number of radii. The dashed line is the inflow due to the 13 degree flow
inclination. The solid line is the same flow as modified by the pre-swirl stator design.
The velocities are nondimensionalized with the ship speed and the radii with the propeller
radius.
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Figure 6.20: Radial distribution of maximum variation in propeller advance angle.

pose, the difference in hub diameter between the stator and the propeller had to be taken
into account. The circulation distributions of the stator blades, determined under the
assumption of equal hub diameters, was related to the circulation distributions of the
actual stator with its larger hub diameter by a application of equation 3.15.

SSF-1 was then used to find the pitch and camber which provided the desired cir-
culation distribution on each the stator blades. Table 6.13 gives these distributions.
Figure 6.21 shows a vortex lattice representation of this geometry. A computer gener-
ated depiction of the final propeller/stator design is provided in figure 6.14.
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radius | Pitch Angle (degrees) for blade at
r/R 27° [ 72° ] 117° [ 162° | 207°

0.237 || 80.55 | 83.54 | 77.57 | 73.01 | 68.46
0.300 || 82.60 | 85.98 | 81.00 | 76.25 | 70.77
0.400 || 85.40 | 89.45 | 85.92 | 80.90 | 74.19
0.500 || 87.65 | 92.42 | 90.18 | 84.95 | 77.28

0.600 || 89.34 | 94.91 | 93.80 | 88.39 | 80.05
0.700 || 90.67 | 96.90 | 96.76 | 91.23 | 82.49
0.800 | 91.05 | 98.39 | 99.08 | 93.47 | 84.62
0.900 || 91.08 | 99.40 | 100.74 | 95.10 | 86.42
0.950 || 90.88 | 99.72 | 101.33 | 95.68 | 87.2
1.000 {| 90.55 | 99.91 | 101.76 | 96.12 | 87.9

L | Camber (fo/c) |
0.237 || 0.157 | 0.160 0.147 | 0.105 { 0.087
0.300 || 0.137 | 0.140 0.130 | 0.095 § 0.079
0.400 || 0.110 | 0.113 0.108 | 0.081 | 0.068
0.500 || 0.089 | 0.092 0.091 | 0.070 | 0.057
0.600 )| 0.074 | 0.077 0.079 | 0.062 | 0.031
0.700 || 0.065 | 0.068 0.073 | 0.057 | 0.050
0.800 || 0.062 | 0.065 0.072 | 0.055 | 0.052
0.900 |{ 0.066 | 0.068 | 0.076 | 0.056 | 0.054
0.950 || 0.070 | 0.072 0.080 { 0.058 | 0.056
1.000 || 0.075 | 0.077 | 0.086 | 0.060 | 0.050

Table 6.13: Pitch and camber distributions for the nonaxisymmetric stator blades as

determined by SSF-1
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Figure 6.21: Depiction of the nonaxisymmetric stator design. Views of the stator from ‘
the front and frorn/above are presented.
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6.4 Ducted Propeller Designs

In the two examples which follow the described procedures are used to determine duct and
propeller geometries. In each case the required forces and propeller operating conditions
are taken as given, as are many of the geometric quantities. The focus of theses examples
is on finding the optimum propeller load distribution, the propeller’s pitch and camber
which realizes this distribution, and the duct angle and camber which provide the required
division of thrust.

6.4.1 Zero Gap Case

In this example the effective gap between the tip of the propeller blade and the inner
surface of the duct will be considered as equal to zero. Here the propeller is to operate
at an advance coeficient of J = Vs/(nD) = 0.6 and the duct/propeller is to generate a
total thrust given by a thrust coefficient of C7 = T/(1pVEAo) = 2.0. Five percent of the
total thrust is to be generated by the duct, r = Tp/(Tp + Tp) = 0.95. The inflow to the
propulsor is here taken to be uniform and equal to the ship speed, Vs.

We also specify much of the duct and propeller geometry. The distribution of propeller
thickness and chord are specified as those employed in the Wageningen KA series [111],
and are presented in table 6.14. The skew and rake of the propeller are set equal to zero.
The chordwise thicknéss and camber distributions are given by a modified NACA- 66
thickness form [7] and a NACA a = 0.8 meanline [1]. This mean line and thickness form
are also used for the duct. The chord length of the duct is the same as the radius of the
propeller. The maximum thickness of the duct is taken to be fifteen percent of the chord.
The center-plane of the propeller is located at the duct mid-chord.

First a duct of the desired thickness and zero angle of attack was run in uniform
inflow. The velocities at the plane of the propeller were then used as the inflow in the
lifting-line model. The lifting-line code was then run in order to determine the optimum
propeller circulation distribution. This circulation distribution is presented in figure 6.23.
Note that the circulation at the blade tip does not fall off to zero. The presence to this
tip loading implies that the propeller circulation must be transferred to the duct and is
not shed into the wake as a tip vortex.

An initial estimate of the propeller blade pitch was made by adding an angle of attack
determined from 2-D wing theory to the hydrodynamic pitch angle. The first guess at the
blade camber was also determined from 2-D wing theory. Streamlines from the lifting-
line model were used to determine a first guess of 10 degrees for the angle of attack of
the neutral duct.

The combined lifting- surface/ panel method was then used to analyze this propeller-
duct geometry. The resulting propeller circulation distribution and the total circulation
about the duct were used to adjust the geometry of both the duct and propeller. This
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Figure 6.22: Ducted propeller with zero gap between blade tip and duct.

radius || chord | thickness
r/R ¢/D to/D
0.182 |{ 0.179 0.039
0.300 |{ 0.208 0.031
0.400 || 0.232 0.023
0.500 || 0.254 0.016
0.600 || 0.273 0.015
0.700 || 0.288 | 0.015
0.800 || 0.299 0.015
0.900 || 0.306 0.015
0.950 ‘|| 0.308 0.015
1.000 | 0.309 0.015

‘Table 6.14: Radial chord and thickness distributions for the zero-gap propeller.
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Figure 6.23: Circulation distributions at the plane of the propeller \nth zero gap between
duct and propeller. G =T/(rDVs 5)-

process was repeated several times until the average circulation about the duct was
negligible and the propeller circulation was nearly equal to the optimum distribution.
Table 6.15 gives the initial and final propeller pitch and camber distributions. The initial
duct angle was 10 degrees. The duct angle which actually achieved zero net duct circu-
lation is 14 degrees. This difference is not unexpected due to the strong propeller/duct
interaction when there is no gap between duct and propeller. Figure 6.24 illustrates the
final propeller blade geometry and figure 6.22 shows the duct and propeller geometry as
discretized for the analysis code.

The forces acting on the propeller and duct are presented in table 6.16. When cal-
culating these forces the viscous drag on both the duct and propeller blade sections was
computed with an assumed 2-D airfoil drag coefficient of Cp = D/(3pVZc) = 0.0085.
Forces predicted from the lifting line model and from the analysis of the final blade
geometry are shown in table 6.16. '

Note that the neutral duct very nearly generates the required five percent of the
total thrust. This force is not associated with the total circulation around the duct, but
rather with the local duct-propeller interaction. In this zero-gap case the propeller-duct
interaction is quite strong and this force relatively large. The character of this interaction
can be seen in the pressures on the innrt duct surface shown in figure 6.25. The jump
in pressure from one side of the propeller blade, § = 0 degrees, to the other side, § = 72
degrees, is indicative of this interaction. Note that there is no pronounced suction peak
at the duct’s leading edge, Wthh indicates that the duct is close to its 1deal angle of
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radius pitch P/D camber fy/c
r/R | initial | final | initial | final
0.182 || 0.6273 | 0.7860 | 0.0000 | 0.0000
0.300 || 0.9096 | 0.9820 || 0.0237 | 0.0289
0.400 || 0.9657 | 0.9987 | 0.0255 | 0.0310
0.500 | 0.9804 | 0.9954 || 0.0232 | 0.0272
0.600 | 0.9919 [ 0.9945 | 0.0204 | 0.0252
0.700 | 1.0025 { 0.9910 | 0.0178 | 0.0220
0.800 || 1.0154 | 1.0065 |{ 0.0156 | 0.0194
0.900 | 1.0351 | 1.0350 || 0.0137 | 0.0172
0.950 | 1.0469 | 1.0380 || 0.0129 | 0.0165
1.000 || 1.0608 | 1.0220 || 0.0129 | 0.0165

 Table 6.15: Radial pitch and camber distributions zero-gap propeller.
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Figure 6.24: Propeller blade geometry for the zero-gap design.

1 \'T

’ Kg | Crduct|Crtotal | 7
lifting-line 0.283 | 0.0514 | 0.1051 2.105 | 0.950
final analysis || 0.286 | 0.0509 | 0.1027 2.126 | 0.952

~ Table 6.16: Total forces acting on the zero-gap propeller/duct.
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pressure coefl.

Figure 6.25: "Pressure coefficients on the inner surface of the zero-gap duct. The cir-
cumferential coordinate is given in degrees and runs from the suction side of one pro-
peller blade to the pressure side of the next. The chordwise coordinate varies along

helical strips aligned with the blade tips. The duct pressure coefficient is defined as
Cp = (p—p=)/(3pV3).
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Figure 6.26: Chordwise circulation distributions on the propeller blade for the zero gap
design.

attack.

The propeller circulation distribution from final analysis is plotted in figure 6.23
along with the optimum circulation distribution. If the velocities at the plane of the
propeller lifting lines are input back into the circulation optimization algorithm a new
optimum distribution can be obtained. This distribution is also shown in figure 6.23.
Note that the three circulation distributions are very nearly the same. Figure 6.26 shows
the distribution of bound vorticity on the propeller blade. Note that, with the exception -
of the tip section, the blade appears to be operating at its ideal angle of attack.

The thrust generated by the duct/propeller interaction very nearly equals the desired

duct thrust. For this reason no additional camber or angle of attack was added to the
duct.

6.4.2 Finite Gap Case

In this example the gap between the tip of the propeller and the duct is five percent of
the propeller radius. The propeller is to operate at an advance coefficient of J = 0.89
and the duct/propeller is to generate a total thrust given by C7 = 0.69. Ten percent of
this thrust is to be generated on the duct, ie., 7 = 0.90. The inflow to the propulsor is
again taken to be uniform and equal to the ship speed, Vs.



CHAPTER 6. ILLUSTRATIVE EXAMPLES 151

radius || chord | thickness
r/R c/D to/D
0.182 || 0.2022 | 0.0433
0.300 || 0.2846 | 0.0376
0.400 || 0.3456 | 0.0328
0.500 | 0.3959 | 0.0280
0.600 | 0.4323 | 0.0232
0.700 | 0.4487 | 0.0184
0.800 || 0.4417 | 0.0136
0.900 |l 0.4020 | 0.0088
0.950 | 0.3423 | 0.0064
1.000 | 0.1500 | 0.0040

Table 6.17: Radial chord and thickness distributions for the five percent gap propeller.

The skew and rake of the propeller are set equal to zero. The propeller chord and
thickness distributions are given in table 6.17. The chordwise thickness and camber
distributions are given by a modified NACA-66 thickness form [7] and a NACA a = 0.8
meanline [1]. This mean line and thickness form are also used for the duct. Again the
propeller is to be located at the duct midchord and the duct chord is taken to be equal
to the propeller radius. '

For this design the same general procedure was followed as for the zero-gap case.
Figure 6.27 presents the optimum propeller circulation distribution predicted by the
lifting-line code. Note that the circulation falls off to zero at the propeller tip when there
is a nonzero gap between duct and propeller. Again the pitch and camber distributions
which provide the required circulation distribution inside of the neutral duct are esti-
mated, as is the duct angle. After five iterations of analysis and modifications to the
propeller and duct a neutral duct design was arrived at. Figure 6.28 gives the propeller
geometry. The neutral duct angle is 4.5 degrees, compared with an initial estimate from
the lifting line streamlines of 2.25 degrees. , _

The forces from analysis of the neutral duct/propeller and from the lifting-line method
are presented in table 6.18. Notice that the force acting on the neutral duct is quite small
compared to that generated in the case of zero-gap between duct and propeller. This

time camber and angle will have to be added to the duct to produce the desired division
of thrust.

.After nine iterations of modifying duct angle and camber in order to achieve the

desired duct thrust, and of changing the propeller blades’ pitch and camber to achieve the



v
[N

CHAPTER 6. ILLUSTRATIVE EXAMPLES 15

30.00 original optimum
EEEE) GCSI‘n
— - new optimum

? 20.00 .
o

o

o

-t 10.00

0.00 .lll'l'll""’r"’rlr,T'll"'lr'VT“lﬁr']"T'l"ll’l'lll"'ll

0.00 0.20 0.40 - 0.60 0.80 1.00 1.20

r/R

Figure 6.27: Propeller circulation for the five percent gap design.
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- Figure 6.28: Geometry of five-percent gap propeller inside of the neutral duct.
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Kr Ko | Cr duct | Cr total T

lifting-line. no rings | 0.193 | 0.0442 | 0.0000 0.621 1.000
neutral duct analysis || 0.196 | 0.0466 | 0.0099 0.641 0.985
lifting-line , 0.193 | 0.0515 | 0.0690 0.690 | 0.900
final duct analysis 0.191 | 0.0515 | 0.0743 0.690 | 0.892

Table 6.18: Total forces acting on the five percent gap propeller/duct.
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- Figure 6.29: Geometry of ﬁve-bercent gap propeller inside of the thrusting duct.

desired propeller circulation, a final design was obtained. Figure 6.29 gives the propeller
~ geometry and figure 5.10 shows the geometry used in the propeller/duct analysis code.
The final duct angle was 3.85 degrees with the maximum duct camber 2.9 percent of the
duct chord.

The forces acting on this final duct design are given in table 6.18 along with those for
the neutral duct. Forces predicted by the lifting line model are also presented. Note the
close agreement between the lifting line prediction and the analysis of the final design.
The propeller circulation distribution from final analysis is plotted in figure 6.27 along
with the optimum circulation distribution. The circulation distribution obtained by using
the velocities from the final analysis in the optimization procedure is also presented in
figure 6.27. As was the case for the zero gap design the three distributions are very nearly
the same.



Chapter 7

Concluding Remarks

Much of the work presented here is a synthesis of the efforts of earlier researchers. Fol-
lowing is a list of what the author considers to be some of the key new developments of
this effort.

e The development of circulation optimization algorithms for multiple stage propul-
sors and the inclusion of hub and duct effects in these algorithms.

e The development and synthesis of a lifting line code which can treat a wide range
of propulsor types in a consistent manner.

e The development of a relatively simple model for the ducted propeller which takes
into account both the “end-plate™ and “accelerating” effects of ducted propellers.

o The demonstration of a design procedure for ducted propellers in which the blade
and duct geometry is determined so as to produce a specified blade circulation
distribution and distribution of thrust between duct and propeller.

o The description of the propeller design process using modern methods with and
emphasis on the design of nontraditional propulsors.

7.1 Future Considerations

The circulation optimization procedure presented here makes use of a classical variational
approach to the constrained optimization problem. This problem can also be attacked by
numerical methods for nonlinear programming. The literature on such methods is vast.
Many methods allow for the possibility of inequality constraints. These are of particular
interest. A constraint, by way of example, on tip vortex cavitation could be formulated
in terms of some function of circulation being less than a specified value. The circulation
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optimization procedure could then be made to consider cavitation inception as well as
efficiency.

The important concept to be carried over from this thesis to a new optimization
algorithm is the idea of entering the method with a discretized version of the constrained
optimization problem. A discrete formulation of the problem allows for the consideration
of propulsor geometries of theoretically unlimited complexity. Propulsors of more than
two stages, or more unusual propulsor configurations such as vertical axis propellers or
sculling oars could be investigated. The discrete formulation of the problem also makes
it a relatively simple matter to change details of the model which is used to represent
the propulsor. The importance of this capability can be seen in the use in this thesis
of panel method representations for the duct and hub to confirm the results of simpler
procedures.

An optimization procedure which incorporates a more complete representation of the
propeller and its trailing vortex wake might be of interest. In such a procedure the shape
of the chordwise distribution of circulation could be specified with its magnitude varying
radially in some unknown manner. The blade geometry would be linearized about some
reference geometry much as is done in current lifting surface design procedures. Such an
optimization procedure would provide the complete propeller blade geometry and could
more accurately model the propeller’s wake geometry.

The current lifting surface blade design procedures are somewhat inflexible. This
does not appear to be due to any limitation imposed by the underlying theory, but
rather to the structure of the computer codes, which—from the perspective of advances
in computing capability—were written quite long ago. A more modular, lifting surface,
design and analysis code which could handle a wide variety of propulsor types would
. complement the PLL lifting line procedures. . :

PLL does not automatically allow for hub diameters which differ between propulsor
components. Modifications to the code in order to allow for this possibility would enhance
its usefulness.

In the current work unsteady propulsor forces and cavitation were only brleﬂ) touched
upon. Since they play a crucial role in many design applications this is done with some
regret. Unsteady analysis procedures for a single propeller operation in nonuniform inflow
have been developed [61] [55]. The use of such procedures for the analysis of the unsteady
interaction between components of multiple stage propulsors should be investigated and
new procedures developed if necessary.

7.2 Some Final Remarks on Propulsor‘ Design

There are frequently examples of propulsor geometry for which dramatic increases in
efficiency are cited. Such claims are usually true, but only in some limited sense. For
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example substantial efficiency increases were measured for a propeller/pre-swirl stator
combination tested on a USCG 41 foot utility boat [T1]. These large gains were relative
to the propeller in current service. A significant fraction of these gains was also achieved
simply by use of a better propeller. A subsequant investigation showed that under current
economic conditions the best option for this boat is a new propeller, but no stator vanes
(96].

The general design procedures described in this thesis provide tools for examining
such claims. The PLL code is particularly well suited for the realistic evaluation of many
propulsor geometries. In the case of the utility boat mentioned above the PLL proce-
dures confirm that only relatively small efficiency gains are possible for a propeller/stator
combination over an optimum single propeller [22].

In section 6.2 a number of propulsors designed for several operating conditions were
examined. The results presented in table 6.7 show that dramatic gains in efficiency over
an optimum single propeller are only possible when the induced losses, and therefore
the blade loadings, are large. If the design constraints allow the propeller to be lightly
loaded, the potential gains in efficiency for novel propulsor geometries are small.

In chapter 3 it was shown that drag associated with loading at the hub of a single
propeller can significantly reduce the overall propulsive efficiency. For this reason the
propeller should be unloaded at the hub. Traditional constant pitch propellers often
have significant hub loading. as do many propellers designed with computer methods
which do not account for the presence of the hub. Hub boss fins have been proposed as a
means of increasing propulsive efficiency [34]. These are small radius blades which rotate
with the propeller and are placed between the propeller blades. A lifting line analysis
of such a configuration showed no efficiency increase. They could be used, however, to
unload the hub. Of course, a propeller designed so that the hub was properly unloaded
would not benefit from the use of such hub boss fins.

- With the exception of hub unloading the procedures presented in this thesis recover

traditional results for circulation and blade geometry of single propellers. However. these
procedures can also be used for the design and evaluation of less traditional propulsor
alternatives such as contrarotating and ducted propellers. They can also be used to design
_ propellers for unusual operating conditions, such the propeller for a human powered
submarine described in section 6.1. A design method which is systematic and provides
consistent results over a wide range of propulsor types is essential for the evaluation of
the use of nontraditional propulsors. The method presented in this thesis is intended to

fulfill this role. -
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Appendix A

Velocity Calculation Algorithms

A.1 Self-Induced Velocities

Hsin [51] compared several methods for the calculation of the self-induced velocity. He
found the Lerbs-Wrench asymptotic formulas to be both the fastest and most accurate
of the methods.

If the vortex system is assumed to bhe purely helical and to extend infinitely far in
both the upstream and downstream directions, then the flow is independent of the helical
coordinate. Thus, the flow is two-dimensional in terms of r and 6.

The potential problem for this type of flow was posed by Goldstein [40] and solved
independently by Kawada [54] and Lerbs[73]. A derivation may be found in Appendix I
of Lerbs’ paper.

The resulting potential can be expressed in terms of infinite sums of modified Bessel
functions. For internal flow (r. < r,):

Z mZ , mZ )
+ 5 {h+2—ZImz( 7 ) mz(—h—-rv) XSln(mZﬂ)}, (A.1)
p = L
¢ = - {Zso

3 Knz (m_Zr) linz.(ﬂhgru) x sin(mZﬁ)}, (A.2)
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where h = r,tan 3, and ¥ = ¢ — z/h and I is the modified Bessel function of the first
kind, K is the modified Bessel function of the second kind. Here 7 is the strength of the
trailing vorticity, r, is the radius of the vortex and r. is the radius of the control point.

For axial and tangential components of induced velocities, the effect of the vortex
system between £ = —o0 and z = (. the plane of the lifting line, is equal to the effect
of the vortex system between z = 0 and z = oc, therefore:

100 1 9%

Uy = 5‘87 Uy = g—r'a—"’; (.A..}) .

‘Thus, the axial and tangential velocities induced by Z helical vortex lines of unit strength
can be expressed as follows:

for r. < ry;
z Ty 2% r
g, = —(1 —-22-=2 o= v ;
Ua 4,&,,\ (1 "Z /\ Fl)a Uy 27\'7’0 )\ 1y (.’\4)
for r, > ry; |
22 Ty Z r
Uy = ——— . U, = 97 Y A=
Ua 27 A2 F, Uy 47”6(1 +t225 F3); (A.3)
where
= nZ , nZ
Fl = z nITIZ(—A_TC)KnZ(_\'rU);
n=1 /
- nZ ., nZ
F2 = ZnK"z(TTC)InZ(_/\_TU)' (AG)

n=1

Note that these are the influence functions for a single helical element of trailing vorticity.
These influence functions can be combined to form velocities induced by the complete
vortex horseshoe, since the bound vorticity induces no velocities on the lifting lines.

tg(m,p) = t(m,p) = t(m,p+1), (A7)

t;(m,p) = @(m,p)—8(m,p+1). (A.8)

The numerical results obtained by Lerbs [73] and Wrench [122] [83] were derived
through the use of asymptotic formulas for the modified Bessel functions of the first and

second kind T and K. Wrench’s approach gives better accuracy and has been used in the
subroutine LERBS of the propeller lifting line programs LLL2 and PLL:

P 1 (1+y3)°-25 1
VT 22y \1+y2/) (U1 -1

‘ 1 9y§+2 73y2—2 1
+24Z [(1 + y2)18 + 1+ yg)l_s] ln(l + — ) ,
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I 1 <1+y>°25 1
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where z
U= {yo(\/l +y:—1)exp(\/f+ y? —\/1+ yg)} : (A.10)
y(J1+¥3 - 1)
and 1
Te _
ey ey i

Hsin also showed that the calculation of propeller induction factors with this proce-
dure should be performed with double precision numerics.

A.2 Circumferential Mean Velocities

The time-averaged velocities induced by one propulsor component on the other are equal
to the circumferential mean velocities calculated in the rotating reference frame of that
component.

A horseshoe vortex of strength I' with lattice points at radii r,(p — 1) and r,(p)
will, by Kelvin's theorem, induce a tangential circumferential mean velocity on a control
point, at radius . (m) of the other component, of:

0, §>0, ~o<z;< 0 :
ug ,(m,n) 0, §<0, z5<0; (A.12)
2”:5(1;1) S < 09' Iy > 0,
where
§ = (r"J (p-1) - rcj(m)) (rv, (p) - rc,(m))- (A.13)

That is, the tangential velocity vanishes everywhere outside of the slipstream of the
horseshoe vortex, and is proportional to T'(p)/r., (m) inside the slipstream. The tangential
circumferential mean velocity induced by both the bound and trailing vorticity can be
found from equations A.12 and A.13."

Since the circumferential mean velocities induced on the other component by the
bound vortices are only tangential, the problem now is to solve for the circumferential
mean axial and radial velocities induced by the trailing vortices. By comparing a vari-
ety of computation methods with respect to accuracy and computation time, Hsin [51]
concluded that Hough and Ordway’s formulas should be used for this application.
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Through Fourier analysis of the velocity field, Hough and Ordway [49] derived formu-
las for the induced velocities of an actuator disk in terms of elliptical integrals. These can
be thought of as the velocities induced by a propeller with an infinite number of blades.
Since the circumferential mean velocities are the average of the sum of local induced
velocities along a circle (with an infinite number of points), we can apply the following
formulas to calculate the circumferential mean velocities.

zZ

_a [ . = C . Al4
Baya (- P) wru,(p)tan(ﬁl(p)) 1 .
Z
T, (mp) = s (4.15)
_ Z
y Uy, (m,p) = L. (A.16
R e e T ) !
Here
T+ s Q-1(9) £ Fho(s ), 7 (m) <1 (p)
c( ) v, (p) (%-17)
:;fc (M)n, p)Q“ - —'\0 s t) rCJ(m) > rv((p) )
where
2
@b (g (m) = ()
T T )
s = sin”! , =/ =
\/r} + (re,(m) = ru(p))
. - 4r. (m)r,(p) . (A.18)
z} + (rcj(m) + 7 ( ))
and

Q_% is the Lengendre function of the second kind and half integer order.
Ao is the Heumann's Lambda function.

C; is the same as C; except the r., r, inequalities are reversed.

The tangential velocity due to a vortex horseshoe is obtained directly from equa-
tion A.12. The axial and radial velocities are found by combining the results of equa-
tions A.14 and A.16, since there is no contribution from the bound vorticity to these
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velocities.
ﬁ; (mp) = ﬂa‘,,(("nsp)__ﬁaj,z(m:p+1)- (\19)
a; (m,p) = 4, (m,p)= i, (mp+1) (A.20)

A.3 Asymmetric Stator Velocities

For asymmetric stators, the trailing vortices are assumed to be straight lines, and the
wake geometry is assumed to be fixed.

If we have the coordinate, (0. ~r, (m)siné, r, (m)cos §) of a lattice point m. which
sheds a trailing vortex of unit strenﬂth from a stator denoted component j, and the
coordinate, (ry, —r.sinf, r.cosf), of a field point which the velocity is induced upon,
then the r. y and =z components of the induced velocity can he obtained by a direct
application of the law of Biot and Savart.

u, = 0

1 /‘”C (=r.cos + 1, (m) cosé)dv
Uy = E z

1 (=resin® +r, (m)sm5)

= — 9

U, i / e (A.21)
where §, 6 are positive for conterclockwise, and:
S = \/r ~a5)2+ (=1, (m)siné + r.sin 6)? + (r, (m)cos § — r. cos #)* (A.22)

The a,\xal tangential and radial components of the induced velocity @{!, 5*’, ") due

to the trailing vorticity are therefore:

ﬂfzt) = u, =0,
() _ o, 1 —ry,(m) cos(f — 6)
Uy = —uycosﬂ—-uzsmﬁ—z;/ 5 z,
v (6 -6
Y = —uysinf+u, cosf= ———4}7-;/0001"(’71)?31 )d (A.23)
These velocities can be integrated analytically:
2 =0 |
S0 1r.— ru](m) cos(0 )
5
20 1, (m)s’“w ) (A.24)

T = 47(' —Ij\/- )
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where G = 2% +r, (m)?> +r2 - 2r.r, (m)cos(8 — 8).

Similarly. the velocities induced by the bound vorticity can be obtained. If the m™
element of component j is surrounded by lattice points with radii r, (m), r,,(m+1), then
this element is just one bound vortex segment in the presented lifting line model. Let
this bound vortex have unit strength. then the axial. tangential and radial components
of velocity induced by this bound vortex are:

@ = Lrsin(d-8H
4m
_(b 1
a? = ey cos(d — &)H
i = —4%1‘; sin( — 8)H, (A.23)
where
% /ru](m-{—l) 1 N
B ro (m) (1% 472 sin®(6 — 8) + (r.cos(8 — &) — z)?15 7

1 [ ry,(m+1) = r.cos( — &)
r2sin®(§ - 6) + z3 \/TUJ(m +1)? = 2r.ry, (m+ 1) cos(8 — é) +r2 4 x3
ry,(m) — . cos(6 — §)

- A.26
\/rvj('m)z - 2r.r, (m)cos( — 6) + r2 + &3 ( )

A.4 Vortex Ring Velocities

Formulas in terms of elliptic integrals are given by Kicheman and Weber [69] for the
velocities induced by a ring vortex. These formulas are implemented in the PLL code.

A vortex filament which forms a circle of radius r, is called a vortex ring. We use the
coordinate systems (r,r,0) and (z,y, =), with z in the direction of the axis of the ring.
The ring is here assumed to be located at £ = 0. The Biot-Savart law in vector notation
18 ’

_ 'R xds

~4r R3
giving the velocity vector dV induced by an element of length ds = r,df, of the vortex
ring at the point (r,r,8) or (z.y.z). ds/ds is the unit vector tangential to the vortex
ring at the position of the vortex element. With the unit vectors i, j, k in the directions
of the z,y, = axes, ds/ds can be written as

(A.27)

ds . .
d—z = 0i + cosf,j — sin 6. k. (A.28)
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R is the radius vector from the vortex element to the control point:

R = z.i + (r.sinf, — r.sin 8,)j + (e cos 6. — r, cos 6, )k (A.29)
with | ' :
R=/?4+r2 412 —2r.r,cos(6. - 0,). (A.30)
Hence,
ds ) . . .
R x 7 = —([cos 0,(r. cos b, — r, cos 8,) + sin 8, (r.sin b, — r,sin b, )]i

+z.sin8,j + z.cosf,k
= —[r.cos(f.—6,) —r,)i+ z.sinb,j + z.cos b k. (A3

The z component of the velocity induced by the whole vortex ring is obtained from
“an integration round the circumference:

27 —_
ta(r,r) / Lt B df, (A.32)
4, \[ +r2+1—2rcos(6.—6,)3

(z./r, and r./r, have been replaced by z and r for simplicity). The integral can be
expressed conveniently by writing ’

) | 1
Uy(z,7) = — L (A.33)
dnry Jo? 4 (r+1)2[z2 + (r — 1))
where ,
‘ I =2r4(K - D) —r(r + 1)E. ‘ (A.34)
K, E and D are complete elliptic integrals as functions of %.
/2 1
K(k) = d
) -/0 \/l—k2siniaa
w2
E(k) = / V1 — k?sin? ada
0
/2 sin’ o K-E
D = da = A3
‘ /0 V1 - k?sin’a “ k? ( .35)
with ' s
[ — .
22+ (r+1)2 (4.36)

The radial velocity component can be found in a similar manner from equations A.27

and A.31:
. _— T 22(2K — 2D - E)

o 27 \/12 +(r+1)2[z2 4 (r - 1)2]'

(A.37)



Appendix B

On the Tip Loaded Optimum

The discussion presented here is due to Kerwin and is essentially the same as that given
in [60].

The classical solution for the optimum radial circulation distribution follows from the
original work of Betz [{], who treated the case of uniform inflow, and Lerbs [73]. who
considered the influence of radial variations of the circumferential mean wake. More
formal treatments of the problem were given subsequently by Wehausen [119] and Yim
[123], who confirmed the earlier results. The solution can be stated very simply by the
kinematic relationship,

tan 3;(r) H
tan 3(r) M’)/Vs’

where the constant H sets the desired level of thrust or torque.

This result is correct in the limit of vanishing loading, where the propeller induced
velocities are small compared to the relative onset flow, and where the path of the trailing
vortex sheets can be assumed to follow the streamlines of the undisturbed flow. However,
this result is generally applied within the framework of the theory of the “moderately-
loaded propeller”, in which the pitch of the trailing vortex wake is adjusted to match the
induced flow at the lifting line.

Clearly one can satisfy equation B.l in this case, but will the result be optimum?
Loukakis [75] found efficiencies higher than that given by equation B.1 by applying a
systematic search procedure to the determination of the eleven term sine series approxi-
mation to the circulation. The resulting circulation distributions found by Loukakis were
characterized by a high concentration of loading at the tip.

Being somewhat puzzled by Loukakis’ findings, one of the present authors (Kerwin)
recomputed the efficiencies of the tip loaded circulation distributions with the same lifting
line code, modified to keep the trailing vortex wake at the pitch of the undisturbed flow,
and found that the results were always lower than for the circulation distribution obtained

(B.1)
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(@1]

| | »n | Cr |
10 panel solution 0.80636 | 0.68467
20 panel solution 0.80681 | 0.68636
" 40 panel solution 0.80697 | 0.68679
80 panel solution 0.80704 | 0.68690
160 panel solution 0.80706 | 0.68693
Ind. Fact: B-IX Opt. | 0.81011 | 0.68693
Ind. Fact: Lerbs Opt. | 0.79368 | 0.68693

Table B.1: Convergence test

by applying equation B.1. The anomaly was therefore a direct consequence of the radial
variation in trailing vortex pitch introduced by moderately loaded theory. This, of course,
did not answer the question of whether Loukakis’ findings were physically correct or not,
and it is perhaps sufficient to say that this issue is still controversial.

This question has come up again for two reasons. First of all, we were concerned
with the question of how to optimize multiple component propulsors, where it would
seem desirable to use moderately loaded lifting line theory. But in addition, Brockett
and Korpus [9] [8] have recently presented lifting line results which again show that
increased loading at the tip increases efficiency. They show results for a five term sine
series representation of the distribution of circulation which produces an efficiency which
is higher than that obtained by applying equation B.1.

It seemed that one possible explanation for both Loukakis’ and Brockett and Kor-
pus’ results was associated with the Lerbs lifting line procedure which both employed
(although in somewhat different forms). The efficiency resulting from the five term cir-
culation distribution found by Brockett and Korpus was therefore computed using the
present vortex lattice method with increasing numbers of panels. Calculations were also
made using Lerb’s induction factor method for the same set of circulation coefficients and
for the Lerbs optimum distribution obtained from equation B.1. To make the comparison
as pure as possible, no viscous drag was included in this exercise. For both runs with the
Lerbs induction factor program, the thrust coefficient was set equal to the value obtained
with the present vortex lattice program using 160 panels. The results shown in table B.1
confirm the results obtained by Brockett and Korpus, and lay to rest any doubts about
the role of numerics in this issue. The efficiency obtained from the vortex lattice proce-
dure has converged to five significant digits (a challenge for the experimenter) and differs
from the Lerbs result by four tenths of a percent.

Another question is whether the variational approach somehow produces a local op-
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Figure B.1: Efficiency as a function of circulation distribution derived from a linear
combination of the present results and those of Brockett and Korpus. (0.0 = Brockett
and Korpus, 1.0 = all present theory) The wake is aligned using moderately loaded
theory. o '

timum. To check this, an optimum circulation distribution for Brockett and Korpus’
example was first computed using the vortex lattice optimization procedure of chapter 2.
For present purposes, it is sufficient to say that it is essentially equivalent to results
obtained from equation B.1. The resulting efficiency is 0.794, which agrees to three
significant digits with that obtained from the Lerbs induction factor code. A set of cal-
culations were then made with circulation distributions consisting of linear combinations
of the two differently obtained optima. The result is shown in figure B.1, which shows
that no local optimum exists, and that the Brockett and Korpus distribution yields the
highest efficiency obtainable with such a linear combination. The same exercise was re-
peated with the pitch of the trailing vortex wake forced to remain at the undisturbed flow
angle, and these results are shown in figure B.2. Now the conclusion is opposite, with the
circulation distribution derived from the present vortex lattice procedure being optimum.
This confirms the earlier finding that the circulation from equation B.1 obtained from
Lerbs procedure produced higher efficiencies than those obtained by Loukakis when the
trailing vortex wake was fixed.

The results given by Brockett and Korpus are therefore conﬁrmed as the true five term
optimum circulation distribution in accordance with moderately loaded lifting line theory.
But what is the optimurm if the circulation is allowed to be an arbitrary function of radius?
This can be approached either by progressively increasing the number of terms in the sine
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Figure B.2: Efficiency as a function of the circulation distribution as in the previous
figure, except that the wake is here constrained to follow the undisturbed inflow.

series, or in the case of the vortex lattice method, by increasing the number of panels. To
implement the latter, a crude systematic search technique was incorporated in the vortex
lattice program, whereby the circulation of one panel was incremented by a small amount
and the entire circulation scaled to yield constant thrust. If the efficiency increased, the
circulation increment was kept, otherwise it was discarded. The procedure was repeated,
systematically moving back and forth along the radius, running overnight on a personal
computer. The authors should emphasize that this unsophisticated optimizer (which
only involved a dozen extra lines of code) was only intended to be run once.

The results were spectacular. By morning, the ideal efficiency was up to about 9:%,
and the induced velocity at the tip was almost three times the speed of advance' In
addition to demonstrating that there is no limit to the absurdity of the optimum circu-
lation distribution for a moderately loaded lifting line, the exercise showed clearly how
the model defeats itself. A sharp increase in loading at the tip increases the pitch of the
tip vortex (in this case the wake pitch increased from 35 degrees to 69 degrees in the last
two percent of the radius) which then decreases the induced velocity everywhere inside
the tip. The tip panel has high induced drag, but all the panels inside have essentially
zero drag, or possibly even propulsion.

There is clearly something wrong with this physically, and the answer can be found,
at least qualitatively, in the way a “real” vortex sheet deforms behind a wing or propeller
- blade tip. Perhaps it is easiest to consider the simple case of an elliptically loaded wing,
where lifting line theory predicts constant downwash over the span. The equivalent of
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moderately loaded propeller theory would place the trailing vortex sheet on a plane in-
clined at a constant angle equal to the induced angle at the lifting line. Both observations
and computations by a variety of “vortex chasing” methods show, on the contrary, that
the middle of the vortex sheet moves down at a rate faster than that given by the flow
angle at the lifting line, and that the tip region moves up relative to this same reference
plane. The upward movement of the tip vortices is a result of the rolling up and diffusion
of the viscous region in the interior of the vortex sheets. Moreover, as the wing loading
is increased, the rolling up process, and hence the upward movement of the tip vortices,
takes place more rapidly.

Laser-doppler anemometer measurements in the MIT water tunnel by Min [78] and
subsequent experimenters have shown the same behavior for marine propellers. Similar
numerical results have been presented recently by Keenan [53] and by numerous investi-
gators in the area of helicopter wake trajectories, for example Murman and Stremel [853]
and Morino and Bharaduaj [84].

A relatively simple propeller wake alignment scheme was devised by Greeley and Ixer-
win [43] and found to agree well with existing water tunnel observations. This procedure
was therefore used to determine the initial wake geometry for the Brockett and Korpus
example, both for the classical optimum and for their five term, tip loaded, circulation
distribution. This was done by running the MIT-PBD-10 lifting surface design program,
which incorporates this wake model, for both circulation distributions. The axial induced
velocity at the tip obtained from the wake alignment procedure was 0.185Vs compared
with a value of 0.562Vs obtained from moderately loaded theory. Clearly the high ax-
ial induced velocities at the tip predicted from moderately loaded lifting line theory do
not materialize with this wake model. Furthermore, the efficiency of the tip loaded pro-
peller according to the lifting surface calculations, was slightly less than for the classical
optimum load distribution. ’

This is not considered to be conclusive evidence that the classical optimum cannot
be improved upon, since the wake alignment scheme is not necessarily accurate for such
an extreme load distribution. If fact, we were pleasantly surprised that it converged at
all. Nevertheless. the trend is expected.

To conclude this discussion, it is our opinion that the trailing vortex wake geometry
associated with moderately loaded lifting line theory can only be regarded as correct in a
gross sense, and cannot be relied upon as regards to the change in radial distribution of
pitch of the trailing vortex sheets brought about by a change in radial load distribution.
The tip loaded optimum solution succeeds only as a result of a predicted local increase
in pitch of the trailing vortex sheet at the tip, which probably cannot be achieved in a
real fluid. Therefore, until such time as an accurate, complete, viscous solution of the
vortex wake region becomes practical, the optlmlzatlon problem should best be solved
within the framework of linear theory.

It should be empathized that the question of whether or not high tip loading can
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increase efficiency should not be confused with the evaluation of the merits of adding
physical boundaries such as ducts, bands or tip fins. In these cases linear theory will
show that increased loading at the tip will be optimum.



Appendix C
The Effective Wake Calculation

The effective wake procedure described here is a modified version of that developed by
Van Houten and used in WKPROC [110], which in turn is based on a method developed
by Huang and Groves [52].

The two governing equations of the flow into the propeller given below follow from
assuming that the flux in a streamtube is constant.

u,rdr = u,rydr, ) (C.1)

and

up_(dup — du,) = udug, (C.2)

where u, is the mean nominal axial velocity, u, is the mean axial velocity into the
propeller plane, r is the flow radius in the nominal wake and r, is the flow radius as it
enters the propeller plane.

Integration of the first governing equation over a stream tube annulus gives the finite
difference form of the equation. This provides a numerical method of solving for the
contracted flow radii in the propeller plane.-

—c+ Vc*—4BD
2B

-

(C.3)

Tpis1
where ¢ is the index of the radius and

= 2upy, + Uy

—Tpi(Upigs — Up,)
—rf,‘(u,,..“ +2u,) - F
= (riq = D) (2uzyy, + us)

_ri(u'r-+1 - uri)(ri+1 - Ti)'
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The definition of the effective wake. u,. is used to modify the second governing equa-
tion given by equation C.4 below:

Ue = Up — Uqg

updr = (u, + ug)due ' (C.4)
The finite difference form of equation C.4 is used to solve for the effective velocity.
Uq + ua;
v =l + B )
_ua|+1 + llal
9 (C'5)

=

The axial induced velocity, u,(r), is obtained by using actuator disk theory to calculate
the integrated induced velocity.

Q. =2r /1 u (r)rdr. (C.6)

TH

For a propeller in uniform flow of velocity V/, actuator disk theory gives:

VvVCir+1-1

— 7
Qo =7} 5 ,

(C.7)
where Cr = 2T /(pV?r) and T = the propeller thrust. For a propeller in a shear flow the
present program assumes that this equation still holds. If 1" is taken to be the volumetric
mean effective wake velocity:

1 JCrFi-1
0. = 2#/ uo(r)rdr Y22 (C.8)
) Ty &
The distribution of induced velocity is arbitrarily taken to be the following:
== (2 (1) )
uamax B 1 il 1 - TH 1 (Cg)

where u,_, is obtained by integrating u,(r) over the propeller disk and applying equa-
tion C.8. -

Initially asumming that u.(r) = u,(r) in equation C.8, the effective velocity is now
determined using equation C.5. This is done by starting at a radius where the effective
velocity is known. Beyond the propeller tip, the induced velocities are assumed to be
zero. If the propeller is not in a tunnel, the nominal and effective velocities will be
identical here. Successive applications of equation C.5 inward gives the effective velocity
on each successive streamline.
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The contracted position of the streamlines is then solved for using equation C.3.
Again the application begins at a known final radius position. namely the hub radius,
whose streamline remains unchanged. Successive applications of equation C.3 outward

gives the flow contraction.
v Since the induced velocity field is a function of radius, the contracted streamlines will
encounter a different value of u, than did the uncontracted streamlines. The process
is therefore iterated with the revised values of u,. At this time the induced velocities
are also modified by using an updated effective wake u.(r) in equation C.8. The entire
iteration process is repeated until convergence. ' '

In the case of a propeller in a tunnel, the effective velocity outside the propeller tip
need not be the same as the nominal velocity, due to tunnel blockage. The starting point
for the application of equation C.5 is taken to be the tunnel wall, at which point the
effective velocity is assumed to be equal to the nominal velocity, as a first approximation
onlu. After finding the streamline velocities from equation C.5 and the streamline radii
from equation C.3, the radius of the outermost streamline is compared to the tunnel
radius. Since physically these radii must be equal, the assumed value of teh effective wake
velocity at the tunnel wall is adjusted iteratively by Newton’s method until agreement is
reached. At that point u,(r) is modified as in the case of a propeller in an unbounded
fow, and the entire process is repeated.

Thus far, only the mean effective wake has been determined under the assumption
of axisymmetric flow. The more common V-wake has higher harmonics to be modified.
Experiments have confirmed that the contraction and acceleration of the V-wake can
be predicted from the mean wake results. the derivation of the method used for hlgher
harmonics is based on the following two assumptions.

e The circumferential gradient in the wake is due to radial vortex lines convecting
downstream with the mean velocity field.

e The radial vortex lines change only in length and move inward as the flow contracts.
their circumferential positions remain steady.

The vorticity equation states that as the vortex lines contract, the vorticity reduces
proportionately. The nominal and effective vorticities are related below:

1 du.
Wry _ 508 _ Arp (C.10)
Tnom r 986

where w,_, and w, __ are the radial vorticity components of the effective and nominal
wakes, u. is the axial effective velocity, u, is the axial nominal velocity, and Ar, Ar, are
the lengths of vortex filaments in the nominal and effective wakes.

The ratio of vortex filament lengths in equation C.10 can be expressed in differential
form by replacing Ar with dr. Equation C.1 can then be used to provide an alternate
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form of the ratio. by substituting Fourier series terms for the velocities, the Fourier
coefficients are related as shown below:

Ang (1) _ ug(r)
Ao (1) 7 ¥ 10a(r)’

forn >1 (C.11)

where A, ,(r) and A, (r) are the nth degree Fourier coefficients for a given radius r
in the effective and nominal wakes. Sine and cosine coefficients are treated identically.



Appendix D
Reciprocity for Cosine Spacing

The goal here is to show that the reciprocity relationship,

w?,nAy(i) = w, ;Ay(n), (D.l)

holds for the cosine spaced vortex lattice representation of the planar lifting line.
If the postulated relationship is expanded with the expression for the velocity induced
by the trailing vortices, equation 2.2, it can be rewritten as

yoli +1) = y,(3) { 1 1 }
4r yu(n) - yv(i) yv(n + 1) - yu(l)

_ yn+1) —y(n) 1 B 1
B 4w {yu(i)— ye(n) g, (i+1) —-yv(n)}' (D.2)

This expression can be reduced to

B+ 1) 3@l y(n+1) —y(r)] _ u(n+1) —y()] {3+ 1) — o (i)]
4 [yo(n) = v [o(n + 1) = 9()] 47 [yo(2) = ye(n)] [yo(z + 1) — ge(n)]
Noting that the numerator on both sides of the equality is simply Ay(n)Ay(z) the proof

is reduced to showing that the denominators are equal. In other words it must be shown
that '

(D.3)

w(n)y(n+1) = p()yd) — wr+Dyl) + v
= vy +1) = w@ln) - wli+Dy(n) + yi(n) (D4
In the case of unit span, ﬁhe cosine spacing algorithm may be written out as
y(n) = cos((n—~1)A0), . (D.5)
yv.(n+1). = cos(nA#f), (D.6)
ye(n) = cos((n - %)AG). (D.7)

184
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An expansion of equation D.4 with eqations D.5-D.7 yields the following.

cos(nAf — Af)cos(nAf) — cos(nAf — Af)cos(1 A0 — -Az—e)
— cos(nAB) cos(iAf — %) +  cos(iA0 — g)
= cos(iA8— AB)cos(iAB) —  cos(iAf — AB) cos(nAf — %)
— cos(iAf) cos(nAf — _A;_()) +  cos’(nAf - %) (D.8)

Making use of several trigonometric identies the first and last terms of each side of
equation D.8 can be rewritten, resulting in

cos’(nAf) cos(Af) +  sin(nAf) cos(nAf) cos(Af)

- cos(nAf — Af) cds(iA@ - %9-) —  cos(nAf) cos(zAf — %0)

+ % + cos?(iAf) cos(Af) - cos(—é—g) + sin(zAf) cos(:Af) cos(AF)
= cos’(iAf)cos(Af) + sin(iA0)cos(zAf) cos(A0)

—  cos(iAf — Af) cos(nAfd — —A;G-) —  cos(7Af) cos(nAf — _A‘)_G)

+ ! +  cos’(nAf) cos(Af) — cos(-A2—9) + sin(nAf) cos(nAf) cos(A8).

2
(D.9)
Cancelling terms that appear on both sides of equation D.9 it must still be shown that

cos(nAf — Af) cos(tAf — %) + cos(nAf) cos(iAf — ﬁ)
= cos(1Af — Af) cos(nAb — ATB) + cos(iAf) cos(nAf — -A2—6). (D.10)

If equation D.10 is.expanded with a trigonometric identity the following is obtained.

cos(nAf) cos(iA§) cos(AG)cos(—A_)—e) + sin(nAf) cos(iAG)sin(AB)cos(%?-)

4+ cos(nAf)sin(iAf) cos(‘AG) sin(%o-) + sin(nA#f)sin(:Af8)sin(A) sin(%)

0
+ cos(nQO)cos(iAG)cos(%% + cos(nAO)sin(i.’w)sin(A—)

2
: : Af . . Af
= cos(:Af) cos(nAf) cos(AF) cos(T) + sin(iA8) cos(nAf) sin(Af) cos(‘—z-)
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' Ad )
+ cos(iAf)sin(nAf) cos( AF) sin(%—) + sin(zAf) sin(nAf)sin(A6) sin(ATg)

+ cos(iAf) cos(nAb) cos(ﬁ) + cos(iAf) sin(nA#8) sin(%). . (D.11)

Removing terms which appear on both sides of equation D.11 leaves

sin(nA#) cos(iAf) sin(Af) cos(ﬁ) + cos(nAf)sin(:Af) cos(AF) sin(%g)

.
4

+ cos(n_’SO)sin(i-w)Sin(%)

0
= sin(:A6) cos(nAf)sin(Af) cos(%) + cos(:Af)sin(nAf) cos(AB) sin(%a\

6
+ cos(1Af)sin(nAf) sin(é)—-). (D.12)

/
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4

Through use of further trigonometric identies and some rearrangement, D.12 can be
shown to be equal to

cos(nA#) sin(1A8) sin(Af) cos( ATG) + cos(iA0) sin(nAf) sin(A8) cos( -'¥)

= cos(iAG)sin(nAG)sin(AG)cos(ATg) + cos(n_\G)sin(iAG)sin(Aé)cos(_ﬁ).
(D.13)

The equivalence of the two sides of equation D.13 is apparent. Thus, the reciprocity
relationship of equation D.1 is confirmed.



