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Abstract

This thesis reports a theoretical and experimental investigation of the operation at submillimeter
wavelengths of a harmonic gyrotron, w = nuw,., where w is the emission frequency, n is an integer,
and w, is the electron cyclotron frequency. Research was conducted using a 65 - 76 kV, up to
10 A electron gun which produced a helical electron beam in a uniform magnetic field of up to
14 Tesla. Output powers of up to 22 kW were attained in 1 - 1.5 usec pulses at frequencies
between 300 and 500 GHz. These results represent the first operation of a high power harmonic
gyrotron in the submillimeter region.

In this thesis several basic physics issues were addressed, including mode competition, and
the agreement between the theoretical and measured efficiencies and starting currents. Mode
competition between the fundamental and second harmonic modes can occur as well as com-
petition between second harmonic modes. In order to obtain operation in second harmonic
modes, techniques for suppression of fundamental modes were investigated. Three different
cavity configurations were explored to obtain harmonic operation: a tapered cavity, a cavity
with axial slots, and a cavity with an iris at the output end of the straight section. Also, a
motheye window was used to provide external feedback to the second harmonic mode.

With the tapered cavity configuration, only low frequency, weak second harmonic modes
were observed. The next experimern: involved positioning large axial slots in the cavity at min-
ima of the second harmonic electric field to generate large leakage losses for the fundamental
modes. The slotted cavity configuration did not generate harmonics, however, almost contin-
uously tunable emission was observed at kilowatt power levels in the frequency range 186.3 -
200.6 GHz. This may prove useful as a tunable, millimeter wave source.

The strongest harmonic emission was obtained when a cavity with an iris was used. The iris
significantly increased the Q of second harmonic modes, while increasing the Q of fundamental
modes only a small amount. With this cavity, fourteen different second harmonic modes were
observed with frequencies between 301 - 503 GHz and output powers of 1 - 22 kW. A 15 MHz
emission frequency bandwidth was observed for these modes. The highest output power was
22 kW with a total efficiency of 3.5 % at 467 GHz, and an output power of 15 kW with a 6%
efficiency was obtained at 417 GHz. A variety of diagnostics that were used to discriminate
between fundamental and second harmonic emission will be discussed.
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CHAPTER 1

INTRODUCTION

The demand for high frequency high power microwave sources has increased re-
cently. In plasma arplications, these sources can be used for electron cyclotron resonance
heating and plasma diagnostice. In electron cyclotron resonance heating of plasmas,
frequencies ebove 100 GHz are needed (Granatstein (1987)) when the magnetic field
strength is above 3.5 Tesla. Plasma diagnostics applications require frequencies above
the plasma frequency (> 300 GHz) (Woskov (1987)) in order that the radiation will not
be absorbed or refracted by the plasma. High frequency devices are also important for
applications such as a space based radar system, communications systems and material
science applications. Space based radar systems require stable coherent sources that are
not excessively large. With higher frequencies a more directional beam can be achieved
with a given antenna size and if frequencies that correspond to water absorption lines are
used false returns and jamming from radars on the ground are prevented (Granatstein
(1987)). In communications applications, frequencies corresponding to transmission win-
dows, such as 35, 94, 140, 220 GHz are used. Atmospheric attenuation and losses are
relatively low in the transmission windows, compared to optical and infrared frequencies
(Granatstein (1987), Bhartia (1984)). For good resolution a narrow linewidth, stable
source is required. Finally, in the material science applications, such as isotope separa-
tion and spectroscopy, narrow linewidth and stability are necessary, to utilize the high
level of resolution that can be achieved by operating with small wavelengths.

Gyrotrons fill a gap between conventional microwave devices (klystron, magnetrons,
triodes, etc) and lasers. As frequency increases, the level of power attainable with a con-
ventional microwave device decreases. This decrease is due to the fact that conventional
microwave devices operate in the fundamental mode, and therefore, the cavity dimen-
sions must be on the order of the wavelength of the radiation. At higher frequencies, the
cavity size decreases. Not only does this make the cavity harder to fabricate, but the

power density constraints of a smaller cavity do not allow the maximum output power
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to be as high as for a larger cavity. In a laser, the power decreases as the frequency
decreases. When an electron makes a transition to a lower energy level, a photon is
released with energy § E given by

SE =hf 1.0.1

where §E is the difference between the energy levels, k is Planck’s constant, and f is the
frequency of the photon. From equation 1.0.1, one can see that as frequency decreases, a
smaller difference in energy levels is needed. Since the smaller energy levels correspond
to higher excitation states, the power needed to excite the electrons to these states
increases and thus the theoretical efficiency of a laser decreases.

Gyrotrons have advantages over other devices that operate in this regirne. Devices
such as free electron lasers (FEL) (Elias (1985), Marshall (1985), Benson (1986), Orze-
chowski (1986)) and cyclotron resonance masers (CARM) (Botvinnik (1982a), Botvinnik
(1982b), Bekefi (1989), McDermott (1989)) are large devices that requice high voltage
sources (> 500 kV). Since gyrotrons are weakly relativistic devices, lower voltage (60
- 100 kV) supplies can be used. Cherenkov sources (Marshall (1988), Didenko (1983),
Kuzelev (1982)) also operate in this regime, but are low efficiency devices. A gyrotron
is capable of achieving efficiencies in excess of 25 % at high power (> 500 kW) and high
frequency (> 100 GHz) (Kreischer (1987)).

The term gyrotron, created by Gapanov, refers to a cyclotron resonance maser
(CRM) that has an electron beam which loses energy to an RF wave by passing through
a resonator near cutoff. To produce the electron beam, a magnetron injection gun is
typically used. The frequency w of the emitted coherent radiation is approximately given
by

w = nw, + kyy 1.0.2

where n is the harmonic number, w, is the cyclotron frequency, ky is the parallel com-
ponent of the wavenumber and v is the parallel electron velocity. Since the resonator
is near cutoff, kjv <« nw,, and therefore w ~ nw..

In a gyrotron, a relativistic effect leads to the transfer of energy from the electrons

to the RF wave. This is due to the relativistic dependence of the cyclotron frequency
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(through the electron mass) on the electron energy. When the beam interacts with the
RF field, bunching in phase space occurs because some of the electrons gain energy and
some lose energy. Gain is possible, if the phase of the bunched electrons with respect to

the RF field is appropriate.

The basic configuration of the gyrotron is shown in Figure 1.0.1. An electron beam
that propagates to the left is created by a magnetron injection gun. The electrons then
travel through a resonant cavity, where energy is transferred to an RF wave and finally
the electrons are deposited on the collector. A magnetic field in the z direction, created
by a superconducting or Bitter magnet has a fairly flat profile in the resonator region
as indicated in Figure 1.0.1. To accelerate the electrons, an electric field is created by
applying a voltage to the anodes. After emission from the cathode, the electrons are
guided by the magnetic field and enter a region of magnetic compression. The purpose of
the compression is to increase the perpendicular velocity, since the electron energy obeys
the adiabatic invariant v2 /B, is a constant, where B, is the main magnetic field, and
v, is the perpendicular electron energy. In the resonant cavity, the electrons lose energy
to a resonant RF wave. After leaving the resonator, the electrons enter a region of lower
magnetic field, and the electron beam follows the magnetic field lines which cause it to
be deposited on the copper collector. The microwaves, created in the resonant cavity,

leave the vacuum region through a quartz output window.

The experiment discussed in this thesis was established to achieve high power, sub-
millimeter emission. To attain frequencies in the submillimeter region using fundamental
mode operation magnetic fields above 12 T would be required. The advantage of using
harmonic operation is that lower magnetic fields are needed for second harmonic than
fundamental operation. To operate at 300 GHz using a second harmonic mode requires
just 6 T instead of 12 T required by a fundamental mode. Steady-state magnetic fields
below 10 T can be produced by NbTi superconducting magnets and fields up to 15 T can
be produced by NbaSn superconducting magnets. Although pulsed magnets at higher
fields are available, this is not an attractive alternative for several reasons. Firstly, due

to the high stresses caused by pulsed operation, the total number of times a magnet
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Figure 1.0.1 Schematic of the gyrotiron configuration (Granatstein (1987))
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can be pulsed is limited by metal fatigue (Dolan (1982), Stacey (1984)). Also, if the
magnetic field varies, the frequency of the gyrotron emission may shift, the efficiency
may be degraded or the operating mode may become unstable. In a pulsed system, it
can be difficult to eliminate pulse to pulse fluctuations of the magnetic field. Finally,

in a pulsed system, component failure is a larger problem than in a non pulsed system

(Dolan (1982)).

The nonlinear theory discussed in Chapter 2 predicts that perpendicular efficiencies
up to 70 %, which is comparable to the maximum efficiencies for fundamental modes,
are attainable in second harmonic operation. The objective is to obtain high efhiciency
operation, and therefore only low harmonics (n=2,3) are considered. Third harmonic
emission is less efficient than second harmonic emission, but a search for third harmonic
modes was conducted in this work. Past second harmonic results show that efficient
second harmonic emission is experimentally possible at high frequencies and powers.
Soviet physicists conducted many second harmonic experiments in the 1970’s. Kisel
(1974) produced 10 kW cw power and 30 kW with pulsed operation at 34 GHz. At
154 GHz, 7 kW was produced with pulsed operation and with cw operation, 2.4 kW
at 157 GHz and 1.5 kW at 326 GHz was observed (Zaytsev (1974)). Experiments were
also conducted with a stepped cavity profile. At 25 GHz, 500 kW of power was emitted
(Zapevalov (1979)). More recently, Zapevalov (1983) reported a second harmonic mode
at 34 GHz with an output power of 150 kW and a third harmonic mode at 55 GHz and
100 kW, where both experiments were conducted with pulsed operation. An efficiency
of 10 % was measured for the third harmonic mode, which indicates that high efficiency

harmonic operation is possible.

Other investigations have been conducted outside the Soviet Union. At M.LT.
Byerly (1984) observed stable, very narrow bandwidth second harmonic emission ranging
from 209 to 302 GHz, with a peak power of 25 kW at 241.0 GHz. A joint project between
the Naval Research Laboratory (NRL) and Harry diamond Laboratories yielded 50 W
at 240 GHz (Silverstein (1981)). Using a solid beam Pierce gun, instead of the usual

magnetron injection gun, Hirshfield (1983) generated emission ranging from 8 mm to
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less than 1 mm at harmonics up to the ninth harmonic. Varian conducted a second
harmonic gyrotron experiment at 106 GHz (Shively (1987)) and observed 100 kW of
power using a complex cavity configuration. In the People’s Republic of China (Guo
(1981)) 30 kW of power was measured for a second harmonic mode at 37 GHz. The
Thompson - CSF secoud harmonic gyrotron has produced 30 kW at 70 GHz (Boulanger
(1982)).

A device similar to a gyrotron, called the peniotron, has also produced harmonic
emission. At harmonics as high as the tenth harmonic (3 GHz), power levels of 2 kW
(McDermott (1983)) have been observed. Similar power levels have been generated at
higher frequencies at the third (25 GHz) and the fourth (32 GHz) harmonics (McDermott
(1983)). Power levels of 600 kW were reported for a fifth harmonic mode at 11.3 GHz
(Furuno (13988)). Harmonic operation has also been achieved with a cusptron, a device
that has a vaned cavity and also uses an axis encircling beam. At sixth harmonic (6.0

GHz) 10.4 kW of power has been generated (Namkung (1988)) using this device.

In comparison, the power levels produced by conventional microwave devices espe-
cially in the submillimeter region have been much lower. At 500 GHz, Travelling-wave
tube amplifiers, backward wave oscillators, and crossed field amplifiers have power levels
of 0.1 - 10 watts (Bhartia (1984)). CO, lasers can emit up to 30 kW at 600 GHz (Shirai
(1989)). However the the efficiency is less that 0.1 %.

When conducting a second harmonic experiment the basic physics issues must be
studied in order to understand how to optimize the design of a second harmonic gyrotron.
A major issue is mode competition between fundamental and second harmonic modes
as well as competition between two or more harmenijc modes. The mode competition
between the fundamental and harmonic modes, however, is the dominant issue. Second
harmonic modes are difficult to excite for several reasons. Firstly, their starting currents
are often higher than those of the fundamental modes. As a result, the fundamental
modes get excited first, and then suppress the second harmonic modes. Secondly, the
severe mode competition from the q=1 (q is the axial index of a TE,, ,, mode) funda-

mental modes, the higher order fundamental modes (94=2,3) and other second harmonic
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modes can stifle the desired second harmonic mode. The highly overmoded cavities used
to reduce ohmic losses also make mode competition more severe. Mode density increases
as the cavity size becomes larger, thereby making mode competition more severe. Fi-
nally, the thick beam produced by our gun further aggravates the mode competition
problem, because the beam can couple to several modes simultaneously. Another area
that will be studied is agreement between the theoretical efficiency and gain and the

experimental values.

In this thesis we discuss a second harmonic, submillimeter gyrotron experiment.
Since the fundamental modes tend to have lower starting currents, the fundamental
modes will get excited first and suppress the harmonic modes. To successfully excite
second harmonic modes, the fundamental modes must be suppressed and therefore a
study of five different fundamental mede suppression techniques was undertaken. The
first technique uses the fact that the fundamental mode spectrum is uneven and clump-
ings around certain frequencies or mode indices (V¥mjp) tend to occur (Figure 4.0.1) and
one observes large gaps in the fundamental mode spectrum. Since a given mode is only
excited over a limited region of magnetic field, the frequency gap can translate into a
gap in the magnetic field. Therefore, it is desirable to select a second harmonic mode
that exists in the magnetic field that corresponds to a gap in the fundamental spectrum.
The second technique involves placing the beam in a position where the coupling to fun-
damental modes is weak. Another technique is to operate with a higher perpendicular
electron velocity, 1. At higher values of B, the ratio of fundamental to second harmonic
starting current, I,¢1/[,+2 increases. Therefore at a high enough value of 8, , the second
harmonic mode is excited first. The fourth technique is to manipulate the cavity Q,
so as suppress the fundamental modes. This manipulation can be accomplished by two
different methods. Either an electromagnetic structure where the fundamental modes
are highly perturbed and the second harmonic modes are unperturbed (slotted cavity)
or a structure with better feedback to the second harmonic modes (cavity with an iris)
than to the fundamental can be used. Lastly, discrimination against the fundamental

modes can be facilitated by providing external feedback to only the second harmonic
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mode.

When the second and third techniques were used with cavity which had an iris at
the output end of the straight section to implement the fourth technique and a motheye
window to provide external feedback to the second harmonic mode, 14 second harmonic
modes were observed, with frequencies from 301 - 502 GHz and output powers of 1 -
22 kW and a 12 MHz frequency bandwidth. The highest output power was 22 kW at
467 GHz with an efficiency of 3.5%. Furthermore, an output power of 15 kW with 6%
was obtained at a frequency of 417 GHz. These results represent the highest frequency
high power second harmonic emission observed. To discriminate between fundamental
emission and to estimate the fraction of second harmonic emission present, various
diagnostic devices, such as filter horns were developed and will also be discussed in this

thesis.
SUMMARY

This thesis discusses a study of a variety of methods to excite submillimeter second
harmonic radiation and suppress fundamental emission with an M.L.T. gyrotron. As will
be discussed in Chapter 6, the fourth technique when implemented with a cavity that
has an iris, was the most effective technique. In this study, three types of resonators were
explored, a standard tapered cavity, a cavity with axial slots cut along its length, and a
cavity with an iris on the output end of the straight section, which will be referred to as
a straight cavity, a slotted cavity, and an iris cavity respectively. Chapter 2 outlines the
linear and nonlinear theory of harmonic gyrotrons and demonstrates how to apply them
to predict which modes will be excited as well as their efficiencies. The diagnostics and
experimental setup used in this these experiments are described in Chapter 3. Chapter
4 details the design procedure, experimental results, and analysis of the experimental
results of the straight cavity experiment. In Chapter 5 the slotted cavity experiments are
discussed. The iris cavity experiments are presented in Chapter 6. Chapter 7 contains

the summary and recommendations for further study.
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Chapter 2
Theory

In this chapter we discuss the theory of the gyrotron interaction. We start with the
electron equation of motion, including the Lorentz force for the electron dynamics and
Maxwell’s equations to model the electromagnetic fields. A complete solution of these
equations which accounts for specific device geometries is unwieldy. Even if numerical
methods are used approximations are needed. Various theories differ in the assumptions
made and the degree of completeness. The treatment in this thesis uses the slow time
scaling assumption which involves averaging over the Larmor orbit of the electrons. The
assumption of slow time scale implies that the quantities of interest, such as the electron
energy, do not very change much over a Larmor orbit, so time steps that are large with
respect to the period of the Larmor gyration (w_ ') can be used without creating a large
error. When the slow time scale theory is compared with the fast time scale treatment,
that considers the motion of the electrons as they trace out their orbits, the agreement
is found to be quite good (Schutkeker (1985)). The advantage of making the slow time
scale approximation is a simpler analytic theory. In the eection on the linear theory, the
slow time scaling will be discussed in more detail. The linear theory is used to determirne
the conditions where the start of oscillation occurs. To predict the output power and
efficiency a nonlinear theory is required.

In this chapter the gyrotron linear and nonlinear theory will be detziled as well as
the method for applying these theories to design gyrotron resonators. In Chapters 3,
4, and 5, a more detailed description of design procedure that is specific to the type of

resonator (slotted etc.) is provided.
2.1 Description of the Gyrotron Mechanism

Electron beam devices, which include gyrotrons, use an electromagnetic field to
extract energy from an electron beam produced at the cathode. To simplify the analysis

we assume that the electron beam is monoenergetic. In a gyrotron tube the electron
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beam is immersed in a steady state magnetic field and is accelerated by an electric field,
making the electrons trace out helical paths. Inside the resonator the mildly relativistic
electrons, excite and interact with the transverse electric field of a TE mode whose
frequency is close to the cyclotron frequency of the electrons multiplied by n, where n
is the harmonic number. Field is assumed to be in the azimuthal direction and vary as
E, coswt, where w is the RF wave frequency. The electromagnetic wave gains energy
from the electrons and a fraction of this energy is diffracted out of the cavity.

The interaction can be understood more clearly by studying the effects of the field
on a beamlet containing 8 electrons which have nearly the same guiding center and a

constant Larmor radius, r; given by

— 2.1.1
We

where w. = eB/ym is the relativistic cyclotron frequency, e is the electron charge, B
the magnetic field, m the electron mass, v = (1 — v%/c?)~!/2 is the relativistic factor
and v the electron velocity. At the beginning of the interaction region the phase of
the electrons is random as shown in Figﬁre 2.1.1a. The figure shows the representative
positions of the electrons in the beamlet with respect to the RF electric field E, coswt
labelled as E and represented by arrows. In the frame of reference of the electrons the
RF electric field in the resonator is approximately steady-state. First, the fundamental
mode case will be discussed and variations in the electric field across the Larmor orbit
will be ignored. In the interaction region, the transverse electric field will accelerate some
electrons and decelerate others. In Figure 2.1.1b (RF field frame of reference) electrons
2, 3, 4 are decelerated, electrons 6, 7, 8 are accelerated and electrons 1, 5 are unchanged,
since the force exerted on the electrons by the electric field E, F, = —gE. The circle
with a broken line represents the new positions immediately after the change in energy.
When an electron gains energy the relativistic factor v increases which decreases w,
and increases r;,. Conversely, when an electron loses energy, v decreases, increasing w,
and decreasing r;, shown by the broken line circle. After a few periods of revolution,
the electrons that gain energy begin to slip in phase and the electrons that lose energy

advance in phase. Eventually a bunch is formed (Figure 2.1.1c). If the frequency of
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the electric field w is equal to the cyclotron frequency (Figure 2.1.1c), the bunch does
not gain or lose energy. To gain energy, w must be slightly greater than the cyclotron
frequency. If w is slightly less than the cyclotron frequency, the wave loses energy to
the electrons. For the wave to gain energy, w > w. but to maintain the wave particle

resonance, w =~ we.

To have a harmonic interaction the electric field must vary across the Larmor radius.
The RF field can be written as a series in a coordinate system whose origin is the electron
gyrocenter. The terms in the series correspond to the electric fields of the different spacial
harmonics. If the RF field does not vary across the Larmor orbit only the fundamental
interaction term will be nonzero. In this analysis, we are not considering multimoding,
therefore the strongest term in the series of electric fields determines which harmonic
will be excited. Figure 2.1.2 shows the quadrapole electric field required for a second
harmonic interaction. A third harmonic interaction would require a hexapole field and
so on. The regions where the electrons gain (¥ > 0) and lose energy (¥ < 0) are
shown in Figure 2.1.2. It is possible but not necessary to form two bunches during a
second harmonic interaction. Just the fact that the RF electric field is a quadrapole
field determines that it is a second harmonic interaction. When operating at the n**
harmonic, up to n bunches may be formed. The modified gain and resonance condition

are w > nw. and w ~ nw, respectively for operation at the n*® harmonic.

As described above, in order to excite a second harmonic interaction the electron
beam must experience a stronger second harmonic electric field than fundamental electric
field. This can be accomplished by two methods. Firstly, the beam can be placed in a
position which has stronger coupling to the second harmonic electric field. If, however,
the coupling to the second harmonic and fundamental electric fields is similar, then a
stronger second harmonic electric field is needed. To understand how a second harmonic
electric field becomes stronger than a fundamental field we consider the expression for
the RF fields for an n** harmonic interaction in the electron frame of reference. The

electric field is given by
E = (Epnr 4+ Eynd)e'@t¥) 2.1.2a
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Figure 2.1.1a Gyrotron phase bunch- Figure 2.1.1b Gyrotron phase
ing — Initial condition, where the elec- bunching — New positions of the
trons are uniformly distributed on a electrons immediately after the

beamlet. change in energy.
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Figure 2.1.1c Gyrotron phase bunching — Formation of the electron bunch.
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Figure 2.1.2 Regions of energy gain (Y > 0) and energy loss (¥ < 0) for a
second harmonic interaction. The electric field is represented by

dashed lines.
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Ern =i—Eof(2)Jmin(ky Re)Jn(kyr)e meoein(9—do) 2.1.2b

kJ_T‘

Egn = Eof(2)Jmsn(ky Re)J. (kr)e™meoin(#=¢0) 2.1.2¢

where n is the harmonic number, k; = Vmp/Ro, Umyp is the pt! root of J!, = 0, R, is
the cavity radius, R, is the radial position of the electron beam, f(z) is the axial field
profile of the RF electric field in the cavity, E, is the field amplitude, » = v /w, is the
radius of the electron’s Larmor gyration, Jmin(kL R.) is the beam - RF field coupling
term, and the term J.(k,r) represents the variation of the RF field across the larmor
orbit. As will be discussed further in section 2.2, the following assumptions can be made
for the fundamental and harmonic modes, which are denoted by the subscripts 1 and
n respectively: for modes with large m, Jmin(kiLRe) ~ Jm+1(kL R.) for the position
corresponding to the innermost radial maximum of Jy4n(ky R.), Vmp,n = NWmp, 1, and
f1(z) >~ fa(2). Using these assumptions the following relations can be obtained for the

the harmonic to fundamental ratios of r and ¢ components of the RF electric fields

Jn(k_LT‘L)

Ern Er ~ — 2.1.30,
[Bm = 5 (ki)
J' (k_LTL)

Eyn/Eyy ~ 22— =L 2.1.3b
¢/ 1 J;(k.LTL)

The finite Larmor radius term J,(k,r) can be approximated (when k, r < 1) by

n"g@%
2nn!

Ja(kyr) ~ 2.14

where 8, = v /c. With this approximation the ratio of the n** harmonic to fundamental

total RF field can be written
En 3 nnﬂi—l

E = e 2.1.5

From equation 2.1.5, it can be seen that by increasing #, the harmonic field strength

gets stronger. As 3, increases, the Larmor radius increases, and therefore the electron
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experiences a larger RF field gradient. With a stronger gradient, the harmonic compo-
nents of the field are larger. Therefore to reinforce the harmonic modes, one would like
to operate with the largest 8, possible.

The cyclotron resonance interaction described above is entirely caused by azimuthal
bunching and is the gain mechanism in a gyrotron. However, axial bunching caused by
a Lorentz force interaction between electrons and the RF magnetic field, known as the
Weibel instability (Weibel (1959)), can occur. The Weibel instability and the cyclotron
resonance interaction compete with each other (Chu (1978)). In a fast wave interaction
the cyclotron resonance interaction dominates (Hirshfield (1965)). Gyrotrons operate
near cutoff, and therefore k, > k|, where k; and kj are respectively the components
of the wave number, k, perpendicular and parallel to the steady state magnetic field.

Since kv is small, the fast wave condition

Vg = w/k" >c 2.1.6

is satisfied. The RF magnetic field Bgrr is small compared to the RF electric field,
E. The approximate scaling can be obtained from Faraday’s law (B, = c/wk x E),
yielding E ~ vy Brr/c and in a fast wave device, the phase velocity, vy is greater than the
gpeed of light. For that reason axial bunching is not included when analyzing a gyrotron
interaction. Transverse magnetic modes are ignored because the transverse electric field,
E, scales as k) /k and therefore the TM mode RF-electron beam interacéion will be
weaker than that of the TE modes.

The modes excited in a gyrotron waveguide cavity are the transverse electric mode
(TEm,p,q) solutions to the wave equation. The subscripts m, p, q are the azimuthal,
radial, and longitudinal indices, respectively, of the mode. This mode will oscillate at a

frequency w determined by

w?

— L2 _ 1.2 2
 —k —h‘*‘ku 2.1.7

2
c
where k = 27/, X is the wavelength and kj;, the axial wavenumber, is the q** eigenmode

of the axial wave equation. The condition for exciting the cyclotron instability is
w—k”ﬂHCanco/‘y 2.1.8
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with the cyclotron frequency w., = eB,/m, y~% = (1 — 3?), the total normalized beam
velocity 8 = v/c and where 8, and () are the perpendicular and parallel components of
the normalized velocity with respect to the main field B,. Since ki >> k|| we also have
w >~ Ump/Ro >~ we. A mode of frequency w can only oscillate over a small region in B,.
When the magnetic field is varied it is possible to excite a sequence of discrete modes
with different vpmp, which accounts for the many frequencies generated in the gyrotron

resonator as the magnetic field is varied.
2.2 Linear Theory
Equations of Motion

The first step in developing a linear and nonlinear theory is to derive a set of equa-
tions that model the electron dynamics and incorporate the gyrotron beam geometry
(Danly (1985)). A set of equations of motion known as the Yulpatov or pendulum
equations (Flyagin (1977), Nusinovich (1972), Fliflet (1982), Bratman (1981)) provide
a method of analyzing the electron dynamics. These equations can be condensed into
fairly compact and physically transparent form. In this section the Yulpatov equations
will be derived and a discussion of the assumpticns made in the standard derivation
with regard to harmonic (n > 1) interactions is presented.

To derive the Yulpatov equations we consider the electron dynamics. In the inter-
action region, the electron experiences a static magnetic field that is perpendicular to
an RF electric field generated in the cavity. The equations for the electron energy € and
momentum, p, are

de

o = —ev-E 2.2.1a

and
dp

P _E-SvxB 2.2.1b
dt c

with ¢ = ym.c?, v = (1 - §% — ﬂﬁ)_l/z is the relativistic factor, 82 = 32 + ﬂﬁ,
B = v/c is the normalized beam velocity, |p| = yBm.c, m,. is the electron mass, E is

the RF electric field vector, and B is the static axial magnetic field vector. We make
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the following assumptions to simplify these equations. First, the axial RF field profile,
f(z) = e'(""‘)’, where E « f(z) and z is the axial position, is an axially fixed Gaussian,
so that we may write ky = 2/LgrF where LgpF is the axial interaction length of the
RF field in the cavity. The assumption of an axially fixed Gaussian is reasonable for
a cavity with a high diffractive Q, (Gapancv (1981), Zaytsev (1974)) Qp > Qpmin,
where Qpmin = 47 (L—‘iu-)z is the minimum diffractive Q of the cavity. The electric
field is however, permitted to rotate azimuthally. Fixing the mode axially allows it to
be modeled as a cylindrical TE mode. The electric field is assumed to correspond to
only one cylindrical TE resonator mode. As a result, this treatment does not describe
the case where two modes are simultaneously excited. Since gyrotrons operate near
cutoff, we have k; << k_, so that the resultant RF magnetic field has very little effect
as discussed in Chapter 1. To simplify the analysis, energy and velocity spread effects
will be ignored and a single particle theory will be used. In addition to the assumptions
listed above, we introduce two normalized variables. The normalized energy, w, and the
normalized length, Z, are defined as w = 1—v/7, and Z = wz/cf,, where the subscript
o refers to quantities at the entrance of the cavity and w is the frequency of oscillation.

At this point we have made no assumptions about the beam geometry in the energy
and phase equations. To incorporate the cylindrical geometry of the annular beam
and model the eleciron’s motion, a transformation to the frame of reference whose
origin is at the center of an electron gyro orbit as shown in Figure 2.2.1, is needed.
Using the complex momentum in the form p = px + ipy = |p+|e'®, and electric field
E = E, + iE, = |[E,|e/“**¥)| where a is defined in Figure 2.2.1 as the angle that the
momentum vector p traces out in the electron frame of reference and v is the angle

between the electron and the wave, the energy equation can be rewritten as

dw e Blio
dz  m2c®w 7.0

Re(p+E+) 2.2.2

and the momentum equation reduces to the phase equation for a

da _ ﬂ”owc _ eﬁ”" Im(p+E+) 2.2.3

dZ =~ fBw  wBylp+]




- R

CAVITY CENTER

Figure 2.2.1 Coordinate system and definition of variables used in the deriva-

tion of the pendulum equations (Danly (1985))
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where Re and Im refer to the real and imaginary parts of the bracketed quantities.
In a cavity with a circular cross section the electric field of a TE,,, mode near cutoff

(kL >> k) is given by

E = (EpR + E4,¢0)e'“t+¥) 2.2.4a

Er = —= Eof(2)Jm(kLR)e™ ™% 2.2.4b
kiR

Ego = E,f(2)J! e™?e 2.2.4c

where (R, ¢, ) are the coordinates of the system with the origin at the center of the cavity,
R and ¢, are unit vectors in the radial and azimuthal directions respectively, E, is the
field amplitude, and f(z) is the axial field distribution as a function of axial position
z normalized to unity. The electric fields also need to be transformed to the electron’s
&aﬁe of reference. To accomplish this transformation, Graf’s formula is used to express
the Bessel functions as an infinite series (Haldar (1979)), representing a summation of
the electric fields synchronous with all the harmonics. Since this theory is a single mode
theory the electric field is represented by only the RF field synchronous with the electron

for an n** order cyclotron resonance (w = nw,) and the representation is then

E = (Epn7 + Egnd)e'@t¥) 2.2.5a

En= ik—n7E., F(2)Imin (kL Re)Jn(kor)e™mbeein(®=40) 2.2.5b
1

Egn = Eof (2)Jman(kiLRe)J! (kyr)e " mPoein(¢=¢o) 2.2.5¢

The term J,(k, ) represents the variation of the RF field across the Larmor orbit.
After the introduction of the slow time variable, § = wt —n¢, where the electron phase ¢
is related to a by a = ¢+7/2, and a magnetic field detuning parameter, 6, = 1 —nwc,/w

the equations of motion become

do _ Es
dZ nB,

p', siné 2.2.6a

26



and
dé E.l—-w

_=6o_w+_

dZ B, p'|

cos 6 2.2.6b

where p'| = = (B2, — 2w — w?)'/2 E, = |E,n| and E4 = |E4yn|. Since at the
1 1o ¢ ¢

Yomac
entrance to the cavity no bunching has yet occurred v is arbitrary. In this analysis ¥ is
assumed to be constant throughout the interaction region, and we set ¥ — (m —n)¢, =
/2.

We next introduce a renormalized energy variable, u, and a renormalized axial

position variable, £, given by

b= w = (1 - L) 2.2.7a
Bio Lo Yo
ikt mBi, 2
= =027 — 2 — 2.2.7b
¢ 2 Blo A
Finally, the normalized interaction length u is defined as
n@%, L |
— Plo ~ 2.2.8
#T B

With the new variables, the equations of motion become

du 4 E, .

pT; = lBT_Lo nB. p', sinf 2.2.9a
dé 2 FE
—=A—-u-—- T cos@ 2.2.9b
d€ _2Lo BoP'_L

where A =26,/6%, and (1 — w) ~ 1.

All of the above approximations and assumptions made are appropriate for the fun-
damental as well as harmonic interactions. However, at this point the standard deriva-
tions of the Yulpatov Equations (Danly (1985), Nusinovich (1972)) make the following
assumption for the finite Larmor radius term, J,(k 1)

n—1
n"gB7
2nn!

Ji(kyr) ~ J(nBL) ~ 2.2.10

This approximation is valid if k; » << 1, where r is the electron gyro radius. To examine

this assumption, we note that r = %‘c- and use the approximations k; ~ k and nw, >~ w
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to get kyr ~ nfB,. For our electron gun, 8, ~ 0.4, and therefore for the fundamental
interaction (n = 1), the small argument approximation of the Bessel function is valid.
In the case of the second harmonic, the approximation is worse, but for the purposes of
our present analysis, adequate. A bigger error will be introduced when calculating the
starting current and nonlinear efficiency than for the fundamental mode, because

Ji(kyr)/nB7 !

2nn!

~0.9

for the second harmonic design mode of the iris cevity, compared to a typical funda-
mental mode for which the ratio is 0.94. The approximation becomes worse when the
third harmonic interaction is considered.

Previously we have made the approximation k, r ~ n3, . However, a better approx-
imation is that k; r ~ np'|, where we recall that p|, = v8, /7, = (83, — 2w + w?)1/2,
Using the approximations for k, r, retaining the J} term, and defining a normalized field

amplitude F' as
nB,

the equations of motion can be written as

F' = BT (np' ) Imin (kL Re) 2.2.11

du =2F'f(&)(1 - u.)l/2 sin @ 2.2.12a
d¢
@ _ Ao MHOF Jurn) b
& A—-u Al —w) J:‘(r‘.p'J_) cos @ 2.2.12

where we have made the following approximation for ¢/, . For a weakly relativiziic beam
nﬂf_o/2 < 1 is valid up to the fifth harmonic when 8,, = 0.4. Using this assumption
we then make the approximation (Bratman (1981))

P~ (8%, —2w)/?2 =3,,(1 —u)'/? 2.2.13

which has been used to give equations 2.2.12a and 2.2.12b.

To put these equations in a form similar to the standard Soviet form, we define

!
p= 2B _ B 2.2.14a
'YO.BJ.o ﬂ.l_o
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0 =né — wt, + /2 2.2.14b

where t, is the time when the electroas enter the interaction region. The equations of

motion then become

::_E = —F'f(¢)sind 2.2.15a
ﬁ _ 2 _ n ' Jn(nﬂ..l.op)
i (A+p°—1) ﬁ——.Lopz F' f(&) _——_J,',(nﬂJ_.,p) cos b 2.2.15b

To recover the standard form of the Yulpatov equations, the approximation given by
equation 2.2.10 is made for the J;, and J, term. A slightly different form of the normal-
ized field amplitude, F, given by

E n—4 / nn—l
F = B—:ﬂJ_o \;'27{) Jm+n(kiRe) 2.2.16
is used to yield
dp = —Ff(¢&)p"™ 'sind 2.2.17a
d§
(—;% =—(A+p*-1)- nFf(€)p" ?cos b 2.2.17b

which are the standard forms of the equations.

With these normalizations, f(£) becomes
f(z) = e—(k12)? — g—(2¢/m)’? 2.2.18

These equations are used in the linear and nonlinear theory to analyse the electron
dynemics.

As the harmonic number increases, the error introduced by the approximation made
in equation 2.2.10 becomes larger. Hov .ver, as will be shown later, a simple correction
can be made so equations 2.2.15 and 2.2.12 yield efficiencies whose difference is less than
1%, even up to the third harmonic. Therefore for convenience, equations 2.2.12a and
2.2.12b will be used to derive the equilibrium equation and an analytic expression for

the starting current in the following section.
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Starting Current

We next derive an analytic expression for the starting current. The energy balance
equation can be expressed in a form that relates the normalized field amplitude F to the

normalized beamn current | given by
Fl=n, I 2.2.19

where I is the normalized beam current. The lincar efficiency, n Llin; can then be cal-
culated from the linearized Yulpatov equations. Using equation 2.2.19 with the linear
efficiency, an analytic expression can then be calculated for the starting current. Since
the linear efficiency is valid only for the small signal regime (small F), the expression thus
obtained is valid only at beam currents close to the starting current. In this section, we
first manipulate the energy balance equation to yield the form given by equation 2.2.19
and then derive an expression for the linear efficiency. Finally we calculate an analytic
expression for the starting current that is valid for analyzing fundamental and second
harmonic interactions.

The energy balance equation involves the definition of the cavity Q. Power is lost
by two mechanisms, diffraction and ohmic losses to the walls. For the diffractive losses

the cavity Q is defined as
wlU

2.2.20
Pyiss

@p =

where U is the stored energy, w is the RF wave frequency, and P,; 77 is the power that is
diffracted out of the cavity. The ohmic losses in the cavity walls are similarly expressed

in terms of the ohmic Q. The two Q factors can be combined in the total Q, dr by

1 1 1
- = — 4+ 2.2.21
QT QD Qoh

where the ohmic Q is given by Q.1 = Ro(froom)t/2(1 — ul',‘—:), Mo is the permittivity of
mp

vacuum and o the conductivity of the cavity wall.
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The power lost by the two mechanisms can be combined in a term Pio,, Which
represents the power that leaves the resonator by diffraction (Poy¢) and ohmically heating
the walls. The power lost by diffraction, P,y is what is measured experimentally and

will be defined later in equation 2.3.1b. Therefore the energy balance equation can be

written as
wU
= - 2.2.22
QT Plou
and
Pioss = nPin = ﬂVIa = ﬂelﬂ.LVIag 2.2.23

where V is the cathode voltage in volts and I, is the beam current in amperes. The
perpendicular efficiency, 7, accounts for the fact that only the perpendicular velocity
contributes to the beam-RF interaction. The ohmic losses and the power diffracted out
of the cavity are represented by the electrical efficiency, 7.1 = B2 ,/2(1 — v~1), which
represents the losses of the system independent of the mechanism. Using this definition

of 1e; the quantity Pj,,, can be re-expressed as

2 2
_ MYl g, 2.2.24

where v, = 1+ V/511 x 10°. In a cylindrical cavity with a cylindrical beam and a fixed
Gaussian RF profile, the stored energy, U can be written ((S.N. Vlasov (1969), Temkin
(1984))

U= eoEg(‘lr/2)1""(L/2lc§_)(1/,2,,‘D — m?)J2 (Vmp) 2.2.25

Substituting equations 2.2.24 and 2.2.25 into 2.2.22 yields an energy balance equation
of the form 2.2.19 with I given by

- QTIa 2(n—-3) A n™ 2 Jrzn:i:n(kJ-RC)
I=0. 3x_2 = 2.2
0.239 x 10 p” ‘N I ol ) (o2, - m2)J2 (vmp) 2.26

An expression for the linear efficiency is used to obtain an analytic form of the
normalized current I in the small signal regime (I = I,¢, where I, is the current required
for start of oscillation) from the energy balance equation. To derive an expression for the

linear efficiency, with the linearized Yulpatov equations, one makes use of an expansion
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in € < 1 of equations 2.2.17a and b. We then obtain the following expressions (Tran
(1985))

F =¢eF; 2.2.27a

6 = (60 — AE) +€b; + ... 2.2.27b
PL=1+ep1+€p, 2.2.27c

P2 =1+ 2ep; + €2(ps + 2py) 2.2.27d

Pl 14 ¢(n-1)p, 2.2.27e

F/p = eF, — ép F 2.2.27f

sin @ = sin((8o — A€)] + €6; cos[(6p — Af)] 2.2.27¢
cos 8 = cos[(fg — A€)] — €6, sin[(6y — AE)] 2.2.27h

After substituting these expressions into equations 2.2.17, we obtain & series of equations
in orders of . These are solved separately up to order €2. This procedure yieids equations
for p, p and @', where ' represents the derivative with respect to £. These equations
are integrated from +oo to —oo giving expressions for p; and p,. The perpendicular

efficiency, 1, is defined by

nm=1l-<w> 2.2.28

where <>=1/2x foz" df, and

1 2w
<w>= 7 / dfow(fp,& = +00) = 1+ < p? > +2 < p3 > 2.2.29
0

where we have used w = 1 + 2p; + p? + 2p, and < p; >= 0. Using the expression for
< p? > and < p; > the linear efficiency is obtained, after a short calculation, in the

form

—_——n 2.2.30



The starting current can now be obtained from the energy balance equation in the

small signal or linear regime, with the expression 2.2.30 for the linear efficiency 7 in.

The normalized starting current I,; becomes (Kreischer (1980))

4 22’

2.2.31

Iu=——z
wu? ur —n

where z = uA /4. As can be seen in Figure 2.2.2, which shows the starting current for
the second harmonic design mode of the tapered cavity (T Eg5,1) the starting current

is a function of the magnetic field through the detuning parameter, A. The minimum

starting current is obtained by minimizing with respect to A, and this occurs at

2 1/2
£ = Tin = 3 (5 +(5+1) ) 2232

The starting current corresponding to zmin is the minimum starting current shown in

Figure 2.2.2,
Starting Current Calculation

We now calculate numerically the starting current as a function of magnetic field for
a specific mode. This involves the calculation of I, at different values of A or magnetic
field. Since I,; is the normalized starting current, equation 2.2.26, which defines the
beam current normalization, is then used to give the current in amperes. In this section
we discuss two codes, CAVRF and LINEAR, that are used to calculate the starting
current.

As can be seen from equations 2.2.26 and 2.2.31 the diffractive Q, which gives the
total Q, and the effective interaction length need to be calculated numerically. These
quantities are calculated with a code, CAVRF (Fliflet (1981)), that solves for the eigen-
modes of a weakly irregular gyrotron cavity without the presence of an electron beam.
Specifically, the code solves the axial wave equation:

% +kif(z) =0 2.2.33
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Figure 2.2.2 Starting Current as a function of magnetic field for the design

second harmonic mode (T'Esg 5,1) in the tapered cavity experiment.
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where

kﬁ(z) = (w/c)? - k% (2) 2.2.33b

and k is the parallel wavenumber and k is the transverse wave number. This code

uses the initial boundary conditions:

:d{}:) - ik £(2) _ =0 2.2.34a
and ‘ -
_dfd(:) +ikf)] =0 2.2.34b

with z, the axial position of the cavity input and z; the axial position of the cavity
output. The result of the calculation is an estimated value of the eigenfrequency. The
diffractive Q, Qp is calculated by the code using @Qp = Re(w)/2iIm(w). Before dis-
cussing the method of calculating the effective interaction length, we need to determine
how this length should be defined. In the previous derivations the RF axial profile was
assumed to be a fixed Gaussian, and the effective interaction length was defined by equa-
tion 2.2.33b with kj = 2/L.ss. Using equation 2.2.33b with the frequency calculated
by CAVRF, one finds for the iris cavity, agreement between the parallel wavenumber
calculated by the wave equation and that obtained with the effective effective interac-
tion length of the RF axial profile alculated by CAVRF is very good. With the tapered
cavity, agreement is not as good, but is adequate for that experiment. Therefore one can
assume that the cold cavity RF field profile calculated by CAVRF can be approximated
by a fixed Gaussian profile. To further check the Gaussian profile assumption, a self
consistent nonlinear code (Fliflet (1987)) was used to calculate and plot the nonlinear
efficiency and the RF field profile as a function of axial position. By observing the axial
distance in the cavity, where the efficiency is not excessively small (ie. the effective inter-
action length), one can check whether this length corresponds to the length predicted for
a Gaussian axial profile. From these two plots, which were done for several fundamental
modes, it could be seen that when the field amplitude dropped by a factor of e (2.718)

the beam-wave efficiency became small. Therefore the effective interaction length can
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be defined as the axial distance where the RF field amplitude is greater than (1/e) x
maximum RF field amplitude, as shown in Figure 2.2.3, where the maximum amplitude
of the RF field profile has been normalized to unity. This is the definition of the effective
interaction length of a Gaussian profile. So the effective interaction length is estimated
from the grephical output of the axial RF field profile, f(z) using the definition discussed
above.

Using the total Q calculated from the diffractive Q and the effective interaction
length determined by CAVRF, the starting current can be calculated by the code LIN-
EAR (Kreischer (1982)) LINEAR is a code that calculates the starting current for a
Gaussian, sine or an arbitrary axial RF field profile in a cylindrical open resonator. If
the Gauesian profile is assumed the starting current equation used by LINEAR is equiv-
alent to the combination of equations 2.2.26 and 2.2.31, without the approximation for
the harmonic term (equation 2.2.9). As will be discussed in the nonlinear theory section,
the substitution of the proper harmonic term J), (kL7L), into the normalized current to
replace the approximation made in equation 2.2.10 is the only change necessary to ob-
tain an analytic expression for the starting current that accounts for the harmonic term.
The code LINEAR assumes that adiabatic field theory is valid in the gun region, and
that we have a monoenergetic, annular azimuthally symmetric electron beam that has
no thickness or velocity spread. In order to calculate the starting current we need to
specify the cathode voltage, the ratio of perpendicular to parallel velocity (8. /B)), the
cavity and cathode magnetic fields, mode, cavity radius and effective length, cathode
to anode distance, the total Q of the mode, the cathode radius, the RF field profile
and finally the harmonic number. Using this data, both the J,+n and Jn_n rotations
of the starting current are calculated as a function of magnetic field. This method of
numerically calculating the starting current will be used in all the analyses of starting

currents of the various experiments described in this thesis.
Challenges in Exciting the Second Harmonic

When examining the gyrotron linear theory, it becomes obvious why the second
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Figure 2.2.3 Normalized RF field profile of the second harmonic TE;3,, mode

where the effective interaction length L.g is shown
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harmonic is hard to excite. The most important issue is that the starting current
of the second harmonic is higher than that of the fundamental modes and therefore
the fundamental modes are usually excited first and suppress the harmonic modes.
At lower frequencies harmonic modes are occasionally observed (Byerly (1984)), when
there is a gap in the fundamental spectrum. However, at frequencies above 300 GHz,
the fundamental spectrum becomes very dense and, before this experiment, high power
second harmonic modes above 300 GHz have not been observed.

To further illustrate this point it is useful to calculate an approximate ratio of second
harmonic to fundamental mode starting currents for a standard cylindrical cavity with
a Gaussian RF field profile. We start with the normalized starting current equations
equations 2.2.31 and 2.2.32, and make the following approxirnations. Since yu is on the
order of 5 or 6 for the fundarnental modes, and 10 to 15 for second harmonic modes,

one can assume that u > n and z ~ 1/2, giving

I, 1 2.2.35

P

In equation 2.2.26 we note that for modes where m > 1 and p is small (whispering
gallery modes) which tend to be the most easily excited harmonic modes, and for strong
fundamental modes, Jm4n (ki R.) ~ Jm(Vmp) if the beam is positioned on the innermost
peak of Jynin(ki R.). To make a worst case scenario comparison, we assume that the
beam is positioned at the best position for not only the second harmonic modes, but
also for the fundamental. This turns out to be a reasonable assumption due to beam

spread and misalignment effects, which will be discussed later. In the other part of the
coupling term (Cpp) given by

Jvzn:i:n(kJ-RC)

JZ (vmp)(vhp — m?)

Ci, = 2.2.36

v2,, > m? and so Cmp =~ 1/ ,. Furthermore, vy, o k = 2m/) so that Cr,p o< A2, We

therefore obtain from equation 2.2.26

I < QrLBAX" "3 (\/L) \? 2.2.37
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Combining equations 2.2.35 and 2.2.37 and using equation 2.2.8 (for p) one gets

the following expression
S —-2n

llo™ L
Ia X -Tz'Q—T- 2.2.38

Using equation 2.2.38 and assuming that for the nt* harmonic B, jjo n = BL,lle 1, L1 =
L., Qr ~ QDmin = 4m(L/))? (this assumption was made to simplify the calculation,
but in an actual cavity, high efficiency operation requires a high Q cavity, @r > Q Dmin)
and A, ~ >),, where the subscripts 1 and n refer to fundamental and n** harmonic

quantities, yields an expression for the starting current ratio given by

Ia no__ QT lﬂi(:_n) ~ i(:—n)

I, Or . ~ = 2.2.39

What this expression means physically is that there are two factors determining the
starting current: the gain, which is lower by 82, at the second harmonic, and the
cavity Q, which is higher by about a factor of 4 at the second harmonic. Therefore,
the second harmonic starting current is comparable to that of the fundamental. For the
electron gun used in this experiment 3,, ~ 0.4. From this analysis we conclude that
the starting current of a second harmonic mode is larger than that of a fundamental
mode by at least a factor of 1.6, for typical fundamental and second harmonic modes.
However, even though the second harmonic starting current is typically only slightly
higher than the fundamental starting current, it is difficult to excite high frequency
second harmonic modes, due to the dense fundamental spectrum. After a mode is
excited, a nonlinear effect (Dialitis (1983), Zarnitsina (1974), and Nusinovich (1977))
raises the starting currents of the surrounding modes. Therefore to excite a second
harmonic mode, that mode must have the lowest starting current, so it can be excited
first. One can also see from equation 2.2.39, that either the total Q ratio Qr 2/QT 1
or the value of the normalized perpendicular velocity 31, must be increased to improve
the starting current ratio and lessen the difficulty of exciting high frequency harmonic
modes. Since an existing gun was used for the set of experiments discussed in this

paper, increasing (31, was not possible. Operating with a higher total Q ratio was a
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more practical solution and as discussed in Chapter 5, proved to be a successful method
for exciting high frequency second harmonic modes.

The above analysis does not include the beam spread effects on the second harmonic
starting current. Due to the fact that the beam has a finite thickness not all the electrons
are in the radial position corresponding to the maximum beam-RF coupling, and we can
therefore expect the second harmonic starting current to be higher than predicted in
this analysis.

Another difficulty is presented by the fact that thick beams can couple to several
different modes simultaneously, as can be seen in Figures 2.2.4a and 2.2.4b. The beam
thickness, or spread of the guiding centers normalized by the Larmor radius, §/rp, is
given by (Felch (1982))

K2 2nl, sin @

rL nf1al2vy, 10 Jy 3.2.40

where I, is the beam current, 6 is the angle of the cathode, n is the harmonic number, a
is the ratio of the main magnetic field to the magnetic field at the gun, vy, 4+, is the root
of the equation J; ;. = 0 that is closest to the beam position, and J, is the cathode
emission density. When we use the value of the magnetic field at which the iris cavity is
designed to operate, we find that the guiding center spread is 2.0 r, where the Larmor
radius is given by r; = v, /w,, with the cyclotron frequency w. = eB/ym, and v is
the component of the beam velocity perpendicular to the main field. As an example,
in Figures 2.2.4a and 2.2.4b, JZ , (kL R.), which is the part of the coupling coefficient
Cmp that varies with beam radius, is plotted against normalized beam radius rr/Ro,
where R, is the cavity radius, for the TE4 ;3,1 mode (Figure 2.2.4a) and the T'Eg 3 ;
mode (Figure 2.2.4b), which were the two strongest fundamental modes in the tapered
cavity experiment. The corresponding plot for the desired second harmonic mode, the
TEgs,; is shown in Figure 2.2.4c. From equation 2.2.26 we note that the starting current
is inversely proportional to the quantity Jmin (ki R.). The double peaked structures
correspond to the two rotations, Jp, 4, and Jp,_,. The shaded area corresponds to the

electron beam. Since the starting currents of fundamental modes are lower than those of
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second harmonic modes, only the fundamental mode spectrum needs to be considered
in a fundamental mode experim=nt. Even a thick beam will couple well to just one
or two fundamental modes. However, when operating with a second harmonic mode
a thick beam typically couples not only to the design mode but also to one or two
fundamental modes and possibly to several other harmonic modes. Only an infinitely
thin beam could be placed in a position that provides strong coupling to the desired
second harmonic mode and no other. We conclude that the initial simplified analysis
assuming & thin beam is not valid. One has to assume that even if the beam is centered
at a position where the fundamental is weak, strong coupling to the fundamental will
occur due to beam thickness or misalignment. As the frequency increases this problem
becomes worse, because the cavity size decreases and the radial extent corresponding to

the beamspread occupies a larger fraction of the cavity.

Starting currents can also be affected by misalignment, which can position the beam
in a non optimal position. Misalignment effects may be more severe than beam spread
effects. Whereas beamspread tends to be an averaging of areas with strong and weak
effects, misalignment may cause the beam to be centered on an area of weak coupling to
the harmonic modes or strong coupling to fundamental modes creating a larger increase

in the starting current ratio, I,e2//,¢1.

The conclusion is that in order to excite a second harmonic mode the fundamental
modes need to be suppressed. In this thesis three different methods which have been
used to try to suppress the fundamental modes are discussed. In the first experiment,
the straight cavity, a second harmonic mode was chosen that existed in a frequency gap
in the fundamental spectrum. This experiment suffered from the thick beam effects
described above. In the second experiment we tried to selectively perturb and thereby
suppress the fundamental modes, by attempting a slotted cavity experiment with axial
slots cut in the cavity wall designed to accomplish this purpose. In the third experiment,
an iris at the output end of the resonator’s straight section selectively trapped the second
harmonic modes more than the fundamental modes and allowed second harmonic modes

to be excited before the fundamental modes.
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2.3 Nonlinear Theory

In this section the full Pendulum equations will be used with the energy balance
equation in the form given by equation 2.2.19, to calculate the nonlinear or large signal
perpendicular efficiency and the output power, P,y:. In the linear analysis, expansions
of quantities such as the perpendicular momentum and the slow time scale variable,
8, were made and the higher order terms were disregarded as small. In a nonlinear
analysis, these terms are no longer small, and therefore must be kept. For this reason
a simple analytic expression for the perpendicular efficiency cannot be obtained and
it must be calculeted numerically. The perpendicular efficiency is defined by equation
9.2.98. The quantity < w > is calculated numerically using a code developed at MIT by
Danly, which numerically integrates the pendulum equations with a Gaussian axial field
profile, yielding a value of w for a specified value of F. To get an ensemble average, 32
electrons uniformly distributed in space were used to give an approximation to <w >
and therefore i, . The efficiency calculated by this code is also optimized with respect
to the detuning, A. A contour plot has been generated by calculating the optimized
efficiency for a large number of values of F and p where the contours are those of
isoefficiency as shown in Figure 9.3.1 for the second harmonic. For a fixed value of p
the F - u plot gives the efficiency, 7. , for a specific value of F. To determine the proper
pair of F, 0. values the energy balance equation 2.2.19, which shows the relationship
between F, I, and 7, , must be satisfied.

To develop an energy balance equation that does not use the normalized beam
current we substitute equations 2.2.23 and 2.2.25 into 2.2.22 and rewrite the resulting
equation in terms of F, p and A as shown below

_ 2155 x 10°F?

(1 Rpyr2af™ "0 (1 ~ 0.561,8)° (Znnl)z Jm(Vmp)* (Vinp —™°)

#= 8P°1_-¢ n" Jm:l:n(k_LRe)
2.3.1a
where we have used
Pout = PiossNoh = nLﬂelnth(vOltS)I(deS) 2.3.1b
Qch 2.3.1c

oh —
Mok = Qb + Qon
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4 L\?

= (X) 2.3.1d
In the above R, refers to the reflection coefficient at the output end of the resonator.
The reflection coefficient at the input end is assumed to be unity, which is a reasonable
assumption for an actual gyrotron system where large amounts of power cannot be
allowed to travel towards the electron gun and cause damage. There is a unique point
on Figure 2.3.1 that satisfies equation 2.3.1a and thereby specifies F and 7 for a specific
. After the perpendicular efficiency has been determined, the output power is calculated
using equation 2.3.1b.

A study was conducted to determine whether the approximation for the harmonic
Larmor radius term J),(k L) given in equation 2.2.10 introduced a large error into the
efficiency calculation. Using the high power mode, the TE,3 3 ; in the “high Q" output
iris cavity experiment discussed in Chapter 5, it was found that the error was less
than 10 %. Also, modifying the energy balance expression of equation 2.3.1a, reduces
the error in the efficiency calculation introduced by using the uncorrected equations
of motion (equations 2.2.17a and 2.2.17b) to less than 1.4%, even at third harmonic.
This correction is equivalent to modifying the normalized beam current expression given
in equation 2.2.26 by using the actual finite Larmor radius term, J}, (k. rL) instead of
the approximation. Cases were run at small beam current to check the expression
for the starting current, which is. calculated from the linear efficiency. Even in these
cases, the error was less than 1.4%, showing that that the code ISTART, which uses an
analytic expression for the starting current with the proper finite Larmor radius term,
will calculate the starting current with reasonable accuracy. Much larger errors and
corrections are caused by other effects such as window losses and misalignment.

As mentioned in the linear theory section, the beam spread effects need to be
considered in an accurate analysis of harmonic interactions. In the nonlinear theory, the
beam spread effects lower the perpendicular efficiency since not all the electrons are in
the radial position of sirongest beam-RF interaction or most efficient energy transfer.
However, since the beamspread for the experiments described in this thesis is only 2

Larmor radii, the decrease in efficiency is small.
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Summary

In this chapter a linear and nonlinear theory for the gyrotron interaction has been
developed. To simplify the analytic theory, a slow time scale, which only considers the
motion of the guiding centers, was used. The linear theory was used to develop an
analytic expression for the starting current and the efficiency and output power were
derived from the nonlinear theory. The first sections of chapters 3, 4 and 5 will deal with
the design philosophy and list the starting currents and efficiencies for each experiment

calculated with the methods that have just been described.
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CHAPTER 3
Experimental System
3.1 Experimental Setup

The experiments described in this chapter were conducted with a gyrotron tube
that has been in operation since 1982 at the Francis Bitter National Magnet Laboratory.
The design of the system is described in detail by Temkin (1982). A schematic of the
system is shown in Figure 3.1.1. On the far left side is the electron gun, which produces
an annular electron beam. The beam moves to the right into a region of magnetic
compression. In the region where the beam is compressed to increase its perpendicular
velocity, the beam passes through a beam tunnel. After leaving the resonator, which
is in a constant high magnetic field, the beam follows the magnetic field lines which
cause it to be deposited on a copper collector. The collector also acts as an overmoded
waveguide for the RF radiation generated by the resonator. The microwaves leave the
vacuum region by passing through a fused quartz window.

The electron beam is generated by a magnetron injection type gun built by Varian
Associates (Felch (1982)) that produces a nonlaminar flow of electrons. The gun was
designed to have a perpendicular to parallel velocity ratio (v, / v)) of 1.49. Beam cathode
voltages of up to 80 kV have becn used and a maximum current of 15 A has been
observed. The gun is operated in pulsed mode with a pulse length of 1-2 usec and a
repetition rate of 4 Hz.

A beam tunnel is needed to transport the beam through vacuum fbr the distance
of the field gradient before the cavity and prevent spurious oscillations. If no beam
tunnel is used mirroring could occur due to voltage depression of the beam. Voltage
depression causes the kinetic energy of the beam to be changed into potential energy,
thereby becoming unavailable for the beam-rf interaction. The beam tunnel acts as a
ground plane near the beam and decreases voltage depression AV given by

_ 30IG(R., As)

3.1.1a
By

AV
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with the quantity G given by

Ay R,
G(RQ,A;,)_O.75(R=> +2!"(R,+Ab/2) 3.1.1b

where Ay = 2r, + A, is the beam spread, A, is the radial spread of the guiding centers,
rr is the Larmor radius, I is the beam current, R, is the beam radius, and R, is the
cavity radius or radius of the conducting surface nearest to the beam. The first term
in G represents the voltage drop from R, to the beam’s edge and the second term is
the drop from the outer edge of the beam to the nearest conductor. The second ‘erm
in G is minimized by bringing a conductor as close as possible to the edge of the beam,
without perturbing the beam. The beam tunnel minimizes the voltage depression in the
compression region by making the second term in G as small as possible. At the gun end
the inner radius of the tunnel is the largest. The radius decreases towards the cavity
following the compression of the beam. Instead of using a solid copper piece for the
ground plane, it consists of copper discs separated by discs of lossy dielectric to absorb
any RF radiation generated by the copper. The copper discs have a slanted profile for
two reasons. The first is to prevent these discs from acting as small resonators. Secondly,
by extending the copper radially inward further than the dielectric, the copper discs act
as beam scrapers and save the dielectric from beam damage.

The main magnetic field is produced by a Bitter magnet that generates a solenoidal
field. Bitter magnets are water cooled copper magnets that are capable of producing
high dc magnetic fields. In the tapered harmonic cavity, the slotted cavity experiments,
and part of the iris cavity experiments, a 10 T Bitter magnet was used. In the later
part of the iris cavity experiment, a 14 T Bitter magnet was used.

A small coil centered over the cathode, capable of generating .2 T is used to vary
the magnetic field compression ratio, Bps/B, where By is the field at the cavity and
the field at the gun, B, is given by

B, = B, + 000461, 3.1.2

and By, is the strength of the main field at the cathode and I; is the current in the

gun coil. The negative sign in equation 3.1.2 refers to the case where the field in the
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gun coil is opposing the main field, and the plus sign indicates that the field is adding to
the main field. Electron guns are designed to operate at a specific value of By /Bg. If
operating below the designed main field a field at the cathode adding to the main field

is needed so that the electron beam is not mirrored back to the cathode.
3.2 DIAGNOSTICS

In this chapter, the diagnostics used for the set of experiments covered by this
thesis will be discussed. Diagnostics were required for three types of measurements:
signal strength, power and frequency. Since second harmonic experiments were con-
ducted, methods were needed to filter out the fundamental signal and to estimate the
percentage of second harmonic radiation present. This chapter will be divided into three
sections. First the signal strength diagnostics will be discussed, followed by the power
measurement diagnostics and lastly the frequency system. The methods of filtering out
the fundamental modes and estimating the fundamental-second harmonic mixture will

be covered in the section where that method was used.
Signal Strength Measurements

The signal strength of a mode is measured by video diodes as shown in Figure
3.2.1. To measure the second harmonic and fundamental signals separately, two different
systems were used, referred to here as the fundamental and the second harmonic system.
It is important to be able to monitor the experiment so that one can vary the system
parameters, such as magnetic field or cathode voltage, in a systematic fashion, so as to
maximize the second harmonic signal and minimize the fundamental signal.

The fundamental system used a WR. - 6 size waveguide. Although the operational
frequency range for the WR - 6 waveguide is 110 - 170 GHz, higher frequencies will
also propagate in this guide. An Aerowave video diode detector was used to rectify the
RF emission so that the pulse envelope can be observed on an oscilloscope. A Hughes
model 45728H-1000 calibrated dial attenuator was used to limit the signal strength to a

level that would not damage the diode element. A Hughes standing wave ratio (SWR)
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Figure 3.2.1 Schematic of the system used for signal strength measurements.
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wavemeter (model 45718H-1000) with a 108 - 165 GHz range was also included in order
to measure the frequency of signals which are in the wavemeter’s frequency range. The
measurements made with this detector are used as only an estimate of the fundamental
mode frequency, since the accuracy of the heterodyne frequency system, which is also

part of the diagnostic setup, is better than that of the wavemeter.

The second harmonic system uses a WR. - 3 band waveguide where the radiation
propagates in the fundamental mode of the guide for frequencies in the range of 220 -
395 GHz. Since the detector wafers are the same for the WR - 6 and WR - 3 diodes,
a wafer, which is the part of the detector assembly that contains the diode, was chosen
that has good sensitivity at high frequencies for high frequency measurements. To limit
signal strength, two WR - 3 variable attenuators were used. In this system a filter was

needed to eliminate the fundamental signal.

A study was conducted to determine the best type of filter. The optimal filter would
strongly attenuate the low frequency fundamental emission and not diminish the second
harmonic signal at all. Three different types of filters were studied: a pipe filter, several
“gmall holes” filters and cutoff horns. The pipe filter, shown in Figure 3.2.2a, consists
of a 0.95 cm high by 0.95 cm wide (the area of the input of a standard WR - 3 horn
is 0.33 cm by 0.33cm) honeycomb of 1 cm long pipes stacked together in the densest
possible manner. This filter is usec by placing it in front of the WR-3 horn of the second
harmonic diode system. The stainless steel pipes, which had an inner diameter of 1/40
inch have cutoff frequencies below 277 GHz, which is above the highest fundamentai
frequency observed in the region surrounding a 400 GHz second harmonic mode. The
“small holes” filters (Figure 3.2.2b) were blocks of aluminum where a 1/2 inch by 5/16
inch grid of 1/40 inch holes were drilled as closely as possible and would also be placed in
front of the WR-3 horn. One of the “small holes” filters had a thickness T of 0.16 cm and
the other was 0.95 cm thick. The high frequercy attenuation of these two types of filters
was measured by using a CH3 F far infrared laser (Evangelides (1989)) as a pulsed 604
GHz source and a Laser Precision pyroelectric detector to measure the power with and

without the filter in front of the source. In Table 3.2.1, the results of this measurement
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are summarized. Due to a pulse to pulse power variation an average was taken over
10 shots for each measurement. The uncertainty intrcduced by the power variation in
the attenuation is on the order of £+ 1 dB. It was found that the pipe filter has a lower
attenuation than either of the “small hole” filters. Since the pipe filter and the thick
«gmall holes” filter have the same thickness, the attenuations can be expected to be very
similar. The lower value of signal attenuation in the pipe filter may be due to the fact
that the pipes can be packed to give a higher fill factor (more empty space). Within the
error bars, the attenuation of the two “small holes” filters is similar, indicating that the
filter thickness is not as significant as the fill factor. The thickness is significant only in
terms of the ohmic losses, and these losses may cause a smaller variation in attenuation
than the error bars. The pipe filter, which had the lowest attenuation, was tested with
the WR-3 Even when a strong harmonic mode was excited, no signal was detected when
the pipe filter was placed in front of the input horn. Although the signal strength was
attenuated by the pipe filter, some signal should have been detected. The problem
may be caused by a radiation pattern mismatch, since the pipes have a broad radiation
pattern and the horn has straight very directional pattern. Therefore a focussing lens
may be needed to remedy this problem. system, by placing the filter in front of the
input WR-3 horn.

By using a horn that can be attached to the input waveguide as a filtering device,
one has a simpler system. A filter horn can be made that has a lower high frequency
attenuation by virtue of a very smooth interior surface plated with a high conductivity
material such as gold or copper and a sufficiently short cutoff section. The filter horn
assembly that was used in this work (Figure 3.2.2c) has a standard WR - 3 screw
connector attached to the section of WR - 3 waveguide, which tapers down to a cutoft
section. At the other end of the cutoff section is a standard gain (25 dB) WR - 3 horn.
Three custom made filter horns were made with cutoff frequencies of 280 GHz, 300 GHz
and 400 GHz. Since the attenuation of the high frequency second harmonic modes that
were not cutoff increases with the horns cutoff frequency, due to the decreasing size

of the cutoff section, one should use the cutoff horn with the lowest cutoff frequency
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TABLE 3.2.1

Measured Attenuations for Various Cutoff Filters at 604 GHz

TYPE OF FILTER ATTENUATION
(dB)
Pipe Filter 8.94
Thin ‘small holes’ filter 11.3
Thick ‘small holes filter 12.4
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that still filtered out the fundamental modes. The filter horn with a cutoff frequency
of 400 GHz was needed when the frequency of the second harmonic emission is around
500 GHz, since the fundamental modes tended to leak through the horn with a 300
GHz cutoff frequency. Fundamental leakage is caused by the fact that signals with
frequencies below cutoff have an attenuation that increases as frequency decreases, so
strong signals with frequencies 30 - 50 GHz below the horn cutoff frequency can be
seen by the diode. Two methods were used to check that only second harmonic signal
was being detected by the diode. The input of the horn was covered with foil, to make
sure that the signal was propagating through the horn and not bypassing it. Secondly,
a piece of plexiglass was put between the detector and the gyrotron to check that the
signal is second harmonic emission. Since the attenuation in plexiglass increases with
frequency, as will be discussed in the next section, a second harmonic signal will be
much more attenuated that a fundamental signal. In this fashion, the fundamental and

second harmonic signals can be measured scparately.

Power Measurements

To measure power a modified Scientech thermoelectric disc calorimeter (Blaney
(1984) and Kreischer (1984)), model 36 - 0401 with a 10 cm aluminum plate absorbing
surface was used. An array of thermoelectric elements connects the aluminum plate to a
heat sink and senses temperature rises in the plate. To improve the absorption of the 10
cm aluminum plate for frequencies in the millimeter regime, a uniform layer of 3M Nextel
paint was applied with roughly a 0.3 mm thickness. A measurement of reflectivity as a
function of frequency (Figure 3.2.3) was made for the calorimeter from 100 - 400 GHz
with a dispersive Fourier transform spectrometer (Afsar (1984)). As shown in Figure
3.2.3, we note that the calorimeter is quite a good absorber down to irequencies of 100
GHz. A photographic record was made of the video diode signal, which showed the pulse
shape. Since the calorimeter measures only average power, pulse shape information is
necessary to calculate the peak power.

With second harmonic mode power measurements, it is necessary to be able to esti-
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mate the fraction of second harmonic and the fraction of fundamental emission present.
This can be accomplished by using a sheet of plexiglass, which is a material whose at-
tenuation coefficient o' increases approximately as w? for frequencies in the millimeter

regime (reference Mon and Sievers (1975), Strom (1974) and Afsar(1987)), where
Pylesi = Poe™ '@t 3.2.1

and P, is the total power, Pplzi is the power that is transmitted through the plexi-
glass sheet, ¢ is the the sheet thickness, and w is the frequency of the signal. Since the
absorption in plexiglass is not uniform between different manufacturers and sometimes
even different batches from the same manufacturers, it was necessary to measure the
attenuation of the plexiglass we had bought (Acrylite GP manufactured by Cyro Indus-
tries) and compare the measured value of o' with the values quoted in the literature
for a frequency of 141 GHz. The experimental setup for this measurement is shown
in Figure 3.2.4. A Hughes (model 47178H-1102) IMPATT diode was used to provide
the 141 GHz signal whose frequency was measured by a Hughes SWR wavemeter. A
variable frequency light fan chopper (EG and G Princeton Applied Research model 192)
and a Ithaco dynatrac model 393 lock-in amplifier, synchronous power detector were
used to allow for greater sensitivity, and a Hughes calibrated WR - 6 dial attenuator
was included to limit the input power. The attenuation o' was measured for sheets of
plexiglass varying from 1/2 inch to 3 inches in 1 /2 inch intervals at a fixed frequency.
It was important that the plexigless was placed perpendicular to both horns, so as to
minimize the effects of the reflections at the two surfaces of the plexiglass. The vari-
ations in attenuation at certain thicknesses may have been caused by these reflection
effects. Figure 3.2.5 shows the attenuation in dB as a function of plexiglass thickness
for various frequencies. The line in Figure 3.2.5 identified by the open circles is the data
taken at 141 GHz. From that data we obtain a value of o' = 0.48 + 0.05 which is close
to the result obtained by Mon and Sievers. This can be seen in Table 3.2.2, which lists
the value of o' we obtained and the values obtained by Afsar, Strom et al, and Mon
and Sievers. The variation between the vaiues of a' may be caused by outer surface

reflection effects or by using plexiglass from different manufacturers. The attenuation
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curves for the other frequencies in Figure 3.2.5 were calculated assuming that o' o« w?.

With this graph one can now calculate the attenuation of a sheet of our Acrylite GP if
the thickness of the sheet and the frequency of the signal is specified.

To estimate the mixture of fundamental and second harmonic signal present, two
power measurements are taken with the calorimeter. The first one, taken without the

plexiglass sheet measures P,, where
P,=T1P, + 2P, 3.2.2

and P, and P; are the values of power in the fundamental and second harmonic modes
respectively. T', which is estimated from Figure 3.2.3, refers to the absorption coefficient
of the calorimeter &t a specific frequency, and the subscripts 1 and 2 refer to the fun-
damental and second harmonic modes respectively. In the next power measurement a
sheet of plexiglass is placed between the calorimeter and the output waveguide of the

gyrotron window. This measurement gives Ppi.zi where
Pplezi = T\rP+ Yol Py 3.23

and o'(dB) = 10log;oY', where o) and o), which can be obtained from Figure 3.2.5, are
the attenuations of the fundamental and the second harmonic modes in the plexiglass.
From equations 3.2.2 and 3.2.3 the fraction of fundamental and second harmonic emission
present can be estimated where

_ Po'rlz - Pplczi

=t o)

3.3.4a

Pplezi - T'l,Po
T2(Y5 — 1Y)

In these measurements 1/2 inch thick sheet of the calibrated plexiglass was used. A

thicker piece of plexiglass causes the second harmonic modes to be too attenuated and
at smaller thicknesses the surface reflection effects can cause the transmitted power
to be too semnsitive to the orientation of the plexiglass. For the second harmonic modes

measured at 417 GHz and 467 GHz discussed in Chapter 6, the error bars on the percent
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TABLE 3.2.2

Attenuation of Plexiglass at 141 GHz

REFERENCE ATTENUATION
(neper/cm)
Afsar 0.4
Mon and Sievers 0.46
Strom et al. 0.37
This thesis 0.48
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of fundamental emission present in these measurement are taken to be 8 % where the
power levels for the 417 GHz and 467 GHz modes were 15 kW and 22 kW respectively.
At these frequencies for power levels of 15 - 22 kW, the power transmitted through
the plexiglass is too small to be measured by the calorimeter, and a small amount of
fundamental emission may alsc be present that would not be detected by the calorimeter.
Therefore, the error bars are based on the largest amount of fundamental mode power
that will be undetected by the calorimeter and so one can only claim mode purity to

within 8%.
Frequency Measurements

Although the Hughes wavemeter can be used to make approximate measurements of
the lower frequency fundamental modes, other methods of measurements are needed for
the fundamental modes above 170 GHz and the second harmonic modes. A Fabry-Perot
interferometer can be used, but even the most sensitive interferometers can only measure
the frequency to within 0.5% accuracy. At 400 GHZ, this corresponds to an uncertainty
of 2 GHz. To get better accuracy a heterodyne receiver was used. With a heterodyne
receiver, measurements to within one part in 10° can be made. The resolution of the
lineshape measurement is 10 MHz, which is approximately a factor of ten better than a
Fabry-Perot interferometer. Another advantage provided by the heterodyne receiver is
the fact that the data can be colleéted in the duration of a single pulse, so the lineshape
of a single shot can be recorded. The high resolution and single shot capability were a
result of using a SAW (surface acoustic wave) delay line as the IF spectrum analyser.
The range of the receiver can be as large as 60 - 780 GHz. However, since in this
experiment, a Hughes D band harmonic (model 47448H-1002) mixer diode was used, it
is difficult to detect frequencies above 500 GHz, as will be discussed later.

Operation

The schematic of the heterodyne mixer system (Evangelides (1989)) used in the

experiments discussed in this thesis is shown in Figure 3.2.6. The gyrotron emission
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is detected by the Hughes harmonic mixer diode. The mixer diode is also driven by a
local oscillator (LO), which is a narrow linewidth stable source. An Avantek (model
AV-26040) YIG tuned FET oscillator with a 26.5 - 40 GHz frequency range and a —3
dB linewidth of 5 kHz was selected as the source. Before the LO signal enters the
mixer, 4% of the signal is diverted to a counter that measure the frequency of the
LO signal. To maintain the high level of accuracy of this measurement technique, the
counter must be very stable. Therefore an HP (model 5352a) microwave counter with a
temperature stabilized crystal oscillator was used. When the diode was driven with the
LO, harmonics of the LO frequency were generated due to the highly nonlinear nature
of the mixer diode. These harmonics then combine with the LO signal to generate sum
and difference frequencies. Since a SAW device with a 1 GHz center frequency and a 500
MHz bandwidth was used, only the difference frequencies were analysed, and tunability
in the LO source was needed to insure that the difference was in the operating range
of the SAW device. At the next step the difference frequency, also known as the IF, is
amplified. To decrease the level of electronic noise, the IF is gated and filtered. The
filtered signal is separated into its different Fourier components by the SAW device
(Evangelides (1989)).

The SAW device acts as a linear dispersive delay line. If the IF signal frequency is
in the bandwidth of the SAW device, the transit time of the signal is linearly inversely
proportional to the IF frequency. In the SAW device shown in Figure 3.2.7, a piezoelec-
tric transducer converts the IF signal electromagnetic wave into an acoustic signal of
the same frequency. This acoustic wave travels along a surface etched with an acoustic
grating with gradually increasing specing. \The wave travels through this grating until
the spacing of the groove satisfies the Bragg condition for a wavelength contained in the
signal. At this point, the fraction of the signal corresponding to that specific wavelength
is reflected 90° and is reflected 90° once again by a grating with the same spacing on
the other side of the symmetric series of grooves shown in Figure 3.2.7. The reflected
signal travels down a path parallel to the original path and is converted back into an

electromagnetic wave by a second piezoelectric transducer. Since the Bragg condition is
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frequency dependent, the transit time iucreases for signals with lower frequencies that
are reflected by the gratings with larger spacings. In this fashion, the SAW device
behaves as a linear dispersive delay line.

The output from the SAW device is amplified and then rectified by a video diode.
A storage oscilloscope is then used to display the rectified signal and allow one to see
the lineshape as well as the frequency. To measure the frequency, the LO must be tuned
to & frequency where the IF is within the bandwidth of the SAW device. Since the IF
frequency, vrF, is given by

|nvrLo — vRF| = vIF 3.2.4

where vo is the frequency generated by the local oscillator, n is the harmonic of the

local oscillator signal that is being mixed with the RF signal, and vgp is the frequency of

the RF signal, two local oscillator frequencies will produce a IF frequency corresponding

to the SAW device center band frequency (1 GHZ for the system described in this

thesis). These two frequencies are called the upper (v}&) and lower (vit8) sidebands,
lsb

where v¢% > 1*8. When the upper and lower sideband frequencies are known, the RF

frequency and the harmonic number n can be determined from the relation

2
- .bUIFl b - 3.2-5
pasb _ ls
LO LO

and equation 3.2.4. The existence of two sideband frequencies for each mode that are
2 GHz apart allows one to distinguish between actual signals and electronic noise or to
differentiate signals, if more than one frequency is present.

In Figure 3.2.8 the experimental setup for the frequency measurements is shown. A
1/2 inch diameter copper pipe was used as an over moded guide to couple the radiation
out of the shielded box and into the harmonic mixer diode. Since the mixer will be
damaged by more than 100 mW of combined RF and LO power, two Hughes WR-6
level set attenuators (model 45738H-1200) were used in front of the mixer diode. When
using a heterodyne receiver to measure frequency, it is not necessary to use a harmonic
mixer diode. Other devices, such as a Schottky diode can be also used. The harmonic

mixer, however, has a definite advantage when conducting second harmonic experiments,
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since the RF signal enters through a waveguide structure, rather than an open structure
(Schottky diode), where the RF signal directly illuminates the diode detector element.
With a waveguide structure, a filter horn can be attached to filter out the fundamental
signals. This is important, because, the amplitude of the harmonics that the mixer
diode generates are roughly given by the Fourier components. The higher frequencies
of the second harmonic modes require higher mixer harmonics which have less power.
The combined LO and RF power comprise the signal strength of the IF signal, eo by
increasing the level of RF power, one can compensate the decrease in LO power to some
extent, but not completely. This decrease in combined signal strength can be observed
in the signals that are very high frequency, such as the TE;7,2,1 (503 GHZ), which were
so weak that they were hard to distinguish from the noise, even when the attenuation
in front of the mixer diode was decreased. Therefore, since the fundamental RF signals
are sometimes stronger than the second harmonic RF signals and the fundamental IF
signal strength is often stronger than that of the second harmonic, a second harmonic
signal might go undetected, because the fundamental signal is saturating the frequency
system. For this reason it is very useful to have the capability of attaching a filter horn
to eliminate the fundamental signals. Also, when using a filter horn, one hes an extra

test as to whether the observed signal is second harmonic emission.

With this diagnostic system ir.formation about the lineshape as well as the frequency
can be obtained on a shot to shot basis. To illustrate this capability, some data from the
experiment discussed in Chapter 6, is used. Figure 3.2.9a shows the frequency spectrum
of a typical shot for the TE;3 2, second harmonic mode taken with a digitized storage
scope. Data was taken for this mode at three other operating points where this second
harmonic mode is excited and no fundamental modes were present. The frequency
spectrum of these other data points was very similar to Figure 3.2.9a. The width of
the pulse is approximately 0.12 psec and the delay on the storage scope is set so that
1psec represents 100 MHz. Thus the linewidth, or spread in frequency, is 12 MHz for the
mode with a frequency of 467 GHz. Similarly, the frequency spectrum for the TE7,.2,1
(Figure 3.2.9b), which oscillated at 503 GHz showed that this mode had roughly a 12
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MHz bandwidth. However, the sensitivity of the bandwidth measurement is limited by
the resolution of the SAW device (Evangelides (1989)), which is 10 MHz. Therefore,
since the measured bandwidth is so close to the limit of the SAW device sensitivity, the

actual bandwidth may be slightly less than 12 MHz.

SUMMARY

In the set of experiments described in this thesis, three types of measurements
were made: signal strength, power and frequency. With each of these measurements
the fundamental mode needed to be filtered out or the fraction of fundamental present
had to be estimated. A set of filter horns were used to prevent the WR-3 diode from
detecting fundamental emission in the signal strength measurement. Similarly, the filter
horns were attached to the harmonic mixer, to avoid saturating the frequency system
with the stronger fundamental signal. Since plexiglass is a low pass filter that can
be calibrated, where the attenuation increases with frequency, using the plexiglass sheet
with the calorimeter, provided a simple method of estimating the fraction of fundamental
present. The plexiglass sheet also gives an easy way to check whether the observed signal
is a harmonic signal, because the harmonic signals, due to their higher frequencies, are

much more attenuated than the fundamental signals.
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Figure 3.2.9a Frequency spectrum for the TE,5 3,5 second harmonic mode that

oscillates at 467 G H z.

i2aU CSAWPLE o

Figure 3.2.9b Frequency spectrum of the second harmonic T\ 745 mode that

oscillates at 503 G H =.
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CHAPTER 4

TAPERED CAVITY EXPERIMENT

In this chapter we discuss the first high frequency (> 350G H z) harmonic exper-
iment. A tapered cavity design was used because past experience showed that lower
frequency (< 350G Hz) second harmonic emission can be produced by tapered cavities
(Byerly (1984)). As mentioned in Chapter 2, fundamental modes generally have lower
starting currents than the harmonic modes, explaining why second harmonic modes are
often observed in the regions of magnetic field where no fundamental modes exist. Since
any given mode can be excited only over limited range of magnetic field, it was assumed
that the regions of magnetic field devoid of fundamental modes are equivalent to gaps in
the fundamental frequency spectrum. The relationship between the magnetic field and
frequency is obtained by applying the resonance condition for a gyrotron interaction,
w ~ muw, where w is the rf frequency, n is the harmonic number, and w, = eB/ym is the
cyclotron frequency. The frequency w of a TE,, p,q mode is given by

wz

= =ki +kf 4.0.1

c2

where ki = Ump/Ro, k) = 2/L.ss for a mode with ¢ = 1 and a Gaussian RF field
profile, L. is the axial interaction length of the RF field in the cavity, the mode index,
Ump 18 the pt* root of J}, = 0, and R, is the cavity radius. For a gyrotron operating
near cutoff (k1 > k), the frequency, f, of a TEpp mode can be approximated by

f= ;:’;P 4.0.2

and from the resonance condition one sees that vmp1 ~ %umpz where the subscripts 1 and
2 refer to the fundamental and second harmonic modes respectively. Therefore, equa-
tion 4.0.2 shows that gaps in the frequency spectrum are a result of the spacing of the
values of ¥mp, which are not evenly distributed as shown in Figure 4.0.1. To achieve the
optimal isolation from fundamental modes, one would like to choose a second harmonic

mode where the value of %umpg is in the center of as large a gap as possible between
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consecutive values of fundamental mode index vmp1, and aleo satisfies the system con-
straints discussed in the next section. The next section will outline design procedures
that are relevant to all of the rescnators in this paper as well as the design of the tapered

cavity. The experimental results will be presented and analysed in Section 4.2.
4.1 DESIGN PROCEDURES

The decisions to use an existing electron gun and to operate in the submillime-
ter regime imposed a number of constraints on the design of this experiment and the
operating point. A Varian pulsed magnetron injection gun (Felch (1982)) that has a
peak current of 10 A at 65 kV with a pulselength of 1 - 2 psec was used to produce
the electron beam. The cathode radius is 0.92 cm and 8, /B8 = 1.5 where 81 and f
are the normalized perpendicular and parallel velocities respectively. The radius of the
emitter strip and the magnetic compression, which is the ratio of the magnetic field at
the cavity over the magnetic field at the gun, determine the normalized beam position,
k, R., where R, is the beam radius at the cavity. Since k; ~ k = 2w/) where A is the
wavelength, the normalized beam position given by adiabatic theory is

By
B,

k,R. = %R,, 4.1.1

where w is the frequency, R; is the emitter strip radius, B, is the magnetic field at the
cavity, and B, is the magnetic field at the cathode. The magnetic field at the cavity is

calculated from the resonance condition for a gyrotron
w = w + k) 4.1.2

where k is the parallel wavenumber and v is the parallel beam velocity. Therefore to
operate at a frequency of 400 GHz, a magnetic field around 8 Tesla is needed. Past
experience with high frequency operation (Danly (1985)) using the same gun suggests
that at this operating point By ~ 0.23 Tesla is needed for high efficiency operation.
Specifying the gun and cavity magnetic fields fixes the magnetic compression, B,/B,,

as well as the beam position, k; R, ~ 13.0.
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When selecting a design mode, one wants strong coupling to the preferred second
harmonic mode and weak coupling to other fundamental and second harmonic moder.

The coupling strength for a gyrotron interaction is given by
sznzl:n(k-LRﬁ)

4.1.3
Vﬁl;b - m2)"72n(ump)

Smp = 7

where n is the harmonic number and the Bessel function J,4n is a measure of the RF
harmonic field content at the beam position, k, R.. Sign choice in the order of the
Bessel function depends on the azimuthal rotation of the mode. The starting current,
I,;, which is the current required to excite a mode in an oscillator, is proportional to
S,;:,. Therefore, to lower the starting current of the desired mode relative to competing
modes, Sp,p of the desired mode is maximized. To minimize beam interception by the
wall the beam radius was restricted to be less than 0.9 R,.

Figure 4.0.1 shows the mode indexes, Vmp, plotted for the TE modes, and one
can see the frequency spacing of the different modes. For the fundamental modes that
satisfy the above constraints, the largest gap in the fundamental mode index spectrum
is around vmp = 12, between the T E1o,1,1 and the T E43,1 modes. The second harmonic
T Eg 5,1 mode index is in the center of that gap ((1/2) vs,s = 12.3), which implies fairly
good isolation from fundamental modes. Additionally, there is a sparse second harmonic
spectrum around the TEgs, . From these considerations, the T Eg 5,1 was a logical mode
to pursue, even though due to the system constraints the beam cannot be placed exactly
at the radius to obtain the maximum coupling coefficient.

When the mode has been selected, the cavity radius is determined from R, =
vmpc/w. The next step is to use linear theory to calculate the fundamental and second
harmonic starting currents of a cavity for a given Q and effective interaction length
(Kreischer (1983)). As discussed in Chapter 2, the diffractive Q and the effective in-
teraction length are calculated using a cold cavity code. To prevent excessive mode
conversion, the input and output taper angles were required to be less than 5°. The
cavity length and taper dimensions are determinzd by designing a cavity with the start-
ing currents of the fundamental modes as large as possible, and for which the desired

second harmonic mode has a low starting current, and a reasonable nonlinear efficiency.
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The gap in the frequency spectrum did indeed translate into a region of magnetic field
without fundamental modes, as can be seen in Figure 4.1.1, which shows the starting
currents for the second harmonic design mode and the two strongest fundamental modes.
The starting current of the second harmonic mode is significantly higher than those of
the surrounding fundamental modes. However, because of the gap in the fundamental
spectrum it was hoped that access to the second harmonic mode would be achieved
without exciting the fundamental modes first.

The parameters for this 400 GHz, 200 kW, second harmonic experiment are listed
in Table 4.1.1. At 9 Amps the total theoretical efficiency for the TFEsg,s,, mode is 34 % at
a cathode voltage of 65 kV. The magnetic field of 8.0 Tesla corresponds to the magnetic

field of the minimum starting current.

4.2 RESULTS

When this experiment was conducted, a gap in the fundamental spectrum was not
observed. The magnetic field range corresponding to this gap, 7.6 - 8.1 Tesla, was filled
in with the higher order axial modes (q = 2,3) of the T'Eg 2, mode. Unfortunately, the
higher order axial modes may have been strong enough to suppress the desired second
harmonic mode, the TEg 5,;. Using the diffractive Q calculated by the cold cavity code
for the TEg 22 mode, one gets a starting current for this mode of approximately 2.5
Amps. This starting current for the TEg 2 2 is slightly lower than that of the TFgg,1,
and the TEg 22 can get excited first. Furthermore, the range of magnetic field for the
fundamental g=1 modes may have been larger than predicted by linear theory, thereby
limiting the region where the second harmonic mode can be excited. The starting
currents shown in Figure 4.1.1 do not consider the problems of accessibility of the mode
during startup. At the beginning of a voltage pulse, the higher frequency modes get
excited at the lower voltages (Kreischer (1980)) and may stay excited at higher voltages
if the final operating point is in the hard excitation region of the higher frequency mode.

In addition to having low starting currents, the fundamental modes have high power

operation as shown in Table 4.2.1, where we list the power and efficiency observed
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TABLE 4.1.1
TAPERED CAVITY DESIGN PARAMETERS
TEggs,

Second Harmonic

Frequency = 400.7 GHz Beam Current = 9 Amps
Power = 200 kW nr = 34.1 %

Magnetic Field = 8.0 Tesla Cathode'Voltage = 65 kV
n1 =6L7% non = 84.7 %

Mel =.65.3% Cavity Radius = 0.293 cm
QD2uc = 3271 QDuw: = 863 (TEe,2,1)
IsT2we = 2.5 Amps IsTwc = 0.8 Amps (TEg2,1)
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for various modes. In three of the cases, the mode identification was done from the
frequency, and in the case of the TEg 2,; the mode was deduced from past measurements
of frequency made at that magnetic field. Since the T'Eg,,1 was observed to be a strong
mode, the presence of the T'Eg 22 and the T Eg 2,3 is not surprising.

One low frequency second harmonic mode, the T'Eg 3, mode was observed at 290
GHz and a magnetic field of 5.7 Tesla. The diode signal was weak so a power mea-
surement was not taken, however, the amplitude of the diode signal indicated that the
mode was probably emitting roughly 1 kW of power. Since it was possible to excite the
TEg 3,1 mode, the coupling to the TEg 5,1 was probably good, however the fundamental
ctarting currents were too low to allow the TEs s, to be excited.

In order to excite the harmonic modes the fundamental modes need to be weakened.
The higher order axial modes can be weakened by shortening the input taper until these
modes are no longer cutoff. In this case, they will suffer large diffraction losses. The

cu’off radius, R, is given by

CVmp

R. = 4.3.1

w

where w is calculated from equation 4.0.1. One can see that the higher frequency, q = 2,
3 modes will have a smaller cutoff radius than the q = 1 modes, since the mode index,
v.np does rot change for the higher order axial modes. Therefore the input taper can be
shortened enough to cause large leakage losses for the higher order axial fundamental
modes and keep the second harmonic losses small. All of the subsequent cavities for this
reason have a shorter input taper.

However, shortening the input taper will not weaken the fundamental q = 1 modes
enough to prevent them from suppressing the desired second harmonic mode, which is
why a different type of mode suppression must be used. In the following chapters we
discuss techniques that actively try to suppress the fundamental modes (slotted cavity)
or selectively reinforce only the desired second harmonic mode (iris cavity), instead of

just trying to find an operating point where the fundamental mode is weak.

SUMMARY
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Table 4.2.1

Power Measurements for the Tapered Cavity

Frequency Magnetic Field Power Efficiency TE
(GHz) (T) (kW) (%) Mode
140.8 5.5 46.3 9.4 TEs2,1
163.0 6.3 44.9 8.6 TE>3,
166.5 6.5 27.8 5.3 TEo,z3,
- 7.4 41.7 21.4 TEg2,1
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This chapter outlines the tapered cavity experiment. This cavity was designed to
operate with a beam position where coupling to the fundamental modes was weak, due
to 2 gep in the fundamental mode spectrum. This gap was expected to translate into a
region of magnetic field devoid of fundamental modes. However, the region of excitation
for the fundamental modes tended to be larger than predicted by the linear theory, and
the higher order axial modes also filled in this region, thereby suppressing the second
harmonic TEg 5,1 mode. Therefore this experiment shows that to excite high frequency
second harmonic modes with the available electron gun, more powerful fundamental

mode suppression techniques are needed.
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Chapter &

SLOTTED CAVITY EXPERIMENTS

The initial harmonic gyrotron experiment, which was discussed in the previous
chapter, did not excite high frequency (> 300 GHz) second harmonic emission. For
that experiment, which was done with a tapered cavity, a second harmonic mode, the
TEgs,1, was chosen that was positioned in the center of a large gap in the fundamental
frequency spectrum. Theoretically, this would place the harmonic mode into a region
of magnetic field where the fundamental modes are weak or nonexistent. Due to thick
beam effects and strong higher order axial (7 > 2) fundamental modes, this frequency
gap was not observed. Therefore the second harmonic mode was suppressed by the
strong fundamental modes that occupied the region of magnetic field corresponding to
where the frequency gap should have been.

To successfully excite second harmonic modes at high frequency, a technique must
be found that suppresses the fundamental modes and leaves the second harmonic modes
relatively unperturbed. To weaken the higher order axial modes the input taper was
shortened, so that these modes are no longer cutoff and will have large leakage losses.
To perturb the g=1 fundamental modes, a technique using axial slots will be explored
in this chapter. In this technique axial slots are cut along the straight section of the
cavity at the azimuthal positions where the second harmonic RF field has a minimum
making this mode relatively unperturbed. These slots were designed to be half way
between consecutive maxima. If a second harmonic mode can be found that has a
different symmetry from the surrounding fundamental modes, the fundamental modes
will be highly perturbed, since not all of the slots will correspond to fundamental RF
field minima at the wall.

In this chapter, we discuss cavities with two different sizes of slots. These cavities
had the same dimensions as the tapered cavity of the previous chapter. First a cavity,
known as the small slots cavity, was designed for the second harmonic TFE)g 4,1 mede.

Then a large slots cavity, which used the TEsg,1 mode, had slots that were twice the
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width of the ones in the small slots cavity. When the large slots and the small slots
cavity experiments were conducted, no second harmonic emission was seen. As shown
in Figures 5.1.2b-5.1.2d, the slots w=re cut all the way through the resonator wall, so
some second harmonic leakage out of the slots was suspected. To determine if leakage
was occurring, the outside of the large slots cavity was wrapped with foil, to reflect
back into the cavity any leakage that propagated down the slots. With the foil sheath
nineteen discrete fundamental frequencies were observed, instead of the six predicted
for a conventional resonator without slots. In Figure 5.1.2d, one observes, that with
a foil sheath, the large slots cavity resembles a magnetron configuration, and therefore
magnetron resonator theory can be used to explain some of the extra frequencies. In
this chapter, the first two sections will discuss the designs of the large slots and the
small slots cavities. Next, magnetron theory will be reviewed and then the data from
the three experiments covered in this chapter — small slots without foil and large slots
with and without foil — will be analysed. These experiments will then be compared

with the unslotted case of Chapter 4.

5.1 SMALL SLOTS CAVITY

To use the axial slots technique, a mode with a different symmetry than the sur-
rounding modes is needed. Figure 5.1.1 shows the starting currents of the strongest
fundamental (q=1) and second harmonic modes. The TEjq 4,1, which has a starting
current of 3.86 Amps at 7.71 Tesla and oscillates at 386.6 GHz, has a five and tenfold
symmetry, which the surrounding fundamental modes, the T E,4 3, and the TEg 5 ;, do
not have. When talking about a fivefold symmetry, we mean that the azimuthal index
is 5n (ie. the mode has 10n maxima at the wall), where n is a nonzero integer, therefore
a resonator with 10 slots would not perturb this mode very much. In the case of this
particular mode the same is true about a 2Q slots system.‘ The T E0,4,1 was chosen as
the design mode since it had the second loweéi: second harmonic starting current (the
TEgps,1 had the lowest) and a different symmetry from the surrounding modes. In this

experiment, 10 slots were cut in the straight section, instead of 20 for reasons of struc-
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tural integrity as shown in Figure 5.1.2b. The unslotted case with the T Eg s, mode is
shown in Figure 5.1.2a. Since this cavity had the same dimensions as the tapered cavity,
and the slot width was chosen to be 1/3 of the distance between consecutive maxima,
resulting in a slot width of 0.033 cm.

When this experiment was conducted, the fundamental modes were weakened. In
the unslotted cavity case, the TEg 21 which oscillated at 191.7 GHz, had an output power
of 42 kW with an efficiency of 21 % at beam currents of 3.0 Amperes. When small slots
had been cut into the cavity, power levels of only 5.0 - 10.8 kW with efficiencies of 1.6 -
5.2 % were observed in the frequency range of 150 - 190 GHz at beam currents of 3.0 -
5.0 Amperes, as shown in Table 5.1.1. No mode assignments have been made in Table
5.1.1, since, the slots alter the frequencies of all the modes, as will be discussed later.

Although second harmonic emission was not observed, a standing wave pattern was
observed for the fundamental modes. This indicates that the slots were significantly
perturbing the fundamental modes. Due to the slots, the wall currents in the azimuthal
direction were interrupted, and therefore there is no azimuthal rotating # component of

the RF electric field, and a standing wave pattern results.

5.2 LARGE SLOTS CAVITY

In the previous experiment, nc second harmonic emission was observed, even though
the fundamental modes were weakened. It was decided that a cavity with larger siots
to further weaken the fundamental modes was desirable. Figure 5.1.1, shows that in the
region of magnetic field between 7.6 and 8.2 Tesla, the TEs g, which also has five-fold
symmetry, has the third lowest second harmonic starting current. The TEsg,1 has a
minimum starting current of 4.0 Amps at 7.73 Tesla and oscillates at 387.3 GHz. Since
this mode has 10 maxima at the wall, the same resonator can be used as in the last
experiment. The slots would be made twice as wide, and were cut to a width of 0.066
cm as shown in Figure 5.1.2c.

The results of this experiment were similar to those of the previous experiment, in

terms of the observed power levels, and we conclude that the wider slots are not causing
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Figure 5.1.2a Unslotted cavity where Figure 5.1.2b Small slots cav-

the TEg g, is the design mode (dashed ity that was designed for the TE 4,1

line). mode (dashed line).  foil Sheath

Figure 5.1.2c Large slots cavity (no Figure 5.1.2d Lge slots cav-

foil sheath) with the TEs5g,; design ity with a foil sheath with the

mode (dashed line). TEgge, mode represented by a
dashed line.
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TABLE 5.1.1

Fundamental Emission Observed when using the Small Slots Cavity

Megnetic Field Beam Current Power Efficiency Frequency
(T) (A) (kW) (%) (GHz)
6.1 4.8 5.6 1.8 152.5
6.7 3.0 10.8 5.2 170.0
7.3 6.0 12.3 3.1 183.7
7.5 5.0 5.3 1.6 190.1
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any further weakening of the fundamental modes. Again, no second harmonic mode

emission was observed.

To check whether the slots were allowing excessive leakage of the second harmonic
modes, and were therefore allowing the fundamental to suppress the harmonic modes, a
foil sheath was wrapped around the slotted section of the resonator, as shown in Figure
5.1.2d. The foil acts as an impedance short at the end of the slots and reflects the
radiation that has leaked into the slot back towards the center of the resonator. Again,
after the foil sheath was installed, no second harmonic emission was observed. The
absence of second harmonic emission may be explained by the fact that the slots could
be significantly decreasing the second harmonic diffractive Q. Therefore the ratio of the
second harmonic to fundamental total Q, @r2/QT: (the subscripts 1 and 2 refer to the
fundamental and second harmonic respectively), might not have been increased enough

to allow the second harmonic modes to be excited first.

However higher power levels were observed for the fundamental modes. Power levels
of 15 - 19 kW with efficiencies of 5.0 - 9.3 % were observed at beam currents of 3.0 -
4.7 Amperes for modes with frequencies ranging from 170.7 - 205.7 GHz. Also, nineteen
discrete frequencies were observed in the frequency range of 186.3 - 200.6 GHz. In Table
5.9.1 are listed the theoretical frequencies of the modes that would be in this frequency
range for a conventional cylindrical resonator with the unslotted cavity profile. Even
when the g=2 axial modes are included in the analysis, and a bit of frequency variation
due to frequency pulling is assumed, the modes in Table 5.2.1 would account for only
eight frequencies. Since the input taper was shortened to weaken the higher order axial
modes and the slots significant lower the cavity diffractive Q, it is unlikely that the g=3
axial modes would have been excited. Therefore, conventional resonator theory cannot
explain the extra frequencies. From Figure 5.1.2d, one can see that with the foil sheath
the resonator resembles a magnetron configuration without a center conductor, and the
frequencies of the modes may be highly distorted due to slot effects. In the next section,
a theory will be developed that will model the resonator as a ten vaned magnetron —

whose center conductor radius has been set to zero — and can relate the magnetron
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modes to gyrotron modes and show how frequency varies with slot depth.
5.3 THEORY OF A RESONATOR WITH VANES

Figure 5.3.1 shows a slotted magnetron configuration with a center conductor of
radius r.. If the center conductor is assumed to be infinitely thin, the configuration is
very similar to the slotted cavity with foil sheath (Figure 5.1.2d), and vaned resonator
theory (Collins (1948) and Chu (1984)) can be used to analyse this resonator.

Magnetrons have a rotating RF field with a nonsinusoidal variation around the an-
ode. A sum of Fourier components can be used to model the spatial variation. Each
component corresponds to a periodic rotating wave containing a unique number of com-
plete periods and rotates with a distinct velocity. These components have I’ complete

periods around the circumference given by
F'=n+mN , 5.3.1

where I is an integer, N is the number of slots and is an even number, n = 1,2,..,N/2 is
the mode number of the harmonic component and is related to the phase shift between
slots which is 2rn/N. If N is an odd number, the modes corresponding to non-integer
values of n do not exist. The other parameter, m =z 0, +1, +2,... is an integer. The
+ values for m account for the fact that if m is nonzero there are two counter rotating
RF fields for each Fourier component. If the electrors that form the undistorted space
charge have angular velocities clcse to that of one of the Fourier components, the effect
of the RF field component will be cumulative and the space charge will be distorted to
have I' spokes.

The frequency corresponding to each value of I' is calculated in the following fashion.
The admittance of the interaction region is calculated as a function of frequency. Then
we calculate the admittance of a slot as a function of frequency and apply the boundary
condition that these admittances must be equal at the slot-interaction region boundary
(denoted in Figure 5.3.1 as the dotted line cd). Due to the symmetry of the system,

applying this procedure to any slot will give the same answer. The admittance of a slot
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TABLE 5.2.1

Theoretical Frequencies for an Unslotted Cavity

TE MODE THEORETICAL FREQUENCY
(GHz)
TEsgs, 185.4
TE) 4. 191.3
TEez2, 191.7
TEy0,1,1 192.3
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is given by (Collins (1948))

e h J,(ka)N,(kb) — Jy(kb)N,(ka)

1o a 7y (ka) N1 (kb) — J1(kb) N, (ka) 5.3.2a

Yalot = J

and the admittance of the interaction region, Yint, is

Nh & [sinl0\? Zp(kra)
_ ]t 5.3.2
},m.t .7 Lo 21"“1 zoo ( o ) Z{-\(k‘f‘a) 5.3 b

with
(k) = (ko) = RS Nr(ke) 5.3.2¢
(k) = Jh(kp) — RS N (ko) 5.3.2d

where J,, J; and N,, N, are Bessel functions of the first and second kind, k is the wave
number, h is the length of the anode or center conductor, . is the radius of the center
conductor, and p, and ¢, are the permeability and permittivity of free space respectively.
The parameters p, , and 0 describe the geometry of the interaction region, a and b are
the radii of the top and the bottom of the slot region and 9 the angular slot width.
All these quantities are shown in Figure 5.3.1. The value for k is determined by setting
the admittance of a slot Y,;,: equal to that of the interaction region Y;,. at the slot
boundary (r, = a). The frequency for each value of n, is then calculated from k using
the free space dispersion relation.

A code, MATCH SLOT (Chen (1987)), which incorporates the admittance matching
technique described above, has been used to calculate the frequency for each value of n
for the dimensions of the large slots cavity foil sheath configuration. These values are
plotted in the Brillouin Diagram shown in Figure 5.3.2. The horizontal axis is the mode
number n. Since Y, is & periodic function, there many frequencies that correspond to
a specific value of n. These other values represent the higher order radial modes. The
higher order radial modes explain the presence of more than one curve in Figure 5.3.2.
One notices that the values of frequency corresponding ton > 5 (= N /2) are symmetric
with the n < 5 cases. This symmetry is a result of the fact that the harmonics rotating

counter-clockwise have the same frequency as those rotating in the clockwise direction.
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BRILLOUIN DISPERSION DIAGRAM FOR
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Figure 5.3.2 Frequency spectrum for the large slots case with a foil sheath.
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To test for the existence of new modes, the slot depth was reduced to almost zero
in the code. At zero slot depth the magnetron modes can be related to gyrotron TE
modes. When the slot depth was reduced to b/a = 1.01 the agreement between the
magnetron mode frequencies calculated by the code and the theoretical frequencies of
the gyrotron modes for an unslotted cavity was quite good, with discrepancies that were
less than 0.5 %. This result suggests that no new modes were created when the slots
were added, instead, the effect of the slots was to distort the frequencies of the unslotted

cavity modes.

To facilitate a better understanding of frequency changes caused by the slots, the
behavior of mode frequency with increasing slot depth was studied. Figure 5.3.3 shows
the frequency as a function of slot depth for the seven modes whose frequency is in
the range of interest, which is 185.9 - 201 GHz (and a mode that is slightly out of
this range) at the slot depth, b/a = 1.94, corresponding to the configuration of the large
slots cavity with a foil sheath. Generally, the frequency of each mode decreases with slot
depth, since the effective cavity radius is increasing. In certain limited regions, however,
the frequency does increase with slot depth, perhaps due to slot impedance effects. Since
the rate of change of the frequency is not the same for all the modes, several modes may
converge to a small range of frequency at a specific slot depth. In this fashion, the seven
modes listed in Table 5.3.1 have frequencies in the range of interest instead of four as

predicted by conventional cylindrical resonator theory.

5.4 EXPERIMENTAL RESULTS

In this section the experimental results observed with the small slots cavity, and
the large slots cavity, with and without the foil sheath will be compared with those of
the unslotted cavity. To accomplish this purpose, the frequency data of each experiment
is plotted as a function of magnetic field. Several trends will emerge in the data. One
trend will be frequency tuning due to variation in the main magnetic field. A rough

estimate of this range in magnetic field can be made from the detuning as follows. The
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FREQUENCY (GHz)

FREQUENCY AS A FUNCTION OF SLOT DEPTH

FOR THE SLOT WIDTH OF THE LARGE SLOTS CAVITY
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Figure 5.3.3 Frequency as a function of slot depth for a resonator with 10 slots

and the same inner radius and slot width as the large slots cavity.
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TABLE 5.3.1

Theoretical Frequencies Using Magnetron Theory

TE MODE THEORETICAL FREQUENCY

(GHz)
TE,4,4,1 184.12
TEgs, 185.97
TEg,; 2,1 188.67
TEs;s, 190.73
TEq3, 191.35
TE 2,1 194.39
TE\4.. 194.87
TEo,3,1 200.71
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modes are assumed to operate at detunings, 4\, in a range of 0 - 0.5, where

2

A\ =
ﬁ_l_oz

(1 - ":‘) 5.4.1

with w. = eB/ym. If the normalized perpendicular velocity 3., has a value of 0.384,
the mode has range in magnetic field of 4%. An increase in frequency with increasing
magnetic field is predicted by theory. The increase in RF frequency results from the
higher cyclotron frequency, w., as seen in equation 5.4.3. When the total Q - Qr - is
high, the mode frequency has very little variation with the magnetic field because the
maximum change in frequency scales as Af/f o Q7' (Kreischer (1984)).

One will also see cases where the frequency varies when the value of cathode voltage
and magnetic field (and therefore, cyclotron frequency) is fixed and the cathode magnetic
field is varied. This frequency pulling, which is observed with the large slots cavity with
a foil sheath (Figure 5.4.4b), can be explained in terms of variation in pitch angle, a,
where a = v,,/v|,. In general, the frequencies of modes increased as the cathode
magnetic fields increased. Based on adiabatic theory, the perpendicular velocity at the

entrance of the cavity, v ,, is given by

2 §g2

U_Lo = Bkv'l‘k 5.4.2

where v, = E) /B, is the perpendicular velocity at the cathode, E is the electric field
hetween the cathode and the mod anode, and B, is the main magnetic field. Therefore
as the magnetic field at the cathode increases the perpendicular velocity at the entrance
of the cavity decreases. Since the cathode voltage, V., is not varied, the relativistic factor
7 does not vary (y = 1+ V,(kV')/511), and as the perpendicular velocity decreases, the
parallel velocity increases according to ¥ ™2 = 1 ~ (vio/c)? — (vo/c)?. The condition of

excitation for the cyclotron instability is given by
w — k”v"o = wco/'y 5.4.3

where w., = eB,/m is the cyclotron frequency, w is the RF frequency, Kijo = 2/Leyy

is the component of the wave number parallel to the main magnetic field if a Gaussian
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RF profile is assumed, and L.y is the effective interaction length. One can see that
as v, increases the frequency increases, since all the other quantities remain constant.
Therefore, the observed increase in frequency at higher cathode magnetic fields is a
result of a increase in the parallel velocity, v,. To calculate the change in detuning
due to pitch angle tuning, the variation in magnetic field at the cathode, AB; must be
related to the change produced in the parallel velocity, Av),. Using equation 5.4.2, the

relation is given by
Avi,  3AB,

= — 5.4.4
Vio 2 Bk @

and

v1,Av], _ gﬁ AB;

Avj, = ——= 5.4.4b

Yjjo 2 Vo Bk
where v, , and v, are related by the definition of v,, and the subscripts k and o refer
the the values of different variables at the cathode and at the entrance of the cavity,
respectively.

An expression can be derived with the linear theory (Kreischer (1980)) to calculate
the percentage change in frequency Aw/w, caused by a given percentage change in v,

Av), /v)o in the linear regime. The operating frequency w is defined by (Slater(1950))

w—w' 1 D,
- =" 4.
" 30, W, 5.4.5a
where ' is the frequency of the cavity without the beam present and
T
Wy = Im(/ —eE - vdt) 5.4.5b
0
T
D, = Re(/ —eE - vdt) 5.4.5¢
0

and E is the RF electric field and v is the electron velocity. If a Gaussian RF field profil:

is assumed, equation 5.4.5a can be rewritten as (Kreischer (1984))

Aw 1

— = 6;1—"(1:) 5.4.6a
where
D(z/v?2) —1/2s03 ,D'(z/V2)
Vezp(—a?/2)(1 + 1/2567,2)
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and D(y) is Dawson's integral (Abramowitz and Stegun (1965)), z = (we —w)Less/2v),
and s = w.L/2v),. To calculate the percentage of frequency variation as a function of
the change in v),, the derivative with respect to V), must be taken. If it is assumed
that sB,, > 1, which is valid for this experiment, and the minimum starting current

corresponds to ¢ =~ Z,,;, ~ —1, the D' term dominates. Therefore

dP(z)  dr dP(z)

= 4.7
dvy, dvy, dr 5
where dP(1/v/2)/dz ~ D"(1/+/2) = 1.4 and 5.4.6a can be written as
Aw  14zAvyy 14w —wc)Leyy 3 (gé__a)zABk 5.4.8
w Qr vy 2uQr 2\ve/ B B

Figure 5.4.1a shows the frequency data for the g=1 modes, and one notices that
certain frequencies are excited over a range of magnetic field. A more detailed graph
(Figure 5.4.1b) shows a small change in frequency due to frequency pulling as seen in
the mode between 210 and 215 GHz. Experimentally, a frequency variation of 0.17 Ghz
was observed over a 0.21 Tesla range in magnetic field. To compare this with theory, an
expression can be obtained by using the gyrotron linear theory (Kreischer (1984)) and

is given by

(Af/f) . l4s
AB/B = Qr

where s = wcL.fs/2v|,, w, is the cyclotron frequency, L, 5 is the axial interaction length

5.4.9

of the cavity RF electric field, and 532, > 1 has been assumed. Since the Q of the
cavity for that mode is 860 one expects a maximum frequency variation due to frequency
pulling, Af of 0.51 GHz where Lessr = 0.72cm, B = 8.0 Tesla, 3, = 0.256, AB = 0.21
and 7 = 1.13. This value of frequency variation is higher than the experimental value
of 0.17 GHz, however, the frequency tuning for this mode may be larger than 0.17 GHz,
since a detailed study was not conducted on this mode and the data points were at beam
currents ranging from 1.7 to 6.5 Amps.

Figure 5.4.2a shows the data for the small slots cavity. The modes at 190.3 GHz and

152.5 GHz show some change in frequency due to variation of the main magnetic field.
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Figure 5.4.1a Frequency data for the unslotted cavity.
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Figure 5.4.1b Expanded view of the unslotted cavity frequency data.
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An expanded view of the mode at 190 GHz — see Figure 5.4.2b — shows a frequency
variation of 0.082 GHz, which shows that this is a high Q mode. Again, since a careful
study was not conducted on this mode, and the data points are a collection of points
taken at beam currents between 2.0 to 5.0 Amps. Therefore, the frequency variation of
this mode may be larger than 0.082 GHz, and is likely to be larger than the value of 0.17
GHz observed in the unslotted cavity, since the Q of this cavity will be somewhat lower
due to the small slots cut in the cavity wall. The small change in frequency, shows that
even with the slots, this mode still has a fairly high Q, which is in contrast with the large
slots cases where the frequency variation due to frequency pulling is larger and therefore
the cavity Q must be lower. One sees some examples of frequency variation at a constant
magnetic field in Figures 5.4.3a and 5.4.3b showing the data for the large slots case with
no foil. Some cases are also present where the frequency increased at higher magnetic
fields as a result of frequency pulling due to varying the main magnetic field. When the
foil sheath is used (Figure 5.4.4a and 5.4.4b) more modes are present especially in the
range between 185-201 GHz. Since so many modes were present, the frequencies were
measured while the magnetic field at the cathode was varied at fixed values of the main
magnetic field, beam current, and cathode voltage and no data was taken at any other
values of magnetic field. In this fashion one could observe how the mode frequencies
vary with main field and cathode magnetic field (and 3,,). Measurements were made
at nine values of magnetic field, resulting in the nine vertical lines. If data was taken
at more values of magnetic field, the area between the vertical lines would probably be
filled in with more frequencies. Figures 5.4.4a and 5.4.4b show a surprising result. A
high density of frequencies was observed due to a large amounts of frequency pulling
at a fixed value of magnetic field. In some cases the change in frequency was as large
as 3 GHz. In comparison, the unslotted cavity case (Figure 5.4.1) has only a frequency
variation of 0.17 GHz, and therefore fewer frequencies. Also the frequency pulling in
the unslotted cavity is only caused by variations of the main magnetic field. The large
amount of frequency variation in the large slots cavity with a foil sheath require a low

cavity Q, which is quite possible in this case, since large slots were cut in the cavity walls.
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The change in frequency at constant magnetic field, may be explained by two different
mechanisms: mode hopping and frequency pulling due to pitch angle tuning. For the
variation of magnetic field at the cathode experienced during the frequency tuning at
a fixed value of main field, the change in frequency due to frequency pulling predicted
by pitch angle tuning using adiabatic theory and equations 5.4.4b and 5.4.8 is 0.9 GHz,
for a Gaussian axial RF field profile, v, /vy, = 1.5, Legs = 0.72¢cm, Q1 = 100 and
Blo = vjo/c = 0.256 where c is the speed of light. However the value of the effectjve
interaction length, L.s; was assumed to be the straight section length. This assumption
may under estimate the effective interaction length for a slotted cavity, especially for a
low Q cavity where the mode is not highly trapped. With a longer effective interactjon
length or lower value of parallel velocity, v,, larger frequency variations due to pitch
angle tuning are possible. Also the value of the total Q, Qr, may be lower than 100. Since
no mode identification measurements were made, it is not possible to prove that only one
mode was present during the tuning at a fixed value of magnetic field. Mode hopping
between higher order axial modes or different transverse modes may be responsible for
some of the frequency variation, especially in the set of frequencies at 6.59 Tesla, which
couldn’t be explained by the pitch angle tuning. Therefore, the high density of modes
may be a result of the presence of more modes due to the magnetron effects that are
subject to mode hopping and large amounts of frequency pulling caused by pitch angle

tuning and possibly even variations in the majn magnetic field.
SUMMARY

In this chapter we have discussed cavities with axial slots cut along the straight
section of the cavity at positions where the RF field of the second harmonic mode has a
minimum. In this manner, the fundamental modes would be weakened, without perturb-
ing the second harmonic design mode. Initially small slots were cut. The fundamental
modes were weakened, but no second harmonic emission was observed. The next step
was to chose a mode that allowed the slots to be cut larger, so as to further weaken the

fundamental modes. Again, no second harmonic modes were observed and it was sus-
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Figure 5.4.2a Frequency data for the small slots cavity.
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Figure 5.4.2b Expanded view of the small slots frequency data.

107

8.6



No Foil Sheath Large Slots
Slotted Cavity

220 ] 1 |
200 L 4
.l
~ .
Z 180 L . i
>~ .
(3)
c (]
5 60 .
1 | o*
g X )
o o
140 | i
120 L | I
5 6 7 8 9

Magnetic Field (Tesla)

Figure 5.4.3a Frequency data for the large slots cavity with no foil.
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Figure 5.4.3b Expanded view of the large slots cavity (without a foil sheath)

frequency data.
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Figure 5.4.4a Large slots cavity (with foil sheath) frequency data.
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Figure 5.4.4b Expanded view of the large slots cavity (with foil sheath) fre-
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pected that the harmonic modes were also leaking out of the slots. To reduce the second
harmonic leakage, a foil sheath was wrapped around the outside of the straight section.
Even with the foil sheath no second harmonic modes were observed. The absence of
second harmonic modes may have resulted from the fact that cutting slots in the cavity
wall can drastically reduce the Q of the cavity for the second harmonic modes and cause
their starting currents to be very high. The foil sheath did have an interesting effect on
the fundamental modes, since a higher density of modes was observed than would be
predicted for a cavity without slots. The presence of a higher density of modes shows
that the gyrotron has the potential to be developed as a tunable source for applications
such as spectroscopy. The higher density of modes may be explained by two effects.
First, when the foil sheath is used, the large slots cavity resembles a magnetron config-
uration, which has a higher density of modes than an unslotted cavity. Secondly, these
frequencies could have been further changed by mode hopping and frequency pulling

due to variation of the main magnetic field and pitch angle tuning.
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CHAPTER 6

IRIS CAVITY EXPERIMENTS

In the previous experiments, high frequency second harmonic emission was not
observed. The fundamental modes in these resonators succeeded in totally suppressing
any second harmonic modes that might have been excited. Therefore, more powerful
mode discrimination techniques are required. However it is instructive to briefly examine
each of the earlier experiments first.

As discussed in Chapter 1, five techniques to suppress fundamental modes have
been studied in this thesis. The first technique is based on the spacing of modes. In
figure 4.0.1, one notes that the fundamental mode spectrum is uneven, and clumpings
around certain frequencies or mode indices (vmp) tend to occur. In Chapter 4, a tapered
resonator was designed with a second harmonic mode that existed in a frequency gap in
the fundamental spectrum. Since a given mode is only excited over a limited region of
magnetic field it was assumed that the frequency gap would translate into a magnetic
field gap. However the predicted gap in magnetic field was not observed. The second
technique involves placing the beam where coupling to the fundamental modes is weak.
This technique combined with the first technique are not quite strong enough to ful’,
suppress the fundamental modes as< indicated by the experiment in Chapter 4 which used
only these two techniques. Since the fundamental mode spectrum is denser at higher
frequencies, it is difficult to find a beam position where coupling to the fundamental
is sufficiently weak, so that it is possible to excite second harmonic modes. Another
technique, is to use a higher value of perpendicular velocity, 3. Operating at a higher
cathode voltage, which increases the perpendicular velocity, 3,, improves the second
hiarmonic to fundamental starting current ratio as shown in equation 6.1.4. The decrease
in starting current at higher values of 3, can be seen in the starting current data of
this chapter (Figures 6.2.8a-c). However, since an existing 65 kV gun was used for this
experiment, only a limnited increase in 3, was possible due to the upper limit on the

cathode voltage.

113



The fourth mode suppression technique involves designing an electromagnetic struc-
ture where the fundamental is highly perturbed and the second harmonic is unperturbed
or a structure with better feedback to the second harmonic than to the fundamental.
To perturb fundamental modes, a slotted cavity configuration was tried, where axial
slots were cut in the cavity wall. These slots were placed at positions corresponding
to electric field minima of the second harmonic mode so as to selectively weaken the
fundamental modes and leave the second harmonic modes relatively unperturbed. A
small slots case and a large slots case were tried. The result of this technique for both
cases was to weaken the fundamental modes but also to suppress the second harmonic
modes, since the second harmonic modes were also perturbed by the slots.

In the cavities discussed in this chapter, the techniques mentioned above as well as a
technique that involves actively reinforcing the second harmonic modes by enhancing the
second harmonic diffractive Q and leaving the fundamental Q relatively unchanged, was
used. By selectively reinforcing the second harmonic, and ensuring that it is excited first,
we take advantage of the nonlinear perturbation of the beam which causes the starting
currents of the neighboring second harmonic and fundamental modes to increase when
a mode exists in the cavity (Dialetis (1983) Nusinovich (1977), Zarnitsina(1974)). In
this manner, the problem is simplified from the tasks of suppressing the fundamental
and reinforcing the harmonic mode to just the latter. To selectively raise the Q of
only the second harmonic mode, an iris at the output end of the resonator was used.
Another method of fundamental mode suppression, external feedback to enhance the
second harmonic mode, was also used in the experiments. A motheye window which
selectively increases the second harmonic diffractive Q of the system more than that of
the fundamental was used to provide the external feedback.

In this chapter the iris theory will be developed. Two different iris resonators were
designed. The experiments with iris cavities will be discussed after the theory section

as well as the effect of the motheye window.
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6.1 IRIS THEORY

The effect of the iris is to trap the second harmonic more effectively than the
fundamental modes. Since gyrotrons operate near cutoff, even a very small jris (<
-0005in) will extend below the cutoff radius. Extending an iris below the cutofl radius

Creates a region where the RF field js an evanescent wave. To facilitate a simpler analysis,

are constant in each region. However, kyr # ky; and k. # ki ;, where the subscript »
refers to the resonator region and 1 to the iris region. A gaussian model for the cavity RF
field varying as e k=’ is assumed so that kj1p > kj2r ~2/L, f7 in the resonator region,

L.ss being the effective axial length of the RF field in the cavity and the subscripts 1

ki = (w?/c?) — k2, 6.1.1

where k,; = Ump/R;, and R; is the radius of the iris region. Since w; ~ %wz and

Vmpl = $Umpa, we have kﬁﬂ ~ %kﬁiz' Therefore, the ratio of the second harmonic field
amplitude, Ey, to that of the fundamental, E,, in the iris region at axial distance z past
the junction, is given by

E, e ka2’ 3

E = e_TF = e 4%l 6.1.2
As an example, consider the design parameters for the first cavity listed in Table 6.2.1,
where k"2 = 18/em. Then the ratio Fp/E;, = 0.55 when z = 0.05cm. This is the
distance that the iris extends below cutoff in the design of the first iris cavity.

The faster decay rate of the second harmonic modes result in their effective in-
teraction length, L., being shortened more than the fundamental interaction length.
Since the starting current 7,, L; ;f, the second harmonic starting currents increase
with the smaller L, ff- The faster decay rate of the second harmonic also increases the

iris’s reflection coefficient more than that of the fundamental. The starting current is
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Figure 6.1.1 Schematic of a simplified resonator and iris system
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inversely proportional to the total Q and the total Q increases with diffractive for values
of the diffractive Q that are less than the ohmic Q, since the total Q is defined by

7 =Qp + Q5 6.1.3

where Qr is the total Q, @p is the diffractive Q, and Q, is the ohmic Q. The diffrective
Q is related to the reflection coefficient by Qp oc L2 ers/(1 — |R|), where |R| is approx-
imately the reflection coefficient of the output end. The iris has a larger effect on the
reflection coefficient than the effective length, as will be demonstrated below in the sym-
metric iris study, so the net effect is to decrease the second harmonic starting current
more than that of the fundamental.

A study was conducted to determine the effect of iris shape on the ratio I,¢, /1,2 and
to ascertain whether if for a given diffractive Q of the second harmonic, an optimal design
could be found. The ratio I, /I, is a measure of how strong the second harmonic can
become before the fundamental mode is excited. To determine this ratio, numerical
values are required for the diffractive Q and the effective interaction length as discussed

in section 2.1, since

Lo/l ~ 82 "”)2 (@) 6.1.4
e \Leffl Qr:

where 3, is a constant for this study, since it is unaffected by the cavity geometry.
If one takes the optimum total () ratio, @12/Qr; = 9 that was attained when the
TE,s,3,) was used as the second harmonic mode and the corresponding effective length
ratio Legs1/Legsa = 0.7 with a typical value of 3, = 0.38 the starting current ratio
I;e1/Ie2 = 0.93. In comparison, if a no iris case is considered, where the same cavity
dimensions and 3, are used and the iris is just flattened, the total Q ratio Qr2/Q71 =
3.79, the effective length ratio L.fs1/Less2 = 0.78 and the starting current ratio is
I,¢1/1,42 = 0.34. Therefore, the iris offers a definite improvement in the starting current
ratio. These quantities are calculated with the code CAVRF (Fliflet (1981)) discussed
in the linear theory section. This code can handle the case where the iris cuts off the
RF mode at the output end of the interaction region, as long as the iris does not cause

mode conversion.
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A symmetric cavity design was adopted in order that the effect of the iris shape and
size on the effective interaction length and the diffractive Q could be clearly determined
and not be confused with an effect caused by the input taper. The second harmonic
design mode, TE,32,, and the strongest fundamental mode, the TEj » ;, were selected
for this study. Since Qp and L.;s depend on wavelength, rather than on the mode,
eny modes used would have yielded similar results. Figures 6.1.2a and 6.1.2b show the
two cases that were analysed. By using two different types of symmetric iris geometries,
stepped and pointy, the effects of output taper angle and iris length can be studied
separately. To analyse the effect of the output taper angle, the pointy iris case, shown
in Figure 6.1.2a, had a fixed inner angle, a; = 45° and the outer angle a; was varied
keeping the iris depth, D;, fixed. The outer angle scans were done for three different iris
depths. In the stepped iris case, where the effects of the iris length (Figure 6.1.2b) were
studied, the input and outer angles are fixed at a; = a; = 45°, and the iris length, L;,
was varied keeping the iris depth D; fixed at the same values as before. As the shape

was varied the effect on Qp and L.ss was observed.

In the pointy iris case, shown in Figure 6.1.3a, the effective interaction length ratio,
Lefga/Legysy varies slightly with outer angle, a,, but not with iris depth, except for
the smallest iris depth shown, 0.005!1 cm, at angles below 10° where the effect of the
output angle is stronger than the iris effect. When the outer taper angle is increased, the
reflection coefficient at that junction increases decreasing the effective interaction length.
Since the fundamental mode is less attenuated by the iris at that point the effect of the
outer taper angle is stronger on the fundamental effective interaction length, causing an
increase in the effective length ratio. For an optimum effective length ratio, an iris with
a steep outer angle is desired. Figure 6.1.3b shows that the ratio of the fundamental
and second harmonic L.ss does not vary significantly in the stepped iris case when
the iris dimensions are varied. The optimum value of the pointy iris case is similar to
that in the stepped iris case. The diffractive Q, however, is strongly effected by the
iris dimensions. As the iris becomes a bigger potential barrier, by becoming thicker,

deeper or having shallower inner or outer angles, the reflection coefficient increases more
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Figure 8.1.2b Schematic of the stepped iris resonator used in the symmetric iris

study.
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than L.ss decreases. Figures 6.1.4a and 6.1.4b show the diffractive Q’s corresponding
to different iris dimensions, with the higher values of Qp corresponding to the deeper
irises. In the pointy iris case, the diffractive Q decreases as the outer angle increases, and
similarly, in the stepped iris case, the diffractive Q increases with iris length. For any
given iris size and therefore second harmonic diffractive Q, we obtain an almost constant
value of the fundamental Qp as the shaping of the iris was varied from a pointy iris with
a shallow outer angle to one with a steep angle or a stepped iris with long iris length to
one with a short length. We conclude that the diffractive Q ratio is independent of iris

shape and depends only on the iris size.

The graphs in Figures 6.1.4a and 6.1.4b show that one would like to operate at as
high a second harmonic diffractive Q as possible to have the best diffractive Q ratio,
Qp2/Qp:1. However, since I,; o« 1/Qr, at high diffractive Q the total Q ratio saturates
due to the effect of the ohmic Q. This leads to a saturation in I,; as a function of Q,
when the value of the diffractive Q begins to approach that of the ohmic Q. The effect
can be seen in Figures 6.1.5a and 6.1.5b, where at higher diffractive Q values the total
Q ratio Q12/Qr; peaks at a value near 10 and then starts decreasing. This optimum
can be understood very simply. The ohmic Q represents the wall losses, which become
significant when the stored energy increases. The degradation of the total Q ratio is
gradual and for values of Qp in the range [0.5Q,, — 1.5Q,] the total Q is close to the
optimum value. This broad maximum shown in Figures 6.1.6a and 6.1.6b, which depict
how the starting current ratio I,¢1/l,42 varies with the iris dimensions for the pointy

and the stepped symmetric iris cases.

The effect of the iris can be noticed by a comparison with a symmetric cavity
without an iris also sho;vn in Figure 6.1.5a. This case corresponded to a pointy iris case
where the iris depth was reduced to zero, and the outer taper angle o, was varied. At
steeper angles, where the reflection coefficient is larger, the total Q ratio saturated at a
value of 4.5. Since at steep output angles the reflection coefficient saturates, the straight

section was lengthened to produce a result with a second harmonic diffractive Q above

1000. However, even with a longer straight section, the value of the starting current
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RATIO OF SECOND HARMONIC AND FUNDAMENTAL
STARTING CURRENTS VS SECOND HARMONIC DIFFRACTIVE Q
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ratio did not increase. If the simple diffraction theory is used, and the minimum Q is
used, the total Q is given by Q7 =~ Qpmin = 47(Less/A)?, and therefore Qs /QT1 =~ 4,
which is close to the saturation value for the no iris case. Hence the saturation value of

the total Q ratio and therefore the starting current ratio is improved by the iris.

If the optimum velue for the total Q ratio is to be increased, a mode with a higher
ohmic Q is needed. In Table 6.1.1 are listed the ohmic Q values for second harmonic
modes close to the TE;33,. The frequencies used in calculating the ohmic Q values
correspond to the dimensions of the first iris cavity listed in Table 6.2.1. As can be seen
in Table 6.1.1, ohmic Q values increase with the axial index, p. We now turn to the
question of higher p modes. The starting current is influenced by the coupling coefficient
of the mode, J2, ., (k1 R.)/JZ (Vmp)(v2, — m?). When considered as a function of beam
radius it is found that the optimal coupling coefficient occurs on the innermost radial
maximum of the mode. Since the beam position determines the maximum value of m,
the value of p is increased by operating with a higher mode index, Vmp. However when
the mode index is increased, mode competition problems become worse. For example,
the TE,34,, mode at 400 GHz is possible with the existing gun, but for this mode
Vmp = 27.48 and the mode density increases with vy,, leading to more severe mode
competition problems. Therefore modes with p > 3 were not considered. The p=3
modes are only accessible due to heam spread and misalignment effects. Therefore we
look for a mode with p = 2 or 3. The p = 3 mode has a slight advantage over a p = 2
mode due to the higher ohmic Q. This can be seen in Figure 6.1.7, where the starting
current ratio is plotted as a function of diffractive Q for one p=2 mode and two p=3
modes. Two p=3 modes were selected in order to show that the result was not specific
to a particular p=3 mode. Since the diffractive Q ratio is independent of iris shape,
we only show the results for the stepped iris case where the effective length ratio had
the optimum value for any iris length or deptl. The 0.0127 ¢m deep iris was chosen,
and the starting current ratio is plotted as a function of second harmonic diffractive
Q which is a monotonically increasing function of iris length. Due to higher ohmic

Q values the TE ¢ 3,; and TE)3,3, are seen to saturate at a starting current ratio of
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1.3, which is somewhat higher than the the saturation value for the TE,3 2, for which

I,u/[,gg = 1.0.

The upper limit on diffractive Q is also limited by ohmic efficiency considerations.
If Qp is too high the ohmic efficiency will decrease and thus significantly lower the total
efficiency. This degradation of the total efficiency can be seen in Figure 6.1.8, which
shows the total efficiency as a function of diffractive Q for a 8, /8 = 1.5, with the
cavity radius and effective interaction length calculated from the dimensions of the first
iris cavity. The value of the interaction length, and therefore u, is assumed to fixed
since p = (082 /B)Less/ . As the diffractive Q increases, the perpendicular efficiency
increases due to increasing RF field amplitude, but this increase is slowed by the decreas>
in ohmic efficiency. This leads to an almost constant total efficiency for a wide range of
diffractive Q. A similar efficiency calculation was also done for the TE,¢,3,; mode and a
similar total efficiency result was obtained with a 1% higher maximum total efficiency

of 19.4 %. Again, operating with a p=3 mode has a slight advantage over a p=2 mode.

The diffractive Q is constrained by the length of the straight section, too. By
shortening the straight section of the cavity, for a fixed value of diffractive Q, the starting
currents of both the second harmonic and fundamental modes are increased due to the
fact that I, o L:fzf. Therefore, a shorter effective length can compensate for a high
diffractive Q and prevent the fundamental starting current from having an excessively
low value {< 1.0 A). If higher fundamental diffractive Q values are tolerabie, one can
operate with a larger iris which creates a higher second harmonic diffractive Q and thus
a higher diffractive Q ratio, @p2/Qp,. Having a low fundamental starting current,
can still allow the second harmonic to be excited first if the resonator has a good Q
ratio. However, high power regions, which correspond to higher beam currents, could
become unattainable due to accessibility problems from the startup of each shot or mode
suppression problems. The fundamental interaction has stronger beam-RF coupling than
the second harmonic, and after the fundamental does get excited it can grows strong
enouga to suppress the harmonic mode. In addition, studies of fundamental mode

competition have shown that mode competition increz=es as the ratio of the operating
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Frequency

TABLE 6.1.1

Ohmic Q Values for the Design Mode

and Neighboring Second Harmonic Modes

Ohmic Q TE
(GHz) Mode
415.9 3522 TE1s,1,1
410.5 9200 TE3,2,1
417.3 12209 TEso,3,1
411.7 14076 TE7 4.1
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beam current to starting current, Iop/I,¢ increases (Dumbrajs (1988)). A compromise
must be made in increasing the fundamental starting currents (by decreasing L.sy)
and keeping the the effective interaction length (and ) long enough to access the high
efficiency regions. In Figure 2.3.1, which shows the regions of isoefficiency as a function
of normalized RF field strength, F, and normalized effective interaction length, u, one
can see that if L.s; and consequently u is not big enough, as F is increased the maximum
perpendicular efficiency attained can be as low as 10 %. So when designing a cavity,
one wants the highest Qp2 consistent with good ohmic efficiency, a cavity length long
enough to access the high power regions, and fundamental starting currents that are not
excessively low.

These principles will be used when designing the two resonators discussed in this
chapter, the high Q and the low Q iris cavities. The high Q iris cavity was designed
with a high diffractive Q to produce a high diffractive Q ratio and therefore improve the
starting current ratio. The low Q cavity was designed with a lower diffractive Q ratio,

so that the ohmic losses would not b= so severe.
6.2 HIGH Q IRIS RESONATOR EXPERIMENTS

The decision to use an existing electron gun imposed a number of constraints on the
system. As discussed in Chapter 4, the existing gun has a beam position, k1 Re ~ 13.0 for
operation at 400 GHz with a main field around 8 Tesla. The other system constraints are
a maximum beam current of 10 Amps at a cathode voltage of 65 kV with a pulselength
of 1 - 2 usec and B, /B = 1.5.

Two main criteria were used to select the design mode, strong beam-RF interaction
and weak surrounding fundamental modes. The TE3,2,, satisfied the weak surrounding
fundamental modes criteria and the beam could be placed at the innermost (and biggest)
maximum of the coupling coefficient which corresponded to a beam position, k; R., of
12.8. The TE;33,) was chosen because the beam position that maximized the coupling
for the TE,3,2,1 produced low coupling coefficients for T Es 2,1 and the TE, 2,1, which

are the dominant fundamental modes of the system (assuming a thin beam). However,
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since the electron beam is not thin in practise and misalignment does occur, coupling
to the fundamental p=2 modes was rather strong, and as a result the second harmonic
p=3 modes which have a slight starting current and efficiency advantage turned out to

be the strongest modes of the system.

As discussed in Chapter 4, selecting a mode specifies the cavity radius. Next the
cavity length and iris dimensions must be chosen. The determination of iris dimensions
and cavity length is governed by the tradeoff between a high starting current ratio,
I,1/1,¢2 and high perpendicular and ohmic efficiencies. In this experiment, to ensure
that the fundamental mode was not excited too easily, the theoretical starting current
of the strongest fundamental mode was required to be above 1 A. When determining
the cavity length and iris dimensions only a rough estimate is needed for the input
and output tapers, since the effect of changing these dimensions is smaller than that of
changing the iris or cavity length. The exact design of the input and output tapers can
be designed after the optimization of the cavity length. The tapers must have shallow

angles (< 5°) to minimize mode conversion problems.

The input taper has to be designed so that less than 5% of the second harmonic
mode’s RF power leaks back toward the gun. This condition is achieved when the front
section of the input taper is near or at cutoff for the second harmonic mode. The power
leakage was determined by running CAVRF for two cases. The first corresponded to the
actual cavity design, with the input taper not at cutoff, and yielded the diffractive Q
corresponding to where the mode is not cutoff at the input taper, which we denote by
Q@nc. Since the mode is not cutoff at the input, we have power diffracting out from the
input end back towards the gun, Pinp, and power from the output end forward towards

the window, P,,:, and we can write Q,. P . The second case used the same

1
lnp+Poue
design, except that the input taper had been modified so that the mode was cutoff at

the input end. In the cutoff case the diffractive Q, Q..:, is higher, because power is

only leaking out from the output end and Qcy: x p—. Excessive power leakage from

.
out

the cavity can damage the gun. However the input taper must be made short enough

so that the undesirable higher order axial medes are not cutoff, but are weakened by
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big leakage losses. After the tapers are optimized, the length and iris dimensions are
modified if necessary. Several iterations of optimizing the length and iris and then the

tapers may be necessary in order to find the best design.

Table 6.2.1 lists the design parameters for a 100 kW, 410 GHz second harmonic
gyrotron operating in the TE3,; mode. The resonater was required to produce 100
kW to demonstrate high power operation. The iris was constrained in two ways. The
first constraint was that the minimum iris depth was 0.0051 cm, which was the smallest
depth the machinist would guarantee. As mentioned earlier, the output taper angle
must be 5° or less to avoid mode competition problems. A 0.0051 iris was the deepest
iris that would not produce a fundamental starting current that was too low and create
severe ohmic losses due to a second harmonic diffractive Q that was too high. A 5°
output taper was chosen to make the second harmonic diffractive Q as low as possible
and to have as large an effective length ratio as possible, since that ratio increases with
output taper angle. A pointy iris configuration was used, since at this point it was
thought that 0.0051 cm was the minimum iris depth that could be reliably machined,
therefore a short stepped iris would have resulted in a low ohmic efficiency caused by
a high diffractive Q. The straight section length was shortened to a length of 0.526
cm, which was the minimum length that theoretically produced 100 kW at 65 kV and
9 Amps. The design current was chosen to be 9 A, since this is the highest current
that the gun can be expected to reliably produce. As a result of the second harmonic
diffractive Q being very high, the ohmic efliciency has now been reduced to 56.4%. The
magnetic field of 8.3 T corresponds to the minimum starting current. In Figure 6.2.1
we show a schematic of the resonators actual dimensions and the RF field profiles of
the TE13 5, and the TEs 3, which is the strongest fundamental mode. In the diagram
it can be seen that the second harmonic mode, represented by the broken line is more
trapped than the fundamental mode. The iris contains a 0.0025 cm flat section, because

a sharper point could not be reasonably machined.

Figures 6.2.2 a and b show the effect of the iris on fundamental starting currents

where no beam spread effects were assumed. The TE,>; and the TEs,; are the
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TABLE 6.2.1

OUTPUT IRIS CAVITY DESIGN PARAMETERS FOR THE HIGH Q RESONATOR

Second Harmonic

Frequency = 410 GHz Beam Current = 9 Amps
Power = 101 kW nr =173 %
Magnetic Field = 8.3 Tesla Magnetic Field at the Gun = 0.221 Tesla

Cathode Voltage = 65 kV

ny =494 % nou = 53.7 %

Net = 65.3% Cavity Radius = 0.2316 cm
QD2wc = 7946 v Qpuwc = 779 (TEs,2,1)
QoH2ue = 9200 QoHwe = 9059 (TEs 1)
Qr20c = 4263 Q7we = 717 (TEs2,1)
Le¢fawe = 0.537 cm Leffuc = 0.647 cm (TEg2,)
IsT20c = 1.60 Amps IsTwe = 1.59 Amps (TEs2,1)
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strongest fundamental modes near the design mode for this resonator radius. Four cases
of starting current as a function of magnetic field were calculated. The first two cases
used the actual dimensions of the cavity with and without beam spread. Next a resonator
without an iris was used to calculate the starting current with and without beam spread
effects. The same cavity dimensions were used for the case without the iris where the
iris was flattened creating a slightly longer flat section. The beam spread effects were
approximated by averaging the term Jm1n(kyi R.)? in the coupling coefficient over the
width of the beam thickness. The theoretically calculated beam spread (Felch (1982))
is 2 Larmor radii at the magnetic field that the cavity is designed to operate at, 8.3 T
for the gun used in this experiment. The beam spread effects result in a 5 % increase
in the starting current ratio, I,¢/I,¢2 whereas the presence of the iris decreases ratio by
a factor of 1.8 to become unity with no beam spread. The starting current ratio was
calculated using the minima of the fundamental and second harmonic starting currents.
At the magnetic field corresponding to the minimum second harmonic starting current
the fundamental will have a higher starting current and the second harmonic mode will
get excited first assuming that beam spread effects do not lower the starting current too
much. This method of approximating beam spread effects may be an underestimate for
the variation of starting current, since misalignment has not been taken into account.
The tube can be aligned to within 0.0127 cm at the resonator, which implies that an

error of 1.4 r;, (Larmor radii) is possible.
RESULTS

Initially the experiment was run with a cathode voltage of 65 kV, However, when
the voltage was increased to 73 kV the harmonic modes became stroriger. This can be
understood as follows. As the cathode voltage increases, the perpendicular velocity, 5
increases. A larger 3, results in higher efficiency and a larger fundamental to second
harmonic starting current ratio. The second harmonic modes also became stronger when
the mod anode voltage was decreased. This may be a result of the fact that in practice

the gun is nonadiabatic and tends to be very sensitive to mod anode voltage. Since
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the gun was being run at a higher cathode voltage than it was designed for, lower mod

anode voltages may correspond to better beam quality or higher (=8L/8y)-

Experimentally, twelve second harmonic modes ranging from 301 to 503 GHz were
observed and these modes are listed in Table 6.2.2. The power, frequency, and efficiency
are given for each of the second harmonic emissions, as well as the theoretical mode that
most closely corresponds to the frequency. The power measurements were all taken at
a cathode voltage of 73 kV. All of the power measurements, except the ones taken at
417 GHz and 467 GHz, were mixtures of fundamental and second harmonic modes. The
method for determining the ratio of fundamental to second harmonic mode present will
be discussed in the diagnostics section. In the measurements at 417 GHz and 467 GHz,
the emission was believed to be purely second harmonic emission, with no significant
fundamental present at the same time. Evidence for this is obtained by using a plexiglass
a.béorber and the calorimeter or video diode. Strong signals are observed in a diode with
a filter horn that transmits frequencies above 400 GHz. The signals observed in a
fundamental mode diode detector disappear when the plexiglass is inserted in front of
the detector. This proves that the radiation is at high frequency (400 - 500 GHz), and
not fundamental, low frequency (~ 200 GHz) emission. The lack of a fundamental sets
an upper limit on the amount of fundamental present at 8% based on the sensitivity of
our calorimeter. At 417 GHz, 15 kW of power was measured, which corresponds tc a
6% total efficiency. The other modes ranging from 301 GHz to 503 GHz had powers of
3-14.2 kW and efficiencies of 0.6%-5.73%. Measurements with higher current were not
possible, because when the beam current increased the fundamental modes get excited
and suppress the second harmonic modes. Starting current and power as functions of

beam current were measured, and these results will be discussed later in this chapter.

At low frequencies several second harmonic p=1 modes are present, but disappear
at higher frequency (higher magnetic fields) as the beam moves away from the cavity wall
with increasing compressionl caused by the higher magnetic fields. As noted previously,
the p=3 modes are the highest efficiency modes and, in particular, the TE,q 3, and the

TE,,,3,1 were the highest power modes in this experiment.
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TABLE 6.2.2

Second harmonic emission observed in the

high Q output iris cavity with the quartz window

Frequency Magnetic Field Power Efficiency TE
(GHz) (T) (kW) (%) Mode
301.6 6.1 4 1.3 TE3,4,1
329.6 6.7 5 2.6 TEys1.
339.3 6.9 4 29 TEo,21
363.3 7.4 7 2.4 TE11,2,1
366.9 7.4 4 1.7 TEs,s,1
372.6 7.6 4 1.7 TEi6,1,1
417.1 8.4 15 6.0 TFEjo,3,1
442.8 8.8 14 5.73 TE 3,1
457.1 9.1 | >1 TE5,2,1
467.2 9.4 9.7 4.8 TEi23,
492.0 9.9 1.5 0.6 TE:3,3,1
503.3 10.1 >1 TE 7,2,

143



Figure 6.2.3 shows the regions of excitation for a fixed cathode voltage of 73 kV,
22.92 kV mod anode voltage, and 3 ampere beam current as a function of magnetic
field at the cavity and magnetic field at the cathode. Varying the cathode magnetic
field corresponds to changing the ratio of perpendicular to parallel velocity, v, /v
which changes the starting current of a given mode. As magnetic field at the gun is
decreased, perpendicular velocity increases. This increase is due to the fact that at the
gun, electrons experience an E x B drift and the velocity associated with the drift, vgx g,

that generates the perpendicular velocity in the beam, is given by

Ex B
B2
where E is the electric field and B is the magnetic field at the cathode. The graph in

6.2.1

VExB =

Figure 6.2.3, was generated by fixing the main field and continuously varying the field
at the gun. The process was repeated for a number of discrete values of the main field.
The boundaries of each mode are determined by whether the corresponding frequency
is observed by the frequency system. This is done because using just the video diode
signal can lead to inaccuracies when more than one fundamental mode is being excited.
Each of the regions of second harmenic emission in Figure 6.2.3 corresponds to regions
where that second harmonic mode was observed, including areas with a second harmonic
and fundamental mixture. In this modemap, the step tunable behavior of the second
harmonic emission, similar to that described by Kreischer® for the fundamental emission,
can be seen. When the harmonic mode is not being suppressed by a strong fundamental
mode, the p = 1,2,3 (TEn p,) sequences are excited. The region of excitation for
the TE;7,3,) is seen to be smaller than the other second harmonic modes, and above
a main field of 10.2 T no second harmonic modes were observed. At higher fields,
the fundamental and second harmonic spectra become sparser, since beam compression
is increased, and therefore the beam quality is diminished, since velocity and energy
spreads increase in more compressed beams. Poorer beam quality (larger energy and
pitch angle spreads) and a decrease in the ratio 8, /By, result in less of the beam energy
coupling to the RF-wave. These effects raise the starting currents and decrease the

starting current ratio, which scales like I,41 /T2 ox 1/62.
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In each of the harmonic regions, at least a small region exists where only second
harmonic was observed by the video diodes. As can be seen in Figure 6.2.3, the design
second harmonic mode at 410 GHz was not observed. This was because the start-
ing current of the TE;32,, was too high and the fundamental modes got excited first.
Misalignment and beam spread effects can also lower the sterting currents of the fun-
damental modes, if due to these effects the beam is displaced to a position of stronger
beam - RF coupling. To excite the TE;3 2 mode, a method must be designed that
will selectively reinforce only the second harmonic so that it gets excited before the

fundamental modes.
MOTHEYE WINDOW

In this section, another method of reinforcement that was used to supplement the
iris’s effect will be described. Using a motheye window (Ma (1983)) instead of an
ordinary quartz window proved to be very effective, and required only the window mount
to be slightly enlarged. A motheye window is fabricated by cutting two perpendicular
sets of sawtooth grooves which form pyramidal protuberances on both of the window’s
surfaces. These protuberances act as a gradation for the refractive index and thereby
reduce window reflections for broad band of frequencies as shown in Figure 6.2.4. The
window used in this experiment had a transmission coefficient of 0.8 or greater from
100-300 GHz. From 300-400 GHz the transmission coefficient drops to 0.2 and varies
from 0 to 0.2 at higher frequencies. The transmission coefficient measurement was made
with a broadband source and a spectrometer (Afsar (1984)). Since the transmission
characteristics of the window are poor at high frequency, but good at low frequency,

only the diffractive Q of the second harmonic is significantly increased.
RESULTS

The effect of the motheye window can be seen in the modemap shown in Figure
6.2.5, where the regions of second harmonic excitation are bigger than those in the

modemap shown in Figure 6.2.3, which corresponds to a regular quartz window. It is
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also noticed that the TE;32,1 and TEg 31 modes were present. The regions of second
harmonic emission are significantly larger at higher frequencies, which correspond to low
transmission coefficients, than the regions of the second harmonic modes with frequencies
less than 390 GHz, such as the T Esg,1,1, the TEg 3,1, or the TE;; 2,;. This is consistent
with the measurement of transmission coefficient as a function of frequency, with the
result that the transition region between good and poor transmission is sornewhere
between 300 and 400 GHz. As mentioned earlier, operation at higher values of the main
magnetic field may cause beam degradation. For the second harmonic, this is somewhat

counterbalanced by the increase of @p due to the motheye window.

In Table 6.2.3 the power, frequency, efficiency and theoretical mode are listed for
the observed modes. All of those modes above 339 GHz that were also observed using
a quartz window are in that list, except for the TE;; 3, mode, as well as the new
modes, the TEp 3, and the TE,3 ;. The TE); 3, may correspond to a different tube
alignment, and therefore was not observed when the motheye window was used. The
TE,33, and the TE;72; modes are stronger when the motheye window is used. The
presence of the TEg 5, and the TE,3 5, as well as the higher power levels observed for
the TEy72,1 and the TE;5 3, mocdes indicate that the motheye window is reinforcing
the higher frequency (> 390 GHz) modes. The lower power level of the TE)q 3,; mode
may have been due to poor alignments with a non-optimal beam position. This can
be postulated because in the modemap shown in figure 6.2.5 the region of excitation is
larger than when using the quartz window. With more modes present, the step tunable
behavior is more pronounced, with an average step size of 10 GHz between modes. If
different alignments had been explored, it is quite likely that the T'E;3 5 ;, TE\4,2,; and
the TEg,2,1 modes would also have been observed. All of the modes from m=8 to m=13
were observed in the p=3 family of modes, supporting the theory that the p=3 modes

are more efficient and have lower starting currents than the p=2 modes.

A comparison between the experimental and theoretical efficiency was also made
for both windows. The peak power and efficiency of the TE,; 3, second harmonic mode

measured as a function of beam current at a fixed cathode voltage was analysed. Figure
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TABLE 6.2.3

Second harmonic emission observed in the

high Q output iris cavity with the motheye window

Frequency Magnetic Field Power Efficiency TE
(GHz) (T) (kW) (%) Mode
339.8 6.8 >1 TEso,2,1
363.3 7.4 >1 TEy 2,1
366.9 7.4 >1 TFEgg3,
372.6 7.6 =1 TE 6,11
392.5 7.8 4 1.8 TEez3,1
410.6 8.2 1 0.7 TE,3,2,1
417.1 8.4 9 4.1 TEso,3,1
457.1 9.1 7 2.1 TE:5,2,1
467.2 9.3 ' 22 3.4 TE 23,
492.0 9.8 >1 TE33,
503.3 10.2 10 5.33 TE 7,21

150



6.2.6a shows the theoretical efficiency as a function of beam current with the cathode
voltage at 73.1 kV (all the power measurements were at this voltage), @ = v, /vy = 1.5
assuming a thin beam at beam position corresponding to the 22 kW power measurement.
The open circles denote the case with no correction calculated from equation 2.2.1. So
far we have assumed tha..t the only losses are the power diffracting out of the cavity and
the ohmic losses in the straight section. However losses also occur in the output taper
of the resonator, the collector and in the window. From Figure 6.2.4, where the dashed
line is the transmission characteristic of a plain quartz window, we can see that at this
frequency 40 % of the power will be absorbed in the window. The ohmic losses in the

uptaper and the collector are given by (Collin(1966))

Py /Pp = e 202 6.2.2

with /

-1/2

k2 k2 . 2
aj = B | L L S m 6.2.3
RZ, k2 k2 vz, —m?
1/2

= ()

where 2ay, is the power lost per meter, Py, is the power lost, Py is the total power, w
is the frequency, Z, is the impedaace of and to the permeability of free space, R is the
radius, k, is the wave number, k. n, = Vmp/R is the cutoff wavenumber for a TE. ..,
mode, and o is the electrical conductivity of copper. The collector has a fixed radius
of 1.1 cm and it is 61 cm long. These parameters give the collector a 97.4% efficiency.
Since the output taper starts at a radius of 0.2265 cm and ends up at a radius of 1.1 cm
with a linear angle of 5° over a distance of 14.9 cm, equation 6.2.3 must be integrated
over R between these two radii. The result is that the uptaper efficiency is 98.1 %. The
filled circles represent the results including all of these effects and give the theoretical
predictions to which the experimental results are compared.

When a quartz window was used, the power saturated at 7 kW with a peak ef-

ficiency of 4.9% and a beam current of 2 amperes, as shown in Figure 6.2.6b. With
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the beam current above 3 amperes it was not possible to find an operating point where
the fundamental mode was absent. It is seen that the peak efficiency is higher than
predicted by theory. The reason may be the ratio of perpendicular velocity to parallel
velocity may be higher than the value of 1.5 quoted in the Varian gun manual. Another
reason may be that due to beam spread or a poor alignments the beam may in fact be
in a more optimal position, so that the coupling to the T'E)3 3,; may be better than the

value used in the efficiency calculation.

With the motheye window, Figure 6.2.6¢c, it was possible to observe single mode
emission at currents up to 9 amperes and therefore generate higher output power. The
highest observed power was 17.8 kW with an efficiency of 2.8 % at a beam current of
7.8 amperes. This suggests that the motheye window significantly reinforces only the
second harmonic modes. The discrepancy between the theoretical and experimental
efficiencies may be explained by the fact that the data in Figure 6.2.6c was only taken
at operating points where no fundamental was observed. Therefore the detuning and
value of  in the operating points where the experimental data was taken may not have

been as optimal as the values used for the theoretical calculation.

Power as a fuhction of magnetic field was also measured for the TEjg 3 ;, as shown
in Figure 6.2.7, which was a strong fundamental mode. The peak power of 79 kW
corresponding to an efficiency of 22.4 %, was measured at 4.8 amps. The efficiency
peaked at a value of 31 % at 2.7 amps. The high efficiencies attained in this measurement
prove that a high guality beam is even possible at 9 Tesla.

Differences can also be seen in the starting current measurements of the TEgj>,
and the TE,23,; modes taken with the quartz window and with the motheye window.
'To compare the experimental starting current with the theoretical one we operate at a
constant 3, , which requires that the magnetic field at the gun and the cathode voltage
must be held constant for each mode. For the quartz window case measurements for the
above two modes were taken at a cathode voltage of 73.1 kV, and these will be compared
with starting currents observed when using the motheye window at the same cathode

voltage. To observe the effect of cathode voltage on starting current, measurements were
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also taken at a cathode voltage of 65 kV for the motheye window case.

Measurements for the T'Es 2,; mode were taken at a 0.25 Tesla magnetic field at
the cathode. In the quartz window case, shown in Figure 6.2.88, the T E5 2 ; mode has a
minimum starting current of 0.25 Amps at a main magnetic field of 8.82 Tesla. When a
motheye window is used (Figure 6.2.8b), the minimum starting current is 0.48 amps at a
main field of 8.747 tesla. The motheye window affects only the second harmonic modes,
and therefore these two measurements should be identical. The variation in these two
measurements may have been caused by the different alignments, causing the beam to
be in a different position for each measurement. The theoretical starting current curve
for the TEg 3, mode at a cathode voltage of 73.1 kV, represented by filled circles in
Figure 6.2.8c, predicts a starting current of 1.44 Amps at a magnetic field of 8.7 Tesla. If
a = 2.0 is used, the minimum starting current is 0.61 Amperes. Since it was not possible
to measure «, the value of a may have been higher than 1.5. Also misalignment may have
decreased the minimum starting current. If the beam is assumed to be at the position of
maximum coupling, the minimum starting current is 0.45 Amperes. A measurement of
the TEjg 5, starting current was also taken at a cathode voltage of 65 kV in the motheye
window case. The minimum starting current was found to be 0.74 Amps at a magnetic
field of 8.7 Tesla. For a fixed value of o, the ratio of perpendicular to parallel velocity,
the theoretical starting current is actually slightly lower for a cathode voltage of 65 kV
than at 73.1 kV as seen in the results for the T'Ejy 5 ; mode represented by filled triangles
in Figure 6.2.8c. If the cathode voltage is decreased for a fixed value of a, the value of
By decreases and the electron spends more time in the cavity, tending to decrease the
starting current. However, with a smaller cathode voltage the perpendicular velocity
also decreases, as seen from equation 6.1.1, which gives v oc E, where E is the electric
field between the cathode and the mod anode (this is for a fixed value of Byyn). Using
a = 1.25, a higher minirnum starting current of 2.31 Amps at is obtained at 8.56 Tesla.

This shift to a lower magnetic field is caused by the #; dependence in the detuning

2
A,
the minimum starting current for a given mode excited in a cavity of a specified length

parameter, A = (1 — %‘“), where w., = eB/ym. As mentioned in Chapter 2,
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corresponds to a specific value of A. As the voltage decreases, 5, decreases, with the
result that the cyclotron frequency and therefore the magnetic field must decrease to
keep A constant. Although the magnetic field corresponding to the minimum starting
current is almost the same for 65 kV and 73.1 kV, the shape of the starting current curve
as a function of magnetic field taken at 65 kV is shifted to a slightly lower iield. This

magnetic field shift is even more pronounced for the T'E;2,3,1 starting current curves.

The starting current data taken for the TE;3 3,1 mode has better agreement with
theory. With the quartz window, the minimum starting current is 1.2 Amps at 9.44
Tesla. In the case of the motheye window, the minimum starting current was 1.0 Amps at
a magnetic field of 9.43 Tesla. The lower TE;, 3, starting current in the motheye window
case suggests that the motheye window is reinforcing the second harmonic modes. The
magnetic field at the cathode for the TE)3 3,; mode measurements was 0.263 Tesla. The
theoretical minimum starting current is 1.46 Amps at a magnetic field of 9.42 Tesla,
which is close to the measured values with a cathode voltage of 73.1 kV. The shift to
lower field at lower values of cathode voltage is more obvious for the TE;33,; sterting
current curve than that of the TEs 5 ;. At 65 kV with the motheye window, the minimum
starting current is 1.75 Amps at a magnetic field of 9.37 Tesla. The theoretical minimum
starting current for @ = 1.25 is 2.82 Amps at a magnetic field of 9.28 tesla. The value of
a is not known for this setting and may account for the difference between experiment

and theory.

Three other starting current measurements were taken using the motheye window
for another high frequency fundamental mode and low frequency fundamental and sec-
ond harmonic modes. The measurement of another high frequency fundamental mode,
the TEg 2,1, was made because this mode is a strong fundamental mode bordering the
TE;33, . Since both modes operate at almost the same magnetic fields, the beam posi-
tion and B, will be similar for the two modes. Similar beam position and 3, are useful
when comparing starting currents, since for a fixed cathode voltage and cavity profile,
these are the only parameters that vary in the expression for the starting current. At

73.1 kV and a magnetic field at the cathode of 0.265 Tesla the minimum starting current
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of the T'Eg 2,1 was 0.7 Amps at a main field of 9.74 Tesla, shown in Figure 6.2.8¢c, which
has reasonable agreement with the theoretical starting current of 1.30 Amps at a main
field of 9.72 Tesla in Figure 6.2.8a. Since the starting currents of the TFEg2,; and the

TEs,2,, are similar, the 3, is roughly the same for these modes.

The behavior of the motheye window below 400 GHz was investigated by measur-
ing the starting current of a low frequency second harmonic mode, the T'E}¢ 2,1, which
oscillates at 339.3 GHz. At this frequency, the transmission coefficient is 40%, so the
second harmonic mode is getting some reinforcement, but not as much as a mode above
400 GHz where the transmission coefficient is 10 - 20 %. As mentioned before, we note
that the regions of excitation for the second harmonic modes shrink when operating
below 390 GHz. This low frequency second harmonic mode is compared with a neigh-
boring low frequency fundamental mode, the T'Eg,;,; to see if the ratio of fundamental
to second harmonic starting currents changes at lower frequency. The minimum starting
current of the TFEg 2 1, as shown in Figure 6.2.9 is 0.3 Amps at 6.89 Tesla. For a cath-
ode voltage of 73.1 kV and a magnetic field at the cathode of 0.231 Tesla, the theory
predicts a starting current of 7.02 Amps at 6.82 Tesla. However, if the value of a is
increased to 2.0, the minimum starting current is 2.59 Amperes, and in the position of
maximum coupling, one gets a starting current of 0.93 Amperes. The starting current
for the TEg ,,; was not in good agreement with the theoretical prediction,. either. Ex-
perimentally, at a magnetic field at the gun of 0.23 Tesla, the minimum starting current
was 0.2 Amps at 6.3 Tesla. The theory predicts a starting current of 2.5 Amps at 6.2
Tesla. With a = 2.0 the starting current becomes 1.0 Amperes and at the position of

maximum coupling the starting current is 0.86 Amperes.

In general, the experimentally measured starting current tends to have better agree-
ment when the beam position is close to the optimal position. If this is not the case,
agreement is poor and the disagreement is difficult to analyse because the beam spread
and misalignment effects are hard to estimate. Disagreement may also have been caused
by assuming too low a value of « for the theoretical starting current, since with a = 2.0

the agreement between theory and experiment improved for the TE5 21, TFEg,1,1 and
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the TE,2,1 starting currents.

A search for third harmonic modes was also conducted with this cavity and the
motheye window. To observe third harmonic modes, the fundamental and second har-
monic modes must be weakened. By operating below 7 Tesla, the motheye only reinforces
the third harmonic modes since the frequencies of the second harmonic modes are under
350 GHz. This search was conducted at beam currents ¢f 3 and 5 amps and no third

harmonic modes were observed.
6.3 LOW Q IRIS RESONATOR EXPERIMENT

The first iris cavity was only successful in exciting the design mode, the TE,32,
when the motheye window was used. However, high power operation was not achieved.
As the beam current was increased, the T'Es ;,; was excited and eventually suppressed
the TE;3,2,; mode. To attain high power operation, the starting current of the funda-
mental modes, like the T'Es 5, must be higher. This can be accomplished by decreasing
the the fundamental diffractive Q, Qp,, directly, or by decreasing the effective inte:-
action length, which also decreases the diffractive Q. Operating with a smalier iris de-
creases the reflection coefficient at the output end and directly decreases the diffractive
Q. However it is difficult to fabricate an iris that is much smaller than the iris in the
first cavity. The other way is to decrease the straight section length and therefore the
effective interaction length, which lowers the diffractive Q and also directly raises the
starting current, since I,; (QDLE ff) _1. This will also decrease the second harmonic
diffractive Q and effective interaction length. However since the diffractive of the sec-
ond harmonic is lower the ohmic effects will be less severe, so the total Q ratio decrease
will not be as large as the decrease in the diffractive Q ratio. With less severe ohmic
effects the decrease in the perpendicular efficiency is mitigated by an increase in ohmic
efficiency.

The effective interaction length can be decreased in another way, as seen in the
pointy iris case of the symmetric iris study. When the output taper angle is increased,

the reflection coefficient at that junction increases. If a long stepped iris is used the effect
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is stronger on the fundamental mode which is less attenuated at that point by the iris.
In this fashion the fundamental effective interaction length can be selectively shortened
while the second harmonic effective interaction length is unperturbed. Unfortunately
this is not a large effect, so it is used for fine tuning a design. In summary, this cavity
was designed to have a shorter straight section with a shallower but longer iris and a
steeper output angle. In this cavity. the straight section length was 0.4562 cm long and
the output taper angle was 16°. As a result of operating with a steep output angle,
the starting current ratio, I,;;/I,:2 = 1.15, which is a 15% improvement over the first
cavity. The total Q ratio is slightly lower than in the first cavity, but the effective length
ratio is higher and accounts for the increase in the starting current ratio. The design
parameters are listed in Table 6.3.1. This cavity was designed to produce 70 kW at 9
Amps at a frequency of 410 GHz, using the TE;32,; mode.

RESULTS

The data is very limited from this experiment, since the cavity was extensively
damaged by beam interception, near the beginning of the experiment. This experiment
was conducted using the quartz window. The data is surnmarized in Table 6.3.2, which
lists the theoretical mode, frequency and magnetic field at which the measurement was
made. Frequency measurements were made for two of the modes and both frequencies
were shifted with respect to the values in the first cavity, by the same amount. The

other modes were identified by their magnetic field values.

SUMMARY

In this the iris theory and the iris cavity results were discussed. The advantage
gained by using an iris is that the second harmonic modes are reinforced more than
the fundamental modes. This means that cavities can be designed where the second
harmonic starting currents are equal to or less than the fundamental starting currents.
As a result of these low starting currents, 14 different second harmonic modes were
observed with frequencies ranging between 300-503 GHz, with 22 kW measured at a
frequency of 467 GHz.
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TABLE 6.3.1

LOW Q IRIS CAVITY DESIGN PARAMETERS

Second Harmonic

Frequency = 410 GHz Beam Current = 9 Amps
Power = 70 kW nr = 11.84%
Magnetic Field = 8.3 Tesla Magnetic Field at the Gun = 0.221 Tesla

Cathode Voltage = 65 kV

7L =23.0% nou = 79.2%

Net = 65.3% Cavity Radius = 0.2316 cm
Qbp2we = 2416 QDwc = 358 (TE5,2,1)
QoHawe = 9200 QoHwc = 9059 (TEs2,1)
Qr20c = 1914 QTwc = 344 (TEs5,2,1)
Legfawe = 0.431 cm Leffwe = 0474 cm (TE;5 2,1)
IsT2uc = 6.05 Amps IsTyc = 6.95 Amps (TEs2,1)
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TABLE 6.3.2

Second harmonic emission observed in the

low Q output iris cavity

Frequency Magnetic Field TE
(GHz) (T) Mode
303.7 6.0 TEs,,1
- 6.7 TEy4,1,1
413.5 8.2 TE\3,2,1
_ 8.4 TEo,3,1
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Chapter 7

CONCLUSIONS

In Chapter 2, the linear theory showed that the fundamental modes tend to have
lower starting currents than the second harmonic modes. Therefore, the fundamental
modes get excited first and suppress the harmonic modes. As a consequence, in order to
excite second harmonic modes, fundamental mode suppression techniques are necessary.
Five such techniques have been discussed in this thesis.

The first technique exploits the fact that the fundamental mode spectrum is not
uniformly distributed. Concentrations of modes around certain mode indices, vy, tend
to occur. Since each mode is excited over a limited range in magnetic field, it was
assumed that the gap in the fundamental spectrum would translate into a region of
magnetic field devoid of fundamental modes. A resonator was designed, as discussed in
Chapter 4, with a second harmonic mode that existed in the middle of a large gap in the
fundamental spectrum. The absence of fundamental modes in the region of magnetic
field corresponding to the gap in the fundamental spectrum was not observed. The
regions of excitation for the fundamental modes were found to be larger than predicted
by theory. It was also discovered that the higher order axial modes filled in the magnetic
field region. The harmonic modes were suppressed by the strong fundamental modes in
this experiment. The second technique involves placing the beam in a position where
the coupling to the fundamental modes is weak. This technique is difficult to implement,
since the fundamental mode spectrum is denser at higher frequency, and it is difficult to
find a beam position where the coupling to the fundamental modes is weak. Furthermore,
finite beam thickness effects and misallignment of the beam can allow the beam to
couple to undesired fundamental modes. The combination of the above two techniques,
which was implemented in the design of the resonator in the Chapter 2 experiment,
is not strong enough to suppress the fundamental modes. Some other techniques are
necessary. On such technique is to operate with a higher value of perpendicular velocity,

B1. As discussed in Chapter 2, at higher values of 3, the ratio of fundamental to second

168



harmonic starting current, I,;;/I,;2 increases. At a high enough value of 3, , the second
harmonic mode has a lower starting current and can be excited first. However, since
an existing 65 kV gun was used for this experiment, only a limited increase in B, was

possible, due to the upper limit on the cathode vcltage.

'The fourth technique for suppressing fundamental modes involves designing a cavity
where the ratio of the second harmonic to fundamental total Q, QT2/QT: is as large as
possible, so that the starting current of the second harmonic mode is as low as possible.
This can be accomplished by making an electromagnetic structure that highly perturbs
the fundamental modes (thereby lowering the Q) and leaves the second harmonic modes
unperturbed or a structure that reinforces (raises the cavity Q) the second harmonic
modes more than the fundamental modes. In Chapter 5, the first type of structure was
built, by cutting axial slots in the cavity wall at positions corresponding to electric field
minima of the second harmonic mode. Unfortunately, the second harmonic modes as
well as the fundamental modes had large leakage losses through the slots. However,
when a foil sheath was wrapped around the outside of the large slots cavity to decrease
the leakage out of the slots, nineteen discrete frequencies were observed in the frequency
range from 186.3 - 200.6 GHz. This is a higher density of modes than would be predicted
by conventional resonator theory for an unslotted cavity. The larger number of modes
may be a result of several effects. Since the cavity configuration resembles a vaned cavity,
magnetron effects might be creating a higher density of modes. Also, the slots cut in the
cavity wall substantially lower the cavity Q, so the amount of frequency pulling can be
quite large. Frequency pulling caused by variation of the magnetic field and variation

of the parallel electron velocity, v, (pitch angle tuning) was observed.

In Chapter 6, a high Q resonator which had an iris at the output end of the straight
section was used the reinforce the second harmonic modes. A study was conducted to
determine the effect of iris shape (stepped or pointy) on the ratio of the fundamental to
second harmonic starting current, I,41 /1,42, to determine whether for a given diffractive
Q of the second harmoric, an optimal design could be found. The study had two

results. The first result was that for a given value of second harmonic diffractive Q,
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the starting current ratio was independent of iris shape, if the cavity length was not
varied. Next, we found that the ratic of second harmonic to fundamental diffractive Q,
Qp2/Qp1 improved as the second harmonic diffractive Q was increased, corresponding to
larger irises. However, the ratio of second harmonic to fundamental total Q, Qr2/@r:
saturated when the second harmonic diffractive Q reached a value of approximately
0.5 Qon, where Qo is the ohmic Q. As a result, the best discrimination against the
fundamental modes with the highest fundamental mode starting currents, is obtained
for a value of second harmonic diffractive Q close to half of the value of the ohmic Q.
When the high Q iris cavity experiment was conducted with an ordinary quartz
window, twelve different second harmonic modes were observed with frequencies ranging
from 301 to 503 GHz. At 417 GHz, 15 kW of power was measured, which corresponds
to a 6 % total efficiency. The other second harmonic modes had power levels of 3 - 14.6
kW and efficiencies of 0.6 - 5.7 %. When a motheye window was used (with the same
cavity) to implement the external feedback to the second harmonic mode technique,
two new second harmonic modes were observed. At 467 GHz, 22 kW of power was
measured with a 3.4 % total efficiency, and the other modes had power levels of 1 - 10
kW and total efficiencies of 0.7 - 5.3 %. A 12 MHz frequency bandwidth was observed
for these second harmonic frequencies. The effect of the motheye window was to slightly
increase the region of excitation and slightly lower the starting current of the second
harmonic modes, thereby allowing two extra second harmonic modes to be excited. In
these two iris cavity experiments, step tunable behavior for the second harmonic modes
was observed. When the harmonic modes were not being suppressed by the fundamental
modes, the p = 1,2,3 (TEp, ; 4) sequences were excited with an average step size of 10

GHz was noticed.

FUTURE RECOMMENDATIONS

As mentioned earlier, the ratio of second harmonic to fundamental total Q saturates
for values of the second harmonic diffractive Q above 0.5 Q... If one operates with

a mode that has a higher value of ohmic Q, the maximum total Q ratio increases.
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Therefore, since the ohmic Q for a given cavity radius increaces for higher values of the
radial index, it is desirable to operate with a mode that has the highest p possible. The
desirability of higher p modes is demonstrated by the fact that the high power modes
in the high Q iris cavity experiment in Chapter 6 were the p = 3 modes. However,
operating with higher p modes leads to higher values of mode index, v, if the same
electron gun is used. At higher vaiues of v, the mode spectrum is denser and mode
competition problems are more severe. If an electron gun is used that has a smaller
radius at the cathode, it is possible for the beam to occupy a radial position further away
from the cavity wall without changing the magnetic compression needed to increase the
perpendicular energy of the beam, so one can access the higher p modes at lower values
of Ump.

It is recommended here that a new gun be designed with a smaller cathode radius
and a higher value of @, . This would allow a better utilization of the third fundamental
mode suppression technique (increasing 8, ) and a systematic study of the high p modes
could be undertaken. Even higher power and efficiencies than achieved in this paper
may then be possible.

For work at higher harmonics a system that provides more fundamental mode dis-
crimination is recommended, since no third harmonic emission was observed in the ex-
periments described in this thesis. Complex cavity configurations have been successfully

used to excite third harmonic emission in the past (Zapevalov (1983)).
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TABLE OF COMMONLY USED SYMBOLS

The subscripts 1 and 2 used in this thesis refer to fundamental and second harmonic

mode parameters.

R, = cavity radius R, = electron beam radius

R; = emitter strip radius weo = eB/m

r; = Larmor radius we = cyclotron frequency = eB/ym
ky = || component of the wave vector, k  k, = 1 component of k

Ump = P'* root of J;, (kL Re) v = electron velocity

BL = vy /c = perpendicular normalized velocity
By = vy /c = parallel normalized velocity
Ox = normalized electron velocity at the cathode

B, = normalized electron velocity at the resonator

A = wavelength Less = effective interaction length
yz=(1-0%)7Y2 =1+ V(kV)/511 V. (kV) = cathode voltage in kV
B, = magnetic field at the cavity B, = magnetic field at the gun

m = azimuthal index p = radial index

q = axial index n = harmonic number

f(z) = axial field profile A = detuning = 2/6% (1 — 2=)
4 = normalized cavity length F = normalized rf field strength
Qp = diffractive Q Qon = ohmic Q

Qr = total Q nr = total efficiency

n, = perpendicular efficiency net = electrical efficiency
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Nor = ohmic efficiency Ip= beam current
I = normelized beam current Cmp = Wﬁ‘:—"_ﬁ‘%ﬂ% = coupling coefficient

I, = beam current in amps

L; = iris length D; = iris depth
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