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ABSTRACT

Many fluid flow problems of fundamental and practical importance involve free
surfaces, multi-fluid layers, fronts, and moving boundaries. In this study, a
new Legendre spectral element method is presented for the solution of the time-
dependent Navier-Stokes equations in domains defined by moving or free bound-
aries. For purposes of analysis and clarity of presentation, attention is focused
on the problem of unsteady flow of a thin film down an inclined plane.

Spectral element methods are high-order weighted residual techniques which
combine the rapid convergence rate of spectral techniques with the geomet-
ric flexibility of finite element methods. In the spectral element discretization,
the computational domain is subdivided into macro-elements, and the depen-
dent and independent variables are approximated by high-order tensor-product
polynomial expansions within the subdomains. Variational projection operators
and Gauss numerical quadrature are used to generate the discrete equations,
which are efficiently solved by iterative procedures based on tensor-product sum-
factorization techniques. The Legendre free-surface spectral element formulation
is based on the following extensions of the fixed-domain spectral element method:
the use of the full viscous stress tensor for natural imposition of traction and
surface tension boundary conditions; the use of arbitrary-Lagrangian-Eulerian
methods for accurate representation of moving boundaries and fronts; the use
of elliptic mesh-velocity solvers to accomodate large domain deformations; and
the use of a2 semi-implicit time-stepping procedure to partially decouple the
free-surface evolution and interior Navier-Stokes equations. An analysis of the
spectrum of the linear stability problem {Orr-Sommerfeld equation) associated
with film flow reveals the presence of dissipative, oscillatory, and weakly un-
stable shear modes, and suggests optimal semi-implicit schemes for temporal



discretization of the spectral element equations.

Detailed results are presented for the linear and nonlinear stability of film flows.
Comparison of direct simulation results for linear growth rate with the (exact)
predictions of the Orr-Sommerfeld operator demonstrate that the effect of the
free surface is properly accounted for in the spectral element treatment. The
numerical prediction of finite-amplitude flows shows both qualitative and quan-
titative agreement with the experimental results.

The results presented for film flow are representative of other calculations pos-
sible with the spectral element free-surface formulation, such as the simulation
of solidification fronts, multi-layer fluids and flows bounded by pulsating walls.
Examples are presented to demonstrate the effectiveness of the method in some
of these applications.
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CHAPTER 1

INTRODUCTION

Fluid flows in time-dependent deforming geometries are encountered in a
large number of important engineering and natural systems. In these problems, the
time dependence of the geometry is most often due to the presence of one or more
dynamic boundaries, such as solid-liquid, liquid-liquid and liquid-gas interfaces, in
the systems. Examples of practical applications in which moving boundaries are
important include : heat exchangers, in which fluid-structure interactions and res-
onances are critical to system performance; ship hydrodynamics, in which (viscous
and inviscid) free-surface phenomena determine overall drag and stability charac-
teristics; materials processing systems such as coating and crsytal growth processes,
in which free surfaces and solidification fronts play a central role in flow evolution;
and biological flows in living organisms, in which time-dependent geometries that
arise from flexible and pulsating walls play a vital role in the cardiovascular, respi-
ratory and renal systems. Free-surface and moving boundary flows are also crucial
in understanding fundamental aspects of multi-phase flow, change-of-phase heat

transfer, cavitation, dynamics of bubbles and droplets, etc.

As the motion of a boundary significantly complicates the already intractable
Navier-Stokes equations, analytical solution of moving boundary flows in practice
is extremely difficult (if not virtually impossible), and these problems are typically
treated either experimentally or numerically. The main objective of this study is to
formulate a numerical method for the solution of moving boundary fluid-flow prob-
lems, a solution technique in which adequate modelling capabilities are properly
formulated to address the complexity due to moving boundaries; and at the same

time, fast and versatile algorithms are employed for the efficient computation of the



solution. Such a numerical method could serve as an effective tool for analysts and
engineers to obtain accurate solution for various classes of moving boundary prob-
lems. For purposes of analysis and clarity of presentation, we focus our attention

in the current study on free-surface flows.

In the past, 2 number of numerical methods have been proposed for the
solution of free-surface problems. These methods can be categorized as regards to";
the treatment of the free surface, the discretization in space and in time, and finally
the solution algorithins employed. We briefly discuss each of these in turn. First,
as regards treatment of the free surface, the various methods can be classified as
[1] : front-tracking techniques in which the computational domain (mesh) deforms
in accordance with the time-evolution of the free surface; front-fixing techniques in
which the computational domain is fixed, and the time-evolution of the free surface
is incorporated via a time-dependent transformation between the mesh coordinates
and the physical coordinates; and fixed-domain techniques in which the compu-
tational domain remains fixed, and the free-surface position is determined by a
mesh-defined variable or by a supplementary integral equation. The front-tracking
and front-fixing methods are, in fact, closely related; however, the former tends to
involve local mappings and allows “non-single-valued profiles”, whereas the latter

is often based on global mappings that may require single-valueness.

The front-tracking approach appears to be the most attractive for not-too-
convoluted free-surface problems, as the position of the interface can be determined
to a high accuracy, and the geometry of the computational domain can be updated
more naturally than the transformation relations required in the front-fixing ap-
proach. Among the formulations employed by front-tracking techniques, the purely

Lagrangian description suffers, in general, from excessive mesh distortion in requir-



ing mesh points to follow the motion of the corresponding fluid particles; therefore,
such techniques are not effective without additional rezoning operations which re-
duce the mesh distortion. Arbitrary-Lagrangian-Eulerian descriptions [2],[3],[4],(5]
have been proposed to alleviate such a difficulty. Using the cnncept that the com-
putational domain can deform independently of the fluid motion (that is, the mesh
velocity is independent of the fluid velocity except at moving boundaries where ap-
propriate kinematic conditions are applicable), arbitrary-Lagrangian-Eulerian de-
scriptions combine both advantages of accurate free-surface tracking and accept-
able mesh “convection”. In the current study, our formulation is based on a new
arbitrary-Lagrangian-Eulerian technique which, when combined with appropriate
mesh-velocity kinematic conditions, result in minimal mesh convolution. Conse-

quently, rezoning operations are not necessary in most of the applications.

As regards to spatial discretizations, various techniques such as finite differ-
ence methods [2],(6] finite element methods [7],[8] and boundary element methods
[8] have been employed for the solution of free-surface flows. In this study, a new
Legendre spectral element method, which is an extension of the method described in
Ref.[10] and [11] for fixed domains, is proposed for the spatial discretization of the
free-surface Navier-Stokes equations. The spectral element method [12] is a high-
order finite element method (which is similar to the p-type finite element method
[13],[14]) that combines the geometric flexibility of finite element methods (h-type)
with the rapid convergence of spectral techniques. Previous investigations have
shown that due to their nondispersive behavior and the fast convergence obtained
for smooth solution, these methods are capable of accurate and efficient solution
of a wide range of fluid flow and heat transfer problems [15],[16],[17],[18],[19]. In
addition to the flexibility provided by spectral element method in terms of either

h- or p-refinement, recent advances in adaptive techniques and non-conforming dis-
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cretization methodology [20] (in which h-type and p-type elements with different
orders of approximation can be joined compatibly in the same mesh) greatly en-
hance the versatility of the method. The selection of the spectral element method
for spatial discretization is motivated by the desire to exploit the above advantages.
We shall demonstrate below that spectral element discretization is indeed effective
as long as proper care is taken in the formulation of the variational statement as

regards the arbitrary-Lagrangian-Eulerian terms and the stress tensor.

The issues of temporal treatment and solution algorithm are clearly closely
coupled. In particular, a method is characterized both by the choice of an im-
plicit, semi-implicit, or fully explicit time-marching scheme, and by the “subse-
quent” choice of associated linear solver within the timestep. As rega.rds the choice
of time-marching scheme, it is clear that fully implicit methods (and closely related
steady solvers) have the advantages of being accuracy- rather than stability-limited;
the associated disadvantage is the necessity of a nonlinear solver, and perhaps worse,
the appearance of nonsymmetric and anisotropic matrix operators that typically ne-
cessitate memory- and cycle-intensive direct solvers. In contrast, explicit-in-time
solvers can be severely restricted by stability restrictions, however the linear equa-
tions to be solved in this case reduce to symmetric elliptic systems (for the pressure)
which can be readily treated with fast iterative solvers. Semi-implicit schemes con-
stitute a compromise between the implicit-in-time coupled with direct-solver and
explicit-in-time coupled with fast-iterative-solver schemes, in which those compo-
nents of the equations (that is, the Stokes problem) amenable to fast iterative
solution are treated implicitly, and those components of the equations (that is,
nonsymmetric, nonlinear, and implicitly coupled terms) not readily amenable to
fast iterative solution are treated explicitly. Although semi-implicit procedures are

clearly best suited for time-dependent problems, they are also appropriate (par-
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ticularly in three space dimensions) for steady-state calculations. The free-surface
semi-implicit procedures adopted here represent extensions of earlier fixed-domain
semi-implicit techniques; efficient treatment of free-surface problems requires the
development of maximally stable/accurate semi-implicit time-stepping schemes for
the kinematic conditions, and accurate prediction of the “free-surface” critical time

step.

In the present study of free-surface flows we focus our attention primarily
on the numerical solution of the classical falling film problem even though the pro-
posed free-surface spectral element solution method is entirely generic. The thin film
problem is of interest both as an “unsolved” physical problem, and as a convenient
vehicle for describing and illustrating our general numerical techniques. Although
the emphasis in the current study is clearly on numerical issues, it is not possi-
ble to develop efficient, accurate, and stable numerical techniques for free-surface
flows without due consideration of the underlying physics and mathematics (that
is, spectrum). The extent to which the film flow problem and associated analysis
is “generic” is demonstrated in latter chapters of this thesis by the presentation of

solutions to a variety of free-surface and moving boundary problems.

The outline of this thesis is as follows. In Chapter 2, we introduce the
problem of film flow down an inclined plane. We present a temporal linearized
stability analysis of the falling film problem and in addition, we briefly describe the
dynamics of nonlinear film flows. Next, we present in Chapter 3 the variational
formulation for unsteady free-surface flows using an arbitrary-Lagrangian-Eulerian
description; the resulting variational statements constitute the basis for both spatial
and temporal discretization. In Chapter 4, we present the spatial discretization of

the (variational) Navier-Stokes equations in a deformable domain using the Legen-
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dre spectral element method. Next, in Chapter 5 we present the selection, analysis
and application of optimal semi-implicit time-integration schemes for temporal dis-
cretization. At the end of the chapter, the fully discrete algebraic time-evolution
equations governing free-surface flows are given. The solution of the fully discrete
equations using fast iterative solvers is the subject of Chapter 6. Next, in Chapter 7
we present the spectral element solutions to the film flow stability problem for both
infinitesimal and finite perturbations, and we give comparison with previous numer-
ical and experimental investigations. Several other free-surface flow calculatjons are
also presented in this chapter. In Chapter 8, we discuss briefly the application of
the proposed free-surface spectral element method to two different classes of moving
boundary problems. Sample analyses for each of these categorics are also presented
to demonstrate the effectiveness and generality of the proposed method. In the final
chapter, we present the conclusions of the study and suggest several areas which

merit future investigations.
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CHAPTER 2

FLOW OF A THIN FILM DOWN AN INCLINED PLANE

In this chapter we present the analysis of the flow of a thin film down an in-
clined plane. The study of this problem is motivated by the following considerations:
(i) this is geometrically the simplest problem that embodies a free surface; (ii) it
is of significant interests in practical applications such as coating processes; (iii)
the associated linearized stability analysis (Orr-Sommerfeld operator) of this prob-
lem provides information about the relationship between the flow parameters and
the eigenvzlue spectrum, from which optimal time-integration schemes for direct
simulation can be selected and analysed (see Chapter 5); and (iv) the quantita-
tive solution of the problem serves as a basis for comparison regarding accuracy,

effectiveness and generality among various solution methods.

2.1 Problem Description

The film-flow problem under consideration is shown in Fig. 2-1(a). A
two-dimensional liquid film flows down a plane (stationary wall) inclined at an
angle § with respect to the horizontal under the action of gravity. The liquid is
characterized by a constant density p, kinematic viscosity v, and surface tension
0. The film is assumed to be unbounded in the streamwise direction (z1), and of
average thickness h in the cross-stream (z,) direction. Scaling length by h, velocity
by Uo, where Uy = gh?/2v (g is the acceleration of gravity), time by h/U,, and
pressure by pUp?, the governing equations describing the film flow are the Navier-

Stokes equations :
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1 .
Uie + uj U = —p; + 7 (uij;+2¢) in Q(t) , (2.1a)

and the continuity equation :
u, =0 in ﬂ(t) s 'u'lb)

where u;(z;,t) is the velocity component in the z;-direction, ¢ = (sinf, cosp);
p(zi,t) is the pressure, t is time, R is the Reynolds number, R = Uoh/v and 11(t)
is the time-dependent flow domain. We use indical notation, in which a subscript
comma denotes derivative, (e.g., uis = du;/8t , u,; = Ou;/dz; ), and repeated
indices indicate summation, {e.g., w = u;1 + ¥z2 ). We note that all quantities in

Eq.(2.1) are nondimensional.

In anticipation of a temporal stability analysis in which disturbance of a
given (nondimensional) wavelength X is imposed, we consider a flow domain of
length X in the streamwise direction and a domain boundary which consists of the
following subsets : 911(t) = 80, U 30, U 8N, (t) , as shown in Fig. 2-1(b). The

appropriate boundary conditions are : (i) periodic boundary conditions on on,

(0, 23,8) = u.-(%",x,,t) , (2.2a)

p0,72,8) = p (22,20 1) (2.2b)

where & = 27/ ; (ii) no-slip boundary conditions on the wall 80,

u=0; (2.3)
and (jii) surface-tension traction boundary conditions on th urface 80, (t)

8 [ —pbi; + %( uj+uj;)|n; =0 (2.4a)

n; [ —pbij + %(u.-,,- +uji)|n; =Wk, (2.4b)
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In Eq.(2.4), &; is the Kronecker delta, n; and s; are the unit normal and tangent
vectors, respectively, « is the curvature, W is the Weber number, W = o/phU;*.
In summary, the film flow characteristics are determined by the nondimensional

parameters &, 3, R and W.

2.2 Brief Summary of Film-Flow Dynamics

2.2.1 Mean Flow

The steady-state solution for the film flow problem is first given by Nus-
selt [21] which corresponds to the case of a perfectly flat free surface for which the

streamwise velocity profile is semi-parabolic :

U, =(1-1%)sing, (2.5a)
U,=0, (2.5b)
P = 2

=g % cosf . (2.5¢)
7=0. (2.5d)

Even though the steady-state solution satisfies both the Navier-Stokes equations
and the continuity equation (together with all associated boundary conditions), this
solution is not always physically realizable since it may be unstable under certain
flow conditions. Thus, stability analysis is required to characterize the nature of the
actual flow. There are two distinct “mechanisms” of instability based on linearized
stability analysis of the film flow problem; the cccurrence of the corresponding mode
of instability depends on the angle of inclination [22|. For nearly vertical films,

weakly unstable gravity-capillary waves occur at relatively low Reynolds numbers
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(O(1)) for disturbances of relatively long wavelengths. For nearly horizontal films,
Tollmien-Schlichiing (shear) waves associated with relatively small wavelengths oc-
cur at much higher Reynolds numbers (O(10%)). In the present study, we focus
our attention on the first type of instability; namely, the case of vertically falling
films. In the next sections, we present the linearized stability analysis together with

a brief qualitative discussion on the nonlinear film characteristics.

2.2.2 Linearized Stability Analysis

Many analytical and experimental studica have been performed on the lin-
earized stability analysis ansociated with film flow down an inclined plane; sce Ref.
{23] to [32]. We refer to Ref {22} and 29| for a more comprehensive review of the
literature. In the temporal linearized stability analysis, the mean flow given in

Eq.(2.5a-¢} is perturbed with an infinitesimal disturbance of the form :
v (i, 25,t) U x5)) » e, (25)e™" ™, (2.6a)

P(zi.x13,t) = P(xy) o eplry)e"e™ (2.6b)
similarly, the free-surface pecturbation is given by
n(zi8) - ene™e™, (2.7)

where ¢ < 1 and 7 is the complex frequency. We remark that the above pertur-
bation corresponds to & Fourier decompanition of the solution using separation of

variables (33,

Substituting F.q (2.6) into F.q.(2.1), retaining terms that are (¢) and elim-

inating p and G; , we arrive at the Orr-Soammerfeld equation which ia expressed in

17



terms of the cross-stream velocity #; and the complex frequency ) :

{(D* ~ &)* — iaR[U(D* - o’) - D*Ty|}iz = YR(D* — &?)éi, inA, (2.8)

where D denotes d/dy and A=|0,1[. The following boundary conditions are appli-

cable in conjunction with Eq.(2.8). At the wall, the no-slip condition is
4a(1) = Diy(1) = 0; (2.9)
and, at the free surface, the zero-shear boundary condition is
D*4,(0) + o*43(0) — iaD*T,(0) =0, (2.10a)
and the normal-traction bounadary condition is
D*ii3(0) — [{«RT,(0) + 3a® + YR Diz(0) = —(20*cosf + o*W R)f; . (2.10b)
Finally, the kinematic condition for the free surface is

42(0) — ialU,(0)) = 74 . (2.11)

We remark here that the solution of the Orr-Sommerfeld equation is use-
ful to verify the spectral element (direct simulation) calculations of the growth
rate and wave speed for various combinations of flow parameters (see Chapter 7).
In addition, a more in-depth understanding of the flow characteristics can be ob-
tained by exploring the underlying mathematical structure (that is, spectrum) of
the Orr-Sommerfeld operator, which is important in the temporal discretization of
the governing equations used in direct simulation (see Chapter 5). For the solution
of the Orr-Sommerfeld equation, we follow the approach given in the work by Ko-
zlu and Patera [34]. First, we formulate an equivalent variational (weak) form of

the Orr-Sommerfeld operator given in Eq.(2.8), together with the natural boundary
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conditions given in Eq.(2.10). Next, we perform a finite-element discretization by
subdividing the domain A into elements of equal length Az,. For each element, we
select Hermit cubics as elemental interpolants for both the solution and the test
function. The elemental coefficient matrices are then calculated using numerical
integration, and we perform a direct stiffness summation operation, augmenting
the resulting matrix equation with the kinematic condition given in Eq.(2.11), to
arrive at the global discrete system of equations. This takes the form of an algebraic
eigenvalue problem in which the eigenvalue v and the eigenvector which consists of
the nodal degrees-of-freedom for ii; , Diy and s are the solution sought (we actually
need to compute only 7). We express the complex cigenvalue as v .= 7, + i, where
7 and -; are real. The stability of the film flow can now be determined from the

eigenvalue which has the largest real part which we denote as 4’ ; namely,

< 0 stable
Y = (W Jmae = 0 neutrally stable (2.12)

> 0 unstable

We remark that the growth/decay rate of the disturbance is given by the maginu-
tude of 4;. We show in Fig. 2-2 and 2-3, as representative solutions for lincarized
stability analysis of vertically falling films, the growth/decay rate 4 versus the wave
number for various Reynolds and Weber numbers. We note from Fig. 2-2 that in
the case of an unstable (growing) disturbance, the growth rate at fixed wave number
and Weber number increases with increasing Reynolds number. This suggests that
the instability is due to inertia effect. Moreover, the cut-off wave number is insen-
sitive to the Reynolds number, which suggests that this cut-off phenomenon is of
vortical rather than viscous nature. In Fig. 2-3, we observe that the growth rate at
fixed wave number and Reynolds number decreases with increasing Weber number,

which suggests that surface tension has a stabilizing effect on the instability. These
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results agree closedly with those reported in earlier works [29).
s

2.2.3 Nonlinear Film Dynamics

Owing to the complexity associated with nonlinear stability analysis, the
filn flow characteristics associated with finite-amplitude perturbation are first es-
tablished mainly from experimental work. In the case of vertically falling films with
disturbance of relatively short wavelength, the unstable mode will continue to grow
until the flow becomes turbulent [22],[35],(36],(37]. However, for fluids with rela-
tively strong surface tension and for disturbance of sufficiently long wavelengths,
the unstable (growing) mode predicted by linearized theory is stabilized by non-
lincar effects as observed in the experimental investigations performed by Kapitza
:38,. In this case, the flow remains laminar as the disturbance evolves and increases
in amplitude until finally, a steady-periodic state is reached. Two types of super-
critically stable steady-periodic finite-amplitude waves associated with vertical film
flows are reported by Kapitza. The first type takes the form of periodic ripples,
sce Fig. 2-4, and can be gcnerated experimentally by disturbing the falling film
with weak periodic air pulses. For this type of ripples, the film profile is completely
regular and, at samall flowrates, resembles a sinusoid. At larger flowrates, how-
ever, the auperposition of higher harmonics can be observed as the ripples becomes
steepened at the front. The second type of supercritically stable finite-amplitude
waves (termed single wave by Kaptiza) are of even longer wavelengths and the wave
profile resembles a train of non-interacting “droplets”, see Fig. 2-5. This type of
waves can be generated experimentally by using stronger air pulses applied at longer
periodic intervals. We observe that in this case the filin profile is more irregular

and consists of a dominant crest with a steepened front, which is preceeded by a
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number “dimples” that are progressively smaller the further they are ahead of the
single crest, and a essentially flat region behind the dominant crest and ahead of
the smallest dimple. Additional experimental studies of the wave profiles and the

velocity distributions of these two types of nonlinear waves are given in Ref.[45].

There exist a number of analytical studies on finite-amplitude waves in
falling films. Atherton et.al. [39] derived the general evolution equations for both
planar and axisymmetric films. For the periodic waves, Lin [42],(43], Nakaya [40],
Gjevik [41] investigated the existence of supercritically stable states based on var-
ious simplified models, and evaluated the wave amplitude as a function of various
flow parameters. In Ref.[41] and [44], the authors used a one-dimensional series
expansion approach and computed the wave speeds of the periodic ripples; the pe-
riodic wave profiles were also plotted. For the single-waves, Tsvelodub et.al. [46]
and Demekhlin et.al. [47] computed (stationary) wave profiles for vertically falling
films; Demekhlin et.al. also presented incomplete plots of stationary streamlines

evaluated from matching different solitary-wave solutions.

With regards to the goal that we set forth for the study of the film-flow prob-
lem, the numerical simulations of both of these two types of nonlinear waves using
the proposed spectral element scheme are particularly important, both in provid-
ing quantitative solutions (which are highly nontrivial) to the nonlinear problem,
and in demonstrating the effectiveness of the solution capability of the proposed
scheme for free-surface flows. The presentation of the spectral element results and

comparison with the available solutions are given in Chapter 7.
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CHAPTER 3

VARIATIONAL FORMULATION USING ARBITRARY-
LAGRANGIAN-EULERIAN DESCRIPTION

The variational statement which constitute the basis for spatial and tem-
poral discretization is formulated in this chapter. For completeness we present in
Section 3.1 the incompressible Navier-Stokes equations (the strong form) for free-
surface flows. Next, the variational (weak) form is presented in Section 3.2. The
manipulations which remove the ambiguity of reference configuration in the un-
steady term of the weak form are given in detail. The role and the determination
of the mesh velocity which is a key ingredient in the arbitrary-Lagrangian-Eulerian

technique are also discussed.

3.1 Navier-Stokes Equations

The governing equations for incompressible free-surface flow are the N avier-
Stokes and the continuity equations which can be expressed in the following strong

form :

P ( Uie + uj u;; ) =15 t+ fi in n(t) ’ (3.18.)

u,; =0 in 0(t); (3.1b)

where 7;; is the stress tensor, u; is the velocity, f; is the body force, p is the fluid
density, and 0(t) is the time-dependent domain. The notation for derivatives and
the summation convention are the same as in Section 2.1. For a Newtonjan fluid,

the constitutive relation is given by

Tij = —pbij + p (ui; +uj;) , (3.2)
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where §;; is the Kronecker delta, p is the Pressure, and u is the viscosity. We
remark that in the consitutive relation given in Eq.(3.2), the full viscous stress
tensor (rather than the usual Laplacian operator) is used in anticipation of the
variational statement for which traction boundary conditions are to be imposed

consistently at the free surface.

At the boundary where the fluid velocity is precribed, we have the following

Dirichlet boundary condition :
U = U on aﬂu(t) ’ (33)

where ; is the prescribed velocity. At the boundary where traction is prescribed,

we have the following Neumann boundary condition :
Tiin;=1%;, on 30, (t) ; (3.4)

where n; is the outward unit normal vector on M, (t) and %; is the imposed traction.
For free-surface problems, the traction boundary condition at the free surface is

given by
Tij nj = oKkn; , on 9,(t) ; (3.5)

where o is the surface tension and K is the curvature of the free surface. In the
following we shall assume, for simplicity of presentation, that the free surface is the
only boundary on which traction conditions are imposed. We emphasize that the
solutions for the free-surface flow problem are the velocity u;(z:,t), the pressure

P(zi,t), and the flow domain 1(t).
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3.2 Variational Formulation

The variational (weak) form can be derived from the strong form using
the following procedures. Multiplying the momentum equations and the continu-
ity equation by the test functions v; and gq, respectively, integrating the resulting
equations over the domain and applying integration by parts to the momentum
equations, we obtain the following equivalent variational statement : find the soiu-
tion (u;,p), u; € X3 [Q(t)] and p € L2[Q(¢)], such that :

o) {pvi(uie +ujuij) + vij[—pbij +p(uij+us)] — vi fi}dvV +

. ”n. — . 1
/an,(:) oxvinidA=0 Vv; € #,[0(t)], (3.6a)

/;;(.) quidV =0 Vg € L2[(t)]; (3.6b)

where ¥}[Q2(t)] and L2[02(t)] are the Sobolev spaces defined for the time-dependent
domain Q(t). We remark that £2[()(t)] is the space of all functions which are square
integrable in {1(t), and X3[f1(t)] is the space of all functions which are square in-
tegrable, and whose first derivatives are also square integrable in {1(t) ; and which
satisfy the boundary conditions in Eq.(3.3) but not Eq.(3.5). We further note that
in Eq.(3.6a), the boundary integral is introduced so that the inhomogeneous Neu-

mann boundary condition given in Eq.(3.5) is satisfied in the natural (weak) sense.

Before we embark on the discretization of the above variational form, we
anticipate that the unsteady term (the first term in Eq.(3.6a)) will give rise to
arnbiguity regarding the reference configuration when time differencing is being

performed; that is,
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n+l n

At

Ui =

where the subscripts (n+1) and n refer to the current time step and the previous
time step, respectively. Thus, if Eq.(3.6a) is used directly for temporal discretiza-
tion, the product “v;u;;” in the integrand will give rise to contributions which are
defined on different time configurations. In order to avoid this inconsistency which
can lead to unduly large discretization error, it is imperative that the time deriva-
tive be moved outside the integral. This is achieved using the following procedures.

First we perform integration by parts on the first term of Eq.(3.6a) to obtain

/n(‘) vy dV = /;l(t) [(vivi)e —uivie ] dV . (3.7

The first term on the right hand side of Eq.(3.7) can now be rewritten using the

Reynolds transport theorem and the divergence theorem as

d
i) dV = — i ui dV — i wiw;);dvV, .
L wwdeav =g [ wwav = [ (www) v, (38)

where w; is some Lagrangian velocity which describes the motion of each mate-
rial point in the domain (1(¢) and therefore defines the deformation of the domain.
Note that w; is in general independent of u; and hence can be selected to minimize
the domain deformation; this is the one of the major advantages of the arbitrary-
Lagrangian-Eulerian description. In order to treat the last term on the right-hand-
side of Eq.(3.7), we use the fact that the time derivative of the test function v;
following the motion of the material points (denoted as X;) of the domain is zero;

that is,
(dv.-/dt ) |xh = vig+twjv,; =0 .

Using the above equation, we can express the time derivative v;¢ in terms of the
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spatial derivative v; as

.'.'JV=—/ s Vij ; dV . 3.9
/‘;(‘) > Vi ot U; ¥ j W; (3.9)

Using Eq.(3.7) to (3.9), the final variational form that replaces Eq.(3.6a) as a basis
for temporal and spatial discretizations takes the following form : find the solution

(ui, p), ui € X3[Q(t)] and p € L2[(2)], such that

d
at Jag pviu;dV = ” {vijbijp—pvij(uij+ui)+uvfi—
plvivjuij— v (uiwj);]}dV +

; g . 1
/m'(‘)orcv.n.dA Vo € K@) . (3.10)

For two-dimensional planar geometry, the curvature that appears in the

integrand of the surface-tension integral in Eq.(3.10) is given by
K= 8.'I‘ )

where s; is the unit tangent vector , ¢ is the curvilinear coordinate defined along the
free-surface segment ab, and s;; = 9s;/3¢ . The contact angles 0, , 6, at the end
points “a” and “b” of the segment are assumed to be specified ; see Fig. 3-1. We
next apply the treatment proposed by Ruschak [48] for the surface-tension integral
given in Eq.(3.10) by first rewritting the integral as

b
/ o KY;n; dA=/ ov,; 8, d¢. (3.11)
an,(.) a
Upon integration by parts of the right hand side of Eq.(3.11) and noting that
Uiy = Yij S5,

the final form of the surface integral becomes
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! (312)

’
/ ar.v.n.dA:—/ ovi;8,8,dc+ (0v,s,)
an,(n [ ]

We note that in the last term of Eq.(3.12), a,!, and s,}, are given by the specified
contact angle between the free surface and the solid boundary at “a” and “b",
respectively. In addition, for adjacent segments on the free surface, these boundary
contributions impose, as a natural boundary condition, C° continuity of the slope

of the segments at the adjoining points.

For axisymmetric geometry (see Fig. 3-2), similar procedures can be ap-
plied to obtain an equivalent form for the surface integral. We thus have

L)
- - ’ !. >
/;n.(., oxvindd= - [ o(Ru),ss Rt (oRva)f 4

»
/ ov, n, ny ds . (3.13)
e

We remark that in three-dimensional analysis, the above integration-by-parts pro-
cedure becomes nontrivial since the mean curvature at a point on the free surface
will involve derivatives of the unit tangent vectors defining the tangent piane at
that point. The use of an auxiliary variational statement to enforce C° continuity
of the slope (in the weak scnse) at interelmental boundarics will be the subject of

future investigation.
At the free surface, the kinematic condition that no fluid particles can cross
over the liquid-air interface (49} requires that on 30, (¢)
w,n, = un,. (3.14a)

We note that by imposing the above kinematic condition, the position of the free
surface can be tracked continuously in time via the time integration of the mesh

velocity at the free surface. There are no kinemtic condition on w,s,; however, the
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requirement that
wg 8 = 0 (3.14b)

will typically result in minimization of the domain deformation which is computa-

tionally advantageous. On the other boundaries that are fixed in time, we have
w; =0. (3.14c)

Once the mesh velocity on the entire boundary is determined, it can be extended
into the interior domain using various techniques [50],[51]. One effective approach

is the use of an elliptic operator D in the form
Dw,=0; (3.15)

where Eq.(3.15) and (3.14) constitute an elliptic boundary value problem. We pro-
pose the use of second order elliptic operators such as the linear elastostatic operator
fwhich is also used in ref. [51]) or the steady-Stokes operator for this extension pro-
cedure. The derivations for both of these operators are given in Chapters 4. Using
the Lagrangian coordinate X; which defines the location of the material points in

the time-dependent domain f1(t), we have the following kinematic conditions
X."g = w; . (3'16)

from which the time evolution of the domain geometry can be evaluated.
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CHAPTER 4

SPATIAL DISCRETIZATION USING LEGENDRE SPECTRAL
ELEMENTS

The numerical methods used in the treatment of the Naviex;-;Stokes equa-
tiors are premised on a layered approach, in which the discretizatiﬁns and solvers
are constructed on the basis of a hierarchy of nested operators : from the highest to
the lowest spatial derivatives. For free-surface fluid flow problems, additional oper-
ations are required for the update of the geometry of the time-dependent domain.
However, this can be considered as a zeroth order operator (no spatial derivatives
are required) and, according to our construction, corresponds to the outermost
layer. This approach is motivated by the fact that the highest derivatives gov-
ern the continuity requirement, conditioning and stability of the system; and, it is
particularly well-suited to the viscous incompressible flow equations, in which the
highest derivatives correspond to linear symmetric elliptic or saddle operators for

which optimal discretizations and solvers are readily available.

Following this hierarchial construction, we first present in Section 3.1 the
spectral element discretization for the innermost layer, the elliptic kernel, in order
to illustrate the spectral element methodology. We consider a linear elastostatic
problem as our elliptic kernel (which is of interest since it can be used according
to Eq.(3-.15) for the solution of the interior mesh velocity). This is followed by
the steady-Stokes problem in Section 3.2 which corresponds to the next layer. The
staggered mesh approach which is crucial in preventing spurious pressure modes is
also introduced in this section. Lastly, in Section 3.3, we present the treatment of
the remaining contributions in the unsteady free-surface Navier-Stokes equations

that correspond to the outer layer. At the conclusion of this chapter, the semi-
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discrete governing equations for incompressible viscous free-surface flows are given.

4.1 Basic Discretization

In order to illustrate the Legendre spectral method for spatial discretization
of an elliptic problem, we consider a tvo-dimensional linear elastostatic problem.
We note that this problem is analogous to the steady-Stokes problem except that in
the elastostatic problem, the incompressibility constraint is relaxed, which leads to
an elliptic rather than a saddle problem. Moreover, the treatment of the deviatoric
stress contribution in the variational statements for the Navier-Stokes problem and
the elastostatic problem is entirely analogous. We further remark that the extension
of the mesh velocity to the interior as given by Eq.(3.15) can be performed effectively

using the elastostatic operator.

The governing equation for the elastostatic problem defined in a fixed curvi-

linear domain 0 is
i+ fi=0 in 1, (4.1)

where 7;; is the stress tensor, f; is the body force. We assume the foilowing Dirichlet

boundary conditions
u; = Y; on 401, (4.2)

where u; is the displacement solution and u; is the prescribed displacement. For a

linear isotropic elastic material, the constitutive relation is given by
7ii = M g + Ao (wig + i) (4.3)

where ); and )z are the elastic (La.mé) coefficients. The equivalent variational for-
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mulation that corresponds to Eq.(4.1) to (4.3) is : find the solution u, € ¥3 () such

that

/n v [ A byug + A (6, +u,,)]|dV = /n v fidV Yo, C H3(A), (4.4)

where X} (1) is the Sobolev space defined for the fixed domain N. The above vari-

ational statement will serve as the basis for the spatir] discretization given below.

We proceed with the spectral element discretization by subdividing the do-

main into K disjoint quadrilateral elements

a - 0 a, . (4.5)

Axi

such that the intersection of two adjoining elements is either a whole edge or a
vertex. We shall require Eq.(4.4) to be satisfied for & piccewise-polynomial approxi-
mation space defined for the (1. In order to facilitate the definition of this spectral

element approximation space, we first define the space Py x as
Pux() = {® € L}N); ®ln, € Pv(M)}, (4.6)

where Py(f1,) denotes the tensor-product space of all polynomials of degree less
than or equal to N with respect to the spatial coordinates. The spectral element

approximation space X, is then defined as
Xy = Ho'(n) N P,w'x(n) . (4.7)

We remark that the use of variational formulation will result in C'-continuity of the
solution generated naturally (that is, in a weak sense) at the interelemental bound-
aries. Using the above approximation space, the clastostatic problem becomes :

find the solution (u,}a € Xy such that :



K K
Z [“:.h(”h“i) + a:,h(”h“:')] = E (v, f-'): Vv, € Xp;  (4.8)

k=1

where
a (Vi uy) = /0 Mvigby(maa 4V (4.92)
aza(vi uj) = fn. A2 vij [ (wis)n + (uj)a) @V, (4.9b)
(vir i)t = /n e (4.9¢)

The evaluation of the elemental integrals given in Eq.(4.9) for general curvilinear
elements is facilitated by a mapping of the physical (z,, z;)-system into a local (r,s)-

system, see Fig. 4-1 ; this mapping is given by
(z1,22)* €0 = (r,8) EAXA; A=]-1,1]. (4.10)

The derivatives in the elemental integrals can be expressed in tems of the local r,s
coordinates using the following Jacobian transformation
O _ g1l
0z; = Ory !

where summation is performed for a=1,2; r; = r , r = s ; and the Jacobian, its

(4.11)

inverse and its determinant are given by

J =A|: Zir Za2r ] ’ (4.123.)

Ti,e T2,
1 7 I
Jr= T (4.12b)
IJl ~ZT1,s T1y
|| = z1,r %2, — T2,0Z14 - (4.12¢)
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Using Eq.(4.11), the elemental integrals given in Eq.(4.9) can be rewritten as
k b ko[ g-1y\k Rg-1\k g
aya(vi,uj) = /-1[-1 M v (7o) & (ua)a (Ui )" I drds, (4.13a)
1 1
a;.h("iv“i) = [-1 /_l A "i..a('y,;l).l(“i.a):('lj;l). + (“:.a):(".;l).“-'f.d'd* . (4.13b)

i dilh= [ [ ok g 1910 drds. (4.13¢)

The numerical evaluation of these integrals is performed by employing ten-
sor product of the Gauss-Lobatto formulas as the integration rule, for which the
local Gauss-Lobatto points and weights [52] are denoted as (£, 7). The reaulting

integration rule is :

/ﬂh ng |GL = TmIn |J.(€nu£n)| 9'({-.(-.) Vg' ¢ C°(ﬁ.) ' (4.1")

where summation is performed for m,n=0,1,...,N. We remark that the (N :1)-point
Gauss-Lobatto quardrature integrates exactly polynomials of degree (2N-1) or less.
Using the Gauss-Lobatto formulas and Eq.(4.14), the integrals given in F.q.(4.13)

become

a:,h—al,(vhuj) = TImIn IJ.(enne-\)l A vi.,u(fn'cn) I-’,;l(fnofn)i.
8ij [wi.a(Ems En)li (S (€ms En)I" (4.15a)

a-:'h_a;(”h u:’) = TmIn 'J.(fnnfn)l Az "?,a(fm- €n) lJ,:-l(Em| Cn)}.
{ [vial(&mi Ea)A [J70 (€mi &a)I* +
lui.ﬂ(fnufn)l: [J":(Eﬂ'eﬂ)]. } ' (4‘”"’)

(vl"fl'):—GL = TmIn |J.(£ma£n)| I.'.(imvtn) U:(fn, 6-) : (4.15()
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where summation is performed for m=0,1,...,N and a=1,2.
We now introduce an interpolant Gauss-Lobatto-Legendre basis for the

spectral element approximation space X, defined in Eq.(4.7). The mapping given

in F.q.(4.10) can oe expressed in terma of the following tensor-product form
(2.)'(r.8) = (2:)54 Ay(r)hg(s) (4.16)

where (z,),, is the physical z,-coordinate of local collocation point (p,q) of element

k, A,(2) is the Nth order elemental Lagrangian interpolant through the Gauss-

Lobatto-Legendre points; that is
(4.17)

"v(tm} = 6!!’ '

and summation is performed for p,q=0,1,...,N. The local collocation points z, 2z,

..., In are given by [11]

& = -1 ]
ay =1 ’
Pn'(2a) =0 for m=1,...,N-1;

where Py (z) is the Legendre polynomial of degree N and a prime denotes differ-

entiation with respect to z. In addition, the nodal interpolant derivative operator,

defined as [11]
_ dhy(x)
D, = el (4.18)
is given by
Do = -N(N +1)/4;
D, =0, fori # 0N ;
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Dyn = N(N+l)/4;

Di; = Pn(z) /[ Pn(z)(z - 2)], for i # j.
Using the isoparametric approach, the solution u;, the test function v;, and the data
fi are expanded in the same manner as given in Eq.(4.16). Next, we proceed to
treat the local-coordinate derivatives of the test function v; and the solutior «; in

Eq.(4.15). A typical derivative at a collocation point (m,n) can be expressed as

(vl'.ﬂ JJ;:l rtnn = (Gi):lnpq (vl'):q ) (4'19)
where

(Gf):mpq = (Jj—ll :m DmP 6"4 + (Jj_zl):m 6"‘? DM ’ (4'20)

(Jii')mn = Dna (22)mg / [ [an » (4.21a)

(Vi )mn = —Dmp (z2)gn / [T [an » (4.21b)

(' )mn = —Dag (z1)mg / [ |n » (4.21¢)

(J22)mn = Drmp (21)pn / [ ln » (4.21d)
and

| 7152 = Dmp (%1)5n Dng (£2)k; — Dng (21) 5y Dmp (22)5, » (4.21€)

with no summation on the repeated indices “m” and “n” in Eq.(4.20) and (4.21).
Using Eq.(4.19), the expressions given in Eq.(4.15) can be rewritten entirely in

terms of nodal variables (at the collocation points) as

af h_cL(Vis %) = TmTn [T Ion AL (Gi)ianpq (Vi)rg

6"1' (G‘)vknnn (u')fn ’ (4-223-)
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& r-cr(tis45) = Tmn [ ]ma s (Gi)munpq (V)5
[ (Gi):mn (ul')fl + (G‘):\nn (ui):n ] ’ (4'22b)

(U.‘, f"):-GL = TmIn |‘I|rhrm (f' :m (vi)fnn * (422(:)

We remark here that the choice of the expansion in tensor-product form as given
in Eq.(4.16) is advantageous since it permits the use of the tensor-product-sum-
factorization techniques, which is discussed in more detail in Chapter 6. The final
discrete algebraic system of equations are obtained by substituting Eq.(4.22) into
the variational statement given in Eq.(4.8) and choosing the test function v; suc-
cessively to be unity at only one global collocation point, and zero at all other
collocation points. The resulting global system of equilibrium equations are

K K
3 (A ke (u)r, = E'B:m s (4.23)

k=1
where

(AIE)):qn = TmIn IJI:m [Az 6‘1' (G‘):mpq (Gl):mn +
)‘1 (Gi):mpq (Gi)frmn + Az (GJ):mpq (G‘):mn] 9 (4'248')

B:qn = MY |J|:q 6pr 844 5 (4.24b)

and )’ denotes direct stiffness summation operation. A more convenient way to

express the equilibrium equations is to rewrite Eq.(4.23) in matrix form
A U; = BF;, (4.25)

where A,-E,- is the global stiffness matrix and B is the global mass matrix (without
the factor of density) which, for the present Legendre spectral element formula-

tion, is diagonal, and U; and F; store u; and f;, respectively, at all the collocation
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points. We emphasize that the global matrix notation in Eq.(4.25) is used only as a
convenient mean to describe the governing equations. In the actual solution using
fast iterative solvers such as conjugate giadient iteration, the global matrices are
never assembled; instead matrix-vector product is performed at the element level,

see Chapter 6.

In applying the elastostatic solver to the extension of the mesh velocity w;
into the interior domain (see Eq.(3.15)), we substitute w; for u; and select f; to be
identically zero; and, on the boundary @1 , we employ w; given in Eq.(3.14) for u;
in Eq.{4.2). It can be shown that the solution w; will only depend on one material
constant [53]. Thus, if we express A; and ); in terms of Young’s modulus E and

Poisson’s ratio v :

Ev
M= o) (4.26a)
Az = -2(1L+V); (4.26b)

where 0 < v < 0.5 , then the solution will depend only on v. In the case of a nearly
incompressible constitutive relation (i.e., ¥ = 0.5 ), the stiffness matrix will become
singular. Thus, if it is desired that the spectral elements maintain their original
volume as they deform, then the incompressible steady Stokes solver described in

the next section will be more appropriate for the extension operation.

4.2 Steady Stokes Problem

We present in this section the steady Stokes problem using the discretization
procedure described in the last section. The key consideration for the steady Stokes

problem is the use of different solution spaces for the velocity and the pressure
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solutions in order to avoid spurious pressure modes that contaminate the solution.
Another consideration is the use of the full viscous stress tensor for the consistent
imposition of inhomogeneous Neumann boundary conditions; in addition. it allows
a consistent treatment of variable viscosity; the derivation is given in Appendix
A. These considerations are, of course, applicable to the unsteady Navier-Stokes

problem with moving boundaries.

We consider the solution of the {two-dimensional steady Stokes problem in
a domain N} which is fixed in time, with Dirichlet boundary condition defined on
90, and Neumann boundary condition defined on 8f},. The variational statement

for this problem is : find the solution u; € X}(Q1) , p € £3(1) such that
/ﬂ vii[ —6iip + w(uij+ujs)|dV = /‘; v fi dV + -/;n, v i dV

Vy; € X3 (Q) (4.272)

/ﬂ —quydV Vg e £2(Q) ; (4.27b)

where the various variables and solution spaces are defined in Section 3.2 (the steady
Stokes problem is an important subset of the unsteady Navier-Stokes problem).
Note that for the steady Stokes problem, we do not consider any free surfaces, and

the generic applied traction on the Neumann boundary is denoted as ¢;.

Following similar procedures presented in the last section for the elasto-
static problem, we first subdivide the domain into K spectral elements as given in
Eq. (4.5). We shall now require that the variational statement given in Eq.(4.27)
be satisfied for the piecewise-polynomial approximation spaces X, for the velocity
and M, for the pressure, both spaces are defined in 1;. These spectral element

approximation spaces are given by :
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=
Xy = )(J () N P x(00) , (4.28a)
My = £2(ng) n PN—:,K (ng) 5 (4.28b)

where Py x () is given in Eq.(4.6) and Pnv_3 x (M) is similarly defined. It is shown
in [54],(55] that the above choice of approximate solution spaces are compatible in
the sense that spurious pressure modes are not present in the solution. We note
that based on the choice of the above spaces, the degree of the polynomial in the

pressure solution is two orders lower than that of the velocity solution.

For numerical evaluation of the elemental integrals, we define two integra-
tion rules, the first one by taking the tensor product of Gauss-Lobatto formulas for
which we denote the collocation points and weights as (émsYm) for m=0,1,2,... N.
The second rule is obtained by taking the tensor product of the Gauss formulas,
and we denote the collocation points and weights as (E,,., Am) for m=1,2,...,N-1. The
Gauss-Lobatto integration rule is given in Eq.(4.14), and the Gauss integration rule

is
/n 94V | = Fmin [J5(Em, )| 0*(ém, &) Vgt € C°(@) ,
k
where J “(fm, f,,) is the Jacobian given in Eq.(4.12a), evaluated at the Gauss points.

We remark that the N-point Gauss quardrature can be used to integrate exactly

polynomials of degree (2N-1) or less [52].

Using the above quadrature, the discrete form of the variational statement

given in Eq.(4.27) is : find the solution (u;)s € X4 and p, € M, such that

K K
kz_:l [— a:.h—a(”"'p) + “;.h—ct.(”ia“i)] = Z:l (”o'»f-'):-ct. + }‘: (vhfi)::—GL

Vv, € Xy, (4.29a)
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K
> (g.u1)hg =0 Vge My;  (4.29b)
k=1

where

at,}._a(via P) = YmYn |Jk(€m1 En)l v.'t,a(éms Eﬂ)["j-: (Evm én)]‘t
6-‘1‘ P:(gm’ én) ’ (4.30&)

a:,h—GL(vl'!ui) = TYmTn IJk(f'M e'\)l #v:a(em’eﬂ) [JJ'-:(EMs en)]k
{ [wia(bm: &)l [Via (6ms 6a)* +

[4j.a(&ms &) Ik [T} (ms &a)]* } (4.30b)
(vl" f"):—GL = TImIn |Jk(fma fn)l f.k(fma En) v.‘&(fma fn) N (4.30C)
(Wi t)hocr = Ym [T} (€ms En)] T (Emy En) VE(Ems En) (4.30d)

(@ w)h-g = AmAn [T (Emy En)| ¢ (Ems En) 6l o (Emy &) [J22 (Emr &)t . (4.30e)

We note that the last summation in Eq.(4.29a) is performed over all spectral element
| where 3y C 301, . Also, in Eq.(4.30d) the traction boundary is assumed, for
simplicity of presentation, to be at local coordinates s=1 (that is, at collocation
points (ém,&n)). In addition, J; in Eq.(4.30d) is the surface Jacobian which is
given by

J; (bms En) = { [Dmp(z1)pn]" + [Dmp(z2)jn ? P72, (4.31)

where D,,, is defined in Eq.(4.18).

Next, we expand the coordinate (z;), data (f;), velocity (;) and test func-

tion (v;) in the tensor-product form given by Eq. (4.16), and we expand the pressure

(p)as
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PA(r,8) = Pl hm(r)ha(s) , (4.32)

wherze hn denotes the (N-2)th order elemental Lagrangian interpolants through the
Gauss points, p2 . is the pressure of element k, local collocation peoint (m,n), and
the indices m and n are summed from 1 to N-1. The test function q is also expanded

as given in Eq. (4.32).

We note that the polynomial order used in the interpolation for the geom-
etry and velocity is N while that for the pressure is N-2, which corresponds to a
staggered-mesh discretization. We remark that if all boundary conditions are of the
Dirichlet type (which is not applicable to free-surface problemns), then the pressure
solution is determined to within an arbitrary constant (the hydrostatic mode), and
a polynomial order of (N-2) will be required in the coordinate interpolation so that

the hydrostatic mode can be represented correctly for deformed geometry [11].

Using the above expansions, the expressions given in Eq.(4.30) can be

rewritten as
8} (Vs P) = TmAn [l (G)oanpy (Vi)he bij Poum » (4.33a)

a‘:.A—GL("""‘i) = TnTn |J|:\n M (Ci):\n” ("-‘):.

[(Gs)mnrs ()rs + (G s (u5)r, ] (4.33b)
(v fh-cL = TmTn [ lon (fi)mn (vi)mn » (4.33¢)
(virtdhcr = Ym ilmw (E)mn (vi)mn (4.33d)
(9 0)k-a = Tmin [T In G (Ci)mnpy (w1)py i (4.33¢)

where
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(Gidrnpe = (T

and
A dh,,(f,,,)
Dnp = T dz
’.‘mp = p(ém);

Jonn denotes J(ém, éx), and (G.):

mnpq

nﬁmPi;'M + (j;:-zl)rknni"m!'ﬁﬂq;

(4.34)

(4.35a)

(4.35b)

is given in Eq. (4.20). The final discrete system

of algebraic equations for the steady Stokes problem are obtained by substituting

Eq.(4.33) into Eq.(4.29), choosing the test functions v; and q which are unity at one

global collocation point while zero at others,

sively through all collocation points. We then arrive at

K K K
Z‘ (Al'i):qn (u'j):l - Z’ (Dl)'k-apq ﬁfc = Z' B:qn (fl :o +
k=1

and repeating this procedure succes-

k=1 k=1
Z‘ (Bf)‘pqn (E')r’a ’ (4'363)
1
X k
2" — (DiYgers (W)}, = 0; (4.36b)
k=1
where
(Aﬁ'f):qn = TmIn lJl:m L [ 6‘}’ (G‘ rknnpq (G‘):mn +
(GJ'):mpq (G‘):mn] ’ (4.37&)
Di)t oo = A3, |TIE (G 4.37Tb
( l)npq = U l |n ( ')npq 9 ( ‘ )
(B :)qru = Y | l’pq 8an bpr 644 5 (4-37(:)
and Bf ., is given in Eq.(4.24b). We note that Eq.(4.36) can be expressed in matrix
form as
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A;U; -DIP = BF; +B, T, , (4.38a)
—D.' U.' =0 ) (4.38b)

where A;; is the discrete viscous coefficient matrix, B is the mass matrix, B, is the
surface-mass matrix, D; is the discrete gradient matrix, and U;, T; and P store

u;, t; and p, respectively, at all the collocation points.

4.3 Unsteady Navier-Stokes Problem

We consider in this section the spatial discretization of the variational form
for the unsteady Navier-Stokes equations given in Eq.(3.10). A comparison of
Eq.(3.10) and Eq.(4.27a) shows that the following contributions are not treated
in the steady Stokes problem :

d K d K

dt E (vi, us)* = 5 hzl '/;h(‘)pv,-u.-dV , (4.39)
K N X

kgl c (”i’uj:wl) = E /;u(‘)l"-’i [(u.-w,-),,- - u,-u.-.,-] av . (4.40)

In addition, the generic Neumann boundary term given in Eq.(4.27a) takes the fol-

lowing form at the free surface :

z':(v.-,f.-)‘ = /;n‘(‘) oxvinl dA. . (4.41)

In the following we briefly describe the Legendre spectral element discretization of
these contributions, using the procedures presented in the last two sections. We
remark that the variables in all of these expressions are defined on the velocity

mesh; thus, we shall employ below the approximation space X, given in Eq.(4.28a),
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the Gauss-Lobatto quadrature formula given in Eq.(4.14), and the Gauss-Lobatto-
Legendre basis given in Eq.(4.16).

We consider first the unsteady contribution given in Eq.(4.39). The ele-

mental inner product can be expressed as
(v, )AL = (vi):q Empbng P Vmn |V Imun B e (1) - (4.42)

Thus, the corresponding discrete form for Eq.(4.39) is

d < b d s Eopk (0
;,;g:l (vis ¥i)h-gr = 3;?_,: P (Vi) g Bpors(ti)re 5 (4.43)
where B}, is given in Eq.(4.24b).

Next, we consider the nonlinear convective contributions given in Eq.(4.40)

which can be expressed as

clks—GL (visujw) = (”l'):q bmpbng P ‘7m‘7nlJ|:m
[(Gf)fnnn (u,-w,-),'f. - (uj):q(ci):mn (u‘):a] . (4'44)

Thus, the discrete form corresponding to Eq.(4.40) is

K K

E cf,_aL(v;,uj,w;) = E (”i):q(ci):q; (4.45)
where

(Ci)pe = P el T I [(Gi)para (i )ty — ()5 (G)) by (wi)2,] 5 (4.46)

and (Gj;)},,, is given in Eq.(4.20).

Lastly, the free-surface boundary traction contribution given in Eq.(4.41)

can be rewritten, considering planar geometry, as
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z: (w,i.')‘ = /. —0 Y 83 d{ + O v 8 : . (4.47)
1 .

Assuming that for element [, the free surface is located at s=1 and the end point
“b™ (see Fig. 3-1) of the free surface is located at r=s8=1. The discrete form of the

traction boundary term for element [ can then be expressed as

("-'vi-')‘a-ct. = —Tml; ‘-.N 0(’-‘)‘-(":‘)L~(G:):n~,~("i):m +

o(vi)nn (8)nn (4.48)
where J; is given in Eq.(4.31).

Thus, the discrete form corresponding to Eq.(4.47) is

2 (vlliar = 2 (w)p(F )y (4.49)

[ f
where

(Y = =0Tl lian (G Vompe (3:)n (8, onboun b +
0 (8 ) bpm e — 0(8)bpobon - (4.50)

In Eq.(4.50), the last two terms is applicable orly if the end points b and a, respec-

tively, of the free surface are located in element { .

The discrete system of equations that correspond to the unsteady Navier-

Stokes equations can now be put in the following form :

d X LS K

Z.Z'pg:qn(u"):o = Z'(D‘)’onﬁ:e - ?_.'(A"!):qn(ui):o +
X X
Y By (S 4 3(COy D (FD - (450)
(T3} (L)) i

We now combine the body force and the surface traction contributions as follows
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SR, = 3 B + X (R
=1 k=1 1

The algebraic system of equations given in Eq.(4.51) can now be written in the

following matrix equation
d T
2 (BU,) = DiP - A;U; + F; + C;. (4.52)

We note that for free-surface flows, the coefficient matrices in Eq.(4.52) are implicit
functions of time through their dependence on the current coordinates. The nodal
point coordinates are updated using the mesh velocity as given in Eq.(3.16) which,
in matrix form, is

d

Zz . = W.- . (453)

In summary, the semi-discrete equations that govern the unsteady Navier-Stokes
free-surface flow are given by the momentum equation, Eq.(4.52); the domain time-

evolution equation, Eq.(4.53); and the incompressibility condition, Eq.(4.38b).
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CHAFPTER &

TEMPORAL DISCRETIZATION USING SEMI-IMPLICIT
SCHEMES

Before we embark on the temporal discretization of the semi-discrete un-
steady free-surface Navier-Stokes equations formulated in the last section, we discuss
briefly below the motivations behind the use of semi-implicit schemes for the inte-
gration of the governing equations. The main advantage in using such schemes is
the decoupling of the nonlinear contributions, namely the convective terms which
involve low-order spatial derivatives and the free-surface update which involve no
spatial derivatives, via explicit treatment. At the same time implicit treatment of
the linear viscous contribution, which involves highest spatial derivatives, avoids
severe stability restriction on the size of the time-step increment. Using such semi-
implicit schemes, the step-by-step governing equations are effectively linear; thus,
work- and/or storage-intensive equilibrium iteration procedures such as Newton-
Raphson iteration are not required in their solution. Moreover, the coeflicient ma-
trices in these equations are symmetric, and the equations can easily be rewritten
(using for example the Uzawa algorithm, see Chapter 6) such that the matrices are
also positive definite. Such equations are effectively treated using well-developed,
efficient and robust solution techniques such as preconditioned conjugate gradient
iteration and rultigrid techniques [56], for which convergence in extremely fant,
and storage requirement is8 minimal {which is of significant importance in three-
dimensional analysis). In addition, these solution techniques are easily amenable to
parallelization and thus, all the advantages associated with parallel processing can
be fully exploited [57],[58]. However, as in the case of fully explicit schemes, the
size of the time-step increment for a semi-implicit scheme will be limited by both

stability as well as accuracy considerations. Since the explicit treatment of the
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convection contribution which leads to the Courant condition is well-documented
[59],{11] we shall focus our attention below on the stability condition related to
explicit treatment of the time evolution (update) of the free surface, as well as the

selection of maximally stable (optimal) schemes.

In Section 5.1, we return to the Orr-Sommerfeld operator associated with
the film-flow stability analysis which has already been introduced in Section 2.2.2.
In this section, we consider the full eigenvalue spectrum from which we identify
that capiilary effect, when it dominates all other efects, is the limiting factor (for
stability of numerical integration) when an explicit scheme is used for the free sur-
{ace update. Next, we proceed to identify optimal combinations of implicit and
explicit integration formulas such that the resulting semi-implicit schemes are max-
imally stable under the condition of dominant capillary action. In order to facilitate
the determination of such optimal schemes, we present in Section 5.2 a system of
two scalar ordinary differential equations that medels the limiting eigenvalue com-
position in the Orr-Sommerfeld spectrum. Various combinations of implicit and
explicit linear multi-step formulas are considered for the integration of the model
equations and combinations that yield maximum critical step sizes are identified.
In Section 5.3, we present the application of the resulting schemes to the inertia-
free Orr-Sommerfeld equation associated with the film flow, with the purpose of
verifying the optimality of the schemes when applied to the fluid-flow perturbation
problem with ita full spectrum of eigenvalues. Furthermore, the resulting discrete
Orr-Sommerfeld operator can be used to provide critical step size estimate for di-
rect flow simulation using spectral elements. Lastly, we present in Section 5.4 the
application of the optimal schemes for temporal discretization of the semi-discrete
speciral element equations from which the fully discrete system of step-by-step gov-

erning equations for viscous free-surface flows are derived.
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5.1 Film Flow Stability Spectrum

In Section 2.2.2 we described the use of the most unstable eigenvalue in
the solution of the Orr-Sommerfeld equation to determine the temporal stability of
falling films. Although only one single eigenvalue is sufficient to determine linearized
stability of the film flow problem, a deeper understanding of the underlying physics
of the flow and the mathematical structure of the governing equations is provided
by a study of the full eigenvalue spectrum. We start by presenting in Fig. 5-1 the
eigenvalue spectrum for the case of Reynolds number R=1, Weber number W=100
and wave number a = 0.05; the number of Hermitian elements used in the spatial
discretization is 10. We recall that the real part (7,) of the complex eigenvalue
corresponds to the growth rate, while the imaginary part (7;) is related to the wave
speed (¢) via the relation «; = ac. Based on a study of the eigenvalue spectrum,
we can identify below the various physical effects thut affect the composition of the

eigenvalues in the spectrum.

e Viscous dissipation — all the eigenvalues that lie on the left-half complex plane
correspond to decaying eigenmodes due to viscous dissipation, the decay rate
is proportional to the magnitude of 4,. We remark that the fastest decaying
rate is related to the mesh spacing Al (which is inversely proportional to the

number of Hermitian elements) as (Y, )min ~ (Al)72.

e Physically unstable mode — this correspo.nds to the single eigenvalue located
in the lower right corner in Fig. 5-1 for which 4, > 0. The growth rate of this
eigenmode is, however, several orders of magnitude smaller than the decay
rate of the slowest decaying eigenmode; this makes the unstable character of
the mode not easily discernable from the figure. This eigenvalue is associated

with the vortical instability at the free surface, and the growth rate versus
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Reynolds number relation given in Fig. 2-2 suggests that the instability is due

to inertia effect which corresponds to a balance of gravity effect to viscous

effect.

Convective wave — the eigenvalues that lie on the lower-half complex plane
correspond to a right-travelling (positive z;) wave with wave speed equal to
~i/a. We observe from Fig. 5-1 that all eigenvalues except two travel at
approximately the same wave speed which is equal to the average streamwise

velocity in the film; that is v; = (2/3)a.

Capillary wave — the single eigenvalue that lies on the top-half complex plane
corresponds to a left-travelling (negative z,) wave. We note that the wave
speed of this eigenvalue and that of the physically unstable eigenvalue are
distinctively different from the common wave speed of all other eigenvalues.
Based on analyses using different numbers of Hermitian elements, the wave
speeds of these two eigenvalues are found to be insensitive to the spatial

discretization (Al).

Further studies of the eigenvalue spectrum for varying flow parameters show that at

very large values of Weber number ( for example W = 107 ), we reach a limiting case

in which the strong capillary effect manifests itself in the eigenvalue spectrum with

the formation of a standing wave; that is, a complex conjugate eigenpair located

approximately on the imaginary axis, see Fig. 5-2. In addition, the physically

unstable eigenmode that occurs at low Weber numbers becomes stabilized, and the

convective wave (in the capillary dominant frequency scale) becomes negligible, as

all the eigenvalues (except the complex conjugate pair) can be observed to lie on

the real axis.

In summary, based on the study of the eigenvalue spectrum associated with
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the linearized film-flow stability analysis, we have identified various effects that
affect the composition of the eigenvalue spectrum; namely, viscous effect, which
is responsible for all decaying modes; inertia effect, which is responsible for the
(physically) unstable mode; and surface-tension effect, which is responsible to the
capillary standing wave mode. Therefore, the composition of the spectrum reveals
the dominant effects fbr any given set of flow parameters. The link between the
spectrum composition (and hence the dominant physical effects) and the stability
of the integration scheme employed in the numerical simulation of the flow under
the same physical effects can be established by examining the eigenvalue spectrum
together with stability diagrams for explicit time integration schemes. We show in

Fig. 5-3 the stability region for the integration of the ordinary differential equation

Ug =’1U

using the (explicit) Adams-Bashforth scheme of orders one, two and three [60],[61].
Thus, the eigenvalues in the film flow spectrum (with proper scaling) which are
nearest to the boundary of a stability region will be limiting for that particular in-
tegration formula. The eigenvalue spectrum as given in Fig. 5-2 suggests that when
capillary effect is dominating (that is, at large Weber numbers), it will be a limiting
factor which governs the size of the time-step increment (due to stability consider-
ation) in the explicit update of the free surface. On the other hand, viscous effect
(which is always present) will always be'a limiting factor if the viscous contribution
is treated explicitly. With the identification of all the relevant “stability-limiting”
physical effects, effective integration schemes can then be selected judiciously based

on the given flow parameters to achieve optimal stability.

In the numerical simulation of free-surface flows, the implicit treatment of
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the dissipative contribution eliminates the severe restriction imposed on the critical
step size (At,) by explicit schemes; namely, At,, is proportional to (AL)? where
AL the mesh spacing. In contrast, explicit treatment of the convective contribution
results in restriction on At,, that is proportional to AL. The capillary standing wave
mode is slightly dissipative, and it will be shown in Section 5.3 that the restriction
on At,, associated with explicit update of the free surface is proportional to (A L)%/
in the limit that a approaches zero. Based on study of the eigenvalue spectrum,
the step-size restriction due to explicit update of the free surface will be limiting
when capillary effect is dominant (large Weber numbers). Hence, it is important to
analyse this particular case and determine maximally stable semi-implicit schemes
to treat this case effectively. This is achieved with the use of a model problem

described in the next section.

5.2 Model Problem

The study of the model problem is motivated by the need tc simulate the
case of strong capillary effect, the limiting eigenvalues of the associated spectrum
correspond to a pair of lightly damped complex conjugates. In addition, in deter-
mining the stability region (in the complex plane) for semi-implicit schemes, the
effect of step size are implicitly coupled with the problem parameters; thus, gener-

alized stability diagrams such as those given in Fig. 5-3 are not available.

We consider the following system of two scalar ordinary differential equa-
tions :

dv

i —k*'v — fi9, (5.1a)
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dn

% = Ui (5.1b)

where the problem parameters k and [ are real. We note that these two scalar
equations are analogous to the Orr-Sommerfeld equation and its associated kine-
matic free-surface boundary condition in which inertia/gravity effect is negligible.
In this analogy, dominant capillary effect in the physical problem is simulated in
the model problem by appropriate selection of the numerical values for k? and f?;
thus, k? < 2f in the model problem simulates dominant surface tension effect in

the analogous physical problem.

We seek solution to Eq.(5.1) in the form
v(t) = ve™ (5.2a)
n{t) = me™ (5.2b)

where v is in general complex and is expressed as y =+, + i+, , 4, and 7 being
real; and ¥ and # are the given initial conditions. Upon substitution of Eq.(5.2)
into Eq.(5.1), we obtain

v -k —f3 v

d
2(e™) _
a! 7 1 o0

=3

from which we obtain

k* k?\?
MN>T2 = —?i (‘2") -2,

We remark that continuous time derivative is taken in the evaluation of the above
solutions, which have the following preperties : (i) 7 and 4; are both real when
k> 2f (monotonically decaying modes in the analogous physical problem) ; (ii) v,

and 7; form a complex conjugate pair when k2? < 2 f (damped oscillatory capillary



mode in the analogous physical problem) ; and (iii) 4, > 0 (no unstable modes in

the analogous physical problem).

In order to use this model problem to identify maximally stable semi-
implicit schemes, we follow the semi-implicit temporal discretization strategy by in-
tegrating Eq.(5.1a) using an implicit scheme and Eq.(5.1b) using an explicit scheme.
For implicit formulas, we consider both the Adams-Moulton (AMI) formulas which
are optimal in accuracy for a given number of steps (I) and the Backward Differ-
entiation (BDI) formulas which are A-Stable for I < 6 [60]. For explicit formulas,
we consider the Adams-Bashforth (ABJ) formulas which are optimal in accuracy
among all the J-step explicit methods. We remark that the AM1 and BD1 formulas
correspond to the familiar Euler backward formula, the AM2 formula corresponds
to the trapezoidal rule which is also A-stable, and the AB1 formula corresponds to
the Euler forward formula. For practical purposes, we consider only one- to three-
step semi-implicit schemes, since higher-order explicit schemes have more stringent

stability restriction.

In the following, we illustrate the semi-implicit time discretization proce-
dures by presenting the discrete equations generated using the Euler backward/
Euler forward combinations. The procedure for higher-order schemes is analogous,
and we describe the temporal discretization using the BD2/AB2 combination in Ap-
pendix B. Applying the Euler backward and Euler forward formulas to Eq.(5.1a)

and (5.1b), respectively, we obtain

n+1 n

v — v n n

T = R (5.3a)

nn+l _ nn n

—_— = ; 5.3b
At v (5-3b)
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where n is a generic time-step number and A? is the step size. Upon the substitution

of Eq.(5.2) into the above equation, we arrive at the following eigenvalue problem

1 0 v 1+ k2At fiAt ]
= ¥ / (5.4)
At 1 ]

0 1 ]

from which the eigenvalue 4 can be solved for any given value of At. We remark
that although Eq.(5.3) can easily be solved in closed-form, for higher-order schemes
the resulting eigenvalue problem will be quadratic or cubic; thus, the formulation

given in Eq.(5.4) and Appendix B is more effective.

The property of the solution that 4, < 0 (obtained when continuous time
derivative is taken) can now be used as a criterion to determine the critical step size.
Since the continuous eigenvalues are never unstable, unstable discrete eigenvalues
(4r) in the finite time-difference solution of the same problem must due to the use
of a step size which is larger than the critical step size (At ) for that particular

problem; that is,

(ﬁr)ms |AI>A¢., > 0. (5.5)

Hence, the critical step size can be evaluated using the following condition

0 < (;Yr)ml lAl:At., <e€;

where € is an arbitrarily small positive number (a tolerance). One method of evalu-
ating the critical step size is presented in the following. We firat choose a step-size
interval, and then we use a bisection method to successively reduce the size of the
interval based on the sign of (4,)mass (that is, using the condition given in Eq.(5.5)),

until an arbitrarily small sub-interval is reached. An example of the application of
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the bisection method is schematically illustrated in Fig. 5-4, where typically a final

subinterval size of 107 is used.

Since we are interested in the performance of the semi-implicit schemes
for surface-tension dominant flows, we select for our model problem the following
parameters : k2 = 0.2 and f? = 100.01 for which the continuous solution is v;,vy; =
—0.1 &+ 10s. We show in Table 5-1(a) and (b) the values of At,, obtained using the
various combinations of implicit/explicit multi-step formulas. We note from the
results that the BDI/ABJ combinations, with I=J , are optimal since they yield the
largest values of At., . Moreover, the critical step size is somewhat insensitive to the
number of steps used in the scheme. We also present in Table 5-1(c) critical step-
size results using fully explicit schemes, which demonstrate that even for nearly
non-dissipative modes, the fully explicit schemes are less stable than the above
optimal semi-implicit schemes. We also present in Table 5-2, for completeness, the
results of At., for the case k? = 12 and f? = 20 for which the eigenvalues are real
(dissipation dominant). We note that in this case the critical step size is limited by

the performance (order) of the explicit scheme.

We conclude from the above study that the BDI/ABI semi-implicit formulas
are optimal among those considered for explicit updating of the free surface when
surface-tension effect is dominant and hence limiting. In addition, the critical step
size for this case is insensitive to the number of steps (and hence the order) of the
scheine; this implies that the more accurate higher-order schemes are advantageous.
In the case of negligible surface-tension effect, the critical step-size is limited by
the stability characteristics of the explicit scheme and therefore a low-order semi-
implicit scheme is preferrable. However, in such a case explicit treatment of the

convection contribution (the Courant condition) will most likely be limiting.
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5.3 Discrete Orr-Sommerfeld Operator

We have identified in the last section that the combination of the implicit
Backward Differentiation scheme and the explicit Adams-Bashforth scheme is opti-
mal (i.e., maximally stable) for the integration of the model problem, the solution
of which involves two eigenvalues. We now return to the Orr-Sommerfeld equation
presented in Section 2.2.2 and evaluate the stability performance of these semi-
implicit schemes when applied to the solution of the film-flow problem (and the full
spectrum of eigenvalues), with the purpose of confirming that these schemes remain

optimal.

Assuming that the stability requirement due to explicit treatment of con-
vection can be superimposed onto the requirement due to explicit free-surface up-
date, we shall neglect convection effect in the Orr-Sommerfeld equation and focus
our attention on the stability conditions imposed by the explicit treatment of the
free-surface evolution in the presence of strong capillary effect. Thus, we reformu-
late the Orr-Sommerfeld equation for the limiting case of zero Reynolds number,
the spectrum of which will embody only the dissipative modes and the capillary
standing-wave mode. Apart from the simplification enabled by the elimination of
the convective terms, this limiting case has the important advantage that there is
no physically unstable mode when contsuous time derivative is being taken. Conse-
quently, if the continuous time derivative is replaced by a discrete time difference
and if an unstable mode is present, this instability must due to the use of a step size
which is larger than the critical step size (the same condition as given in Eq.(5.5)).
Following this approach, a procedure similar to that used for the model problem

can be employed to evaluate At,, for any set of flow parameters.

The Orr-Sommerfeld equation for the limiting case R=0 is obtained by using
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a viscous time scaling in the nondimensionalization of the Navier-Stokes equation,
in which terms that are O(R) are deleted. Thus, we scale length by k, time by
h?/v, velocity by v/h and pressure by o/h, which result in the following equation

(D* — )4, ¢* = (D? — o¥)iy %( *)  inA; (5.6)

subject to the boundary conditions :

fis = Diis =0 onz; =1, (5.7a)
(D* + )itz = 0 onz; =0, (5.7b)
(D*@; — 36’ Di; + a*Fe*) e™ = Diy dit( e*) onz;=0, (5.7¢)
iy e™ = 1 %‘- onz;=0, (5.74)

where the notation and variables are defined in Section 2.2.2 , except that in
Eq.(5.7c), the nondimensional parameter (Fe) corresponds to the Ohnesorge num-

ber, which is defined as

Fe = -g’-;—.
Vpu

We remark that in this limiting case, the nondimensional parameters that charac-
terize the flow are the wave number and the Ohnesorge number. When capillary

effect is large compared with viscous effect, we have Fe > 1.

For the solution of the eigenvalue v, we rewrite Eq.(5.6), (5.7b) and (5.7c)
in the following equivalent variational form : find a § € ¥}(A) and a vy € C, such

that

{ /01 [ D¢ D*i; + 2a® D¢ Di, + o ¢ iz | dy — o® $(0) ©2(0)—
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a’ D$(0) 4s(0) + a* Fe* $(0) 1 } ™
=—{/:[D$Dﬁ,+o.’$ﬁ,]dy} de™ /dt Vé e ¥(A) (5.8)

where ¢ is the test function, ¥3(A) is the Sobolev space defined for the domain A

and C is the set of complex numbers.

Next, we perform a Hermitian finite element discretization as described in

Section 2.2.2 to arrive at the following algebraic eigenvalue problem
AVt = -BVde™/dt; (5.9)

where V stores the nodal degrees-of-freedom of &3 and Di; and A and B are
the ccefficient matrices generated from the Hermitian element discretization. We
remark that Eq.(5.9) should be solved in conjunction with the kinematic free-surface

condition given in Eq.(5.7d).

In order to formulate a procedure for critical step size determination, we
need to replace the time derivative in Eq.(5.9) and (5.7d) with finite time differ-
ences. Using the semi-implicit approach given in the last section, we discretize the
matrix equation given in Eq.(5.9) using implicit formulas, and the kinematic con-
ditions given Eq.(5.7d) using explicit formulas. As an illustration, we consider the
Euler backward/Euler forward combination. Applying the Euler backward formula
to Eq.(5.9), we have

1

AV e‘)(nﬂ)m — ___(cﬁ(nﬂ)m — cﬂnAl) A

BV,

where 4 is the discrete eigenvalue solution and n is the time step number; viz.,

t = nAt. The above equation can be simplified as
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1 1
=BV =w(A+B)V; (5.16)

where w = ¢74¢, Applying the Euler forward formula to the kinematic condition

At

By augmenting Eq.(5.10) with Eq.(5.11) as the last row, the final discrete eigenvalue

problem is :
AV =wBYV, (5.12)

where V now stores additionally the 7} degree-of-freedom. For any given set of flow
parameters Fe? and a, we solve Eq.(5.12) for w, from which 4 can be determined
using

= Elnw.

-~
I

Once we have formulated an algorithm for the computation of 4, the critical
step size evaluation is again similar to that of the model problem. For any given set
of flow parameters a and Fe? , we select an interval of step size and repeatedly bisect
the interval until an arbitrarily small subinterval is reached. We present in Table
5-3 the crtical step sizes using BDI/ABJ and AMI/ABJ semi-implicit formulas for
the following flow parameters : a = 9.24 and Fe?=1,10* and 10”. We observe from
the results that the conclusions drawn from the model problem remain valid for
the discrete Orr-Sommerfeld operator. Namely, in case of dominant capillary effect
(Fe* =107) , the BDI/ABJ schemes with I=J are distinctively superior to the other

combinations, and that the critical step size is insensitive to the number of steps in

60



the scheme. In the case of negligible surface-tension effect (Fe? = 1), the explicit
scheme is the limiting factor and thus low order semi-implicit scheme (that is, Euler

backward/Euler forward) performs the best.

We can also apply the above critical-step-size procedure to obtain an est)-
mate of At,, for the spectral element simulation. This is achieved by noting that in
the numerical simulation, the computational domain is truly two-ditnensional and
hence the effective wave number that should be used in the discrete Orr-Sommesfeld
operator corresponds to

xh

xrf = AL (513)

where AL is the minimum spacing in the mesh.

It is of interest to determine the relation between At,, and a,;; when a,;,
is large since in the spectral element simulation, either h- or p-refinement will result
in smaller mesh spacing. This relationship can be obtained through the use of the
discrete Orr-Sommerfeld operator. For the case of dominant capillary eflect {we
choose Fe? = 107), we solve Eq.(5.12) and for @ - 10°',10°,...,10°. The critical
step size is plotted as a function of wave number in Fig. 5-5. We olaerve from

the results that At,, scales according to a~%/?

for large a. This is consistent with
the result obtained from a capillary-versus-inertia force balance, which gives the
following scaling relation as the wave number (a) and the capillary effect (Fe?) go
to infinity:

ph®

~ 22 5
At,, 3 (514)

Lastly, we remark for the case of negligible surface-tension effect, the At that

results from the Courant condition is, of course, more restrictive and hence will be
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limiting.

In summary, we conclude that the BDI/ABI semi-implicit family which is
found to be optimal for the scalar equations given in Section 5.2 is also optimal for
the film Bow problem. Thua, we shall select the BD1/AB1 and BD2/AB2 schemes
foe the temporal discretization of the spectral element equations. Secondly, explicit
treatment of the free-surface evolution will result in critical step sizes whose depen-
dence on the flow paraineters can be estimated using the discrete Orr-Sommerfeld
opecator. This criterion should now supplement the Courant condition in the de-
termuination of stable time-step increments for direct simulation of free-surface flows

using speciral element.

5.4 Discretization of the Spectral Eicment Equations

We present in this section temporal discretization of the semi-discrete spec-
tral element equations for unsteady free-surface Navier-Stokes flows formulated in
Section 6.3, Based on the conclusions presented in the last section, we apply the BDI
{amily for the discretization of Eq.(4.52) and the ABI family for the discretization
of F.q (433). We illustrate this procedure with the BD2/AB2 scheme.

Applying the BD2 formula for the temporal discretization of Eq.(4.52), we

have

1 (3

i R VAL 11 ) Vil »'-n""uz“'] =
arlz 2

3
(D:nl )rpatl A:i,"lj';" + }‘:‘” +- 2: ﬁ‘ C:‘“'l (5.153)
i-0

where the various matrices are defined in Sections 4.2 and 4.3, and the superscript
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(n+1) denotes the current time step number for which the solution is sought, and n,(n-
1),(n-2) denotes previous time steps at which the solution is known. The last term
(which involves summation) in Eq.(5.15a) corresponds to explicit treatment of the
nonlinear convection contributions using a modified third-order Adams-Bashforth
scheme, where f; are the modified AB3 coefficients : §, = 8/3, g, = —7/3 and
P2 = 2/3. These coefficients are different from the standard AB3 coefficients since
the left-hand-side of Eq.(5.15a) involves BD2 coefficients. The modified AB3 coeffi-
cients are derived via Taylor series expansions in which the coefficients are selected
such that terms that are of order (At)? or lower on both sides of the formula cancel
each other. The stability region of the modified AB3 formula is slightly improved
over the standard formula; a comparison is shown in Fig. 5-6. The incompressibility

condition given in Eq.(4.38b) does not involve temporal derivative, and we have
DUt = o. (5.15b)

Next, we apply the AB2 formula to Eq.(4.53) which yields

arlX - xp] = Jwr - Jwe (5:16)

We have thus derived a set of fully discrete system of equations : Eq.(5.16)
and Eq.(5.15) which can be solved (in that order) for each time step to obtain the
response of the free-surface flow. The solution of such equations is discussed in the

next section.
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CHAPTER 6

EQUATION SOLVERS

In this chapter we present techniques which are effective for solution of the
algebraic systems of equations derived in the previous chapters. We shall employ the
conjugate gradient iteration method as our basic elliptic solver. The preconditioned
conjugate gradient method [62] has emerged in the past decade as a robust and
efficient algebraic equation solvers for positive definite and self-adjoint systems.
Recent development of resolution-independent techniques such as the intra-element
multigrid method for unsteady Navier-Stokes problem [56],[64] provides potentially
even more efficient solvers for our application. This is one of the motivation in
formulating the free-surface problem in such a way that these fast solvers can be

employed in the solution.

Before we describe solqtion techniques applicable to the various problems
formulated in earlier chapters, we discuss briefly below the advantages of effective
iterative solvers (such as preconditioned conjugate gradient iteration) over more
“traditional” direct solvers (such as Gauss elimination). Some of the advantages
are pertained to our particular application; namely, unsteady solution of viscous

free-surface flows.

e Memory requirement — the need to assemble a glo.bal coefficient matrix in
direct method (even with static condensation [15],[16]) imposes severe memory
requirement in the solution process. This requirement scales according to
O(K{N?*?) for direct solver and O( K¢ N?) for iterative solver; where N is the
polynomial degree of each spectral element, K; is the number of elements in

a typical spatial direction and d is the number of spatial dimensions [11]. In
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practical solution of three-dimensional problems, the memory requirement for
direct solvers is so acute that even on the latest supercomputers, the number

of elements that can be employed is often restricted.

Operation counts — the number of operations required to obtain the solution
depends largely on the number of space dimensions of the problem and the
properties of the coefficient matrices (such as sparsity and conditioning). For
two-dimensional analysis, the operation counts for direct solver and iterative
solver are comparable, whereas in three-dimensional analysis, iterative solver

requires less operations [63].

Flexibility with variable solution parameters — direct method expends a rel-
atively large initial cost in the factorization of the coefficient matrix. Hence,
the method can be effective for unsteady problems in which the fluid proper-
ties, the flow geometry and the time-step increment are fixed. In this case the
factorization is performed (initially) only once, and the factors are stored and
used repeatedly during subsequently time steps. However, in our application
the geometry of the flow domain changes at every time step; moreover, it is
often desirable to adjust the step size (based on stability considerations). Con-
sequently, if a direct solver is used, the cost involves in frequent refactorization

of the coefficient matrix can be prohibitively expensive.

Flexibility with the mesh construction — direct solvers often relies on judi-
cious numbering of the elements in the mesh in order to achieve minimum
bandwidth for the global coefficient matrix. Therefore, additional operations
(which may be quite complex) are required to handle local mesh refinement
which is essential in adaptive techniques. In contrast, local refinement is eas-
ily treated using iterative solvers without requiring any extra operations to

achieve this flexibility [20].
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o Parallel processing — recent advances in parallel computation enable slower
(and thus cheaper) processors be used to achieve supercomputer speeds. The
same concept can also be applied to fast processors to obtain drastic increase
in computational speed. Iterative methods which are globally unstructured
are highly efficient when adapted to parallel processing [58]; whereas the effec-
tiveness of direct methods in a parallel environment is, due to their inherent
global structure, compromised because of the need of extensive comraunica-

tion.

In Section 6.1 below, we present solution of the basic elliptic (elastostatic)
problem using conjugate gradient iteration. Ye also introduce in that section tensor-
product sum-factorization technique which is essential for efficient spectral element
calculations. Next, in Section 6.2, we present solution of the steady-Stokes prob-
lem using the Uzawa algorithm, in which nested conjugate gradient iterations are
cmployed for treatment of the saddle problem. Lastly, in Section 6.3, we present
solution of the step-by-step free-surface Navier-Stokes equations. In the last two
sections, we focus on appropriate preconditioners to improve the speed of conver-

gence.

6.1 Elasticity Solver

We consider solution of the linear elastcstatic problem formulated in Section
4.1 as an illustration of application of the conjugate gradient iteration for elliptic
self-adjoint positive-definite systems. The two key considerations for effective appli-
cation of the technique to the spectral element equations are the use of appropriate

preconditioners, and effective computation of matrix-vector products.



The governing equations for the elastostatic problem are given in Eq.(4.23)
or (4.25). The conjugate gradient iteration algorithm for the solution of this system

of equations as adapted Ref. [62] is given in the following.

For m =1 (initial calculations) :
(Ri)o = BF; — (A5U))o

Q) = (Ri)o -

For subsequent iterations m > 1:
ﬂm = (R?R—i)m—l / (R?R-l')m—z
(Qi)m = (R—i)m—l + ﬁm (Ql’)m-—l

For all iterations m > 1 :
am = (R{Ri)m-1/ (QF Aij Qj)m
(Ri)mn = (Ri)m-1 — am (Aij Qj)m

(Ui)m = (Uo')m—l + Om (Qi)m . (6.1)

We remark that in the iteration calculations, the matrices A;; are never
assembled, and the matrix-vector product A;; Q; are instead computed element by

element as TIC, /' (AF)L,, ()7,

We can show that the convergence rate of the conjugate gradient iteration
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method depends on the condition number of the global coupled coefficient matrix A
(which is assembled from A;;; i,j=1,...,d); that is,on £4 = (A4)maz/(A4)min Where A4
denotes an eigenvalue of A. Hence, the convergence rate can be increased effectively
by the use of appropriate preconditioner M such that M~'AM™! has improved
condition number. Previous investigations have shown that for Laplacian operators,
the Incomplete-Cholesky-factoriztion techniques [62] is not particularly effective and
is difficult to adapt to parallel processing; and that a diagonal preconditioner (very
inexpensive to invert) can increase the convergence rate by a factor of two [57],[64].
However, unlike the Laplacian operator, the U; degrees-of-freedom are coupled and
must be solved simultaneously in the elastostatic problem; these implies that the use
of a diagonal preconditioner will not be satisfactory if the submatrices in various
spatial directions have vastly different condition numbers {due, for example, to
aspect ratio). The investigation of an appropriate preconditioner for the “coupled”
problem will be an important topic for future study. In all our computation, we use

the standard conjugate gradient technique given in Eq.(6.1).

The other consideration for effective solution is efficient computation of
matrix-vector products, as we note from Eq.(6.1) that the most costly operation in
the conjugate gradient scheme is the evaluation of A;;Q;. This cost obviously de-
pends on N, the order of the polynomial expansion. For spectral element method N
is relatively large; thus, it is imperative that these products be computed efficiently.
This is achieved through use of the tensor-product sum-factorization technique due
to Orszag [65]. We illustrate this technique using the following scalar example which
is analogous to one of the elastostatic expression in, for example, Eq.(4.19). Con-

sider the expansion of a scalar function @ in three space dimensions :

‘I’h(zhxz,ts) = @lmnGlmn(xhxth) ’ (62)
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where the repeated indices |,m,n are summed from 0 to N. If Eq.(6.2) is used di-
rectly, then the compution of ¢ at all N* collocation points will require O(N®)
operations. However, by choosing the space and basis expansions in tensor-product

form (see Eq.(4.20)), we have
®r(21,22,23) = BimnGi(21)Grm(23)Gn(zs) ,
which can be factorized into the following form:

Oa(21,22,23) = [[[ BimnGi(z1)] Grm(23)] Gu(zs)] - (6.3)

We observe that using Eq.(6.3), ($)imn can be evaluated in O(N*). 1t is this effi-
cient technique which enables the spectral element method to compete with lower
order methods for which the same matrix-vector product will require O(N?) oper-

ations.

6.2 Steady Stokes Solver

The steady-Stokes problem as formulated in Section 4.2 corresponds to a
saddle problem, the solution of which is not directly amenable to conjugate gradient
iteration technique since the matrices of such equations are not positive definite.
However, using an algorithm proposed by Uzawa, the saddle problem can be decom-
posed into two elliptic problems — a rnaximization problem for the pressure and a
minimization problem for the velocity. This aproach has been employed successfully
in previous steady-Stokes solvers in which Laplacian viscous operator is considered

[11),[55].

In applying the Uzawa algorithm we multipy both sides of Eq.(4.38a) by
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D.-A,-',-‘, and, using the continuity equation given in Eq.(4.38b), we obtain

(D;A;'D])P = —-D;A;'BF; (6.4)

from which the pressure P can be solved using conjugate gradient technique (the
coefficient matrix D.-A.-‘,-ID}' is both self-adjoint and positive-definite). Once the

pressure is soived, the velocity is obtained using

A;U; = BF; + D.T P. (6.5)

We remark that in the solution of Eq.(6.4), each conjugate gradient itera-
tion for the pressure solution involves the inversion of A;; which is also performed
using conjugate gradient iteration. Thus, a nested conjugate gradient algorithm is
required for Eq.(6.4). We also note if the pressure solution is nontrivial, then most
of the computation work will be performed on Eq.(6.4) since Eq.(6.5) involves only

a single inversion.

A study of the viscous operator A;; formulated in Eq.(4.37a) shows that its
eigenvalue spectrum is similar to the Laplacian viscous operator. Hence, the mass
matrix B which is an efficient preconditioner for the Laplacian viscous operator [11]

is also appropriate for the solution of Eq.(6.4).

6.3 Unsteady Navier-Stokes Solver

The use of semi-implicit time-integration scheme as discussed Chapter 5 al-
lows the formulation of step-by-step free-surface Navier-Stokes equations in which

the matrices are seif-adjoint and positive-definite. Thus the Uzawa algorithm and
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nested conjugate gradient iteration can be used effectively as in the case of the
steady-Stokes solver. In the rest of this section, we present the Uzawa decomposition
of the unsteady free-surface Navier-Stokes equations, and appropriate precondition-
ers for effective solution. We remark that in solution of free-surface problems, the
extension operation for the mesh velocity involves either the elastostatic solver or
the steady-Stokes solvers which are described above; and, the explicit mesh update

operation as given by Eq.(5.16) does not require solution of equations.

Applying the Uzawa algorithm to Eq.(5.15), we have for the pressure equa-

tion
~ ~ 2
- T \n+1 1 _ -1 3\n
(D.’A'-lej)+ Pn+ - (DIA.J +1{Kt'(BU’)n—
1 -1 1 2 1
——2At (B U,' )" +F;+ + E il C;-'_ } . (6.6)
1=0

and once the pressure solution is obtained, the velocity is computed using the equa-

tion

2
A:;_-H U;-'H = (D?‘P)nﬂ + F?+l + Z ﬂt C?_' +

1=0
-3-(BU-)"— 1 (BU; )~ 1, (6.7)
At ' 2At ! ' )
where K.-,- is defined as
~ 3
A.‘j - A.‘j + '2—A—t' 6.',‘ B .

Following the previous investigation by Rgnquist [11], the appropriate pre-
conditioner for Eq.(6.6) is given by
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M™? = w87 + £ (D;B'D])"

where B is the mass matrix defined on the Gauss-Legendre (pressure) mesh. Recent
investigation by Rgnquist [66] shows that a more effective preconditioner can be con-
structed in which a intra-element multigrid technique is used in the inversion. The
adaptation of such fast iterative solver for the present free-surface Navier-Stokes
calculation will potentially produce a fivefold decrease in computational work to

achieve convergence.
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CHAPTER 7

SPECTRAL ELEMENT SOLUTICN OF FREE-SURFACE FLOWS

In this section we present spectral element solution of several free-surface
flow problems. First, We present the analysis of a stick-slip problem for which
we apply the steady-Stokes formulation and solver. Next, we analyse the die-swell
problem which corresponds to an example of steady-Stokes flow with a free surface.
We then present numerical simulation (unsteady Navier-Stokes caiculation) of film
flow down a vertical plane for both infinitesimal and finite perturbations, which
have been discussed in some detail in Chapter 2. Lastly, we consider film flow in
axisymmetric geometry, and we present both linearized stability analysis of external
film flow down a cylinder, and analysis of closure of a tube due to capillary instability
(collapse) of an internal liquid film. We remark that although we do not present
solution of any elastostatic problem (the formulation is given in detail in Section
4.1), most of the deformed geometry computations in the fluid-low problems are

performed using the elastostatic mesh solver.

7.1 Stick-Slip Problem

We consider steady Stokes flow of a Newtonian fluid in a straight planar
channel, the wall of which consists of a “stick” section where the no-slip condition
is applicable, and a “slip” section where the zero shear and zero normal velocity
conditions are applicable. This problem is analyzed analytically by Richardson [67 ly
and numerically in many investigations [68],{69]. The channel geometry, boundary
conditions and spectral element model, in which eight fourth-order elements (K=8

and N=4) are used to model half the channel, are shown in Fig. 7.1. A parabolic
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velocity distribution is imposed at the inflow boundary and the cutflow boundary
is assumed to be stress free. We compare in Fig. 7.2 and 7.3 the pressure distri-
bution along the line of symmetry and the normal-traction distribution along the
slip boundary, respectively, with the analytical solutions. It can be observed that
the numerical prediction for the pressure distribution agrees quite closely with the
analytic solution. In the case of the traction distribution, we note that wiggles are
present in the numerical solution near the stick-slip junction, a location at which
both the pressure and the shear stress are singular. The wiggles are, however, lim-
ited to the element immediately adjacent to the junction and the numerical solution
is smooth downstream. This suggests that in order to obtain a more accurate solu-
tion, more elements (h-refinement) rather than higher order elements (p-refinement)

should be used near the singularity.

7.2 Die-Swell Problem

This problem is similar to the last example, except that the slip boundary
is replaced by a true free surface. The spectral element mesh employed ié identi-
cal to the one used in the last example. To obtain the steady-state solution, we
assume that the free surface is initially flat, and that the initial velocity distribn-
tion everywhere in the channel is the same as that at the inflow boundary, and we
perform an unsteady Stokes calculation with a step size At = 0.01 until a steady
state is reached. We show in Fig. 7.4 the velocity field at steady state predicted by
the spectral element model, and we compare in Fig. 7.5 the numerical prediction
of the free-surface position at steady-state with experimental solution [69]. Good
agreement between the two solutions is observed. We remark that a surface ten-

sion of ¢ = 0.001 is used in the analysis to ensure that the free-surface problem
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is well-posed; however, based on analyses with different values of surface tension
(including ¢ = 0), the final solution is insensitive to ¢ as long as its numerical value
is small compared with the viscosity. We further remark that at the junction “b™ of
the free surface and the stress-free boundary, we impose a zero contact angle that

corresponds to 8,y = 1 and 33y =0 in Eq. (3.12).

7.3 Linearized Stability Analysis of Falling Films

We now present spectral element simulation of the planar falling film prob-
lem which has been discussed in some detail in Chapter 2. We consider the following
set of flow parameters : R=1.935, W=0.844 and 8 = 90° and we sclect the following
four cases of wave number : a=0.196, 0.393, 0.628 and 0.785 in our numerical simu-
lation. In each case, we model one wavelength of the film using a four-element mesh
with polynomial order N=6, and we impose an initial sinusoidal perturbation of the
free-surface position with an amplitude equal to 0.1 percent of the average filin
thickness to simulate the infinitesimal disturbance; see Fig. 7.8. The steady-state
solution given in Eq.(2.5) is used as initial conditions, and we perform an unsteady
Navier-Stokes calculation until the transient effect due to the imposed initial con-
ditions become negligible; that is, the exponential growth/decay rate reaches a
constant value. In Fig. 7.7(a) and (b) we plot the time history of the logarithm of
the £2-norm of the perturbed velocity (which is defined in Eq.(2.6a)) and the height
of the free surface at a fixed z; location, respectively, from which the growth rate
and the wave speed can be evaluated. The growth/decay rate and wave speed for
the above cases of a are compared in Fig. 7.8 with the solution evaluated from the
Orr-Sommerfeld equation presented in Section 2.2.2. Excellent agreement between

the Orr-Sommerfeld solutions and the numerical-simulation predictions can be ob-
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served. These solutions are also in close agreement with those reported in previous
investigations [29]. In order to achieve the accuracy as shown in the figures, we
used a step size At = 0.01 which is smaller than the critical step size At,, based on
stability considerations. We remark that the discrete Orr-Sommerfeld operator for-
mulated in Section 5.3 is used to provide critical step size estimates for the spectral

element simulations; these estimates are found to be fairly accurate.

7.4 Noniinear Stability Analysis of Falling Films

The spectral element simulation procedures used in nonlinear stability anal-
ysis of falling films are identical to those used in linearized stability analysis, with
the exception that the amplitude of the perturbation is no longer small compared
with the thickness. In addition, since we expect the free surface profile to be more
complex than that of a sinusoid, more elements per wavelength of film are required
to resolve the free-surface geometry. As discussed in Section 2.2.3, two types of
laminar supercritically stable finite-amplitude steady periodic flow patterns were
observed by Kapitza [38]. In the numerical simulation of the first type of flow (peri-
odic ripples), we consider the following flow parameters: R=30.0, W=14.7, 8 = 90°

and a=0.14. The average height of the film is computed using :

Q= hUp,
where Q is the average volume flow rate given by Kapitza and U, is defined in
Section 2.1. We remark that U, corresponds to the steady-state z,-velocity at the
free surface. The amplitude of perturbation is obtained using the reported value
of (Amas ~ Amin)/(Amaz + Amin) given by Kapitza where hn,, and hp,, are the

maxitnum and minimum film thicknesses at steady-periodic state, respectively. In

the numerical simulation we perform an unsteady Navier-Stokes solution, using an
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eight-element model (order N=6) for one wavelength of the film and a step size
of At = 2 x 1075, until a steady-periodic state is reached. This state is indicated
by a time-invariant £2-norm of the velocity of the entire computational domain.
We present in Fig. 7.9 the free-surface profile at steady-periodic state predicted
by the spectral element simulation. For comparison purposes, we also show in the
same figure the free-surface profile obtained experimentally by Kapitza, from which
qualitative resemblance can be noted. The wave speed is computed in the numer-
ical simulation by plotting the wave profile at two instants of time and noting the
distance traversed along the z, direction by a particular point of fixed identity on
the free surface. The numerical prediction of the wave speed for this case is c=22.8

cm/s, which compares favorably with the experimental value of ¢=21.7 cm/s.

The next type of supercritically stable finite-amplitude laminar film flow
corresponds to single waves which occur at longer wavelengths than periodic ripples.
The flow parameters fur the case under consideration are : R=9.1, W=16.8, a=0.07
and 8 = 90°. For this type of wave we use a 16-element mesh (order N=6) to model
one wavelength of the film and a step size At = 2 x 107% is used. The numerial
prediction of the free-surface profile is compared with experimental resuits in Fig.
7.10. We observe that qualitatively, the dominant crest with its steepening front
and the flat region between the crests are captured quite accurately; however, the
smaller “dimples” are less accurately predicted. A comparison of the numerical
wave speed of ¢=24.7 cin/s with the experimental value ¢=19.7 cm/s indicates that
substantial discrepancy exists between the two solutions. This suggests that a more

refined mesh may be required so that the wave profile is better resolved.
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7.5 Linearized Stability Analysis of Cylindrical Falling Films

In this example we perform a spectral element simulation of linearized sta-
bility of a falling film on the external surface of a cylinder. In this case, the geometric
parameters are the radius of the cylinder (R;), the average radius of the film surface
(R,), and we define ¢ = R;/R, and h=R, — R;. The Reynolds number, Weber num-
ber and wave number are defined in the same way as in the case of planar geometry.

The steady solution for cylindrical falling film is

¢* — (z2/R,)* — 2 In(R;/z,)

U, = # _2lng_1 (7.1a)
P=0 (7.1¢)
7=0 (7.1d)

4”

For linearized stability analysis we consider the following low parameters : R;=1,
R,=2, wave number a = 0.4 and Weber number W = 1 , and we perform the
analysis for two cases of Reynolds number : R=1 and 10. In the spectral element
discretization, we use four elements per wavelength of the film with order N=6, and
we use a step size At = 0.01. The steady-state solutions given in Eq.(7.1a) to (7.1c)
are used as initial conditions, and the spectral element simulation procedures are
identical to those presented in Section 7.4. The growth rates for the above cases
of Reynolds numbers are compared in Fig. 7.11 with the Orr-Sommerfeld solution

given in Ref. [70] , and we note the good agreement between the two solutions.
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7.8 Closure of a Tube due to Capillary Instability

In this problem we consider a thin film of liquid attached to the inner wall of
a tube. When the free surface is perturbed, a pressure gradient in the longitudinal
direction will be created due to imbalance of the surface-tension forces created by
the curvature in both the longitudinal and circumferential directions. Based on the
geometry of the tube and the film, such perturbation can be stable, supercritically
stable or unstable. In this example we consider a case in which collapse of the film
is predicted by a one-dimensional numerical model {71}, and we apply our spectral
element technique to confirm the collapse of the film and predict the closure time.
This analysis is important in the study of the mechanism responsible for airway
closure in the human lung [72]. The film geometry, boundary conditions, and fluid
properties are given in Fig. 7.12. For this analysis we use an eight-element mesh
(order N=6) to model one wavelength of the film, and we impose zero initial velocity
and a free-surface perturbation amplitude equal to 1 percent the initial average film
radius. An unsteady Navier-Stokes solution of the flow is performed using and
a step size At = 2 x 1077, until the center peak of the film reaches the axis of
symmetry, at which point the closure time is obtained. In Fig. 7.13, we present
the film configuration together with the velocity distribution at several instants of
time, including the instant just before total collapse shown in Fig. 7.13(d). The
closure time is found to be 0.0451 sec which is about 20 percent higher than that
obtained using the one-dimensional model. This is, however, consistent with the
assumptions used in the one-dimensional model, and with the fact that the flow
becomes two-dimensional during the latter part of the solution. We remark that
the initial growth rate of +=:94.6 sec™! compared very cioscly with the analytical

solution given by Goren (73] for axisymmetric films.

79



CHAPTER 8

OTHER TYPES OF MOVING BOUNDARY PROBLEMS

We have so far focused our attention on the treatment of one particular
type of moving boundary problems, namely, free-surface fluid flows; and we have
described in the previous chapters a new Legendre spectral element formulation
and solver for effective analysis of such flows. We shall discuss in this chapter two
other types of moving boundary problems which are amenable to treatment using

the free-surface spectral element technique.

In Section 8.1, we consider fluid flows in domain bounded by a moving
boundary, the velocity of which is prescribed as a function of time. Prominent
examples include flows bounded by moving or pulsating walls which are commonly
encountered in pumping of various fluids. This is followed by Section 8.2, in which
we describe the treatment of multi-dimensional Stefan problems based on the Leg-
endre spectral element formulation developed by Rgnquist and Patera [74]. In
the present study, the earlier formulation is extended to incorporate the arbitrary-
Lagrangian-Eulerian description and elliptic mesh velocity solvers, which allow for
more general and robust solution of the domain deformation due to the motion of
the solidification/melting front. Examples are presented at the end of each section

to illustrate the application of the free-surface spectral element technique to these

“types of analyses.

8.1 Prescribed-Boundary-Velocity Flows

We present in this section the analysis of a class of moving-boundary fluid-

flow problems for which the time evolution of the velocity at the boundary is pre-
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scribed. Such moving-boundary fluid-flow problems are, from a numerical simula-
tion point of view, much simpler to treat than free-surface flows, since the moving
boundary (and hence the domain configuration) is a known function of time. As
a result, the boundary as well as the entire flow domain can be updated at each
time step using implicit schemes which, unlike the cvlicit free-surface update, will
not introduce any restriction on the size of the time-step increment due to stability
considerations. We shall present both the formulation and some examples for this

type of flow in the following sections.

8.1.1 Formulation

In order to adapt the free-surface algorithm to prescribed-boundary-velocity
flows, we apply the following modifications to the boundary conditions formulated
for free-surface flows. Since there are no free surfaces, the surface-tension boundary
condition given in Eq.(3.5) and hence the boundary integral that appears in the
variational statement given in Eq.(3.10) is no longer applicable. We assume that on
the time-dependent boundary 811,(t), the prescribed velocity is @;(zx,t) . Thus, the
Dirchlet boundary conditions given by Eq.(3.3) is still appropriate. For the mesh
velocity computation, the kinematic conditions that no fluid particle can penetrate

the moving wall is
win = Un;, (8.1)

and we retain Eq.(3.14b) in order to minimize mesh deformation. On the other
non-moving boundaries, Eq.(3.14c) remains applicable. The extension of the mesh
velocity in the interior domain as given by Eq.(3.15) is still appropriate. In the fully
discrete equations presented in Section 5.4, these modifications imply that Eq.(5.15)

is still applicable, except that the surface-tension contribution must be deleted in
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the force vector F:-‘“. In addition, we use implicit integration scheme such as the

trapezoidal rule to update the geometry; thus, Eq.(5.16) is replaced by
SIXPT - XP] = o (W + WY)
At : 2' ! v

Lastly, we remark that even though the restriction on the step size due to geometry
update is relaxed, the stability restriction due to explicit treatment of the convection

contribution is still to be satisfied in the analysis.

8.1.2 Sample Analyses

We illustrate the solution of flows with prescribed boundary velocity by
applying the free-surface spectral element method, with the above modifications
incorporated, to the analysis of peristalic flows. Peristalsis is an important transport
mechanism which is responsible for the pumping of liquid in the human urethra,

and many investigations in the past have been devoted to this subject [75],(76],[77].

As our first example we consider planar peristaltic flows in which a travelling
wave of given amplitude n, wave speed o and period T propagates along the outer
wall of an otherwise straight channel, the width of which is 2h . We assume periodic
boundary conditions in the longitudinal (z,) direction and we consider a channel
length equal to X; see Fig. 8.1(a). The height of the moving wall as a function of
time is given by

z2(z1,t) = h + necosl(z, —ot) ;

and the velocity of the moving wall is given by

u1=0
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uz = lonsini(z, —ot).

This problem is solved analytically by Burns and Parkes [75] for the case of Stokes
flow, for which the Womersley number defined as

hz
Wa = — ’
vT

is small and therefore, the steady Stokes solution in a frame moving with the velocity
o is applicable. The spectral element mesh and boundary conditions employed in
the numerical s..aulation are shown in Fig. 8.1(b). Note that only half of the
channel is modelled based on symmetry considerations. We perform a transient
Stokes calculation with zero initial conditions using a step size At = 0.02, until

a steady-periodic state is reached (that is, the £? norm of the velocity is time-

invariant). We compare in Fig. 8.2 the spectral element solution of the vélotityi at
steady-periodic state with the analytic solution (streamlines) for the case h=0.25
,n =0.025 ,1l =1 and W,,=0.01. We note the excellent agreement between the
two solutions. In Fig. 8.3, we compare the spectral element prediction of the net
flux per period through a channel section with the analytical solution for various

combinations of A and 5, and again good agreement is observed.

As our second example, we consider peristalsis in a planar channel for large
Womersley number, a case for which the steady Stokes solution in the moving
reference frame is no longer applicable. The spectral element mesh used is the same
as the last example and the flow parameters are : h=0.5, n=0.15 and W,,=25. We
con_pare in Fig. 8.4 the velocity distribution in a typical section of the channel at
large and small Womersley numbers. We observe that when W,, is small, the z;-
velocity distribution is parabolic along the channel section; and when W,, is large, a

layer (Stokes layer) of rapidly moving fluid is formed near the wavy wall, while the
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velocity in the center core is notably smaller and resembles a slug-flow distribution.
This is consistent with the consideration that at large Womersley number, the time
of excitation (due to the wavy wall) is much faster than the time of viscous diffusion
and hence the periodic disturbance generated near the moving wall cannot diffuse

all the way to the center of the channel.

Our last example corresponds to peristaltic low at small Wormesley num-
ber in a circular tube. Even though an axisymmetric spectral element model is
appropriate for this analysis, we employ three-dimensional spectral elements to
demonstrate the three-dimensional solution capability of the algorithm. The spec-
tral element mesh consists of 30 elements with N=6 and a step size At = 0.02 is
used in the analysis. We show in Fig. 8.5 the geometry of the tube at several
instants of time and we compare in Fig. 8.6 the average flux per period predicted

using the spectral element model with the analytical solution given by Burns and

Parkes [75].

8.2 Stefan Problem

The Legendre spectral element formulation for the Stefan problem is given
in detail in Ref. [74]. In the following, we briefly describe the variational state-
ment formulated using the arbitrary-Lagrangian-Eulerian description presented in
Chapter 3, and the new dynamic condition for the mesh velocity at th;z solid-liquid
interface. We also re-analyse one example in Ref. [74) to demonstrate the successful

application of the current method.
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8.2.1 Variational Formulation

In this section, we shall skip the presentation of the differential equations
governing the heat transfer problem in the presence of a moving solid/liquid inter-
face (the Stefan problem), and we refer to Ref. [74] for such details. The variational
statement with the arbitrary-Lagrangian-Eulerian method incorporated is : find the

temperature 8 € X} (€1(t)), such that

d

hd 0av = [ [-4,(ke); - ped(0w;) ;] AV 8.2
dt /n(‘) pcg o) [~#.i(k6).s + daB + pcd(0w;) ;] (8.2)
for all ¢ € X} (12(t)) ; where ¢ is the test function, k is the conductivity, pc is the
heat capacity, ¢p is the heat generation per unit volume and w; is the mesh velocity.
Note that for simplicity of presentation we consider only Dirichlet boundaries on
which the prescribed temperature is 8. At the solid-liquid interface, the tempera-

ture is assumed to be constant (), and the velocity at the interface is given by

the following condition
/z pLpwin; dS = A Y, [(k8)", — (k8).] dS (8.3)

where ¥ is the solid-liquid interface, pL is the latent heat of solidification, ¢ is a test
function, n; is a unit vector normal to ¥ and points towards the solid, and the super-
scripts “s” and “I” stand for solid and liquid, respectively. The spatial discretization
of the above formulation is entirely analogous to the procedures given in Chapter
4. And, following our semi-implicit approach, we perform temporal discretization
of Eq.(8.2) using implicit schemes and the interface (and hence the computational
domain) time evolution, which is similar to Eq.(3.16), using explicit schemes. We
remark that a linearized stability analysis similar to the discrete Orr-Sommerfeld

operator (see Section 5.3) can be formulated to obtain a procedure for estimation of
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the critical step size; however, such an investigation is not performed in the current

study.

8.2.2 Sample Analysis

We perform a spectral element analysis of the two-dimensional Stefan prob-
lem given in Section 5.3 of Ref. [74] using the new formulation briefly discussed
in the above section. The spectral element mesh, the material properties ana the
boundary conditions are given in Fig. 8.7(a). We perform a transient heat transfer
analysis using a step size At = 0.0025, until a steady-state is reached. We present
in Fig. 8.7(b) the temperature distribution and the position of the solid/liquid
interface at steady state, which are essentially the same as the solutions given in
the above reference. This example demonstrates that the free-surface spectral ele-
ment technique (which is more general in the treatment of the domain deformation
than the technique used in Ref. [74]) is also effective for treatment of heat transfer

analysis with dynamic fronts.

86



CHAPTER 9

CONCLUSIONS

In this thesis, we have developed a new variational formulation for flow of
incompressible viscous fluid in time-dependent domain as a result of the presence of
a free surface. This formulation employs the full viscous stress tensor for treatment
of (natural) traction boundary conditions and the Arbitrary-Lagrangian-Eulerian

description for accurate tracking of the free-surface position.

The Legendre spectral element method which is effective for fixed domain
fluid-flow problems has been extended for spatial discretization of the variational
statement formulated for free-surface flows. In the temporal discretization, based
on the existence of fast and efficient iterative equation solvers and effective parallel-
processing algorithms, semi-implicit time-integration schemes have been selected
to exploit these advantages. Using the physical insights obtained from the study
of a typical free-surface fluid-flow problem (the stability of falling films), optimal
semi-implicit integration formulas were identified for temporal discretization of the
variational statement, and the stability of the time-integration scheme was also

analysed.

Application of the resulting free-surface spectral element technique to the
simulation of several free-surface fluid-flow problems demonstrated that the method
is both accurate and effective. New results for several practically important free-

surface fluid-flow problems were also generated.

The free-surface spectral element methodology is also applicable to other
types of moving boundary problems. The method was successfully applied, first,

to the class of problems in which the time-evolution of the velocity at the mov-
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ing boundary is prescribed; and secondly, to the Stefan problem in which a time-

dependent solid-liquid interface (dynamic solidification front) is present.

| The extension of the surface-tension treatment in the variational formu-
lation for three-dimensional analysis is obviously an important area for future in-
vestigation. In addition, efficient time-integration schemes which allow the use of
larger step sizes are obviously advantageous for steady-state analysis of many free-
surface problems; successful development of such schemes will therefore enhance the

effectiveness of the present solution technique.

Finally, based on the performance of the proposed free-surface spectral
element method in the solution of various moving boundary problems presented
in this thesis, the proposed method represents a potentially effective approach for
analysis of many other types oi interesting moving boundary problems such as
multi-fluid systems, fluid-structure interaction, two-phase flow and heat transfer,

etc.
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APPENDIX A

CONSISTENT TREATMENT OF VARIABLE VISCOSITY

We presented in Chapter 3 and 4 a Newtonian fluid constitutive relation
in which the full viscous stress tensor is employed; see, for example, Eq.(3.6a) and
Eq.(4.27a). This constitutive relation is selected in order to provide a consistent
treatment of inhomogeneous traction boundary conditions applied at general curvi-
linear Neumann boundaries (such as the free surface) in the variational formulation.
We remark that even though we do not present any analysis of variable-viscosity
fluid flow problems in this thesis, a consistent variable viscosity formulation is im-
portant since in many practical applications, the viscosity of the working fluid is

sensitive to the fluid temperature.

In this appendix, we chall show that in the case of variable viscosity, the
full viscous stress tensor must be used in the variational formulation even when
inhomogeneous Neumann boundary conditions are not present. In the following
discussion, we shall assume for simplicity of presentation that the domain {1 is fixed
in time and Dirichlet condition is applicable on the domain boundary, and that the

viscosity is a function of the spatial coordinates.

The viscous contribution in the variational statement when the full viscous

stress tensor is used can be expressed as :
Is = /ﬂ v b (u.-,,- + u,-,.-) dv , (A.l)

where u; is the fluid velocity, v; is the test function, u is the variable viscosity and
u;; = du;/dz;. Applying integration by parts to Eq.(A.1) and using the incom-

pressibility condition
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u"n’ = 0 ’
we obtain

Is = /n —vilps (wij+ujs) + puigldv. (A-2)

The viscous contribution in the variational statement using the Laplacian

operator treatment of the viscous contribution can be expressed as :

I = /nv.-,,- pu;dV. (A.3)
Again, we apply integration by parts to Eq.(A.3) and we obtain

I = / v (pyuig + puig]dV . (A.4)

A comparison of Eq.(A.2) and (A.4) shows that the term u ju;; is missing in the
Laplacian viscous formulation due to the elimination of the term u;; in the strong
form of the Navier-Stokes equation. Therefore, we conclude that the formulation

given in Eq.(A.1) should be used to treat variable viscosity.
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APPENDIX B

TEMPORAL DISCRETIZATION OF THE MODEL PROBLEM
USING BD2/AB2 SEMI-IMPLICIT SCHEME

In this appendix we illustrate the application of higher-order semi-implicit
integraiion formulas for the temporal discretization of the model problem given in
Eq. (5.1). we remark that our goal is to formulate the discrete equations in the
form of a linear algebraic eigenvalye problem, the solution of which can be obtained

using standard eigenprobiem solution Packages such as EISPACK.

Applying the second-order backward differential (B12) formula to Eq.(5.1a},

we have

we obtain
n+1 n 3 n n-1
"t - " = At(iv - v, (B.2)

Next, we substitute the assumed solution given in Eq.(5.2) into Eq.(B.1) and (B.2)

and after collecting terms, we obtain

3 |
26 — %0' = NG HEAY S + pParg), (B.3)
and

3 1
g AtD ~ gA" + 4§ = 1045, (B.4)

where 9° = ", We can now rewrite Eq.(B.3) and (B.4) as the following eigen-
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value problem :

2 -1/2 0 ¥ 3/2+ KAt 0 fiAt 9
1 0 of]o | =e" 0 1 o0 o | . (BS)
3At/2 —-At/2 1| ]| 4 0 0 1 fi

We note that by expanding the eigenvector to include the solution variable which
corresponds to a previous step, the quadratic eigenvalue problem that would have
resulted from Eq.(B.1) and (B.2) is converted into a linear one which has the same

form of Eq.(5.4). We remark that the same procedure is applicable to semi-implicit

schemes of arbitrary number of steps.
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TABLE 5.1 Critical step size for the model problem for the case k? = 0.2

and f? = 100.1 using : (a) Backward Differentiation (BD)

and Adams-Bashforth (AB) formulas; (b) Adams-Moulton (AM)

and Adams-Bashforth (AB) formulas; and (c) fully explicit
Adams-Bashforth (AB) formulas.

101

SCHEME AB1 AB2 AB3 AB4
BD1 0.2020 0.1424 0.1050 0.0778
BD2 0.0040 0.2010 0.1482 0.1098
BD3 0.0040 0.0341 0.1912 0.1417
BD4 0.0940 0.0396 0.0853 0.1792

(2)

SCHEME AB1 AB2 AB3 AB4
AM1 I 0.2020 0.1424 0.1050 0.0778
AM?2 " 0.0040 0.0425 0.1154 0.1179
AM3 H 0.0040 0.0401 0.1013 0.1024
AM4 “ 0.0040 0.0420 0.0984 0.0927

(b)
SCHEME At,,
AB1 0.0020
AB2 0.0332
AB3 0.0720
AB4 0.0428
(c)




TABLE 5.2 Critical step size for the model problem for the case k? = 12
and f? = 20 using : (a) Backward Differentiation (BD)
and Adams-Bashforth (AB) formulas; (b) Adams-Moulton (AM)
and Adams-Bashforth (AB) formulas; and (c) fully explicit
Adams-Bashforth (AB) formulas.

SCHEME |] AB1 AB2 AB3 AB4
BD1 | 1.3483 0.7359 0.4488 0.2852
BD2 1.4718 0.8385 0.5322 0.3510
BD3 1.6132 0.9506 0.6204 0.4188
BD4 1.7944 1.0895 0.7273 0.5000

(a)

SCHEME | AB1 AB2 AB3 AB4
AM1 1.3483 0.7359 0.4488 0.2852
AM2 1.2000 0.6917 0.4761 0.3508
AM3 0.9746 0.5169 0.3352 0.2392
AM4 j] 0.9045 0.4514 0.2791 0.1931

(5
SCHEME Aty |
AB1 02000 |
AB2 0.1000
AB3 0.0545
AB4 0.0300
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TABLE 5.3 Critical step size for the discete Orr-Sommerfeld operator at
R = 0 for the case a =9.24 and Fe? = 10°,10*%, 107 using :
(a) Backward Differentiation (BD) and Adams-Bashforth (AB)
formulas; (b) Adams-Moulton (AM) and Adams-Bashforth (AB)
formulas; and (c) fully explicit Adams-Bashforth (AB) formulas.
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SCHEME | Fel = 10° Fe* = 10* Fe* = 107
BD1/AB1 0.5000 0.7540 x 1073 0.2241 x 10™*
BD1/AB2 0.2573 0.5253 x 1073 0.1605 x 1074
BD2/AB1 0.5144 0.7490 x 10~* 0.7349 x 1077
BD2/AB2 || 0.2704 0.7352 x 1073 0.2240 x 10~*
(a)
SCHEME | Fet =10° Fe* = 10% Fet =107
AM1/¥AB1 0.5000 0.7546 x 1073 0.2241 x 1074
AM1/AB2 0.2573 0.5253 x 1073 0.1605 x 1074
AM2/AB1 0.4885 0.7334 x 10™* | 0.7349 x 1077
AM2/AB2 0.2580 0.2578 x 1073 0.2650 x 1078
(b)
SCHEME " Fe? =10° Fe? =10* Fe? =107
AB1/AB1 “7.4931 x 1072 0.3676 x 10~* 0.3674 x 1077
AB2/AB2 || 0.2491 x 10~? 0.1947 x 1073 | 0.2095 x 10~%
AB3/AB3 || 0.1359 x 10~? | 0.2537 x 10~® | 0.8195 x 107"
(c)
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FIGURE 2-1 Flow of a thin film down an inclined plane :
(a) problem description; and
(b) computational domain.
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FIGURE 2-2 Linearized stability analysis of vertically falling films : growth
rate versus wave number for W=1.0; R=0.1, 1.0, 10.0.
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FIGURE 2-3 Linearized stability analysis of vertically falling films : growth

rate versus wave number for R=1.0; W=0.1, 1.0, 10.0.
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FIGURE 2-4  Supercritically stable steady-periodic waves in
vertically falling films : periodic ripples.
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FIGURE 2-5 Supercritically stable steady-periodi{: waves in
vertically falling films : single-waves;
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FIGURE 3-1 Planar free-surface geometry.
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FIGURE 3-2 Axisymmetric free-surface geometry.
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FIGURE 4-1 Mapping of the physical (z;, z;) coordinate system
to a local (r,s) system.
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FIGURE 5-1 Eigenvalue spectrum of linearized stability analysis of
vertically falling films : & =0.05, R = 1.0, W = 100.
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FIGURE 5-2 Eigenvalue spectrumn of linearized stability analysis of
vertically falling films : « = 0.05, R = 1.0, W = 10.
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FIGURE 5-3

Stability regions for first-, second- and third-order
Adams-Bashforth formulas.
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FIGURE 5-4 Illustrative example of critical step size evaluation
using a bisection method.
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FIGURE 5-5 Discrete Orr-Sommerfeld Operator : Critical step size
versus wave number for Fe? = 107.
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FIGURE 5-6 A comparison of the stability regions of modified and

standard third-order Adams-Bashforth formulas.
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FIGURE 7-1 The stick-slip problem : geometry, boundary conditions and

spectral element model.

118



Pressure

----- Analytical solution
Spectral element solution
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FIGURE 7-2 The stick-slip problem : pressure dustribution along
the center line.
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Normal Traction

----- Analytical solution
Spectral element solution

z;-coordinate

FIGURE 7-3  The stick-slip problem : normal-traction distribution along
the slip boundary.
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FIGURE 7-4 The die-swell problem : velocity field at steady-state.
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FIGURE 7-5 The die-swell problem : free-surface position at steady-state.
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FIGURE 7-6  Vertically falling film : spectral element model for
stability analysis under infinitesimal perturbation.
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FIGURE 7-7 Spectral element linearized stability analysis of vertically

falling films: (a) time-history plot of the logarithm of the
L%-norm of the velocity perturbation; and

(b) time-history plot of the z;-coordinate of a typical
point at fixed z;-coordinate on the free surface.
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125
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FIGURE 7-8  Spectral element linearized stability analysis of vertically

falling films at R=1.935 and W=0.844 :
(a) growth rate versus wave number; and
(b) wave speed versus wave number.
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FIGURE 7-8 Continued.
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RESULT RESULT
FIGURE 7-9 Comparison of spectral element and experimental results of

supercritically stable steady-periodic wave profile of
vertically falling film: periodic ripples for a = 0.14,
R=30.0 and W=14.7.
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FIGURE 7-10 Comparison of spectral element and experimental results of
supercritically stable steady-periodic wave profile of
vertically falling film: single-waves for a = 0.07,
R=9.1 and W=16.8.
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FIGURE 7-11 Spectral element linearized stability analysis of vertically
falling cylindrical films: growth rate versus Reynolds

number for Weber number W=1.
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FIGURE 7-12 Analysis of tube closure due to capillary instability :
film geometry, boundary conditions and fluid properties.
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FIGURE 7-13 Spectral element solution of tube closure due to

capillary instability: velocity plots for
(a) t=2.00 x 1073 s; (b) t=2.60 x 1072 s;
(c) t=4.20 x 1072 s; and (d) t=4.51 x 1072 s.
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FIGURE 7-13 Continued.
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FIGURE 8-1 Planar peristaltic flow: (a) problem description; and
(b) spectral element model.
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FIGURE 8-2 Comparison of spectral element and analytical solutions of

the steady-periodic velocity distribution for planar
peristaltic Stokes flow.
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FIGURE 8-3 Comparison of spectral element and analytical solutions of
the net flux per period for planar peristaltic Stokes flow.
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FIGURE 8-4 Comparison of streamwise velocity profiles at a typical
gection for small and large Wcmerseley numbers.
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FIGURE 8-5 Spectral element solution of axisymmetric peristaltic Stokes
flow : flow domain at three instants of time.
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FIGURE 8-6 Comparison of spectral element and analytical solutions of
the net flux per period for axisymmetric peristaltic Stokes flow.
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FIGURE 87 Analysis of a planar Stefan problem : (a) problem description;
and (b) spectral element solution of temperature and position
of solid-liquid interface at steady-state.

140



