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Abstract 

Disruption in supply and demand causes imbalances in inventory positions across an enterprise’s 

supply chain network. In the medical device industry, having the right product at the right location 

in the right quantity is of critical importance. Therefore, companies thrive to maintain an optimal 

inventory position across their distribution network. Boston Scientific, a global leader in the 

medical device industry, has been facing an inventory imbalance post-Covid across its distribution 

network. To optimize the inventory position across the company’s distribution network, this study 

has explored lateral transshipment, a practice of repositioning inventory between same echelon 

distribution centers. We have primarily used Mixed Integer Linear Programming (MILP) to find 

the optimal transshipment solution at each SKU and distribution center level. Existing inventory 

classifications systems, and newly developed heuristics to select high priority SKUs for 

optimization. Simulation studies were conducted to generate stochastic demand, and analyze how 

the optimized inventory model compares to the current model.  Our research shows that lateral 

transshipment reduces 10% to 25% of total inventory cost while maintaining a superior inventory 

position compared to the current inventory model under varying demand.  
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1. Introduction 

 

1.1 Company Background 

 

 Boston Scientific (BSC) is a leader in the global medical device industry. BSC operates 

in over 120 countries, generating $10B in revenue annually and serving over 35,000 hospitals 

worldwide with over 30M patients treated each year.  

 The sponsor company is an industry leader in minimally invasive devices for diagnosing 

and treating gastrointestinal, pulmonary, heart, vascular, neurological, urological, 

urogynecological, and gynecological conditions. BSC also helps transform lives with minimally 

invasive therapies for arterial disease, venous disease, and cancer. BSC develops techniques that 

treat irregular heart rhythms, and heart failure and help protect against sudden cardiac arrest. As 

quality control is of utmost importance, BSC has strong manufacturing capabilities and is 

vertically integrated. 

To support its global operation, the company orchestrates a global supply chain 

consisting of 11 global manufacturing sites, seven sterilization facilities, and a worldwide 

distribution network composed of seven Tier 1 distribution centers (DC) and 22 Tier 2 DCs (see 

Figure 1). All manufacturing plants and Tier 1 and Tier 2 DCs are owned and staffed by BSC, 

and the sterilization sites are owned and contract sites. These nodes are interconnected through 

140 air, road, ocean, and rail transportation lanes. BSC's supply chain is capable of shipping over 

33 million units a year globally. The company works with global third-party logistics (3PL) 

companies for its distribution requirements. 
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Figure 1 

Boston Scientific Supply Chain Network 

 

 

1.2 Problem Statement and Research Objective 

 

BSC has $728M of finished goods inventory within its global distribution network. BSC 

faces the challenge with the excess and deficit of inventory levels globally in distribution centers, 

leading to additional scrap and backorder processing costs. 

This project aims to provide a potential cost saving solution through inventory 

rebalancing. In this study, inventory rebalancing is defined as adjusting the inventory level 

through transshipment from one DC to another DC within the same tier. By investigating the 

inventory and service level along with demand patterns of each DC within the distribution 

network, we examine opportunities for inventory relocation, and thus, potential solutions for 

inventory balancing within the distribution network. An understanding of the costs associated 
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with the transshipment of products across the distribution network and the costs for backorders, 

scrap and expedited orders is required for deriving the solution. 

Data for this project is acquired mainly from BSC’s Enterprise Resource Planning (ERP) 

system. BSC implements SAP for business execution and adopted Rapid Response for planning. 

A unique characteristic of the system is that it implements a Control Tower module where 

metrics data across all functions is centrally collected, which is efficient for gathering KPI data 

across the enterprise for this project. Most of the data required for this project, such as inventory 

level, forecasts, safety stock, lead time, shipping schedule and performance data is collected 

through the ERP system. Other data, such as transshipment costs for routes that currently do not 

exist, were acquired separately through web-based UPS CTC (Calculate Time and Cost) tool. 

This project investigates the optimal inventory levels through Mixed Integer Linear 

Optimization (MILP) optimization by evaluating the current inventory levels, forecasts, safety 

stock, backorders, lead time, and transshipment costs as inputs. Constraints will be modeled to 

factor in cost, lead time, business processes, and movement limitations. Based on the model, the 

project will propose optimal inventory balance across the global distribution network including 

its' impact on cost savings and inventory position. A Monte-Carlo simulation study is performed 

to measure the performance of the rebalanced inventory model under stochastic demand. The 

project also aims to provide guidelines for implementing a periodic review policy to assess 

inventory discrepancies and arrange transshipment to balance inventory within the network. 

1.3 Current Practice and Motivation 

 
BSC uses a “Healthy stock model” to determine whether an inventory for an SKU is 

within an acceptable range or is either in excess or deficit (see Figure 2). The healthy stock zone 
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is defined as safety stock (SS) +30%+ Lot size for an upper limit and SS-30% for  a lower limit. 

The demand/supply variability along with service level is incorporated into the network safety 

stock calculation. The upper and lower limits of the healthy stock zone account for demand 

variability for new products, and emerging markets.  The thresholds can be adjusted based on 

the strategic decisions of supply chain leaders at BSC. Any product with an inventory level above 

this threshold is considered to be in excess, and below this level is considered to be in deficit. 

Figure 2 

Boston Scientific Healthy Stock Model 

 

A deeper investigation into the increased backorders and scrap cost reveals that this 

inventory discrepancy profile varies by individual nodes; within the network 36% of overall 

inventory is in excess, while 9% is in deficit. There is potential for addressing this imbalance 

internally by relocation of stocks. However, currently there is no process that allows for 

transshipment of this inventory back and forth between the distribution tiers. The flow of 

products is currently unidirectional, flowing from the manufacturing plant to Tier 1 DC to Tier 

2 DC. There is no reverse flow from Tier 2 to Tier 1 nor flow among DCs within Tier 2. This is 
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mainly because of the low volume and frequency of shipping demand for these routes when the 

network was designed. Therefore, excess inventory is held until shelf-life expiration, resulting 

in scrapping, and deficit inventory results in backorders and lost sales.  

Furthermore, the impact of the Covid-19 pandemic throughout recent years required BSC 

to ramp down its production of inventory and adhere to various demand profile scenarios. When 

government regulations eased up BSC had to quickly ramp up production. This also resulted in 

inventory imbalance at various nodes, especially the Tier 1 DCs. 

1.4 Relevance 

 

Many companies are facing stock imbalances within their supply chain distribution 

network as markets face higher uncertainty, demand volatility becomes higher, and product life 

cycle become shorter. From the supply side, lengthening supply chains are increasing the 

difficulty of matching supply and demand to coordinate optimal inventory levels at the local 

level. This is especially true for the healthcare industry, as it is going through vast transformation 

pivoting towards personalized healthcare. Demand variability as well as supply chain complexity 

is expected to intensify as a result. This study on balancing of inventory within the supply chain 

distribution network provides insight for supply chains facing similar problems, not limited to 

medical devices or healthcare industry. Demand changes geographically and with time. By being 

able to rebalance inventory companies can be proactive against global and regional volatility. 

This will support overall product availability and inventory costs improvement.  
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2. Literature Review 

 

This capstone project is intended to further explore the inventory optimization policies 

applied by Medical devices companies, specifically Boston Scientific (BSC). Even with the most 

robust inventory optimization policies, intangible factors that cause high supply/demand 

variability leads to an excess/deficit of inventory in local nodes. As quoted by George E.P. Box, 

“All models are wrong, some models are useful”,  an understanding of the inventory optimization 

policy currently used by the company is required. Therefore, we present a review of multi-echelon 

inventory optimization (MEIO) policies to provide a better understanding of the general context, 

followed by a discussion on MEIO policies adopted by BSC. Next, we review previous studies on 

the topic of lateral transshipment for inventory balancing to obtain how inventory movement 

within the same echelon is approached and modeled in academia. This chapter will be concluded 

with a summary of key insights and their relevance to our research.  

2.1 Multi Echelon Inventory Optimization policies 

 

Multi-Echelon Inventory Optimization (MEIO) is an approach to determining optimal 

inventory levels across an end-to-end supply chain network in order to maximize the service level 

and minimize inventory costs (Grob, 2019; Vandeput, 2020). MEIO has been widely studied using 

mathematical approximations. A supply chain network with multiple tiers, viz. Suppliers, 

Manufacturing plants, Central DCs, Local DCs and Customer warehouses (consignment 

inventory), can be characterized as an example of a multi-echelon network. An example of such a 

supply chain network is depicted in Figure 3. In this network, raw materials suppliers source to 

internal manufacturing plants that produce subcomponents. These subcomponents, along with 

externally sourced subcomponents, are transferred into production lines that build finished 
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products/goods. These finished goods, along with externally sourced finished products, are then 

stored in multiple tiers of distribution centers before finally reaching customers globally. MEIO 

intends to reduce the bullwhip effect by pooling demand and lead time. Demand pooling supports 

smoothing demand variability as we move upstream, and demand gets more stable as we move up 

from the lowest tier to the manufacturing plant. Conversely, lead time pooling smoothens the 

supply variability downstream, and lead times increase as we move down from the manufacturing 

plant to the lowest tier (Vandeput, 2020). 

In a global supply chain, MEIO intends to optimize inventory at each distribution 

holistically. This is essentially called network pooling (in other words, demand and lead time 

pooling), where service levels and supply/demand variability are analyzed to determine correct 

inventory levels at each DC. The goal of MEIO is to continually monitor, evaluate and update 

forecasts and safety stock to provide the most optimal signal back to Manufacturing plants in terms 

of net requirement and, in turn, get an optimal inventory level policy for each DC (Grob, 2019; 

Vandeput, 2020). 

Figure 3 

Multi-echelon models in a global end-to-end supply chain 
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2.2 MEIO at Boston Scientific 

 

BSC is a vertically integrated company with a network of 20 manufacturing plants and 30 

DCs across 60+ countries and over 16,000 finished goods to support more than 35,000 hospitals. 

To support these 30 DCs, BSC has adopted an MEIO model (see Figure 4) that uses service level, 

demand/supply variability, average lead times, and average demand at each DC (Boston Scientific, 

2015). According to Figure 4, Safety Stock (SS) is a buffer against demand and supply variability. 

The inputs that go into the SS calculation are average demand, demand variability, average lead 

time, lead time variability. Other drivers for the calculation can be batch sizes and replenishment 

strategies (weekly, monthly, and quarterly). 

Figure 4 

MEIO model adopted by BSC (Boston Scientific, 2015) 

 

 
 

In the BSC’s model, demand is used as a primary input to calculate statistical safety stock. 

The historical demand captures shipments from a DC to customers across a 6-month horizon. The 

average and corresponding standard deviation are captured across the same interval. Lead times 
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are represented by transit times between DCs within the network and drive SS recommendations 

for subcomponents at manufacturing plants and finished goods at DCs to optimize safety stock 

inventory levels to buffer for potential fluctuations in future supply. These inputs generate a 

“Time-phased safety stock recommendation” across 24 months in the future, which is the final 

output of this MEIO model. 

2.3 Lateral Transshipment for Inventory Balancing 

 

The inventory system of BSC is a hierarchical structure, meaning goods flow from the 

higher echelon to lower echelon. Under this inventory system, inventory levels at distribution 

centers and warehouses are adjusted through replenishment and scrapping, with limited cases for 

returns mainly driven by quality reasons. This capstone project focuses on a more flexible method 

that could be implemented along with the BSC’s MEIO policy, specifically lateral transshipment. 

 “Lateral transshipment is defined as the redistribution of stock from retailers with stock 

on hand to retailers that cannot meet customer demands or to retailers that expect significant losses 

due to high risk (Y. H. Lee et al., 2007, p. 1).” Lateral transshipment and inventory balancing is 

an area of the growing interest of study in the literature (Figure 5). Academic literature publications 

the topics on lateral transshipment as well as inventory balancing have quadrupled over the past 

two decades.  
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Figure 5 

Academic Literature Keyword Search Results 

 

Keyword: Lateral Transshipment 

 

Keyword: Inventory Balancing 

 

 In a comprehensive literature review on this subject matter, Paterson et al. (2011) 

categorize lateral transshipment into two main types, viz. proactive transshipment and reactive 

transshipment and provide a framework of classification of lateral transshipment models based on 

their key characteristics (Figure 6). Focusing on this, the cases where transshipments take place 

prior to demand realization are referred to as proactive transshipment, whereas transshipments 

executed to respond to stockout are defined as reactive transshipment. Proactive and reactive 

models are also commonly referred to as preventive transshipment and emergency transshipment 

in the literature, respectively. Literature review on these topics will be provided in the following 

two subsections, followed by the conclusion of the literature review.  
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Figure 6 

 
Lateral Transshipment Model Classification (adopted from Paterson et al. (2011)) 

 

 

2.4 Reactive Lateral Transshipment 

 

For reactive lateral transshipment, the decision on transshipment quantity is proceeded 

after demand realization. Therefore, reactive transshipment can be practiced under both periodic 

review and continuous review policy environment.  

The earliest study on the reactive model under periodic review was carried out by Krishnan 

and Rao (1965) and was further developed by Robinson (1990) and Nonås and Jörnsten (2007).  

Robinson (1990) developed an optimization solution for multiple identical nodes or two non-

identical nodes under a single echelon model. Nonås and Jörnsten (2007) derived an alternate 

greedy transshipment policy to optimize under single echelon with three nodes. Tagaras (1989) 

and Hu et al. (2005) expanded to incorporate multiple locations under zero replenishment lead 
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time and transshipment lead time assumptions. All the above-mentioned studies are carried out 

under the assumption of centralized systems, where transshipment decision is made centrally to 

optimize network-wide cost.  

Decentralized systems, on the other hand, consist of another strand of research and have 

been studied through the game theory approach (Anupindi et al. (2001); Rudi et al. (2001); Slikker 

et al. (2005); Liao et al. (2020)). In the decentralized systems, each node makes decisions on 

inventory level to optimize its’ objective function independent from the supply chain wide 

optimization. Studies of lateral transshipment with 2 or more different entities within same echelon, 

such as different distribution companies or competing retailers sourcing from the same supplier fit 

in this category. This capstone focuses on BSC’s Tier 1 and Tier 2 DCs, which are owned and 

managed by BSC; therefore, it can be considered as a centralized system.  

Reactive transshipment under continuous review refers to systems where a stockout event 

triggers the transshipment procedure. A key feature in the transshipment model can be identified 

as the concept of complete pooling and partial pooling. Complete pooling allows for sharing of all 

on-hand inventory for transshipment to other nodes while partial pooling holds back certain portion 

of the stock to cover future demand (Patriarca et al., 2016). 

Complete pooling is widely used in spare parts supply chains due to high stock out and 

holding cost along with high requirements for service and parts availability for customer’s business 

continuity. Sherbrooke (1968) developed a spare parts framework model METRIC, where items 

are repaired at the central facility and replenished to individual locations. Lee  (1987) and Axsäter 

(1990) studied models under stochastic demand modeling and order decision heuristics to 

minimize cost under service level constraints. Further research has been done with alternations in 

assumptions, echelon structures and application of different heuristics by Kukreja et al. (2001) and 
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Wong et al. (2005). Partial pooling studies are more complex due to the additional decision of how 

much inventory to keep for future demand. (Axsäter, 2003) proposed a system state-based 

approach to decide on the quantity to transship and retain. Our study could be considered partial 

pooling since the outbound transshipment stock will be constrained by safety stock rules enforced 

on the node.   

2.5 Proactive Lateral Transshipment 
 

Most studies of proactive lateral transshipment are under periodic review policy (Paterson 

et al., 2011). Under the periodic replenishment system, the inventory assessment schedule is 

embedded in the corporate calendar. Conducting additional analysis for lateral redistribution 

within this pre-existing schedule instead of setting up new process and schedule is efficient and 

natural for businesses. Proactive transshipment can be divided into two types based on their 

relationship with the replenishment cycle: standalone and coordinated.  

Standalone redistribution ignores the replenishment ordering process and considers 

decision-making on proactive transshipment as an independent problem. Depending on the timing 

of transshipment, it could either be a static point of time such as the beginning of the ordering 

cycle (Allen, 1958, 1962), mid-ordering cycle, or dynamic transshipment based on demand and 

inventory level (Agrawal et al., 2004). According to Agrawal et al., (2004), dynamic decision-

making divides the order period into N-sub periods to determine time optimal sub period to execute 

the transshipment transaction. Their results demonstrated its’ superior performance to other 

policies with static ordering rules. However, implementing such a process in practice would be 

challenging due to its complexity and additional effort required for operating such sub-period 
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calculation and varying time order process. In the study, the authors presented a greedy heuristic 

and showed that the model performs close to optimal.  

Banerjee et al. (2003) introduced transshipment inventory equalization (TIE) heuristics 

which redistributes inventory levels so that all second echelon nodes have the same inventory 

levels in terms of days of supply. The study showed that TIE performs better than reactive 

transshipment in terms of cost (Burton & Banerjee, 2005). Lee et al. (2007) proposes a new lateral 

transshipment policy called service level adjustment (SLA). This heuristic uses estimated 

probability of stockout during the order cycle by stock points and sets upper, lower and target to 

decide on lateral transshipment decision so that nodes with highest surplus transship to nodes with 

highest deficit. The authors showed that SLA outperforms other pre-mentioned heuristics. 

Coordinated redistribution considers lateral transshipment decision in alignment with  

order replenishment system, and therefore increases the complexity of the lateral transshipment 

problem. Gross (1963) introduces a heuristic that minimizes average shortage, inventory, and 

transportation cost. Further studies have been conducted by expanding the problem with multiple 

nodes and introducing lead time (Diks and de Kok 1996). This capstone project considers BSC’s 

the existing ordering policy as a constant and therefore has characteristics of a standalone problem.  

2.6 Literature Review Conclusion 

 

By reviewing methodologies of the current inventory management system at BSC and the 

literature on inventory balancing through lateral transshipment, we have discovered key insights 

that could transition over to the capstone study. First, the added option of lateral transshipment to 

the hierarchical inventory model improves cost and service level by providing additional 

opportunities to match demand and balance between order replenishment cycles. Second, the 

transshipment policy is effective in cases where lateral transportation cost is low in comparison to 
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holding cost and shortage costs. Third, lateral transshipment performs when order replenishment 

lead time, or distance from echelon 1 node to echelon 2 nodes, is significantly higher than lead 

time through redistribution among echelon 2 nodes. Forth, the benefits of transshipment increase 

with the number of nodes within the same echelon due to the inventory pooling effect. Finally, 

ease of implementation must be considered in the practical environment. No matter how optimal 

an algorithm may be, it should rely on easy and straightforward steps that blend well with pre-

existing business processes in order for it to work effectively in a professional environment.  

Although there are concepts and thought processes that this project could benchmark from 

previous studies, directly applicable models or methodology is limited due to the characteristics of 

this project. Our project differs in terms of network size and the number of SKUs involved. 

Previous studies have modeled lateral transshipment problem as a mathematical model with a 

small size network consisting of one or two echelon, with one one distribution center and two 

retailers, with single commodity, identical demand profile among nodes and neglectable 

transshipment cost and lead time. The distribution network this project considers is comprised of 

two to three echelons with over 50 nodes, 16,000 SKUs, varying demand profiles among 

geographically dispersed nodes with a realistic transportation cost and lead time.  

Our study contributes to the field of inventory balancing studies by providing application-

oriented study in a larger network size, considerations for multiple products, and incorporation of 

realistic assumptions particularly regarding transshipment cost and lead time. Our approach would 

be a mixture of proactive and reactive transshipment, where we will use SS and healthy stock 

model to determine excess and deficit and use optimization and heuristics to find optimal or near-

optimal efficient solutions. The detailed methodology will be covered in the following chapter.   
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3. Methodology 

The main objective of this capstone project is to seek for potential cost and service 

improvements through rebalancing stock among multiple-tier distribution center nodes. Tier 1 – 

Tier 2 balancing is not in the scope of this project as it is a replenishment strategy. In this section, 

the methodology is covered in detail so that the same process and results could be reproduced 

by the sponsoring company with future datasets. First, we discuss the data sourcing and selection 

process, and explain the basic IT system of the company. Next, we prepare the dataset through 

feature engineering, data cleansing, and random sampling methods. Once the dataset is prepared, 

the optimization model and preliminary findings is presented in detail, covering key components 

such as input data, assumptions, objective functions, and constraints. Post-hoc analysis using 

different scenarios to examine how the model performs under different circumstances and 

stochasticity is addressed, followed by the evaluation of the model in terms of cost and service 

performance metrics. The topic and order of this chapter are summarized in Figure 7.  

Figure 7 

An overview of the Methodology Chapter 
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3.1 Data Sourcing  

 

 As briefly covered in Section 1.2, BSC currently implements two ERP systems: SAP/R3 

for management and execution and Rapid Response for planning and analysis. The datasets used 

for this project were extracted from the Rapid Response system. Table 1 displays the five 

anonymized datasets that have been provided to the project team by the company. For the 

remainder of this paper, the abbreviations of each dataset’s name listed in Table 1 is used to 

reference the datasets. For instance, the ‘Periodic ending inventory details’ file is referred to as 

‘PEI’. All datasets were provided as the default export format, which is xlsx type. 

Table 1 

Company-provided raw data dictionary 

Abbreviation Dataset Description 

TPS Time Phased Safety 

Stock 

Safety stock for each product-dc time phased over the next 12 

months 

SRC Sourcing General Source for each product-dc, manufacturing/purchasing costs, lead 

times for each node 

INV Sept 2021 Inventory Inventory status for each product-dc 

PEI Period ending 

inventory details 

Healthy stock model 

GIV GSC Inventory Visual 

Variability 

Safety stock, supply/demand variability, future/historical demand, 

service level, LT, and Std Dev LT as of Oct 2021  

 

The key data required for this capstone include the following attributes: product, 

distribution node, current inventory level, and the three target inventory level thresholds set by 

(Chapter 1.3) BSC’s healthy stock model (Safety Stock, Minimum Stock, Maximum Stock). 

Based on exploratory data analysis, the PEI dataset included most of these attributes and 

therefore was selected as the main dataset for the project. GIV and INV were used to supplement 

the PEI dataset.   
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 Critical information that was not included in the company-provided datasets are the 

distance matrix and transportation cost since there were no established routes between multiple 

tier-nodes. Our project requires distance information and transportation cost for approximately 

1,600 transportation lanes. The distance information was acquired using a two-step approach. 

First, we acquired address and geocode information using Google maps and then fed the location 

data into Llamasoft’s Supply Chain Guru X to calculate the distance matrix, which considers the 

circuity factor. For the transportation cost, external data will be sourced. We considered options 

such as i) acquiring aggregate level transportation cost modeling data from research papers, ii) 

getting input from BSC’s transportation team, or iii) using cost estimation tools provided by 

major parcel delivery service companies such as UPS. We opted for acquiring the transportation 

cost from UPS CTC (Calculate Time and Cost) tool, mainly due to accessibility.  

3.2 Data Preparation 

 

The data acquired and selected from Section 3.1 needs to be cleaned and converted so 

that it is an appropriate format to feed into the optimization model. The data preparation has been 

conducted in three steps: feature engineering, data cleaning and formatting, and dataset 

compiling. 

3.2.1 Feature Engineering 

 

 Among the 46 columns within the PEI dataset, 18 key columns were selected (Table 3). 

In the PEI dataset, each row consists of a unique product (encoded as ‘Part’ in the PEI table) – 

distribution node (encoded as ‘Site’ in PEI table) pairing; therefore, the ‘Part’- ‘Site’ combo 

serves as a composite key for the dataset. The current inventory level is the starting point of this 

project and therefore included in the key columns. The inventory target levels generated by 
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BSC’s MEIO and Healthy stock model are critical data since they determine whether the current 

inventory level on hand is within the healthy zone (0.7*SS < IP < 1.3*SS + Lot Size) or in excess 

or deficit. Columns that are used in the calculation of the healthy stock zone such as safety stock 

level, lot size, and stock limit min/max are all considered key columns. For all the inventory data 

columns both the quantity and value columns are included in the key columns to analyze both in 

unit terms and in USD Cost/Value terms in modeling and analysis. We will refer to the PEI 

dataset with only the key columns as PEI_kc to distinguish it from the original PEI dataset. Key 

columns for the ‘distribution nodes’ dataset and the ‘routes’ dataset have been selected and 

filtered out in a similar fashion based on the importance (see Table 2).  

Table 2 
 

Dataset Key Columns 

 

PEI table Key Columns 

 

 Nodes table Key Columns 

 

 Distance table Key Columns 
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3.2.2 Data cleaning 

 

 The columns of PEI_kc require data cleaning and datatype adjustment.  All rows of the 

key column’s raw data have been confirmed to be null-value free. However, some columns like 

Part were categorized as float values which were converted to object datatype. By utilizing 

simple Python functions for data cleaning, we have enforced datatype integrity of the columns. 

Table 3 displays the post-processed columns with the formatted datatype.  

Table 3 
 
Datatype Summary 

 

PEI Dataset 

 

Nodes Dataset 
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Distance Dataset 

 

 

3.2.3 Dataset Compilation 

 

 As a final step of data preparation, the pre-refined datasets were restructured into sub-

datasets for easier indexing and model loading. Python lists for distribution nodes (ERP ‘Plant’ 

code) and products (ERP ‘Parts’ code) were created for enumeration and looping. Python 

dictionaries for the current, pre-rebalanced, and inventory were created using distribution node 

– product tuple as key and the inventory quantity as value. The transportation routes dictionary 

was generated with sending node – receiving node as key and the distance as value. The final 

dataset prepared for loading to the optimization model is depicted in Figure 8. 
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Figure 8 
  

Dataset Preparation for Optimization Model 

 

 

3.2.3 Exploratory Data Analysis 

 

 Based on the cleaned data, exploratory data analysis was conducted to understand the 

current inventory status of BSC at a high level prior to optimization modeling. The PEI dataset 

includes inventory information for each end-product SKUs stored in every manufacturing and 

distribution facility. The dataset includes approximately 24,000 unique end-product SKUs and 

38 Distribution nodes. Based on these two dimensions, the PEI dataset has approximately 87,000 

unique ‘Product’ – ‘Node’ pairs, which are represented as rows. Among these pairs, 39% are 

currently in excess, or beyond the maximum stocking level defined by the healthy stock model 

and 13% percent of pairs are in deficit. As seen in Figure 9, seven DCs contribute to 91% of the 

total deficit inventory whereas ten DCs contribute to 91% of the total excess inventory.  
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Figure 9 
  

Excess and Deficit DC summary 

 

 

 

3.3 Model Building and Solving 

 

 This project primarily implements Mixed Integer-Linear Programming (MILP) network 

optimization model. To reduce trial-and-error and accelerate the analysis process, we have 

started with a small problem size, and scaled it to a larger size (see Figure 10). Initial models 

have smaller selection of SKUs and a simpler objective function (Model 1 to 3), whereas the 

final model (Model 4) incorporates larger selection of SKUs with complex objective functions. 

A single product minimum transportation cost model is first introduced, followed by a 10-SKU 

multi-product expanded version of the model. Next, a fifty-SKU multi-product model with 

transportation, excess, and deficit costs included in the objective function is covered.  
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Figure 10 
 

Model Scaling Approach 

 

 

The optimization models are formulated and then solved using both Python with 

PuLP/Gurobi optimizer and Llamasoft’s Supply Chain Guru X to leverage the strength of both 

tools, and for applicability for either tool when implemented by BSC. The mathematical 

notations used in this chapter are summarized below.  

Sets 

N: set of DC nodes, 𝑁 = {i = 1,  .., n} 

S: set of shipping nodes, S = {s = 1,  .., n} 

R: set of receiving nodes, R = {r = 1,  .., n} 

𝑃: set of Products, 𝑃 = {p = 1,  .., p} 

 

Variables 

𝑥𝑖𝑟 : aggregated quantity of product at node i 

𝑥𝑠𝑟 : aggregated quantity of product from node s to node r 

𝑥𝑠𝑟𝑝: quantity of product p to transship from node s to node r 

𝑦𝑠𝑟: binary variable for whether transshipment occurs from node s to node r 

𝐼𝐸𝑖𝑝: inventory level after transshipment execution for product p at node i 
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Parameters 
 

𝐼𝑆𝑖  : starting aggregated inventory level at node i 

𝐼𝑆𝑖𝑝: starting inventory level of product p at node i 

𝑉𝐶𝑠𝑟: variable transportation cost/unit from node s to node r 

𝐹𝐶𝑠𝑟: per shipment fixed tsp cost/unit from node s to node r 

𝑆𝐶𝑝: shortage cost for product p - remanufacturing cost in the current model 

𝐸𝐶𝑝: excess cost for product p - scrap cost in the current model 

𝑆𝑆𝑖𝑝: MEIO Safety Stock Threshold of product p at node i 

𝐸𝑆𝑖𝑝: MEIO Excess Stock Threshold of product p at node i 

𝐷𝑆𝑖𝑝: MEIO Deficit Stock Threshold of product p at node i 
𝐷𝑅𝐶𝑖𝑝: Demand over replenishment and delivery lead time for SKU p at DC i 
𝐷𝐿𝑇𝑖𝑝: Delivery lead time for SKU p at DC i 

𝑅𝐶𝑇𝑖𝑝: Replenishment cycle time for SKU p at DC i 

µ𝑖𝑝
 : Daily mean demand for SKU p at DC i  𝐶𝑉: Coefficient of variation for daily demand 

(moderate: 0.66, high: 1.3)  
 

3.3.1 Model 1 

 

3.3.1.1 Overview 

 

 The first model is the transportation cost minimization model. In this model, we use a 

single-product approach where the aggregate inventory across all SKUs is considered as the 

single product. A two-dimensional decision variable 𝑥𝑠𝑟 is used with indices set for shipping 

nodes and receiving nodes. The objective function is the minimum total transportation cost, and 

it is bound by the constraint to fulfill demand, which is set as the deficit quantity of each node 

(see Equation (1)). 𝑆𝑠 is the maximum capacity at each node which is equivalent to the excess 

quantity for each node, meaning, all excess quantities can be shipped to other nodes for 

rebalancing. Since the products in this model are at the aggregate level, a constraint to prohibit 

transshipment to itself was applied (see Equation (2)).   
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Objective Function 
 

𝑀𝑖𝑛 ∑𝑠∈𝑁∑𝑟∈𝑁𝑉𝐶𝑠𝑟𝑥𝑠𝑟                                                                                                                     (1) 

 

Constraints 

∑ 𝑟∈𝑁𝑥𝑖𝑟 ≤ 𝐼𝑆𝑖                                                             ∀𝑖,𝑟∈𝑁                                                                                 (2) 

𝑥𝑠𝑟   ≥ 0 & integer                                  ∀𝑠, 𝑟∈𝑁                                                                            (3) 
 

 

 

3.3.2 Model 2 

 

 The second model is an expansion of the first model to incorporate multi-products. 

Among the total products, 10 SKUs which the team was aware of regarding the imbalance among 

distribution network were handpicked. A 3-dimensional decision variable 𝑥𝑠𝑟𝑝  is used with 

indices for shipping, receiving node, and the product SKU. The same min-transportation cost 

objective function is set to run the optimization (see equation (4)).  

Objective Function  

 

𝑀𝑖𝑛 ∑𝑠∈𝑁∑𝑟∈𝑁∑𝑝∈𝑃𝑉𝐶𝑠𝑟𝑥𝑠𝑟𝑝                                                                                                  (4) 

 
Constraints 

∑ 𝑟∈𝑁𝑥 𝑖𝑟𝑝≤ 𝐼𝑆𝑖𝑝                                              ∀𝑖,𝑟∈𝑁                                                                                      (5) 

𝑥𝑠𝑟𝑝 ≥ 0 & 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                             ∀𝑠,𝑟∈𝑁                                                                               (6) 
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3.3.3 Model 3 

 

3.3.3. Overview 

 

 To test with the same conditions of the full-scale problem in a relatively smaller problem, 

we have built a MILP model with 50 randomly sampled SKUs and their relevant distribution 

nodes.  

Objective Function 
 

Min ∑𝑠∈𝑁∑𝑟∈𝑁∑𝑝∈𝑃𝑉𝐶𝑠𝑟𝑥𝑠𝑟𝑝 + ∑𝑖∈𝑁∑𝑝∈𝑃MAX(𝐼𝐸𝑖𝑝 − 𝐸𝑆𝑖𝑝, 0)𝐸𝐶𝑝 +

∑𝑝∈𝑃MAX (𝐷𝑆𝑖𝑝 𝐼𝐸𝑖𝑝, 0)𝑆𝐶𝑝                                                                                                                             (7)  

 

Constraints 
 

∑ 𝑟∈𝑁𝑥 𝑖𝑟𝑝≤ 𝐼𝑆𝑖𝑝                                                                               ∀𝑖,𝑟 ∈𝑁,𝑝∈𝑃                                                                       (8) 

𝐼𝐸𝑖𝑝 = 𝐼𝑆𝑖𝑝 +∑ 𝑠∈𝑁𝑥 𝑠𝑖𝑝− ∑ 𝑟∈𝑁𝑥 𝑖𝑟𝑝                              ∀𝑖,𝑠,𝑟 ∈𝑁,𝑝∈𝑃                                                                  (9) 

𝑥𝑠𝑟𝑝 ≥ 0 & 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                                        ∀𝑠,𝑟 ∈𝑁,𝑝∈𝑃                                                                   (10) 

 
 

 

A key distinction of this model besides the size is the objective function and the 

constraints (see equation (7)).  The previous models covered in 3.3.1 and 3.3.2 consider the 

deficit quantity of inventory as the demand, and therefore introduce demand fulfillment 

requirement constraints so that all deficit quantities across all distribution nodes are met. The 

objective function therefore only considers the transportation cost. However, the model in this 

chapter considers inventory levels that are outside of the ‘healthy stock zone’ as cost factors. 

Quantities below of the lower threshold assume shortage (deficit) cost, while quantities above 

the upper threshold assume excess (scrapping) cost and are modeled in the objective function. 

There are no ‘need to meet’ hard-wired demand requirements in this model. In the previous 

models (Model 1 and 2), the deficit quantities were forced to be fulfilled through supply-demand 
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constraint. However, in this model, transshipment decision is determined intrinsically by the 

objective function based on the cost profile, or the tradeoff relationship of the transportation cost 

and the excess and deficit cost. One issue that occurred during implementing the MILP model 

was that the ‘max’ function within the objective function was nonlinear. Auxiliary variables and 

constraints were introduced to set-up the maxima logic suitable for the MILP model.  

3.3.4 Model 4 

 

 As the final optimization model, 1,000 SKUs from the dataset have been loaded to the 

model to be solved. The objective function and constraints are equal to that of model 3.3.3 (see 

equation (7)), but the number of decision variables and constraints are much larger. MILP is NP-

Hard; therefore, the increase of decision variables and constraints will cause the complexity and 

solution time to increase exponentially. Since not all SKUs are selected for this phase of the 

analysis, two methods for selecting impactful SKUs were implemented.  

3.3.4.1 Model 4a 

 

 The first SKU selection method is based on BSC’s pre-existing inventory classification. 

BSC categorizes all SKUs according to a ABC/FMR classification scheme. ABC refers to the 

SKU’s priority in terms of revenue size (A-Highest revenue, B-Medium revenue, C-Lowest 

revenue). FMR considers the velocity of the SKU (F-Fast moving, M- Medium moving, R- Slow 

moving). This classification is based on SKU at each node level, meaning the same SKUs can 

have different classification depending on the node they are in. Only the ABC classification was 

considered in the analysis, and to reduce the dimensionality, the highest ABC ranking across all 

nodes was selected to represent the SKUs’ priority.  The top 1,000 SKUs for the optimization 

model were selected to be loaded into the optimization model. 
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3.3.4.2 Model 4b 

 

 To increase the potential savings through lateral transshipment, Potential Balance 

Opportunity (PBO) heuristic was developed.  PBO calculates minimum value between the total 

excess and total deficit for a SKU across all nodes (see equation (11)). The metric shows the 

level of inventory imbalance in monetary value, which is the maximum potential saving that can 

be achieved through inventory rebalancing. The top 1,000 SKUs based on the PBO ranking have 

been selected as the sample for the optimization. 

 

𝑃𝐵𝑂𝑝 = min (∑ 𝑖∈𝑁 𝑚𝑎𝑥(𝐼𝑆𝑖 − 𝐸𝑆𝑖, 0),∑𝑖∈𝑁max (𝐷𝑆𝑖 − 𝐼𝑆𝑖, 0))                                   (11) 

 

3.4. Scenario analysis & simulation 

 

After modeling and solving the optimization, a scenario-based sensitivity analysis has 

been conducted. To compare the performance of the original and rebalanced inventory model, 

stochastic demand was generated using Monte-Carlo simulation. Demand over replenishment 

cycle time and delivery lead time was generated to isolate the impact of inventory replenishment 

and solely assess the performance of the rebalancing. Additional data required for the simulation 

were the daily demand data, delivery lead time data, and the replenishment cycle time data.  

Daily demand and coefficient of variance (CV) data were collected from the ERP system and 

used as input for demand generation. Based on historical order data, BSC has an average CV 

value of 0.66, and this figure was used as the ‘moderate’ demand scenario. A higher CV value 

of 1.3 was used for the ‘high’ demand scenario. Delivery lead time data was pulled from the 

ERP system as well. The demand was assumed to follow Gaussian distribution with a lower 
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bound of 0, so that all negative demand values were capped at 0 (see equation (12)). The 

simulation was 1,000 iterations for each SKU-node level, and the results were aggregated as the 

mean value. The results of the simulation will be discussed in detail in Chapter 4 – Results & 

Analysis. 

𝐷𝑅𝐶𝑖𝑝 =  ∑ 𝑚𝑎𝑥(

𝑅𝐶𝑇𝑖𝑝+𝐷𝐿𝑇𝑖𝑝

𝑑=1

𝑁(𝜇𝑖𝑝, 𝐶𝑉 × 𝜇𝑖𝑝), 0)                                                                      (12) 

 

 

3.5 Evaluation 

 

 Based on the optimization and simulation results, the performance of pre/post-balancing 

has been analyzed in both cost and strategic metrics. Detailed costs analysis has been conducted 

to understand how each system performs in terms of transportation cost, and excess and deficit 

inventory cost. Service and operation metrics such as inventory level within healthy stock zone, 

risk of stockout and scrapping have been reviewed and KPIs for the inventory model, such as 

stock-out events, units short, monetary values short, excess inventory, and deficit inventory were 

calculated to analyze the models’ performance under stochastic demand. 
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4. Results & Analysis 

 

 The results for the Pilot-scale (Model 1,2 and 3) and full-scale (Model 4a and 4b) 

optimization models will be discussed in this chapter. Monte Carlo simulation studies for Model 

4a and 4b have been conducted for sensitivity analysis.  

4.1 Model 1 Optimization Results 

 

Model 3.3.1 considers excess (1.10m) and deficit (380k) quantities at 32 nodes as a 

sample dataset. A base MILP function as stated in equation (1) was solved using the Python 

optimizer PuLP (python linear programming modeler). The initial model uses 0.03 USD per unit 

per km as a variable cost (𝑉𝑠𝑟) for transshipment between nodes. Thus, the optimizer minimizes 

the transportation costs based on the shortest path possible between the nodes. After satisfying 

the deficit, the model is still left with ~700k units in excess which is a potential scrap of ~$19M. 

The optimal transportation cost is ~$17M. These initial costs are just for reference to assess the 

base model behavior. Real costs have been compared with future models as they are refined.  

4.2 Model 2 Optimization Results 

 

This model was initiated and solved in Llamasoft’s supply chain guru software. The 

variable cost (𝑉𝑠𝑟) is set at 0.03 USD per unit per km, the same value applied for model 3.3.1. 

Figure 11 shows the flows between 26 nodes that have excess capacity, and 15 nodes that have 

a deficit. Some sites with excess capacity are never activated, as the model considers the closest 

node first to minimize transportation costs. The biggest receiving node is in the Netherlands 

which receives products from many sites worldwide. Otherwise, all the other transshipments are 

very region-specific which is expected due to the shortest path optimization. 
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Figure 11 

Inventory Flow for Optimization  

 

 

 

 

 

 

4.3 Model 3 Optimization Results 

 

 In the current problem setting with 50 SKUs and 29 DCs, the business-as-usual case 

where no rebalancing occurs results in a $646K total cost with $424K of excess cost and $222K 

of deficit cost. The optimal solution through rebalancing improved the total cost by 8.4%, 

resulting in a total cost of $582K. This saving is achieved by executing 65 transshipments which 

can be easily found by examining the number of non-zero 𝑥𝑠𝑟𝑝 values in the optimal solution set. 

The excess and deficit level improves after the rebalancing as well. Prior to balancing there is a 

total of 9,582 units of stock are in deficit and 5,367 units in excess across the 29 DCs. This figure 

 - Shipping nodes 

  - Receiving nodes 

                        - Product flow 
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is improved to 9,157 of deficit and 4,982 of deficit, respectively, balancing the overall inventory 

level to conform to BSC’s healthy stock zone.  

4.4 Model 4a Results 

 

4.4.1 Optimization Results 

 

 The top 1,000 SKUs were selected using the ABC classification resulting in a total of 

9,566 SKU-node combinations (rows). Among these SKU-node pairs, 37.4% of them were in 

inventory excess position, while 14.6% were in inventory deficit position. In the base case, where 

the inventory is managed as-is, the total cost is $34.6M with cost distributed equally among 

excess and deficit cost. Running the optimization model resulted in 1,666 lateral transshipments 

incurring $2.6M of shipping cost. The total cost was reduced by 10.2% to $31.1M, with $3.3M 

reduction in excess cost and $2.8M savings in deficit cost (see Figure 12).  

Figure 12 
 

Base case vs. rebalanced (ABC) cost comparison 

 

  

 The executed transshipments are visualized in Figure 13. As expected, the 

concentration of transshipments is between Europe and Asia (48% of total volume) and between 
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North America and Latin America (20% of total volume). The third-largest transshipment occurs 

between Europe to North America (7% of total volume). There is no transshipment from Asia to 

North America; this is primarily due to transportation costs and to Europe being closer to North 

America to fulfill its demand 

 

Figure 13 
 

Transshipment flow (ABC) 

 

 

 

4.4.2 Simulation Results 

 

Stochastic demand was generated using moderate and high CV scenarios to see how the 

inventory model performs under variability. Figure 14 shows the results after the demand was 

generated. In the moderate CV case, the rebalanced state has 43.2% of the SKU-DC pairs in the 

healthy stock zone, while the base case state has 37.1%. The number of excess SKU-DC pairs is 
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improved from 31.5% in base case to 25.2% in the rebalances state. The deficit SKU-DC pairs 

slightly deteriorate from 31.4% to 31.6%.  

Figure 14 
 

Simulation results (ABC) 

 

Moderate CV 

 

High CV 

 

For the high CV case the improvements are more significant. The rebalanced state has 

44.9% of the SKU-DC pair in the healthy stock zone, higher than the base case which has 37.2%. 

The number of deficit and excess SKU-DC pairs increased significantly as well. Key inventory 

and cost KPI are displayed in Figure 15. Rebalancing has the highest impact is in reducing the 

impact of excess inventory.  

Figure 15 
 

Simulation results details 
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4.4 Model 4b Results 

 

4.4.1 Optimization Results 

 

 The 1,000 SKUs selected based on PBO heuristics yielded 11,674 SKU-node pair 

combinations (rows). Among these pairs, 39.6% were in inventory excess position, while 19.4% 

of them were in inventory deficit position. A total of 3,681 lateral transshipments were executed 

through the optimization model incurring $7.3M in transportation cost. The model reduced the 

total cost by 25% from $87M to $65M (see Figure 16). 

Figure 16 
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Base case vs rebalanced (PBO) cost comparison 

 

 

The executed transshipments are visualized in Figure 17. The transshipment flow for 

PBO is very similar to ABC. Europe – Asia and North America – Latin America represent 36% 

and 32% of total transshipment volume respectively. Europe – North America represent 11% of 

the total transshipment volume. 

Figure 17 
 

Transshipment flow (PBO) 
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4.4.2 Simulation results 

 

 After applying the stochastically generated demand to each inventory model, the SKU-

DC pairs within the healthy zone were 44.8% for the moderate CV and 47.7% for the high CV 

scenario rebalanced case. These figures were higher than those of the baseline case, which were 

34.7% and 34.8%, respectively. Excess inventory SKU-DC pairs were improved as well, with 

10%p lower share. The deficit SKU-DC pair slightly increased (0.5%) for the rebalanced case 

in the moderate CV scenario but decreased (1.3%) in the high CV scenario. Key inventory and 

cost KPIs are displayed in Figure 19 and depict that the highest impact is in reducing the excess 

inventory.   

Figure 18 
 

Simulation results (PBO) 

 

 

Moderate CV 

 

High CV 

 

 



 

46 

 

Figure 19 

Simulation results details 
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5. Discussion  

 

 The capstone results show that lateral transshipment has the potential of saving 10% to 

25% of total inventory costs. The study covers the full process of optimizing inventory level 

through lateral transshipment, from data sourcing, selecting the high impact SKUs, to calculating 

the optimal transshipment volume across the distribution network. At its core, the model 

balances the cost of holding excess inventory and the cost of being in deficit, while considering 

the transportation cost to execute direct shipment between same tier DCs.   

There are several managerial insights we would like to address. First, when applying 

inventory rebalancing in practice, a stepwise approach is recommended. Starting with a pilot 

project by selecting SKUs based on pre-existing classification method and gradually scaling the 

size and incorporating sophisticated SKU selection methods will allow for easier adoption. BSC 

can start a pilot project using the ABC/FMR classification to select potential SKUs for the 

optimization model as discussed in section 3.3.4.1. If the pilot results are promising, the company 

can expand to the PBO heuristics introduced in Section 3.3.4.2.  The PBO heuristic require 

additional steps and data processing to select SKUs but has higher potential for cost savings. 

Second, integrating inventory rebalancing into BSC’s periodic inventory review process is 

suggested. The selection of SKU and calculation of optimal transshipment requires company-

wide resource allocation, and therefore difficult to implement on a continuous basis. Since 

inventory levels are assessed during the periodic inventory review, it is an opportune time to 

review and execute stock repositioning initiatives, with minimal additional planning and 

resource input. Third, the integration of the lateral transshipment models with existing supply 

chain ERP systems is required for a streamlined adoption by users. Practitioners operate on a 

daily basis interacting with the ERP system to operate and manage supply chain activities. 
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Establishing a custom view to monitor the imbalance level and being able to execute 

transshipment within the system is advised. Finally, it is recommended to get accurate 

information on optimized transportation costs from logistics partners. The model for this project 

used direct parcel shipment from DC to DC. The cost can be improved by volume consolidation 

and optimal routing by collaborating BSC’s logistics service providers.  

 There are limitations to this study due to data accessibility and assumptions for 

optimization. First, handling cost within the distribution center was not accounted for in the 

optimization model. The objective function includes only the transportation cost, excess cost, 

and deficit cost. In practice, transshipment requires additional handling activities within the 

warehouse, such as pick/pack/shipping activities in sending nodes and receive/sort/put-away 

activities in receiving nodes. Second, the transportation costs are modeled as variable costs in 

this study. In reality, there would be associated fixed costs for new shipping lane set up activities, 

such as vendor selection, training, account management, etc., which should be considered in the 

cost function. Finally, global regulations on medical devices may restrict transshipments on 

certain lanes. Different countries have different regulatory agencies regarding healthcare 

products that enforce prior approval or authorization procedures. The study on global regulations 

in medical devices was beyond the scope of this research, and therefore was not included as 

constraints in this study. It is advised that these limitations must be considered and accounted 

for when implementing inventory rebalancing in practice.   
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6. Conclusion 

 

The objective of this study was to provide cost saving solutions through inventory 

rebalancing. To do so, the project team has collected and prepared the data, developed heuristics 

for SKU selection, built and ran a MILP optimization model with varying scale of model size in 

terms of number of DCs and SKUs included as decision variables. The optimized inventory 

model’s performance was tested upon stochastic demand using Monte-Carlo simulation.  

 Based on the MILP optimization results, inventory rebalancing can reduce the total cost 

up to 25%. Lateral transshipments enable significant savings in excess cost and shortage cost by 

redistributing inventory to the right location. The rebalanced inventory model demonstrated 

superior performance under stochastic demand as well. Simulation results show that more SKUs 

were within the Healthy Stock zone for the rebalanced model (47.7%) compared to the base case 

(34.8%) post-demand generation in high variability scenario. 

This capstone project supports Boston Scientific with their objective of further improving 

inventory levels across the distribution network. For the field of lateral transshipment, this 

project provides a large-scale, application-oriented study which can be scaled to other industries 

where imbalances across the distribution network impact the bottom-line and service level.. 

There are two areas of further studies in the field of lateral transshipments that are 

recommended. The first is the interaction between replenishment process and lateral transshipment 

process. In a typical distribution network, the replenishment process only accounts for the 

downstream demand when calculating the optimal inventory level. When lateral transshipment 

policies are adopted company-wide, the inventory movement could result in significant volume. 

Further understanding is required to understand the dynamics between intra-company orders for 
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transshipment and inventory model for replenishment cycles. The second is application of lateral 

transshipment in fast-paced, low margin industries. The medical devices industry is characterized 

by high margins, relatively stable demand, and high importance on service levels. Studying the 

effectiveness of lateral transshipment in industries such as e-commerce or consumer packaged 

goods (CPG), with different cost structures, distribution networks, and service level requirements 

could provide different business insights.  
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