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Abstract

Within the electric distribution space maintaining a balanced inventory of spare parts forms a critical
component of resiliency and restoration in the event of an outage. We find that leveraging network
design provides an opportunity for utility companies to improve the effectiveness of the inventory they
hold, enabling better service at a lower cost. For one regional utility company in the United States, an
inventory reduction of 35% was found by adopting a hub and spoke model over a previous decentralized
model. We believe that this observation can be extended to other companies with distributed assets,

highly variable demand for inventory, long lead times, and a high cost of downtime.
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1.0 Introduction

Worldwide, $2.6 trillion dollars USD is spent on the electric utilities market annually (IEA, 2000-
2020) with some markets estimating that as much as one-third of that expenditure for residential
consumers occurs within electric distribution (Alberta Energy System Operator, 2020) (US Energy
Information Administration, 2020). While most supply chains have inventories, electricity requires
instantaneous alignment between the electricity generated and the electricity consumed, and this
delicate balance must be maintained through continuous uptime of the grid. When electrical grids fail to
supply power, this can have serious and immediate costs to consumers. During 2021’s Winter Storm Uri,
which struck the central and southern US, deaths were linked to the loss of power limiting the ability to
heat homes or to provide necessary medical care (Hauser & Sandoval, 2021). While some customer sites
carry sufficient power to safely power down their operations in the event of an outage, very few
locations carry sufficient electricity storage to operate during an outage. It is unsurprising that reliability
forms the second most common complaint among dissatisfied electric customers in the United States

behind cost (S&C, 2018).

A major challenge for power companies is to improve their ability to maintain service to their
customers while operating within their budgets. To maintain service, power companies in the US must
not only maintain generation facilities but also 5.7 million miles of transmission and distribution

infrastructure (US Energy Information Administration, 2021; Weeks, 2010).

The project sponsor, a regional power company integrated across generation, transmission, and
distribution, maintains approximately $136 million dollars of spare parts inventory of which S50 million
dollars in inventory to support its electric distribution operations. They have engaged us to identify a
simpler, more efficient, and more reliable central stores system to support their power distribution

business.



We test whether power distribution companies can improve service at a lower cost, by utilizing
a hub and spoke model over a decentralized inventory model for their power distribution inventories.
Our null hypothesis is that a hub and spoke model offers no improvement to cost or service over a

decentralized model.

1.1 Sponsor Background:

The sponsor currently manages electric distribution in three! states. To support their service
area, they currently operate a decentralized network of 24 major storerooms and a total network of 72
storerooms. These storerooms are supported by a central purchasing team who source the parts each

storeroom requires, either externally or through lateral shipments between storerooms.

The sponsor has identified limitations in this approach and in response this capstone seeks to
determine whether a hub and spoke model, where a central warehouse orders, receives, batches, and
distributes materials to the storerooms, may drive lower costs, simplify execution, as well as improve

service for the crews tasked with repairing and constructing its distribution infrastructure.

We will conduct a detailed examination of the impacts of a hub and spoke model, including
severe weather events, which are viewed to be the “true test of any solution” (Logistics & Support,
2021)% Our research will supply the sponsoring entity with a specific answer to their business context,
but also supply a broader understanding for other companies who observe similarities within their own

organization.

Many companies have looked to ensure that their operations are reliable and enduring. Often

these initiatives fall into projects to ensure that their Maintenance Repair and Operations (MRO)

! Number anonymized
2 These are the anonymized titles of the interviewees. Names are redacted to protect confidentiality of the
sponsor. Throughout this paper details which might be used to identify the sponsor have been anonymized
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inventory is effectively planned and utilized. Our literature review reveals that despite extensive writing
on this topic there is minimal writing on this area within the electric utilities space and none examining a
hub and spoke model. By creating a model of this network, we will fill a gap in the current literature and
create a framework that could be of direct use to a market which represents approximately 0.6 percent

of the US’s GDP3, or approximately three times the size of Amazon.

2.0 Literature Review

Many organizations segment their purchasing strategies between their direct materials, the
items that they consume in the performance of their function, and their Maintenance, Repair, and
Operations (MRO) items. The MRO category often consists of a much larger collection of less frequently
used items that are not consumed in the primary function but are necessary to the ongoing functioning
of the organization. In electric distribution the materials for repair and the expansion of the network are
the same materials. In this context the literature on MRO materials provides an insight to how other
companies and industries have solved the problem of setting inventory levels for areas with a large

number of parts, where downtime is a primary concern.

This chapter reviews the literature on MRO inventories. First, we will examine the context of
MRO inventories within companies and why this has formed a separate section of supply chain
literature. Second, we will review the most common strategies that companies have taken to improve

the performance of their MRO supply chains. Third, we will engage in a specific examination of the

3 US retail expenditures on electricity in 2019 were $399 billion dollars (US Energy Information Administration,
2019) distribution represents 31% of the average costs of electricity (US Energy Information Administration, 2020)
equating to $124 billion. US GDP in Q4 2019 was $21,694 billion (U.S. Bureau of Economic Analysis). Note this does
not include indirect impacts, only direct expenditures.



literature within the context of the power industry broadly. Finally, we will summarize the key lessons as

they apply to this study drawing from both the power industry and the broader literature.

2.1 Impact of MRO Inventories on Companies

Many organizations carry millions to billions of dollars in spare parts (Basten & van Houtum,
2014). Long term trends in industry, particularly the inclusion of just in time strategies for direct
materials have amplified the importance of these spare parts inventories (Gilbert & Finch, 1985). MRO
inventories are also growing due to the increasing technological complexity of equipment (Ghodrati &
Kumar, 2005). The trends of increased importance, increased volume, and increased cost have led many

researchers to investigate methods to improve MRO inventories.

A Google Scholar search yielded over 11,000 papers on the subject of MRO inventory. Despite
the available research, MRO inventory management continues to pose a challenge for companies.
Bechtel and Patterson (1997) state: “Despite the increased attention procurement managers are giving

MRO purchasing, success in managing MRO items has been limited.”

An extreme example of the challenges Gilbert and Finch (1985) identified with just in time
inventories increasing the importance of MRO, is the sphere of electric distribution. With electricity,
storage is limited, and alighment between generation and distribution must be near instantaneous. Any
downtime, therefore, causes an immediate loss of revenue for the utility and immediate consequences

for their customers.

2.2 Strategies for Managing MRO Inventories

In both the literature and the policies of the sponsor, we see attempts to improve inventory
management by implementing approaches based on standard supply chain strategies. We have
identified three common approaches for handling the MRO inventory challenge. As a common first

tactic, companies engage in classifying and segregating inventory to create rules and focus management
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attention. The second common approach is to improve the forecasting of demand. A third method is to
examine ways of pooling demand, by looking at the MRO supply chain as a network. This network can be
within a firm or between firms. In the context of electric distribution, we are focusing on internal

network design.

Creating a segregation and categorization of inventory is important as a first approach for
companies, because it identifies critical items that require management attention. Bechtel & Patterson
(1997) do this by recommending the formation of commodity groups that can lead to strategic
partnerships and improve the overall performance of the MRO inventory, whereas Schroder (2004)
breaks these down by factors of criticality, lead time, and historical usage. We noted in our interviews
with the sponsor that they had already adopted a variety of these approaches, from commodity
groupings to conventional ABC analysis, to evaluating their system for caches of “reserved” inventory
that are held for “what-if” scenarios. Further, while the sponsor had initially seen success in reducing the
inventory levels, we noted that the identification and procurement of critical items led to the return of

previous inventory valuation levels (Logistics & Support, 2021)*,

Second, improving demand forecasting is a standard approach to handle inventory management
and MRO is no exception. Mann (1966) provided an initial summary of this strategy, proposing that
companies can provide a general estimate of a lifetime of a unit and predict its failures. This predictive
modeling limits the amount of unplanned downtime for an asset and is an ongoing area of research in
the distribution utility segment. Advancements to this model have involved the inclusion of proportional
hazards models to better estimate failures. This includes the estimation of failures at the start due to

design installation or defect, as well as failures towards the end of service life or based on operating

4 Names are redacted to maintain confidentiality of the sponsor, functional roles are referenced instead
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conditions. Advances in technology, including increased computational power, decreasing costs of
sensors, and improvements in predictive analytics, have resulted in renewed interest in predictive
maintenance, as part of the larger “Industry 4.0” trend. Chen et al. (2019) point to how these improved
analytics and sensors can improve the forecasting of demand. Forecasting provides a potential future
avenue for improvement for the sponsor, by improving datasets around asset age and asset condition to
predict failures. The ability to predict failures allows better allocation and forecasting of inventory and in

turn decreases or potentially prevents downtime while allowing inventory costs to be lowered.

The third common strategy involves examining the supply chain as a network to optimize the
flow of goods between facilities. This examination can be done either within a company as a flow of
goods between warehouses, or between companies, as they attempt to optimize logistics flows and
pool risk. The seminal examination of this problem was Sherbrooke’s (1966) METRIC model. The METRIC
model was initially an examination of US Air Force repair policies when there might be an airbase with
limited repair capabilities as well as a central depot which could also repair the aircraft. The model
attempted to minimize backorders for parts and, in turn, manage both parts and aircraft availability. This
model was significantly advanced in the following years. Muckstadt (1973) introduced the MOD-METRIC
extension in 1973 to create a systems-based view of part prioritization. Further developments to the
METRIC model, including VARI-METRIC, were shown to result in models which were highly accurate. The
accuracy of these models was within 1% of optimality while remaining computationally efficient
(Sherbrooke, 1986). These developments of the model have resulted in a mature approach that can be

leveraged in new spaces as we will do with the sponsor’s network analysis.

This final strategy of examining a network closely fits with the sponsor’s question regarding their
inventory structure. Specifically, how to organize their current warehousing strategies and whether a

hub and spoke model, similar to the initial item modeled in METRIC, would provide an improvement
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over a decentralized approach. Further, it will allow us to examine existing literature which has already

been adopted across an array of fields, to a new industry.

2.3 MRO Inventory Management in the Electric Utilities Market

Limited research is available on the supply chains of electric distribution. This stands in contrast
to the relatively extensive MRO research, and to the size of the power market. Out of the 11,000
previously stated Google Scholar articles, only four major papers were identified in this field. Each of
these has focused on three traditional methods of inventory management: segmentation, demand

forecasting, and network analysis. We will discuss each in turn as well as the areas of impact.

Bailey and Helms (2007) described an approach to reduce the MRO inventories within power
generation facilities of the Tennessee Valley Authority. While Bailey and Helm’s focused on an allied
field, they outlined the broader issues with managing spare parts in the electric generation sector.
Namely, they address the high cost of downtime dwarfing the carrying costs of inventory resulting in “a
‘just in case’ approach to stocking spare parts inventory.” This solution utilized a segmentation strategy
to select four categories of inventory and generate inventory policies. By implementing the
segmentation and review strategy, a net reduction of $47 million dollars was achieved during a period of
service expansions. While the approach differs from our own approach, it provides a clear framework of
the potential impact in terms of inventory reduction and provides avenues for additional improvements

within the sponsor’s inventory.

Schuh et al. (2015) approached the challenges of inventory management within the power
industry from the perspective of a windfarm. Schuh et al. utilized a proportional hazards model, to
examine core parts of the wind turbine and identify the risks associated with the equipment. While
power poles do not have the same inspection cycle that a multi-million-dollar wind turbine has we still

see this applied to the sponsor’s approach. With regular inspections, areas of concern can be identified.
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Once the need is recognized repairs can be planned and replacements can occur, ideally before a service
interruption. With advancements in low-cost sensors and imaging technology associated with “Industry

4.0” predictive capabilities are likely to advance.

Two papers, Yoder (2013) and Kukreja et al. (2001) explore the reduction of inventory in the
context of a network. Kukreja et al. follows Bailey and Helms as well as Schuh et al. in exploring the
electric generation market. Kukreja et al. does so through the examination of 29 connected power
generation facilities with common materials servicing multiple facilities. To support this review Kukreja
et al. examines a single tier model with lateral cross-shipments between the facilities. This specific
model provides a valuable example which matches the sponsor’s current network. The sponsor operates
in a single echelon with transshipments, making the Kukreja et al. framework the perfect model for their

current state.

Yoder (2013) looks at a multi-echelon model with transshipments in the specific context of an
electric or gas distribution network. The models Yoder examined consisted of central distribution
centers supplying a broader network. Yoder’s paper offers a basis which can be synthesized with the
broader literature around multi-echelon frameworks. In developing his model Yoder points to insights
from Mulvey et al. (1995) who proposed a robust optimization model. The proposed robust model
would utilize a range of potential scenarios and find which solution best satisfies all of them. In the
sponsor’s view “the model is only as good as the next storm”, which suggests that a robust approach
considering performance in both storms and normal conditions is a necessity (Logistics & Support,

2021).

Yoder (2013) also paves the way to consider a broader range of literature which was not
considered in depth in his review. He leveraged a model similar to that of Sherbrooke and the

corresponding METRIC model. In synthesizing these two approaches we leverage the much broader
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literature around optimizing inventory within a network, into the specific context of an MRO inventory,
with specific regard to an electric distribution network. This builds on the work by Yoder (2013) and
Kukreja et al. (2001) and constitutes a unique contribution to the existing literature on power and utility

companies.

2.4 Key Lessons

The METRIC Model, initiated by Sherbrooke (1966) has consistently improved. Garcia-Benito and
Martin-Pefia (2020) provide a summary of 36 different models around lateral shipments solutions across
six different key criteria: identifying its focus on MRO, variable costs, transport time, lateral transport

time, and model type. From this research we mapped a path for our own framework.

For consideration of demand Basten & van Houtum (2014) advise considering systems of line
replaceable units (LRUs), not just single components. In effect, it would not matter if we had 90% of the
parts to repair a downed power line, the line will stay down, and the customer will remain out of
service. In support of this approach, Basten looks to Thonemann et al. (2002) who make a note that the
systems approach, as opposed to a per part approach, provides significant benefit when costs are highly

skewed.

Infrequent, but severely impactful events lead to the Robust Model proposed by Mulvey et al.
(1995). Mulvey et al. (1995) suggests practitioners need to pay attention to periods of severe disruption
for example after a wind or ice-storm where there may be both high demand, and longer transit times.

For this we need to ensure we include both periods of regular operation and severe disruption.

For lateral shipments Kukreja et al (2001) found significant savings in enabling these shipments
and so did Sherbrooke (1992). However, despite Sherbrooke’s finding similar potential efficiencies, he
also found that the lateral time needed to be one-quarter of the time of a base repair before it became

effective. The sponsor will have to consider the increased complexity from a lateral shipment over that
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of a direct shipment and its impacts to lead time and cost. The sponsor has identified that lateral
shipments can contribute to confusion and delay, and the operational complexity is a primary

motivating factor in examining a new warehouse.

Combining the above learnings, we approach the development of first a network optimization
model, optimizing the safety stock decisions according to stock levels and determining the impacts that

network design has on final inventory parts.

3.0 Methodology

To compare a hub and spoke model and the sponsor’s current decentralized network, we built a
pair of network optimization models, handling both single echelon and multi-echelon planning,
leveraging the lessons learned from the literature. We leveraged the sponsor’s data from 2016 to 2021
to capture periods of high volatility, including severe weather events, as well as periods of normal

operation.
Our methodology is divided into five sections:

1. Data Gathering
2. Model Structure
3. Demand Analysis
4. Validity Check

5. Detailed Model Construction

Through these steps we will create models which are realistic approximations of the real-world

environment to provide an accurate assessment of their advantages and disadvantages for the sponsor.
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3.1 Data Gathering

We received data from the sponsor detailing their operations since the start of 2016 to the end
of 2021. This data included shipments between facilities, receipts, and consumption by the storerooms
for both planned and unplanned activities. The data also included average lead times for products. We
received the data regarding the breakdown of construction units (CUs), and outputs from their
computerized maintenance management system (CMMS), and high-level details of the sponsor’s

logistics costs from one of their carriers.

In conversations with the sponsor, we identified that this six-year time frame will cover both
normal operations in terms of line maintenance and expansion, as well as two major periods of
disruption. The disruptions include both one of the most severe weather events faced by the sponsor in
the past six years, and the wide-spread supply chain impacts from the COVID-19 Pandemic. In addition
to these internal-facing events, the effects of several industry-wide disruptions including wildfires,

hurricanes, and winter storms is present in the data.

We calculated descriptive data regarding the materials and inventory currently in use at the
sponsor. Overall, the sponsor spends approximately $50 million annually, with a median monthly spend
of $4.3m ranging between $2.9m and $5.1m. The sponsor completes work on approximately 1400 jobs
per month; these jobs are typically small in value (median $249) but are skewed by a handful of jobs
which are far more expensive. Showing the disparity in prices, 75% of all jobs completed cost less than

$1,329 and 5% cost more than $11,600. This distribution is represented in Figure 1.
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Figure 1: Histogram of spend by project
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Based on the insights of Basten & van Houtom (2014), we examined whether the inventory is
skewed. To do this we first consider materials on an as-used basis. The vendor has wire, for example,
which is priced on a per foot or per pound basis but is often purchased or used in thousand-unit
guantities. We leveraged the jobs to consolidate these into ‘typical usage’ quantities and found on a per
item, per use basis, the data is heavily skewed (skewness 5.8) with significant outliers (kurtosis 24393).
On this basis we know that a cluster of items will be important to understand the impact of inventory

planning on service level.

We segmented the information into key items for our model to examine an average operation
of the current network. The sponsor’s data contained approximately 8,000 unique items and

approximately 6.5 million records over the six-year period we examined.

Working with the sponsor, we refined the list to 2.5 million records relevant to electric
distribution. We attempted to focus on materials which constituted significant demand and involved

non-trivial prices. With these criteria we were able to further refine it to 1.3 million critical item records
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of demand. We then summarized this by month, this summary narrowed the list to 282k records of

usage across the 2,895 unique items.

The data contained anomalies where materials were issued in one period and returned in
another before being “reissued”. The net result of this would be a month of potentially negative
demand where the storerooms would “grow” inventory from an uncontrolled source. To handle these
anomalies, we zeroed 27k returns. This data cleansing results in the periods being treated as no

demand. This helped maintain the conservation of flow assumptions.

3.2 Inventory Optimization Model Structure

We designed an inventory optimization model from the client’s current storeroom locations.
Initially this is designed as a single echelon with transshipments. We leveraged a simplified list of 2,895
materials and aggregated these by month, the materials were selected based on their importance and
spend. These two simplifications were based on advice received from Coupa Software and reflect
limitations within the computational capacity available to us. After completing our analysis of the
demand pattern, we further limited ourselves to 1,139 Stock Keeping Units (SKUs). We removed SKUs
which had less than $5,000 total demand over the six years of data we had available. The remaining

SKUs represent 28% of the total sponsor inventory and 77% of the relevant inventory.

The product data included actual lead times for materials from suppliers. In the event that no

lead time was available for a SKU we utilized a 45 day lead time as a placeholder®.

Key material information was also absent from our data set and was not able to be reliably

generated. Product weights, stacking rules, sizes and minimum quantities were unavailable within the

5 We compare this with a simple average of 31 days and a weighted average by price and quantity of 44 days. We
chose 45 days as a simplified rounded number of the weighted average, specifically a month and a half, to
represent a round number from the perspective of the business.
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product master. We inquired with major vendors but were not able to find this information. This limited

our analysis of logistics costs.

The absence of logistics information serves as an additional area for investigation in future
research by the sponsor company. This gap also has two major impacts on the analysis. The first as
previously mentioned is the absence of transportation savings from consolidation. However, for the
creation of our model this limitation also resulted in significant simplification of the analysis. With no
size information, aggregation of shipments from the central DC to the storerooms is no longer possible
to model, as a result we aggregated shipments and demand monthly. Previously if this was done it
would overstate the number of full truckload shipments under both scenarios. Second, we aggregated
our supplier into a single point on this model. From a summary of purchase orders, the sponsor typically
deals with 13 vendors who make up 87% of their spend. These vendors receive between 0.8 and 635

orders per month as shown in Figure 2.

Figure 2: Vendor distribution
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We used this opportunity to simplify the model to a single supplier and used an approximation

of freight consolidation to better understand potential freight savings.

The next challenge was tracking the amount of demand which occurred within the lead time of
the order. Reviewing the data from the sponsor’s CMMS data we compared the date of an order’s
release to the ERP system against the log of the planning period associated with the orders. We found
that jobs fell into two categories, planned and unplanned. Unplanned jobs represented 36% of the total
demand. However, of the remaining 64%, the majority occurred within the lead time for the materials.
The unplanned jobs are shown in the dashed areas of Figure 3, with the solid area in both charts

representing material demand which could be planned for.
Figure 3 Demand by lead time

Projects by type and lead time Projects by lead time

m Planned with sufficient Lead Time

2 Planned without sufficient lead time m Sufficient lead time for required materials

# Unplanned s |nsufficient lead time for required materials

Together the unplanned and planned-within-lead-time demand represents 84% of all item
usage. This strongly supports an order to stock methodology where numerous items for both planned

and unplanned orders require an inventory. For our methodology we did not consider the 16% of
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demand which was forecasted with a sufficient lead time to be a substantial factor in safety stock

planning, as a result we treated all demand as if it were unplanned.

In addition, we created a secondary assumption. In this case the storerooms were unable to
source from the suppliers directly and instead sourced through the DC. We introduced the DC as being
capable of shipping to any of the storerooms within two days. This estimate is based on the geographic
area of the destination sites which are all approximately within three hours of a central point. This is
expanded to two days to replicate the other challenges with delivery, including planning and scheduling.

We view these to be fixed across all shipments and the primary determining factor of lead time.

3.3 Demand Analysis

To classify demand, we examined the sponsor’s historical demand data from 2016 through 2021
and leveraged Supply Chain Guru’s built-in demand analysis. This allowed for a classification of demand

as either intermittent or non-intermittent.

Non-intermittent demand is characterized by near continuous patterns of usage with a few
sparse gaps in the data. This can further be refined into two subtypes of demand: erratic and smooth.
Erratic demand is categorized by one or more periods of high variability within the review period,
whereas smooth demand is shown to have few periods of no demand within the review period.
Additionally, smooth demand seems to display characteristics of level, trend, and potentially

seasonality.

Conversely, intermittent demand often has periods of no demand for two consecutive periods
or more. Intermittent patterns are also defined by high variability and low variability. They can then be
further divided into slow and lumpy usage patterns; where slow demand is often characterized by large
gaps of usage and lumpy demand is followed by intermittent periods of high usage, then little or no

usage. This classification is summarized in Figure 4.
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Figure 4: Demand classification flow chart (Coupa, 2021)
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One transformer’s demand across 15 different sites is categorized in multiple ways depending
on the site, but when aggregated, the demand normalized into a less variable, non-intermittent, smooth

pattern shown in the five charts of Figure 5. Smooth distribution is the ideal pattern since it lends itself

to more reliable forecasting.
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Figure 5: Demand summary across categories
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3.4 Validity Check

We first completed a demand analysis of both a single DC model and the existing decentralized
model to determine if sufficient savings were feasible. We then classified the demand into buckets as

shown in Table 1 using the standard classification employed by Supply Chain Guru as described in

Figure 4. As expected, the impacts of aggregation resulted in decreased counts of distributions

across all descriptions except smooth demand:

Table 1: Demand classifications in centralized and decentralized models

Demand Current storeroom | Central DC Reduction
classification decentralized patterns
demand patterns

Erratic 693 296 57%
Extremely Slow 5841 526 91%
Extremely Variable 1936 259 87%
Lumpy 5515 926 83%
Slow 4369 565 87%
Smooth 256 263 -3%
Grand Total 18610 2835 85%

In this analysis, as would be expected if the patterns were stable between the DCs,
centralization does not simply reduce the overall number of SKU patterns. Instead, we see the smooth
distributions increase, with outsized impacts in the reductions to the Extremely Slow, Slow, and
Extremely Variable patterns. With patterns that are similar or highly dependent on each other, we
would expect a distribution like the one identified in Table 2. The expected patterns column displays our
calculation multiplying the percentage of occurrences in the decentralized model of Table 1 by the

reduced number of SKUs®.

5 We find the results under this analysis to be significant based on a Pearson Chi Square test to .05 P-Value (alpha
<0.00001)
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Table 2: Counterfactual, a simple reduction

Demand Classification | Calculated Patterns Expected Patterns

Erratic 296 106
Extremely Slow 526 890
Extremely Variable 259 295
Lumpy 926 840
Slow 565 665
Smooth 263 39
Grand Total 2835 2835

To give a comparison of the potential impact we examined the standard deviation over the lead
time for the demand analysis both for decentralized inventory as well as centralized inventory. We note

that risk pooling reduces the overall inventory by approximately 54%, as shown in Table 3.

Table 3: Demand over lead time for storerooms under decentralized and centralized inventory

Demand Decentralized Inventory | Centralized Inventory

Classification Cost 1 SD Inventory Cost 1 SD Inventory | Reduction
Erratic $828,059.73 $1,085,325.54 -31%
Extremely Slow $1,609,110.59 $139,829.44 91%
Extremely Variable $1,284,179.71 $250,628.49 80%
Lumpy $6,028,163.86 $1,570,493.79 74%
Slow $3,778,918.29 $1,141,823.69 70%
Smooth $505,630.75 $2,327,579.73 -360%
Grand Total $14,034,062.93 $6,515,680.68 54%

This distribution suggests improved performance from an inventory perspective. The central DC
benefits from this decreased variability as it decreases these difficult to plan for SKUs over the lead time
of restocking inventory. A reader might expect that in a reduction of storerooms from 72 to 1 (98.6%

reduction) that there would be a higher impact than a 54% reduction in safety stocks. However, not
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every part is present in every storeroom meaning that not all SKUs experience a full reduction through
consolidation. The impacts of this decrease in complexity extend beyond the simple reduction and in

section 4.2.2 we discuss the broader implications of the complexity reduction.

The significant difference in safety stocks between these two scenarios overstates the overall
impact. The sponsor has previously worked to improve performance through the practice of
transshipments, similar to what was discussed by Kukreja et al (2001). In this process a storeroom does
not need to rely solely on their own stocks, but the inventories of all the storerooms can collectively

serve to provide the safety stock to handle the volatility at any given one of them.

However, the sponsor reported difficulty administering transshipments. Three areas of delay
exist. These include the difficulty of organizing lateral shipments, difficulty in determining the amount of
unfulfilled demand in the facilities, and delays with sending small less than truckload (LTL) shipments.
We discussed these impacts in greater detail in section 4.2.1, however, for our purposes we estimate a
two-day lead time for a direct DC arrangement and a seven-day lead time for a lateral shipment. With
these assumptions, we compare where a site needs to only carry inventory to handle the variable
demand over a lead time of two days for the shipment from a DC or seven days from the shipment from

another site. This difference is shown below in Table 4.
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Table 4: Changes in storeroom safety stocks from faster replenishment associated with a hub replenishment

Demand Classification 1SD over 7 Days | 1SD over 2 Days | Difference
Erratic $333,031.60 $178,012.88 $155,018.72
Extremely Slow $522,269.80 $279,164.95 $243,104.85
Extremely Variable $393,014.26 $210,074.96 $182,939.30
Lumpy $2,102,874.14 $1,124,033.51 $978,840.63
Slow $1,119,774.88 $598,544.85 $521,230.03
Smooth $159,557.52 $85,287.08 $74,270.44
Grand Total $4,630,522.20 $2,475,118.23 $2,155,403.97

Using this model, we build a broad estimate of the impact that we expect in a full multi-echelon
strategy. By moving to a DC, we expect to pool the inventory across the order lead time, while reducing
the amount of inventory for sites which are not covering the order lead time. From here we compare
the likely expenditure of a new warehouse against the expected savings in terms of capital to determine
the high-level feasibility of this approach. From this initial data analysis, we conclude that consolidation

offers significant potential savings.

3.5 Detailed Model Construction

We designed two models to test our hypothesis. Effectively each storeroom should hold
inventory for the items they are likely to use to cover the expected lead time based on their total service
level. For a single storeroom the equation for optimized inventory iterated per item is shown in (1). This

results in a calculated optimal inventory for a comparison point to the hub and spoke model.

Under the hub and spoke model decision variables are introduced to determine whether the

inventory is held at the DC or in the storeroom as shown in (3). These decision variables are then subject
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to the constraint that the inventory levels for each product and location must both be equal to or higher

than the variability of demand for the lead time relative to the cycle service level as shown in (4) and (5).

Safety stock formulation decentralized model

SS$ total
SSij

Zy
E(Ly)
Opy;
5Si;

D

§Sij = Za E(L)l O-l%ij (1)

SSstotal = jej iel SSijPi (2)

Total Safety Stock in dollars

Safety stock target inventory level for material i in storeroom j
the inverse of normal cumulative distribution of service time
the expected lead time by item

the standard deviation of demand by item by storeroom

the safety stock per item per storeroom

the price per unit

Objective variables for hub and spoke model

min(Y;e; p;(Xiq + Xjej Xij)) (3)

Service level constraint for a single DC
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Storeroom service level constraint
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Zy the inverse of normal cumulative distribution of service time

E(Liy) the expected lead time by item for the DC

E(Lij) the expected lead time by item for the storeroom

agiq the standard deviation of demand by item for the DC

agij the standard deviation of the demand by item for the storeroom
Di the price per unit

D;; the standard deviation of demand by item for the storeroom

Diq the standard deviation of demand by item for the DC

Xiq the decision variable for stock held in the DC

Xij the decision variable for stock held in the storeroom

In the single echelon design, shown in Figure 6, each location calculates its inventory to cover
demand over lead time. Transshipments are allowed, but not planned for. This construction replicates
the current practice using transshipments to spread out economic order quantities, but each storeroom

plans its safety stock independently (Logistics & Support, 2021).

Figure 6: Decentralized Supply Construction

Supplier

N =N

By contrast, in the hub and spoke model the system calculates an expectation of stocking out

either over the lead time between the storeroom and DC, or between the DC and the Supplier,
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reflecting the full coverage period for the network as shown in Figure 7. Beyond the difference of the

insertion of the DC into the center of the chain and the requirement that the storerooms source direct

from the DC instead of direct from the supplier, the models are otherwise the same.

Supplier

Figure 7 Hub and spoke framework

We then iterated across different cycle service levels using 90%, 95% and 99%. The details of the

model inputs are discussed in section 3.5.1

3.5.1 Model Inputs

3.5.1.1 Storerooms

We modelled each storeroom as a unique location with unlimited capacity for parts sourced
directly from either the supplier in the decentralized model, or from the DC in the hub and spoke model.
In the analysis, we identified that some of the storerooms listed within the data were not primarily
serving the electrical grid and were involved in pulling smaller amounts of common materials between
the sponsor’s business units. Under the assumption that the sponsor would likely not source these
storerooms under a separate policy these were left in. This design would reflect the idea that for a
category of items sourcing would transition for all sites. For the sponsor, there exists an opportunity to
improve the computational efficiency of the model by removing these storerooms in future iterations.
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3.5.1.2 Customers

We fed demand into the storerooms from the customers with a one-to-one relationship
between storerooms and customers. We viewed the customers demand to be satisfied when the
storeroom kitted the product for the workers. We provided no lead time between the customer and the
storeroom. Customers in this sense reflected both explicit work orders from a customer, and the

general maintenance requirement for the area of the grid being serviced by a particular storeroom.

3.5.1.3 Suppliers

As discussed in section 3.2, the absence of logistics information allowed us to model suppliers as
a single source. We set up the supplier as having unlimited capacity and instantaneous production
times. Instead, sourcing lead times were supplied within the transportation segment to ensure that the
model would hold inventory in the DC or storeroom but not at the supplier. This choice is an
approximation from the perspective of the sponsor, due the terms of their long-term contracts. It was a
common perspective, including in METRIC models, such as the formulation by Sherbrooke (1966). The
supply chain disruptions from the COVID-19 pandemic have identified limitations with this

approximation and offers an opportunity for further development in future research by the sponsor.

3.5.1.4 Holding Cost

The sponsor identifies a range of costs similar to a holding cost on a per storeroom basis for
their internal metrics and regulated return functions. For our modelling, we utilized a 25% holding cost
across all storerooms. The constant holding cost does not impact the optimization model. The internal
allocations are also primarily fixed costs, when combined with the fact the sponsor was not looking at
closing or opening storerooms, this aligns with the sponsor’s intent (Logistics & Support, 2021). Should
the sponsor choose to examine the number of storerooms the specific details of warehouse costs should

be more fully modelled in that future research.
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3.5.1.5 Transportation Lanes
Transportation lanes were modelled from the supplier to the DC as zero days, compressing the
lead time into a single lead time which was part of the sourcing lead time. This assumption makes no

distinction between the portion of the lead time spent on the truck, versus the lead time being sourced.

3.5.1.6 Materials & Lead Times

As discussed in section 3.2, we focused on a limited number of 1,139 SKUs. The product data
from the sponsor included actual lead times for materials recently purchased from suppliers. For items if
no recent lead time was available, we utilized a 45-day lead time based on the weighted average lead
time. Under the decentralized model, these lead times were experienced directly by the storerooms.
Under the hub and spoke model, the DC experienced the lead times from the supplier, and the

storerooms experienced an additional a 2-day lead time from the DC as shown in Figure 8

Figure 8 Lead Time implementation in hub and spoke and decentralized models
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3.5.1.7 Demand patterns

We used the historical material consumption from each storeroom as a proxy of demand. This
method has the advantage that it creates a clear indication of when demand occurred and how much
was used. This method also has the disadvantage that it does not show unfulfilled demand. This model

can be improved with future measures of unfulfilled demand as they become available.

3.5.2 Cycle Service Level vs Item Fill Rate

For this paper, we primarily focused on cycle service level. We believe that missing one part of a
job means that the job cannot proceed. The total sum of parts is required for the job to be completed in
full. This design is distinct from the Item Fill Rate, which may be more appropriate in a consumer goods
segment where each unit might be separable for the quantity demanded. We believe that cycle service
level is the appropriate criteria for the sponsor’s case because a requirement for electrical wire would
likely require the entire span and being able to partially fulfill the span would be insufficient. A further
improvement to this model would be to consider Line Replaceable Units (LRUs), as discussed in section

4.2.3.

With these inputs cleaned and set, we built our optimization model and completed six
optimizations forming the basis of our analysis.
4.0 Results and Analysis

We found that under a high service level condition, a hub and spoke model will likely lower

overall inventory levels while improving service levels.

A single dataset was used, consisting of the full period of demand from 2016-2021 and for both
network designs. The first model consisted of a single echelon planning for the storerooms on their own,

with the ability to resupply from each other, but without planning on that basis. The second model
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allowed for a multi-echelon strategy where inventory could be consolidated at a central DC. Results

from both models are shown in Figure 9.

Figure 9: Impact of network design on required safety stock
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Under a low service condition (target service level 90%) the addition of the DC sees nearly
equivalent inventory levels. The benefits from a centralized warehouse would be unlikely to pay for the
cost of the warehouse. However, as the target service level increases a decentralized model more
rapidly increases its safety stocks. This result matches intuition. At a lower level of inventory, the
additional inventory from establishing in a central DC would counterbalance the savings. However,
because the central DC is exposed to less volatility, increased service targets can be achieved with lower
inventory levels. Notably, with a multi-echelon model a 99% service level can be achieved with slightly

less inventory than a single echelon model is able to deliver at a 95% service level.

With a 98% cycle service level, the decentralized model requires a safety stock of approximately
$31.4 million dollars. Combined with the sponsor’s average cycle stock of $5.5 million dollars, the total

inventory compares closely with the $38.6 million dollars observed for 2020 year-end for inventory for
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the relevant stocks. This suggests that over the long term an individual item cycle service level of

between 98% and 99% can be obtained with inventory at current levels.

4.1 Baseline Comparison

To determine validity, we will examine the service level and the baseline inventory policies of

the sponsor against the model’s calculated inventory stocks.

A traditional approach to determining inventory levels relies on the analysis of service levels and
determining the likelihood of a stock out. To determine the extent to which the model reflects the
sponsor’s experiences it is important to understand the current service levels experienced by the
sponsor. A review of their data suggests that the reliability of the grid is exceptional, with a reported
grid uptime of 99.9%. During a severe weather event they were also able to restore 95% of their
customers within six days. However, a review of the planned projects suggests that only 75% of the jobs

are completed within 30 days of their target date.

The reason for the discrepancy in the observed metrics speaks to the complexity of fulfilling
demand. A 98% item service level would not result in 98% service level for the individual construction
units (CU). A CU contains between 1 and 47 materials with an average of 5. Across all CUs we would
expect a 98% service level at a material level to result in a 92% service level at the CU level. Projects and
repair jobs are themselves often aggregations of multiple CUs, resulting in increased complexity and
required parts, with a corresponding decrease in service level. Service level targets are discussed in

greater detail in section 4.2.3.

We observe that the minimum and maximum stocks add up to $14 and $20 million dollars
respectively, while actual inventory adds up to $38.5 million dollars. Calculating the cycle stock we
would expect an average of $5-56 million dollars of inventory based on the average ordering patterns of

the various sites. This represents a large discrepancy between the targeted and actual inventory levels.
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Without a clear understanding of the current service level experienced and the extent to which
inventory drives the result, it is impossible to determine the extent to which inventory is being buffered
above the set inventory levels by better-than-expected forecasting, unofficially elevated safety stock
levels, or simply inefficiency in executing to a safety stock from demand that evaporated or product
obsolescence. Further, we know that an optimized model will always portray a lower inventory and

higher service level than actuals as it is functionally very difficult to maintain optimality.

For our analysis we are interested in the impacts that a central warehouse might have,
regardless of the specific method inventory policies set within the facility. In this light, the service level
currently achieved by the sponsor is less interesting than what the target service level should be. To
answer this question, we consider the impacts of independent cycle service levels across multiple items,

which are required for the same order as shown in

Figure 10.
Figure 10 Mathematical relationship between cycle service level and full order rate assuming independent items

Full order fulfillment rate vs item cycle service level by number
of unigue parts

100%
90%
80%
70%
60%

50%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of parts required

95.0% Target Cycle Service Leve| = ==« 97 5% Target Cycle Service Level

Likelihood of all parts being available

== = 99.0% Target Cycle Service Level 99.9% Target Cycle Service Level

38



With this viewpoint we see that a high item cycle service level is required to maintain even a
75% cycle service level for a job with 10 distinct parts’. On this basis we recommend that an appropriate
target inventory on an average basis would be above 95%. This threshold is of particular interest to us
because this is the region shown in Figure 9 where a hub and spoke model begins to save sufficient
money over that of a decentralized model. Based on the current inventory and the implied service level

that we recommend targeting a 99% cycle service level.

We believe that our models provide a reasonable approximation of the potential savings. The
specific amount of savings to be provided versus the expected service level should also be considered in

terms of the non-modelled aspects discussed in section 4.2.

4.2 Impacts not modeled

There are several impacts that are known but were not captured in the data we examined and
therefore were not modeled and measured; however, these factors represent potential savings to the
sponsor. The benefits from volume discounts through order aggregation, reduced shipping costs
because of full truckload consolidation on both inbound and outbound loads, reduced process
complexity on ordering, receiving, and return processes, as well as increased cash discounts are all

realizable. We have summarized the major impacts that were not modelled in Table 5.

7 There are two major types of demand, planned work and unplanned work. Aggregating the data by day and
storekeeper we identified that for unplanned demand a median of 10 unique part numbers were pulled each day
with an average of 13.
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Table 5: Summary of impacts not modelled

Impacts not modelled and impact on benefits of a hub and spoke model

Improves benefits Decreases benefits
Order consolidation lowering freight costs Including forecasted demand
Lower cost of ordering Faster transshipments

Decreased process complexity

Simplified reverse logistics

Volume Discounts

4.2.1 Full Truckload considerations & Costs of Ordering

As mentioned in section 3, we were unable to develop sufficient data to model the impact of a
central warehouse on freight costs. Any impact would be beneficial and not substantially change the end
conclusion. However, it is important to consider the impacts of the freight costs. Reviewing the initial
data set between 2021-01-01 and 2021-09-30 it was identified that there were 22,660 unique purchase
orders placed across the network, in addition to these orders direct from vendors there were 785
unique transshipments executed over the same period, amounting to a total volume of replenishments

of 23,445 restock orders, either from other warehouses or from vendors.

If we assume that each of the 72 storerooms receive shipments every weekday and utilize the
unigue week/vendor combinations to assume that DC replenishment occurs at most weekly, this works
out to an estimated 21,800 shipments. This is less than the number of shipments currently being
created, and we would expect a higher service level. If we use the unique number of creation dates per
storeroom as an estimate, we find that 7,086 orders would be necessary in this period. This represents a
reduction in complexity for the sponsor of roughly 70%. This complexity reduction is a cost from

reducing management time spent on processing, planning, and executing these orders. Assuming 15
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minutes per order and a burdened labor rate of $25/hour equates to $102,000. However, we do not
believe it would be beneficial to achieve these cost savings from headcount reduction. Instead, we
recommend the sponsor look at how these workers could support other initiatives within the
organization. Based on our observations there are significant opportunities that workers could address,
ranging from improving the quality and extent of the data available within the sponsor’s ERP system, to
initiatives to improve forecasting and customer outreach which has been identified by the sponsor as an
ongoing challenge. These savings are unique in that they help serve to decrease the inefficiency costs
within the network. Some common areas of investment include better determining the unfulfilled
demand rates for materials, and the specific causes of delay within projects for future improvements.
These presented challenges for this project as identified in section 4.1, but they also pose challenges for
future process improvements. By freeing up resources the sponsor could accelerate process

improvements within the organization.

4.2.2 Process complexity & Volume discounts

The impact to logistics and ordering costs are aspects of the complexity caused by a
decentralized system. Similar to the analysis laid out in section 4.2.1 a decentralized network results in
additional burdens on the ordering team than a hub and spoke model imposes. It is useful to consider
the opportunity cost associated with what those employees could be doing otherwise. The sponsor has
identified to areas of priority, the first is pursuing volume-based discounts and the second is accessing
payment discounts on offer from suppliers (Logistics & Support, 2022). For example, an annual category
spend of around $50 million dollars on parts with an incremental 1% discount represents a savings of

S500k. This presents the opportunity to further offset the cost of the warehouse.
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4.2.3 Line Replaceable Units vs Item Cycle Service Level

As briefly discussed in the literature review, Basten & van Houtum (2014) recommend
considering items as line replaceable units (LRU), particularly when item values are highly skewed
(Thonemann, Brown, & Hausman, 2002). Based on our data analysis, the sponsor’s item values are
highly skewed, however, as identified in section 3, we were unable to include LRUs and instead relied
upon the impacts of individual cycle service level. A per item service level will always be higher than the
ability to fill the full requirements of a maintenance order, and jobs might consist of multiple CUs each

containing multiple materials.

By way of example, consider the replacement of a single power pole in a residential
environment. We have CUs for the foundation, pole, the span of wires, and for the cross arm. This
relatively simple job encompasses multiple CUs and each CU consists of multiple parts. The high number
of distinct parts suggests that even relatively high cycle service levels can result in much lower actual
performance rates. This is partially ameliorated if an alternate material or BOM can substitute for one

which cannot be filled. For example, a stronger cross arm could substitute for a weaker one.

For the sponsor, a solution is to simply hold a higher service level across all parts until such time
as the data supports a more detailed analysis to optimize parts on an LRU basis. Our analysis supports
the sponsor targeting a cycle service level in the high 90" percentile. We would recommend targeting at

or above 99% as it is close to what is currently possible to achieve with existing inventory levels.

Assuming a 25% cost of inventory and a $1 million budget for a warehouse, the beneficial
impact of a hub and spoke model was found above a 95% service level. A 95% service level would reflect
the current min-max order levels that the sponsor has, and a 98-99% service level would reflect the
current inventory that the sponsor has of the target materials. We conclude that, despite the limitations

of the analysis, a hub and spoke model would pay for itself. We also recommend, because of the
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impacts of cycle service level on LRUs, that the sponsor substitute a high cycle service level as their

target inventory metric. Process improvements can provide better optimization, as covered in the

literature review, advantages can be had by ensuring that the most expensive items in an LRU are

carefully managed, while maintaining very high service levels for more affordable parts. The primary

barrier to completing such an analysis is the time required to identify and document the primary LRUs as

well as substitutions which can be made. In this regard implementing a hub and spoke model will

provide initial savings and provide the time savings necessary to allow the investigation of how best to

document LRU which would allow a better optimization of inventory in line with the literature review.

5.0 Discussion

From the results and limitations laid out in section 4, we identify multiple potential areas of

savings from a hub and spoke model, assuming a 99% service level we expect savings according to Table

6. We would not expect that all identified savings would be realized in the first year. However, we

believe that even with conservative estimates for both warehouse cost and initial savings that the

warehouse would provide benefits which would exceed its costs in the first year.

Table 6: Expected Savings at 99% cycle service level

Category Approximate Savings
Holding Cost of Inventory Reduction @ 25% $5,700,000

Reduced Ordering Costs $100,000

Bulk Discounts $500,000

Logistics Costs

Out of Scope

Total Potential Savings Estimated

$6,300,000
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We identify two alternate ways that the sponsor could achieve the reductions identified in this
analysis. The comparative difficulties and costs associated will inform the best approach. The factors are
demand volatility and lateral shipment time. A hub and spoke model addresses both issues but is not

the only method to do so.

Demand volatility can be addressed through improved forecasting, both involving estimations of
likely causes of failure and explicit service constraints. Decreased volatility would drive lower safety
stocks. Just as the sponsor could decrease their volatility by pooling, it could decrease the volatility
through better forecasting. The challenge here is determining the amount of forecasting that the
sponsor could realistically achieve. Natural disasters can be predicted insofar as they can be realized to
be a risk, but it is difficult to forecast them to a time and date several months out. More regular
maintenance can be predicted, particularly with improved sensors and observation, but not all parts

which fail will fail because of predictable wear and tear.

Lateral shipment can also be improved between sites and the sponsor could look to closely
manage replenishment between sites as an alternative strategy. This would mirror the approach utilized
by Kukreja (2001). We recommend against this approach. We expect that as the already discovered by
the sponsor, administering lateral shipments is significantly more complicated and this burden would
slow other improvements that the sponsor is seeking to implement (Logistics & Support, 2021). Further,
as found by Sherbrooke (1992) this is primarily useful when the lateral shipment would be significantly
faster than a resupply from a hub. Based on the sponsor’s geography we do not expect a delivery from
one warehouse to another to be one quarter of the time once administrative and scheduling delays are

taken into account.
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5.1 Implementation Strategy

Next, we map the recommendations for implementation of the insights garnered from the
research results and discussion outlined above. The roadmap encompasses the costs, structure, risks,
and opportunities. However, it is not our intent to enumerate every potential risk and benefit to the

sponsor, but rather highlight the most immediate and likely.

There are several factors beyond the cost of the facility to consider when implementing a hub
and spoke model. Change management will be crucial for the sponsor’s successful implementation and
costs, such as labor to staff the warehouse, equipment and infrastructure to operate, the inventory
itself, and the logistics cost of the new plan will need to be considered. Labor agreements are already in
place, so any changes would be subject to the provisions of the agreement and the deciding factors
would be limited to staffing levels required to attain the desired service levels. Likewise, long-term
contracts already exist for equipment and facilities infrastructure for the storage needs of the new

facility. These could be leveraged to ensure the costs of the proposed central model remain sustainable.

The first risk to the successful implementation is the overall lack of a structured framework
surrounding and supporting the ability of the sponsor to accurately measure and report the desired level
of metrics, such as the level of unfulfilled demand, the construction unit service level, and logistics
efficiency. The absence of these metrics makes justifying the hub and spoke model substantially more

difficult. Establishing this structure should be a top priority before further steps are taken.

An additional risk will be getting and maintaining stakeholder buy-in to overcome the siloed
nature of the current operations. Without this buy-in, these silos will become caches of inventory as
operations teams hoard inventory to offset perceived disruptions from the central warehouse. There is

also the question of reverse logistics. Implementation will require careful consideration to avoid the
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previously mentioned caches. The central warehouse must accept returns and process them to prevent

inventory levels from growing needlessly at the spokes.

The opportunities are multi-dimensional and implementation dependent, with varying degrees
of benefit recouped. First, optimized inbound and outbound material flows provide a more efficient
movement of materials and goods into and throughout the network. One further benefit of these
improved flows is capturing the time savings at the spokes relating to inbound receipts and the need for
reduced lateral shipments. Further, this presents the opportunity to establish a more efficient reverse

logistics process, providing for a more expedient return of materials, resulting in more time savings.

Additionally, there are process improvement opportunities around improving the internal
inventory audit processes, the receiving and payment processes, as well as the data collection and
maintenance of materials from a systems perspective. The lack of this data on material characteristics
was a limiting factor to our analysis and we excluded logistics evaluations because the assumptions we
would have to make would be too broad and general to be relevant or applicable. However, we believe
investing in these process improvements will lead to both time and cost savings that may be in addition
to other savings proposed. Still, these values are not explicitly quantifiable at this state and the change

management will continue to be crucial before, throughout, and following the iterative implementation.

5.2 Storm Stocks

A limitation on this model is that the aggregation of demand is largely independent. One of the
areas of concern initially identified by the sponsor is that an inventory model is only as good as the next
storm (Logistics & Support, 2021). As noted in section 3.1, we included periods of significant disruption
in our dataset to ensure we capture these disruptions in the variability of demand. However, this model
might not fully reflect the dependency of demand between storerooms. An area of focus for the sponsor

is improving its storm stock inventory while simultaneously decreasing the general inventory it is
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carrying (Logistics & Support, 2022). We still recommend the hub and spoke model in this event as it
allows the sponsor to minimize inventory generally and to focus on storm stocks as a separate category.
We believe that storm stocks could be composed of a small number of items where more expensive

items might substitute for cheaper ones in order to simplify logistics during a major disruption.

6.0 Conclusion

Based on the analysis of the potential inventory reductions and the ability to improve service
level at a reduced cost we recommend that the sponsor implement a hub and spoke model to reduce
the cost of inventory. We recommend that the expected time reduction for the teams in administering
this network can be reinvested into improving the information available and continuing investigations
into the overall network design, as it is our belief that this represents only part of potential cost
reductions. In particular, we believe that implementing a hub and spoke model can both provide
immediate cost savings in this context and also provide a mechanism to free up management time to

reinvest into additional cost savings.

As a broader expansion, we would expect that the hub and spoke model be considered for any
capital-intensive business with multiple storerooms spread over a moderately sized geographic region.
We believe these findings are relevant not only to power utilities but also other utilities including water
and pipelines. We encourage any researchers or professionals examining our analysis to consider the
application of a hub and spoke model not only as a means of cost reduction, but as an enabler of future
process improvements. By improving the underlying cost structure in a simpler distribution model
organizations can both deliver immediate savings and set themselves up for future process

improvements.
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