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ABSTRACT

POROUS BOUNDARY EFFECTS IN TURBULENT SHEAR FLOW

A technique of measuring seepage velocities is developed in order
to investigate the velocity distribution in a porous boundary exposed
to a turbulent shear flow. Measurements are performed in a 1.2 in.
thick polyurethane foam lining of 12 in. inside diameter pipe using hot
wire anemometer and a helium tracer technique involving the determination
of the travel time of the peak concentration. In the shear zone,
seepage velocities are determined directly from shielded hot wire
anemometer data. In the pressure gradient flow zone, the helium
tracer technique is used to measure the seepage velocities. Results
of the velocity measurements indicate that the shear effect penetrates
a relatively small distance into the porous boundary (approximately
0.25 to 0.30 in.). Measurements of the permeability and longitudinal
dispersion coefficient are also made.

Three analytical models based upon the eddy viscosity concept are
developed in an effort to gain some insight into 'the mechanism relating
the turbulent shear flow and the porous boundary flow through the veloc-
ity distribution in the boundary. The models are extended to relate
the core and boundary flow regions and an attempt is made to predict
the friction factor for the pipe. The models provide a reasonable
agreement with the observed velocity profile but indicate a decreasing
friction factor with increasing Reynolds number whereas the observed
friction factor increases.

Development of the helium tracer technique for velocity measure-
ments requires additional information concerning the concentration
distribution of a tracer in a shear flow. Perturbation methods are
used to develop analytical solutions of the convective dispersion
equation with an instantaneous point source in a shear flow for both
constant and variable dispersion coefficients and the limitations of
the solutions are defined. The analysis indicated shear effects caused
no distortion on the longitudinal axis and the distortion due to disper-
sion was insignificant for the dimensions used in the experiments.
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I. INTRODUCTION

Flow in alluvial channels involves a complex interaction between

the turbulent fluid motion of the stream, the particulate material being

transported and possibly the flow in the porous bed. The fluid turbulence

is the main feature of the interaction and it contributes to the entrain-

ment and motion of the particles along the bed of the channel. The fldt

in the porous bed can cause uplift forces which may influence the sedi-

ment motion. Furthermore, the turbulence structure of the external flow

can be modified by the flow in the porous boundary.

There are two specific mechanisms which can be involved in the

porous boundary that are not possible with solid boundaries. A finite

slip velocity can exist at the surface of the porous boundary. Also,

it is possible to have lateral turbulent motion at the boundary which

may increase the momentum transfer between the shear flow and the bound-

ary. These mechanisms have opposite effects on the friction factor.

The slip velocity tends to decrease the friction and the increased

momentum transfer causes an increase.

Little information is available concerning these mechanisms for flow

in a porous medium exposed to a turbulent shear flow, the primary reason

being that direct measurements of velocities in a porous medium are

difficult to achieve. Instruments and techniques necessary to provide

satisfactory results have not been perfected. Without adequate measure-

ments in the porous medium, the assumptions regarding the interaction of

"ie nechanisms can be checked only through measurements of gross flow

features such as the head loss.
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In order to provide some basic information about the porous medium

flow, the present investigation is oriented towards a determination of

the velocity distribution in the porous medium. The study is concerned

primarily with the flow in a porous boundary when the boundary is exposed

to an external turbulent shear flow. Through the determination of the

xfelocity distribution it is hoped that a better understanding of the

interacting mechanisms can be achieved. The primary focus of the in-

vestigation is the development of a method of measuring seepage velocities

in the porous boundary. It was felt -that the measurements of porous

boundary effects in mobile sand beds would be extremely complicated and

that the actual effects of boundary permeability would be difficult to

isolate. Therefore, a rigid porous medium was selected for this initial

work. The problem is approached as one of fundamental fluid mechanics

and although it may have relevance to sediment transport, no further

attempt will be made to develop that aspect.

The contents of this report are outlined as follows. In Chapter 2

experimental technqiues for observing velocity distributions in the

porous boundary are described. Supplemental to the velocity measurements

are in situ determination of intrinsic permeability and longitudinal dis-

persion coefficients for the porous foam boundary.

In Chapter 3 mathematical models based on different eddy viscosity

assumptions are developed in an effort to describe the mean velocity

distribution in the porous boundary of the pipe. The predicted velocity

distributions are compared with those observed. An analysis is developed

linking the pipe core and the boundary flow fields together through
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the surface velocity and the eddy viscosity at the boundary surfaces.

The model provides a prediction of the porous pipe friction factor thus

permitting a comparison of predicted and observed friction factors.

Development of the helium tracer technique of making velocity

measurements required additional information concerning the concentra-

tion distribution of a tracer in shear flow. Therefore, a perturbation

solution for dispersion of a tracer from an instantaneous point source

in a shear flow is developed. The limitations of the solutions are

identified and application to the experiments is considered. Before

proceeding with the experimental investigation some information con-

cerning similar flow situations and investigations is presented.

An unusual problem involving porous boundary effects is the

determination of sediment deposition in gravel beds used by spawning

salmon. Einstein (1968) has investigated this problem and presented

experimental results of deposition of silt-sized particles in a gravel

bed of a recirculating laboratory flume.

Meteorologists have long been concerned with the flow patterns with-

in crop or forest canopies. These so-called canopy flows closely re-

semble the flow situation expected in the porous pipe boundary. Inoue

(1963), applying a mixing length concept developed a description of the

wind velocity profile within the canopy of exponential form. Plate

and Quraishi (1965) presented velocity distributions measured in various

field crops and in their model canopies. Takeda (1966), applied dif-

ferent eddy viscosity assumptions to find various distributions of

velocity within the canopy. The distributions take the form of power

law or exponential equations depending upon the eddy viscosity assumption
8



used. The flow in the canopy develops entirely from a shearing action of

the overlying fluid.

Generally, the flow in a porous medium is considered to be the

direct result only of a pressure gradient. The driving force in the

porous pipe boundary is expected to result from both the shear and

pressure gradient. Beavers and Joseph (1967) studied a condition

involving both a pressure gradient flow and a shear flow in a channel

with an impermeable upper wall and a permeable lower wall. The

equation for the velocity distribution within the channel was developed

for the laminar flow case using a slip velocity at the permeable wall

as a boundary condition. The velocity in the permeable block of the

lower wall was assumed to follow Darcy's law and no attempt was made to

determine a velocity distribution in the transition zone between the

core and Darcy-type flow. Their model predicted the increase in mass

flow rate in the channel reasonably well using one experimentally

determined parameter. They also found that the friction factor in the

channel decreased with increasing Reynolds number.

Eckert, et.al., (1955), Yuan and Brogen (1961) and Olsen and Eckert

(1966) have studied turbulent flows over porous boundaries with suction

or injection through the boundaries. Eckert, et.al., reported that

increasing injection through one wall of a rectangular channel caused

the average friction factor to decrease. Olsen and Eckert also observed

a decrease in the friction factor with an increased injection through

the walls of a circular porous tube. They also noted that at a Reynolds
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number of 80000 without suction or injection, the friction factor for

the porous tube was about 30% greater than what it would have been had

the tube been smooth walled. In both cases, the characteristics of only

the core flow were measured or modeled.

Munoz and Gelhar (1968) have shown that the velocity distribution

in the core of the porous pipe corresponds closely to that observed in

pipes with rough walls. In the range of Reynolds numbers which was

studied, the friction factor always increased with increasing Reynolds

number. A mathematical model for the flow in the porous medium was

developed with the motion being generated by a turbulent pressure field

at the boundary. Because of the linearization of the equations of

motion the momentum transfer term relating to the Reynolds stress vanished

everywhere in the porous medium.

It is with this meager information on porous medium boundaries ex-

posed to shear flows that the research project began. Although a

number of studies have investigated related phenomena, other than in

canopy flows, no velocity measurements have been made in a porous bound-

ary exposed to a shear flow. The development of the measurement technique

is described in the following chapter.
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II. EXPERIMENTAL EQUIPMENT, PROCEDURES AND TECHNIQUES

2.1 Experimental Objectives and Approach

The principal objectives of the experimental portion of the study

were to investigate the mechanism of shear flow in the porous boundary

of a pipe and to investigate the interaction between the core flow and

boundary flow. The shear flow mechanism is related to the velocity

distribution within the porous boundary. The interaction of the two

flow fields will be shown in Chapter 3 to be related through the

friction factor. Thus, the experimental program was directed toward

determining the depth to which the shearing effect of the core flow

penetrates the porous boundary and affects the porous boundary flow.

The penetration depth was determined by directly measuring the

seepage velocity within the porous foam boundary. Measuring the see-

page velocity directly presented a unique challenge in itself. Direct

measurements in an unconfined porous boundary with a turbulent shear

flow superposed on it have not been attempted previously. Generally,

in porous media, the seepage velocity is determined indirectly from

discharge measurements. In permeameters and under special conditions,

it has been determined by tracer techniques, i.e., releasing a tracer in

the flow and measuring the travel time of the tracer between two points

downstream.

Several methods of measuring the seepage velocity were attempted.

Measurements were performed using hot wire anemometers, later referred

to as unshieldedprobes, located in holes punched in the porous foam

boundary. Attempts were made to use pitot tubes. Then, a tracer

technique using helium was devised. The tracer technique required the

11



development of miniature hot wire anemometer probes. The probes were

protected with a shield and are referred to as the shielded probes. The

probes were used both as helium detectors and as anemometers.

The measurement of the porous foam properties were also a part of

the experimental program. The determination of in situ permeability

and the dispersion coefficients of the porous foam boundary were

necessary to support the development of the velocity measurement

technique.

2.2 General Description of Equipment

The basic air flow system used in this study has been described

by Muioz (1968). The system is shown schematically in Fig. 2-1 and

includes an inlet box, the test pipe, a blower-motor unit with a vari-

able speed drive and a damper for discharge control.

The test pipe, referred to as the porous pipe, consisted of about

40 ft of polyvinyl chloride (PVC) pipe of 12.75 in. OD with 0.406 in.

wall thickness. The PVC pipe was lined with a commercially available

polyurethane material, Scott Industrial Foam, which has a very open

skeletal structure with a porosity of 97%. A sample of the foam is

shoWn in Fig. 2-2. The foam used for the lining had a texture of 30

pores per inch and the in situ thickness was 1.20 in. The test section

was located approximately 34 ft (43 diameters) from the beginning of

the porous lining.

The instrumentation used to measure seepage velocities included

hot wire anemometers and pitot tubes. Various recorders were used to

collect the data. The descriptions, characteristics and operations of

these instruments are given in the section detailing their use.
12
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The anemometer was mounted on a United Sensor traversing unit

Model 1108-18. Positions of the probe could be established with an ac-

curacy of 0.01 in. using a vernier scale on the unit.

2.3 Hot Wire Anemometry

The method followed for determining velocities using the anemometer

is the same as that described by Mufioz (1968). The essential features

of that description are provided here for continuity of thought.

Basically, the means of determining the velocity of a fluid flowing

past a hot wire anemometer involves relating the power required to

keep the wire at a constant temperature to the heat transferred from

the wire to the fluid. The theory of operation of hot wire anemometers

is presented in books such as Hinze (1959) and in most anemometer

manufacterers' literature, such as Flow Corporation Bulletin 94B (1964).

The empirical heat transfer relationship for a wire of infinite

length is

I2R = (A + BVn) (T -T) (2-1)w a

where:

I = electric current in the wire

R = wire resistance

T = absolute wire temperature
w

V = fluid velocity normal to wire

Ta = fluid temperature

and A, B and n are constants depending upon the wire characteristics and

are usually found by calibration. The expressions given by Collis and

Williams (1959) are

15



(0.17

A = C7TK (2-2)
f T

B = D7ZKf T d (2-3)
a f

where:

K = thermal conductivity of the fluid

Vf = kinematic viscosity

Z = wire length

d = wire diameter

C and D = constants

and the subscript, f, refers to the film temperature defined as the

average temperature of the wire and fluid. Collis and Williams and Mufioz

found a value of n = 0.45 gave the best correlation between the empirical

relationship and calibration results. The value of n = 0.45 was also

used in this study.

Using air properties represented by

0.73 (2-4)
R \ R .

K T 0.85 (2-5)

KR TR

R (2-6)
PR 'T p pR

where - = dynamic viscosity

p = density
16



p = pressure

and the subscript, R, refers to any reference value, the equation for

the heat transfer relationship becomes

1 0.17
T - T T 2r

2 w ao ao 2 2
T -T ow a a

= 0 (2-7)
a 1.73

where:
Tf

r T
ao

C R Rn
D dTR 1.73

and the additional subscript, o, indicates the conditions when there is

no flow past the wire.

A computer program was written to assist in the data reduction. In

the program, Eq. (2-7) was represented in the form

F(I) - I 2
0

2

_ - F(V)
a

F(I) 2 w ao
F(I)= IT - T

w a

F (V) = (VnF(V) PV1. 73 n

Tf

1.02
T - 0.17T 2

ao
T
a

17
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The constant temperature anemometer system used in this experiment

consisted of two channels of the model 900 series anemometers manufactured

by Flow Corporation (Fig. 2-3). Mean voltages were measured with either

two DC voltmeters, Digiter model 201 or the model 900-2D DC voltmeter

which was one module of the model 900 series anemometer. RMS voltage

were measured with another module of the 900 series, the model 900-5

RMS voltmeter which is a modified version of the Hewlett-Packard model

3400A. true RMS meter. The modification extends the low frequency range

to 2 Hz and provides an averaging time of 20 sec.

Two different types of probe configurations were used in the

experiments. One configuration shown in Fig. 2-4 was a straight,

single wire probe, 1/4 in. diameter, with the last 1 1/4 in. reduced

to a diameter of 1/ 8in. A polyurethane foam cylinder was glued to

the reduced diameter portion of the probe to make the diameter 1/4

in. This was done to fill the 1/4 in. diameter hole punched out of

the test section boundary in order to accept the probe. This probe

will be referred to hereinafter as the unshielded probe.

The second probe configuration was a specially designed shielded

probe. It will be described in detail in section 2.5.

The calibration apparatus is shown in Fig. 2-5. It consists of

a bell-mouthed intake, approximately 4 ft of 2 in. ID plexiglass tubing,

nozzles, and a blower controlled with a Variac transformer. The hot wire

probes were calibrated in the core region near the bell-mouthed intake.

The velocity in the 2 in. plexiglass tubing was determined from the pre-

sure drop measured across different diameter nozzles depending upon the

18



Fig. 2-3 Hot wire anemometry system and recording instruments

Fig. 2-4 Unshielded hot wire anemometer probe
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Fig. 2-5 Calibration unit
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range of velocities required calibrated. The velocity at the nozzle

throat, V , was computed using

2g (p /p ) (Ah /12)
V w a w (2-9)n n NI 1 - (Dn/D p)4

where

g = gravitational acceleration

Pw = density of water

Pa = density of air

D = nozzle diameter
n

D = pipe diameter

Ah = differential pressure across the nozzle measured in inches

of water

C = nozzle coefficient
n

The coefficient, C n varied only slightly from nozzle to nozzle. An

average value of C = 1.01 was used for all nozzles.

A typical calibration curve for the unshielded probe is shown in

Fig. 2-6. The velocities for this calibration curve range from about

0.25 ft/sec to 12.5 ft/sec.

Velocity measurements in the porous foam were first carried out in

the calibration unit. A polyurethane foam plug (30 pores per inch) ap-

proximately 10 in. long was placed inside the plexiglass tubing. The

anemometer was inserted through a hole drilled in the wall of the

tubing and into a 1/4 in. hole punched in the foam transverse to the

flow. Velocities measured at the centerline of the tube are shown in

Fig. 2-7. For seepage velocities below about 2 ft/sec, the anemometer

21
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Fig. 2-7 Calibration of unshielded probe in a porous foam



indicated velocities within the hole approximately double the seepage

velocity. This corresponds to the relationship that is predicted from

potential flow analysis. Above 2 ft/sec, the correlation is not as good

with the deviation from a 2:1 prediction increasing with increasing

velocity.

By traversing the porous plug, considerable scatter in the velocity

distribution was found. This scatter is evident in the two velocity

profiles of Fig. 2-8. For both traverses the centerline velocity in-

dicated by the unshielded probe is about 12 ft/sec even though the two

profiles are for different seepage velocities of 5.85 ft/sec and 7.56

ft/sec.

A 1/4 in. diameter hole was punched in the polyurethane foam and

aligned with a 1/4 in. hole in the wall of the PVC pipe to accept the

hot wire probe. The probe was then traversed through the porous boundary.

The probe position was referenced to the boundary of the porous medium

near the clear core of the pipe. Positioning of the probe relative to

this boundary was accomplished only by eye. The probe first was pushed

through the hole until the probe needles extended beyond the surface of

the porous material. Then, a straight edge was positioned parallel to

the pipe centerline and as close to the probe as possible so that the

straight edge indicated the nominal boundary of the porous medium. The

probe then was drawn back into the porous medium until the hot wire was

aligned with the straight edge.

Traversing the porous boundary was accomplished with the hole com-

pletely open between the probe and the core flow and with plugs of

24
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different lengths inserted into the holes as shown in Fig. 2-9. The

plugs were installed by inserting a solid 1/4 in. diameter rod into the

hole to a specified distance from the nominal porous boundary. The rod

was referenced to the boundary in the same manner as the hot wire probe.

The plug then was pushed into the hole and compressed against the rod.

A tweezers was used to grasp the plug fibers and pull them slowly out of

the hole until they were flush with the boundary. Porous plugs of

lengths 0.15 in., 0.25 in., 0.55 in., and 0.75 in. were used in the tests.

After the plug was installed, traversing of the probe began at a point

0.05 in. from the base of the plug and went to the impermeable boundary.

The velocities relative to the shear velocity, U*, measured with

the unshielded anemometer are shown in Fig. 2-10 for two Reynolds numbers.

For these tests, there was no plug in the hole and the anemometer was

traversed into the core flow. These tests indicated that the velocity

decreased very rapidly in the first 10% of the porous foam (0.12 in.)

and then had a gradual decrease throughout the rest of the depth.

Tests then were performed with a cylindrical porous plug inserted

in the hole between the core flow and the unshielded probe. Results of

these tests are shown in Fig. 2-11. These tests indicate the same trend

of decreasing velocity with depth as was observed in the previous tests.

Generally, the tests with the porous plug inserted gave velocities in the

boundary which were slightly lower than those observed at the same loca-

tion for runs with the plug removed. This reduction is most likely the

result of the plug-, however, the difference is well within the range of

scatter observed in the 2 in. plexiglass tubing. Therefore, a
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quantitative judgment of the porous plug effect could not be made.

Similar measurements of velocities and turbulence intensities in

a porous medium with a superposed shear flow are not available. There-

fore, any disturbing effect caused by the hole cannot be satisfactorily

evaluated. Thus, an alternative method of making the measurements was

sought. The following sections describe the methods attempted.

2.4 Pitot Tube Measurements

Measurements within a porous foam plug installed in the 2 in.

diameter plexiglass calibration unit were performed using a pitot tube.

The pitot tube used was 0.065 in. GD with a 0.030 in. diameter impact

opening and four static openings of approximately 0.010 in. diameter.

No attempt was made to install the pitot tube in the porous pipe be-

cause of the limitations and difficulties encountered while testing it

in the calibration unit.

The pitot tube was inserted into a slit in the foam. Even with

the slit, the pitot tube would become entangled in the foam and the foam

would be pulled out of position whenever the pitot tube was moved. The

resolution of the system was inadequate for the low velocities. For

these reasons, the pitot tube was discarded as a means of making

measurements in the porous foam.

2.5 Tracer Techniques

It is not known when tracers were first used to make velocity mea-

surements. It may have been when man first watched a leaf floating

down a small stream and noted how long it took for the leaf to travel

from one rock to the next. Basically, this example illustrates the
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tracer concept of making velocity measurements. The leaf acts as a

tracer and the rocks as observation points. Generally, the tracer tech-

nique involves injecting a substance (tracer) with different properties

than the fluid in which the measurements are desired. The travel time

of the tracer between two points at a known distance apart is recorded.

The velocity is determined by dividing the distance between the points

by the travel time. Since tracer measurements have been made success-

fully in porous media, this measurement technique seemed to offer a

reasonable chance of success and was pursued.

Most experiments using tracers in porous media have involved

salt solution. tracers in water such as the experiments performed by

Hoopes and Harleman (1965). In water, the tracer is sensed by measur-

ing the changes of the electrical conductivity of the salt solution as

it passes a probe.

Different gases such as carbon dioxide and helium have been used

as tracers in air. The procedure has been to draw a sample from the

test section into a gas analyser to determine the tracer concentration.

Various principles are used in gas analyzers, one of which is related

to the change in thermal conductivity of gases. Rush and Forstall (1947)

and Forstall and Shapiro (1950) used this type of gas analyser in experi-

ments involving mixing of gases within a pipe and a jet, respectively.

Although, a gas sample was not used in this experiment, the principle

and apparatus involved are of primary importance in the measurement

technique developed hereinafter.
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Briefly, the thermal conductivity method of determining gas con-

centrations involves measuring the transfer of heat from a long thin

electrically heated wire. Two conductivity cells form two sides of a

Wheatsone bridge circuit. One cell contains a reference gas and the

other the gas-tracer sample. The heat released from the wire is con-

ducted through the gases to a heat sink. Unbalance of the bridge

occurs because the greater rate of heat conduction in the gas-tracer

sample cools the wire and changes its resistance, thus producing a

bridge unbalance. The point of interest is that the hot wire anemometer

reacts in a manner similar to the wire used in the conductivity cell.

Therefore, by placing two hot wire anemometers in the flow, one down-

stream of the other, the probes would act as small thermal conductivity

cells to sense the passage of a tracer gas injected in the flow upstream.

Consider the heat transfer relationship for a wire of infinite

length, Eq. (2-1), with Eq. (2-2) and Eq. (2-3) substituted for A and B.

I R = CfrfK -- 1 + R d nV ni T - T (2-10)
f (Tf)01 C V w a

a .f

This equation relates the output voltage of the hot wire to the air

velocity and the properties of the air and wire. As the tracer gas

passes, the anemometer output changes due to the change of fluid pro-

perties. Using the subscript, h, to indicate the quantities affected

by the tracer, Eq. (2-10) becomes
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2 (T\ ~0.l7~ ~ ~ n n)TT ~ (-1T Rn
1 2 R = C~rkK T 101 + D d n (T - T ) (2-11)
h fh T acC V fh ) w a

The assumptions implied in Eq. (2-11) are that the flow is steady and

that injection of the tracer does not change the temperature or velocity.

Dividing Eq. (2-11) by Eq. (2-10) and rearranging gives:

I 2 R K + dn
h _fh D ,fh (2-12)
12R Kf C Vd n

D +Vf)

Using previous hot wire calibrations, C/D was found to range from about

3000 to 10000 with an average of about 5000. The Reynolds number range

for these experiments is 0.0025 < -- < 2.5. Therefore, it can be seen

that even with a two or three-fold change of viscosity the influence on

the voltage output of the anemometer will be negligible.

Since the hot wire output is generally read in terms of volts,

E = IR, instead of power units, P = I R, Eq. (2-12) can be converted to

voltage output by multiplying it by R and taking the square root.

Subtracting one from both sides of the resulting equation and rearrang-

ing gives

Eh - E AE Kfh
K - 1 (2-13)

f

This expression relates the relative difference in the output voltage of

the hot wire to the thermal conductivity of the fluid and tracer.
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Bird, Stewart and Lightfoot (1960) give the relationship between

the thermal conductivity of a mixture of gases and their mole fractions

as:

n

K . = nii(2-14)mixture n11(-4

where K. = thermal conductivities of the pure components

x. = the mole fractions

and

2
1 - M -1 / 2 1 +1 / 2 M 1 / 4 1 2( - 51 8 M. -P/ M4. . = - l+w} tl+YYK# 1(2-15)

where M. = molecular weights of the gases

1= viscosities

In a binary system, the mole fractions of two species, A and B, are

related to their concentrations, CA and CB, by

CA/MA CB/MB

xA C A ' XB C A C (2-16)

M M N NA B A

Considering equations (2-14) through (2-16) it can be deduced that

the concentration of a tracer in the flow can be determined from the out-

put of the hot wire anemometer. Since equation (2-14) is independent of

the velocity of the air, the hot wire anemometer does not have to be

calibrated but only properly balanced if just the concentration of
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tracer is desired. This can be highly desirable, since changes in the

velocity calibrations can be quite large over long operating times.

Helium was selected as the tracer gas for these experiments. Its

thermal conductivity is an order of magnitude higher than that of air

and its principal constitutes, nitrogen and oxygen.

The relative voltage difference related to specific values of

helium concentration in air was evaluated using Eqs. (2-14) through

(2-16). The properties of helium and air used in the program are

given in Table 2-1 and were obtained from Weast (1968).

Table 2-1

Properties of Helium and Air

Species n M 1 x 10 7  K x 107

dimensionless (g cm 1 sec-) (cal sec1 cm 1 K 1 )

Air 1 28.966 1789 60.5

Helium 2 4.003 1941 355.0

The relationship between the anemometer output voltage difference

and the concentration of helium in air is given graphically in Fig. 2-12.

The relationship is practically linear over the range shown. Therefore,

when using the hot wire as a helium sensor where absolute concentrations

are not essential, the change in output voltage gives a direct measure

of the relative concentration.

To test the tracer technique, an injection system was devised and

constructed and special miniature probes were developed. The injection
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Fig. 2-12 Dependence of hot wire anemometer output on helium concentration



system is shown in Fig. 2-13 installed in the porous pipe. It con-

sisted of a tank of compressed helium, a pressure regulator, polyvinyl

tubing, a solenoid operated valve, and a modified hypodermic needle.

The pressure regulator reduced the pressure in the tank to working

pressures in the range of about 3 psi to 50 psi.

The solenoid operated valve, Automatic Switch Co. (ASCO) catalog

no. 8262B1 with 3/64 in. orifice, was controlled by an electric switch-

ing unit which could provide a 10 millisecond pulse for "instantaneous"

injections. Continuous injections could be achieved by bypassing the

switching unit. The circuit diagram for the switching unit is shown

in Fig. 2-14. Initially, the switching unit was used only for manually

controlled instantaneous injections. In later stages of the test pro-

gram, a periodic instantaneous injection was required. This was

accomplished by using a rotary switch driven by a motor with a vari-

able speed control which replaced switch, S2.

A no. 20 hypodermic needle was modified for use as the injector

and is shown in Fig. 2-15. The injector was made by bending the needle

to form a right angle near the tip. Epoxy cement then was daubed

around the needle in the vicinity of the tip. The epoxy cement and

right angleprotusion of the needle then were filed down to approximately

0.05 in. The needle then could be inserted through the pores of the

polyurethane foam. The foam did cling to the injector slightly during

changes in position. But, by moving slightly past the desired position

and then back to it, no distortion of the foam was evident.
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Fig. 2-13 Helium injection unit installed on porous pipe

To phono plug

2.5Q I
S Off

+ On RL

15v - IN91

- 1 C SOL

RL = Magnecraft relay

= SPST switch

DPDT switch

= 10 KQ potentiometer

C = 100 pf capacitor

SOL = ASCO 8262B1 solenoid
valve, 12 VDC

Fig. 2-14 Circuit diagram for controlling solenoid valve
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Fig. 2-15 Helium injector and shielded hot wire anemometer probes

Shield 0.065" OD
0.058" ID

0.134" dia. Probe - 0.035" dia.

2 1/2 "-: . 12"

'I
Opening

0.030" X 0.060"

7
6"

(NOT TO SCALE)

Fig. 2-16 Shielded hot wire anemometer probe
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One of the main objectives of the tracer measurements was to

evaluate the measurements made with the 1/4 in. diameter unshielded

probe. Therefore, it was decided that a small tracer-sensing probe

which could be inserted through the pores of the foam was required.

Commercial probes were not available which could be used directly for

measurements in the porous foam. Therefore, miniature shielded probes

were developed especially for these experiments. The probes themselves

are modified versions of Flow Corporation F-1-E02 probes as shown in

Fig. 2-15 and 2-16. The overall length of the probes is about 18 in.,

12 in. of which is 0.134 in. diameter and 6 in. of 0.035 in. diameter.

A pointed shield of 0.058 in. OD tubing fitted with two openings, 0.060

in. in the axial direction by 0.030 in., covered the 0.035 in. diameter

portion of the probe. When the shield was touching the shoulder of the

larger diameter portion of the probe the hot wire of the probe was

aligned with the center of the openings. With this configuration the

probe could be inserted directly into the polyurethane foam. The foam

adhered slightly more to the probes than to the injector needle. This

partly was due to the larger diameter stem and the slight indentation

caused by the openings. Any observable deformation of the foam was

eliminated by following the same positioning procedure as used for

the injector. If the probe was pushed through the porous pipe boundary

and the positioning procedure was not used, the foam formed a mound

around the probe. This mound was approximately 0.03 in. to 0.05 in.

with an estimated diameter of about 3/8 in. If the probe was pulled
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hack into the foam, an indentation of about the same magnitude as the

mound was observed.

The tracer technique involves measuring the travel time between

two points in space. The velocity can be determined by dividing the

distance between the two points by the time of travel between the peak

concentrations observed at the two points. Therefore, the two probes

were mounted on the traversing unit so that they were moved in unison

to any location. The solenoid valve and injector needle were mounted

in a sliding bracket which could be attached to the porous pipe up-

stream of the shielded probes. The shielded probes and injector

needle were referenced to the nominal boundary of the porous foam in

the same manner as the unshielded probe.

The equipment used to record the concentrations sensed by the two

hot wire probes is shown in Fig. 2-17. A schematic diagram of the

system is shown in Fig. 2-18. The equipment includes the hot wire

anemometer units, Flow Corporation series 900, a strip chart recorder,

Sanborn model 296 recorder, and a magnetic tape recorder, Precision

Instrument model PS-207A portable FM tape recorder. The frequency

response of the system was limited to 125 cps by the Sanborn recorder.

This was more than sufficient for recording the passing of a helium

pulse. In fact, when the probes were inserted into the porous pipe,

a R-C filter circuit was installed between the hot wire anemometer out-

put and the Sanborn recorder to eliminate the higher frequency voltage

fluctuations caused by turbulence in the flow. The RC circuit reduced
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Fig. 2-17 Equipment for sensing and recording

helium concentrations in a porous medium

Probes
Injector 0

S0

00 00 0 0 --- Porous f oam ANE

0 Lo / 0 0

0g 0 6 0 0
00 0

Fig. 2-18 Schematic diagram of tracer sensing and recording equipment
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the signal at 50 Hz by 3 db.

The output of the Sanborn recorder was played into the FM tape

recorder operating at 7 1/2 in./sec. This was done to utilize the sup-

pression voltage and amplification capabilities of the Sanborn recorder.

The frequency response of the FM recorder operating at 7 1/2 in./sec

was 2500 Hz which was sufficiently above the limits of the Sanborn

recorder to insure reproducibility of the signal.

Operation of the system began after the anemometers were adjusted.

This amounted to balancing of the bridge circuit and checking the

frequency response of the wires according to the manufacturer's in-

structions, Flow Corporation Bulletin No. 900A (1967). The frequency

response of the shielded probes was about 12 kHz which was determined

using a square wave calibration signal built into the unit. Having

performed this operation the shielded probes could be operated directly

as anemometers if desired or used as the helium detectors.

The peak concentration of the helium tracer travels with the mean

velocity along a line parallel to the flow. Therefore, the shielded

probes and injector were positioned in the porous pipe along a line

parallel to the centerline of the pipe for all runs in which the velocity

was required.

The tracer technique was first checked on the calibration unit.

A typical recording of the helium passing the shielded probes is

shown in Fig. 2-19. In Fig. 2-20 the seepage velocity in the porous

foam plug determined by dividing discharge by the area and porosity
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Fig. 2-19 Recording of helium tracer passing shielded
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o Points determined by helium tracer technique

A Hot wire probe A

0 o Hot wire probe B

0 3 -
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3 Flow __________ /_______________________/_// __
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Velocity, in ftlsec, determined from tracer technique or calibrated hot wire

Fig. 2-20 Calibration of the shielded hot wire anemometer probes



(0.97) is compared to the seepage velocity determined by the tracer

technique and the velocities indicated using the shielded probes directly

as anemometers. It is interesting to note that the measurements by the

tracer technique show close agreement with the actual specific discharge

and that the velocities sensed through the openings of the shield show

a close agreement with the average velocity (twice the seepage velocity)

predicted from potential flow analysis for a clear circular opening in

a homogeneous porous medium. To determine what effect the jet issuing

from the injector needle had on the velocity measurements, tests were

performed in the calibration unit using several injection pressures.

The pressure indicated at the pressure regulator was used as a re-

ference. Pressures of 4, 10, 14, and 18 psi were tried. The seepage

velocities determined at two of the pressures, 4 and 18, are shown in

Fig. 2-21. The velocities in these tests were determined from an

average of these separate pulse travel times,

The effects of helium buoyancy in the flow field were evaluated

by measuring the vertical concentration distribution in the porous pipe.

Helium was continuously injected at several positions in the porous

boundary. The shielded probes were then traversed vertically through

the boundary at two positions downstream. Results of these traverses

are shown in Fig. 2-22, The continuous injection gives a better in-

dication of the buoyancy effects. Since more mass is injected into the

system than with a pulsebuoyancy effects should be more obvious if they

exist. These results indicated that buoyancy effects are negligible

in the distance covered in these tests.
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Fig. 2-21 Seepage velocity determined using different

injection pressures
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A significant difference in the anemometer output wave form was

evident when the equipment was moved from the calibration unit to the

porous pipe. A sample of the output wave form recorded in the cali-

bration unit was shown in Fig. 2-19.

Samples of the recorded signal for different positions in the

porous boundary are shown in Figs. 2-23 and 2-24. The difference is

due primarily to the turbulent fluctuations of velocity present in

the porous pipe. The signals at positions Y/H = -0.1, -0.2 and -0.3

are typical of the signals recorded at these positions and show the

difficulties of determining accurate travel times from them. The

signals recorded in the rest of the boundary, -0.4 > Y/H > -1.0, are

similar to those shown for Y/H = -0.6 and the time between peaks is

easily measured. Tests were performed by traversing the injector

and the shielded probes through the boundary. Manually controlled

pulses were used in the tests. Where the peaks in the concentration

curves were identifiable, the velocities were calculated using average

travel times established from two to five pulses. Results of these

tests are shown in Fig. 2-25 where the velocity is normalized with

the shear velocity, u, and the depth is normalized with the total

thickness of the porous foam, H. These velocityprofiles indicate that

a relatively uniform velocity exists over most of the porous foam

boundary. Apparently, the shearing effect of the core flow does not

penetrate beyond about Y/H = -0.3 or -0.4. Comparison of the profiles

of Fig. 2-25 with those of Figs. 2-10 and 2-11 indicates that the hole

punched in the foam affects the velocities measured by the anemometer
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determined from helium tracer
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since it indicated that the shearing action took place over the entire

depth of the boundary. To verify this, different approaches for the

data analysis were tried for the measurements in the vicinity of the

interface boundary. These approaches are presented in the following

sections.

2.6 Tracer Detection in a Turbulent Flow Field

The difficulty of interpreting the data obtained in the vicinity

of the interface boundary has already been pointed out. The dif-

ficulty arises from the turbulent fluctuations of velocity present in

the porous pipe. The fluctuations, considered as noise in this case,

make the location of the peak concentration and the travel time be-

tween the probes difficult to evaluate. In some cases, the change in

voltage due to the helium is on the same order of magnitude as that

due to the noise.

Communications engineers have been faced with the same type of

detection problem. Through correlation theory and techniques they

have developed analytical tools for detecting periodic signals in

noise. Lee (1960) presents a thorough development of the theory and

technique and only a rudimentary discussion of the method will be

given here as it pertains to the determination of the travel time of

the peak concentration between the probes.

The crosscorrelation function of two periodic signals fj(t) and

f 2 (t) having the same fundamental period, T, is defined as
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T/2

R1 2  T
-T/2

f1 (t) f 2 (t - T) d-c

To describe the crosscorrelation function in terms of Fourier coefficients

the periodic signals are expanded as:

a1 0 +f ( = +

f2(t) = a 0 +

T/2

a =

T/2

b =
n-T/2

(aln cos A w 1 t + bln sin nw 1t)

(a2n cos nw t + b2n sin n t)
n = 1

f (t) Cos n dt

f (t) s in d t d

The crosscorrelation upon appropriate substitutions and reductions is

given by Lee in the form

R a10aa10a20  1
12 4 2

where c = a2 + b 2
n n n

0 = tan -i )

n =

c in c 2n cos (nw T + e2nO
n = 1

- ein) (2-22)

(2-23)

(2-24)

(2-25)
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The discrete form is shown here only because it is easier to see that

the crosscorrelation retains the phase differences of the harmonics

which are present in both signals. This phase difference is a constant

for a given fundamental period, T. The crosscorrelation function has

a maximum or minimum whenever

T n 2n n =1, 2,3.... (2-26)
nw

Relating the crosscorrelation concept to the periodic signals

caused by the helium tracer passing the hot wire probes, it will be-

come apparent that one value of the time displacement, T, given in

equation (2-26) is the time of travel of the peak concentration. This

is visualized more easily by considering the following simple example.

Assume that two periodic signals shown in Fig. 2-26(a) represent

the signals from the hot wire as the helium tracer passes and that

the time of travel of the peak concentration between the probes is

three units of time. Basically, taking the crosscorrelation of two

signals involves three operations, a time shift of one signal re-

lative to the other, multiplication of the ordinates of the two

signals, and integration or averaging of the cross products. Fig.

2-26(b) shows one signal being shifted in time with respect to the

other. Performing these operations continuously gives the crosscor-

relation function, R 1 2 (T), for the two signals which is shown in

Fig. 2-26(c). A maximum in the correlation function occurs at a

value of time delay, T, equal to three time units, which corresponds
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Fig. 2-26 Crosscorrelation of two periodic signals
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to the travel time of the peak concentration.

Tests were performed using a train of periodic helium pulses.

The period of the pulses was varied, and generally two different

periods were used at each traverse location. The output signals of

the shielded probes were recorded on the FM tape recorder. Cross-

correlations of the signals were performed using a correlation

function computer, Princeton Applied Research Corporation PAR model

101. The instruction manual provided by Princeton Applied Research

Corp. (1967) gives the characteristics of the computer of which the

following is a cursory explanation.

The computer utilizes both analog and digital techniques to

solve the integrals required for the crosscorrelation function. This

is accomplished at 100 incremental subdivisions of the time delay, T.

Time delays from 100 microseconds to 10 seconds in a 1,2,5 sequence

can be selected. The useful frequency range specified by the manu-

facturer is DC to approximately 250 kHz.

To provide an "infinite" length of signal for the correlator to

sample, the recorded signals to be analysed were re-recorded on another

Precision Instruments FM tape recorder model 6208 which had provisions

for a tape loop. The signal was then input from the loop to the cor-

relation function computer. Crosscorrelation and autocorrelation of

the two anemometer signals were performed. Plotting of the correlations

functions was accomplished with an X - Y recorder, Mosely model 2D2.

Typical correlations for two different positions in the porous medium

boundary are shown in Figs. 2-27 and 2-28.
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Even though crosscorrelation of the signals eliminates the noise,

interpretation of the travel time is still difficult, This is be-

c4use the travel time is still a random variable. It varies slightly

from pulse to pulse due to the turbulent fluctuations in the velocity,

the path which the helium follows through the porous matrix, and

slight irregularities in the response time of the valve. These

effects plus the fact that correlation is an averaging process tend

to make the peak in the crosscorrelation curve relatively flat and

difficult to interpret as is shown in Fig. 2-27. If the time of

travel is relatively long in comparison to the time over which the

peak occurs as is the case for Fig. 2-28, good results can be achieved

with crosscorrelation. Seepage velocities calculated from the cross-

correlation functions are shown in Fig. 2-29.

In the vicinity of the interface boundary, the velocities are the

highest, turbulence intensities are nearly maximum, and these effects

all combine to make determination of the travel time difficult even

with crosscorrelation. It was in this region good results were desired.

Unfortunately, crosscorrelation of the signals met with only limited

success because of the "flat" peaks in the crosscorrelation function

which allowed a wide interpretation of the travel time.

Over the rest of the foam boundary, from about Y/H = -0.3 to the

impermeable wall, crosscorrelation worked well, The travel times are

a better representation of the mean travel time since they are deter-

mined from a minimum of 40 pulses. The results found by correlation

verify those already found using the visual determination of the peak
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-oncentrations for the two higher Reynolds number flows, thus, re-

inforcing the evidence that the shear effects from the core flow

penetrate to a relatively shallow depth. At the lower Reynolds number,

the velocities determined from crosscorrelation functions are higher

than those determined from the visual determination of travel times.

This apparent discrepancy may have been the result of the jet issuing

from the injector and the injector probe locations, For the visual runs

the probes were generally spaced at distances greater than 1 in. and the

distance from the first probe to the injector was initially 1.44 in. and

later 0.70 in. For the correlation runs, the distance between the shield-

ed probes was reduced to 0.70 in. and the distance between the injector

and the first probe was 0.66 in. At the low Reynolds number, actual see-

page velocities for the visual determinations were on the order of 0.05

ft/sec and for the correlation determinations on the order of 0.08 ft/sec.

The velocity of the jet entering the porous foam is not known, but it ap-

parently produces some effect for close spacing of the injector and

shielded probes.

2.7 Shielded Probes Used as Anemometers

The shielded probes when used directly as anemometer indicated

velocities that correlated well with double the seepage velocity. The

correlation shown in Fig. 2-20 is limited to velocities greater than

about 1,5 to 2.0 ft/sec because of the characteristics of the shielded

probes.

A typical calibration for one of the shielded hot wire probes is

given in Fig. 2-30. The data points deviate from a straight line, at

a value of F(V) of approximately 1.4 which corresponds roughly to an
62
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air speed of about 1.5 ft/sec. Collis and Williams (1959) observed a

similar phenomenon due to the interaction of free and forced convection.

They gave a rough criterion for the effects of buoyancy (free convection)

for wires with large aspect ratios (length of wire, Z, divided by its

diameter, d) in terms of the wire Reynolds number and the Grashof number.

They cautioned that for sufficiently small aspect ratios three-dimensional

heat transfer could modify the heat flux at higher Reynolds numbers than

that given by their criterion. The wires they used has aspect ratios

greater than 2000 and the deviations due to free convection occurred at

Reynolds numbers of about 0.03. The shielded probes used in this study

have aspect ratios on the order of 125 and the deviation observed in

Fig. 2-30 occurs at a Reynolds number of about 0.16, where the Reynolds

number was determined in the same manner as Collis and Williams. The

effect of the shield on the heat transfer is not known, but probably

also adds to the effects causing the deviations.

Mean velocities measured with the shielded probe anemometer in and

near the porous foam boundary are shown in Fig. 2-31. All seepage

velocities in the boundary were interpreted as being one half the

velocity indicated by the anemometer. The point at the surface, Y/H =

0.0, was included in this interpretation even though one half of the

shield opening was exposed to the core flow and, therefore, the inter-

pretation may be incorrect. Velocities in the core are actual velocities

determined with the anemometers. Velocities less than 1.5 ft/sec

are included to aid in visualizing the shear zone even though they

are somewhat ambiguous as to their actual magnitude. Also plotted
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on Fig. 2-31 are velocities measured by Mufioz in the core near the

interface. The dashed curves in Fig. 2-31 were fitted by eye and are

drawn only in the range of validity of the shielded probe anemometers.

Longitudinal intensities of turbulence measured with the shielded

probes are shown in Fig. 2-32 along with those measured by Muioz (1968)

in the core flow near the porous boundary.

Both the mean velocity profiles and the turbulent intensity pro-

files indicate the shearing effect penetrates only to a depth of

Y/H ~ -0.25 or -0.30. Beyond this depth, the shearing effect is

negligible and the flow is governed by the pressure gradient in the

pipe. These results are in agreementwith the penetration depth and

uniform velocity distribution indicated by the tracer technique.

2.8 In Situ Intrinsic Permeability

The specific discharge, q, within the porous medium boundary is

related directly to the intrinsic permeability of the medium. When

there is no shear, Eq. (3-17) describing the velocity distribution in

the boundary is pearly that presented by Ward (1964).

1. d - + 1 q2  
(2-27)

p dx k C k

The difference is that Eq. (2-27) uses the specific discharge and Eq.

(3-17) uses the seepage velocity.

Tests were performed in the porous pipe to determine the values

of C and k using the above equation. The pressure drop along the pipe

was measured using a U-tube manometer. The specific discharge, q,

within the porous medium boundary was determined using the tracer
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technique with manually controlled pulses. The probes were located in

a plane 0.72 in. from the interface boundary at a distance of 0.70 in.

apart.

Equation (2-27) was rearranged to provide a relation of the form

Y mX + b (2-28)

where

Y = (2-29)
2 dx

pq

X 1 (2-30)
q

M (2-31)

b = 1 (2-32)
c/k

Ln this form, the permeability and the constant, c, can be determined

directly from the slope and intercept of the linear equation.

Fig. 2-33 shows data points plotted for a range of pipe Reynolds

5 5
numbers from about R = 1.7 x 10 to R = 4 x 105. The line, labeled

Y = 52.1 + 390.9X, is the best fitting straight line found by the

method of least squares. The permeability, k, and the constant, c,

determined from this linear equation are:

k = 0.409 x 10-6 sq ft

c = 30.0

These values of k and c were used to develop the theoretical curves of

velocity distribution in the porous boundary presented in Chapter 3.
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2.9 Longitudinal Dispersion Coefficient

The concentration distribution of the helium tracer injected in-

stantaneously into an infinite flow field will be developed in Chapter 4

and the dimensional form of Eq. (4-56) can be written as

M/p ( 1 (x - ut)2  y z
c(x,y, z,t) = /23/2 ex tI E + E

T8lr3/2 v E t / k L 10 20
IQ 20

1 -3 y_[x - ut I ysU,, + ys_ (x - ut) 2+ y 2+ z 2 (2-33)
4 L 4LE 1 0  8Lt E1 0  E )4LE +1x-t) 20 (-3

where E10 and E2 0 are the longitudinal and lateral dispersion coefficients

on the x-axis.

Letting

c = 8 M/p (2-34)
8 3/2 E

10 20

and considering the case along the x-axis, the concentration distribution,

which is now only a function of x and t, can be written as

c 2
c(x,t) = 2 expE- (xj ut) (2-35)

t 10 J

From this relationship, the dispersion coefficient, E 1 0 , can be deter-

mined if either the concentration distribution is known for all values

of x at a given time or for all values of time at a given distance, x,

from the source of the injection.
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The velocity distribution in the porous foam boundary has been

shown to be relatively uniform at distances from the interface boundary

of Y/H = - 0.3 to the pipe wall. Therefore, over this region, the

variation in the velocity in the angular direction should be negligible

and the flow field can be represented in a Cartesian coordinate system,

thus making Eq. (2-35) applicable.

The helium tracer system was set up initially to determine the

travel time between the two hot wire probes. The timing marker on

the strip chart recorder was energized every time the switch was

tripped to open the solenoid valve. The time indicated between this

mark and the hot wire responses recorded on the strip chart is not

the exact time from the instant the helium is released. This is due

to the time required for the helium to travel from the valve through

approximately 3 in. of 1/8 in. pipe and about 4 in. of the hypodermic

needle shaft to the point of injection. The purging of the air from

the needle and the subsequent mixing of air and helium in this piping

section was thought to cause the elongated tail observed on the strip

chart records of the concentration curves.

Since there are two probes, the time of travel from the injection

point to the probes can be estimated in the following manner. If the

dispersion coefficient is assumed to be small, the travel time of the

peak concentration is the same as the mean velocity. When the maximum

concentration occurs, x = ut and the value of the exponential term is 1.

Call t 1 and tp 2 the times at which the maximum concentrations, cP1,

and cp2, are observed at probe 1 and 2, respectively. Then
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tp2 = tpl + At (2-36)

where At is the travel time of the peak between the two probes.

Using equation (2-35)

_ P = 1 (2-37)
c Q t3/2

pl

_2= 1 (2-38)
c 3/2

Dividing (2-37) by (2-38) and substituting equation (2-36) for tp2

gives

- (tp, + At).3 2  (2-39)

c 2t3/2

The voltage difference of the anemometer output between that observed at

the maximum concentration and that when no tracer was present was used

to calculate c and c p. The travel time, At, can be measured directly

from the strip chart and thus the time, tP1 , can be calculated.

Dividing equation (2-35) by either (2-37) or (2-38) the con-

centration observed at the probe, c, related to the peak concentration

c , and time to the peak, tp, is

c = p expf (x - ut)2 (2-40)
Cp t3/2 4E 10 t
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Knowing the distance between the probes, the value of x can be determined

from

x = u - t (2-41)

Thus, the longitudinal dispersion coefficient, E, can be determined if

curves of concentration versus time are known at two points along the

x-axis. This is the type of information presented on the strip chart

records.

Several methods are available for evaluating E 10. The method used

here was to find the best fit curve from the time the anemometer

first sensed the helium to the time when the peak concentration was

observed. The points beyond the peak were disregarded because the

injection was not instantaneous and its exact form was not known.

If the form of the injection pulse were known exactly, it could

be described by superposition of a number of the instantaneous pulses

and the concentration observed at the probes would be the superposition

of the solutions of this pulse train. However, since the objective of

finding the dispersion coefficient was only to determine its order of

magnitude and to see if the assumption used for the dispersion coef-

ficients in Chapter 3 seemed justified, further refinement of its

determination did not seem justified. The assumption made was that

E was directly proportional to the velocity.

Values of E1 were determined from the data at the two probes. A

curve was fitted through the rising limb of the c vs t curve using dif-

ferent values of E. The value of E was found from a least squares

fitting of the data to the rising limb of Eq. (2-35). The values of

75



E10 determined in this manner are given in Fig. 2-34 in terms of the

relationship between E and the seepage velocity, u. This relationship

can be characterized roughly by the equation.

E = a u (2-42)
10 l o

where a1 = 0.00167 ft.

2.10 Discussion of Experimental Techniques and Results

The objective of the experimental work described was to develop

a method of making direct measurements of the seepage velocity within

a porous foam. Several techniques were used in the course of the

experimental phase of the study.

The unshielded anemometer probe when used in a hole punched in

the foam gave results that now appear to be biased due to the physical

configuration of the hole and probe combination. It is not known exactly

what the flow patterns in a shear flow is in the vicinity of the

cylindrical hole. However, when the hole was completely open above the

probe, there could be considerable interaction between the core flow and

the flow within the hole. Adding the plug above the probe should produce

this interaction somewhat but still a three dimensional pattern occurs

and some complex averaging takes place within the cylindrical disc

surrounding the probe. The size of the hole causing the disturbance is

probably the most significant factor of all. Its minimum size was that

of a disc approximately 1/8 in. high by 1/4 in. diameter. This size was

necessary to provide clearance for the hot wire. This method could not

be counted on to give an accurate indication of the seepage velocities.
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Attempts at making measurements in the porous foam using the pitot

tube were completely unsuccessful. This was primarily due to the dif-

ficulty encountered in traversing the pitot tube through the foam and

the inadequate resolution of the system at low velocities.

The tracer techniques provided good results in the region where

the flow was driven primarily by the pressure gradient as was shown

in Figs. 2-25 and 2-29. Near the interface boundary where the tur-

bulent intensities and the shearing effect predominate, the method

met with only limited success. In this region it was difficult first

of all to observe the helium patch passing both probes, and when it

did pass both probes, to be able to distinguish the peaks. The probes

were moved closer together in order to observe the patch passing both

probes. The reduction in the probe spacing reduced the accuracy in

the determination of travel times. Velocities determined in the shear

zone were unreliable and erratic at best even with crosscorrelation of

the signals.

Crosscorrelation of the signals provided a good method of deter-

mining travel times where the travel times were of sufficient duration

not be lost in the peak of the crosscorrelation function. Seepage

velocities of magnitudes much below what the hot wire anemometer can

measure directly were determined using the tracer technique.

Velocities were measured in the shear zone using the shielded

probes directly as anemometers. The arguments concerning flow patterns

presented against the unshielded probe pertain to the shielded probe

only to a limited extent. The shield eliminates effects from the core
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flow impinging directly on the hot wire. The area over which the

shielded probe samples the velocity is approximately the size of two

pores, 0.03 in. by 0.06 in. Therefore, the flow pattern in the

vicinity of the opening should approach that predicted by the potential

flow solution which indicates a correlation between the velocity

sensed by the probe and two times the actual seepage velocity. This

correlation was evident in the calibration experiments in the 2 in.

diameter plexiglass tubing. Velocities measured with the shielded probe

are limited to those greater than about 1.5 ft/sec.

The results of this study showed that velocities over the entire

depth of foam can be measured only by using a combination of the

techniques. The tracer technique works well in the pressure gradient

flow region. The shielded probe anemometer works best in the shearing

zone and the velocities determined with it can be interpreted to give

the seepage velocities, thus, completing the velocity profile. A

composite picture of the velocity distributions at different pipe

Reynolds numbers is given in Fig. 2-35. The distributions were deter-

mined from the anemometer velocities (Fig. 2-31) and the tracer veloc-

ities (Figs. 2-25 and 2-29). The lines representing the velocities

were established in the following manner. In the shear zone, the

seepage velocities were obtained from the dashed curves of Fig. 2-31.

Points in the zone of pressure gradient flow weretaken from the helium

tracer data. A best fit line was determined by eye in each zone and

the two were faired together at the intersection. The lines shown in

Fig. 2-35 arethe culmination of the experimental phase of the study. They
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represent what is the best known estimate of the velocity distributions

within a porous boundary exposed to turbulent shear flow. The penetra-

tion depths indicated in Fig. 2-35 should be used only as a guide since

the data in the region are not sufficient to specify the penetration

depths exactly.

The longitudinal turbulence intensities were presented in Fig.

2-32. It is uncertain as to their exact meaning. This is partially

because the mean velocity is correlated with twice the seepage velocity

and what effect this correlation has on the fluctuating component of

velocity is unknown. Also, the effect of the shield is unknown. It

should be noted that in the core flow, the shielded probe indicates

intensities comparable to those measured by Mufnoz. They are presented

because it is felt, they give at least a relative indication of the

penetration depth of the turbulence and thus an indication of the

shearing zone in the porous medium.
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III. ANALYSIS OF FLOW IN A POROUS BOUNDARY

3.1 Introduction

There are numerous studies which have investigated flow charac-

teristics in flow fields over porous boundaries. However, despite these,

there is no information regarding the flow characteristics within the

boundary. In some studies, such as those by Eckert, et. al., (1955) and

Olsen and Eckert (1966), the boundary only provides a means of applying

suction or injection to the system. In other studies, such as those

conducted in sand bed channels and porous pipes, it is known that the

boundary exerts a considerable effect on the mean flow characteristics

in the overriding fluid. This effect usually is attributed to the

boundary geometry since the effect due to the flow in the boundary is

unknown.

It is possible that there is some interaction between the porous

medium flow and the channel or core flow. Each flow tends to modify the

other and in turn be modified. But, the mechanism of this interaction

is not understood. It is felt that the interaction is related to the

fluid turbulence.

The purpose of this chapter is to develop a description of the flow

in a porous boundary exposed to an external superposed shear flow. The

porous boundary in this study is a lining attached to an impervious pipe.

The configuration is referred to as the porous pipe herein. Although,

there are overtones to sand bed channels, it was not the intent to model

them, but merely to give some insight into what can be qualitatively

expected in flows over porous boundaries.
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This chapter presents the general equation of motion for flow in a

porous boundary and then through a phenomenological approach presents

velocity distributions based on three different eddy viscosity assump-

tions. Comparison of the models on the basis of the surface velocity

indicates the different penetration depths resulting from the assumptions.

The core velocity distribution is related to the boundary velocity and

the eddy viscosity in an attempt to develop a general model for the

entire pipe. Since an explicit expression relating the friction factor

to the Reynolds number cannot be achieved, an analysis was made which

provided a means of extrapolating the curve of friction factor versus

Reynolds number from a known point.

3.2 Flow in a Porous Medium Boundary

The problem posed in this study involves a porous medium exposed to

a shear flow. This problem is unusual in that it combines a shear flow

and a porous medium flow. Therefore, before attempting to develop

the model, consideration will be given to the forces involved.

In the usual connotation of porous medium flow, shear forces do

not explicitly enter the problem. A balance of forces is achieved

between the pressure and drag forces. Darcy's law for flow in a porous

medium is one example of this balance of forces, applying in this case

to laminar flows. For flows in the turbulent range the square law drag

force has been found to be appropriate. Ward (1964) determined the drag

coefficients in terms of physical properties of the fluid and medium

appropriate for all flow regimes in porous media. The balance of forces

as Ward presented is given by
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-- + 2 (3-1)
dU k

where:

= pressure drop per unit length

p = viscosity of fluid

P = density

k = permeability

c = a dimensionless constant

v = specific discharge

Although flow in crop canopies is not considered as porous medium

flow, a striking similarity of flow conditions exists. The crop canopy

can be thought of as an anisotropic porous medium. Iowever, in canopy

flow a pressure gradient does not enter into the balance of forces.

Therefore, the canopy is thought of as a drag on the external flow and

in the canopy the drag force is balanced by a shearing force. Cionco

(1965) and Takeda (1966) have developed canopy models by balancing the

shear force and a drag force proportional to the square of the velocity.

Their force balance takes the form

= p cD (3-2)

where T = shear or frictional stress

cD = a drag coefficient dependent upon the vegetation density

U = velocity

z = vertical coordinate
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It appears that the boundary flow of the porous pipe should ex-

hibit characteristics of both porous medium flow and canopy flow. If

the boundary were of sufficient thickness, shear forces would become

negligible with depth, and the usual porous medium flow driven by the

pressure gradient would exist. Near the interface boundary, i.e.,

the nominal porous boundary adjacent to the core flow, a shear flow

exists in addition to the porous medium flow. The flow in this region

would be similar to the canopy type of flow. If this condition exists,

a shear force should be included in the balance of forces for the porous

boundary.

Brinkman (1947) was probably the first to include both drag forces

and shear forces in a porous medium model. His model attempted to

correct for nonlinearity observed in a permeameter containing densely

packed porous particles.

The general equation of motion for flow in a porous medium has

been developed by Buyevich, et.al., (1969) and is given by

np a +u = -n - Pg + - f (3-3)at Dx. j) I x i x di

au uj 2 Bukwhere T.. = y + - - 6
13 Jx. ax.1 3 "'Dx k I jij x k i

T.. = shear stress components
iJ

f .= G(n) u u.di
m m

fd = drag force components

n = porosity

p = density
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p = pressure

g. = components of the body forces associated with the gravita-

tional acceleration

u = seepage velocity components

t = time

X. = coordinate directions

6ij = Kronecher delta: if i = j, 6.. = 1; if i j, 6..= 0
IJ 1J

i, j and k = subscripts which can have the values 1,2, or 3

G (n) = function of n assumed to be known

m = integer value of 0,1,2....

Assuming the fluid to be incompressible, the equation for the conservation

of mass is

=0
3x. (3-4)

The equations of motion for flow in the boundary of a porous pipe can

now be developed by starting with the general equations (3-3) and

(3-4).

The flow in the porous boundary is regarded as turbulent and the

instantaneous quantities can be represented by mean and fluctuating

components

u. = u. + u! (3-5)
l 1 1

p = P + p' (3-6)

The drag forces are assumed to be functions only of the mean velocity,

u. Substituting Eqs. (3-5) and (3-6) into Eq. (3-3) and time averaging
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gives a resulting equation which can be rearranged and written as

p 1 + u aui _ p + D- ( -p uf u (3-7)
a t i -x ~j ax. @x. Dx. i Ij n

The gravitational body forces, g., are now included in the pressure, p.

Note that Eq. (3-7) is the same as Reynolds equation except for the

drag term and represents the general equation of turbulent flow in the

porous boundary. In its present form Eq. (3-7) cannot be solved

analytically, but by making some gross assumptions concerning the flow

field, the equation may be reduced to a more tractable form.

The coordinate system used in the porous pipe is shown in Fig. 3-1.

A steady, uniform flow is assumed to exist in the porous pipe. In

general the shear stress T.. is

Bu. _ _ _

=- p (3-8)
ij @x i

For turbulent flows, the Reynolds stresses are considered to dominate,

i.e., T ~ -p u.u.. For laminar flows, the viscous stresses dominate,

du.

i.e., jj dx.

Using the above assumptions, Eq. (3-7) becomes

- T.. f
aP + - di = 0  (3-9)
x. 3x. n
1 J

This is the general equation of motion for flow in the boundary of the

porous pipe. For the specific flow with
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Fig. 3-1 Coordinate system used in models of porous boundary flow
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u u (3-10)

let

x= x (3-11)

fl d (3-12)

x = y (3-13)

.T. = (3-14)
IJ

Eq. (2-10) reduces to

-2 + 9- d 0 (3-15)
9x 3y n

where the over bars are dropped as a matter of convenience. Equation

(3-15) only can be solved by making assumptions regarding the shear

stress, T,' and the drag force, fd'

The shear stress to be used in the development of the velocity

profiles follows from phenomenological theories of turbulence and is

assumed proportional to a kinematic eddy viscosity, e, and the velocity

gradient, du, such that

T = du (3-16)

Different functional forms of the eddy viscosity, e, have been used to

determine mean velocities in turbulent flows. Some simple forms the

functions can take are

F= u*L
(3-17)

E= uL
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where L = some characteristic length

U* = shear velocity

u = seepage velocity

Forms of eddy viscosity given in Eq. (3-17) are used to develop

the mean velocity profiles for the porous boundary, later in this

chapter.

The drag force considered to be the most general for porous

media is that presented by Ward. The form of the drag force used in

canopy flows is implied in Ward's equation. Therefore, no additional

terms need be included to account for drag for the canopy type flows.

The drag force used to develop the velocity profiles later in this

chapter takes the form of Ward's equation and is

2
u

d = u + - (3-16)n k c k-

Replacing fd in Eq. (3-15) with Eq. (3-16) gives

2
u+ _ - =/7 (3-17)
ky

If the shear stress term is zero, Eq. (3-17) reduces to a form of

Ward's equation for flow in a porous medium. If a pressure gradient

does not exist and the linear drag term can be neglected, Eq. (2-17)

approaches the form of the equations used in canopy flows. For the

development of the velocity profiles in the following sections, Eq.

(3-17) represents the governing equation of motion in the porous

boundary.
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3.3 Mathematical Models Assuming Eddy Viscosity Constant

The nature of the flow in the boundary of the porous pipe will be

considered before developing the velocity distribution. The nature of

the flow in the porous pipe can be characterized by visualizing two small

packets of fluid such as those represented schematically in Fig. 3-2.

The two packets at different levels try to move into different regions

with higher or lower momentum. It can be seen readily that it may not

be possible for these packets always to move from one level to another.

They may be intercepted by a porous medium particle and give up their

momentum to it. Thus, small scale turbulence in the porous boundary

would be quickly damped out or be relatively insignificant.

If the large scale eddies from the core flow that impinge on the

surface are considered, it appears that the porous medium would offer

some resistance to its passage but would not significantly hinder its

movement. Therefore, it is assumed that the large scale eddies are the

generating mechanism of the turbulence in the porous boundary. Further-

more, since the eddy scale is relatively large compared with the pore

scale of the boundary, the mixing process should be constant over a

large area. Therefore, it seems appropriate that the eddy viscosity

be assumed a constant as a first approximation. Two different forms

of the eddy viscosity were used to develop velocity profiles in the

porous boundary. The first assumption was that the eddy viscosity

was a function of the velocity at the interface between core flow and

the boundary, i.e., the surface velocity. It is given by

E = BL (us - u ) BLu 0 (3-19)
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Fig. 3-2 Schematic representation of flow in the porous pipe boundary
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where B =

L =

0

U =

U 1

constant of proportionality

a length characteristic of the boundary

Us - U (3-19)

surface velocity

porous medium pressure gradient flow which can be determined

from

Vc 1 v2c2 8c v 2
nu1 - - k + 2 k + R

1/2

(3-20)

which is the solution of Eq. (3-1) when dp/dZ is replaced by

2
p u*

2R

R = porous pipe radius

The second assumption was that the eddy viscosity was a function

of this shear velocity, u*. It is given by

E= BL u* (3-24)

The velocity distribution using the first eddy viscosity, Eq.

(3-18), will be completely developed and documented. Since the velocity

profile development using the second eddy viscosity assumption parallels

the first, only an outline of the differences in principal equations is

noted before presenting the final solution.

The coordinate system used in the models was shown in Fig. 3-1.

The boundary conditions appropriate for all models are

T- du

0 dy
0 (3-22)
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T = du at y (3-23)
dy

where T = shear stress at the surface of the boundary.
0

The first boundary condition, Eq. (3-22), implies the shear stress

across the interface boundary is continuous. The second condition

indicates that no stress exists to great depths in the boundary, and

at that depth the flow is sustained by the pressure gradient, there-

fore, u = u .

Using the constant eddy viscosity assumption, Eq. (3-18), the

equation of motion in the porous boundary, Eq. (3-17), can be rear-

ranged and written as

22 2
pBL u p - (u - u ) + (u u (3-24)

Total derivatives replace the partial derivatives since u is only a

function of y. The equation of motion and the boundary conditions can

be made nondimensional by normalizing with the shear velocity, u*, and

a characteristic length, L, such that

u= Uu,, u= U 1 u ,u u = UO u (3-25)

y = LE (3-26)

Substituting Eqs. (3-25) and (3-26) into Eq. (3-24) and rearranging

gives

- d 2 u vL U u L 2 2
Bu 2 -ku + - (u -u ) (3-27)

0 d2 * c/k
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Letting U = U - U

and noting that

(3-28)

(3-29)dU dU
d dE

Eq. (3-27) can be written as

BUJ 2
B d2U A ^ 2 (3

=U + U

where = - (3

A = + 2SU (3
ku* 1

The boundary conditions, Eqs. (3-22) and (3-23), can be written in

nondimensional form as

dU l at =0 (3
dE BU

0

-30)

-31)

-32)

-33)

dU -0 at
d (3-34)

which from Eq. (3-23) implies U = 0 at o - -

To find the solution of Eq. (3-30) subject to Eqs. (3-33) and (3-34),

let

S = dU
dE

and d d

dU

d = dS
ddU

Substituting Eq. (3-35) and (3-36) into Eq. (3-30) gives
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BUo dS 2  A ^ + 2 (3-37-- = - U+ U

2S dU

The result of integrating Eq. (3-37) and using the boundary condition

Eq. (3-34) is

BU 0 2 A-2 ^ 3
oU 2 U2 +U_ (3-38

The surface velocity, Uo, can be determined by substituting the

-l
value S = (BU ) from Eq. (3-33) into Eq. (3-38) giving

1 2 +2U ^3
=AU + 3 (3-39

BU
0

)

)

)

The solution is not straight forward and is best found using an iteration

procedure in a digital computer.

By taking the square root of Eq. (3-38), it can be written as

JBU00
dU (3-40)

This equation can be separated and integrated to give

+A) 1/2

+ )1/2

A

+A

(3-41)+ D =21
BU

0

The value of the constant of integration, D, can be determined from the

fact thatat C = 0, U = U and the solution for the velocity distribution

in the porous boundary then becomes
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^ 1/2 U 1 /2

U32+ A A 0 + A A

ln )/2 - ln A 1/2 2 = - (3-42)
.+A- / A Uo AABU

(I 2 2+ -0 + A+A0

Since the value of A depends upon the Reynolds number through the

shear velocity, u*, the solution for Eq. (3-42) also depends on the

Reynolds number. Furthermore, the proportionality constant, B, has

not been specified. It is assumed to be a universal constant, but its

value will depend on the characteristic length scale chosen, and at this

point B must be determined empirically. However, the velocity distri-

bution can be determined by assuming different values of B if the value

of u* is known. The values of u* are known for several values of pipe

Reynolds numbers from the experiments performed by Mufioz. The velocity

profiles shown in Figs. 3-3, 3-4 and 3-5 were determined for different

5 5 5
values of B at Reynolds numbers of 1 x 10 , 2 x 10 and 4 x 10 The

values of the eddy viscosity at the surface corresponding to the dif-

ferent values of B also are given in the figures. The velocity distri-

butions shown in Fig. 3-6 are exactly the same as those in Fig. 3-5

except they are plotted using a linear scale instead of a semi-log

scale. The linear scale eliminates the distortion and is presented

here to aid in visualizing how rapidly the velocity decreases.

If the eddy viscosity assumption, Eq. (3-21), is used, the solu-

tion for the velocity distribution is the same as Eq. (3-42) except

for the coefficient on the right hand side of Eq. (3-42). In that

equation the surface velocity does not appear and the coefficient is
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A The boundary conditions become

dU 1 at =0 (3-43)
dC B

and

dU =0 at C+-o (3-44)
dC

The velocity distribution for the assumption, c = BLu can be written

as

A ] /2 1
1/2 U /

ln L l/2 j n ^ 1/2 =j4 (345)

The surface velocity can be determined by using Eq. (3-43) for S in

the following equation evaluated at ( = 0

^3
S 2 A ^2 + (3-46)S = U +-

This completes the solution for the velocity distribution in the

porous boundary using the assumption for eddy viscosity, E = BLu*.

Velocity profiles at the different pipe Reynolds numbers and for dif-

ferent values of B are given in Figs. 3-7, 3-8 and 3-9.

Eqs. (3-42) and (3-45) give identical profiles when U = 1. For

values of U > 1, the eddy viscosity, 6 = BLU0, is larger for a given

value of B. For values of U < 1, the inverse is true.
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3.4 Mathematical Model Assuming Eddy Viscosity Proportional to Velocity

To investigate the effects of a variable eddy viscosity, the as-

sumption was made that the eddy viscosity was proportional to the veloc-

ity in the boundary. This can be written as

(3-47)
= BLU

where U is defined by Eq. (3-28). The physical significance of this

assumption is that the lateral turbulent motion may decrease with in-

creased depth into the porous boundary and thus the eddy viscosity

should also decrease. Velocity profiles using this assumption were

developed for later comparison with the constant eddy viscosity profiles.

The general equations of motion for this model, after substitution

of Eq. (3-47) into Eq. (3-17), can be made nondimensional by using

Eqs. (3-25) and (3-26) and becomes

Bd2^2 = A^2
2B dUU + U

2$ d 2  S(3-48)

where S and A are defined by Eqs. (3-31) and 3-32), respectively.

The boundary conditions appropriate for this problem are

dU = 1 at = 0
dE B

d = 0 a t E+ -o (3-49)

or U = 0 at E-+ -

To find the solution of Eq. (3-48) subject to Eq.(3-49), let
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^2
S 2 dU d1 2 dC d

then

d d

dU

dU S dU
U dU

Substituting Eqs. (3-50) and (3-51) into (3-48) gives

B S1 dS

U dU
U+ U

which can be separated and integrated to give

B S 1 2 A 3 U

=-3 U + - + G

The boundary condition, Eq. (3-49), at + - is used to find

G = 0

The surface velocity can be found using Eq. (3-53) and the boundary

condition at t = 0. The equation from which U can be evaluated is

1 2A A 3 U
3 + 2(3-

After taking the square root of Eq. (3-53), it can be separated and

integrated to yield

ln(U + A
"2

+4 + 36-

The value of D can be found by using the fact that U = U 0 at =0.
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(3-50)

(3-51)

(3-52)

(3-53)

(3-54)

55)
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Evaluating D and substituting it into Eq. (3-56) gives the velocity

distribution in the porous boundary as

^ 2 - 1/2

U 0 A U 0 A 22 3= , (3-57)

The above solution also depends upon the Reynolds number and the

value of B as did those found for the constant eddy viscosity assumptions.

Therefore, the velocity distribution given in Figs. (3-10), (3-11) and

(3-12) were determined for different values of B at values of u* corre-

sponding to the Reynolds numbers at which Munoz performed his experiments.

3.5 Comparison of Mathematical Models

The three mathematical models differ in the initial assumption con-

cerning the eddy viscosity. The different assumptions produce different

solutions for the velocity distributions in the porous boundary. Since

all of the profiles extend in theory to - -, the criterion used for com-

parison was the depth at which the velocity, U, was one percent of the

surface velocity, U0. This depth is herein referred to as the penetra-

tion depth. Where possible the profiles start at the same surface

velocity.

The constant eddy viscosities in general produce flatter velocity

profiles since they provide a source which allows a larger momentum

transfer to exist at greater depths in the boundary. The assumption of

eddy viscosity proportional to the velocity, on the other hand, de-

creases the amount of momentum transfer at a rate proportional to both
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the velocity and the velocity gradient. Therefore, the velocity de-

creases more rapidly with depth in the porous boundary. The differences

are evident in Fig. ,3-13 which is typical of the profiles for all

Reynolds numbers.

When the surface velocity, U 0, is equal to one, the two constant

viscosity assumptions are identical and produce the same profile. For

values of U greater than one the assumption of 6 = BLU allows greater

momentum at greater depths; thus the velocity profile penetrates the

boundary more as is seen in comparing curves 3, 4, and 5 of Fig. (3-14).

At values of U less than one the reverse is true and the assumption

of e = BLU* indicates the velocity penetrates the boundary more than

that of 6 = BLU or c = BLU. In all cases, the penetration depth was

a minimum for the assumption, 6 = BLU, for any given value of U .

Curves representing the velocity distributions predicted from the

models for a value of B = 0.025 are shown in Figs. 3-14, 3-15 and

3-16. Also indicated on the figures are the range of velocities

measured at the different positions which were given in Figs. 2-25,

2-29 and 2-31 of Chapter 2. The velocity distributions tend to be

within the range of measured velocities at the lower Reynolds number

flows. At the highest Reynolds number, R = 4 x 10 5, none of the dis-

tributions matched the measured velocities in the region of the large

velocity gradient of the curve. This may be due to the interpretation

of the anemometer data in this region. The correlation of one half the

anemometer velocity reading representing the seepage velocity was based

upon measurements made under uniform flow conditions which were relative-
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ly free of turbulence. Thus, it is uncertain if this correlation exists

when the anemometer is exposed to a flow exhibiting a velocity gradient

and a high degree of turbulence which characterizes the flow near the

surface at the high Reynolds number.

Until the velocity correlation can be resolved, possibly by per-

fecting the helium tracer technique, the velocity distribution predicted

by the models can be considered to provide a reasonable representation

of the actual seepage velocity in the porous foam boundary. The choice

of the mathematical model to use is somewhat arbitrary. All three models

give distributions which are reasonably close to those measured. The

exact location of the penetration depth cannot be specified from the

velocity measurements, but if the turbulent intensities shown in Fig.

2-32 of Chapter 2 are considered it appears that the penetration depth

is somewhat between - 0.2 > Y/H > - 0.3. If this is true, then the

constant eddy viscosity models would be preferred since they indicate

comparable penetration depths.

3.6 Analysis of Core Flow

In this section the relationship between the core flow and the

boundary flow is developed. The linking of the two flow fields is

through the slip velocity and the eddy viscosity at the boundary.

After establishing the velocity distribution in the core, it is pos-

sible to find an expression relating the friction factor, f, to the

permeability Reynolds number, IRk. Then, given a value of f at some

Rk, an approximation is used to provide a method of estimating the

change in friction factor with Reynolds number. It was hoped that the
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friction factor relationship would provide some insight into the inter-

action of the two flow fields.

In the porous pipe, it is assumed that fully-developed steady flow

exists. The shear stress in the core, T, varies linearly with the

radical distance from the pipe centerline, r, and can be given by

= (3-58)
-r R
0

where

R = radius to porous boundary

T = shear stress at r = R

Using the eddy viscosity concept the shear stress is expressed as

du
T = dy (3-59),

Phenomenological theories give various functional relationships for the

form of the eddy viscosity. Generally, these have assumed that the

wall or boundary was impermeable and the eddy viscosity approached

zero at the wall. Mufioz found that by assuming an origin below the

surface of the porous boundary, he could arrive at an eddy viscosity

that could be used over the entire pipe core. This is similar to the

approach Rotta (1950) used in his analysis of effects of roughness on

velocity distributions in turbulent flow.

Using Mufioz's findings that the velocity defect could be inter-

preted with the shifted coordinate system, the following form for the

eddy viscosity was assumed to completely specify Eq. (3-59)

E = Ku y' (1- -) (3-60)

where

K = 0.4 (Karman's constant) and the coordinates y' and y are defined in the
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sketch of Fig. 3-17 . Combining Eqs. (3-58), (3-59) and (3-60)

gives

PKU* Y -9 (3-61)

Noting that dy = dy' and using the definition

T0 = PU 2 (3-62)

Eq. (3-61) can be written as

y , du = -* (3-63)
dy' K

Integrating Eq. (3-63) gives

U*
u =- ln y' + c' (3-64)

K

The constant, c', can be evaluated using a boundary condition based on

the surface velocity.

Murray (1965) developed a boundary condition when analyzing waves

over a permeable bed similar to that of the porous pipe. His boundary

condition would imply that the core velocity is equal to the seepage

velocity at the boundary. This condition is used in the analysis of

the core flow. It is assumed here that the velocity distribution in

the porous boundary is known and, thus, the value of the surface velocity

can be determined. For the core the surface velocity is designated by

u . The boundary condition necessary to evaluate c' can now be written

as

u = u0 at y'=5 (3-65)
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Evaluating c' and substituting for it in Eq. (3-64) results in the

equation for the velocity distribution in the core, which is

1
U - U = ln (y'/ 6 ) (3-66)

0 K

where

U = u/u* (3-67)

U = u /u (3-68

The above equation can be evaluated if the 6 can be determined. This

is accomplished through the eddy viscosity as will be shown.

Corresponding to U in the core is the velocity determined by the

porous medium models which is

U0 = U0 - U  (3-69)

Using the relationship for the velocities, Eq. (3-69), the value of 6

can now be found by equating the eddy viscosities of the core and

porous medium models, evaluated at the interface.

The eddy viscosity at the interface is not the same for the three

porous medium models. For the two models, c = BLU and e = BLU , the

interface eddy viscosity can be designated as

U* = BLU (3-70)

Equating Eq. (3-70) to the value of the core eddy viscosity, Eq. (3-60),

evaluated at y' = 6 gives

BL ^
6=- U (3-71)

K 0
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If the model using E = BLU* is considered, the equation correspond-

ing to Eq. (3-70) would be

= BL (3-72)
U

Then, the value of the shift in the coordinate, 6, would become

6 = BL (3-73)
K

By equating the eddy viscosities an additional restriction is imposed

on the problem. This condition is that the slope of the velocity

profiles at the boundary must be continuous in order to keep the

shear stress across the boundary continuous.

The average normalized velocity, U, in the pipe can be determined

if the discharge in the boundary can be neglected. Mufioz found the

boundary flow to be insignificant compared with the core flow when he

compared the measured total discharge with that found by integrating

his experimentally determined core velocity profile. Therefore, the

assumption seems warranted. Integrating the velocity over the pipe

core and dividing by the area gives

1 3 6 + 2
U = fRJ+ ln (3-74)0 K 2 1R R

The definition of friction factor for a pipe can be written as

U 8 (3-75)
U* f

Substituting Eq. (3-75) and this expression for U given by Eq. (3-69)
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into Eq. (3-74), the friction factor for the porous pipe can be re-

lated to characteristics of the boundary velocity distribution by

8 1 _ 6 R_ + )'(4
= U + U 1 + - R + R+6)2  ln R+ 6  (3-76)

The relationship between the friction factor, f, and Reynolds number can-

not be seen easily from Eq. (3-76). That is because the surface veloc-

ity, U0, depends upon the Reynolds number and the value of B as was

pointed out in Sections 3.3 and 3.4. The surface velocity also de-

pends upon the model used to evaluate it. The value of 6 is dependent

upon the surface velocity for two of the porous medium models as in-

dicated by Eq. (3-71). For the other case, 6 is a constant given by

Eq. (3-73). The pressure gradient flow, U1 , was given by Eq. (3-20).

The appearance of u* in Eq. (3-20) makes U also dependent upon the

Reynolds number. Because of the complex interaction of these terms

it is difficult to anticipate if the friction factor will increase or

decrease with increasing Reynolds number.

The friction factor was observed by Muioz to increase with in-

creasing Reynolds number in his porous pipe experiments. The range of

Reynolds numbers covered in his experiments was the same as covered in

this study. Lovera and Kennedy (1969) have shown that the friction

factor increases with Reynolds number for flow in sand bed channels.

This indicates that some similarity may exist between the flow in the

porous pipe and sand bed channels.
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Beavers and Joseph (1967) reported a decrease in the friction

factor with increasing Reynolds number for the laminar case of a

Poiseuille flow over a naturally permeable block. Their experiments

covered a range of Reynolds numbers, based on the channel height,

from about 20 to 2000. Review of their results indicated that the

friction factor reached a minimum value at a Reynolds number of about

1500. It is difficult to determine if the friction factor would

have increased or become constant with increasing Reynolds numbers

greater than 2000.

It is obvious from the above examples that knowledge of the

friction factor - Reynolds number relationship is pertinent. Through

it greater insight into the mechanism relating the core and boundary

flows may be achieved.

Before proceeding, the order of magnitude of 6 is estimated in

order to reduce Eq. (3-76) to a more tractable form. From the experi-

mental results of Chapter 2 the value of the normalized surface veloc-

ity can be estimated to be of order one for all the models. Likewise,

the value of BL = 0.0025 ft. gave a reasonable fit for the velocity

profile. Using these values,

6 0.00625 ft.

and

6
R = 0.0159 << 1

Therefore, neglecting 6 in comparison with R, Eq. (3-76) can be reduced

to
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= U + U +;(- + ln ) (3-77)
ff U 1 +K 2

In Eq. (3-77), both U and U are normalized with respect to the

shear velocity u*. Since the friction factor is a function of the

average velocity, u, it would seem appropriate that the characteristic

velocity be u instead of u*. Only the model assuming E = BLUO is

developed here. This discussion applies to the other models also,

but the equations for U and 6 would be different.

Letting
u

V =-(3-78)

V (3-79)
u

=R u (3-80)Rk= '

where the permeability Reynolds number, (Ry, implies the characteristic

length, L = A , Eq. (3-77) can be written as

K 8
S- V9 0 V = - + n -ln 0 - ln - ln B (3-81)

The surface velocity given by Eq. (3-38) can be rewritten using Eqs.

(3-78), (3-79) and (3-80) as

kl 8+- 2V1 ) ^0 3 2V
B + V + -- (3-82)3c

The pressure gradient flow, Eq. (3-20), can be transformed in a similar

manner and written as

125



2 1/2

V = c + 21R + 8c 2 ) 12 (3-83)
IR 2

The last three equations can, in principle, be solved to find the

friction factor versus Reynolds number relationship for a porous

pipe if the quantities c, W and R are given and B is viewed as a

fitting parameter. Likewise, if values of f and Rk are known along

with c, Ai and R a value of B is implied.

Another method of estimating the change in friction factor with

Reynolds number involves assuming the functional form of the relation-

ship. The method also assumes that one point on the curve relating f

and Rk, designated the reference value, is known. A description of the

method is presented in the following paragraphs. Mathematical details

of the method are presented in Appendix C for the constant eddy vis-

cosity model, e = BLU .

Knowing that the velocity is given by a logarithmic function, it

can be expected that the Reynolds number also enters as a logarithmic

function. Thus, an estimation of the change in friction factor can be

made by taking some reference value, say ) , and adding to it the

change, interpreted as the slope of the curve of - versus ln Ikfk

multiplied by the incremental change in the ln IRk. Mathematically,

this can be written as

(-d Lln P, - ln R k) (3-84)
d ln Kl
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where

F =(3-85)

and the subscript o indicates the known reference values. The de-

dF8
rivative, d ' ., represents the slope of the curve of versus

d in P~kf

ln ". For convenience, a dot over the variable is used to indicate

dF
the derivative with respect to (ln Rk), i.e., F = d ln If the

change in (ln IR) is considered to be positive, the slope must be

negative in order for the friction factor to increase with increasing

Reynolds number.

Evaluation of the derivative requires differentiating Eqs. (3-81),

(3-82) and (3-83) with respect to (ln IRk). The resulting three equations

are sufficient to evaluate F in terms of the reference values, ( )o

and (ln Rk) 0, and the quantities V, Vl, and B. The friction factor

at another D now can be estimated by using Eq. (3-84).

The slope, F, was evaluated for the three eddy viscosity models by

taking a value from the curve of f versus R presented by Mufioz. An

intermediate value of f = 0.06 at iRk = 160 was chosen. Table 3-1

gives the values F, B and the value of U corresponding to B determined

at R = 160. The value of F was then used to determine values of f at

Rk = 80 and Rk = 320. The resulting values of f for the three models

are compared with observed values of f in Fig. 3-18.
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Table 3-1

Values of the slope, F, U0, and B determined atRk = 160

Eddy Viscosity
Model c=BLU 6 = BLU E = BLU

B 0.00387 0.00169 0.00380

F 0.0201 0.5168 0.0489

U 2.42 4.59 2.68

t0
A value of L = H = 0.1 ft. corresponds to this value of B.

In all cases, the value of F was found to be positive. Cor-

responding to this, the three models predicted a friction factor that

decreased with increasing values of Reynolds number. All of the values

of B given in Table 3-1 are lower than the value of B = 0.025 found

to give the best-fitting velocity profile in Chapter 2. Corresponding

to B, the value of U given in Table 3-1 is higher than observed.

The two factors involved in determining the friction factor are

U and 6 according to Eq. (3-77). For the model, 6 = BLU*, 6 is a

constant and does not change with Reynolds number. For the other two

models, 6 depends on U0 . The slip velocity, U0, and 6 have opposite

effects on the friction factor. The direct effect of U is to decrease

the friction factor with increasing Reynolds number. The effect of 6
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is to increase the friction factor with increasing Reynolds number.

In the range of values of U considered in this analysis, the effect of

6 is small compared with the effect of u0 because the friction factor

increase due to 6 is logarithmic whereas the decrease due directly to

U is linear. It can be seen from Fig. 3-18 that model, e = BLU0, has

the least decrease in the friction factor with Reynolds number. This is

the model which also predicts the greatest penetration depth. All of

the models predict an increase in U with increasing Reynolds number for

a given value of B, but the e = BLU model has the smallest increase.

Apparently, in the core flow model, the shear effects reflected

in 6 are relatively insignificant compared with the slip velocity

effect. It is also possible that the shear effects modeled here are

not the primary factor determining the interaction between the core

and boundary flows.

Obviously, the core flow model does not provide an adequate

prediction of the friction factor. However, the boundary flow models

do provide a reasonable representation of the experimental velocity

profiles using one empirically determined parameter, B.
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IV. DISPERSION IN A SHEAR FLOW

4.1 Introduction

This analysis of dispersion in a shear flow was developed in an

effort to assessthe limitations of the helium tracer technique of

velocity measurements in a shear flow. A perturbation technique is

used to solve the dispersion equation describing the distribution of

helium in the porous medium shear flow. Solutions are developed for

constant and velocity dependent dispersion coefficients.

The solution with the variable coefficients is thought to reflect

more correctly the conditions within the porous medium, but the range

of application is difficult to define specifically. However, the so-

lution for the constant coefficients case can be compared with a

known exact solution for diffusion in a shear flow. Thus, comparison

of these two solutions gives an indirect method of defining the limita-

tions of the variable coefficient solution.

The mathematical model describing the dispersion process is pre-

sented first. Then, the perturbation solution for constant coefficients

of dispersion will be derived, followed by the solution for variable

coefficients. The perturbation solution and the exact solution are

compared. The comparison is extended to the variable coefficient solu-

tion and its apparent limitations are defined. Characteristics of the

solutions are discussed along with application of the results to others

environments.

4.2 'Mathematical Model

In a binary system, application of the conservation of mass

principle results in the classical convective-diffusion equation. The
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analysis of dispersion in a shear flow is based on the convective-

diffusion equation. Crank (1956) and Daily and Harleman (1966) give a

detailed development of the equation. Since the process of transporting

the tracer is one due to variations of the velocity, the term dispersion

will replace diffusion throughout the rest of this discussion as sug-

gested by Hoopes (1969) and Harleman (1970).

The general equation for turbulent convective dispersion for a

mass flux in the x-direction is given by Daily and Harleman as

a c Vc Dc W 2a( CA
A + - A + A+ - A )E A+ E+Aat + x + y-w- - z x x Dy y Dy

-2- 2- 2-
acA3 c 3cA 3 CA\

+ -- )+ D + + (4-1)z Ez T- AB 2
AB x 2 y 2 z2

where:

cA = concentration of component A in a mixture of species A and

B and is defined as mass of A
mass of mixture of A and B

t =time

u, v and w = mean velocities in the coordinate directions x, y,

and z, respectively.

DAB = molecular-diffusion coefficient

E , E , E = turbulent-dispersion coefficients defined as

x y zc

p(c'u') = - pE -- A ,(c'v') = - pE and
x x 01( Ey ay, n

p,(c'w') = - pE (4-2)
z '9y(42

where the prime denotes the fluctuating component of the quantity

and the bar reflects the time average of the fluctuating components.
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The proposed mathematical model considers dispersion in a shear

flow. A sketch of the model is given in Fig. 4-1. The characteristics

of the system are described as follows

a) The porous medium is homogeneous and extends to infinity in

all directions.

b) The mean velocity is steady and uniform and is taken in the

x-direction. Effects of curvature of the pipe are neglected.

c) The dispersion coefficients are assumed to be directly pro-

portional to the velocity. Molecular diffusion is neglected.

y

tracer cloud
at t t

tracer cloud
at t = t2

source

I

velocity profile

Fig. 4.1 Sketch of Dispersion in a Shear Flow
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Rarleman, Mehlhorn, and Rumer (1962) have shown that for laminar

flow, the longitudinal dispersion coefficient was approximately pro-

portional to the velocity. Hoopes and Harleman (1965) showed that the

lateral dispersion, E2, was proportional to the permeability Reynolds

n
number, Rk, raised to a power, n, E2 a Rk for Rk < 0.4. For >

0.4, E2 tends to become directly proportional to Rk. Although their

experimental results covered only a range of velocities for P-k < 10,

the trend in the data seems to indicate a linear dependence of the

dispersion coefficients on the velocity for values of R > 10. Further-
k

more, for mathematical convenience they introduced dispersion coef-

ficients into their mathematical model which were directly proportional

to the velocity.

Permeability Reynolds numbers are expected to he very much greater

than 10 in the porous pipe. Therefore, following the trend shown, the

dispersion coefficients were assumed to be directly related to the veloc-

ity. The lateral dispersion coefficients were assumed to be equal. These

Assumptions can be written as

E = E = a u (4-3)x 1 1

E = Ez =E2 = E3 a2 u (4-4)

where a1 and a2 are dispersivity coefficients with dimensions of

length.

Substituting Eqs. (4-3) and (4-4) into Eq. (4-1) gives the fol-

lowing equation. (The subscript A and the bar denoting the time average
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concentration are dropped as a natter of convenience).

ac + c aI c + - ( c ) a ac
at +ax =ax ax ay 2 'ay az 2 z

Equation (4-5) is the basic equation for the mathematical model in which

the dispersion coefficients are proportional to the velocity.

Later in this chapter the solution of this equation is compared

with the exact solution for a diffusion process when the coefficients

are assumed to be constants. Therefore, as an intermediate step in

the comparison, the perturbation solution for the case where the dis-

persion coefficients are assumed constant was found. Following

equations (4-3) and (4-4), the form of the dispersion coefficients was

taken as

E10 =a u (4-6)

E20 a2 u (4-7)

where u = a characteristic velocity.

The terms a 1 and a2 are the same as previously defined. The equation

resulting from the substitution of Eqs. (4-6) and (4-7) into Eq. (4-1)

is

2 2 2c+ u = a uac + a u c+ a uac (4-8)t ax 1 0 ax 2  2o ay 2  30 z 2

Equation (4-8) is the basic equation describing the dispersion process

where the dispersion coefficients are assumed to be constants.

Equation (4-5) and (4-8) can be made non-dimensional by intro-

ducing a characteristic length, L, and a characteristic velocity, u
0
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such that

x = Lx', y = Ly', z = Lz' (4-9)

u =u ut (4-10)

t ti '(4-11)
uo

where the prime in this case denotes the dimensionless quantity. Upon

substitution of the above equations into (4-5), (dropping the primes

as a matter of convenience and noting that the quantities are dimension-

less), the result is

3c Th 1 3 3c c 1 c
- + u -- - -- u -- + u -- + - u a- (4-12)
at 9x PS 1x lx P2 3y ay P22 az y

where P = L P L (4-13)
1 a, 2 a 2

This is the non-dimensional equation for the mathematical model with

the assumption of dispersion coefficients proportional to velocity.

Substituting Eqs. (4-9), (4-10), and (4-11) into Eq. (4-8) gives

the nondimensional equation for the mathematical model with constant

coefficients of dispersion. Upon substitution, it becomes

2 22
S+ u 3 = 1 D 2c + -1 c + 1 a c 4_14)

at ax P 2 P 2 P 4-12
1 3x 2 ay 2 3z

The solutions of Eqs. (4-12) and (4-14) depend upon the initial

and boundary conditions imposed on the system. In this model, the

initial condition imposed was that of an instantaneous point source

introduced into the system at time, t = 0. It was located at the

originof the coordinate system. Mathematically, this can be represented
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by:

c = c(x,y,z,O) =(M/p)6(x) 6(y) 6(z) (4-15)

where M = cP dydxdz is the mass of tracer introduced at x = 0,

y = 0, z = 0 and t = 0.

p = the density of the tracer

6(y) = the Dirac delta function of the variable y.

The boundary condition appropriate for an instantaneous point

source is

S-- o as x2 + y2 + z2 -- o, for all t (4-16)

Using the initial and boundary conditions above, solutions to

Eqs. (4-12) and (4-14) can be found using a perturbation technique.

The technique and solutions are given in the following sections.

4.3 Perturbation Solution of the Dispersion Equation with Constant

Coefficients

In order to find the solution to Eq. (4-14) subject to the initial

and boundary conditions, Eqs. (4-15) and (4-16), the following trans-

formation is introduced:

= x - ut (4-17)

With this change of variable, Eq. (4-14) becomes

ac 1 2c 1 ( u c - t ) - (4-18)
t PS 1 D2 P 2 \3 y at y y ( P2 2
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If the concentration and velocity are assumed to be continuous functions,

Eq. (4-18) can be written as

2 2 2 2 2
_C 1 2 c 1 D c 1 2 c t Dc D u t Du a c
t ~P 1  P 2 F 2 P E 2 ~ P 2y 3EDy

P2 32 ~ 2 Dz '2 3 y2 2

2 2 2
+P t2 J 2 2 (4-19)

Another transformation is introduced which scales the coordinates

relative to their respective dispersion coefficients. The coordinate

trans formations are:

X = A 1 (4-20)

Y yF (4-21)

Z = z/P (4-22)
2

Substituting these into Eq. (4-19)

2 2 2 2 2
= 9c + + -c t - 2_ _X _

Dt D Y2 DZ 1 DX DY2 1l Y MXY

+ t2 p (-)2 @c (4-23)

A solution for Eq. (4-23) based on a perturbation procedure can

be found by expanding the solution and the defining equation in terms

of a small parameter, s. To do this, the velocity, u, and the con-

centration, c, are expanded as follows:

u = 1 + 6 f1 + E2 2 + (4-24)
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where f1 , f2,... are functions of y, and

a = c + :+ 2C + (4-25)

The resulting equation upon substitution of Eqs. (4-24) and (4-25) into

Eq. (4-23) and rearranging is

-v 2 D+-V 2c +1t

C 2c 1

+ E2 c2V2C + t Vat 2 1 aX

af a2 c f a2 c
+ 2 t2VIPT o1 y MYa DY aay

where V
2  2  + 2

X2 Y 9Z

ac D 2 f af a2 C
0 + 2tVS J X oax '2 iaDY MxY

2 f c 1 2

D2 + DX DY2

2 ~ 2 2a o
+f c( 4-26-t 57- X2 0(3 (4-26)

(4-27)

and 0( 3) means order of E3

Some assumptions concerning the velocity and the initial condition

are introduced here before expanding Eq. (4-26) and grouping the coeffi-

cients of the powers of e. Any velocity profile can be represented by a

linear profile for a limited distance within the neighborhood of the

point of interest. This distance will depend upon the curvature of the

velocity profile. In this model the velocity in the region of interest

is assumed to have a linear profile which can be represented by

u = 1 + sy = 1 + s

1

(4-28)

where s = the slope of the nondimensional velocity profile and f1 = y.
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If the series expansion of the concentration is introduced in the

initial condition of equation (4-15), the mass of tracer, M, must be

expanded as

M ; M0 + EM + EM2 + .... (4-29)

To solve the zero order equations, the initial condition is taken as

M = M (4-30)

This condition implies that in order to conserve the mass, no addi-

tional mass can be injected. Therefore, the initial conditions for

the higher order equations become

M1 = M2 = M 3 = ... = 0 at t = 0 (4-31)

Grouping the coefficient equations for the orders of E from

Eqs. (4-15), (4-16) and (4-26) with the substitution of Eq. (4-28)

gives for the zero, first and second orders:

e0 coefficients

DCo 2---- - co = 0

(M /p)
c = 0 6(X) 6(Y) 6(Z) at t = 0

where (4-32)f f L
M = 0 - dX dY dZ

-O 1 2
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c +-0 as X2 +2 + 0o for all t (4-32)

1

E coefficients:

2

c1  
2  

- 0
t - V2 - 2t - - ,Ny-

cp 3

M= c 1 L 2 dX dY dZ = 0 at t 0 (4-33)

c +*0 as X2 + Y2 + Z2÷+oofor all t

C2 coefficients:

P 2 2
Dc2  2 1 1Y 2 1 o2
-Bt- Vc2 = - 2t 3X9Y + t P

M = dX dY dZ = 0 at t = 0 (4-34)

CO 1 2

2 2 2

c2 +0 at X + Y2 + Z2 - for all t

The solution of an equation of the form of Eq. (4-32) has been

given by Carslaw and Jaeger (1959) and in terms of the variables used

here it is

c = A exp - X + Y 2+ z2) (4-35)

where
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(M9,/p) vP P2
A= 8 3/212 (4-36)

8 Tr3/ L3

Substituting Eq. (4-35) into the first order equation gives the

result

c - V - l AXY ep _1 (X 2 + Y2 + Z2
t 1 F2 2t 5 / 2  4t

In theory, the solution of Eq:. (4-37) can be found by taking the

Fourier transform of the equation, or since the unit impulse response

solution, Eq. (4-35), is known, by using the convolution integral.

These methods sometimes involve integral solutions that are difficult

to determine. When this happens other less formal methods may be

used such as in this case.

The solution of Eq. (4-37) was found by following a procedure

outlined by Wylie (1951) for linear ordinary differential equations

known as the method of undetermined coefficients. The method involves

assuming trial functions and substituting them into the differential

equation. Proper values of one or more unknown coefficients which are

included in the trial functions are finally determined so that the

trial function or functions are actually a solution to the equation.

The solution to the first order, Eq. (4-33) determined in this manner

is
P

c =-Y c (4-38)
1 4 P2 0T2z

This solution provides a correction to the zero order equation and the
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concentration now becomes

c = c + Ec= c s -_ U (4-39)

Substituting Eqs. (4-35) and (4-38) into Eq. (4-34) gives the

second order differential equation

c 2 2 2 2
2___ 2 - (4-40)

Dt 2 P2 c 8t 4

The solution of Eq. (4-40) is

P 2 2 2 2
c = c X - 2 (4-41)
2 o P 248 84 12 21

2/

This solution gives a second order correction term for the mass which

is

P2
M2 = - 2 + 2t + + 2t(4-42)~2 Mo P 2(24 +12+84+21)

Although the initial condition M2 = 0 at t = 0 is satisfied, a re-

duction in the amount of mass injected is indicated by Eq. (4-46)

since t is always a positive quantity. However, this condition may be

necessary in order for the perturbation solution to converge to the

exact solution. That this is indeed the case will be evident in the com-

parison of the perturbation solution and the exact solution presented

later in this chapter.

The total concentration is given by

sXY 2 1 XY X2t Y tc=c 1- T -s - 8+ -84 + - (4-43)
2 

2 824 1
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This equation is correct to the second order in c. Higher order terms

would require considerably more algebraic endeavor but could be found

by the same technique.

4.4 Perturbation Solution of the Dispersion with Variable Coefficients

The same transformationsas those made in solving the dispersion

equation with constant coefficients are used in developing this solu-

tion. Therefore, the development will start with the substitution of

Eq. (4-17) into Eq. (4-12) resulting in

c D +( u -tu + 1u

(4-44)

Introducing the stretched coordinates, Eqs. (4-20), (4-21) and (4-22),

into Eq. (4-44) gives

Dc 9 a' c' 9' Dc Duc D(u c\
= u + " u a)+ Du - v t u

S +  P9 t -u ac) (4-45)

The expansions of the velocity, Eq. (4-24), and the concentration,

Eq. (4-25), are substituted into Eq. (4-44) and upon rearranging gives

2
Dc 2 cl _c , c0 P , D c00 V c + se 1  

- V c1  - fl 9t 1 BY + 2t -- f X

S! c - f f - 2t ft P2

2 Dc2 2 Dc , ac 1c Dc
+ 9t vc 2  1 at 1 aY 2 at 2 9Y

+ 2 2
+ i~ (f 1f 1  + f2) DD + Xo)_ ;P t (9 c1 +

2 2 9X9 9X
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P , 2 a2 c
- t (f) + 0 (E )=O (4-46)

2 x

where the prime denotes differentiation with respect to y, i.e., .

The same initial and boundary conditions as those used for the

solution involving constant coefficients are considered in developing

this solution. Therefore, grouping the coefficient equations for the

orders of E from Eqs. (4-15), (4-16), and (4-44) with the substitution

of Eq. (4-28) gives for the zero, first, and second orderi:

c coefficients

o - 2c = 0
at 0

M4 /P
c =0 6(X) 6(Y) 6(Z) at t = 0

0 P2 L 3
1 2

where (447)

c p L
M = 0 dX dY dZ

1 2

c + 0 as X2 + Y2 + Z + o for all t

E coefficients

-2c 2 Y c0 c P 1 c
at V c~ --- - + 2t 1= -04t 1 t ay P2 MXY

2
03

cipL

= dX dY dZ =0 at t = 0 (4-48)

1 12

c 0 as X 2 + Y + - 0 for all t 0
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E2 coef f icients

3c2 2 Y~ 9c 1  9c P 1  (3 c
(2

9c32 a c Dc P c 2

2+ 2 as X2  Y 2 +Z 2 + for all t j

The zero order coefficients in Eq. (4-45) are the same as those

found for the constant dispersion coefficients, Eq. (4-32). Therefore,

the solution is the same and is given by Eqs. (4-35) and (4-36) which are

- At exp { ( 2 + 2 + (4-35)

where A = 13/L (4-36)

Therefore, Eqs. (4-35) and (4-36) also represent: the zero order approx-

imation to the solution for variable dispersion coefficients. Thus,

to zero order the solutions for constant and variable coefficients are

identical.

Subs tituting Eq. (4-35) into Eq. (4-47) and rearranging gives

2 = +Y 2 + Z Y - XY
Vt c1  T(4t

2  t k~ 2 2t (4

22
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The solution was found by the method of undetermined coefficients and

is

c F-3Y XY + Y X2 + Y2 + 2 (4-51)
o 4 2 2f2 4t

This is the correction to the zero order term. The concentration

correct to first order is given by

P ,2 2 22
c= c + Ec1 =c sXY 1 3sY+ sY X + Y + Z (4-52)

0 - - 4 P2 4vV 2g -Y 4t
2 2

The first order concentration distribution for constant dispersion

coefficients is given by the first two terms in the above equation.

The other two terms reflect the correction to the constant coefficient

due to the variation of the disperison coefficient.

The governing differential equation for the second order correction

would be found by substituting Eqs. (4-51) and (4-35) into Eq. (4-49).

In theory, a solution to the resulting equation could be found, but the

process would require considerable algebraic endeavor. The solution was

terminated at the first order because the comparison between the exact

solution and the constant dispersivity coefficient solution indicated

good agreement to first order for slopes and distances found in the

porous pipe.

4.5 Limitations of the Perturbation Solutions

Perturbation techniques are used generally to provide solutions

to problems which cannot be solved exactly. The solution is given in

terms of a series expansion which is assumed to converge to the exact
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solution. Since only the first two or three terms of the series are

solved, the solution is an approximation and, therefore, is limited in

its application. Some criterion must be given to indicate where the

solution can be expected to be valid. Generally, the criterion is

based on the parameter E associated with the problem.

The limitations of the solution for variable dispersivity coef-

ficients, Eq. (4-52), were sought by the usual method of a specification

on the parameter E. A criterion based on s is really a specification

on the slope, s. The slope is the ratio of the travel time to the shear

time as can be seen by looking at the definition of s

du L duS=dy u y(4-53)

By this definition, s is not a constant but depends upon the point

of observation and the travel time. Therefore, the specification based

upon it is difficult to interpret and determination of the specification

was unsuccessful from a purely mathematical standpoint. Therefore, an

alternate method of specifying the limitations of the solution was

pursued. This involved the comparison of a perturbation solution using

constant dispersion coefficients with an exact solution for the same

conditions. The constant dispersion perturbation solution is a special

case of the variable dispersion case and when it no longer could be

considered valid, neither could the variable solution.

Carter and Okubo (1965) obtained the solution to the dispersion

equation with constant coefficients for an instantaneous source in a

shear flow. Their solution was for both horizontal and vertical shears.
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By equating the horizontal shear to zero, their solution is the exact

solution to the dispersion equation, Eq. (4-8), and in terms of the

nondimensional variables previously defined is

1 P12 2
A tX+~~ 2 2Ps

e _ {X + 2 LsYt) + +Z (4-54)
C 3/2 2 2 1/2 2 2 4t 4t

t (l + $t 4t (1 + $ t)

where

2 _ P1  2

= P2  12(4-55)

It is difficult to see the similarity between Eq. (4-54) in its

present form and Eq. (4-43). But, by using the expansion

1 _ _ 22t2 + ( t 2 ... (4-56)
1+ t

with t 2< 1 completing the square of the first exponent term, and

using the series expressions for the exponential terms extrinsic to these

in Eq. (4-43), Eq. (4-54) can be approximately represented by

CsXY 2 X + (4-57)
0[ 1T2 4 P 2 \32 16 48 12)

By comparing Eqs. (4-39) and (4-43), the first and second order

perturbation solutions, with Eq. (4-57), it appears that the basic

structure of the equations is similar. However, a criterion based on

E still cannot be established. Therefore, a numerical comparison was

made upon which to establish the limitations of the perturbation solu-

tion.
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The numerical comparison was based upon relative concentration

contours. The concentrations were normalized by dividing them by

At 3 /2 . This normalization makes the concentrations relative to the

concentration of a point moving in a uniform velocity field equal to

the mean velocity along the X-axis. The contours at the 50% level of

the normalized concentration were used as the basis of comparison.

The 50% contours for s = 1.0 and s = 1.5 are shown in Figs. 4-2

and 4-3. For s = 1.0, a slight deviation of the perturbation solutions

from the exact solution is noticeable. The first and second order

perturbation solutions bracket the exact solution with the first falling

outside and the second inside of the exact solution.

For s = 1.5, greater deviations are noticeable. The first order

solution approximately matches the exact solution over a portion of the

contours but deviates more in the vertical (Y) direction than for s =

1.0. The second order solution falls noticeably inside the exact solu-

tion.

After examining the concentration contours for numerous values of

s, the following criterion was established. The perturbation solutions

for both first and second order for the constant dispersion coefficients

were considered to be valid for values of s S 1.0. Since the constant

coefficient solution is a special case of the variable dispersion solu-

tion, the criterion is assumed to apply for Eq. (4-52) also.

A comparison between the exact solution, Eq. (4-54), and the per-

turbation solution for variable dispersion coefficients Eq. (4-52), is

given in Figs. 4-4 and 4-5. The contours at the 50% level are given in
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-- 2.0

Exact solution Eq. (4-58)

------- First order perturbation solution Eq. (4-43)

Second order perturbation solution Eq. (4-47)

Fig. 4-2 Relative concentration contours at 50% level for exact and

perturbation solutions, s = 1.0
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Exact solution Eq. (4-58)

------- First order perturbation solution Eq. (4-43)

____Second order perturbation solution Eq. (4-47)

Fig. 4-3 Relative concentration contours at 50% level for exact and

perturbation solutions, s = 1.5
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Exact solution for constant dispersion
coefficient Eq. (4-58)

Perturbation solution, variable dispersion
coefficients Eq. (4-56)

Fig. 4-4 Relative concentration contours at 50% level for the exact

solution and variable dispersion perturbation solution, s = 1.0
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Fig. 4-5 Relative concentrations along the vertical axis
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Fig. 4-4 and cross sections along the Y axis of the concentration dis-

tributions are given in Fig. 4-5. It is apparent from Fig. 4-4 that the

shearing effect is more pronounced for the variable coefficient solution

than for the exact constant coefficient solution. The distribution is

drawn into the zone of lower velocity and Fig. 4-5 indicates that the

maximum concentration no longer is located on the X axis but has shifted

slightly below the axis. This shift, when related to the porous pipe

problem, is negligible.

Application of Eq. (4-52) to the porous pipe case is considered by

using the velocity profiles given in Chapter 2. The criterion based on

the slope, s S 1.0, is more likely to be exceeded at the lower Reynolds

numbers. For the lower Reynolds number case, a value of U = 0.25 and a

du
gradient of du = 2 could be expected in the shearing zone. Using these

values the maximum distance to the point of observation according to

Eq. (4-53) is 0.125 ft for s = 1.0. -The maximum distance from the in-

jector to the probes varied from 0.115 ft. to about 0.25 ft. during the

experiments. However, observations in the shearing zone were achieved

only at the minimum distance, 0.115 ft.,and these could be considered

only as partially successful. In the region of pressure gradient flow

and in the transition to the shearing zone, the tracer method worked

successfully and Eq. (4-52) is applicable.

Since Eq. (4-52) is the result of a perturbation about a uniform

velocity, its application is limited to velocity fields approaching a

uniform distribution. The flow conditions approaching those required

for application of Eq. (4-52) are found in the ocean, large rivers and
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channels, and the atmosphere. The distinguishing feature of the solution

is the relationship of the dispersion coefficients to the shear velocity.

The perturbation method can be used for velocity profiles other than

linear by including more terms in the expansion. Obviously, for cases

involving a linear shear and constant coefficients of dispersion, Carter

and Okubo's solution, Eq. (4-57), is the one to use.

4.6 Velocity of Peak Concentration

It is obvious from Fig. 4-3 that distortion of the concentration

distribution occurs in a shear flow. Both dispersion and convection

tend to spread and distort the tracer cloud.In the higher velocity regions

the cloud moves ahead at a greater rate than would be evident in a uni-

form field due to a higher convection velocity and due to the result of

a greater dispersion rate. In the lower velocity region the reverse is

true since both the convective velocity and the dispersion rate are less

than for a uniform velocity. Since the shear was the most significant

contributor to the patch distortion, it was expected that it would also

have an effect on the longitudinal velocity of the peak concentration.

This effect was evaluated by considering the concentration distribution

given by Eq. (4-52).

By locating the shielded probes and injector always on a line paral-

lel to the pipe center line and by using this fact, the concentration,

Eq. (4-52), can be reduced to a simple expression by setting Y = 0 and

Z = 0. The reduced equation after transformation back to dimensional

form becomes
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e M/p (x-ut) 2 (4-58)

3/2 v E2 3/2  4E 1t

dc
The location of the maximum concentration can be found by setting dt

0 which reduces to

2 2
u t + 6 E 1 t - x =0 (4-59)

Solving Eq. (4-59) for t gives the time required for the maximum con-

centration to arrive at the point, x, which is

2 2 2
3E 9E + u x

t = - - + (4-60)
- 2 2u x

The velocity of the peak concentration, U , can be found by considering

the time required to move between two points on the axis, x, and x2'

such that

U = (4-61)
p t2 1

Using the subscripts 1 and 2 to distinguish the two points and times

and substituting Eq. (4-60) into (4-61) gives

u(x )
U = 2 /2 2  1/2 (4-62)

p 2 *9E 1 212 2 9E121/

x2 2 1 2
u u

It is apparent from Eq. (4-62) that the peak concentration travels at

a velocity different than the mean stream velocity, u. The difference
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is independent of the shearing effect, therefore, indicating that along

the longitudinal axis the shear does not affect the velocity of the peak

concentration. The difference is due to the effect of the dispersion as

indicated by the term

9E1 2

2 2

9E 2  9E 2

Rowever, as in most studies, if .2 < 1, and 2 2 << 1, then
u x u 2

U u.
p

The value of the dispersion coefficient found in the porous foam

was E 10 0.00167 u . During the experiments, the minimum distance

from the injector to the first probe was 0.055 ft. and for this distance,

Eq. (4-62) indicates a peak velocity which deviates less than one per-

cent from the mean velocity. Thus, within the experimental accuracy,

it was assumed that there was no distortion on the longitudinal axis

due to either the shearing effect or the dispersion effect.
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V. SUMMARY AND CONCLUSIONS

5.1 Flow in a Porous Foam Boundary

Velocity distributions in the porous boundary of a pipe were

investigated in this study. Measurements were performed in the 1.2

in. thick polyurethane foam lining of a 12 in. ID pipe which was

part of an open circuit air flow system. Several methods of making

velocity measurements were attempted which involved hot wire

anemometers and a helium tracer technique. An unshielded hot wire

anemometer was unsatisfactory due to the disturbance caused by the

hole required in the boundary. A helium tracer technique was devised

and miniature hot wire anemometer probes were developed for use as

sensors. Travel time of the peak concentration between two

shielded probes provided the data for determining the seepage

velocities. The data was reduced manually and by crosscorrelation

of the anemometer output signals. In the shearing zone, seepage

velocities were determined directly from the shielded hot wire

anemometer data. Measurements performed by both the tracer

technique and with the shielded probes are required to provide the

velocity distribution over the entire porous foam boundary.

Measurements of the longitudinal turbulent intensities were also

made and they provide some indication of the penetration depth of

the shear effects but are difficult to interpret in an absolute

sense.

Mathematical models based on an eddy viscosity concept were

developed to provide a theoretical velocity profile which could be
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compared with the measured results. Three models were developed,

two assuming constant eddy viscosity and the third using an eddy

viscosity proportional to the velocity. The resulting profiles were

all of exponential form with the penetration depth providing the

major indication of their differences. Within the scatter of the

experimental results, any of the theories could be considered to

give a satisfactory representation of the velocity distribution.

An attempt was made to relate the core flow in the pipe with

the boundary flow through the surface velocity and the eddy

viscosities at the surface of the porous boundary. It was hoped

that this relationship would provide a basis for predicting fric-

tion factors for the pipe which increased with increasing

Reynolds number as was observed. However, this model predicted

friction factors which decreased with increasing Reynolds numbers.

Development of the tracer technique for velocity measurements

required additional knowledge of the concentration distribution of

a tracer in a shear flow. Perturbation methods were used to

develop analytical solutions for dispersion from an instantaneous

point source in a shear flow with both constant and variable

dispersion coefficients. The constant coefficient solution was

compared with a known exact solution to determine the limitations

of the method. The solutions were applicable provided that the

product of shear rate and travel time to the point of interest is

less than 1. The shear effect caused no distortion in the peak

concentration velocity along the longitudinal axis. Distortion
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due to dispersion effects was less than one percent and was considered

to be insignificant in comparison with the experimental accuracy

presently possible.

5.2 Conclusions

The velocity profiles measured in the porous foam boundary of

a pipe indicate that shear effects penetrate to a relatively small

distance (about 0.25 to 0.30 in.) into the boundary. A finite

velocity exists at the surface of the porous boundary and its

magnitude when normalized with the shear velocity is about 1 to 3.

The velocity decreases approximately exponentially over the pene-

tration depth and a pressure gradient flow exists over the remain-

der of the porous boundary.

New experimental techniques and instruments were developed to

provide satisfactory velocity measurements in a porous foam

boundary. By combining the results of two measurement techniques,

it is possible to determine the velocity distribution throughout

the entire porous boundary. In the shearing zone of the boundary,

the shielded hot wire anemometer gave satisfactory results. In

the pressure gradient zone, the tracer technique provides a direct

method of measuring the seepage velocities.

An analysis which was based on the eddy viscosity concept gave

reasonable agreement between the observed and predicted velocity

profiles in the porous boundary. However, predictions of pipe

friction factor based on the surface slip velocity and eddy

viscosity from this analysis do not agree with observations. This
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eddy viscosity model of shear flow in a porous boundary does not

explain the interaction between the boundary and core flows.

A perturbation analysis of the concentration disbribution in

a shear flow due to an instantaneous point source was developed.

Along the longitudinal axis, shear effects cause no distortion in

the velocity of the peak concentration. The solution is applicable

to diffusion and dispersion from an instantaneous point source

provided that the product of shear rate and travel time to the point

is less than 1.

5.3 Recommendations

The present study should provide the background for additional

research into porous boundary effects in turbulent shear flow. It

presents the first experimental data for flow in the boundary.

Further refinement of the tracer technique should be attempted. With

the design of a more sophisticated injector, it may be possible to

achieve direct measurements of the seepage velocity in the shear zone.

From the theoretical point of view, different models should be

devised in an attempt to describe the interacting mechanism between

the core and boundary flow. If this coupling could be found, gross

flow features such as the friction factor could be predicted.

Perhaps, such a model would provide a greater understanding of

resistance to flow in alluvial channels since they have been shown

by Lovera and Kennedy (1969) to exhibit an increase in resistance

with increasing Reynolds number. The determination of the proper

model may not be easily accomplished, but additional knowledge may
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be gained through additional experiments since a method is now

available for making measurements in the boundary.

163



BIBLIOGRAPHY

1. Beavers, G. S. and Joseph, D. D., "Boundary Conditions at a
Naturally Permeable Wall", Journal of Fluid Mechanics, Vol. 30,
Part I, 1967, pp. 197-207.

2. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport
Phenomena, John Wiley and Sons Inc., New York, New York, 1960.

3. Brinkman, H. C., "On the Permeability of Media Consisting of
Closely Packed Porous Particles", Applied Science Research, Al,
1947, pp. 81-86.

4. Buyevich, Yu A., Leonov, A. I. and Safrai, V. M., "Variations in
Filtration Velocity due to Random Large-Scale Fluctuations of
Porosity", Journal of Fluid Mechanics, Vol. 37, Part 2, 23 June,1969,
pp. 371-381.

5. Carter, H. H. and Okubo, A., "A Study of the Physical Processes of
Movement and Dispersion in the Cape Kennedy Area", U.S. Atomic
Energy Commission, 20, 20359(NYO-2973-1), 1965.

6. Cionco,R. M., "A Mathematical Model for Air Flow in a Vegatative
Canopy", Journal of Applied Meteorology, Vol. 4, August 1965,
pp. 517-522.

7. Collis, D. C. and Williams, M. J., "Two-Dimensional Convection
From Heated Wires at Low Reynolds Number", Journal of Fluid
Mechanics, 6, Part 3, October 1959, pp. 357-384.

8. Crank, J., The Mathematics of Diffusion, Oxford University Press,
London, 1956, 347 pp.

9. Eckert, E. R. G., Diaguila, A. J., and Donoughe, P. L., "Experiments
on Turbulent Flow Through Channels Having Porous Rough Surface With
and Without Air Injection", N.A.C.A. TN 3339, 1955.

10. Einstein, H. A., "Deposition of Suspended Particles in a Gravel
Bed", Journal of the Hydraulics Division, A.S.C.E., Vol. 94, No.
HY 5, September, 1968, pp. 1197-1205.

11. Flow Corporation, "Constant Temperature Hot-Wire Anemometer In-
structions", Bulletin 900A, March 1967.

12. Flow Corporation, "Hot Wire Measurements of Air Velocity, Direction
and Temperature", Bulletin 94B, January 1964.

13. Forstall, W. Jr. and Shapiro, A. H,, "Momentum and Mass Transport
in Coaxial Gas Jet", Transactions A.S.M.E., Journal of Applied
Mechanics, Vol. 17, 399 pp., 1950.

164



14. Harleman, D. R. F., "Transport Processes in Water Quality Control",
A series of notes to accompany lectures in 1.77- Water Quality
Control, Department of Civil Engineering, M.I.T., 1970, 43 pp.

15. Harleman, D. R. F., Mehlhorn, P. F., and Rumer, R. R., Jr., "Longi-
tudinal Dispersion in Uniform Porous Media", Report No. 57, Hydro-
dynamics Laboratory, M.I.T., August 1962, 30 pp.

16. Hinze, J. 0., Turbulence , McGraw-Hill Book Co., Inc., New York,
1959.

17. Hoopes, E. R., "Unified View of Diffusion and Dispersion", Journal
of the Hydraulics Division, ASCE, Vol. 95, No. HY 2, March 1969,
pp. 621-631.

18. Hoopes, J. A. and Harleman, D. R. F., "Waste Water Recharge and
Dispersion in Porous Media", Report No. 75, Hydrodynamics Laboratory
M.I.T., June 1965, 166 pp.

19. Inoue, E., "On the Turbulent Structure of Airflow Within Crop
Canopies", Journal of Meteorological Society of Japan, Vol. 41,
1963, pp. 317-326.

20. Lee, Y. W., Statistical Theory of Communication , John Wiley and
Sons, Inc., New York, 1960.

21. Lovera, F. and Kennedy, J. F., "Friction Factors for Flat Bed Flows

In Sand Channels", Journal of the Hydraulics Division, ASCE, Vol.
95, No. HY 4, July 1969, pp. 1227-1234.

22. Munoz Goma, R. J. and Gelhar,. L. W., "Turbulent Pipe Flow with Rough
and Porous Walls", Report No. 109, Hydrodynamics Laboratory, Depart-
ment of Civil Engineering, M.I.T., April 1968, p. 162.

23. Murray, J. D. "Viscous Damping of Gravity Waves Over a Permeable
Bed", Journal of Geophysics Research, Vol. 70, No. 10, May 15, 1965,
pp. 2325-2332.

24. Olsen, R. M. and Eckert, E. R. G., "Experimental Studies of Tur-
bulent Flow in a Porous Circular Tube with Uniform Fluid Injection
Through the Tube Wall", Transactions A.S.M.E., Journal of Applied
Mechanics, Vol. 33, Series E, No. 1, March 1966, pp. 7-17.

25. Plate, E. J. and Quraiski, A. A., "Modeling of Velocity Distri-
bution Inside and Above Tall Crops", Journal of Applied Meterology,
Vol. 4, June 1965, pp. 400-408.

26. Princeton Applied Research Corporation, "Instruction Manual Cor-
relation Function Computers Model 100 and 101", 1967.

165



27. Rotta, J. "Das in Wandlhe G'5ltige Geschwindigkeitsgesetz Tur-

bulenten Str6mungen", Ingenieur-Archiv, 18, No. 4, 1950, pp.
277-280.

28. Rush, D. and Forstall, W.,. Jr., "Apparatus for the Determination of

the Concentration of Helium in Air by the Thermal Conductivity
Method", M.I.T. Gas Turbine Laboratory, Meteorology Internal Report
No. 4, January 1947., 16 pp.

29. Takeda, K., "On Roughness Length and Zero-Plane Displacement in
the Wind Profile of the Lowest Air Layer", Journal of Meteorological
Society of Japan, Vol. 44,No. 2, April 1966, pp. 101-107.

30. Ward, J. C., "Turbulent Flow in Porous Media", Proceedings of
A.S.C.E., Journal of Hydraulics Division, Vol. 90, No., HY 5,
September, 1964, pp. 1-12.

31. Weast, R. C. (ed.), Handbook of Chemistry and Physics, 49th
Edition, The Chemical Rubber Co., Cleveland, Ohio, 1968.

32. Wylie, C. R., Jr., Advanced Engineering Mathematics, McGraw-
Hill Book Co., Inc., New York, 1951.

33. Yuan, S. W. and Brogren, E. W., "Turbulent Flow in a Circular
Pipe with Porous Wall", The Physics of Fluids, Vol. 4, No. 3,
March 1961, pp. 368, 372.

166



APPENDIX A

LIST OF SYMBOLS

Only the commonly used symbols are defined here. Some repetition

of symbols is unavoidable; in such cases it is obvious from the context

in which they appear which definition applies. Dimensions of symbols,

if any, are enclosed in parentheses.

English

a Fourier coefficient

A Constant depending on wire characteristics

A Instantaneous point source strength

b Fourier coefficient

B Constant of proportionality in eddy viscosity

c Mass concentration, mass of tracer per mass of solution

c Constant characteristic of porous medium

C Constant characteristic of hot wire

d wire diameter (ft)

DAB Molecular diffusion coefficient (sq ft/sec)

E Turbulent dispersion coefficient (sq ft/sec)

E 10 Dispersion coefficient on longitudinal axis (sq ft/sec)

f Friction factor

fd Drag force per unit volume (lb/cu ft)

2
g Gravitational acceleration (ft/sec )

I Electric current in the hot wire (amperes)

k Intrinsic permeability (sq ft/sec)
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K Thermal conductivity (Btu/sec-ft-*R)

Z Wire length (ft)

L Characteristic length (ft)

M Mass of tracer (slugs)

n Constant exponent depending on hot wire characteristics

n porosity

P pressure (lb/sq ft)

Constant, ratio of characteristic length and dispersivity
coefficient

q Specific discharge (ft/sec)

R Wire resistance (ohms)

R Radius to porous boundary (ft)'

R Pipe Reynolds number

Permeability Reynolds number

s Slope of nondimensional velocity profile

t Time (sec)

T Absolute temperature (*K)

T Fundamental period of periodic signal (sec)

u Mean velocity in x direction (ft/sec)

u Normalized seepage velocity in longitudinal direction

u Characteristic velocity (ft/sec)

u, Shear velocity (ft/sec)

U Seepage velocity normalized with shear velocity

U1  Seepage velocity due to pressure gradient normalized with shear
velocity

U Surface velocity normalized with shear velocity
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U Seepage velocity less pressure gradient flow normalized with

shear velocity

v Mean velocity in y direction (ft/sec)

V Fluid velocity normal to hot wire (ft/sec)

V Seepage velocity normalized with average velocity

V Pressure gradient seepage velocity normalized by average
velocity

w Mean velocity in z direction (ft/sec)

x Longitudinal coordinate

X Transformed coordinate

y Vertical coordinate

Y Transformed coordinate

z Transverse horizontal coordinate

Z Transformed coordinate

Greek

Dispersivity coefficient (ft)

Constant dependent on porous medium

6(y) Dirac delta function of the variable y

E; Eddy viscosity (sq ft/sec)

Parameter in perturbation solutions

K Karman's constant (0.4)

Dynamic viscosity of fluid (lb-sec/ft 2

Kinematic viscosity (sq ft/sec)

Transformed coordinate moving relative to the mean velocity

p Density (slugs/cu ft)
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T Shear stress (lb/sq ft)

T Shear stress at surface of porous boundary (lb/sq ft)

2 Constant

Subscripts

More than one subscript can be used with one symbol.

i,j,k Can take any value of 1,2,3 which represent the three
coordinate directions

o Value at surface of porous boundary or at a known reference
value

R Any reference value

1 Pressure gradient direction
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APPENDIX C

APPROXIMATE ANALYSIS OF THE FRICTION FACTOR-REYNOLDS

NUMBER RELATIONSHIP

Analysis of the change in friction factor, f, with the per-

meability Reynolds number, Rk, is presented for the eddy viscosity

model, e = BLU . Analysis of the other model proceeds in the same

manner with the differences arising from equations for U0 and 6.

The method is described in Section 3.7 and, therefore, only the

mathematical details are included here.

The goal of the analysis is to determine the sign and magnitude

of the slope, F, where

d fd
F=d lnRk k d Rk (C1)

It is assumed that the quantities c, ik, and R, and the reference

values, ) and (ln Rk)o are known.

The solution is developed by first determining the pressure

gradient flow, V1, from Eq. (3-83). Note that all velocities are

normalized with the average pipe velocity, u, in this Appendix.

The value of B and the surface velocity, V are determined simul-

taneously from Eqs. (3-81) and (3-82). Denoting the differentiation

with respect to the (ln Rk) by a dot over the variable, the Eqs.

(3-83), (3-81) and (3-82) are differentiated respectively to give the

following three equations.

a1F + b1 V1 + d1 = 0 (C-2)
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where

a = R f( ) -3

b1~ 2 8c 8)24 1/2
b - + Rc- /

k

2

= 2 2 2 Rk b1

F + b2 1 + c2 V + d = 0 (C-3)

where ^ 3
BV /8 5

b2

C2  5 3 (24 k- + c + 23

BV 5

d2  4Rk f

a3F + b3 1 + c3 V 0 (C-4)

where

a3  0 1 + (K )

b=3

c3
KV

0

The value of F can be found by solving Eqs. (C-2), (C-3) and (C-4)
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simultaneously. The resulting equation becomes

, 2 b2 3 c2 b2 b3 c2
1;-a - -a a - + d + -di -0 (C-5)

Thus, it is possible to determine F at the point of interest on

by evaluating the coefficients of Eqs. (C-2), (C-3) and (C-4).

coefficients are functions only of B, V1, and V . The friction

at another (Rk now can be estimated by using Eq. (3-84).

4 ' 1 I 1994

S 1996

the curve

The

factor
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