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ABSTRACT

THE METHODOLOGY OF BAYESIAN INFERENCE AND
DECISION MAKING APPLIED TO EXTREME HYDRO-
LOGIC EVENTS

This study presents the methodology of Bayesian
inference and decision making applied to extreme hydrologic events.

Inference procedures must consider both the natural or
'modelled' uncertainty of the hydrologic process and the statis-
tical uncertainty due to a lack of information. Two types of sta-
tistical uncertainty were considered in this study. The first type
is the uncertainty in modelling the hydrologic process, and the
second type is the uncertainty in the values of the model parameters.
The uncertainty is reduced by considering prior sources of informa-
tion (regional regression, theoretical flood frequency analysis or
subjective assessment) and historical flood data. A 'Bayesian dis-
tribution' of flood discharges is developed that fully accounts for
parameter uncertainty. In an analogous manner, model uncertainty
is analyzed, which leads to a 'composite Bayesian distribution'.
The uncertainty in flood frequency curves from rainfall-runoff
models is also analyzed, due to the uncertainty in the parameters
of the models. '

The Bavesian inference model is then applied to a
Bayesian decision model, where the decision rule is the maximiza-
tion of expected net monetary benefits. A case study of determining
the optimal size of local flood protection for Woonsocket, Rhode
Island, was considered, using realistic flood damage and cost
functions.

The results indicate that Bayesian inference procedures
can be used to fully account for statistical uncertainty and that
Bayesian decision procedures provide a rational approach for
making decisions under uncertainty.
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CHAPTER 1

Introduction

Each year floods occur and result in large monetary damage,
loss of life, and the disruption of community services. Since most
historical records are short, the estimation of flood frequency
curves is difficult. Such uncertainty can lead to poor flood design
decisions.

While too often hydrologic analysis emphasizes hydrologic
variables, the real decision variable is a general engineering
variable, like the height of a dike or the size of a spillway. The
hydrologic variables in flood estimation may be a T year flood or
a flood frequency curve. These hydrologic variables should be used
as an input into the decision process that leads to the 'best'
engineering design. In the decision process, the hydrologic variables
are related to design variables through a utility function which
reflects the different economic and social implications of the
project.

A decision process that is formulated to consider the occurrence
of flood discharges as a stochastic process usually produces better
designs. Due to limited data, the estimation of the extreme values
for a stochastic process of flood discharges is extremely difficult,
thus leading to significant statistical uncertainty. The statistical
uncertainty is reflected in the uncertainty of the probability models

as the correct ones to represent the process at hand; it 1is also
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reflected in the parameters of those models that are used to
represent the true stochastic process. A decision process should be
able to consider this statistical uncertainty, as well as the
modelled uncertainty (the stochastic process), if rational designs
are to be obtained.

Bayesian analysis, within the framework of statistical decision
theory (Raiffa, 1968), prescribes a methodology for making decisions
under the conditions of uncertainty and risk. Decision theory
allows the decision maker to consider together the uncertainty
of the modelled process, the quantifying of decision outcomes and
the preferences towards these outcomes. Bayesian analysis is a
probabilistic framework by which the uncertainty in any design
variable and the knowledge about that variable can be considered
jointly with the risk involved in the actual decision process.

Normally used procedures for flood design do not consider
correctly the interaction among the hydrologic variables, the
economic implications, and the preferences toward particular outcomes.
The standard flood design procedure is to determine some project
flood which leads to a design. No attempt to specify preferences
towards particular outcomes is made, and the economic criterion for
the project is that benefits exceed costs, at the specified design.
The standard economic criterion for maximizing expected benefits is

usually not considered.
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The analysis of statistical uncertainty also is not analyzed
correctly in current procedures of flood analysis. Usually, in-
ferences on the occurrence of future floods are made by using a
convenient probability model of flood discharges, where the unknown
parameters are calculated from historical records. Such procedures
for making inferences do not fully account for the uncertainty in the pro-
bability models of flood discharges or the uncertainty in the parameters of
the models. Incorrect designs can result from an incomplete
accounting of statistical uncertainty. Bayesian statistical procedures
.can account for all statistical uncertainty and moreover provide a
procedure to pool together all the available information, be it

historical, regional or subjective information.

1.1 Literature Review

Even though interest in Bayesian procedures is increasing, there
are few reports of applying a full Bayesian analysis to hydrologic
design.

A study by McGilchrist and Woodyer (1970) looks at the occurrence
of floods greater than some discharge. A Bernoulli process is assumed,
so that no distribution properties of the exceedance floods are
specified. A beta pdf, for the parameter of the binomial pdf, is
used. To estimate the parameters of the beta pdf, they use a
combination of maximum likelihood point estimators and classical
confidence interval procedures. Such procedures should not be passed

off as Bayesian statistics. Since their model does not consider the
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distribution of flood discharges, the application to real decision
problems would be limited.

The study by Shane and Gaver (1970) uses an exceedance model,
similar to the exceedance model in this study. Their study finds
the posterior pdf of the model parameters from the observed data and
from a prior pdf. The prior is found from a regional regression.
Using a linear cost function for flood protection, and using a constant
damage, if a flood occurs, they find the optimal Bayes point
estimator. This estimator is the one which minimizes expected
damages plus the cost of protection. Point estimators will be shown
to underestimate the uncertainty in the flood discharge pdf in
Chapter 2 of this study. Shane and Gaver's procedure was not applied
to a decision problem with real cost and damage functions, and thus
the real issues in the decision process were not considered.

Andersen et al (1971) applied Bayesian statistical theory to an
irrigation problém. The decision was to determine crop plantings,
when future water supplies were unknown. The decision framework
is extremely simplified. The future states of nature, water supplies,
is represented by four discrete states; poor, fair, good and
excellent water supplies. Information on the water supply is es-
timated by surveying snow pack levels. While the problem is inter-
esting, the oversimplification of the future states of nature limits

the procedures in more complex, real-world problems.
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Davis et al (1972) considers the decision rule that minimizes
risk. Conceptually, this decision rule can lead to difficulties,
since risk implies that the 'correct' values for unknown parameters
are known. In real-world decision problems, parameters are simply
not known. Furthermore, the decision rule of maximizing expected
utility seems to be a more appropriate decision rule. Davis et al
do not use prior pdf for uncertain parameters, but only use observed
data.

Tschannerl (1971) considers the optimal reservoir design using
Bayesian procedures. His utility is a function of the design and
uncertain parameters of the reservoir inflows. Such a utility
function would be very difficult to find for real-world problems,
where most utility functions depend upon the decisions and the
uncertain discharge. To simplify the analysis, he assumes that the mean
is the only unknown parameter. Finding an 'optimal' design on the
basis of the uncertainty of the mean does not consider the complete
pdf of the flows. Such a procedure can lead to incorrect decisions.
His study is extremely interesting and also covers the effect of

stream record length on opportunity losses inv ved in the design.

1.2 Summary of Proposed Methodology

This study advocates the use of Bayesién procedures for flood
designs. The hydrologic variable, which is an input into the
decision process, is the probability demnsity function for q, the

flood discharges. The true pdf for q is unknown, and is represented
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by some probability model. This model has parameters which are also
unknown. The model uncertainty and the parameter uncertainty are
statistical uncertainties, due to incomplete information.

The proposed methodology is to determine the probability density
function for flood discharges, which completely accounts for all
statistical uncertainty. To reduce the statistical uncertainty in the
model parameters, historical data, as well as other sources of
information, is analyzed. This analysis leads to a posterior pdf for
the parameters. The Bayesian probability density function for flood
discharges is obtained from the model, conditional upon the parameters,
and the posterior pdf of the parameters. The Bayesian model for flood
discharges fully accounts for parameter uncertainty. In an analogous
manner to parameter uncertainty, model uncertainty is analyzed. The
analysis leads to a 'composite Bayesian distribution' for flood
discharges.

The resulting probability density function for the flood discharges
is then used in the decision model to determine the optimal design, With
the decision rule being the maximization of expected utility. The
utility function is net monetary benefits, and it depends upon the
design level and upon the occurrence of future flood discharges.

A case study for the Blackstone River, at Woonsocket, Rhode Island,
demonstrates that the proposed methodology is practical in real-
world problems. Both the procedures which account for statistical un-
certainty and the decision process used to find optimal designs can be

applied in a straightforward manner.
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CHAPTER 2

Theoretical Considerations of Inference and Decision

Procedures

2.1 Introduction.

Raiffa (1968) views the field of statistics as consisting
of two main fields, that of decisions and that of inference.

The field of decisions is concerned with the solution of
practical problems where a decision maker must decide upon some act
among a set of alternatives. Inference is concerned with increasing
the knowledge of how stochastic processes behave, separate to how
they may affect decisions. This thesis is concerned with both infer-
ences about extreme streamflow events (floods) and decisions concern-
ing alternative designs to minimize the economic (or social) effects
of such events.

The approach taken is that of Bayesian decision analysis which
combines Bayesian subjective inference procedures with the decision
framework of the Savage School (Savage, 1950)which employs subjective
utilities for consequences and probabilities for states of nature.

This chapter discusses this framework and compares Bavesian
inference procedures with non-Bayesian (classical, standard or ortho-
dox) procedures and Bayesian decision making (Savage School) with the
other principle schools of Fischer,Neyman-Pearson, and Wald (Raiffa,
1968). Only the Bayesian approach indicates to decision makers which

act is the best because the methodology considers realistic loss func-
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tions for the decision variables and can consider, explicitly, all
sources of uncertainty. Section 2.2.1 looks in detail at the Bayesian
inference problem from two approaches. The first approach is finding
'optimal’' Bayes' estimators for the uncertain parameters while the
second approach finds the Bayesian distribution of the random variable
of the decision process (in our case, flood events). The second ap-
proach considers and accounts for the whole probability distribution
of the uncertain parameters. This is done in a manner analogous to

compound distribution theory.

2.2 Inference Procedures.

This section discusses the main categories of inference pro-
cedures. Essentially the non-Bayesian or classical approach will be
compared to Bayesian inference approach. The classical statistical
school can further be broken down into those that support the Likeli-
hood Principle - 'Likelihoodists', and those that do not, - 'non-
likelihoodists'. There are several formulations that lead to the de-
velopment of the likelihood principle of which the formulation by
Birnbaum (1962), developed within the classical inference framework,
is probably the most elegant. The principle states that observations
which lead to the same likelihood function should lead to the same con-
clusions without specifying the relation between function and conclu-
sions. Most classical procedures do not satisfy the likelihood prin-

ciple. In fact, all procedures that necessitate reference to the ran-
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dom variable Q dinstead of the observation q violate this principle
(Lindley, 1972). This includes such procedures as unbiased estimators
and significance tests.

Bayesian methods satisfy the likelihood principle with the 1li-
kelihood function representing the observations in updating probability
density functions (pdf) of uncertain parameters, vis-a-vis Bayes' Rule.

Consider the problem of the hydrologist who must make a de-
cision between a number of alternate designs that propose to prevent or
decrease the occurrence of future floods. His first task is to make in-
ferences about the underlying process that generates these events but,
in addressing this problem, he is faced with a number of sources of un-
certainty. These sources of uncertainty may be summarized into three ca-
tegories (Benjamin and Cornell, 1970).

1. ©Natural uncertainty. This is the uncertainty in the

stochastic process - the occurrence of streamflows
(especially extreme streamflows for our problem)

2. Statistical Uncertainty. This is associated with the
estimation of the parameters of the model of the stochastic
process due to limited data.

3. Model Uncertainty. his is associated with the uncertainty
that the probabilistic model of the stochastic process may
not be the true model. Most hydrologic processes are so
complex that no model yvet devised may be the true model or that
no hydrologic events follow one particular model.

What information does the hydrologist have to help inferences
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in the light of the above difficulties? Often he will have information
on the historical occurrence of flood events. The length of such records
in the United States average 40-50 vears and in many cases much less.
There also exists in hydrology other techniques for estimating flood
events. These techniques include regional flood-regression equations,
analytical and empirical formulations.

How the information that the hydrologist has, is applied in
making inferences, depends upon the school of statistics to which he
precribes. Let us first discuss the Bayesian approach. These discus-
sions will assume that there is no uncertainty in the probabilistic mod-
el of the stochastic process since a comparison between Bayesian and non-
Bayesian statistical inference can be handled by looking at the uncertain
parameters of the model. The uncertainties involved when choosing a mod-

el to represent the hydrologic process are dealt with in Chapter 7.

2.2.1 Bayesian Inference.

Bayesian inference lays its foundations upon the idea that sta-
tes of nature can be and should be treated as random variables. Thus the
mean annual flood, “q’ is a random variable distributed with a mean
m and variance 32 , estimated from the data. Considering streamflows

Q Q
as random variables, instead of deterministic variables, leads to better
inferences and designs. The extension of the argument, by the Bayesian
School, is that it is useful and professionally sound to treat all
uncertain states of nature as random variables, whether these are

the parameters of the models of streamflows, the capacity of a

flood channel, or the area flooded by a particular sized flood.
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Consider the problem set forth earlier about the hydrologist
making inferences on flood events. Before making use of the data collec-
ted at the site, he will wish to set forth his 'information' concerning
the uncertain parameter set of the model ©. This information will be
described by a prior pdf on 0O, f'QQ|Io) - prior to applying the data.
The basis upon which these priors are obtained will be discussed in de-
tail in Chapter 3; for now it will be enough to say that they are based
upon initial information Io obtained from some source - maybe the re-
gression relationship, theoretical studies, or eingineering judgement.

The hydrologist now has a set of observations g of annual
floods which he assumes comes from the model pdf fQ(qIQD which is
conditional upon the parameter set Q.

Bayes' Rule provides a procedure by which the prior distribu-
tion of the parameter set O may be updated by the data to provide the
posterior distribution of ©. The proof is found in most probability

tests (for example see Benjamin and Cornell, 1970, pages 64-65).

Py

£ ©@le, 1) = f@]9 - £'@T) / f@ (2.1

where
F'QQLQ,IO) is the posterior pdf conditional upon a set of
data g and initial information Io.
£(qlO) = L(QLQ) is the sample likelihood function of the
observations conditional upon the parameter set.

f'(@llo) is the prior pdf conditional upon initial information.
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f(q) 1is a normalizing constant.

The posterior pdf of O is therefore a function weighted by a
prior pdf of O and a data likelihood function in such a manner as

to combine the information content of both. The effect of various
priors and likelihoods upon the posterior is shown in Figure 2.1.

If future observations qp are available, Bayes' Rule can be used to
update the probability density function on @. In this case, the for-
mer posterior pdf on ©Q now is the prior pdf since it is prior to
the observation or utilization of the new data. Applying Bayes' Rule

then yields the new posterior distribution f"(QLgF,.g, Io).
£'0lgp9,T ) = L(gp0) * £'(O|g, 1)) (2.2)

The new posterior pdf would have been obtained if the two samples g

and g had been observed sequentially as one set of data. This is

easily shown by looking at the prior pdf of O conditional upon g

and I .
o
£'(0lg, T) = L(g|®) £'(Q|T) (2.3)
Substituting into (2.2) yields
£"@lag>gs 1) = Llggl® * L(q|O® - £'Q[T) (2.4)
The likelihood functions can be combined to give

£"'©@lap> 9 I )= Llgg,q|@® - £7@|1) (2.5)
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which is the same result for the posterior of ©O as if a sample
(SF’S) had been observed and initial information prior f'(Q|IO)
used.

The hydrologist wants to make inferences about the occurence
of flood events aésuming that such events Q can be modelled by a pdf
fQ(qlgp where the parameter set O 1is unknown with certainty. His
information has yielded a distribution for (@ which will be repre-
sented by £(Q).

The Bayesian analysis may proceed along one of two approaches.
One approach is to find the 'best' point estimate of the parameter
set denoted by Q% and make inferences about flood events by using
the model fQ(q[@é). The other approach is to develop a model of flood
events that is 'free' from any uncertain parameters. This model can
be found by applying compound probability distribution theory. The

unconditional distribution of 0, fQ(g) will be found from

fQ(q) = JO fQ(qIQD fe(@) do (2.6)

This distribution will be called the Bayesian pdf fQ(q) to distin-
guish it from the modeled pdf fQ(qIQD. Both approaches will be

analyzed in detail.

2.2.1-a Bayes Point Estimation.
As stated earlier, Bayesian analysis looks upon the true
parameter set 0O as random variables with a distribution £(0) that

is centered upon the expected value of the parameter distribution. If
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the estimator ©O' 1is chosen when 0O 1is the true value then a loss,
2 (4Qf|Q_) is encountered. Since the true estimator is a random va-
riable the loss is also a random variable. The expected loss can be

written as

E[loss|Q'] = [ 20" |9 f@(@_) d9 (2.7)
©)

The optimal Bayes estimator Qf is that estimatorwhich minimizes the
expected loss over all Q. f(9) is the pdf of the parameter set 0
and may be prior or posterior to data sampling. If it is prior, then
inferences on q will be made using initial information; if £( Q )
is solely data based,then it will be the rescaled likelihood function.
Depending upon the form of the loss function 2(Q'|Q),
different Bayes estimators will minimize (2.7). Table 2.1 gives

three commonly used loss functions and their corresponding Bayes

estimator.

2.2.1-b Bayesian Distribution

The second approach in analyzing uncertain parameters is the ap-
plication of compound distributions in a Bayesian framework. The de-
finition of a compound distribution is: (see Benjamin and Cornell,

1970)

fQ(q) = J@ fQ(q;Q) fe(e) do (2.8)

where fQ(q;e) is the pdf of Q which depends upon the random

variables 0 .,
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Table 2.1

Optimal Loss Function

Bayes Estimator

* *
0 = mean of f(0O) quadratic; (@ - 0)2
* *
© = median of f (O) linear; |0 - 0|
* *
© = maximum likelihood constant C if O # O
*
of f (©) 0 if ©=0
Table 2.1 Optimal Bayes Estimator for Various

Loss Functions.
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fe(O) is the pdf of the random variable O.
£ Q(q) is the pdf of the random variable Q which does

not depend upon any parameters.

The distribution %Q(q) can be interpreted as being the distribution
of (q;0) weighted by the distribution of © . In Bayesian analysis,
uncertain parameters are treated as random variables and the resulting
distribution EQ(q) is the Bayesian distribution of Q. As the case
with Bayes estimators, inference statements about Q can be made either
prior to data observation (£(0) = f'(@]Io) or posterior to data ob-
servation (f(0) = f£"(O|g, Io)). Inferences made by combining new
information is achieved by updating the distributions of uncertain
parametersthrough Bayes Rule, then by calculating the updated Bayesian
distribution through the application of Equation (2.8). It is incor-
rect to try to update EQ(q) directly.

For the hydrologist it may not be clear which of the two
procedures best represents the uncertainty of parameters. In fact,
only the Bayesian pdf of g, %Q(q), and not the modeled pdf,
fQ(q}@ *) correctly accounts for the uncertainty in 0O . This is

analyzed fully in Section 2.3.

2.2.2 Classical Inference.

If the hydrologist is a classical or non-Bayesian statistician,
this section will discuss how he will make inferences for the problem
discussed earlier from a Bayesian viewpoint.

First he will not use any other information except the in-
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formation contained within the data sample to estimate uncertain param-—
eters. The classical statistician does not view the uncertain param-
eter as a random variable but instead views the estimate of the parameter
as a random variable. The classical procedure is to find a point esti-
mate for the parameter and test as to whether the parameter falls within
a confidence interval of acceptance at some level of significance.
Consider the case of a hydrologist with a data sample of length

n from a shifted exponential of the form

1
FRICHIPOI red (2.9)
where
o } q - q, for q > q
0 a<qg

An interval estimate for the unknown parameter A may be established

by noting that an estimate of )\ can be obtained from 1/q' where

q' 1is the mean of fQ,(q'|A). A will be gamma distributed. To

%
test if A < A at a confidence level 1 - o, one may employ the dis-

tribution of q' in the following manner:

P[A<al = P[¢'>=] = 1-a (2.10)

1
a

For a given o and n, tables of the gamma distribution will
give 1/a as a function of A or, for given 1l/a and n , the con-
fidence level o may be established. Rearrangement will isolate
in the probability statement permitting the substitution of the ob-

served value of A and yielding the exact confidence interval on A.
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The confidence interval will therefore cover the true value (1 - a)
100 percent of the time.

Fundamental problems with classical confidence intervals have
been reported which can not be resolved except by applying a Bayesian
interpretation to confidence intervals. These problems may be summarized
as following:

1) A test for the region X\ <k (A<k]= 1-a) could, as dis-
cussed above, provide a bound for A which is dependent upont the data,
i.e. k - k(q'), or, fixing the bound on XA, develop a level of con-
fidence that depends upon the data, i.e. 1 - g =1 -~ a(q'). For the
classical statistician this should be disturbing since the confidence
levels are not measures of any fundamental kind of confidence but are
data dependent. (Pratt, 1965). This can be resolved in a Bayesian
framework since the parameter (and not the estimate) is the random
variable and such confidence interval probabilities are interpreted as
being estimates of the posterior distribution that is conditional upon

the estimate.

PA<k | X1 = 1-a

2. Another disturbing result arising in the classical procedures is
when a most powerful test on a parameter may be significant at one level
but not at a less extreme level (Stein, 1951). Examples have béen pre-
sented in the literature which exhibit this property, but,when the test is
interpreted within a Bayesian framework, this undesirable property will

not occur. (Chambers, 1970).
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Discussion so far has centered upon confidence intervals. The
classical statistician is also interested in the best point estimate,
and procedures used to obtain this estimate include the method of mo-
ments and the maximum likelihood criterion. Both methods are widely
discussed in statistics textbooks. The later procedure chooses that
value of the parameter, as a best estimator, by the simple rule that
states: the best estimate of the true parameter is the one with the
highest relative likelihood of being observed, given the sample. The

likelihood function is defined as

L © lag--rq) = £ (4;| ® (2.11)

n
it

*
and the estimator Q 1is when

9 * = 2.12
a_QL@ laj---q) = 0 (2.12)

The likelihood function gives an approximate distribution of the pa-
rameter, given the sample, from which confidence intervals can be
established. Such confidence interval testing suffers from the problems
discussed earlier and,as for point estimation, the next section will
show that such procedures significantly underestimate the uncertainty

in the flood events when uncertainty in parameters is present.
2.2.3 Comparison of the Bayesian Distribution with Bayesian Param—

eter Estimation.

This section compares the two procedures discussed under Section
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2.2.1 to determine if optimal Bayes point estimators or the Bayesian
pdf better represent the uncertainty towards unknown parameters and
therefore will yield better inferences on the decision variable of in-
terest — namely flood events.

Consider the process of annual flood events, 0, which has a
distribution fQ(qluQ,on) which is conditional upon the mean

. 2
and variance OQ.

tribution of flood events has only one parameter, O , which is un-

It will be assumed for simplicity that the dis-

known with certainty and that the hydrologists knowledge about O is

2
0 °

The decision role for the Bayesian parameter estimation is

represented by a pdf f@(e) with mean g and variance o

*
from Equation (2.7) where the optimal Bayes' estimate O will be

0" = min E[loss|0'] = [2(@']@') fe(O) do (2.13)
*Q
©

*
and the distribution of Q in the analysis will be fQ(q| © ). The

mean and variance of fQ(q‘@*) will be written as and

H|o”
OQZIO* respectively. If it is assumed that a quadratic loss function
on the parameters is used, the choice of O* will be the mean of

2
0"
the full knowledge of O represented in f@(@)’ but only employs the

f@(O) and will be independent of o This procedure does not employ
first moment. Intuitively it would seem the point estimation procedure
will underestimate the variance in Q, and inferences about Q will
not reflect the true uncertainty that exists. This is in fact what
happens,as will be shown below.

The Bayesian distribution of Q, fQ(q) follows from Equation
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(2.6) or (2.8) and is

EQ(q) = J fQ(q|O) £(0) do (2.14)
0

The moments of the Bayesian pdf are easily found to be :

iy = J@Jq q fQ(qle) f (0) d0 dq = [ Ho £(0) do (2.15)

Thus the mean of T (q) 1is the mean of the modelled distribution of

Q

Q weighted by the distribution of O . This leads to ﬁQ = UQ]U@ .

If a quadratic loss function is used, as in the Bayesian parameter

* ~
estimation which leads to O = UO’ then UQ = The mean

*.
Hale
of the Bayesian distribution is equal to the mean of the model dis-
tribution using the optimal Bayes' estimator.

The variance of the Bayesian distribution is by definition

o]

2_.7-'2_"’2
qQ " E[Q°] Hq (2.16)

Using Equation (2.15) this leads to

~ 2 _ 2 IR Y
GQ = j OQ f(0) do + J(UQ UQ) f (©) 4o (2.17)
0 0
oY
vie]l = Eglvielel 1 + vgylE[Q|e] ] (2.18)

where V[-] 1is the variance operator and E[-] 1is expectation. Thus
the variance of the Bayesian distribution of Q 1is the sum of two

parts. The first is the expected variance of Q given © and the second
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is the variance (over Q) of the expectation of Q given ©.

The first term of the variance is the variance of the model
distribution using the mean of fe(@) as in the Bayes estimator. It
is this part of the total variance for which a point estimator proce-
dure accounts. The second term of (2.18) is not accounted for in the
Bayes estimator procedure,and it is by this quantity that the preceding
procedure underestimates the variance of Q (given the uncertainty in
©) and will lead to misleading inference statements.

The effect of this can be shown in a simple example displayed
in Figure 2.2. 1In this example, the unknown parameter O is the mean,
the variance is known. The unknown parameter © may take on a value

of either Ol or 0, with equal probability, and the optimal Bayes

2
estimator is assumed to be the mean of P@(@), i.e. 6* = (®1+ 02)/2.

The error introduced by not adequately taking the uncertainty
of © dinto account is significant, especially for extreme events.

In most flood design, extreme events play an important role.
Inferences drawn from the Bayes estimator procedures could lead to
serious design mistakes.

This analysis can be extended to all classical procedures that
employ point estimators. There is no classical procedure to alleviate

the full variance accounting; the only valid approach seems to be the

Bayesian pdf.

2.2.4 Conclusions to Inference Procedures.

The past few sections have looked at inference procedures from

41



4

a - f(qle*) (quadratic loss function)
b - Bayesian distribution of g, f(q)

p(6): p(6=0y) =/
p(6=65) =Y
p(6)= O otherwise
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+
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Figure 2.2: A Comparison of a Bayesian pdf with a pdf Employlng

an Optimal Bayes Estimator



both the classical and Bayesian viewpoints. The following things
were found:
1. Classical procedures usually violated the likelihood
principle which stated, in essence, that sets of observa-
tions leading to the same likelihood function should lead

to the same inference, decisions, etc.

2. Classical confidence intervals lead to acceptance
regions or levels of significance that are data dependent;
also such confidence tests often given acceptance
regions that are rejected at higher significance (1-a)

levels.

3. Under Bayesian procedures, significance levels are inter-
preted as estimates of the posterior distribution and

such an approach clears up the difficulties of conclusion 2.

4. Of the Bayesian procedures, only the Bayesian pdf fully
and completely estimates the variance of the process due

to modelled uncertainty and parameter uncertainty.

5. Conclusion 4 can and should be extended to any procedure
that relies upon point estimation,whether Bayesian or non-

Bayesian.

2.3 Decision Analysis

The second field of statistics defined by Raiffa (1968) is that

of decisions. In many statistical problems, the two fields overlap the
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two categories. This is especially true in the analysis and design of
flood events. This Section will discuss the major schools of decision
methodology identified by Raiffa (1968). These major schools are
Fisher, ileyman—-Pearson, Wald and Savage.

Before each approach is discussed, the decision problem,as
perceived by the hydrologist, iz as follows: a hydrologist must de-

cide whether a flood protection design d, should be implemented

1

or d Suppose the design is a channel improvement to protect against

2"

the 100 year event. Design d, proposes to use a design discharge

1
QC even though the true value of the 100 year event for design d1 is
unknown with certainty. The information the hydrologist has includes
costs and damage curves as well as the information available to him
under the inference procedures presented in Section 2.2 - namely his-
torical data and analytical/empirical flood estimating techniques.

What information the hydrologist uses depends upon what deci-

sion school he follows. The discussion will divide the schools into

non-Bayesian and Bayesian (Savage) schools.

2.3.1 Non-Bayesian Decision Analysis

This Section will look at the simple decision problem from the
Fisherian, Neyman—-Pearson, and Wald decision perspective.

The Fisherian school perceives the role of choosing between dl
or d2 as a hypothesis test,not as a decision act. The analysis does

not employ losses associated with various errors and does not assign

probabilities to possible states of nature. It is only concerned with
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rejecting a null hypothesis if the null hypothesis is true and feels
additional sampling should be done until the null hypothesis can be
accepted or rejected beyond a reasonable level of doubt. 1In flood de-
sign this additional sampling is not feasible since the events are

rare and other sources cf information are not accepted by the Fisherian
School.

The Neyman-Pearson School frames the decision problem by a
hypothesis test where acceptance or rejection of the hypothesis is an
action problem. The evaluation between actions is determined by set-
ting the level of type I error, o, and choosing that strategy which
has the lowest type LI errors, R. This comparison is made by plotting
&) against the true state of nature. This is the operating charac-
teristic of the hypothesis rule (Benjamin and Cornell, 1970). The
power function of the strategies is a plot of (1-8) versus the state
of nature. An operating characteristic for our problems may be re-

presented by Figure 2.3. The problems with this approach are

1) Better error control only comes through more experimen-
tation which usually is not feasible in flood design.

2) The best strategy (experimentation and action) depends upon
the whole operating characteristic which depends upon re-
lative seriousness of each type of error and upon 'guesses"

as to where the true value of Q lies, thus reducing the

C
'decision' to one of pure judgement.

While hypothesis testing on strategies is often used by hydrologists,

the cogent information for decision making is the magnitude of the
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state of nature (or the probability of its magnitude), not its level
of significance. This can be shown by looking at Figure 2.4 which
shows the expected damages and costs versus the true 100 year discharge
for each of two decision strategies.

Classical procedures would test the null hypothesis
P[ch'Ql] = 1~-a. If a 1is set quite low to reflect the high cost
of decision d2, then the error of rejecting the null hypothesis, when
Qj:Ql, is the more serious of the two types of error.

A decision procedure which would use an expected damage and
costs criterion would test the mean of fQ(q) to see if it is larger
than Qb’ the break even point between the economies of decisions d

1

and d2. This is the Bayesian approach with linear utility functions.
The equivalent classical procedure is to test if Q_in at o = .50

and use strategy d, if rejected. The former classical procedure

1
puts too much weight in the ad hoc procedure of setting o  very
small.

Neither classical procedure (if the test P[Q>Qb] = .50
can even be considered from the classical viewpoint) will lead to the
best design since either dl or d2 will be chosen. Many different
designs will fall into the 'accept' category and hypothesis tests will
not indicate the best design.

Wald (1950) extended the concepts of Neyman and Pearson by
considering concepts as cost, loss, value, and worth of consequences

in his formulation of the statistical decision problem. Wald did not

assign probabilities to states of nature but found the value of a
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strategy conditional upon a state of nature being true, v(di|Q). Wald

would find those strategies that were not dominated by other strategies

(a strategy at least as good or better for all conditional states of

nature).

From the set of efficient strategies, the criterion on choosing

the best strategy was not addressed. Many criteria have been proposed

and a popular approach is that of minimax. The minimax rule states

that the best strategy is the one that minimizes the maximum loss.

This rule has been shown to have the following deficiencies:

1)

2)

3)

Minimax is equivalent to o = 8 which has been shown to
give an incoherent procedure on the basis of the sub-
stitutability principle between simple lotteries
(Lindley, 1971).

The violation of the principle of irrelevant alternative

[if 21 > 22 of (21, 22), then 12 can not be the best

of (21, 2 23) when &, is irrelevant to the choice

3
between 21, 22], has been demonstrated by Savage (1954).

2’

The optimal minimax strategy may be based upon a magnitude
of the state of nature which has almost zero probability

of occurrence.

Despite these demonstrations as to the unsoundness of minimax criterion,

it is still used. Other procedures similar to the minimax criterion

suffer from similar arguments. The problems stated above would not

occur under an expected utilitv criterion.
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2.3.2 Bayesian Decision Analysis.

The Bayesian decision analysis extends Wald's results by intro-
ducing both subjective utilities and probabilities for states of nature.
Savage (1954) developed the theory based upon subjective probabilities
and the theory of utility of von Neumann and Morgenstern (1947), even
though the concept of subjective probabilities and utility in decision
making goes back to Ramsey (1926).

The decision problem will be considered in detail since from
our previous discussion it has been shown to provide a framework that
does not lead to incoherent results and does not rely upon arbitrary
procedures.

The consequence of any decision depends upon the decision taken
and upon the subsequent outcome of the future state of nature, which
is unknown. Thus, for each decision strategy ass from a set A, and for
each possible outcome event ) , £frocm a set A, the decision maker
can define a utility or value function, u(ai, Aj). When the decision
action a; is taken, the qutcome event or state of nature Aj is
unknown; therefore, the utility function of the action-event set
u(ai,xj) is unknown and, thus, a random variable. The utility ex-

pected of any action a; is

E[ulai] = | ulag,r) £,00 da (2.19)

A

) *
The decision rule is to choose that act a that maximizes the

expected utility, that is

E[u|a*] = max Efu]a] (2.20)
all acA
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The decision strategy a; may include (for the flood control
problem) the building of dikes to some elevation, building a reservoir
of some particular volume, a flood channel of a particular size, the
restriction of land use in the flood plain, or any combination of these
actions; or to do nothing. The outcome event or state of nature Aj
can be a single or multidimensional array depending upon the complexity
of the analysis. It may include the discharge in the river, the height
that the dike fails, the area flooded, the damage caused or any outcome
which is uncertain and can be considered a random variable.

The field of utility theory has received a considerable amount
of attention but much more research needs to be done-especially in the
area of the assessment of decision maker's utility preferences. Re-
cent work in the area of utility theory include Fishburn (1964, 1969),
Pratt, Raiffa and Schlaifer (1965), Keeney (1969), Kirkwood (1972),
Keeney and Raiffa (1971), and others.

This thesis will not investigate in detail the utility aspect
of the decision problem but instead will employ an expected cost cri-
terion (linear utility function in costs) with the decision rule being:
choose that strategy a* which minimizes the expected damages plus the
cost of protection. Thus the main emphasis will be upon the inferences
of the states of nature fAQA)'

For most of this work, the state of nature A will be the peak
flood discharge, Q. If one is concernad with the problem of flooding
due to levee failure from seepage as well as overtopping them

A = (Q,R) where R is a measure of levee reliability and fA(X)
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becomes a joint PDF (g,r). The utility function u(ai;qj,r is

fo.r K

assigned for all strategies and states of nature. It is by this pro-

cedure that the simple decision problem is expanded.

2.3.3 Conclusions to Decision Procedures

In this section, the field of statistics dealing with decisions
was discussed. The non-Bayesian approaches were concerned with either
hypotheses tests or decision rules that did not address the cogent
issue of what values of the decision variables will lead to the 'best'
decisions given the information at hand, where 'best' is expressed
as the most preferred (which may or may not be the most economical).
The non-Bayesian procedures often required dubious ad hoc approaches
and produced strategies that could not be evaluated with the above
criterion. The Bayesian decision approach of the Savage school appears to
be a more consistent procedure for making decisions under uncertainty
and is the approach advocated by this thesis. Problems of application
exist but there are no problems in the concepts as with non-Bayesian

procedures.
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Chapter 3

Assessment of Prior Information

3.1 Introduction

In Chapter 2, the discussion found upon many of the theoretical
issues surrounding inference and decision making. It was shown that
the Bayesian probability density function of the random variable,
upon which decisions are based, provides a procedure that completely
accounts for parameter uncertainty. On this basis, the Bayesian
probability density function seems to be a rational approach for making
inferences. Furthermore, applying the Bayesian probability density
function and an appropriate utility function indicates to the decision
maker a rational decision strategy. This procedure is recognized as
Bayesian decision theory. An important part of the Bayesian approach
is the assessment of prior information about uncertain variables.

Such information is reflected in a prior probability density function.
Within the Bayesian school, there exist two groups. One group, the
'objectivists' (Keynes, 1921 ; Jefferies, 1961) feels that pro-
bability statements should reflect a logical or necessary state of
knowledge. Prior density functions should be based, therefore, on
hard facts, and people, given the same information, should arrive

at the same priors.

The other group, the 'subjectivists' (probably led by de Finetti
and Savage), feel that probability statements reflect the beliefs and
the willingness to act of the person making the inferences and de-

disions. These beliefs may come from an empirical study, theoretical
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analysis or intuition. There is no requirement that, given the same
information, two people should reach the same prior probability den-
sity distributions. One may have certain feelings, which he @an not
formally express, but which may have bearing upon the problem at
hand.

In water resource planning, there exists a large body of theore-
tical and empirical procedures for the estimation of uncertain quan-
tities in the absence of observed data. Also, in addition to such
procedures, experienced engineers have often applied their judgement
in making evaluations. This chapter will look at some methods for
evaluating prior probability density distributions in absence of

observed data.

3.2 Subjective Prior Assessment.

'engineering judgement' to obtain

Engineers have often applied
insights and assessments to parameters which could not be readily ob-
tained by other means. For example, a hydrologist may try to estimate
the percentage of rainfall that is infiltrated (or the parameters of
infiltration models) by applying his judgement, based on his know-
ledge of the physical characteristics of the basin. In essence, he
is looking for some point estimates such as the mean on the probability
density function (pdf) for that variable. The last chapter showed
that one could better account for the effects of uncertainty by con-

sidering the complete pdf rather than its central moment.

Subjective evaluation of the pdf is difficult because a decision
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maker often can not explicitly state a particular fractile value.
Instead, the value may be implicitly evaluated by his actions. This
leads back to the notion that subjective probabilities, which are
based upon the decision maker's beliefs, are inseparable from his
actions.

Probability assessments require experimentation that lets the
decision maker choose between actions. This is often in the form of
one lottery, Ll’ which is compared to another lottery, L2, with
known probabilities of winning or losing. If both lotteries have the
same payoffs and the decision maker is indifferent to whether he
'plays' one lottery or the other, the subjective probability of lot-
tery Ll is equal to the known probability of L2.

Such experimentation, though, is influenced by the procedural
setup and, as such, may affect the results. Other problems may
arise due to the following difficulties:

1) The questioning of the experiment or lottery

2) The order of the questions

3) The order in which random variables are estimated.

If more than one parameter of a distribution is desired (mean
and variance), the order of their evaluation may affect the results
since previous answers influence current assessments.

The assessments of prior distributions may be done on a single
future state of nature which is the random variable - for example,
the maximum peak discharge from spring runoff after observing the

winter snow fall, but before melting takes place. Assessment may
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also be used for the distribution of the state of nature where the
random variables are the parameters of the distribution. The dis-
tribution of annual peak flows may be known, but the mean and variance
will be unknown parameters, and therefore treated as random variables.

There are two effective methods for directly assessing subjec-
tive distribution on random variables. These are:

a) The Fractile Method.

The fractiles of the cumulative distribution may be assessed
directly or indirectly by breaking the random variables into inter-
vals that are equally likely. It is most convenient for the decision
maker to assess fractiles that do not require a high degree of re-
finement. Thus, the lower quartile (.25) is'easier' to assess than,
let's say, the .31 fractile. Usually about 5 fractiles are estimated,
and a pdf is fitted through the points. A common procedure (Raiffa,
1968) 1is to approach the problem by having the decision maker con-
sider the following set of questions:

1) "At what value of the random variable (R.V.) do you feel

that there is an equally likely chance that the true value
of the R.V. will be above or below?" This implies indif-

ference between the following two lotteries

(p=.5) Reward

heads

(p=.5) 0
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Let's assume he chooses y =7y . This will establish the .5
fractile.

2)"Suppose that the true value of the R.V. is greater than vy;
at what value of y are you indifferent to the above set of
lotteries?" This value will establish the .75 fractile. The
same procedure can be used to estimate the .25 fractile.

3) "At what value of y do you feel the true value will exceed
it only very rarely?" Such a procedure will try to establish
the .99 fractile. A similar procedure is used for the .01

fractile. Extreme fractiles are very difficult to establish.

Further questions should be asked to assure consistency. If the values
are inconsistent, this variance should be pointed out to the decision
maker and be resolved by further thought. Other procedures, besides
the above method, may be used to assess fractiles ( Schlaifer, 1961) ,
but they are all based upon lottery actioms.

The pdf can be also constructed from the cumulative fractiles.
A direct way to obtain the pdf is first to use the lottery actions
to determine the most probable value (mode) and values half as high as
the mode, and then to find points which divide the area of the pdf
into relative sizes.

In either the cumulative fractile method or probability den-

sity method, curves are fitted through the points.

b) Restrictive pdf Method.
Another approach to the estimation of the prior pdf is the

restriction of the density function to a particular family and the
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estimation of the parameters of the function. The choice of the
density function is not restricted by theory, but often a natural con-
jugate family is chosen. A natural conjugate priof density function
has the property in which the posterior distribution is of the same
form as the prior. This property simplifies the inference analysis

and often permits analytical derivations of the Bayesian distribution.
Since most of the weight of the uncertain parameter is near the mean
of its pdf and not in the tails, the resulting inferences will be
relatively insensitive to the functional form of the prior as long

as the location and scale parameters are closely estimated.

3.2.1 Assessment of Joint Distributions

The methods of subjective assessment for joint multivariate
priors are more complex than for the density function of a single
random variable. Consider the probability function f(Q}Gl,ez),
where 61 and 62 are unknown. The subjective joint probability

f(el.Gz) must be assessed. But if independence can be assumed, then
f(6162) = f(el)f(ez) (3.1

and each marginal density function can be assessed by applying either
of the methods above.

If © 3] are not independent, then f(elez) may be evaluated

1’ "2
by one of the following procedures:
1. Evaluate f(@lez) by assessing the relative probabilities

of combinations of variables by the fractile method. This

evaluation requires a large number of separate assessments.
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If the form of f(9162) is restricted to a particular
family of density functions, then the assessment of its

parameters may be easier.

2) Evaluate f(elez) by
£(6,6,) = f(ellez) £ (6, (3.2)

If the fractile method is used, successive assessments
would be required for f(ellez). Again, an easier approach
may be the restriction of the prior pdf to a particular

family and the assessment of the parameters of the pdf.

Making assessments on joint distributions of many variables is ex-
tremely difficult unless independence among some of the variables can

be assumed.

3.3 Empirically Based Priors.

3.3.1 Introduction.
Empirical formulas for estimating peak flood discharges have
been used for many years. A good summary is given in the Handbook on

the Principals of Hydrology (Gray, 1970). All flood formulae take

the general form of a regression involving physiographic characteris-
tics, such as basin area and rainfall-runoff characteristics, such as
excess precipitation or time of concentration. The coefficients must
be evaluated for a given region where the formula is to be applied.
These formulae supposedly provide a best estimate as expected

value of the flood peak. The variance of the estimator can not be
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obtained directly. One procedure for obtaining the variance of a
formula is to determine the estimated flood peak, ¢q, for a number
of sites where historical values, q, are known. A histogram of the
ratio y = q/q would provide a basis for the estimation of f(y).
For ungauged sites, f(y) and G (estimated for the ungauged sites)
would be combined to yield £(q).

In applying a flood formula and estimating its coefficients,
it should be realized that there exists a set of coefficients that
will minimize the dispersion of the predicted flood peak about the
observed peaks. Choosing the minimum variance estimators is, in
essence, the procedure of regression. Linear regression predicts
values of the dependent variable (flood peaks) from a linear equation
of independent variables (physiographic and meteorological factors.)
The set of coefficients of the linear equation is chosen so as to
minimize the squared difference between predicted and observed
values.

Linear regression can indicate how much of the variability in
the observed data is 'explained' by each independent variable and
how much is left 'unexplained'. It provides an estimate of the
variance of a predicted value of the dependent variables, both for
sites included in the regression and for new or ungauged sites.

Classical multivariate regression has been used to estimate
streamflow characteristics by Matalas and Benson (1961), Matalas and
Gilroy (1968), and Thomas and Benson (1970). Benson (1962) used

linear regression to estimate peak discharges for the T year flood.
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Regression is a minimum variance estimator that provides both

the expected value and the variance of the dependent variable at an

ungauged site.

Its application may provide useful prior information

for estimating flood discharges.

The classical multivariate regression model is of the form:

where
and

For
where _1?
sented by

[

1NN}

|m

=

B+ §§z+ € (3.3)

is an nxl vector of observations

is an nxk matrix of known basin physiographic
characteristics

Bo +~§Z is a (k+1) x 1 vector of parameters

is an nxl vector of error residuals such that
Ele] = 0 and V[e] = I0°

is the number of basins included in the regression
is the number of physiographic and meteorologic
variables in the regression

is the identity matrix which implies that the

error terms are uncorrelated.

ease in notation, define X as

i
i

+ Z) _ (3.4)

is a column vector of 1's and the regression model repre-—

(3.3)

may be rewritten as

Y = B-X+e (3.5)
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The use of the classical regression model implies that the
following assumptions hold that:
1) the independent variables have fixed known values.
2) The values of the dependent variables Y are mutually
independent.
3) The variance of the error terms is homoscedastic - that is,

constant for all vy oo

A further assumption that the error terms distributed N(0,0%) is
often made to facilitate the application of confidence tests. Ge-
nerally the errors will be normally distributed due to the Central
Limit Theorem, but the assumption is not required to perform the
regression.

The assumption that the dependent variables are independent
will, in general, hold for mean annual floods between basins. It
will also be true for the variance of mean annual floods. The assump-
tion that the error terms are homoscedastic and uncorrelated is
usually checked after the regression is performed, with the assump-
tion included.

Equation (3.5) can be solved for an estimate of J, which
will minimize the error sum of squares, g?g . It is well known
that this estimate, b 1is

T )—1

b = ( Ty (3.6)

<
1<

and has the following properties (Draper and Smith, 1966):

1. b 1is the estimate of @ which minimizes the error sum
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of squares ETE irrespective of any distributional properties
of €.

2. b provides a minimum variance unbiased estimator for 8
irrespective of distribution properties of E.

3. If the errors are independent and distributed N(O,OZ), then

b is the maximum likelihood estimate of 8.

An estimate of 02, sz, can be found from the mean square error, thus

82 = Y Y-b XY/ -k (3.7)

Without assuming any distributional properties of s? (or %) and

observing X +l’ the vector of known physiographic factors for the

'next' or ungaged basin, the following hold true:

1. E[Y ] = X .. b (3.8)
~ _ T T -1 2
2. VIY ;) = [1+X,, & 0 X..1s (3.9)
where §n+l is an estimate of the dependent variable for the

(n+1)th basin
E["] 4is the expectation operator

V[-] 1is the variance operator

These moments can therefore be used to determine the parameters
of the prior distributions by applying the restrictive pdf method of

Section 3.2.

3.3.2 Flood Regression for Southern New England

The regression formulae of the preceding section is applied to
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36 basins in southern New England. The resulting regression equation
is then applied to an ungaged basin to obtain prior information on the
parameters of the pdf for flood events.

Assume that the moments (mean and variance) of the pdf of
annual floods are affected by the following physiographic and meteoro-

logical characteristics

1. Basin Area, A; in square miles

2. Mean main channel slope, s&; in feet per mile

3. Surface storage area + 0.5, St, in percent of drainage
area.

4. Orographic factor, 0; dimensionless. This factor takes
into account, empirically, the effect of mountain ranges
and prevailing storm patterns upon the meteorological
processes which effect flood peaks.

5. Main channel length, LS; in miles

6. Rates of the 100 year 24-hour rainfall intensity to the
mean annual 24-hour rainfall intensity, R

h/m

7. Mean January temperature below freezing, TJ in degrees
Fahrenheit. This is used as a measure of the potential

effects of large snowmelts to flood peaks.

These seven characteristics were adapted from Benson (1962).
The effect of these seven characteristics upon the mean or
variance of the series of annual flood events may be in an additive

manner or may be in a multiplicative manner. The assumption that
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the effect is additive leads to a linear regression while the multi-
plicative assumption leads to a log-linear regression. Each will be

discussed.

3.3.2(a) Linear Regressiomn.

Let Y, which is the dependent variable, mean or variance, be
related in an additive manner to the given basin characteristics.
Thus

Y = b +b2'A+b - s +b

1 -St+b5'0+b6-Ls+b7~R.h/n1

3 4

+ b, « T+ ¢
8 J (3.9)

where ¢ ~ N (0,0%)

Equation (3.9) is in the form of the classical regression
Equation of (3.5).

For the 36 basins, the dependent and independent variables
are given in Table 3.1.

Table 3.2 gives the vector of regression coefficients b.
The regression for the mean of the annual flood had an R%= ,791,
and the regression for the variance R? = .615. This implies that
79.1% of the variance of the observed data of the mean was explained

by the regression and 61.5% for the variance.

3.3.2(b) Log-Linear Regressions
Assume that Y is the dependent variable and is affected

jointly by the seven basin characteristics. Thus
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Table 3.2

Vector Element Value
b ~9759.46
o
b1 7.40876
b2 14.9054
b3 - 211.932
b4 167.318
b5 3314.25
b6 1591.66
b7 125.944
Table 3.2:

Variable

constant
area
slope
storage

temperature
below 32°F

orographic factor

rainfall intensity
ratio

channel length

Value of Vector b for Linear Regression
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(3.10)

Taking natural logarithms of (3.10) transforms the regression
equation into the linear form of (3.5). The same 36 basins were
used for the estimate of the parameters of the log-linear regression.
The independent and dependent variables are the log transforms of the
values given in Table 3.1, and the regression coefficients are given
in Table 3.3. The log-linear regression for the mean of the annual
flood explained 95.7% (R = .957) of the observed variance of the
logs of the data. The log-linear regression for the variance of

annual floods had an R’ = .902.

3.3.3 Checking the Regression Assumptions.

It is important to check that the assumptions implied in the
regression formulation hold. These assumptions are given in Section
3.3.1.

The assumption of error terms being homoscedastic and un-
correlated is of particular importance and can be checked by studying
the residuals.

A scattergram of the residuals can usually indicate whether
the standard deviation of the residuals is constant over the range
of the dependent variables y - indicating homoscedasticity. A
scattergram of the residuals from the regression of the log of the
mean of the annual flood against the log of the basin and meteoro-

logical characteristics is presented in Figure 3.1. The scattergram
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Vector Element

Table 3.3:

Table

~2.069
-8.530

7.727
-1.041

1.375

6.774

2.992

3.485

Values of Vector

Value

X

3.3

108
10"
10"
10°

10°®

107

10°

Variable

constant
fn area
fn slope
fn storage

fn (temperature
below 32°F)

fn orographic factor

2n rainfall inten-
sity ratio

fn channel length

for Log-Linear Regression
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shows that the range of the residuals is constant over the range of

n Therefore, there are no indications that the assumption

UQ .
of homoscedasticity is invalid. Certain other statistics may be
computed, but it is usually felt that a scattergram is more informative
(Draper and Smith, 1966).

Correlation among the residuals is investigated by studying

the covariance matrix of the residuals, which can be shown to be

<

—~
Y

~
[}

(I-R)o? (3.1

where V (S) is defined as the covariance matrix of the residual

matrix e

I is the identity matrix
T -1
R = X T
= = (= z—g) X
o? is the scalar variance of the error term (vig] = I g2)

The variance of any residual ei is given by the ith diagonal
and the covariance between (eiej) is given by the (i,j) the element
of (l - 5)02 . The values of the correlation of the residuals de-
pend entirely upon the independent variables X . Table 3.4 gives
the matrix of the residual correlations. It is seen that the re-
siduals are independent, as the regression assumption requires.

It is felt that there is no reason to think the regression on
the mean annual flood violates the assumptions upon which it is based.
A similar study for the variance of annual floods shows that no basis
exists for concluding that it violates the assumptions implied in

classical regression.
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*.001
e 008
=094
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=.020
=047
=039
-.021
=.002
~.007
0.003
=1l
-.i21
=037
=082
0,033
o134
e 106
1.800
0.093
0.00%
C.l18
0.044
0,004
0.003
0.012
0,004
0.008
-«0%0
-+000
~«006
=199
=001
o168
0,014
0.240
=003
-.080
o199

. 023
=-.0m
0.020
0.007
0.020
0.01%
“.000
0.00%
=008
=.l70
.02
=089
-ei?2
-.018%
0.008
0,098
1.000
=000
“elbe
~.036
-.02)
0.00e
=.001
=.008
0.012
0.0%)
~.0%¢
=029
0.07%
0.001
=.003
204
=334
=.011
~.011
0.037

0,048
=000
=il
=ol®)
.19
=il0
=.003
-.102
=.009
=.002
0.040
0,200
=036
=.01)
0.093
0.00%
=.040
1.000
=.042
-.087
. 187
=037
0,054
~203
0.130
0.033
=03
0.00¢
=014
0.0%9
0.0%
~a104
0.00%
0.008
=084
~.006

Table 3.4 Table of Residual Correlations
New

“slbl =.077
=074 -,080
0,083 .02
0.212 -.000
0,008 -, 073
=e092 =.003
=+107 -, 08¢
0.116 -.CO0
0.113 0,020
=+027 0.010
0.292 0.092
=073 0.C01
04126 0.061
=+006 0,006
=+029 =, 018

0.118 0.044
~.144 -, 03¢
=042 -.087
1.€00 -,31)
“«313 1.000
=113 -.100
“a120 -.092
=109 -, 108
~.08 -.043
-e198 -0
0,09 -,008
0,023 0.C08
~ol62 -,043
0,190 0,046
-.032 -.007
0.007 0.027
=130 0.008
04093 0.046
=+102 -.062
=016 -.011
-.083 -.02}

=093
=079
=042
=old9
=190
«e097
=021
-.072
- 024
0.02¢
0.061
0.0%
0.033
=003
0.020
0.044
-.02%
-.187
o113
109
1.000
=008
. 090
=.004
=-.00¢
=.013
0.004
0.031
0.082
0.014
0.080
0.093
=208
=018
=.047
-.006

e 089
0.070
=117
=070
0,007
=~ 079
=.073
~s087
0.002
0. 169
=-.070
0.0%4
~. 003
0.0%%
= 000
0,043
0.006
-. 087
-.120
-. 002
~a 044
1.00
=138
0.009
=.l¢3
- 001
0,088
0,049
-0 004
~e00)
-+ 032
=170
0.003
-.100
0.023
0.119

=232

0. 086

0.001

0.030 -« 112 ~.03%

063
“-.037
~.062
=+030
-.020
0.02¢
=el)9
=.004
=026
=101
0.038
0,006
“el2¢
0.012
-.001
0.0%¢
=108
-.10%
~.050
“.130
1.000
0.009
-.100
~.081
0,148
0.091
0.0%%
~.0%¢
=.043
0.013
0.000
~.000
0.0%6
0.063

=037
=+ 060
~e087
-+070
=087
. 092
0.0%0
- 082
-.007
0.0%%
=092
-« 009
0.120
0.004
-.00%
. 203
-.0%%
“e 043
=e09¢
0,00¢
0,093
1.000
0.018
0.018
“elbé
-.073
=022
0.0%8
0.087
~. 008
=017
0.002
=e 035
=034

0.000
=010
0.01¢
-a 03¢
-e040
=110
0.162
.78
=.110
=219
-.013%
G, 002
=e076
0.068
0.012
0.130
=199
=093
=.00¢
o143
=.100
C.010
1.000
-.182
=eir2
~s167
~«082
~e007
0,042
0,209
o129
~el24
0.023
0.147

-.09¢
=011
-.070
~el1
-.083
-+ 030
=-.001
-. 08¢
=.0%1
0.034
-.142
=+ 104
-.019
0, 011
=.070
~.080
0.083
0.03%
0.001
-.006
=.013
~e081
-.081
0.016
=182
1.000
=.063
=-+012
~.083
-.032
o010
n. 136
0.06%
003
0.01¢
0.0%4

0.162
-.1%0
0.011
0.022
0.040
- 004
-.101
=117
0.103
~ell4
-.0%
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-.11y
-. 003
0.108
~.060
~.0%¢
~-.023
0.023
0.004
0.034
0. 068
O.lee
-.108
-2
-.063
1.000
~. 201
=.130
0. 049
0.031
0,075
O.166
=. 029
-.008
0.017

0.129
-.102
0.076
0.1¢0
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-.023
-.006
-.026
0.167
-.0186
0.050
~el38
0.032
~-.000
“~.040
~.088
~.02%
0.049
~.182
~e 045
0,031
0,648
0.091
-.07)
~.167
=012
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1.6¢C
-.132

-. 008
-.0%4
c.0en
-.007
s 038
~el04
-.17C
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-.001
-.029%
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0.060
0.083
.09
0.01¢
-.017
-.0m
=.129
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0.07%
=.014
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~.064
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~.086
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-.g07
e 004

. 047
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. C42
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0.026 C.CT?7
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0.018
~.009
0.037
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=.010
-.021
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-.02¢ -.03%2

-.007
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~.061
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-. 088
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-.238
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~.137
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-.180
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~e348
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-.083
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~.l64
-.130
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0,093
-.178
0.013
-.00%
0,209
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c.07%
0,086
-.002
~.118
.28
1.¢c0
=017
-.039
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“.083
-+290
~.0%9
-. 091
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0.0%3
C.066
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“.017
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0.000
-.077
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3.3.4 Applying the Regression Formulae to 'Ungauged' Basins.

The log-linear and the linear regression equations developed
in Section 3.3.2 can be applied to other basins in New England to
estimate the first two moments of the mean and variance of the annual
flood series. The regression formulae were applied to the Blackstone
River at Woonsocket, Rhode Island. The values of the independent
variables for the two basins are given in Table 3.5.

For the Blackstone River, the linear regression for the mean,

m , of the annual flood provided the following moments.

Elm ] = 5188 cfs
y (3.12)
V[m§] = (2246)2 cfs?
and for the regression on the variance, Ozy,
E[c?2 1 = 45 x 10°% cfs?
y (3.13)
V[o? ] = 48.5 x 10° cfs"

The log-linear regression applied to the Blackstone River predicted

the moments of the log-mean of the annual flood, £n my, and the

2

log-variance of the annual flood, 2ngc which are:

E[fn m ] = 8.27

y (3.14)
Vigtn m ] = .073

y
E[f%no? ] = 15.52

y (3.15)
V[Jl,nozy] = 1.031

The regression assumes that these moments are for the in my and

lnczy normally distributed and thus my,Uzy are log-normally dis-
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Table 3.5

Area = 416 sq. miles

Channel slope = 11.50 ft/mi.

Storage area = 3.51 % of area

Temperature below 32°F (January) = 6°F

Orographic factor 1.0

Rates of 100 year to 2.33 year, 24. hr rainfall intensity = 2.22

Length of main channel = 42.6 miles

Table 3.5: Independent Variables for Blackstone River at

Woonsocket, R.I.
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tributed, To obtain the moments of m.y and o2 , the following

transform is used (Benjamin and Cornell, 1970):

E[lw] = exp (E[fn w] + .5 V[&nu])
(3.16)
Viwl = E?[w] - {exp (V[tnw]) - 1.0}
where E[*] = -expectation operator
V[-] = wvariance operator.
Letting w = my and substituting (3.14) into (3.16) gives
E[m ] = 4042 cfs
y (3.17)
V[my] = 1.24 x 10° cfs?
and for w = ozy, substituting (3.15) into (3.16) gives
E[o2_] = 9.22 x 10% cfs?
y (3.18)
v[ozy] = 1.537 x 10% cfs?

The information from the regression, represented by Equations
(3.12), (3.13), (3.17) and (3.18), can be utilized in detérmining
the parameters of the prior probability density function. If the
form of the prior is restricted to a particular family of density
functions, then the procedures set up in Section 3.2 can be used.
Essentially, the procedure is fitting the information on the numerical
values of the moments to the algebraic expressions for the moments
of the density function and solving for the parameters of the dis-

tribution.
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3.3.5 Summary.

This section studied the use of empirical procedures for ob-
taining information about the mean and variance of the annual series
of flood events. Empirical procedures are widely used in flood

estimation and rely on the assumption that the basin under study will

1 )

act' in a similar manner to those near by.

Empirical procedures lack causal validation. Two empirical
formulations may fit the data quite well, but they may predict dif-
ferent values for the "ungaged" basin. If both fit the data equally
well, there is no method to distinguish between them.

It will be shown in Chapter 4, when the regression model is
used to provide prior information that the regression provided in-
formation equivalent to 4 to 7 years of data. Chapter 4 applies

both sample and prior information to a number of probability dis-—

tribution models of the occurrence of floods.
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3.4 Evaluation of Theoretically Based Prior Information

3.4.1 Introduction

The evaluation of prior information from empirical procedures,
such as regression equations or flood formulae, suffers from a
deficiency due to the procedures being based upon data from similar
or near-by areas. Therefore, empirical procedures may not capture
all the congent components of the rainfall—runoff process for the
basin being studied.

The analysis of the runoff characterictics, using rainfall and
basin characteristics, can be performed in the following manner
(Eagleson, 1972; Leclerc and Schaake, 1973).

Let Q be the peak discharge and © a vector of variables repre-
senting rainfall and antecedent moisture conditions. It is well
known that Q is a function of O even though this functional relation-
ship is a complex process. This process depends upon the basin's
characteristics and its response to the elements of ©. From the
response and from the probability density function for O, £(0) the
cumulative density function (CDF) for the peak discharge can be

calculated by:

F (q) = f £(0) do (3.16)
Q R - -
q

where
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£(0) is the probability density function of the matrix of

rainfall and antecedent moisture condition variables

Rq is the region in the O space where Q(0) is less than or

equal to q. This region is defined by the basin response
to O.

Eagleson (1972) simplifies the relationship between runoff and
rainfall by applying kinematic wave theory for hydrograph forecasting.
Leclerc and Schaake (1973) use deterministic simulation of the
catchment to estimate this relationship. By using a storm selection
procedure, which only considers the worst storms of a family of
synthetically generated storms, Leclerc and Schaake determined the
flood frequency curve.

Both procedures may be useful in providing prior information on
uncertain parameters. This information can then be combined with
historical information. Eagleson's procedure will be considered in
detail here.

3.4.2 Eagleson's Analytical Derivation of the Flood Frequency Curve

Eagleson (1972) analytically derives the flood frequency curve
by taking a stochastic model of the rainfall process and applying the
rainfall to an idealized overland flow plane. The mechanics of that
flow are analyzed by kinematic wave theory.

The stochastic model of individual rainfall events is formulated
in terms of two random variables; the rainfall intensity, i, and the
storm duration, t Each storm is assumed to have a rectangular

storm interior, and the excess rainfall intensity is assumed to be
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constant throughout the duration of the storm.

Eagleson, under the assumption that the time of concentration for
the stream is greater than the time of concentration for the overland
flow catchment, derives the exceedance probability of a flood peak
discharge, qp’ as

Golay) = e-200_0+lF(o)exp[—B§§-I:—A%)-] (3.17)
where GQ(') is the compliment of the cumulative density function, FQ(°)
and where o, B, ab’ K and Ar are paraméters obtained from either the
stochastic rainfall model or the deterministic runoff model.

Appendix E gives a summary of Eagleson's derived flood formula, and
all parameters are defined therein.
3.4.3 Application of G(qp) for the Assessment of Priors

The flood frequency formula, represented by Equation (3.19),
is for the complete series of flood peaks. These peaks are represented
by the n*N rainfall events that produce direct runoff, where n is the
average annual number of such events and N is the number of years of
record.

Consider a series of the largest N events from the series of
n*N events. This series is the annual exceedance series. It can be
shown that the exceedance probability of the annual exceedance series

is related to the complete series by

6,(Q2a) = n-Gy(q ) (3.18)
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The annual series of flood peaks consist of the largest event
in each of the N years of record. The exceedance probability of the
annual series, Ga(qiqp), is related to the exceedance probability of

the annual exceedance series by, (Chow, 1964),
G (g> =1 - exp[-G (q>q ) 3.19
q(q_qp) xp[-G 29, ] ( )

for events of the same rank. Eagleson's flood frequency formula can be
transformed to give the cumulative probability of the annual series,
Fa(q) =1 - Ga(q). This transformation is performed by the sub-

stitution of Ge(qp) from (3.18) into (3.19) and gives

Fa(qp) = exp{—nIo'exp[—b(qp - qb)]} (3.20)
where
I = e—200—0+1r(0)
o
b i

B/(645 K A )

Manipulation of (3.20) yields
F = {- -b(q_- 3.21
a(qp) expl- exp| (qp ul} ( )

where

1
u = + E-Qn(nlo)

9

Equation (3.21) is of the form of a Gumbel Type I Extreme Value

distribution with mean and standard deviation as
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~ 6
=u+"—=—0 3.22
m=u T % ( )
™
oq= (3.23)
Y6 b

where y = .5772157. (Euler's constant)

Thus, Eagleson's flood frequency formula can be considered as a Gumbel
extreme value distribution, where the parameters are estimated from
physiographic characteristics rather than from observed data.

To obtain prior information on the mean and variance of the
distribution of annual floods for an 'ungaged' basin within the
region, the following procedure is applied:

1. From historical records and from Eagleson's analysis

(Equations 3.22 and 3.23), obtain estimates of the mean
and variance of the annual series of flood events for a
number of basins within the region.

2. Consider the random variable Ym, whose definition is:

_ historical mean
m Eagleson's predicted mean

(3.24)
which should have E[Ym] = 1. Similarly, obtain a ratio of the
variances, Yv' From the observed basin ratios, the sample
moments are calculated and a density function fitted for the
random varialbes Ym and YV.

3. For the 'ungaged' basin, calculate Eagleson's estimate of
the mean of the annual series of flood events. If it is assumed
that the historical estimate of the mean is a true estimate (no

variance), then the distribution of the mean u for the ungaged
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basin can be found from the pdf for Ym and Eagleson's predicted

mean m. This pdf for u is

£(u) =

B |+

f(Ym) (3.25)

If f(Ym) N N(l,oz) then f(u) " N(ﬁ,(ﬁo)z)
4, Using a procedure similar to 3, calculations for the

distribution on the variance are performed.

The procedures 1 through 4 were followed for the same 36 New
England basins that were used in the regression analysis. Their location
is shown in Figure 3.2. An index to the plate numbers is given in
Table 3.6. Using the values for the rainfall parameters given by
Eagleson (1972), Table 3.7 presents the ratio of historical to
predicted means, Ym’ for the 36 basins. Similarly, the ratios of
the variances, YV, are given in Table 3.8. The moments for the ratio

of the means are

E[Ym] = ,995
(3.26)
V[Ym] = ,235
The moments for the ratio of the variances, YV, are
E[YV] = 5,86
(3.27)
E[YV] = 85.3
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Figure 3.2: Location of Basins in Southern New England for the
Assessment of Prior Information
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Station No. Location

117 Oyster River near Durham, N.H.

118 Lamprey River near Newmarket, N.H.

135 Contoocock River at Peterboro, N.H.

137 Naranusit Brook near Peterboro, N.H.

139 North Branch Contoocock River near Antrim, N.H.
143 Warner River at Davisville, N.H.

151 Piscataquog River near Gofftown, N.H.

157 North Nashua River near Loominster, Mass.

169 Parker River Basin at Ryfield, Mass.

171 Ipswich River near Ipswich, Mass.

177 Neponset River at Norwood, Mass.

181 Wading River Near Norton, Mass.

195 Wood River at Hope Valley, R.I.

198 Willimantic River near South Coventry, Conn.
200 Mount Hipe River near Warrenville, Conn.

204 Quinebaug River at Quinebaug, Conn.

209 Moosup River at Moosup, Conn.

249 Sugar River at West Claremont, N.H.

251 Williams River at Brockway Mills, Vt.

254 Cold River at Drewville, N.H.

258 Ashuelot River near Gilsum, Vt.

264 South Branch Ashuelot River at Webr. Near Marlboro, N.H.
274 Moss Brook at Wendell Depot, Mass.

276 Millers River at Frving, Mass.

285 Mill River at Northampton, Mass.

291 East Branch Swift River near Hardwick, Mass.
295 Chicopee River at Indian Orchard, Mass.

307 Westfield River near Westfield, Mass.

313 West Branch Farmington River at Riverton, Conn.
317 Pequabuck River at Forestville, Conn.

322 Park River at Hartford, Conn.

325 Salmon River near East Hampton, Conn

328 *  Manunketesuck River near Clinton, Conn.

332 East Branch Housatonic River at Coltsville, Mass.
343 Shepaug River near Roxbury, Conn.

353 Naugatuck River near Beacon Falls, Conn.

Table 3.6 Location of Stream Gauges for Figure 3.2
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Station No. Predicted Mean Historical Mean Ratio Y

M
117 375 312 0.8322
118 4137 2262 0.5468
135 1855 1253 0.6755
137 1327 633 0.4769
139 1598 1361 0.8518
143 3666 2217 0.6047
151 4548 3611 0.7939
157 2683 3384 1.2612
169 610 224 0.3675
171 2602 1112 0.4274
177 1107 356 0.3215
181 1070 481 0.4495
195 1910 835 0.4373
198 2888 3179 1.1007
200 907 1129 1.2454
204 3567 2161 0.6058
209 1997 1538 0.7700
249 5748 5436 0.9457
251 2763 4029 1.4581
254 2304 2101 0.9120
258 1974 1813 0.9184
264 992 1257 1.2673
274 389 322 0.8288
276 6930 4271 0.6163
285 1529 2254 1.4744
291 1263 941 0.7452
295 11082 - 7233 0.6527
307 9487 16890 1.7803
313 4719 8742 1.8525
317 1272 2003 1.5750
322 1872 2970 1.5869
325 3317 3097 0.9337
328 379 495 1.3057
332 1586 2024 1.2762
343 3237 4709 1.4549
353 5437 13478 2.4790

Table 3.7 Ratio of Means, Boston Parameters
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Station No.

117
118
135
137
139
143
151
157
169
171
177
181
195
198
200
204
209
249
251
254
258
264
274
276
285
291
295
307
313
317
322
325
328
332
343
353

Predicted Variance

19921
3922824
598393
292637
397093
2566149
4719990
1425173
66094
1885135
164606
235057
668014
1799714
113841
2942131
898056
8062896
1325536
877686
650275
173936
19921
15027104
369572
257370
47878288
25612016
5350316
268887
704160
1374941
19921
425543
2152184
6822592

Table 3.8 Ratio of Variances, Boston Parameters

Historical Variance

23000
1238000
343000
50000
2362000
1053000
2798000
11238000
9000
250000
59000
39000
71000
20118992
1153000
8418000
695000
6990000
3568000
2062000
961000
1267000
64000
6264000
1599000
1405000
81024992
173538000
55468992
4759000
8911000
5000000
87000
2199000
65184992
322579968

Ratio YV

1.1546
0.3156
0.5732
0.1709
5.9482
0.4103
0.5928
7.8854
0.1362
0.1326
0.3584
0.1659
0.1063
11.1790
10.1282
2.8612
0.7739
0.8669
2.6917
2.3494
1.4778
7.2843
3.2128
0.4168
4.3266
5.4591
1.6923
6.7756
10.3674
17.6989
12.6548
3.6365
4.3673
5.1675
30.2878
47.2811



To obtain unbiased estimates of the expected value of the ratio
of the means, Ym’ the fraction of area that contributed to direct
runoff, FAr’ had to be adjusted. For the predictions using the
Boston rainfall parameters, as being typical for all New England, FAr
was adjusted to .43.

The results for the estimation of the variance shows that
Eagleson's procedure, on the average, significantly underestimates the
variance. The estimate for the ratio of the historical to predicted
variances is 5.86, which is highly biased. The variance in the estimate
of Yv is 85.3. The large variance, taken together with the biased
E[Yv]’ signifies that a large amount of risk is associated with
using the wvariance ratio.

The reason for the poor estimates in the variance of the annual
flood series may be found by rewriting the equations for the mean and

standard deviation of the cumulative annual flood discharge as

645 KA,
i = ‘“E————'[Qn(nI ) + v] (3.28)
o
645KAr -
= . 3.29
Oq B JE (

All terms have been defined previously and the reasonable

assumption of no base flow has been made. Both B and Io depend upon
the statistics of rainfall pdf. 1/B is the mean rainfall intensity,
1/A is the mean storm duration and Io is a function of both B and

A, as well as the area contributing to direct runoff and other basin

parameters. Better estimates of the rainfall parameters could lead
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to better prediction of the mean and variance, if the underlying
structure of the model is at least reasonably correct.

Rainfall data for twelve gages around New England were analysed
to find the best values for the rainfall parameters. Figure 3.3
shows the location of these gages. Tables 3.9 through 3.20 give the
monthly statistics for the time between storms, storm duration, storm
depth, and average intensity. In general, significant variations occur
between stations, and significant seasonal variations occur within
the year at each station. Average annual statistics were calculated
and a surface fitted, using multiquadric cones, (Shaw and Lynn,

1972). The surface for average intensity is shown in Figure 3.4, for
average storm duration in Figure 3.5 and for the average number of
storms per year in Figure 3.6.

Using fhese surfaces, the best estimates for the rainfall
parameters were obtained for each of the 36 basins. These values are
given in Table 3.21.

For the 36 basins, the ratio of historical mean to predicted mean,
Ym, is presented in Table 3.22. The results for the ratios of the
variances Yv’ are presented in Table 3.23.

The sample moments for Ym are:

E[Y ] = .975
(3.30)

.247

V[Ym]

and the sample moments for Yv are:

88
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Station Name: Surry Mountain Dam, N.H.

Station No. 8539

Tg (hrs) Tp (hrs) Depth (in.) Int. (in/hrs)
Month  # Storms/Yrs.
Mean  St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 226/22 66.89 80.87 7.32 6.37 .232 .333 .0310 .0736
2 204/22 64.22 58.43 7.44 5.91 .260 .319 .0463 .1401
3 234/22 60.91 71.36 6.80 6.10 244 .304 .0481 .1390
4 244 /22 60.40 73.34 6.66 5.94 .255 .348 .0510 .1762
5 259/22 56.00 63.55 5.95 5.85 0262 .343 0424 .0427
6 239/23 63.70 78.49 4,74 4,88 .282 .359 .0699 .1188
7 233/22 69.10 76.65 3.98 3.48 271 345 .0738 .0861
8 209/22 68.54  79.95 4.52 4.77 342 473 .0786 .0983
9 171/22 84,24 102.72 5.73 5.27 .367 .562 .0567 .0523
10 157/22 104.92 122.85 6.78 6.18 .357 .525 0462 .0663
11 233/22 65.62 75.65 7.14 6.33 342 457 0472 .0750
12 225/22 65.08 62.91 7.85 7.49 .282 .399 0431 .1530

Table 3.9 Rainfall Statistics for Surry Mountain, N.H.
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Station Name: Hillsboro 2W, N.H.

Station No. 4062

T (hrs) Tp (hrs) Depth (in.) Int. (in/hrs)
Month  # Storms/Yrs.

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 152/21 106.55 143.94 8.32 8.51 .395 .498 .0917 .2175
2 156/22 110/23  222.83 7.35 6.76 .416 .468 .1377 .3032
3 180/22 82.88 95.04 7.60 6.32 .389 464 .0832 .2174
b4 196/22 78.24 91.87 7.23 6.53 3674  .4458 .0663 1442
5 202/21 70.47 77.39 6.06 5.88 .299 .365 .0621 .1196
6 199/23 72.77 94.34 4.74 4.68 .311 .371 .0877 .1480
7 180/22 85.19 95.92 3.87 3.58 .311 .361 .1052 .1361
8 192/22 84,59  109.80 4.54 444 .364 .607 .1025 .2448
9 150/22 100.25 131.09 5.63 4.68 418 .667 .0733 .0895
10 123/22 126.49  157.13 7.70 7.92 <445 .646 .0638 .1025
11 182/21 87.48 135.70 7.61 6.70 .468 .641 .0695 .1350
12 139/21 93.69 86.62 8.45 7.71 494 .616 .1094 . 2697

Table 3.10 Rainfall Statistics for Hillsboro 2W, N.H.
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Station Name:

Station No. 2174

Durham, N.H.

Tg (hrs) Tp (hrs) Depth (in.) Int. (in/hrs)
Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 168/21 89.92 106.74 6.85 6.32 .338 .408 .1013  .2407
2 164/21 88.82 120.25 6.42 5.94 .381 443 .1179  .2249
3 200/22 82.83 126.03 6.78 6.23 405 497 .1003  .2110
4 194/21 71.25 89.37 7.40 6.75 . 349 468 .0539 .1210
5 228/23 67.19 87.02 5.41 5.28 304 472 .0638  .1123
6 188/22 81.75 99.14 4,41 5.36 .287 361 .0929  .1846
7 174/21 89.25 115.34 3.91 3.53 .322 .394 .1109  .2045
8 174/21 83.62 109.42 4.53 4,28 . 349 463 .0911  .1133
9 146/21 98.29 138.33 5.97 5.73 404 .657 .0603  .0561
10 149/22 110.72  126.02 7.63 7.48 436 762 0477  .0295
11 218/22 66.99 80.39 6.94 6.95 462 .667 0654  .0726
12 163/21 87.77 88.05 7.10 7.02 459 .683 .1297  .3127

Table 3.11 Rainfall Statistics for Durham, N.H.
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Station Name:

Norfolk, Conn

Station No. 5445
TS (hrs) TR (hrs) Depth (in.) Int. (in/hrs)
Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 230/22 67.30 71.46 8.64 8.73 .358 773 .0579 .1627
2 222/22 59.71 57.66 8.04 7.21 .335 436 .0549 .1449
3 249/22 59.51 60.13 7.34 7.10 371 .477k .1032 .2727
4 249/21 53.82 58.57 7.57 7.01 .363 .485 .0506 .1020
5 280/22 51.48 60.41 5.65 4,79 . 247 .279 «0455 0442
6 243/23 63.50 71.91 4,80 4,70 .353 495 0750 .0822
7 219/22 70.09 72.27 4,14 3.41 322 429 .0837 .1023
8 214/22 67.89 77.47 4,65 5,80 428 1.070 .0837 .1151
9 163/22 97.56 119.67 6.35 6.07 477 735 0770 .1171
10 151/22 96.37 115.10 8.03 9.08 .536 .978 .0633 .0752
11 227/22 71.67 97.35 7.48 7.59 .450 644 .0895 .2368
12 215/22 64.20 73.50 8.57 6.82 4640 8513 .0865 .2628

Table 3.12 Rainfall Statistics for Norfolk, Conn.
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Station Name: Manfield Hollow Dam, Conn.

Station No. 4488

TS (hrs) TR ¢(hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev., Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 150/18 81.25 78.23 6.89 5.69 .317 442 .0736 .2384
2 163/19 77.63 85.41 ° 6.58 5.24 .305 .399 .0526 .0930
3 182/10 70.23 69.74 7.30 6.13 364 .481 0728 2414
4 185/19 68.28 86.06 6.75 6.35 .359 .536 L0477 .1042
5 205/19 65.41 81.30 5.60 5.11 .272 .386 .046 .045

6 217/19 60.99 72.82 3.82 3.79 217 .355 .0585 .0768
7 154/17 71.92 74.07 4.24 4.17 .398 .668 .0845  .1035
8 167/18 79.39 103.03 4.82 5.07 393 .657 .0818 0915
9 132/18 98.42 111.43 5.55 5.98 427 .703 .0669 .0632
10 115/18 103.21  120.83 7.05 7.12 498 .739 .0656 .0816
11 159/18 80.37 105.35 7.27 6.51 .399 .534 .0487 0731
12 178/18 71.92 90.49 7.60 6.64 .378 .525 .0462 .0924

Table 3.13 Rainfall Statistics for Mansfield Hollow Dam, Conn.
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Station Name: Candlewood Lake, Conn.

Station No. 1093

Tg (hrs) Tp (hrs) Depth (in.) Int. (in/hrs)
Month # Storms/Yrs.

Mean St. Dev. Mean St. Dev. Mean St. Dev, Mean St. Dev.

1 208/22 82,67 138.54 7.64 8.48 .3073 4804 .0604 .2037
2 172/22 82,68 135.12 7.56 7.25 .3589 L4479 .0930 W2411
3 194/22 83.21 98.36 7.40 .7.59 .392 .531 .1298  .3905
4 226/22 65.92 88.06 6.84 6.60 .317 474 .0481  .0956
5 245/22 59.18 83.86 6.48 6.21 .291 430 .0562 1674
6 216/23 73.29 100.81 4.90 4.93 291 471 .0841 .2034
7 204/22 76.15 98.11 4.66 4,64 .333 .508 .0850 .1838
8 199/22 75.07 95.86 6.07 6.76 | .430 .798 0711 .1036
9 144/21 97.50 118.87 5.55 5.88 .365 .585 .0670 .1109
10 140/21 106.90 134.05 7.26 8.05 497 1.009 .0559 .0648
11 173/20 85.03 107.00 7.39 7.78 430 .625 .0729 .1551
12 196/22 85.02  146.62 8.33 7.76 .408 .555 .0658 .1587

Table 3.14 Rainfall Statistics for Candlewood Lake, Conn.
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Station Name:

Bridgeport, Conn.,

Station No. 806
Ts (hrs) Ta (hrs) Depth (in.) Int. (in/hrs)
Month # Storms/Yrs.
Mean  St. Dev. Mean  St. Dev. Mean St. Dev. Mean St. Dev.

1 223/22 66.21 74.73 6.50 6.79 248 .375 .0295  .0266
2 182/22 71.86 67.56 7.63 6.81 322 443 .0322  .0264
3 232/22 65.38 72.96 6.83 6.61 312 484 .0344  ,0303
4 244/22 62.40 68.87 6.03 6.26 .304 447 .0405  ,0415
5 243/22 60.50 69.30 4.88 4.99 279 Jbd .0510 0644
6 174/20 77.95 94.28 4.32 4,62 246 .329 .0534 .0491
7 197/22 77.99 102.34 3.62 4,04 312 428 .0911 1216
8 205/22 75.23 87.66 4,20 4,20 .382 .603 .0832  ,0986
9 163/22 96.62 121.24 4.76 4,82 .330 .594 .0628  .0719
10 113/21 116.73 123.10 6.53 7.02 .503 784 .0702  .0993
11 195/22 83.54 114.47 6.42 6.22 377 .560 L0474 0454
12 212/22 73.94 91.16 7.32 6.25 .338 .508 .0354  .0326

Table 3.15 Rainfall Statistics for Bridgeport, Conn.
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Station Name:

Bloomfield, Conn

Station No. 0634
TS (hrs) TR (hrs) Depth (in.) Int. (in/hrs)
Month  # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 115/18 118.39 138.12 8.54 7.64 466 .569 .1037 .2307
2 103/16 109.89 156.80 8.19 9.13 .398 412 .1085  ,2536
3 115/17 94.72 99.45 8.19 6.09 473 .516 .0999 L2214
4 150/18 95.62 179.32 7.47 6.41 394 492 .0782 +2796
5 156/18 88.29 175.52 6.65 7.61 301 .365 .0660 1651
6 139/19 103.22 140.53 4,96 4.72 .350 487 .0992 .2152
7 117/19 112,18 127.55 4,11 3.90 342 .379 1247 .2263
8 140/20 132.66 420,30 6.47 8.27 416 871 ,0808 .1798
9 103/20 188.75 490.61 5.80 6.32 .512 174 .1606 .5340
10 86/18 136.06  152.20 7.44 9.30 .581 1.056 .0788  ,1153
11 131/19 112,52 156.03 7.47 6.79 .459 .611 .0963 .2354
12 123/20 114,79 204.73 8.06 6.64 .438 485 .1132 .3031

Table 3,16 Rainfall Statistics for Bloomfield, Conn
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Station Name:

Mendon, Mass.

Station No. 4667
Tg (hrs) Tp (hrs) Depth (in.) Int. (in/hrs)
Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 152/19 84.58 83.50 8.15 7.16 420 .535 .0996 .2409
2 158/20 79.11  70.26 6.21 5.01 408 496 .1618 .3798
3 167/20 78.96 73.02 6.26 5.87 .429 .520 .1690 .3727
4 188/19 65.99 83.88 6.84 6.41 .376 .536 .0898 .2912
5 173/20 95,72 285.11 6.71 6.53 329 .378 .0708 .1584
6 199/21 73.53  90.43 4,42 3.64 .259 317 .0598 .0587
7 143/19 85.09 87.73 4,48 4,53 .362 454 .0915 .1335
8 170/21 103.06 192.18 4.67 4,78 433 1.023 1029 1874
9 131/19 108.54 217.15 6.26 6.11 .547 877 .0964 .2839
10 121/21 121,08 140.90 7.20 7.53 473 .708 .0784 .1196
11 152/21 94.05 121.72  7.31  6.34 471 .598 L0945 .2427
12 123/20 122.10 135.04 8.45 7.29 .606 .688 1728 4628

Table 3.17 Rainfall Statistics for Mendon, Mass.
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Station Name:

Station No.

Boston, Mass.

0770

Tg (hrs) Tp (hrs) Depth (in.) Int. (in/hrs)
Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 226/22 67.83 79.65 8.61 7.85 . 346 475 .0300 .0266
2 241/22 54,14 54.68 7.38 7.09 .340 .525 .0316 .0316
3 252/22 56.95 66.89 7.49 7.43 .359 .578 .0338 .0290
4 263/22 54.14 65.45 6.54 6.86 .303 490 0349 .0330
5 279/23 54.78 66.81 5.48 5.97 272 554 .0373 .0392
6 266/23 60.00 72.56 4,06 4,64 <246 .385 .0573 .0690
7 218/22 67.77 78.15 3.62 3.87 251 .386 .0649 .0863
8 236/22 67.74 83.25 3.80 3.98 311 .668 .0706 .0903
9 186/21 74,88 90.65 5.13 6.05 371 .760 .0510 .0562
10 187/22 82.36 99.70 6.22 6.83 373 677 0456 .0483
11 245/22 62.44 78.02 6.62 6.25 . 400 .609 .0428 0428
12 202/22 71.05 73.52 8.49 8.19 440 .630 .0370 .0364

Table 3,18 Rainfall Statistics for Boston, Mass.
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Station Name:

Birch Hill Dam, Mass.
Station No. 0666

TS (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month  # Storms/Yrs.

Mean  St. Dev. Mean St. Dev. Mean St. Dev. Mean  St. Dev.

1 223/22 67.52 73.30 7.54 6.65 .276 .384 .0506 .1322
2 189/22 74.47 72,33 7.31 6.98 .304 .382 .0928 .2775
3 216/22 67.14 71,30 7.02 6.55 .297 .378 .0650 L1479
4 242/22 60.27 74.28 6.57 6.38 .276 371 .0472 .0928
5 235/22 62,11 70.83 6.00 5.32 .288 .332 .0485 .0463
6 224/23 66.31 85.14 4.99 5.34 .314 470 .0626 .0697
7 200/22 80.23 87.71 3.64 3.07 .277 344 .0911 .1335
8 202/22 73.26 . 88.92 4,22 4,66 .318 .586 .0698 .0812
9 167/22 92.05 109.56 5.37 4.79 .362 .518 .0628 .0668
10 141/22 109.44 123.04 6.70 6.53 394 517 .0631 .1010
11 219/22 70.81 94.10 7.02 6.79 .360 .483 .0635 .1481
12 203/22 74,23 78.16 7.58 6.79 .337 434 .0670 .1678

Table 3.19 Rainfall Statistics for Brick Hill Dam, Mass.
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Station Name:

Amherst, Mass.

Station No. 0120
Tg (hrs) Tp (hrs) Depth (in.) Int. (in/hrs)
Month  # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St, Dev,

1 144/15 78.50 92.45 4.81 5.31 .298 .389 L1344 .2688
2 123/15 161.26  919.52 5.08 7.32 .305 365 L1414 .2687
3 149/16 73.49 69.30 5.30 6.70 .351 435 .1462 .2750
4 174/16 65.49 77.32 5.00 5.71 315 <407 .1091 .2203
5 199/17 59.24 66.75 4.33 4.67 .287 .332 .0975 .1500
6 191/17 58.16 77.20 3.11 3.29 .294 474 .1205 .3158
7 151/16 75.33 78.36 2,70 3.17 314 .377 .1686 2387
8 159/16 69.74 79.89 3.01 5.33 .398 .803 .1966 3203
9 137/16 85.53 113.62 4,09 4.69 .398 524 .2025 4613
10 127/16 93.09 115.63 4,25 4,78 .403 .558 .1808 .4632
11 152/17 136.19 668.76 5.67 6.09 406 .530 .1204 .2368
12 123/15 80.40 85.38 5.68 6.63 .370 .490 .1086 .2066

Table 3.20 Rainfall Statistics for Amherst, Mass.
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Figure 3.6:

Multiquadric Surface for Average Number of Storms
per Year, for Southern New England

104



Basin 8 A €]

117 11.8 164 101
118 11.9 .167 101
135 12.5 .159 110
137 12.5 .159 110
139 11.5 .154 93
143 11.1 .151 95
151 12.3 .161 95
157 16.7 .164 118
169 20.0 167 110
171 20.0 167 110
177 12.5 .159 120
181 11.7 .167 105
195 18.2 .167 110
198 16.4 .164 110
200 16.4 .164 110
204 10.0 .154 100
209 14.3 .161 100
249 16.7 .161 120
251 16.7 161 125
254 17.2 .161 120
258 18.2 .161 120
264 15.4 .151 115
274 14.3 .169 115
276 14.3 172 115
285 7.04 .223 115
291 11.1 .182 115
295 9.1 .182 115
307 9.1 .167 108
313 10.0 147 110
317 10.0 .147 90
322 11.1 147 90
325 16.7 .167 105
328 19.6 172 105
332 14.3 .151 120
324 12.5 .151 105
352 10.0 .143 105
187 9.4 .159 95
189 11.1 .167 105

Table 3.21 Best Rainfall Parameters for the
36 Southern New England Basins
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Station No. Predicted Mean Historical Mean Ratio Ym

117 405 312 0.7703
118 5212 2262 0.4340
135 2023 1253 0.6192
137 1451 633 0.4363
139 1822 1361 0.7469
143 4641 2217 0.4777
151 5287 3611 0.6830
157 2291 3384 1.4768
169 400 224 0.5604
171 1939 1112 0.5735
177 1060 356 0.3357
181 1288 481 0.3735
195 1306 835 0.6392
198 2549 3179 1.2471
200 685 1129 1.6489
204 5498 2161 0.3931
209 1984 1538 0.7750
249 5403 5436 1.0062
251 2366 4029 1.7026
254 1853 2101 1.1340
258 821 1813 2.2084
264 902 1257 1.3936
274 344 322 0.9370
276 7961 4271 0.5365
285 2936 2254 0.7678
291 1548 941 0.6080
295 21961 7233 0.3294
307 17600 16890 0.9596
313 7709 8742 1.1340
317 1680 2003 1.1925
322 2318 2970 1.2815
325 1930 3097 1.6050
328 239 495 2.0675
332 1557 2024 1.2996
343 3847 4709 1.2242
353 8837 13478 1.5251
Table 3.22

Ratio of the Means, Best Rainfall Parameters
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Station No. Predicted Variance Historical Variance Ratio Yv

117 19834 23000 1.1596
118 4145262 1238000 0.2987
135 550174 343000 0.6234
137 265847 50000 0.1881
139 428421 2362000 5.5133
143 3097219 1053000 0.3400
151 4694603 2798000 0.5960
157 747257 11238000 15.0390
169 23068 9000 0.3901
171 693327 250000 0.3606
177 148412 59000 0.3975
181 242862 39000 0.1606
195 290080 71000 0.2448
198 983848 20118992 20.4493
200 59379 1153000 , 19.4178
204 4387153 8418000 1.9188
209 635916 695000 1.0929
249 4390080 6990000 1.5922
251 694179 3568000 5.1399
254 429380 2062000 4.8023
258 275116 961000 3.4931
264 103437 1267000 12.2490
274 13504 64000 4.7394
276 11127653 6264000 0.5629
285 1069503 1599000 1.4951
291 295516 1405000 4.7544
295 84106656 81024992 0.9634
307 46531632 173538000 3.7295
313 8107109 55468992 6.8420
317 381541 4759000 12.4731
322 824797 8911000 10.8039
325 719989 5000000 6.9446
328 7188 87000 12.1041
332 297353 2199000 7.3952
343 2039205 65184992 31.9659
353 10402987 322579968 31.0084
Table 3.23

Ratio of the Variances, Best Rainfall Parameters
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1]

E[YV] 6.42

(3.31)

V[Yv] 66.74

Again, the fraction of area that contributes to direct runoff, FAr’
is adjusted so that the E[Ym] is unbiased. This value of FAr is
,168. Even with the best estimates for the rainfall parameters,
the prediction of the variance is still too low, causing E[Yv] to
be highly biased. The low prediction of the variance implies that
the predicted coefficient of variation is too low. The coefficient
of variation can be calculated from Equations (3.22) and (3.23)

as

c = 1 (3.32)

v /e /6

———— +—
- Qn(nIo) - Y

or substituting values for 7 and Y and simplifying

1
v .78 SLn(nIo) + .45

(3.33)

for IO = e_200_0+lr(0)

0 is a function of both rainfall and basin parameters. 1Its value
ranges from .3 to .65 which implies that I0 has values that fall into
the range of .7 to .35 with .6 being a typical value. n is the number

of excess rainfall events and is estimated from

n=¢¢ o, 0 (3.34)
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where

@l is the ratio of annual runoff to point precipitation
@2 is the ratio of direct runoff to annual runoff and
© 1is the number of independent rainfall events.

Eagleson takes as typical values for New England @1 = .50
and @2 = .58, which give just under 30% of the rainfall events as
being excess events. Letting © ~ 100 events per year, average for

New England, gives n = 30. Substituting into 3.33 gives

_ 1
Cv = 3T ¥ a1 (3.35)

Since Io ranges from .35 to .7, CV will range from .44 to .35. This
range is much lower than the C, observed in the historical records.
The sample statistics for the coefficient of variation for the

36 New England basins are:

.770

mean
(3.36)
.126

variance

The predicted moments, obtained from the predicted mean and standard

deviation, are:

.369

mean
(3.37)
.0015

variance
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The poor performance of Eagleson's formula can be partially
related back to (3.33) and the assumptions involved in the treatment
of the random variables in the model. An important parameter in
the model is n, the number of excess rainfall events. n is not
known with certainty and thus is a random variable. Eagleson uses

an expected value of n from Equation (3.34), but O, @l and ¢, are

2

all random variables and the expected value of n can be calculated

from

E[n] = E[®1] - E[® * E[O]

2]

12 1/2
* g * VO] vio,] .
+p, O v[q:l]l/2 . viojt/?
1
+ 0, 0 vIe,1"? - yie)'/?
2

and only equals (3.34) under the assumption that ¢l, @2 and O are
all independent. It would be suspected that ®l and @2 would be
highly dependent since both are ratios concerning runoff, direct
runoff and precipitation.

In the analysis, there are many variables whose values are
uncertain but constant. Also, there are variables whose values are
uncertain and change from storm to storm - for example, Ar’ the area
that produces runoff. Essentially, Eagleson handles this un-
certainty by inserting the expected value into the function. This

procedure implies that the expected value of a function is equal to
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the function of the expected value, E[g(x)] = g(E]x]). This
relationship is not true, except as a first order approximation.

There is still the problem that the underlying analysis may
not represent the process. The rainfall is modeled by the average
excess intensity, Ee, excess storm duration, t:re and a rectangular
storm interior. The assumption that the probability density function
for Ee and tr_ are exponential with no seasonal variations does not
seem to capture the observed behavior. Also, the runoff process
may not accurately represent the behavior of the New England basins.
The assumption that the time of concentration of the catchment, te,
is less than the time of concentration of the streams, ts, must
be seriously questioned, especially for the smaller New England
basins.

It is felt that Eagleson's approach is an important conceptual
contribution to the dynamics of flood frequencies, but, for general
application in obtaining prior information, the results are limited.

Eagleson's procedure may still be used with other regional
information to provide prior information on the mean and variance.
If it is assumed that there is a regional cqefficient of variation
and Eagleson's prediction is used for the mean, then an estimate of
the moments for the variance can be found. The relationship between

the standard deviation 0, mean m, and coefficient variation CV, is

o =C_~ *m (3.39)
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From the first-order amnalysis, estimates for the mean and

. 2
variance of 0 are

E[oz] 2 CV2 m2 +C, Vim] + m~ ° V[cv] +
(3.40)
. . 1/2 1/2
+ 4 C, " m pCvm Vim] V[Cv]
V[GZ] . 4Cv.4 m2 vim] +
2 4
ACV m V[Cv] + (3.41)

3.3 1/2 1
8cv M pcvm Vim] V[CV]

/2

For the 36 New England basins, the mean and variance for Cu
were given in Equation (3.36). The sample correlation coefficient
between C, and m for the 36 basins is .31. The moments of the mean
are found for the 'ungaged' basin by applying the predicted mean
and the moments of the ratio of the means.

This was done for the Blackstone River near Woonsocket, R.I.

The predicted mean was 5600 cfs, which implies the moments

E[u] = 5575 cfs
9 (3.42)
VIul = 7369600 cfs
Applying (3.36), (3.40), (3.41) and (3.42) gives
E[oz] = 3.184 x 107 cfs 2
(3.43)
Vio?] = 7.9975 x 10%% cge’
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Thus, the prior information on the mean and variance of the
annual series for the Blackstone River is given by (3.42) and (3.43)

and implies an equivalent prior sample size n' of 4 where

o Elo] (3.44)

This is about the same amount of information as was found in the
regression equation.
3.4.4 Summary

The analytical procedures of Eagleson were unable on their
own to provide prior information on the mean and variance of
annual floods. This lack of information can be attributed to the
numerous assumptions that must be made if an analytical solution is
to be obtained. The analytical procedures of Eagleson's seem
to give a large bias to the variance for the example basins studied,
which, in turn, implies a high amount of risk in applying the prior
information. When this problem is encountered, a possible procedure
to obtain prior information is the application of Eagleson's
approach in conjunction with a regional estimation of the coefficient
of variation. This latter method provides information equivalent

to about 4 years of data.
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3.5 Conclusion

This chapter studies two sources of prior information that
researchers have used to estimate the occurrances of floods - the
multivariate regression and an analytical flood frequency formula
(after Eagleson, 1972).

The multivariate regression is an empirical technique that
fits a linear function to data from near-by or similar basins.

This procedure will out perform many empirical flood formulae found
in the literature, because regression is a minimum variance
procedure.

Eagleson's analytical flood frequency formula predicts the
occurrance of flood magnitudes by considering the overland flow
dynamics of excess rainfall and the pdf of the magnitude of the rain-
fall. For the region studied, this procedure did not provide any
useful information. When the analytical formula is used in con-
junction with a regional coefficient of variation, limited prior
information is obtained.

For the region studied, the empirical and analytical procedures
provided some prior information. This information is equivalent to
4 to 7 years of data, and may be significant when only very short
historical records exist. More research should be done in the area
of estimating prior information. One possibility is the use of
rainfall-runoff simulation models. Often rainfall data has a longer
record than streamflow data, and extensive research is needed to

determine if such models can be used to extend the streamflow record.
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CHAPTER 4

Bayesian Distribution Theory

4.1 Introduction

The analysis of estimating flood exceedance probabilities,
the probability that a flood, with a magnitude greater than q,
will occur during some time interval, has always been a source of

controversy in hydrology. The procedure traditionally followed has

been to:
1. Observe a historical record of flood events
2., Pick a generating process or probability density
function that seems "reasonable"
3. Estimate the parameters of this underlying process
from the historical record, and
4. Make inferences about the occurrence of future flood
events.
This procedure will be refered to as the estimation of floods by
the application of distribution theory. When historical records are
not available, inferences about the occurrence of floods are made
using procedures such as those described and analyzed in Chapter 3.
Much of the controversy about the distribution approach has
centered on which underlying process or probability density function
(pdf) is the appropriate one to use and what is the 'best'
approach to estimating the parameters of the chosen distribution.

In Chapter 2, it was argued that when parameters are uncertain and
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thus random variables, point estimation will underestimate the
uncertainty in the pdf of the flood events. Only through the
application of Bayesian distribution theory, is it possible to fully
éccount for parameter uncertainty. The analysis leads to the
Bayesian pdf. This Bayesian distribution of the magnitude of flood

events, E(q), is, from Equation (2.6),
£(a) = [£(q]©) - £"(8)0 (4.1)
)

where
f(q) is the Bayesian pdf of ¢q
f(ql@) is the 'modelled' pdf of g which is conditional upon
the set of uncertain parameters O

f"(@) is the (posterior) pdf of the parameter set )

The traditional approach to flood analysis uses the historical
record to find point estimates for the parameters of O. Bayesian
analysis uses the historical record in conjunction with other sources
of information, as discussed in Chapter 3, to find a pdf for the
parameter set O. The pdf for O is called the prior pdf if it is
evaluated prior to obtaining more data, and it is called the posterior
pdf if it is evaluated after obtaining the data.

The posterior pdf for © is found through the application of

Bayes theorem and is, from Equation (2.1)

£'(0) = £"©@lQ, 1) =1(Qle) - £'(8) (4.2)
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where
£'(0) = f"(@lg,lo) is the posterior PDF of O conditional
upon the current observed sample Q and initial
information Io

L(Q|Q) is the likelihood function of the sample, Q

f'(Q) = f'(QlIO) is the prior PDF of the parameter set O

conditional upon the initial information, Io

The evaluation of f'"(Q) does not depend upon the functional
form of £'(9). If f'"(Q) is restricted to a particular form defined
as the natural conjugate of L(gl@), then the posterior pdf of O,
£"(0), will be of the same functional form as f'(0). By restricting
prior pdf to natural conjugate forms, it is possible to evaluate
both f"(@) and E(q) analytically. This is an extremely attractive
consideration since this analysis is concerned with the methodology
of Bayesian procedures. The extensive numerical analysis needed
to solve for f(q), using priors which are not natural conjugate
forms, is not considered in this thesis.

Four alternative models are analyzed in this chapter. Three
of the models consider the annual series of flood events which is
made up of the largest flood event in each year. The three models
are analyzed, conditional upon the assumption that the annual series
was generated by 1) a normal process, 2) a log-normal process or
3) a gamma-l process.

The fourth model considers the partial duration series of
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flood peaks above a 'base' level. This model is defined as an
exceedance model. The base level is chosen so that the occurrence
of events greater than the base value can be described by a Poisson
process and the magnitude of events larger than the base level can
be described by an exponential pdf.

This chapter will not address directly the controversy of
which pdf best describes the generating process of flood events.
This is left to Chapter 7 when model selection is considered. This
chapter will analyze, in a Bayesian framework, alternative probability
models of the occurrence of flood magnitudes. The flood exceedance
probability from each model will be calculated for the Blackstone
River at Woonsocket, Rhode Island and compared. Chapter 6 uses
each of the probability models in a decision problem where the
decision act is concerned with the design capacity of a local flood
control system consisting of channelization, dikes and flood walls.
The decision example is for Woonsocket, Rhode Island and will
utilize the results of the probability models developed in this

chapter.

4.2 Bayesian Inference from a Normal Process

4.,2,1 Prior and Posterior Distribution for Mean u and Precision h
for the Normal Process
Assume that the series of annual floods comes from a normal
. . 2 , . .
process with unknown mean u, and variance 0 . Define the precision,

h, as being 1/02 and let Q be the record of the observed annual

118



floods.
The 'modelled' pdf of the annual flood q is distributed
N(u,h) which is

/

£(q|u,h) = nt zeXP[%(q—u)zl (4.3)

The likelihood function of the set of independent observations Q
is defined as

LiQlu,hl = M  f(qlu,h) (4.4)
all q;

which, for the normal process, can be shown to be (Raiffa and

Schlaifer, 1961)

1/2 h 2 h 2
L[g!h,u] « h /2, exp[- E—n(m—u) ]+ exp[- 5 vv] * h / (4.5)
where
n = number of observations in the sample Q
1.0
m= gl 9

1 ¢ " 2
v = 5:1‘21=l (qi-m) (= 0 for n=1)
v = n-1
It can be observed that the likelihood function is composed of two
parts. The first part is the kernel of a normal density function and
the second part is the kernel of a gamma-2 density function. Thus,

the natural conjugate will be a normal-gamma distribution,

f&Y(u,h|m',v',n',v'), of the form
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Fry (b Im' v 0t = !/ % expl- Z b’ (um?

' —
exp|- %-hv'v']~hv /2-1 (4.6)

where the definitions of m', v', and n' follow from those of Equation
(4.5). The distributions for the marginals of f£'(u,h) can easily be

found. For the mean, u,
- v
£l (ulm', vi/n', v« [V + (un) P atyyryT OFD/2 .7

which is Student, with moments

E[u] = m'
(4.8)
A V! . '
V[U] - nl (V‘—Z) ’ \Y > 2
And for the precision, h,
] 2_
f;z(h|v', V') « exp[- %’hv'v']hv /2-1 (4.9)

which is gamma-2. Often prior information is available on the variance,

02 = 1/h.

From (4.9), the distribution on 02 can be shown to be

2,1 1 1 2 2.v'/2+1
fin(O I—2~ v', —2~\)'v’) « expl[- 70 viv']- (o) (4.10)

which is distributed inverted gamma-1 and has moments
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12"
E[02]=1/\')v
7\) -1
tory 2
v[oz] - (/2vvl) : ;v > 4 (4.11)

Gv' - DGV -2)

Information from the prior using the restrictive pdf assessment
procedure will be the first two moments - the mean, u, and the
variance, 02. By solving Equations (4.8) and (4.11) the parameters
of the prior can be determined.

By comparing Equations (4.8) and (4.11), it is important to

notice that

1. m' = E[u], the prior mean
E[02]
2, n' = ETajnu—’ the prior equivalent sample size in terms

of the mean

2. 2
3_ \)‘ = 2. E__.[iz-_]_.‘. a
vio™]
Yoo
b= v R
'—
or = E[Gz] ‘ \)\)12

Steps 1 through 4 can be easily carried out to find the parameters
of the normal-gamma prior pdf. There is no redundancy in the sta-
tistics n' and v' for the prior pdf, as there exists in the likelihood
function. There, v = n-1, but for the prior v' the relationship

between v' and n' need not follow the relationship v'= n' - 1
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(Raiffa and Schlaiffer, 1961).

The posterior distribution of (p,h) can be found by applying
Equation (4.2) and will be Normal-Gamma, f§Y(u,hIm",v", n", v,
of the same form as (4.6) with the following parameters, (Raiffa
and Schlaifer, 1961):

n" =n' +n

m" = i"(n' m'+1n * m

(4.12)
vi=v' +v+1
v = %ﬁ'[(v'V' + n'm'z) + (v + nm2) - n" m"2]

where n, m, v, V are the sample statistics defined in Equation (4.5)

and n', m', V', v' are the prior statistics.

4.2.2 Bayesian Distribution of the Annual Maximum Flood Discharge
from a Normal Process
The Bayesian distribution of the annual maximum flood, q, is
found by applying Equation (4.1). If the posterior pdf of the
parameters U,h is Normal-Gamma, as defined by Equation (4.6), with
the parameters as given in (4.12) and if the modelled process is
Normal with mean p, precision h, then it can show, as in Appendix A,

that the Bayesian distribution of q is Student. That is

- . a" f
fs(“|ml’ﬁwii" v', ") = [J fN(q[u,h)-fNY(u,hlm",v",n",v")-dudh

uh (4.13)
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The form of the Student is

Es(qlmn, vll/r’\)") - ___~L___ . [l + (q_mu?‘ N

l-_ ln v'v

where B(l3 %v") is the Beta function defined as

T(1/2) T(1/2V")
T(1/2V" + 1/2)

r=n"/(n" + 1)

The first two moments of Es(q) are:

E[q] ml'

AT n"+1
v '(\)n 2)( V" —)

viql

]—(v"+l)/2

. [\)H n] 1/2

r
(4.14)

(4.15)

Inferences about a Normal process with mean and variance un-

known will be made from a Student pdf which fully accounts for the

parameter uncertainty. For the same data, the Student pdf is similar

in form to a normal pdf but has a larger variance.

This is shown in

Section 4.6.2 where Bayesian and classical distribution procedures

are compared.

4.3 Bayesian Distribution of Annual Flood Discharges from a Log-

Normal Process

In the previous section it was assumed that the distribution

of the annual maximum flood event came from an independent normal
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process. For many rivers, sample information would seem to indicate
that a more appropriate model of the underlying process would have
a probability distribution which takes on values greater than zero
only for positive flood discharges, q > 0, and that the distribution
would be positively skewed (long upper tail). Such a model is an
independent log-normal process.

Given that z = 1ln q is normally distributed with mean u and
variance 02, then q has, by definition, a log-normal distribution.

It is well known that q has a mean of
2
n = explu + o /2]. (4.16)

The model, where hydrologic variables follow a log-normal distribution,
has been widely used in hydrologic analysis. The Bayesian pdf of the
log-normal process can be found analytically by applying derived
distribution theory to the results from the normal process. It can
also be found by finding the posterior pdf of n from the joint pdf

of In n and , then integrating over f'"(n) numerically. This is the
approach of Equation (4.1) to find the Bayesian pdf of the flood
discharges. This latter procedure is given in Appendix B.

The approach in this section is to use the normal analysis
results and then to apply transforms to obtain the results for the
log-normal analysis. Using the results from the normal process
analysis leads to analytical results for the log-normal process.

This feature is very desirable.

If two random variables, say x and y, are related by a
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monotonic function, x = g(y), then their density functions are

related by

£(y) = £(x) - lij-;il

(4.17)

flg(y] |§-§§(X)—|

From Equation (4.14), the Bayesian distribution of stream
flows from the normal process, with unknown mean and variance, is

Student of the form

1
B(1/2, 1/2V"

r(z-m™ % ~(V'41)/2 |
v"\)"

[1+

fs(zlm", w/r, v")=

[EEX:illz

. (4.18)

where r = n"/n"+1 and all other parameters are as defined in (4.14).
From Equation (4.17) and the relationship between z and q; namely

z = 1n q, the Bayesian pdf for q can be shown to be:

2
" " "o_ l . 1 . r(1ln g-m") —(\)"+l)/2
f(le , v /r,ut o= q B(1/2, 1/2v™) [1+ v " ] .
r i/2
i) (4.19)

This pdf has been defined in the literature as the 'log-student'’
density function. The mean of the log-student does not exist
(Zellner, 1971; Kaufman, 1972) which results in a number of inter-
esting consequences.

In finite act decision problems with acts whose values are
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linear in q, the expected utility of every act will be infinite. This
restriction is not crucial since realistic value functions in hy-
drologic decision problems are rarely linear in q. In the analysis

of the log-normal process by numerical procedures, presented in
Appendix B, the mean of the posterior pdf for the mean of q,

f"(n) does not exist. Thus, optimal Bayes point estimators from the
often used quadratic loss function, 2(n,f) = (n - ﬁ)z; symmetric
linear, ]n - ﬁl; or asymmetric linear will result in infinite

losses for every choice of fi. This latter point does not bother the
analysis for the Bayesian pdf, since f"(n) is a proper demsity function

and the integration over f£"(n) can be carried out.

4.4 Bayesian Distribution of Annual Flood Discharge from a Gamma-1

Process

The previous section considered the case where the magnitude
of the annual flood series was distributed according to a log-normal
pdf. Many rivers exhibit characteristics which would suggest that a
probability model which has a long upper tail (positively skewed)
would be an appropriate model. This is why the log-normal model has
been widely used; however, it is often the case that when logs of
the observed sample are taken, the resulting data is not symmetrical
about the mean (no skew) as is predicted. If the logs of the flood
series are negatively skewed, a more appropriate probability model
of the flood discharge, q, may be to assume that they were generated

from a gamma-1 process.
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The gamma-1 pdf closely resembles that of the log-normal
distribution. Both are uni-modal and positively skewed. The gamma-1
has a shorter tail so that the probability of observing an extreme
event of the same magnitude will be higher for floods generated by
a log-normal process. Table 4.1 compares the return period for
extreme events from the gamma-1l process with those from the log-
normal process. Both processes have a mean of 3000 cfs and a standard
deviation of 2121 cfs.

If the logs were positively skewed, then it might be more
appropriate to assume that the logs of the annual flood series are
generated by a gamma-1 process; or that the flood discharges are
generated by a log-gamma-~l. A log-Pearson III pdf is a type of
log~gamma. It is also interesting to realize that if the logs of a
flood discharge sample are negatively skewed and they are fitted to
a log-Pearson III using traditionally recommended procedures, then there
exists, 1) a maximum flood that will occur, 2) a finite probability
of observing a flood discharge that is less than or equal to zero.

The Bayesian analysis of a log-gamma will not be analyzed here;
instead, the analysis of the gamma-1 will be considered.

The pdf of flood discharge, q, generated from a gamma-l

process is of the form:

r-1 r

£(qla,r) = exp(~ a-q) - I (4.20)

The Bayesian analysis for the gamma-l process with both

parameters unknown required numerical procedures due to the complex
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Q Log-Normal Gamma-1

T T
500 1.00636 1.04665
1000 1.08646 1.1685
1500 1.28256 1.3589
2000 1.59948 1.62547
2500 2.05146 1.98482
3000 2.66477 2.46205
3500 3.47604 3.09217
4000 4,.53203 1.92271
4500 5.89035 5.01768
5000 7.62076 6.46298
5500 9.80688 8.37377
6000 12.5481 10.9045
6500 15.9622 14.2624
7000 20.1874 18.7256
7500 25.3859 24,6672
8000 31.7468 32.5889
8500 39.4897 43,1637
9000 48.8698 57.2945
9500 60.1804 76.1894
10000 73.7596 101.467
10500 89.9959 135.274
11000 109.332 180.474
11500 132.277 240.81
12000 159.403 321.181
12500 191.368 427.837
13000 228.915 568.719
13500 272.88 753.558
14000 324,222 993.558
14500 384.006 1301.37
15000 453.414 1689.55
15500 533.83 2168.72
16000 626.67 2745.86
16500 733.655 3419.73
17000 856.592 4177.59
17500 997.694 4984 .32
18000 1159.13 5821.38
18500 1343.47 6636.56
19000 1554.02 7403.89
19500 1793.2 8089.3
20000 2064 .63 8683.86
Table 4.1

Return Periods for Gamma-1 and Log-Normal Process
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likelihood function. The likelihood function for a sample g of n

(years) in length is:

r
L@a,rle) = T [em(- asa)af & 7251 (4.21)

i

s

1

To find the posterior pdf f"(a,r) requires the likelihood
function to be rescaled numerically by the prior probability density
function f'(a,r). The Bayesian pdf of the flood discharges, f(q), is
calculated by numerically integrating over the product of the posterior
pdf f"(a,r) and the modelled density function for q, le(an,r).

The numerical integration is over all values of a and r and follows
from Equation 4.1. Section 4.6.4 presents the numerical values of

f'"(a,r) and E(q) for the Blackstone River.

4.5 Bayesian Inference from an Exponential-Poisson Exceedance Model

The previous models of the distribution of flood events
considered the annual series, that is, a series consisting of the
largest flood in each year. Consider now a series composed of all
independent flood peaks, often called the partial duration series,
and of these flood peaks consider only those flood events above a
level Qb. These flood peaks will be assumed to be independent.

While the pdf of the whole series may not be known, Qb will be chosen
large enough so that the probability distribution of flood events

greater than Qb will be assumed to be exponentially distributed,

that is:
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fQ(q) = o expl- G(q-Qb)] (4.22)
for q > Qb
Let z = (q - Qb) be the exceedance discharge so that

Equation (4.24 becomes

oz

fz(z) = qe (4.23)

for z > 0

It is easily shown that the probability of an exceedance

discharge being greater than z is

P ==e (4.24)

If it is assumed that the time between independent flood
peaks larger than the base Qb is exponentially distributed with
parameter v, then the occurrence of exceedance flows will be governed
by a Poisson process with an average arrival rate v. It is then seen
that the occurrence of floods above some exceedance level z is also
Poisson, but with an average arrival rate v‘PZ.

The probability that in time t we have n, exceedances (n

exceedances above a flood exceedance level z) is just

(VP )nz
PN =n) =-—F  exp[-(VP)-t] (4.25)

N z n
z

But if z is such that no exceedances occur in time t, then PN(N=0)
is the cumulative density function for z, F (2).

Substituting PZ into (4.25) for nz=0 gives
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%2y (4.26)

FZ(z) = exp[—vte-
for z > 0.

The probability that z = 0 is the probability that q is less
than the base value Qb.

If z is large so that the probability of exceeding it is small

and the arrival rate of such events is small, then (4.28) can be

closely approximated by:
Fy(z) = 1 - vtrexpl[-az] (4.27)

Equation (4.26) or (4.27) represents the underlying probabilis-
tic model of the exceedance floods. It is of a fairly general form
since the upper tails of many distributions may be represented as
exponential. The proposed model has been used in its classical
formulation for extreme discharges by Shane and Lynn (1964) and
Todorouic and Zelenhasic (1970) and for rainfall events by Grayman
and Eagleson (1971).

4.5.1 Prior and Posterior PDF for Parameters o and Vv

The posterior pdf for a parameter may be found by the
application of Equation (4.2). It is assumed that o and v are
independent.

In the underlying model, the time between exceedance floods
is assumed to be exponentially distributed with parameter v. The

likelihood function for v will be

LIv| Z(n,T)] =™ & TV (4.28)
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where g(n,T) is the record of exceedance floods in which there
occurred n exceedances in T years of record. Equation (4.28) is the
kernel of a gamma-1 probability distribution. Thus the natural con-

jugate is also gamma-1 with parameters u' and s'; that is:
u'
£'(v]|u',s') « v expl[- s'-v] (4.29)

and the posterior pdf for v is:

"
f"(vlu",s") « Y exp[- s"+Vv] (4.30)
where
u" =u' + n
s" =s' 4T

The probability density function for the magnitude of floods
exceeding the base Q, is assumed exponential with parameter o. The

likelihood function will be:
n n
Lla|2] « o expl- af z,] (4.31)

where
n is the number of exceedances

Z is a vector of exceedance discharges.

Like v, the average arrival rate parameter,o has a likelihood function
n
which has a gamma-1 kernel with parameters n and Ezi. The natural

conjugate prior is gamma-1 and if it has parameters v', L', then the

posterior pdf of o will be gamma-1
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"

£"Calv", 2" = o' expl- a'a"] (4.32)
where

vl + n

<
1]

2"

n
L' + Ezi

4.5.2 Bayesian Distribution of Flood Events for the Exceedance Model

The Bayesian pdf f (z) follows from Equation (4.1), thus

£,(2) = f J fz(z|u,v)'fyl(a|v",l")‘f;l(vlu",s")-dv°da (4.33)
o v

where
fz(zla,v) = oavt*exp[-0z], following from Equation (4.29)

The integration of (4.33) is given in Appendix C and is

p == oz ,=(v'"+2)
fz(z) = avt[l +-;WII] (4.34)
In a similar manner the exceedance probability, G,(z) = 1 - Fz(z),
can be calculated to be:
C = az  ,-(v"+1) 4.35)
Z(Z) = vt[1l +m] (4.

The exceedance model is formulated to consider the distribution of
extreme events. It is these events which are of interest to the
decision maker and, yet, by the very nature of the problem, there
are few observations to provide information about parameters. This
scarcity of data does not imply, a priori, that the exceedance

model does a poorer job of representing extreme events. In fact,
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since it was '"'designed" for extreme events, it may represent them very

well.

4.6 Inference of Flood Discharges for the Blackstone River at

Woonsocket, Rhode Island

4.6.1 Introduction

In estimating exceedance probabilities of flood discharges
using distribution theory, there are two main areas of controversy -
that of choosing the underlying process which best represents the
occurrence of floods and that of estimating the uncertain parameters
of the models. The first part of this chapter analyzed in detail the
effects of parameter uncertainty. Bayesian distribution theory
provides an approach to consider the whole pdf of uncertain parameters.
This leads to the calculation of the Bayesian pdf of flood discharges,
which are free of uncertain parameters. The Bayesian analysis
considered four underlying models, which were the normal process,
the log-normal process, the gamma-1 process and an exponential
Poisson process.

This section applies these four models to the Blackstone
River at Woonsocket, Rhode Island. With each model, inferences can
be made concerning the probability that a flood greater than some
magnitude, q, will occur. This probability is the exceedance
probability and will be written G(q) and is equal to 1 - F(q) where

F(q) is the cumulative density function.
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Decisions governing flood designs are concerned with the
occurrence of extreme events which are out on the tails of the
probability density function. Each model has a different tail, which
will lead to different exceedance probabilities and to different
optimal designs. To test conclusively which model best represents
a sample would require sample lengths far in excess of those normally
observed in hydrology. Furthermore, all tests are weighted where the
observations are - that is, around the moddle of the distribution.
However, flood designs are affected by the tails of the distribution
where there are few, if any, observations.

This section gives the flood frequency curve when each of the
four previous models is assumed to be the true model. The information
available to each model will be the same - the historical data and a
prior obtained from a regional regression. Table 4.2 gives the basin
characteristics, Table 4.3 gives the historical record of annual
flood peaks from 1929 to 1965, and Figure 4.1 presents a sample
histogram of the annual flood peaks.

The sample statistics are:

mean = 6372 cfs

standard deviation =5206 cfs

coefficient of variation = .817

coefficient of skew = 3.76
The sample statistics, and especially the higher moments, are
greatly affected by the extreme flood of 32900 cfs which occurred

in 1955.
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Area of basin = 416 square miles

Area of lakes, ponds and reservoirs = 12.5 square miles
Main stream length = 42.6 miles

Average channel slope = 11.5 ft. per mile

Average tributary slope = 41.5 ft. per mile

Average land slope = 307 ft. per mile

Mean altitude of basin = 495 feet

Datum of gage = 107.42 feet

Table 4.2

Basin Characteristics for the Blackstone River,

at Woonsocket, Rhode Island
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Year Flood Discharge (cfs)

1929 4570
1930 1970
1931 8220
1932 4530
1933 5780
1934 6560
1935 7500
1936 15000
1937 6340
1938 15100
1939 3840
1940 5860
1941 4480
1942 5330
1943 5310
1944 3830
1945 3410
1946 3830
1947 3150
1948 5810
1949 2030
1950 3620
1951 4920
1952 4090
1953 5570
1954 9400
1955 32900
1956 8710
1957 3850
1958 4970
1959 5398
1960 4780
1961 4020
1962 5790
1963 4510
1964 5520
1965 5300
Table 4.3

Historical Record of Annual Flood Peaks,

Blackstone River, Woonsocket, Rhode Island
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Figure 4.1: Sample Histogram of Annual Flood Peaks, Blackstone
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4.6.2 Inferences from the Normal Process Reference Section 4.2

The Normal model, with mean and precision unknown, was
analyzed with a Normal-Gamma prior in Section 4.2. The prior
parameters were obtained from regression models of the mean and
variance of the series of annual floods using 36 New England basins.
This regression model was discussed in Chapter 3.

The prior parameters are:

n' = 7 years
m' = 4042 cfs
v' = 6 years

v! 9.22 x 106 cfs2

The sample parameters are:

n = 37 years
m = 6372 cfs
Vv = 36 years
v=27.1x lO6 cf52

Thus giving the following posterior parameters (see Section 4.2 for
the procedure to go from prior and sample parameters to posterior

parameters) .

n'" = 44 years
n'" = 6001 cfs
v'" = 43 years
v' = 24,7 x 106 cfs2
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Table 4.4 gives the value of the probability density
function, cumulative density, the exceedence probability and the return
period for flood discharges up to 33000 cfs. Above this level the
exceedence probability is virtually zero.

Figure 4.2 compares the three flood frequehcy curves that are
obtained from using the prior information, using the sample data and
using both prior and sample information. It is clear from Figure
4.2 that the posterior pdf is a weighted average of the prior informa-
tion and sample information.

4.6.3 Inferences from the Log-Normal Process Reference Section 4.3

The log-normal model, with unknown mean and variance,
was analyzed in Section 4.3. The prior parameters were obtained from
regressions that are similar to the ones used for the analysis of the

normal process. The prior parameters are

n' = 4 years
m' = 6.4 log cfs
V' = 3 years

' 2
v' = .22 log cfs

The sample parameters are

n = 37 years

m = 8.6 log cfs

Vv '= 36 years

.262 log cfs2

v

and the posterior parameters are
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Table 4.4 Values of Probability Density, Cumulative Density,
Exceedance Probability and Return Periods of Flood
Discharges from the Blackstone River, for the

Bayesian Normal Process
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Figure 4.2: Bayesian Frequency Curves for the Normal Process



n" = 41 years
m" = 8.39 log cfs
v" = 40 years
v'"' = .689 1og_cfs2

The values for the density function, cumulative density
function, exceedance probability and teturn period for discharges
up to 60,000 cfs are given in Table 4.5.

The flood frequency curves obtained from using the prior
information, using the sample information and using both prior and
sample information are given in Figure 4.3. Figure 4.4 compares
the flood frequency curves obtained from the Bayesian analysis using
both prior and sample information to the flood frequency curve from
the classical analysis which uses maximum likelihood point estimators
to estimate the uncertain parameters. It is interesting to note that
the affect of accounting for the uncertainty in the parameters leads
to higher flood discharges for the same exceedance probability
(return period). In general, when the same information is used the
Bayesian appraoch will always lead to higher discharges for the same
return period; but, when both prior and sample data are used in the
Bayesian analysis and only sample information is used in the classical
analysis, no general statement can be made with respect to the
relative positions of the two frequency curves.

4.6.4 Inferences from a Gamma-1 Process - Reference Section 4.4

The gamma-1 process for the generation of annual floods was

analyzed in Section 4. Due to the complex form of the likelihood
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Table 4.5 Values of Probability Density, Cumulative Density
Exceedance Probability and Return Periods of Flood
Discharges from the Blackstone River, for the
Bayesian Log-Normal Process
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function, numerical procedures were required to find the posterior
pdf for the uncertain parameters and to find the Bayesian pdf for the
annual flood series.

The prior pdf's for f'(a) and f'(r) were of the family of
gamma-]1 functions. The prior parameters were estimated from two
regional regressions - one for the mean annual flood and one for the
coefficient of variation. The regional regression used the same 36
New England basins described in Chapter 3.

The prior pdf for the scale parameter, a is:

£'(a) « exp(~ 7677+a) -a> (4.36)
and for the location parameter, r,

£'(r) = exp(- .922+1) +r° (4.37)

The posterior pdf is obtained using a numerical procedure to
solve Equation 4.2 and is shown graphically in Figure 4.5.

The Bayesian pdf is evaluated numerically, and the values for
the density function, cumulative, exceedance probability and return
period for flood discharges up to 40,000 cfs are given in Table 4.6.

Figure 4.6 compares the flood frequency curves from the
Bayesian analysis using just the prior information, just the sample
information and both prior and sample. Figure 4.7 compares the
flood frequency curves from the Bayesian analysis using both prior and
sample information to the flood frequency curve from the classical

analysis which estimated the parameters by maximum likelihood point
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estimation.
4.6.5 Inferences from the Exponential-Poisson Process - Reference

Section 4.5

The exceedance model considers flood discharges greater
that 8500 cfs. It is assumed that these floods have a pdf that is
exponential and that the pdf of the time between floods exceeding
8500 is also exponential (Poisson arrivals). This model is analyzed
fully in Section 4.5.

The prior distribution on v, the average arrival rate of floods
larger than 8500 cfs, was obtained through a subjective assessment.
The subjective assessment could have been obtained by an engineer
saying simply "based upon my experience in the area, my best
estimate of v is .1 and there is a 50-50 chance that V could be
plus or minus .030 of .1". The implication of this statement is that
the standard deviation is about .044, If this is accepted for the

example, then the prior pdf of v is

£(v|u',s") « vu' exp(~ s')
where

u' =5

s' = 50
Appendix D gives a procedure for obtaining f'(v) based upon the
uncertainty in plotting positions and the subjective assessment of

equivalent record lengths.
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The sample parameters are u = 5, s = 37 which together with
the prior parameters gives a gamma-l posterior pdf with parameters
u" = 10, s" = 87. The posterior average arrival rate, v, is .115
events per year.

The prior pdf for the event magnitude parameter, o, is es-
timated using a regression equation on the mean exceedance flood
(exceedance floods being those annual floods larger than 8500 cfs).

The prior pdf for is

]
£a|v',2") = a' exp(- 2'-q)
where

V'

2 events

L' 10850 cfs

1]

Sample values for the parameters are v = 5, & = 38610 which results
in a gamma-l posterior density function with parameters v'" = 7, 8" =
49468.

Table 4.7 gives the density function, cumulative density,
exceedance probability and return period for flood discharges from
8500 cfs to 60,000 cfs. It is interesting to note that only once
in approximately 9 years will a flood greater than 8500 cfs occur.

Figure 4.8 compares the flood frequency curves obtained from
just using prior information, from just using sample information
and fron using both prior and sample information.

Figure 4.9 compares the flood frequency curves obtained from

the Bayesian analysis, using both prior and sample information, to
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Table 4.7 Values of Probability Density, Cumulative Density,
Exceedance Probability and Return Periods of
Flood Discharges from the Blackstone River,
for the Exceedance Process
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the flood frequency curve obtained from a classical analysis using
point estimators. As in the other models, the inclusion of
parameter uncertainty leads to highgr flood discharges for the same
exceedance probability.
4.6.6 Summary

This section calculated the flood frequency curves for the
Blackstone River at Woonsocket, Rhode Island using four different
models of the underlying process. Bayesian procedures were used to
find the pdf for the flood discharges when parameter uncertainty was
considered. The resulting distributions were used to find the
exceedance probability for flood discharges. The flood frequency
curves from the four models were compared in Figure 4.10. 1In all
four cases the Bayesian aqalysis, using both prior and sample
information, was used. The flood frequency curves for the models were

quite different, especially for large return periods.

4.7 Conclusion

This chapter recognized that when flood frequency analysis
is performed using distribution theory, a number of issues are raised.
The first issue is how to handle uncertain parameters. Bayesian
distribution theory allows us to estimate probability density functions
for uncertain parameters, using various sources of data, and then to
obtain the Bayesian pdf for the flood discharges that will be 'free'
of the uncertain parameters. Equations 4.1 and 4.2 set out the

analytical procedures. The second issue raised is which probabilistic
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model best represents the underlying process. Four models were
analyzed in detail and applied to the Blackstone River at Woonsocket,
Rhode Island. The model gave quite different results, but generally
the gamma~1l, log-normal, and to a lesser extent, the normal

models fell closer together than the exponential-Poisson model that

only considers floods in the tail of the distribution of all flood
events. Which model is the most appropriate model has not yet
been addressed and will be left to Chapter 7.

One of the underlying assumptions in the estimation of flood
exceedance probabilities by distribution theory is that the
probability of the occurrence of a flood of a certain magnitude will
remain constant. In many river basins, this assumption does not
hold, due to urbanization of the watershed or structural changes
to the river channel. In these cases, hydrologists have recently
begun to apply rainfall-runoff simulation models to find the flood
frequency curves. Such an analysis contains uncertain parameters
which can also be treated as random variables. There are the
parameters of the rainfall pdf which can be analyzed using the theory
of this chapter, and there are uncertain parameters in the modelling
of the overland flow or runoff. These parameters can be considered
as random variables and analyzed in a Bayesian framework. This

analysis is carried out in the next chapter.
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Chapter 5

Bayesian Analysis of Rainfall Runoff Modelling

5.1 Introduction

Chapter 4 considers the uncertainty in flood frequency
analysis when distribution theory is applied. This uncertainty is
centered upon the parameters of the underlying probability density
function or model that is used to represent the occurrence of flood
events. The uncertainty as to model choice is discussed by comparing
the results obtained from the alternative models, but the analysis of
model uncertainty is left to Chapter 7.

The analysis of flood frequency by applying distribution
theory uses as inputs both prior information and historical flood
records. It has been shown that prior information based upon a
regional regression or an analytical flood frequency analysis provides
relatively little information. It is the historical record that pro-
vides most of the information upon which inferences are drawn.

The analysis of flood frequency using distribution theory has
the basic assumption that the probability of a flood of a given mag-
nitude is constant and does not change with time. Thus, basins which
change physically with time, due to changes in the river itself through
channelization for example, or due to urbanization of the watershed,
can not be analyzed effectively by the distribution theory procedures
of flood frequency analysis.

This problem has been recognized and some procedures have
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been applied to estimate the frequency curves. The most successful
methods are those that analyze the rainfall as a stochastic process
and then estimate the flood discharge by modelling the physical pro-
cess of overland flow of the excess rainfall. This has been done an-
alytically by Eagleson (1972), and through simulation by Leclerc and
Schaake (1972), Ott and Linsley (1972), and others. Such frequency
analyses have often been criticized (Ibbitt, 1972) on the basis that
the deterministic catchment model has parameters which are unknown
with certainty and whose values seem to be determined through 'in-
tuition' and best guesses. Chapter 4 analyzed the uncertainty in the
parameters of the probability distributions of floods by considering
the parameters as random variables and applying Bayesian statistics.
The resulting probability distributions of floods reflected the un-
certainty in their parameters. In an analogous manner, the uncertain-
ty in the flood frequency curve, due to uncertainty in the rainfall-
runoff simulation modelling, may be analyzed. The uncertain parameters,
whether they are in the pdf of the rainfall model or in the deter-
ministic runoff model, may be regarded as random variables. The pro-
cedures of Bayesian statistics can then be applied.

While this chapter is aimed at simulation modelling, the
vehicle for the analysis will be Eagleson's (1972), analytical deri-
vation. FEagleson's derivation is used in the analysis, and the ex-

tension to computer simulation modelling is straightforward.
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5.2 General Theory of Derived Flood Frequency Analysis

Flood Frequency analysis aims at finding the probability
that a flood will have a discharge less than or equal to some value
Q- This probability is defined as the cumulative density function
(CDF) evaluated at a4, and written as F(qm).

Consider the case when all parameters are known with cer-
tainty. The modelling procedure for F(qm) can be considered as a
simple urn problem. A random sample is drawn from an urn which yields
the values of the elements of 68, a vector that describes the
rainfall event. In this analysis, the vector 6 will contain two
elements, the average intensity, i, and the storm duration, tr'
With the values of rainfall intensity and storm duration, the over-
land flow modelling predicts (perfectly) the resulting peak discharge.
This sampling for the rainfall values is done for every storm; thus,
the stochastic process of the flood discharges is a function of the
stochastic process of the rainfall events and the determinstic runoff
modelling.

It has been shown by Eagleson (1972) that there exists in
the i - t. plane a line of constant peak discharges, Qs such that
all combinations of 1 and t  to the southwest of this boundary
produce discharges less than 9 This is shown in Figure 5.1. The
probability of observing particular values of i, tr is given by
their joint probability density function, f(I,tr). Finding the
cumulative density function for the peak discharge from a rainfall

event is equivalent to finding the cumulative density function for the
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rainfall parameters, 1 and tr’ that produce the peak discharge
Q- This is the problem of finding the volume under the joint density
function of E, tr for the region qu. This region has boundaries
i=0, t_=0, and q, = constant. The volume under f(i, tr) for
this region is found by solving the integration

F(q ) = Lqm £(i,t)) di de_ (5.1)
The resulting volume is shown in Figure 5.2. The boundary q, = con-
stant is located by the modelling of the runoff, either by computer
simulation or by analytical techniques. The shape and location of

the boundary depends upon

1. The shape of the rainfall event,
2. the modelling of the catchment response, (overland flow)
to the rainfall,

3. the values of the parameters in the catchment model.

Traditionally, the assessment of F(qm) has been to pick
a storm pattern, choose a runoff model and set the parameters with
the 'best' available estimates. Such a procedure does not account
for the uncertainty in the region qu due to parameter uncertainty.
Now consider the case where the parameters are unknown and can
be treated as random variables. Such uncertain parameters can be di-
vided into two categories. The first category consists of those
parameters that are fixed but unknown. A 'true' value is thought

to exist and, through more data, better information may be obtained.
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Such variables would be the parameters of the rainfall pdf of inten-
sity and duration or parameters of the runoff modelling, such as stream
length or slope. The second category of uncertain parameters are those
parameters that vary from rainfall event to rainfall event. Such a
parameter would be infiltration. Let infiltration be modelled as a
constant water loss, ¢ , over the rainfall event. Then the value
of ¢ can be viewed as a stochastic process along with the rainfall
event, and these two processes join together to generate peak dis-
charges.

Again, handling these uncertain parameters can be viewed as
an urn sampling problem. The difference between the two types of
uncertain parameters is important because it governs at what point
"sampling'" is done. Assume for the moment that the only uncertain
parameters are those that vary from rainfall event to rainfall event
and that the water loss ¢ 1is the only uncertain parameter. Then
the sampling would be to choose from one urn a value of the rainfall
intensity and storm duration set. From a second urn, a value for the
water loss is obtained, which, combined with the runoff model and the
rainfall values, produces the flood peak. The cumulative for the
flood peak that accounts for the uncertainty in ¢ can be cal-
culated by

F‘(qm) = £(¢) d¢ * fI(I,tr) di dt_ (5.2)
Rq_j¢
o} qm

where f(¢) 1is the density function for the water loss
qu|¢ is the region in the i - t. plane where the flood
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peak is less than or equal to Q- This region is con-

ditional upon ¢ .

The cumulative ?(qm) will be called the Bayesian cumulative of q,
and is the expected value of the cumulative, taking parameter uncer-
tainty into account.

When there exist parameters that are fixed but uncertain,
Equation (5.2) is followed, but conditional upon the uncertain pa-
rameters. Then, at the end, the cumulative is weighed by the pro-
bability density function for the fixed but uncertain parameters. For
example, assume that the rainfall pdf has two parameters, & and A ,
which are unknown. Since it is assumed that the pdf is fixed but
uncertain, the parameter uncertainty is introduced at the end. If
the cumulative of Qmax is desired, where Qmax is the largest of
n events and where the events are independent random occurrences,

then F is found from

Qmax

Unax

F = [ i (q_ |&-0) * £(g,)) dg di (5.3)
£\ ‘

where ?(qmlg,k) is the cumulative of the flood peak 4, conditional

upon the parameters £ and X and found from

Fq_|E,0) = | £(9) ao £, t]g,n 4 ar_
b qul ¢

f(£,)) 1is the probability density function for the fixed

but uncertain rainfall parameters.
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The analysis of the rainfall distribution in a Bayesian framework
within the rainfall runoff analysis must be done at the end. The
effect of parameter uncertainty is to introduce uncertainty as to
the location of the boundary q, = constant. The fixed but unknown
parameters can be viewed as an uncertainty in the boundary due to

a lack of information. The parameters that vary from event to event
cause shifting in the boundary due to the interaction of stochastic
processes.

There are also two denéity functions of interest that can be
evaluated. The first is the marginal distribution of the exceedance
probability at Q.- The exceedance probability, G(q), is the pro-
bability of observing a flood greater than 4 The marginal dis-~
tribution of the exceedance probability, conditional upon the flood
level Q> will be written as f[G(qm)]. The second marginal dis-—
tribution of interest is the probability density function on the
flood discharges, conditional upon an exceedance probability level;
it will be written as f[q[G(q)]. The two density functions are
displayed in Figure 5.3. These density functions are useful in per-
forming sensitivity analysis on G(qm) and q, due to the uncer-
tainty in qu.

They may play a larger role if, in a decision problem, the
utility function for the decision set A depended upon the exceedance
probability of the design discharge aq° Under these conditions,
the expected utility of a decision act, ass from the set A, is

given by
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Elu(a)] = |ula;, (a1 - £[6(a)] d6(ay) (5.4)

The evaluation of (5.4) requires the density function f[G(qd)].

5.3 Derivation of the Bayesian Flood Frequency Curve.

This section presents the analytical derivation of the mar-
ginal probability density functions for the exceedance probability,
conditional upon a flood magnitude, f[G(qm)], and the marginal
probability density function of the flood discharges, conditional
upon the exceedance probability level, f[q|G(q)]. To fully focus
upon the methodological aspects of the analysis and to permit analyti-
cal derivation of the required equations, the following assumptions
will be employed:

1. All parameters will be known with certainty, except 9
the temporally and spatially averaged water loss rate of
the rainfall event.

2. The rainfall event has a rectangular interior pattern.

3. Following Eagleson (1972), the joint probability density
function for the average rainfall intensity i and storm

duration tr is of the form

I = A8 a1 - B
f(l,tr) = g ex [-Ai K tr] (5.5)

where K 1is a factor to reduce point rainstorm depths to areal
averages for events of common probability. A and (B are pa-

rameters of the point rainfall density function. All rainfall
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parameters are assumed known with certainty.
4., The response of the catchment to a rainfall event will
follow Eagleson (1972). Eagleson analytically derived the
peak discharge from a catchment by applying kinematic wave
theory under the assumptions that the catchment can be
modelled by an idealized‘flow plane and that the time of con-
centration of the stream is larger than the time of con-
centration for the catchment. Eagleson's catchment response
will be used to define the boundary q, = constant.
The extension to a simulation model is straightforward. The model
will define lines of constant peak discharges in the i- tr plane
for given values of ¢ . The volume under the f(I,tr) surface, for
the region qu, can be found either by analytical procedures or by
numerical procedures, depending upon the form f(z,tr) and the re-
presentation of the boundary of constant peak discharge.

Eagleson approximates the boundary 94, = constant by a

function of the form

g(i) = B/" (5.6)

taking m = 1/2
1 1

s, 655 g Ay &
where B = 2.97{ — 1 - 22209 o1 (5.7)

a L a L q

c's cs m
Ar is area contributing to direct runoff o, and a  are

parameters of the catchment.

LS is the stream length
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i = i, - qm/645 Ar; i, being the average excess rainfall

intensity

For storm durations greater than the sum of the times of concentration

for the catchment and the stream

q, = 645 Ar ie (5.7)

The analysis here considers all rainfall events whereas
Eagleson only considered events that produced direct runoff (excess
rainfall events).

To find the cumulative for the peak discharge, ﬁ(qm)
Equation (5.2) is applied. The inner integration is over the rain-
fall probability density function. The limits of integration cover
the region qu, which is a function of uncertain water loss parameters,
® . 1In fact, the region qu in the i - tr plane now becomes a
volume in the i - tr - ¢ space, and the integration for %(qm) is
done first for qu, conditional upon ¢ . The integration over ¢
is then performed. Figure 5.4 shows the constant boundary in the
i- t. - ¢ space and the volume, qu, where the discharge is less
than or equal to 9,

The integration of Equation (5.2), over the rainfall pdf,

yields ?(qml¢), and is evaluated by

%(qmlcp) = £(I,e) di de_ (5.8)

JquM

The region qul¢ can be broken into two areas. The first
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has the boundaries

t = 0

T
t_—..oo

T
i =0

q

T __m
i =% tO9

T
The solution to (5.8) for these limits of integration will be re-—
presented by Il. The solution for the following limits of integration

will be represented by 12. These limits are

i = %Gisa v oo
r

z = [ee]

tr= g(io)

where g(io) is a function of the form similar to (5.6). The two
areas of integration are shown in Figure 5.5 and are similar to the

two regions Eagleson used to solve his function.

00 qm/645 A_+¢
Il = J dtr [ %A exp (- Atr --% i) di
(o] (¢}
= 1 - exp (-Bq /645 KA - Bo/K) (5.9)
oo g(1) n _
1, = I 41 %)l -re_ -89y ar_ (5.10)
q /645 A+ ¢ °
where tr = g(io). (5.11)
Letting i = i- (q /645 &_ + ¢) (5.12)
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Then, (5.10), becomes,

12 = J‘:dio jo i [- tr- X (io+ qm/645 Ar+¢) ldtr (5.12)

which can be simplified to

q ” Bi
R &yt LERIES Lexp O LN

(5.14)
when g(io) is of the form of (5.6) then (5.14) integrates
to
qu 6
12 = exp (- —62—5_—-1(.—‘:; - ¥ d) (1 - Io) (5.15)
where Io = e—OIm O+1I'(O)
N
I- BAZA 655us/3 A2 v, A
o = j2.21 1 - - 31)3}
L KC’Lc Ts % Ls qmﬁ
Thus
Bq
- _ . . m B
F(qm) 1 Io exp ( 645 ArK K ¢ ) (5.16)

Wnen considering the cumulative density function for Q> conditional
upon an excise rainfall event occurring, then (5.16) reduces to
Eagleson's expression.

Often, decision makers are interested in the flood exceedance
probability, G(qm) =1 - F(qm). Then, from (5.16), G(qm) is

Ba,,
= . ~m___ B
G(qm) = IO exp (_ K 645 Ar - K ¢ ) (5-17)
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Equation (5.12) provides a relationship between the exceedance pro-
bability for a given flood peak, q,> and the water loss parameter,
¢ . If two random variables are functionally related (for example
y = g(x)) and if the function is monotonic and continuous, then the

following relationships hold

E[y"] = [ g (x) - £(x) dx (5.18)
X
SONENICREE - [

These relationships provide a procedure to obtain the mar-
ginal probability density function as well as the moments for the ex-
ceedance probability G(qm), given the peak discharge, and for the
peak discharge, q, conditional upon the exceedance probability. These
marginal density functions reflect the uncertainty in ¢ .

The form of these distributions depends upon the probability
density function for ¢, £(¢). Three forms will be examined. These
are: f(¢) as a uniform pdf, a gamma-1 pdf, and an exponential.

The latter is really a special case of the gamma-1.

5.3.1 Water Loss ¢, uniformly distributed.

Let £(¢) be represented by a uniform probability density

. o
function between ¢0 and ¢ ,

£(¢) — b, < ¢ < ° (5.19)
®°=¢)

otherwise
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and let y = G(qm). Then the Jacobian from (5.16) is

% ngi 9B /K (5.20)
where C = I - exp fjghl___)
© K 645 A
r
f(y) = 1 LS for € - e—(boB/Kiy < c - e‘(boB/K
(6°-¢.) By
(5.21)
= 0 otherwise

The first two moments are

~9,8/X  ~¢°B/K

Ely] = —=— [e e ] (5.22)
B(6°~6)
. -2 B/K  -26°8/K
Bly?] = —SK e 0 L. ] (5.23)
28.(4°=6,)

The decision maker is not only interested in the distribution
of the exceedance probability at a particular flood discharge level,
but, given an exceedance probability, he is also interested in the dis-
tribution of the flood discharges. This marginal probability density
function can be found from (5.16) and (5.18). Due to the complex na-
ture of the discharge in (5.16), analytical derivation is only possible
if the following assumption is valid: for a particular basin, Io is
constant over the range of flood discharges that are of interest.

Table 5.1 shows that this assumption is a reasonable one, then, the
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Table 5.1

Discharge (cfs) o] Io
100 .60199 .36384

1000 .6190 . 3496
5000 .6249 . 34465

10,000 .62661 . 3432

(For catchment and rainfall parameters as given

in Table 5.2.)

Table 5.1 Values of IO for Various Peak Discharges
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Jacobian, |dq/d¢| is, from Equation (5.16),

dg| _
l dé\ = 645 Al (5.24)

The limits on q, for the derived distribution, may be ob-
tained by rewriting Equation (5.16) as

I

_ X o _m
¢ = gh [y ) - 645 A_ (5.25)

For y [= G(qm) 1 a constant and for no water loss (¢ = 0)

9 is a maximum and equal to
K I
m = 6454 3 zn[—y‘l] (5.26)

As the water loss incrzases, the discharge from the rainfall event
must decrease until, at some value of o, ¢m’ there is no excess

rainfall and no runoff. This value is:

¢ = ——Q,n[-IL} (5.27)

The probability that 9, = 0 1is the probability that ¢ 1is
greater than or equal to ¢ o The spike for fQ(q=0) can be cal-

culated by

fQ(q =0) = P(¢2>¢ ) = f(¢) do (5.28)
qu

and the density function for gq, q >0, will be the derived density

function from (5.18) with limits
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I N
2n —YQ (5.29)

With (5.18), (5.19), and (5.24) the distribution £(q) is

f@ = — (5.30)
(¢°- d>o)-645 A

and has limits

645 A —IEJZ, }2-¢°< < 645 A _ISQ _I_Q

r 8" y ez rl By = %
(1 (5.31)

o . K _°

if $° < 8 2n t y]

K o K Io
° —_— —_— —_ a —_
If ¢° > 3 n { y] and ¢o< 8 in { ) then

the limits are

K I
0 <q < 645 Ar[é- sz,n[—yﬁ) - %] (5.32)

for f(q|q > 0). The spike at

q =0 may be found from (5.28)

or
from integrating (5.30) between the limits
K Io
0 < q< 645 Ar {(b ) n (?):i (5.33)
The first two moments of £(q) are
Elq] = 645 A_ [A - LL‘Z”—-%) 1 (5. 34)

with the constraint of E[q] > 0 and where
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]

Blq%] = (645 &7 [A%- AG™+ 6 )+ 3 (6°+0 ) - % ¢°0 ]

(5.35)

K Io
. itl 2 o
again with A 3 n [ - )
5.3.2 Water Loss ¢, Gamma-1 Distributed.

Let ¢ be distributed with a probability density function of

the form gamma-1, that is
£@) = ¥ ¢T o T () (5.36)

Using the same definitions for y and C as in the uniform
pdf analysis and using the Jacobian as given in (5.20), then (5.18)

gives

s v ¢ [ <§>]r‘1 / T(r) (5.37)

f(y)

o
i

where Koo / B 0<y<1

The first two moments of y are

Elyl = ¢ [ = )r (5.38)
o+ —8-

2K

2 2 o £
E[y“]= C° - [ J (5.39)
) OL+’B—"

For the distribution of q for a given exceedance level

constant must be made.

e

G(qm), again the approximation that Io
The Jacobian from (5.16) is as given in Equation (5.24) and

with Equations (5.18) and (5.36)
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£(q|q>0) = 64% T exp [0 (A-q /645 Ar)]. (A-q/645 Ar)r—l.cf/F(r)
r
I
O<qc 645 A Koo j _0} (5.32)
K on [ © P Y
where A = B n { —2~)
y
f(q) has moments
E[q] = 6454 (A -T1/0) (5.40)
E[q®] = (645 Ar)2 c[A2- 2Ar/o + r(r+l)/0?] (5.41)
I
where A = § in [ —2-]
o y

5.3.3 Water Loss, ¢, Exponentially Distributed.
Let ¢ be distributed exponentially. Then £(¢) 1is of the

form, £(0) = ae ™ (5.42)

which is a special case of the gamma-1 distribution when r = 1.

The marginal density function for the exceedance probability,
with a peak discharge a4 and marginal density function for the dis-
charge q at an exceedance level G(q), may be found by the applica-
tion of (5.16), (5.18) and (5.42). The marginals may also be found
by taking the results from the gamma-1 analysis.

The results for the exceedance probability (y = G(qw) are:

ay™ ™t ¢ 0<y<1 (5.43)

il

f(y)

where A = Ka /B
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a
Ely] = [mj] (5.44)

And for the discharge q, conditional upon q being greater than

or equal to 0O, the results are

I “OLK/B
o
flala20) = 53 exP[Eg‘KJ 1y (5.46)
r T 7
I
for 0 < gq 2_645 Ar-g Qn[ ij
E[q] = 6454 [A - 1/a] (5.47)
(1
where A = -% An [ ;2
E[q?] = (645 A )*[A%- 2A/a + 2/07] (5.48)
1
where A = LS in [_o)
B y

5.4 Recurrence Interval

The exceedance probability for the occurrence of flood events,
G(qm), has been evaluated with the total series of independent rain-
fall events. Often hydrologists are interested in the exceedance
probability of a flood peak as that peak relates to a partial duratiomn
series. When the number of flood events in this partial duration se-
ries equals N, the number of years of record, then the exceedance
probability, for this particular partial duration series, can be found

in the following manner, (Eagleson, 1972).
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Consider a record of N years, which contains, on the average,
© rainfall events per year. There will be ON flood events, some
of which will have a maximum discharge equal to 0, due to no excess
rainfall. The rt! most severe event of the complete series will
have an exceedance probability of

r
G(qmr) = ONH (5.49)

Now consider the annual exceedance series which is composed of the N
largest flood events from the set of ON. The exceedance probability
of Upps from the annual exceedance series, is

1 5
Plag > ) = W1 = T (3.50)

where Te is the recurrence interval measured in years. For r < N
(5.49) and (5.50) can be combined to give
= 6 - G(q) (5.51)

1
T
e

assuming N> 1.

Equation (5.51) 1is used in the next section to compare the
flood return periods obtained by the different modelling assumptions

of the water loss parameter ¢ .

5.5 Example Application

The results of Section 5.3 and 5.4 can be used to determine
the effect of uncertainty in the water loss parameter, ¢, upon the

flood frequency curve. The expected frequency curve for a hypothetical
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catchment, with parameteis as given in Table 5.2, will be determined
for the three different probability modelling assumptions of ¢ .

An indication of the variance in the process will be obtained by
plotting the expected exceedance probability curve, E[G(qm)], with
the expected exceedance probability curve plus and minus one standard
deviation. These curves will be from the annual exceedance series,
that is, a partial duration series of a length equal to the number of
years of record. It should be visualized that there exists a surface
in the G(qm)- 4, plane. This surface represents the joint probability
density function. The three curves, E[G(qm)], E[G(qm)] + g,
E[G(qm)] -0  represent three contours. For comparison, the frequency
curve from the analysis which assumes ¢ is deterministic is also
presented. In this analysis, the value of ¢ chosen is the mean

value of f£(9).

Figure 5.6 and 5.7 are for the case where the water loss is
uniformly distributed with means -5 equal to .03 in/hr and .05
in/hr respectively. Figure 5.8 and 5.9 are for the case where
f(¢) is exponential with means of .03 in/hr and .05 in/hr respec-
tively. Figures 5.10 and 5.11 are for £f(¢) gamma-~-1l distributed
with a mean, ®, equal to .03 in/hr and coefficient of variation
equal to .577 and .41 respectively. Figures 5.12, 5.13, 5.14,
and 5.15 are for f(¢) gamma-1 distributed with mean, ¢, equal to
.05 in/hr and coefficient of variation equal to .577, .477, .316,
and .10 respectively.

The implications of the uncertainty in the frequency curve is
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Table 5.2

Catchment and Rainfall Parameters

100 sq.mi.
Ac / 3 = 33.333 sq.mi.
¥

(3. A) 2= 17.32 mi.
10 sec—l

1
.1 sec
30 hr/in.
.13 hr !

Y _¥

95 (K =1-exp[-1.1A7 '] +exp [-1.1 X7 "= .01 A,
Eagleson, 1972)

109. events per year.
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Figure 5.6: Frequency Curves for f(¢), Uniform with ¢ = .03 in/hr
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Figure 5.7: Frequency Curves for f(¢), Uniform with
¢ = .05 in/hr
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Exceedance Probability G(q) =1- F(q)
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Figure 5.8: Frequency Curves for f(¢), Exponential with
$ = .03
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Exceedance Probability G(g)=1- F(q)
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Figure 5.9: Frequency Curves for £(¢), Exponential with
¢ = .05
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¢ = .03 and CV= .577
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Exceedance Probability G(q) =1-F(q)
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Figure 5.12: Frequency Curves for £(¢), Gamma-1 with
¢ = .05 and c, = . 577
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Exceedance Probability G(q) =1-F(q)
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Figure 5.14: Frequency Curves for f(¢), Gamma-1 with

¢ = .05 and CV = .316
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Exceedance Probability G(g) =1-F(q)
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Figure 5.15: Frequency Curves for f(¢), Gamma-1 with
¢ = .05 and CV = .10
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evident from the curves. In decision problems, the expected exceedance
probability, E[G(qm)] whould be used. Take the case where f(¢) is
exponential with a mean ¢ = .05. The error introduced by specifying
that a peak discharge of 4500 cts has a return period of 100 years,
as predicted by the deterministic analysis, is substantial, since the
stochastic analysis predicts that a peak discharge has a return period
of 50 years. This error in accounting for parameter uncertainty may
lead to serious design problems. When the information about ¢ is
very good, which is represented by a tight distribution on ¢ (and
shown in Figure 5.15), the difference between the two analyses is
very small. Of course, this is expected.

This analysis only considered one uncertain parameter in the
rainfall runoff modelling. The implications of considering many un-

certain parameters are evident.

5.6 Conclusion

Chapter 5 analyzes the uncertainty in the output of a deter-
ministic rainfall-runoff model due to the uncertainty in the models'
parameters. Eagleson's derived flood frequency analysis is used to
find the constant peak discharge boundary in the i- tr plane, which
in turn is used to define qu, the region in which combinations of
i and tr yield discharges less than or equal to Q- This boundary
permitted the evaluation of the flood exceedance probability, G(qm)
which is the probability that q > Q- The uncertainty in the runoff
model is represented by the water loss coefficient, ¢, which re-
sults in uncertainty in the position of the constant peak discharge

198



boundary for T and in the size and location of the region an.
fl

The expected flood exceedance probability, E[G(qm), is found by
G(q ) = E[G(q)] = 1- £(¢) do J £(3, t) di dt

6 Ra |¢
(5.52)

which considers the uncertainty in ¢ .

Two probability density functions are obtained analytically.
One is the peak discharge, conditional upon an exceedance probability
level, and the other is the exceedance probability at a peak discharge
level. This leads to the result that the use of a point estimate for
the water loss ¢ wunderestimates the peak discharge for a given
exceadance level, G(qm). Similarly, such a procedure underestimates
the exceedance probability for a given peak discharge.

Continued research remains to be done on parameter uncertainty
in rainfall runoff modelling. There are those parameters which vary
from storm to storm - for example, the rainfall interior pattern,
which are really stochastic processes and should be analyzed in such
a framework. There are those parameters which are uncertain, due to
statistical uncertainty. Their effect upon the region qu has not
been fully researched either. The area of parameter uncertainty
in modelling the rainfall runoff process will provide many years of
interesting work.

The extension of the theory presented here to other simulation
models outside of hydrology — for example, water quality models, -
is straightforward. If sinulation models are going to be applied

for prediction, where the concern is an unknown future state of
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nature, (an urbanized watershed, for example), then the probability
distributions on the models' outputs should be estimated if the

outputs are used to make meaningful decisioms.
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CHAPTER 6

Decision Analysis for a Flood Protection Design

6.1 Introduction

This chapter is concerned with decision-making, and the effects
of uncertainty in modelling the occurrence of floods of a particular
magnitude upon those decisions. The decision variable is usually an
engineering variable such as the height of a dike, the capacity of a
flood channel or the size of a spillway. In the example presented
here, the decision problem is to determine the level of flood
protection for Woonsocket, Rhode Island, which is often flooded by
the Blackstone River.

The analysis of modelling the probability of flood magnitudes
was presented in Chapter 4. In that chapter, four different
probability models were analyzed. Each model was assumed to correctly
represent the probability of the occurrence of a maximum annual flood
of a particular magnitude. The model parameters were considered un-
known random variables and, by combining information from historical
flood records and other sources, the confidence about the parameters
could be represented by a probability density function. With these
density functions, it was possible to find the probability density
function for the flood discharges which fully accounted for the
uncertainty in the model parameters. This probability density function
is the so-called Bayesian distribution of the flood discharges. Three

probability models in Chapter 4 modelled the series of maximum
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annual floods by 1) a normal probability density function, 2) a
log-normal probability density function or 3) a gamma-1 probability
density function. The fourth model assumed that the extremes of the
magnitudes of the partial duration series of flood peaks is best
represented by an exponential probability density function and the
time between the independent flood peaks is also distributed
exponentially.

The four models were applied to the Blackstone River at
Woonsocket, R.I. Due to their different underlying structures, each
model gave a different flood frequency curve. Since inferences about
flood magnitudes affect decisions, the different models may identify
different decisions as being the best one. This chapter compares
the decisions from the four probabilistic models. The analysis of
model uncertainty is performed in Chapter 7.

The relationship between inferences about flood magnitudes and
decisions on engineering variables depends upon the decision rule.. The
decision rule that is used in this chapter is as follows: the
decision, which is chosen as being the best decision, is the one that
maximizes the expected utility. This decision rule was discussed
in Chapter 2, and it assumes that there ekists a utility function
which can be measured. The value of the utility function, u(di,q),
depends upon the decision taken, di’ and the flood discharge q.

The expected utility from any decision di is,

Elu(d,)] = ! u(d,,q)*f(q)dg (6.1)
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where
u(di,q) is the utility function
E(q) is the (Bayesian) probability density function for
flood discharges.
The best decision, d*, under the above decision rule, will satisfy
the condition.

E[u(d@*)] = max E[u(d,)] (6.2)
all di

Utility functions may be of many different forms. They can
include and represent multiobjective outputs, social costs and
benefits, and risk adversion toward particular outcomes. This is under
the assumption that the decision maker can express such preferences
and that they can be measured. In the example presented here, it will
be assumed that the appropriate utility function will be net monetary
benefits. The total costs will be the cost of providing flood
protection, and the gross benefits will be the resulting reduction
in flood damages.

Using the decision rule represented by Equation (6.2), the
'best' level of flood protection for the example problem will be
determined for each of the four probability models. The effect of
the different models upon the decision is discussed for two budgetary
conditions. The first condition is an unlimited capital budget for
flood control projects and the second condition is a budget

constraint on capital expenditures.
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6.2 Flood Protection for Woonsocket, Rhode Island

6.2.1 Problem Description

Woonsocket, Rhode Island is on the Blackstone River, which has
an upstream drainage area of 416 square miles. The Blackstone River
has a bankful capacity within Woonsocket of approximately 700 cfs
(Corps of Engineers, 1958). 1In the last 40 years, there has been
approximately one major flood every eight years. Flows exceeding
bankful discharge have occurred, on the average, about once in five
years.

Local flood protection can be provided by a combination of
channelization, dikes and flood walls. The decision variable is the
capacity of this system. Figure 6.1 presents the capital cost for
different channel capacities. The cost curve is hypothesized from
information contained within a flood protection study for Woonsocket
by the Corps of Engineers (1958). Figure 6.2 presents two realistic
flood damage curves, also based upon information from the same
report. One stage~damage curve is under the condition of no flood
protection. The other stage-damage curve is where the flood protection
system has a design capacity of 32,000 cfs, which is equivalent to a
river elevation of 129 feet. The flood stage-damage curves, with
the stage-discharge curves as shown in Figure 6.3 (U.S. Geological
Survey, 1958), are used to calculate a flood discharge-damage curve.
For the sake of simplicity, it is assumed, in this example, that the
stage~discharge relationship of Figure 6.3 will not change, due

to the construction of the flood protection works.
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Figure 6.1: Capital Cost for Flood Protection, Woonsocket, R.I.
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Figure 6.2: Flood Damage Curves for Woonsocket, R.I.
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For ease of computation, the decision set is limited to five
different flood protection levles. These levels are shown in Table
6.1 along with the capital cost of protection. Reasonable damage
curves were obtained by the interpolation and extrapolation of the
damage curves presented in Figure 6.2 for the five different levels
of the decision set.

6.2.2 Discussion of Results.

The expected annual flood damage (in dollars) predicted by each
model depend upon the flood damage curves and the probability model.
The expected damages are calculated by Equation (6.1). The
interaction between the damage curves and the probability models can
be best observed by rescaling the damage curves. The damages resulting
from a particular peak discharge are reached by the probability of
that discharge occurring. The area under the rescaled damage curve
is the expected damages. Figure 6.4 shows the expected flood damage
curves for the six levels of protection (no protection plus the five
levels presented in Table 6.1) rescaled by the normal probability
model. Figure 6.5 is similar but uses the log-normal model, while
Figure 6.6 uses the gamma-1 model and Figure 6.7 uses the exceedance
model. These figures not only show graphically which floods contribute
to the expected damages, but also show the expected reductions in
damages (marginal flood benefits) between various designs. The
marginal expected benefits of one design over another is the area

between the corresponding rescaled damage curves. The graphs show from
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Decision Flood System Capital Cost

Capacity (cfs) ($ Million)
d0 8500 0
dl 15000 1.25
d2 20000 2.0
d, 25000 3.0
d4 30000 4.25
d; 36000 7.0

Note: Decision d0 is for no flood protection

Table 6.1

Capital Costs for Various Flood Protection Levels,

Woonsocket, Rhode Island Example
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which peak flood discharges the expected benefits are derived.

Table 6.2 presents the expected annual flood damages for the
four probability models and the six decision levels.

The expected annual flood damages from the normal and gamma-1
model are higher than the damages from the exceedance and log-normal
models. This difference is due to the former models having a higher
probability of observing a flood that causes damage and the relatively
large damages that occur from fairly small, but damaging, floods.

The previous figures, 6.4 through 6.7, show this interaction between
probabilities and damages. Furthermore, as the flood protection
capacity increases, the models with the higher probability of observing
extreme annual floods have the higher expected annual damages, as best
displayed by the exceedance model (Figure 6.7).

The gross benefits from a flood protection design are calculated
by converting the expected annual flood benefits (reductions in flood
damages) to an equivalent present value. It is assumed that 5% is the
appropriate social rate of discount and that the project has a 50
year life. The expected net benefits are calculated by subtracting
the cost of protection from the gross benefits. For each model, the
expected net benefits for the five decision acts are given in Table
6.3. Figure 6.8 presents the benefit and cost curves obtained from

each model.
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S1e

Expected Damages ($ Million)
Decision
Normal Log Normal Gamma-1 Exceedance
dO 10.63 6.09 8.17 8.18
dl 2.58 1.68 2.12 3.84
d, .336 .460 423 2.12
d3 .030 147 .083 1.11
d4 .001 .055 .015 .612
dg 0 .017 .001 .276

Note: Annual Flood Damages Discounted at 5% over a 50 Year Project Life

Table 6.2

Expected Damages for Various Decision Levels, Realistic Damage

Function



912

Decision Expected Benefits ($ Million)
Normal Log Normal Gamma-1 Exceedance
Gross Net Gross Net Gross  Net Gross Net
dl 8.049 6.80 4.36 3.11 6.054 4.80 4.34 3.09
d2 10.30 8.30 5.585 3.585 | 7.75 5.75 6.05 4.05
d3 10.60 7.60 5.898 2.898 | 8.09 5.09 7.069 4.069
d4 10.63 6.38 5.99 1.74 8.16 3.91 7.57 3.32
d5 10.63 3.63 6.03 -.973| 8.17 1.17 7.90 .90
Table 6.3

Expected Benefits for Various Decision Levels, Realistic Damage Function
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Figure 6.8: Benefit and Cost Curves for Woonsocket R.I. Example



The results indicate that the best decision is to provide a
flood channel capacity of 20,000 cfs, (decision d2) if the true
model of the probability of annual flood discharges follows a normal,
log-normal, or gamma-l density function; and the best decision is a
capacity of 25,000 cfs (decision d3) if the true model is the
exceedance model. Let the decision set be increased from five
decision levels to a set which contains all possible flood channel
capacities. Then the optimal design capacity, given a model, occurs
where marginal benefits equal marginal costs, assuming there is an
unconstrained budget. This capacity also maximizes net benefits, and
could be estimated through the use of Figure 6.8.

To study the effect of the shape of the damage curve upon the
results, the same procedures that were followed for the realistic
damage curves were followed for a set of quadratic damage curves of

the form

DAMAGE

0.26 (Q - Qo)2 for Q > Q

=0 for Q < Q
where

Qo is the minimum discharge where damage occurs, and is a

function of the decision level.
Q is peak discharge (cfs)
Damages are in dollars.
The coefficient of the quadratic damage curve is chosen in such

a manner that the quadratic damage curve and the realistic damage
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curve will intersect at a flood discharge of 32,000 cfs. At a dis-
charge of 32,000 cfs the Corps of Engineers (1958) estimated flood
damages to be 10.25 million dollars. The capital cost curve and
decision levels are the same as those used in the realistic damage
curve example., Figures 6.9, 6.10, 6.11 and 6.12 present the re-
scaled damage curves for each probability model. Table 6.4 gives the
benefits of each decision level, and Figure 6.13 presents the benefit
and cost curves obtained from the models. The results indicate
that if the log-normal model is the true model, then no flood control
works should be built. If the normal model or the gamma-1 model is
the true model, then a design capacity of 20,000 cfs (decision dz)
is best. If the exceedance model is the correct model, then the best
design capacity is 25,000 cfs (decision dg). These optimal designs
are based upon the assumption that maximizing net benefits is the
appropriate criterion by which decisions are made. For all the
models, the benefits from the quadratic damage curve are significantly
different than the benefits obtained from the realistic damage curves.
The results from the various models, however, tend to be similar, but
is is important to realize that this outcome can not be generalized
to other decision examples.

The discussion of the best decision has, up to now, only
considered the condition of an unconstrained budget. The effects of a
constrained budget upon the decisions will be discussed in the next

section.
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Expected Benefits

(8 Million)

_Decision
Normal Log-Normal Gamma-1 Exceedance
Gross Net Gross Net Gross Net Gross Net
d1 1.17 -.08 . 704 -.545 .930 -.32 1.156 -.09
d2 2.55 .55 1.737 -.263 2.17 A7 3.77 1.77
d3 2.71 -.29 2.02 -.977 2.42 -.58 5.11 2.11
d4 2.72 -1.53 2.15 -2.10 2.48 -1.52 6.036 1.79
d5 2.72 ~4.28 2.20 -4.80 2.49 -4,51 6.59 -.41
Table 6.4

Expected Benefits

for Various Decision Levels, Quadratic Damage Curve
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Benefits and Costs (§ millions)

A

" Benefit Curves——
' Model: 7
n Normal —O0—
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Figure 6.13: Benefit and Cost Curve, Using a Quadratic Damage Function



6.2.3 The Effects of Budget Constraints on Optimal Decisions

When a budget is unconstrained, then any project which has
positive net benefits should be constructed. The optimal project
size occurs where the marginal benefit to cost ratio is 1.0. At
this point the net benefits are also maximized. Marginal benefits
are the benefits contributed by the last increment built and
marginal cost is the cost of building the last increment.

In this discussion, a budget constraint is a restriction upon
the funds available for capital expenditures. The budget constraint
will be binding if the total set of possible projects (of which this
flood control project is but one) has expenditures that exceed
available funds. Under a budget constraint, the theoretically
correct procedure is to maximize expected net benefits (utility)
within the budget. This procedure is achieved by redesigning the set
of feasible projects so that the marginal benefits to costs are the
same for all projects, and total expenditures just exhausts the
budget (Major, 1973). For the last increment of flood control
capacity, the marginal benefits to marginal costs should equal 1 + A,
where A is defined as the shadow premium.

From Figure 6.8, it is evident that the different models of
the distribution of annual maximum flood discharges will, under a
tight budget constraint, lead to quite different decisions. Table 6.5
shows the net benefits for each decision using the realistic damage

curves and a shadow premium of 1.0. There is a definite shift in
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Expected Net Benefits ($ Million)

Decision Normal Log—-Normal Gamma-1 Exceedance
dl 5.55 1.86 3.55 1.84
d2 6.30 1.59 3.75 2.05
d3 4.6 -.10 2.09 1.07
d4 2.13 -2.51 -.34 -.93
d5 -3.37 -7.97 -5.83 -6.10
Table 6.5

Net Benefits under a Shadow Premium, A = 1
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decisions. Figure 6.14 presents the cost curves for the unconstrained
budget, A = 0, and for the constrained budget, A = 1. Also presented
are the benefit curves from each model. The change in the optimal
design levels can be clearly seen. The shift in optimal design
levels is larger for the log-~normal model and the exceedance model
than for the gamma-l or normal model. The difference in the shift is
due to the shape of the benefit curve, and depends upon the model.
For both the unconstrained and constrained budget condition,
the optimal decision level depends upon the interaction of the damage
curves, cost curves, and the probability models. Results can not be
generalized, and it is incorrect to make general statements about the
'best' probability curve to use in real engineering flood design

problems.

6.3 Summary

This chapter looks at a simple decision problem of determining
the best size for a local flood protection works. Four probabilistic
models of the magnitude of the maximum annual flood are considered.
The decision problem applied realistic cost and damage curves from the
Corps of Engineers (1958). Using the decision rule of maximizing
net benefits, the four models gave similar optimal decision or design
levels. The design levels depend upon the damage curve as well as
upon the probability model. At the optimal decision, the risk varies

significantly among the four models. For each model, the return
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Figure 6.14: Benefit and Cost Curves with Shadow Premium,
A=0.0 and X = 1.0



period for a flood to exceed the optimal decision is:

normal T = 250 years
log-normal T = 84 years
gamma-1 T = 55 years
exceedance T = 60 years.

The optimal design level for the exceedance model, which is the
most expensive, represents a capital outlay of about 507 higher than
the decision from the log-normal model, which has the lowest capital
outlay.

For the example presented here, the different models did not
lead to vastly different results. This outcome is not necessarily
true for all decision problems. Furthermore, the risk of a flood
exceeding the optimal decision varies among models and may also
influence decision makers. This chapter considers the affect upon
decisions of various probabilistic models. Chapter 7 will consider

the problem of model uncertainty and selection.
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Chaptexr 7

Tnference and Decision HMaking Uander

Model Uncertainty

7.1 Introduction

Hydrologists are often confronted with the problem of
choosing one statistical model from many contending models. This se-
lection problem is most frequently encountered in flood frequency
analysis. Here, many models seem to fit the available data very well,
but often the models lead to different decisions. In recent years,
considerable progress has been made on the development of statistical
procedures for comparing alternative models. The most significant
work has been the application of Bayesian statistics for the compari-
son of econometric models. (Gaver and Geisel, 1972 .) Summarize ex-
tensively the recent work in model selection for both Bayesian and
new-Bayesian procedures. The work by Leamer (1973) also considers
the econometric, model selection problem.

The model selection problem most often addressed in the
econometrics literature is the decision of which variables should be
included in a regression equation. This model selection problem is
conceptually easier, since the likelihood functions are all of the same
form. The procedures found in the Bayesian econometrics literature
can be extended to cover the more general problem of selecting among
models that have different functional forms. Smallwood (1968) uses
a Bayésian framework for model selection where the functional forms

among the models vary. 231



The approaches to model selection by non-Bayesian procedures
will not be discussed in detail here. An excellent summary is given
by Gaver and Geisel (1972). The difficulties of model selection by
non-Bayesian procedures are similar to the problems that classical
statistical approaches encounter, when dealing with uncertain parameters.
These problems are discussed in Chapter 2. Such problems in model se-
lection can be illustrated by the model selection approach taken by
Dumonceaux et al (1973).

Let x be a random sample from a distribution with a pro-

bability density function f (x|a,b) or fl(x|a,b) where
o

1 —
f.(x[a,b) = T g (=), —©<a< © , b> 0 (7.1)

The problem considered is that of selecting fo or fl as the model

for the observations. The problem is formulated as a test of hypo-

thesis Ho against Hl, where
H : X~f_ (x|a,b) = 1 g (X£2)
o’ o ’ b o b
(7.2)
_ 1 x-a
H1 : X.vfl (x|a.b) = b 8 ( 5 )
Dumonceaux et al define a statistic, R, where
Max n f.(x]|a,b)
a,b I 71
Max n f (x]a b)
a,b II "o *

which is independent of the unknown location and scale parameters, a
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and b. Essentially R 1is a ratio of the maximum likelihood estimators.
The distribution for R will depend upon n, fo’ and fl. Tables are

set up of critical values of R, Rc’ such that if Rl/n > Rcl/n , the

hypothesis Ho is rejected and the hypothesis H1 accepted. When
Dumonceaux et al tested to discriminate between a normal and a two-
sided exponential, the results are extremely ambiguous. With a sample
size of 40 (a typical length for hydrology) and an o = .05, the
power of the test, 1 - B3, is only .64 (for 30 years, 1 - B = .54).
When the two-sided exponential is the null hypothesis and when n is

40 and o is .05, the power of the test is .58. The low power

of the test emphasizes the ambiguity of this classical testing procedure.
It is obvious that samples can lead a null hypothesis being accepted,
and then, when the null hypothesis and the alternative hypothesis are
interchanged, the new hypothesis also being accepted. Furthermore, the
testing of more models (in pairs) could lead to more models being
'accepted'. The competing models that are considered in hydrology are
statistically closer than the normal and couble exponmential, and they
would, therefore, lead to more ambiguity.

The choice of one model over another competing model should
consider the larger decision problem, where the probability model is
only one component. This choice implies the consideration of loss
functions. The inability of the classical approach to incorporate the
larger decision problem within its testing procedures is discussed in
Chapter 2. Bayesian procedures can be included, explicitly, within the

total decision problem, which makes the application of Bayesian pro-
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cedures very attractive. Bayesian procedures have been used to choose
one model from a set of models. This selection is analogous to choosing
a point estimate for an uncertain parameter within a probability model.
In Chapter 2, it is shown that point estimates for uncertain parameters
underestimate the variance of the process. Similarly, selecting one
model from a set of competing models does not fully account for the un-
certainty in the process. When parameter uncertainty is fully accoun-
ted for, the resulting model is called the Bayesian distribution. 1In
the case of model uncertainty, the resulting model will be called the
composite Bayesian distribution. The development of this distribution
is given in the next sectionmn.

The Bayesian distribution is used in making decisions when
only parameter uncertainty is considered, as in Chapter 6. When both
parameter uncertainty and model uncertainty are considered, then the
composite Bayesian distribution should be used. Section 7.4 takes
the decision problem of Chapter 6 and finds the decision using the
composite Bayesian distribution. This decision is compared to making

decisions when one model is selected from the model set.

7.2 Composite Bayesian Distribution

In Chapter 4, a number of probability models which describe
the frequency of floods are'considered. In the analysis of Chapter 4,
parameter uncertainty is considered, but the problem of model uncer-
tainty is not considered. Model uncertainty can be considered by de-

fining a composite model of the form
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f(qlae) = 8, £,(qja) + ...+ e, fn(qlé) (7.4)

The composite model, %(q[é,e ), 1is conditional upon a set of un-
known model parameters A and an unknown composite model parameter
set 0. fl(qlfg, ..., and fn(qlég is the set of models that make
up the composite model. These models are conditional upon a general
unknown parameter set A. 61,..., and Gn are parameters that take
on a value of either 0 or 1; their value is uncertain., If ei =1,
then model fi(q|é) is the true model. The constraint

n

e, = 1 (7.5)
i=1 *

is imposed, which implies that one and only one model is the true model.
The definition for O and the constraint will be used throughout the
development of the composite model.

For notational simplicity, consider the case where n = 2.

The likelihood function for a set of observations Q is just:

_ ) I
Ll 8 a11 1 f1 (18 +8; 5y 5 £(a[A

6, 1 @Al + 8, - L, AlQ (7.6)

There are no cross products of the models, due to the limitation im-
posed on the values that 6; can take on; and the constraint on §.
Li(éLg) is just the likelihood function of model i, conditional
upon the observations, Q.

Define a composite prior distribution on the parameters A

and O . The prior will be of the form
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£'(a, 9 6, £'5 (Al = 1) - p'(8,=1)

+

6, f', (§|62 =1 - p'(8,=1) (7.7)

f'iQélei = 1) 1is the prior distribution on the parameter set A, con-
ditional upon ei equals 1. P'(ei = 1) is the prior probability
that model i 1is the '"true' model.

Bayes' rule can be written as

1

£'(b|data) = T L (b|data) * £'(b) (7.8)

£" (b!data) is the posterior distribution of the b, conditional upon
the data; L(b|data) is the likelihood function for b; f'(b) 1is the
prior distribution of b; K is a normalizing constant.

The normalizing constant K is often called, in the econo-
metrics literature, the marginal density of the observations or the
marginal likelihood (Leamer, 1973; Gaver and Geisel, 1972, and

Zellner, 1971) and can be found by

~
I

L(b]data, model) - f'(blmodel) (7.9)
b

Let K, for model i, be Ki' Ki’ the marginal likelihood function
for model i, can be thought of as the probability of observing the
data, given model 1, f(data|model i).

The posterior density function for A,6 is calculated

from Bayes' rule; it is
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£'(4,0= [0, © LAY + 6,7 L,AQ]

-18, - £'Al0=1)- p"(8=1)

1

+0, « £,(4]8,=1)- p"(8,=1)]

!

e 1] e= . 1 -
L K f (al =D - p'(8=D)

0 n 0 = . p' (9 =
+ 0, K,£"(al0)=1) - p'(8,=1)
S
6 — ' = . " =
L 7F P (6= - £(al0=1)

K
8, ’f{%’ p'(8,=1) - f"(§|92=1) (7.10)

+

where K% 1is a normalizing constant and equal to

K* = K, - p'(91=1) + K, - p'(62=1) (7.11)

The posterior model probabilities, p"(ei) are

&
p"(91=1) = E; p'(61=1) (7.12)
" K1
P (92=1) = o P'(92=1) (7.13)

These posterior probabilities for Si are the same as those
found by Leamer (1973), Gaver and Geisel (1972), and Smallwood (1968),
even though their approaches to the problem were slightly different.
The composite Bayesian distribution can also be found by

applying first principles.
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£(q) £(qla,0) * £7(a,0) dAdO

It
—
d

N
+h
~
Nal
>
Nt
mad

[0, - £(qla) + 6

]
S—
g

[p"(8;=1) - £'(al6)) +

p"(92=1) . f"(_l_x.l82=l)] - dAd®

p"(8,=1) - £,(a) +p"(8,=1) . E,(q) (7.14)

The composite Bayesian distribution is simply the Bayesian
distributions of the models weighted by the posterior probability
that particular model is the true model. This result is extremely
convenient and intuitively appealing. The marginal likelihoods Ki’

can be found either by analytical or by numerical procedures.

7.3 Marginal Density Function of the Observations

The marginal density function of the observations (marginal
likelihood) is calculated from Equation (7.9), and is the probability of
the set of observations. The marginal density function depends upon
the probability model of the flood discharges, the prior pdf of the
parameters of the model and the set of observed flood discharges.

To allow for a more thoughtful analysis of the marginal
density function, only those probability models which have a marginal
density function that can be calculated analytically,will be included
in the model selection analysis of the four probability models. In

Chapter 4, the normal, log-normal and exceedance models have marginal
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density functions that can be evaluated analytically. Appendix F
presents the analytical derivation of their marginal density functions
for a set of observationms.

For the normal model, the marginal density (likelihood) is

1 v
K = E’_' 2 (2,”)-\)/2 F(l/Z\)") . (1/2\)'V')\)"/2
N n" r@a/zvh - aavvn/2

(7.15)

The parameters are defined in Section 4.2.
For the log-normal model, the marginal density (likelihood)
is

1 v'/2
1 [_ij 2 )—vlz F(1/2v'") (1/2v'v")

nJ (2'IT 11/2
T(1/2v')  (1/2v"v")V

==

(7.16)

=is
Q

The parameters are defined in Section 4.3.

In Chapter 4, the derivation of the exceedance model con-
sidered only those flood discharges greater than a specified base level,
such discharges were called exceedance discharges. The probability
density function of exceedance discharges was assumed to follow an ex-
ponential distribution. The probability density function of discharges
less than the base level did not enter into the analysis. One result
is that the number of exceedances (discharges larger than the base dis-
charge) is much smaller than the number of flood discharges contained
in the flood series considered by the normal or log-normal model. This
difference in the number of flood discharges in the series makes the
comparison of marginal likelihoods impossible. The difficulties in

model comparison, when different 'sample' sizes are observed by each
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model, has not appeared in the literature and extensive research
on this problem is required. To circumvent this problem in model
selection, it is assumed that the exceedance model is made up of two
parts. The first part is for flood discharges greater than the base
level. Here, the assumptions and analyses of Chapter 4 will hold, and
the exceedance probability for large discharges will be the same as
the probabilities found in Chapter 4. The second part of the model
concerns flood discharges less than the base level. Here, flood dis-
charges will assume to follow a uniform distribution. This assumption
will lead to marginal likelihoods that are less than those found using
the true distribution. This result arises from the uniform pdf being
lower than the true pdf, around the mean of the complete flood dis-
charge series, where most of the sample discharges will occur. The
lower uniform pdf leads to a smaller sample likelihood function which
leads to a smaller marginal likelihood, as can be seen from Equation
(7.9). The use of the uniform pdf implies that the posterior proba-
bility for the exceedance model is underestimated or conservative.

The probability density function for the (modified) ex-

ceedance model is:

f(q|v,0) = vo exp [—a(q—qb)] for q z,qb
1-v
= = for 0<q<gqg (7.17)
ay a4z

For this form of the exceedance model, the marginal likeli-

hood (density) is calculated in Appendix F.3, and is
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'

K - [ 1 J S LA ¢ W A I'(v")
= . T 1 ot T

qb S"u P(u ) Q'IIV I'(v )

(7.18)

All parameters are defined in Section 4.5.

7.3.1 Posterior Model Probabilities for Samples Drawn from
Known Processes.

Consider a sample of flood discharges that are drawn from
some process. The sample has the property that, when the discharges
are plotted on normal probability paper, they fall along a perfectly
straight line. Table 7.1 presents the flood discharges from such a
sample, along with the natural logarithms of the discharges. The pro-
bability that the underlying process is normal should be very high.
Assuming diffuse prior distributions on the probability model param-
eters, the numerical values for the parameters of the marginal likeli-
hoods can be found from the data, and are presented in Table 7.2.

The marginal likelihoods for the normal model is
Ky = 6.477 x 10°°° 3

for the log-normal model is

- -73
KLN 7.519 x 10

and for exceedance model

-77
KE = 8.092 x 10

From Equation (7.12), it can be easily seen that the posterior pro-
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Table 7.1

Rank Discharge Ln Discharge
1 9000 9.105
2 8500 9.048
3 8100 8.9996

b 7800 8.962
5 7550 8.929
6 7300 8.896
7 7100 8.868
8 6900 8.839
9 6700 8.810

10 6500 8.779

11 6300 8.748

12 6100 8.716

13 5900 8.683

14 5700 8.648

15 5500 8.612

16 _ 5200 8.556

17 4900 8.497

18 4600 8.434

19 4000 8.294

Table 7.1: Sample of Flood Discharges from a Normal Process




Table 7.2

Normal Model

m = 6507 cfs

v = 1839516 cfs?
n = 19 years

v = 18 years

Log - Normal Model

m = 8.759 log cfs

v = .04690 log cfs?
n = 19 years
v o= 18 years

Exceedance Model

m = 16 events
u = 3 events
v = 3 events
£ = 1600 cfs
S = 35 events
4 = 8000 cfs
Table 7.2: Marginal Likelihood Parameters for Normal, Log-

Normal, and Exceedance Model, for a Sample from

a Normal Process.
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babilities for the normal model is, virtually, 1.0.

Now consider another sample of flood discharges, which has
the property that the discharges plot along a straight line on log-
normal probability paper. Such a sample is presented in Table 7.3.
Again, assuming diffuse prior distributions on the probability model
parameters, the marginal likelihoods are calculated. The marginal

likelihood is, for the normal model,

K. = 7.63 x 10"’
N

for the log-normal model,

-77
KLN = 8.06 x 10

and for the exceedance model,

K, = 4.23 x 10778

Table 7.4 presents the numerical values for the parameters of the
marginal likelihoods. These wvalues are calculated from the data.

Assuming uniform priors on the model probability, that is

PY(0 =1 = P'(e,=1) = P'(B=1) = %- ,

then the posterior probabilities for the three models are calculated
from Equation (7.12) and (7.13). The posterior model probabilities
are
it =
P (GN) .4735
P (GLN)= .5002

P (GE) = .0263
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Table 7.3

Rank Discharge L Discharge
1 15000 9.616
2 10000 9.210
3 7700 8.949
4 6300 8.748
5 5300 8.575
6 4500 8.412
7 3800 8.243
8 3300 8.102
9 2900 7.972

10 2500 7.824

11 2200 7.696

12 1900 7.550

13 1700 7.438

14 1400 7.244

15 1200 7.090

16 1000 6.908

17 840 6.733

18 640 6.461

19 450 6.109

Table 7.3: Sample of Flood Discharges from a Log-Normal Process.
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Table 7.4

Normal Model

m = 3823 cfs
v = 13987600 cfs®
n = 19 years
v = 18 years

Log—-Normal Model

m = 7.8 log cfs
v = .91 log cfs?
n = 19 years
v = 18 vyears

Exceedance Model

m = 17 events
u = 2 events
v = 2 events
2 = 9000 cfs
s = 36 events
q = 8000 cfs

Table 7.4: Marginal Likelihood Parameters for Normal, Log—Normal and

Exceedance Model, for a Sample from a Log-Normal Process
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The reason that the normal model has a high posterior model probability
is directly related to the sample and the density functions for the
normal model and the log-normal model. Only at low discharges (500 -
3000 cfs) and at high discharges (> 13000 cfs) is the log-normal
density function higher than the normal density function. Since the
marginal likelihood is a multiplicative process, the ratios of the
density functions are of prime importance. The sample did not contain
any 'extreme' events, where the ratios are very large; thus the mar-
ginal likelihoods will be similar.

The posterior log-normal probability should go to 1 when the
number of samples becomes very large and when sampling is from a log-
normal process. The test for the log-normal probability to approach
1.0 requires that the ratios KLN/KN and KLN/KE be much greater
than 1, for large n. This test can be done numerically by sampling
from a known log-normal process and calculating the appropriate mar-

ginal 1likelihood ratios.

7.3.2 Posterior Model Probabilities for the Blackstone River, at

Woonsocket, R.I.

The Blackstone River, at Woonsocket, R.I., has been analyzed
in Chapter 3 for prior information, in Chapter 4 for the Bayesian pdf
of flood discharges (for four different probability models), and in
Chapter 6 for a decision problem concerning local flood protection.
Model uncertainty was not considered in the previous chapter even

though competing models were considered. This section calculates the
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posterior model probabilities. The marginal likelihood function is
evaluated using parameter values from Chapter 4. These parameter
values for the marginal likelihood functions are summarized in Table

7.5. The marginal likelihood for the normal model is

=191

7.46 x 10 s

N

for the log-normal model is

4.76 x 10 8¢

Kin

and for the exceedance model is

K, = 1.14 x 107136

Assuming uniform prior probabilities on the three models,

the posterior probabilities for the models are

" = =
P (SN 1) 0.0

" _ -
P (eLN = 1) .00418
P"(GE =1) = .99582

The composite Bayesian distribution of flood discharges is, from

Equation (7.14)
¥(g) = .99582 %E(q) + .00418 %LN(q) (7.19)
where TE(q) is the Bayesian pdf for the exceedance model, and

fLN(q) is the Bayesian pdf for the log-normal model.

The composite Bayesian distribution of Equation (7.19) is the pro-
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Table 7.5:

Table 7.5

Normal Model

7 years, n''
36 years "
9.22 x 10° cfs? v"

Log~-Normal Model

4 years n"
36 years v
.22 log cfs? v'"

Exceedance Model

6 events u"
3 events v'"
50 vears s"
10850 cfs L
32 events n
8500 cfs

Marginal Likelihood Parameters

44 years
43 years

24.7 x 10° cfs?

41 years
40 years

.689 log cfs?

11 events
8 events
87 (S"+m=119) years
49468 cfs

5 events

for Normal, Log—Normal

and Exceedance Model, for the Blackstone River,

Woonsocket, R.I.
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bability model which should be used in making inferences about

future flood discharges. The composite Bayesian model rationally
accounts for both parameter and model uncertainty. It is interesting
to note that the form of composite Bayesian model is not fixed but is

dynamic and changes, as more data becomes available.

7.4 Decision Making with Model Uncertainty

The theoretically correct Bayesian procedure for making
decisions, when model uncertainty exists, is to calculate the composite
Bayesian distribution of flood discharges, which is then used, in con-
junction with an appropriate utility function, to maximize expected
utility. Chapter 6 discusses the decision aspects of maximizing ex-
pected utility. 1In Chapter 6, four competing inference models were
considered. These inference models can now be replaced by the composite
Bayesian distribution of flood discharges, which accounts for model
uncertainty.

In many cases, a decision maker may want to chose a 'best'
model, from the set of competing models. This chosen model will lead
to a 'best' decision. It is recognized that basing decisions on one
model, from a set of models, is a sub-optimal Bayesian procedure to
the procedure of basing decisions upon the composite Bayesian distri-
bution (Gaver and Geisel, 1972). A &ecision maker may consider de-
cisions based upon one model for a variety of reasons. The calculation
or application of the composite Bayesian distribution may be computa-

tionally difficult; or the sensitivity of the decisions to the pro-
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babilities of the models may be of interest. In either case, the
problem of choosing one model, from a set of models, is equivalent
to choosing the 'best' overall decision, from a set of 'best' decisions
(based on each model being the true model). The application of deci-
sion analysis is most effective in choosing the 'best' overall deci-
sion, taking into account model uncertainty. Of the procedures within
decision analysis, the normal-formanalysis (Raiffa, 1968), not only
identifies the best overall decision but also allows for sensitivity
analysis of the decision to the probability that a particular model
is the true model.

The most common form of decision analysis is the extensive-
form, which consists of four basic steps (Raiffa, 1968):

1. Chart the decision-flow diagram

2. Assign payoffs or utilities for outcomes.

3. Assign or determine probabilities at all chance forks.

4. Average out and fold back (find expected utilities).
The normal form of analysis does not require, initially, that all pro-
babilities be evaluated. Instead, expected utility of each possible
decision is determined, conditional to the unknown probabilities,
E[u|dj,p(ei)]. The best decision will depend upon the utility of that
decision and the probability of the model, p(ei). The following
example will show the interaction between choosing a 'best' decision
and evaluating the model probabilities.

Consider the decision example for the Blackstone River, pre-

sented in Chapter 6. Assume that either the log-normal model or the
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exceedance model is the true probability model of flood discharges.
The decision problem of Chapter 6 can be represented by the simple
decision tree presented in Figure 7.1. The evaluation of the outcomes
was done in Chapter 6 and was presented in Table 6.3.

The extensive-form of analysis would evaluate the probabilities
P(BLN) and P(eE). Then, the expected utility of the decisions is cal-
culated, and the decision that maximizes expected utility is picked as
being the 'best' decision. The normal-form of analysis graphs the
expected utility of each decision, conditional upon the model proba-
bilities. The joint conditional evaluation diagram is presented in
Figure 7.2. Lines of constant expected utility can also be drawn in

Figure 7.2. These lines are represented by an equation of the form

E[u]l = 2(8y,) * ule + P(6p) - ulog

LN

As lines of expected utility move away from the origin to the north-
west, their value increases. Thus, the efficient set of decision,
those that will maximize expected utility, will lie along the northwest
boundary of the enclosed region in the joint conditional evaluation
space. In Figure 7.2, the efficient set of decisions is made up of

d2 and d3. Which decision maximizes the expected utility depends
upon the model probabilities P(GE) and P(GLN). Exact evaluation

of the model probabilities is not necessarily needed to determine to
best decisions. If P(GE) falls into a specific interval, then d3
will maximize the expected utility; if P(SE) falls outside this

interval, then d2 will maximize expected utility. For the sample
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OLn=!

OLn=!

Op=1
GLN=1

OLn=1

Og=1

Expected Utility
($ millions)

3.11

3.09

3.585

-4.05

2.898

4.07
Note:

1.74 o Chance Node

A Decision Node
3.32

-0.973

0.90

Figure 7.1 Decision Tree for Model Uncertainty
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presented here, the probability intervals, and the corresponding 'best'
decision, are as follows:

If .861 P(6p) <1 (0 <P(8 ) < .138)

then choose d

3

If 0 <P(O;)< .861 (.138< P(B )< 1)

LN

then choose d2.

The advantages of the normal-form of decision analysis is
that exact evaluation of probabilities is not needed. The sensitivity
of the expected utility and of the 'best' decision to the model pro-
babilities is clearly seen.

If the decision space is discrete (consists of only these
5 decisions), then the 'best' decision from the normal form of ana-
lysis, using the posterior model probabilities of the previous section,
will be the same decision as would be found using the composite Bayesian
distribution. If the decision space is continuous, then the decisions
found by the two procedures will be different. The decision from the
composite Bayesian distribution will be optimal and from the normal

analysis, merely good.

7.5 Conclusions

This chapter considered the problem of model uncertainty.
When there is a set of competing probability models for flood dis-
charges, Bayesian analysis leads to a composite Bayesian model. The

composite Bayesian model is a linear model consisting of the Bayesian
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distribution of the individual models, weighted by the posterior model
probability that the individual model is the true model. The posterior
model probabilities are calculated from the marginal likelihood func-
tion of the observed data and the prior model probability.

Decision making under model uncertainty follows the proce-
dures of Chapter 6, but the inference model of the flood discharges
is now the composite Bayesian model. A sub-optimal Bayesian procedure
is to apply a normal form of decision analysis to a model selection
problem. First the 'best' decision is found for each model, and then
from this set an overall, 'best' decision is calculated, by considering
model probabilities and expected utilities. In general, the model se-
lection procedure is sub-optimal to decision making with the composite

Bayesian distribution of flood discharges.
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CHAPTER 8

Summary and Conclusions

Inference —making probability statements about future state of
nature-~ and decisions- ~determining engineering variables such as the
height of a dike- together form an indivisible pair which results in
an engineering design. This procedure of inferences and decisions is
called decision making, and it contains many sources of uncertainty.
This study is concerned with the analysis of the uncertainty and with
the development of procedures to rationally design for extreme
hydrologic events. in the light of such uncertainty.

In Chapter 2, arguments are presented which advocate the use of
Bayesian statistical decision theory for decision making. Decision
theory allows the decision maker to consider, together, the uncertainty
of the modelled process, the quantifying of decision outcomes and the
preferences for these outcomes. The decision theory approach to making
decisions seems to be a more rational approach than other procedures
which separate inferences, decisions, and preferences.

The results of this study confirm the arguments that Bayesian
statistical procedures can be used to make engineering decisions.

Most of the emphasis of this study is focused upon the uncertainty of

the modelled process of extreme flood discharges and not upon the
preferences toward decision outcomes. The criterion applied for
evaluating alternative decisions is the maximization of expected monetary

benefits. A more appropriate utility function, for real world flood
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control decisions, would probably include monetary benefits, social
benefits (such as decrease in loss of life, or reduction in the
disruption of community services) and risk adversion towards large
floods. Considerable work has been done in multiple utility theory,
but more work is required in assessing utility functions before they
can be applied to general engineering projects.

When discussing inferences about flood discharges, it is important
to keep two sources of uncertainty separate. The first source of
uncertainty is the 'modelled' uncertainty of the underlying
stochastic process. This stochastic process is the future flood dis-
charges. The second source of uncertainty is statistical uncertainty.
Statistical uncertainty is concerned with quantities which are 'fixed
but unknown' due to a lack of information. Such uncertain quantities
include the uncertainty in the form of the true underlying stochastic
process (model uncertainty) and the uncertainty in the values of the
parameters of the probability models that are used to represent the
underlying process (parameter uncertainty). The uncertainty in these
quantities can be reduced with additional information.

Chapter 3 considers the use of information, other than historical
records, to reduce statistical uncertainty. A regional flood regression
and an analytical flood frequency analysis (Eagleson, 1972) are two
sources of information that are studied in detail. It is shown that
they provide information equivalent to between 4 and 7 years of

historical record for the river basin studied. This information could
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be significant in the analysis of river basins with short historical
records. Research in evaluating sources of prior information would be
a significant contribution to Bayesian analysis. There is room - here
for a large amount of fruitful research.

One source of prior information, not considered directly in
this study, is rainfall-runoff simulation. Chapter 5 did, though,
analyze the uncertainty in the flood discharge from a rainfall-
runoff analysis due to the uncertainty in the rainfall and infiltration
processes. The theory for considering all uncertain parameters is
presented. The work in Chapter 5 is especially useful for flood
analysis in regions with no historical records or in regions that have
undergone urbanization. Recently rainfall-runoff simulation models
have been applied to find flood frequency curves (Leclerc and Schaake,
1973; Ot and Linsley, 1972; among others) for urbanized areas or areas
with limiﬁed historical records. These studies have not analyzed the
uncertainty in the flood frequency curve,due to parameter uncertainty.
It is evident from the results of Chapter 5 that ignoring such un-
certainty can lead to grave errors in decision.

Chapter 4 shows how the prior information of Chapter 3 and the
historical record of flood discharges can be combined, with the model
of the true stochastic process of flood discharges, to yield a 'Bayesian
probability distribution' of flood discharges, which fully accounts
for parameter uncertainty. The Bayesian probability distribution is

obtained by taking the probability model of flood discharges, which
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has uncertain parameters, and integrating that model, weighted by the
probability of observing particular values of the uncertain parameters,
over all values of the uncertain parameters.

The Bayesian probability distribution of flood discharges is
obtained for four different models of the underlying stochastic process.
The four models are: a normal model, a log-normal model, a gamma-1
model and an exceedance model. The first three models consider the
complete annual series of flood discharges. The fourth model only
considers flood discharges that exceed a particular level, and
such exceedance discharges are exponentially distributed.

The resulting models are applied to the Blackstone River, and
comparisons are made among the different flood frequency curves from
the models. Comparisons between the Bayesian probability model and
the classical approach to frequency analysis is also shown. The
general result is that the Bayesian procedure will lead to higher
flood discharges for the same exceedance probability, which leads to
more conservative designs. This conservative design reflects the
parameter uncertainty, and current practice of using point estimates
for uncertain parameters should be reconsidered since it may lead to
incorrect decisions.

In Chapter 7, the statistical uncertainty of which model
represents the true stochastic process is analyzed. This analysis of
model uncertainty leads to a composite Bayesian distribution. The
composite Bayesian distribution is a linear model of the individual

Bayesian probability models of Chapter 4,weighted by the posterior
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probability that a particular model is the true model. The

composite Bayesian probability model accounts for all sources of
statistical uncertainty - both parameter uncertainty and model un-
certainty. This model is the model that should be used in the
decision analysis, for it best represents the knowledge of the decision
maker about future flood discharges.

Chapter 6 applies the decision analysis technique to a case
study. The decision problem is to determine the optimal capacity of
local flood protection works for Woonsocket, Rhode Island. Initially,
the analysis is performed for each Bayesian model of flood discharges.
The sensitivity of the optimal designs to budgetary considerations is
also analyzed.

In Chapter 7, the optimal designs with model uncertainty are
considered. The theoretically correct procedure is to apply the
composite Bayesian distribution for flood discharges. Chapter 7 also
presents a procedure for finding decisions when the composite Bayesian
distribution is computationally difficult to obtain. It is also
possible to perform sensitivity analysis on the optimal decisions,due
to model uncertainty.

- This study presents procedures which should help decision makers
consider uncertainty in a more complete manner, allowing them to design

more rationally under uncertainty.
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Appendix A

Proof that Bayesian pdf of Flood Discharges

from a Normal Process is Student.

This appendix presents the proof that the Bayesian pdf for
q 1is student, when the underlying process is a normal process with

uncertain parameters mean W and precision h. From Equation (4.1)

f@ = J J fN(qlu,h) - £"(ulh) - £"(h) du dh (A-1)
~u’h
solving for f(q|h) = J fN(q|u,h) © £(u|h) du (A-2)
M
which is
1 2 1 1
L 0% expl-4-h(e) 10 —=n” h% expl- § nh(ummja
Y o erd

(A-3)

substituting for f (q |u,h) ™ N(u,h)

and f(|h) ¥ N(m,nh)

Solving (A-3)

_ 1| 1 _1 (gbmm) * n__ 2-}
= (_E_)IQ _hj? 1 n 2 gq+nm
- n+1 JZ_TT exp[- 2 h(;_’fi‘)'(Q‘m) ] UfN(n+l ,(I‘l"‘l) h) dl-l
~ (x h)l/2 1 2
£(qln) = exp [~ 5 thiq-m) ] (A-4)
2T
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5 1
wnere r =

n+l

Thus ?f(q]h)

is distributed N(m,rh)

£(q) = ’ fN(q|m,rh)  f, (hlv,v) dh
h

(A-5)
where h is distributed gamma-2, as
v/2 v/2-1
£, " (hlv,v) = CEYY) 4 L exp(- 3 vvh) (a=6)
v r(v/2)

Nz
T(q) =J (rh)

v/e  v/2-1
—=  exp[- tzl_r (q-m)Z] . Levv)
Y27

h
0 /2) - h expl-~ Evv] dh

A-7)
now let v' = v+ 1

and combine

so that (A-7) can now be written as:

v/2 v'%-1

. v,
£(q) = % (b h exp[—%\)' v'] dh (A-8)
2t T(v/2)
1 v/2 v vt/2-1
2’ (v

L Loy J

ClyryyV ?

(Yhvu'v')
1
(2m% T (v/2)

1 .h ¢
T \)/2

exp [~ % v'v'] dh
after simplifying

v/2 . _ o) 1
B = e e &t (I G
B(S»o V)
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V41 )

R S gm?® TV 72 Y
- 1 1 [1+7r Vv ] - ( Vv ) ’
B(5, 5\))
1‘/
T /2)

where B( % , %\))
T(v/2 + 1/2)

which is Student. The moments of jf(q) are
U = m (A-10)

ol = l;- (—=) (A-11)
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Appendix B

The Bayesian Distribution from Log-Normal Process

In Section 4.3 the analysis of the log-normal (LN) process
was approached by recognizing that if q is LN, then x = £n q
is normally distributed. It was shown in Section 4.3 that the Bayesian
distribution of x is student, thus the Bayesian distribution of ¢
will be log-student. This result was found by applying derived dis-
tribution theory. A disadvantage of this procedure is that one can not
make inferences on or from the distributions of the parameters of the
log-normal process.

This appendix derives the Bayesian pdf of the log-normal pro-
cess by first deriving the posterior pdf of the parameters, then in-
tegrating over the parameters to derive the Bayesian distribution on the

annual flood.

If X, = n qy is normally distributed with mean uy and
variance o2 then q by definition, is log-normally distributed and
has mean n = exp [pu + 0%/2 ].

B.l1 Posterior Distribution of Mean 1n

It can be shown (Raiffa and Schlaifer, 1961; Zellner, 1971)
that given n observations on X5 X the likelihood function for
and ¢ is normal-gamma and of the form

2

L0 | D« o texp e (u-x? ] - o~ (1) s [;;’i ] (8-1)
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where n = number of observations

v = n-1

- 1 n

X = a % Xi

n —

vs? = 1 (x, - x)?
Let © = gnn =y +0%/2. The posterior pdf for 0, £"(0|0,x),
follows from

£"©|o, x) = 2(0]o,x) * £'(0 | 0,%) (8.2)

From Equation (B.1l) it follows that
2(0ox) « o lexp [- -237 (@ -%x-02/2)% 1] (B.3)

and from inspection of (B.3) the natural conjugate prior will be

of the form

- 4

£'@|m', n'"/g?)« o 1exp[— 537 © -r')?] (B.4)

Thus
-1 n" : 2

£"(0/0,x) « ¢ exp[- Py ® -m" - ng?2/2:n")"] (B.5)
where

n" = n' +n

n _ 1 | I v
m =, (n m' +n « X)
n

Similarly, the posterior pdf f'"(c|x) can be found from the product
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of its likelihood and prior pdf. It can be shown that

2
2(0[5) « g —Uéxp [- %%y ] (B.6)

The natural conjugate prior to the likelihood function of ¢  is

Inverted Gamma-2 with parameters (V', s'?)

tL12 —(v'+
£'(0[v',s'?) «exp [ 51 - 0 (Vi) (B.7)
And the posterior pdf for o is:
mn_ 2 - 1"
£'(0 V"8« expl- LEg— ] - TV (5.8)
vhere V' = V' + v
n2 1 1 12 2
s = o7 [(v' * s + v s]
To obtain £"(0|x) we apply
£"(0|x) « | £'(0|o,x) « £"(0) do (3.9)
a
« "(\)"+2) ] 2 nw_u2
o - expl- 55 (6~ m" - no® /20") + V2145 (B.10)
(0] 20,2
o
2
—(V'42 N 2, ten
« exp(n":0/2) o O2) exp {— v's “4n”(O-m7) +
202
a
2 2
ey } do (8.11)

1
The Jacobian transform from £f(@) to f(n) is E‘ , thus
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(B.11) becomes

f'm|x) = n(n-2)/2 .

This integral can be evaluated by recognizing that it may be rewritten

as
t° "1+ exp [- (1/4 t + at)] dt (B.12)
0
%
where Vv =  (V'+1)/2
t = 2n"/n? o2
Il2 "o 2 " 1" 2
a = = [v'" "2 + n" (Ann-n") ]

1
The value of the integral (Zellner, 1971) is 2(1/4a)v /sz.(/g)
where Kv,(/Z) denotes a modified K Bessel function.

Substituting into (B.1ll) gives
erlm = n @2 aaz” 7k, (B (8.13)

Figure B-1 shows the probability density function of the mean

of the discharges, n , for the case where

n = n" = 37
s’ = .27
m' = 8,6
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It is the case that the posterior mean of n does not exist
(Zellner, 1971) but from Figure B-1 it is noted that £(n) is

unimodel and positively skewed.

B.2 Bayesian Distribution of Discharges, £(q).

From the posterior distributions represented by Equations
(B.9) and (B.10) the Bayesian distribution for discharges can be

found by

(@ = £ ¢(al6,0) - f"(@lc},g) - £" (o]x) dodo (B.14)
©-‘c

where

-1 -1 1 2
£5@l0:0) =q 0 Texpl- 577 (Bn q - 0 +0%/2)"]

0 = n

Substitute for f"(@lc,g@ from Equation (B.5) and for f"(0139

from (B.8) into Equation (B.14). f(q) can then be represented

by
¥ - - "
F(q) = ¢~ exp[0/2 +n" -+ 0/2] - [ j o~ (V" +3)
O‘c
2
* ex { _' (©-2n Q)2+n"(@-m") + y'g2" + nZ4+n" g_z— } O
’ 252 a" 8
(B.15)

The integral over O can be expressed by a modified Bessel

function of type K. Thus (B.15) can be expressed, after substitu—
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tion for @ as:

Fl) = q Jn‘“"‘”” -2(1/42)"* /% ¥ % (/a) an (.16)
n=0
*
where v o= (vW2) /2
n2+n" 2 " " 2 "n_2
a = [Ban=- 20 y) +n"(Ann-n") +V's?]

Kv*(/g) is a modified K-Bessel function. The density
function %(q) must be evaluated by numerical procedures. Appro-
priate numerical procedures are available but their investigation
is outside the scope of this thesis. Equation (B.16) was inte-
grated by the trapezoidal rule which will introduce errors that are
progressive - especially where the density functions are steep.

Figure (B-2) shows Bayesian PDF for q. The parameters
were the same as those for the posterior pdf for the mean .
Also given in Figure (B-2) 1is the density function from the Log-
Student pdf with the same parameters for comparison. The two
curves are almost identical and the difference is attributed to nu-

merical error in the evaluation of Equation (B.16).
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Appendix C

Bayesian Distribution of Floods from

the Exceedance Model.

The modelled CDF of exceedance floods is given by Equation

(4.29) and is

?z(zlot,\)) = 1 - vt exp[-az] (c-1)

under the assumption that =z 1is far,out on the tail. Thus the pdf

is

fz(zla,v) = vto exp[-0z] (c-2)

The posterior pdf for v and o are both gamma-1l and are given in
Equations (4.32) and (4.34) respectively.

The Bayesian pdf can be found by Equation (4.2) which is:

sz(zlu,v) le" (v]u",s") « f

FZ(Z) = J

"(a|v", 4"+ da ¢ dv
N 4

Y1
(c-3)

substituting into (B-3), (B-2) and rearranging

fZ(Z) = t J Jvfyl"(v|u”,s”)° aexp[—az]‘f;I(a|v",l")dadv (c-4)
v o

the integration over v gives Vv, the expected value of f "(vlu",s"),

Y1
by definitionm.

The integration over ¢, can be accomplished by changing

parameters, that is
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T
vi+1 "

J o exp[-oz] - f?G“iIT o’ exp[—f:a] do
o

v'i+1

[ vt _ I'(v'"+2) -(v'"+2) v'"+1
T7;F§33 an exp[-a(2+z)] - da = ?Z;WIE) (2+2) L
(c-5)
which can be simplified to
5 2 —(v'"+2)
a (l + V"+l ) (C‘6)
— "
where o = Ela]l = Xzil
Thus the integration 6f (B-4) gives
~ o oz -(v'"+2)
fZ(Z) = v ot [1+ Tl 1 (c-7)

The Bayesian CDF ﬁz(z) can also be found by

Fz(z) = JvJaFZ(z|v,a) le W]u",s")

- —(V"+1)

= o
= 1- vt [1+ ;ﬁ;%‘]

CE " @]V, - da -

y

(C-8)

This result can be easily found by using similar procedures

as were used for Tz(z).

278

dv



Appendix D

Prior Estimation of v, the Arrival Rate for the Poisson

Exceedance Model, using a Distribution from Plotting Position

Theory.

This Appendix sets forth one possible statistical procedure
of estimating a distribution of the arrival rate of floods greater
than some level Qb' The problem of estimating V is related to
the problem of estimating the return period of the base flood Qb'

Qb may correspond to some level, say bank level in the river, so

that floods greater Qb are those of interest. Qb must be large
enough so that the flood events are independent and so that the
probability distribution of events greater than Qb can be approximated
by an exponential.

The procedure herein is to choose a discharge Qb that fulfills
the requirements of the exceedance model. Often the level can be re-
lated to a T year flood. Subjective assessment of the distribution
of the T year event,that Qb relates to,can be done using procedures
set out in Chapter 3. 1Instead, here the engineer will answer the
question "if we had a record n years long, a flood equal to or
greater tha Qb would be observed on the average m times." Thus
he would estimate the rank of Qb in a record n years in length.
Assuming that such an assessment can be made what is the distribution
on V, the arrival rate.

Let (1-P) be the probability that an event (flood) has a value

less than Qb -5 There are (n-m) of these events.
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Let dp be the probability that an event lies in the interval

Qbi 5 - There is one such event.

Let p — dp be the probability that an event has a value greater

d
than Qb + .792 . There will be (m-1l) events.
The probability of that the nth value lies in the discharge
dQ
band Q i'—ih will be dO ; which is
do = p" ' (1-p)" " dp (d-1)

assuming that (p-dp) = p, let
-1 o
£(p) = po  (1-p)" T (p-2)

which will be the probability density function associated with the

probability that the mth rank in a record n 1is equal to or greater
4%
than Qb -5 -

The probability that the cumulative density function of the

nth event is less than P, is
Po Po
- —1
Folpg) = £(p) dp = [n) cmef @p)TT " dp (D-3)
m
° o

The integral is related to the incomplete Beta function which is de-—

fined as

D ——
B_(r,s,p) = [ tf (1-0)5T! ge (D-4)
(o]

So that (D-3) is

Fp(po) = [zj . m . BI(m—l, n, po) (D-5)
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p was defined as the probability that an event of magnitude greater than

d
Q, - _;ib. (or

e

Qb) had a distribution given by (D-2). The expected

value of p 1is easily shown to be:
E[p] = — (D-6)

V 1is the arrival rate of events greater than Qb. This is the pro-
bability p.

Thus the pdf of Vv is

fw) = M) m VEl(a-n)r™® (D-7)
[m
with E[v] =¥£I ‘ (D-8)

If an engineer can subjectively choose m and n, in the
manner explained earlier, then a distribution on V can be found by
applying some theory from the distributions of plotting positions.

Both the pdf and the CDF are easily found. Some distributions of Vv
are shown in Figures D-1, D-2 for various m and n for E[v] = .1
and .067. The corresponding E[T] year floods are 10 years and 15
years respectively.

The pdf on VvV given by (D-7) can be used directly as a
prior. Since its form is not a natural conjugate, the posterior pdf

on V must be found  .through numerical procedures.
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APPENDIX E

This appendix presents the derivation G(qp), the exceedance
probability of the peak discharge of a natural catchment as derived
by Eagleson (1972).

Stochastic Model of the Rainfall

Eagleson, (1972), modeled the rainfall during an individual
storm event in terms of two random variables; the average rainfall
intensity, Eo [in/hr], and the storm duration tf[hr]. The first
order joint density function (conditional on the occurrence of a

storm event) is

f({o, tr) = BA exp[—Bzo - tr] (E-1)

where 8 and A are parameters
For Boston, Ma., B = 30 hr/in and A = 0.13 hour—l (Eagleson, 1972).

The average rainfall excess intensity, Ie [in/hr] is assumed to be
i =i - @

e (o]

where @ is a constant rate of water loss [in/hr].

It can be shown, (conditional on the occurrence of a rainfall

excess event) that the joint pdf of Ee and e is
f(1e, tr) = BA exp[—Ble - it 1]

re

where tre is the duration [hr] of the rainfall excess intensity.
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The total number of storms during a year is O but only N < ©
of these produce rainfall excess. Each storm is assumed to have a
rectangular storm interior.

Mechanics of Overland Flow

Eagleson models catchments as an idealized flow plane.
Kinematic wave theory is applied to determine the peak discharge
with the added assumption that the time of concentration for the
streams, ts’ is treater than the time of concentration for the
overland flow catchment, t. The peak discharge, Q> is found to
be

3/2

ag = @, [A_ (L, t)] (E-4)

where
o is a parameter of the streamflow (assumed by Eagleson to
be .1 sec_l)
A 1is the cross~sectional area of the streamflow (ftz) which

is derived from

2 3 3tre'
t _ 1 -—
AS(LS, t*) = 16.7 a, it ( T 2)

7720Ri t' - tr

+ % < ] (E-5)
occtc t* - tre + (tC/Z)

for t < t <t +¢t
c re s c

and where

-1
o, = catchment parameter (assumed to be equal to 10 sec
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by Eagleson)

&
I

dimension perpendicular to the stream of the area
producing direct runoff (miles)
t' = a time found from

(e, - t.) .
7 = (E-6)
[t* - (tC/Z)]

for the case where t >t 4+t , q is found to be
re s c’ "m
q, = 645 At i, (E-7)

where
Ar is the area producing direct runoff (sq. mi.) assumed to
be 1/2 the catchment area.

ie is the excess rainfall intensity (in/hr).

(E-7) is a particular result of the kinematic wave analysis of
rectangular storm events that converges to well recognized rational

formula.

F(qm) for Individual Storms

The flood cumulative probability density for individual events

can be found from

F(qm) =IJ f(ie, tr) die dtr (E-8)
A
where the region of integration is defined by R and has boundaries
_ m
ie = 0, tr = 0, q = constant. This region is shown in Figure E-1.
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The boundary q = constant is defined by the mecahnics of overland
flow and represented by Equations. (E~4) and (E-7). All combinations
of Ie and tr to the southwest of the boundary q, = constant produce
discharges less than or equal to qp

The analytical structure of this region precludes an exact
analytical integration of (E-8). Eagleson approximates this region

by substituting for the boundary q, = constant a boundary defined as

-m
tr = B/le (E—g)
where
AL 172 655 “:/3 Ai
c's o L g
c s ‘m

and for m = 1/2

Under this approximation (E-8) can be integrated to yield

-Bq
_ -20 -0+l m
F(g ) =1-e""0 I'{o) exp[—————MSKAr] (E-10)
where
BA°A_ 655&2/3Ai 13
c s o L g
c s™nm

K = factor reducing point rainfall depth to average areal depth over

area A
r
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The total flood discharge peak, qp, will include the peak due to direct
runoff, q,» and the average contribution from groundwater, ab’ which

Eagleson estimates to be

Q4 = 074 (1 - @2) @l PAc (E-11)
where
@1 = ratio of average annual runoff to average annual point
rainfall. (Estimated to be about .50 for New England)
@2 = ratio of average annual direct runoff to average annual .
runoff
P = average annual point rainfall (inches)

Substituting qp - ab for 4y in Equation (E-10) and taking the
compliment of F(qm) which is the flood exceedance probability, G(qm),
results in Eagleson's derived flood frequency formula which is

-20 -0+
%% lF(O) exp| AN ] (E-12)
T

G(qp) = e
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APPENDIX F

Analytic Derivation of the Marginal Likelihood Function

This appendix presents the analytical derivation for the marginal
likelihood or marginal density function of a probability model.

The marginal likelihood, K, is found from

K = f L(O]Q) * £'(©)d0 (F.1)
0

where
© is the set of model parameters
L(® Q_) is the likelihood function for a set of observations Q

£'(0) is the prior pdf for the parameters O.

This appendix derives the marginal likelihood for the normal, log-normal

and exceedance models.

F.1 Marginal Likelihood for the Normal Model

Let q be distributed from a normal pdf. Then,given n independent

observations of q, Q, the likelihood function for u and h is:

L(U,hlg) -

|
[[=—=]

£.(a_|u,h)
i=1 N i

= @02 a1 T(q, w7 (F.2)

Define the following
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m= %—zqi (F.3)

v = — Z(qi-—m)2 (F.4)

then

LGu,hl@ = @n ™ Zexpl- 2 b v - 2 ta@@w?] - b2 (F.5)

Assume the prior on (u,h) is a natural conjugate prior of the form

£ru,h) = 2m Y expl- —zl-hn'(u—m')2 - % hu'v'] -
]
/2,172 1720112 v 5.6
n ' T(1/2 v") '
define
w _n'm' + om (F.7)
m= n'+n :
n" =n'+n (F.8)
v'' = %h(v'V' + nm'2 + Vv + nm2 - n"m"z) (F.9)
V'=v'+v+1l=n"-1 (F.10)
The product of F.5 and F.6 yields as an exponent on exXp as
l 1 ] 2 1 1 2
- Eh[n (p=m")" + v'v' + vww+ n (m-u)7] (F.11)
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which can be expanded to
- %—h[n'u2 - 2n'm"p + n'm'2 + V'v' + v + nm2 ~ 2nmp + nu2

+ n"m"2 - n"m"z] (F.12)

v'"'v" can be isolated easily

-2um"m" = - 2u(n'm' + nm), and

2 - (@ + a0

nllu
Therefore (F.12) can be rewritten as
1 n " 2 mn_.n
- f'h[n (p-m") " + v"'v"] (F.12)

and (F.1) is, from F.1l2 and the constants in (F.5) and (F.6),

/2 (172 viv)/2 V!
r{/2 v")

Ky = a't200m ‘ J 2my "1 251 2 g %hn" .
wh

"_
1/2v 1ex

'(U"m")z] . h p[_ %‘h\)"V"]dudh

(F.13)

The integral is equal to

1 CT(/2 v )

n'|1/2 (1/2 \)"V")

Thus
1/2v°
1/2v"

0'1/2 opy=/2  T@/2 9N | (1/2 V')

= ( n * T (fols)
T TAZVD " (172 vivh
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F.2 Marginal Likelihood for the Log-Normal Model

Let x; = n a be normally distributed with mean p and
precision h. Then 9y is log normally distributed by definition. The

probability density function for q is

—1/2h1/2

£(q|u,h) = %m) expl- 3 h(x-1)°] (F.16)

The likelihood function for y and h, given n independent observations

of q is
1 -n/2  n/2 1 2
L(,h]Q) = —— (2m “h? % expl~ Shn} (x, -] (F.17)
II q. .
1

i=1

Assume a normal gamma prior for U and h of the same form as Equation
(F.6). The marginal likelihood, K ., is just the integration of u

and h over the product of the likelihood and the prior pdf.

Ky =

J (2“)'n/2hn/2exp[— %-hn Z(Xi—u)zl

q
1

=R

N i y,h

« £'(u,h)dudh (F.18)

The integral is of the same form as the marginal likelihood for the

normal model. Then, from Equation (F.15), KLN is:

1/2 V'
1 n'.1/2 -v/2 T'(1/2 V') (1/2 v'v")
S S L 2. .
KN n . n TAZVY (12 ygm 2V
Aoay
i=1 (F.19)
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F.3 Marginal Likelihood for the Exceedance Model

Assume that the probability of flood discharges, q, are dis-
tributed such that discharges greater than or equal to some base
flow, qy» are exponentially distributed and that the arrivals of such
events are Poisson occurrences. As explained in Chapter 7, Section
7.3, the pdf for discharges less than qy will follow a uniform pdf.

Then the pdf for flood discharges, q, can be written as

f(q|v,0) = vat exp[- alq-q )1 if q > q

IV 4f 0<q<gq (F.20)
qb - b
Given a sample of n independent discharges, Q, of which m are discharges

less than q, and n-m are discharges greater than or equal to q, , then
b S & b

the likelihood function for v and o is, from Appendix C,

L(v,a|Q) = Sl:!l? e exp[—anim (q.-q,)]
T pm =1+ P
+ expl-v]t,] (F.21)

The marginal likelihood function, KE’ is defined as:

K, { L(v,a|Q) *£'(v) * £'(a)dvda (F.22)

V,0
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The prior pdf for vV and o are of the form

1]
l_l u

£'0) = exp(-s'-V) V' T oy (F.23)
] 1 QIIV'
£'(a) = exp(-2'-a)a’ TG (F.24)
-m s'u' " (u'+n-m)-1
Kp = q, - P(T)'[ exp[-(s" + m)v]‘'v dv -
v
Q'V' (v'+n-m)-1
"TeNY ( exp[-(&' + Z(qi—qb)]wc do (F.25)
ol
The integral over v equals
Fh (F.26)
(s"+m)"
where
u'=u'+n-~-n

9]
|

= 1] LU, I+
s'" + T (ors s Zti)

and the integral over o equals

F(V")
”n
CADM
where
v'=v'4+n-m
"= o+ Z(qi - qb)
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Thus, K equals

E

1]
-m S'U' . F(U") . Q,'V P(V") (F.28)

BT h T T T(v"
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