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ABSTRACT

THE METHODOLOGY OF BAYESIAN INFERENCE AND

DECISION MAKING APPLIED TO EXTREME HYDRO-

LOGIC EVENTS

This study presents the methodology of Bayesian
inference and decision making applied to extreme hydrologic events.

Inference procedures must consider both the natural or
'modelled' uncertainty of the hydrologic process and the statis-
tical uncertainty due to a lack of information. Two types of sta-
tistical uncertainty were considered in this study. The first type
is the uncertainty in modelling the hydrologic process, and the
second type is the uncertainty in the values of the model parameters.
The uncertainty is reduced by considering prior sources of informa-

tion (regional regression, theoretical flood frequency analysis or
subjective assessment) and historical flood data. A 'Bayesian dis-
tribution' of flood discharges is developed that fully accounts for
parameter uncertainty. In an analogous manner, model uncertainty

is analyzed, which leads to a 'composite Bayesian distribution'.
The uncertainty in flood frequency curves from rainfall-runoff

models is also analyzed, due to the uncertainty in the parameters
of the models.

The Bayesian inference model is then applied to a
Bayesian decision model, where the decision rule is the maximiza-
tion of expected net monetary benefits. A case study of determining

the optimal size of local flood protection for Woonsocket, Rhode

Island, was considered, using realistic flood damage and cost
functions.

The results indicate that Bayesian inference procedures
can be used to fully account for statistical uncertainty and that
Bayesian decision procedures provide a rational approach for
making decisions under uncertainty.
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CHAPTER 1

Introduction

Each year floods occur and result in large monetary damage,

loss of life, and the disruption of community services. Since most

historical records are short, the estimation of flood frequency

curves is difficult. Such uncertainty can lead to poor flood design

decisions.

While too often hydrologic analysis emphasizes hydrologic

variables, the real decision variable is a general engineering

variable, like the height of a dike or the size of a spillway. The

hydrologic variables in flood estimation may be a T year flood or

a flood frequency curve. These hydrologic variables should be used

as an input into the decision process that leads to the 'best'

engineering design. In the decision process, the hydrologic variables

are related to design variables through a utility function which

reflects the different economic and social implications of the

project.

A decision process that is formulated to consider the occurrence

of flood discharges as a stochastic process usually produces better

designs. Due to limited data, the estimation of the extreme values

for a stochastic process of flood discharges is extremely difficult,

thus leading to significant statistical uncertainty. The statistical

uncertainty is reflected in the uncertainty of the probability models

as the correct ones to represent the process at hand; it is also
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reflected in the parameters of those models that are used to

represent the true stochastic process. A decision process should be

able to consider this statistical uncertainty, as well as the

modelled uncertainty (the stochastic process), if rational designs

are to be obtained.

Bayesian analysis, within the framework of statistical decision

theory (Raiffa, 1968), prescribes a methodology for making decisions

under the conditions of uncertainty and risk. Decision theory

allows the decision maker to consider together the uncertainty

of the modelled process, the quantifying of decision outcomes and

the preferences towards these outcomes. Bayesian analysis is a

probabilistic framework by which the uncertainty in any design

variable and the knowledge about that variable can be considered

jointly with the risk involved in the actual decision process.

Normally used procedures for flood design do not consider

correctly the interaction among the hydrologic variables, the

economic implications, and the preferences toward particular outcomes.

The standard flood design procedure is to determine some project

flood which leads to a design. No attempt to specify preferences

towards particular outcomes is made, and the economic criterion for

the project is that benefits exceed costs, at the specified design.

The standard economic criterion for maximizing expected benefits is

usually not considered.
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The analysis of statistical uncertainty also is not analyzed

correctly in current procedures of flood analysis. Usually, in-

ferences on the occurrence of future floods are made by using a

convenient probability model of flood discharges, where the unknown

parameters are calculated from historical records. Such procedures

for making inferences do not fully account for the uncertainty in the pro-

bability models of flood discharges or the uncertainty in the parameters of

the models. Incorrect designs can result from an incomplete

accounting of statistical uncertainty. Bayesian statistical procedures

can account for all statistical uncertainty and moreover provide a

procedure to pool together all the available information, be it

historical, regional or subjective information.

1.1 Literature Review

Even though interest in Bayesian procedures is increasing, there

are few reports of applying a full Bayesian analysis to hydrologic

design.

A study by McGilchrist and Woodyer (1970) looks at the occurrence

of floods greater than some discharge. A Bernoulli process is assumed,

so that no distribution properties of the exceedance floods are

specified. A beta pdf, for the parameter of the binomial pdf, is

used. To estimate the parameters of the beta pdf, they use a

combination of maximum likelihood point estimators and classical

confidence interval procedures. Such procedures should not be passed

off as Bayesian statistics. Since their model does not consider the
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distribution of flood discharges, the application to real decision

problems would be limited.

The study by Shane and Gaver (1970) uses an exceedance model,

similar to the exceedance model in this study. Their study finds

the posterior pdf of the model parameters from the observed data and

from a prior pdf. The prior is found from a regional regression.

Using a linear cost function for flood protection, and using a constant

damage, if a flood occurs, they find the optimal Bayes point

estimator. This estimator is the one which minimizes expected

damages plus the cost of protection. Point estimators will be shown

to underestimate the uncertainty in the flood discharge pdf in

Chapter 2 of this study. Shane and Gaver's procedure was not applied

to a decision problem with real cost and damage functions, and thus

the real issues in the decision process were not considered.

Andersen et al (1971) applied Bayesian statistical theory to an

irrigation problem. The decision was to determine crop plantings,

when future water supplies were unknown. The decision framework

is extremely simplified. The future states of nature, water supplies,

is represented by four discrete states; poor, fair, good and

excellent water supplies. Information on the water supply is es-

timated by surveying snow pack levels. While the problem is inter-

esting, the oversimplification of the future states of nature limits

the procedures in more complex, real-world problems.
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Davis et al (1972) considers the decision rule that minimizes

risk. Conceptually, this decision rule can lead to difficulties,

since risk implies that the 'correct' values for unknown parameters

are known. In real-world decision problems, parameters are simply

not known. Furthermore, the decision rule of maximizing expected

utility seems to be a more appropriate decision rule. Davis et al

do not use prior pdf for uncertain parameters, but only use observed

data.

Tschannerl (1971) considers the optimal reservoir design using

Bayesian procedures. His utility is a function of the design and

uncertain parameters of the reservoir inflows. Such a utility

function would be very difficult to find for real-world problems,

where most utility functions depend upon the decisions and the

uncertain discharge. To simplify the analysis, he assumes that the mean

is the only unknown parameter. Finding an 'optimal' design on the

basis of the uncertainty of the mean does not consider the complete

pdf of the flows. Such a procedure can lead to incorrect decisions.

His study is extremely interesting and also covers the effect of

stream record length on opportunity losses inv ved in the design.

1.2 Summary of Proposed Methodology

This study advocates the use of Bayesian procedures for flood

designs. The hydrologic variable, which is an input into the

decision process, is the probability density function for q, the

flood discharges. The true pdf for q is unknown, and is represented
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by some probability model. This model has parameters which are also

unknown. The model uncertainty and the parameter uncertainty are

statistical uncertainties, due to incomplete information.

The proposed methodology is to determine the probability density

function for flood discharges, which completely accounts for all

statistical uncertainty. To reduce the statistical uncertainty in the

model parameters, historical data, as well as other sources of

information, is analyzed. This analysis leads to a posterior pdf for

the parameters. The Bayesian probability density function for flood

discharges is obtained from the model, conditional upon the parameters,

and the posterior pdf of the parameters. The Bayesian model for flood

discharges fully accounts for parameter uncertainty. In an analogous

manner to parameter uncertainty, model uncertainty is analyzed. The

analysis leads to a 'composite Bayesian distribution' for flood

discharges.

The resulting probability density function for the flood discharges

is then used in the decision model to determine the optimal design, With

the decision rule being the maximization of expected utility. The

utility function is net monetary benefits, and it depends upon the

design level and upon the occurrence of future flood discharges.

A case study for the Blackstone River, at Woonsocket, Rhode Island,

demonstrates that the proposed methodology is practical in real-

world problems. Both the procedures which account for statistical un-

certainty and the decision process used to find optimal designs can be

applied in a straightforward manner.
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CHAPTER 2

Theoretical Considerations of Inference and Decision

Procedures

2.1 Introduction.

Raiffa (1968) views the field of statistics as consisting

of two main fields, that of decisions and that of inference.

The field of decisions is concerned with the solution of

practical problems where a decision maker must decide upon some act

among a set of alternatives. Inference is concerned with increasing

the knowledge of how stochastic processes behave, separate to how

they may affect decisions. This thesis is concerned with both infer-

ences about extreme streamflow events (floods) and decisions concern-

ing alternative designs to minimize the economic (or social) effects

of such events.

The approach taken is that of Bayesian decision analysis which

combines Bayesian subjective inference procedures with the decision

framework of the Savage School (Savage, 1950)which employs subjective

utilities for consequences and probabilities for states of nature.

This chapter discusses this framework and compares Bayesian

inference procedures with non-Bayesian (classical, standard or ortho-

dox) procedures and Bayesian decision making (Savage School) with the

other principle schools of Fischer,Neyman-Pearson, and Wald (Raiffa,

1968). Only the Bayesian approach indicates to decision makers which

act is the best because the methodology considers realistic loss func-
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tions for the decision variables and can consider, explicitly, all

sources of uncertainty. Section 2.2.1 looks in detail at the Bayesian

inference problem from two approaches. The first approach is finding

'optimal' Bayes' estimators for the uncertain parameters while the

second approach finds the Bayesian distribution of the random variable

of the decision process (in our case, flood events). The second ap-

proach considers and accounts for the whole probability distribution

of the uncertain parameters. This is done in a manner analogous to

compound distribution theory.

2.2 Inference Procedures.

This section discusses the main categories of inference pro-

cedures. Essentially the non-Bayesian or classical approach will be

compared to Bayesian inference approach. The classical statistical

school can further be broken down into those that support the Likeli-

hood Principle - 'Likelihoodists', and those that do not, - 'non-

likelihoodists'. There are several formulations that lead to the de-

velopment of the likelihood principle of which the formulation by

Birnbaum (1962), developed within the classical inference framework,

is probably the most elegant. The principle states that observations

which lead to the same likelihood function should lead to the same con-

clusions without specifying the relation between function and conclu-

sions. Most classical procedures do not satisfy the likelihood prin-

ciple. In fact, all procedures that necessitate reference to the ran-
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dom variable Q instead of the observation q violate this principle

(Lindley, 1972). This includes such procedures as unbiased estimators

and significance tests.

Bayesian methods satisfy the likelihood principle with the li-

kelihood function representing the observations in updating probability

density functions (pdf) of uncertain parameters vis-a-vis Bayes' Rule.

Consider the problem of the hydrologist who must make a de-

cision between a number of alternate designs that propose to prevent or

decrease the occurrence of future floods. His first task is to make in-

ferences about the underlying process that generates these events but,

in addressing this problem, he is faced with a number of sources of un-

certainty. These sources of uncertainty may be summarized into three ca-

tegories (Benjamin and Cornell, 1970).

1. Natural uncertainty. This is the uncertainty in the

stochastic process - the occurrence of streamflows

(especially extreme streamflows for our problem)

2. Statistical Uncertainty. This is associated with the

estimation of the parameters of the model of the stochastic

process due to limited data.

3. Model Uncertainty. his is associated with the uncertainty

that the probabilistic model of the stochastic process may

not be the true model. Most hydrologic processes are so

complex that no model yet devised may be the true modelorthat

no hydrologic events follow one particular model.

What information does the hydrologist have to help inferences
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in the light of the above difficulties? Often he will have information

on the historical occurrence of flood events. The length of such records

in the United States average 40-50 years and in many cases much less.

There also exists in hydrology other techniques for estimating flood

events. These techniques include regional flood-regression equations,

analytical and empirical formulations.

How the information that the hydrologist has, is applied in

making inferences, depends upon the school of statistics to which he

precribes. Let us first discuss the Bayesian approach. These discus-

sions will assume that there is no uncertainty in the probabilistic mod-

el of the stochastic process since a comparison between Bayesian and non-

Bayesian statistical inference can be handled by looking at the uncertain

parameters of the model. The uncertainties involved when choosing a mod-

el to represent the hydrologic process are dealt with in Chapter 7.

2.2.1 Bayesian Inference.

Bayesian inference lays its foundations upon the idea that sta-

tes of nature can be and should be treated as random variables. Thus the

mean annual flood, y q, is a random variable distributed with a mean

2
m and variance S , estimated from the data. Considering streamflows

9A QA
as random variables, instead of deterministic variables, leads to better

inferences and designs. The extension of the argument, by the Bayesian

School, is that it is useful and professionally sound to treat all

uncertain states of nature as random variables, whether these are

the parameters of the models of streamflows, the capacity of a

flood channel, or the area flooded by a particular sized flood.
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Consider the problem set forth earlier about the hydrologist

making inferences on flood events. Before making use of the data collec-

ted at the site, he will wish to set forth his 'information' concerning

the uncertain parameter set of the model E. This information will be

described by a prior pdf on 0, f'(O|I0) - prior to applying the data.

The basis upon which these priors are obtained will be discussed in de-

tail in Chapter 3; for now it will be enough to say that they are based

upon initial information I obtained from some source - maybe the re-

gression relationship, theoretical studies, or eingineering judgement.

The hydrologist now has a set of observations _ of annual

floods which he assumes comes from the model pdf fQ(q10) which is

conditional upon the parameter set 0.

Bayes' Rule provides a procedure by which the prior distribu-

tion of the parameter set 0 may be updated by the data to provide the

posterior distribution of 0. The proof is found in most probability

tests (for example see Benjamin and Cornell, 1970, pages 64-65).

4.

f" (QR, I) = f(u ) - f'(0 I) / f (.a) (2.1)

where

f"(O,I ) is the posterior pdf conditional upon a set of
0

data q and initial information I

f(qjO) L(aI_) is the sample likelihood function of the

observations conditional upon the parameter set.

f'(QII ) is the prior pdf conditional upon initial information.
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f(_) is a normalizing constant.

The posterior pdf of 0 is therefore a function weighted by a

prior pdf of 0 and a data likelihood function in such a manner as

to combine the information content of both. The effect of various

priors and likelihoods upon the posterior is shown in Figure 2.1.

If future observations _q are available, Bayes' Rule can be used to

update the probability density function on 0. In this case, the for-

mer posterior pdf on 0 now is the prior pdf since it is prior to

the observation or utilization of the new data. Applying Bayes' Rule

then yields the new posterior distribution f"(0!qf, , Io).

f"(OisF,1,Io) L(aF0) O I ) (2.2)

The new posterior pdf would have been obtained if the two samples q

and qF had been observed sequentially as one set of data. This is

easily shown by looking at the prior pdf of 0 conditional upon _

and I
0

f ' (01a, I ) c L(110) f'(_j10 ) (2.3)

Substituting into (2.2) yields

f"((jF'RI ' 0) c L(_F ®) * L(g|O) -f'(|I0) (2.4)

The likelihood functions can be combined to give

f"It(o IqF' 9 ' c o1 ) c L (_q~v 0) - f ' (0 110) (2.5)
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which is the same result for the posterior of 0 as if a sample

(.F a) had been observed and initial information prior f'(OI_)

used.

The hydrologist wants to make inferences about the occurence

of flood events assuming that such events Q can be modelled by a pdf

f (q1O) where the parameter set 0 is unknown with certainty. His

information has yielded a distribution for 0 which will be repre-

sented by f(_).

The Bayesian analysis may proceed along one of two approaches.

One approach is to find the 'best' point estimate of the parameter

*
set denoted by 0 and make inferences about flood events by using

the model f (q_). The other approach is to develop a model of flood

events that is 'free' from any uncertain parameters. This model can

be found by applying compound probability distribution theory. The

unconditional distribution of 0, f () will be found from

fQ(q) = f Q (qL[) f0 (0) dO 
(2.6)

This distribution will be called the Bayesian pdf f (q) to distin-

guish it from the modeled pdf f (q10_). Both approaches will be

analyzed in detail.

2.2.1-a Bayes Point Estimation.

As stated earlier, Bayesian analysis looks upon the true

parameter set 0 as random variables with a distribution f(®) that

is centered upon the expected value of the parameter distribution. If



the estimator 0' is chosen when 0 is the true value then a loss,

Z (0' I0 ) is encountered. Since the true estimator is a random va-

riable the loss is also a random variable. The expected loss can be

written as

E[lossl_' ] = (Q'|) f (0) dO (2.7)

*
The optimal Bayes estimator 0 is that estimatorwhich minimizes the

expected loss over all 0. f(Q) is the pdf of the parameter set 0

and may be prior or posterior to data sampling. If it is prior, then

inferences on q will be made using initial information; if f( 0 )

is solely data based.then it will be the rescaled likelihood function.

Depending upon the form of the loss function k(O' j),

different Bayes estimators will minimize (2.7). Table 2.1 gives

three commonly used loss functions and their corresponding Bayes

estimator.

2.2.1-b Bayesian Distribution

The second approach in analyzing uncertain parameters is the ap-

plication of compound distributions in a Bayesian framework. The de-

finition of a compound distribution is: (see Benjamin and Cornell,

1970)

f (q) J f Q(q;O) f0 (0) dO (2.8)

where f (q;0) is the pdf of Q which depends upon the random

variables 0 .
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Table 2.1

Optimal

Bayes Estimator

mean of f(0)

median of f (0)

maximum likelihood

of f (0)

Table 2.1

Loss Function

quadratic; (0 - 0)2

linear; - |

constant C if 0 # 0

0 if 0= 0

*

Optimal Bayes Estimator for Various

Loss Functions.
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f 0 () is the pdf of the random variable 0.

f (q) is the pdf of the random variable Q which does

not depend upon any parameters.

The distribution fQ(q) can be interpreted as being the distribution

of (q;O) weighted by the distribution of 0 . In Bayesian analysis,

uncertain parameters are treated as random variables and the resulting

distribution fQ(q) is the Bayesian distribution of Q. As the case

with Bayes estimators, inference statements about Q can be made either

prior to data observation (f(0) = f'(0I 0) or posterior to data ob-

servation (fM() = f"()_q, I)). Inferences made by combining new

information is achieved by updating the distributions of uncertain

parametersthrough Bayes Rule, then by calculating the updated Bayesian

distribution through the application of Equation (2.8). It is incor-

rect to try to update f Q(q) directly.

For the hydrologist it may not be clear which of the two

procedures best represents the uncertainty of parameters. In fact,

only the Bayesian pdf of q, f (q), and not the modeled pdf,

f Q(qj0 *) correctly accounts for the uncertainty in 0 This is

analyzed fully in Section 2.3.

2.2.2 Classical Inference.

If the hydrologist is a classical or non-Bayesian statistician,

this section will discuss how he will make inferences for the problem

discussed earlier from a Bayesian viewpoint.

First he will not use any other information except the in-
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formation contained within the data sample to estimate uncertain param-

eters. The classical statistician does not view the uncertain param-

eter as a random variable but instead views the estimate of the parameter

as a random variable. The classical procedure is to find a point esti-

mate for the parameter and test as to whether the parameter falls within

a confidence interval of acceptance at some level of significance.

Consider the case of a hydrologist with a data sample of length

n from a shifted exponential of the.form

fQ,(q'IA) = XeqI (2.9)

where

q - q 0 for q > q

qq =0 q < q0

An interval estimate for the unknown parameter A may be established

by noting that an estimate of X can be obtained from 1/q' where

q' is the mean of fQ,(q' IA). A will be gamma distributed. To

*
test if A < A at a confidence level 1 - o, one may employ the dis-

tribution of q' in the following manner:

P [ X < a] = P [q'> - ] = 1 - a (2.10)

For a given a and n, tables of the gamma distribution will

give 1/a as a function of A or, for given 1/a and n , the con-

fidence level a may be established. Rearrangement will isolate

in the probability statement permitting the substitution of the ob-

served value of A and yielding the exact confidence interval on A.
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The confidence interval will therefore cover the true value (1 - a)

100 percent of the time.

Fundamental problems with classical confidence intervals have

been reported which can not be resolved except by applying a Bayesian

interpretation to confidence intervals. These problems may be summarized

as following:

1) A test for the region X < k (P[X < k ] = 1 - a) could, as dis-

cussed above, provide a bound for A which is dependent upont the data,

i.e. k - k(q'), or, fixing the bound on A, develop a level of con-

fidence that depends upon the data, i.e. 1 - a = 1 - c(q'). For the

classical statistician this should be disturbing since the confidence

levels are not measures of any fundamental kind of confidence but are

data dependent. (Pratt, 1965). This can be resolved in a Bayesian

framework since the parameter (and not the estimate) is the random

variable and such confidence interval probabilities are interpreted as

being estimates of the posterior distribution that is conditional upon

the estimate.

P[X< k 1

2. Another disturbing result arising in the classical procedures is

when a most powerful test on a parameter may be significant at one level

but not at a less extreme level (Stein, 1951). Examples have been pre-

sented in the literature which exhibit this property, but, when the test is

interpreted within a Bayesian framework, this undesirable property will

not occur. (Chambers, 1970).
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Discussion so far has centered upon confidence intervals. The

classical statistician is also interested in the best point estimate,

and procedures used to obtain this estimate include the method of mo-

ments and the maximum likelihood criterion. Both methods are widely

discussed in statistics textbooks. The later procedure chooses that

value of the parameter, as a best estimator, by the simple rule that

states: the best estimate of the true parameter is the one with the

highest relative likelihood of being observed, given the sample. The

likelihood function is defined as

L (0 qI ...qf ij 0) (2.11)

*
and the estimator 0 is when

-- L(E) lql...q ) = 0 (2.12)
L(- 1  2n

The likelihood function gives an approximate distribution of the pa-

rameter, given the sample, from which confidence intervals can be

established. Such confidence interval testing suffers from the problems

discussed earlier andas for point estimation, the next section will

show that such procedures significantly underestimate the uncertainty

in the flood events when uncertainty in parameters is present.

2.2.3 Comparison of the Bayesian Distribution with Bayesian Param-

eter Estimation.

This section compares the two procedures discussed under Section
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2.2.1 to determine if optimal Bayes point estimators or the Bayesian

pdf better represent the uncertainty towards unknown parameters and

therefore will yield better inferences on the decision variable of in-

terest - namely flood events.

Consider the process of annual flood events, Q, which has a

distribution fQ(qIpQ ,2 Q) which is conditional upon the mean p

2
and variance a . It will be assumed for simplicity that the dis-

Q

tribution of flood events has only one parameter, 0 , which is un-

known with certainty and that the hydrologists knowledge about 0 is

represented by a pdf f (0) with mean pi and variance a 2
0 0 E0

The decision role for the Bayesian parameter estimation is

**
from Equation (2.7) where the optimal Bayes' estimate 0 will be

0* min E[lossjO'] M1J4 0'I0) f 0(0) dO (2.13)

*0 j*

and the distribution of Q in the analysis will be f Q(qI 0). The

mean and variance of fQ(qlO*) will be written as yQ1®* and

a 2  respectively. If it is assumed that a quadratic loss function

*
on the parameters is used, the choice of 0 will be the mean of

2
f 0 (0) and will be independent of a0 . This procedure does not employ

the full knowledge of 0 represented in f (0), but only employs the

first moment. Intuitively it would seem the point estimation procedure

will underestimate the variance in Q, and inferences about Q will

not reflect the true uncertainty that exists. This is in fact what

happens,as will be shown below.

The Bayesian distribution of Q, f Q(q) follows from Equation
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(2.6) or (2.8) and is

f (q) = J f(q 10) f (0) dO (2.14)

0

The moments of the Bayesian pdf are easily found to be

l' = fJq q f (qlIO) f (0) dO dq = 0P Q f(0) dO (2.15)

Thus the mean of (q) is the mean of the modelled distribution of

Q weighted by the distribution of 0 . This leads to = p .

If a quadratic loss function is used, as in the Bayesian parameter

estimation which leads to 0 = iP, then Q= P i*. The mean

of the Bayesian distribution is equal to the mean of the model dis-

tribution using the optimal Bayes' estimator.

The variance of the Bayesian distribution is by definition

2= E[Q2] 2 (2.16)

Using Equation (2.15) this leads to

cQ2 = J Qf(O) dO + (P - pi ) 2 f (0) dO (2.17)

0 0

or

V[Q] = E®[V[QjO] ] + V0 [E[QJO] ] (2.18)

where V[-] is the variance operator and E[-] is expectation. Thus

the variance of the Bayesian distribution of Q is the sum of two

parts. The first is the expected variance of Q given 0 and the second
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is the variance (over 0) of the expectation of Q given 0.

The first term of the variance is the variance of the model

distribution using the mean of f0 (0) as in the Bayes estimator. It

is this part of the total variance for which a point estimator proce-

dure accounts. The second term of (2.18) is not accounted for in the

Bayes estimator procedure,and it is by this quantity that the preceding

procedure underestimates the variance of Q (given the uncertainty in

0) and will lead to misleading inference statements.

The effect of this can be shown in a simple example displayed

in Figure 2.2. In this example, the unknown parameter 0 is the mean,

the variance is known. The unknown parameter 0 may take on a value

of either 0l or 02 with equal probability, and the optimal Bayes

*
estimator is assumed to be the mean of P (0), i.e. 0 = (0 1+ 02)/2.

The error introduced by not adequately taking the uncertainty

of 0 into account is significant, especially for extreme events.

In most flood design, extreme events play an important role.

Inferences drawn from the Bayes estimator procedures could lead to

serious design mistakes.

This analysis can be extended to all classical procedures that

employ point estimators. There is no classical procedure to alleviate

the full variance accounting; the only valid approach seems to be the

Bayesian pdf.

2.2.4 Conclusions to Inference Procedures.

The past few sections have looked at inference procedures from
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a - f(qle*) (quadratic loss function)

b - Bayesian distribution of q, I(q)

p(e): p(ee 1) I/2

p(e= e 2) 1/2

p(e) i0 otherwise

Ai P__ PP2 q
2

Figure 2.2: A Comparison of a Bayesian pdf with a pdf Employing
an Optimal Bayes Estimator



both the classical and Bayesian viewpoints. The following things

were found:

1. Classical procedures usually violated the likelihood

principle which stated, in essence, that sets of observa-

tions leading to the same likelihood function should lead

to the same inference, decisions, etc.

2. Classical confidence intervals lead to acceptance

regions or levels of significance that are data dependent;

also such confidence tests often given acceptance

regions that are rejected at higher significance (1-a)

levels.

3. Under Bayesian procedures, significance levels are inter-

preted as estimates of the posterior distribution and

such an approach clears up the difficulties of conclusion 2.

4. Of the Bayesian procedures, only the Bayesian pdf fully

and completely estimates the variance of the process due

to modelled uncertainty and parameter uncertainty.

5. Conclusion 4 can and should be extended to any procedure

that relies upon point estimation,whether Bayesian or non-

Bayesian.

2.3 Decision Analysis

The second field of statistics defined by Raiffa (1968) is that

of decisions. In many statistical problems, the two fields overlap the
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two categories. This is especially true in the analysis and design of

flood events. This Section will discuss the major schools of decision

methodology identified by Raiffa (1968). These major schools are

Fisher, Neyman-Pearson, Wald and Savage.

Before each approach is discussed, the decision problemas

perceived by the hydrologist, is as follows: a hydrologist must de-

cide whether a flood protection design d should be implemented

or d2. Suppose the design is a channel improvement to protect against

the 100 year event. Design d1 proposes to use a design discharge

QC even though the true value of the 100 year event for design d1  is

unknown with certainty. The information the hydrologist has includes

costs and damage curves as well as the information available to him

under the inference procedures presented in Section 2.2 - namely his-

torical data and analytical/empirical flood estimating techniques.

What information the hydrologist uses depends upon what deci-

sion school he follows. The discussion will divide the schools into

non-Bayesian and Bayesian (Savage) schools.

2.3.1 Non-Bayesian Decision Analysis

This Section will look at the simple decision problem from the

Fisherian, Neyman-Pearson, and 'Wald decision perspective.

The Fisherian school perceives the role of choosing between d

or d2 as a hypothesis testnot as a decision act. The analysis does

not employ losses associated with various errors and does not assign

probabilities to possible states of nature. It is only concerned with
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rejecting a null hypothesis if the null hypothesis is true and feels

additional sampling should be done until the null hypothesis can be

accepted or rejected beyond a reasonable level of doubt. In flood de-

sign this additional sampling is not feasible since the events are

rare and other sources of information are not accepted by the Fisherian

School.

The Neyman-Pearson School frames the decision problem by a

hypothesis test where acceptance or rejection of the hypothesis is an

action problem. The evaluation between actions is determined by set-

ting the level of type I error, a, and choosing that strategy which

has the lowest type II errors, S. This comparison is made by plotting

5 against the true state of nature. This is the operating charac-

teristic of the hypothesis rule (Benjamin and Cornell, 1970). The

power function of the strategies is a plot of (1-3) versus the state

of nature. An operating characteristic for our problems may be re-

presented by Figure 2.3. The problems with this approach are

1) Better error control only comes through more experimen-

tation which usually is not feasible in flood design.

2) The best strategy (experimentation and action) depends upon

the whole operating characteristic which depends upon re-

lative seriousness of each type of error and upon "guesses"

as to where the true value of QC lies, thus reducing the

'decision' to one of pure judgement.

While hypothesis testing on strategies is often used by hydrologists,

the cogent information for decision making is the magnitude of the
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state of nature (or the probability of its magnitude), not its level

of significance. This can be shown by looking at Figure 2.4 which

shows the expected damages and costs versus the true 100 year discharge

for each of two decision strategies.

Classical procedures would test the null hypothesis

P[QC 1] = 1 - a . If a is set quite low to reflect the high cost

of decision d2, then the error of rejecting the null hypothesis, when

Q> >Q, is the more serious of the two types of error.

A decision procedure which would use an expected damage and

costs criterion would test the mean of f Q(q) to see if it is larger

than Qb, the break even point between the economies of decisions d

and d2. This is the Bayesian approach with linear utility functions.

The equivalent classical procedure is to test if Q >Qb at a = .50

and use strategy d1 if rejected. The former classical procedure

puts too much weight in the ad hoc procedure of setting a very

small.

Neither classical procedure (if the test P[Q>Q = .50

can even be considered from the classical viewpoint) will lead to the

best design since either d or d2 will be chosen. Many different

designs will fall into the 'accept' category and hypothesis tests will

not indicate the best design.

Wald (1950) extended the concepts of Neyman and Pearson by

considering concepts as cost, loss, value, and worth of consequences

in his formulation of the statistical decision problem. Wald did not

assign probabilities to states of nature but found the value of a
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strategy conditional upon a state of nature being true, v(d Q). Wald

would find those strategies that were not dominated by other strategies

(a strategy at least as good or better for all conditional states of

nature). From the set of efficient strategies, the criterion on choosing

the best strategy was not addressed. Many criteria have been proposed

and a popular approach is that of minimax. The minimax rule states

that the best strategy is the one that minimizes the maximum loss.

This rule has been shown to have the following deficiencies:

1) Minimax is equivalent to a = which has been shown to

give an incoherent procedure on the basis of the sub-

stitutability principle between simple lotteries

(Lindley, 1971).

2) The violation of the principle of irrelevant alternative

[if Z1 > P2 Of U.1 , Z2), then Z2 can not be the best

of (Z31, 2 Z3) when 03 is irrelevant to the choice

between k, 22], has been demonstrated by Savage (1954).

3) The optimal minimax strategy may be based upon a magnitude

of the state of nature which has almost zero probability

of occurrence.

Despite these demonstrations as to the unsoundness of minimax criterion,

it is still used. Other procedures similar to the minimax criterion

suffer from similar arguments. The problems stated above would not

occur under an expected utility criterion.
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2.3.2 Bayesian Decision Analysis.

The Bayesian decision analysis extends Wald's results by intro-

ducing both subjective utilities and probabilities for states of nature.

Savage (1954) developed the theory based upon subjective probabilities

and the theory of utility of von Neumann and Morgenstern (1947), even

though the concept of subjective probabilities and utility in decision

making goes back to Ramsey (1926).

The decision problem will be considered in detail since from

our previous discussion it has been shown to provide a framework that

does not lead to incoherent results and does not rely upon arbitrary

procedures.

The consequence of any decision depends upon the decision taken

and upon the subsequent outcome of the future state of nature, which

is unknown. Thusfor each decision strategy a, from a set A, and for

each possible outcome event X , from a set A, the decision maker

can define a utility or value function, u(a., X ). When the decision

action a. is taken, the outcome event or state of nature X. is

unknown; therefore, the utility function of the action-event set

u(a.,X.) is unknown and, thus, a random variable. The utility ex-

pected of any action a. is

E[ula.] = u(a,x ) f (X) dA (2.19)

A
*

The decision rule is to choose that act a that maximizes the

expected utility, that is

E[ua] = max E[ujaJ (2.20)
all aEA

50



The decision strategy a. may include (for the flood control

problem) the building of dikes to some elevation, building a reservoir

of some particular volume, a flood channel of a particular size, the

restriction of land use in the flood plain, or any combination of these

actions; or to do nothing. The outcome event or state of nature X.

can be a single or multidimensional array depending upon the complexity

of the analysis. It may include the discharge in the river, the height

that the dike fails, the area flooded, the damage caused or any outcome

which is uncertain and can be considered a random variable.

The field of utility theory has received a considerable amount

of attention but much more research needs to be done-especially in the

area of the assessment of decision maker's utility preferences. Re-

cent work in the area of utility theory include Fishburn (1964, 1969),

Pratt, Raiffa and Schlaifer (1965), Keeney (1969), Kirkwood (1972),

Keeney and Raiffa (1971), and others.

This thesis will not investigate in detail the utility aspect

of the decision problem but instead will employ an expected cost cri-

terion (linear utility function in costs) with the decision rule being:

*
choose that strategy a which minimizes the expected damages plus the

cost of protection. Thus the main emphasis will be upon the inferences

of the states of nature f (X).

For most of this work, the state of nature X will be the peak

flood discharge, Q. If one is concerned with the problem of flooding

due to levee failure from seepage as well as overtopping them

X = (Q,R) where R is a measure of levee reliability and f (X)
A
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becomes a joint PDF fQ,R(q~r). The utility function u(a ;q ,rk ) is

assigned for all strategies and states of nature. It is by this pro-

cedure that the simple decision problem is expanded.

2.3.3 Conclusions to Decision Procedures

In this section, the field of statistics dealing with decisions

was discussed. The non-Bayesian approaches were concerned with either

hypotheses tests or decision rules that did not address the cogent

issue of what values of the decision variables will lead to the 'best'

decisions given the information at hand, where 'best' is expressed

as the most preferred (which may or may not be the most economical).

The non-Bayesian procedures often required dubious ad hoc approaches

and produced strategies that could not be evaluated with the above

criterion. The Bayesian decision approach of the Savage school appears to

be a more consistent procedure for making decisions under uncertainty

and is the approach advocated by this thesis. Problems of application

exist but there are no problems in the concepts as with non-Bayesian

procedures.
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Chapter 3

Assessment of Prior Information

3.1 Introduction

In Chapter 2, the discussion found upon many of the theoretical

issues surrounding inference and decision making. It was shown that

the Bayesian probability density function of the random variable,

upon which decisions are based, provides a procedure that completely

accounts for parameter uncertainty. On this basis, the Bayesian

probability density function seems to be a rational approach for making

inferences. Furthermore, applying the Bayesian probability density

function and an appropriate utility function indicates to the decision

maker a rational decision strategy. This procedure is recognized as

Bayesian decision theory. An important part of the Bayesian approach

is the assessment of prior information about uncertain variables.

Such information is reflected in a prior probability density function.

Within the Bayesian school, there exist two groups. One group, the

'objectivists' (Keynes, 1921 Jefferies, 1961) feels that pro-

bability statements should reflect a logical or necessary state of

knowledge. Prior density functions should be based, therefore, on

hard facts, and people, given the same information, should arrive

at the same priors.

The other group, the 'subjectivists' (probably led by de Finetti

and Savage), feel that probability statements reflect the beliefs and

the willingness to act of the person making the inferences and de-

disions. These beliefs may come from an empirical study, theoretical
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analysis or intuition. There is no requirement that, given the same

information, two people should reach the same prior probability den-

sity distributions. One may have certain feelings, which he can not

formally express, but which may have bearing upon the problem at

hand.

In water resource planning, there exists a large body of theore-

tical and empirical procedures for the estimation of uncertain quan-

tities in the absence of observed data. Also, in addition to such

procedures, experienced engineers have often applied their judgement

in making evaluations. This chapter will look at some methods for

evaluating prior probability density distributions in absence of

observed data.

3.2 Subjective Prior Assessment.

Engineers have often applied 'engineering judgement' to obtain

insights and assessments to parameters which could not be readily ob-

tained by other means. For example, a hydrologist may try to estimate

the percentage of rainfall that is infiltrated (or the parameters of

infiltration models) by applying his judgement, based on his know-

ledge of the physical characteristics of the basin. In essence, he

is looking for some point estimates such as the mean on the probability

density function (pdf) for that variable. The last chapter showed

that one could better account for the effects of uncertainty by con-

sidering the complete pdf rather than its central moment.

Subjective evaluation of the pdf is difficult because a decision
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maker often can not explicitly state a particular fractile value.

Instead, the value may be implicitly evaluated by his actions. This

leads back to the notion that subjective probabilities, which are

based upon the decision maker's beliefs, are inseparable from his

actions.

Probability assessments require experimentation that lets the

decision maker choose between actions. This is often in the form of

one lottery, Ll, which is compared to another lottery, L2, with

known probabilities of winning or losing. If both lotteries have the

same payoffs and the decision maker is indifferent to whether he

'plays' one lottery or the other, the subjective probability of lot-

tery L1  is equal to the known probability of L2 '

Such experimentation, though, is influenced by the procedural

setup and, as such, may affect the results. Other problems may

arise due to the following difficulties:

1) The questioning of the experiment or lottery

2) The order of the questions

3) The order in which random variables are estimated.

If more than one parameter of a distribution is desired (mean

and variance), the order of their evaluation may affect the results

since previous answers influence current assessments.

The assessments of prior distributions may be done on a single

future state of nature which is the random variable - for example,

the maximum peak discharge from spring runoff after observing the

winter snow fall, but before melting takes place. Assessment may
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also be used f or the distribution of the state of nature where the

random variables are the parameters of the distribution. The dis-

tribution of annual peak flows may be known, but the mean and variance

will be unknown parameters, and therefore treated as random variables.

There are two- effective methods for directly assessing subjec-

tive distribution on random variables. These are:

a) The Fractile Method.

The fractiles of the cumulative distribution may be assessed

directly or indirectly by breaking the random variables into inter-

vals that are equally likely. It is most convenient for the decision

maker to assess fractiles that do not require a high degree of re-

finement. Thus, the lower quartile (.25) is'easier' to assess than,

let's say, the .31 fractile. Usually about 5 fractiles are estimated,

and a pdf is fitted through the points. A common procedure (Raiffa,

1968) is to approach the problem by having the decision maker con-

sider the following set of questions:

1) "At what value of the random variable (R.V.) do you feel

that there is an equally likely chance that the true value

of the R.V. will be above or below?" This implies indif-

ference between the following two lotteries

(p=.5) Reward Reward

heads R.V.sy

tails R.V.>y

(p=.5) 0 0
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Let's assume he chooses y = y . This will establish the .5

fractile.

2)"Suppose that the true value of the R.V. is greater than y;

at what value of y are you indifferent to the above set of

lotteries?" This value will establish the .75 fractile. The

same procedure can be used to estimate the .25 fractile.

3) "At what value of y do you feel the true value will exceed

it only very rarely?" Such a procedure will try to establish

the .99 fractile. A similar procedure is used for the .01

fractile. Extreme fractiles are very difficult to establish.

Further questions should be asked to assure consistency. If the values

are inconsistent, this variance should be pointed out to the decision

maker and be resolved by further thought. Other procedures, besides

the above method, may be used to assess fractiles ( Schlaifer, 1961) ,

but they are all based upon lottery actions.

The pdf can be also constructed from the cumulative fractiles.

A direct way to obtain the pdf is first to use the lottery actions

to determine the most probable value (mode) and values half as high as

the mode, and then to find points which divide the area of the pdf

into relative sizes.

In either the cumulative fractile method or probability den-

sity method, curves are fitted through the points.

b) Restrictive pdf Method.

Another approach to the estimation of the prior pdf is the

restriction of the density function to a particular family and the
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estimation of the parameters of the function. The choice of the

density function is not restricted by theory, but often a natural con-

jugate family is chosen. A natural conjugate prior density function

has the property in which the posterior distribution is of the same

form as the prior. This property simpffies the inference analysis

and often permits analytical derivations of the Bayesian distribution.

Since most of the weight of the uncertain parameter is near the mean

of its pdf and not in the tails, the resulting inferences will be

relatively insensitive to the functional form of the prior as long

as the location and scale parameters are closely estimated.

3.2.1 Assessment of Joint Distributions

The methods of subjective assessment for joint multivariate

priors are more complex than for the density function of a single

random variable. Consider the probability function f(QIO , 2

where 01 and 62 are unknown. The subjective joint probability

f(6 1.02) must be assessed. But if independence can be assumed, then

f(6162) = f(01)f(02) (3.1)

and each marginal density function can be assessed by applying either

of the methods above.

If 60, 02 are not independent, then f(0 1e2) may be evaluated

by one of the following procedures:

1. Evaluate f(01 e2) by assessing the relative probabilities

of combinations of variables by the fractile method. This

evaluation requires a large number of separate assessments.
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If the form of f(062 ) is restricted to a particular

family of density functions, then the assessment of its

parameters may be easier.

2) Evaluate f(6 162) by

f(6 162) = f(6 1 162 ) f (62) (3.2)

If the fractile method is used, successive assessments

would be required for f( 1 1Y62). Again, an easier approach

may be the restriction of the prior pdf to a particular

family and the assessment of the parameters of the pdf.

Making assessments on joint distributions of many variables is ex-

tremely difficult unless independence among some of the variables can

be assumed.

3.3 Empirically Based Priors.

3.3.1 Introduction.

Empirical formulas for estimating peak flood discharges have

been used for many years. A good summary is given in the Handbook on

the Principals of Hydrology (Gray, 1970). All flood formulae take

the general form of a regression involving physiographic characteris-

tics, such as basin area and rainfall-runoff characteristics, such as

excess precipitation or time of concentration. The coefficients must

be evaluated for a given region where the formula is to be applied.

These formulae supposedly provide a best estimate as expected

value of the flood peak. The variance of the estimator can not be
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obtained directly. One procedure for obtaining the variance of a

formula is to determine the estimated flood peak, ^q, for a number

of sites where historical values, q, are known. A histogram of the

ratio y = q/q would provide a basis for the estimation of f(y).

For ungauged sites, f(y) and ^ (estimated for the ungauged sites)

would be combined to yield f(q).

In applying a flood formula and estimating its coefficients,

it should be realized that there exists a set of coefficients that

will minimize the dispersion of the predicted flood peak about the

observed peaks. Choosing the minimum variance estimators is, in

essence, the procedure of regression. Linear regression predicts

values of the dependent variable (flood peaks) from a linear equation

of independent variables (physiographic and meteorological factors.)

The set of coefficients of the linear equation is chosen so as to

minimize the squared difference between predicted and observed

values.

Linear regression can indicate how much of the variability in

the observed data is 'explained' by each independent variable and

how much is left 'unexplained'. It provides an estimate of the

variance of a predicted value of the dependent variables, both for

sites included in the regression and for new or ungauged sites.

Classical multivariate regression has been used to estimate

streamflow characteristics by Matalas and Benson (1961), Matalas and

Gilroy (1968), and Thomas and Benson (1970). Benson (1962) used

linear regression to estimate peak discharges for the T year flood.
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Regression is a minimum variance estimator that provides both

the expected value and the variance of the dependent variable at an

ungauged site. Its application may provide useful prior information

for estimating flood discharges.

The classical multivariate regression model is of the form:

Y = + z+ (3.3)

where Y is an nxl vector of observations

Z is an nxk matrix of known basin physiographic

characteristics

= f + Z is a (k+l) x 1 vector of parameters
-0 'Z

is an nxl vector of error residuals such that

E[6] = 0 and V[e] = ac0
2

and n is the number of basins included in the regression

k is the number of physiographic and meteorologic

variables in the regression

I is the identity matrix which implies that the

error terms are uncorrelated.

For ease in notation, define X as

T
x = (1 + Z) (3.4)

where 1T is a column vector of l's and the regression model repre-

sented by (3.3) may be rewritten as

Y = - + (3.5)
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The use of the classical regression model implies that the

following assumptions hold that:

1) the independent variables have fixed known values.

2) The values of the dependent variables Y are mutually

independent.

3) The variance of the error terms is homoscedastic - that is,

constant for all y .

A further assumption that the error terms distributed N(O,a 2) is

often made to facilitate the application of confidence tests. Ge-

nerally the errors will be normally distributed due to the Central

Limit Theorem, but the assumption is not required to perform the

regression.

The assumption that the dependent variables are independent

will, in general, hold for mean annual floods between basins. It

will also be true for the variance of mean annual floods. The assump-

tion that the error terms are homoscedastic and uncorrelated is

usually checked after the regression is performed, with the assump-

tion included.

Equation (3.5) can be solved for an estimate of f, which

T
will minimize the error sum of squares, F T . It is well known

that this estimate, b is

b T (X) Y (3.6)

and has the following properties (Draper and Smith, 1966):

1. b is the estimate of which minimizes the error sum
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Tof squares E E irrespective of any distributional properties

of E.

2. b provides a minimum variance unbiased estimator for 3

irrespective of distribution properties of E.

3. If the errors are independent and distributed N(Oa2), then

b is the maximum likelihood estimate of .

An estimate of a2, S2, can be found from the mean square error, thus

2 T T T
s Y Y - b XY / (n - k) (3.7)

Without assuming any distributional properties of s2 (or a2) and

observing . n+l' the vector of known physiographic factors for the

tnext' or ungaged basin, the following hold true:

1. E[Y ] = X b (3.8)
n+l -n+l -

T T -1 2
2. V[Y = [1 + X (X X) X ] s (3.9)

n+l -n+l -n+1

where yn+l is an estimate of the dependent variable for the

(n+l)th basin

E['] is the expectation operator

V[-] is the variance operator

These moments can therefore be used to determine the parameters

of the prior distributions by applying the restrictive pdf method of

Section 3.2.

3.3.2 Flood Regression for Southern New England

The regression formulae of the preceding section is applied to
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36 basins in southern New England. The resulting regression equation

is then applied to an ungaged basin to obtain prior information on the

parameters of the pdf for flood events.

Assume that the moments (mean and variance) of the pdf of

annual floods are affected by the following physiographic and meteoro-

logical characteristics

1. Basin Area, A; in square miles

2. Mean main channel slope, sk; in feet per mile

3. Surface storage area + 0.5, St, in percent of drainage

area.

4. Orographic factor, 0; dimensionless. This factor takes

into account, empirically, the effect of mountain ranges

and prevailing storm patterns upon the meteorological

processes which effect flood peaks.

5. Main channel length, Ls; in miles

6. Rates of the 100 year 24-hour rainfall intensity to the

mean annual 24-hour rainfall intensity, Rh/m

7. Mean January temperature below freezing, T in degrees

Fahrenheit. This is used as a measure of the potential

effects of large snowmelts to flood peaks.

These seven characteristics were adapted from Benson (1962).

The effect of these seven characteristics upon the mean or

variance of the series of annual flood events may be in an additive

manner or may be in a multiplicative manner. The assumption that
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the effect is additive leads to a linear regression while the multi-

plicative assumption leads to a log-linear regression. Each will be

discussed.

3.3.2(a) Linear Regression.

Let Y, which is the dependent variable, mean or variance, be

related in an additive manner to the given basin characteristics.

Thus

Y = b + b - A + b - sk + b 4 St + b - 0 + b - L + b 7 R
1 2 3 4 5 6 s 7 h/m

+ b *T + E
8 J (3.9)

where c ~ N (O,a2 )

Equation (3.9) is in the form of the classical regression

Equation of (3.5).

For the 36 basins, the dependent and independent variables

are given in Table 3.1.

Table 3.2 gives the vector of regression coefficients b.

The regression for the mean of the annual flood had an R2= .791,

And the regression for the variance R2 = .615. This implies that

79.1% of the variance of the observed data of the mean was explained

by the regression and 61.5% for the variance.

3.3.2(b) Log-Linear Regressions

Assume that Y is the dependent variable and is affected

jointly by the seven basin characteristics. Thus
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Table 3.2

Vector Element Value

-9759.46

7.40876

14.9054

- 211.932

167.318

3314.25

1591.66

Variab le

constant

area

slope

storage

temperature
below 32 0F

orographic factor

rainfall intensity
ratio

channel length

Table 3.2: Value of Vector b for Linear Regression
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b b b b b b b
Y ~ A2 *9 3 St4 5 6 7 8Y =b- A -S9 - S t -0 - L - R. - T -u

s * /m J

(3.10)

Taking natural logarithms of (3.10) transforms the regression

equation into the linear form of (3.5). The same 36 basins were

used for the estimate of the parameters of the log-linear regression.

The independent and dependent variables are the log transforms of the

values given in Table 3.1, and the regression coefficients are given

in Table 3.3. The log-linear regression for the mean of the annual

flood explained 95.7% (R = .957) of the observed variance of the

logs of the data. The log-linear regression for the variance of

2
annual floods had an R = .902.

3.3.3 Checking the Regression Assumptions.

It is important to check that the assumptions implied in the

regression formulation hold. These assumptions are given in Section

3.3.1.

The assumption of error terms being homoscedastic and un-

correlated is of particular importance and can be checked by studying

the residuals.

A scattergram of the residuals can usually indicate whether

the standard deviation of the residuals is constant over the range

of the dependent variables y - indicating homoscedasticity. A

scattergram of the residuals from the regression of the log of the

mean of the annual flood against the log of the basin and meteoro-

logical characteristics is presented in Figure 3.1. The scattergram
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Table 3.3

Vector Element Value

-2.069 x 108

-8.530 x 10'

7.727 x 10 4

-1.041 x 106

1.375 x 106

6.774 x 107

2.992 x 10 7

3.485 x 10 6

Variable

constant

Zn area

kn slope

kn storage

kn (temperature
below 32*F)

kn orographic factor

Zn rainfall inten-
sity ratio

Zn channel length

Table 3.3: Values of Vector b for Log-Linear Regression
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.

10

y value (in cfs)

Figure 3.1: Scattergram of the Residuals from the Log-Linear
Regression for Southern New England.
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shows that the range of the residuals is constant over the range of

Zn p . Therefore, there are no indications that the assumption

of homoscedasticity is invalid. Certain other statistics may be

computed, but it is usually felt that a scattergram is more informative

(Draper and Smith, 1966).

Correlation among the residuals is investigated by studying

the covariance matrix of the residuals, which can be shown to be

V() = ( - R)a2  (3.11)

where V (e) is defined as the covariance matrix of the residual

matrix e

I is the identity matrix

T -1
R = X (X X) T

G2 is the scalar variance of the error term (v[e] = a 2)

The variance of any residual e. is given by the ith diagonal
I

and the covariance between (e.e ) is given by the (i,j) the element

of (I - R)c 2 . The values of the correlation of the residuals de-

pend entirely upon the independent variables X . Table 3.4 gives

the matrix of the residual correlations. It is seen that the re-

siduals are independent, as the regression assumption requires.

It is felt that there is no reason to think the regression on

the mean annual flood violates the assumptions upon which it is based.

A similar study for the variance of annual floods shows that no basis

exists for concluding that it violates the assumptions implied in

classical regression.
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Table 3.4 Table of Residual Correlations from the Log-Linear Regression for Southern
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3.3.4 Applying the Regression Formulae to 'Ungauged' Basins.

The log-linear and the linear regression equations developed

in Section 3.3.2 can be applied to other basins in New England to

estimate the first two moments of the mean and variance of the annual

flood series. The regression formulae were applied to the Blackstone

River at Woonsocket, Rhode Island. The values of the independent

variables for the two basins are given in Table 3.5.

For the Blackstone River, the linear regression for the mean,

m , of the annual flood provided the following moments.

E[m y = 5188 cfs
(3.12)

V[m ] = (2246)2 cfs 2

y

and for the regression on the variance, 2 
,

E[cr 2 y =.45 x 106 cfs 2  
(3.13)

V[Cr 2 ] = 48.5 x 106 cfs4

The log-linear regression applied to the Blackstone River predicted

the moments of the log-mean of the annual flood, n m , and the

log-variance of the annual flood, Znu 2  which are:
y

E[kn m ] = 8.27 
(3.14)

V[2n m ] = .073
y

E[kna2 ] = 15.52 
(3.15)

V[ZnC 2 ] = 1.031
y

The regression assumes that these moments are for the kn m and
y

Zna2 normally distributed and thus m ,c2 are log-normally dis-
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Table 3.5

Area = 416 sq. miles

Channel slope = 11.50 ft/mi.

Storage area = 3.51 % of area

Temperature below 32*F (January) = 6*F

Orographic factor 1.0

Rates of 100 year to 2.33 year, 24. hr rainfall intensity = 2.22

Length of main channel = 42.6 miles

Table 3.5: Independent Variables for Blackstone River at

Woonsocket, R.I.
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tributed, To obtain the moments of m and a2 , the following
yy

transform is used (Benjamin and Cornell, 1970):

E[w] = exp (E[kn ] + .5 VtnwJ)
(3.16)

V[w] = E2 [w] - {exp (V[Pnw]) - 1.0}

where Ef-] = expectation operator

V[-] = variance operator.

Letting w = m and substituting (3.14) into (3.16) gives
y

Elm ] = 4042 cfs 
(3.17)

V[m y = 1.24 x 106 cfs 2

y

and for w = 2, substituting (3.15) into (3.16) gives

E[Cy2 ] = 9.22 x 106 cfs 2  

(3.18)
V[C 2 I = 1.537 x 1014cfs 2

The information from the regression, represented by Equations

(3.12), (3.13), (3.17) and (3.18), can be. utilized in determining

the parameters of the prior probability density function. If the

form of the prior is restricted to a particular family of density

functions, then the procedures set up in Section 3.2 can be used.

Essentially, the procedure is fitting the information on the numerical

values of the moments to the algebraic expressions for the moments

of the density function and solving for the parameters of the dis-

tribution.
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3.3.5 Summary.

This section studied the use of empirical procedures for ob-

taining information about the mean and variance of the annual series

of flood events. Empirical procedures are widely used in flood

estimation and rely on the assumption that the basin under study will

fact' in a similar manner to those near by.

Empirical procedures lack causal validation. Two empirical

formulations may fit the data quite well, but they may predict dif-

ferent values for the "ungaged" basin. If both fit the data equally

well, there is no method to distinguish between them.

It will be shown in Chapter 4, when the regression model is

used to provide prior information that the regression provided in-

formation equivalent to 4 to 7 years of data. Chapter 4 applies

both sample and prior information to a number of probability dis-

tribution models of the occurrence of floods.
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3.4 Evaluation of Theoretically Based Prior Information

3.4.1 Introduction

The evaluation of prior information from empirical procedures,

such as regression equations or flood formulae, suffers from a

deficiency due to the procedures being based upon data from similar

or near-by areas. Therefore, empirical procedures may not capture

all the congent components of the rainfall-runoff process for the

basin being studied.

The analysis of the runoff characterictics, using rainfall and

basin characteristics, can be performed in the following manner

(Eagleson, 1972; Leclerc and Schaake, 1973).

Let Q be the peak discharge and 0 a vector of variables repre-

senting rainfall and antecedent moisture conditions. It is well

known that Q is a function of 0 even though this functional relation-

ship is a complex process. This process depends upon the basin's

characteristics and its response to the elements of 0. From the

response and from the probability density function for 0, f(_) the

cumulative density function (CDF) for the peak discharge can be

calculated by:

F (q) = f(0) dO (3.16)

q

where
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f(0) is the probability density function of the matrix of

rainfall and antecedent moisture condition variables

R is the region in the 0 space where Q(O) is less than or

equal to q. This region is defined by the basin response

to 0.

Eagleson (1972) simplifies the relationship between runoff and

rainfall by applying kinematic wave theory for hydrograph forecasting.

Leclerc and Schaake (1973) use deterministic simulation of the

catchment to estimate this relationship. By using a storm selection

procedure, which only considers the worst storms of a family of

synthetically generated storms, Leclerc and Schaake determined the

flood frequency curve.

Both procedures may be useful in providing prior information on

uncertain parameters. This information can then be combined with

historical information. Eagleson's procedure will be considered in

detail here.

3.4.2 Eagleson's Analytical Derivation of the Flood Frequency Curve

Eagleson (1972) analytically derives the flood frequency curve

by taking a stochastic model of the rainfall process and applying the

rainfall to an idealized overland flow plane. The mechanics of that

flow are analyzed by kinematic wave theory.

The stochastic model of individual rainfall events is formulated

in terms of two random variables; the rainfall intensity, i, and the

storm duration, tr. Each storm is assumed to have a rectangular
r

storm interior, and the excess rainfall intensity is assumed to be
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constant throughout the duration of the storm.

Eagleson, under the assumption that the time of concentration for

the stream is greater than the time of concentration for the overland

flow catchment, derives the exceedance probability of a flood peak

discharge, q , as

G (q ) = e2 a +lF(a)exp[-4 KAb (3.17)
r

where G (-) is the compliment of the cumulative density function, F Q)

and where a, , qb, K and Ar are parameters obtained from either the

stochastic rainfall model or the deterministic runoff model.

Appendix E gives a summary of Eagleson's derived flood formula, and

all parameters are defined therein.

3.4.3 Application of G(q ) for the Assessment of Priors

The flood frequency formula, represented by Equation (3.19),

is for the complete series of flood peaks. These peaks are represented

by the n-N rainfall events that produce direct runoff, where n is the

average annual number of such events and N is the number of years of

record.

Consider a series of the largest N events from the series of

n-N events. This series is the annual exceedance series. It can be

shown that the exceedance probability of the annual exceedance series

is related to the complete series by

G (Q>q ) = n-G Q(q ) (3.18)
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The anzual series of flood peaks consist of the largest event

in each of the N years of record. The exceedance probability of the

annual series, G (q>q ), is related to the exceedance probability of
a - p

the annual exceedance series by, (Chow, 1964),

G (q>q ) = 1 - exp[-G (q>q p)] (3.19)

for events of the same rank. Eagleson's flood frequency formula can be

transformed to give the cumulative probability of the annual series,

F a(q) = 1 - G a(q). This transformation is performed by the sub-

stitution of G (q ) from (3.18) into (3.19) and gives
e p

Faq) = exp{-nI -exp[-b(qp - qb)]} (3.20)

where

I = e-2a -a+l
0

b = /(645 K Ar

Manipulation of (3.20) yields

Fa(q p) exp{- exp[-b(q P-u]} (3.21)

where

u = q + 1 n(nI)

Equation (3.21) is of the form of a Gumbel Type I Extreme Value

distribution with mean and standard deviation as
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m = u + 7 q(3.22)

q = (3.23)
Y7/6 b

where y = .5772157. (Euler's constant)

Thus, Eagleson's flood frequency formula can be considered as a Gumbel

extreme value distribution, where the parameters are estimated from

physiographic characteristics rather than from observed data.

To obtain prior information on the mean and variance of the

distribution of annual floods for an 'ungaged' basin within the

region, the following procedure is applied:

1. From historical records and from Eagleson's analysis

(Equations 3.22 and 3.23), obtain estimates of the mean

and variance of the annual series of flood events for a

number of basins within the region.

2. Consider the random variable Y, whose definition is:

_ historical mean (3.24)
m Eagleson's predicted mean

which should have E[Y m] = 1. Similarly, obtain a ratio of the

variances, Y . From the observed basin ratios, the sample

moments are calculated and a density function fitted for the

random varialbes Y and Y
m v

3. For the 'ungaged' basin, calculate Eagleson's estimate of

the mean of the annual series of flood events. If it is assumed

that the historical estimate of the mean is a true estimate (no

variance), then the distribution of the mean p for the ungaged
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basin can be found from the pdf for Y and Eagleson's predicted

mean m. This pdf for p is

f(P) = f(Y (3.25)
m

If f(Y ) - N(1,a ) then f(P) % N(Mii,(Ya) )

4. Using a procedure similar to 3, calculations for the

distribution on the variance are performed.

The procedures 1 through 4 were followed for the same 36 New

England basins that were used in the regression analysis. Their location

is shown in Figure 3.2. An index to the plate numbers is given in

Table 3.6. Using the values for the rainfall parameters given by

Eagleson (1972), Table 3.7 presents the ratio of historical to

predicted means, Y , for the 36 basins. Similarly, the ratios of

the variances, Y v, are given in Table 3.8. The moments for the ratio

of the means are

E[Y ] = .995
in (3.26)

V[Y] = .235

The moments for the ratio of the variances, Yv, are

E[Y ] = 5.86

Sv 5(3.27)

E[Yv] = 85.3
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Figure 3.2: Location of Basins in Southern New England for the
Assessment of Prior Information
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Station No.

117 Oyster River near Durham, N.H.
118 Lamprey River near Newmarket, N.H.
135 Contoocock River at Peterboro, N.H.
137 Naranusit Brook near Peterboro, N.H.
139 North Branch Contoocock River near Antrim, N.H.
143 Warner River at Davisville, N.H.
151 Piscataquog River near Gofftown, N.H.
157 North Nashua River near Loominster, Mass.
169 Parker River Basin at Ryfield, Mass.
171 Ipswich River near Ipswich, Mass.
177 Neponset River at Norwood, Mass.
181 Wading River Near Norton, Mass.
195 Wood River at Hope Valley, R.I.
198 Willimantic River near South Coventry, Conn.
200 Mount Hipe River near Warrenville, Conn.
204 Quinebaug River at Quinebaug, Conn.
209 Moosup River at Moosup, Conn.
249 Sugar River at West Claremont, N.H.
251 Williams River at Brockway Mills, Vt.
254 Cold River at Drewville, N.H.
258 Ashuelot River near Gilsum, Vt.
264 South Branch Ashuelot River at Webr. Near Marlboro, N.H.
274 Moss Brook at Wendell Depot, Mass.
276 Millers River at Frving, Mass.
285 Mill River at Northampton, Mass.
291 East Branch Swift River near Hardwick, Mass.
295 Chicopee River at Indian Orchard, Mass.
307 Westfield River near Westfield, Mass.
313 West Branch Farmington River at Riverton, Conn.
317 Pequabuck River at Forestville, Conn.
322 Park River at Hartford, Conn.
325 Salmon River near East Hampton, Conn
328 Manunketesuck River near Clinton, Conn.
332 East Branch Housatonic River at Coltsville, Mass.
343 Shepaug River near Roxbury, Conn.
353 Naugatuck River near Beacon Falls, Conn.

Table 3.6 Location of Stream Gauges for Figure 3.2

84

Location



Predicted Mean Historical

117
118
135
137
139
143
151
157
169
171
177
181
195
198
200
204
209
249
251
254
258
264
274
276
285
291
295
307
313
317
322
325
328
332
343
353

375
4137
1855
1327
1598
3666
4548
2683

610
2602
1107
1070
1910
2888

907
3567
1997
5748
2763
2304
1974

992
389

6930
1529
1263

11082
9487
4719
1272
1872
3317
379

1586
3237
5437

Table 3.7

312
2262
1253

633
1361
2217
3611
3384

224
1112

356
481
835

3179
1129
2161
1538
5436
4029
2101
1813
1257

322
4271
2254

941
7233

16890
8742
2003
2970
3097

495
2024
4709

13478

Ratio of Means, Boston Parameters
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0.8322
0.5468
0.6755
0.4769
0.8518
0.6047
0.7939
1.2612
0.3675
0.4274
0.3215
0.4495
0.4373
1.1007
1.2454
0.6058
0.7700
0.9457
1.4581
0.9120
0.9184
1.2673
0.8288
0.6163
1.4744
0.7452
0.6527
1.7803
1.8525
1.5750
1.5869
0.9337
1.3057
1.2762
1.4549
2.4790

Mean Ratio Y MStation No.



Predicted Variance Historical Variance

117 19921 23000 1.1546
118 3922824 1238000 0.3156
135 598393 343000 0.5732
137 292637 50000 0.1709
139 397093 2362000 5.9482
143 2566149 1053000 0.4103
151 4719990 2798000 0.5928
157 1425173 11238000 7.8854
169 66094 9000 0.1362
171 1885135 250000 0.1326
177 164606 59000 0.3584
181 235057 39000 0.1659
195 668014 71000 0.1063
198 1799714 20118992 11.1790
200 113841 1153000 10.1282
204 2942131 8418000 2.8612
209 898056 695000 0.7739
249 8062896 6990000 0.8669
251 1325536 3568000 2.6917
254 877686 2062000 2.3494
258 650275 961000 1.4778
264 173936 1267000 7.2843
274 19921 64000 3.2128
276 15027104 6264000 0.4168
285 369572 1599000 4.3266
291 257370 1405000 5.4591
295 47878288 81024992 1.6923
307 25612016 173538000 6.7756
313 5350316 55468992 10.3674
317 268887 4759000 17.6989
322 704160 8911000 12.6548
325 1374941 5000000 3.6365
328 19921 87000 4.3673
332 425543 2199000 5.1675
343 2152184 65184992 30.2878
353 6822592 322579968 47.2811

Table 3.8 Ratio of Variances, Boston Parameters
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To obtain unbiased estimates of the expected value of the ratio

of the means, Y , the fraction of area that contributed to direct

runoff, FAr, had to be adjusted. For the predictions using the

Boston rainfall parameters, as being typical for all New England, FAr

was adjusted to .43.

The results for the estimation of the variance shows that

Eagleson's procedure, on the average, significantly underestimates the

variance. The estimate for the ratio of the historical to predicted

variances is 5.86, which is highly biased. The variance in the estimate

of Yv is 85.3. The large variance, taken together with the biased

E[Y v], signifies that a large amount of risk is associated with

using the variance ratio.

The reason for the poor estimates in the variance of the annual

flood series may be found by rewriting the equations for the mean and

standard deviation of the cumulative annual flood discharge as

645 KAr
m [ n(nI ) + y] (3.28)

645KA
= . - (3.29

All terms have been defined previously and the reasonable

assumption of no base flow has been made. Both and 10 depend upon

the statistics of rainfall pdf. 1/ is the mean rainfall intensity,

i/X is the mean storm duration and I is a function of both and

X, as well as the area contributing to direct runoff and other basin

parameters. Better estimates of the rainfall parameters could lead
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to better prediction of the mean and variance, if the underlying

structure of the model is at least reasonably correct.

Rainfall data for twelve gages around New England were analysed

to find the best values for the rainfall parameters. Figure 3.3

shows the location of these gages. Tables 3.9 through 3.20 give the

monthly statistics for the time between storms, storm duration, storm

depth, and average intensity. In general, significant variations occur

between stations, and significant seasonal variations occur within

the year at each station. Average annual statistics were calculated

and a surface fitted, using multiquadric cones, (Shaw and Lynn,

1972). The surface for average intensity is shown in Figure 3.4, for

average storm duration in Figure 3.5 and for the average number of

storms per year in Figure 3.6.

Using these surfaces, the best estimates for the rainfall

parameters were obtained for each of the 36 basins. These values are

given in Table 3.21.

For the 36 basins, the ratio of historical mean to predicted mean,

Y , is presented in Table 3.22. The results for the ratios of the

variances Yv, are presented in Table 3.23.

The sample moments for Y are:
m

E[Y ] = .975

(3.30)

V[Y ] = .247

and the sample moments for Yv are:
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Station Name: Surry Mountain Dam, N.H.

Station No. 8539

TS (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1

2

3

4

5

6

7

8

9

10

11

12

226/22

204/22

234/22

244/22

259/22

239/23

233/22

209/22

171/22

157/22

233/22

225/22

66.89

64.22

60.91

60.40

56.00

63.70

69.10

68.54

84.24

104.92

65.62

65.08

80.87

58.43

71.36

73.34

63.55

78.49

76.65

79.95

102.72

122.85

75.65

62.91

7.32

7.44

6.80

6.66

5.95

4.74

3.98

4.52

5.73

6.78

7.14

7.85

6.37

5.91

6.10

5.94

5.85

4.88

3.48

4.77

5.27

6.18

6.33

7.49

.232

.260

.244

.255

.262

.282

.271

.342

.367

.357

.342

.282

.333

.319

.304

.348

.343

.359

.345

.473

.562

.525

.457

.399

.0310

.0463

.0481

.0510

.0424

.0699

.0738

.0786

.0567

.0462

.0472

.0431

.0736

.1401

.1390

.1762

.0427

.1188

.0861

.0983

.0523

.0663

.0750

.1530

Table 3.9 Rainfall Statistics for Surry Mountain, N.H.
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Station Name: Hillsboro 2W, N.H.

Station No. 4062

T (hrs) T (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

106.55 143.94

110/23 222.83

82.88 95.04

78.24 91.87

70.47 77.39

72.77 94.34

85.19 95.92

84.59 109.80

100.25 131.09

126.49 157.13

87.48 135.70

93.69 86.62

8.32

7.35

7.60

7.23

6.06

4.74

3.87

4.54

5.63

7.70

7.61

8.45

8.51

6.76

6.32

6.53

5.88

4.68

3.58

4.44

4.68

7.92

6.70

7.71

.395 .498

.416 .468

.389 .464

.3674 .4458

.299 .365

.311 .371

.311 .361

.364 .607

.418 .667

.445 .646

.468 .641

.494 .616

Table 3.10 Rainfall Statistics for Hillsboro 2W, N.H.

1

2

3

4

5

6

7

8

9

10

11

12

152/21

156/22

180/22

196/22

202/21

199/23

180/22

192/22

150/22

123/22

182/21

139/21

.0917

.1377

.0832

.0663

.0621

.0877

.1052

.1025

.0733

.0638

.0695

.1094

.2175

.3032

.2174

.1442

.1196

.1480

.1361

.2448

.0895

.1025

.1350

.2697



Station Name: Durham, N.H.

Station No. 2174

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1

2

3

4

5

6

7

8

9

10

11

12

168/21

164/21

200/22

194/21

228/23

188/22

174/21

174/21

146/21

149/22

218/22

163/21

89.92

88.82

82.83

71.25

67.19

81.75

89.25

83.62

98.29

110.72

66.99

87.77

106.74

120.25

126.03

89.37

87.02

99.14

115.34

109.42

138.33

126.02

80.39

88.05

6.85

6.42

6.78

7.40

5.41

4.41

3.91

4.53

5.97

7.63

6.94

7.10

6.32

5.94

6.23

6.75

5.28

5.36

3.53

4.28

5.73

7.48

6.95

7.02

.338

.381

.405

.349

.304

.287

.322

.349

.404

.436

.462

.459

.408

.443

.497

.468

.472

.361

.394

.463

.657

.762

.667

.683

.1013

.1179

.1003

.0539

.0638

.0929

.1109

.0911

.0603

.0477

.0654

.1297

.2407

.2249

.2110

.1210

.1123

.1846

.2045

.1133

.0561

.0295

.0726

.3127

Rainfall Statistics for Durham, N.H.Table 3. 11



Station Name: Norfolk, Conn

Station No. 5445

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

230/22

222/22

249/22

249/21

280/22

243/23

219/22

214/22

163/22

151/22

227/22

215/22

67.30

59.71

59.51

53.82

51.48

63.50

70.09

67.89

97.56

96.37

71.67

64.20

71.46

57.66

60.13

58.57

60.41

71.91

72.27

77.47

119.67

115.10

97.35

73.50

8.64

8.04

7.34

7.57

5.65

4.80

4.14

4.65

6.35

8.03

7.48

8.57

8.73

7.21

7.10

7.01

4.79

4.70

3.41

5.80

6.07

9.08

7.59

6.82

.358

.335

.371

.363

.247

.353

.322

.428

.477

.536

.450

.4640

.773

.436

.477

.485

.279

.495

.429

1.070

.735

.978

.644

1

2

3

4

5

6

7

8

9

10

11

12

.0579

.0549

.1032

.0506

.0455

.0750

.0837

.0837

.0770

.0633

.0895

.1627

.1449

.2727

.1020

.0442

.0822

.1023

.1151

.1171

.0752

.2368

.0865 .2628

Table 3.12 Rainfall Statistics for Norfolk, Conn.
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Station Name: Manfield Hollow Dam, Conn.

Station No. 4488

TS (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

150/18

163/19

182/10

185/19

205/19

217/19

154/17

167/18

132/18

115/18

159/18

178/18

81.25

77.63

70.23

68.28

65.41

60.99

71.92

79.39

98.42

103.21

80.37

71.92

78.23

85.41

69.74

86.06

81.30

72.82

74.07

103.03

111.43

120.83

105.35

90.49

6.89

6.58

7.30

6.75

5.60

3.82

4.24

4.82

5.55

7.05

7.27

7.60

5.69

5.24

6.13

6.35

5.11

3.79

4.17

5.07

5.98

7.12

6.51

6.64

.317

.305

.364

.359

.272

.217

.398

.393

.427

.498

.399

.442

.399

.481

.536

.386

.355

.668

.657

.703

.739

.534

1

2

3

4

5

6

7

8

9

10

11

12

.0736

.0526

.0728

.0477

.046

.0585

.0845

.0818

.0669

.0656

.0487

.0462

.2384

.0930

.2414

.1042

.045

.0768

.1035

.0915

.0632

.0816

.0731

.0924

Table 3.13 Rainfall Statistics for Mansfield Hollow Dam, Conn.
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Station Name: Candlewood Lake, Conn.

Station No. 1093

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev

1

2

3

4

5

6

7

8

9

10

11

12

208/22

172/22

194/22

226/22

245/22

216/23

204/22

199/22

144/21

140/21

173/20

196/22

82.67

82.68

83.21

65.92

59.18

73.29

76.15

75.07

97.50

106.90

85.03

85.02

138.54

135.12

98.36

88.06

83.86

100.81

98.11

95.86

118.87

134.05

107.00

146.62

7.64

7.56

7.40

6.84

6.48

4.90

4.66

6.07

5.55

7.26

7.39

8.33

8.48

7.25

7.59

6.60

6.21

4.93

4.64

6.76

5.88

8.05

7.78

7.76

.3073

.3589

.392

.317

.291

.291

.333

.430

.365

.497

.430

.408

.4804

.4479

.531

.474

.430

.471

.508

.798

.585

1.009

.625

.555

.0604

.0930

.1298

.0481

.0562

.0841

.0850

.0711

.0670

.0559

.0729

.0658

.2037

.2411

.3905

.0956

.1674

.2034

.1838

.1036

.1109

.0648

.1551

.1587

Table 3.14 Rainfall Statistics for Candlewood Lake, Conn.
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Station Name: Bridgeport, Conn.

Station No. 806

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev

1 223/22 66.21 74.73 6.50 6.79 .248 .375

2 182/22 71.86 67.56 7.63 6.81 .322 .443

3 232/22 65.38 72.96 6.83 6.61 .312 .484

4 244/22 62.40 68.87 6.03 6.26 .304 .447

5 243/22 60.50 69.30 4.88 4.99 .279 .444

6 174/20 77.95 94.28 4.32 4.62 .246 .329

7 197/22 77.99 102.34 3.62 4.04 .312 .428

8 205/22 75.23 87.66 4.20 4.20 .382 .603

9 163/22 96.62 121.24 4.76 4.82 .330 .594

10 113/21 116.73 123.10 6.53 7.02 .503 .784

11 195/22 83.54 114.47 6.42 6.22 .377 .560

12 212/22 73.94 91.16 7.32 6.25 .338 .508

.0295

.0322

.0344

.0405

.0510

.0534

.0911

.0832

.0628

.0702

.0474

.0354

.0266

.0264

.0303

.0415

.0644

.0491

.1216

.0986

.0719

.0993

.0454

.0326

Table 3.15 Rainfall Statistics for Bridgeport, Conn.

.I



Station Name: Bloomfield, Conn

Station No. 0634

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1

2

3

4

5

6

7

8

9

10

11

12

115/18

103/16

115/17

150/18

156/18

139/19

117/19

140/20

103/20

86/18

131/19

123/20

118.39

109.89

94.72

95.62

88.29

103.22

112.18

132.66

188.75

136.06

112.52

114.79

138.12

156.80

99.45

179.32

175.52

140.53

127.55

420.30

490.61

152.20

156.03

204.73

8.54

8.19

8.19

7.47

6.65

4.96

4.11

6.47

5.80

7.44

7.47

8.06

7.64

9.13

6.09

6.41

7.61

4.72

3.90

8.27

6.32

9.30

6.79

6.64

.466

.398

.473

.394

.301

.350

.342

.416

.512

.581

.459

.438

.569

.412

.516

.492

.365

.487

.379

.871

.774

1.056

.611

.485

.1037

.1085

.0999

.0782

.0660

.0992

.1247

.0808

.1606

.0788

.0963

.1132

.2307

.2536

.2214

.2796

.1651

.2152

.2263

.1798

.5340

.1153

.2354

.3031

Table 3.16 Rainfall Statistics for Bloomfield, Conn
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Station Name: Mendon, Mass.

Station No. 4667

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1

2

3

4

5

6

7

8

9

10

11

12

152/19

158/20

167/20

188/19

173/20

199/21

143/19

170/21

131/19

121/21

152/21

123/20

84.58

79.11

78.96

65.99

95.72

73.53

85.09

103.06

108.54

121.08

94.05

122.10

83.50

70.26

73.02

83.88

285.11

90.43

87.73

192.18

217.15

140.90

121.72

135.04

8.15

6.21

6.26

6.84

6.71

4.42

4.48

4.67

6.26

7.20

7.31

8.45

7.16

5.01

5.87

6.41

6.53

3.64

4.53

4.78

6.11

7.53

6.34

7.29

.420

.408

.429

.376

.329

.259

.362

.433

.547

.473

.471

.606

.535

.496

.520

.536

.378

.317

.454

1.023

.877

.708

.598

.688

.1618

.1690

.0898

.0708

.0598

.0915

.1029

.0964

.0784

.0945

.1728

.3798

.3727

.2912

.1584

.0587

.1335

.1874

.2839

.1196

.2427

.4628

Table 3.17 Rainfall Statistics for Mendon, Mass.
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Station Name: Boston, Mass.

Station No. 0770

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 226/22 67.83 79.65 8.61 7.85 .346 .475 .0300 .0266

2 241/22 54.14 54.68 7.38 7.09 .340 .525 .0316 .0316

3 252/22 56.95 66.89 7.49 7.43 .359 .578 .0338 .0290

4 263/22 54.14 65.45 6.54 6.86 .303 .490 .0349 .0330

5 279/23 54.78 66.81 5.48 5.97 .272 .554 .0373 .0392

6 266/23 60.00 72.56 4.06 4.64 .246 .385 .0573 .0690

7 218/22 67.77 78.15 3.62 3.87 .251 .386 .0649 .0863

8 236/22 67.74 83.25 3.80 3.98 .311 .668 .0706 .0903

9 186/21 74.88 90.65 5.13 6.05 .371 .760 .0510 .0562

10 187/22 82.36 99.70 6.22 6.83 .373 .677 .0456 .0483

11 245/22 62.44 78.02 6.62 6.25 .400 .609 .0428 .0428

12 202/22 71.05 73.52 8.49 8.19 .440 .630 .0370 .0364

Table 3.18 Rainfall Statistics for Boston, Mass.



Station Name: Birch Hill Dam, Mass.

TS (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

223/22

189/22

216/22

242/22

235/22

224/23

200/22

202/22

167/22

141/22

219/22

203/22

67.52

74.47

67.14

60.27

62.11

66.31

80.23

73.26

92.05

109.44

70.81

74.23

73.30

72.33

71.30

74.28

70.83

85.14

87.71

88.92

109.56

123.04

94.10

78.16

7.54

7.31

7.02

6.57

6.00

4.99

3.64

4.22

5.37

6.70

7.02

7.58

6.65

6.98

6.55

6.38

5.32

5.34

3.07

4.66

4.79

6.53

6.79

6.79

.276

.304

.297

.276

.288

.314

.277

.318

.362

.394

.360

.337

.384

.382

.378

.371

.332

.470

.344

.586

.518

.517

.483

.434

.0506

.0928

.0650

.0472

.0485

.0626

.0911

.0698

.0628

.0631

.0635

.0670

.1322

.2775

.1479

.0928

.0463

.0697

.1335

.0812

.0668

.1010

.1481

.1678

Table 3.19 Rainfall Statistics for Brick Hill Dam, Mass.
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Station Name: Amherst, Mass.

Station No. 0120

T (hrs) TR (hrs) Depth (in.) Int. (in/hrs)

Month # Storms/Yrs.
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 144/15 78.50 92.45 4.81 5.31 .298 .389 .1344 .2688

2 123/15 161.26 919.52 5.08 7.32 .305 .365 .1414 .2687

3 149/16 73.49 69.30 5.30 6.70 .351 .435 .1462 .2750

4 174/16 65.49 77.32 5.00 5.71 .315 .407 .1091 .2203

5 199/17 59.24 66.75 4.33 4.67 .287 .332 .0975 .1500

6 191/17 58.16 77.20 3.11 3.29 .294 .474 .1205 .3158

7 151/16 75.33 78.36 2.70 3.17 .314 .377 .1686 .2387

8 159/16 69.74 79.89 3.01 5.33 .398 .803 .1966 .3203

9 137/16 85.53 113.62 4.09 4.69 .398 .524 .2025 .4613

10 127/16 93.09 115.63 4.25 4.78 .403 .558 .1808 .4632

11 152/17 136.19 668.76 5.67 6.09 .406 .530 .1204 .2368

12 123/15 80.40 85.38 5.68 6.63 .370 .490 .1086 .2066

Table 3.20 Rainfall Statistics for Amherst, Mass.
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Basin X 0

117 11.8 .164 101
118 11.9 .167 101
135 12.5 .159 110
137 12.5 .159 110
139 11.5 .154 93
143 11.1 .151 95
151 12.3 .161 95
157 16.7 .164 118
169 20.0 .167 110
171 20.0 .167 110
177 12.5 .159 120
181 11.7 .167 105
195 18.2 .167 110
198 16.4 .164 110
200 16.4 .164 110
204 10.0 .154 100
209 14.3 .161 100
249 16.7 .161 120
251 16.7 .161 125
254 17.2 .161 120
258 18.2 .161 120
264 15.4 .151 115
274 14.3 .169 115
276 14.3 .172 115
285 7.04 .223 115
291 11.1 .182 115
295 9.1 .182 115
307 9.1 .167 108
313 10.0 .147 110
317 10.0 .147 90
322 11.1 .147 90
325 16.7 .167 105
328 19.6 .172 105
332 14.3 .151 120
324 12.5 .151 105
352 10.0 .143 105
187 9.4 .159 95
189 11.1 .167 105

Table 3.21 Best Rainfall Parameters for the
36 Southern New England Basins

105



Station No. Predicted Mean Historical Mean

117 405 312 0.7703
118 5212 2262 0.4340
135 2023 1253 0.6192
137 1451 633 0.4363
139 1822 1361 0.7469
143 4641 2217 0.4777
151 5287 3611 0.6830
157 2291 3384 1.4768
169 400 224 0.5604
171 1939 1112 0.5735
177 1060 356 0.3357
181 1288 481 0.3735
195 1306 835 0.6392
198 2549 3179 1.2471
200 685 1129 1.6489
204 5498 2161 0.3931
209 1984 1538 0.7750
249 5403 5436 1.0062
251 2366 4029 1.7026
254 1853 2101 1.1340
258 821 1813 2.2084
264 902 1257 1.3936
274 344 322 0.9370
276 7961 4271 0.5365
285 2936 2254 0.7678
291 1548 941 0.6080
295 21961 7233 0.3294
307 17600 16890 0.9596
313 7709 8742 1.1340
317 1680 2003 1.1925
322 2318 2970 1.2815
325 1930 3097 1.6050
328 239 495 2.0675
332 1557 2024 1.2996
343 3847 4709 1.2242
353 8837 13478 1.5251

Table 3.22

Ratio of the Means, Best Rainfall Parameters
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117 19834 23000 1.1596
118 4145262 1238000 0.2987
135 550174 343000 0.6234
137 265847 50000 0.1881
139 428421 2362000 5.5133
143 3097219 1053000 0.3400
151 4694603 2798000 0.5960
157 747257 11238000 15.0390
169 23068 9000 0.3901
171 693327 250000 0.3606
177 148412 59000 0.3975
181 242862 39000 0.1606
195 290080 71000 0.2448
198 983848 20118992 20.4493
200 59379 1153000 19.4178
204 4387153 8418000 1.9188
209 635916 695000 1.0929
249 4390080 6990000 1.5922
251 694179 3568000 5.1399
254 429380 2062000 4.8023
258 275116 961000 3.4931
264 103437 1267000 12.2490
274 13504 64000 4.7394
276 11127653 6264000 0.5629
285 1069503 1599000 1.4951
291 295516 1405000 4.7544
295 84106656 81024992 0.9634
307 46531632 173538000 3.7295
313 8107109 55468992 6.8420
317 381541 4759000 12.4731
322 824797 8911000 10.8039
325 719989 5000000 6.9446
328 7188 87000 12.1041
332 297353 2199000 7.3952
343 2039205 65184992 31.9659
353 10402987 322579968 31.0084

Table 3.23

Ratio of the Variances, Best Rainfall Parameters
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E[Y] = 6.42

(3.31)

V[Yv} = 66.74

Again, the fraction of area that contributes to direct runoff, FAr

is adjusted so that the E[Y ] is unbiased. This value of FA ism r

.168. Even with the best estimates for the rainfall parameters,

the prediction of the variance is still too low, causing E[Yv I to

be highly biased. The low prediction of the variance implies that

the predicted coefficient of variation is too low. The coefficient

of variation can be calculated from Equations (3.22) and (3.23)

as

C = (3.32)

-n(nI) + - y

or substituting values for ff and Y and simplifying

C=1 (3.33)
v .78 kn(nI ) + .45

-2a -a+l
for 1 = e - I(C)

a is a function of both rainfall and basin parameters. Its value

ranges from .3 to .65 which implies that I has values that fall into

the range of .7 to .35 with .6 being a typical value. n is the number

of excess rainfall events and is estimated from

n = 4) 1 '2 *0 (3.34)
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where

is the ratio of annual runoff to point precipitation

2 is the ratio of direct runoff to annual runoff and

0 is the number of independent rainfall events.

Eagleson takes as typical values for New England 0 = .50

and 02 = .58, which give just under 30% of the rainfall events as

being excess events. Letting 0 ~ 100 events per year, average for

New England, gives n = 30. Substituting into 3.33 gives

C = I -(3.35)v 3.1 + Zn(I )
0

Since I ranges from .35 to .7, Cv will range from .44 to .35. This

range is much lower than the Cv observed in the historical records.

The sample statistics for the coefficient of variation for the

36 New England basins are:

mean = .770
(3.36)

variance = .126

The predicted moments, obtained from the predicted mean and standard

deviation, are:

mean = .369
(3.37)

variance = .0015
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The poor performance of Eagleson's formula can be partially

related back to (3.33) and the assumptions involved in the treatment

of the random variables in the model. An important parameter in

the model is n, the number of excess rainfall events. n is not

known with certainty and thus is a random variable. Eagleson uses

an expected value of n from Equation (3.34), but 0, P1 and 'D 2 are

all random variables and the expected value of n can be calculated

from

E[n] = E[4D 1  E[D2] E[0]

+ p [ ] -V'
1 2 (3.38)

1/2 1/2
+ p .[5] -V6

+ P ) 0 V[D2
1 /2

2

and only equals (3.34) under the assumption that 1' (2 and 0 are

all independent. It would be suspected that 1 and 02 would be

highly dependent since both are ratios concerning runoff, direct

runoff and precipitation.

In the analysis, there are many variables whose values are

uncertain but constant. Also, there are variables whose values are

uncertain and change from storm to storm - for example, Ar, the area

that produces runoff. Essentially, Eagleson handles this un-

certainty by inserting the expected value into the function. This

procedure implies that the expected value of a function is equal to
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the function of the expected value, E[g(x)] = g(E]x]). This

relationship is not true, except as a first order approximation.

There is still the problem that the underlying analysis may

not represent the process. The rainfall is modeled by the average

excess intensity, i , excess storm duration, tr and a rectangular

storm interior. The assumption that the probability density function

for i and tr are exponential with no seasonal variations does note e

seem to capture the observed behavior. Also, the runoff process

may not accurately represent the behavior of the New England basins.

The assumption that the time of concentration of the catchment, t e

is less than the time of concentration of the streams, t , must

be seriously questioned, especially for the smaller New England

basins.

It is felt that Eagleson's approach is an important conceptual

contribution to the dynamics of flood frequencies, but, for general

application in obtaining prior information, the results are limited.

Eagleson's procedure may still be used with other regional

information to provide prior information on the mean and variance.

If it is assumed that there is a regional coefficient of variation

and Eagleson's prediction is used for the mean, then an estimate of

the moments for the variance can be found. The relationship between

the standard deviation a, mean m, and coefficient variation C V

2 2 2or = C m (3.39)
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From the first-order analysis, estimates for the mean and

variance of a2 are

2 2 2 2 2
E[] C v m + C V m]+m - V[C. +

(3.40)

+ 4 - C- - m p -m Vm] 2  VIC ]1/2
VV

2 4 2
V[a ] 4C. m VIM] +

4C 2 - M4 VIC v + (3.41)

8Cv3 M 3PCM V 1M]1/2 . V[Cv 1/2

For the 36 New England basins, the mean and variance for Cu

were given in Equation (3.36). The sample correlation coefficient

between C-v and m for the 36 basins is .31. The moments of the mean

are found for the 'ungaged' basin by applying the predicted mean

and the moments of the ratio of the means.

This was done for the Blackstone River near Woonsocket, R.I.

The predicted mean was 5600 cfs, which implies the moments

ENI] = 5575 cfs

Vby] = 7369600 cfs2 
(3.42)

Applying (3.36), (3.40), (3.41) and (3.42) gives

E[a2] = 3.184 x 10 cfs 2

(3.43)

V[a2] = 7.9975 x 10 cfs4
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Thus, the prior information on the mean and variance of the

annual series for the Blackstone River is given by (3.42) and (3.43)

and implies an equivalent prior sample size n' of 4 where

2
n' E[cY 2 (3.44)

This is about the same amount of information as was found in the

regression equation.

3.4.4 Summary

The analytical procedures of Eagleson were unable on their

own to provide prior information on the mean and variance of

annual floods. This lack of information can be attributed to the

numerous assumptions that must be made if an analytical solution is

to be obtained. The analytical procedures of Eagleson's seem

to give a large bias to the variance for the example basins studied,

which, in turn, implies a high amount of risk in applying the prior

information. When this problem is encountered, a possible procedure

to obtain prior information is the application of Eagleson's

approach in conjunction with a regional estimation of the coefficient

of variation. This latter method provides information equivalent

to about 4 years of data.
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3.5 Conclusion

This chapter studies two sources of prior information that

researchers have used to estimate the occurrances of floods - the

multivariate regression and an analytical flood frequency formula

(after Eagleson, 1972).

The multivariate regression is an empirical technique that

fits a linear function to data from near-by or similar basins.

This procedure will out perform many empirical flood formulae found

in the literature, because regression is a minimum variance

procedure.

Eagleson's analytical flood frequency formula predicts the

occurrance of flood magnitudes by considering the overland flow

dynamics of excess rainfall and the pdf of the magnitude of the rain-

fall. For the region studied, this procedure did not provide any

useful information. When the analytical formula is used in con-

junction with a regional coefficient of variation, limited prior

information is obtained.

For the region studied, the empirical and analytical procedures

provided some prior information. This information is equivalent to

4 to 7 years of data, and may be significant when only very short

historical records exist. More research should be done in the area

of estimating prior information. One possibility is the use of

rainfall-runoff simulation models. Often rainfall data has a longer

record than streamflow data, and extensive research is needed to

determine if such models can be used to extend the streamflow record.
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CHAPTER 4

Bayesian Distribution Theory

4.1 Introduction

The analysis of estimating flood exceedance probabilities,

the probability that a flood, with a magnitude greater than q,

will occur during some time interval, has always been a source of

controversy in hydrology. The procedure traditionally followed has

been to:

1. Observe a historical record of flood events

2. Pick a generating process or probability density

function that seems "reasonable"

3. Estimate the parameters of this underlying process

from the historical record, and

4. Make inferences about the occurrence of future flood

events.

This procedure will be refered to as the estimation of floods by

the application of distribution theory. When historical records are

not available, inferences about the occurrence of floods are made

using procedures such as those described and analyzed in Chapter 3.

Much of the controversy about the distribution approach has

centered on which underlying process or probability density function

(pdf) is the appropriate one to use and what is the 'best'

approach to estimating the parameters of the chosen distribution.

In Chapter 2, it was argued that when parameters are uncertain and
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thus random variables, point estimation will underestimate the

uncertainty in the pdf of the flood events. Only through the

application of Bayesian distribution theory, is it possible to fully

account for parameter uncertainty. The analysis leads to the

Bayesian pdf. This Bayesian distribution of the magnitude of flood

events, f(q), is, from Equation (2.6),

f(q) = ff(qlO) - f"(0)d0 (4.1)

where

f(q) is the Bayesian pdf of q

f(qID) is the 'modelled' pdf of q which is conditional upon

the set of uncertain parameters 0

f"(0) is the (posterior) pdf of the parameter set 0

The traditional approach to flood analysis uses the historical

record to find point estimates for the parameters of 0. Bayesian

analysis uses the historical record in conjunction with other sources

of information, as discussed in Chapter 3, to find a pdf for the

parameter set 0. The pdf for 0 is called the prior pdf if it is

evaluated prior to obtaining more data, and it is called the posterior

pdf if it is evaluated after obtaining the data.

The posterior pdf for 0 is found through the application of

Bayes theorem and is, from Equation (2.1)

f"(0) = f"(OJQ, I ) cc L(QIO) - f'(0) (4.2)0
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where

f"(O) = f"(OJQI ) is the posterior PDF of ) conditional

upon the current observed sample Q and initial

information I
0

L(QIO) is the likelihood function of the sample, Q

f'(0) = f'(I 0_) is the prior PDF of the parameter set 0

conditional upon the initial information, Io.

The evaluation of f"(0) does not depend upon the functional

form of f'(0). If f"(0) is restricted to a particular form defined

as the natural conjugate of L(QjO), then the posterior pdf of 0,

f"(0), will be of the same functional form as f'(0). By restricting

prior pdf to natural conjugate forms, it is possible to evaluate

both f"(0) and f(q) analytically. This is an extremely attractive

consideration since this analysis is concerned with the methodology

of Bayesian procedures. The extensive numerical analysis needed

to solve for f(q), using priors which are not natural conjugate

forms, is not considered in this thesis.

Four alternative models are analyzed in this chapter. Three

of the models consider the annual series of flood events which is

made up of the largest flood event in each year. The three models

are analyzed, conditional upon the assumption that the annual series

was generated by 1) a normal process, 2) a log-normal process or

3) a gamma-1 process.

The fourth model considers the partial duration series of
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flood peaks above a 'base' level. This model is defined as an

exceedance model. The base level is chosen so that the occurrence

of events greater than the base value can be described by a Poisson

process and the magnitude of events larger than the base level can

be described by an exponential pdf.

This chapter will not address directly the controversy of

which pdf best describes the generating process of flood events.

This is left to Chapter 7 when model selection is considered. This

chapter will analyze, in a Bayesian framework, alternative probability

models of the occurrence of flood magnitudes. The flood exceedance

probability from each model will be calculated for the Blackstone

River at Woonsocket, Rhode Island and compared. Chapter 6 uses

each of the probability models in a decision problem where the

decision act is concerned with the design capacity of a local flood

control system consisting of channelization, dikes and flood walls.

The decision example is for Woonsocket, Rhode Island and will

utilize the results of the probability models developed in this

chapter.

4.2 Bayesian Inference from a Normal Process

4.2.1 Prior and Posterior Distribution for Mean p and Precision h

for the Normal Process

Assume that the series of annual floods comes from a normal

2
process with unknown mean p, and variance a . Define the precision,

h, as being 1/a2 and let Q be the record of the observed annual
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floods.

The 'modelled' pdf of the annual flood q is distributed

N(p,h) which is

f(qly,h) hl /2  h 2 (4.3)

The likelihood function of the set of independent observations Q

is defined as

L ]= H f(qfiih) (4.4)
all q,

which, for the normal process, can be shown to be (Raiffa and

Schlaifer, 1961)

1/2 h 2h/
L[Qlh,y] a h 1 exp[- h n(m-) 2] - exp[- hv - h /2 (4.5)

where

n = number of observations in the sample Q

I n
m = n i=l q1

m n 2,

v - n1. (q-m) (= 0 for n=l)n-1 =1 (q

v = n-l

It can be observed that the likelihood function is composed of two

parts. The first part is the kernel of a normal density function and

the second part is the kernel of a gamma-2 density function. Thus,

the natural conjugate will be a normal-gamma distribution,

ft (1,hlm',v',n',v'), of the form
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f? (I,hlm',v',n',v') h1 2 exp[- hn'(p-m') 2
NY '

exp[1- 1 hVv'vI hV/2l1 (4.6)

where the definitions of m', v', and n' follow from those of Equation

(4.5). The distributions for the marginals of f'(p,h) can easily be

found. For the mean, p,

2-
f '(Im', v'/n', V') x [v' + (}I-m') n'/v']

s

which is Student, with moments

E[P] = m'

V[1n] = V'

(4.8)

V' > 2

And for the precision, h,

f I(hIv', v') c exp[ - hV'v' ]h /
Y2 2

(4.9)

which is gaimna-2. Often prior information is available on the variance,

2

d2 1/h.

From (4.9), the distribution on a 2can be shown to be

, 2 1 f1 '?' cep 1 Cy2 VII (2 V1/2+1
f- 1(a2I- v', - v'v') exp[- 1 2 2 )2

which is distributed inverted gamma-1 and has moments

(4.10)
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2 1/2V'v'
E[a ] = 1,

V1 
- 1

22

2 (1/2v'v') > 4 (4.11)
v[a I = ; ___>_4__(4.11)

( ' -1)2 , -2)~
2 2

Information from the prior using the restrictive pdf assessment

procedure will be the first two moments - the mean, p, and the

2
variance, a . By solving Equations (4.8) and (4.11) the parameters

of the prior can be determined.

By comparing Equations (4.8) and (4.11), it is important to

notice that

1. m' = E[p], the prior mean

2
2. n' = , the prior equivalent sample size in terms

V[11]

of the mean

2 2
3. v' = 2. E [a2 + 4

v[a

n'(v'-2)4. v' = V[p] V

2 v'-2
or = E[a]

Steps 1 through 4 can be easily carried out to find the parameters

of the normal-gamma prior pdf. There is no redundancy in the sta-

tistics n' and v' for the prior pdf, as there exists in the likelihood

function. There, v = n-1, but for the prior v' the relationship

between v' and n' need not follow the relationship v'= n' - 1
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(Raiffa and Schlaiffer, 1961).

The posterior distribution of (p,h) can be found by applying

Equation (4.2) and will be Normal-Gamma, f" (p,hjm" ,v", n", v"),

of the same form as (4.6) with the following parameters, (Raiffa

and Schlaifer, 1961):

n" -n' + n

m" = -,(n' - m' + n * m)
n

(4.12)
V V' + V + 1

v= 1 [(v'v' + n'm' 2 ) + (vv + nm2) - n" m"]

where n, m, v, V are the sample statistics defined in Equation (4.5)

and n', m', V', v' are the prior statistics.

4.2.2 Bayesian Distribution of the Annual Maximum Flood Discharge

from a Normal Process

The Bayesian distribution of the annual maximum flood, q, is

found by applying Equation (4.1). If the posterior pdf of the

parameters p,h is Normal-Gamma, as defined by Equation (4.6), with

the parameters as given in (4.12) and if the modelled process is

Normal with mean p, precision h, then it can show, as in Appendix A,

that the Bayesian distribution of q is Student. That is

fs(p m",)n"+ v"," = f (qlp,h) - (p,hm",v",n",V") -dydh

ph (4.13)
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The form of the Student is

f (qIm", v"/r,v") = 1 - [l + ,m) r](V"+l) /2 IVV-/2s 1 1 v yv" r

2 (4.14)

1 1
where B(, ") is the Beta function defined as

r(1/2) -P(1/2v")
F(1/2v" + 1/2)

r = n"/(n" + 1)

The first two moments of f (q) are:

E[q] = mr"
(4.15)

V"I n"1+1
v[q] = V"-(v"-2 n"

Inferences about a Normal process with mean and variance un-

known will be made from a Student pdf which fully accounts for the

parameter uncertainty. For the same data, the Student pdf is similar

in form to a normal pdf but has a larger variance. This is shown in

Section 4.6.2 where Bayesian and classical distribution procedures

are compared.

4.3 Bayesian Distribution of Annual Flood Discharges from a Log-

Normal Process

In the previous section it was assumed that the distribution

of the annual maximum flood event came from an independent normal
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process. For many rivers, sample information would seem to indicate

that a more appropriate model of the underlying process would have

a probability distribution which takes on values greater than zero

only for positive flood discharges, q > 0, and that the distribution

would be positively skewed (long upper tail). Such a model is an

independent log-normal process.

Given that z = ln q is normally distributed with mean p and

2
variance a , then q has, by definition, a log-normal distribution.

It is well known that q has a mean of

2
T = exp[p + a /2]. (4.16)

The model, where hydrologic variables follow a log-normal distribution,

has been widely used in hydrologic analysis. The Bayesian pdf of the

log-normal process can be found analytically by applying derived

distribution theory to the results from the normal process. It can

also be found by finding the posterior pdf of r from the joint pdf

of ln fl and , then integrating over f"(n) numerically. This is the

approach of Equation (4.1) to find the Bayesian pdf of the flood

discharges. This latter procedure is given in Appendix B.

The approach in this section is to use the normal analysis

results and then to apply transforms to obtain the results for the

log-normal analysis. Using the results from the normal process

analysis leads to analytical results for the log-normal process.

This feature is very desirable.

If two random variables, say x and y, are related by a
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monotonic function, x = g(y), then their density functions are

related by

f(y) = f(x) -dydy
(4.17)

= f[g(y)] dg(y)dy

From Equation (4.14), the Bayesian distribution of stream

flows from the normal process, with unknown mean and variance, is

Student of the form

it 11/ 11 1 [l +r(z-m") -( "+l) /2
f (zjm", V"/r, v")= B(1/2, 1/2%" [ + v"v

s B(1/2,v"-2/2

[V r 1/2 (4.18)

where r = n"/n"+1 and all other parameters are as defined in (4.14).

From Equation (4.17) and the relationship between z and q; namely

z = ln q, the Bayesian pdf for q can be shown to be:

f(qjm", v"/v 1 1 [l + r(ln q-m") (V"+1)/2
q B(1/2, 1/2v") - V "

r 1/2[ It 1 (4.19)
V v

This pdf has been defined in the literature as the 'log-student'

density function. The mean of the log-student does not exist

(Zellner, 1971; Kaufman, 1972) which results in a number of inter-

esting consequences.

In finite act decision problems with acts whose values are
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linear in q, the expected utility of every act will be infinite. This

restriction is not crucial since realistic value functions in hy-

drologic decision problems are rarely linear in q. In the analysis

of the log-normal process by numerical procedures, presented in

Appendix B, the mean of the posterior pdf for the mean of q,

f"(p) does not exist. Thus, optimal Bayes point estimators from the

often used quadratic loss function, 9(nf) = 01 - n) 2; symmetric

linear, In - ^1; or asymmetric linear will result in infinite

losses for every choice of f. This latter point does not bother the

analysis for the Bayesian pdf, since f"(n) is a proper density function

and the integration over f"(n) can be carried out.

4.4 Bayesian Distribution of Annual Flood Discharge from a Gamma-l

Process

The previous section considered the case where the magnitude

of the annual flood series was distributed according to a log-normal

pdf. Many rivers exhibit characteristics which would suggest that a

probability model which has a long upper tail (positively skewed)

would be an appropriate model. This is why the log-normal model has

been widely used; however, it is often the case that when logs of

the observed sample are taken, the resulting data is not symmetrical

about the mean (no skew) as is predicted. If the logs of the flood

series are negatively skewed, a more appropriate probability model

of the flood discharge, q, may be to assume that they were generated

from a gamma-l process.
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The gamma-i pdf closely resembles that of the log-normal

distribution. Both are uni-modal and positively skewed. The gamma-1

has a shorter tail so that the probability of observing an extreme

event of the same magnitude will be higher for floods generated by

a log-normal process. Table 4.1 compares the return period for

extreme events from the gamma-l process with those from the log-

normal process. Both processes have a mean of 3000 cfs and a standard

deviation of 2121 cfs.

If the logs were positively skewed, then it might be more

appropriate to assume that the logs of the annual flood series are

generated by a gamma-1 process; or that the flood discharges are

generated by a log-gamma-1. A log-Pearson III pdf is a type of

log-gamma. It is also interesting to realize that if the logs of a

flood discharge sample are negatively skewed and they are fitted to

a log-Pearson III using traditionally recommended procedures, then there

exists, 1) a maximum flood that will occur, 2) a finite probability

of observing a flood discharge that is less than or equal to zero.

The Bayesian analysis of a log-gamma will not be analyzed here;

instead, the analysis of the gamma-l will be considered.

The pdf of flood discharge, q, generated from a gamma-i

process is of the form:

r-l r
f(qla,r) = exp(- a-q). q- a (4.20)

r (r)

The Bayesian analysis for the gamma-i process with both

parameters unknown required numerical procedures due to the complex
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Q Log-Normal
T

Gamma-l
T

500 1.00636 1.04665
1000 1.08646 1.1685
1500 1.28256 1.3589
2000 1.59948 1.62547
2500 2.05146 1.98482
3000 2.66477 2.46205
3500 3.47604 3.09217
4000 4.53203 1.92271
4500 5.89035 5.01768
5000 7.62076 6.46298
5500 9.80688 8.37377
6000 12.5481 10.9045
6500 15.9622 14.2624
7000 20.1874 18.7256
7500 25.3859 24.6672
8000 31.7468 32.5889
8500 39.4897 43.1637
9000 48.8698 57.2945
9500 60.1804 76.1894

10000 73.7596 101.467
10500 89.9959 135.274
11000 109.332 180.474
11500 132.277 240.81
12000 159.403 321.181
12500 191.368 427.837
13000 228.915 568.719
13500 272.88 753.558
14000 324.222 993.558
14500 384.006 1301.37
15000 453.414 1689.55
15500 533.83 2168.72
16000 626.67 2745.86
16500 733.655 3419.73
17000 856.592 4177.59
17500 997.694 4984.32
18000 1159.13 5821.38
18500 1343.47 6636.56
19000 1554.02 7403.89
19500 1793.2 8089.3
20000 2064.63 8683.86

Table 4.1

Return Periods for Gamma-1 and Log-Normal Process
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likelihood function. The likelihood function for a sample q of n

(years) in length is:

n r
L(a,rlq) = I [exp(- a-q.)-q r- a (4.21)

. 1 i P(r)

To find the posterior pdf f"(a,r) requires the likelihood

function to be rescaled numerically by the prior probability density

function f'(a,r). The Bayesian pdf of the flood discharges, f(q), is

calculated by numerically integrating over the product of the posterior

pdf f"(a,r) and the modelled density function for q, f Y(qja,r).

The numerical integration is over all values of a and r and follows

from Equation 4.1. Section 4.6.4 presents the numerical values of

f"(a,r) and f(q) for the Blackstone River.

4.5 Bayesian Inference from an Exponential-Poisson Exceedance Model

The previous models of the distribution of flood events

considered the annual series, that is, a series consisting of the

largest flood in each year. Consider now a series composed of all

independent flood peaks, often called the partial duration series,

and of these flood peaks consider only those flood events above a

level Qb. These flood peaks will be assumed to be independent.

While the pdf of the whole series may not be known, Qb will be chosen

large enough so that the probability distribution of flood events

greater than Qb will be assumed to be exponentially distributed,

that is:
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(4.22)f (q) = a exp[- a(q-Qb)]

for q > Qb

Let z = (q - Qb) be the exceedance discharge so that

Equation (4.24 becomes

f (z) = ae-az (4.23)

for z > 0

It is easily shown that the probability of an exceedance

discharge being greater than z is

Pz -az (4,24)
z

If it is assumed that the time between independent flood

peaks larger than the base Qb is exponentially distributed with

parameter v, then the occurrence of exceedance flows will be governed

by a Poisson process with an average arrival rate V. It is then seen

that the occurrence of floods above some exceedance level z is also

Poisson, but with an average arrival rate V'P .z

The probability that in time t we have nz exceedances (n

exceedances above a flood exceedance level z) is just

(vP )nZ

P (N = n ) = , exp[-(vP )-t] (4.25)
N z n z

z

But if z is such that no exceedances occur in time t, then P N(N=0)

is the cumulative density function for z, F (z).

Substituting P into (4.25) for n =0 gives
z z
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FZ(z) = exp[-\te-az] (4.26)

for z > 0.

The probability that z = 0 is the probability that q is less

than the base value Qbe

If z is large so that the probability of exceeding it is small

and the arrival rate of such events is small, then (4.28) can be

closely approximated by:

FZ(z) 1 1 -vt'exp[-az] (4.27)

Equation (4.26) or (4.27) represents the underlying probabilis-

tic model of the exceedance floods. It is of a fairly general form

since the upper tails of many distributions may be represented as

exponential. The proposed model has been used in its classical

formulation for extreme discharges by Shane and Lynn (1964) and

Todorouic and Zelenhasic (1970) and for rainfall events by Grayman

and Eagleson (1971).

4.5.1 Prior and Posterior PDF for Parameters a and V

The posterior pdf for a parameter may be found by the

application of Equation (4.2). It is assumed that a. and v are

independent.

In the underlying model, the time between exceedance floods

is assumed to be exponentially distributed with parameter v. The

likelihood function for v will be

n -TVL[vl Z(n,T)] cv e (4.28)
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where Z(nT) is the record of exceedance floods in which there

occurred n exceedances in T years of record. Equation (4.28) is the

kernel of a gamma-i probability distribution. Thus the natural con-

jugate is also gamma-i with parameters u' and s'; that is:

f'(vu',s') exp[- s'-v] (4.29)

and the posterior pdf for V is:

fu(Vu",s") " VU'' expi- s"-v) (4.30)

where

u" =u' + n

s" =s' + T

The probability density function for the magnitude of floods

exceeding the base Qb is assumed exponential with parameter Ct. The

likelihood function will be:

n
L[aJZ] c an exp[- c z,] (4. 31)

where

n is the number of exceedances

Z is a vector of exceedance discharges.

Like V, the average arrival rate parameter,a has a likelihood function
n

which has a gamma-1 kernel with parameters n and Iz. The natural

conjugate prior is gamma-1 and if it has parameters v', 9', then the

posterior pdf of a will be gamma-1
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f"(aLv"T") c Lv" exp[- a'Z"] (4.32)

where

V" =V' + n
n

4.5.2 Bayesian Distribution of Flood Events for the Exceedance Model

The Bayesian pdf f (z) follows from Equation (4.1), thus

fZ~z = Z(zl a , V)'f ( x"t") -f Y(vlu",s") -dv'da (4.33)

where

fz(za,v) = avt-exp[-az], following from Equation (4.29)

The integration of (4.33) is given in Appendix C and is

fz(z) = &vt[l + '1+1-(v"+2) (4.34)

In a similar manner the exceedance probability, Gz(z) = 1 - FZ(z),

can be calculated to be:

Gz(z) = vt[1 + Z]-(V+l) (4.35)

The exceedance model is formulated to consider the distribution of

extreme events. It is these events which are of interest to the

decision maker and, yet, by the very nature of the problem, there

are few observations to provide information about parameters. This

scarcity of data does not imply, a priori, that the exceedance

model does a poorer job of representing extreme events. In fact,
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since it was "designed" for extreme events, it may represent them very

well.

4.6 Inference of Flood Discharges for the Blackstone River at

Woonsocket, Rhode Island

4.6.1 Introduction

In estimating exceedance probabilities of flood discharges

using distribution theory, there are two main areas of controversy -

that of choosing the underlying process which best represents the

occurrence of floods and that of estimating the uncertain parameters

of the models. The first part of this chapter analyzed in detail the

effects of parameter uncertainty. Bayesian distribution theory

provides an approach to consider the whole pdf of uncertain parameters.

This leads to the calculation of the Bayesian pdf of flood discharges,

which are free of uncertain parameters. The Bayesian analysis

considered four underlying models, which were the normal process,

the log-normal process, the gamma-1 process and an exponential

Poisson process.

This section applies these four models to the Blackstone

River at Woonsocket, Rhode Island. With each model, inferences can

be made concerning the probability that a flood greater than some

magnitude, q, will occur. This probability is the exceedance

probability and will be written G(q) and is equal to 1 - F(q) where

F(q) is the cumulative density function.
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Decisions governing flood designs are concerned with the

occurrence of extreme events which are out on the tails of the

probability density function. Each model has a different tail, which

will lead to different exceedance probabilities and to different

optimal designs. To test conclusively which model best represents

a sample would require sample lengths far in excess of those normally

observed in hydrology. Furthermore, all tests are weighted where the

observations are - that is, around the moddle of the distribution.

However, flood designs are affected by the tails of the distribution

where there are few, if any, observations.

This section gives the flood frequency curve when each of the

four previous models is assumed to be the true model. The information

available to each model will be the same - the historical data and a

prior obtained from a regional regression. Table 4.2 gives the basin

characteristics, Table 4.3 gives the historical record of annual

flood peaks from 1929 to 1965, and Figure 4.1 presents a sample

histogram of the annual flood peaks.

The sample statistics are:

mean = 6372 cfs

standard deviation = 5206 cfs

coefficient of variation = .817

coefficient of skew = 3.76

The sample statistics, and especially the higher moments, are

greatly affected by the extreme flood of 32900 cfs which occurred

in 1955.
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Area of basin = 416 square miles

Area of lakes, ponds and reservoirs = 12.5 square miles

Main stream length = 42.6 miles

Average channel slope = 11.5 ft. per mile

Average tributary slope = 41.5 ft. per mile

Average land slope = 307 ft. per mile

Mean altitude of basin = 495 feet

Datum of gage = 107.42 feet

Table 4.2

Basin Characteristics for the Blackstone River,

at Woonsocket, Rhode Island
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Flood Discharge (cfs)Year

1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

Table 4.3

Historical

Blackstone

Record of Annual Flood Peaks,

River, Woonsocket, Rhode Island
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4570
1970
8220
4530
5780
6560
7500

15000
6340

15100
3840
5860
4480
5330
5310
3830
3410
3830
3150
5810
2030
3620
4920
4090
5570
9400

32900
8710
3850
4970
5398
4780
4020
5790
4510
5520
5300



18 Blackstone River at Woonsocket R.I.

Period of Record
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- 1929 - 1965
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Annual Flood Discharge (x1000) cfs
Figure 4.1: Sample Histogram of Annual Flood Peaks, Blackstone

River, at Woonsocket, R.I.
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4.6.2 Inferences from the Normal Process Reference Section 4.2

The Normal model, with mean and precision unknown, was

analyzed with a Normal-Gamma prior in Section 4.2. The prior

parameters were obtained from regression models of the mean and

variance of the series of annual floods using 36 New England basins.

This regression model was discussed in Chapter 3.

The prior parameters are:

n' = 7 years

m' = 4042 cfs

V' = 6 years

V' = 9.22 x 106 2fs2

The sample parameters are:

n = 37 years

m = 6372 cfs

V = 36 years

v = 27.1 x 106 cfs2

Thus giving the following posterior parameters (see Section 4.2 for

the procedure to go from prior and sample parameters to posterior

parameters).

n" = 44 years

M" = 6001 cfs

= 43 years

V" = 24.7 x 106 cfs2
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Table 4.4 gives the value of the probability density

function, cumulative density, the exceedence probability and the return

period for flood discharges up to 33000 cfs. Above this level the

exceedence probability is virtually zero.

Figure 4.2 compares the three flood frequency curves that are

obtained from using the prior information, using the sample data and

using both prior and sample information. It is clear from Figure

4.2 that the posterior pdf is a weighted average of the prior informa-

tion and sample information.

4.6.3 Inferences from the Log-Normal Process Reference Section 4.3

The log-normal model, with unknown mean and variance,

was analyzed in Section 4.3. The prior parameters were obtained from

regressions that are similar to the ones used for the analysis of the

normal process. The prior parameters are

n' = 4 years

m' = 6.4 log cfs

V' = 3 years

V' = .22 log cfs 2

The sample parameters are

n = 37 years

m = 8.6 log cfs

v = 36 years

v = .262 log cfs 2

and the posterior parameters are
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N C R P A L

CENSITY

0.385C659E-C4
0.47e27C1E-C4
0.5719299E-04
0.658C737E-C4
0.727783E-C4
0.1733C43E-04
0.7891467E-C4
0.7733694E-C4
0.7279C99E-04
0.6582242E-C4
0.5721672E-C4
0.4784561E-C4
0. 3852493E-04
0.2990321E-C4
0.2240346E-04
0.1622367E-04
0.1137345E-04
0.1731C92E-05
0.51C4363E-05
0.3278945E-05
0.2C53C92E-05
0.1255275E-05
0.7507468E-06
0.43S9847E-06
0.2531173E-06
0.14318C6E-06
0.7976725E-07
0.43E3581E-07
0.23758CgE-07
0.1278154E-C7
0.68CO43CE-C8
0.35889C3E-C8
0. 1880552E-08

P C C E L

CUPULATIVE

C.11831117
C.16150272
C.21411514
C.27580243
C.34536219
C.42CI4931
C.49924076
C.5777356C
C.65313214
0.7227C59C
C.78441048
C.837C415C
0.88025194
C.S1443348
0.94C51749
0.55974457
C.197345459
C.98252619
C.S8927647
0.59341542
C.596C4219
C.S976685C
C.S9865264
C.59523545
C.S9957383
0.59976665
C.S5587477
C.S5593432
G.5996674
C.55 58379
C.SS559267
C.S55 9714
C.SSSS9911

EXCEECANCE
CLPLLATIVE

0.88168883
0.83849728
0.78588486
0.72419757
0.654637e1
0.57925C69
C.5C075924
0.42226440
0.346867E6
0.27729410
0.21558S52
C. 162958 C
0.119748C6
0.C8556652
0.C5948251
O.C4025543
C.C2654541
C.C17C73E 1
C.C1C72353
0.CC658458
0.CC3957E1
0.CC233150
0.CC134736
C.CCC76455
0.CCCO42617
o.C0023335
0.CC012523
0.CCCC6568
0.CC0C3326
C.CCCC1621
C.CCCCC733
C.CCCC0286
0.CCCCCC89

RETLRN PERIEC

1.134
1.193
1.272
1.381
1.528
1.726
1.997
2.368
2.883
3.606
4.638
6.137
8.351
11.687
16.812
24.841
37.671
5E.569
93.253

151.87C
252.665
428.9CS
742.19C
1307.961
2346.464
4285.367
7985.348
15224.332
3CC66.6S5
6168C.937
1364CC.125
349525.312
1118481.CC

Table 4.4 Values of Probability Density, Cumulative Density,
Exceedance Probability and Return Periods of Flood
Discharges from the Blackstone River, for the
Bayesian Normal Process
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CI SCI-ARGE

C.
1CCO.
2CCC.
3CCC.
4CCC.
5CCC.
6CCC.
7CCC.
8CCC.
9CCC.
ICCCO.
IICCC.
12CCC.
13CCC.
14CCC.
15CCC.
16CCO.
17CCC.
18CCC.
I9CCC.
2CCCC.
21CCC.
22CCC.
23CC.
24CCC.
25CCC.
26CCC.
27CC0.
28CCC.
29CC0.
3CCCC.
31CCC.
32CCC.
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Figure 4.2: Bayesian Frequency Curves for the Normal Process
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n" = 41 years

M" = 8.39 log cfs

V" = 40 years

V" = .689 log cfs 2

The values for the density function, cumulative density

function, exceedance probability and teturn period for discharges

up to 60,000 cfs are given in Table 4.5.

The flood frequency curves obtained from using the prior

information, using the sample information and using both prior and

sample information are given in Figure 4.3. Figure 4.4 compares

the flood frequency curves obtained from the Bayesian analysis using

both prior and sample information to the flood frequency curve from

the classical analysis which uses maximum likelihood point estimators

to estimate the uncertain parameters. It is interesting to note that

the affect of accounting for the uncertainty in the parameters leads

to higher flood discharges for the same exceedance probability

(return period). In general, when the same information is used the

Bayesian appraoch will always lead to higher discharges for the same

return period; but, when both prior and sample data are used in the

Bayesian analysis and only sample information is used in the classical

analysis, no general statement can be made with respect to the

relative positions of the two frequency curves.

4.6.4 Inferences from a Gamma-1 Process - Reference Section 4.4

The gamma-l process for the generation of annual floods was

analyzed in Section 4. Due to the complex form of the likelihood
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function, numerical procedures were required to find the posterior

pdf for the uncertain parameters and to find the Bayesian pdf for the

annual flood series.

The prior pdf's for f'(a) and f'(r) were of the family of

gamma-l functions. The prior parameters were estimated from two

regional regressions - one for the mean annual flood and one for the

coefficient of variation. The regional regression used the same 36

New England basins described in Chapter 3.

The prior pdf for the scale parameter, a is:

f'(a) c exp(- 7677-a) -a 3  (4.36)

and for the location parameter, r,

f'(r) O exp(- .922-r)-r2  (4.37)

The posterior pdf is obtained using a numerical procedure to

solve Equation 4.2 and is shown graphically in Figure 4.5.

The Bayesian pdf is evaluated numerically, and the values for

the density function, cumulative, exceedance probability and return

period for flood discharges up to 40,000 cfs are given in Table 4.6.

Figure 4.6 compares the flood frequency curves from the

Bayesian analysis using just the prior information, just the sample

information and both prior and sample. Figure 4.7 compares the

flood frequency curves from the Bayesian analysis using both prior and

sample information to the flood frequency curve from the classical

analysis which estimated the parameters by maximum likelihood point
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G A M M A M C C E L

DISCHARGE

0.
1000.
2000.
3000.
4000.
5000.
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7000.
8000.
9000.
10000.
11000.
12000.
13000.
14000.
15000.
16000.
17000.
18000.
19000.
20000.
21000.
22000.
23000.
24000.
25000.
26000.
27000.
28000.
29000.
30000.
3 1000.
32000.
33000.
34000.
35000.
36000.
37000.
38000.
39000.
4000c.

Table 4.6

DENSITY

0.0
0.4030846E-04
C.8592839E-04
0.1145047E-C3
0.1241931E-C3
0. 119798CE-C3
0. 1071468E-C3
0.9094822E-04
0.7432996E-C4
0.59057C1E-04
0. 4592385E-C4
0.3512437E-C4
0.265204CE-C4
0. 1982355E-C4
0.1470193E-C4
0. 1083728E-C4
J.79513I7E-65
0.S813040E-C5
0.4238663E-C5
0.3084921E-C5
0.2242480E-C5
0.1628938E-C5
0.1 182944E-05
0.8 591364E-06
0.6242353E-C6
0.453844 8E-06
U.3302520E-C6
0.2405686E-C6
0. 1754497E-C6
U.1281267E-C6
0.9 370183E-C7
u.6862979E-C7
0.5034644E-07
0.3699512E-07
3.2722997E-C7
0.2C077C6E-C7
0.14829C6E-C7
0.1097230E-C7
0.8133167E-C8
0.6039496E-C8
0.4492875E-Ce

CLPULATIVE

C.c
0.C1768712
C.C8174777
0.18356329
C.3C4273C1
C.42715394
C.54101523
C.64025855
0.722E4335
0.789385E6
0. 4169036
C.EE2C2971
C.91268647
C.93571877
C .9528684C
C.969554S C5
C.97487485
C.981705C1
C.E669117
0.9903243E
C.9S26659
C.99488646
C.99628067
C.S9729311
C. 9C802852
C.9E5627
C.SSES5144
C.99923420
0.99944037
0. 99S59C5E
C.C9 70025
C.99978C6C
O.99983943
C.cASE824C
J.GqSS1393
C.9993718
C.9999542E
0.999966C
C.9999759S
0.99998266
C.99C9876 6

EXCtECANCE
CUMULATIVE

1.CCCCCCCC
C.98231292
0.91825223
C.81643671
C.695726s
G.572846C6
.4 58;247 7
0.35974145
C.27715665
C.21C6 1414
C.1583C964
C.11797C29
0.C8731353
(. 0642E123
C.C4713 16C
0.C3445095
C.C2512515
0.01829499
C.C133CE23
C.CC967562
000703341

0.CC511354
0.00371933
C. CC27C689
C. CC 19 7148
C.0C143713
2. C104856
0.00076550
C.CCC55963
C.CCC4C942
0.00029975
L.CCC21S4C
C.00016057
C.CCC117 C
C.CCCCE6C7
C. 0CC06282
C.CCCC4572
0.00003320
C. CCCC24C2
C.CCCC1734

. 0 1234

Values of Probability Density, Cumulative
Exceedance Probability and Return Periods
Discharges from the Blackstone River, for
Gamma-l Process

RETLRN PERIC-0

1.0c0
1.C18
1.089
1.225
1.437
1.746
2.179
2.78C
3.608
4.748
6.317
E.477

11.453
15.557
21.217
29.027
39.801
54.66C
75.141
103.353
142.179
195.559
268.865
369.428
507.232
b95.832
953.6E4

1305.E 23
1786.9 I
2442.454
3336.094
4557.785
6227.621
C503.4'C 2

11618.57C
15917.66C
21873.812
30120.672
41632.809
57653.660
t l049. 3 12

Density,
of Flood
the
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estimation.

4.6.5 Inferences from the Exponential-Poisson Process - Reference

Section 4.5

The exceedance model considers flood discharges greater

that 8500 cfs. It is assumed that these floods have a pdf that is

exponential and that the pdf of the time between floods exceeding

8500 is also exponential (Poisson arrivals). This model is analyzed

fully in Section 4.5.

The prior distribution on v, the average arrival rate of floods

larger than 8500 cfs, was obtained through a subjective assessment.

The subjective assessment could have been obtained by an engineer

saying simply "based upon my experience in the area, my best

estimate of V is .1 and there is a 50-50 chance that V could be

plus or minus .030 of .1". The implication of this statement is that

the standard deviation is about .044. If this is accepted for the

example, then the prior pdf of v is

f(vlu',s') v exp(- s'V)

where

U' = 5

s' = 50

Appendix D gives a procedure for obtaining f'(v) based upon the

uncertainty in plotting positions and the subjective assessment of

equivalent record lengths.
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The sample parameters are u = 5, s = 37 which together with

the prior parameters gives a gamma-i posterior pdf with parameters

U" = 10, s" = 87. The posterior average arrival rate, v, is .115

events per year.

The prior pdf for the event magnitude parameter, cc, is es-

timated using a regression equation on the mean exceedance flood

(exceedance floods being those annual floods larger than 8500 cfs).

The prior pdf for is

f(alv',k') cco exp(- '0

where

V' = 2 events

' = 10850 cfs

Sample values for the parameters are v = 5, k = 38610 which results

in a gamma-l posterior density function with parameters v" = 7, '" =

49468.

Table 4.7 gives the density function, cumulative density,

exceedance probability and return period for flood discharges from

8500 cfs to 60,000 cfs. It is interesting to note that only once

in approximately 9 years will a flood greater than 8500 cfs occur.

Figure 4.8 compares the flood frequency curves obtained from

just using prior information, from just using sample information

and fron using both prior and sample information.

Figure 4.9 compares the flood frequency curves obtained from

the Bayesian analysis, using both prior and sample information, to
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the flood frequency curve obtained from a classical analysis using

point estimators. As in the other models, the inclusion of

parameter uncertainty leads to higher flood discharges for the same

exceedance probability.

4.6.6 Summary

This section calculated the flood frequency curves for the

Blackstone River at Woonsocket, Rhode Island using four different

models of the underlying process. Bayesian procedures were used to

find the pdf for the flood discharges when parameter uncertainty was

considered. The resulting distributions were used to find the

exceedance probability for flood discharges. The flood frequency

curves from the four models were compared in Figure 4.10. In all

four cases the Bayesian analysis, using both prior and sample

information, was used. The flood frequency curves for the models were

quite different, especially for large return periods.

4.7 Conclusion

This chapter recognized that when flood frequency analysis

is performed using distribution theory, a number of issues are raised.

The first issue is how to handle uncertain parameters. Bayesian

distribution theory allows us to estimate probability density functions

for uncertain parameters, using various sources of data, and then to

obtain the Bayesian pdf for the flood discharges that will be 'free'

of the uncertain parameters. Equations 4.1 and 4.2 set out the

analytical procedures. The second issue raised is which probabilistic
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model best represents the underlying process. Four models were

analyzed in detail and applied to the Blackstone River at Woonsocket,

Rhode Island. The model gave quite different results, but generally

the gamma-1, log-normal, and to a lesser extent, the normal

models fell closer together than the exponential-Poisson model that

only considers floods in the tail of the distribution of all flood

events. Which model is the most appropriate model has not yet

been addressed and will be left to Chapter 7.

One of the underlying assumptions in the estimation of flood

exceedance probabilities by distribution theory is that the

probability of the occurrence of a flood of a certain magnitude will

remain constant. In many river basins, this assumption does not

hold, due to urbanization of the watershed or structural changes

to the river channel. In these cases, hydrologists have recently

begun to apply rainfall-runoff simulation models to find the flood

frequency curves. Such an analysis contains uncertain parameters

which can also be treated as random variables. There are the

parameters of the rainfall pdf which can be analyzed using the theory

of this chapter, and there are uncertain parameters in the modelling

of the overland flow or runoff. These parameters can be considered

as random variables and analyzed in a Bayesian framework. This

analysis is carried out in the next chapter.
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Chapter 5

Bayesian Analysis of Rainfall Runoff Modelling

5.1 Introduction

Chapter 4 considers the uncertainty in flood frequency

analysis when distribution theory is applied. This uncertainty is

centered upon the parameters of the underlying probability density

function or model that is used to represent the occurrence of flood

events. The uncertainty as to model choice is discussed by comparing

the results obtained from the alternative models, but the analysis of

model uncertainty is left to Chapter 7.

The analysis of flood frequency by applying distribution

theory uses as inputs both prior information and historical flood

records. It has been shown that prior information based upon a

regional regression or an analytical flood frequency analysis provides

relatively little information. It is the historical record that pro-

vides most of the information upon which inferences are drawn.

The analysis of flood frequency using distribution theory has

the basic assumption that the probability of a flood of a given mag-

nitude is constant and does not change with time. Thus, basins which

change physically with time, due to changes in the river itselfthrough

channelization for example, or due to urbanization of the watershed,

can not be analyzed effectively by the distribution theory procedures

of flood frequency analysis.

This problem has been recognized and some procedures have
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been applied to estimate the frequency curves. The most successful

methods are those that analyze the rainfall as a stochastic process

and then estimate the flood discharge by modelling the physical pro-

cess of overland flow of the excess rainfall. This has been done an-

alytically by Eagleson (1972), and through simulation by Leclerc and

Schaake (1972), Ott and Linsley (1972), and others. Such frequency

analyses have often been criticized (Ibbitt, 1972) on the basis that

the deterministic catchment model has parameters which are unknown

with certainty and whose values seem to be determined through 'in-

tuition' and best guesses. Chapter 4 analyzed the uncertainty in the

parameters of the probability distributions of floods by considering

the parameters as random variables and applying Bayesian statistics.

The resulting probability distributions of floods reflected the un-

certainty in their parameters. In an analogous manner, the uncertain-

ty in the flood frequency curve, due to uncertainty in the rainfall-

runoff simulation modelling, may be analyzed. The uncertain parameters,

whether they are in the pdf of the rainfall model or in the deter-

ministic runoff model, may be regarded as random variables. The pro-

cedures of Bayesian statistics can then be applied.

While this chapter is aimed at simulation modelling, the

vehicle for the analysis will be Eagleson's (1972), analytical deri-

vation. Eagleson's derivation is used in the analysis, and the ex-

tension to computer simulation modelling is straightforward.
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5.2 General Theory of Derived Flood Frequency Analysis

Flood Frequency analysis aims at finding the probability

that a flood will have a discharge less than or equal to some value

q . This probability is defined as the cumulative density function

(CDF) evaluated at qm and written as F(qm).

Consider the case when all parameters are known with cer-

tainty. The modelling procedure for F(qm) can be considered as a

simple urn problem. A random sample is drawn from an urn which yields

the values of the elements of e, a vector that describes the

rainfall event. In this analysis, the vector 6 will contain two

elements, the average intensity, i, and the storm duration, tr

With the values of rainfall intensity and storm duration, the over-

land flow modelling predicts (perfectly) the resulting peak discharge.

This sampling for the rainfall values is done for every storm; thus,

the stochastic process of the flood discharges is a function of the

stochastic process of the rainfall events and the determinstic runoff

modelling.

It has been shown by Eagleson (1972) that there exists in

the i - tr plane a line of constant peak discharges, qm, such that

all combinations of i and t to the southwest of this boundary
r

produce discharges less than qm. This is shown in Figure 5.1. The

probability of observing particular values of I, tr is given by

their joint probability density function, f(i,t r). Finding the

cumulative density function for the peak discharge from a rainfall

event is equivalent to finding the cumulative density function for the
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rainfall parameters, i and tr, that produce the peak discharge

q . This is the problem of finding the volume under the joint density

function of i, tr for the region Rq%. This region has boundaries

i = 0, tr = 0, and qm = constant. The volume under f(i, t ) for

this region is found by solving the integration

F(qm) = f(1,tr) di dtr (5.1)

The resulting volume is shown in Figure 5.2. The boundary qm = con-

stant is located by the modelling of the runoff, either by computer

simulation or by analytical techniques. The shape and location of

the boundary depends upon

1. The shape of the rainfall event,

2. the modelling of the catchment response, (overland flow)

to the rainfall,

3. the values of the parameters in the catchment model.

Traditionally, the assessment of F(qm) has been to pick

a storm pattern, choose a runoff model and set the parameters with

the 'best' available estimates. Such a procedure does not account

for the uncertainty in the region Rq due to parameter uncertainty.

Now consider the case where the parameters are unknown and can

be treated as random variables. Such uncertain parameters can be di-

vided into two categories. The first category consists of those

parameters that are fixed but unknown. A 'true' value is thought

to exist and, through more data, better information may be obtained.
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Such variables would be the parameters of the rainfall pdf of inten-

sity and duration or parameters of the runoff modelling, such as stream

length or slope. The second category of uncertain parameters are those

parameters that vary from rainfall event to rainfall event. Such a

parameter would be infiltration. Let infiltration be modelled as a

constant water loss, # , over the rainfall event. Then the value

of can be viewed as a stochastic process along with the rainfall

event, and these two processes join together to generate peak dis-

charges.

Again, handling these uncertain parameters can be viewed as

an urn sampling problem. The difference between the two types of

uncertain parameters is important because it governs at what point

"sampling" is done. Assume for the moment that the only uncertain

parameters are those that vary from rainfall event to rainfall event

and that the water loss $ is the only uncertain parameter. Then

the sampling would be to choose from one urn a value of the rainfall

intensity and storm duration set. From a second urn, a value for the

water loss is obtained, which, combined with the runoff model and the

rainfall values, produces the flood peak. The cumulative for the

flood peak that accounts for the uncertainty in C can be cal-

culated by

( = J f() d D f(itr) di dtr (5.2)

where f(4) is the density function for the water loss

Rq $ is the region in the i - tr plane where the flood
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peak is less than or equal to qm. This region is con-

ditional upon .

The cumulative F(qm) will be called the Bayesian cumulative of qm

and is the expected value of the cumulative, taking parameter uncer-

tainty into account.

When there exist parameters that are fixed but uncertain,

Equation (5.2) is followed, but conditional upon the uncertain pa-

rameters. Then, at the end, the cumulative is weighed by the pro-

bability density function for the fixed but uncertain parameters. For

example, assume that the rainfall pdf has two parameters, and X

which are unknown. Since it is assumed that the pdf is fixed but

uncertain, the parameter uncertainty is introduced at the end. If

the cumulative of Qmax is desired, where Q ax is the largest of

n events and where the events are independent random occurrences,

then F max is found from

F %a = Fin (q |,X) f(tX) d dX (5.3)

where F(qmjC,X) is the cumulative of the flood peak qm conditional

upon the parameters ( and X and found from

F(q J(,X) = f(q) dP f(1 , tJC,X) di dtr

.J Rq ml

f( ,X) is the probability density function for the fixed

but uncertain rainfall parameters.
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The analysis of the rainfall distribution in a Bayesian framework

within the rainfall runoff analysis must be done at the end. The

effect of parameter uncertainty is to introduce uncertainty as to

the location of the boundary qM = constant. The fixed but unknown

parameters can be viewed as an uncertainty in the boundary due to

a lack of information. The parameters that vary from event to event

cause shifting in the boundary due to the interaction of stochastic

processes.

There are also two density functions of interest that can be

evaluated. The first is the marginal distribution of the exceedance

probability at qm. The exceedance probability, G(q), is the pro-

bability of observing a flood greater than qm. The marginal dis-

tribution of the exceedance probability, conditional upon the flood

level q will be written as f[G(q )J. The second marginal dis-

tribution of interest is the probability density function on the

flood discharges, conditional upon an exceedance probability level;

it will be written as f[qIG(q)]. The two density functions are

displayed in Figure 5.3. These density functions are useful in per-

forming sensitivity analysis on G(q ) and qm due to the uncer-

tainty in Ra

They may play a larger role if, in a decision problem, the

utility function for the decision set A depended upon the exceedance

probability of the design discharge qd. Under these conditions,

the expected utility of a decision act, a., from the set A, is

given by
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E[u(a$) = u[a ,, G(q d)] - f[G(q d)]I dG (q d) (5.4)

The evaluation of (5.4) requires the density function f[G(q d)]

5.3 Derivation of the Bayesian Flood Frequency Curve.

This section presents the analytical derivation of the mar-

ginal probability density functions for the exceedance probability,

conditional upon a flood magnitude, f[G(q )], and the marginal

probability density function of the flood discharges, conditional

upon the exceedance probability level, f[qlG(q)]. To fully focus

upon the methodological aspects of the analysis and to permit analyti-

cal derivation of the required equations, the following assumptions

will be employed:

1. All parameters will be known with certainty, except ,

the temporally and spatially averaged water loss rate of

the rainfall event.

2. The rainfall event has a rectangular interior pattern.

3. Following Eagleson (1972), the joint probability density

function for the average rainfall intensity i and storm

duration t is of the form
r

f(i,t) K exp [-X- t] (5.5)

where K is a factor to reduce point rainstorm depths to areal

averages for events of common probability. X and 3 are pa-

rameters of the point rainfall density function. All rainfall
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parameters are assumed known with certainty.

4. The response of the catchment to a rainfall event will

follow Eagleson (1972). Eagleson analytically derived the

peak discharge from a catchment by applying kinematic wave

theory under the assumptions that the catchment can be

modelled by an idealized flow plane and that the time of con-

centration of the stream is larger than the time of con-

centration for the catchment. Eagleson's catchment response

will be used to define the boundary qm = constant.

The extension to a simulation model is straightforward. The model

will define lines of constant peak discharges in the i - tr plane

for given values of $ . The volume under the f(i,t ) surface, for

the region Rq , can be found either by analytical procedures or by

numerical procedures, depending upon the form f(i,t ) and the re-

presentation of the boundary of constant peak discharge.

Eagleson approximates the boundary qm = constant by a

function of the form

g(i) =B/m (5.6)

taking m = 1/2

A 263 2

where B = 2.97 r 51 r (5.7)
Sc s I c s m

A is area contributing to direct runoff a c and a are
r s

parameters of the catchment.

L is the stream length
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i - qm/ 6 4 5 Ar; e being the average excess rainfall

intensity

For storm durations greater than the sum of the times of concentration

for the catchment and the stream

% = 645 A i (5.7)et r e

The analysis here considers all rainfall events whereas

Eagleson only considered events that produced direct runoff (excess

rainfall events).

To find the cumulative for the peak discharge, F(qM)

Equation (5.2) is applied. The inner integration is over the rain-

fall probability density function. The limits of integration cover

the region RqM, which is a function of uncertain water loss parameters,

* In fact, the region Rq in the i - t plane now becomes am r

volume in the 1 - t - $ space, and the integration for F(q ) is

done first for Rq , conditional upon # . The integration over

is then performed. Figure 5.4 shows the constant boundary in the

I - t - space and the volume, Rq , where the discharge is less

than or equal to qm

The integration of Equation (5.2), over the rainfall pdf,

yields F(q m 1), and is evaluated by

F(qI|) = JRq f(,t ) di dtr (5.8)

The region RqV.$ can be broken into two areas. The first
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nas the boundaries

t =0

t r

1= 0

7 q__
i =645 A

r

The solution to (5.8) for these limits of integration will be re-

presented by I . The solution for the following limits of integration

will be represented by 12. These limits are

645A +
r

1=

tr =g(i 0 )

where g(i ) is a function of the form similar to (5.6). The two

areas of integration are shown in Figure 5.5 and are similar to the

two regions Eagleson used to solve his function.

00 q /64 5 A +

I = dt K exp (-t -i) di
1 r K r K

= 1 - exp (-q M/6 45 KA r - /K) (5.9)

= r r

2 = di J K (-t - K i) dt (5.10)
2 K r IK r

-q /645 A + 0
Sr

where tr g(i ). (5.11)

Letting i = i - (. /645 A + ) (5.12)
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Then, (5.10), becomes,

I = di exp 'o+ qm/645 A Id (5.13)
2 JoK - r [ -~K r + )Jdtr (.2

which can be simplified to

2 K 645 Ar K ex 01

(5.14)

when g(i ) is of the form of (5.6) then (5.14) integrates

to

12 xp( 64 5 KA ( 10) (5.15)
r

G(j/M -CY+i
where I e (a)

0

A A 655a/3 Ar 2  
/,

Cr =2.21 r (1 s r 1/3
co T o L 3q

Thus

F(q)= 1 -I *exp(- 6- ) (5.16)
m 0645 A K K

r

Unen considering the cumulative density function for q , conditional

upon an excise rainfall event occurring, then (5.16) reduces to

Eagleson's expression.

Often, decision makers are interested in the flood exceedance

probability, G(q) = 1 - F(q ). Then, from (5.16), G(q m is

G(q ) = I - exp (- K- ) (5.17)
m o K645A K

r
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Equation (5.12) provides a relationship between the exceedance pro-

bability for a given flood peak, qm, and the water loss parameter,

. If two random variables are functionally related (for example

y = g(x)) and if the function is monotonic and continuous, then the

following relationships hold

E Yn, n (x) - f(x) dx (5.18)

Idx
f(y) = f(x) - dy

dy

These relationships provide a procedure to obtain the mar-

ginal probability density function as well as the moments for the ex-

ceedance probability G(% ), given the peak discharge, and for the

peak discharge, q, conditional upon the exceedance probability. These

marginal density functions reflect the uncertainty in $ .

The form of these distributions depends upon the probability

density function for , f(4). Three forms will be examined. These

are: f(4) as a uniform pdf, a gamma-1 pdf, and an exponential.

The latter is really a special case of the gamma-1.

5.3.1 Water Loss P, uniformly distributed.

Let f() be represented by a uniform probability density

function between 4 and ,

f(-) = 1 < < (5.19)
(40 - ) 0

= otherwise
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and let y = G(qm ). Then the Jacobian from (5.16) is

dy - = " e-cp /K (5.20)
dc K

where C = I - exp A q"
o IK 645 A

r

f(y) 1 K for C - e_ K<y < C e~$00 K

0) y

(5.21)

= 0 otherwise

The first two moments are

CK o S/K -4*6/K
E[y] = [ e 0 - e ] (5.22)

C2 K -2$ S/K -2$*f3/K
E[y 2 ] = C [e - e ] (5.23)

The decision maker is not only interested in the distribution

of the exceedance probability at a particular flood discharge level,

but, given an exceedance probability, he is also interested in the dis-

tribution of the flood discharges. This marginal probability density

function can be found from (5.16) and (5.18). Due to the complex na-

ture of the discharge in (5.16), analytical derivation is only possible

if the following assumption is valid: for a particular basin, I is

constant over the range of flood discharges that are of interest.

Table 5.1 shows that this assumption is a reasonable one, then, the
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Table 5.1

Discharge (cfs)

100

1000

5000

10,000

I
0

.60199

.6190

.6249

.62661

.36384

.3496

.34465

. 3432

(For catchment and rainfall parameters as given

in Table 5.2.)

Table 5.1 Values of I for Various Peak Discharges
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Jacobian, jdq/d$j is, from Equation (5.16),

645 A (5.24)

The limits on q, for the derived distribution, may be ob-

tained by rewriting Equation (5.16) as

= n 64 A (5.25)
r

For y [= G(qm) ] a constant and for no water loss (p = 0)

q m is a maximum and equal to

q = 645 A K kn - (5.26)
r y

As the water loss increases, the discharge from the rainfall event

must decrease until, at some value of P, $m, there is no excess

rainfall and no runoff. This value is:

IK (1 0) (5.27)
m y

The probability that qm = 0 is the probability that 4 is

greater than or equal to M. The spike for f (q=0) can be cal-

culated by

f (q = 0) = P( > m) = ( ) dp (5.28)
Q-

and the density function for q, q >0, will be the derived density

function from (5.18) with limits
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0 < q < 645 A K Mnf (5.29)

With (5.18), (5.19), and (5.24) the distribution f(q) is

f(q) = (5.30)
(W- )-645 Ar

and has limits

645 Ar kn f $] < q < 645 Ar n -

if *< 2,n 0(5.31)

If 0* >-Zn and $< K ),n 0 then
S Y0) 0 v

the limits are

0 < q < 645 A[K Zn (5.32)

for f(qlq > 0). The spike at q = 0 may be found from (5.28) or

from integrating (5.30) between the limits

0 < q < 645 Ar 7* - Zn ( )1 (3

The first two moments of f(q) are

E[q] = 645 A [A - 0 0+ (5.34)
r 2 ](.4

with the constraint of E[q] > 0 and where

A = n
yI0
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E[q2 ] = (645 A )2 _ [A2 - A(c + $ )+ I ($*+$ ) - 1 4* ]r o 3 o 3 o

(5.35)

again with A = KZn

5.3.2 Water Loss $, Gamma-i Distributed.

Let $ be distributed with a probability density function of

the form gamma-1, that is

f ( = e# $r-i r F (r) (5.36)

Using the same definitions for y and C as in the uniform

pdf analysis and using the Jacobian as given in (5.20), then (5.18)

gives

= r A-I -A Cr-i
f(y) = A y C [kn ( )] / F(r) (5.37)

y

where A = Ka / 0 <y <

The first two moments of y are

E[y] = C K (5.38)

E[y 2 ]= C2 . 2 jr (5.39)

For the distribution of q for a given exceedance level

G(q ), again the approximation that I = constant must be made.

The Jacobian from (5.16) is as given in Equation (5.24) and

with Equations (5.18) and (5.36)
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f(qIq>O) = 645 A exp[-a(A-q/645 A r)] . (A-q/645 A )r O./F(r)

0<q< 645 A Z" -2J (5.32)
r 3 y

where A = K n o

f(q) has moments

E[q] = 645 Ar( A - r/ ) (5.40)

E[q 2] = (645 Ar ).[A 2- 2Ar/a + r(r+1)/a2] (5.41)

where A = Kn I
p y

5.3.3 Water Loss, p, Exponentially Distributed.

Let 4 be distributed exponentially. Then f(4) is of the

form, f() ae -a 5.42)

which is a special case of the gamma-1 distribution when r = 1.

The marginal density function for the exceedance probability,

with a peak discharge q and marginal density function for the dis-

charge q at an exceedance level G(q), may be found by the applica-

tion of (5.16), (5.18) and (5.42). The marginals may also be found

by taking the results from the gamma-1 analysis.

The results for the exceedance probability (y _ G(q ) are:

f(y) = AyA-1 C-A 0<y<1 (5.43)

where A = Ka /
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E[y] = C + (5.44)

E[y2 ] = C {+2f/K (5.45)
1+20/

And for the discharge q, conditional upon q being greater than

or equal to 0, the results are

S-ctK/S3

f(ql >0) = 6 a expK 4YA (5.46)
f~lg>0 =645 A " 645 A y5.6

r r 0

for 0 < q < 645 A K kn -o
r [ -y

E[q] = 645 Ar [A- 1/a] (5.47)

where A = K {[

E[q2 ] = (645 A )2 [A2- 2A/cx + 2/CX2] (5.48)j r

where A = Zn H
3 y

5.4 Recurrence Interval

The exceedance probability for the occurrence of flood events,

G(qm), has been evaluated with the total series of independent rain-

fall events. Often hydrologists are interested in the exceedance

probability of a flood peak as that peak relates to a partial duration

series. When the number of flood events in this partial duration se-

ries equals N, the number of years of record, then the exceedance

probability, for this particular partial duration series, can be found

in the following manner, (Eagleson, 1972).
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Consider a record of N years, which contains, on the average,

O rainfall events per year. There will be ON flood events, some

of which will have a maximum discharge equal to 0, due to no excess

rainfall. The rth most severe event of the complete series will

have an exceedance probability of

G( r (5.49)

Now consider the annual exceedance series which is composed of the N

largest flood events from the set of ON. The exceedance probability

of r, from the annual exceedance series, is

pr r = 1 (5.50)
P[" qr] N+l T

e

where T is the recurrence interval measured in years. For r < N

(5.49) and (5.50) can be combined to give

1 = - G(qm) (5.51)
e

assuming N>>l.

Equation (5.51) is used in the next section to compare the

flood return periods obtained by the different modelling assumptions

of the water loss parameter .

5.5 Example Application

The results of Section 5.3 and 5.4 can be used to determine

the effect of uncertainty in the water loss parameter, $, upon the

flood frequency curve. The expected frequency curve for a hypothetical
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catchment, with parameter-s as given in Table 5.2, will be determined

for the three different probability modelling assumptions of j .

An indication of the variance in the process will be obtained by

plotting the expected exceedance probability curve, E[G(qm)], with

the expected exceedance probability curve plus and minus one standard

deviation. These curves will be from the annual exceedance series,

that is, a partial duration series of a length equal to the number of

years of record. It should be visualized that there exists a surface

in the G(qm)- q plane. This surface represents the joint probability

density function. The three curves, E[G(qm)], E[G(q )] + o,

E[G(qm)] -a represent three contours. For comparison, the frequency

curve from the analysis which assumes $ is deterministic is also

presented. In this analysis, the value of $ chosen is the mean

value of f().

Figure 5.6 and 5.7 are for the case where the water loss is

uniformly distributed with means T equal to .03 in/hr and .05

in/hr respectively. Figure 5.8 and 5.9 are for the case where

f () is exponential with means of .03 in/hr and .05 in/hr respec-

tively. Figures 5.10 and 5.11 are for f($) gamma-1 distributed

with a mean, $, equal to .03 in/hr and coefficient of variation

equal to .577 and .41 respectively. Figures 5.12, 5.13, 5.14,

and 5.15 are for f(4) gamma-i distributed with mean, T, equal to

.05 in/hr and coefficient of variation equal to .577, .477, .316,

and .10 respectively.

The implications of the uncertainty in the frequency curve is
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Table 5.2

Catchment and Rainfall Parameters

= 100 sq.mi.

= Ac / 3 = 33.333 sq.mi.

= (3. A 17.32 mi.
C

-1
=-10 sec

-1
= .1 sec

= 30 hr/in.

S.13 hr~

-A - Y4_
= .95 (K = 1 - expt-1.1 X ] + exp [-1.1 X - .01 A]

Eagleson, 1972)

= 109. events per year.
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Figure 5.6: Frequency Curves for
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Figure 5.7: Frequency Curves for f( ), Uniform with
= ,05 in/hr
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0.001-
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Figure 5.8: Frequency Curves for f(#), Exponential with

= .03
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Figure 5.9: Frequency Curves for f($),

= .05
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0.001-
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Figure 5.10: Frequency Curves for f(#), Gamma-1 with
= .03 and C = .577
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Figure 5.11: Frequency Curves for
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Figure 5.12: Frequency Curves for f( ), Gamma-i with
= .05 and C = .577
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Figure 5.13: Frequency Curves for f($), Gamma-1 with
T= .05 and C = .477
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Figure 5.14: Frequency Curves for

= .05 and C =
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Figure 5.15: Frequency Curves for f(#), Gamma-1 with
= .05 and C = .10
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evident from the curves. In decision problems, the expected exceedance

probability, E[G(%)] whould be used. Take the case where f($) is

exponential with a mean = .05. The error introduced by specifying

that a peak discharge of 4500 cfs has a return period of 100 years,

as predicted by the deterministic analysis, is substantial, since the

stochastic analysis predicts that a peak discharge has a return period

of 50 years. This error in accounting for parameter uncertainty may

lead to serious design problems. When the information about $ is

very good, which is represented by a tight distribution on # (and

shown in Figure 5.15), the difference between the two analyses is

very small. Of course, this is expected.

This analysis only considered one uncertain parameter in the

rainfall runoff modelling. The implications of considering many un-

certain parameters are evident.

5.6 Conclusion

Chapter 5 analyzes the uncertainty in the output of a deter-

ministic rainfall-runoff model due to the uncertainty in the models'

parameters. Eagleson's derived flood frequency analysis is used to

find the constant peak discharge boundary in the i - tr plane, which

in turn is used to define Rq , the region in which combinations of

i and tr yield discharges less than or equal to qm. This boundary

permitted the evaluation of the flood exceedance probability, G(qm)

which is the probability that q > qm. The uncertainty in the runoff

model is represented by the water loss coefficient, , which re-

sults in uncertainty in the position of the constant peak discharge
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boundary for qm and in the size and location of the region Rqm'

The expected flood exceedance probability, E[G(q ), is found by

G(q ) = E[G(q)] = 1 - f( ) d f(i, t ) di dtm m jJRj r

(5.52)

which considers the uncertainty in .

Two probability density functions are obtained analytically.

One is the peak discharge, conditional upon an exceedance probability

level, and the other is the exceedance probability at a peak discharge

level. This leads to the result that the use of a point estimate for

the water loss underestimates the peak discharge for a given

exceedance level, G(q ). Similarly, such a procedure underestimates

the exceedance probability for a given peak discharge.

Continued research remains to be done on parameter uncertainty

in rainfall runoff modelling. There are those parameters which vary

from storm to storm - for example, the rainfall interior pattern,

which are really stochastic processes and should be analyzed in such

a framework. There are those parameters which are uncertain, due to

statistical uncertainty. Their effect upon the region Rqm has not

been fully researched either. The area of parameter uncertainty

in modelling the rainfall runoff process will provide many years of

interesting work.

The extension of the theory presented here to other simulation

models outside of hydrology - for example, water quality models, -

is straightforward. If simulation models are going to be applied

for prediction, where the concern is an unknown future state of
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nature, (an urbanized watershed, for example), then the probability

distributions on the models' outputs should be estimated if the

outputs are used to make meaningful decisions.

200



CHAPTER 6

Decision Analysis for a Flood Protection Design

6.1 Introduction

This chapter is concerned with decision-making, and the effects

of uncertainty in modelling the occurrence of floods of a particular

magnitude upon those decisions. The decision variable is usually an

engineering variable such as the height of a dike, the capacity of a

flood channel or the size of a spillway. In the example presented

here, the decision problem is to determine the level of flood

protection for Woonsocket, Rhode Island, which is often flooded by

the Blackstone River.

The analysis of modelling the probability of flood magnitudes

was presented in Chapter 4. In that chapter, four different

probability models were analyzed. Each model was assumed to correctly

represent the probability of the occurrence of a maximum annual flood

of a particular magnitude. The model parameters were considered un-

known random variables and, by combining information from historical

flood records and other sources, the confidence about the parameters

could be represented by a probability density function. With these

density functions, it was possible to find the probability density

function for the flood discharges which fully accounted for the

uncertainty in the model parameters. This probability density function

is the so-called Bayesian distribution of the flood discharges. Three

probability models in Chapter 4 modelled the series of maximum
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annual floods by 1) a normal probability density function, 2) a

log-normal probability density function or 3) a gamma-1 probability

density function. The fourth model assumed that the extremes of the

magnitudes of the partial duration series of flood peaks is best

represented by an exponential probability density function and the

time between the independent flood peaks is also distributed

exponentially.

The four models were applied to the Blackstone River at

Woonsocket, R.I. Due to their different underlying structures, each

model gave a different flood frequency curve. Since inferences about

flood magnitudes affect decisions, the different models may identify

different decisions as being the best one. This chapter compares

the decisions from the four probabilistic models. The analysis of

model uncertainty is performed in Chapter 7.

The relationship between inferences about flood magnitudes and

decisions on engineering variables depends upon the decision rule. The

decision rule that is used in this chapter is as follows: the

decision, which is chosen as being the best decision, is the one that

maximizes the expected utility. This decision rule was discussed

in Chapter 2, and it assumes that there exists a utility function

which can be measured. The value of the utility function, u(d.,q),

depends upon the decision taken, d., and the flood discharge q.

The expected utility from any decision d. is,

Eju(d )]= u(d.,q)-f(q)dq (6.1)
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where

u(d ,q) is the utility function

f(q) is the (Bayesian) probability density function for

flood discharges.

The best decision, d*, under the above decision rule, will satisfy

the condition.

E[u(d*)] = max E[u(d )] (6.2)
all d.

1

Utility functions may be of many different forms. They can

include and represent multiobjective outputs, social costs and

benefits, and risk adversion toward particular outcomes. This is under

the assumption that the decision maker can express such preferences

and that they can be measured. In the example presented here, it will

be assumed that the appropriate utility function will be net monetary

benefits. The total costs will be the cost of providing flood

protection, and the gross benefits will be the resulting reduction

in flood damages.

Using the decision rule represented by Equation (6.2), the

'best' level of flood protection for the example problem will be

determined for each of the four probability models. The effect of

the different models upon the decision is discussed for two budgetary

conditions. The first condition is an unlimited capital budget for

flood control projects and the second condition is a budget

constraint on capital expenditures.
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6.2 Flood Protection for Woonsocket, Rhode Island

6.2.1 Problem Description

Woonsocket, Rhode Island is on the Blackstone River, which has

an upstream drainage area of 416 square miles. The Blackstone River

has a bankful capacity within Woonsocket of approximately 700 cfs

(Corps of Engineers, 1958). In the last 40 years, there has been

approximately one major flood every eight years. Flows exceeding

bankful discharge have occurred, on the average, about once in five

years.

Local flood protection can be provided by a combination of

channelization, dikes and flood walls. The decision variable is the

capacity of this system. Figure 6.1 presents the capital cost for

different channel capacities. The cost curve is hypothesized from

information contained within a flood protection study for Woonsocket

by the Corps of Engineers (1958). Figure 6.2 presents two realistic

flood damage curves, also based upon information from the same

report. One stage-damage curve is under the condition of no flood

protection. The other stage-damage curve is where the flood protection

system has a design capacity of 32,000 cfs, which is equivalent to a

river elevation of 129 feet. The flood stage-damage curves, with

the stage-discharge curves as shown in Figure 6.3 (U.S. Geological

Survey, 1958), are used to calculate a flood discharge-damage curve.

For the sake of simplicity, it is assumed, in this example, that the

stage-discharge relationship of Figure 6.3 will not change, due

to the construction of the flood protection works.
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For ease of computation, the decision set is limited to five

different flood protection levles. These levels are shown in Table

6.1 along with the capital cost of protection. Reasonable damage

curves were obtained by the interpolation and extrapolation of the

damage curves presented in Figure 6.2 for the five different levels

of the decision set.

6.2.2 Discussion of Results.

The expected annual flood damage (in dollars) predicted by each

model depend upon the flood damage curves and the probability model.

The expected damages are calculated by Equation (6.1). The

interaction between the damage curves and the probability models can

be best observed by rescaling the damage curves. The damages resulting

from a particular peak discharge are reached by the probability of

that discharge occurring. The area under the rescaled damage curve

is the expected damages. Figure 6.4 shows the expected flood damage

curves for the six levels of protection (no protection plus the five

levels presented in Table 6.1) rescaled by the normal probability

model. Figure 6.5 is similar but uses the log-normal model, while

Figure 6.6 uses the gamma-l model and Figure 6.7 uses the exceedance

model. These figures not only show graphically which floods contribute

to the expected damages, but also show the expected reductions in

damages (marginal flood benefits) between various designs. The

marginal expected benefits of one design over another is the area

between the corresponding rescaled damage curves. The graphs show from
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Table 6.1

Capital Costs for Various Flood Protection Levels,

Woonsocket, Rhode Island Example
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which peak flood discharges the expected benefits are derived.

Table 6.2 presents the expected annual flood damages for the

four probability models and the six decision levels.

The expected annual flood damages from the normal and gamma-1

model are higher than the damages from the exceedance and log-normal

models. This difference is due to the former models having a higher

probability of observing a flood that causes damage and the relatively

large damages that occur from fairly small, but damaging, floods.

The previous figures, 6.4 through 6.7, show this interaction between

probabilities and damages. Furthermore, as the flood protection

capacity increases, the models with the higher probability of observing

extreme annual floods have the higher expected annual damages, as best

displayed by the exceedance model (Figure 6.7).

The gross benefits from a flood protection design are calculated

by converting the expected annual flood benefits (reductions in flood

damages) to an equivalent present value. It is assumed that 5% is the

appropriate social rate of discount and that the project has a 50

year life. The expected net benefits are calculated by subtracting

the cost of protection from the gross benefits. For each model, the

expected net benefits for the five decision acts are given in Table

6.3. Figure 6.8 presents the benefit and cost curves obtained from

each model.
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Expected Damages ($ Million)
Decision

Normal Log Normal Gamma-1 Exceedance

d 10.63 6.09 8.17 8.18

d1  2.58 1.68 2.12 3.84

d2 .336 .460 .423 2.12

d3 .030 .147 .083 1.11

d4 .001 .055 .015 .612

d5 0 .017 .001 .276

Note: Annual Flood Damages Discounted at 5% over a 50 Year Project Life

Table 6.2

Expected Damages for Various Decision Levels, Realistic Damage

Function

P"



Decision Expected Benefits ($ Million)

Normal Log Normal Gamma-1 Exceedance

Gross Net Gross Net Gross Net Gross Net

d 8.049 6.80 4.36 3.11 6.054 4.80 4.34 3.09

d 10.30 8.30 5.585 3.585 7.75 5.75 6.05 4.05

d 10.60 7.60 5.898 2.898 8.09 5.09 7.069 4.069
3

d 10.63 6.38 5.99 1.74 8.16 3.91 7.57 3.32

d5 10.63 3.63 6.03 -.973 8.17 1.17 7.90 .90

Table 6.3

Expected Benefits for Various Decision Levels, Realistic Damage Function

I-.
0'
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The results indicate that the best decision is to provide a

flood channel capacity of 20,000 cfs, (decision d2) if the true

model of the probability of annual flood discharges follows a normal,

log-normal, or gamma-1 density function; and the best decision is a

capacity of 25,000 cfs (decision d3) if the true model is the

exceedance model. Let the decision set be increased from five

decision levels to a set which contains all possible flood channel

capacities. Then the optimal design capacity, given a model, occurs

where marginal benefits equal marginal costs, assuming there is an

unconstrained budget. This capacity also maximizes net benefits, and

could be estimated through the use of Figure 6.8.

To study the effect of the shape of the damage curve upon the

results, the same procedures that were followed for the realistic

damage curves were followed for a set of quadratic damage curves of

the form

2
DAMAGE = 0.26 (Q - Q ) for Q > Q

= 0 for Q < Q

where

Q is the minimum discharge where damage occurs, and is a

function of the decision level.

Q is peak discharge (cfs)

Damages are in dollars.

The coefficient of the quadratic damage curve is chosen in such

a manner that the quadratic damage curve and the realistic damage
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curve will intersect at a flood discharge of 32,000 cfs. At a dis-

charge of 32,000 cfs the Corps of Engineers (1958) estimated flood

damages to be 10.25 million dollars. The capital cost curve and

decision levels are the same as those used in the realistic damage

curve example. Figures 6.9, 6.10, 6.11 and 6.12 present the re-

scaled damage curves for each probability model. Table 6.4 gives the

benefits of each decision level, and Figure 6.13 presents the benefit

and cost curves obtained from the models. The results indicate

that if the log-normal model is the true model, then no flood control

works should be built. If the normal model or the gamma-l model is

the true model, then a design capacity of 20,000 cfs (decision d2 )

is best. If the exceedance model is the correct model, then the best

design capacity is 25,000 cfs (decision d3). These optimal designs

are based upon the assumption that maximizing net benefits is the

appropriate criterion by which decisions are made. For all the

models, the benefits from the quadratic damage curve are significantly

different than the benefits obtained from the realistic damage curves.

The results from the various models, however, tend to be similar, but

is is important to realize that this outcome can not be generalized

to other decision examples.

The discussion of the best decision has, up to now, only

considered the condition of an unconstrained budget. The effects of a

constrained budget upon the decisions will be discussed in the next

section.
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Decision Expected Benefits ($ Million)

Normal Log-Normal Gamma-l Exceedance

Gross Net Gross Net Gross Net Gross Net

d 1.17 -.08 .704 -.545 .930 -.32 1.156 -.09

d2 2.55 .55 1.737 -.263 2.17 .17 3.77 1.77

d3 2.71 -.29 2.02 -.977 2.42 -.58 5.11 2.11

d 2.72 -1.53 2.15 -2.10 2.48 -1.52 6.036 1.79

d5  2.72 -4.28 2.20 -4.80 2.49 -4.51 6.59 -.41

Table 6.4

Expected Benefits for Various Decision Levels, Quadratic Damage Curve
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6.2.3 The Effects of Budget Constraints on Optimal Decisions

When a budget is unconstrained, then any project which has

positive net benefits should be constructed. The optimal project

size occurs where the marginal benefit to cost ratio is 1.0. At

this point the net benefits are also maximized. Marginal benefits

are the benefits contributed by the last increment built and

marginal cost is the cost of building the last increment.

In this discussion, a budget constraint is a restriction upon

the funds available for capital expenditures. The budget constraint

will be binding if the total set of possible projects (of which this

flood control project is but one) has expenditures that exceed

available funds. Under a budget constraint, the theoretically

correct procedure is to maximize expected net benefits (utility)

within the budget. This procedure is achieved by redesigning the set

of feasible projects so that the marginal benefits to costs are the

same for all projects, and total expenditures just exhausts the

budget (Major, 1973). For the last increment of flood control

capacity, the marginal benefits to marginal costs should equal 1 + A,

where I is defined as the shadow premium.

From Figure 6.8, it is evident that the different models of

the distribution of annual maximum flood discharges will, under a

tight budget constraint, lead to quite different decisions. Table 6.5

shows the net benefits for each decision using the realistic damage

curves and a shadow premium of 1.0. There is a definite shift in
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Normal

5.55

6.30

4.6

2.13

-3.37

Expected Net Benefits ($ Million)

Log-Normal Gamma-i Exceedance

1.86 3.55 1.84

1.59 3.75 2.05

-.10 2.09 1.07

-2.51 -.34 -.93

-7.97 -5.83 -6.10

Table 6.5

Net Benefits under a Shadow Premium, X = 1
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decisions. Figure 6.14 presents the cost curves for the unconstrained

budget, A = 0, and for the constrained budget, A = 1. Also presented

are the benefit curves from each model. The change in the optimal

design levels can be clearly seen. The shift in optimal design

levels is larger for the log-normal model and the exceedance model

than for the gamma-l or normal model. The difference in the shift is

due to the shape of the benefit curve, and depends upon the model.

For both the unconstrained and constrained budget condition,

the optimal decision level depends upon the interaction of the damage

curves, cost curves, and the probability models. Results can not be

generalized, and it is incorrect to make general statements about the

'best' probability curve to use in real engineering flood design

problems.

6.3 Summary

This chapter looks at a simple decision problem of determining

the best size for a local flood protection works. Four probabilistic

models of the magnitude of the maximum annual flood are considered.

The decision problem applied realistic cost and damage curves from the

Corps of Engineers (1958). Using the decision rule of maximizing

net benefits, the four models gave similar optimal decision or design

levels. The design levels depend upon the damage curve as well as

upon the probability model. At the optimal decision, the risk varies

significantly among the four models. For each model, the return
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period for a flood to exceed the optimal decision is:

normal T = 250 years

log-normal T = 84 years

gamma-1 T = 55 years

exceedance T = 60 years.

The optimal design level for the exceedance model, which is the

most expensive, represents a capital outlay of about 50% higher than

the decision from the log-normal model, which has the lowest capital

outlay.

For the example presented here, the different models did not

lead to vastly different results. This outcome is not necessarily

true for all decision problems. Furthermore, the risk of a flood

exceeding the optimal decision varies among models and may also

influence decision makers. This chapter considers the affect upon

decisions of various probabilistic models. Chapter 7 will consider

the problem of model uncertainty and selection.
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Chapter 7

Infereice and Decision :faking Under

Model Uncertainty

7.1 Introduction

Hydrologists are often confronted with the problem of

choosing one statistical model from many contending models. This se-

lection problem is most frequently encountered in flood frequency

analysis. Here, many models seem to fit the available data very well,

but often the models lead to different decisions. In recent years,

considerable progress has been made on the development of statistical

procedures for comparing alternative models. The most significant

work has been the application of Bayesian statistics for the compari-

son of econometric models. (Gaver and Geisel, 1972 .) Summarize ex-

tensively the recent work in model selection for both Bayesian and

new-Bayesian procedures. The work by Leamer (1973) also considers

the econometric, model selection problem.

The model selection problem most often addressed in the

econometrics literature is the decision of which variables should be

included in a regression equation. This model selection problem is

conceptually easier, since the likelihood functions are all of the same

form. The procedures found in the Bayesian econometrics literature

can be extended to cover the more general problem of selecting among

models that have different functional forms. Smallwood (1968) uses

a Bayesian framework for model selection where the functional forms

among the models vary.
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The approaches to model selection by non-Bayesian procedures

will not be discussed in detail here. An excellent summary is given

by Gaver and Geisel (1972). The difficulties of model selection by

non-Bayesian procedures are similar to the problems that classical

statistical approaches encounter, when dealing with uncertain parameters.

These problems are discussed in Chapter 2. Such problems in model se-

lection can be illustrated by the model selection approach taken by

Dumonceaux et al (1973).

Let x be a random sample from a distribution with a pro-

bability density function f (xa,b) or f 1 (xIa,b) where

f (xIa,b) = g ( -a ) , -0 <a< o, b> 0 (7.1)

The problem considered is that of selecting f or f as the modelo 1

for the observations. The problem is formulated as a test of hypo-

thesis H0 against Hl, where

H : X-f (xla,b) = 1 g(-a
0 0 b o b

(7.2)
H :.-~ =1 x-_H : X-f (xla.b) - g1 (

Dumonceaux et al define a statistic, R, where

Max n

R ab 1  (7.3)
Max nlf (xla,b)
a,b H o

which is independent of the unknown location and scale parameters, a
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and b. Essentially R is a ratio of the maximum likelihood estimators.

The distribution for R will depend upon n, f0, and f . Tables are

set up of critical values of R, R , such that if Ri/n > R 1/n , thee c

hypothesis H is rejected and the hypothesis HI accepted. When

Dumonceaux et al tested to discriminate between a normal and a two-

sided exponential, the results are extremely ambiguous. With a sample

size of 40 (a typical length for hydrology) and an a = .05, the

power of the test, 1 - 3, is only .64 (for 30 years, 1 - j = .54).

When the two-sided exponential is the null hypothesis and when n is

40 and a is .05, the power of the test is .58. The low power

of the test emphasizes the ambiguity of this classical testing procedure.

It is obvious that samples can lead a null hypothesis being accepted,

and then, when the null hypothesis and the alternative hypothesis are

interchanged, the new hypothesis also being accepted. Furthermore, the

testing of more models (in pairs) could lead to more models being

'accepted'. The competing models that are considered in hydrology are

statistically closer than the normal and couble exponential, and they

would, therefore, lead to more ambiguity.

The choice of one model over another competing model should

consider the larger decision problem, where the probability model is

only one component. This choice implies the consideration of loss

functions. The inability of the classical approach to incorporate the

larger decision problem within its testing procedures is discussed in

Chapter 2. Bayesian procedures can be included, explicitly, within the

total decision problem, which makes the application of Bayesian pro-
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cedures very attractive. Bayesian procedures have been used to choose

one model from a set of models. This selection is analogous to choosing

a point estimate for an uncertain parameter within a probability model.

In Chapter 2, it is shown that point estimates for uncertain parameters

underestimate the variance of the process. Similarly, selecting one

model from a set of competing models does not fully account for the un-

certainty in the process. When parameter uncertainty is fully accoun-

ted for, the resulting model is called the Bayesian distribution. In

the case of model uncertainty, the resulting model will be called the

composite Bayesian distribution. The development of this distribution

is given in the next section.

The Bayesian distribution is used in making decisions when

only parameter uncertainty is considered, as in Chapter 6. When both

parameter uncertainty and model uncertainty are considered, then the

composite Bayesian distribution should be used. Section 7.4 takes

the decision problem of Chapter 6 and finds the decision using the

composite Bayesian distribution. This decision is compared to making

decisions when one model is selected from the model set.

7.2 Composite Bayesian Distribution

In Chapter 4, a number of probability models which describe

the frequency of floods are considered. In the analysis of Chapter 4,

parameter uncertainty is considered, but the problem of model uncer-

tainty is not considered. Model uncertainty can be considered by de-

fining a composite model of the form
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(qjA_,f) = 0 f1 (qJA) + ... + 0 f (qlA) (7.4)

The composite model, f(qlA,0 ), is conditional upon a set of un-

known model parameters A and an unknown composite model parameter

set 0. f1 (qlA), ... , and f (qJA) is the set of models that make

op the composite model. These models are conditional upon a general

unknown parameter set A. 01,..., and 0 are parameters that take

on a value of either 0 or 1; their value is uncertain. If 0. = 1,
1

then model f (qlA) is the true model. The constraint

n
Z 0. = 1 (7.5)

i=l1

is imposed, which implies that one and only one model is the true model.

The definition for 6 and the constraint will be used throughout the

development of the composite model.

For notational simplicity, consider the case where n = 2.

The likelihood function for a set of observations Q is just:

L(A 16) = 01 i ( IA) + e2 al i 2 iA)all 1 12ali21

- 1 L1 (A|Q) + 62 L2 (-AI) (7.6)

There are no cross products of the models, due to the limitation im-

posed on the values that 0. can take on; and the constraint on 0.
1 _

L.(AIq) is just the likelihood function of model i, conditional

upon the observations, Q.

Define a composite prior distribution on the parameters A

and 0 . The prior will be of the form

235



f'(A, 6) = 61 f'1 (A = 1) - p'(0 =1)

+ 62 f'2 (Ale2  21) p(02=1) (7.7)

f' (AO. = 1) is the prior distribution on the parameter set A, con-

ditional upon 6. equals 1. P'(G. = 1) is the prior probability

that model i is the 'true' model.

Bayes' rule can be written as

f"(bldata) - L (bidata) - f'(b) (7.8)

f" (bidata) is the posterior distribution of the b, conditional upon

the data; L(bldata) is the likelihood function for b; f'(b) is the

prior distribution of b; K is a normalizing constant.

The normalizing constant K is often called, in the econo-

metrics literature, the marginal density of the observations or the

marginal likelihood (Leamer, 1973; Gaver and Geisel, 1972, and

Zellner, 1971) and can be found by

K = L(bjdata, model) - f'(tImodel) (7.9)
b

Let K, for model i, be K.. K., the marginal likelihood function
1 1

for model i, can be thought of as the probability of observing the

data, given model i, f(datalmodel i).

The posterior density function for A,O is calculated

from Bayes' rule; it is
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f"(A,j)" [0

-*[6l

+ 62

x 6
1

+ 62

=6

+ 02

- LI(Aj-) + 62- L2 Al-)

- fT A 1=1)- p'(6 1 =1)

* 2~A 62=) p( 2 -

K f ="(A ) - p( =1)

K2f "(162=1) . p' (62=1
K

=1) f"(A16 =1)

K2 p (6 =1) - f"(A62 1)
I '(2 - 2=

where K* is a normalizing constant and equal to

K* = K - =1) + K2 2

The posterior model probabilities, p"(e.) are

p"(a =1) = K 1

Ki
p"(6

2 ) 2= p O 1)
2 K* 2

(7.10)

(7.11)

(7.12)

(7.13)

These posterior probabilities for 6. are the same as those

found by Leamer (1973), Gaver and Geisel (1972), and Smallwood (1968),

even though their approaches to the problem were slightly different.

The composite Bayesian distribution can also be found by

applying first principles.
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f(q) TA= f(qA,6) - f"(A,6) dAed6

= [6 - f 1 (qJA) + 62 f(qlA)]

[p"( 1=) f"(Al6 ) +

p" (6 2=l) f" (Al 62=1)] dAd8

= p"(6 =1) f f1(q) + p"(62=2 (7.14)

The composite Bayesian distribution is simply the Bayesian

distributions of the models weighted by the posterior probability

that particular model is the true model. This result is extremely

convenient and intuitively appealing. The marginal likelihoods K.,

can be found either by analytical or by numerical procedures.

7.3 Marginal Density Function of the Observations

The marginal density function of the observations (marginal

likelihood) is calculated from Equation (7.9), and is the probability of

the set of observations. The marginal density function depends upon

the probability model of the flood discharges, the prior pdf of the

parameters of the model and the set of observed flood discharges.

To allow for a more thoughtful analysis of the marginal

density function, only those probability models which have a marginal

density function that can be calculated analytically,will be included

in the model selection analysis of the four probability models. In

Chapter 4, the normal, log-normal and exceedance models have marginal
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density functions that can be evaluated analytically. Appendix F

presents the analytical derivation of their marginal density functions

for a set of observations.

For the normal model, the marginal density (likelihood) is

2 -/2f(1/2\)") (1/2v'v)/2
KN " (2r) P(1/2v') (1/2v"v") "/2 (7.15)

The parameters are defined in Section 4.2.

For the log-normal model, the marginal density (likelihood)

is

1'/2

KLN 1 n) 2 ( 2T)-V/2 (1/2v") (1/2v'v') 2 (7.16)
n n(1/2v') (1/2v"v")

i=l i

The parameters are defined in Section 4.3.

In Chapter 4, the derivation of the exceedance model con-

sidered only those flood discharges greater than a specified base level,

such discharges were called exceedance discharges. The probability

density function of exceedance discharges was assumed to follow an ex-

ponential distribution. The probability density function of discharges

less than the base level did not enter into the analysis. One result

is that the number of exceedances (discharges larger than the base dis-

charge) is much smaller than the number of flood discharges contained

in the flood series considered by the normal or log-normal model. This

difference in the number of flood discharges in the series makes the

comparison of marginal likelihoods impossible. The difficulties in

model comparison, when different 'sample' sizes are observed by each
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model, has not appeared in the literature and extensive research

on this problem is required. To circumvent this problem in model

selection, it is assumed that the exceedance model is made up of two

parts. The first part is for flood discharges greater than the base

level. Here, the assumptions and analyses of Chapter 4 will hold, and

the exceedance probability for large discharges will be the same as

the probabilities found in Chapter 4. The second part of the model

concerns flood discharges less than the base level. Here, flood dis-

charges will assume to follow a uniform distribution. This assumption

will lead to marginal likelihoods that are less than those found using

the true distribution. This result arises from the uniform pdf being

lower than the true pdf, around the mean of the complete flood dis-

charge series, where most of the sample discharges will occur. The

lower uniform pdf leads to a smaller sample likelihood function which

leads to a smaller marginal likelihood, as can be seen from Equation

(7.9). The use of the uniform pdf implies that the posterior proba-

bility for the exceedance model is underestimated or conservative.

The probability density function for the (modified) ex-

ceedance model is:

f(q 'v,ot) = Vo exp [-a(q-qb)] for q > qb

= 1V for 0 < q < q (7.17)
q b b

For this form of the exceedance model, the marginal likeli-

hood (density) is calculated in Appendix F.3, and is
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= [ m .su' I(U") ,'t I (V")
Lq " P(u') cv" P(v') (7.18)

All parameters are defined in Section 4.5.

7.3.1 Posterior Model Probabilities for Samples Drawn from

Known Processes.

Consider a sample of flood discharges that are drawn from

some process. The sample has the property that, when the discharges

are plotted on normal probability paper, they fall along a perfectly

straight line. Table 7.1 presents the flood discharges from such a

sample, along with the natural logarithms of the discharges. The pro-

bability that the underlying process is normal should be very high.

Assuming diffuse prior distributions on the probability model param-

eters, the numerical values for the parameters of the marginal likeli-

hoods can be found from the data, and are presented in Table 7.2.

The marginal likelihoods for the normal model is

KN = 6.477 x 10-"

for the log-normal model is

KLN = 7.519 x 10 7
1

and for exceedance model

K = 8.092 x 10-7

From Equation (7.12), it can be easily seen that the posterior pro-
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Table 7.1

Discharge L Discharge

9000

8500

8100

7800

7550

7300

7100

6900

6700

6500

6300

6100

5900

5700

5500

5200

4900

4600

4000

9.105

9.048

8.9996

8.962

8.929

8.896

8.868

8.839

8.810

8.779

8.748

8.716

8.683

8.648

8.612

8.556

8.497

8.434

8.294

Table 7.1: Sample of Flood Discharges from a Normal Process
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Table 7.2

Normal Model

m = 6507 cfs

v = 1839516 cfs 2

n = 19 years

v = 18 years

Log - Normal Model

m = 8.759 log cfs

v = .04690 log cfs 2

n = 19 years

= 18 years

Exceedance Model

m = 16 events

u = 3 events

v = 3 events

Z = 1600 cfs

S = 35 events

q = 8000 cfs

Table 7.2: Marginal Likelihood Parameters for Normal, Log-

Normal, and Exceedance Model, for a Sample from

a Normal Process.
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babilities for the normal model is, virtually, 1.0.

Now consider another sample of flood discharges, which has

the property that the discharges plot along a straight line on log-

normal probability paper. Such a sample is presented in Table 7.3.

Again, assuming diffuse prior distributions on the probability model

parameters, the marginal likelihoods are calculated. The marginal

likelihood is, for the normal model,

K= 7.63 x 10-7

for the log-normal model,

KN = 8.06 x 10-7

and for the exceedance model,

KE = 4.23 x 1071

Table 7.4 presents the numerical values for the parameters of the

marginal likelihoods. These values are calculated from the data.

Assuming uniform priors on the model probability, that is

P'(GN = 1) =P'(O 1) p?(6e 1) = 1
'(N 6LN E3

then the posterior probabilities for the three models are calculated

from Equation (7.12) and (7.13). The posterior model probabilities

are

P"I(ON) .4735

P"(L)= .5002

P"(eE) = .0263
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Table 7.3

Table 7.3:

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Discharge

15000

10000

7700

6300

5300

4500

3800

3300

2900

2500

2200

1900

1700

1400

1200

1000

840

640

6.109

245

Discharge

9.616

9.210

8.949

8.748

8.575

8.412

8.243

8.102

7.972

7.824

7.696

7.550

7.438

7.244

7.090

6.908

6.733

6.461

450

Sample of Flood Discharges from a Log-Normal Process.



Table 7.4

Normal Model

m = 3823 cfs

v = 13987600 cfs2

n = 19 years

V = 18 years

Log-Normal Model

m = 7.84 log cfs

v = .91 log cfs2

n = 19 years

v = 18 years

Exceedance Model

m = 17 events

u = 2 events

v = 2 events

Z = 9000 cfs

S = 36 events

q = 8000 cfs

Table 7.4: Marginal Likelihood Parameters for Normal, Log-Normal and

Exceedance Model, for a Sample from a Log-Normal Process

246



The reason that the normal model has a high posterior model probability

is directly related to the sample and the density functions for the

normal model and the log-normal model. Only at low discharges (500 -

3000 cfs) and at high discharges (> 13000 cfs) is the log-normal

density function higher than the normal density function. Since the

marginal likelihood is a multiplicative process, the ratios of the

density functions are of prime importance. The sample did not contain

any 'extreme' events, where the ratios are very large; thus the mar-

ginal likelihoods will be sim:lar.

The posterior log-normal probability should go to 1 when the

number of samples becomes very large and when sampling is from a log-

normal process. The test for the log-normal probability to approach

1.0 requires that the ratios KLN/KN and KLN/KE be much greater

than 1, for large n. This test can be done numerically by sampling

from a known log-normal process and calculating the appropriate mar-

ginal likelihood ratios.

7.3.2 Posterior Model Probabilities for the Blackstone River, at

Woonsocket, R.I.

The Blackstone River, at Woonsocket, R.I., has been analyzed

in Chapter 3 for prior information, in Chapter 4 for the Bayesian pdf

of flood discharges (for four different probability models), and in

Chapter 6 for a decision problem concerning local flood protection.

Model uncertainty was not considered in the previous chapter even

though competing models were considered. This section calculates the
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posterior model probabilities. The marginal likelihood function is

evaluated using parameter values from Chapter 4. These parameter

values for the marginal likelihood functions are summarized in Table

7.5. The marginal likelihood for the normal model is

KN = 7.46 x 10- ,

for the log-normal model is

KN = 4.76 x 10

and for the exceedance model is

K E= 1.14 x 10-156

Assuming uniform prior probabilities on the three models,

the posterior probabilities for the models are

P"( N = 1) = 0.0

P"( LN = 1) = .00418

P"( E = 1) = .99582

The composite Bayesian distribution of flood discharges is, from

Equation (7.14)

(q)= .99582 f E(q) + .00418 LN (q) (7.19)

where E (q) is the Bayesian pdf for the exceedance model, and

fLN(q) is the Bayesian pdf for the log-normal model.

The composite Bayesian distribution of Equation (7.19) is the pro-
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Table 7.5

Normal Model

= 7 years,

= 36 years

= 9.22 x 106 cfs 2

n" = 44 years

V" = 43 years

V"= 24.7 x 106 Cfs 2

Log-Normal Model

= 4 years

= 36 years

= .22 log cfs 2

n" = 41 years

V l= 40 years

v" = .689 log cfs 2

Exceedance Model

U t

v'

St

m

q b

Table 7.5:

= 6 events

= 3 events

= 50 years

= 10850 cfs

= 32 events

= 8500 cfs

U" = 11 events

v"= 8 events

S" = 87 (S"+m=119) years

9" = 49468 cfs

n = 5 events

249

n'

viV'

n'

V f

vI

Marginal Likelihood Parameters for Normal, Log-Normal

and Exceedance Model, for the Blackstone River,

Woonsocket, R.I.



bability model which should be used in making inferences about

future flood discharges. The composite Bayesian model rationally

accounts for both parameter and model uncertainty. It is interesting

to note that the form of composite Bayesian model is not fixed but is

dynamic and changes, as more data becomes available.

7.4 Decision Making with Model Uncertainty

The theoretically correct Bayesian procedure for making

decisions, when model uncertainty exists, is to calculate the composite

Bayesian distribution of flood discharges, which is then used, in con-

junction with an appropriate utility function, to maximize expected

utility. Chapter 6 discusses the decision aspects of maximizing ex-

pected utility. In Chapter 6, four competing inference models were

considered. These inference models can now be replaced by the composite

Bayesian distribution of flood discharges, which accounts for model

uncertainty.

In many cases, a decision maker may want to chose a 'best'

model, from the set of competing models. This chosen model will lead

to a 'best' decision. It is recognized that basing decisions on one

model, from a set of models, is a sub-optimal Bayesian procedure to

the procedure of basing decisions upon the composite Bayesian distri-

bution (Gaver and Geisel, 1972). A decision maker may consider de-

cisions based upon one model for a variety of reasons. The calculation

or application of the composite Bayesian distribution may be computa-

tionally difficult; or the sensitivity of the decisions to the pro-

250



babilities of the models may be of interest. In either case, the

problem of choosing one model, from a set of models, is equivalent

to choosing the 'best' overall decision, from a set of 'best' decisions

(based on each model being the true model). The application of deci-

sion analysis is most effective in choosing the 'best' overall deci-

sion, taking into account model uncertainty. Of the procedures within

decision analysis, the normal-form-analysis (Raiffa, 1968), not only

identifies the best overall decision but also allows for sensitivity

analysis of the decision to the probability that a particular model

is the true model.

The most common form of decision analysis is the extensive-

form,which consists of four basic steps (Raiffa, 1968):

1. Chart the decision-flow diagram

2. Assign payoffs or utilities for outcomes.

3. Assign or determine probabilities at all chance forks.

4. Average out and fold back (find expected utilities).

The normal form of analysis does not require, initially, that all pro-

babilities be evaluated. Instead, expected utility of each possible

decision is determined, conditional to the unknown probabilities,

E[uld.,p(G.)]. The best decision will depend upon the utility of that

decision and the probability of the model, p(O ). The following

example will show the interaction between choosing a 'best' decision

and evaluating the model probabilities.

Consider the decision example for the Blackstone River, pre-

sented in Chapter 6. Assume that either the log-normal model or the
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exceedance model is the true probability model of flood discharges.

The decision problem of Chapter 6 can be represented by the simple

decision tree presented in Figure 7.1. The evaluation of the outcomes

was done in Chapter 6 and was presented in Table 6.3.

The extensive-form of analysis would evaluate the probabilities

P(GLN) and P(OE). Then, the expected utility of the decisions is cal-

culated, and the decision that maximizes expected utility is picked as

being the 'best' decision. The normal-form of analysis graphs the

expected utility of each decision, conditional upon the model proba-

bilities. The joint conditional evaluation diagram is presented in

Figure 7.2. Lines of constant expected utility can also be drawn in

Figure 7.2. These lines are represented by an equation of the form

E[u] = P(6 N) - ul6 + P(E) - ul6E

As lines of expected utility move away from the origin to the north-

west, their value increases. Thus, the efficient set of decision,

those that will maximize expected utility, will lie along the northwest

boundary of the enclosed region in the joint conditional evaluation

space. In Figure 7.2, the efficient set of decisions is made up of

d2 and d Which decision maximizes the expected utility depends

upon the model probabilities P(6 E) and P(O N). Exact evaluation

of the model probabilities is not necessarily needed to determine to

best decisions. If P(e E ) falls into a specific interval, then d3

will maximize the expected utility; if P(6 E) falls outside this

interval, then d will maximize expected utility. For the sample
2
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presented here, the probability intervals, and the corresponding 'best'

decision, are as follows:

If .861 P(6 ) < 1 (0 < P(0 ) < .138)
E -LN -

then choose d

If 0 < P(E )< .861 (.138< P(6 )< 1)
- EL-

then choose d2 '

The advantages of the normal-form of decision analysis is

that exact evaluation of probabilities is not needed. The sensitivity

of the expected utility and of the 'best' decision to the model pro-

babilities is clearly seen.

If the decision space is discrete (consists of only these

5 decisions), then the 'best' decision from the normal form of ana-

lysis, using the posterior model probabilities of the previous section,

will be the same decision as would be found using the composite Bayesian

distribution. If the decision space is continuous, then the decisions

found by the two procedures will be different. The decision from the

composite Bayesian distribution will be optimal and from the normal

analysis, merely good.

7.5 Conclusions

This chapter considered the problem of model uncertainty.

When there is a set of competing probability models for flood dis-

charges, Bayesian analysis leads to a composite Bayesian model. The

composite Bayesian model is a linear model consisting of the Bayesian
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distribution of the individual models, weighted by the posterior model

probability that the individual model is the true model. The posterior

model probabilities are calculated from the marginal likelihood func-

tion of the observed data and the prior model probability.

Decision making under model uncertainty follows the proce-

dures of Chapter 6, but the inference model of the flood discharges

is now the composite Bayesian model. A sub-optimal Bayesian procedure

is to apply a normal form of decision analysis to a model selection

problem. First the 'best' decision is found for each model, and then

from this set an overall, 'best' decision is calculated, by considering

model probabilities and expected utilities. In general, the model se-

lection procedure is sub-optimal to decision making with the composite

Bayesian distribution of flood discharges.
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CHAPTER 8

Summary and Conclusions

Inference -making probability statements about future state of

nature- and decisions- -determining engineering variables such as the

height of a dike- together form an indivisible pair which results in

an engineering design. This procedure of inferences and decisions is

called decision making, and it contains many sources of uncertainty.

This study is concerned with the analysis of the uncertainty and with

the development of procedures to rationally design for extreme

hydrologic events, in the light of such uncertainty.

In Chapter 2, arguments are presented which advocate the use of

Bayesian statistical decision theory for decision making. Decision

theory allows the decision maker to consider, together, the uncertainty

of the modelled process, the quantifying of decision outcomes and the

preferences for these outcomes. The decision theory approach to making

decisions seems to be a more rational approach than other procedures

which separate inferences, decisions, and preferences.

The results of this study confirm the arguments that Bayesian

statistical procedures can be used to make engineering decisions.

Most of the emphasis of this study is focused upon the uncertainty of

the modelled process of extreme flood discharges and not upon the

preferences toward decision outcomes. The criterion applied for

evaluating alternative decisions is the maximization of expected monetary

benefits. A more appropriate utility function, for real world flood
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control decisions, would probably include monetary benefits, social

benefits (such as decrease in loss of life, or reduction in the

disruption of community services) and risk adversion towards large

floods. Considerable work has been done in multiple utility theory,

but more work is required in assessing utility functions before they

can be applied to general engineering projects.

When discussing inferences about flood discharges, it is important

to keep two sources of uncertainty separate. The first source of

uncertainty is the 'modelled' uncertainty of the underlying

stochastic process. This stochastic process is the future flood dis-

charges. The second source of uncertainty is statistical uncertainty.

Statistical uncertainty is concerned with quantities which are 'fixed

but unknown' due to a lack of information. Such uncertain quantities

include the uncertainty in the form of the true underlying stochastic

process (model uncertainty) and the uncertainty in the values of the

parameters of the probability models that are used to represent the

underlying process (parameter uncertainty). The uncertainty in these

quantities can be reduced with additional information.

Chapter 3 considers the use of information, other than historical

records, to reduce statistical uncertainty. A regional flood regression

and an analytical flood frequency analysis (Eagleson, 1972) are two

sources of information that are studied in detail. It is shown that

they provide information equivalent to between 4 and 7 years of

historical record for the river basin studied. This information could
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be significant in the analysis of river basins with short historical

records. Research in evaluating sources of prior information would be

a significant contribution to Bayesian analysis. There is room here

for a large amount of fruitful research.

One source of prior information, not considered directly in

this study, is rainfall-runoff simulation. Chapter 5 did, though,

analyze the uncertainty in the flood discharge from a rainfall-

runoff analysis due to the uncertainty in the rainfall and infiltration

processes. The theory for considering all uncertain parameters is

presented. The work in Chapter 5 is especially useful for flood

analysis in regions with no historical records or in regions that have

undergone urbanization. Recently rainfall-runoff simulation models

have been applied to find flood frequency curves (Leclerc and Schaake,

1973; Ott and Linsley, 1972; among others) for urbanized areas or areas

with limited historical records. These studies have not analyzed the

uncertainty in the flood frequency curve,due to parameter uncertainty.

It is evident from the results of Chapter 5 that ignoring such un-

certainty can lead to grave errors in decision.

Chapter 4 shows how the prior information of Chapter 3 and the

historical record of flood discharges can be combined, with the model

of the true stochastic process of flood discharges, to yield a 'Bayesian

probability distribution' of flood discharges, which fully accounts

for parameter uncertainty. The Bayesian probability distribution is

obtained by taking the probability model of flood discharges, which
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has uncertain parameters, and integrating that model, weighted by the

probability of observing particular values of the uncertain parameters,

over all values of the uncertain parameters.

The Bayesian probability distribution of flood discharges is

obtained for four different models of the underlying stochastic process.

The four models are: a normal model, a log-normal model, a gamma-i

model and an exceedance model. The first three models consider the

complete annual series of flood discharges. The fourth model only

considers flood discharges that exceed a particular level, and

such exceedance discharges are exponentially distributed.

The resulting models are applied to the Blackstone River, and

comparisons are made among the different flood frequency curves from

the models. Comparisons between the Bayesian probability model and

the classical approach to frequency analysis is also shown. The

general result is that the Bayesian procedure will lead to higher

flood discharges for the same exceedance probability, which leads to

more conservative designs. This conservative design reflects the

parameter uncertainty, and current practice of using point estimates

for uncertain parameters should be reconsidered since it may lead to

incorrect decisions.

In Chapter 7, the statistical uncertainty of which model

represents the true stochastic process is analyzed. This analysis of

model uncertainty leads to a composite Bayesian distribution. The

composite Bayesian distribution is a linear model of the individual

Bayesian probability models of Chapter 4,weighted by the posterior
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probability that a particular model is the true model. The

composite Bayesian probability model accounts for all sources of

statistical uncertainty - both parameter uncertainty and model un-

certainty. This model is the model that should be used in the

decision analysis, for it best represents the knowledge of the decision

maker about future flood discharges.

Chapter 6 applies the decision analysis technique to a case

study. The decision problem is to determine the optimal capacity of

local flood protection works for Woonsocket, Rhode Island. Initially,

the analysis is performed for each Bayesian model of flood discharges.

The sensitivity of the optimal designs to budgetary considerations is

also analyzed.

In Chapter 7, the optimal designs with model uncertainty are

considered. The theoretically correct procedure is to apply the

composite Bayesian distribution for flood discharges. Chapter 7 also

presents a procedure for finding decisions when the composite Bayesian

distribution is computationally difficult to obtain. It is also

possible to perform sensitivity analysis on the optimal decisions,due

to model uncertainty.

This study presents procedures which should help decision makers

consider uncertainty in a more complete manner, allowing them to design

more rationally under uncertainty.
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Appendix A

Proof that Bayesian pdf of Flood Discharges

from a Normal Process is Student.

This appendix presents the proof that the Bayesian pdf for

q is student, when the underlying process is a normal process with

uncertain parameters mean P and precision h. From Equation (4.1)

f(q) = Jh fN(qIp,h) - f"(p1h) - f"(h) dyp dh (A-1)

solving for f(q h) = f(qlyh) f(IIh) dyi (A-2)

-

which is

h exp h 2(q-) n 1/2 h /2 xp nh(P-M)2]dy

(A-3)

substituting for fN (q Ip,h)~ N(y,h)

and f(yijh) N(m,nh)

Solving (A-3)

f(q I h) = n h exp - h IP - + n _(qm 2  dP
2 n+1 n+1

- n h2 h/2 12 f n( exp[- h( (q-m) J fN( , (n+1) h) dyi
- n-7l 2 n+1l' +

(r h) /2 2
f(q Ih) = exp [- rh(q-m) ](A-4)
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where r =

Thus f(q h)

f (q)

is distributed N(m,rh)

= J (q Im,rh) - fY2' (hjv,V) dh

lih

where h is distributed gamma-2, as

v/ 2 V/2-1

f 2(h v,v) = (lf v) h exp(- vvh)
Y2F (v/2)

T(q) =J (rh)
2

vr2Tr
exp[- (q-m)2 ] (1/ v V h/2 V/2 dlFx qm r(v /2) h exp 2 vv] d

(A-7)

now let v '= v +

and combine = r(g-m)Y+uv
v I

so that (A-7) can now be written as:

v/2 v,/2-1

f(q) = -)- * h -exp[-- v v'] dh
r2 ](v /2)

/2
r (2VV)

(2Tr!' F(v/2)

)/2

F(1/V2) '/2

('/2v'v')

-I V /2 V'

(1/2V'V') h
F v Y2

exp [- -v'v'] dh

after simplifying

v/2

f(q) = - [v + r (]

B 11v) V

2 (v+1
2

)

V
(A-9)
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1

B( , -v)

i1+ r (q-m) 
2

v

V+1)
2 r

vv

where B( 1 1 = r F(v /2)
2'2 F (v/2 + 1/2)

which is Student. The moments of f(q) are

yq = m

2 V V)

q r v-2

268

(A- 10)

(A-li)

[n+ln v-2 )



Appendix B

The Bayesian Distribution from Log-Normal Process

In Section 4.3 the analysis of the log-normal (LN) process

was approached by recognizing that if q is LN, then x = kn q

is normally distributed. It was shown in Section 4.3 that the Bayesian

distribution of x is student, thus the Bayesian distribution of q

will be log-student. This result was found by applying derived dis-

tribution theory. A disadvantage of this procedure is that one can not

make inferences on or from the distributions of the parameters of the

log-normal process.

This appendix derives the Bayesian pdf of the log-normal pro-

cess by first deriving the posterior pdf of the parameters, then in-

tegrating over the parameters to derive the Bayesian distribution on the

annual flood.

If x. = kn q. is normally distributed with mean yj and
1 1

variance G
2  then q. , by definitionis log-normally distributed and

has mean n = exp [p + G
2 /2 ].

B.1 Posterior Distribution of Mean r

It can be shown (Raiffa and Schlaifer, 1961; Zellner, 1971)

that given n observations on x., x, the likelihood function for p

and a is normal-gamma and of the form

(pI' y x)0 a' exp [2-(P_,)2 ] a (n-i) exp [2U2 (B-1)
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where n = number of observations

S= n -i

- 1 1
x =- Zx.

n I
n
Es (x.Vs i - X

Let 0 = kn n = p + a2 /2. The posterior pdf for 0, f"(O a,x),

follows from

(B.2)f" qI (Ba, x) i t(0|1G1) - ff(o lalo tha

From Equation (B.1) it follows that

9(I Cs1x) 0C
-1 fl- 2  21 exp [ 22 (C) - x - a2/2)2] (B.3)

and from inspection of (B.3) the natural conjugate prior will be

of the form

f'(C|m', n'1/ 2 ): '- e . (e _ IL' ) 2

f"(a/:x) a~ exp[- (0 - M." - n-(52/2-n") 21

(B. 4)

(B. 5)

where

n"= n' + n

M"T = ,(n' -m' + n- X)
n

Similarly, the posterior pdf f"I(a|3:) can be found from the product
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of its likelihood and prior pdf. It can be shown that

k(ajx) cca ~Vexp [- ] (B.6)

The natural conjugate prior to the likelihood function of a is

Inverted Gamma-2 with parameters (v', st 2 )

fav',s e , 22  ] -a

And the posterior pdf for a is:

fi"(atv",s"
2 ) c exp[- iiS -")

2a

where V" = v'+v

s 112 1 s2 + v - s21

To obtain f"(Ojx) we apply

(B.7)

(B.8)

fll(DIX) cc

-(V"+2)

f" (Ola,x) - f"(a) da (B.9)

n tC 2 " iis12
exp[- 2(- m" - na 2 /2n") + ] da (B.10)a0 2cy2

0C exp(n"'0/2) 5 a -(V"+2) - exp -
V"s 2 +n"(0-m")2

2G 2

+ n 2  a 2 I)
ni 8 f da

T1The Jacobian transform from f (0) to f (n) is -
n
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(B.1l) becomes

f"(nj:) c 1(n-2) /2 ) d a

This integral can be evaluated by recognizing that it may be rewritten

as

0-

t

-0

- exp [- (1/4 t + at)] dt (B.12)

where vU = (v"+1)/2

t = 2n"/n 2 a 2

a = -n- [v"

The value of the integral

where K ,(/a) denotes aVi

Substituting into (B.l11)

2
s"12 + n" (kn - m") ]

(Zellner, 1971) is 2(1/4a) V ,(/a)

modified K Bessel function.

gives

f"( i:l) 0C T (n-2)/2 . 2(1/4a)' /2KV ,(Va) (B.13)

Figure B-1 shows the probability density function of the mean

of the discharges, n , for the case where

n = n" = 37

2
S= .27

MI" = 8.6
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It is the case that the posterior mean of r does not exist

(Zellner, 1971) but from Figure B-1 it is noted that f (1) is

unimodel and positively skewed.

B.2 Bayesian Distribution of Discharges, f(g).

From the posterior distributions represented by Equations

(B.9) and (B.10) the Bayesian distribution for discharges can be

found by

f(q) = JfN -(qI0 ) f"(0Icx) f" (aix) d~da (B.14)

where

fLN~ - (kn q - 0 + a2/2)2 ]

Substitute for f"(|Ia,x) from Equation (B.5) and for f"(alx)

from (B.8) into Equation (B.14). ?(q) can then be represented

by

f q(q) m q exp [0/2 + n" 0 0/2] -+3)-

)exp (0-2n q)2+n"()-M") + VIS21 + n2+)n" ddb
2 2 n "l 8

(B.15)

The integral over a can be expressed by a modified Bessel

function of type K. Thus (B. 15) can be expressed, after substitu-
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tion for 0 as:

-1 [(n"-1)/2 2(/4)/2.6f(q) q 2(1/4a)*/2 K * (ra) dI (B.16)
11=0

*
where V = (v+ 2) / 2

a = n [ (kn n - kn y) 2 + n"(9An - M") 2+Vs2

K*(a) is a modified K-Bessel function. The density

function f(q) must be evaluated by numerical procedures. Appro-

priate numerical procedures are available but their investigation

is outside the scope of this thesis. Equation (B.16) was inte-

grated by the trapezoidal rule which will introduce errors that are

progressive - especially where the density functions are steep.

Figure (B-2) shows Bayesian PDF for q. The parameters

were the same as those for the posterior pdf for the mean fI.

Also given in Figure (B-2) is the density function from the Log-

Student pdf with the same parameters for comparison. The two

curves are almost identical and the difference is attributed to nu-

merical error in the evaluation of Equation (B.16).
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Appendix C

Bayesian Distribution of Floods from

the Exceedance Model.

The modelled CDF of exceedance floods is given by Equation

(4.29) and is

FZ(zl a,v) = 1 - vt exp[-zz] (C-1)

under the assumption that z is far, out on the tail.

is

Thus the pdf

(C-2)fZ(zka,v) = vta exp[-az]

The posterior pdf for v and a are both gamma-1 and are given in

Equations (4.32) and (4.34) respectively.

The Bayesian pdf can be found by Equation (4.2) which is:

Fz (z) = J Jfz(zIa, v) f.'' (v ju",s") - f 1 (alv"t -V da - dv

(C-3)

substituting into (B-3), (B-2) and rearranging

f (z) = t vf y' (v u",s"). exp[-az ].-f. (a I v", ") dodv

j )j
(C-4)

the integration over v gives v , the expected value of fYl''(V Iu",s") ,

by definition.

The integration over a can be accomplished by changing

parameters, that is
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T a expl-caz] - v"+1) a-c

I-

exp [ -0a] da

a V"+1. expj-a(k+z)] -da = ((v"+2) -(V"+2), z" 1

fcc

(C-5)

which can be simplified to

1-(v+2)

= E + "

cx = E[cc] -

Thus the integration of (B-4) gives

fZ(z) =

The Bayesian CDF

(C-7)
(V"+2)

\ at [1 + t ]F +1

F(z) can also be found by

(zIv,) f Yl(VIu"i,sl)- fYU'' (alv",9") - da - dv

- (v"+1)
= 1- Vt [1 + ] (C -8)

This result can be easily found by using similar procedures

as were used for I Z(z).
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Appendix D

Prior Estimation of v, the Arrival Rate for the Poisson

Exceedance Model, using a Distribution from Plotting Position

Theory.

This Appendix sets forth one possible statistical procedure

of estimating a distribution of the arrival rate of floods greater

than some level Qb. The problem of estimating V is related to

the problem of estimating the return period of the base flood Qb'

Qb may correspond to some level, say bank level in the river, so

that floods greater Qb are those of interest. Qb must be large

enough so that the flood events are independent and so that the

probability distribution of events greater than Qb can be approximated

by an exponential.

The procedure herein is to choose a discharge Qb that fulfills

the requirements of the exceedance model. Often the level can be re-

lated to a T year flood. Subjective assessment of the distribution

of the T year event,that Qb relates to,can be done using procedures

set out in Chapter 3. Instead here the engineer will answer the

question, "if we had a record n years long, a flood equal to or

greater thai Qb would be observed on the average m times." Thus

he would estimate the rank of Qb in a record n years in length.

Assuming that such an assessment can be made what is the distribution

on V, the arrival rate.

Let (1-P) be the probability that an event (flood) ha a value

dQb
less than Qb 2. There are (n-m) of these events.
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Let dp be the probability that an event lies in the interval

dQb

b 2. There is one such event.

Let p - dp be the probability that an event has a value greater

than Qb + 2 . There will be (m-1) events.

The probability of that the mth value lies in the discharge

band b 2 b will be dO; which is
Qb 2

dO pM1 ( n-m dp (D-1)

assuming that (p-dp) = p, let

rn-i n-rn
f (p) cc p (1-p) (D-2)

which will be the probability density function associated with the

probability that the mth rank in a record n is equal to or greater

dQb
than Qb 2

The probability that the cumulative density function of the

nth event is less than p is

F (p ) = f(p) dp =[n - m - (-p)n-m pm-dp (D-3)

.0 K0
The integral is related to the incomplete Beta function which is de-

fined as

BI(r,s,p) = tr (l-t)s-r-1 dt (D-4)
0

So that (D-3) is

F (p ) = n - m - BI(m-1, n, p ) (D-5)
IMo
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p was defined as the probability that an event of magnitude greater than

Qb - (or = Qb) had a distribution given by (D-2). The expected

value of p is easily shown to be:

E[p] = m (D-6)
n+1

V is the arrival rate of events greater than Qb. This is the pro-

bability p.

Thus the pdf of V is

f(V) = n m V m  (1V )n-m (D-7)

m

with E[v] = m (D-8)
n+1

If an engineer can subjectively choose m and n, in the

manner explained earlier, then a distribution on V can be found by

applying some theory from the distributions of plotting positions.

Both the pdf and the CDF are easily found. Some distributions of V

are shown in Figures D-1, D-2 for various m and n for E[v] = .1

and .067. The corresponding E[T] year floods are 10 years and 15

years respectively.

The pdf on V given by (D-7) can be used directly as a

prior. Since its form is not a natural conjugate, the posterior pdf

on V must be found .through numerical procedures.
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Figure D.1 Distribution for V, for E[v] = .1
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Figure D.2 Distributions for v for E[v] = .067
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APPENDIX E

This appendix presents the derivation G(q ), the exceedance

probability of the peak discharge of a natural catchment as derived

by Eagleson (1972).

Stochastic Model of the Rainfall

Eagleson, (1972), modeled the rainfall during an individual

storm event in terms of two random variables; the average rainfall

intensity, i [in/hr], and the storm duration t [hr]. The first
o r

order joint density function (conditional on the occurrence of a

storm event) is

f(i , t ) = X exp[- i - t ] (E-1)
S r o r

where and X are parameters

For Boston, Ma., S = 30 hr/in and A = 0.13 hour-1 (Eagleson, 1972).

The average rainfall excess intensity, i [in/hr] is assumed to be

i = i - 0
e 0

where 0 is a constant rate of water loss [in/hr].

It can be shown, (conditional on the occurrence of a rainfall

excess event) that the joint pdf of i and t is
e re

f(i , t ) XS exp[- i - t]
e r e re

where tre is the duration [hr] of the rainfall excess intensity.
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The total number of storms during a year is E but only N < 0

of these produce rainfall excess. Each storm is assumed to have a

rectangular storm interior.

Mechanics of Overland Flow

Eagleson models catchments as an idealized flow plane.

Kinematic wave theory is applied to determine the peak discharge

with the added assumption that the time of concentration for the

streams, tS, is treater than the time of concentration for the

overland flow catchment, tc. The peak discharge, q M, is found to

be

q = c [A (L , t')]3 /2  (E-4)
s s s *

where

a is a parameter of the streamflow (assumed by Eagleson to
5

be .1 sec )

2
A is the cross-sectional area of the streamflow (ft ) which
5

is derived from

3tr
A (L , t') = 16.7 a i 2 t 3 e - 2)

s s * c e c tc

7720R2 t - tr
+ c * e

a t t - tr + (t /2)(E-5)
cc * e c

for t < t < t + t
c re s c

and where

-1cx = catchment parameter (assumed to be equal to 10 sec
c
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by Eagleson)

Rc = dimension perpendicular to the stream of the area

producing direct runoff (miles)

t' = a time found from

t t
*

(t' - t )
* c (E-6)

[t' - (t /2)]
* c

for the case where t > t + t , q is found to be
re s c m

q = 645 A ri (E-7)
m r e

where

Ar is the area producing direct runoff (sq. mi.) assumed to

be 1/2 the catchment area.

i is the excess rainfall intensity (in/hr).

(E-7) is a particular result of the kinematic wave analysis of

rectangular storm events that converges to well recognized rational

formula.

F(qm) for Individual Storms

The flood cumulative probability density for individual events

can be found from

F(q ) = f(i , t r) dIe dtr (E-8)

qm

where the region of integration is defined by R and has boundaries

I = 0, tr = 0, qm = constant. This region is shown in Figure E-1.
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qm -constant

Rqm

Storm Duration tr

Figure E.1: i, tr Plane Showing Peak Discharge
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The boundary qm = constant is defined by the mecahnics of overland

flow and represented by Equations. (E-4) and (E-7). All combinations

of i and tr to the southwest of the boundary qm = constant produce

discharges less than or equal to qm'

The analytical structure of this region precludes an exact

analytical integration of (E-8). Eagleson approximates this region

by substituting for the boundary qm = constant a boundary defined as

t =B/im (E-9)
r e

where

A 655 4/3 A2
B =2.97( r 1/2[_ s r

[1 Lsa L1/3~c s c Ls m

and for m = 1/2

Under this approximation (E-8) can be integrated to yield

F(q) = 1 - e 2 % +lP F(a) exp[64KA] (E-10)
r

where

SX2A 655ct4/
3A 2

a = [2.21 K Ar S r) 1/3
KcL(1L 3 q1/3

c s sm

K = factor reducing point rainfall depth to average areal depth over

area A
r
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The total flood discharge peak, q , will include the peak due to direct

runoff, q , and the average contribution from groundwater, b which

Eagleson estimates to be

b = .074 (1 - '2' PAc (E-11)

where

01 = ratio of average annual runoff to average annual point

rainfall. (Estimated to be about .50 for New England)

02 = ratio of average annual direct runoff to average annual

runoff

P = average annual point rainfall (inches)

Substituting q - qb for qM in Equation (E-10) and taking the

compliment of F(q m) which is the flood exceedance probability, G(qM)2

results in Eagleson's derived flood frequency formula which is

-2a -a+1- b(
G(q ) = e a F(a) exp[ p6 A ] (E-12)

p K645A
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APPENDIX F

Analytic Derivation of the Marginal Likelihood Function

This appendix presents the analytical derivation for the marginal

likelihood or marginal density function of a probability model.

The marginal likelihood, K, is found from

K = L(OIQ) a f'(®)dO (F.1)

0

where

0 is the set of model parameters

L(_J Q_) is the likelihood function for a set of observations Q

f'(_) is the prior pdf for the parameters 0.

This appendix derives the marginal likelihood for the normal, log-normal

and exceedance models.

F.1 Marginal Likelihood for the Normal Model

Let q be distributed from a normal pdf. Then,given n independent

observations of q, Q, the likelihood function for yi and h is:

n
L(p,hlg) = H fN (q-ph)

i=l 1

= (2Tr) -n/2nn/2 exp[ h J(q 0 2] (F.2)

Define the following
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m = Iq

v = - 1(q -m)2

v = n-i

then

L~phJ) =(2T)-n/2 ex[--1 h N.v - - n(_ 2 hn/2
2 2

(F. 3)

(F.4)

(F.5)

Assume the prior on (P,h) is a natural conjugate prior of the form

f'(ph) = (2T) 1 2 exp[- g hn'(y-m) -2  hv'v ] -

22

,1/2h1/2 . /2%'-1(1/2 v'v') (F.
n h h r(1/2 vf )F

define

" n'm' + nm (F
n +n

n" = n' + n (F.

V" = ,,(v'v' + nm,2 + vv + nm2 - nm'1,2) (F.

V"It = V' + v + 1 = n" - 1

The product of F.5 and F.6 yields as an exponent on exp as

1 ' 2 + 2
- -=h [n' Qi-m') + v'v' + Vv + n (m-.J)

7)

8)

9)

(F.10)

(F.11)
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which can be expanded to

-- h[n'yp - 2n'm'y + n'm' 2 + v'v' + vv + nm2 - 2nmyp + np2

+ n"m" 2 - n"m" 2 ] (F.12)

VV" can be isolated easily

-2yn"d" = - 2p(n'm' + nm) , and

n P2 = (n' + n')p2

Therefore (F.12) can be rewritten as

- h [n"(P-m ) 2 + vIv"] (F. 12)

and (F.1) is, from F.12 and the constants in (F.5) and (F.6),

,l/2 -v/2 (1/2 vtv')1/2 v' -1/2 1/2 1KN =n (27r) -'1/2 v') I h (2r) h exp[- - hn

(---m") 2 ] hl/2v"-l exp[ vv]dPdh

(F.13)

The integral is equal to

1 , (1/2 v" )

n,,1/2 (1/2 vv")1/2v"
(F.14)

Thus

n'1/2 -'V/2KN = ( ) - (27r)
n

r(1/2 v") (1/2 V'v' ) l/2v'
17(1/2 v') (1/2 v 'v)l/2v"
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F.2 Marginal Likelihood for the Log-Normal Model

Let x. = Zn q. be normally distributed with mean p and
1 1

precision h. Then q. is log normally distributed by definition. The

probability density function for q is

f(qjph) = (2)-1/2 h/2 exp[- - h(x-y)2] (F.16)

The likelihood function for p and h, given n independent observations

of q is

L(yhIQ) = n_1 (2 ,)-n/2 hn/2 exp[- 1 n(x.-p)2] (F.17)

Sq.
i=1

Assume a normal gamma prior for p and h of the same form as Equation

(F.6). The marginal likelihood, KLN, is just the integration of p

and h over the product of the likelihood and the prior pdf.

N - 1 (2) -n/2hn/2exp[- hn I(x -P)2

i l i p,h

f'(p,h)dpdh (F.18)

The integral is of the same form as the marginal likelihood for the

normal model. Then, from Equation (F.15), KLN is:

1 n 1/2 -v/2 F(1/2 v") (1/2 v'v') 1/2 v'

N n n r7(1/2 v') (1/2 vtv")l/2 v"

I= q.

i~l 1(F*19)
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F.3 Marginal Likelihood for the Exceedance Model

Assume that the probability of flood discharges, q, are dis-

tributed such that discharges greater than or equal to some base

flow, qb, are exponentially distributed and that the arrivals of such

events are Poisson occurrences. As explained in Chapter 7, Section

7.3, the pdf for discharges less than qb will follow a uniform pdf.

Then the pdf for flood discharges, q, can be written as

f(qlv,) = vat exp[- ox(q-qb) if q >b

1-v
- ifb (F.20)

Given a sample of n independent discharges, Q, of which m are discharges

less than qb and n-m are discharges greater than or equal to qb then

the likelihood function for V and a is, from Appendix C,

L(v,1vQ) = v n-m an-m exp[-n (
S bm =l i b

exp[-,Jlt.] (F.21)

The marginal likelihood function, KE, is defined as:

KE L(v,alQ)-f'(v) - f'(a)dvda (F.22)

V ,cx
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The prior pdf for V and a are of the form

f'(v) = exp(-s'-v)-v' P 's)

f'(a) = exp(-Y'-a) a V _v')

= qb sjut fexpE-(s" + m)v] v (u'+n-m)-l dV
E b r~ u V

exp[-(Z' + J(q -qb)]-a (v'+n-m)-l da

The integral over v equals

F (u")

(s"+m)u

where

U" = U' + n - m

s" = s' + T (or s" = s' + t )

and the integral over a equals

P (v")
(II)

(Y' t)VI

where

v" = V' + n - m

" = ' + (q
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(F.25)

(F.26)

kI,
- (v')

a)i

-qb



Thus, KE equals

- squ' P(u") . vv' F (v") (F.28)
E b ,, u" r(u') ,,,v" r(v')

(s +m(U FA' ~
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