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ABSTRACT

The flow in an annular space between two separately rotating

cylinders of finite length is investigated. It is found that when

the outer cylinder rotates faster than, and in the same direction as,

the inner cylinder, the fluid moves largely in solid body rotation with

the outer cylinder. In order to understand the dynamics of this type

of flow, a laminar theory is formulated. The equations of motion are

linearized by developing the solution as a perturbation of the state

of solid body rotation. The theory predicts tangential velocities which

are independent of the axial co-ordinate in the interior region. It

also predicts the streamline pattern of the secondary motion in that

region.

The observed tangential velocities at mid-height in the

annular space, using water and air, are in good agreement with the

predicted velocities from the theory. Hot wire anemometers are used

for the measurement of turbulence intensities in air. In light of these

measurements the agreement with the theory is somewhat surprising, since

the flow is observed to be turbulent in all the experiments. The turbu-

lence intensities near the inner cylinder wall are found to be of the

same order of magnitude as those found near the wall in pipe flow.
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CHAPTER I

INTRODUCTION

In the past, engineers and researchers have devoted

considerable time and energy to the study of sediment transport.

Analyses of data collected from rivers and canals, which transport

sedimentary material over a bed or in suspension or both, have been

used in the development of empirical formulas to predict rates of

erosion and deposition. The formulas are empirical in that they

represent the alternatives which most closely fit the observations,

but lack the support of a rational basis.

In an attempt to approach this problem on a more rational

basis, researchers have used rectangular flumes with adjustable slopes

and cross-sections, in which alignment as well as water and sediment

discharges were accurately controlled.

To further increase control over flow conditions a special

experimental facility was conceived for the study of sedimentary

processes. This apparatus consists of two concentric cylinders both

of which rotate separately about a vertical axis, creating a rectangular

annular space. The annular space is closed at both ends so that it

can coiitain a mixture of water and sediments. At moderate rates of

rotation of the cylinders the centrifugal acceleration will force the

denser particles to form a layer on the outer cylinder wall which is

analogous to the bed of an open channel. By introducing a differential

rotation between the cylinders, a shear is introduced which, when

sufficiently large, will cause erosion of the particles from the layer

at the outer cylinder wall. The annular space is thus in effect an

infinitely long rectangular channel in which possible disturbances due



to entrance and exit conditions have been eliminated. Measurement

of the total shear force on a cylinder surface allows the determination

of the energy gradient. This is equivalent to the slope measurement

of a uniform flow in a rectangular channel.

The flow of homogeneous fluids between concentric rotating

cylinders has been subject to extensive experimental and theoretical

study. As early as 1916, Lord Rayleigh (1) noted that an inviscid

fluid flow between two concentric cylinders rotating in the same

direction, is stable with respect to axisymmetric disturbances when the

circulation increases continuously with the radius. Taylor (2) extended

the analysis when he investigated the stability of viscous liquid flow

between rotating cylinders with a low aspect ratio. The aspect ratio

is the number that results when the gap width between the cylinders is

divided by the height of the cylinders. Taylor's theoretical results

show that the flow between concentric rotating cylinders is always

stable with respect to axisymmetric disturbances if the cylinders rotate

in the same direction and the outer cylinder rotates faster than the

inner. However, when the inner cylinder rotates faster than the outer,

instabilities are predicted provided that the speed differential is

sufficiently large. The form of the instability is one of steady

counter-rotating toroidal vortices which encircle the inner cylinder and

are uniformly spaced along the axis of rotation. Taylor also reported

experiments which confirmed his stability analysis as well as the

existence of the toroidal vortices which are now called Taylor vortices.

In later papers Taylor (3), (4), studied fluid friction and

velocity profiles in the annular space. He concluded that the critical

speed at which turbulence begins in the annular space is very much lower
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for the case when the inner cylinder alone is rotating than for the case

when the outer cylinder alone is rotating. The results further show

that, when only the inner cylinder rotates, there are large velocity

gradients confined to thin layers close to the walls, whereas when only

the outer cylinder rotates there is a more nearly uniform velocity

gradient throughout the space between the cylinders.

Investigations by Pai (5), for the case with only the inner

cylinder rotating, showed that Taylor-type vortices also exist in

turbulent flow at speeds several hundred times the critical speed as

determined by Taylor's stability criterion.

Wendt (6) studied experimentally the case in which both

cylinders rotate separately, with the liquid in the annulus having a

free surface. Although the free surface may have had an influence on

the observed turbulent velocity distributions, the results showed trends

similar to those observed by Taylor. That is, when the inner cylinder

rotated faster than the outer, the shear occurred near boundaries,

whereas when the outer cylinder rotated faster than the inner, the veloc-

ity gradients were more nearly uniform throughout the annular space.

Coles (7) has made detailed observations of transition

phenomena in the flow between two separately rotating concentric

cylinders with the aid of visualization techniques and hot wire

anemometry. His work includes the mapping of transition boundaries

between the different modes of flow in great detail. It is particularly

interesting to note that a strong hysteresis was found in the transition

region in the case of the outer cylinder rotating.

From previous investigations it is thus known that Taylor-

type vortices and the associated complication of the flow pattern can
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be avoided if the outer cylinder is rotated faster than the inner.

Furthermore, a turbulent velocity profile characterized by nearly

uniform velocity gradients throughuut the annulus can be expected.

Therefore an apparatus for sediment studies was designed and built for

this mode of operation. The apparatus consists of two concentrically

rotating cylinders with end plates which rotate with the outer cylinder.

The flow passage is then a continuous annular channel of rectangular

cross-section in which the outer cylinder is analogous to the bed of an

open channel. The handling of sediments and the manipulation of instru-

ments in the annulus were deciding factors in the choice of the three

inch gap width. The height of the cylinders is two feet,so that the

aspect ratio is 1/8, which is slightly larger than the largest of

three aspect ratios used by Wendt. It therefore came as a surprise

when the first measured velocity profiles at mid-height showed an almost

complete absence of shear throughout much of the gap width. So

conspicuous is the absence of shear that a two inch thick layer of

fluid adjacent to the outer cylinder wall moves with that wall in solid

body rotation. It thus became clear, from these velocity measurements

as well as from preliminary tests with sediments, that studies of

sediment transport on the outer cylinder wall were not feasible with

this equipment. It is, however, possible to study erosion and deposition

processes on the inner cylinder wall provided the flow conditions there

are known. It is for this reason that a theoretical and experimental

study of the behaviour of homogeneous fluids was initiated in this

system.

A preliminary study of the dynamics of the flow has indicated

that the large aspect of the annulus is responsible for a strong



secondary flow during rotation, and that the momentum exchange occurs

primarily between the inner cylinder surface and the end plates, thus

causing the observed shearless region at the outer cylinder wall.

To develop an understanding of the mechanism for the unusual

behaviour in the annular space, a laminar flow model was developed. The

approach used is similar to that outlined by Greenspan (8), whereby a

fluid, filling a container, rotates at a slight deviation from solid

body rotation. The equations of motion are linearized by the elimination

of some of the convective terms, which is justified following an order of

magnitude comparison with the viscous terms. The fluid motion near the

end plate is found to be of boundary layer character and involves a

strong radial secondary motion. A similar analysis has been used by

Wedemeyer (9) to describe unsteady flow in a closed cylindrical container.

The experimental objectives of the research are the observation

of mean velocities, secondary motion, and turbulence structure. The

information so obtained is to be used

1) as a comparison with the theory developed for laminar flow.

2) as a prerequisite to proposed studies of sedimentary

processes near the inner cylinder.

The major portion of the observations were made with air as the test

fluid using hot wire anemometers to observe turbulence and secondary

motion as well as mean velocities.
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CHAPTER II

THEORETICAL CONSIDERATIONS

2.1 Method of Solution

The difficulty in solving the Navier-Stokes equations is

the presence of the non-linear convection terms in the momentum equations.

However, a class of solutions of non-trivial flows does exist in which

the convection terms conveniently vanish. For the equations in

cartesian co-ordinates such solutions are generally obtained by setting

all velocity components equal to zero except one. If u1 is the non-zero

velocity component, the continuity equation then implies that u1 is

independent of x . It then follows that all the convection terms

vanish.

In cylindrical co-ordinates the laminar solution of circular

Couette flow is similarly obtained by setting the radial velocity vr

and the axial velocity vz equal to zero. This is permitted only when

the cylinder axis has infinite length, making the flow independent of

the axial co-ordinate so that v can be chosen equal to zero. When the
z

length of the cylinders is finite, and in particular in the presence

of end plates, the convection terms must be retained.

To define experimentally the shear field in the annular space

of the rotating cylinders with end plates, velocity profiles in water

were obtained at mid-height as shown in Fig. 1. In all runs the end

plates are fixed to the outer cylinder. The striking feature of these

profiles is the almost complete lack of shear throughout most of the gap

width over a range of angular velocities of from 2.51 to 30.46 radians
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per second. The fluid at mid-height therefore moves in solid body

rotation with the outer cylinder, and it is only close to the inner

cylinder wall that fluid shear becomes apparent.

At steady state there must be a balance between the moment

of the shear force on the inner cylinder wall and that of the outer

cylinder wall plus end plates. Since the shear force on the outer

wall, at least at mid-height, is negligibly small, a strong shear force

is expected at the end plates. This implies a large velocity gradient,

and consequently the existence of a boundary layer at the end plates,

with the fluid moving radially outward. Measured velocities near the

upper end plate confirm this hypothesis that a strong secondary motion

exists which is directed outward in the neighborhood of the end plates.

Continuity requires an inward flow away from the end plates

and perhaps a second boundary layer at the inner cylinder surface

in which the flow is toward the end plates as shown in Fig. 2. Turbu-

lence measurements at mid-height have shown that throughout most of

the gap width the intensities are low so that a laminar solution may

have some success in representing the actual flow field. It is this

model of nearly solid body rotation in the interior with a boundary layer

at the end plates which serves as a basis for an analytical solution

of the flow field in the annular space.

Consider the following argument: If both cylinders rotate

at equal angular velocities, 0, the flow field is identical to the

forced vortex pattern. On the other hand, when the angular velocity

of the inner cylinder is less than that of the outer cylinder by an

amount AQ, where AQ is smaller than , a slight shear will be felt at
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the inner cylinder wall. Using the ratio

as the perturbation parameter, the solutions of the Navier-Stokes

equations are developed as a perturbation of the state of solid body

rotation. The procedure followed in developing these solutions is to

identify the three important regions of the flow, as shown in Fig. 2.

They are,

1) A boundary layer region near the end plate where the

velocity changes rapidly with distance from the boundary.

2) A boundary layer region on the inner cylinder wall where

the velocity changes rapidly with radial distance from

that wall.

3) An interior region where the flow conditions are

independent of the axial co-ordinate.

By an order of magnitude comparison of terms in the equations,

separate solutions are obtained, first for the boundary layer type flow

at the end plate, and then for the interior flow.

2.2 Perturbation Variables and Equations

The radial distance to any point in the annulus is expressed

in terms of the radius, R, of the outer cylinder. In non-dimensional

terms it takes the form

r
R

with a n < 1 where d is the ratio of the radii of the cylinders.

Similarly, the non-dimensional axial co-ordinate can be written
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z
h

with 0 1- 1i where h is the axial scale of the motion.

The dependent variables, velocity and pressure, are represented

as perturbation expansions in powers of the parameter

A62A (2.1)

as follows

r 2=cU1 + E U2 +..

Rz h 2--=-( w1 + Ew +...)
RO R 1 2

(2.2)

ye 2
-r - (sv + E v +

Rg2 1 2

2 2 p + Ep + E p2 + ..
pR 

2

The development presented here will deal with only the laminar

flow case. The fluid will be treated as being incompressible, and it

will furthermore be assumed that the cylinders are perfectly concentric

so that the steady flow pattern will be rotationally symmetric. This

permits elimination of the e dependence in the continuity equation

and in the Navier-Stokes equations, so that at steady state they can be

written

continuity

1 (Prv ) + - (pv) = 0r ar r az z
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r component:

2av v 2
V 6

P (v r - + vr ' 9r r z

l~ ~ 2vv Dp 2 v
r 1 r= - [- (- (rv +Dz Dr 9r r r r ))+ 2

z component:

P 1 1 a (r -v-Ir Dr 3r

6 c omponent:

av v v
r r +

r 3r r z
0ve

_

2

az

2
a V

3z
P[- ( (rv )) +

9r r Dr

These equations can be written in non-dimensional form by substitution

of equations (2.2) and by the relations

_ _ _3_ (2.3)
ar R 3h

Tz h BE

Including only the terms of zero order in e the equations in non-

dimensional form reduce to

r omponent:

ap

n an

z component:

ap

aE=

No zeroth order terms appear in the 6 component. It can be readily

verified that the zeroth order terms yield the basic solution,
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r z

V = r

2

r p Dr

Writing only the terms of first order in e,the equations in

non-dimensional form are,

r component:

22

-2v = - V [ - ( 1 D (nu )+ R 2 2 u (2.4)
1 1 R h2 2

z component:

2
R 1 V 1 R2 w

0- [ ( + n + -1 (2.5)
h 2 E 2 0 T a Tn I h 2 DE

e component:

2
V Rla 2 1

2u = -+ [-(--(jv))+- 1 (2.6)
1 2 Q n n Dn 1 h 2 32

The viscous terms in equations 2.4, 2.5, and 2.6 are all multiplied by

the quantity 1, where

E = R(2.7)
V

The magnitude of this dimensionless quantity can be calculated for a

given geometry when the angular speed and the fluid used are known.

For the particular application in this report it is easily verified that
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E >> 1 (2.8)

2.3 End Boundary Layer Region

In light of previous discussion it is expected that the motion

near the end plates will be of a boundary layer character. The axial

scale h in the boundary layer is therefore considered to be small

compared to the radial scale R. Consequently, terms multiplied by

the coefficient R2h 2 tend to dominate terms multiplied by the

coefficient of unity in the same non-dimensional equation. In the

viscous part, therefore, of equations 2.4 through 2.6 it is permissible

to neglect the first term as compared to the second. This transforms

equations 2.4 through 2.6 into the first order boundary layer equations.

2
3p 1 R 2 2 u

-2v -- [ - ] (2.9)
1 3n E 2 2

h 3(

2

R2 3pl 1 2 w
0- - [-- ] (2.10)

21 E 2 2
h h 35

2
2u 1 HS 1

2ul = h[ 2 E2 ](2.11)
h 3(

In the previous section E was shown to be several orders of magnitude

greater than unity. Consequently, from an order of magnitude comparison

of the terms in equation 2.10 it can be seen that the pressure is

independent of to first order. The final end boundary layer equations

can thus be written

2
1 2 3 u

2v = 1 1 1 (2.12)
1 E 2 2 n

h 35

-14-



0 = (2.13)

2

2ul E 3 2 (2.14)
h 3(

We are required to match the interior solution to the end

boundary solution at the latter's edge. If the non-dimensional first

order circumferential velocity of the interior flow is denoted by vi,

the pressure in the interior can be related to v from equation 2.4
2

using equation 2.8, and the condition that R is of order unity in the
h

interior. This results in

2v =- 1 (2.15)

From equation 2.13 it follows that the pressure in the boundary layer

depends on n only and thus may be evaluated from the interior condition

given by (2.15). Then from equation 2.12 it is evident that

2
R2 3 2u1

S 1 h 2 3 2
h 3(

For correct balance the terms in equation 2.16 are of equal magnitude.

1 
2

By equating the term E to unity, the scale of E in the boundary layer
h

becomes fixed, thus yielding

2
2 R 2

h2 - (2.17)B O

Combining equations 2.14 and 2.16 results in a single differential

equation for the tangential velocity as a function of the vertical
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coordinate C,

4- + 4v = 0 (2.18)

The subscript indicating that the velocity is of first order, has

been dropped. It is noted that is zero at the end plate, and

positive in the direction of the interior.

Equation (2.18) must satisfy the following boundary

conditions

= 0, ve = rQ = iRQ, v = 0, 0 = v

2 2
= 0, v = 0, u = 0, 2j = 0, 2 = 0 (2.19)

-+, v +v, +0

The solution of 2.18 satisfying the boundary conditions 2.19 is

^V(n)= - v(n)e cos ( for 0 < (2.20)

The distribution of the radial velocity in the boundary layer is

obtained from 2.14

2 2
1 R 2 - -

2u =- - (-v e cos )
h 35

Using equation 2.17 we obtain

u(n,) = v(f)e sin ( (2.21)

Equations 2.20 and 2.21 exhibit velocity distributions in u and v

which are similar to those of the classical Ekman layer (10). This

velocity distribution is also found in a layer on the earth's surface
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due to moving air masses. In this problem the flow outside the layer

is characterized by a balance between the pressure field and the

Coriolis forces. In the boundary layer the flow is decelerated causing

a decrease in the Coriolis forces. A new balance is established

between the pressure field, the diminished Coriolis forces, and the

friction forces. The problem is discussed by Prandtl (11, p. 356)

and was first formulated by Ekman. The present solution deviates from

the classical Ekman layer in that the "inviscid" velocity vector is

not constant but varies with n, thereby introducing a dependence on n

in both V and u.

The radial discharge in the end boundary layer is

q 2r rdz (2.22)
r

Using equations 2.2, 2.17 and the fact that ( = the radial dischargeh'

after evaluation of the integral becomes

q = fr(evRQ) (v/Q)1/2  (2.23)

This discharge is written in dimensional form by using equation 2.2

for the term in brackets, which yields

q = Tr(v/Q)l/2 (rQ-v ) (2.24)

The boundary layer discharge is therefore a function of the thickness

of the boundary layer (v/Q) /2, the radial distance itself, and the

velocity differential between the interior flow and the end plate.

-17-



2.4 Interior Region

2.4.1. Interior Equations

In the interior the magnitudes of both R and h are of equal

order so that in the equations 2.4, 2.5 and 2.6 we are not permitted to

2
ignore terms multiplied by unity compared to terms multiplied by 2i-

h
The relevant first order equations governing the flow in the interior

written without subscripts thus are

2 2- - (2.25)
2v l + R 4 u

E D ) an h 2 D 2 anh BC

- 2 2- 2
0 =n R 3 R R (2.26)

E na n an h2 C2 h2 DE

22-
E a nn a n h2 a2

h 35

where the overbars denote that the variables pertain to flow conditions

in the interior region. Using equation 2.8, it is evident from equation

2.26 that pressure is independent of 5, and that equation 2.25 can then

be written in the form

2v = - (2.28)

Since the pressure p is only a function of n, so is v. Equation 2.27

therefore reduces to

2u = - 1 (nv))] (2.29)E a n n an

from which it follows that u = u(n).

From a continuity condition it is possible to write a relation

between u and v in the interior region. Following a method used by
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Wedemeyer (9), this relation is obtained from

flows in the boundary layer and the interior.

the interior region must equal radial outflow

layer. The latter has been calculated and is

The former equals

the coupling between the

Thus radial inflow in

through the boundary

given by equation 2.24.

q = 2TrrH(-v r

where H is the vertical distance from mid-height to end plate.

Equating these discharges results in

- 1 2 1/2
v r - (v/H ) (rQ - v0 )

In terms of the

relation reads

perturbation variables defined in equation 2.2 this

- = 1-
u - kv

2

where

k = (v/H2 1/2

Now that it has been shown that u and v are functions of n alone, and

that a unique relationship between these variables exists, it becomes

possible to write equation 2.29 as a second-order, ordinary differential

equation with either u or v as the dependent variable. We choose to

write it for v, giving

kv - 1 d (nv)]
E dn n dai

After rearranging, this leads to,

2- -2-
2 d 2v dv 2-2 d + - - (1 + kEn ) v = 0 (2.33)

2 + dn
din

-19-
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The solution of equation 2.33 consists of modified Bessel functions of

order one, expressing the tangential velocity v as a function of radial

distance n. The general solution is

v = c111 (niE-) + c2K1 (n/kE) (2.34)

2.4.2 Boundary Conditions and Solution

The general solution 2.34 must satisfy the following boundary

conditions

n=1, v 0 =RQ, v=O (2.35)

n = a, v0 = aR(Q - AQ), aRAQ = vRAQ, v = a

It is obvious that at the inner cylinder wall u = 0, and using

equation 2.31, it is then also true that v = 0. This is not compatible

with the second boundary condition 2.35. This points out the necessity

of a boundary layer flow at the inner cylinder wall.

This boundary layer has not been analyzed in detail, but order

of magnitude considerations indicate that the change in the tangential

velocity, v, through this layer is very small. It is therefore

assumed that the boundary condition 2.35 may be applied. Substitution

in equation 2.34 yields two equations in the unknowns c1 and c2 '

c 11 (B) + c2K1 (B) = 0

c 11 (aB) + c2K1((aB) = a

where B = /kE.

By Cramer's rule the solutions for c1 and c2 are
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- tK 1 (B)
C1 = 11(B)K (aB) - K (B)I(B) (2.36)

aI 1 (B)

C2  1 I1 (B)K (aB) - K (B) 11 (aB)

The velocity at a given radius is thus a function of the quantities a,

1/2
R/H and E/. The first two quantities determine the geometry of the

annular space while the last quantity is the square root of the

dimensionless quantity which characterizes the Ekman layer.

2.4.3 Interior Solution for Large B

When the quantity B = (kE)1/2 = [IR/H)v(R)2 1/2 1/2 is

large compared to unity, the Bessel functions in the velocity equation

can be expressed in terms of their asymptotic expansions,

- enB -I
V ~_ + c2 /2nB eflB

./(27arIB)

Substitution of the boundary conditions 2.35, yields the approximate

solution,

- aa sinh B(l - ) (38)

Vn sinh B(l - a)

Since the geometry of the present apparatus is fixed, a, R and H are

constant. The predicted shape of the velocity profile in the interior

is thus dependent only on v and Q through B. Figure 3 shows variations

in the predicted velocity profiles with the parameter B, as computed

from equation 2.38.
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2.4.4 Stream Function of the Interior Flow

The radial and vertical velocities in the interior of the

annular space may be expressed in terms of the dimensionless Stokes'

stream function

U = - (2.39)

W = (2.40)

Using equation 2.31, the stream function may be expressed in terms

of the tangential velocity for which the distribution is known:

k -
$ = n v d + f((n)

By substitution of equation 2.34 and noting that p = 0 for ( = 0

the stream function is

= nE[c I (nB) + c2K (nB)] (2.41)

The stream function is a maximum for = 1, n = a

S [cI (aB) + c K (aB)]
max 7 [ 1 1  2 1

The equation for the streamlines then becomes

c 11 (aB) + c2K 1(aB)

= maxn c1 1(nB) + 2 1 ] (2.42)

The appropriate stream function for large B is obtained by a similar

procedure. It can be shown to be
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1 k a sinh B (1 - r)
2 sinh B(1 - a)

from which the streamline pattern is derived to give

= -- sinh B(l - a)

ma Jn sinh B(l - n)max

where

2
$p = ka /2max

(2.43)

(2.44)

Figure 4 shows the predicted streamline pattern in the interior for B

held constant, as computed from equation 2.43.
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CHAPTER III

EXPERIMENTAL ANALYSIS

3.1 Objectives and Design Conditions

The objectives of this phase of the research are directed

toward collecting experimental data to be used

1) in a comparison with the laminar theory developed in

Chapter II.

2) in constructing a complete flow pattern in the annular

space so that sedimentary studies at the inner cylinder

wall may be undertaken in a known flow field.

Experiments therefore include the measurement of velocity

profiles, i.e., velocity magnitudes and directions, and turbulence

intensities first at mid-height and later at different heights in the

annular space. Flow direction and fluctuations in velocity are more

easily measured in air with hot wire anemometry, so that hot wires

are employed presently in this research. To obtain the direction of

the velocity vector at varying axial locations throughout the gap

width, X-array probes are to be used.

This phase of the research, covering the dynamics of

homogeneous fluids in an annular space between rotating cylinders, is

part of the sediment transport study. Consequently, the facility was

not designed to specifically study homogeneous fluids. The design

criteria for the methods of operation, control and measurements

for the overall study are summarized in Report #83 of the Hydrodynamics

Laboratory, Department of Civil Engineering, M. I. T. (12).
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3.2 Description of Experimental Facility

3.2.1 The Main Apparatus

An assembled view of the apparatus is shown in Figure 5.

The most important components are identified by a number in the sketch.

Items 4 and 5 are the co-axial cylinders forming the annular flow passage.

This annular space is closed above by an end plate, 8, made of acrylic

plastic, bolted to the outer cylinder. The bottom plate, 6, which

supports the outer cylinder is attached to a hollow outer shaft, 2,

which transmits its load to a tapered roller thrust bearing, 13, mounted

on the rigid frame. Concentric rotation of the cylinders is achieved by

two radial ball bearings between the outer and inner shafts. The inner

shaft, supporting the inner cylinder by means of four arms, transmits

its vertical load to the frame by means of a thrust bearing, 13.

The cylinders are separately driven by 1.5 HP D.C. motors at speeds of

up to 300 rpm through notched belts and pulleys. Separate speed control

of each motor is achieved by a General Electric Amplidyne in a closed

loop with a tachometer-generator, driven directly by the motor. The

control system, which uses an external D.C. reference voltage, is shown

in Figure 6. To inhibit rust formation and corrosion, all supporting

members in contact with the test fluid are made of type 316 stainless

steel. The cylinder walls and flanges were fabricated from 1/2 inch

plate, and all welds were annealed prior to machining. Bronze parts

were used where mechanical strength is less critical. The final

dimensions of the annular gap measure 15.000 inches inner diameter and

18.017 inches outer diameter. The cylinder surfaces are machined to

a tolerance of + 0.010 inches, limiting cross-sectional variations in

the radial direction to less than 0.35%. The distance between the top
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and bottom plates is 24 inches with an estimated variation of 0.2%.

3.2.2 Instrumentation

Speed measurement - The determination of rotational speed

is extremely critical because the centripetal acceleration varies as

the square of the angular velocity. Values computed for the radial

pressure gradient are therefore sensitive to small errors in the

measured speed of rotation. Because the cylinders are coupled to the

motors through positive drive belts, speed can be accurately measured

on the motor shafts. A perforated disk mounted on each motor shaft

interrupts a light beam focussed on a photocell. The output of the

photocell is counted electronically, giving the speed to a precision of

1/500, over the entire range of operation.

Sliprings - To allow control signals and measured

signals to be transmitted into and out of the apparatus while the

cylinders are rotating, a set of mechanical slipring consisting of 18

information channels was used. These sliprings proved to be electrically

noisy and were used only for the transmission of control signals such

as those required to drive the traversing mechanism carrying the pitot

static tube. For the transmission of signals from hot wires a set

of mercury sliprings was devised which proved to be noise-free. The

mercury is contained in a set of stationary annular reservoirs as

shown in Figure 7, into which circular electrodes, rotating with the

inner cylinder, are immersed. Eight such channels are presently

in use. Due to vibration in the apparatus, ripples or waves are

introduced on the surface of the mercury. To avoid any possible

electrical noise from the surface irregularities in the mercury, the brass
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0O

B(L TED TO FRAME

FRE FOM SA-AFT S-AFT

EOLTEP TO .5HAFT

0

BRASS CONTACT A:/GS

TO ROTATE IN MAEUCIRY

MERCURY RESERVOIRS
(STA TONARY)

Figure 7 - Mercury slipring assembly

-30-

20 VOT3 DC 220 R)LTS AC

60 AMPEPE5
FUSE BOX

30 AAMPEPESC
FU-'E BOX

AMPI/DYNE AMPLIYNE

MOTOR, MOTOR

TACHOMETER
GENERATOR



electrodes were coated with a spray enamel and only the bottom edge

is allowed to make contact with the mercury. The resistance of this

type of slipring is negligibly small and it is noise-free at all

angular speeds tested.

Pitot Static Tube - Velocity profiles in water were

obtained at mid-height of the annular passage with a pitot static

tube, as shown in Figure 8, through an opening in the inner cylinder

wall. The support and traversing mechanism, shown in Figure 9, allows

movement and accurate placement of the instrument while the cylinders

are rotating. A small D.C. motor which drives the probe lead screw,

is also coupled to a rotary potentiometer. The resistance of this

potentiometer, which forms one leg of an external Wheatstone bridge

circuit, was calibrated to give the position of the probe. Figure 9

shows the pressure leads from the probe connected to a differential

pressure transducer. Pressure measurements using this transducer

proved unsuccessful due to excessive vibration pick-up by this

extremely sensitive instrument. Instead, a differential manometer

mounted on the hub of the inner cylinder was used. A stroboscope,

mechanically synchronized with the inner cylinder, served to illuminate

the rotating manometer. Readings were taken with a transit telescope.

In setting up such a manometer it is extremely critical that the

tubes be vertical and equidistant from the axis of rotation. Although

the menisci are sloping during rotation, they are clearly visible and

it was found that readings can be adequately reproduced provided the

tubes and manometer fluid are kept clean.

Hot wire anemometer - Mean and fluctuating velocities
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in air are obtained at mid-height with hot wire probes (Figure 10)

operated at constant temperature with a Thermo Systems Model 1020-A

Bridge Amplifier and a Flow Corporation Model CTA-3 Bridge Amplifier.

The hot wire probe is mounted in the opening in the inner cylinder

wall, without the use of a traversing mechanism, and is moved manually

into the desired radial position. The calibration of these probes was

done in a 2 inch diameter acrylic plastic pipe approximately 4 inches down-

stream from a bell-shaped inlet. The 9 inch diameter stilling chamber

upstream from the inlet is 20 inches long and contains 4 inch long tubular

flow straighteners at the upstream end to ensure uniform small scale

turbulence throughout the cross-section. The resulting velocity profile

at the test section was uniform.

The electrical power supplied to the hot wire is

calibrated against a known velocity. Calibration of hot wires as

well as calculations of turbulence intensities are discussed in Appendix

B. The known velocity is obtained from an average of four velocity

measurements, one of which is obtained from a Venturi meter, with a

diameter ratio of 2, located downstream from the test section. The

pressure differential is read by means of a micromanometer. It was

found that during the calibrations the air blower was unsteady at low

discharges. The lowest discharge judged sufficiently steady

corresponded to a pressure differential of 0.01 inches, which

represents a velocity of approximately 1.3 fps. The other three

velocity measurements were obtained indirectly by observation of the

frequency of vortex shedding from a stationary cylinder (see, for

instance, ref. 13). Three different sizes of rods were used in the

calibration. The relationship between the dimensionless shedding
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frequency (Strouhal number) for a circular cylinder and Reynolds

number served as a means to convert frequency to air velocity.

3.3 Experimental Methods

3.3.1 Preliminary Tests

Test with water - The velocity field in the annular space

can be assumed to be vertically symmetric about a horizontal plane at

mid-height only when the annulus is completely filled with water. At

rest, water fills the inner cylinder as well as the annular space

to a common level. During rotation, however, the centrifugal acceleration

forces part of the fluid into the annular space. Consequently, the

higher the angular speeds, the more fluid is forced into the annular space

so that for any given volume of water in the apparatus an angular speed

exists for which the annulus is filled. Increasing the angular speed

further will cause spillage from between the top plate and the inner

cylinder wall. Volume changes are thus necessary whenever the angular

speeds are changed. At higher angular speeds of 250 to 300 rpm, however,

the centrifugal acceleration approaches values of 40 gravities causing a

slope of 40 to 1 in the piezometric surface. Under these conditions

small changes in angular speed have little effect on the slope of the

piezometric surface in the annular space, making volume changes

unnecessary. The correct volume for each desired angular velocity

combination was obtained by trial runs. A mark was made on the inner

cylinder wall to indicate the required water level for a particular speed

combination. For all test runs the still water level fell below mid-

height of the cylinders, which necessitated a procedure for de-airing

the pitot static tube located at mid-height. By rotating the outer
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cylinder alone the centrifugal acceleration forced the fluid outward,

thereby raising the level in the annular space and submerging the probe.

With the inner cylinder, and thereby the probe and manometer, at rest

the system was de-aired.

Test with air - When air is used as the test fluid in

the annular space, volume adjustments as required with water are not

necessary. However, another problem arises, which can best be visualized

as follows: Consider a given volume of water in the apparatus when it

is at rest. From an argument analogous to that of the previous

section a combination of angular speeds can be found for which the

annulus is just filled with water. Adding more water to the inner

cylinder at this "equilibrium" speed causes spillage from between the

top plate and the inner cylinder wall, since the piezometric surface

is raised. A continuous through-flow will therefore result if an

unlimited supply of water is available to the inner cylinder. This

condition may also prevail when air is used as the test fluid.

Preliminary tests with hot wire probes have indicated that a through-

flow does exist. Attempts to seal the opening between the top plate

and the inner cylinder failed. At present, through-flow is prevented

by a seal in the bottom part of the apparatus as shown in Figure 11.

An annular rubber strip is attached between a horizontal flange on the

inner cylinder, and a circular steel ring which rotates with the inner

cylinder. A 1/16 inch thick teflon strip glued to the bottom of the

ring provides for a smooth sliding contact between the ring and the

bottom plate. The ring is centered by means of four brackets mounted on

the inner cylinder each having an adjustment screw which exerts pressure

on the inside of the ring.
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Aside from the problem of through-flow, the early velocity

profiles with the single hot wire probe were not reprodtucible. This

was primarily due to a drift in the initial current Io (see Appendix B),

which caused a change in the calibration equation,

12 =2 + BiY
0

Note that a plot of I2 versus /5 produces a straight line with intercept

2 2
I . It was found that the variation of I could be accounted for by

rewriting the calibration equation in the form
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2 2
S B U

2 2
0 0

A plot of (12 _ 2 2 versus VU thus yields a straight line which passes0 0

through the origin. Calibration curves as well as velocity profiles

were found to be reproducible using this method of plotting.

Various sizes of hot wires were used in the collection of

experimental data. The size that best suited our requirements for both

the single wire and X-array probes was the 0.00035 inch diameter

platinum or tungsten wire. It is relatively sturdy, and has a good

frequency response in the range from 0 cps to 15,000 cps at zero

velocity. It is therefore capable of measuring turbulent velocity

fluctuations. The X-array probe has two single wires mounted in the form

of an X. The wires are separately supported and each is operated by a

different bridge amplifier, so that each signal can be monitored on an

oscilloscope. It can be shown (14) that a single hot wire is most

sensitive to direction when it makes an angle of 45* with the direction

of flow. It is for this reason that the X-array probe, in which both

wires are approximately at 450 to the flow, is well suited for

direction measurements.

By displaying the output from the bridge amplifier on an

oscilloscope,a study of the structure of turbulence is possible. In

this manner it was observed that at all angular speeds a recurring

signal, which was periodic with the inner cylinder, occurred. Observations

with both cylinders locked together, so that there is no air movement

relative to the cylinders, produced the same periodic signal. The

cause of this periodic signal is not understood. It is presently under
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investigation. The influence of the periodic signal on the observations

of mean velocity can be considered negligible because the tangential

velocity fluctuations 2 were at most 25 per cent of the local mean

velocity (see Appendix B).

The possibility that the hot wire probe is measuring its own

wake when it is used in the rotating annular space was investigated. A

dummy probe of identical size as the recording probe was inserted into

the annular space at a location diametrically across from the active

probe. The observed mean current and the root mean squared value

of the voltage signal supplied by the Bridge Amplifier to the recording

probe were measured for the dummy probe inserted and removed. No

measurable differences between the outputs were found.

3.3.2 Velocities in Water

The velocities in water were measured with the pitot

static tube which was mounted through the inner cylinder wall and

connected to a differential manometer which was also rotating with the

inner cylinder. Velocity profiles were obtained by selecting a

desired angular speed for both cylinders, and then making a traverse

with the pitot static tube starting at the inner cylinder wall in steps

of one eighth to one quarter inch.

Because of space considerations and ease of reading, the

length of the manometer was limited to 18 inches. To cover the required

range of velocities with this size of manometer the indicating fluid

selected was #3 Merriam fluid with a specific gravity of 2.95. To

obtain reliable differential pressure readings from this manometer it is
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of paramount importance that the manometer tubes be vertical and parallel

and that they are equidistant from the center of rotation. To check

these conditions the cylinders were rotated together at various angular

speeds after de-airing the pitot static tube. Since the velocities

relative to the probe then are zero, the manometer must read a zero

differential. Many velocity measurements were discarded because of

trapped air in the system.

To be certain that steady state conditions prevail, a

certain spin-up time must be allowed after the cylinders have attained

the required angular speeds. Since each velocity profile in water

was obtained for a given set of angular speeds, the spin-up time was

important only for the first readings. Greenspan and Howard (15) have

indicated that the spin-up time required in a single container is of the

order of T = L(1v)/2 seconds, where L is a characteristic length of

the container. To get an idea of the order of magnitude of the spin-

up time, the above formula was used. Using a characteristic length of

one foot, the spin-up amounts to 182 seconds for an angular velocity of

2.51 rad/sec, whereas only 52 seconds are required for an angular velocity

of 30.46 rad/sec. In air these values are reduced to approximately one

third of the above values due to the increase in the kinematic viscosity.

This indicates that for both types of measurements the spin-up time is

unimportant.

3.3.3. Velocities in Air

Mean velocities and velocity fluctuations at mid-height were

obtained by observing the mean heating current and the root mean square

of the fluctuating voltage, respectively, which were required to keep

the hot wire anemometer in the flow at a constant temperature. For
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each radial position of the probe in the annular space, the speeds where

varied to give the same speed conditions as obtained in the tests using

water. In the previous section it was shown that the spin-up time

required in air is small and may be considered unimportant. The

previously mentioned periodic signal may contribute to the value of the

rms of the voltage and a correction may be necessary for the computation

of the turbulence intensities. In this report, however, all turbulence

data are presented in uncorrected form since it is still uncertain what

correction should be applied.

3.4 Analysis of Data

In the calibration of the hot wire anemometer, a number of

correction procedures were used. They were instrumental in producing

reproducible mean velocities during the calibration procedures. The

known velocity from which the hot wires were calibrated was an average

of four velocity measurements, three of which were obtained from a

Strouhal-Reynolds number relationship, and the remaining one was obtained

from a Venturi meter.

For the determination of velocity from the frequency of vortex

shedding, the following relationships (16) were used:

S = 0.212 [1 - 21.2 40 < Re < 150
Re

S = 0.212 [1 - 12.7 300 < Re < 5000
Re

where S = fd/U is the dimensionless frequency or Strouhal number

Re = Ud/v is the Reynolds number

d = the diameter of the shedding rod.
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For Reynolds numbers between 150 and 300 a linear relationship, joining

the curves defined by the above relations, was assumed. Three different

sizes of rods were used for the shedding of vortices. The output from

the hot wire anemometer positioned in the vortex street was displayed

on an oscilloscope, and the frequency of shedding was counted with an

electric counter. It was found that the velocities computed from the

shedding frequencies of three different rod sizes agreed within one

half per cent. It is noted here that it is important that the shedding

rods extend from wall to wall in the circular cross-section. The

frequency of shedding was altered by more than ten per cent, for

instance, in a 3 x 4 inch rectangular wind tunnel when a 1/8 inch

diameter shedding rod was moved away a distance of 1/8 of an inch from one

of the walls.

The velocities obtained from the above procedure were compared

with those obtained from a Venturi meter with a diameter ratio of 2

connected to a micromanometer. After correction of the computed velocity

from the Venturi meter by a discharge coefficient, using a table by

Rouse (17), the agreement obtained was within one half per cent. The

velocities so obtained were used as the known velocity in the hot wire

calibration procedure. Since the shedding rods reduce the effective

cross-sectional area of the 2 inch diameter test section, an area

correction coefficient was applied to account for the resulting change

in velocity.

A computer program was written in which these correction

procedures were incorporated. A copy of this program is included in

Appendix C.

Mean velocities in the annular space were computed from the
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observed mean heating current to the hot wire, using equation 5

2
in Appendix B, where the constants I and B were obtained from the

0

calibration of the hot wire anemometer. The turbulence intensities

were calculated, using the linear relationship of equation 6

in Appendix B. A computer program was written to perform the required

operations in calculating mean velocities and turbulence intensities.

A sample program is included in Appendix C.

For the plotting of the predicted velocities and streamline

patterns in the interior region of the annular space, a third computer

program was written. Velocities and $-co-ordinates are calculated at

intervals of 1/4 of an inch across the annular space, using equations

2.38 and 2.43 respectively. The ordinate in the velocity diagrams,

aG , is written in terms of the velocity, v, expressed in the above

equations by recalling that the perturbation velocity is written

v= (rQ - cvRl). A few points were calculated from the exact

solutions, equations 2.34 and 2.42, and compared with the solutions

obtained by the asymptotic expansion, equations 2.38 and 2.43. The

largest discrepancy in the velocity between the two solutions is

expected at small values of 2. This discrepancy was approximately

one per cent at Q = 2.51 rad/sec. The solution using the asymptotic

expansion was thus used throughout.

The computer program which performs the detailed operations

in the calculation of tangential velocities and streamline co-ordinates

is listed in Appendix C.

-43-



CHAPTER IV

DISCUSSION OF RESULTS

The observed mean velocity profiles at mid-height are presented

in Figures 12 through 15. Figures 12 and 13 show the experimental

velocity profiles in water compared with those predicted from the laminar

theory. Figures 14 and 15 show the same comparison when the test fluid

is air. In all these figures the co-ordinate system has been selected

such that experimental data collected from apparatus with different

geometry can be compared in the same plot. This has the advantage that

the influence of various factors such as total angular velocity Q,

aspect ratio, the ratio E = i-, viscosity or possibly the eddy viscosity

can be detected by merely observing the shape of the velocity profile.

The ordinate in these plots is taken to be an angular velocity

defect from the angular velocity Q of the outer cylinder in non-dimensional

form. This means that when the fluid is in a state of solid body rotation

with the outer cylinder, the local angular velocity is everywhere

equal to 2, so that the angular velocity defect is then zero. Therefore,

the horizontal line with ordinate equal to zero is identified with the

distribution of velocity when the fluid is in solid body rotation with

the outer cylinder. The no slip condition requires that all velocity

profiles originate at the point of zero ordinate at the outer cylinder

wall. In the figures, this is the point in the top right hand corner.

At the inner cylinder wall the angular velocity defect is at its maximum

value of AQ. In non-dimensional form the ordinate there is thus equal

to unity, so that all velocity profiles must intersect the inner cylinder

wall at the point where the ordinate is equal to unity. This point
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corresponds to the lower left hand corner of the diagram. The abscissa

for each plot, which represents the radial co-ordinate, is the variable

(R2 - r)/t where t = (R2 - R1) is the distance between the cylinders.

The predicted tangential velocities from the laminar theory are shown

in Figure 12 as solid curves for three values of angular velocity Q.

These curves are, of course, similar to those presented previously in

Figure 3, and indicate the influence of the total rate of rotation

on the shape of the tangential velocity profile. The higher the rate of

rotation the more closely the tangential velocity distribution approaches

that of solid body rotation. The observed velocities are also shown in

Figure 12. It is noted that the experimental velocity profiles have the

same general shape at the predicted ones. There is, however, considerable

scatter in the experimental data, so that detailed comparisons with the

theory are not meaningful. Much of this scatter may be due to difficulties

in reading the differential manometer, in particular at higher angular

velocities when the slope of the meniscus is large,

Another set of velocity profiles in water with lower angular

velocities is shown in Figure 13. The upper set of solid curves is

again the predicted tangential velocities from the laminar theory, whereas

the solid lines marked "modified solution" indicate predicted tangential

velocities when the kinematic viscosity v is replaced by an eddy

viscosity v . The eddy viscosity is introduced to indicate the general

influence of turbulence on the mean velocity profiles. Curves are shown

for values of v t/v of 20 and 50. The trend in the curves indicates that

an increase in viscosity tends to increase the defect of angular velocity

from that of the outer cylinder. This is due to the dependence of the

predicted tangential velocity on the ratio sinh B(l - n)/sinh B(1 - a)
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as expressed in equation 2.38, in which B varies inversely as the fourth

root of the viscosity. It is noted that the eddy viscosity has been

assumed constant throughout the width of the annular space.

The observed tangential velocities shown in Figure 13 indicate,

from a comparison of the two profiles that Q = 15.7 rad/sec, that

contrary to results in Figure 12, a change in AQ has a notable effect

on the shape of the measured velocity profiles. It is evident for

instance that although the data for AQ = 3.30 rad/sec show more scatter,

they produce a velocity profile which resembles the predicted curve

more closely than the data for AQ = 6.60 rad/sec. Although this behaviour

is not predicted by the laminar theory it should be noted that the

theory is restricted to flows in which c = AQ/Q is small compared to unity.

It is possible that a change in AQ and therefore in E is difficult

to detect when the magnitude of E is smaller than 0.27 as it is in Figure 12.

An increase in AQ is analogous to an increase in the Reynolds

number if the latter is defined as Re = AQRt/v. Intuitively an increase

in Reynolds number will increase the turbulent mixing. It is thus

possible that the turbulence level is significantly increased at

AQ = 6.60 rad/sec, in which case it would be reasonable to introduce

the eddy viscosity. It is seen from Figure 13 that there is reasonable

agreement between the "modified solution" and the data at AQ = 6.60 rad/sec

if the eddy viscosity is taken between 20 and 50 times the kinematic

viscosity. The remaining set of data in Figure 13 are for the inner

cylinder fixed, in which case c = AQ/Q = 1 so that the theory is not

expected to be applicable. The velocity here resembles more closely

a shear profile such as has been observed by Taylor (3) and Wendt (6)

in systems with smaller aspect ratios.
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Velocities in air are presented in Figure 14. It is observed

that both predicted curves and experimental data deviate further from

the state of solid body rotation than do the curves and experimental

data for similar conditions in water. This is due to the higher

kinematic viscosity of air. The experimental data are for a constant value

of AQ = 3.30 rad/sec, so that E varies inversely as Q. Although the

value of 6, for Q = 5.81 rad/sec, approaches a value of 0.6 the theory

still appears to be in reasonable agreement with the data. The small

amount of scatter in the air data is evidence that the measurements with

the hot wire anemometer are more precise at high rates of rotating than

the measurements with the impact tube-rotating manometer device.

A second set of velocity profiles in air, with a constant value

of AQ = 6.60 rad/sec, is shown in Figure 15. The agreement between

theory and experiment is remarkable, and is even better than for the

case when A2 = 3.30 rad/sec. The reason for this is not well

understood since intuitively one would expect increased turbulence at

higher Reynolds numbers, and thus departure from the laminar theory.

In all experimental runs with air the output from the hot

wire anemometer was displayed on an oscilloscope, and although it

was difficult to visually detect differences in turbulence intensities,

there is no doubt that the motion was turbulent for all runs. The

turbulence intensities were calculated from measured rms voltages;

they are shown in Figures 16 and 17. The turbulence intensity in Figure

16 is normalized by a constant velocity, RAQ, whereas in Figure 17

the local mean tangential velocity relative to the probe is the normalizing

factor. Both figures shown that the turbulence level is largest near the

inner cylinder and decreases to a minimum near the outer cylinder. This
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trend is in agreement with the observed velocity distributions in the

annular space which show an absence of shear at the outer cylinder

wall. Observed turbulence intensities near the wall in pipe flow (18)

are of the same order as those observed near the inner cylinder wall

in the annulus.

An unexpected result is the fact that the turbulence intensities

decrease when AQ, or equivalently the Reynolds number, is increased.

This appears to make plausible the fact that better agreement between

theory and experiment in air was found when AQ = 6.60 rad/sec as

compared to AQ = 3.30 rad/sec. However, the velocities in water showed

the opposite trend, namely that an increase in AQ caused the experimental

velocities to deviate further from the predicted ones. The trend that

the turbulence intensities are increased for an increase in Q, when AQ

is kept constant, is perhaps due to imperfections in the apparatus.

The intensity of vibrations for example are expected to grow with

the rate of rotation.

Initial observations with a X-array hot wire probe at

vertical locations other than mid-height have shown measurable changes

in the direction of flow with changes in radial position in the

annulus. Although these measurements are of a preliminary nature,

they indicate that observations of secondary motion are feasible with

the present equipment. A program involving detailed observation of

secondary motion and comparison with the theory presented in Chapter 2

is planned.
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CHAPTER V

CONCLUSIONS

In an attempt to explain the mechanism producing the unusual

flow in the annular space between two concentric rotating cylinders

of finite length, a solution for laminar flow conditions was developed.

The solution was based on a linearization of the equations of motion

using the ratio of the differential angular velocity to the angular

velocity of the outer cylinder as a perturbation parameter, E.

It was found that the theory not only predicts the general nature of the

velocity profiles but also is in reasonable agreement with detailed

observation of the mean velocity profiles.

Mean velocity profiles observed at mid-height in the

annular space in both water and air served to confirm the predictions

from the theory. The theory predicts, and differentiates between, the

velocity profiles in these two fluids having different viscosities.

The experimental results in air were found to agree with the theory

over a wider range of E values than do the results in water.

In all of the experiments in air, the flow was observed to be

turbulent, which makes the agreement between theory and experiment

somewhat surprising. All measurements in air showed a decrease in the

turbulence intensities with an increase in the differential angular

velocity.

Recommendations for Future Work

In light of the above conclusions, a program of continuing

investigations is recommended including:
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1) Measurements of velocity, turbulence, and secondary

motion at positions other than at mid-height. The

instrumentation for these measurements has been

developed.

2) A systematic study of the influence of the perturbation

parameter, E, and the Reynolds number on the characteristics

of the flow.

3) Theoretical analysis of the boundary layer flow near

the inner cylinder.
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APPENDIX A

LIST OF SYMBOLS

B = (kE)1/2

CV ,2 constants

d shedding rod diameter

E = R 2/v dimensionless number characterizing the Ekman layer

f vortex shedding frequency

h axial (vertical) scale of the motion

H vertical distance from mid-height to end plate in annulus

I heating current to hot wire anemometer

I heating current to hot wire anemometer at zero flow velocity

0 modified Bessel function

K modified Bessel function

k =(v/H)2 1/2

p pressure

q discharge per foot width

r radius

R inner cylinder radius

R2 = R outer cylinder radius

Re Reynolds number

S = fd/U Strouhal number

t width of annular space

U velocity

u dimensionless radial velocity component

v dimensionless tangential velocity component

w dimensionless axial velocity component

v r radial velocity component
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v 6 tangential velocity component

v z axial velocity component

z axial co-ordinate

OL ratio of inner cylinder radius to outer cylinder radius

TI dimensionless radius

E dimensionless axial co-ordinate

F = AQ/Q perturbation parameter

p density of fluid

yj dynamic viscosity of fluid

V kinematic viscosity of fluid

vt eddy viscosity

W angular velocity

Q angular velocity of outer cylinder

Q angular velocity of inner cylinder

AQ differential angular velocity between cylinders

dimensionless Stokes' stream function
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APPENDIX B

The hot wire anemometer is used frequently in mean velocity

and turbulence measurements in air. The air velocities are observed

by measuring the rate at which heat is convected away from an electrically

heated wire in the air stream. The theory of such measurements is

discussed in detail by Hinze (18). In this study a constant temperature

bridge-amplifier circuit was used, which maintains the temperature of the

hot wire at a constant value, and the heat transfer from the wire is

determined by measuring the power required to maintain this constant

temperature. In a given Reynolds number range, based on the diameter

of the hot wire, the electrical current, I, required to maintain a constant

overheat temperature in the wire is linearly related to the square root

of the flow velocity, U, past the wire (18), when the flow is perpendicular

to the wire:

I2 = A + B/ (1)

where A and B are constants depending on wire characteristics, overheat

ratio in the wire and fluid properties of the flow. The constants

A and B are evaluated from a calibration of I2 versus U

Experiments (14) have indicated that when the length-diameter ratio of

the hot wire exceeds one hundred, and when the angle between the flow

direction and the wire is larger than 20*, there is no coupling between

the temperature in the wire and the axial velocity component past the wire.

In applications where the direction of flow is not perpendicular to the

wire, the axial velocity component may therefore by neglected as long as

the intersection angle between wire and velocity vector is larger than

20*. Equation 1 then can be written:
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2
I= A + BU sin y (2)

where y is the angle between hot wire and velocity vector. The power

is thus seen to be dependent on the angle y. When velocity fluctuations

are introduced, only those in a plane perpendicular to the wire need be

considered and the instantaneous velocity normal to the wire is

-2 12 1/2
U = [(u + u') + v' ]

where u is the mean velocity

u' is the velocity fluctuation in the direction of u

v' is the velocity fluctuation normal to u.

The fluctuations in the flow require fluctuations in the energy supplied

to the wire, which can be written in terms of current fluctuations:

I = i + i'

By introducing these variables into equation 1 and including only terms

of first order in fluctuating quantities the following linearized

relationships can be derived (18).

12 =A + B/ (3)

., 9 .U' (4)
-1-

When the flow velocity u is zero, the required heating current is

defined as I so that equation 3 can be written:

-2 2
o B u (5)

2 2
0 0

Typical calibration curves of this form are shown in Figure 18.
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Taking the root mean square of equation 4 yields:

\I 2 - \ 2
u'_ 4i \ 1' (6)

u B F

Equations 5 and 6 were used throughout for the calculations of mean

velocities and turbulent fluctuations respectively.

To obtain an estimate of the neglected second order or

higher order terms it is necessary to include these terms in the

equations. The time average of the equation, including second order

terms only, is (18):

-2 2 12 + B1~ - u'2  1(i + i'2) = I2 + Bfu [1 - , 2 + I ]'
( 8 -2 4 -2 (7)

u u

The size of the term i,2 on the left hand side of equation 7 may be

estimated from equation 4. Equation 7 may then be written:

-.2 2 -1 
2  -, 2 12 (8)

I2 1 + Bu ( I - 1 ' + 1 '_l Buu (8)
0 8 ,2  4 -2 16 -2 -2u u i u

The quantity \/ 2 s seen f-rm equation tn li At mnqt of nrder 1.

For the work reported herein the maximum observed turbulence intensity,

2 1/2
(u,2 2, at the inner cylinder wall is of the order of 25 per cent.

u

This measurement is itself a result of a linearization, but is adequate

for a first estimate of the influence of the second order terms on the

value of u. The turbulence intensities in the radial direction are

expected to be smaller than those in the tangential direction by an

analogy to pipe flow, for instance (18). A reasonable approximation
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for (v2 1/2 u is one half of the value of (u,2)1/2 u, in which case

the term in brackets on the right hand side of equation 8 differs from

unity by 0.78 per cent. Therefore equation 5 may be used to determine

the mean velocity u with a maximum error of 1.6% due to second order

effects.
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C COMPUTER PROGRAM FOR CALIRATION OF HOT WIRE ANEMOMETER
C PROGRAMMED IN FORTRAN 2 ON IBM 1620 COMPUTER
* ID SCHRIEK, W. 4527 CALIBRATION
* SUBSET
C CALIBRATION OF 0.00035 INCH DIAMETER HOT WIRE
C USING FLOW CORP. ANEMOMETER
C INITILIZE VARIABLES FOR LEAST SQUARES PROCEDURE
C X IS NORMALIZED CURRENT QUANTITY
C Y IS SQUARE ROOT OF VELOCITY

NO=O
SUMX=O
SUMY=O
SUMXY=O
SUMX2=0

C TEMP=AIR TEMPERATURE ON DAY OF CALIBRATION (DEGREES F)
READ 100, TEMP

C VISC OF AIR IS EXPRESSED AS A FUNCTION OF TEMPERATURE
VISC=1.58E-04+(TEMP-60.)*5.5E-07
PUNCH 108, TEMP. VISC

C N=NUMBER OF SHEDDING RODS USED
READ 101, N
PUNCH 104
DO 1 Mv1,N

C SPECIFY ROD DIAMETER. SPECIFY AREA CORRECTION CUEFFICIENT (CuL)
READ 102, DIAM, COE

C L=NUMBER OF CALIBRATION PTS FOR EACH DIAMETER, AMPO=ZLRO FLOW CURRENT
READ 103. L, AMPO
DO 1 J=1,L

C FREG IS OBSERVED FREQUENCY OF VORTEX SHEDDING
C AMP IS OBSERVED CURRENT FROM BRIDGE AMPLIFIER

READ 105, FREQ, AMP
A=(FREQ*DIAM)/(0.212*12.)
B=(21.2*VISC*12.)/DIAM
C=(12.7*VISC*12.)/DIAM
AMP2=AMP**2
AMPG2=AMPO**2
AMPA=(AMP2/AMPO2-1.)

C TRIAL AND ERROR SOLUTION FOR VELOCITY FROM STRUUHAL-RLYNULDS RELATION
C VEL IS THE AVERAGE VELOCITY OF AIR STREAM PAST HOT WIRE

VEL=A+B
RE=(VEL*DIAM)/(VISC*12.)
IF(150.-RE) 3,3,12

3 IF(RE-300.) 5,5,4
4 VEL=A+C
RE=(VEL*DIAM)/(VISC*12.)
IF(RE-300.) 5,5,12

5 IF(.091-DIAM) 6%798
6 DO 9 K=1,2

VEL=A+0.207+0.00093*(300.-RE)
9 RE=(VEL*DIAM)/(VISC*12.)

GO TO 12
7 DO 10 K=1,2
VEL=A+0.285+0.00127*(300.-RE)

10 RE=(VEL*DIAM)/(VISC*12.)
GO TO 12

APPENDIX C.

8 DO 11 K=192
VEL=A+0.405+0.0018*(300.-RE)

11 RE=(VEL*DIAM)/(VISC*12.)
12 VEL=COE*VEL

VEL5=SQRT(VEL)
PUNCH 106,VELVEL5,AMPAPRE
X=AMPA

Y=VEL5
SUMX=SUMX+X
SUMY=SUMY+Y
SUMXY=SUMXY+X*Y
SXSY=SUMX*SUMY
SUMX2=SUMX2+X**2

1 NO=NO+1
P=NO

C U IS THE INTERCEPT ON SQUARE ROOT OF VELOCITY AXIS
C V IS THE SLOPE OF SQUARE ROOT OF VELOCITY VS CURRENT QUANTITY PLOT

U=(SUMY*SUMX2-SUMXY*SUMX)/(P*SUMX2-SUMX**2)
V=(SXSY-P*SUMXY)/(SUMX**2-P*SUMX2)
PUNCH 107, U, V

100 FORMAT (F1O.3)
101 FORMAT (11)
102 FORMAT (2F10.4)
103 FORMAT (110, F10.3)
104 FORMAT (5X,4H VEL,5X,5H VEL5,7X,5H AMPA,10X,3H RE /)
105 FORMAT (F10.5, F10.5)
106 FORMAT (4XF7.3,4XF6.3,5XF6.3,7XF7.U)
107 FORMAT (// 8X,21H LEAST SQUARE LINE IS / 14X,3H Y=,Fb.4,2H +,F6.4,

12H X)
108 FORMAT (//6H TEMP=,F6.2,5Xv6H VISC=,E10.3 //

END

Computer Programs



C COMPUTER PROGRAM FOR CALCULATION OF MEAN VELOCITIES + TURO. INTENSITIES

C PROGRAMMED IN FORTRAN 2 ON IBM 162U COMPUTER
* ID SCHRIEK. W. 4527 RUN
* SUBSET
C N-NUMBER OF DIFFERENT DISTANCES IN TRAVERSE
C S.SLOPE CF NORMALIZED CALIBRATION CURVE
C DISTO-LENGTH OF PRUBE INSIDE APPARATUS WHEN WIRE 15 AT INNER LYLINDER

READ 108. N. SDISTO
PUNCH I11
DO 1 I=lN.

C DISTDRMEASURED DISTANCE
C AMPO.Z RC FLOW CURRENT

READ 109.DISTlAMPO
DIST=15.+DISTO-DISTI
DO 1 J-,6

C REVD AND REV2 ARE INNER AND OUTER CYL SPEEDS AS MEASURED

C AMP-CURRENT READING$
C RMS IS THE ROOT MEAN SQUARE VALUE OF CURRENT USED IN TUR. CALCULATIUNS

READ 109, REVIREV2,AMPRMS
A2=AMP0-2
A02=AMPO*2
Y=(A2-AO2)/A 02
X-0.1034+2.9353*Y
VEL5=X
VEL (VEL5**2)
G.4.0/(1.0-A2/A21

C TURBRTURB. INTENSITY NORMALIZED BY LOCAL MEAN VELOCITY

TURBR=RMS*B/AMP
Wl(0.01256REV1)
W2I(0.01256*REV2)

DW=W2-Wl
C VELI'VELOCITY OF INNER CYLINDER

VELI-1.25*Wl
C VELO'VELOCITY OF OUTER CYLINDER

VELO'1.502*W2
C TURBATURB. INTENSITY NORMALIZED BY CONSTANT DIFFERENTIAL VELOCITY

TURBA.ITURBR*VEL)/1.5*DW
C VELA=ABSOLUTE VELOCITY

VELA=VEL+(DIST*WO/12.)
1 PUNCH 110,VELADIST(TUR8RTURBAW,W2,DW,VELIVELO

108 FORMAT (Il0,2F10.5)
109 FORMAT (4FO0.5
110 FORMAT(2(F7.3,2X),2IF8.4.2X),3(F6.2.2X).F7.3,2X.F7.3)
111 FORMAT(//OX,5H VELA.5X,5H DIST,3X.6H TURBR,4X,6H TURBA5X,3H Wl.

15X,3H W2,5X,3H DW,5X,5H VELI.4X,5H VELO /I
END

C COMPUTER PROGRAM FOR CALCULATION OF PREDICTED VELOCITIES AND COORDINATES

C OF STREAMLINES IN ANNULAR SPACE
C PROGRAMMED IN FORTRAN 2 ON IBM 1620 COMPUTER
* ID SCHRIEK W. E1673 DSR4527
* SUBSET
C LAMINAR SOLUTION FOR THE INTERIOR REGION
C Z 15 VERTICAL COORDINATE

DIMENSION PSI I10). Z (10), VISCW 120)
C A IS NONDIMENSIONAL INNER RADIUS

READ l.A
SASORT(A)
ASA=A*SA

DO 43 J=1,20
C VISCW IS STORED ARRAY OF KINEMATIC VISCOSITIES OF WATAR

43 READ 15. VISCWIJ)
DO 2 K=1,10

C PSI IS THE VALUE OF NONDIMENSIONAL STREAM FUNCTION
2 READ 1,PSI(K)

C TEMP IS AMBIENT AIR TEMPERATURE (DEGREES F)
C FLUID=1.0 STANDS FOR WATER. FLUID=2.0 STANDS FOR AIR

READ 40, TEMP. FLUID
IF (1.0-FLUID) 41,42,19

19 PUNCH 50
C AIR VISCOSITY IS EXPRESSED AS FUNCTION OF TEMPERATURE

41 VISC=1.25E-04 +5.5E-07TEMP
PUNCH 16
GO TO 11

42 DUM=TEMP-60.0
J-DUM

C WATER VISCOSITY OBTAINED FROM STORED ARRAY
VISC=VISCW(J)
PUNCH 17

C OMA IS ANGULAR VELOCITY IN RADIANS PER SECOND
11 READ 1,OMA

PRINT 13,OMA
PRINT 12
8=1.5*IOMA**.25)/(VISC**.25)
0=.0065/4MA**.5)

C PSIM IS MAXIMUM VALUE OF THE STREAMFUNCTION
PSIM0*(A**2)
BATAB*(11.0-A

C SINH BATA 15 EXPRESSED AS A SERIES EXPANSION
E-1.0
N-1
SINHABATA

5 N=N+1
K-(2*N)-1
F=K
E=E*F*(F-1.0)
D.(BATA*lK)/E
SINHA=SINHA+D
IF (0-.000114,4.5

C TRAVERSE THE ANNULAR SPACE IN 1/4 INCH INCREMENTS
4 DO 3 M=60,71

N.M-59

Y M

C R IS RADIUS IN FEET
R=Y/48.0

C ETA IS NONDIMENSIONAL RADIUS
C IF ETA=1.0 DEFINE VERTICAL COORDINATE EQUAL TO 1.0

ETAR/1.502
SETA.SRTIETA)
BETAB*(I1.0-ETA)
IF (BETAID2.2021

C SINH BETA IS EXPRESSED AS A SERIES EXPANSION
21 E-1.0

N-1
srNHE-BETA

7 N=N+l
K (2*N)-1
F-K
E.E*F*(F-1.0)

CI(BETA**K)/E
SINHE=SINHE+C
IF tC-.00OI)6,6,7

C V 15 THE TANGENTIAL VELOCITY
6 V= (ASA*SINHE)/ISETA*SINHA)

C ZETA = l-ETA/1-ALPHA
ZETA.BETA/BATA
ZOMA.V/ETA
PRINT 9,R,V.ETAZETA.ZOMA

DO 30 1-1,10
P=PSI(I)

Z(I) IP*SA*SINHA)/(SETA*SINHE)
IF (Z(I1-999.0) 30,30.31

31 Z(I)=999.0
30 CONTINUE

PRINT 10,(Z(I),1-1,10)
GO TO 3

20 Z2=1.0

PRINT 1.ZZ
3 CONTINUE
1 FORMAT (FID.5)
9 FORMAT (/6FID.4)

10 FORMAT (1OFB.3)
12 FORMAT (//49H PARAMETERS ARE PRINTED IN THE FOLLOWING SEQUENCE//49

DH RADIUS VELOCITY ETA ZETA ZORA/35H VERTICAL CO
DORDINATES FOR GIVEN ETA)

13 FORMAT (/9H OMEGA ISF6.2,19H RADIANS PER SECONO)
15 FORMAT (ElO.3)
16 FORMAT (//13H FLUID IS AIR //1

17 FORMAT I//15H FLUID IS WATER /I
40 FORMAT (2F10.5)
50 FORMAT (24H ERROR IN DEFINING FLUID I

GO TO 11
END
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