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ABSTRACT

This research developed important new results on the use of spec-

tral analysis techniques to evaluate groundwater resources. The linear

theory of aquifer spectral response in the frequency domain is developed,

including effects of aquifer slope, vertical flow, variable transmissiv-

ity and other features. Numerical simulations of the nonlinear effects

in the spectral domain are developed and show that the nonlinear effects

are typically quite small, thus making the simple linear theory applica-

ble for most field situations.

Some additional features which are explored are the effects of spa-

tial variability of hydraulic conductivity and the influence of tran-

sient flow in the partially saturated zone above the water table. Through

spectral analysis in the wave number domain, an error criterion is estab-

lished for a simple observation network which is used to measure ground-

water flow. The effects of storage in the partially saturated zone on

the frequency spectrum of groundwater fluctuations are estimated and

found to be negligible in most cases.

The theoretical results are applied to evaluate, through spectral

analysis, time series of groundwater levels, precipitation and stream

stage for a site in Kansas. From these data, using a procedure based on

the linear spectral theory, estimates of aquifer transmissivity and stora-

tivity are developed. The procedure yields parameter estimates which are

in agreement with those obtained from pumping tests.

The results of the study should be applicable under specified condi-

tions to the estimation of aquifer parameters from natural fluctuations

of groundwater level.
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Chapter 1 INTRODUCTION

Hydrologic phenomena are generally recognized as being affected by

complex natural events, the details of which cannot be anticipated pre-

cisely. Hence, the analysis of hydrologic systems is often viewed in

terms of stochastic processes. However, the analysis of groundwater

flow has traditionally been based on a deterministic approach to the solu-

tion of the governing partial differential equations. Natural variability,

such as temporal fluctuations in groundwater recharge or water level in

adjacent bodies of water and spatial variations in recharge and hydraulic

conductivity, is usually dealt with only in terms of average conditions.

Yet natural variability may be an important feature of groundwater flow

in that it may be possible to infer aquifer properties from water table

fluctuations. Also of interest are problems of aquifer management from

a probabilistic point of view. In the following report, natural tem-

poral variability in a phreatic aquifer is treated using a stationary

random description rather than a deterministic approach; and the various

influences of vertical flow, spatial variability, and storage of water in

the unsaturated zone are investigated.

Although there has been little previous work relating to the analy-

tical modeling of groundwater systems in a stochastic sense, there are

several related studies. The interpretation of groundwater level fluc-

tuation in order to evaluate aquifer properties has been the subject of

several investigations. Jacob (1943) used a weighted average technique

to relate precipitation to groundwater recharge, and thus to groundwater
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level fluctuation. Tison (1965), in a review article, described a linear

reservoir aquifer model with an accretion input in the form of a sine

series. He found that the reservoir outflow is a function of the accre-

tion fluctuation and is related to the aquifer area and porosity. In

an adjoining discussion Tison (1965) described a linearized Dupuit equa-

tion aquifer model which was subject to a sinusoidal stream stage boun-

dary condition. He found that the water level fluctuation (waves) created

by the boundary disturbance propagates into the aquifer with decreasing

amplitude, with short waves disappearing in a shorter distance. He also

found that the lag time of the fluctuations increased with distance away

from the stream. Pinder, et al. (1969) used a numerical model to evaluate

aquifer parameters from stream stage fluctuations. In all three cases

the groundwater system and inputs were treated as being deterministic

rather than stochastic.

One of the simplest models that can be used to represent a phreatic

aquifer is the lumped parameter linear reservoir system. Linear reservoir

models of groundwater systems have been used by Kraijenhoff van de Leur

(1958), Dooge (1960), van Schilfgaarde (1965) and Eriksson (1970a) to

examine aquifer outflow and mean aquifer water level.

The classical Dupuit approximation provides a more realistic dis-

tributed parameter aquifer model. Deterministic solutions for this model

are typically found through linearization of the equation (Cooper and

Rorabaugh, 1963; Glover, 1967; Venetis, 1971; Hall and Moench, 1972),

although Brooks (1961) and Singh (1969) have developed analytical solu-

tions for specific nonlinear problems. Several numerical solutions of
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the nonlinear Dupuit equation are available (Singh, 1969; Hornberger,

et al., 1970).

In some situations the spatial variability of aquifer properties

may have an important influence on the response of the aquifer to various

inputs. Although not previously examined in the stochastic sense for

groundwater, Buyevich, et al. (1969) have analyzed the related problem

of flow through a porous medium with a randomly varying porosity.

Spectral analysis has been used by Eriksson (1970a,b) and Jackson,

et al. (1973) for qualitative interpretations of time series of ground-

water levelprecipitation,and temperature.

Objectives and Scope

The general goal of the study was the development of analysis tech-

niques which can be used to describe groundwater flow phenomena which

are of a stochastic nature. More specifically, the immediate goal was

to develop and apply spectral analysis techniques to the evaluation of

groundwater systems, thus making use of the extensive data on water level

fluctuations in aquifers. The following specific objectives were estab-

lished:

(i) to develop linear analytical models for the spectral response

of phreatic aquifers, including the effects of different aquifer

configurations;

(ii) to evaluate the effects of nonlinearity in terms of spectral

response;

(iii) to apply the theoretical spectral results to estimate aquifer

parameters under field conditions;
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(iv) to estimate the spectral effects of other factors such as spa-

tial variability of hydraulic conductivity and unsaturated flow.

The theoretical analysis of the linear aquifer models was based on

the representation of random functions in terms of Fourier-Stieltjes integ-

rals. Solutions of the governing partial differential equation produced

input-output spectral relationships for various aquifer configurations.

The effects of aquifer slope, flow zone thickening, and vertical flow

were included explicitly and the influence of the unsaturated flow zone

was estimated. Some effects of the spatial variability of hydraulic

conductivity were evaluated using spectral analysis in the wave number

domain.

Nonlinear effects were determined from numerical simulation of the

nonlinear aquifer equations in finite difference form. Spectral analysis

of the nonlinear simulations was used to evaluate the nonlinear effects

in the spectral domain.

Applications of the linear theory were illustrated through spectral

analysis of field data on water level, precipitation and stream stage for

a site in Kansas. Aquifer parameters were determined by comparing theo-

retical transfer functions with those determined from the field data.
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Chapter 2 LINEAR THEORY OF AQUIFER SPECTRAL RESPONSE

2.1 Spectral Description in Time Series Analysis

Stationary Random Processes. A random process X(t) is said to be

strictly stationary if its statistics are not affected by a shift in the

time origin. In particular, the probability density function of X(t) is

independent of time. That is to say that the two processes

X(t) and X(t+ T)

have the same statistics for any T. But it is very doubtful if this

kind of process ever exists in nature. Since most of the methods used

in time series analysis are based upon the first and second moments,

i.e., means and variances, it may be more sensible to define a less

restrictive type of stationary process.

A process is said to be stationary in the wide sense if its ex-

pected value is a constant and its autocorrelation depends only on T.

In terms of the probability density function, p(X),

M = E[X(t)] = X p(X) dX (2.1.1)

1x(T) = E[X(t)X(t+ T)] = X(t)X(t+ T) p(X) dX (2.1.2)

for all t and T.

1 X( T) is the autocovariance function which is only a function of T,
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not of t. The quantity p X(0) is known as the variance.

Spectral Analysis. All stationary processes can be represented in

the complex form as

X(t) =t dZ() (2.1.3)

which is known as Cramer representation of a stationary process or sto-

chastic Fourier-Stieltjes integral, with the autocovariances in the form

(Granger and Hatanaka, 1964, pp. 28-29)

CO

( T e iWTd () (2.1.4)

where Z(w) is the complex amplitude of the Fourier modes of frequency w.

This process is also called a process of non-correlated increments be-

cause it has the following properties:

E[dZ(w1 ) dZ*(w2)] = 0 2

= d ()= S() dw
(2.1.5)

W 1 = W2

fS(W) dw' (2.1.6)

where the asterisk denotes the complex conjugate. O(w) is known as the

power spectral distribution and S(w) as the power spectral density or,

11
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spectrum. Using equation 2.1.5, 2.1.4 can be written as

(2.1.7)11 ( T ) = S (w) dw

Then S(w) can be found by taking the Fourier transform of 11 (T), the co-

variance function. Hence

1 =S (W) 27 I-iTP (T) dT (2.1.8)

For a real, discrete, stationary process,

(2.1.9)(w) = 1- J%+2 T p (j)cos (jw)]
j=l

Usually, for a limited amount of data, {X t , t=,2, - ,n}, p (j) is esti-

mated by R(T), where

1 n-T
R(T) = - Z (X -X) (X -X) (2.1.10

n-T t t+T
t=1

-- 1 n
x = - z x

n. t

)

(2.1.11)

Therefore the estimator, S(w), of the power spectral density is given

as

1 ^ n ,
S() = - [R(0)+2 E R(j) cos(jw)]

j=l
(2.1.12)

Since this estimate, S(w), is related to the periodogram, and

12

with



Hannan (1960) has shown that the periodogram does not give a consistent

estimate of S(w) and it is not at all smooth, it is customary to smooth

this estimate by a set of weighting factors which is usually called a

"spectral window". Among the most commonly used windows are Rectangular,

Bartlett, Tukey and Parzen (see for example p. 244 of Jenkins and Watts,

1968). The narrower the base width of the lag window, the less biased

is the smoothed spectrum of S(w); however, a narrow spectral window

gives a larger variance. So it is necessary to compromise between the

variance and the bias of the estimator when selecting the spectral

window.

Cross-spectral Analysis. In direct analogy to the univariate case,

a bivariate random process {X(t), Y(t)} is said to be stationary, in the

wide sense, if the first and second moment of this process are inde-

pendent of time. Hence,

MX = E[X(t)] = x p(x) dX

(2.1.13)
cont.

my =EY(t)] = y p(Y) dY
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y x(T) = E[X(t)X(t+T)] = Xk(t)Xk(t+T) p(X) dX

y (T) = E[Y(t)Y(t+T)] = Yk(t)Yk(t+T) p(Y) dY

1 (T) = E[X(t)Y(t+T)] = X.(t)Y(t+T) p(x,y) dX dy

with jY (T) is the cross-covariance function of the bivariate process

{ X(t),Y(t)}. Using the stochastic Fourier--Stieltjes integral, the

series {X(t)} and {Y(t)} can be represented in the form of

C*

X() ={ e

Y(t) = e

-CO

and their covariance functions as

y X(T) = e

1 y (T) { e

-00

iWt dZx ()

iWt dZ(W)

iWT

S y() dw

14

(2.1.14)

(2.1.15)
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y (T) } e S (w) dw

with

E[dZx(L 1) dZx (W2]

E[dZ Y(W 1) dZy (W2 ]

E[dZ X(W 1) dZy (W2)

=0

= S (w) dw

=0

= S (w) dw

=0

=S (w)M dw

Again, pX' SX 2 1Y and S are the auto-covariance functions and the

power spectra of the series {X(t)} and {Y(t)} respectively. P XY is the

cross-covariance function and

S () = Co (W) + i Q (W) (2.1.22)

is known as the cross-spectrum between the series {X(t)} and {Y(t)};

Co(w) is called the co-spectrum and Q(w) is the quadrature spectrum.

From equation 2.1.18, it can be shown that the cross-spectrum can be ob-

tained by taking the Fourier transform of iXY. Hence,

sxy = {- e **1p (t) dt

15
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1
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1
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(2.1.20)

(2.1.21)

(2.1.23)

(2.1.18)
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Again with a limited amount of data, SXXW) S YY() and S (o are esti-

mated by SXX (w),YY (w) and S Y(w) respectively.

Coherence, Phase and Gain Factor. In direct analogy to the square

of the correlation coefficient in classical statistical analysis, the

2
coherence function yXY(w), is a measure of the correlation between the

frequency components of the two processes and is given by

2 CSo2))2 + 2
Y2 - XY Co ) + Q (W) (2.1.24)

SXX YY' XX YY

The corresponding phase difference is given by

a (w) = tan-1 C(w) (2.1.25)

and is sometimes known as the phase spectrum of the processes {X(t)}

and {Y(t)}. The phase spectrum shows the time lag, positive or negative,

between the frequency components of.the two processes.

The gain factor, sometimes known as the amplitude of the transfer

function, is defined as

Is C0~l2 ) 2
_G(_)__-_C (w) + Q2(w) (2.1.26)GSw(1 )- S'(W)
SXX XX(*

which measures the amplitude magnification at different frequency com-

ponents. For more detailed discussions on spectral analysis, readers

are referred to any text on time series analysis, e.g. Jenkins and Watts

(1968).
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2.2 Linear Reservoir Model

One of the simplest models that can be used to represent a phreatic

aquifer is the lumped-parameter linear reservoir system as shown schemati-

cally in Figure 2.1. In this model we neglect all spatial variation of

water level and consider the average thickness of the saturated zone,

h(t), to be solely a function of time. It is also assumed that the out-

flow per unit area can be represented by

q = a(h-H) (2.2.1)

where a is an outflow constant and H is the elevation of the water sur-

face in some adjacent body of water. A water balance can then be stated

as

dh
S + a(h-H) = e (2.2.2)

dt

where e is the accretion or recharge rate and S is the average storage

coefficient. Under the assumptions that S and a are constants and h, H

and e are stationary in time, taking the expected value of equation

2.2.2, we have, for the mean values,

a(h-H) = 6 (2.2.3)

Thus it follows that the fluctuation about the mean also satisfies equa-

tion 2.2.2, namely

17



E (t)

I I I

S,a

Figure 2.1 Schematic Representation of Linear
Reservoir System.
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S lh + a(h I-H') = e
dt (2.2.4)

Then h', H' and 6' are stationary random processes with zero mean. Drop-

ping the primes and using equation 2.1.3, we have

h(t) = {eit dZ h(W)

H(t) = i t dZH(W)

E(t) = {et dZ ()
-. 00

(2.2.5)

(2.2.6)

(2.2.7)

Using equations 2.2.5, 2.2.6 and 2.2.7 in 2.2.4, the generalized Fourier

amplitudes are given by

dZh (W)
a dZH (w) + dZ (W)

iwS + a
(2.2.8)

Using equations 2.1.19 - 21, the spectral density function becomes

Shh = [a2 (HH()+a S HE(w)+a SH (W)+S ()]/(w2 S 2+a2 ) (2.2.9)

Similarly, the input-output cross spectra can be obtained from equation

2.2.8 to be

19



Sh(w) = [(a SeH ()+S ())(a+iwS)]/(a2+2 2 ) (2.2.10)

SHh (w) = [(a S HH(W)+S He())(a+iwS)]/(a2+2 2 ) (2.2.11)

when only a single input is considered (e.g., H = 0 or 6 = 0),say e = 0,

equation 2.2.11 reduces to

- a(a+iwS)
SHh (a2 2 2 HH (2.2.12)

(+o S )

From equation 2.1.26, we can see that the factor

a(a+iwS)

a + 2 S

is known as the gain factor or the transfer function from H to h. This

quantity can be used in applying spectral analysis to infer values of

the aquifer parameters, in this case a and S, for a groundwater system.

It is of interest to compare the results of this simple lumped-parameter

analysis with those for more realistically distributed systems in the

following sections.

2.3 Linearized Dupuit Aquifer Analysis

Dupuit Approximation. The Dupuit approximation is probably the most

powerful tool in treating unconfined flows through porous media. It

requires the assumptions that the equipotential lines (in two dimensional

cases) are essentially vertical and the flow essentially horizontal.

20



[See, e.g., Bear, 1972]. Thus, for the general case with fully penetra-

ting stream and finite length, L, as shown in Figure 2.2, the classical

Dupuit approximation leads to the following governing equation:

Bh rv3 (h+C)
S -h = a aKh a +at ax ax E: (2.3.1)

where h(x,t) =

S=C(x) =

S =

K=

F=

Equation 2.3.1

the

the

the

the

the

the

can

thickness of the saturated zone,

horizontal coordinate,

position of the impervious bottom of the aquifer,

storage coefficient,

hydraulic conductivity

accretion, which is assumed to be uniform over x.

also be written as

S ah a a - -
ac t ax x ax x+ (2.3.2)

Assuming Kh = T, the transmissivity, and = , the slope of the im-
ax

pervious bottom, to be constant, equation 2.3.2 can be linearized to

22hah a2h ah
S -= T -- + a K a

at 2 axax
(2.3.3)

with boundary conditions x = 0, h = H, and x = L, 0 0. For a station-
ax

ary random process the mean part of equation 2.3.3 is given by

ax ax E

ax2 a
(2.3.4)

21



S(t)

I I I

v SOK
H (t) 777.

-p x

I

h(x,t)

L

Figure 2.2 Phreatic Aquifer with Fully Penetrating
Stream and Arbitrary Bottom.

22

-9

9-

9-

9-

9-

9--
-9

9-

-



By substituting h h + h!

H = H + H'

where primed quantities represent the fluctuations about the mean, into

equation 2.3.3 and subtracting the mean equation 2.3.4, the equation

governing the fluctuations is given by

ah 2h' Th'
S a T + K '+ E

at ax2 ax (2.3.5)

with the following boundary conditions:

x= 0

x= L

h'= H'

ah'
a 0

Linearized Dupuit Analysis with constant bottom slope. Using the

stochastic Fourier-Stieltjes integral, equation 2.1.3, we have

h'= e dZh(Wx)

iot .ZC? = U uZ (W)

H' = e1it dZH(W)

-00

23
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Substituting equation 2.3.6 into equation 2,3.5, we have

d2 d
T 2[dZh(w,x)] + aK d [dZh (,x)] - iwS dZh + dZ =0

dx 2

with boundary conditions

x 0 h' ,H'(t)

x =L = 0

dZh(,0) = dZH (W)

dhd [dZh(W'x)] = 0

The solution to equation 2.3.7 is

dZh(w,x) = F(w,x) dZ H(W)

a1L a2x
a 1e e a 2

F (w,x) =

a 1  
2T

a2

idZ (W)
- [l-F(w,x)] S

a2L a x
e

alL -aa2La e - 22

OK 2 iwS
2 T

K2 iWS
2T) T

Thus, using equations 2.1.4, 2.1.5 and 2.1.6, we have the following re-

lationship between the spectral density functions

* * 55 i * **

Shh = (1-F-F +FF ) 2 2 - -- [(l-F)F S -(1-F )FS ]+FF S (2.3.9)SH He H

24
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(2.3.8)

and



For the particular case, S = 0, i.e., with horizontal bottom,

a - i 2 (I( )1/2 = b

and

F = cosh[b(x-L)] cosh[bL( -1)]
cosh bL cosh bL

Equation 2.3.9 can be shown reducible to equation 18 as given by Gelhar

(1974).

It is of interest to see how the bottom slope of the aquifer will

affect the spectral relationship given by equation 2.3.9 along the

aquifer. It can be shown that F(w,x) as given in equation 2.3.8, can be

written as

-TLx
e L t L cosh EL(l- ) - TL sinh EL(l- )

F(w,x) = EL cosh L - TL sinh (L (2.3.10)

with r = TL = -
2T

2 iL2  T
(L= (TL) +-L and a = -

S

Some of the curves are shown in Figures 2.3 to 2.8 for different values

of r at different locations along the aquifer. From equation 2.3.9, it

is seen that the function f E FF = Shh /SHH when c = 0 and thus charac-

terizes the spectral response of the aquifer to stream stage fluctuations.
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Figure 2.5 Aquifer Response to Stream Stage Fluctuations; Plot of f at x/L=.8
with Different Values of F.
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x/L=.25 with Different Values of F.
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Aquifer Response to Accretion; Plot of g at x/L=.5
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Figure 2.8
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Aquifer Response to Accretion; Plot of g at x/L=.75
with Different Values of r.
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Similarly, g H (1-F)(1-F )/Q 2 = T2ShhS CEL4), when H = 0, characterizes

the dimensionless spectral response to recharge fluctuations. The para-

meter S2 = wL 2/a in equation 2.3.10 is the dimensionless frequency and

L 2/a can be thought of as the scale of the frequency. It is easy to see

that the general effect of the sloping bottom is to damp out the high

frequencies as they propagate away from the stream. As can be seen from

these curves, for 1 < .1, this effect is negligible. This parameter, F,

characterizes the bottom slope. Putting T = Kh and L = C , we

have

r KL = x=L (2.3.11)~2T 2h
0

where h is a spatial average of the flow zone thickness. Also from the

steady state equation, we have

2

T A-(h+ax) =-E (2.3.12)
dx

d
with x= 0 f-(h+Sx) = 0

x =L h =H

for which the solution is

T(h+ax-9) = x(L- x) (2.3.13)

If the change in the saturated thickness across the aquifer,
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2h(L) - h(0) Ah eL L (2.3.14)

H H 2TH H

is small (say j--| < ),the linearized theory for sloping bottom should
H

be most appropriate because then T constant, The basis for this con-

dition is developed in the section entitled "Zone Thickening Effect".

Interaction between Linear Reservoir and Dupuit Aquifer. Consider-

ing the case as shown in Figure 2.9, with a phreatic aquifer connected

to a body of water or a linear reservoir, the governing equation for

the aquifer, using the Dupuit approximation, is

Th 3 3
h 

-= -- K h -+ (2.3.15)
St x ax

which can be linearized, by setting Kh = T to be constant, to

Dh h2
S - = T - + E (2.3.16)3t 2

with boundary conditions

x =0 h =H

x L -= 0
ax

For a linear reservoir, we have

dH ah
Y d + a k(H-h ) = T (2.3.17)

x=O
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3h
The term T - is the net inflow of water to the reservoir from the

phreatic aquifer. By substituting

h = h + h'

H = H + H'

S=S+ 6,

into equations 2.3.16 and 2.3.17 with the mean part removed, the equa-

tion for the fluctuations can be given as

dH' T Th'
- + a H' = -

dt 9 ax x=0

S - = T a + 2 '
at DX2

(2.3.18)

(2.3.19)

with x 0 h' H'

x =L --- 0
xx

Substituting the stochastic Fourier-Stieltjes integral for h', C' and H?

as given in equation 2.3.6, into 2.3.18 and 2.3.19, we have

k(iw+a) dZ = - dZ
T H ax h

2 dZ
iwdZh 2 dZh +

ax2

(2.3.20)

(2.3.21)

where a = T
S
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with boundary conditions

x = 0 dZh = dZH

x = L - dZ 0
dx h

Solving equations 2.3.20 and 2.3.21 simultaneously, we have, for solu-

tion, the following

dZ = (F-1) - dZ
h WS C (2.3.22)

cosh[bL( -1)]L

(a+iw) sinh(bL) + cosh(bL)

b =(1+i) -1/2

Tb
Note that the term T )

Tb

k.(a+iw)

can be written as:

2 2

(aL 
wL

(bL) SL a - i
( aL2 2 + (L 2 2

a

(2.3.23)

Using equations2.1.5 and 2.1.6, we have

*
= (F-1)(F -1) S ()

hh. 2 2 6 )
SLO

(2.3.24)

In this coupled-system, we have two independent parameters besides the

dimensionless frequency, a = wL 2/a, namely SL/ and aL 2/a. The first one
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and



represents the ratio of the volume in the two systems. While the second

parameter can be thought of as the ratio between the response time of

the two systems. However, it is not apparent how the combined effect of

these two parameters may affect the spectral relationship. Some of the

curves, using different combinations of these parameters, are shown in

figures 2.10 - 2.14. Noting that F in equation 2.3.24 is also a func-

tion of x/L, it is also interesting to examine the ratio

(2.3.25)

[S hh M/ScM

because of the fact that the resulting ratio [Shh (W) x=0 Shh()] is a

measure of the spectral response of the aquifer relative to that of a

water body (a lake or reservoir). The ratio given in equation 2.3.25 is

plotted against Q, the dimensionless frequency in Figures 2.15 - 2.17.

Zone Thickening Effect. In the previous models, we have ignored

the variation in transmissivity associated with the change in the thick-

ness of the flow zone. In this section, this spatial variation has been

kept in the analysis in terms of the mean flow condition. For simplicity,

only the horizontal bottom has been considered. From equation 2.3.1,

ignoring the bottom slope, the governing equation is

S ah = Kh ah + C (2.3.26)
tx ax ax

Putting h(x) =E(x) + h'(x) and s = Es + P-', where h(x) and c are the
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Figure 2.10 Response of the Aquifer-Reservoir System, Plot

of g along the Aquifer with aL 2/a = 1.0 and

SL/k = 0.1.
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SL/1 = 1.0.
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Figure 2.13 Response of the Aquifer-Reservoir System, Plot

of g along the Aquifer with aL 2/a = 1.0 and

SL/k = 5.0.

41



I I I I I lIIII I I I 1 I I I1 I 1111W:

1.0

-I 1.175

x/L =0. 25

0.1 1.0 10

Figure 2.14 Response of the Aquifer-Reservoir System, Plot

of g along the Aquifer with aL 2/a = 200 and

SL/k = 5.
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Figure 2.15
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Response of the Aquifer-Reservoir System, Plot of

Shh x=?0'hh along the Aquifer with aL 2/a = 1.0

and SL/k = 0.1.
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Figure 2.16 Response of the Aquifer-Reservoir System, Plot of

Shh x=0'Shh along the Aquifer with aL 2/a = 1.0

and SL/Z = 0.5.
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Figure 2.17 Response of the Aquifer-Reservoir System, Plot of

Shhlx=01 hh along the Aquifer with aL /a = 1.0

and SL/k = 1.0.
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expected values and h'(x) and c' are the fluctuations, equation 2.3.26

becomes

ah ah' a -Th -nh' +h3h +-S[-- + --- ] --[Kh -+ Kh + Kh' -- + Kh' +
at at ax ax ax ax ax

(2.3.27)

The mean part of equation 2.3.27 can be easily extracted, neglecting

terms involving products of the fluctuations

a x= - E (2.3.28)

with the following boundary conditions:

h= H

-x 0ax

x= 0

x= L

(2.3.29)

Since h is only a function of x, the partial derivatives can be re-

placed by total derivatives and the solution is

S(2L-x) (2.3
K

-2 -2
For -p = EL /2KH < 1, this equation can be approximated by

- - x x 2 22.
H - x = -(2- -) H + O(y ) (2.3

L L

The remaining fluctuating part of equation 2.3.27 is

.30)

.31)
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Dh' D -- h' h Dh'
S t - [Kh ax + Kh' --- + Kh' ]+ ' (2.3.32)

Noting that the third term on the right hand side is a product of two

small quantities, it has been neglected. Hence, we have for the govern-

ing equation for the fluctuations the following

Dh' D -3h' + h
S t = -[Kh x + Kh' -+ ' (2.3.33)

with K as a constant. Substituting h from equation 2.3.31 into 2.3.33,

we have

S -h= K {[1+ y -(2- -) + -]h'} + F' (2.3.34)
at 2 L L

with the following boundary conditions:

h= H'

= 0

x= 0

x= L

(2.3.35)

The parameter p characterizes the relative change of the saturated

thickness as is seen from equation 2.3.31 with x = L,

Ah
x-L

-H=}y H

For small V, we seek a perturbation solution in the form of

47



h' = h' + p h'. +32 h' + ---
0 1 2

Substituting equation 2.3.36 into 2.3.34, we have, neglecting terms of

order p 2 and higher and dropping the primes,

S a(h 0y-hu)h
S t

- a 2

2 fh.+ y [L(2-
ax

h0 + h =H

ah ah
0 1 =

)h+h]}+ h (2.3.37)

x= 0

x= L

Since KH = T, we have, for order pi,

ah
S 0

2ha h +
0 X

(2.3.38)

x =0 h =H
0

x=L aho

and for order y ,

a2h

T a =

T 2

T a[h (2- )

(2.3.39)
x 0 h1 = 0

ah
1

ax
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Upon using equations 2.1.4-5, the solution for equation 2.3.38 is

dZ = F dZ + i(F-1) dZ
h H WS E

0

cosh bL(x -1)

F= cosh bL
where

(2.3.40)

b =(1+i)
2ca

T

Note that equation 2.3.40 is identical to that developed previously

following equation 2.3.8. That is to say the nonlinearity does not

affect the solution of order po. Using equations 2.1.14, 2.1.15 and

2.3.40, order i equation 2.3.39 can be written in the following form

2 G(x,w) - i G(x,w) = TiS -(2- -) dZ
ax 2T T L L h

where G(x,w) = dZ + dZ 2(2- x)
hw h L L

with

x =0 G(x) = 0

x=L -= 0
ax

Using the method of variation of

can be found to be

parameters, solution to equation 2.3.41

G(x,w) = C1ebx + C2e-bx + G1 (x,W)

49
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where G1 (x) is given by the following integral

L

G (xW) = bL s(2- s)sinh[bL({ - s)]dZh d( ) (2.3.43)

00

and C and C2 are coefficients to be determined from the boundary condi-

tions. Note the term dZh is given by the order 'p solution in equation
0

2.3.40. Upon substitution of equation 2.3.40 for dZh in equation
0

2.3.43, G can be broken up into two separate integrals as follows:

x
' L cosh bL( -1)

G = - bL (2- -)s L b sinh[bL(X - )IdZ L L cosh U-d d(L-H L

-0

cosh bL( -1)
coshb -l]sinh[bL( - )f- dZ d(7)

10
(2.3.44)

The integrations of the integrals in equation 2.3.44 and the evalua-

tions of the coefficients C and C2 in equation 2.3.42 was developed on the

computer at the Massachusetts Institute of Technology, Project MAC's

Symbolic Manipulation System, using DEC PDP-10 computer and LISP program-

ming code. The results are shown in Figure 2.18 with the symbols used

in Table 2.1. It can be seen that the solution is in the form

G(x,w) = P (xw) dZ + P (x,w) dZ (2.3.45)H ' H WS E (2365

where PH(x,w) and P (x,w) are coefficients for the terms dZ and - dZ
H F rH WS E

in Figure 2.18. P (x ,w) dZ and P (xW) dZ are shown in
H ' H e WS
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Table 2.1 Directory of Symbols used in Figure 2.18.
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Symbols Equivalent Terms

B2  i/wS

DZE dZ

DZH 
dZH

%E exponential

Y bL

Z x/L

T s/L



2 4 Y 2 2 Y
2 6 OZE YE 2 8 DZE /E

2 Y Z + 4 Y 2 Y Z+ 2 Y 2 Y Z 2 Y Z+ 4 Y 2 Y Z + 2 Y 2 Y Z
+2 Y ZE

DZH XE Z

+ Y IE Y 7E + 2 Y IE + Y IE

2 4 Y
9 OZE IE z

Y Z+4 Y YZ+2Y YZ YZ+4Y YZ+2 Y Y Z
4 Y ZE + 8 Y XE + 4 Y /E 4 Y /E + 8 Y /E + 4 Y /E

2 Y
OZH ZE Z

2 2 Y
B OZE 7E Z

Y Z+4 Y Y Z+2Y Y Z YZ+4Y YZ+2 Y Y Z
4 Y XE + 8 Y ZE + 4 Y ZE 4 YXE + 8 Y /E + 4 Y /E

2 Y
DZH ZE

S 2 Y
B OZE XE

-------------------------------- 4---------------------------7----

YZ+ AY YZ+2Y YZ YZ+4 Y YZ Y. Y Z
2 Y ZE + 4 Y 7E 2 Y XE 2 Y XE 4 Y /E + 2 Y /E

4 Y 3 2 4 Y 3
OH Y 7E Z 8 2E Y /E 2

Y Z+4 Y YZ+2Y
+ 12 ZE

2 Y 3
OZH Y E Z
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6 /E 6 /E 12 ZE 6 /E
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6 IE
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Figure 2.18 Solution to Equation 2.3.45
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2 Y 2 2 2 Y 2
DZH Y XE Z B OZE Y /E Z

-------------------------------- 4------------ ---------------------------------------
YZ+4 Y YZ+2 Y YZ YZ+4Y YZ+2 YY Z

2 7E + 4 7E + 2 IE 2 ZE + 4 IE + 2 /E

4 Y 2 4 Y
DZH E Z8 DZE /E Z

-------------------------------- 4---------------------------------------------------
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Figure 2.18 continued
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B D2E Z YE 28 DZE /E B OZE /E Z 2 8 OZE /E Z

----------------------------------------------------- 4---------------------------+--------------------------
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Figure 2.18 continued
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Figures 2.19 and 2.20 with the substitutions of

bL(=) + 4bL
T = eL + bL( ) + 2bL bL( )

(2.3.46)

TT18= e4bL + 2e2bL + 1 (2.3.47)

Now G(x,w) in equation 2.3.42 has been found. From equation 2.3.36, we

have

dZh =dZh + dZh + O(2)
0 1

(2.3.48)

Using equation 2.3.41 in the above equation, we have

(2.3.49)dZh dZ + p[-'2--)d
h h L )dZ]

0 0

Hence, we have, upon using equations 2.1.19 - 21, and retaining only

0(p) terms, the spectral relation

S c *

Shh f H+G g 2 2 - {[1-2,p( 2- )]F(F -1)+ 2 pPRe[PH(F -1)]} SS f +Q S wS

+ {1-2 x(2- -)]F (F-1)+2pRe[P F]} S
oS L L E eH

(2.3.50)

f = { [1-2p (2- x)]FF +IRe[P F*]}

2 x x * *
2 g = { [1- 2 py( 2 - )](F-1)(F -1) + 2IRe[P (F -l)]}

L L E( 1
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Figure 2.19 P H(x,w)dZ H in Equation 2.3.45.
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Figure 2.21 Plot of f in Equation 2.3.50 with p = 0.1.
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Figure 2.22 Plot of f in Equation 2.3.50 with p = 0.2.
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Figure 2.23
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Plot of f in Equation 2.3.50 with p = 0.3.
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Figure 2.24 Plot of g in Equation 2.3.50 with = 0.1.
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Figure 2.25 Plot of g in Equation 2.3.50 with = 0.2.
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the functions f and g are shown in Figures 2.21 - 26 with different

values of p. It can be seen that the value of i does not have much

effect in the higher frequency domain while the change may be noticeable

at low frequencies (compare with Figures 2.5 - 2.8 with r = 0).

2.4 The Laplace Aquifer

The above analyses of the Dupuit aquifer can be expected to provide

a reasonable representation of relatively shallow aquifers at location

away from the stream. However, for relatively deep anisotropic aquifers

with partially penetrating streams, the assumption of predominantly

horizontal flow becomes inadequate. An analysis of the dynamic effects

of vertical flow will be developed in this section.

The flow in a vertical section of a two dimensional homogeneous

anisotropic phreatic aquifer, as depicted in Figure 2.27 is described by

a2 a2
K - + K - = 0 (2.4.1)

x 2 z az 2

where 4(x,z,t) is the piezometric head, and K and K are the principal
x z

components of the hydraulic conductivity tensor whose principal axes co-

incide with x and z. The linearized phreatic surface boundary condition

is

n + K = z = n(x,t) ~ 0 (2.4.2)at z Dz

where n is the effective porosity. It is consistent with this lineari-

zation to apply the condition at z = 0 as done by Dagan (1964) and Hunt
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Figure 2.27 The Laplace Aquifer
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(1971) in related deterministic problems. The shape of the phreatic

surface n(x,t) is related to the piezometric head through the constant

pressure condition 4(x,n,t) = n(x,t) and under this linearization it

is consistent to apply this condition at z = 0, i.e.,

(x,0,t) r(x,t) (2.4.3)

The conditions of no flux through impervious boundaries are

z = - h = 0 (2.4.4)

0 3Z

x = L 0 (2.4.5)
DX

In addition, at the stream of width 2w we require that

$k -n=0 at z=0, x w (2.4.6)

which implies that any seepage face at the stream is negligible.

The mean flow condition is found by taking an ensemble average

of equations (2.4.1 - 2.4.6). Explicit solutions jDagan, 1964, Eq. 14]

have been given for the steady mean flow in the case h + <o. However,

for a stationary random process the fluctuations of , n and e are

also governed by the linear system (2.4.1 - 2.4.6) and the mean flow

is not explicitly involved.
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With $, n, c now denoting fluctuations with zero mean, the represen-

tations

$= I eiwt dZ (Wx,z) (2,4.7)

{ e iwt dZ ( w,x) - 0
iwt

e dZ (ow,x,O)

are introduced along with

e(t) = e dZ () - 6(x)

-00 -C

eist dZ (w)

where 6(x) is the Dirac delta function. The last term in equation

2.4.9 represents outflow to the stream which is approximated in the

form of a point sink. Note that this representation of the stream

does not introduce the shape of the stream cross section explicitly.

The shape of the stream is given implicitly by the condition p = 0.

Because equipotentials near a sink are circular, the stream boundary

will be practically circular in the transformed (y,z) system or

elliptical in (x,z) when w << L.
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With equations (2.4.7), (2.4.8), and (2.4.9), and the notation

D E dZ (M), c dZ (w), q EdZ (), y = (K /K )1 /2
r) q z x

N E dZ (w) and system (2.4.1 - 2.4.6) becomes

-+-- 0

3y2 3z 2

iwn 4 + K LIz =z

=N, z =0

3z

-= 0,

= c - 6(y)q , z - 0

z = -h 0

y = k

=0, z = 0, y = w' = w(K /K ) 1 2

With symmetry about y = x = 0, the solution of the system equations

(2.4.10 - 2.4.15) will be of the form

a

I a cos X y cosh X (z+h)
m=l m m m 0

(2.4.16)

which satisfies (2.4.10), (2.4.13) and (2.4.14) with Xm = m7/k. Using

the Fourier series representation of the delta function
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(2.4.11)

(2.4.12)

(2.4.13)
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b
%(y) E + b cos A y

m1 m m
b = 1/2

In (2.4.17)

equation (2.4.11) requires that

a = (2c-q/k) / (iwn) (2.4.18)

-1a (q/k)(iwn cosh A h + K A sinh A h ), m > 0m m o z m10 (2.4.19)

and from equation (2.4.15)

a
0

0 = -- + a cos A w' cosh A h
2 = m In mo

which, with equation (2.4.18), yields

4bkc/K
a0 = 1 + i 2(y

(2.4.21)

a = ' cos A w'(mftanh A h + iC)
m=1 m m o , E = nw/K z

The complete solution for D then becomes, from equations (2.4.18),

(2.4.19) and (2.4.21),
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cosh (z+h ) cop
dZ E 2Zb

S (I + i2 a)K -z
m7 sinh X h + i cosh (2.4.22)

ml o i coshm O

The generalized Fourier amplitudes of n are found from equation (2.4.22)

with z = 0, c = dZ and equation (2.4.12) as

2 / z- cos.w' x cos XMy
dZ (wy) = dZ (W) 2CG EX

S 1 + i2(a m tanh nh +i

Thus following equation (2.1.19), the spectral density functions are

related by

S K K
nn x z G(Qx/L, h /k,w/L)

S 4L2
6E:

-1 00
Sr E A

Ml M
0 * -1 2

E A r [(E u) +
mal m m=1 m

r = 1 - 4Ea + 4C 2 (( 2+a. 2 ) , a = a + i . , = oh /Z , Q = nL /K h
Sr i r 0 x o

cos x w' - cos x y
A u + iv = m m

m M m m7 tanh X h + it
m o

(2.4.23)

The variable Q is the equivalent of the dimensionless frequency variable

used for the Dupuit aquifer when n = S and K h - T. The sums in equa-

70

2
v ) ]( E1

M=1



tion (2.4.23) were evaluated by digital computer; the series are conver-

gent but several hundred terms may be required to obtain accuracy of a

few per cent, especially when w/L is very small. Some typical results of

the numerical evaluation are shown in Figures 2.28 and 2.29. Figure 2.28

shows, in a logarithmic form which is similar to that used in the Dupuit

aquifer presentation, the effects of relative horizontal position in the

aquifer; the trends are similar to those for the Dupuit aquifer. Note

the G is related to the Dupuit aquifer response function, g by G = (K z/K )

2
(L/h ) g/4. In Figure 2.29 the dependent variable * = 4Q(h /Z)2G is used

because this is equivalent to the dependent variable Qg(Q) for the Dupuit

aquifer when T = K h and S = n. This form of presentation provides a
x o

direct graphical indication of the importance of different frequencies in

the transfer relationship Shh S. Because * is proportional to wShh /SEE

and

h2 = Shh dw = 2 WShh d 9n w

the incremental area under the curves in Figure 4 directly represents the

contribution of a given frequency to the total mean square fluctuation when

the input accretion is represented by white noise (S = constant). Fig-

ure 2.29 illustrates the effects of the additional parameters for the

Laplace aquifer (w/L, h0 /) in comparison with the Dupuit result. The

response curves for the Laplace aquifer are seen to have shapes quite

similar to the Dupuit aquifer but the amplitudes can differ significantly

depending on the parameters. The trends indicated in Figure 2.29 are

intuitively reasonable; an increase in the stream width (w/L) reduces
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Figure 2.28 Spectral Response of the Laplace Aquifer;
Solid Lines Represent the Laplace Aquifer
with h /Z = 0.1 w/L = 0.01 and the
Dashed Lines the Dupuit Aquifer.
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Figure 2.29 Laplace Aquifer Spectral Response at x/L = 1/2,
where i = 4Q(h /Z) 2G and Q = wL 2n/(K h ); Curve
1, h0 /Z = 0.5, w/L = 0.05; Curve 2, to7k = 0.1,
w/L = 0.003; Curve 3, ho/L = 0.1, w/L = 0.01;
Curve 4, ho/k = 0.02 and 0.0002, w/L = 0.01;
Curve 5, ho/Z = 0.1, w/L = 0.05; and Curve 6,
h /Z = 0.02 and 0.002, w/L = 0.05. The Dashed

0
Line Represents the Dupuit Aquifer (x/L =1/2).
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the amplitude of the fluctuations and an increase in the relative thick-

ness of the aquifer (h0 /Z) increases the amplitude.

The rather significant differences between the Laplace and Dupuit

aquifers for some values of the parameters may have some bearing on the

applicability of the Dupuit approximation. However, no precise conclu-

sions can be drawn because the boundary conditions for the Laplace aqui-

fer problem, with a partially penetrating stream of finite width, and

the Dupuit aquifer, with a fully penetrating stream, are not exactly

equivalent. Based on previous work on deterministic problems, we would

expect the Laplace and Dupuit aquifers to become equivalent when h /Z << 1.

From numerical solutions. of nonlinear Dupuit and Laplace problems, Verma

and Brutsaert (1971) found agreement when the length of the aquifer was

four times its initial saturated thickness even with complete drawdown

at the stream.

A careful analysis of the solution for the Laplace aquifer equation

(2.4.23) in the limit h 9 -+ 0 shows that there is a finite limit for the

function p depending on the parameter w/L. The results in Figure 2.29

reflect this feature for the cases w/L = 0.01 and 0.05. The function 4

becomes independent of h /k when h /. < 0.02. It is seen that the Dupuit
0 0

aquifer is equivalent to the Laplace aquifer with s/L = 0.01 when h0 /Z is

very small.

In general, the results for the Laplace aquifer show that nonhydro-

static effects can be quite important in a natural system when the aniso-

tropy K /K is large and the relative stream width w/L is very small.
x z
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2.5 Spatial Variability of Hydraulic Conductivity

In addition to the temporal fluctuations analyzed in the previous

sections, there will be changes in the characteristics such as hydraulic

conductivity or accretion from point to point within the aquifer. The

analysis of spatial variability is considerably more complicated than

the temporal phenomena because the variability appears in the coeffi-

cients in the equations and because the spatial statistics may not be

homogeneous when influenced by boundary conditions. However, some in-

sight can be developed by analyzing the effects of small spatial per-

turbations in an aquifer system for which spatially homogeneity is as-

sured. Spectral techniques may then be applied in the wave number do-

main to evaluate some statistical features of the flow. The results of

the analysis are applied to evaluate the errors in a flow-observation

system in relation to the spatial variability of hydraulic conductivity.

We analyze the flow in a sloping aquifer governed by equation 2.3.1

and linearize by introducing the following quantities in terms of a mean

and a small perturbation

h = h + h'

y h + = y+y'

E: E + E'

K = K + K'

Neglecting all products of primed quantities, equation 2.3.1 reduces to

S h' + Ka + I h' + h K'] + +' (2.5.1)
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and since the mean of the primed quantities is zero, the mean flow is

given by

(Kh a) + =0

The mean flow will be taken as one of constant depth h = h down an in-

cline of constant slope S(C=x), in which case T = 0 is implied. The

flow configuration is depicted in Figure 2.30.

We consider the case of statistically homogeneous steady input per-

turbations which are represented by Fourier-Stieltjes integrals in wave

number k, as follows:

' = ikx dZ,(k), K' = ikx dZK (k), '= eikx dZ (k) (2.5.2)

Similarly, the water level perturbation is represented by

y= e ikx dZy (k) (2.5.3)

and upon substitution of these expressions, with h' = y' - C', into

equation 2.5.1, we obtain the following relationship between the generalized

Fourier amplitudes

ik(h dZ -KdZ ) + dZ
dZ=o K e (2.5.4)dZ = -

Kh k2 -ikK
0

This result can be used to construct the wave number spectrum D (k) of the

water level fluctuations in terms of the spectra and cross spectra of the

input perturbations. Because cross-spectral input information is lacking,
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Figure 2.30 Sloping Aquifer with
Spatial Variability

77

%L x

I



the behavior of the system will be evaluated in terms of a single input

representing fluctuations of hydraulic conductivity. In this case equa-

tion 2.5.4 reduces to

ikh -
dZ = 2 dZ , T = Kh (2.5.5)

Tk2-ikKS K' 0

and following the equivalent of equation 2.1.5 in wave number space,

(h S)2
41 (k) = - (k) (2.5.6)
yy T2k2+(-K) 2 KK

where D (k) is the wave number spectrum of the hydraulic conductivity

fluctuations. In order to obtain explicit results D must be given; for

this analysis we will assume a simple exponential form for the autocovari-

ance

R ( ) = E [K' (x+)K' (x)] eikC t(k) dk = - e x (2.5.7)

where K'2 is the variance of K' and X is the integral scale defined by

x = (RxK(()/K'2) d(

0

The integral scale indicates the average distance over which the conduc-

tivity is correlated. The spectrum D is found from the inverse Fourier

transform CO

ItKK(k) =- {elikE K(E)dE = \K, 2 /(l+(kX) 2 )7r (2.5.8)
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and the variance y from

yv2 = R (0)= { (k) dk

The integration using equations 2.5.6 and 2.5.8 yields

y 2 /h2  - (K'21K 2)fEr/(1+r) (2.5.9)

where r = 5X/h is the ratio of a length scale for the conductivity fluc-

tuations (A) to a length scale of the aquifer (h /). Since the slope of

the phreatic surface is typically small (S = 10 to 10 4), this result

indicates that the water level fluctuation relative to the aquifer depth

will generally be much smaller than the relative conductivity fluctuation

unless the integral scale is much larger than the aquifer depth.

Also of interest is autocovariance of y which is found by taking the

Fourier transform of equation 2.5.6

R (C) = yt2(e C/ho - re )/(l-r) (2.5.10)

and the cross covariance of K and y

RKy () = E K' (x+ )y' (x)] = {eik( Ky (k)dk (2.5.11)

where 1Ky is the cross spectrum which is found, using equation 2.5.6 in the

spatial equivalent of equation 2.1.21, as

SKy (k) = (K(k)(-ikh05)/(Tk
2+ikK)

This expression for (Ky, with KK from equation 2.5.8, is used in equation

79



2.5.11 to find

___ e5 , E 0
RK( Q) = K' y' [ 2 e" /ho - (1+r)e t j/(l-r), 0J

(2.5.12a)

K'y' = R (O) = - (K?2/K2)Tr/(1+r),

It can easily be shown that

RyK (E) = E[y'(x+E)K'(x)] = RK(-) (2.5.12b)

The various spectral and covariance functions for this system are shown in

Figure 2.3.1 for r = 1/2.

The results of this analysis can be applied to evaluate the error

structure of a simple two piezometer network which is to be used to estim-

ate the amount of flow through an aquifer. Observation wells are used to

measure the water levels y1 and y2 at two points a distance L apart as

shown in Figure 2.3.0. In addition, two essentially point observations

of hydraulic conductivity (K1, K2 ) are available (say, from well pumping

tests or cores) at the two wells. An estimate of the flow per unit width

of aquifer, Q, is obtained from the Darcy equation in the form

K +K2 h1+h2 yl~ Y2
Q 2 2  L (2.5.13)

and by introducing mean plus perturbation quantities in equation 2.5.13

Q = K 0 + h0 (K1 '+K2 ')/2 + Ka(h 1 +h2 ')/2 + Kh (y1
1 y 2 ')/L (2.5.14)

where (y-y2)/L = , h = h2 = h0, K1 = K2 = K. The term Khe 0is the
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Figure 2.31 Normalized Spectral and Covariance Functions for r = 1/2
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actual flow Q through the aquifer and the difference Q' = Q-Q, when

squared and averaged, yields

Qt2/Q2 = (Kv 2+K1 'K2')/(2K
2 )

+ 2(y'2-y I')/(L)2

+ (y' +y1'y2 ')/2h2 0

+ (K2 'yl' - K,'y2 ')/(KL)

F I conductivity variation]

LII surface slope variation]

III depth variation]

IV surface slope-conductivity]
correlation

+ (2K'y' + K1 y 2 ' + K2 'y ')/(2Kh0) [V depth-conductivity correlation]

(2.5.15)

where statistical homogeneity has been used, i.e.,

K12 = K212P y 1 2 = y2 2 y 1 2 2 1

The origin of each of the terms in equation 2.5.15 is indicated on the

right. Using the previous results for the covariances of the terms in

equation 2.5.14 can be expressed in terms of K'2/K2 . Noting the following

identities

K1 K2 R (L)

2 1=R (0)

yi y2'= R (L)

[equation 2.5.7]

[equation 2.5.9]

[equation 2.5.10]

K2 E y' (x+L)K'(x)] = RyK (L) = RK(-L)

Ky 1 12' E[K' (x+L)y' (x)] = RK (L)

K'y ' B P (0)

[equations 2.5.12

a & b]

equation 2.5.12a]

[equation 2.5.12a]
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and using the indicated equations, the expression for the relative mean

square error becomes

Q!2/Q2 = (K12/K2){(l+e-L/X )/2 [i]

+ (2h / L) (A/L) [1-e-rL/X-r(l-e L/X /(1-r2) [iI]

+ r[l+e-rL/A-r(l+e-L/)]/2(1-r2) [II]

- (2X/L)(e -rL/ -L/ )/(1-r2) [IV]

- r((l-r)+e -rL/Xre-L/A )/(l-r2)} [V]

(2.5.16)

where the origin of each of the terms is identified as in equation 2.5.16.

The application of these results is illustrated by considering sev-

eral different values of piezometer spacing in an aquifer with a specified

integral scale of the hydraulic conductivity variations (A = 100ft). The

parameters for the example and the numerical results are given in Table

2.2. Several important features are apparent from these numerical results.

The variance of the estimated flow rate is substantially smaller than the

variance of the hydraulic conductivity. This is because the phreatic sur-

face slope-conductivity correlation (IV) nearly compensates for the vari-

ance of conductivity (I) and phreatic surface slope (II). In addition,

counter to ones likely intuition for this case, the error is seen to be

smallest for the smallest well spacing. This is because the compensatory

effect of-the slope-conductivity correlation is greatest for the smallest

spacing. This analysis does not, of course, consider the limitations of
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Well Spacing L - ft 10 100 1000

Contributions I 0.95 0.68 0.50

to the Relative II 0.95 0.72 0.16

Variance Ratio III 0.02 0.02 0.02

---- ) ---- - IV - 1.86 - 1.23 - 0.16

V -0.04 - 0.04 -0.04

Total (Q,2 /Q2)/(Kt 2 /K2) 0.02 0.16 0.48

-2 -
Parameters: h = 50ft, = 10 , X = 100ft, r = 2 X 102

TABLE 2.2 Errors in Flow Estimates for Several

Observation Well Spacings

the device used to measure the water levels; such considerations would

determine the minimum spacing that is appropriate for a specific applica-

tion. If a normal distribution is assumed for Q' and K2/K 2 is known,

the probability that Q is within a specified range can be estimated from

results of the type in Table 2.2.

Although the simple analysis developed in this section can be used

to evaluate elementary flow observation networks, it is probably more

important in terms of the insight it provides on the general problem of

spatial variability in subsurface flows. It illustrates the importance

of spatial correlation structure. Some other problems that should be

investigated in future studies of this general area are systems with

simultaneous temporal and spatial variahility, multi-dimensional spatial
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variability, and the effects of large amplitude fluctuations of hydraulic

conductivity.

2.6 The Unsaturated Zone

The natural temporal variability of groundwater recharge or accre-

tion is a function of precipitation subject to several complicated

moderating influences. The modification occurs at the ground surface

and in the unsaturated zone above the water table. In a simple view of

the rainfall-runoff-infiltration process a certain portion of the pre-

cipitation (P) runs off as overland flow, while the remainder infiltrates

into the soil and/or is subject to evaporation and transpiration. Some

of the water which enters the soil moisture phase of the unsaturated

zone eventually percolates down to the water table. The rate at which

it enters the saturated zone is described by the term accretion (E).

In considering the unsaturated zone we are concerned with this process

of infiltration, evapotranspiration, percolation and, additionally, soil

moisture storage. Because unsaturated soils have a certain portion of

air-filled pores they can store additional water. Similarly, water can

drain from formerly saturated pores to deplete storage and supply ad-

ditional water for evapotranspiration or accretion.

The resulting system can be schematized as in figure 2.32. In

this system the net infiltration is I = P - E - R where E is evapo-

transpiration and R is the runoff. The net infiltration enters the

soil moisture zone where it is stored and eventually percolates through

to the groundwater as accretion, E. The amount of stored moisture is
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Figure 2.32 Schematic of the Unsaturated Zone

denoted by s. From a mass balance of water the change in storage is

given by

ds

dt
(2.6.1)

where the accretion outflow to the groundwater will be a function of

stored moisture. Consider the accretion outflow to be represented by

E = a'(s-s0) (2.6.2)

where a' is an outflow constant and s0 is the minimum moisture storage.

Then the soil moisture storage is represented as a lumped parameter

linear reservoir system, in which the vertical and horizontal spatial
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variability of stored moisture has been neglected.

The total stored moisture is given by

b
r

s = Jdz (2.6.3)

0

where 6 is the moisture content, z is a vertical coordinate (positive

downward) and b is the depth from the surface to the water table. The

minimum moisture storage is given by

b

so = 6 r dz

0

where 0r is, say, field capacity.

The representation of the soil moisture zone as a lumped parameter

linear reservoir can be established by comparing this simple system to

a more complicated spatially distributed system. For example, a common

problem encountered in irrigation is the vertical drainage of a soil

column to a stationary water table. If the soil column is initially

saturated (s = nb = sn) and is then allowed to drain, the total volume

of outflow as a function of time results from the solution of the par-

tial differential equation for Darcy type flow in an unsaturated porous

medium (Bear, 1972)

-(' + ) E(2.6.4)9t 9z D6 3 9o

where n=--p/y, 4 = -(z+n), with initial and boundary conditions

6= n 6 z b t = 0

6= n z= b t >0

=e constant z 0 t > 0
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The last boundary condition is a linearized approximation of a no flux

condition, D /Dz = 0, z = 0. Retaining only the first term of the series

solution to this problem and integrating over z, the total volume of

outflow from the column as a function of time is (Swartzendruber, 1969)

iT 2

V(t) ~ 32 -(e ) Nt
1 - (-g) e (2.6.5)

where V(t) = s - s(t), V, = V(t + c), N = -K(8) (z/H+an/ O)=K(O) - z/H +

D(6), and D(6) is the soil moisture diffusivity. The solution assumes N

to be a constant. This exponential relationship for outflow has a reason-

able experimental basis (Youngs, 1960 and Gardner, 1962) and is also char-

acteristic of the outflow from a linear reservoir.

For the particular soil moisture model of this section, under the

equivalent conditions of drainage

s =s t = 0
n

1= 0 t > 0

the solution of equations 2.6.1 and 2.6.2 is

(s - s 0- s) e-at (2.6.6)

The total volume of outflow for the linear reservoir model is V = s - s(t)
n

-at
or V = (s - s 0 )(1-e ). As t oo, V - V = s - s . Thus,

V = (1 - e -at) (2.6.7)V,
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and the linear reservoir (2.6.7) and distributed soil moisture models

(2.6.5) have equivalent outputs since 32/R3 is near unity, where the

outflow constant is given by

a' = (2.6.8)
4b2

Thus a linear reservoir can be used to approximate the storage and

release of moisture in the unsaturated zone.

The amount of net infiltration is given by I = P - E - RO, and if

I, P and E are considered as random stationary processes (the R varia-

bility will be neglected) the fluctuation of infiltration about the

mean is given by I' = P' - E', with the spectral relationship

S (w) = S g(w) - SPE M - EP () + S EE() (2.6.9)

An analysis identical to the linear reservoir (see Section 2.2) yields

from equation 2.6.1 and 2.6.2,

S = a'2 S 1 /(W 2+a 2 ) (2.6.10)

if the accretion and soil moisture storage are considered to be station-

ary random processes.

For precipitation input only (S I = S P) the effect of the unsatura-

ted zone can be studied by examining the square of the amplitude of the

normalized transfer function of precipitation to aquifer response. In

this case (equation 2.2.9 with H = constant)

S hh = S /(W 2S2+a2) (2.6.11)

89



where S is storativity and a is the linear reservoir constant for the

aquifer. The transfer function is (equations 2.6.10 2.6.11)

S hh _av
2

SpP (w2S2+a2 ) (W2+av 2 )

or, in normalized terms

g = T2 S /L2S A2 (2.6.12)hh PP (02+ 2)(0 2+A 2 )

where a = aT/L2 , Q = SL2w/T, A = (L2N/b 2T)V'S and a' = 'N/b2 . For the

linear reservoir aquifer = 3 (see Section 2.7) while for the unsatur-

ated zone ' = 72/4 (equation 2.6.8). Reasonable values of the other

parameters are in the range: L/b ~ 100, N/T ~ .003, and S = .25, or,

say, A 2 = 65.

Relative to its value at Q = 0 the transfer function is

g(=)/g(O)I = A2r2 /((G 2+B2)(Q 2+A2 )) (2.6.13)

This is compared to the transfer function for the case which ignores

storage in the unsaturated zone (equation 2.6.11 where S P = S )

g(E)/g(0)jII = 32 /(0 2+ 2 ) (2.6.14)

in Figure 2.33. There is no significant difference of the response for

the two cases in the lower frequency range. It is only as the dimen-

sionless frequency (Q) approaches a value of 10 that the response of the
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simple system ignoring the soil moisture storage (g11 ), deviates. At

Q = 10 this deviation is only 5% of the response function g(0). Some

of the high frequency fluctuation of the precipitation is filtered out

by the soil moisture storage, which supplies water to the groundwater

table more uniformly than precipitation supplies water to the soil.

This mechanism has been observed deterministically in the field and

laboratory (Freeze and Banner, 1970). Because, however, the deviations

are associated only with low energy, high frequency fluctuations, the

distortion of the input due to the presence of the unsaturated zone,

can be considered quite small for the range of frequencies of interest

when monthly data are used, as in Chapter 4. If smaller sampling inter-

val is used the distrotion would become more significant.

Although the effect of soil moisture storage can be neglected, it

is important to consider what the effect of evapotranspiration may be

on the accretion input. Evapotranspiration removes water from the sur-

face and upper soil layers that would otherwise infiltrate or produce

runoff. Thus, in the simplest form the net accretion can be expressed

as a fraction of precipitation

E = yP

where the proportionality coefficient is a constant. This is the form

of accretion input from precipitation records that is used in Chapters

3 and 4. More realistic estimates may be based on a deterministic

variation of 7 with seasonal fluctuations, or perhaps, the spectral

relationship of the net infiltration to E as well as P. Future research

can be directed toward this last suggestion. Since temperature records
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are widely available, assume that the net evapotranspiration can be est-

imated from temperature data alone. For example, the Thornthwaite method

utilizes a power law relationship for estimating E as a function of tem-

perature (Thornthwaite, 1948). In the present case assume that

E = a + bT

where T is temperature, a stationary random process, and a and b are

constants. Then

SEE T b2T

and the spectrum for the net infiltration can be found from

S = S - bSPT - bSTP + b2STT

In field applications the spectra on the right-hand side can be estimated

from an analysis of evapotranspiration data (b), temperature (STT)

and precipitation (S ) records (plus SPT' S TP). The net infiltration

(S I) can then be used as an input to the soil moisture-groundwater sys-

tem. This procedure should be investigated in future research.

2.7 Discussion

Earlier in this chapter, we developed several different models to

approxiJmate the spectral response for a phreatic aquifer in the frequency

domain. They are (i) the linear reservoir model, in which no spatial

variation has been considered; (ii) the linearized Dupuit approximation,

in which ;e have assumed K h = T, a constant; (iii) the coupled-system
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of the linear reservoir and the Dupuit aquifer, in which we have looked

at the interaction between the said systems; (iv) "Zone Thickening Effect",

in which we have retained some nonlinear effect by employing a perturba-

tion type solution and (v) the Laplace aquifer which includes the effects

of vertical flow. The linearized Dupuit approximation is probably the

most widely applicable model because it is simple but retains a certain

degree of physical reality.

One would expect that the linear reservoir model is comparable to

the spatial average of the linearized Dupuit aquifer with horizontal bot-

tom. Taking the spatial average of equation 2.3.6, we have

00 L

< h'(x,t) > = eWt 1 dZh(x,w) dx (2.7.1)

-00 0

Then it can be shown that the spectral response of the spatial average

of the aquifer is given by

tanh bL tanh bL * + i I tanh bL -1][ tanh bL *
<h><h> bL bL HH WS bL bL *:H

i tanh bL *[tanh bL
WS bL bL H

1 tanh bL tanh bL *
+ [ -l][ b -1] S~ (2.7.2)

c 2 S 2  bL bL

Compared to equation 2.2.9 of the linear reservoir model, we can expect

some kind of equivalence between the two forms of the response function,

.a 2  tanh bL tanh bL *
i.e., 2 +a2 and [ bL bL ] for the input series H, andW22+ a2 ad U bL
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1 tanh bL tanh bL *
and [ - l ][ bL -1] for the input series c. Taking

L2 S2 + a2  b b

a in the form of a = 6 T/L where 0 is a numerical constant,

a2

W2S2 + a2  [l+(Q/S )2] (2.7.3)

and

1 1 1 ](2.7.4)

W2S2 + a2  W2S2 1+(s /2 )2

By employing the least square method, a = 2.722 with the sum of squares =

0.00955 for the series H, and 0 = 3.021 with the sum of squares = 4.712x10 4

0

for the series e. These two comparisons are shown in Figures 2.34 and

2.35 . These values of 63 can be compared with those by Gelhar (1974) for

a steady state ( O = 3) and for a falling sinusoidal water table

(03 = 72/4 = 2.467).

The above analysis shows that the linear reservoir model can provide

crude overall estimates for the spectral response of a phreatic aquifer.

The linearized Dupuit approximation is a more realistic model for obvious

reasons. However, in applying the linearized Dupuit approximation, care

has to be taken about the bottom geometry and the degree of nonlinearity.

In particular for the bottom slope, if S satisfied equation 2.3.14, we

have T = constant which is required to use the linearized theory. How-

ever, judging by the figures 2.3 - 2.8, if the value of r is larger than

0.1, the effect of the sloping bottom begins to show.

95



1 n

0.1

ca

0.01 -2

0.01

0.001
0.1 1.0 10 100

Figure 2. 34 Comparison of the Linear Reservoir and the Spatial
Average of the Linearized Dupuit Aquifer for the
Input Series H.

96



1.0

0.1 1 2

Z 41+( O/Q)2

4

0.01

0.001 -I I I ii
0.1 1.0 10 100

Figure 2.35 Comparison of the Linear Reservoir and the Spatial
Average of the Linearized Dupuit Aquifer for the
Input Series E.

97



For the "Zone Thickening Effect", the value of p = EL 2 /2K 2 meas-

ures the degree of nonlinearity of the system due to accretion, and is

also a function of the aquifer parameters. However, for the value of

p up to 0.1, the nonlinear effect is not too important in the low freq-

uencies and is not felt in the high frequencies. The comparisons bet-

ween these effects are shown in figures 2.36 and 2.37 for x/L = 0.5.

They are the forms for the horizontal bottom to be used in the data

analysis later in Chapter 4.

If a surface water reservoir, e.g., a lake or a reservoir, is present,

the coupled-system of the linear reservoir and the Dupuit aquifer can

then be used. Under the assumption that accretion is uniform in space,

the spectral response of a phreatic aquifer is completely determined by

the accretion. Also by knowing the response of the surface water reser-

voir, we can estimate the aquifer response by means of equation 2.3.25.

However, we have to estimate two parameters, namely aL2 /a and SL/Z,

the ratio of the response time and the ratio of water mass of the two

systems respectively. The combination of these two parameters charac-

terizes the spectral response along the aquifer. For example, in fig-

ure 2.13, the combination of aL2 /a = 1 and SL/ = 5 resulted in a spec-

tral response almost uniform along the aquifer.

The analysis of the Laplace aquifer indicates that vertical flow

effects can produce significant differences between the spectral res-

ponse of the Dupuit and Laplace aquifers. As shown in figure 2.29,

even for very shallow aquifers (h0 /1 < 0.02), there can be differences

depending on the relative stream width w/L. When w/L = 0.01 and h /Z
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small, the Dupuit and Laplace aquifers are practically equivalent but

for other values there are differences. The Laplace aquifer result will

be more appropriate for many field conditions but its applicability is

limited by our ability to estimate the necessary parameters. The rela-

tive stream width can probably be estimated quite well but h /k, being

dependent on the anisotropy ratio K /K is not routinely available. It
x z

may be possible to determine K /K from cross spectral analysis of piezo-
x z

metric levels from two wells of different depth within the same aquifer;

however, feasibility of such a procedure remains to be demonstrated and

in many cases extensive records for wells at different depths will not

be available.

The analysis of spatial variability in Section 2.5 provides some

important initial insight on this complex problem. It was demonstrated

that the variance of the water level fluctuation due to hydraulic con-

ductivity variation is typically much smaller than the variance of hy-

draulic conductivity. For the analysis of the two well flow observa-

tion networks it was shown that the errors in the flow estimate will

be substantially smaller than that indicated by the relative variance

of the hydraulic conductivity, and that the errors are smallest for

closely spaced observation wells (Table 2.2). The error is also much

smaller than that which would be obtained assuming that the variables

are statistically independent in space. In that case the only terms

that will remain in equation 2.5.14 are

Q12/92 = -02/2K + 2y1 2 /(L )2 + y'2 /2h 2
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This result implies an error which is at least one half of the relative

variance of the hydraulic conductivity. The contribution to the error

by the variance of the water level y1 2 is seen to increase sharply as

the well spacing L is decreased; this is the opposite of the behavior

found when realistic spatial correlation structure is included. Thus,

it is important to deal with the spatial correlation structure in future

work on spatial variability of subsurface flows.

The analysis of the unsaturated zone indicates that the effects of

moisture storage are minor for low frequencies, and can be neglected for

the range of frequencies of interest when monthly data is used, as in

Chapter 4. A simple proportionality (E = yP) relating accretion to pre-

cipitation is introduced which can be used to determine the net recharge

to the groundwater aquifer. However, more precise means of evaluating

evapotranspiration in order to find the net accretion should be inves-

tigated in future work.
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CHAPTER 3 NONLINEAR SIMULATION OF AQUIFER SPECTRAL RESPONSE

3.1 Physical and Theoretical Basis of Phreatic Aquifers

The Physical Basis

The understanding of the physical groundwater system is not only

helpful in the formulation of mathematical models but is also useful in

the scaling and evaluation of this study. The latter refers to the

physical configuration and dimensions of the system that are important

in the determination of the parameters which appear significant in the

nonlinear effects.

The type of groundwater system to be studied is the phreatic

aquifer shown schematically in Figure 2.2, which can be regarded as a

transformation system with two inputs and one output. The transforma-

tion system is the spatially distributed structure of the saturated

porous medium of which two major physical properties, transmissivity

and storage coefficient, are of interest to this study. The two inputs

are the accretion rate and stream stage. The percolation of water from

the ground surface to the water table is the process of accretion which

may be regarded as another transformation system. Stream stage fluctua-

tion is the rise and fall of water level at the boundary between the

aquifer and the stream. These inputs are complicated hydrologic pro-

cesses and they are spatially and time dependent. In addition, their

occurrences in time and space are random. The output of the system is

the piezometric head in the aquifer (i.e., the water level in a

well). It is characterized as random, spatially and time dependent

because both the inputs and the transformation system have such charac--

teristics. The physical boundaries are the water table, the stream
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stage fluctuation and the impervious boundary at the bottom. For a

finite length of the aquifer, there is the boundary at which no flow of

water is allowed.

Intuitively, it can be seen that the larger the inputs, the larger

is the output as the system is enclosed in the described boundaries.

Hence one effective measure of the system is the amplitude of response

which forms the major analysis in this study. The other physical char-

acteristic is the delay response time of the output with respect to the

inputs. This is the time for which a disturbance of the phreatic sur-

face travels from one location to the other and hence it could be a mea-

sure of transmissivity of the aquifer system. This will be studied

briefly.

Mathematical Models

Mathematical models are abstractions of complex physical phenomena.

A model should be sufficiently complete in its description so as to

produce useful results, yet simple enough to be manageable. The most

commonly used mathematical equation to describe unsteady, unconfined

groundwater flow is the Dupuit-Forchheimer equation. Its basic assump-

tions are that the flow is essentially horizontal and that the equipo-

tential surfaces are vertical (see Bear, 1972). The assumptions are

implied by the fact that the slope of the phreatic surface is small in

real situations. The validity of these assumptions were discussed by

Murray & Monkmeyer (1973) who found that for steady flow, the free

surface slope must not be greater than 1:10 if results are expected to

be 99% accurate. For the unsteady case, it was found that the equation

describes a rising water table condition more exactly than it does a

falling one.
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The general form of the equation is given by

S -h= V-[T V(h + c)] + :
t

where S

h

T

This part

aquifers,

= storage coefficient

= thickness of the saturated zone above the impervious base

whose elevation is given by c

= aquifer transmissivity

= accretion rate.

of the study is restricted to one dimensional horizontal

thus reducing the governing equation 2.3.2

Th [T x 3t
S -- (x,t) = - [T(x,t) - (x,t)] + E(x,t)

t ax ax (3.1.1)

For unconfined aquifers the transmissivity is defined as the product of

the hydraulic conductivity, K, and the thickness of the saturated flow

zone, h(x,t), or T = Kh. Hence we have

S -- (x,t) = - [Kh(x,t) -- ] + c(xt) (3.1.2)
Dt 3x 9x

This partial differential equation is nonlinear and has been solved

for various boundary conditions in approximate linearized form by analy-

tical techniques (see Glover, 1964; Haushild, 1960; Kriz, 1967; Poluba-

rinova-Kochina, 1962; and Singh, 1969) and in nonlinear form by numeri-

cal methods (see Hornberger et al., 1970; Karadi et al., 1968; Kriz et

al., 1966; and Yeh, 1970) for one and two dimensional, and axisymmetric

geometries. The boundary conditions for this mathematical model are

vertical accretion onto the phreatic surface which is implied in the

equation, stream-aquifer interaction and a groundwater divide-no flow

condition. Mathematically, the last two of these conditions are
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represented as

(a) h(o,t) =H(t)

(3.1.3)

(b) -h 0
x=L

where x = horizontal space coordinate

L = length of aquifer

and, H(t) is the stream stage. The physical system is represented

symbolically in Figure 2.2.

The primary characteristic of this analysis is that the inputs,

accretion and stream stage, are random. Hence the output at the various

locations along the aquifer is also random. A secondary characteristic

is that the effective porosity or storage coefficient (S) and the hy-

draulic conductivity (K) usually are spatially distributed. This charac-

teristic leads to a complex stochastic transformation system. For

simplicity, assumptions are generally made that S and T are constants

and that e is only temporally distributed. This simplification leads

to the well known linearized Dupuit model which is

3h 32h
S Dh (x,t) = T '2h (x,t) + e(t) (3.1.4)

9t 3X2

This equation can be solved analytically and it constitutes the basis of

the analytical study. Other forms of the equation, which is nonlinear,

are to be compared with this simple model. They are

(a) nonlinear Dupuit model with T = Kh(x,t)

(b) nonlinear Dupuit model with spatially distriouted input, E=E(X,t)

The method used to solve the nonlinear equation is a numerical

simulation using an implicit finite difference method discussed later.
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But first, for a better understanding of the behavior of the physical

system, it is useful to develop analytical solutions to the Dupuit

model.

Linear Theory

The objectives of this section are two-fold: first, to understand

the system in its simplest case; and second, to compare the simple analy-

tical models to the finite difference model developed later. The accu-

racy of the nonlinear numerical simulation is based on such comparisons.

The linearized Dupuit model represented in equation 3.1.4 is sub-

ject to the boundary conditions in equation 3.1.3. In order to solve

this equation by numerical simulation it is advantageous to transform

the equation in dimensionless form:

h
m

H
0 M

x
L (3.1.5)

T
T = t

L

p - T 2 (t)Tm

where m is a typical thickness of the saturated zone. Usually this is

the mean of the fluctuation at stream, or m = H(t). Hence the dimen-

sionless equation becomes

+ p(T) (3.1.6)

subject to the boundary conditions
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n(0,T) = 0

=0 (3.1.7)

In order to solve this equation explicitly the inputs into the system,

10 and p, must be specified. Since these inputs are random in temporal

distribution, they may be best represented by a harmonic function with a

single frequency and amplitude. A variety of functions, which are almost

periodic in nature, can be constructed by the superposition of harmonic

functions with a large range of frequency and amplitude. The almost

periodic function is close to a random function if the frequency inter-

vals, which are used to specify the almost periodic function, approach

zero.

The sinusoidal function is characterized by its amplitude and fre-

quency. The inputs are represented in complex form as

ig T

p(T) =a 0 + ae a (3.1.8)

10 (T) 0 + e (3.1.9)

where a0 and a0 are the mean of accretion rate and stream fluctuation

respectively; a and are the respective amplitudes of fluctuation, and

Q and Q are the respective dimensionless frequency. The dimensionless

frequency Q is related to the real frequency w as

QAT = wAt (3.1.10)

Hence from equation (3.1.5)

SL
2

Q (3.1.11)
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By the principle of superposition, the solution to this equation is

simply the sum of the three cases, namely the steady case, accretion

case and the stream interaction case.

(a) Steady case - accretion rate is constant

p a0  0 0 1

(3.1.12)

1 (Tr) = 1+ a0  -

(b) Accretion case - accretion rate varies sinusoidally, i.e.,

iQ T

p(T) = ae a with

a0 = 0 and T0 = 0

i- cosh[/i1 (1 - )] T (3.1.13)1s 2 (3.1.13)a

a cosh /iQ
a

(c) Stream interaction case - stream stage varies sinusoidally, i.e.,

iQ T
r1 (T) = e
n0

cosh[/i2 (1 - E)] ini T
T3 (C,T) = e (3.1.14)

cosh Vi

Therefore the superposition of the three solutions gives

n(CT) = q + 2 + 3  (3.1.15)

It can be seen that the output is sinusoidal with the same frequen-

cy as that of the inputs. The only difference is the change in ampli-

tude and a phase shift. This is the basic response behavior of the

linear system. If the input K(T) is given by

X(T) = Ae QT (3.1.16)
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where A = amplitude of fluctuation and the output Y(T) is in the form

Y(T) = AG(S)e QT (3.1.17)

where G(Q) = gain factor or transfer function, the ratio of Y(T) to

X(T) is

YG e (3.1.18)

which is the frequency response function. The amplitude response or

amplitude of transfer function is

XG(Q) &) (3.1.19)
1X(T)I

and its phase response is

6 = arg (T) (3.1.20)

Using these formulae, we find the response for both the accretion

and stream interaction cases as follows:

Let cosh y ' cos yE' = B

cosh y cos y = C

sinh yC' sin yC' = D

sinh y sin y = E

where y = vr'4 /2 (Accretion case)

= / ,/2 (Stream Interaction case) and ' 1 -4

Accretion case:

2 2-1/2
|G (Q ) = (B-C) + (D-E) (3.1.21)

Q Ct a C2 + E 2

1 0 (Q ) = tan- 1 E(B-C) - C(D-E)] (3.1.22)
P p1 a E(D-E) + C(B-C) (
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Stream interaction case:K2 2 1/2
G (R ) = 2 + D 21(3.1.23)

2 2 2
C+ E

S = ( ) = tan-1F E -DC (3.1.24)
2 n BC + DEJ

G1 , GG1j
2, G2 1, 2 1 2 and 0 are plotted for the frequency

0

range from Q= 0.1 to Q= 100 in Figures 3.1 (a), (b) and 3.2 (a), (b)

and 3.3 respectively. The transfer function and the phase response

function thus obtained is exactly equivalent to those obtained in the

linear spectral theory. (See Chapter 2). The equivalence is due to

the similar form of the input, X(T). In the sinusoidal theory the

input is represented by a single amplitude, whereas in the spectral

theory, it is represented by the superposition of a number of ampli-

tudes in the frequency domain as the Fourier-Stieltjes integral

X(T e dZX(2) (3.1.25)

where dZX = complex amplitude of input. The output Y(T) is similarly

represented as

Y(T) = j e dZ (Q) (3.1.26)

111



The substitution of these equations into the linear Dupuit equation

would hence lead to the same results as from the sinusoidal theory.

The frequency response function is given by dZY/dZX in the spectral

theory and Y/X in the sinsusoidal theory. The former theory has the

advantage that it deals with a more general random stationary function,

while the latter is of advantage in solving.the problem with less

difficulty.

The dimensionless frequency, Q must be related to the physical

significance of the system. From equation 3.1.11

SL2

T

where Q is radians/dimensionless time

w is radians/time unit.

Hence the frequency of input depends on the physical parameters and

dimension of the system. For a typical aquifer with L = 1 mile, S = 0.3,

T = 10 gal/day/ft2 and real time interval as one month we obtain approxi-

mately

w 0 radians/month
5

= Q cycle/month.
lo0

For ? = 100

10
S -- cycles/month a 3 cycles/month

which is a very high value for the inputs, accretion and stream stage.

At such a high frequency, there is no doubt that noise other than the

characteristic response frequency (e.g., annual cycle of precipitation)

is brought in.
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For 2 = 0.1

W 10T cycle/month ~ 0.003 cycle/month.

The frequency is very small compared to characteristic frequency

of the system response. Hence the range from Q=0.1 to Q=100 repre-

sents a fairly large range of aquifer response behavior.

The relatively insensitive response at low frequency, from P=0.l

to Q=1, as shown in Figures 3.1 (a),(b) and 3.2 (a),(b) has an obvious

physical significance. At such low frequencies (0.003 cycle/month)

there is virtually no damping effects on the response. One significant

difference between the response amplitude for these cases is that the

stream response is damped out faster than the accretion response, par-

ticularly when the well is farther away from the stream. Also the ac-

cretion response is much the same for all locations at higher frequency

(Q >50). The amplitude of the response is an important concept in this

study, particularly with respect to the determination of the physical

parameters (S and T) of the system.

The other important mathematical property which has an associated

physical meaning is the phase lag of the response with respect to the

input. This is particularly true for the stream interaction case. The

phase lag represents the delay of a signal from the response location

to the stream. The delay response time (T D) is related to the phase

lag 0XY in a linear system as

6
TD Q(3.1.27)
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Figure 3.1(a) Amplitude of the Transfer Function of the
Aquifer System with Accretion Input
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where X is the input

Y is the output

Q is the dimensionless frequency of the input.

For the stream interaction case, 0 X and TD are shown in Figures

3.3 and 3.4 respectively. It can be seen that is takes less time for a

wave to reach a nearer location. Also it takes less time for the

signal to travel to a nearer location. It can be noted that the re-

sponse time is relatively insensitive to frequency changes, particular-

ly when Q ranges from 0.1 to 1. Intuitively, this means that waves at

such low frequency are damped out so slowly that they respond almost

simultaneously as that at the stream. For the accretion case, there is

hardly any phase lag for all locations. From the basic assumption of

the Dupuit model, water flow is essentially horizontal, the vertical

recharge onto the system would have insignificant effects. Hence this

is not to be studied in detail.

Summing up, the study of the behavior of this linear groundwater

system is based on its amplitude and phase responses, with particular

emphasis on the former. The evaluation of nonlinear effects is also

based on these physical properties.

Nonlinear Theory for Steady Accretion and Stream Stage

In general it is not possible to solve the nonlinear Dupuit equa-

tion analytically. Steady flow situations are an exception however, and

one such case is examined here. The equation and boundary conditions

are
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j ( -) + a (3.1.28)
T1 35 E 0

q(0,T) = 1 (3.1.29)

an _ 0 (3.1.30)

where a0 is a constant, and the solution is

T( ) - (1 + 2a0C - a0 2 1/2 (3.1.31)

whereas the linear solution to this problem is given by

= 1 + + (3.1.32)

Expanding the nonlinear solution in a Taylor series we obtain

2
(0 E 1 2 2 3 2

( (2 8( -( a0 ) + 48(2a0  a
(3.1.33)

We can examine the nonlinear effects and see that when a0 is small,

the linear solution is close to the nonlinear one. It can also be seen

that for a fixed E, the difference between the two solutions increases

somewhat quadratically as the mean of accretion a0 increases. For a

fixed a0, the difference increases as increases. The solutions to

both linear and nonlinear cases are plotted in Figure 3.5 for a0=1. It

is seen that the maximum difference is about 8%. This deviation in-

creases as the horizontal spatial coordinate, x/L increases. In conclu-

sion, a0 is the basic nonlinear parameter in the steady state nonlinear

system.
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A Simple Evaluation of Nonlinearity

Since analytical solutions to the nonlinear equation do not in

general exist, it is difficult to evaluate the nonlinear effects directly.

However, a crude estimate may be based on the linear solution of the

equation by investigating how the nonlinear effects are sensitive to

changes of the input parameters a, %, ct, a . The mean of accretion,

a0 has already been identified in the previous section and 0 is fixed

to be one for all cases. The evaluation of a, and Q is based on the

transient state solutions of both accretion and stream interaction cases.

In the stream interaction case with no accretion, the equation is

T = -( i ) (3.1.34)

which can be expanded to

2
ri_(9r)2 + n - (3.1. 35)

Let =1 + f (3.1.36)

and substitute into equation (2.5.2) to obtain

-- = -+ (--) + f (3.1.37)
31 2 35 2

The first term on the right hand side is the well known linear Dupuit

equation, i.e.

or, (3.1.38)

2
-=1 a
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The two nonlinear terms are investigated using linear solutions of

f. This evaluation is based on the assumption that the true nonlinear

solution has a sinusoidal shape similar to the linear solution, and that

there is sufficiently small phase lag between the two solutions. The

validity of this assumption will be tested in the nonlinear simulation

with sinusoidal inputs.

From the linear solution equation 3.1.13 the ratio of the first

nonlinear term to Df/DT is

f 2 2 ~
( 2sinh, [ (1- )le.

Dh i= ( e (3.1.39)

( ) cosh [ (1-)] cosh/7F
TS

and for the second term is

32
(f 1 -if) U T

2 cosh[(l- ) /i]e 5
D 6 (3.1.40)

(T ) cosh/B~

Clearly, it can be seen both nonlinear terms are proportional to the

amplitude of fluctuation, 5. With respect to frequency dependence, the

amplitudes of both terms are computed and are shown in Figure 3.6 and Fi-

gure 3.2(a) respectively for S=1. As it can be seen, the amplitudes of

both nonlinear terms decrease at high frequency particularly when Q > 50.

For a well farther away from the stream, the nonlinear terms decrease

more significantly. Also it may be noticed that the amplitude of the

first nonlinear term, 1(3f/D)2/ (9f/DT)I, as shown in Figure 3.6,

increases at low frequency Q=0.l to a maximum at about Q=8. From these

results, it may be concluded that for small amplitude, $ and higher
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frequency, the linear approximation is a good one.

In the accretion case, the equation is

Df 32f Df 2 a (3.1.41)
-- = -- + P t+ -- + f (32.1

From the solution, equation 2.3.10, the two nonlinear terms become

Df 2 2/]-- 1( ) .sinh2 -
DE c i r e (3.1.42)

( ) a cosh /r(Q-C)-coshvi~~ cosh/igV
aT a a

32
(f ) 2 cosh(1-E) /7. G

2 1 a a (3 .1 .43)
af Q

(--) a cosh /i f

the amplitudes of which are shown in Figure 3.7 and Figure 3.8 respec-

tively. Similar to the stream interaction case, the two nonlinear terms

are directly proportional to the amplitude, a. However, they are fairly

sensitive to the change in frequency. At lower frequency (Q=0.l to Q=1),

the nonlinear terms remain relatively large, while at higher frequency

they decrease significantly.

In conclusion, the effects of nonlinearity are significant in the

lower range of frequency for the accretion case. By contrast, the

effects are negligibly small for the stream interaction case. Further-

more, the nonlinear effects are directly proportional to the amplitudes

of accretion and stream stage fluctuation.
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Linear Theory with a Spatially Distributed Input

The irregular and random distribution of vegetation on the ground

surface, topography and porous medium properties in the unsaturated zone

above the water table shown schematically in Figure 2.2, constitute

another complicated transformation system. Hence the accretion reaching

the water table can hardly be regarded as spatially uniform in realistic

situations.

The simple linear model discussed earlier is implemented with a

spatially distributed parameter in the input accretion as:

p( ,T) = e i(QTk (3.1.44)

where a' = amplitude of spatial fluctuation

k = dimensionless wave number in radians

Q = dimensionless frequency

This equation represents a moving harmonic wave in the horizontal

direction from =O to =1 with frequency Q and harmonic number k.

The solution to the linear equation 3.1.6 with boundary conditions

3.1.7 with fl = 0, is found to be

a' cosh/iQ(1-) ikE
n(61) -k2 + i '

cosh /Th

-l - ik sinh/iE e-ik(l-E) i(PT- k&) (3.1.45)
VTh cosh/IQ

As one can see, for k=0 the solution reduces to the case without

spatially variability (equation 3.1.13). However, the present solution
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has some limitations for the purpose of this study. These include:

(a) The input harmonic wave is moving in one direction

only.

(b) There is no specification of the wave number, k.

(c) There is no comparison of the amplitude of spatial

variability of temporal fluctuation to that of spatially

uniform temporal fluctuation.

To overcome these difficulties, the input wave is changed to a

standing wave:

1 iG2T-kg iQ'r +kg
p = 1(ae + ace )

(3.1.46)

ae cos kC

Hence the solution can be obtained from equation 2.6.2 by

superposition as

T() -) 2=- (F - cos - - sin k)e
k + io ViQ cosh Vi

where F =cosh-TQ (1-) (3.1.47)

cosh/iY

In order that the mean of accretion remains constant in all cases,

the wave number, k, must satisfy the condition k = 2wrN where N is an

integer. Hence equation 2.6.4 becomes

n(CT) = - a (F - cos kC)e (3.1.48)
k + iQ
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Now we may consider the accretion input as being made up of the

following components:

iQT A. iQT
P= a0 + ae + a'e cos kE

Steady Spatially Spatially

Uniform Variable

Temporal Temporal

Fluctuation Fluctuation

where a0 = mean of accretion

a = amplitude of the temporal fluctuation

a' = amplitude of the spatial fluctuation

The unsteady part of the output is therefore given by:

I( ,T) =a. (F-1) - _' 1 ) (F - cos k() e (3.1.49)
L-a k 2 + iQ

The transfer function of this system is evaluated by comparing the

output to the spatially uniform input. This is given by:

G = I - (3.1.50)
iQT

qe

The square of the amplitude of the transfer function is given by:

G2= GG* = (F-1) (F*-l) _ 0' i(F-1) (F* - cos kC)

Q2 a Q (k2  _ i)

2
+ i(F* - 1) (F - cos kW)} + (a'j (F - cos k ) (F* - cos k )

Q(k2 + iQ) a k + 02

(3.1.51)
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where G* and F* are complex conjugates of G and F respectively.

Two major parameters must be identified in this system. They are

the wave number, k, and the ratio of the amplitudes of the spatially

variable component of accretion to the spatially uniform component,

a'/a. The wave number measures the intensity of the spatial variability

of accretion, i.e., the higher k is, the greater is the variability.

However, the total amount of accretion over the aquifer at any time is

identical to the total accretion for the spatially uniform input. On

the other hand, a'/a measures the amount of the change of accretion over

space. It can be regarded as some measure of deviation from the spa-

tially uniform temporal fluctuation. The wave number is similar in

concept to frequency. The maximum wave number, k C, for a system can be

determined based on the sampling theorem for the frequency domain as

k = 2f( 1) =T- (3.1.52)

where AC is the smallest spatial interval for which there is

significant variability of accretion.

In the numerical model described later or in realistic situations, AE

can be determined or estimated. Hence the maximum wave number can be

related to the physical properties of the system. The smallest

possible maximum wave number is 27.

For equation 3.1.51 one can see that the first term on the right

hand side is the solution for the case without spatial variability, and

the other terms are multiplied by the ratio a'/a. For example, Figure

3.9 shows a spatial variability case with k = 2ff different values of

a'/a at x/L=0.5. It indicates that the amplitude of the transfer
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function decreases at all frequencies as a'/a increases.

The wave number has little significant contribution to the

difference. For low wave numbers (2 or 47) there is a slight

difference between the cases with and without spatial variability.

But for higher wave numbers, there is virtually no difference. An

example with a'/a = 0.707 and k = 10 is shown in Figure 3.10 for which

the plotted curves are essentially identical to the case with no

spatial variability as in Figure 3.1(b). The higher wave number

indicates higher spatial variability of the system.

The nonlinear Dupuit equation with spatially variable accretion

can be evaluated by the approach given previously. From equation

2
3.1.49 the nonlinear terms f and ff depend on a'/a in addition

to a. This means that the ratio a'/a is another nonlinear parameter.

It is expected that the effects of nonlinearity will increase as this

parameter increases.

In conclusion, the transfer function in the case with

spatially variable accretion is little different from the case without

the spatial variability. The basic parameter that increases the

deviation is the ratio., a'/a. The wave number, k, is also relatively

unimportant for this comparison. In addition, the effects of

nonlinearity for such a system should be negligibly small for

small a'/a and high k. The simple linear system without spatial

variability of accretion can hence be used to represent a large variety

of cases.
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3.2 The Numerical Model: Deterministic Simulation and Model

Evaluation

Introduction

The objective of this section is to discuss the numerical model

which is used to study the nonlinearity of the Dupuit equation. The

advantage of such a model is that it can be easily implemented in the

stochastic simulation described in the next section and that we can

explore some of the complexities that can not be achieved in the linear

analytical study. On the other hand, it is expensive to solve the pro-

blem numerically and a careful analysis is required in relation to the

accuracy and efficiency of the model. In this study a number of cases

in deterministic linear and nonlinear simulation are examined; the

former serves as verification and accuracy test of the program, while

the latter provides some background for nonlinear evaluation in the

stochastic simulation.

The Finite Difference Approximation

Numerical approximations to solutions of the Dupuit equation may be

obtained by the stepwise solution of an associated difference equation.

In this study, an alternating-direction implicit scheme proposed by

Peaceman and Rachford in 1955 is utilized in a revision of the basic

computer program written by Prickett and Lonnquist (1971).

The presentation of the Dupuit equation is in two dimensional form

according to Prickett and Lonnquist.

Th 3 Th 3 Th
S - (T 2-) + -- (T -Lh) + (x,y,t) (3.2.1)t fx ax y ty h- -

The finite difference approximation to this equation can be obtained in
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two ways, i.e. from the physical viewpoint that the principle of conser-

vation of mass and Darcy's law are observed, or from the mathematical

viewpoint using finite difference approximations for the derivatives for

equation 3.2.1. The physical viewpoint is to be described in this

study. This approach makes use of the finite difference grid illus-

trated in Figure 3.11. The aquifer is subdivided into volumes with area

AxAy. The differential x and 3y are approximated by Ax and Ay respec-

tively. The intersection of the grids form nodes which are the discrete

point locations on the aquifer. Flow rates Q1 ,Q2 'Q3 9Q4 'Q5 and Q6 are

assigned as shown in Figure 3.11. Q1,Q2,Q3 and Q represent node to node

water transfer rates. Using Darcy's law

Q = T. . (h. - h. )1 11,3,2 i-1,3 i,j Ax

Q =T (h - h )
2 i~j, 2 ij i+l,j Ax

Q =T. (h. h AX
3 i,j,2 i,j+1 i,j Ay

Q T (h - Ax
4 i,j-l,l i,j i.,j-1 Ay

(3.2.2)

where T. . = transmissivity between nodes i,j and i,j+l

T . = transmissivity between nodes i,j and i+1,j
i,j ,2

h. .= calculated heads at the end of a time increment measured
1,J

from an arbitrary reference level

Q5 is the flow rate associated with the amount of water taken into or

released from storage per unit time increment At.

S AxAy(h. .- h4. .)

Q = Sl 1- J (3.2.3)
5 At
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where S = storage coefficient

h. .j = calculated head, at node (i,j) at the end of the previous

time increment.

The flow rate Q6 is the accretion at node (i,j),

Q = E . . AxAy where E i.. = rate of accretion (3.2.4)

Using continuity equations for all flow rates we obtain

Ql + Q3 + Q6 = Q2 + Q4 + Q5 (3.2.5)

Substituting equations (3.2.2), (3.2.3) and (3.2.4) into this and rear-

ranging the terms we obtain the finite difference form of the differen-

tial equation

T. (h - h.) T (h -h. )
i-1,j,2 i-1,j ij + 1Tj, 2 i+l,j ij

Ax Z

T (h -h ) T (h 1 h )
+ ij,1 i,j+l i,j + i'j-1,1 ij-l ij

Ay2  
Ay2

S(h - hp ) (3.2.6)
1,] At

The solution of this difference equation is by iterative alternating

direct implicit method which involves reducing a large set of simul-

taneous equations down to a number of small sets for a given time incre-

ment. For a more detailed description, see Peaceman and Rachford (1955)

for its theoretical development and Prickett and Lonnquist (197M) foi its

modification. The advantages of using this method are the rapid conver-

gence of the solution and its unconditional stability regardless of the

size of the time increment.
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The basic aquifer simulation program by Prickett and Lonnquist (1971)

is adopted throughout this study with some modifications. These include

the following items:

(a) One dimensional case - The equation we study is a one dimen-

sional form instead of two as that in the numerical model. The change

is made by retaining the minimum number of nodes along one direction

(y-axis). In this program the minimum number of y nodes is two.

(b) Number of nodes along the aquifer (x-axis) - The number of

nodes chosen depends on the tradeoff between the accuracy of the model

and the cost involved. In a similar problem, Remson (1971) adopted 21

nodes in the finite difference model. In fact, it has been tested in

this program that a choice of 31 nodes does not increase accuracy signi-

ficantly (0.1%), whereas the computer cost increases significantly

(over 20%). Hence, the choice of 21 nodes is considered to be appro-

priate. Given 21 nodes, we have 20 divisions, i.e. Ax = 1/20' For

simplicity, the other increment, Ay is made equal to this horizontal

increment.

(c) Boundary conditions - From the physical picture of the system,

we see that there are four physical boundaries, i.e. the boundary be-

tween the stream and aquifer, the water table above, the impervious

boundary at the bottom and the vertical impervious boundary at the end

of the aquifer. In the difference equation model, the fluctuation of

stream H(t) is represented as

h(i,j) = H(t) for i=l, j=1 and 2 respectively

In addition it must be assured that the water level at this boundary

node does not change due to the flow in the aquifer. This condition can

140



be handled in the computer program by assigning relatively large values

of storage factors along the boundary. The storage factor is defined

to be the product of storage coefficient and the unit area of the aqui-

fer. This storage factor is given a value of 108 throughout the numeri-

cal study. The water table boundary condition is implied by the accre-

tion condition which can be easily represented in terms of temporal and

spatial dependent values. The no flow condition at the end of the

aquifer horizontal axis is represented in the model as

h . = h . for j=l and 2 respectively.
n-l,j n+l,j o 3 n epciey

(d) Water table conditions - This is the condition for the non-

linear Dupuit model where the transmissivities depend on the aquifer

thickness, i.e. T = Kh. For a linearized Dupuit model, this could be

done by setting all transmissivities to be constant. There are two

major methods to approximate the head, h. They are the geometric mean

and the arithmetic mean methods. The second method is chosen for the

simple reason that we do not know exactly the shape of the water table

which behaves differently under the random boundary conditions. The

arithmetic mean method assigns the transmissivity between two nodes as

the arithmetic average head between the two nodes, i.e.

T = PERM ( ij 1j~ i
i,j,2 i,j,2 2

(h + h L

T. .' = PERM. . ( i 2 i'j+1

where PERM. . = hydraulic conductivity of aquifer between (i,j) and
ij,2

(i+l ,j)
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PERM i = hydraulic conductivity of aquifer between (i,j) and

(ij+1).

Model Evaluation

The accuracy of the numerical model is one of the important issues

in this study. Direct mathematical error analysis is not available due

to the complexicity of the boundary conditions and the system. Direct

verification of the results is based on the linearized numerical model

with deterministic sinusoidal inputs, the analytical solutions of which

were already found.

Numerical models of differential equations are subject to two major

types of errors; truncation error and numerical (round-off) error.

Truncation error depends on the size of grid interval (Ax and Ay) to be.

chosen. In this numerical scheme, the derivation of the difference

equation is based on the central-difference approximation with transmis-

sivities assigned to the successive nodes as weights, i.e.

T h - T h - T % h + T h

(Ax)2

(3.2.7)

T h - T h - T. h + T h
T h ~ i,j-l,l i,j-l i,j-l,1 i,j i,j ,l i-l,j i,j ,l i,j+l

(3.2.8)

Hence, the truncation error for such a scheme is in the order of (Ax)2 +

2
(Ay)2. For a choice of 21 nodes in the model, this error is in the

order of 0.005.

The round-off error is due to the difference between solving the

difference equation exactly and the numerical model by computer. The

condition for stability is the case when this error approaches zero over
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the whole region of solution. This numerical model, as it has been

pointed out by Peaceman and Rachford (1955), has the advantage of being

unconditionally stable regardless of the size of the time increment.

The total error of the model is made up of the truncation error

and the round-off error. The truncation error is due to the form

selected for the finite difference equation, and is often the larger

part of the total error. However, for a particular model like this with

inputs as exogenous variables feeding into the system, we need a more

direct evaluation of the total error as a function of the parameters of

the inputs. These parameters are the amplitude, mean and frequency.

Using some typical values of these parameters, it is possible to esti-

mate the error of the linear simulation study. Before discussing these

results, it is important to understand the efficiency of this numerical

model. This is a problem of choosing the proper time step, At, which

would lead to rapid solution. In general, the smaller the At, the

smaller the number of iterations (see Prickett and Lonnquist, 1971) for

the numerical solution to reach a predetermined error criterion (E).

This error criterion controls the sum of the changes in head during

iterations over the entire model and assures that computed heads have

converged to answers within a specified tolerance. This depends on the

time step of the model.

The frequency of a sinusoidal input function is directly related to

this time step. For a given time step, the higher the frequency, the

less information is obtained due to the discrete time step of the numer-

ical model. To retreive this information it is necessary to reduce the

time step by a proportional amount. The efficiency of the model re-
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quires that the time step is chosen in such a way that the cost of

running the computer model is kept to a minimum. For a number of

initial runs of the model, it was estimated that At is chosen approxi-

mately as

At Z 0'1 for Q > 1 (3.2.9)

For Q<l, At is chosen to be 0.1 in all cases. Henceforth, the error

criterion E can be estimated for a given At used in the model. From

Figures 3.1(a) and 3.2(a) the magnitude of the amplitude response Q<l is

approximately one. From equation 3.2.9, At is found approximately to

be 0.1. In order that the error criterion, E, be 1% in order of

magnitude, the formula for relating E and At is estimated as

E At (3.2.10)

or 1

100Q

As Q increases, this error criterion decreases but correspondingly, the

amplitude of the response function also decreases at an equal or smaller

rate. Hence, in the range of Q from 0.1 to 100, we have error criterion

of 1%.

In the simulation study, it usually takes some time for the solu-

tion to reach quasi-steady state. It was found that it takes four or

five cycles for a sinusoidal input to reach this state. A typical

example is shown in Figure 3.12 which shows simulation results of the

stream interaction case with input frequency equal to 20 and amplitude 1

at location x/L = 0.5. The linear simulation with inputs at some typi-

cal frequencies and amplitudes and means are compared to the analytical
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solutions. Other linear simulations show that results do not depend on

the amplitudes and frequency. One simulated result is shown in Figure

3.13(a) and (b) respectively. The results show that the error increases

slightly as a function of the distance away from the stream. Errors are

less than 1% in all of the simulation results. On the other hand, the

mean of accretion has slightly increased the error as shown in Figure 3.14.

However, the results show that all errors are less than 2% which is suf-

ficient for the purpose of this study. In conclusion, the only parameter

that would slightly increase the error of the numerical model is the spa-

tial horizontal distance from the stream. For a range of a0 from 0 to 3

there is sufficiently small error which may be neglected for the purpose

of this study. A listing of the computer program is given in Appendix A.

Nonlinear Simulation with Deterministic Inputs

The objective of this section is to discuss nonlinear simulation

results and their deviations from the linear theory. The nonlinear

numerical model is exactly the same as the linear model discussed pre-

viously, except that the transmissivity at each node of the grid is

assigned varying values with the condition that both models are in dimen-

sionless form (which means the dimensionless head has order of magnitude

of about one). It is reasonable to assume that the numerical error of

the nonlinear model is similar to that of the linear model. Since this

error is sufficiently small, we may further assume that the difference

between the restults of the nonlinear simulation results and those of the

linear theory is primarily due to the nonlinear effects or deviations
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rather than to numerical error. For the steady state case with constant

accretion, there exists analytical solutions for both linear and non-

linear cases (see 2.1 and 3.15) shows the relatively small numerical

error for the nonlinear simulation and this has a trend similar to the

numerical error of the linear simulation (compare to Figure 3.14). These

results further confirm our assumptions. On the other hand, Figure 3.16

shows significant nonlinear effects for.the steady state case with con-

stant accretion. It is noticed that such deviations increase signific-

antly when a0t he mean of accretion is greater than 1. This is one of

the major nonlinear parameters in the system.

The nonlinear simulation for the transient state solutions (both

for accretion and stream interaction cases) is tested using simple sinu-

soidal inputs with typical amplitudes and frequencies. The purpose of

these tests is twofold; to understand the general behavior of the non-

linear system and to verify the simple theory developed in section 3.1

regarding the evaluation of the nonlinear terms. The following table

(Table 3.1) and figures (Figures 3.17 - 3.25) show various cases being

tested for the two deterministic inputs:

Accretion case:

0(T) = 0 + a sin Q T (3.2.11)
0 a

Stream interaction case:

=0 T 0 + sin Q T (3.2.12)

All these are represented in dimensionless forms. In the stream

interaction case, the mean 0 is set to 1; hence the maximum value for

is equal to 1 in all cases.
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List of Nonlinear Simulations with
Deterministic Sinusoidal Inputs
at x/L = 0.5

149

Figure Stream or
Number Accretion case 0

3.17 Stream 0 0 0.5 0.5

3.18 Stream 0 0 0.5 10,20,50

3.19 Stream 0 0 0.2 10,20,50

3.20 Accretion 1 1 0 0.5

3.21 Accretion 2 1 0 0.5

3.22 Accretion 0 1 0 10,50

3.23 Accretion 1 1 0 10,20,50

3.24 Accretion 1 2 0 10,20,50

3.25 Accretion 2 1 0 10,50

Table 3.1
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From these graphical results, it can be seen that the nonlinear

solutions have sinusoidal shapes similar to those of the linear solutions.

Hence, it may be concluded that the frequency of the response is quite

close to that of the input. Furthermore, there is hardly any observable

phase lag between the nonlinear and linear solutions. The only major

difference is the upshift or downshift of the mean. These results show

that the assumption in section 3.1 in the evaluation of nonlinear terms

is reasonable. A number of points can be further confirmed by these

results and are given as follows:

(a) Nonlinear deviations are significant in the range of low frequency in

the case of accretion but are negligibly small in the case of stream

interaction. See Figures 3.20, 3.21 and 3.17.

(b) Nonlinear deviations are approximately the same at higher frequency

in both cases, accretion and stream interaction. In the former case,

the nonlinear results are greater than those of the linear theory,

while they are smaller in the latter case. See Figures 3.18 and 3.23.

(c) Nonlinear deviations are greater when the amplitude of fluctuation

increases in the case of stream interaction. In Figures 3.18 and 3.19

one can see for =0.2, the percentage of deviation is about 1%,

whereas for =0.5 the percentage of deviation is as much as 5%.

(d) Nonlinear deviations are greater when the amplitude of fluctuation

increases in the case of accretion. In Figures 3.23 and 3.24 one

can see when the amplitude a=l, the percentage of deviation is less

than 5%, but when a=2 the percentage of deviation is as great as 10%.

(e) Nonlinear deviations are significant when the mean of accretion, a'

increases. In Figures 3.23 and 3.25 one can see the deviation
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increases from 5% at a0 =1 to 17% at a0 =2. In comparing Figures

3.23 to 3.25 one can see that nonlinear deviations are more sig-

nificant when the mean is increased than when the amplitude is

increased.

In conclusion, the study of the nonlinear simulation with

sinusoidal inputs identifies a number of nonlinear parameters that are

important in the later analysis of the stochastic simulation. These

parameters include the mean and amplitude of accretion and the ampli-

tude of stream stage fluctuation. Of these, it seems that the mean

of accretion plays the most significant role.
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3.3 Nonlinear Simulation of Spectral Response

Introduction

The major objective of this section is to investigate the spectral

behavior of a nonlinear simulation of the stochastic phreatic aquifer

system. The emphasis is on the transfer function rather than the phase

spectrum of the system, since it was previously found that there is very

small phase lag between the linear and nonlinear systems. (See sections

3.1 and 3.2 ) Using the transfer function determined from the simula-

tion, we may make a more direct evaluation of the nonlinear Dupuit model

subject to a given set of input statistical parameters. The simulation

approach also has the advantage of permitting one to investigate models

with further complexities, such as the spatial variability of the

accretion rate or the hydraulic conductivity. In addition, the simula-

tion requires the specification of certain characteristics of the numeri-

cal model. These are related to the physical parameters of the system,

thus helping one to evaluate the effects of nonlinearity.

Characteristics of the Simulation of Spectral Response

A basic feature of the nonlinear simulation is the determination of

the dimensionless time interval, AT in the numerical model. AT plays an

important role in this study since it reflects both the physical and

statistical aspects of the spectral analysis of the problem. The dimen-

sionless parameters for both linear and nonlinear Dupuit equations are

represented as:

T
dimensionless time T = 2 t

SL
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dimensionless accretion p = W(t)TM

dimensionless stream stage H(t)
0 m

where m is some characteristic aquifer thickness. In the linearized

model, T is a constant; whereas in the nonlinear model T = Kh.

The simulation requires the determination of the time step inter-

val, AT. Once this is known, the physical parameters, S and T of the

phreatic aquifer are implied and hence the output can be obtained. This

time step interval is given by

AT = 2 At (3.3.1)
SL

where At is the real time step interval in days, weeks, months or years.

At first, it seems that the determination of AT requires the ex-

plicit physical specification of the system, i.e. we need to know the

physical parameters, S,T,m and L individually. However, AT could be

estimated in a more implicit way using the sampling theorem in spectral

analysis. This sampling theorem states that the shortest period that is

theoretically possible to resolve with a given sampling interval, is one

which is twice as large as the sampling interval. The maximum dimension-

less frequency, c that can be specified by the sampling interval is

given by (see Bendat & Fiersol, 1971)

0= 6 2r ' (3.3.2)c 2tT A =

The determination of the dimensionless maximum frequency requires

a physical understanding of the system. It has been shown previously

(see section 3.2) that the dimensionless frequency, Q, is related to
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the aquifer physical properties by

SL2

T

When Q=100 it represents a typical aquifer system with a frequency of

response of approximately 3 cycles/month, which is rather high for the

natural frequency of hydrological processes. In this study the maximum

dimensionless frequency, QC chosen is 100 radians/dimensionless time =

100/27 cycles. Using equation 3.3.2

AT = 0.031416

In the nonlinear system, the dimensionless time step, ATN is chosen

to be the same value. Hence we have

AT N= AT

and the frequency is the same for both cases. In other words, the non-

linear and linear systems have the same dimensionless frequency scale.

With such a choice of AT, the dimensionless accretion in both systems is

the same. Once the time step interval is determined the other param-

eters of the computer model can be established; e.g. the error criteri-

on, E, which is given by AT/10.

At each time step, input is generated into the model as was done

in the deterministic simulation. The numerical error due to a station-

ary random time series input for the simulation could be regarded as a

function of the mean and variance of the time series. From the non-

linear deterministic simulation it has been shown that this error in-

creases slightly as the mean of dimensionless accretion, a0 increases.

This implies that the mean of the time series should have a similar
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effect in the stochastic simulation. To show the importance of this

numerical error in the spectral analysis consider the following rough

estimate:

5
Let Ts = (1+a)T

where ni = numerical output

n = theoretical output

a = numerical error

The spectral function for ns is

2
S = (l+a) S

Is s In

Since the input accretion spectra is given by S ,

Sn S
= (1+a)2 nnS S

pp PP

From the deterministic simulation, the numerical error for the steady

accretion case is about 2% for a0 as large as 3. Hence, the numerical

and theoretical transfer functions are related by

S
s s S

S 1.04 SEE
pp pp

This 4% numerical error is sufficiently small for the purpose of this

study.

The output from the simulation program and the input time series

obtained from historical field data or generated synthetic data are

analysed by the BMD02T program (Biomedical Computer Program--Autoco-

variance and Power Spectral Analysis) (see Dixon, 1973). The main error

arising from this is the estimation of the spectrum. Appendix B con-
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tains an evaluation of the confidence limits for the spectrum. The

variance of the estimate is given by

2
MS (2)

Var[S (Q)] 'v X (3.3.3)
XX T

where S ( 2) = theoretical spectrum of X

S (Q) = estimated spectrum of X

M = number of lags chosen for the spectral analysis

T = total record length.

Hence, a larger number of lags will, in general, produce a better reso-

lution, but with a loss of confidence in the estimates. A reasonable

choice of M is approximately 1/10 or less of the total record length, T.

In this study, the total record length for the historical data with 30

days interval is 405 units and M is chosen to be 36. Since the dimen-

sionless input and output spectra of the system are of the order of 0.1

(the dimensionless aquifer thichness n and the accretion, p or stream

stage q are approximately of the order 0.1 to 1.0), hence one can see

from equation 3.3.3 that the variance of the estimated spectrum is

approximately 0.0001 and the standard deviation is about 1%. Thus, it

can be concluded in this study that the error due to the numerical model

and that due to the estimation of the spectrum are relatively small.

The basic feature of the numerical model as a transformation

system (i.e. the determination of AT) has been described, the character-

istics of the inputs are now considered. These are the parameters con-

trolling the nonlinearity of the system. The choice of these 'nonlinear'

parameters forms the basis for the comparison of the transfer function

of the simulation and that of the linear theory. In the simple evalua-

163



tion of the effects of nonlinearity via the deterministic simulation,

it has been shown that a0, a and $ are the basic nonlinear parameters.

The corresponding parameters in the analysis of a random stationary

time series are the mean and standard deviation. To estimate the order

of magnitude of these parameters, we require a certain degree of infor-

mation about the physical system in terms of its properties and dimen-

sions. Using the dimensionless accretion expression from the previous

section, we could relate the nonlinear parameters, mean of accretion, a0

and its amplitude a as given by

2
- L -

* 0 L- E (3.3.4)

4
2~ 2 L 2
* 2 a = a (3.3.5)

p 2 2 E
K m

where a denotes the theoretical variance of p.

For a typical aquifer system with length of one mile, hydraulic

conductivity of 104 gal/day/ft, aquifer thickness near stream of 30 ft.

and average monthly precipitation of 3 in., the dimensionless mean of

accretion, p is approximately 4. However, this must be corrected be-

cause not all precipitation is passed onto the water table; some being

used by vegetation on the ground, some being retained in unsaturated

zone above the water table, some being evaporated, etc. Jacob (1943)

proposed that the accretion rate is directly proportional to the preci-

pitation. This proportionality constant depends on the geological

structure of the system and there is no simple way to determine it. In

this study, this constant is assumed to be in the range from 10% to 50%.

Hence, in the simulation study, the mean of dimensionless accretion is
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chosen to be from 0.5 to 2 for a typical aquifer system.

From equation 4.2.1, the dimensionless accretion, p, may be written

as
- 1 At-

p m = -- - (3.3.6)
=sm AJ

and using equation 4.2.2

- 2 c -(37

p = - M- At E (3.3.7)

where E = yP

y = percent of precipitation going to accretion

P = precipitation.

One can see that the p is proportional to the maximum frequency in the system.

system. The choice of this frequency, as we have discussed, is based on

the physical parameters and the characteristic frequency of response of

the system. This characteristic frequency of response refers to the fre-

quency due to the hydrological processes rather than to noise. The choice of

the real time step, At depends on the amount of information we want to

retrieve from the hydrological processes. In this study, the ground-

water system has a relative slow response. In addition, we have a re-

latively long record of time span (about 36 years). Hence, a choice of

30 days or 1 month for each time interval was considered appropriate.

The dimensionless variance of the time series is related to the

dimensionless mean as a ratio a /p. From equations 3.3.4 and 3.3.5
p

this ratio is equal to a /E, which is fixed in the historical data simu-

lation, but which can be varied in the synthetic data. It is assumed that

this ratio varies from 0.5 to 1.5 in realistic situations. In the stream

interaction case, the dimensionless stream stage, n 0 is given by
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T0 = H/m

therefore n0 = H/m

a =CFH/

fl0 =aH/m

a /n0 = a /H
0

The nonlinear parameter would seem to be given by the ratio a n0

however, the stream stage record is based on an arbitrary datum. Thus

the ratio a a H/m is more appropriate as a nonlinear parameter than

the ratio a /H which is varied by changing the arbitrary value H.

In conclusion, one can see that the mean of the hydrological pro-

cesses discussed above is related more to the physical dimensions and

properties of the system, while the variance is related more to the

statistical properties of the system and together they constitute the

basic nonlinear parameters.

Nonlinear Simulation with Historical Data

The objectives of this section are to evaluate the numerical model

with historical field data for the inputs and to compare the transfer

function thus obtained to that from the linear spectral or sinusoidal

theory.

The field data used throughout this section is a set of records of

gauge height of a nearby stream and the precipitation at the city of

Wichita, Kansas covering the period from January 1938 to September 1971.

A listing of these input data is given at the end of the computer pro-

gram in Appendix A. The geographical location and a more detailed de-

scription is given in Chapter 4. The real time interval, At chosen for
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these 36 years of record is 30 days. The time series of the two inputs,

stream stage and precipitation, is assumed to be stationary and the

sample statistics for the first two moments are given in Table 4.1.

Parameters Sample Mean Sample2Variance Sample Standard
spX Deviation s sX

Precipitation 2.557 in. 5.411 in. 2  2.33 in. 0.9112

Stream Stage 2.739 ft. 5.426 ft.2 2.34 ft. 0.8543

Table 3.2 Sample Statistics of Kansas Data

Single Input Case--

In this simulation study the aquifer thickness at the stream, m is

needed to specify the complete description of the dimensionless stream

stage. From communications with the U.S. Geological Survey Office in Kadsas,

this characteristic thickness at that particular location was estimated

to be about 25 ft. This estimate is used to normalize the stream fluc-

tuation and accretion.

Before going to the detailed study of the nonlinear simulation, it

is worthwhile to look at a comparison to the linear simulation in one

case. The rationale behind this is to show the accuracy of the spectral

estimation and to identify the effects of nonlinearity, rather than the

numerical error. This is shown in Figure 3.26, in which the linear

theory, linear simulation and nonlinear simulation are compared in the

stream interaction case. It is seen that the linear simulation results

show close approximation to the linear theory, particularly in the range

of higher frequency. For the nonlinear simulation, the amplitude is
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above both the linear theory and linear simulation. Since there is no

significant difference between the linear simulation and theory, we can

compare the linear theory to nonlinear simulation directly.

In the nonlinear simulation study, the major nonlinear parameter is

p, which is associated with the perturbation parameter, p, characterizing

nonlinearity found in Chapter 2. Their relationship is given by

p= 2

The dimensionless mean can be varied but the ratio - remain
p

constant for the historical data simulation, and be equal to the

value given in Table 3.2. Table 3.3 lists some nonlinear simulation

results over a range of different parameters.

In the accretion case (Figures 3.27 - 3.28) the simulation

results show the amplitude of transfer function in the lower portion

of the frequency range and is sensitive to changes of the mean of

dimensionless accretion, p (or the perturbation parameter, V).

As p or p increases, the amplitude of the transfer function in

the lower frequency drops. But, for p being less than 0.5, the

nonlinear simulation results are close to the linear spectral theory.

It may also be noticed that the effects of nonlinearity increase as

the distance away from the stream increases. At relatively high

frequency (Q > 10) the simulation results are quite close to the

linear spectral theory regardless of the values of p. Some of these

results are in close agreement with the deterministic simulation

(see Section 3.3), and the nonlinear perturbation analysis of Chapter 2.
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Table 3.3 List of Nonlinear Simulation

Parameters for the Single Input System

170

Dimensionless Perturbation Ratio of Sample Accretion
Figure Accretion Parameter Sample s.d s.d. or

to mean Stream
Number p P s  s Case

3.27 0.4589 0.22945 0.9112 - Accretion

3.28 1.2785 0.63925 0.9112 - Accretion

3.29 2 1.0 0.9112 - Accretion

3.30 4 2.0 0.9112 - Accretion

3.31 - - - 0.0468 Stream

3.32 - - 0.0936 Stream

3.33- - 0.1872 Stream



0.3

0.2 1.0 -

0.1 0.50 \ = 0.4589

- .0

2 -~- -- - \\G 1  0.25
~N0.50\-

0.01 x/L=0.25 -

0.001

Nonlinear Simulation
----- Linear Theory

0.0001

0.1 1.0 10 100

Figure 3.27 Square of the Amplitude of the Transfer
Function of Nonlinear Simulation for the
Aquifer System with Accretion Input,

p = 0.4589

171



-.... L- ..LL JiI I 111111
1.0

- 0.50

- 0.25

Nonlin
----- Linear

I I I I I III!

0.1 1.0

I 112111

p = 1.2785

0.3

0.2

0.1

10 100

Figure 3.28 Square of the Amplitude of the Transfer
Function of Nonlinear Simulation for the
Aquifer System with Accretion Input,

p = 1.2785

172

\1.0 ~

0.

x/L=0.25

ear Simulation
Theory

I I LI 1 I I I I I I||

2

0.01

0.001

0.0001

IG1

_ _



F--- -- LLLLUIfI
- 1.0

I I 1 1 I II 1 T IIT7

0.1

2IG 12

0.01

0.001

0.0001

p =2.0

1.0

\O\

x/L=0.25

near Simulation
r Theory

1.0 10

Figure 3.29 Square of the Amplitude of the Transfer
Function of Nonlinear Simulation for the
Aquifer System with Accretion Input,

p = 2.0

173

0.3

0.2

_ onli
----- Linea

0.1 100

-~--



.--L....LLIU I T Y 1 1111111 I I 1111
0.2 0

0.1 _ 0.50

- 0. 27

G 2 -- \0 ,0

0.01-

x/L=0.25

0.001

Nonlinear Simulation
Linear Theory

0.0001 1 111 1 1 1 1 1 1 1 1 1 1 1

0.1 1.0 10 100

Figure 3.30 Square of the Amplitude of the Transfer
Function of Nonlinear Simulation for the
Aquifer System with Accretion Input,

p = 4.0

174

f) 3



1.0 k-1-I-~~.

s = 0.0468
n

x/L = 0.25

2\

0.1 _-\\ -
-. 0 .5 0

0 75

0.01

Nonlinear Simulation
---- Linear Theory 1.0 \

0.00|

0.1 1.0 10 100

Figure 3.31 Square of the Amplitude of the Transfer
Function of Nonlinear Simulation for the
Aquifer System with Stream Stage Input,

s = 0.0468
0

175



1. .s n= 0.0936

x/L =0.25

IG 22N

0.1 - ~-
0.1\0.50

0,

0.01

Nonlinear Simulation
- -Linear Theory

1.0

0 .001-
0.1 1.0 10 100

Figure 3.32 Square of the Amplitude of the Transfer
Function of Nonlinear Simulation of the
Aquifer System with Stream Stage Input,

s = 0.0936
0

176



1.0

0.1

0.01

0.001

0.1 1.0

Figure 3.33

10

Square of the Amplitude of

100

the Transfer
Function of Nonlinear Simulation for the
Aquifer System with Stream Stage Input,

s = 0.1872

177

- -1 -1 - I I t*

s = 0.1872 -
no

x/L=0.25

\\ \ 0.50

0. 75

Nonlinear Simulation
----- Linear Theory 1.0

| | | || | | | | ||V



It is noticed that at very high frequency (Q > 60) there is some

deviation of the simulation from that of the linear theory. This

is probably due to errors in the numerical simulation and the estimation

of the spectrum.

In the stream interaction case, the nonlinear parameter s or sno H/m

is relatively insensitive to the effects of nonlinearity. Three cases

have been tested with s'o approximately equal to 0.05, 0.1 and 0.2,

respectively. The second case represents the dimensionless standard

deviation for the Kansas case. The first and third cases represent

the same data multiplied to produce standard deviations above and below

this value. It is seen that the spectral amplitude increases at all

frequencies as the amplitude of the input fluctuation increases. From

these simulation results, it seems that nonlinear effects may be more

significant when s no or sH/m is greater than 0.2. In this case,

it means either the aquifer thickness at the stream is relatively

small or the variance of the stream fluctuation is very large. The

combination of the statistical property, sH and the physical

characteristic, m of the qystem determines the magnitude of this non-

linear parameter. In realistic situations sH has a relatively small

range, say sH o 2 to 5 ft., compared to the characteristic saturated

thickness of the aquifer, m, which would be the more important

determining importance of nonlinearity.

For the single input case involving stream stage fluctuation, the

nonlinear effects can be evaluated by comparing the transmissivities

of both nonlinear and linear systems. Since the porous medium of the
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system is homogeneous it is reasonable to assume that the delay

response time (See section 3.1)TD is inversely one location to the

other. (See Chapter 14, Eagleson, 1970). Hence the ratio of

transmissivities in nonlinear and linear cases are given by

L
T T
N DT N

TL TDN

where L indicates linear

N indicates nonlinear

The linear and nonlinear simulation of the delay response at x/L = 0.5

are plotted in Figure 3.34 for the case where the dimensionless stream

stage sample standard deviation, s , is about 0.1 The results show

the linear transmissivity is 5% to 10% lower than the nonlinear

transmissivity. At other locations it has been found this ratio is

approximately the same. It is expected that this deviation increases as

s increases. This approach is applied only to the stream interaction

case because it is assumed in this model that the flow in the aquifer

is essentially horizontal. In the accretion case, the vertical recharge

there are only small phase effects in the horizontal direction.

Dual Input Case -

In this system, both stream stage and accretion are used as

inputs for the numerical model. For a linear system, the output of the

dual system is simply the superposition of the two outputs due to

each input system. i.e.,
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Y = Y1 + Y2

where Y = dual output

Y1, Y2 = outputs of single input system

In this study, Y1 represents the output due to the accretion input

and Y2 represents the output due to the stream stage input. Their

respective transfer functions were found (See section 3.1) to be

G = i (F-1) (3.3.9)
1 F

G2 = F (3.3.10)

where F - cosh VT (l- )

cosh VTM

The dual spectral output can be easily obtained by assuming the

dual system consists of two lumped parameter systems. The result

obtained will be the same as that from the distributed parameter

system.

From equation 4.3.1 we obtain the dual spectral output SYY as

Sy = SY1Y1 + SY2 2 Sy 1 2 S Y2 1 (3.3.11)

Then, using the following relationships (See Chapter 10,

Papoulis, 1965).
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S y1y1=IG, 
2 X X 1

S 2 2 G2 1 2 2X2

S 1 12 G 2X*G2 X2

S 2 
12 G*G2SX2X

in equation 4.3.4, we obtain

Syy = Gi| Sx x + |G12SX2 
2 x

+ G1G2 S XX2

(3.3.12)+ G1 *G2Sx 2X

The quadspectrum, Q and cospectrum, Cox x for the two inputs X

and X2 are related to the cross spectrum, S and SXX as

SX2 X

SX2X

= CoX X

X21

+ iQX

X21X

(3.3.13)

Using equations 3.3.11 and 3.3.13 substituted into 3.3.12 we obtain the

spectral dual output in dimensionless form with

n = Y, p = Xi and no = X2
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as ( (F-1) (F*-1) S () + FF*S (Q)
rr2 pp nn

1 22P 1 0T

-[2FF* - (F+F*)] Q (Q) + -(F-F*) Co (Q)
01n0 0 ro

The transfer functions G and G2 for the dual input system can be

found (See Chapter 4 or Bendat and Piersol, 1971, Chapter 5) as:

[1 SX X 2 S X2
SS

G 2 2  (3.3.15)
1 1 

1 2

SX2 SX

S Y S 1S
2 X x2

2 2 (3.3.16)

22

where y 2 X = coherence square function between inputs X1 and X2'1 2

However, for the nonlinear Dupuit equation, the superposition

principle no longer holds. Hence, the theory developed so far is not

completely applicable. In the Dupuit equation
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=n (_ a+
aT syst=b

with the dual input system = n 1 + r)2 we obtain

anT +
D +

a1

aT 2 2 + I2 + p

(3.3.17)

With the single input system we obtain

an 1  _ 3 (a T + P

2 ( 2
3-1 a1 E

AT wT

Adding these two equations we have

DT 1 + = 
2 ( n a n +

a -T 5T -5~ c _DE_

Clearly

2n) + p
c

(3.3.18)

Y # Y1 + Y2
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In fact, it is seen that

Y = Y1 + Y2 + f(Y Y2) (3.3.19)

In this nonlinear simulation of the dual input system, we use

two methods to evaluate the effects of nonlinearity. The first

method computes spectral dual output S in equation 4.3.6 or 4.3.8

based on G and G2 from linear theory and compares to S obtained

directly from the nonlinear simulation. The second method compares

transfer functions G and G2 obtained from linear theory (equations

3,3.9 and 3.3.10 to those computed from the nonlinear simulation

results based on equations 3.3.15 and 3.3.16 which were derived via

superposition principle. If the transfer functions for the dual

system are close to the linear theory, the function f(Y1 Y2) would

be negligibly small. On the other hand, if f(Y1 Y2 ) increases, the

comparison between the linear theoretical transfer functions and the

nonlinear transfer functions furtber identifies the nonlinear effects

of the system. In general, it is seen from equation 3.3.19 that

nonlinearity increases as the product of the amplitudes of the two

single outputs increase. These products are proportional to those of

the inputs. Hence, the basic nonlinear paramcters of the dual input

system are functions of the products of the amplitudes and means of

the inputs.

Table 3.4 lists a number of typical cases of the nonlinear

simulation for the dual system using both methods mentioned:
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Table 3.4 List of Nonlinear Simulation Parameters
for the Dual Input System

Dimensionless
Figure Basis for Accretion Mean Location

Tumber Comparison x/L

S (Eq. 3.3.14)

S (Eq. 3.3.14)

(Eq. 3.3.14)

(Eq. 3.3.15)

G 1 12 (Eq.

(Eq. 3.3.15)

(Eq. 3.3.16)

(Eq. 3.3.16)

(Eq. 3.3.16)

1.0

1.0

2.0

0.50

2.0

1.0

0.50

2.0

1.0

0.25, 0.50,

0.50

1.0

0.50

0.50

0.50

0.25, 0.50, 1.0

0050

0.50

0.25, 0.50, 1.0
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The nonlinear parameter, s o is fixed in all cases in the

simulation of the dual input system. It is chosen to be about 0.1 in

accordance with the information from the Kansas data. The rationale

for this is based on the stream case, for which the effects of

nonlinearity are relatively insensitive to changes of this parameter.

From Figure 3.35, it may be seen that nonlinear effects increase

as the spatial coordinate x/L increases. This has a similar trend to

that found for both the steady and transient deterministic cases

(See section 3.2). Thus, the amount of nonlinearity is a function of the

spatial parameter x/L. In addition, the mean of dimensionless accretion,

p has significant nonlinear effects on the dual input system as in the

single input system. The nonlinear deviation increases as this

parameter increases. This is particularly significant in the low

frequency range for which the nonlinear output spectrum, S falls

below the linear one. (Compare Figures 3.27 and 3.37)

The graphical results of Figures 3.38 - 3.43 show the second

method of analysis which computes the transfer function as in the case

of a dual input lumped linear system. These simulation results show

close agreement with the single input systems and they are quite close

to the linear theory for small F and s . In the accretion case, the

amplitude spectrum decreases slightly as p increases. (Compare

Figures 3.38, 3.39 and 3.40). It is observed that the dual input

system has slightly larger deviation in the lower frequency than the

single input system (compare Figures 3.40 and 3.28) This is probably

due to the interaction between the stream and accretion fluctuation in
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the system. Mathematically this has been shown in equations 3.3.14

and 3.3.19 to be due to the product of the input amplitudes. In the

stream interaction case, there is little significant difference as p

increases. The only difference is that there is greater fluctuation

of the amplitude of the function about a certain average value as p

increases. This is probably due to errors of the estimation of the

spectrum. Though this fluctuation is quite large, the transfer

function from the linear theory fits rather smoothly about the

mean of these fluctuations.

In conclusion, the linear theory is a good approximation to the

nonlinear Dupuit equation in both single and dual input systems.

Nonlinear effects play a more important role in the lower frequency

as the mean of dimensionless accretion, p increases. In the stream

case, the nonlinear effects are relatively small. From the study of

the dual input system, it seems that the accretion plays a more

important role than the stream stage.

In addition, the two methods show that the nonlinear effects are

generally negligible. In particular, the second method based on the

transfer function from the dual lumped system shows that the assumption

that the superposition of the two single outputs from the dual output is

quite reasonable. The validity of this assumption further confirms that

in the analysis of field data, the transfer function for each single

input system can be evaluated by this method.
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Nonlinear Simulation with Synthetic Data

The previous section discusses the results of the nonlinear

simulation using historical data from a particular location as input.

This certainly has some limitations for a study with a more general

framework. The objective of this section is to overcome these limita-

tions by using generated synthetic input data. The following are some

of the advantages:

(a) More information about the transfer function in the lower fre-

quency range. For the historical data there is a fixed total

record length of 405 units, with the number of lags used being set

to 36. The resolution length is the dimensionless frequency in-

terval, AQ = 100 2.78. Therefore the spectrum in the frequency
36

range below Q - 2.78 cannot be evaluated. The number of lags is

generally chosen as approximately 1/10 or less of the total record

length. In order to improve the frequency resolution it is inad-

visable to increase this number since the variance of the esti-

mated spectrum would be increased. (See equation 3.3.3). But by

using synthetic input data, we could increase the total record

length, and hence, we could obtain information in a lower fre-

quency range.

(b) Flexibility by varying the distribution and correlation properties

of the input time series. In the historical data the major sta-

tistical property which may be varied is the mean of accretion,

but not the variance which is fixed for a given set of data.

Synthetic data can be generated with different typical variances
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for investigating the more complete system. In addition, correla-

tion properties may be introduced to the system in order to study

possible effects on nonlinearity..

(c) Investigation of spatial variability of accretion,

Synthetic data enables us to explore a more complex model; i.e.

accretion input with both temporal and spatial variability.

The generation of synthetic data for a hydrological process re-

quires a physical understanding of the problem And the analysis of the

available historical data. In this study the synthetic time series is

considered to be stationary and random. This random time series,

X(T) may be considered to consist of two components, the deterministic

D(T) and the stochastic S(T), i.e.

X(T) e D(T) + S(T) (3.3.20)

The deterministic component accounts for the trend of the hydrological

process, while the stochastic component accounts for the many unknown

variables in the process. One particular characteristic of the trend

of the process is the periodicity of the system. For a stationary

process, the mean of both D(T) and S(T) is a constant. The determin-

istic component can be generated from a sinusoidal process, while the

stochastic component is generated from some kind of random process for

which we need to specify probability distribution properties. In

other words, we must know the type of distribution and its mean, vari-

ance and autocorrelation.

The two inputs, accretion and stream stage, are first analyzed

using the historical data. This is done in order to find out the dis-
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tribution properties and sample statistics of these two time series.

The input data were tested on log-nQrmal probability paper (See

Figures 3.44 and 3.45 and it was found the precipitation is approxi-

mately log-normally distributed. The mean and variance of precipita-

tion and stream stage were already given in the previous section.

Their autocorrelation functions are shown in Figures 3.46 and 3.47,

respectively. It is observed that in both correlograms, particularly

in the case of precipitation, the correlation function drops down

significantly to approximately zero after one lag. This means there

is very little correlation between the time records for intervals more

than one lag unit (30 days). With such a property the process can be

regarded as an independent one. Furthermore, the correlogram of pre-

cipitation shows that the process has an annual periodic component.

In this study synthetic accretion input is generated as it plays

a more important role than stream stage in nonlinearity. The syn-

thetic time series is of the forru:

p(T) = A cosOT + e(T) (3.3.21)

where the sinusoidal term denotes the deterministic periodic component

and the second term is a random processgenerated from an independent

2
normally distributed process with sample mean e and sample variance s .e

The normal distribution is used instead of log-normal distribution

simply for the sake of convenience. Furthermore, this serves as a test

for an input with a different type of distribution.

From equation 3.3.21 the dimensionless accretion mean and its

variance are given by
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p =e

2 2 2 (3.3.22)

or A + or,

in which it is assumed that the deterministic and stochastic processes

are independent. Table 3.5 lists the nonlinear simulation parameters

for three cases w'ith different variances.

Figure Mean of s. d. of Mean of Amplitude of Dim.
Number Stochastic Stochastic Dimensionless Deterministic frequency

Component Component Component
e s p A

e

3.48 1 0.5 1 0.2 16

3.49 1 1.5 1 0.2 16

3.50 2 3.0 2 0.2 16

Table 3.5 List of Nonlinear Simulation Parameters
for the Accretion Input System with
Synthetic Data

The number of synthetic data generated in the first and third

cases is 550 units and the number of lags is 50, while in the second

case, the number of input time records is 1000 and the number of lags

is 100. Clearly, there is no limit to the amount of data we can

generate, but it becomes extremely costly. From Figures 3.48 - 3.50

it appears that the results are similar to those obtained from the

historical data. In the historical data, we have a fixed dimensionless

sample standard deviation, s of approximately 1. It is observed

(compare Figures 3.48 and 3.49) that there is a relatively small increase of

nonlinearity when the standard deviation of the input increases from
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0.5 to 1.5. The nonlinearity occurs in the range of lower frequency

for which output amplitude decreases as s increases. There is somee
significant changes when the standard deviation increases to 3 (com-

pare Figures 3.50 and 3.29). In realistic situations, a standard

deviation of 3 for accretion, at a particular location over a signifi-

cantly long record, is considered to be rare. Hence it can be con-

cluded that the variance has a relatively small nonlinear effect on

the groundwater system,

So far, precipitation records have been used to represent the

accretion rate in order to facilitate the spectral analysis using field

data input and output time records. In reality, precipitation and

accretion differ not only in magnitude but also in spatial and temporal

distributions due to the complicated processes occuring as water infil-

trates into the ground and passes through the soil moisture zone. The

two main topics to be considered in the simulation study will be the

temporal and spatial distributions of the input accretion.

It has been shown in Figure 3.46 that the historical precipitation

records have relatively uncorrelated temporal structure. We now incor-

porate into the synthetic accretion time series an arbitrary temporal

correlation and study the behaviour of the transfer function of such a

system. The time series is constructed in such a way that it depends

on the accretion during the previous time steps. The intensity of de-

pendence on the past is chosen by weights, w.. The synthetic time

series is represented in a discrete manner in the numerical model as

p(T1 ) A cos Or. +n - i) (3.3.23)

i=0
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where n
7 w =1

and 0 < w <1

e is generated from a normal distributed process as done previously.

From equation 3.3.24 the mean and variance of the time series are found

to be

p e

2 2 n 2 2 ( 4a = A w'. a, + E.E. 2 w.w. R (3324)
p + Z i e j. i j 1j

i=O

where i j

autocovariance of e between the ith
ith

and jth time step

a = theoretical variance of e
e

Since n

we have
2 2 2 2a = A + e + E.E. 2 w.w. (R.. - a )

One can see if there is strong correlation of the process between any

two time steps, and if the weights, w. are relatively high, the con-

2
tribution to the dimensionless accretion variance, a would be high.

T
Two cases are studied and are given in Table 3.6.
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Figure Dimensionless Sample Amplitude of Dimension- Weights
Number Accretion Standard Deterministic less

Mean Deviation Component Frequency

Pa A w.
e 1

w =0.4
3.51 1 0,5 0 .0

w1=0,3

w 2=0.3

3.52 1 0.5 0.2 16 w0=0.4
w 1-0. 3

2=0.3

Table 3.6 List of Nonlinear Simulation Parameters for
the Synthetic Accretion System with Temporal
Correlation

It is seen that the correlational structure of the input time

series has slightly greater nonlinear effects than the one without

correlation (compare Figure 3.51 with 3.48). The nonlinear effects

occur in the range of lower frequency such that the amplitude of

transfer function is lower. One explanation of this is that for a

correlated time series the total variance (sum of variance and auto-

covariance as in equation 3.3.24 has larger value than that of the

uncorrelated one. The interaction of covariance of the input series

is further affected when the input is passed through the transformation

system which also has a correlation structure. In other words the

output time series has a correlation structure even if the input is

white noise. The intensity of correlation will depend on the input

series' structure. Another observation that may be made from

Figures 3.51 and 3.52 is that there are some large fluctuations at
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high frequencies (Q> 50). At such high frequencies, the nonlinear

simulation results show an amplitude of transfer function that is

substantially higher than that of the linear theory. There are

several possible sources of these effects including numerical error,

aliasing error and the temporal correlation structure of the system.

From the historical data analysis, and from the synthetic data analysis

with no temporal correlation, we can see that these fluctuations do not

exist at higher frequencies. Since the parameters used in these

temporal correlation cases (compare Tables 3.5 and 3.6) are similar,

it seems that numerical or aliasing error may not contribute to these

fluctuations. Intuitively, this may be interpreted to mean that cor-

related accretion at high frequencies leads to a fluctuating system

response, due to the interactions between the correlation of the input

series and the transformation system.

Spatial as well as temporal distribution of accretion is of vital

practical importance in this study. Four possible cases are considered.

First, it is assumed that the spatial distribution is fixed for all

time and is generated from a random normal process with a given mean

and variance. Second, it is assumed that this spatial distribution

varies randomly with time and has a mean equal to the uniform temporal

fluctuation. Third and fourth, an arbitrary spatial correlation

structure is incorporated in the above two cases. This structure is

similar to that of the temporal structure, i.e. the spatial distribution

depends on the weights w,, given by the previous spatial coordinates

starting from x/L =0 to 1. Hence the input accretion time series is
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proportional to

The following table

n
E wke (i - k)

k=1

where n = number of horizontal spatial nodes in

which there is dependence

i = number denotes the spatial horizontal

coordinate

lists the four cases.

Figure Type of Spatial Weights Dimensionless

umber Spatial Correlation Accretion Mean
Distribution Structure k P

3.53 Fixed Uncorrelated 2

3.54 Time variable Uncorrelated 2

w, - 0.4, w2= G.3
3.55 Fixed Correlated w2 = 0.4, W4= 0.3

3= 0.2, w4= 0.12

3.56 Time variable Correlated w2 = 0.4, W2= 0.33 = 0.2, w4= 0.1

Table 3.7 List of Nonlinear Simulation Parameters for the

Accretion Input System with Spatial Distribution

The temporal distribution of these four cases is the same as that

of the historical data. The fixed spatial distribution is generated

from a normal process with mean of 1 and standard deviation of 0.5

as shown in Figure 3.57. The linear theory for a spatially distributed

accretion input developed in section 3.1 may be used for comparision to

the nonlinear simulation results. There are two basic parameters to

be chosen in order for comparision. These are the wave number, k
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and the ratio of the amplitude of spatial fluctuation to that of the

temporal fluctuation, c'/a. The choice of k depends on the intensity

of the spatial fluctuation as shown in Figure 3.57. In this figure

it can be estimated that the value of k is in the range from 8r to

lO. The comparison is based on the assumption that the spatial fluc-

tuation is of the form of a sinusoidal wave a'/a cos k . The variance

of this sinusoidal process, 0.5(a'/a) 2, and the sample variance of the

normal process from the simulation is equivalent as

s2 = 0.5(a'/a)2

... a'/a = 2 s

Also in this case, s = 0.5, hence a'/a = 0.707. An example of the

square of the amplitude of the transfer function with k = 10T and

a'/a = 0.707 has already been shown in Figure 3.10. There is virtually

no difference from the case without spatial variability. The non-

linear simulation results for a fixed spatial distribution (see

Figures 3.53 and 3.55 are somewhat different from those of the

linear theory. Firstly, the amplitude of the transfer function is

lower for all frequencies. This effect is observed in the linear

theory for a spatially distributed accretion input (see Figure 3.9)

but is not as significant as in the nonlinear system. Secondly, it is

observed that the simulation results show a rather strong local

spatial effect. In this example, it is seen that the amplitude drops

down significantly at x/L = 1, below amplitudes for other locations

at higher frequencies (0>30). This is due to the particular spatial

structure of the system (see Figure3.57 which shows that the sam-

ple mean is lower than 1 and the spatial
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distribution intensity at x/L = 1 is substantially smaller than at

other locations). This effect is not predicted in the linear theory.

On the other hand, the cases with a time variable spatial distribution

compare more closely with the linear theory. (See Figure 3.54 and

3.56). This seems reasonable as the random distribution has a mean

which is equal to that of the uniform temporal distribution. The

cases with spatial correlation for this system indicate little dif-

ference from the cases without correlation. The more significant

difference is in the range of higher frequencies.

In the investigation of the two cases - fixed and time variable

spatial structure - the former is probably more typical of field

conditions because variations in accretion will be associated with

soil conditions and vegetation. The time variable spatial structure

relates to recharge variations associated with variable precipitation

patterns and is useful in the initial investigation of this study.

In conclusion, the transfer function obtained from the spatially

variable accretion input system is little different from the case where

there is no spatial variability. This agrees closely with the linear

theory for a spatially distributed input developed earlier. However,

it seems that an extreme intensity of the spatial distribution at a

particular location may have significant effects on the spectral

response for higher frequencies at that location. The implications

of these local effects require further investigation.

In this synthetic time series study, we see that the variance

is relatively unimportant to the nonlinear effects. Also, the spatial
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parameter, x/L may play an important role when the spatially dis-

tributed accretion input is subject to extreme local variations.

The simulation model can be further investigated with additional

complexities. The most interesting items would be the incorporation

of the spatial variability of hydraulic conductivity and the two

dimensional spatial representation of the system. These can be

easily implemented using the numerical model,,but it would be expensive,

especially the latter case. It is expected that in the case of

spatial variability of hydraulic conductivity the behaviour of the

transfer function may be more sensitive to changes of input parameters

than in the case of spatial variability of accretion. In the two

dimensional representation, some insight could be gained with regard

to the two dimensional spatial distribution properties of the system.
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3.4 Summary

In this study of the nonlinear simulation of the phreatic aquifer

system, a finite difference model is regarded as a transformation

system and the input time series are either obtained from historical

field data or generated from synthetic data. Emphasis has been on

the comparision of the transfer function of the nonlinear system,

obtained from the spectral analysis of the simulation results, to the

transfer function from the linear theory.

The linear theory for the Dupuit model is first developed and a

simple evaluation of nonlinearity is discussed with emphasis on deter-

ministic sinusoidal inputs. Then the numerical model is introduced

and tested for a number of simple cases with sinusoidal inputs. It is

found that the numerical error is sufficiently small and that the

simple evaluation of nonlinearity is quite reasonable. This further

confirms the identification of the parameters that control nonlinearity

in the deterministic system. In the stochastic system, these parameters

are correspondingly the mean, variance and autocovariance of the input

stationary time series. This investigation leads to important physical

and statistical interpretations of the phreatic aquifer system. The

dimensionless mean is related to the physical dimensions and properties

of the system, while the variance and autocovariance relate to the

distribution properties of the input hydrological processes. The

combination of these parameters leads to the evaluation of the nonlinear

system.
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The mean of dimensionless accretion is found to be the major cause

of all nonlinear effects. This effect is significant in the range of

lower frequency at which the amplitude of the transfer function for

the nonlinear system is smaller, and this deviation increases as the

dimensionless mean increases. In realistic situations, the dimension-

less mean is found to be in the range from 0.1 to 2 and the nonlinear

simulation results show relatively small deviation from the linear

theory. Also, it is found that the deviation slightly increases

as the spatial parameter - distance away from the stream - increases.

For a given system with fixed physical dimensions and properties,

the probability distribution properties of the stream stage and accre-

tion fluctuations are the more important determining factors of non-

linearity. It is found that the standard deviation of dimensionless

accretion has similar effects on the amplitude of the transfer function

as that of the dimensionless mean, but is less significant in the

range from 0.5 to 1.5. Significant differences occur when the standard

deviation is as high as 3, which is rare for a hydrological process

with a long record. In the case of stream interaction, the standard

deviation of dimensionless stream stage fluctuation is relatively

unimportant in the range from 0.05 to 0.2, which can represent a good

number of cases in realistic situations.

For the accretion input with both temporal and spatial distribution,

it is found that there are negligible spatial effects. However, it

seems that the extreme spatial distribution intensity at one location

may have a significant effect on the spectral response for higher
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frequencies at that particular location. Further investigation is

required to identify the nonlinear effects of such a system.

The overall study of the stochastic groundwater systems is an

exploratory investigation using spectral analysis to evaluate aquifer

parameters with available data. The results of this portion of the

study substantiate the reliability of the overall spectral simulation.

This is because the transfer function obtained from inputs which

have been passed through the numerical model and the spectral estima-

tion process, shows excellent agreement with the linear theory. This

simulation study further confirms that the linearized Dupuit model is

a good approximation of the nonlinear model for typical aquifer phys-

ical dimensions and parameters, and input probability distribution prop,

erties. Future possible investigations, such as the spatial variabil-

ity of hydraulic conductivity and the two dimensional spatial represen-

tation, can be easily implemented into the numerical model and should

give additional insight into the system.
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Chapter 4 DATA ANALYSIS AND PARAMETER EVALUATION

4..1 General Review of Spectral Analysis for Lumped Parameter Linear

Systems

Single-input Linear Systems. A system is said to be a single-

variable system if and only if it has only one input and one output,

and if the input and output can be related by the convolution integral,

x(t)

constant parameter

linear system y(t)

g(T), G(o)

Figure 4.1 Single-input Linear System

namely,

y(t) =

40C

g(T)x(t-T) dT (4.1.1)

For example, a first order linear system can be described by

dy(t) + y = (t)
dt

(4.1.2)

where C is called the time constant. It has to be assumed that the

system is initially relaxed at t - -C. That is to say the output is

excited solely and uniquely by the input applied thereafter.

The Convolution Theorem. The most useful relation between the

Fourier transform and the convolution integral is the convolution
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theorem. Taking the Fourier transform of the convolution integral as

given by equation 4.1.1, we have

y0

y ()= g (T)x(t-T) dT

Y(w) = 00

(4 .1.3)

y(t) e-iot dt

=

= i i

g()x('t,) e d T dt

g (T) e-i- x(t--) e-iw t-T) d-r dt

- gre, 00

= g(T) e iW x(t-T) e-iW(t-T) dt dT

g(T) eWT X(w) dT

Y(w) = G(w) X(w) (4.1.4)

where Y(w), G(o) and X(w) are the Fourier transforms of y(t), g(t) and

x(t), respectively. Thus, the Fourier transform of the convolution of

two functions is the product of their transforms.
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Spectral Relationships for Single-input Linear Systems. Taking the

product of y(t) and y(t+T) as given in equation 4.1.3, we have

y(t)y(t+T) = g(n)x(t-n)g(d)x(t+T- )da d (4.1.5)

The expectation of equation 4.1.5 gives the relation between the covari-

ance functions of the input and output series in the time domain;

Y (T) = g(n)g()pX(T+n-) dn d (4.1.6)

Similarly, taking the expectation of the product of x(t) and y(t+T), we

have, in time domain,

E[x(t)y(t+T)] = E[ g(n)x(t)x(t+T-n)dn]

IXy (1) = {-0 g(n)pX(Tr-n) dn (4 .1.7)

Using the convolution theorem, equations 2.1.8 and 2.1.23, equations

4.1.6 and 4.1.7 can be transformed into the frequency domain having the

following relations:

S (w) = IG(w)1 2 $ (w (4.1.8)

S (w) = G(w) S (W) (4.1.9)
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Equation 4.1.8 shows the relation between the input and output spectra

and is a real function, while equation 4.1.9 shows the relation between

the input spectrum and the cross-spectrum of both input and output

series. Note that IG(w)I is the gain factor or the amplitude of the

transfer function. If s (), S (w) and S (w) 4re estipiated by S (W)xx YY NY X
SYY~) Mand S XY(w) respectively, this gain factor, IG(w)| is equivalent

to equation 2.1.26, and equations 4.1.8 and 4.1.9 become

Y (w) = IG(w) S( (4.1.10)

S XY(w) = G(w) S (W) (4.1.11)

Multiple-input Linear Systems and their Spectral Relationships. In

direct generalization of equation 4.1.1, series y(t), g(T) and x(t-T)

can be thought of as vectors. Thus, we have

y (t) = g (T)x (t-T) dT i=, ,n (4.1.12)

If the inputs, {x (t), i = l,''',n}, are all mutually independent,

equations 4.1.8, 4.1.9, 4.1.10 and 4.1.11 can simply be generalized
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fxi(t)} {y1 (t)}

> y(t) = E{y (=*1

Figure 4.2 MultipleInputs Linear System.

respectively to:

Sy ( I) G 2 S (W)

SX.( I) G(w) S (w)

Sy (W)

S (w)(W)Xi Yi

(4 .1.13)

=G () S ()

=G (W) S x (W)

(4.1.14)

(4.1.15)

(4.1.16)

for i = 1,----,n

Owing to the linearity of the system, the spectrum of the final output,

Y(t), can be found by simply summing over i, i.e.
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n
S (w) = IGi(W)1I Sx(W) (4.1.17)

For mutually correlated inputs, the auto-correlation function p (T) can

be computed as follows;

n n
P Y(T) = E[y(t)y(t+T)] = El E yi(t) Z y (t+T)]

i=1 j=l

= [n n 7d]
= E[ E E gi (-n)xi (.t-n)g ( )x (t+T-C)dn d(]

i=1 j=l 1
_cOW -00

= E E g (n)g (OP X X. (T+n-O)dn d (4.1.18)
i=1 j=1 .0 X i j

By multiplying equation 4.1.18 by e e = 1 and taking the

Fourier transform, the relationship between the input series and the

output y(t) can then be found as,

n n
SYMo =z E g (n)g (() (OlxxC+n-O)

eiWn-el(I j=1 iw- j ~ dd

n n

E gi0) i (01X.X. (T~)0

=l F( )
e-n e iCe~i(~-)d~~-
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n n .
S Y(W) = E E gi (n) e a g (C) e d( C X x T+n-)

i=1 j=1

JiW(T+n- 0)d-

n n
() = E E Gi (w)Gi ()SX x (A)

i=l j=1 i i
(4.1.19)

In similar fashion, the cross-correlation function can be computed as:

n

P x Y (T) = E [x (t)y(t+T)] = E[x (t) E g (W x (t+T-n)dan]
i ~J=1

(4.1.20)
n

= E y1 X x jTn (n) a
j=1 i j

By taking the Fourier transform of equation 4.1.20, the relations

between the cross-spectra and the input spectra can be shown as

SxY(T) = 9 F fg(n)x x (T-n)eT ddT 1 j=l

n oo i ~ iWTn

= g (n)e y x x T-n)e dndT
j=l r J i i

Wo -00

n
SXY(.) = Z G (W) Sx (W)

I j=l i j
(4.1.21)
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Note that equations 4.1.19 and 4.1.21 are reducible to equations 4.1.13

and 4.1.14 if S (W) = 0, for i 0 j, i.e., X and X are mutually

independent. Note also that the property of cross-spectra,

*
(W) = S (W) (4.1.22)

Again, S (W), S (W), S () and S (w) in equations 4.1.19 and

4.1.20 are estimated, in practical computations, by SY(W), S xX(),
i j

S xy(w)and S (w), respectively. For a special case of two correlated

iiij
inputs, X1 (t) and X2 (t), equation 4.1.19 gives,

S (w) = IG ()1 2 S (w) + Gi (w)G*(W)S (W) +

G *(w)G2 O 2)(w) + G2(W) 2 S X(W) (4.1.23)
1 2 x 2 x1  2 x2 2

and equation 4.1.21 gives,

Sx Y () = G1 (w)Sx x (w) + G2 MX X W
1 11 1 2

(4.1.24)

SX Y () = Gi(1)Sx x () + G2 MX X(W)
2 2 1 2 2
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S x Y(W) S 1x2 (W)

s x YW) sx x (W)
G (w) s ()) 2 (W) (4.1.25)

1 1 2

s x2 xsx 2 X2(W

and

S x() SX Y
11 1

Sx2 1((A) Sxy(2J
G2 (W) s 2 () S2 (W) (4.1.26)

S2 1(W) s X2X2

After expanding equations 4.1.25 and 4.1,26,

sx Ix 2()sx 2Y(
SxY(w)( s 12 x2

G =() = (4.1.27)

11 2 x X2

and
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S () S(Sx2 Y S x (W) S x (W)

G2 (w) = (4.1.28)

S 2 x1 ()Sx1 x2(W
S x2x2(w)(1- 1 

()Sx2 2(W
SX2X2  XyS* X

Note that S (W) = S (w), therefore by using equation 2.1.24, in

the denominator of equations 4.1.27 and 4.1.28,

S (W) S (W)
21 2 y2  (L) (4.1.29)

Note that equation 4.1.23 has a form identical to the linearized Dupuit

aquifer model, equation 2.3.9, and this makes it possible to apply

these results in the data analysis.

4.2 Numerical Procedure of Spectral Estimation

In order to use the relationships outlined in the previous section

4.1, we have to estimate the power spectra of the input and the output

series as well as the cross-spectra between each of the input and the

output series, i.e., S , and the cross-spectra between the input

series, i.e., S , from equi-spaced time series data of limited

length. First of all, these series of data are standardized by sub-

tracting the mean and dividing by the standard deviation of the respec-

tive series. The autocovariances can then be computed as
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ln-p
RX(pAt) = n mk+p p = 0,1,2,3, * *k (4.2.1)

where n = number of discrete data points taken at constant time interval

of At and k = maximum number of lags. Then the raw estimate of the

power spectrum can be obtained by discrete cosine transform.

t 

= 2A R X (pAt) cos hP7 (4.2.2)
h =Q,l, -- - ,k

1 OcIpcT 1 m
where a = 0

1 p=0,k

and h 7

wh k At
m

These raw estimates of the power spectrum are then smoothed by the fol-

lowing "hamming" window,

S (0) = .54 S (0) + .46 S

I',u

S (Wh) = .23 S (Wh-1) + .54 S X(h) + .23 S (XXh+l) (4.2.3)

S (Wk ) = .54 S (Wk ) + .46 S (Wk -l
m m m

The smoothed estimates of the power spectrum can be checked for accu-

racy with allowable truncation errors, by the following equality,
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k -1
- - m

R1() = k t 1 (0)+S (Wk )) + E S (Wh)] (4.2.4)
m m h=1

Similar procedures can be used in computing the cross-spectra. The

cross-covariance is computed by the formula

n-p
R(pAt) = - x y p=0,m,2,''',k

np 1,lXk k+p m

(4.2.5)

n-p

y (-pwt) = k X +p k p=0,,2, ..,k

Then taking the discrete cosine and sine transforms of equation 4.2.5,

we have the raw estimates of the co-spectrum, Co , and quadrature

spectrum, QX, respectively.

k

At pt (hm T
Co (Wh) = v[m(pAt)+ (- ]Cos(k

k (4.2.6)

At m hp7T

Q (Wh = p a [ Xy(pAt)+RXy(-pAt)]sin( )

h = 0,1,2,3,''',km

1 OWzk
where CL m

1- p=O,k2 m

and 
r

wh k At
m

These raw estimates are again smoothed by the "hamming" window as given
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in equation 4.2.3 to be CoXY Wh) and QXY Wh). Now we have the cross-

spectrum of X and Y, namely

S (Wh) Co (wh) + Q XY(Wh) (4.2.7)

Then the gain factor or the amplitude of the transfer function can be

computed as

NCo X-(W h)+Qiy (Wh)
G(Wh) Co (W (4.2.8)

SXX h

and the phase shift of series Y with respect to series X is

0 Y ) = tan Q (h (4.2.9)
ToQ(wh)

Finally, the coherence square, between series X and Y, is given as

C2 (W)+Q2
2 Co (wh + h

YXY h. S (Wh) SY h (4.2.10)

Due to availability and convenience, BMD T-series programs, from the

Health Science Computing Facility, UCLA, have been used, in particular,

the program BMD02T.

4.3 Estimation of Aquifer Parameters

Field Description. Through the U.S. Geological Survey, District

Office at Lawrence, Kansas, we were able to obtain a relatively complete

set of records of groundwater table fluctuations, gage height of the
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nearby stream and the monthly precipitation at the city of Wichita,

Kansas. The groundwater table fluctuations have been recorded since

1937 around the well field of the city of Wichita by means of observa-

tion wells. The well field is located mainly between the Arkansas River

and the Little Arkansas River approximately 20 miles northwest of the

city of Wichita. This well field is developed in alluvial material known as the

Equus beds in south-central Kansas. The water-bearing materials consist

of unconsolidated deposits of sand, gravel, silt and clay of Pleistocene

age. The hydraulic gradient of the water table in the well field is

toward the Little Arkansas River, and some water is being discharged

into it, although most of the water moving across the well field is in-

tercepted by pumping. The primary source of water for recharge to the

well field is local precipitation. The geology and hydrology of this

area had been studied extensively by Williams and Lohman (1949). For

more detailed information of this area, readers are referred to the

Bulletin No. 79, State Geological Survey of Kansas, 1949. Well no. 12

(no. 557 in Bulletin 79) and well no. 812 (no. 558 in Bulletin 79) have

been chosen, in the following data analysis, on the grounds of the

length of records, being from January 1938 to September 1971, and

February 1937 to December 1962, respectively, and consistency of re-

cording intervals. As reported by Williams and Lohman (1949), the

average transmissivity of this area is of the order of 104 ft 2/day and,

from a field test at well no, 12, the specific yield or storage coeffi-

cient is 0.33. (Table 7, Bulletin 79, USGS, 1949). There was no report

at well no. 812. A map showing the relative location of well no. 12

and no. 812 is reproduced in Figure 4.3.
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Estimation of Aquifer Parameters. From the set of records ob-

tained from the U.S. Geological Survey we can estimate the power spectra,

cross-spectra and the gain factor or the amplitude of the transfer

functions. The results are shown in Tables 4.1 and 4.2. Data is ex-

tracted at approximately 30 day intervals. Hence, we have 405 points

for well no. 12 and 288 points for well no. 812. The time series are

shown in Figures 4.4 and 4.5. The spectral calculations were made using

36 lags. The power spectra of the time series are shown in Figures 4.6

and 4.7 with the corresponding 95% confidence intervals. The transfer func-

tions and spectra are related, for the case of independent inputs by equa-

tion 4.1.11, namely

A

S =GS (4.1.11)

where 1G| 2 is the square of the amplitude of the transfer function; and

for the case of correlated inputs, by equation 4.1.23, namely,

GY G1 2 X X + GIG 2 SX X2 + G G2 X2X1 + IG 2 I 2^X 2 (4.1.23)

where G1 and G2 are given by equations 4.1.27 and 4.1.28. In both cases,

Y is referred to as the output and X are the inputs. The values of

IG 2, IGH 2, JG 1 1
2 and G2 12 versus frequency are plotted in Figures

4.8-4-11, respectively, for well no. 12, and in Figures 4.12-4.15 re-

spectively, for well no. 812.

Consider the horizontal bottom case of the linearized Dupuit Approx-

imation. From equation 2.3.9, we have
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FRECUENCY
(CYCLES/ MONTF)

PCWER SPECTRAL ESTIMATES
CF SERIES 1

PChER SPECTRAL ESTIPATES
OF SERIES 2

PCtER SPECTRAL ESTIPATFS
OF SERIES 3

C.C
0.014
C.028
C. C42
C .C5
C. 069
C .C83
0.097
c0.111
C. 125
0.139
C.153
0.167
C. 181
C. 194
0.208
C.222
(.236
0.250
C.264
0.278
C.292
S. 3C6
0.319
C.333
0.347
0.361
0.375
0.389
C.403
0.417
0.431
0.444
0.458
0 .472
0.486
C.500

0.4616737
0.40CC 7 7
0.2904645
0.2214662
C. 1947339
1.0026560
2.0223532
0.9835154
0.2144480
0.2025C25
0.1S56762
0.2378010
0. 231C7E7
0.1398047
0.1842604
0.26634E5
0.2188570
0.2043062
0.2299384
001922260
0.2175524
0.2326224
0.1975353
0.25783S4
0.2502195
0.1914660
0.1985738
0.1933311
C.222245E
0.2479103
0.2183966
0. 181C87C
0.1769220
0.2118729
C.245C64C
0.2150671
C. 2 178EC 5

1.766C618
1.0752516
C. 477C669
0.3455418
0.2733959
C.4343 47
0.5964674
0.4179365
0.3081986
0.2775461
0.22858 15
0.184 C6
0.2085326
C.21195CC
0.2290967
0.2831765
0. 26183ES
0.3369848
C.2514219
0.1547332
0.2183325
0.2502179
0.2251956
0.1837316
C.192773C
0.2193381
C.2C4116C
0.1819236
0.2101920
0.24721SC
0.2956147
0.2315451
0.2715925
0.3244346
W.324C425
0.278986
0.2635271

Table 4.1 Spectral Results for Well
12 elevation).

No. 12 (l=precipitation, 2=stream stage, and 3=well no.

o

6.3718882
4.0993395
1.4086533
0.5118937
0.2931146
0.3065SE2
0.34677S8
C.2C75664
0.1272C72
C. 1140C4
C.C67594G
0.C64oCEC
%,.05326C6
0.C421112
0.05347E3
C.C4974SI
0.0323070
0.0342543
0.C23181C
0.0221578
0.0324012
0.03439E1
0.0235781
C.02617F7
C.C353565
0.G2818CC
C. C136C57
0.0 113552
0.0131 1C3
0.0129C41
0.0 1226C5
0.C155184
G.C11C851
0.0127715
C,.237436
O.C238364
0.016761C



FREQLENCY
(CYCLES/ MCNTH)

CC-SFECTRUM
CF

SERIES 1 ANC

QUACRATURE SPECTRLM
OF

2 SERIES 1 AND 2

CC-SFECTRUM
CF

SERIES I ANC

CUACRATURE SPECTRUP
OF

3 SERIES 1 ANC 3

0.0
0.C 14
0.028
C.C42
0.U56
0.C69

o.C97
0.111
0.125
0.139
0.153
0.167
0.181
C.1c4
0.2C8
0.222
0.236
0.250
0.264
0.278
C.292
0.306
0.319
C.333
0.347
0.361
C.375
0.389
C.4C3
0.417
0.431
0.444
0.45E
C.472
0.486
C.5CC

C.5492625
C.4256815
0.2929254
C.2050441
C.163C077
C.4975184
C.E724203
C.4153976
C.C912592
C.C492253
0.0277932
C.011151C
C.C453719
C.0410284
C.C31414C
0.C 165044

-C.C184025
-C.C 55305 6
-C0655937
-C.C151332
C.C110108

-C.C168739
-C.C497816
-0.057551C
-C.C601420
-C.C819513
-C.0805233
-0.074185
-C.1267378
-0.0959663
-C.0748286
-C.C829571
-C.12(8206
-0.133182E
-0*1406332
-C.C947788
-C.C630650

0.0190047
C.C4C5466
0.0f23251
0.C568162
0.C&148CC
0.0516860

-0.05765C2
0.0143365
0.136852e
0.1119483
0.1387198
0.1152524
C. 1413517
C.1068744
0.1569433
C.2(65336
0.1244329
0.1468871
0.1148209
C.0498227
0.1243101
0.1177741
C.1211966
C.C5C581
0.C693154
C.0625255
0.C856179
0.0E74989
0.C530410
C.0686592
C.0(24296
C.C16C047

-0.0154884
C.CC12722
0.C190018
0.0520430
C.0120707

-1.327282C
-C.E723C2e
-0.3176955
-C.1274717
-0.C614405
-C.22(4815
-0.440266C
-C.22C5715
-0.0219914
-C.0026751
-0.0055513
-C.C024248
-C.C128043

C.0024166
C.0002797

-0.13C033
-0.02226(7
-C.C127054
-C.C072512
-C.0159597
-C.C208474
-0.0124151
-0.C125382
-C.C287273
-0.0201196

C.CGCs166
-0.C1C49sC
-C.0123814

C.C024627
-C.0033342
-C.0084673
-C.C0000f4
0.(033890

-C.C078615
-0.0104311
-C.0103635
-C.C181379

Table 4.1 continued

-C.3691775
-C.5C02798
-C.4C22828
-C.23 36676
-0.1642944
-C.254C217
-0.4511988
-C.24655(1
-(.1C56165
-C.1C40836
-(.0515611
-0.0559793
-C.0481883
-C.CAE2872
-0.0119635
-C.CES8153
-C.C453012
-C.C314737
-C.C268367
-0.0284687
-0.0476412
-(.05(5917
-C.C155203
-0.C3S746C
-C .C5C426C
-C.01907C6
-C.CC59 157
-0.0C12051
-C.C108114
-C.CC60163
-O.CC72384
-0.C18C76
-C.CC36404
-C.0C14138
-C.01C4023
-0.CC21318

0.0C3371C



FRECLENCV
(CYCLES/ MCNTH)

0.0
0.C14
C.C28
C.C42
C.C56
0.C69
C.CE3
C.097
C.111
0.125
0.139
0.153
0.167
0.181
0.194
0.2C8
0.222
0.236
C.250
C.264
C.278
0.292
C.3C6
0.319
C.333
0.347
0.361
0.375
0.389
0.403
0.417
0.431
C.444
C.458
C.472
C.4E6
C .500

.Is
0

CC-5FECTRUM
CF

SERIES 2 AND

-2.3253059
-1.4926214
-C.6113302
-C.30078C2
-C.1719019
-0.2081547
-C.259796C
-C.1691552
-C.1437123
-0.1104409
-0.C5837CC
-0.0590453
-C.C753202
-0.0624012
-C.C90245C
-C.C94167C
-0.0447346
-0.036C813
-C.0252776
-0.C276535
-C.0468663
-0.C533637
-0.C255318
-0.017488C
-0.0322433
-C.C261183
-0.0088574
-C.C160190
-C.C226512
-0.0137318
-C.C0170807
-0.0232923
-C.0153798
-C.0130669
-0.029167C
-0.C133483

.C089366

CUACRATURE SPECTRLt'
CF

3 SERIES 2 ANC 3

-0.3414624
-0.4178031
-0.4120255
-C.2325832
-0.1271662
-C. 134170
-0.2E857448
-C.1709676
-0.0873871
-C.C591664
-C.C390752
-C.0331152
-C.01CC368
-C.C150806
-0.0059112
C.C006206
0.CC46611

-C.0C28283
C.CC62354
0.CC91424
C.0C7296
C.C1C1923
0.C126216
C.C227974
0.C320734
C.0164261
C.CC0624
C.0139999
0.CC85038
C.C11C983
0.C 138131
C.CC21455

-0.0C34149
0.CC96555
0.0155243

-C0CC25389
-C.C(87820

Table 4.1 continued

CC#ERENCE SCUARE
CF

SERIES 2 ANC 3

0.4SC 533
0.5572397
C.8C87377
C.8163494
0.57C5467
0.6062143
C.721C50C0
0.6667858
0.7215831
C.5517635
0.3193281
C.388 C2C
0.51986CC
0.4610268
C.6675885
0.6375157
0.2391362
C.113474'
0.1162730
0.241422C
0.3238675
C.3429253
C. 1527733
0.1716382
C.3C34629
0.154C189
0.C516556
0.219C973
0.2124309
0.0977185
0.1331409
0.1522694
C.CE24112
0.C637C72
0.1418933
0.02176CC
C.0355416

(Independent Input)
APPLITLDE OF

TRANSFER FUNCTION
FRCP 2 TC 3

1.3307819
1.4575481
1.5453119
I.C990725
0.78211C8
0.6541175
0.6474648
0.5754615
0.5457374
0.4514245
0.3072946
0.3677066
0.3643841
0.3C289C2
0.39476C7
0.3346643
0.1717726
0.1073995
0.1C35524
0.1882309
0.2192326
0.2171241
0.1264729
0.1563827
0.2359198
0.1406695
0.C586787
0.1169421
0.1151CP5
0.0714185
0.0743098
C. 1C1C211
0.C580074
C.C500786
0.IC19654
o.C487028
0.C47545C



FRECLENCY
(CYCLES/ MCNTH)

CC EREKCF SCUARE
CF

SERIES 1 AND 3

AMPLITLDE OF
TFANSFER FUNCTION

FRCM 1 TO 3

(CORRELATED INPUT)
AMPLITUDE OF THE

TRANSFER FUNCTION
FROM 1 TO 3

(CORRELATED INPUT)
AMPLITUDE OF THE
TRANSFER FUNCTION

FROM 2 TO 3

c.0
0 .0139
C. C278
0 .C417
CC556
C. C694
0.C833
C .0 72
G. 111
C.1250
C.138e
0.1528
C, 1667
C. 18C6
0. 1.44
0.2Ci3
0.2222
C.2361
C.2 5CC
0.2635
C.2778
C.2i 17
0.3C56
C0.314
0.3333
0.3472
C.3611
0.3150
0.3889
C.4C28
C.4167
C.4306
0.4444
0.4583
C.4122
0.4861
C.5CO

0.6451867
0.6 16556C
0.6421922
0.624C697
0.535C319
0.4393591
0.5666733
0.5361804
C.45E20C2
0.5275362
0.252E291
0.CE5432S
0.M2C1978
C. 3S t4162
0.5255594
0.6215476
C. 3fC3214
0.1646279
0.1449451
0.25CC818
0.3836453
0.3442098
0.0E54715
0.356 3027
C.3331765;
0.0615613
0.0537518
0.05? 44
0.0421975
0.C235626
C.C463427
0.0496121
0.0126091
0.0235785
0.C372985
0.021E36E
0.0531974

2.98407C8
2.51344E7
1.7647696
1.2018919
0.9007518
0 . 3665377
0.31172CC
0.33639C3
0.5213417
0.5141564
0.2955299
0.1516432
0 .2 157727
0.3458227
0.3905565
0.3407254
0.2306305
0.1661377
0.1208978
0.1697847
0.2390362
0.2256073
0.ICICC48
0 .190 1591
0.2169759
0.C991180
0.0606871
0.0741075
0.0498923
0 .0 350209
0.C510060
0 .0652038
0.0281125
0.C377CC
0.0601145
0.C491978
0.C846725

Table 4.1 continued

t.2456646
1.7085054

.6795903

.5306164

.5101726

.1125131

.0902890

.1609497

.2132902

.36G6456

.2605913

.1190530

.0477656
.1965711
. 1752162
.1907774
.2093571
.1 954103
. 13 93710
.1397069
.1713266
.1443399
.0942609
.1709629
.1564174
.0481469
.0*14133
.1129819
.0683250
.0291423
.0530125
.0031754
.0560930o

.11 90172
*01 2 1 240919117ge

*65963-47
.8321352

1.2940054
*9341296
.5245961
.553 1303
.5221896
.4157547
.4644513
.3512720
.3061203
.4120620
.3900475
*2217188
*330 1 909
.2018524
* 1264077
. 2270(25
* 0845524
,1543639
*1266851
.1377625
-138107
60694463
,1567S94
*1299750
*0709694
.16152S3

150P430
.0765520
00793536
.1170568
*07f56P,1
.0030916
* 14f6994
.0819165
.0387596



FREQUENCY
(CYCLES/ MONTH

POWER SPECTRAL ESTIMATES POWER SPECTRAL ESTIMATES FOWER SPECTRAL ESTIMATES
OF SERIES 1 OF SERIES 2 OF SERIES 3

0.0
0.014
0.028
0.042
0.056
0.069
0.083
0.097
0.111
0. 125
0.139
0.153
0.167
0.181
0. 194
0.208
0.222
0.236
0.250
0.264
0.278
0.292
0.306
0.319
0.333
0.347
0.361
0.375
0.389
0.403
0.417
0.431
0.444
0.458
0.472
0.486
0.500

Table 4.2 Spectral Results for Well
no. 812 elevation).

0.53748C8
0.3837751
0.2173141
0.2153191
0.2332733
C.9996482
1.8161268
0.8645156
0.2524533
0.2644895
0.2270136
0.2797019
0.2960474
0.1716580
0.1944860
0.2838922
0.2465112
C.2317605
0.2459462
0.2086559
0.2216164
0.2031941
0.1393378
C.1768278
0.1921526
0.1662740
0.1730999
0.1717070
0.21728C9S
0.2540575
0.2455114
0.22-44685
0.2079843
0.2432668
0.3040683
0.2521988
0.2480691

1.268528C
0.8597792
0.4381955
0.2512252
0.2239184
0.4708245
0.6250646
0.4285473
0.3583584
0.3161583
0.2389400
0.1821527
0.2133330
0.2338951
0,2702937
0.3319917
0.2963898
0.3909397
0.2833095
0.1864448
0.2646199
0.2625701
0,2096615
0.1573682
0.1958976
0.2520531
0.2030430
0.1653225
0.2151617
0.2459328
0.3216650
0.2708046
0.2879887
0.3442047
0.3669876
0.2921533
0.258454C

No. 812 (l=precipitation, 2=stream stage, and 3=well

1'~)
-Is.

7.5446291
4.7825747
1.3861294
0.2511411
0.1932182
0.2120602
C.1392409
C.11390C2
0.0873989
0.0598572
0.0474303
0.0314855
0.0311634
u.0242400
C.0244891
0.0234363
0.0192297
0.0146210
0.0118639
0.0106318
0.0079679
0.0084262
0.0095010
0.0103075
0.0117814
0.0109710
0.0108849
0.0099507
0.0081530
0.0058417
0.008365C
0.0097426
0.0130381
0.0153065
0.0149631
0.0175279
0.0166986



FREQUENCY
(CYCLES/ MONTH)

CO-SPECTRUM
OF

SERIES 1 AND

QUACRATURE SPECTRUM
OF

2 SERIES I ANC 2

CC-SPECTRUM
OF

SERIES 1 AND

QUACRATURE SPECTPUM
OF

3 SERIES I AND 3

0.0
0.014
0.028
0.042
0.056
0.069
0.083
O.0S7
0.111
0.125
0.139
0.153
0.167
0.181
0.194
0.208
0.222
0.236
0.250
0.264
0.278
0.292
0.306
0.319
0.333
0.347
0.361
0.375
0.389
0*403
0.417
0.431
0.444
0.458
0.472
0.486
0.500

0.5934544
0.4387881
U.2601902
0.1715844
0.1445757
0.4998999
0.8613555
0.4302959
0.1171054
0.0554643
0.0144547
0.0064282
0.0589046
0.0438863
0.0351257
0.0250411

-0.0208642
-0.0487455
-0.0657021
-0.0280692
0.0060719

-0.0091965
-0.0596035
-0.0558303
-0.0613305
-0.1011285
-0.0947801
-0.0919228
-0.1569659
-0.1139014
-0.C918743
-0.1046796
-0.1472512
-0.1739575
-0.1837862
-0.1046023
-0.0651873

0.0424455
0.04942S8
0.0351#27C
0.0433205
0.0817155C
0.050SC9

-0.0935653
0.0235687
0.1816434
0.2089586
0.1554420
0.1237102
0.1547029
0. 1351151
0.1939378
0.2494217
0.1474465
0.1672570
0.1113451
0.0572293
C.1508234
0.1765762
0.0746194
0.0447262
C.072287C
0.0930349
0.0889423
0.0643825
0.0274885p
0.0479721
0.052C705
0.0092081

-0.C286956
0.0075133
C.1228960
0.C963448
6.0384422

-0.6505423
-0.42C9118
-0.1225896
-0.0064758
0.0056685

-0.0634411
-0.1846801
-0.1069716
0.0036852
0.0148437
0.0128739
0.0161403
0.0003234

-0.0140864
-0.0204440
-0.0203728
-0.0208998
-0.0245328
-0.0156738
-0.0066228
-0.0121342
-0.0089311
-0.0108804
-0.0118123
-0.0131461
-0.0058837
-0.0038905
-0.0046817
-0.0076724
-0.0069335
-0.0009366
-0.0051403
-0.0104580
-0.0182949
-0.0336563
-0.0363462
-0.0334923

Table 4,2 continued

r%)

-0.5859277
-0.6331782
-0.2342375
-C.C92.EE7
-0.095955C
-0.100934
-C.0312619
-C.061530E
-C.0480823
-0.0791034
-0.0429738
C. 004CC9
0.0012260

-0.0218555
0.0017919

-C.0301657
-0.03452E6
-0.0260277
-0.0233513
-0.0230150
-0.0068546
-0.0138725
-0.011175E
-0.01721C2
-C,0143624
-C.CO70227
-0.CC62667
-0.0047634
-C.0002818
-0.0114090
-C.0156151
-0.0126108
-0.0215347
-0.017674S
-0.0184147
-0.0208452
-0.0146C30



FREQUENCY
(CYCLES/ MONTH)

0.0
0.014
0.028
0.042
0.056
0.069
0.083
0.097
0.111
0.125
0.139
0.153
0.167
0.181
0.194
0.208
0.222
0.236
0.250
0.264
0.278
0.292
0.306
0.319
0.333
0.347
0.361
0.375
0.389
0.403
0.417
0.431
0.444
0.458
0.472
0.486
0.5U U

4S

CO-SPECTRUM
OF

SERIES 2 AND 3

-2.2237883
-1.3068628
-0.3706064
-0.0964719
-0.0555365
-0.0468276
-0.0753059
-0.0939134
-0.0568609
-0.0492156
-0.0607753
-0.0342762
-0.0373897
-0.0366297
-0.0099176
-0.0062384
-0.W002690
-0.0015383
-0.0072838
-0.0102035
-0.0158025
-0.0147248
-0.0056080
-0.0059049
-0.0137206
-0. 0056710
0.0009507
0.0042891
0.%;096779
0.0094477
0.0167387
0.0130876
0.0063050
0.0149681
0.0038127
0.0017760
0.0122587

QUACRATURE SPECTRUM
OF

SERIES 2 AND 3

-0.6888822
-0.7961345
-0.3770931
-0.1002972
-0.0430381
-0.0855252
-C.0563346
-0.0574369
-0.0282C74
-C.0541159
-0.0365445
-C.0341464
-0.0011319
0.00548 16
C.0317633
0.0147100
0.0378836

- 0.0483079
0.0359889
0.0193590
0.0225160
0.0087558
0.0112550
0.0009023
0.0157414
0.0112C43
C.0113620

-0.0078742
-0.0000056
0.0128159
0.0272489
C.0193366
0.0346488
0.0224903
0.0107906
0.0011684

-0.0036199

Table 4.2 continued

COHERENCE SQUARE
OF

SERIES 2 ANC 3

0.5662975
0.5694900
0.4602407
0.3069494
0.1141055
0.0952231
0.1016214
0.2482753
0.1286336
0.2827422
0.44376C8
0.4081544
0.2104747
0.2419537
0.1672795
0.0328123
0.2518187
0.4086855
0.4011306
0.2415853
0.3588821
0.1326499
0.0793805
0.0219977
0.1889328
0.0570268
0.0588206
0.0488728
0.0533927
0.1764547
0.3800777
0.2066409
0.3303198
0.1385306
0.0238513
0.0(?08825
0.0378559

(Independent Input)
APPLITUDE OF

TRANSFER FUNCTICN
FPCM 2 TO 3

1.8352327
1.7798376
1.2065916
0.5539374
0.3137853
C.2070958
C.1504573
C.2568796
0.1771215
0.2313666
0.2967959
0.2656132
C.1753448
0.1583513
0.1231091
C.0481282
0. 1278199
0. 1236312
0.1296060
0.1173717
0.1039526
0.0652449
0.0599767
0.C379582
0.1065951
0.0498215
0.0561543
C.054237L
0.C449798
0.0647408
C.0994187
0.0862218
C.1222889
0.0784878
0.0311847
0.0072763
0.0494555



FREQUENCY
(C CLES/ MONTH)

COHERENCE SQUARE
OF

SER IES I AND 3

APPLITUDE OF
TRANSFER FUNCTICN

FRCM 1 TO 3

(CORRELATED INPUT)
AMPLITUDE OF T"E

TRANSFER FUNCTION
FROM 1 TO 3

(CORRELATED INPUT)
AMPLITUDE OF THE

TRANSFER FUNCTION
FROM 2 TO 3

0.0
0.0139
0.0278
0.0417
0.0556
0.0694
0.0833
0.0972
0.1111
0.1250
0.1389
0.1528
0.1667
0.1806
0.1944,
0.2083
002222
0.2361
0.2500
0,2639
0.2778
0.2917
0.3056
0.3194
0.3333
U0 3472
0.3611
0.3750
0.3889
0.4028
0.4167
0.4306
0.4444
0.4583
0.4722
0.4861
0.5000

0.1890256
0.3149563
0.232C367
0.1589648
0.2063518
0.0662472
0.1387384
0.1546583
0.1053969
0.4091610
0.1869070
0.0295997
0.0001742
0.1624870
0.0884288
0.1991499
0.3436520
0.3775325
0.2710705
0.2585449
0.1099916
0.1589867
0.1837670
0.2390589
0.1674582
0.0460128
0.0288759
0.0261014
0.0332743
0.1200966
0.1191548
0.0848027
0.2113463
0.1737868
0.3234970
0.3971792
0.3222738

1.628912C
1.9811506
1.2165680
C.4305941
0.4134241
0.1185467
0.1031356
0.1427454
0.1910189
0.3042993
0.1976125
0.0577233
0.0042828
0.1514758
0.1055211
0.1282206
0.1637296
0.1543285
0.1143494
0.1147773
0.0628853
0.081-1970
0.1119397
0.1180465
0.1013277
0.0550999
0.0426120
0.C388970
0.0353348
0.0525496
0.0637168
0.0606667
0.1151038
0.1045695
C.1261712
0.1661446
0.1472874

Table 4.2 continued

U'

2.2456646.
1.7085054

.6785883

.5308164

.5101726

.1125131

. 0902898

.1609497

.2132902

.3666456

.2605913

.1190538

.0477656
.1965711
.1752162
.1907774
.2093571
.1954183
.119371
.1397069
.1713266
.1443399
.0942609
.1709629
.1564174
.0481469
.OE14133
.1129819
.0683258
.0291423
.0530125
.0831754
.056093Ft
.0055098
,1190172
.0888220
.0812124

*6596387
.9321352

1.2940054
.9341296
.5245961
.5531303
.5221896
.4157547
.4644513
.3512720
.3061283
.4128620
,3900475
.2217188
.3301909
.2018524
*1264077
.1227025
.0845524
.1543639
.1266851
.1377625
.1388107
.0694463
.1567894
.1299758
.0789694
.1615283
* 1508430
.0765520
.0793536
.1170568
.07f5681
.0830916
.1486994
.081 9165
.0317596
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Coj
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.C00 .13 .26 .39 .52
frequency (cycle per month)

Figure 4.6 Power Spectra of Input Series with the Cor-
responding 95% Confidence Intervals for Well No. 12.
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Figure 4.7 Power Spectra of Input Series with the Corresponding

95% Confidence Intervals for Well No. 812.
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Figure 4.8 Square of the Amplitude of the Transfer Function
from Series 1 (precipitation) to Series 3
(groundwater table fluctuations) for the Independent
Input case for well No. 12.
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Figure 4.9

f (cycle per month)

Square of the Amplitude of the Transfer Function
from Series 2 (stream stage) to Series 3 (ground-
water table fluctuation) for the Independent Input
Case for well No. 12.
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Figure 4.10

f (cycle per month)

Square of the Amplitude of the Transfer Function
from Series 1 (precipitation) to series 3 (ground-
water table fluctuation) for Correlated-Input Case
for Well No. 12.
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Figure 4.11

f (cycle per month)

Square of the Amplitude of the Transfer Function
from Series 2 (stream stage) to Series 3 (ground-
water table fluctuation) for Correlated-Input Case
for Well No. 12.
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Figure 4.12 Square of the Amplitude of the Transfer
Function from Series 1 (precipitation)
to Series 3 (groundwater table fluctua-
tion) for the independent input case for

Well No. 812.
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Figure 4.13 Square of the Amplitude of the Transfer Func-

tion from Series 2 (stream stage) to Series 3
(groundwater table fluctuation) for independent
Input Case for Well No. 812.
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Figure 4.14

f (cycle per month)

Square of the Amplitude of the Transfer
Function from Series 1 (precipitation)
to Series 3 (groundwater table fluctua-
tion) for Correlated Input Case for Well
No. 812.
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Figure 4.15 Square of the Amplitude of the Transfer Function

from Series 2 (stream stage) to Series 3 (groundwater
table fluctuation) for Correlated-Input Case for Well

No. 812.
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*

S (1-F) (1-F ) - 1-F)FS
hh 2 2 e S EH

*
+ FF SHH

cosh[bL( -1)]

with F =
cosh(bL)

bL = ( -+i)()wL2 )/2

T
and a =

The dimensionless parameter,

- (1-F )F S ]He

(4.3.1)

2
wL (4.3.2)

is referred to as the dimensionless frequency. Note that equation 4.3.1

is exactly in the same form as equation 4.1.23 with the following

equivalencies,

G E-i(1-F)
W S (4 .3.3)

G2  F

provided that X is equivalent to E and X2 to H. In the independent input

case, G can take on either form depending on which input series is being
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used. Note that E is referred to as the net accretion and that we have

only precipitation records to work with. It is therefore necessary to

assume a relationship between the total precipitation and the accretion.

The simplest way is to assume that the accretion is a constant fraction

of precipitation, i.e.,

e = y(precipitation) = yP (4.3.5)

where y = constant <1

By introducing this relation into the linearized Dupuit Approximation,

it can be shown that equation 4.3.1 becomes

*
(1-F)(l-F ) 2 -iy * *

S y 2 2 Spp -Y[(l-F)F S -(1-F )F S hh 2 S2 PP EwSH
w S

+ FF SHH (4.3.6)

where F, Q and a are as previously defined and SP, is the power spectrum

of the precipitation. With X as the precipitation, equations 4.1.23

and 4.3.6 are compatible for comparisons. However, the function

*2F(1F) (l-F)(l-F)( 2-F)(l-F 2 can still not be computed. Instead 2 = g(Q)
W S 2

together with FF = f(Q) are computed and plotted in Figures 4.16 and

4.17 for a given value of x/L. We then have the following relationship

* 2 2T4
(1-F)(1-F*)-y g(a) y (4.3.7)

22 T 2
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Figure 4.16 Aquifer Response to Accretion; Plot of g along
the Aquifer with Horizontal Bottom (P=0).
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0.1

Figure 4.17

1

Aquifer

10 100

Response to Stream Stage Fluctuations;
Plot of f along the
Bottom (P=0).

Aquifer with Horizontal
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The right hand side of equation 4.3.7 can be seen to be equivalent to

fGf in the single precipitation input case or |G of equation 4.1.23

for the correlated input case.

Matching Procedures for Independent Inputs. If it is assumed that the

two inputs, precipitation and stream stage, are independent then the trans-

fer function is calculated using the form of equation 4.1.11

SHh = HSH (4.3.8)

SPh G S (4.3.9)

which are simply special cases of equation 4.1.24 when S S =0. It
1 x2 x21x

is obvious from Tables 4.1 and 4.2 that the inputs for these data are not

independent; the co-spectrum and quadrature sepctrum of series 1 and 2 are

non-zero. However, the following analysis will illustrate the procedure

for the independent case and also demonstrate the effect of making that

assumption. The theoretical transfer functions are

2 *
GH 1 2 = f(Q) = FF (4.3.10)

IG 1 = g(Q) y2 L 4/T2 (4.3.11)

Thus, for well no. 12, by matching Figures 4.9 and 4.17 and shifting

along the abscissa, a best fit curve corresponding to a value of x/L

can be chosen. The value of 2 corresponding to a particular value of f

can be found. Then by matching Figures 4.8 and 4.16, holding the same

relative position along the abscissa with the same value of x/L, a value

of g(2) corresponding to a particular value of I|,I2 can be determined

by just shifting along the ordinate. A similar procedure holds for well

no. 812. A set of sample matched positions can be found in Figures 4.18
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and 4.19 for well no. 12 and in Figures 4.20 and 4.21 for well no. 812.

From the matching procedure of well no. 12, we have

L2  2
log ( L ) =log(f) + log( 2rL

= 24 2 (4.3.12)

S~ 44

log[g(Q)] + logy L] + logIGP 2
T

2
yL 2 2 (4.3.13)
T

The distance of the well no. 12 from the stream can be estimated from

the topographic map to be 1200 feet (Figure 4.22). Then L can be com-

puted as

L = 1600 feet
.75

Using y = 0.05, S and T can be determined from equations 4.3.12 and 4.3.13

to be 0.135 and 0.212x10 ft 2/day, respectively. Similarly, for well no.

812, we have

T 2TrL2

70

L2

and = 1.949

with L = 6000 ft.

Using y = 0.05, S and T can be determined to be 0.285 and 3.078x104 ft 2/day,

respectively.
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Figure 4.18 Sample Matching of Figure 4.9 and Figure 4.17 for
the Independent-Input Case. (x) is the point used in
the estimation of parameters at well no. 12.
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Figure 4.19 Sample Matching of Figure 4.8 and 4.16 for theIndependent
Input Case. (x) is the point used in the estimation of
parameters at well no. 12.
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Figure 4.20 Sample Matching of Figures 4.13 and 4.17 for the Independent
Input Case. (x) is the point used in the estimation of parameters
at well no. 812.
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Matching Procedure for Correlated Inputs. From equation 4.1.23, we

have

Sh2 IG+ G G+ * * + Jc 2 (4.3.14)
hh |G'll +G 1G 2 SPH + G1G2 

5HP 2 5HH

Compared to equation 4.3,6, we can see the following equivalencies

*. 2
(1-F)(l-F )y G 2 (4.3.15)

2 2 

FF * 2 2 (4.3.16)

Similar procedures, as in the independent inputs, can be employed for Figures

4.10, 4.11, 4.16 and 4.17. A set of sample matched positions can be

found in Figures 4.23 and 4.24 for well no. 12 and in Figures 4.25 and

4.26 for well no. 812. Hence, we have, for well no. 12

2 4

log[g(q)] + log = log|G1 1
2

T

2 4
2= 1.8

T

and wL2  27TL2

log(-)log(og(f) + log( 2

T 27TL2

S 46 (4.3.18)

269



10

2

N

N

.1

- 1.0

x/L=. 75

.01

I liii
.1

I I I

.001

.0006

H III
1

I I I

.1.01

I lI II
10

f

111111
0.5 1

100

I L

Figure 4.23 Sample Matching of Figures 4.10 and 4.16 for the
Correlated-Input Case. (x) is the point used in the
estimation of parameters at well no. 12.
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Figure 4.24 Sample Matching of Figures
the Correlated-Input Case.

4.11 and 4.17 for
(x) is the point used

in the estimation of parameters at well no. 12.
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Figure 4.25 Sample Matching of Figures 4.14 and 4.16 for the
Correlated-Input Case. (x) is the point used in the estima-

tion of parameters at well no. 812.
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Figure 4.26 Sample Matching of Figures 4.15 and 4.17 for the
Correlated-Input Case. (x) is the point used in
the estimation of parameters at well no. 812.
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Taking x = 1200 feet, L = 1600 feet and y = 0.05, S and T can be deter-

mined to be 0.27 and 0.32x104 ft2 day, respectively. Similarly, for

well no. 812, we have

2
- = 1.844

T

and T = 27rL2
S- 75

with L = 6000 feet

Using y = 0.05, S and T can be determined to be 0.32 and 3.25x104 ft /day,

respectively. Note that S is directly proportional to y in these compu-

tations so that a reduction in the estimated value of y will produce a

corresponding decrease in S. However, S is independent of the estimation

of L. A summary of the values S and T as estimated by the two approaches

and the values given by Williams and Lohman (1949) are given in Table 4.3.

4.4 Discussion

The above results demonstrate that the spectral analysis technique

can yield reasonable estimates of aquifer parameters in a complex natural

setting. It should be emphasized that the site and data selection for this

analysis was based largely on the availability of a relatively long term

record of the type that would be available at many sites. That is, to

demonstrate the method in a realistic setting, we purposely selected a site

which involved a complex unknown aquifer configuration rather than a

restricted known configuration which would reproduce the idealized geometry

of the theoretical model. The objective was to demonstrate the technique

for realistic field conditions. It was not felt that the model required
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verification in- the idealized geometry because the basic aquifer equation

(2.3.1) is well established and the validity of linearization in the

stochastic case has been demonstrated by the simulations in Chapter 3.

The input time series for the numerical spectral estimates were, in

the case of the stream stage and aquifer water level, values extracted at

monthly intervals, this being the smallest time period for which data were

consistently available. However, in the case of the precipitation data,

total monthly values (actually the average rate over the month) were

used. The use of monthly average precipitation may appear to be incon-

sistent, but actually on both physical and theoretical grounds it is more

appropriate than using discrete values. Theoretically, the effect of

using the average of a time series can be evaluated by analyzing the

averaging process as a filter using linear system theory (see e.g.,

Chapter 2 of Jenkins and Watts, 1968). This analysis shows that spectral

amplitude is attenuated near the Nyquist frequency (0.5 cycle/mo) but that

the spectrum is undistorted at the lower frequencies. The effect is very

much like that shown in Figure 2.33 which demonstrates the effect of storage

in the unsaturated zone. Physically it is recognized that, because of the

storage effects in the unsaturated zone, the recharge input will not be pro-

portional to the instantaneous precipitation rate. The use of the average

precipitation rate implicitly accounts for storage in the unsaturated zone

in a way which is theoretically sound and hence appropriate.

Our experience, based on some preliminary numerical spectral analysis

of daily precipitation and groundwater levels for a well in Wilmington,

Massachusetts, is that monthly data Will addquately characterize the

spectral response of most plreatic aquifer systems. The energy content of

the higher frequencies (>0.5 cycle/mo) is very small and has no effect on
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the estimated transfer function. The Wilmington aquifer had a response

time (S/a in equation 2.2.4) of around 3 months; the Kansas site shows a

response time of the same magnitude (response time = SL 2/3T from equation

4.3.18). Only for very small response times (say less than 1 month), i.e.,

small highly permeable aquifers, will a smaller sampling interval be re-

quired.

Because of the fluctuations in the calculated transfer functions

(see e.g., Figures 4.23 and 4.24), the matching procedure may appear to be

somewhat subjective. Our experience was that completely independent match-

ing analyses produced essentially the same results; however, a more object-

ive procedure such as a least squares fitting could be used. The fluctua-

tions in the estimated transfer functions could be eliminated by intro-

ducing more smoothing (e.g., fewer lags) in the spectral calculation;

however, this would be at the risk of introducing bias in the spectral

estimates. This is the well known tradeoff between stability and fidelity

in spectral estimation (Jenkins and Watts, Chapter 7). We have opted for

a scheme which retains spectral detail although there is the possibility

that some of the fluctuation is spurious. The theoretical comparisons

could be made to appear more favorable by introducing more smoothing.

The results summarized in Table 4.3 show that the effects of correlated

inputs are significant and should be included.

In this data analysis a simple linear relationship between recharge

and precipitation was assumed, recognizing this as a crude approximation

of the actual recharge process. It was beyond the scope of this work to

even attempt to solve the difficult problem of recharge prediction. Most

hydrologists recognize this as a basically unresolved problem, but if and

when improved predictive methods become available, they can easily be in-
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Source Well Transmissivity Storage Coef. y Length of
No. T 2 Aquifer

1 (ft /day) __ _ L (ft.)

independent input 12 .212xlo4 .135 .05 1600
case 812 3.08xlo4 .285 .05 6000

correlated input 12 0.32x104  .27 .05 1600
case 812 3.25 x104  .32 .05 6000

Bulletin 79 .615x104 .33
(William & Lohman to 4.41xl0 4  (at well #12)

1949)

Table 4.3 Summary of Aquifer Parameters



corporated in the spectral model. Given a functional relationship for

recharge in terms of precipitation, temperature, and other climatological

data, a multiple-input analysis is carried out with these additional input

series. The procedure is outlined in Section 2.6 for the case of evapo-

transpiration losses linearly related to temperature. The seasonal effects

of evapotranspiration losses are likely to be significant in some cases and

should be explored in future research. The use of spectral analysis as a

method of estimating groundwater recharge from water level fluctuations

should also be explored.

Although there are natural complexities as indicated above, the

generally favorable results of the spectral method applied to the Kansas

site suggest that there could be significant potential for such methods in

the interpretation of natural groundwater level fluctuations. The large

amount of existing data on groundwater levels could provide more quantita-

tive information through spectral analysis and the analyses would be per-

formed routinely as the data becomes computer accessible. As experience

is developed, it may also be possible to recognize certain descriptive

features of groundwater systems by inspection of spectra. Other methods

of data interpretation may be useful; for example, the simpler linear re-

servoir model (Section 2.2) may be desirable for some problems (Gelhar and

Wilson, 1974). The parameters for this lumped parameter model (S and a in

equation 2.2.4) can be found by spectral transfer function analysis but

the theoretical transfer functions are simpler (see equation 2.2.9).

Methods based on cross spectral analysis of water levels from several wells

in an aquifer are also attractive.
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Chapter 5 CONCLUSIONS

Several major results of significance in relation to temporal varia-

bility of groundwater systems have been established. These fall into the

following categories:

1. Linear aquifer models provide theoretical predictions of the

spectral response characteristics of several phreatic aquifer con-

figurations. The effects of aquifer slope, flow zone thickening,

vertical flow, etc. are analyzed and the conditions under which

these factors can be neglected are determined. The horizontal

Dupuit aquifer model is reasonable for application under many

field conditions, but the other effects can be included if the

aquifer configuration is known.

2. Nonlinear aquifer simulations predict the overall effects

of nonlinearity on the spectral response of phreatic aquifers.

The nonlinear effects are typically quite small for field con-

ditions, and the linear analytical models therefore provide a

reasonable basis for the interpretation of field observations.

The effects of spatially variable accretion rate on the frequency

spectrum are also quite small.

3. Aquifer parameters can be determined by comparing the ob-

served spectral response of an aquifer with the linear theory.

From precipitation, stream stage and aquifer water level data,

the storage coefficient and transmissivity of a stream-connected

aquifer can be estimated using a spectral matching procedure.
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In addition, it was established that the spectral distortion assoc-

iated with flow phenomena in the unsaturated zone above the water table

will be quite small for a sampling interval of one month or greater. In

the design of simple flow measuring networks it was shown that spatial

variability of hydraulic conductivity, as characterized by a spatial

correlation function, is an important factor which should be included.

The results of this study should be widely applicable for the esti-

mation of aquifer parameters from natural fluctuations of groundwater

level. Thus it should be possible to make much better use of extensive

existing data of this type for the evaluation of groundwater resources.

Important items which should be explored in future studies are techniques

for dealing with nonstationary aquifer response and methods of incorpora-

ting spatial variability of hydrologic parameters into the design of com-

plex multiple-well observation networks. More realistic recharge models

including the effect of temperature on evapotranspiration losses should

also be investigated.
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LIST OF SY4BOLS

The following list covers the symbols which are widely used in the

report. The dimensions of dimensional quantities are given in brackets.

Also shown is the section in which the term is first used.

Symbol Definition Section

a linear reservoir coefficient [l/T] 2.2

Co Y cospectrum of X and Y 2.1

e random noise generated from a normal process 3.3

f square of the amplitude of the normalized transfer 2.3

function for a stream stage input

g square of the amplitude of the normalized transfer 2.3

function for an accretion input

G transfer function 2.1

G 1transfer function from accretion to aquifer response 3.1

G2 transfer.function from stream stage to aquifer 3.1

response

h thickness of the saturated zone [L] 2.1

h elevation of water outfall of the linear reservoir 2.3
0

in the coupled system [L]

H stream or reservoir stage [L] 2.1

i /-it

i discrete x-coordinate of the finite difference model 3.2

j discrete y-coordinate of the finite difference model 3.2

km maximum number of lags 4.2

K hydraulic conductivity [L/T] 2.1

286



Symbol Definition Section

L horizontal aquifer length [L] 2.1

m a characteristic aquifer [L] thickness generally 3.1

taken at stream

m mean value of x 2.1

p(x) probability density function 2.1

n effective porosity

P precipitation rate [L/T] 3.2

q outflow per unit area, linear reservoir [L/T] 2.2

Q discharge [L 3/T] 2.5

QXY quadrature spectrum of X and Y 2.1

RXX autocorrelation function X 2.1

XX estimated autocorrelation function of X 2.1

RXy cross correlation function of X and Y 2.1

RXY estimated cross correlation function of X and Y 2.1

s 2 sample variance of X 3.3

S storage coefficient in Dupuit aquifer 2.1

S power. spectrum of X(t) 2.1

X smoothed estimate of power spectrum of X(t) 2.1

SXY cross spectrum of X(t) and Y(t) 2.1

XY smoothed estimate of cross spectrum of X(t) and Y(t) 2.1

t time [T] 2.1

T aquifer transmissibility [L 2/T] 2.1

x horizontal spatial coordinate [L] 2.1

X an arbitrary input random time series
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Symbol Definition Section

y elevation of water table above datum ( = h + C) [L] 2.5

z vertical spatial coordinate [L] 2.3

= T/S [L 2 /T] 2.3

slope of aquifer bottom 2.3

Y fraction of precipitation producing recharge 3.3

Y2XY coherence squared function between X and Y 2.1

accretion [L/T]

C elevation of aquifer bottom above datum [L] 2.1

T dimensionless thickness of saturated zone ( = h/m) 3.1

n dimensionless stream stage elevation ( = H/m) 3.1

aXY phase spectrum from X to Y 2.1

y a perturbation parameter ( = EL2/2KH) 2.3

lX autocovariance function of X 2.1

dimensionless horizontal coordinate ( x/L) 3.1

p dimensionless accretion ( = L2 E/Tm = 2p) 3.1

T dimensionless time ( = Tt/SL ) 3.1

piezometric head IL] 2.4

W dimensional circular frequency [1/T] 2.1

Q dimensionless frequency ( = SwL2 /T) 2.3
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APPENDIX A

Listing of the Computer Program

This program is based on the aquifer simulation program with

water table conditions written by Prickett and Lonnquist in 1971.

There are minor modifications which include the incorporation of the

proper boundary conditions and the one dimensional representation.

This listing is for the particular case of a dual input system with

stream stage and accretion inputs. The data were obtained from the

U.S. Geological Survey of Kansas at Wichita and are given at the end

of the program. Also listed is the procedure for the BMD 02T

(Biomedical Computer Program, Autocovariance and Power Spectral

Analysis) which is used for the data analysis of the input and output

time series, the latter of which is obtained directly from the

numerical simulation program.
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EASIC ACUIf-EP SIVULATIC PkRGRAM
WITH WATEf.-TABLE CGNDITICNS
OFINITICA "F VAPIABLES
Hu(I,J)-----HEADS AT START IF TIME

FNCREMENT (I,J)
H(I,J)-- - HeADS AT ENC CF TIME
SF2(I,J)----ST'RAGE FACTU< FOR WATER-

TABLE CONDITIONS
INCREMENT

Q{iJ)------CCNSTANT WITHDRAWAL,
RATES

T(I,J,1J----AOUIF7P TPANSMISSIVITY
PETWEEN IJ AND I,J+1

T(IJ,2)----A'JIFEP TRAtSMISSIVITY
BETWEEN IJ AND I+IJ

AAl,13CC,CC-CULEFFICIENTS IN WATER
BALANOE EQUATIONS

NR----------NO. OF ROWS IN MODEL
NC-----------NO. OF CCLUjNNS IN MCDEL
NSTEPS-------N0. OF TIME INCREMENTS
CELTA-------TIME INCREMENTS
HHS2,QQTT-DEFAULT VALLES
PERM(IJ,1)-AQUIFER PERMEABILITY

BETWEEN I, J AND I, J+1
PERM(IJ,2)-AQUIFER PERMEABILITY

BETWEEN I, J AND 1+1, J
3GT(IJ)----El-EVATI0N CF BOTTOM OF

AQUIFER
PR(ISTEP)---ACRETIJN RATE AT TIME STEP ISTEP
HX(ISTEP)---PRECIPITATICA DATA AT EACH TIME STEP
HX1(ISTEP)--STREAM GAUGE DATA AT EACH TIME STEP
jY(ISTEP)---CIMENSICNLESS ACCRETION RATE
RU----------PARAMETER CF DIMENSIONLESS ACCRETION MEAN
UM-----------COEFFICIENT OF WITHDRAWAL RATES
OIMENSICN H(50,50),HC(50,50),
ISF2(5j,50),Q(5.),5b),T(5C,5O,2),

0

BASPOC01
BASPu002
BASP0003
E AS P 00C 4
BASPOOO5
BASPOL06
BASPU007
BASP0008

BASP )0,09
BASP ,i10
BA SPD011
BASP9C,12
BASPOO13
BASP0014
BASPUO15
BASP0016
BASPOO1T
BASPOC18
BASP0019
BASPOO20
BASP0021
BASP0022
BASP0023
BASP0024
B ASPT) 25
BASP0026
BASP0027
BASP0028
BASP0029
BASP0030
BASP0031
BASP0032
BASP0033
BASP0034
BASPOU35
BASP..ei36



2E (5fl;)1,G( 5(), L 5k,5 1),9H t), HXl( 1J ' )0
3,PFkM(5C,50,2),8bT(50,5C),hX(1000),Rk(1000)

C TURN tFF LNDERFL W TRAP
C DEFINE INPUT AND JUTPUT DEVICE NUMBERS

INTEGEP CLT
IN=5
CUT=6

C READ PARAMETER CARD ANC-
C DEFAULT VALUE CARD

REAL(IN,10)NSTEPS,DELTA,ERRCR,
1NCNRTT,HHtQQS2,PPjPCT

13 FtRMAT(I6,2F8.j/216,IF6.C,6X,2F6.O '
1,18X,1F6 0C,6X,2F6.0)

C FILL ARRAYS WITH DEFAULT VALUES
CO 20 I=1,NC
DO 20 J=1,NR
SF2(I,J)=S2
PERM(I,Jj)=PP
PERM(I,J,2)=PP
ECT(I,J)='3cTT
T(I,J,1)=TT
T(IJ,2)=TT
H(I ,J)= F
HO(IJ)=HH

20 Q(IJ)=QQ
C READ NGCE CARDS

00 30 I=1,NC
CO 30 J=1,NR

30 READ(5,4C) IJT(IJ,1),
1T(1,J,2),F( I,J)tQ(IJ),
2SF2(I,J),PERM(IJ,1),PERM(IJ,2),BOT(IJ)

4i FCRMAT(21 3,2F6.0,2F4.0,FIO.U,3F6.0)
C READ PRECIPITATION DATA

READ(5,45)(HX(K),K=1,405)

C READ STREAM CAUGE DATA
READ(5,45)(HX1(K),K=1,4C5)

BASP 037
BASPuG38
BASPO Go39
BASP0040
BASP0041
BASP OC42
BASP0043
BASP0044
BASP0045
BASP0046
BASPOU47
BASP0048
BASP0049
BASP0050
BASP0051
BA SPkO 52
BASP0053
BASPUU54
BASP0055
BASP0056
BASP0057
BASP0058
BASP0059
BASP0060
BASP0061
BASP0062
BASP0063
BASP0064
BASP0065
BASP0066
BASP0067
BASPOO68
BASP-U069
BASP007U
BASPOC471
BASPOOT2

'~0
I-a



45 FCRMAT(8X,12F6.2)
C START OF SIMULATION
50 TIME=0
C D IMENSICN[ESS ACCRETICN INPUT

hY(ISTEP)=HX(ISTEP)/2.5517
RC=1.
RR ( ISTEP)=.0,025*RO*HY( I STEP)

C DIMENSIONLESS STREAM INPUT
H(1,1)=1.+HX1(ISTEP)/25.
H 1,2 )=H 1,1)

C NC FLOW BOUNCARY CONDITIONS
H(22,1)=H( 20,1)

( 22,2)=H(2C,2)
C PREDICT EEADS FOR NEXT
C TIME INCREMENT

CO 70 I=1,NC
DG 70 J=1,NR
D=H(I,J)-HO(I,J)
HC(I ,J)=H( I ,J)
F=1.0
IF(DL(IJ).EQ. ).0)GO TO 60
IF(ISTFP.GT.2)DF=/DL(I,J)
IF(F.GT.5)F=5.0
IF(F.LT .0.) F=0.0

60 DL(IJ)=C
H(IJ)=F( I,J)+D*F

70 IF(H(I,J).LE.BOT(IJ))H(1,J)=BOT(IJ)-+0.01
C REFINE ESTIMATES OF HEACS BY IADI METHOD

ITER=0
80 E=0.0

ITER=ITER+1
C TRANSMISSIVITY C1NTRCL

DC 83 I=1,NC
DO 83 J=1,NR

IF(I. LT. N C)T(I,J,2)=PERM(I,J, 2)*(H(I J)+H(I+1,J))/2
83 IF(J.L-To.NR)T(IJ,1)=PERlt(IJl)*IH(1,J)+H.(IJ+1))/2

BASP0073
BASP0074
BASP0075
BASP0076
BASP0077
BASP0078
BASPOC79
BASP0080
BASPOU81
BASP0082
BASPQO83
BASPOO84
BASPOO85
BASPOO86
BASPOO87
BASP0088
BASP0089
BASP0090
BASPOO91
BASP0092
BASP0093
BASP0094
BASP0095
BASP0096
BASPOO97
BASP0098
BASP0099
BASP0100
BASP0101
BASP0102
BASP0103
BASP0104
BASP0105
BASPO106
BASP0107
BASP3108



C CCLUMN CALCULATIONS
00 190 II=1,NC.

IF(MOD(ISTFP+ITER,2).EO.1) I=NC-I+1
DC 170 J=1,NP

C CAILCULATE B AND G ARPAYS
2B=SF2( I,J)/CELTA
uiu=0. -
DD=HO(I,J)*SF2(IJ)/OELIA+RR(ISTEP)-UM*Q(IJ)
AA=0.0
cc=000
IF( J-1)1; ;,10,9

9 0 AA=-T(I,J-1,1)
PB=BB+T( I ,J-1,1)

10 L IF(J-NF)ll0,120tllJ .
110 CC=-T(IJ,1)

HB=BB+T(I,J,1)
120 ,IF(I-1)130,140,133
130 BB=BB+T(I-1,J,2)

CC=DD*H(I-1,J)*T(I-1,J,2)
140 IF(I-NC)150,160,150
150 BB=BB+T(I,J,2)

C0=DD+H(I+1,J)*T(IJ,2)
160 i=BB-AA*P(J-1)

E(J)=CC/W
170 G(J)=(CC-AA*G(J-1))/W
C RE-ESTIMATE HEADS

E=E+ABS(-(I,NR)-G(NR))
H( I, NR)=G(NR)
N=NR-1

180 HA=G(N)-E(N)*H(I,N+1)
E=E+ABS(HA-H(IN))
H(I,N)=HA
N=N-1
IF(N.;T.O)GC TO
DO 19, N=1,NR

BASPO109
HASP0110
BASP0111
BASP0112
BASP0113
BASP0114
BASP0115
BASP0116
BASP0117
BASPOI18
BASPOI19
BASP0120
BASP0121
BASP0122
BASP0123
BASP0124
BASP0125
BASP0126
BASP0127
BASP0128
BASP0129
BASP0130
BASP0131
BASP0132
BASP0133
BASP0134
BASP0135
BASP0136
BASP0137
BASP0138
BASP0139
BASP0140
BASPO 141
BASP0142
BASP0143
BASP0144

180

t~3



IF(H(IN).GT.BOT(IN))G TO 190
E=E+BOT(IN)+0.01-H(I,N)
H(I,N)=BOT(1,N)+G.01

190 CONTINUE
C TRANSMISSIVITY CCNTRPL

00 193 J=1,NR
DO 193 I=1,NC
IF(I.LT.NC)T(IJ,2)=PFRM(I,J,2)*(H

193 IF(J.LT.NR)T(IJ,1)=PERM(I,J,1)*(H
C ROW CALCULATICNS

00 300 JJ=1,NR

(I,J)+H( I+1,J) )/2

(IJ)+H(IJ+ 1) )/2

J=JJ
IF(MO(ISTEP+ITER,2).EQ.1) J=NR-J+1
00 280 1=1,NC
BB=SF2( I,J)/DELTA
DD=HO(I,J)*SF2(I,J)/DELTA+RR(ISTEP)-UM*Q(IJ)
AA=0.0
CC=0.0
IF(J-1)200,210,200

200 BB=BB+T(I,J-1,1)
DD=DD+H( I,J-1)*T(I,J-1,1)

210 IF(J-NR)220,230,220
220 DD=DD+H(I,J+1)*T(I,J,1)

BB=BB+T( IJ,1)
230 IF(I-1)240,250,240
240 BB=BB+T(I-1,J,2)

AA=-T(I-1,J,2)
250 IF(I-NC)260,270,260
260 BB=BB+T(IJ,2)

CC=-T(I,J,2)
W=BB-AA*B(1-1)
GO TO 275

270 W=BB-(AA+CC)*B(I-1)
275 B(I)=CC/W
280 G(I)=(D)-AA*G(I-1)) W
C RE-ESTIMATE HEADS

BASP0145
BASP0146
BASP0147
BASP0148
BASP0149
BASP0150
BASP0151
BASP0152
BASP0153
BASP0154
BASP0155
BASP0156
BASP0157
BASP0158
BASP0159
BASP0160
BASP0161
BASP0162
BASP0163
BASP0164
BASP0165
BASP0166
BASP0167
BASP0168
BASP0169
BASP0170
BASP0171
BASP0172
BASP0173
BASP0174
BASP0175
BASP0176
BASP0177
BASP0178
BASP0179
BASP0180

'~0



E=E+ARiS(H(NC,J)-G(NC))
H(NC,J)=G(NC)
N=NC-1

2;4 HA=G(N)-P(N)*H(N+1,J)
E=E+ABS(H(N,J)-HA)
H(NJ)=HA
N=N-1
IF(N.GT.0)GO TO 290
DC 300 N=1,NC
IF(H(NJ).GT.BOT(N,J))GC TO 3103
E=E+BOT(N,J)+0.01-H(N,J)
H (N,J)= 8CT(N ,J )+0.01

3,)4 CONTINUE
C PRINT RESULTS

IF(E.GT.ERROR) GO TO 80
315 CG 320 J=1,1

WRITE(6,330)ISTEPHY(ISTEP),(H(I,J),I=1,N
C STORE DATA IN TAPE
32o WRITE(12,330)ISTEP,HY ( ISTEP),(H(IJ),I=1,
330 FORMAT(I6,6F12.5)
340 CCNTINUE

STOP
END

C CONTROL CARDS(OMITTEC) FUR GENERATED DATA
C TO BE USED IN THE BMD 02T PROGRAM
C LISTING OF DATA

4%5 0.0314 0.003
21 2 1.0 1.C 0.0

C NODE CARCS
1.0
1.c
1.0
1.0
1.C
1.0
10 c

1.0
1.0
1.0
1.0
I 1 0
1.0
1.0

0.0
0.0
0.0
0.0
(). 0
0.0
0.0

9gOCCOOOO.0
'00c00Q.0
0.C025
3.C025
0.0025
0.C025
O.C25

1.0 1.0
1.0 1.0
1.0' 1.0
1.0 1.0
1.c 1.3
1.0 1.0
1.0 1.0

C,5)

NC,5)

IN TAPE

0.0025 1.0 0.0

0.0

0.G
0.0
0.0

0.0
0.0

BASP0181
BASP018?
BASP0183
BASP0184
BASP0185
BASPO186
BASP0187
BASP0188
BASP0189
BASP0190
BASP0191
BASP0192
BASP0193
BASP0194
BASP0195
BASP0196
BASP0197
BASP0198
BASP0199
BASPO200
BASPO201
BASPO202
BASP0203
BASPO204
BASPO205
BASPU206
BASPO207
BASP0208
BASPO239
BASPO210
OASPO211
BASP0212
BASPO213
BASP0214
BASPO215
BASP0216

2
2
3
3
4

1
2
1
2

2
I

1.0
1.0
1.0
1.0
1.0

1.6



4 2 1.0 .o 1. 0 2. 5 23 1.0 l.v . BASPO217
5 1 1.0 1.C 1. .0 C.C025 1.0 1.0 0.0 BASPO218
5 2 19U 1.0 1.J j 0 0.C625 10 1.0 0.0 BASP(219
6 1 1.0 1. 1. 6. o.C025 1.0 1.0 0.0 BA$PO22U
6 2 1.0 1.C 1.0 0.0 0.0025 1.0 1.0 0.0 BASPO221
7 1 1.0 1.0 1.0 0.0 0.C25 1.0 1.0 0.0 BASPO222
7 2 1.0 1.0 1.0 0.0 o'.2J?5 1.0 1.0 0.C RASP0223
8 1 1.0 1.C 1.0 000 0.025 1.0 1.0 0.0 BASP0224
8 2 1. 1.0 1.0 O.U 0.c025 1.0 1.0 0.0 BASP0225
9 1 1.0 1. 1.0 0.0 0.C025 1-.0 1.0 0.0 BASP0226
9 2 1.0 1.0 1.0 0.0 0.0025 1.0 1.0 0.0 BASPO227

10 1 1.0 1.0 1.0 C. J.C025 1.0 1.0 O.0 BASP0228
10 2 1.0 1.0 1.0 0.0 0.C025 1.0 1.0 0.0 BASP0229
11 1 1.0 1.0 1.0 .0 I.C025 1.0 1.0 0.0 BASPU23O
11 2 1.0. 1.0 1.0 0.0 0.0025 1.0 1.0 0.0 BASPO231
12 1 1.0 1.0 1.0 0.0 0.0025 1,0 1.0 0.0 BASPO232
12 2 1.0 1.U 1...) 0.0 Q.C325 1.0 1.0 0.0 BASP0233
13 1 1.0 1.C 1.0 0.0 0.0025 1.0 1.0 0.0 BASPO234
13 2 1s0 1.0 1.0 0.0 0.C25 1.0 1.0 0.0 PASP0235
14 1 1.0 1.0 1.0 0.0 CU25 1.0 1.0 0.0 BASPO236
14 2 1.0 1.0 1.0 0.0 0.C025 1.0 1.0 0.0 BASP0237
15 1 1.0 1.0 1.0 0.0 C.C25 1.0 1.0 o.0 BASP0238
15 2 1.0 1.0 1.0 0.0 0.0025 1.0 1.0 0.0 HASP0239
16 1 1.0 1.0 1.0 0,0 0.C025 1.0 1.0 0.0 BASPO240
16 2 1.0 1.0 1.o o.0 0.0025 1.0 1.0 0.0 BASPO241
17 1 1.0 1.0 1.0 J.0 0.C025 1.0 '1.0 0.0 BASPO242
17 2 1.0 1.0 1.0 u.0 0.0025 1.0 1.0 0.0 BASP0243
18 1 1.0 1.u 1.0 '.G Q.C025 1.0 1.0 0.0 BASP0244
18 2 1.0 1.C 1.0 0.0 0.0025 1.0 1.0 0.0 BASP0245
19 1 1.0 1.c 1.0 0.0 0.0025 1.0 1.0 0. BASPk 246
19 2 1.0 1.0 1. 0.0 0.025 1.0 1.0 0.C BASPo247
20 1 1.0 1.0 1.0 0.C 0.0025 1.0 1.0 0.0 BASP0248
2) 2 1.0 1.0 1.o f.0 U o.0C25 1.0 1.0 0.0 BASP0249
21 1 1.0 1.0 1.0 0.0 0.0025 1.0 1.0 0.0 BASPO250
21 2 1.0 1.0 1.0 0.0 (.0025 1.0 1.0 0.0 BASP0251

30 DAYS-INTERVAL DATA OF PRECIPITATION FROM 1938 TO 1971 BASP0252u



193
19 3
194i
19 41

1942
l'943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1S65
1966
1967
1968
1969
197C
1971

C
1938

S. 12

1.40
1.53
0.23
0.27
1.01
1. c 7
2.21
0.71
1.uO
6.29
0.*52
1.03
0. 41
0.15
0.09
0.61
0.43
0c19
). 81
0.53
1.37
0.02
1.C7
1.22
J .71
0,D 5 6
n.23
0.28
Uo 14
0.45
0.28

1. 93
1.43
1.09
1.93
3.67
1.34
D.84
1.23
C. 52
1.19
1.80
1.61
2.58
0.35
0.82
0.57
1.71
0.45
0.77
1.03
0.23
1.41
1.51
0.47
0.02
0.53
1.39
1.44
0.09
0.20
1.35
0.21
1.70

1.91
1. 57
0.74
1.11
0.83
1.21
4.55
1.85
1.81
2.91
1.51
2.01

2.69
2.68
3.35
1.30
0.68
0.91
2.60
4.07
0.85
1.18
4.83
0.26
1.67
0.89
0.48
0.26
0.57
1.36
1.73
2.70
C. 1 C

30 DAYS-INTERVAL DATA
2...9 2.19 2.22

2.83
2.14
6.15
2.83

1.94
12.42
6.79
1.87
5.20
1.65
3.33
0.388
6.33
1.97
0.57
1.54
0.72
1.46
3.31
1.23
2.17
1.28
2.00
1.02
i. 22
2.97
2.63
2.21
1.30
2.16
4.30
4.49
2.35

P. 14
3.25
5. F2
2.8 c
1.67
6.59
2.041 * 28
1. 28'
2.11
4.69
1.86
6.15
2.24
7.60
2.31
2.0?
4.84
4.02
1.40
7.57
2.44
5.53
4.1 L
4. 02
0.99
6. 15
5.84
6.26
0.76
1.42
4.37
3.28
1.58
3.1 2

4.49
8.0 9
4.83
7.03
8.69
3.43
1.60
4. 00
2.71
2.57
9.76
3.16
4. U2

10.07
1.08
2.17
0.94
3.98
1.28

10*46
3.0
2.35
4.59
2.61
4.80
4.51
3.73
8.00
2. 7
5.62
2.38
6.82
6.72
2. 7L

2.24
0. 72
0.94

2.41
2.34
6.51
5.49
5.0 1
0.32
2.89
6.39
6.97

13.37
4.45
4.94
2. 9
0.19
1.30
2.51
1.99
7.19
7.38
5.57
6.56
9.22
2.70
2.23
3.62
1.78
4.28
3.65
6.23
0.47
6.65

5.60
5.34
2.87
3.54
4.51
1.95
4.77
4.11
2.90
0.82
2.72
1.13
5.93
5.38
2.52
0.82
0.96
1.06
0.70
0.59
2.93
4.20
7.91
3080
2.95
2.86
6.10
4.91
1.0U9
1.91
6.41
1.07
2.37
1.49

OF STREAM GAUGE FROM 1938 TO
2.08 2.05 7.77 4.46 2.20

2.62
).0 3
6.14
4.29
7.21
3.14
2.20

10.58
1.27
0.25
1. C
3.62
1.04
6.59
0.28
0.53
1.09
3.79
0.03
5.05
6.11
2.31
2.25
5.24
8.23
4.9D
2.66
8.44
0 . 72
3.19
5.91
4.77
4,04
1.73

1971
2.31

0.16 2.05 0.15 BASP0253
1.14 0.81 0.95 BASP0254
1.05 3.82 1.56 BASP0255
4.81 0.78 0.92 BASP0256
3.77 0.68 3.14 BASPO257
1.83 0.07 2.33 BASP0258
2.20 1.93 3.98 BASP0259
0.51 0.05 0.62 BASP0260
4.32 2.14 0.78 BASPO261
1.50 0.89 2.98 BASP0262
0.67 3.30 0.23 BASP0263
1.91 0.06 1.22 BASPO264
0.48 0.26 0.02 BASP0265
2.05 1.47 0.24 BASP0266
0.00 2.40 1.09 BASP0267
3.77 1.46 1.06 BASP0268
2.83 0.00 0.18 BASP0269
5.84 0.03 0.03 BASP0270
2.69 0.48 0.39 BASPO271
2.72 1.45 0.45 BASP0272
0.0) 2.39 0.46 BASP0273
6.13 0.30 1.60 BASP0274
5.03 0.37 1.73 BASP0275
4.87 2.80 1.01 BASPC276
1.32 1.62 0.60 BASP0277
2.47 1.04 0.34 BASP0278
1.64 5.88 1.03 BASP0279
0.32 0.11 2.25 BASPO28U
0.47 J.C9 0.43 BASP0281
2.98 0.39 1.41 HASP0282
3.06 2.47 1.31 BASP0283
2.80 0.01 1.36 PASPO284
1.38 0.05 0.49 BASP0285
5.54 2.49 0.95 BASP0286

BASPO287
2.14 2.10 2.27 BASP0288



19~39
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
195 ~
1951
1952
1953
1954
1955
1956
1957
1958
1959
196v
1961
1962
1963
1964
1965
1966
19 67
1968
1969
1970
1971

C

2.23
2.16
2.2l1
3.14
4.48
2.43
3.21
2.87
2.34
2.93
2.84
2.84
2.42
2.52
1.95
1.74
1.53
1.39
1.01
1.60
2. 19
2. J
1.78
1. 70
1.45
1.13
1.25
2.02
u.80
1.23
1.47
1.09
0.90

CONTROL C

2.26
2.29
4. C2
2.78
3.36
3.C3
3.26
2. 80
2.29
2.31
4. E6
2.59
2.62
2.45
1. 98
1.72
1.62
1.41
1. cp
1.73
2,22
3.33
1.61
6.66
1*64
1.20
1.11
1.38
0.83
1.25
1.13
1.C8
0.96

APDS(OMITTEn)

2. 30
3.43
2.20
2.75
3.12
2.94
5.86
2.69
2.26

12.36
9.31
2.66
2.59
2.39
2.02
1.74
1.57
1.31
1.10
2.01
2.11
2. 05
1.66
1.76
1.40
1. 12
1.44
1.41
0.78
1.15
7.11
0.95
3.32

3,.7
2 14
2.22
2.69
2.94
3.96

3.29
2.7o
2. 6 %
3.07
3.90
2.60
3.11
2.62
1.94
1.72
1.62
1.25
3.29
8.62
2.54
4.30
3.32
1.64
1.42
1.08
1. l 3
1.14
1.00
C.,S5
2.01
2.88
1.29

FOR

2.2 .
3.26
2. 18
6.40
2.78

13. 52
7.37
2.52
3.33
2. 6&

12.58
2.53

11.88
2. 8
1.92
5.09
1.46
1.17
2.25
3.24
1.92
3. 17
4.79
1.45
1.21
1.71
C .99

1.47
0.84
1.12
3.66
1.58
1.08

THE bM0'02T

2. C8
2.48
3.21
3. 18
3.56
4.47
3.28
2.41
6.87
2.44
6.22
2.97
4.42
2.46
2.33
1.64
1.58
1.25
4.53
2.37
4.72
3.25
2.25

10. 04
1.25
1.83
3.28
0.96
0. 82
2.39
3.23
1. C
2.61

PROGRAM

2.11
3.88
8.40
2.76
3.08
3.39
2.35
4.46

14.34
5.88
3.48

16.16
2.09
3.20
1.51
1.34
1.01

14.66
2.33
1.96
2.53
1.55
2.29
C.95
1.06

10.34
1.10
9.75
0.97
2.00
1.40
1.35

2.34
1.96
2.65
2.85
2.86
3.18
2.93
2.07
2.47
5.05
3.32

15.43
3.77
1.98
1.65
1.34
1028
0.96
2.14
9.12
2.11
1.82
1.79
2.71
1.19
0.83
1.63
1.01
3.07
2.01
1.15
0.73
4.99

2.42
1.98
2.20
3.01
-2.54
3.53
2.50
2.21
2.24
2.97
2.85
4.47
2.96
1.89
1.56
1.44
1.21
0.80
1.51
2.45
3.04
6.93
1.44
1.73
0.98
3.00
9.24
0.76
1.29
1.87
1.23
0.54
J.94

2. 1c;
2.04
3.27
3.8
2.39
5.66

13. 90
2.12
2.18
2.90
2.72
2.72
3.78
1.81
1.55
1.35
6.04
0.81
1.47
2.60
1.92
2.56
1.92
2.J8
1.07
0.92
3.12
0.70
2.58
0.66
1.39
1.40

0

2006
2.06
8.83
3,6C)
2.98
2.84
3.05
2.25
2.25
2.74
2.7'
2.48
3.50
1.90
1.66
1.49
1.45
0.92
1.61
2.32
2.65
3.20
3.48
1.60
1.49
0.85
1.46
0.71
1.56
1.48
1.60
1.13

.

C NUMBER OF INPUT DATA FOP EACH SERIES IS 405
C NUMBER CF LAGS IS 36

t'3
%.0

2.15
2.48
3.15
3.13
2.50
3.07
2.87
2.31
2.25
3.31
2.71
2.46
2.72
1.94
1.74
1.49
1.36
0099
1.58
2.20
1.77
1.75,
1.98
1.68
1.16
1.35
1.34
0.75
1.30
1.28
1.05
0.97

.

BASP0289
BASP0290
BASP0291
BASP0292
i3ASP0293
BASP0294
BASP0295
BASPU296
BASP0297
BASPO298
BASP0299
BASP0300
BASPO301
BASPv 302
BASPO303
BASPO304
BASP0305
BASP0306
BASP0307
BASPO308
BASPO309
BASPO31J
BASPO311
BASP0312
BASP0313
BASPO314
BASP0315
BASP0316
BASP0317
BASP0318
BASP0319
BASPO320
BASP0321
BASP0322
BASPO323
BASPO324



IL EASE SERIES IS ACCRETICN
PK BLNKANSA2
(6X,6F12.5)
SELECT YES YES YES 01 J5 02
C EASE SERIES IS STRFAM
PF LJL-PKANSA2
(18X, F12.5)
FINISH

6 4:5 36 1U 1. JUMONTHYES

03 04 05 06

5 4U5 36 100 1.00MUNTH

112 1

112 1

BASP0325
BASPO326
BASPO327
BASP0328
RASP0329
BASPO330
BASPO331
BASPO332

I~%)



APPENDIX B

Confidence Limits for the Spectrum

The sampling distribution of a smoothed estimate of a spectrum

is approximately chi-square with v degrees of freedom. Hence, for a

spectral density SXX (o) based upon an estimate (S) measured with

the number of lags, M and a total record length T, a 1-a confidence

interval is given by

VS (Q) QS () (B 1)
2 XX 2
Xv; a/2 X v; 1-a/2

where v = 2.667 T/M for the Turkey window used in this program

(See p. 252, Jenkins and Watts, 1968.)
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List of Figures

Figure Page

2.1 Schematic Representation of Linear Reservoir System. 18

2.2 Phreatic Aquifer with Fully Penetrating Stream and
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2.3 Aquifer Response to Stream Stage Fluctuations;
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x/L = .75 with Different Values of r. 31

2.9 Schematic Representation of Dupuit Aquifer with

Adjacent Linear Reservoir. 34

2.10 Response of the Aquifer-Reservoir System, Plot of

g along the Aquifer with aL 2/a = 1.0 and SL/k = 0.1. 38

2.11 Response of the Aquifer-Reservoir System, Plot of

g along the Aquifer with aL2/a = 1.0 and SL/k = 0.5. 39
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