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ABSTRACT

This research developed important new results on the use of spec-
tral analysis techniques to evaluate groundwater resources. The linear
theory of aquifer spectral response in the frequency domain is developed,
including effects of aquifer slope, vertical flow, variable transmissiv-
ity and other features. Numerical simulations of the nonlinear effects
in the spectral domain are developed and show that the nonlinear effects
are typically quite small, thus making the simple linear theory applica-
ble for most field situations.

Some additional features which are explored are the effects of spa-
tial variability of hydraulic conductivity and the influence of tran-
sient flow in the partially saturated zone above the water table. Through
spectral analysis in the wave number domain, an error criterion is estab-
lished for a simple observation network which is used to measure ground-
water flow. The effects of storage in the partially saturated zone on
the frequency spectrum of groundwater fluctuations are estimated and
found to be negligible in most cases.

The theoretical results are applied to evaluate, through spectral
analysis, time series of groundwater levels, precipitation and stream
stage for a site in Kansas. From these data, using a procedure based on
the linear spectral theory, estimates of aquifer transmissivity and stora-
tivity are developed. The procedure yields parameter estimates which are
in agreement with those obtained from pumping tests.

The results of the study should be applicable under specified condi-
tions to the estimation of aquifer parameters from natural fluctuations
of groundwater level.

KIS IR
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Chapter 1 INTRODUCTION

Hydrologic phenomena are generally recognized as being affected by
complex natural events, the details of which cannot be anticipated pre-
cisely. Hence, the analysis of hydrologic systems is often viewed in
terms of stochastic processes. However, the analysis of groundwater
flow has traditionally been based on a deterministic approach to the solu-
tion of the governing partial differential equations. Natural variability,
such as temporal fluctuations in groundwater recharge or water level in
adjacent bodies of water and spatial variations in recharge and hydraulic
conductivity, is usually dealt with only in terms of average conditions.
Yet natural variability may be an important feature of groundwater flow
in that it may be possible to infer aquifer properties from water table
fluctuations. Also of interest are problems of aquifer management from
a probabilistic point of view. In the following report, natural tem-
poral variability in a phreatic aquifer is treated using a stationary
random description rather than a deterministic approach; and the various
influences of vertical flow, spatial variability, and storage of water in
the unsaturated zone are investigated.

Although there has been little previous work relating to the analy-
tical modeling of groundwater systems in a stochastic sense, there are
several related studies. The interpretation of groundwater level fluc-
tuation in order to evaluate aquifer properties has been the subject of
several investigations. Jacob (1943) used a weighted average technique

to relate precipitation to groundwater recharge, and thus to groundwater



level fluctuation. Tison (1965), in a review article, described a linear
reservoir aquifer model with an accretion input in the form of a sine
series. He found that the reservoir outflow is a function of the accre-
tion fluctuation and is related to the aquifer area and porosity. In

an adjoining discussion Tison (1965) described a linearized Dupuit equa-
tion aquifer model which was subject to a sinusoidal stream stage boun-
dary condition. He found that the water level fluctuation (waves) created
by the boundary disturbance propagates into the aquifer with decreasing
amplitude, with short waves disappearing in a shorter distance. He also
found that the lag time of the fluctuations increased with distance away
from the stream. Pinder, et al. (1969) used a numerical model to evaluate
aquifer parameters from stream stage fluctuations. In all three cases

the groundwater system and inputs were treated as being deterministic
rather than stochastic.

One of the simplest models that can be used to represent a phreatic
aquifer is the lumped parameter linear reservoir system. Linear reservoir
models of groundwater systems have been used by Kraijenhoff van de Leur
(1958), Dooge (1960), van Schilfgaarde (1965) and Eriksson (1970a) to
examine aquifer outflow and mean aquifer water level.

The classical Dupuit approximation provides a more realistic dis-
tributed parameter aquifer model. Deterministic solutions for this model
are typically found through linearization of the equation (Cooper and
Rorabaugh, 1963; Glover, 1967; Venetis, 1971; Hall and Moench, 1972),
although Brooks (1961) and Singh (1969) have developed analytical solu-

tions for specific nonlinear problems. Several numerical solutions of



the nonlinear Dupuit equation are available (Singh, 1969; Hornberger,
et al., 1970).

In some situations the spatial variability of aquifer properties
may have an important influence on the response of the aquifer to various
inputs. Although not previously examined in the stochastic sense for
groundwater, Buyevich, et al., (1969) have analyzed the related problem
of flow through a porous medium with a randomly varying porosity.

Spectral analysis has been used by Eriksson (1970a,b) and Jackson,
et al, (1973) for qualitative interpretations of time series of ground-

water level,precipitation,and temperature.

Objectives and Scope

The general goal of the study was the gevelopment of analysis tech-
niques which can be used to describe groundwater flow phenomena which
are of a stochastic nature. More specifically, the immediate goal was
to develop and apply spectral analysis techniques to the evaluation of
groundwater systems, thus making use of the extensive data on water level
fluctuations in aquifers. The following specific objectives were estab-
lished:

1) to develop linear analytical models for the spectral response

of phreatic aquifers, including the effects of different aquifer

configurations;

(ii) to evaluate the effects of nonlinearity in terms of spectral

response;

(iii) to apply the theoretical spectral results to estimate aquifer

parameters under field conditions;



(iv) to estimate the spectral effects of other factors such as spa-

tial variability of hydraulic conductivity and unsaturated flow.

The theoretical analysis of the linear aquifer models was based on
the representation of random functions in terms of Fourier-Stieltjes integ-
rals. Solutions of the governing partial differential equation produced
input-output spectral relationships for various aquifer configurations.
The effects of aquifer slope, flow zone thickening, and vertical flow
were included explicitly and the influence of the unsaturated flow zone
was estimated. Some effects of the spatial variability of hydraulic
conductivity were evaluated using spectral analysis in the wave number
domain.

Nonlinear effects were determined from numerical simulation of the
nonlinear aquifer equations in finite difference form. Spectral analysis
of the nonlinear simulations was used to evaluate the nonlinear effects
in the spectral domain.

Applications of the linear theory were illustrated through spectral
analysis of field data on water level, precipitation and stream stage for
a site in Kansas. Aquifer parameters were determined by comparing theo-

retical transfer functions with those determined from the field data.



Chapter 2 LINEAR THEORY OF AQUIFER SPECTRAL RESPONSE

2.1 Spectral Description in Time Series Analysis

Stationary Random Processes. A random process X(t) is said to be

strictly stationary if its statistics are not affected by a shift in the
time origin. In particular, the probability density function of X(t) is

independent of time. That is to say that the two processes

X(t) and X(t+ 1)

have the same statistics for any T. But it is very doubtful if this
kind of process ever exists in nature. Since most of the methods used
in time series analysis are based upon the first and second moments,
i.e., means and variances, it may be more sensible to define a less
restrictive type of stationary process,

A process is said to be stationary in the wide sense if its ex-
pected value is a constant and its autocorrelation depends only on T.
In terms of the probability density function, p(X),

o]

me = E[X(t)] = Xp(X) &X (2.1.1)

ng (1) = E[X()X(t+ 1] = X(£)X(t+ 1) p(x) d¥ (2.1.2)

~=~00

for all t and T.

uX( T) is the autocevariance function which is only a function of T,

10



not of t. The quantity u_(0) is known as the variance.
Y Hx

Spectral Analysis, All stationary processes can be represented in

the complex form as

X(t) = | ™% az(w) (2.1.3)

which is known as Cramer representation of a stationary process or sto-
chastic Fourier-Stieltjes integral, with the autocovariances in the form
(Granger and Hatanaka, 1964, pp. 28-29)

o

() = | e d sw) (2.1.4)

where Z(w) is the complex amplitude of the Fourier modes of frequency w.
This process is also called a process of non-correlated increments be-

cause it has the following properties:

E[dZ(w,) dZ*(w,)] =0 w, # w
1 2 1n 2 (2.1.5)
=deée @= S(w) dw w; =W, =W
w
with ¢ (w) = S(w") dw' (2.1.6)

where the asterisk denotes the complex conjugate. @®(w) is known as the

power spectral distribution and S(w) as the power spectral density or,

11



spectrum. Using equation 2.1.5, 2.1.4 can be written as

o

pu(t) = eimr S{w) dw (2.1.7)

=00
Then S(w) can be found by taking the Fourier transform of u (t), the co-
variance function. Hence

S(w) = ;—n e 10T (1) dn (2.1.8)

=00

For a real, discrete, stationary process,

S =3 b +2 F u(3)cos(Gu)] (2.1.9)
3=1

Usually, for a limited amount of data, ﬁ(t,t=l,2,"',n}, u(j) is esti-

mated by R(t), where

~ 1 n=-T _ _
R(t) = = = (Xt-x)(xt+T-x) (2.1.10)
t=1
— l n
with X== 37 X (2.1.11)
n e=1 t

Therefore the estimator, S(w), of the power spectral density is given

as

~ n .
S(w) = %; [R(0)+2 £ R(J) cos(jw)] (2.1.12)
5=1

Since this estimate, S(w), is related to the periodogram, and

12



Hannan (1960) has shown that the periodogram does not give a consistent
estimate of S(w) and it is not at all smooth, it is customary to smooth
this estimate by a set of weighting factors which is usually called a
"spectral window'". Among the most commonly used windows are Rectangular,
Bartlett, Tukey and Parzen (see for e#ample P. 244 of Jenkins and Watts,
1968). The narrower the base width of the lag window, the less biased

is the smoothed spectrum of §(w); however, a narrow spectral window
gives a larger variance. So it is necessary to compromise between the
variance and the bias of the estimator when selecting the spectral

window.

Cross~spectral Analysis. 1In direct analogy to the univariate case,

a bivariate random process {X(t), Y(t)} is said to be stationary, in the
wide sense, if the first and second moment of this process are inde-

pendent of time. Hence,

E[X(t)]

x p(X) dx

o

=00

(2.1.13)
cont.

E[Y(t)]

Y p(¥) dy

oy

b

13



o0

Hy () = E[X(£)X(t+1)] [ X, ()%, (t+7) p(X) dX

=00

-]

uY(T) = E[Y(£)Y(t+1)] [ Yk(t)Yk(t+T) p(Y) dy

[ ]

Hyy (1) = E[X(0)Y(t+T)] = J [ X(t)y(t+t) p(X,y) dx dy
-0
With]JXY(T) is the cross-covariance function of the bivariate process
{X(t),Y(t)}. Using the stochastic Fourier-Stieltjes integral, the

series {X(t)} and {Y(t)} can be represented in the form of

o

X(t) = { olut dz, (w) (2.1.14)
Y(t) =[ elut dz, (w) (2.1.15)

~=00

and their covariance functions as

oo

uX(T) [ ein SXX(M) do (2.1.16)

oo

uY(r) = ein SYY(w) dw (2.1.17)

14



1WT S

uXY(T) = XY(w) dw (2.1.18)
with
*
E[dZg(w)) dZy(w,)] = 0 w; ¥ o, (2.1.19)
= SXX(U)) d_(.\) wl = w2
*
E[dZY(wl) dZY(wz)] = w, # w,
- SYY(w) dw wl - wz (2.1.20)
*
E[dZ_(w,) dZ_(w,)] =0 w, # w
e = S, (w) dw wl = m2 (2.1.21)
XY 1 2

Again,lix, SXX’ My and SYY are the auto-covariance functions and the

power spectra of the series {X(t)} and {Y(t)} respectively. Mgy 1s the
cross—covariance function and
SXY(w) = Co(w) + 1 Q(w) (2.1.22)

is known as the cross-spectrum between the series {X(t)} and {Y(t)};
Co(w) is called the co-spectrum and Q(w) is the quadrature spectrum.
From equation 2.1.18, it can be shown that the cross-spectrum can be ob-

tained by taking the Fourier transform of uwyy- Hence,

o

Sy = 3o J eIy () at (2.1.23)

=00

15



Again with a limited amount of data, Sxx(w), SYY(w) and st(w) are esti-—

mated by Sxx(w), SYY(m) and SXY(m) respectively.

Coherence, Phase and Gain Factor. In direct analogy to the square

of the correlation coefficient in classical statistical analysis, the
2 .
coherence function YXY(w), is a measure of the correlation between the

frequency components of the two processes and is given by

2
2 _ ISXY((”)| _ Coz(w) + Qz(w)
Yxr ) T S WS @) S(@) Sgy ) (2:1.2)
XX YY XX YY
The corresponding phase difference is given by
= tan ! Q@) _
GXY(w) = tan Co () (2.1.25)

and is sometimes known as the phase spectrum of the processes {X(t)}
and {Y(t)}. The phase spectrum shows the time lag, positive or negative,
between the frequency components of the two processes.

The gain factor, sometimes known as the amplitude of the transfer

function, is defined as

ISXY(w)I _ /COZ(w) + Qz(w)
Sxx(w) - SXX(“’)

lc(w)| = (2.1.26)
which measures the amplitude magnification at different frequency com-
ponents. For more detailed discussions on spectral analysis, readers

are referred to any text on time series analysis, e.g. Jenkins and Watts

(1968).

16



2.2 Linear Reservoir Model

One of the simplest models that can be used to represent a phreatic
aquifer is the lumped-parameter linear reservoir system as shown schemati-
cally in Figure 2.1. 1In this model we neglect all spatial variation of
water level and consider the average fhickness of the saturated zonmne,
h(t), to be solely a function of time, It is also assumed that the out-

flow per unit area can be represented by
q = a(h-H) (2.2.1)

where a is an outflow constant and H is the elevation of the water sur-
face in some adjacent body of water. A water balance can then be stated
as

s 9By ah-m) = ¢ (2.2.2)

dt ,

where € is the accretion or recharge rate and S is the average storage
coefficient. Under the assumptions that S and a are constants and h, H
and € are stationary in time, taking the expected value of equation

2.2.2, we have, for the mean values,
ath-H) = ¢ (2.2.3)

Thus it follows that the fluctuation about the mean also satisfies equa-~

tion 2.2.2, namely

17



g€(t)

ik

S,a h(t)

Figure 2.1 Schematic Representation of Linear
Reservoir System.
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dh'
S i a(h'-H') = ¢° (2.2.4)

Then h', H' and ' are stationary random processes with zero mean. Drop-
ping the primes and using equation 2.1.3, we have

[+

h(t) = | &Mt az, (v) (2.2.5)
)
rco

H(t) = | eVt dz () (2.2.6)
J

e(t) = | et az_(w) (2.2.7)

Using equations 2.2.5, 2.2.6 and 2.2.7 in 2.2.4, the generalized Fourier

amplitudes are given by

a dZH(m) + dZE(w)
iwS + a

th(w) = (2.2.8)

Using equations 2.,1.19 - 21, the spectral density function becomes

5,1 = [a28,, (w)+a Sy (@)+a Sy @S )]/ w’s%a?) (2.2.9)

Similarly, the input-output cross spectra can be obtained from equation

2.2.8 to be

19



= [(a 5_g(w)*s__ () (a+10S) ]/ (a+u%s?) (2.2.10)

€
~
|

eh(

_ . 2 2.2
SHh(w) = [(a SHH(w)+SH€(w))(a+1wS)]/(a +w"S7) (2.2.11)
when only a single input is considered (e.g., H =0 or € = 0),say € = 0,

equation 2.2.11 reduces to

a(atins) o (2.2.12)

(32+w232) HH

SHh(w) =

From equation 2.1.26, we can see that the factor

la(a+iws)

|
32 + w252

is known as the gain factor or the transfer function from H to h. This
quantity can be used in applying spectral analysis to infer values of
the aquifer parameters, in this case a and S, for a groundwater system.
It is of interest to compare the results of this simple lumped-parameter
analysis with those for more realistically distributed systems in the

following sections.

2.3 Linearized Dupuit Aquifer Analysis

Dupuit Approximation. The Dupuit approximation is probably the most

powerful tool in treating unconfined flows through porous media. It
requires the assumptions that the equipotential lines (in two dimensional

cases) are essentially vertical and the flow essentially horizontal.

20



[See, e.g., Bear, 1972]. Thus, for the general case with fully penetra-
ting stream and finite length, L, as shown in Figure 2.2, the classical

Dupuit approximation leads to the following governing equation:

h_ 3 g 3D
S5 = 3¢ K =5 + e (2.3.1)

where h(x,t) the thickness of the saturated zone,
x = the horizontal coordinate,

o(x)

]

the position of the impervious bottom of the aquifer,
S = the storage coefficient,

K = the hydraulic conductivity

€ = the accretion, which is assumed to be uniform over x.

Equation 2.3.1 can also be written as

S—=——Kh—-—+g—Kh——-+e (2.3.2)

Assuming Kh = T, the transmissivity, and %§~= B, the slope of the im-~

pervious bottom, to be constant, equation 2.3.2 can be linearized to

2
dh 9"h oh
SE T;;z—+BK§£+€ (2.3.3)

with boundary conditions x = 0, h = H, and x = L, §h= 0. For a station-
X

ary random process the mean part of equation 2.3.3 is given by

2— _
3" h dh

'I'-—-—2+BKax
ox

+e=0 (2.3.4)

21



£ (1)

h(x,t)

<

S, K
H) [ § (x)

'SR R RIRLNLRR AN R RN ANY

Figure 2.2 Phreatic Aquifer with Fully Penetrating
Stream and Arbitrary Bottom.
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By substituting h =h+ h!
E=¢+¢'
H=H+H'

where primed quantities represent the fluctuations about the mean, into
equation 2.3.3 and subtracting the mean equation 2.3.4, the equation

governing the fluctuations is given by

2
1] ) \J
sh _p23h L pgdl, (2.3.5)
ax2 9x

with the following boundary conditions:

x =0 h' = 1

dh' _
ox

Linearized Dupuit Analysis with constant bottom slope. Using the

stochastic Fourier-Stieltjes integral, equation 2.1.3, we have

©o

h' = o TVt dZ, (w,x)
h
00
iwt .
e' = | et iz _(w) (2.3.6)
H' = eimt dZH(w)

=00

23



Substituting equation 2.3.6 into equation 2,3.5, we have

2
d d
T ;;E[dzh(w,x)] + BK E;[dzh(w,x)] - iwS th + dZe =0 (2.3.7)

with boundary conditions

x =0 h'! = H'(t) th(m,O) = dZH(w)

ah' _ i__ _
5;7-— 0 dx[th(w,x)] = 0

The solution to equation 2.3.7 is

idZE(w)
dz, (w,x) = F(w,x) dZg(w) - [1-F(w,x)] =3 (2.3.8)
alL azx aZL alx
ale e Lol aze e
where F(w,x) = - eaIL - CPSH
1 2

__BK BK.2 _ iwS

and o =-mFt G T

_ 8K [BR2 ius

o =~ G T

Thus, using equations 2.1.4, 2.1.5 and 2.1.6, we have the following re-

lationship between the spectral density functions

S
€€
wzs

* %
S = (1-F-F +FF )

i * * *
o - E§{(1-F)F SEH_(l_F )FSH5]+FF Sug €2.3.9)

2

24



For the particular case, B = 0, i.e., with horizontal bottom,

a, = - o, = (L+) (Jﬁz’-,_lrﬁ)l/2 = b

and

X
cosh[b(x-1)] _ SOSRIPL( -1)]
cosh bL cosh bL

F =

Equation 2.3.9 can be shown reducible to equation 18 as given by Gelhar
(1974).

It is of interest to see how the bottom slope of the aquifer will
affect the spectral relationship given by equation 2.3.9 along the
aquifer. It can be shown that F(w,x) as given in equation 2.3.8, can be

written as

-TL %— .
e [EL cosh €L(1- 1) - TL sinh EL(1- %)]
F(w,x) = FL cosh EL = 7L sinh L (2.3.10)
; _ _ BKL
with T = 1L = 5T

2
EL =\/(TL)2 + i‘:L and o = %

Some of the curves are shown in Figures 2.3 to 2.8 for different values

of T at different locations along the aquifer. From equation 2.3.9, it
*

is seen that the function f = FF = Shh/SHH when € = 0 and thus charac~

terizes the spectral response of the aquifer to stream stage fluctuations.

25
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with Different Values of T.
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Similarly, g = (l—-F)(_l--F*)/Q2 = TZShh/S€€L4), when H = 0, characterizes
the dimensionless spectral response to recharge fluctuations. The para-
meter = wL2/a in equation 2.3.10 is the dimensionless frequency and
L2/a can be thought of as the scale of the frequency. It is easy to see
that the general effect of the sloping bottom is to damp out the high
frequencies as they propagate away from the stream. As can be seen from
these curves, for I' < .1, this effect is negligible. This parameter, T,
characterizes the bottom slope. Putting T = KhO and BL = C|x=L’ we

have

z

_ BKL _ *'x=L
r = T - —Eﬁ;_ (2.3.11)

where h0 is a spatial average of the flow zone thickness. Also from the

steady state equation, we have

d2
T ——5(h+8x) = - ¢ (2.3.12)
dx

]

. d —_—
with X 0 dx(h+8x) =0

x =L h=8H

for which the solution is
T(h+Bx-H) = x(L- %) (2.3.13)

If the change in the saturated thickness across the aquifer,
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h(L) :_h(O) - 4h _eL” BL (2.3.14)

H H 2TH H

is small (say ]é?1 < %O,the linearized theory for sloping bottom should
H
be most appropriate because then T > constant, The basis for this con-

dition is developed in the section entitled "Zone Thickening Effect".

Interaction between Linear Reservoir and Dupuit Aquifer. Consider-

ing the case as shown in Figure 2.9, with a phreatic aquifer connected
to a body of water or a linear reservoir, the governing equation for
the aquifer, using the Dupuit approximation, is

oh _ 3 dh

— Kh — + ¢ (2.3.15)

S 3t - ax Mo

which can be linearized, by setting Kh = T to be constant, to

s _p2h, (2.3.16)
at 2
ox
with boundary conditions
x =0 = H
x=1 B
9x
For a linear reservoir, we have
dH _ m oh
3 7 + a l(H—ho) =T . 0 (2.3.17)

33



e

£ (t)

SN NN NN NN N NNNNNNN

NN
od -
o _
T h(x,’;)
n, AON
- //////////5;212}///////////////////
== 2 L_ -

Figure 2.9 Schematic Representation of Dupuit Aquifer with Adjacent Linear Reservoir.



The term T oh
90X
x=0

phreatic aquifer.

=
1}

]
]

into equations 2.3.16 and 2.3.17

is the net inflow of water to the reservoir

from the

By substituting

h+h'

with the mean part removed, the equa-

tion for the fluctuations can be given as
dH' T 5h'
—— 4+ aH' =+ —— (2.3.18)
dt L 9x -0
2,
'
3 __-g::‘ -rdh *2‘ + ¢! (2.3.19)
X
with x=0 h' = H'
oh'
x =L -a';(——o

Substituting the stochastic Fourier-Stieltjes integral for h', ¢' and H'

as given in equation 2.3.6, into

2 (iwta)
T dZH
ideh = q

where o

i
0|3

2,3.18 and 2.3.19, we have

3
= % dz

(2.3.20)

(2.3.21)
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with boundary conditions

Solving equations 2.3.20 and 2.3.21 simultaneously, we have, for solu-

tion, the following

i
th = (F~l)-a§ dZE (2.3.22)

cosh[bL(%-—l)]

with F = Th
m Slnh(bL) + COSh(bL)
- w_y1/2
and b= (1+1) )
Tb .
Note that the term -————= can be written as:
2 (at+iw)
Tb SL (aﬁz) B i(wiz)
m = (bL) (2—) 5 5 (2.3.23)
(éigoz + (WLy2
o o
Using equations2.1.5 and 2.1.6, we have
(F-1) (F"-1)
Sy (@) = A=A 22 5 (w) (2.3.24)

SZwZ €€

In this coupled-system, we have two independent parameters besides the

dimensionless frequency, § = sz/a, namely SL/% and aLZ/a. The first one
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represents the ratio of the volume in the two systems. While the second
parameter can be thought of as the ratio between the response time of
the two systems. However, it is not apparent how the combined effect of
these two parameters may affect the spectral relationship. Some of the
curves, using different combinations of these parameters, are shown in
figures 2.10 - 2.14. Noting that F in equation 2.3.24 is also a func-

tion of x/L, it is also interesting to examine the ratio

[Shh(w)/see(w)]x/L=0 (2.3.25)
(S, @/s_ (W]
because of the fact that the resulting ratio [Shh(w) /Shh(w)] is a

x=0
measure of the spectral response of the aquifer relative to that of a

water body (a lake or reservoir). The ratio given in equation 2.3.25 is

plotted against @, the dimensionless frequency in Figures 2.15 - 2.17.

Zone Thickening Effect. In the previous models, we have ignored

the variation in transmissivity associated with the change in the thick-
ness of the flow zone. 1In this section, this spatial variation has been
kept in the analysis in terms of the mean flow condition. For simplicity,
only the horizontal bottom has been considered. From equation 2.3.1,

ignoring the bottom slope, the governing equation is

— + ¢ (2.3.26)

Putting h(x) = h(x) + h'(x) and € = ¢ + €', where h(x) and € are the
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SL/% = 0.1.
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Figure 2.11 Response of the Aquifer-Reservoir System, Plot of
g along the Aquifer with aLz/a = 1.0 and
SL/% = 0.5.
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Figure 2.12 Response of the Aquifer-Reservoir System, Plot of
g along the Aquifer with aL2/a = 1.0 and
SL/¢ = 1.0.
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expected values and h'(x) and €' are the fluctuations, equation 2.3.26

becomes

dh , dh', 3 . —23h _— dh' . oh y dh'. =,
Shge * o] = axlKh g VKR g + KR o KR -] e e

(2.3.27)

The mean part of equation 2,.3.27 can be easily extracted, neglecting

terms involving products of the fluctuations

—a';Kh—'—= - € (2.3.28)

h=H x=20

- (2.3.29)
2h 0 x =1L

ax

Since h is only a function of x, the partial derivatives can be re-

placed by total derivatives and the solution is

2 - = (2L-x) (2.3.30)

B - T

Foru = EIZ/ZKEQ < 1, this equation can be approximated by

R-E-uXe-HE+ ow?) (2.3.31)

The remaining fluctuating part of equation 2.3.27 is
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oh' _ 3 .. — oh' , oh , oh' .
S 2o = 5-[Kh =~ + Kh' -+ Kh' =] + ¢ (2.3.32)

Noting that the third term on the right hand side is a product of two
small quantities, it has been neglected. Hence, we have for the govern-
ing equation for the fluctuations the following

oh'

S =2 g A L ogne 3By 4 o (2.3.33)
at ox 9x

with K as a constant. Substituting h from equation 2.3.31 into 2.3.33,

we have

oh' —-32 X X
o = g 200 = e ! 1 2.3.34
S 5o = KH 2 {[u F2-D + ---1h'} + ¢ ( )

with the following boundary conditions:

h' = H' x =0
(2.3.35)
v
%g—-= 0 x = L

The parameter u characterizes the relative change of the saturated

thickness as is seen from equation 2.3,.31 with x = L,
Ah = h ~H=qp H

x=L

For small u, we seek a perturbation solution in the form of
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h' = h! +u hy +u?

1 h! + ¢+« (2.3.36)

2

Substituting equation 2.3.36 into 2.3.34, we have, neglecting terms of

order uz and higher and dropping the primes,

3(h +4uh,) 2
o 1" _ g9 Xeo_ X
S %t " KH axz {ho+u[L(2 L)h0+hl]]' + € (2.3.37)
with ho+uh1=H x =20
aho ahl
= o 0 x=t

Since KH = T, we have, for order u ,

Bho azho
S Y =T + ¢
9x
(2.3.38)
with x =0 h0 = H
x =1L aho =0
ox
and for order u,
2
dh 3"h 2
1 1 9~ . Xoo_ X
S+t - T—3 =T b, $2- DI
oxX 9
(2.3.39)
with x=0 hl =0
oh
x=L —t=0
9x
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Upon using equations 2.1.4-5, the solution for equation 2.3.38 is

th =F

(e}

i(F-1)
dZH + %S dZ€

cosh bL (% -1)

where

I
S

cosh bL (2.3.40)

w (1/2
(1+i)(559

Note that equation 2.3.40 is identical to that developed previously

following equation 2.3.8.

. o
affect the solution of order u .

That is to say the nonlinearity does not

Using equations 2.1.14, 2.1.15 and

2.3.40, order u equation 2.3.39 can be written in the following form

82 iwsS ~-iwS x X
) G(x,w) - T G(x,w) = T I(Z- f) th
9xX o
where G(x,w) = dZ, + dZ E-(2- 5)
? hl ho L L (2.3.41)
with
x =0 G(x) =0
3G _
x =1L i 0

Using the method of wvariation

can be found to be

G(x,w) = C,e

1

bx +

of parameters, solution to equation 2.3.41

C e-b

2 (2.3.42)

X
+ Gl(x,w)

49



where Gl(x) is given by the following integral

X

L
G, (x,0) = | - bL %(z- %)mm[m(% - -E)]dzhod(-%) (2.3.43)

0
and C1 and C2 are coefficients to be determined from the boundary condi-
tions. Note the term th is given by the order 1° solution in equation
o
2.3.40. Upon substitution of equation 2.3.40 for dZ; in equation
o

2.3.43, G1 can be broken up into two separate integrals as follows:

X
L . . cosh bLE -1) s .
Gl = - bL E(Z— E) cosh BL *Slnh[bL(E'—'EﬂdZHd(i?
0
X S
= cosh bL(= -1)
L Sy & L ~11si X _ s S
+ - bL - P I~ 1lsinh [bL(F L)]:—)_S_dzed(L)
0

(2.3.44)
The integrations of the integrals in equation 2.3.44 and the evalua-
tions of the coefficients C1 and C2 in equation 2.3.42 was developed on the
computer at the Massachusetts Institute of Technology, Project MAC's
Symbolic Manipulation System, using DEC PDP-10 computer and LISP program-

ming code. The results are shown in Figure 2.18 with the symbols used

in Table 2.1. It can be seen that the solution is in the form

i
G(x,w) = Py(x,w) dz, +~= P _(x,0) dZ_ (2.3.45)
s i
where PH(x,w) and Pa(x,w) are coefficients for the terms dZH and oS dZe

. . i
in Figure 2.18. PH(x,w) dZH and Ps(x,w) =S dZ8 are shown in
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Table 2.1 Directory of Symbols used in Figure 2.18.

]

Symbols Equivalent Terms
B’ i/ws

DZE dZ€

DZH dZH

%E exponential

Y bL

z x/L

T s/L
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2 4y 2 2y

28 0Z 7€ 28 02 /E
2 Y2 +40Y 2 Y2 +2Y 2 Y2 2 YZ2+40Y 2 Y2 +2Y 2 Y2
Y ZE +2Y 7 + Y 7E Y 7E +2Y VE + Y 7E
4y 2 4y
02H ZE 2 8 DZE /E 2
YZ+b Y YZa+2Y v2 Y2+4bhY YZe+2Y \ A
Y ZE ¢ B8 YZE + 4 Y JE 4 Y 7€ +8YE + &4 Y /E
2y 2 2Y
D2H ZE 2 B DZE 7€ 2 .
YZ2+4 Y YZ4+2Y A 4 Y2+ 40 ¥ Y2 +20V0 Y 2
Y ZE + 8 Y + 4 Y ZE Y KE + 8Y + 4 Y 7E
2Y 2 2y
D2H 7E 8 D0ZE 7€
4 ———— -— ————— -
YZ+40Y YZ2a+2V0 Y2 Y2+ Y Y2s+2VY . Y2
Y YE + 4 Y E +2VYZE 2V IE + & Y /E +2VY/E
4y 3 2 4Y 3
DZH Y 7E b4 8 DZE Y /E 2
YZ+4Y Y2+20Y Ye Y2+ 4Y Y2 +2Y Y 2
ZE + 12 7€ + 8 /€ 6 /€ + 12 7E + 6 /E
2Y 3 2 2Y 3
D2H Y 7E b4 8 0ZE Y /E 2
YZ+4bY YZ2s+2Y Y2 YZ+dY YZs+s2V Y 2
7€ + 12 7€ +6 7€ 6 /E + 12 7€ + 6 /E
Y 2 2 sy 2
02H 7E r4 8 DZE VE 2
YZ+4 Y Y220V Y2 Y2+ b Y YZas2V Y2
7E + 8 7 . & /E 4 7€ + 8 E .4 /E
2Y 2 2 2Y 2
DZH 7E 2 B DZE /E Z
Y2+ h Y Y2a+2V Y2 Y2+ 4bhY YZae2Y Y 2
7€ + 8 /E +« 4 7E 4 7E + 8 7 4-6/E‘
r 2 2Y
2 D2H Y ZE 2B D2 Y ZE
Y2 e+4 Y YZ2e+20 Y2 Y2+ 'Y Y2+2V Y2
Y43 + 6 7€ + 3 7E 3 7€ + 6 /E +« 3 /E
&y 2 2 4y 2
D2H Y 7€ 2 B DZE Y ZE 2
b e e m——————
YZ+4hY YZ24+2Y Y2 Y2+ by Y2s+2Y Y 2
7E + & ZE + 2 /€ 2 7€ + & /E + 2 /E

Figure 2.18 Solution to Equation 2.3,45
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2Y 2 2 2Y 2

D2H Y ZE 4 B DZE Y 7E b4
$ e mm et — e —— e ———————ee————m e
Y2 +4Y Y2+2Y Y2 Y2+ 40Y YZ2+20Y \ 4
2 & + & ZE + 2 7€ R VE + 4 7E + 2 /E
4y 2 Ay
D2H 7E 4 B DZE 7€ 2
+ ——
YZ2+4' Y Y2+20VY Yye Y2+ 4 Y YZ2+20VY \
2 7E + & 7E +2 7€ 2 /€ + 4 7E + 2 /€
2y 2 2Y
D2H ZE 2 8 0ZE 7€ 2
+
Y2+ 4Y YZ+200V0 Y2 Y2+ bV Y2e+20V0 Y2
2 7E +« &4 ZE + 27 2/ + & VE + 2 /€
3 YZ+2Y 2 3 YZ2+2%Y 2 YZ2+2Y 2 2 YZa+2%Y
DZH Y 2 VE B D2 VYZ Y 0ZH 2 7€ B O0ZE 2 V/E
+* - - -
4y 2Y 4y 2V [ 3 4 2y &Y 2Y
6 7€ + 12 7E +6 6 7E + 12 ZE +6 4 7€ + 8 /E + 4 & /E + 8 /E + 4
2 YZ2+2Y 2 2 Y2+2%Y Y2s+2Y
D2H ¥ 2 ZE B DZEYZ 7E DZH 2 /E
- + -
4y 2Y 4y 2y 4y 2y
2 ZE + & 7E + 2 2 7E + 4 7E + 2 4YZE +8YZE + 4y
2 YZ2s+2%Y YZ24+2Y 2 Y2+2%Y
8 DZE 2 7€ D2H 2 7E B DZE 2 /E
+ A
L3 ¢ 2Y 4y 2Y 4y 2Y
4 Y JE «+ 8Y ZE + 4Y 2VE ¢ & 7E +2 2VE + & 7E .2
2 YZ2+2Y YZ+2Y 2 YyZs+2VY
2B DZE VE DZH 7E B OZE /€
2 &Y 2 2V 2 Ay 2y 4y 2y
Y ZE +2Y JE + Y 2 Y 7E + & Y /E +2Y 2VY7E ¢+ &4 YV/E + 2V
Y2+2%Y 2 Y2+2Y 3 v2 2 3 Y 2
202H Y 7E 28 DZE Y YE DeH Y 2 /E B D2E Y 2 YE
4+ * » -
4y 2Y 4y 2Y 4y 2y [ 2Y
3 ZE + 6 7E +3 3 +6VE +3 6 7E ¢+ 12 7€ +6 6 /E + 12 /E + 6
2 Y2 2 2 Y2 2 Y2 2 2 Y2
0CH 2 7E 8 D2E 2 V€ D2H Y 2 /E B D2E Y 2 /E
4y 2V [ 2Y 4y QY 4V QY
4 7E + 8 7€ +4 4 E + 8 7€ + 4 27E + & 7E +2 2V/E + 4 /E + 2
Yz 2 Y2 ¥ 2
O2H 2 ZE B DZE 2 /€ 02H 2 7E
+ + -
4y 2y Ay 2y 4y 2y

4 Y IE +8YIE +4Y AYE +8YVE +4Y 27E + 4 7E + 2

Figure 2.18 continued
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2 Yz 2 A 4 2 sy 2 2 2Y 2

B DZE 2 7E 28 02 7€ B DZE 7E b4 28 DZE /E Z
- + L T
4y 2Y 2 4y 2 2y 2 4y 2y 4y 2Y
2 7E + & VE +2 Y 7€ +2Y 7€ .Y 7€ + 2 7E +1 7E + 2 /€ + 1
2 2 2 6y 2 2Y 2
B 02ZE 2 2B 02 /E 4 48 D2 /E b4 28 DZE 2
4y 2Y 4y 2y [ 3 2Y 4y 2y
7E + 2 7€ + 1 7€ + 2 7€ + 1 7€ + 2 7E + 1 7€ + 2 /E + 1
2 4y 2 2Y 2
2 B DZE 7€ 4B 02E /E 28 02t
+ + —————-
2 &Y 2 2Y 2 2 &Y 2 Y 2 2 &Y 2 2%Y 2

Y ZE +2Y % + Y Y 7E +2Y /& Y Y 7E +2Y /E + Y

Figure 2.18 continued
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Figures 2.19 and 2.20 with the substitutions of

bL(%) + 4bL bL(%) + 2bL bL(%)
T=-¢e + 2e + e (2.3.46)

TT18 = &Pl 4 202PL 4 3 (2.3.47)

Now G(x,w) in equation 2.3.42 has been found. From equation 2.3.36, we

have

dz. = dz. +yu dz. + 0(u?) (2.3.48)
h ho hl

Using equation 2.3.41 in the above equation, we have

az. = dzZ, + u [G- -f—(z- -ii) az (2.3.49)

h h h ]

o} o

Hence, we have, upon using equations 2.1.19 - 21, and retaining only

0@ ) terms, the spectral relation

S s
ee_ _i_

- 2 “ee _ X X *_ *_
Suh szH.,.ngzSz ~5 {[1-2u7(2- DIF(F -1+ Re [P (F -1)]1} S

i X X * *
+ o {11-2 (2~ D IF (F-1)+2Re[P_F 1} S, (2.3.50)

H

Hh
1]

X X * *
where {[1—2ui(2— i)]FF +21Re[PHF 1}

and e = (11-2E0- HI1E-1 E-D + arelr_F-1)1)
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Figure 2.19 PH(x',m)dZH in Equatibn 2.3.45.
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Figure 2.21 Plot of f in Equation 2.3.50 with y = 0.1.
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the functions f and g are shown in Figures 2.21 - 26 with different
values of u. It can be seen that the value of p does not have much
effect in the higher frequency domain while the change may be noticeable

at low frequencies (compare with Figures 2.5 -~ 2.8 with T' = 0).

2.4 The Laplace Aquifer

The above analyses of the Dupuit aquifer can be expected to proyide
a reasonable representation of relatively shallow aquifers at location
away from the stream. However, for relatively deep anisotropic aquifers
with partially penetrating streams, the assumption of predominantly
horizontal flow becomes inadequate. An analysis of the dynamic effects
of vertical flow will be developed in this section.

The flow in a vertical section of a two dimensional homogeneous

anisotropic phreatic aquifer, as depicted in Figure 2.27 is described by

K + K =0 (2.4.1)

where ¢(x,z,t) is the piezometric head, and Kx and Kz are the principal
components of the hydraulic conductivity tensor whose principal axes co-
incide with x and z. The linearized phreatic surface boundary condition

is

z = n(x,t) =0 (2.4.2)

where n is the effective porosity. It is consistent with this lineari-

zation to apply the condition at z = O as done by Dagan (1964) and Hunt
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Figure 2.27 The Laplace Aquifer
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(1971) in related deterministic problems. The shape of the phreatic
surface n(x,t) is related to the piezometric head through the constant
pressure condition ¢(x,n,t) = n(x,t) and under this linearization it

is consistent to apply this condition at .z = 0, i.e.,
¢(X,0,t) = T](X,t,) (204-3)

The conditions of no flux through impervious boundaries are

2z = - h 3% _ g (2.4,4)
o) 9z

x =1L LI (2.4.5)
X

In addition, at the stream of width 2w we require that

$ =n=20 at z =0, X =W (2.4.6)

which implies that any seepage face at the stream is negligible.

The mean flow condition is found by taking an ensemble average
of equations (2.4.1 - 2.4.6). Explicit solutions [Dagan, 1964, Eq. 14]
have been given for the steady mean flow in the case ho - =, However,
for a stationary random process the fluctuations of ¢, n and e are
also governed by the linear system (2.4.1 - 2.4.6) and the mean flow

is not explicitly involved.
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With ¢, n, € now denoting fluctuations with zero mean, the represen-

tations

¢ = olut 4z, (w,x,2) (2.4.7)

- 00

r r iwt

n = eimt dZn(m,x) = J e dZ¢(w,x,O) (2.4.8)

—00

are introduced along with

e(t) = olut az_(w) - 5(x) iUt az, () (2.4.9)

~—00 00

where §(x) is the Dirac delta function. The last term in equation
2.4.9 represents outflow to the stream which is approximated in the
form of a point sink. Note that this representation of the stream
does not introduce the shape of the stream cross section explicitly.
The shape of the stream is given implicitly by the condition ¢ = O.
Because equipotentials near a sink are circular, the stream boundary
will be practically circular in the transformed (y,z) system or

elliptical in (x,z) when w << L.
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With equations (2.4.7), (2.4.8), and (2.4.9), and the notation

_ _ _ 1/2 1/2
¢ 2dZ (), e = dZ (W), q:= dzq(w), y= KR /K)Tx, n= (K, /KDL,
N = dZn(w) and system (2.4.1 - 2.4.6) becomes
2 2
98 L0 g (2.4.10)
8y2 322
ad
iwnd + Kz 3z = ¢- §(y)qg , z=20 (2.4.11)
d = N, z =0 (2.4.12)
90 _ -
.a_z_ = o’ z = ho (2.4.13)
30 _
3y " 0, y=24 (2.4.14)
6=0, 2=0, y=uw'=wk/K)" (2.4.15)

With symmetry about y = x = 0, the solution of the system equations

(2.4.10 - 2.4.15) will be of the form

ao
<D=-i'—+

[o]

m=] %m COS A_Y cosh Am(z+ho) (2.4.16)

which satisfies (2.4.10), (2.4.13) and (2.4.14) with Xm = mn/%. Using

the Fourier series representation of the delta function
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equation (2.4.11)

(]
]

[\))
It

and from equation

b

8(y) v 5>+ § bcos Ay, b =1/1 (2.4.17)
m=1
requires that
(2¢-q/2) / (iwn) (2.4.18)

. -1
- (q/%) (iwn cosh Amho + KzAm sinh Amho) , m>0

which, with equation (2.4.18), yields

a

g

(2.4.19)
(2.4.15)
a
0 fee]
0 = -+ I a_ cos ) w' cosh A _h (2.4.20)
m m m o
m=1
) 4b£o/Kz
1+ i 2¢0
(2.4.21)

= ¥ cos Aw'(mrtanh A h + i)Y , £ = ntw/K
m=1 m - m o z

The complete solution for ¢ then becomes, from equations (2.4.18),

(2.4.19) and (2.4.

21),
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cosh A_(z+h )cos A _y
dZ, = ¢ 22b = ° =

) (1 + iZgo)Kz

[oc ~ o ] (2.4.22)
m o

z mr sinh A h + if cosh A
m=1 - m a :

The generalized Fourier amplitudes of n are found from equation (2.4.22)

with z = Q, ¢ = dZE and equation (2.4.12) as

. oy
20 /Kz cos kmw ~ cos Ay
1 + 1280 _; mw tanh tho + 1ig

dZn(m,y) = dZe(w)

Thus following equation (2.1.19), the spectral density functions are

related by

S Ksz
-_]l]l——'_—: G(QQX/Ls ho/QaW/L)
S 412
€€
—1 [+ [ * ...1 o= © 2
=r oA Y A =1 [(2 uw) + (Y v)]
m=1 m=1 o =1 m=1

= - E 2 2 2 = i = =
r=1 4g0i + 4E (cr to, ) , ¢ o, + io, » £ Qholz , § = nL /Kxho

cos A w' - cos A y
m m

Am = um + lVm = mm tanh Amho + ig (2.4.23)

The variable § is the equivalent of the dimensionless frequency variable

used for the Dupuit aquifer when n = S and Kxho = T. The sums in equa-
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tion (2.4.23) were evaluated by digital computer; the series are conver-
gent but several hundred terms may be required to obtain accuracy of a

few per cent, especially when w/L is very small. Some typical results of
the numerical evaluation are shown in Figures 2.28 and 2.29. Figure 2.28
shows, in a logarithmic form which is similar to that used in the Dupuit
aquifer presentation, the effects of relative horizontal position in the
aquifer; the trends are similar to those for the Dupuit aquifer. Note

the G is related to the Dupuit aquifer response function, g by G = (Kz/Kx)
(L/ho)2 g/4. In Figure 2.29 the dependent variable y = 4Q(ho/l)2G is used
because this is equivalent to the dependent variable Qg() for the Dupuit
aquifer when T = Kxho and S = n. This form of presentation provides a
direct graphical indication of the importance of different frequencies in
the transfer relationship Shh/see' Because y is proportional to wshh/see

and

-—00 -0

the incremental area under the curves in Figure 4 directly represents the
contribution of a given frequency to the total mean square fluctuation when
the input accretion is represented by white noise (See = constant). Fig-
ure 2.29 illustrates the effects of the additional parameters for the
Laplace aquifer (w/L, holz) in comparison with the Dupuit result. The
response curves for the Laplace aquifer are seen to have shapes quite
similar to the Dupuit aquifer but the amplitudes can differ significantly
depending on the parameters. The trends indicated in Figure 2.29 are

intuitively reasonable; an increase in the stream width (w/L) reduces
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Figure 2.28 Spectral Response of the Laplace Aquifer;
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Figure 2.29 Laplace Aquifer Spectral Response at x/L = 1/2,
where ¢ = 4Q(ho/2)2G and @ = wL?n/ (K h ); Curve
1, ho/z = 0.5, w/L = 0.05; Curve 2, o/% = 0.1,

w/L = 0.003; Curve 3, Bo/L = 0.1, w/L = 0.01;
Curve 4, ho/f = 0.02 and 0.0002, w/L = 0.01;

Curve 5, hgo/2 = 0.1, w/L = 0.05; and Curve 6,
ho/ﬁ = 0.02 and 0.002, w/L = 0.05. The Dashed
Line Represents the Dupuit Aquifer (x/L = 1/2).
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the amplitude of the fluctuations and an increase in the relative thick-
ness of the aquifer (hO/Q) increases the amplitude.

The rather significant differences between the Laplace and Dupuit
aquifers for some values of the parameters may have some bearing on the
applicability of the Dupuit approximation. However, no precise conclu-
sions can be drawn because the boundary conditions for the Laplace aqui-
fer problem, with a partially penetrating stream of finite width, and
the Dupuit aquifer, with a fully penetrating stream, are not exactly
equivalent. Based on previous work on deterministic problems, we would
expect the Laplace and Dupuit aquifers to become equivalent when ho/z << 1.
From numerical solutions of nonlinear Dupuit and Laplace problems, Verma
and Brutsaert (1971) found agreement when the length of the aquifer was
four times its initial saturated thickness even with complete drawdown
at the stream.

A careful analysis of the solution for the Laplace aquifer equation
(2.4.23) in the limit ho/2 + 0 shows that there is a fiﬁite limit for the
function y depending on the parameter w/L. The results in Figure 2.29
reflect this feature for the cases w/L = 0.0l and 0.05. The function ¥
becomes independent of holl when ho/Q < 0.02. It is seen that the Dupuit
aquifer is equivalent to the Laplace aquifer with s/L = 0.0l when ho/Q is
very small.

In general, the results fdr the Laplace aquifer show that nonhydro-
static effects can be quite important in a natural system when the aniso-

tropy Kx/Kz is large and the relative stream width w/L is very small.
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2.5 Spatial Variability of Hydraulic Conductivity

In addition to the temporal fluctuations analyzed in the previous
sections, there will be changes in the characteristics such as hydraulic
conductivity or accretion from point to point within the aquifer. The
analysis of spatial variability is considerably more complicated than
the temporal phenomena because the variability appears in the coeffi-
cients in the equations and because the spatial statistics may not be
homogeneous when influenced by boundary conditions. However, some in-
sight can be developed by analyzing the effects of small spatial per-
turbations in an aquifer system for which spatially homogeneity is as-
sured. Spectral techniques may then be applied in the wave number do-
main to evaluate some statistical features of the flow. The results of
the analysis are applied to evaluate the errors in a flow-observation
system in relation to the spatial variability of hydraulic conductivity.

We analyze the flow in a sloping aquifer governed by equation 2.3.1
and linearize by introducing the following quantities in terms of a mean

and a small perturbation

c=z¢+7z'
e =¢c+¢'
K=K+K'

Neglecting all products of primed quantities, equation 2.3.1 reduces to

_82'_ = _3__ ’_32 _-Ei' *_3_2 1 —Ez ) _ '
s - = ax[l’<hax+1<hax +KZh +h3xK]+s+e (2.5.1)
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and since the mean of the primed quantities is zero, the mean flow is

given by

5 B9y 4T .
o (kh ax) +e=0

The mean flow will be taken as one of constant depth h = ho down an in-
cline of constant slope B(z=Bx), in which case € = 0 is implied. The
flow configuration is depicted in Figure 2.30.

We consider the case of statistically homogeneous steady input per-
turbations which are represented by Fourier-Stieltjes integrals in wave

number k, as follows:

© (<] o«

¢
ot o= | oikX az (®), K' = oLk az (), ' = o1k az_(x) (2.5.2)

-00 =00

:

Similarly, the water level perturbation is represented by

o]

y' = | I az (k) . (2.5.3)

-0

and upon substitution of these expressions, with h' = y' - ¢', into

equation 2.5.1, we obtain the following relationship between the generalized
Fourier amplitudes

ik (h dZ KdZ ) + dZ_ (2.5.4)

dz = o &
y Kh_k?-1kKB

This result can be used to construct the wave number spectrum @yy(k) of the
water level fluctuations in terms of the spectra and cross spectra of the

input perturbations. Because cross-spectral input information is lacking,
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Figure 2.30 Sloping Aquifer with
Spatial Variability
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the behavior of the system will be evaluated in terms of a single input
representing fluctuations of hydraulic conductivity. 1In this case equa-

tion 2.5.4 reduces to

ikhOB
dZ = — dZ

— T = Kn (2.5.5)
Y TK®-1KkK8

K’ o
and following the equivalent of equation 2.1.5 in wave number space,

) )" (k) (
8 (k) = —2>—— o _(k 2.5.6)
yy T2K24(Kp)2 KK

where @KK(k) is the wave number spectrum of the hydraulic conductivity

fluctuations. In order to obtain explicit results &, must be given; for

KK

this analysis we will assume a simple exponential form for the autocovari-
ance

ikE — -lg|/x
e

Ry (8) = E[K' +8)K' (x)] = 2 (k) dk = K'Z e (2.5.7)

--00

where K'2 is the variance of K' and A is the integral scale defined by

A= | (R (E)/R'?) de
0
The integral scale indicates the average distance over which the conduc-

tivity is correlated. The spectrum &, is found from the inverse Fourier

KK

transform -

3 () = %;- e"ikngK(g)dg = AK'2/(1+(k\)2)T (2.5.8)

—00
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and the variance y'2 from

12 _
= R (0
y yy( )

¢ (k)dk
yy &

-—Q0

The integration using equations 2.5.6 and 2.5.8 yields

Y22 = (Z/R2) [x/ ()] (2.5.9)

where r = Bk/hO is the ratio of a length scale for the conductivity fluc-
tuations (A) to a length scale of the aquifer (ho/B). Since the slope of
the phreatic surface is typically small (B = lO_Zto 10-“), this result
indicates that the water level fluctuation relative to the aquifer depth
will generally be much smaller than the relative conductivity fluctuation
unless the integral scale is much larger than the aquifer depth.

Also of interest is autocovariance of y which is found by taking the
Fourier transform of equation 2.5.6

R, (8) = 312 BE/Mo _ L8Ny p (2.5.10)

and the cross covariance of K and y

o0

Rey () = E[K' )y (0] = | ™oy (dk (2.5.11)

where ®Ky is the cross spectrum which is found, using equation 2.5.6 in the

spatial equivalent of equation 2.1.21, as
= -1 24 {KK|
@Ky(k) e (K (=ikh B)/ (Tk“+ikK8)

from equation 2.5.8, is used in equation

This expression for ¢Ky’ with QKK
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2.5.11 to find

- e /2 s £20
ey (8 = K 2P0 = (141, £ 5 0
(2.5.12a)
K'y' = R (0) = = (K'2/K®)Tr/ (1+1),
It can easily be shown that
Rop(6) = E[y" (etO)K' ()] = Ry (5) (2.5.12b)

The various spectral and covariance functions for this system are shown in
Figure 2.3.1 for r = 1/2.

The results of this analysis can be applied to evaluate the error
structure of a simple two piezometer network which is to be used to estim-
ate the amount of flow through an aquifer. Observation wells are used to
measure the water levels vy and Yy at two points a distance L apart as
shown in Figure 2.3.0. In addition, two essentially point observations
of hydraulic conductivity (Kl, KZ) are available (say, from well pumping
tests or cores) at the two wells. An estimate of the flow per unit width

~

of aquifer, Q, is obtained from the Darcy equation in the form

~ K1+K2 hl+h2 Y~ Y,

Q= 2 L

(2.5.13)

and by introducing mean plus perturbation quantities in equation 2.5.13
A=- 1 1 e ' ' P 1oy !
Q = Kh g + Bho(Kl +K,")/2 + Ke(h,"+h,")/2 + Kb _(y,'-y,")/L (2.5.14)

where (;i-;é)/L = 8, Ei =h, = ho’ Ei = Eé = K. The term EhOB is the
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actual flow Q through the aquifer and the difference Q' = Q-Q, when

squared and averaged, yields

—Q'_Z/QZ = (K—'2+K1'K2')/(2E2) [ I conductivity variation]
+ 2(377"Z_T§';T)/(LB)2 [ II surface slope variation]
+ (§72¥§17§;T)/2h20 [iII depth variation]
+ (Kz'yl' - Kl'yz')/(BEL) ]:IV surface §1ope-conductivity]
correlation

+ (2K'y' + Kl'yz' + K2'y1')/(2Eho) [? depth-conductivity correlation]

(2.5.15)

where statistical homogeneity has been used, i.e.,

Klvz = K2'2, yle = y2v2’ yl‘yz' = yz'yl'
The origin of each of the terms in equation 2.5.15 is indicated on the
right. Using the previous results for the covariances of the terms in

equation 2.5.14 can be expressed in terms of K'2/K?. Noting the following

identities

i;'_K—z_' = Ry (1) [equation 2.5.7]

v - R, () [equation 2.5.9]

5’_1—';2_" = Ryy(L) [equation 2.5.10]

Kz'yl' = El_—y'(x+L)K'(x)] = RyK(L) = R-Ky(—L) [equations 2.5.12
aé& B:[

Kl'yz' = E[K'(x+L)y'(x)] = R'Ky(L) anuation 2.5.12{'

K'y' = Ry, (©) [equation 2.5.12a]
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and using the indicated equations, the expression for the relative mean

square error becomes

Q'2/Q2 = (®'2/k2){ (e My /2 [1]
+ (zh_/BL) (A/L) fl-e‘rL’ M r-e M)/ aer2) [T
+ r[1+e—rL/ A e M1/2(1-12) [111]

- @) (T Yy 1 (1-r2) [1v]

- (o)t T e Ay (1-e2) ) [v]

(2.5.16)
where the origin of each of the terms is identified as in equation 2.5.16,
The application of these results is illustrated by considering sev-
eral different values of piezometer spacing in an aquifer with a specified
integral scale of the hydraulic conductivity variations (A = 100ft). The
parameters for the example and the numerical results are given in Table
2.2. Several important features are apparent from these numerical results.
The variance of the estimated flow rate is substantially smaller than the
variance of the hydraulic conductivity. This is because the phreatic sur-
face slope-conductivity correlation (IV) nearly compensates for the vari-
ance of conductivity (I) and phreatic surface slope (II). 1In addition,
counter to ones likely intuition for this case, the error is seen to be
smallest for the smallest well spacing. This is because the compensatory
effect of. . the slope-conductivity correlation is greatest for the smallest

spacing. This analysis does not, of course, consider the limitations of
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Well Spacing L - ft 10 100 1000

Contributions I 0.95 0.68 0.50

to the Relative II 0.95 0.72 0.16

Variance Ratio IIT , 0.02 0.02 0,02

—_— — IV - 1.86 - 1.23 - 0.16
@Q'2/Q%)/ (K"2/K?)

\' - 0.04 - 0.04 - 0,04

Total (Q'2/Q2)/(K'2/K2) 0.02 0.16 0.48

2

Parameters: h = 50ft, B = 100, A = 100ft, r = 2 X 1072

TABLE 2.2 Errors in Flow Estimates for Several
Observation Well Spacings

the device used to measure the water levels; such considerations would
determine the minimum spacing that is appropriate for a specific applica-
tion. If a normal distribution is assumed for Q' EEQ_ETEYEQ is known,
the probability that Q is within a specified range can be estimated from
results of the type in Table 2.2.

Although the simple analysis developed in this section can be used
to evaluate elementary flow observation networks, it is probably more
important in terms of the insight it provides on the general problem of
spatial variability in subsurface flows. It illustrates the importance
of spatial correlation structure. Some other problems that should be
investigated in future studies of this general area are systems with

simultaneous temporal and spatial variability, multi-dimensional spatial
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variability, and the effects of large amplitude fluctuations of hydraulic

conductivity.

2.6 The Unsaturated Zone

The natural temporal variability of groundwater recharge or accre-
tion is a function of precipitation subject to several complicated
moderating influences. The modification occurs at the ground surface
and in the unsaturated zone above the water table. In a simple view of
the rainfall-runoff-infiltration process a certain portion of the pre-
cipitation (P) runs off as overland flow, while the remainder infiltrates
into the soil and/or is subject to evaporation and transpiration. Some
of the water which enters the soil moisture phase of the unsaturated
zone eventually percolates down to the water table. The rate at which
it enters the saturated zone is described by the term accretion (g).

In considering the unsaturated zone we are concerned with this process
of infiltration, evapotranspiration, percolation and, additionally, soil
moisture storage. Because unsaturated soils have a certain portion of
air-filled pores they can store additional water. Similarly, water can
drain from formerly saturated pores to deplete storage and supply ad-
ditional water for evapotranspiration or accretion.

The resulting system can be schematized as in figure 2.32, 1In
this system the net infiltration is I = P - E - R, where E is evapo-

0

transpiration and R0 is the runoff. The net infiltration enters the
soil moisture zone where it is stored and eventually percolates through

to the groundwater as accretion, €. The amount of stored moisture is
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Figure 2.32 Schematic of the Unsaturated Zone

denoted by s. From a mass balance of water the change in storage is

given by
—=1-¢ (2.6.1)
where the accretion outflow to the groundwater will be a function of
stored moisture. Consider the accretipn outflow to be represented by
€ = a'(s—so) (2.6.2)

where a' is an outflow constant and S0 is the minimum moisture storage.
Then the soil moisture storage is represented as a lumped parameter

linear reservoir system, in which the vertical and horizontal spatial
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variability of stored moisture has been neglected.

The total stored moisture is given by

fb
s = J 6dz (2.6.3)

0

where 6 is the moisture content, z is a vertical coordinate (positive
dovnward) and b is the depth from the surface to the water table. The

minimum moisture storage is given by

b

s0 = J ardz
0

where er is, say, field capacity.

The representation of the soil moisture zone as a lumped parameter
linear reservoir can be established by comparing this simple system to
a more complicated spatially distributed system. For example, a common
problem encountered in irrigation is the vertical drainage of a soil
column to a stationary water table. If the soil column is initially
saturated (s = nb = sn) and is then allowed to drain, the total volume
of outflow as a function of time results from the solution of the par-
tial differential equation for Darcy type flow in an unsaturated porous

medium (Bear, 1972)

39 _ 3 Myce) (22 4 20y 28
ot = 37 RO Gy + 59) 55 (2.6.4)
where n=-p/y, ¢ = —(2+n), with initial and boundary conditions
6 =n 6 <z<b t=20
6 = n z=5> t >0
00 _ _
5z - constant z = 0 t>0
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The last boundary condition is a linearized approximation of a no flux
condition, 3¢/3z = 0, z = 0. Retaining only the first term of the series
solution to this problem and integrating over z, the total volume of

outflow from the column as a function of time is (Swartzendruber, 1969)

'CE—) Nt
4._3 t) = 1._ (%) e 2P (2.6.5)

[}

where ¥(t) = s, s(t), ¥ = V(t » »), N = -K(6)(32/306+3n/36)=-K(8)+:32/36 +
D(6), and D(6) is the soil moisture diffusivity. The solution assumes N
to be a constant. This exponential relationship for outflow has a reason-
able experimental basis (Youngs, 1960 and Gardner, 1962) and is also char-
acteristic of the outflow from a linear reservoir.

For the particular soil moisture model of this section, under the

equivalent conditions of drainage

the solution of equations 2.6.1 and 2.6.2 is

-at

(s - so) = (sn— so) e (2.6.6)

The total volume of outflow for the linear reservoir model is ¥ = Sn~ s(t)

at

or ¥ = (s_- so)(l—e_ ). Ast >, ¥>¥ =5 -5 Thus,

0

:_ = (1 - &73Y (2.6.7)
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and the linear reservoir (2.6.7) and distributed soil moisture models
(2.6.5) have equivalent outputs since 32/'rr3 is near unity, where the
outflow constant is given by

' 12N

a' = ng (2.6.8)

Thus a linear reservoir can be used to approximate the storage and
release of moisture in the unsaturated zone.

The amount of net infiltration is givemn by I = P - E - RO’ and if
I, P and E are considered as random stationary processes (the R0 varia-
bility will be neglected) the fluctuation of infiltration about the

mean is given by I' = P' - E', with the spectral relationship

SII(w) = SPP(w) - SPE(w) - SEP(w) + SEE(w) (2.6.9)

An analysis identical to the linear reservoir (see Section 2.2) yields
from equation 2.6.1 and 2.6.2,

= 12 24,12
Sss a SII/(w +a'4) (2.6.10)

if the accretion and soil moisture storage are considered to be station-
ary random processes.

For precipitation input only (SII = SPP) the effect of the unsatura-
ted zone can be studied by examining the square of the amplitude of the
normalized transfer function of precipitation to aquifer response. In

this case (equation 2.2.9 with H = constant)

_ 22,2
shh SEE/(w S%+a%) (2.6.11)
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where S is storativity and a is the linear reservoir constant for the

aquifer. The transfer function is (equations 2.6.10 - 2.6.11)

shh ) a'2
5pp (w252+a?) (w2+a'?)
or, in normalized terms
A2

= m2 2
g = T25,, /125, (2.6.12)

(Q24+82) (22+A2)

where a = BT/L?, Q = Ssz/T, A = (L2N/b2T)BR'S and a' = B'N/b2. For the

linear reservoir aquifer B 3 (see Section 2.7) while for the unsatur-

ated zone B' = m2/4 (equation 2.6.8). Reasonable values of the other

(11

parameters are in the range: L/b 100, N/T = .003, and S = .25, or,
say, A2 = 65.

Relative to its value at @ = 0 the transfer function is
g(@)/g(0)|; = AZ8%/((%+6%) (0%+A?)) (2.6.13)

This is compared to the transfer function for the case which ignores

storage in the unsaturated zone (equation 2.6.1l1 where SPP = See)

g(®)/g(0)|; = 82/(a%+8%) (2.6.14)

in Figure 2.33. There is no significant difference of the response for
the two cases in the lower frequency range. It is only as the dimen-

sionless frequency () approaches a value of 10 that the response of the
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Figure 2.33

Comparison of the Groundwater Linear
Reservoir in Response to Accretion
with and without Storage in the
Unsaturated Zone.
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simple system ignoring the soil moisture storage (gII), deviates. At

= 10 this deviation is only 5% of the response function g(0). Some
of the high frequency fluctuation of the precipitation is filtered out
by the soil moisture storage, which supplies water to the groundwater
table more uniformly than precipitation supplies water to the soil.
This mechanism has been observed deterministically in the field and
laboratory (Freeze and Banner, 1970). Because, however, the deviations
are associated only with low energy, high frequency fluctuations, the
distortion of the input due to the presence of the unsaturated zomne,
can be considered quite small for the range of frequencies of interest
when monthly data are used, as in Chapter 4. If smaller sampling inter-

val is used the distrotion would become more significant.

Although the effect of soil moisture storage can be neglected, it
is important to consider what the effect of evapotranspiration may be
on the accretion input. Evapotranspiration removes water from the sur-
face and upper soil layers that would otherwise infiltrate or produce
runoff. Thus, in the simplest form the net accretion can be expressed

as a fraction of precipitation

e = yP

where the proportionality coefficient is a constant. This is the form
of accretion input from precipitation records that is used in Chapters
3 and 4. More realistic estimates may be based on a deterministic

variation of ¥ with seasonal fluctuations, or perhaps, the spectral

relationship of the net infiltration to E as well as P. Future research

can be directed toward this last suggestion. Since temperature records
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are widely available, assume that the net evapotranspiration can be est-
imated from temperature data alone. For example, the Thornthwaite method
utilizes a power law relationship for estimating E as a function of tem-

perature (Thornthwaite, 1948). In the present case assume that
E=a+ bT

where T is temperature, a stationary random process, and a and b are

constants. Then

= h2
SEE b S'I‘T

and the spectrum for the net infiltration can be found from

= - — + 2
SII SPP bSPT bSTP b STT

In field applications the spectra on the right-hand side can be estimated
from an analysis of evapotranspiration data (b), temperature (STT),
and precipitation (SPP) records (plus SPT’ STP). The net infiltration

(SII) can then be used as an input to the soil moisture-groundwater sys-

tem. This procedure should be investigated in future research.

2.7 Discussion

Earlier in this chapter, we developed several different models to
approximate the spectral response for a phreatic aquifer in the frequency
domain. They are (i) the linear reservoir model, in which no spatial
variation has been considered; (ii) the linearized Dupuit approximation,

in which we have assumed K hO = T, a constant; (iii) the coupled-system
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of the linear reservoir and the Dupuit aquifer, in which we have looked
at the interaction between the said systems; (iv) '"Zone Thickening Effect",
in which we have retained some nonlinear effect by employing a perturba-
tion type solution and (v) the Laplace aquifer which includes the effects
of vertical flow. The linearized Dupuit approximation is probably the
most widely applicable model because it is simple but retains a certain
degree of physical reality.

One would expect that the linear reservoir model is comparable to
the spatial average of the linearized Dupuit aquifer with horizontal bot-

tom. Taking the spatial average of equation 2.3.6, we have

A
=
7
I
Nt
v
i
[0
=

th(x,m) dx (2.7.1)

Then it can be shown that the spectral response of the spatial average

of the aquifer is given by

_ (tanh bL,  tanh bL,* i  tanh bL _ tanh bL.*
Seps<h> = T pn 10 bp 1 St st or M op 1 Sew
i _tanh bL * tanh bL
- WSt pL 1 ! bL ]SHe
1 tanh blL tanh bL *
wZSZ[ e e (2.7.2)

Compared to equation 2.2.9 of the linear reservoir model, we can expect

some kind of equivalence between the two forms of the response function,

a2 and [tanh bL][tanh bL]*
w2S2 + a2 bL bL

i.e., for the input series H, and
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tanh bL _

*
1 and [EEEB—EL —l][———gi——- 1] for the input series e. Taking

w2S2 + a2 bL
a in the form of a = BOT/L where Bo is a numerical constant,
a2 1

= 2.7.3
w?s? + a2 [1+(2/8 )?] @7

and

1 I S N S (2.7.4)

w2S2 + a2 252 1+(Bo/9)2

By employing the least square method, Bo = 2.722 with the sum of squares =
0.00955 for the series H, and BO = 3,021 with the sum of squares = 4.712}(10_4
for the series €. These two comparisons are shown in Figures 2.34 and

235 . These values of Bo can be compared with those by Gelhar (1974) for

a steady state (Bo = 3) and for a falling sinusoidal water table

(B, = m?/4 = 2.467).

The above analysis shows that the linear reservoir model can provide
crude overall estimates for the spectral response of a phreatic aquifer.
The linearized Dupuit approximation is a more realistic model for obvious
reasons. However, in applying the linearized Dupuit approximation, care
has to be taken about the bottom geometry and the degree of nonlinearity.
In particular for the bottom slope, if B satisfied equation 2.3.14, we
have T = constant which is required to use the linearized theory. How-

ever, judging by the figures 2.3 - 2.8, if the value of p is larger than

0.1, the effect of the sloping bottom begins to show.
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Figure 2.34 Comparison of the Linear Reservoir and the Spatial
Average of the Linearized Dupuit Aquifer for the
Input Series H.
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For the ''Zone Thickening Effect", the value of p = €L2/2KH? meas-
ures the degree of nonlinearity of the system due to accretion, and is
also a function of the aquifer parameters. However, for the value of
p up to 0.1, the nonlinear effect is not too important in the low freq-
uencies and is not felt in the high frequencies. The comparisons bet-
ween these effects are shown in figures 2.36 and 2.37 for x/L = 0.5.
They are the forms for the horizontal bottom to be used in the data
analysis later in Chapter 4.

If a surface water reservoir, e.g., a lake or a reservoir, is present,
the coupled-system of the linear reservoir and the Dupuit aquifer can
then be used. Under the assumption that accretion is uniform in space,
the spectral response of a phreatic aquifer is completely determined by
the accretion. Also by knowing the response of the surface water reser-
voir, we can estimate the aquifer response by means of equation 2.3.25.
However, we have to estimate two parameters, namely aLz/a and SL/%,
the ratio of the response time and the ratio of water mass of the two
systems respectively. The combination of these two parameters charac-
terizes the spectral response along the aquifer. For example, in fig-
ure 2.13, the combination of alL?/a = 1 and SL/% = 5 resulted in a spec-
tral response almost uniform along the aquifer.

The analysis of the Laplace aquifer indicates that vertical flow
effects can produce significant differences between the spectral res-
ponse of the Dupuit and Laplace aquifers. As shown in figure 2.29,
even for very shallow aquifers (ho/ﬂ < 0.02), there can be differences

depending on the relative stream width w/L. When w/L = 0.0l and ho/R
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small, the Dupuit and Laplace aquifers are practically equivalent but
for other values there are differences. The Laplace aquifer result will
be more appropriate for many field conditions but its applicability is
limited by our ability to estimate the necessary parameters. The rela-
tive stream width can probably be estimated quite well but ho/i, being
dependent on the anisotropy ratio KX/Kz is not routinely available. It
may be possible to determine Kx/Kz from cross spectral analysis of piezo-
netric levels from two wells of different depth within the same aquifer;
however, feasibility of such a procedure remains to be demonstrated and
in many cases extensive records for wells at different depths will not
be available.

The analysis of spatial variability in Section 2.5 provides some
important initial insight on this complex problem. It was demonstrated
that the variance of the water level fluctuation due to hydraulic con-
ductivity variation is typically much smaller than the variance of hy-
draulic conductivity. For the analysis of the two well flow observa-
tion networks it was shown that the errors in the flow estimate will
be substantially smaller than that indicated by the relative variance
of the hydraulic conductivity, and that the errors are smallest for
closely spaced observation wells (Table 2.2). The error is also much
smaller than that which would be obtained assuming that the variables
are statistically independent in space. In that case the only terms

that will remain in equation 2.5.14 are

Q'Z/Q = K'Z/2K° + 2y'2/(18)% + y'2/2n 2
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This result implies an error which is at least one half of the relative
variance of the hydraulic conductivity. The contribution to the error
by the variance of the water level ;Tgvis seen to increase sharply as
the well spacing L is decreased; this is the opposite of the behavior
found when realistic spatial correlation structure is included. Thus,
it is important to deal with the spatial correlation structure in future
work on spatial variability of subsurface flows.

The analysis of the unsaturated zone indicates that the effects of
moisture storage are minor for low frequencies, and can be neglected for
the range of frequencies of interest when monthly data is used, as in
Chapter 4. A simple proportionality (e = yP) relating accretion to pre-
cipitation is introduced which can be used to determine the net recharge
to the groundwater aquifer. However, more precise means of evaluating
evapotranspiration in order to find the net accretion should be inves-

tigated in future work.
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CHAPTER 3 NONLINEAR SIMULATION OF AQUIFER SPECTRAL RESPONSE

3.1 Physical and Theoretical Basis of Phreatic Aquifers

The Physical Basis

The understanding of the physical groundwater system is not only

helpful in the formulation of mathematical models but is also useful in

the scaling and evaluation of this study. The latter refers to the
physical configuration and dimensions of the system that are important
in the determination of the parameters which appear significant in the
nonlinear effects,

The type of groundwater system té be studied is the phreatic
aquifer shown schematically in Figure 2.2, which can be regarded as a
transformation system with two inputs and one output. The transforma-
tion system is the spatially distributed structure of the saturated
porous medium of which two major physical properties, transmissivity
and storage coefficient, are of interest to this study. The two inputs
are the accretion rate and stream stage. The percolation of water from
the ground surface to the water table is the process of accretion which
may be regarded as another transformation system. Stream stage fluctua-
tion is the rise and fall of water level at the boundary between the
aquifer and the stream. These inputs are complicated hydrologic pro-
cesses and they are spatially and time dependent. In addition, their
occurrences in time and space are random. The output of the system is
the piezometric head in the aquifer (i.e., the water level in a
well). It is characterized as random, spatially and time dependent
because both the inputs and the transformation system have such charac-

teristics. The physical boundaries are the water table, the stream
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stage fluctuation and the impervious boundary at the bottom. For a
finite length of the aquifer, there is the boundary at which no flow of
water is allowed.

Intuitively, it can be seen that the larger the inputs, the larger
is the output as the system is enclosed in the described boundaries.,
Hence one effective measure of the system is the amplitude of response
which forms the major analysis in this study. The other physical char-
acteristic is the delay response time of the output with respect to the
inputs. This is the time for which a disturbance of the phreatic sur-
face travels from one location to the other and hence it could be a mea-
sure of transmissivity of the aquifer system. This will be studied
briefly.

Mathematical Models

Mathematical models are abstractions of complex physical phenomena.

A model should be sufficiently complete in its description so as to
produce useful results, yet simple enough to be manageable. The most
commonly used mathematical equation to describe unsteady, unconfined
groundwater flow is the Dupuit-Forchheimer equation. Its basic assump-
tions are that the flow is essentially horizontal and that the equipo-
tential surfaces are vertical (see Bear, 1972). The assumptions are
implied by the fact that the slope of the phreatic surface is small in

real situations. The validity of these assumptions were discussed by

Murray & Monkmeyer (1973) who found that for steady flow, the free
surface slope must not be greater than 1:10 if results are expected to
be 997 accurate. For the unsteady case, it was found that the equation
describes a rising water table condition more exactly than it does a

falling one.
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The general form of the equation is given by

Sap = VTV + )] +e
where S = storage coefficient
h = thickness of the saturated zone above the impervious base
whose elevation is given by ¢
T = aquifer transmissivity
€ = accretion rate.

This part of the study is restricted to one dimensional horizontal

aquifers, thus reducing the governing equation 2.3.2
sh ) oh
S o7 (1) = o [T(x,t) o (x,0)] + e(x,t) (3.1.1)

For unconfined aquifers the transmissivity is defined as the product of
the hydraulic conductivity, X, and the thickness of the saturated flow

zone, h(x,t), or T = Kh. Hence we have
3h _ 5 sh
S It (x,t) = . [Kh(x,t) ax] + e(x,t) (3.1.2)

This partial differential equation is nonlinear and has been solved
for various boundary conditions in approximate linearized form by analy-
tical techniques (see Glover, 1964; Haushild, 1960; Kriz, 1967; Poluba-
rinova-Kochina, 1962; and Singh, 1969) and in nonlinear form by numeri-
cal methods (see Hornberger et al., 1970; Karadi et al., 1968; Kriz et
al., 1966; and Yeh, 1970) for one and two dimensional, and axisymmetric
geometries. The boundary conditions for this mathematical model are
vertical accretion onto the phreatic surface which is implied in the
equation, stream-aquifer interaction and a groundwater divide-no flow

condition. Mathematically, the last two of these conditions are
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represented as

(a) h(o,t) = H(t)
(3.1.3)
® 2 =0
X x=L
where x = horizontal space coordinate

L = length of aquifer
and, H(t) is the stream stage. The physical system is represented
symbolically in Figure 2.2.

The primary characteristic of this analysis is that the inputs,
accretion and stream stage, are random. Hence the output at the various
locations along the aquifer is also random., A secondary characteristic
is that the effective porosity or storage coefficient (S) and the hy-
draulic conductivity (K) usually are spatially distributed. This charac-
teristic leads to a complex stochastic transformation system. For
simplicity, assumptions are generally made that S and T are constants
and that e is only temporally distributed. This simplification leads
to the well known linearized Dupuit model which is

2
S %% (x,t) = T ?—}2‘ (x,t) + e(t) (3.1.4)

ax
This equation can be solved analytically and it constitutes the basis of
the analytical study. Other forms of the equation, which is nonlinear,
are to be compared with this simple model. They are ;
(a) nonlinear Dupuit model with T = Kh(x,t)
(b) nonlinear Dupuit model with spatially distributed input, e=e(x,t)
The method used to solve the nonlinear equation is a numerical

simulation using an implicit finite difference method discussed later.
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But first, for a better understanding of the behavior of the physical
system, it is useful to develop analytical solutions to the Dupuit
model.

Linear Theory

The objectives of this section are two-fold: first, to understand
the system in its simplest case; and second, to compare the simple analy-
tical models to the finite difference model developed later. The accu-
racy of the nonlinear numerical simulation is based on such comparisons.

The linearized Dupuit model represented in equation 3.1.4 is sub-
ject to the boundary conditions in equation 3.1.3. In order to solve
this equation by numerical simulation it is advantageous to transform

the equation in dimensionless form:

= h
n m
B
nO m
X
& =1 (3.1.5)
N
SL
= _L_Z_ E('C)
P Tm

where m is a typical thickness of the saturated zone. Usually this is
the mean of the fluctuation at stream, or m = H(t). Hence the dimen-

sionless equation becomes

an an
3w - —5 t oe(D) (3.1.6)

X3

subject to the boundary conditions
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n(0,1) = no(T)
g_n _ o (3.1.7)
g £=1

In order to solve this equation explicitly the inputs into the system,
g and p, must be specified. Since these inputs are random in temporal
distribution, they may be best represented by a harmonic function with a
single frequency and amplitude. A variety of functions, which are almost
periodic in nature, can be constructed by the superposition of harmonic
functions with a large range of frequency and amplitude. The almost
periodic function is close to a random function if the frequency inter-
vals, which are used to specify the almost periodic function, approach
zero.
The sinusoidal function is characterized by its amplitude and fre-
quency. The inputs are represented in complex form as
iQ 1
(1) = ay +ae ° (3.1.8)
iQBT
ng(t) = B, + Be (3.1.9)
where ao and BO are the mean of accretion rate and stream fluctuation
respectively; o and B are'the respective amplitudes of fluctuation, and
Qa and QB are the respective dimensionless frequency. The dimensionless

frequency @ is related to the real frequency w as

QAT = wAt (3.1.10)

Hence from equation (3.1.5)

q = SL” (3.1.11)
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By the principle of superposition, the solution to this equation is
simply the sum of the three cases, namely the steady case, accretion
case and the stream interaction case.

(a) Steady case - accretion rate is constant

p=a0,8=0’8=1

Q
(3.1.12)
i 1
nl(E,T) =1+ aOE(l =58
(b) Accretion case - accretion rate varies sinusoidally, i.e.,
iQ T
p(1) = ae o with
ag = 0 and ng = 0
io cosh[Viﬂa 1-28)] iQaT (3.1.13)
HZ(E,T) = 9 [ - 1] e
o cosh ViQa

(¢) Stream interaction case - stream stage varies sinusoidally, i.e.,

iQBT
nO(T) = Re

cosh[/zﬁg-(l -8)] iQBT
ﬂ3(€,T) =B e (3.1.14)
cosh ViQB

Therefore the superposition of the three solutions gives

n(g,t) = ngton, * N, (3.1.15)

It can be seen that the output is sinusoidal with the same frequen-
cy as that of the inputs. The only difference is the change in ampli-
tude and a phase shift. This is the basic response behavior of the
linear system. If the input X(t) is given by

X(t) = Ae T (3.1.16)
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where A = amplitude of fluctuation and the output Y(r) is in the form

Y(r) = AG(gle T (3.1.17)
where G(Q) = gain factor or transfer function, the ratio of Y(7) to

X(T) is

<

() ig
X0 |G| e (3.1.18)

which is the frequency response function. The amplitude respomnse or

amplitude of transfer function is

lc()] = l;g; l (3.1.19)

and its phase response is

Y(1)

6 = arg ‘X(T) (3.1.20)

Using these formulae, we find the response for both the accretion
and stream interaction cases as follows:
Let cosh yg' cos yg' = B

cosh y cos vy =C

sinh yg' sin yg' =D

sinh y sin y = E

where vy = VQQ/Z (Accretion case)

= V¥Q_ /2 (Stream Interaction case) gnd ¢* = 1 -¢f

B > =3
Accretion case:
2 27 1/2
16, ()] = & [@“‘C) + (D-E) ] (3.1.21)
1" Qa CZ + E2
_ _ -1| E(B-C) - C(D-E)
61 = epn(ﬂa) = tan [:E(D—E) T C(-0) (3.1.22)
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Stream interaction case:

2 211/2
G, () = |52, (3.1.23)
: C + E
- -~ tan-l[ BE-DC | (3.1.24)
92 enon(QB) tan [BC T DE_J
2 2
lc. 1, 1e,1%, le,|, 16,] © and © are plotted for the frequency
1 1 2 2 Q"

range from = 0.1 to Q= 100 in Figures 3.1 (a), (b) and 3.2 (a), (b)
and 3.3 respectively. The transfer function and the phase response
function thus obtained is exactly equivalent to those obtained in the
linear spectral theory. (See Chapter 2). The equivalence is due to
the similar form of the input, X(t). In the sinusoidal theory the
input is represented by a single amplitude, whereas in the spectral
theory, it is represented by the superposition of a number of ampli-

tudes in the frequency domain as the Fourier-Stieltjes integral

©o

X(1) = J T az.. (@) (3.1.25)

where dZX = complex amplitude of input. The output Y(71) is similarly
represented as
iQr

Y(1) e sz(Q) (3.1.26)

-00
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The substitution of these equations into the linear Dupuit equation
would hence lead to the same results as from the sinusoidal theory.
The frequency response function is given by dZY/de in the spectral
theory and Y/X in the sinsusoidal theory. The former theory has the
advantage that it deals with a more general random stationary function,
while the latter is of advantage in solving the problem with less
difficulty.

The dimensionless frequency, Q% must be related to the physical
significance of the system. From equation 3.1.11

SL2
I ——

=TT

where Q@ is radians/dimensionless time
w is radians/time unit.
Hence the frequency of input depends on the physical parameters and
dimension of the system. For a typical aquifer with L = 1 mile, S = 0.3,

T = 104 gal/day/ft2 and real time interval as one month we obtain approxi-

mately
-1 .
w = g-Q radians/month
= -l—-ﬂ cycle/month
10w y :
For Q = 100
. 10 ~
w = —;—cycles/month = 3 cycles/month

which is a very high value for the inputs, accretion and stream stage.
At such a high frequency, there is no doubt that noise other than the

characteristic response frequency (e.g., annual cycle of precipitation)

is brought in.
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I
o
=

For Q

= 10én cycle/month = 0.003 cycle/month.

The frequency is very small compared to characteristic frequency
of the system response. Hence thé range from 0=0,1 to Q=100 repre-
sents a fairly large range of aquifer response behavior.

The relatively insensitive response at low frequency, from 0=0,1
to =1, as shown in Figures 3.1 (a),(b) and 3.2 (a),(b) has an obvious
physical significance. At such low frequencies (0.003 cycle/month)
there is virtually no damping effects on the response. One significant
difference between the response amplitude for these cases is that the
stream resgonse is damped out faster than the accretion response, par-
ticularly when the well is farther away from the stream. Also the ac-
cretion response is much the same for all locations at higher frequency
(@2 >50). The amplitude of the response is an important concept in this
study, particularly with respect to the determination of the physical
parameters (S and T) of the system.

The other important mathematical property which has an associated
physical meaning is the phase lag of the response with respect to the
input. This is particularly true for the stream interaction case. The
phase lag represents thé delay of a signal from the response location

to the stream. The delay response time (TD) is related to the phase

lag eXY in a linear system as
6
T X (3.1.27)
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Figure 3.1 (a)

Amplitude of the Transfer Function of the
Aquifer System with Accretion Input
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where X is the input
Y is the output
2 is the dimensionless frequency of the input.

For the stream interaction case, eXY and T, are shown in Figures
3.3 and 3.4 respectively. It can be seen that is takes less time for a
wave to reach a nearer location. Also it takes less time for the
signal to travel to a nearer location. It can be noted that the re-
sponse time is relatively insensitive to frequency changes, particular-
ly when Q ranges from 0.1 to 1. Intuitively, this means that waves at
such low frequency are damped out so slowly that they respond almost
simultaneously as that at the stream. For the accretion case, there is
hardly any phase lag for all locatioms, From the basic assumption of
the Dupuit model, water flow is essentially horizontal, the vertical
recharge onto the system would have insignificant effects. Hence this
is not to be studied in detail.

Summing up, the study of the behavior of this linear groundwater
system is based on its amplitude and phase responses, with particular
emphasis on the former. The evaluation of nonlinear effects is also
based on these physical properties.

Nonlinear Theory for Steady Accretion and Stream Stage

In general it is not possible to solve the nonlinear Dupuit equa-
tion analytically. Steady flow situations are an exception however, and
one such case is examined here. The equation and boundary conditions

are
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an _ 3_ an. 3.1.28)
5r =~ a9 (M3 T Y (
n(0,7) =1 (3.1.29)
on =0 (3.1.30)
og £=1
where g is a constant, and the solution is
n(E) = (1 + 2008 - agi )2 (3.1.31)
whereas the linear solution to this problem is given by
2
%0 (3.1.32)
NE) = 1+ agE + — 1.
Expanding the nonlinear solution in a Taylor series we obtain
2
a.g
- 0 1 2,2 , 3 _ 2
n(€) = (1 + o058 - —2——) - (2008 — )T + 7(2a 8 — apk)
(3.1.33)

We can examine the nonlinear effects and see that when g is small,
the linear solution is close to the nonlinear one. It can also be seen
that for a fixed &, the difference between the two solutions increases
somewhat quadratically as the mean of accretion g increases. For a
fixed %y the difference increases as £ increases. The solutions to
both linear and nonlinear cases are plotted in Figure 3.5 for a0=1. It
is seen that the maximum difference is about 8%. This deviation in-
creases as the horizontal spatial coordinate, x/L increases. In conclu-

sion, 2 is the basic nonlinear parameter in the steady state nonlinear

system.
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A Simple Evaluation of Nonlinearity

Since analytical solutions to the nonlinear equation do not in
general exist, it is difficult to evaluate the nonlinear effects directly.
However, a crude estimate may be based on the linear solution of the
equation by investigating how the nonlinear effects are sensitive to
changes of the input parameters do, BO’ o, B. The mean of accretion,
aq has already been identified in the previous section and BO is fixed
to be one for all cases. The evaluation of a, B and Q is based on the

transient state solutions of both accretion and stream interaction cases.

In the stream interaction case with no accretion, the equation is

an _ 3, (3.1.34)
T

which can be expanded to

an _ (§H§2 + 1 an (3.1.35)
T 3 2
3g
Let n=1+f£ (3.1.36)

and substitute into equation (2.5.2) to obtain

2 2
ot DL, @52, 2E (3.1.37)
3E o0k

The first term on the right hand side is the well known linear Dupuit

equation, i.e.

af _ %
oT 3€2
or, (3.1.38)
32f of
9g
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The two nonlinear terms are investigated using linear solutions of
f. This evaluation is based on the assumption that the true nonlinear
solution has a sinusoidal shape similar to the linear solution, and that
there is sufficiently small phase lag between the two solutions. The
validity of this assumption will be tested in the nonlinear simulation
with sinusoidal inputs.

From the linear solution equation 3.1.13 the ratio of the first

nonlinear term to 3f/931 is

iQ T
5H2 sian’p/AR, 1-9)le ©
R B (3.1.39)
65; cosh [ViﬂB (1-8)] cosh/iﬂB
and for the second term is
2
9 f .
(f-;gf) cosh [(1-£) ViQ ]elQBT
-5 B (3.1.40)
Q;— coshviQ
T B

Clearly, it can be seen both nonlinear terms are proportional to the
amplitude of fluctuation, B. With respect to frequency dependence, the
amplitudes of both terms are computed and are shown in Figure 3.6 and Fi-
gure 3.2(a) respectively for B=1. As it can be seen, the amplitudes of
both nonlinear terms decrease at high frequency particularly when Q > 50.
For a well farther away from the stream, the nonlinear terms decrease
more significantly. Also it may be noticed that the amplitude of the
first nonlinear term, l(af/ag)zl(af/ar)l, as shown in Figure 3.6,
increases at low frequency Q=0.1 to a maximum at about 9=8. From these

results, it may be concluded that for small amplitude, B and higher
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frequency, the linear approximation is a good one.
In the accretion case, the equation is

2 2
§—§»+ p + (%%)2 + f g_é_ (3.1.41)
g ok

af
T

From the solution, equation 2.3.10, the two nonlinear terms become

(Efoz . sinhz/iQ (1-£) iQr
__2%___ - a ] —= (3.1.42)
(5;0 a cosh ViQu (1—g)—cosh¢iﬂa coshViQa
(f QEEO
5 2 cosh(1-g)/iQ i T
_._5%_ -2 A e @ (3.1.43)
Cg; a coshViQa

the amplitudes of which are shown in Figure 3.7 and Figure 3.8 respec-
tively. Similar to the stream interaction case, the two nonlinear terms
are directly proportional to the amplitude, a. However, they are fairly
sensitive to the change in frequency. At lower frequency (£=0.1 to Q=1),
the nonlinear terms remain relatively large, while at higher frequency
they decrease significantly.

In conclusion, the effects of nonlinearity are significant in the
lower range of frequency for the accretion case. By contrast, the
effects are negligibly small for the stream interaction case. Further-
more, the nonlinear effects are directly proportional to the amplitudes

of accretion and stream stage fluctuation.
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Linear Theory with a Spatially Distributed Input

The irregular and random distribution of vegetation on the ground
surface, topography and porous medium properties in the unsaturated zone
above the water table shown schematically in Figure 2.2, constitute
another complicated transformation system. Hence the accretion reaching
the water table can hardly be regarded as spatially uniform in realistic
situatiomns.

The simple linear model discussed earlier is implemented with a

spatially distributed parameter in the input accretion as:

aaei(QT—kg)

p(E,T) = (3.1.44)
where a” = amplitude of spatial fluctuation

k = dimensionless wave number in radians

@ = dimensionless frequency

This equation represents a moving harmonic wave in the horizontal
direction from £=0 to £=1 with frequency & and harmonic number k.
The solution to the linear equation 3.1.6 with boundary conditions

3.1.7 with n, = 0, is found to be

0

n(E,T) = a [cosh/i_n(l-g) o1kE

T k7 + iq
k ik cosh vYiQ

ik  sinhViRt o—ik(1-E)] 1 (Rt~ kE)
/i cosh/iQ

-1 - (3.1.45)

As one can see, for k=0 the solution reduces to the case without

spatially variability (equation 3.1.13). However, the present solution
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has some limitations for the purpose of this study. These include:
(a) The input harmonic wave is moving in one direction
only.
(b) There is no specification of»;he wave number, k.
(c) There is no comparison of the amplitude of spatial
variability of temporal fluctuation to that of spatially

uniform temporal fluctuation.

To overcome these difficulties, the input wave is changed to a

standing wave:

o = %'(a,elﬂr—kg + a,elQT +k£)
(3.1.46)

a‘elQTcos kg

]

Hence the solution can be obtained from equation 2.6.2 by

superposition as

n(g,1) = - —fg;——_ (F - cos k& - Eigéghiigé—-sin k)eigg
kS + i Vi coshviQ
cosh/iQ (1-¢) (3.1.47)

where F =
coshviQ
In order that the mean of accretion remains constant in all cases,
the wave number, k, must satisfy the condition k = 27N where I is an
integer. Hence equation 2.6.4 becomes

-

Q
n(E,1) = - —%— (F - cos kE)e'
k™ + iQ

' (3.1.48)
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Now we may consider the accretion input as being made up of the

following components:

o = o, + aeIQT + a’elQTcos kg
Steady Spatially Spatially
Uniform Variable
Temporal Temporal
Fluctuation Fluctuation

where a mean of accretion

amplitude of the temporal fluctuation

(=
[

amplitude of the spatial fluctuation

Q
I

The unsteady part of the output is therefore given by:

n(g,1) =a[% (F-1) —% (—E—) (F - cos kEE]elm (3.1.49)
k2 + iQ
The transfer function of this system is evaluated by comparing the

output to the spatially uniform input. This is given by:

G = U (3.1.50)
iQT
ae

The square of the amplitude of the transfer function is given by:

IG|2= GG* = (F-1) (F*-1) _ %’{i(F—l) (F* - cos kE)

o2 Q (k2 - i)

+

i(F* - 1) (F - cos kg)} + (

2
gf) (F - cos kg) (F* - cos k&)
Q(k2 + iQ) o

k* + o2
(3.1.51)
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where G* and F* are complex conjugates of G and F respectively.

Two major parameters must be identified in this system. They are
the wave number, k, and the ratio of the amplitudes of the spatially
variable component of accretion to thg»spatially uniform component,
a”/a. The wave number measures the intensity of the spatial variability
of accretion, i.e., the higher k is, the greater is the variability.
However, the total amount of accretion over the aquifer at any time is
identical to the total accretion for the spatially uniform input. On
the other hand, a”/a measures the amount of the change of accretion over
space. It can be regarded as some measure of deviation from the spa-
tially uniform temporal fluctuation. The wave number is similar in
concept to frequency. The maximum wave number, kc’ for a system can be

determined based on the sampling theorem for the frequency domain as

= 2n(=i) = T
k, = 21Gp) = I (3.1.52)

where At is the smallest spatial interval for which there is
significant variability of accretion.

In the numerical model described later or in realistic situations, Ag

can be determined or estimated. Hence the maximum wave number can be

related to the physical properties of the system. The smallest

possible maximum wave number is 2m.

For equation 3.1.51 one can see that the first term on the right
hand side is the solution for the case without spatial variability, and
the other terms are multiplied by the ratio a”/a. For example, Figure
3.9 shows a spatial variability case with k = 27 different values of

a”/o at x/L=0.5. It indicates that the amplitude of the transfer
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function decreases at all frequencies as a”/a increases.

The wave number has little significant contribution to the
difference. For low wave numbers (21 or 47) there is a slight
difference between the cases with and without spatial variability.

But for higher wave numbers, there is virtually no difference. An
example with a”/o = 0.707 and k = 107 is shown in Figure 3.10 for which
the plotted curves are essentially identical to the case with no
spatial variability as in Figure 3.1(b). The higher wave number
indicates higher spatial variability of the system.

The nonlinear Dupuit equation with spatially variable accretion

can be evaluated by the approach given previously. From equation
3.1.4S% the nonlinear terms (gf) and f@ﬁ. depend on a”/a in addition
AE *13

to a. This means that the ratio a”/a is another nonlinear parameter.
It is expected that the effects of nonlinearity will increase as this
parameter increases.

In conclusion, the transfer function in the case with
spatially variable accretion is little different from the case without
the spatial variability. The basic parameter that increases the
deviation is the ratio, a“/a. The wave number, k, is also relatively
unimportant for this comparison. In addition, the effects of
nonlinearity for such a system should be negligibly small for
small o”/o and high k. The simple linear system without spatial
variability of accretion can hence be used to represent a large variety

of cases.
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3.2 The Numerical Model: Deterministic Simulation and Model

Evaluation

Introduction

The objective of this section is to discuss the numerical model
which is used to study the nonlinearity of the Dupuit equation. The
advantage of such a model is that it can be easily implemented in the
stochastic simulation described in the next section and that we can
explore some of the complexities that can not be achieved in the linear
analytical study. On the other hand, it is expensive to solve the pro-
blem numerically and a careful analysis is required in relation to the
accuracy and efficiency of the model. 1In this study a number of cases
in deterministic linear and nonlinear simulation are examined; the
former serves as verification and accuracy test of the program, while
the latter provides some background for nonlinear evaluation in the
stochastic simulation.

The Finite Difference Approximation

Numerical approximations to solutions of the Dupuit equation may be
obtained by the stepwise solution of an associated difference equation.
In this study, an alternating-direction implicit scheme proposed by
Peaceman and Rachford in 1955 is utilized in a revision of the basic
computer program written by Prickett and Lonnquist (1971).

The presentation of the Dupuit equation is in two dimensional form
according to Prickett and Lonnquist.

d5h _ 2 3h 3 dh
Sty = 5o (T3 + 3y (T ay) + e(x,y,t) (3.2.1)

The finite difference approximation to this equation can be obtained in
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two ways, i.e. from the physical viewpoint that the principle of conser-
vation of mass and Darcy's law are observed, or from the mathematical
viewpoint using finite difference approximations for the derivatives for
equation 3.2.1. The physical viewpoint is to be described in this
study. This approach makes use of the finite difference grid illus-
trated in Figure 3.11, The aquifer is subdivided into volumes with area
AxAy. The differential 3x and 9y are approximated by Ax and Ay respec-
tively. The intersection of the grids form nodes which are the discrete
point locations on the aquifer. Flow rates Ql’Qz’Q3’Q4’Q5 and Q6 are
assigned as shown in Figure 3,11. Ql’QZ’Q3 and Q4 represent node to node

water transfer rates. Using Darcy's law

= _ Ay
Q = Tio1,4,2Mi1,57 By,5) Bx

Q, =T (h, .- h y &Y

i,j,271,] i+l,j7 Ax (3.2.2)
- Ax
U7 5,20 5m ™ ) ey
- Ax
U = Ty, 5-1,1P1,57 Pi,5-10 By
where T, . 1= transmissivity between nodes i,j and i,j+1
b b
Ti i 2= transmissivity between nodes i,j and i+1,j
b >
hi j = calculated heads at the end of a time increment measured

from an arbitrary reference level
Q5 is the flow rate associated with the amount of water taken into or
released from storage per unit time increment At.

S AxAy(h, .- ho. .)
= 1,] 1,]
Q5 e (3.2.3)
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where S = storage coefficient
h¢i j = calculated head, at node (i,j) at the end of the previous
5
time increment.
The flow rate Q6 is the accretion at node (i,j)»
= ¢, A = ; (3.2.4)
Q6 El,j xAy where gi,j rate of accretion

Using continuity equations for all flow rates we obtain
= 3.2.5
Q Q3 +Q =0, +Q, +Q ( )
Substituting equations (3.2.2), (3.2.3) and (3.2.4) into this and rear-
ranging the terms we obtain the finite difference form of the differen-

tial equation

T, . h, .~ h, . T, . . .= .)
1—1,J,2( i-1,] 1,3) 4 i,j,2° i+1,] i,j
sz sz
Gl ®gnt h ) Teg1® gt )
Ay2 Ay2
N Sy 57 ey (3.2.6)
E =
i,] At

The solution of this difference equation is by iterative alternating
direct implicit method which involves reducing a large set of simul-
taneous equations down to a number of small sets for a given time incre-
ment. For a more detailed description, see Peaceman and Rachford (1955)
for its theoretical development and Prickett and Lonnquist (1971) for its
modification. The advantages of using this method are the rapid conver-
gence of the solution and its unconditional stability regardless of the

size of the time increment.
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The basic aquifer simulation program by Prickett and Lonnquist (1971)
is adopted throughout this study with some modifications. These include
the following items:

(a) One dimensional case - The equation we study is a one dimen-
sional form instead of two as that in the numerical model. The change
is made by retaining the minimum number of nodes along one direction
(y-axis). In this program the minimum number of y nodes is two.

(b) Number of nodes along the aquifer (x-axis) - The number of
nodes chosen depends on the tradeoff between the accuracy of the model
and the cost involved. In a similar problem, Remson (1971) adopted 21
nodes in the finite difference model. 1In fact, it has been tested in
this program that a choice of 31 nodes does not increase accuracy signi-
ficantly (0.1%), whereas the computer cost increases significantly
(over 20%). Hence, the choice of 21 nodes is considered to be appro-
priate. Given 21 nodes, we have 2(Q divisions, i.e. Ax = 1/2¢0° For
simplicity, the other increment, Ay is made equal to this horizontal
increment.

(c) Boundary conditions ~ From the physical picture of the system,
we see that there are four physical boundaries, i.e. the boundary be-
tween the stream and aquifer, the water table above, the impervious
boundary at the bottom and the vertical impervious boundary at the end
of the aquifer. 1In the difference equation model, the fluctuation of
stream H(t) is represented as

h(i,j) = H(t) for i=1, j=1 and 2 respectively
In addition it must be assured that the water level at this boundary

node does not change due to the flow in the aquifer. This condition can
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be handled in the computer program by assigning relatively large values
of storage factors along the boundary. The storage factor is defined

to be the product of storage coefficient and the unit area of the aqui-
fer. This storage factor is given a value of 108 throughout the numeri-
cal study. The water table boundary condition is implied by the accre-
tion condition which can be easily represented in terms of temporal and
spatial dependent values. The no flow condition at the end of the
aquifer horizontal axis is represented in the model as

hn—l,j = hn+1,j for j=1 and 2 respectively.

(d) Water table conditions - This is the condition for the non-
linear Dupuit model where the transmissivities depend on the aquifer
thickness, i.e. T = Kh. For a linearized Dupuit model, this could be
done by setting all transmissivities to be constant. There are two
major methods to approximate the head, h. They are the geometric mean
and the arithmetic mean methods. The second method is chosen for the
simple reason that we do not know exactly the shape of the water table
which behaves differently under the random boundary conditions. The
arithmetic mean method assigns the transmissivity between two nodes as

the arithmetic average head between the two nodes, i.e.

by gt Piva g
= ) s
Ti,5,2 7 PER 5,0 ¢ 7 )
h, .+ h, .
_ i,] i,j+1
T T PR g ()
where PERMi 3,2 = hydraulic conductivity of aquifer between (i,j) and
b b
(i+1,3)
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PERMi i1 = hydraulic conductivity of aquifer between (i,j) and
> >

(1,3+1).

Model Evaluation

The accuracy of the numerical model is one of the important issues
in this study. Direct mathematical error analysis is not available due
to the complexicity of the boundary conditions and the system. Direct
verification of the results is based on the linearized numerical model
with deterministic sinusoidal inputs, the analytical solutions of which
were already found.

Numerical models of differential equations are subject to two major
types of errors; truncation error and numerical (round-off) error.
Truncation error depends on the size of grid interval (Ax and Ay) to be.
chosen. 1In this numerical scheme, the derivation of the difference
equation is based on the central-difference approximation with transmis-

sivities assigned to the successive nodes as weights, i.e.

T, . h, .~ T, . Ah, - T, . ,h, + T, ., _h, .
9 (T &) = i-1,3,2 i-1,j i-1,j,2 1,j i,j,2 1,3 1,j,2 i+l,]
90X X 2
(Ax)
(3.2.7)
T, . h, ., .- T, . h, .- T, ., ,h, A4 T, . Jh, .
@___ (T ﬂl_) ~ i,j-1,1 1i,j-1 i,j-1,171,j i,j,1 i-1,j i,j,1 i,j+1
) ] 2
o (8y)

(3.2.8)

Hence, the truncation error for such a scheme is in the order of (Ax)2 +
(Ay)z. For a choice of 21 nodes in the model, this error is in the
order of 0.005.

The round-off error is due to the difference between solving the
difference equation exactly and the numerical model by computer. The

condition for stability is the case when this error approaches zero over

142



the whole region of solution. This numerical model, as it has been
pointed out by Peaceman and Rachford (1955), has the advantage of being
unconditionally stable regardless of the size of the time increment.

The total error of the model is made up of the truncation error
and the round-off error. The truncation error is due to the form
selected for the finite difference equation, and is often the larger
part of the total error. However, for a particular model like this with
inputs as exogenous variables feeding into the system, we need a more
direct evaluation of the total error as a function of the parameters of
the inputs. These parameters are the amplitude, mean and frequency.
Using some typical values of these parameters, it is possible to esti-
mate the error of the linear simulation study. Before discussing these
results, it is important to understand the efficiency of this numerical
model. This is a problem of choosing the proper time step, At, which
would lead to rapid solution. 1In general, the smaller the At, the
smaller the number of iterations (see Prickett and Lonnquist, 1971) for
the numerical solution to reach a predetermined error criterion (E).
This error criterion controls the sum of the changes in head during
iterations over the entire model and assures that computed heads have
converged to answers within a specified tolerance. This depends on the
time step of the model.

The frequency of a sinusoidal input function is directly related to
this time step. For a given time step, the higher the frequency, the
less information is obtained due to the discrete time step of the numer-
ical model. To retreive this information it is necessary to reduce the

time step by a proportional amount. The efficiency of the model re-
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quires that the time step is chosen in such a way that the cost of
running the computer model is kept to a minimum. For a number of
initial runs of the model, it was estimated that At is chosen approxi-

mately as

ae =2 for 051 (3.2.9)
For Q<1, At is chosen to be 0.1 in all cases. Henceforth, the error
criterion E can be estimated for a given At used in the model. From
Figures 3.1(a) and 3.2(a) the magnitude of the amplitude response Q<1 is
approximately one. From equation 3,2,9, At is found approximately to

be 0.1. In order that the error criterion, E, be 1% in order of

magnitude, the formula for relating E and At is estimated as

E

It
>
[mJ

10 (3.2.10)
or

1008

As Q increases, this error criterion decreases but correspondingly, the
amplitude of the response function also decreases at an equal or smaller
rate., Hence, in the range of @ from 0.1 to 100, we have error criterion
of 17%.

In the simulation study, it usually takes some time for the solu-
tion to reach quasi-steady state. It was found that it takes four or
five cycles for a sinusoidal input to reach this state. A typical
example is shown in Figure 3.12 which shows simulation results of the
stream interaction case with input frequency equal to 20 and amplitude 1
at location x/L = 0.5. The linear simulation with Inputs at some typi-

cal frequencies and amplitudes and means are compared to the analytical
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Figure 3.12 Linear Simulation versus Linear Theory with Stream

Stage Input nO =1+ B sin Q
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solutions, Other linear simulations show that results do not depend on
the amplitudes and frequency. One simulated result is shown in Figure
3.13(a) and (b) respectively. The results show that the error increases
slightly as a function of the distance away from the stream. Errors are
less than 17 in all of the simulation results. On the other hand, the
mean of accretion has slightly increased the error as shown in Figure 3.14.
However, the results show that all errors are less than 27 which is suf-
ficient for the purpose of this study. In conclusion, the only parameter
that would slightly increase the error of the numerical model is the spa-
tial horizontal distance from the stream. For a range of 4y from 0 to 3

there is sufficiently small error which may be neglected for the purpose

of this study. A listing of the computer program is given in Appendix A.

Nonlinear Simulation with Deterministic Inputs

The objective of this section is to discuss nonlinear simulation
results and their deviations from the linear theory. The nonlinear
numerical model is exactly the same as the linear model discussed pre-
viously, except that the transmissivity at each node of the grid is
assigned varying values with the condition that both models are in dimen-
sionless form (which means the dimensionless head has order of magnitude
of about one). It is reasonable to assume that the numerical error of
the nonlinear model is similar to that of the linear model. Since this
error is sufficiently small, we may further assume that the difference
between the restults of the nonlinear simulation results and those of the

linear theory is primarily due to the nonlinear effects or deviations
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rather than to numerical error. For the steady state case with constant
accretion, there exists analytical solutions for both linear and non-
linear cases (see 2.1 and 3.15) shows the relatively sﬁall numerical
error for the nonlinear simulation and this has a trend similar to the
numerical error of the linear simulation (compare to Figure 3.14). These
results further confirm our assumptions. On the other hand, Figure 3.16
shows significant nonlinear effects for .the steady state case with con-
stant accretion. It is noticed that such deviations increase signific-

antly when o the mean of accretion is greater than 1. This is one of

0’
the major nonlinear parameters in the system.

The nonlinear simulation for the transient state solutions (both
for accretion and stream interaction cases) is tested using simple sinu-
soidal inputs with typical amplitudes and frequencies. The purpose of
these tests is twofold; to understand the general behavior of the non-
linear system and to verify the simple theory developed in section 3.1
regarding the evaluation of the nonlinear terms. The following table
(Table 3.1) and figures (Figures 3.17 - 3.25) show various cases being
tested for the two deterministic inputs:

Accretion case:

o(t) = o, + o sin QaT (3.2.11)

0
Stream interaction case:

nO(T) = BO + B sin QBT (3.2.12)

All these are represented in dimensionless forms. In the stream
interaction case, the mean BO is set to 1; hence the maximum value for

B is equal to 1 in all cases.
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Figure

Stream or

Number Accretion case 0 o

3.17 Stream 0 0.5 0.5

3.18 Stream 0 0.5 10,20,50
3.19 Stream 0 0.2 10,20,50
3.20 Accretion 1 0 0.5

3.21 Accretion 2 0 0.5

3.22 Accretion 0 0 10,50
3.23 Accretion 1 0 10,20,50
3.24 Accretion 1 0 10,20,50
3.25 Accretion 2 0 10,50

Table 3.1 List of Nonlinear Simulations with

Deterministic Sinusoidal Inputs

at x/L = 0.5
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Figure 3.16 Comparison of Nonlinear Simulation versus Linear Theory
for Steady State Constant Accretion Case
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From these graphical results, it can be seen that the nonlinear
solutions have sinusoidal shapes similar to those of the linear solutions.
Hence, it may be concluded that the frequency of the response is quite
close to that of the input. Furthermore, there is hardly any observable
phase lag between the nonlinear and linear solutions. The only major
difference is the upshift or downshift of the mean. These results show
that the assumption in'section 3.1 in the evaluation of nonlinear terms
is reasonable. A number of points can be further confirmed by these
results and are given as follows:

(a) Nonlinear deviations are significant in the range of low frequency in
the case of accretion but are negligibly small in the case of stream
interaction. See Figures 3.20, 3.21 and 3.17.

(b) Nonlinear deviations are approximately the same at higher frequency
in both cases, accretion and stream interaction. In the former case,
the nonlinear results are greater than those of the linear theory,
while they are smaller in the latter case. See Figures 3.18 and 3.23.

(c) Nonlinear deviations are greater when the amplitude of fluctuation
increases in the case of stream interaction. In Figures 3.18 and 3.19
one can see for B=0.2, the percentage of deviation is about 17,
whereas for B=0.5 the percentage of deviation is as much as 5%.

(d) Nonlinear deviations are greater when the amplitude of fluctuation
increases in the case of accretion. In Figures 3.23 and 3.24 one
can see when the amplitude a=1, the percentage of deviation is less
than 5%, but when o0=2 the percentage of deviation is as great as 10%.

(e) Nonlinear deviations are significant when the mean of accretion,

OLO,

increases. In Figures 3.23 and 3.25 one can see the deviation
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increases from 57 at a0=l to 17% at a0=2. In comparing Figures

3.23 to 3.25 one can see that nonlinear deviations are more sig-

nificant when the mean is increased than when the amplitude is

increased.

In conclusion, the study of the nonlinear simulation with
sinusoidal inputs identifies a number of nonlinear parameters that are
important in the later analysis of the stochastic simulation. These
parameters include the mean and amplitude of accretion and the ampli-

tude of stream stage fluctuation. Of these, it seems that the mean

of accretion plays the most significant role.
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Z.3 Nonlinear Simulation of Spectral Response

Introduction

The major objective of this section is to investigate the spectral
behavior of a nonlinear simulation of the stochastic phreatic aquifer
system. The emphasis is on the transfer function rather than the phase
spectrum of the system, since it was previously found that there is very
small phase lag between the linear and nonlinear systems. (See sections
3.1 and 3.2 ) Using the transfer function determined from the simula-
tion, we may make a more direct evaluation of the nonlinear Dupuit model
subject to a given set of input statistical parameters. The simulation
approach also has the advantage of permitting one to investigate models
with further complexities, such as the spatial variability of the
accretion rate or the hydraulic conductivity. In addition, the simula-
tion requires the specification of certain characteristics of the numeri-
cal model. These are related to the physical parameters of the system,
thus helping one to evaluate the effects of nonlinearity.

Characteristics of the Simulation of Spectral Response

A basic feature of the nonlinear simulation is the determination of
the dimensionless time interval, At in the numerical model. At plays an
important role in this study since it reflects both the physical and
statistical aspects of the spectral analysis of the problem. The dimen-
sionless parameters for both linear and nonlinear Dupuit equations are
represented as:

dimensionless time T =-J£— t
SL2
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dimensionless accretion p = %}-e(t)
dimensionless stream stage ng = Hét)

where m is some characteristic aquifer thickness. In the linearized
model, T is a constant; whereas in the nonlinear model T = Kh.

The simulation requires the determination of the time step inter-
val, At. Once this 1is known, the physical parameters, S and T of the
phreatic aquifer are implied and hence the output can be obtained. This
time step interval is given by

AT = *Z§>At (3.3.1)
SL

where At is the real time step interval in days, weeks, months or years.

At first, it seems that the determination of At requires the ex-
plicit physical specification of the system, i.e. we need to know the
physical parameters, S,T,m and L individually. However, At could be
estimated in a more implicit way using the sampling theorem in spectral
analysis. This sampling theorem states that the shortest period that is
theoretically possible to resolve with a given sampling interval, is one
which is twice as large as the sampling interval. The maximum dimension-
less frequency, Qc that can be specified by the sampling interval is
given by (see Bendat & Piersol, 1971)

el = T
Q, =Gyo) 2r = ” (3.3.2)

The determination of the dimensionless maximum frequency requires
a physical understanding of the system. It has been shown previously

(see section 3.2) that the dimensionless frequency, 2, is related to
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the aquifer physical properties by

Q= Cg%i) w
When =100 it represents a typical aquifer system with a frequency of
response of approximately 3 cycleé/month, which is rather high for the
natural frequency of hydrological processes. In this study the maximum
dimensionless frequency, Qc chosen is 100 radians/dimensionless time =
100/27 cycles. Using equation 3.3.2

m ~
At = m = 0.031416

In the nonlinear system, the dimensionless time step, ArN is chosen

to be the same value. Hence we have

ATN = AT

and the frequency is the same for both cases. In other words, the non-
linear and linear systems have the same dimensionless frequency scale.
With such a choice of At, the dimensionless accretion in both systems is
the same. Once the time step interval is determined the other param-
eters of the computer model can be established; e.g. the error criteri-~
on, E, which is given by At/10.

At each time step, input is generated into the model as was done
in the deterministic simulation. The numerical error due to a station-
ary random time series input for the simulation could be regarded as a
function of the mean and variance of the time series. From the non-
linear deterministic simulation it has been shown that this error in-

creases slightly as the mean of dimensionless accretion, o, increases.

0

This implies that the mean of the time series should have a similar
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effect in the stochastic simulation. To show the importance of this

numerical error in the spectral analysis consider the following rough

estimate:
s
Let n- = (1+a)n
s .
where n = numerical output
n = theoretical output
a = numerical error

. s .
The spectral function for n~ is

2
S s s = (1+a)” s

nn m

Since the input accretion spectra is given by Spp,

S s s S

10 - (14a)” SO0
PP pp

S

From the deterministic simulation, the numerical error for the steady

accretion case is about 2% for a, as large as 3. Hence, the numerical
g ’

0

and theoretical transfer functions are related by

S S

S S
DN = 3.04 ——-S””
PP PP

S

This 4% numerical error is sufficiently small for the purpose of this
study.

The output from the simulation program and the input time series
obtained from historical field data or generated synthetic data are
analysed by the BMDO2T program (Biomedical Computer Program—Autoco-
variance and Power Spectral Analysis) (see Dixon, 1973). The main error

arising from this is the estimation of the spectrum. Appendix B con-
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tains an evaluation of the confidence limits for the spectrum. The

variance of the estimate is given by
2

Var[S__(2)] ~ B & (3.3.3)
XX T
where SXX(Q) = theoretical spectrum of ¥
éXX(Q) = estimated spectrum of X
M = number of lags chosen for the spectral analysis
T = total record length.

Hence, a larger number of lags will, in general, produce a better reso-
lution, but with a loss of confidence in the estimates. A reasonable
choice of M is approximately 1/10 or less of the total record length, T.
In this study, the total record length for the historical data with 30
days interval is 405 units and M is chosen to be 36. Since the dimen-
sionless input and output spectra of the system are of the order of 0.1
(the dimensionless aquifer thichness n and the accretion, p or stream
stage n, are approximately of the order 0.1 to 1.0), hence one can see
from equation 3.3.3 that the variance of the estimated spectrum is
approximately 0.0001 and the standard deviation is about 1%. Thus, it
can be concluded in this study that the error due to the numerical model
and that due to the estimation of the spectrum are relatively small.

The basic feature of the numerical model as a transformation
system (i.e. the determination of AT) has been described, the character-
istics of the inputs are now considered. These are the parameters con-
trolling the nonlinearity of the system. The choice of these 'nonlinear’
parameters forms the basis for the comparison of the transfer function

of the simulation and that of the linear theory. In the simple evalua-
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tion of the effects of nonlinearity via the deterministic simulation,
it has been shown that ao, o and B are the basic nonlinear parameters.
The corresponding parameters in the analysis of a random stationary
time series are the mean and standard deviation. To estimate the order
of magnitude of these parameters, we require a certain degree‘of infor-
mation about the physical system in terms of its properties and dimen-
sions. Using the dimensionless accretion expression from the previous
section, we could relate the nonlinear parameters, mean of accretion, o

0

and its amplitude a as given by

- LZ -
g =5 = ¢ (3.3.4)
4
o2~ o = L2 5 025 (3.3.5)
P Km

where 020 denotes the theoretical variance of p.

For a typical aquifer system with length of one mile, hydraulic
conductivity of 104 gal/day/ft, aquifer thickness near stream of 30 ft.
and average monthly precipitation of 3 in., the dimensionless mean of
accretion, p is approximately 4. However, this must be corrected be-
cause not all precipitation is passed onto the water table; some being
used by vegetation on the ground, some being retained in unsaturated
zone above the water table, some being evaporated, etc. Jacob (1943)
proposed that the accretion rate is directly proportional to the preci-
pitation. This proportionality constant depends on the geological
structure of the system and there is no simple way to determine it. 1In

this study, this constant is assumed to be in the range from 107 to 50%.

Hence, in the simulation study, the mean of dimensionless accretion is
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chosen to be from 0.5 to 2 for a typical aquifer system.
From equation 4.2.1, the dimensionless accretion, p, may be written

as

&

- _ 1 -
b =3 € (3.3.6)

>

T

and using equation 4.2.2

ZQC
5 = — e (3.3.7
0 ™ At € )
where € = y?
vy = percent of precipitation going to accretion
P = precipitationm.

One can see that the p is proportional to the maximum frequency in the system.
system, The choice of this frequency, as we have discussed, is based on
the physical parameters and the characteristic frequency of response of
the system. This characteristic frequency of response refers to the fre-
quency due to the hydrological procésses rather than to noise. The choice of
the real time step, At depends on the amount of information we want to
retrieve from the hydrological processes. In this study, the ground-
water system has a relative slow response. In addition, we have a re-
latively long record of time span (about 36 years). Hence, a choice of
30 days or 1 month for each time interval was considered appropriate.

The dimensionless variance of the time series is related to the
dimensionless mean as a ratio Op/ﬁ. From equations 3.3.4 and 3.3.5
this ratio is equal to oe/g, which is fixed in the historical data simu-
lation, but which can be varied in the synthetic data. It is assumed that
this ratio varies from 0.5 to 1.5 in realistic situations. In the stream

interaction case, the dimensionless stream stage, n, is given by

0

165



U H/m

therefore EO = H/m

o

o,./m
no H

ono/n0 = GH/H

The nonlinear parameter would seem to be given by the ratio ono/ﬁo;
however, the stream stage record is based on an arbitrary datum. Thus
the ratio ono = OH/m is more appropriate as a nonlinear parameter than
the ratio GH/ﬁ which is varied by changing the arbitrary value H.

In conclusion, one can see that the mean of the hydrological pro-
cesses discussed above is related more to the physical dimensions and
properties of the system, while the variance is related more to the
statistical properties of the system and together they constitute the

basic nonlinear parameters.

Nonlinear Simulation with Historical Data

The objectives of this section are to evaluate the numerical model
with historical field data for the inputs and to compare the transfer
function thus obtained to that from the linear spectral or sinusoidal
theory.

The field data used throughout this section is a set of records of
gauge height of a nearby stream and the precipitation at the city of
Wichita, Kansas covering the period from January 1938 to September 1971.
A listing of these input data is given at the end of the computer pro-
gram in Appendix A. The geographical location and a more detailed de-

scription is given in Chapter 4. The real time interval, At chosen for
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these 36 years of record is 30 days. The time series of the two inputs,
stream stage and precipitation, is assumed to be stationary and the

sample statistics for the first two moments are given in Table 4.1.

Parameters Sample Mean|Sample,Variance |Sample Standard _

;;;;EE“-~.~_ % sy Deviation sy sy /X

Precipitation | 2.557 in. 5.411 in.z 2.33 in. 0.9112
2

Stream Stage 2.739 ft. 5.426 ft. 2.34 ft. 0.85431

Table 3.2 Sample Statistics of KansaS Data

Single Input Case~-

In this simulation study the aquifer thickness at the stream, m is
needed to specify the complete description of the dimensionless stream
stage. From communications with the U.S. Geological Survey Office in Kamsas,
this characteristic thickness at that particular location was estimated
to be about 25 ft. This estimate is used to normalize the stream fluc-
tuation and accretion.

Before going to the detailed study of the nonlinear simulation, it
is worthwhile to look at a comparison to the linear simulation in one
case. The rationale behind this is to show the accuracy of the spectral
estimation and to identify the effects of nonlinearity, rather than the
numerical error. This is shown in Figure 3.26, in which the linear
theory, linear simulation and nonlinear simulation are compared in the
stream interaction case. It is seen that the linear simulation results
show close approximation to the linear theory, particularly in the range

of higher frequency. For the nonlinear simulation, the amplitude is
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above both the linear theory and linear simulation. Since there is no
significant difference between the linear simulation and theory, we can
compare the linear theory to nonlinear simulation directly.

In the nonlinear simulation study, the major nonlinear parameter is
5, which is associated with the perturbation parameter, u, characterizing

nonlinearity found in Chapter 2. Their relationship is given by

p = 2u
o
The dimensionless mean can be varied but the ratio :g— remain
p

constant for the historical data simulation, and be equal to the
value given in Table 3.2. Table 3.3 lists some nonlinear simulation

results over a range of different parameters.

In the accretion case (Figures 3.27 - 3.28) the simulation
results show the amplitude of transfer function in the lower portion
of the frequency range and is sensitive to changes of the mean of
dimensionless accretion, 5 (or the perturbation parameter, u).

As B or u increases, the amplitude of the transfer function in
the lower frequency drops. 3But, for o being less than 0.5, the
nonlinear simulation results are close to the linear spectral theory.
It may also be noticed that the effects of nonlinearity increase as
the distance away from the stream increases. At relatively high
frequency (2 > 10) the simulation results are quite close to the
linear spectral theory regardless of the values of p. Some of these
results are in close agreement with the deterministic simulation

(see Section 3.3), and the nonlinear perturbation analysis of Chapter 2.
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Table 3.3

List of Nonlinear

Simulation

Parameters for the Single Input System

Dimensionless |Perturbation| Ratio of | Sample [Accretion

Figure Accretion Parameter Sample s.d} s.d. or
- to mean Stream

Number o) U Sp/S Sno Case
3.27 0.4589 0.22945 0.9112 - Accretion
3.28 1.2785 0.63925 0.9112 - Accretion
3.29 2 1.0 0.9112 - Accretion
3.30 4 2.0 0.9112 - Accretion
3.31 - - - 0.0468 Stream
3.32 - - - 0.0936 Stream
3.33 - - - 0.1872 Stream

1790
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It is noticed that at very high frequency (% > 60) there is some
deviation of the simulation from that of the linear theory. This
is probably due to errors in the numerical simulation and the estimation
of the spectrum.

In the stream interaction case, the nonlinear parameter sno or SH/m
is relatively insensitive to the effects of nonlinearity. Three cases
have been tested with sn approximately equal to 0.05, 0.1 and 0.2,

o

respectively, The second case represents the dimensionless standard
deviation for the Kansas case. The first and third cases represent
the same data multiplied to produce standard deviations above and below
this value. It is seen that the spectral amplitude increases at all
frequencies as the amplitude of the input fluctuation increases. From
these simulation results, it seems that nonlinear effects may be more
significant when s, or SH/m is greater than 0.2. In this case,

o
it means either the aquifer thickness at the stream is relatively
small or the variance of the stream fluctuation is very large. The
combination of the statistical property, Sy and the physical
characteristic, m of the sgystem determines the magnitude of this non-
linear parameter. In realistic situations s, has a relatively small

H

range, say s, "~ 2 to 5 ft., compared to the characteristic saturated
thickness of the aquifer, m, which would be the more important

determining importance of nonlinearity.

For the single input case involving stream stage fluctuation, the
nonlinear effects can be evaluated by comparing the transmissivities

of both nonlinear and linear systems. Since the porous medium of the
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system is homogeneous it is reasonable to assume that the delay
response time (See section 3.1)1’D is inversely one location to the
other. (See Chapter 14, Eagleson, 1970). Hence the ratio of

transmissivities in nonlinear and linear cases are given by

L
N
TL TDN
where L. indicates linear

N indicates nonlinear

The linear and nonlinear simulation of the delay response at x/L = 0.5
are pletted in Figure 3.34 for the case where the dimensionless stream
stage sample standard deviation, sn , is about 0.1 The results show
the linear transmissivity is 5% to iOZ lower than the nonlinear
transmissivity. At other locations it has been found this ratio is
approximately the same. It is expected that this deviation increases as
s increases. This approach is applied only to the stream interaction

o
case because it is assumed in this model that the flow in the aquifer

is essentially horizontal. In the accretion case, the vertical recharge

there are only small phase effects in the horizontal direction.

Dual Input Case -

In this system, both stream stage and accretion are wsed as
inputs for the numerical model. For a linear system, the output of the
dual system ié simply the superposition of the two outputs due to

each input system., i.e.,
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Y =Y +Y (3.3.8)

where Y = dual output

<!
<
n

10 Yo outputs of single input system

In this study, Y, represents the output due to the accretion input

1

and Y2 represents the output due to the stream stage input. Their

respective transfer functions were found (See section 3.1) to be

- 1 (F-1) 3.3.9
¢y a ( )
G, = F (3.3.10)

cosh vViQ(1-£)
cosh /ig

where F =

The dual spectral output can be easily obtained by assuming the
dual system consists of two lumped parameter systems. The result
obtained will be the same as that from the distributed parameter

system.

From equation 4.3.1 we obtain the dual spectral output S as

YY

Syv = S S S S (3.3.11)
YY YlYl + Y2Y2 + Yle + Y2Y1

Then, using the following relationships (See Chapter 10,
Papoulis, 1965).
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SYlYl - eyl SX1X1
SY2Y2 = IGZIZszxz (3.3.11)
sYle = Gl*stxlx2
Svv, = Gl*Gszle
in equation 4.3.4, we obtain
Syy = |G1|25xlxl + !Gllzsxzxz + G1G2*sx1x2
6 %65, o (3.3.12)

271

and cospectrum, Co

The quadspectrum, Q for the two inputs Xl

X1X2 X1X2
and X2 are related to the cross spectrum, SX X and SX x. as
12 271
S = Co + 1iQ
X1X2 X2X1 X2Xl (3.3.13)
S = Co - 1iQ
X2Xl X2X1 X2X1

Using equations 3.3.11 and 3.3.13 substituted into 3.3.12 we obtain the

spectral dual output in dimensionless form with

n.= Y, p = Xl and n, = X2
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as
(F-1) (F*-1)
2 5 ,(®) + FFs ()

Q P oo

8o (2:8) =

1 i
—-5[2FF* - (F+F*)]anoO(Q) + a{F—F*) Conop(Q)

The transfer functions Gl and G2 for the dual input system can be

found (See Chapter 4 or Bendat and Piersol, 1971, Chapter 5) as:

SX X SX Y
172 72
S,y 1 =3 S ]
1 X2X2 XlY
G1 = 5 (3.3.15)
S [1 -~ ]
X% %%
SX X SX Y
271 71
Syy P o5 o]
2 X, X, XY
G = 171 72
2 Sx < (1 Y2x < ] (3.3.16)
272 172
where 72 = coherence square function between inputs X, and X, .
X1X2 1 2

However, for the nonlinear Dupuit equation, the superposition
principle no longer holds. Hence, the theory developed so far is not

completely applicable. 1In the Dupuit equation
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on _ 3 .

5t g (N3 te

with the dual input system = + n, we obtain

]

_a_r_].];+31g.=i.(nl.a.r_].l‘.+nza_n_%+n23n_l)+p
oT 3T 9T 13 g 9g
(3.3.17)
With the single input system we obtain
on an
1 _ 3 m L
3T or (Lag) e
oT o1 3E
Adding these two equations we have
an an
Ly 2 _ 2 (°n on 3.3.18
st T3t T 3¢ (”1———%1 + ”2——352) +oe (3.3.18)

Clearly Y # Y, + Y
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In fact, it is seen that

(3.3.19)

2)

Y =
Yl + Y2 + f(YlY

In this nonlinear simulation of the dual input system, we use
two methods to evaluate the effects of nonlinearity. The first
method computes spectral dual output Snn in equation 4.,3.6 or 4.3.8
based on Gl and G2 from linear theory and compares to Snn obtained
directly from the nonlinear simulation. The second method compares
transfer functions Gl and G2 obtained from linear theory (equations
3,3.9 and 3.3.10 to those computed from the nonlinear simulation
results based on equations 3.3.15 and 3.3.16 which were derived via
superposition principle. If the transfer functions for the dual
system are close to the linear theory, the function f(Y1 Y2) would
be negligibly small. On the other hand, if f(Y1 Y2) increases, the
comparison between the linear theoretical transfer functions and the
nonlinear transfer functions further identifies the nonlinear effects
of the system. In general, it is seen from equation 3.3.19 that
nonlinearity increases as the product of the amplitudes of the two
single outputs increase. These products are proportional to those of
the inputs. Hence, the basic nonlinear paramecters of the dual input
system are functions of the products of the amplitudes and means of
the inputs.

Table 3.4 lists a number of typical cases of the nonlinear

simulation for the dual system using both methods mentioned:
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Table 3.4 List of Nonlinear Simulation Parameters

for the Dual Input System

Dimensionless

Figure Basis for Accretion Mean Location
Number Comparison o x/L

3.35 Sy (Bd. 3.3.14) 1.0 0.25, 0.50, 1.0
3.36 S, (Eq. 3.3.14) 1.0 0.50

3.37 Sy (Ed. 3.3.14) 2.0 0.50

3.38 |c1|2 (Eq. 3.3.15) 0.50 0.50

3.39 |c1|2 (Eq. 3.3.15) 2.0 0.50

3.40 lcll2 (Eq. 3.3.15) 1.0 0.25, 0.50, 1.0
3.41 16212 (Eq. 3.3.16) 0.50 0.50

3.62 | le,l? (Eq. 3.3.16) 2.0 0.50

3.43 | |6,|® (Eq. 3.3.16) 1.0 0.25, 0.50, 1.0
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The nonlinear parameter, s is fixed in all cases in the
o

simulation of the dual input system, It is chosen to be about 0.1 in
accordance with the information frém the Kansas data. The rationale
for this is based on the stream case, for which the effects of

nonlinearity are relatively insensitive to changes of this parameter,

From Figure 3.35, it may be seen that nonlinear effects increase
as the spatial coordinate x/L increases. This has a similar trend to
that found for both the steady and transient deterministic cases
(See section 3.2). Thus, the‘amount of nonlinearity is a function of the
spatial parameter x/L. In addition, the mean of dimensionless accretion,
p has significant nonlinear effects on the dual input system as in the
single input system. The nonlinear deviation increases as this
parameter increases. This is particularly significant in the low
frequency range for which the nonlinear output spectrum, Snn falls
below the linear one. (Compare Figures 3.27 and 3.37)

The graphical results of Figures 3.38 - 3.43 show the second
method of analysis which computes the transfer function as in the case
of a dual input lumped linear system. These simulation results show
close agreement witﬁ the single input systems and they are quite close
to the linear theory for small p and S * In the accretion case, the
amplitude spectrum decreases slightly as0 E increases. (Compare
Figures 3.38, 3.39 and 3.40). It is observed that the dual input
system has slightly larger deviation in the lower frequency than the
single input system (compare Figures 3.40 and 3.28) ,This is probably

due to the interaction between the stream and accretion fluctuation in
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the system. Mathematically this has been shown in equations 3.3.14
and 3.3.19 to be due to the product of the input amplitudes. In the
stream interaction case, there is little significant difference as 0
increases. The only difference is that there is greater fluctuation
of the amplitude of the function about a certain average value as 0
increases. This is probably due tb errors of the estimation of the
spectrum. Though this fluctuation is quite large, the transfer
function from the linear theory fits rather smoothly about the

mean of these fluctuations.

In conclusion, the linear theory is a good approximation to the
nonlinear Dupuit equation in both single and dual input systems.
Nonlinear effects play a more important role in the lower frequency
as the mean of dimensionless accretion, p increases. In the stream
case, the nonlinear effects are relatively small. From the study of
the dual input system, it seems that the accretion plays a more
important role than the stream stage.

In addition, the two methods show that the nonlinear effects are
generally negligible. In particular, the second method based on the
transfer function from the dual lumped system shows that the assumption
that the superposition of the two single outputs from the dual output is
quite reasonable., The validity of this assumption further confirms that
in the analysis of field data, the transfer function for each single

input system can be evaluated by this method.
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Neonlinear Simulation with Synthetic Data

The previous section discusses the results of the ngenlinear

simulation using historical data from a particular location as input.

This certainly has some limitations for a study with a more general

framework. The objective of this section is to overcome these limita-

tions by using generated synthetic Input data, The following are some

of the advantages:

(a)

(b)

More information about the transfer function in the lower fre-
quency range. For the historical data there is a fixed total
record length of 405 units; with the number of lags used being set
to 36. The resolution length is the dimensionless frequency in-
terval, AQ = 100 = 2;78. Therefore the spectrum in the frequency
range below 936= 2,78 cannot be evaluated. The number of lags is
generally chosen as approximately 1/10 or less of the total record
length. In order to improve the frequency resolution it is inad-
visable to increase this number since the variance of the esti-
mated spectrum would be increased. (See equation 3.3.3). But by
using synthetic input data, we could increase the total record
length, and hence, we could obtain information in a lower fre-
quency range.

Flexibility by varying the distribution and correlation properties
of the input time series. In the historical data the major sta-
tistical property which may be varied is the mean of accretion,

but not the variance which is fixed for a given set of data.

Synthetic data can be generated with different typical variances
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for investigating the more complete system. In addition, correla-

tion properties may he introduced to the system in order to study

possible effects on nonlinearity,
(¢) Investigation of spatial variability of accretian,

Synthetic data enables us to ekplore a more complex model; i.e.
accretion input with both temporal and spatial variability,

The generation of synthetic data for a hydrological process re~
quires a physical understanding of the problem and the analysis of the
available historical data. In this study the synthetic time series is
considered to be stationary and random; This random time series,

X(¢) may be considered to consist of two components, the deterministic
D(tr) and the stochastic S(t), i.e.

X(t) = D(t) + s(1) (3.3.20)
The deterministic component accounts for the trend of the hydrological
process, while the stochastic component accounts for the many unknown
variables in the process. One particular characteristic of the trend
of the process is the periodicity of the system. For a stationary
process, the mean of both D(f) and S(t) is a constant., The determin-
istic component can be generated from a sinusoidal process, while the
stochastic component is generated from some kind of random process for
which we need to specify probability distribution properties. In
other words, we must know the type of distribution and its mean, vari-

ance and autocorrelation.

The two inputs, accretion and stream stage, are first analyzed

using the historical data. This 1s done in order to find out the dis-
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tribution properties and sample statistics of these two time series.
The input data were tested on log-normal probability paper (See
Figures 3.44 and 3.45 and it was found the precipitation is approxi-
mately log-normally distributed. The mean and variance of precipita-
tion and stream stage were already given in the previous section.
Their autocorrelation functions are shown in Figures 3.46 and 3.47,
respectively., It is observed that in Both correlograms, particularly
in the case of precipitation; the correlation function drops down
significantly to approximately zero after one lag. This means there
is very little correlation between the time records for intervals more
than one lag unit (30 days). With such a property the process can be
regarded as an independent one. Furthermore, the correlogram of pre-
cipitation shows that the process has an annual periodic component.

In this study synthetic accretion input is generated as it plays
a more important role than stream stage in nonlinearity. The syn-
thetic time series is of the form:

p(t) = A cosQt + e(r) ' (3.3.21)
where the sinusoidal term denotes the deterministic periodic component
and the second term is a random processgenerated. from an independent
normally distributed process with sample mean e and sample variance sez.
The normal distribution is used instead of log-normal distribution
simply for the sake of convenience. Furthermore, this serves as a test
for an input with a different type of distribution.

From equation 3.3.21 the dimensionless accretion mean and its

variance are given by
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(3.3.22)
o 2 _ A2 + g 2
5 e

in which it is assumed that the deterministic and stochastic processes
are independent., Table 3.5 lists the nonlinear simulation parameters

for three cases with different variances.

Figure | Mean of s. d. of Mean of Amplitude of Dim.
Number |Stochastic | Stochastic | Dimensionless| Deterministic | frequency
Component | Component _ Component
e .8 . ) . A Q
e : :
3.48 1 0.5 1 0.2 16
3.49 1 1.5 1 0.2 16
3.50 2 3.0 2 0.2 16
Table 3.5 List of Nonlinear Simulation Parameters

for the Accretion Input System wit
Synthetic Data »

The number of synthetic data generated in the first and third
cases is 550 units and the number of lags is 50, while in the second
case, the number of input time records is 1000 and the number of lags
is 100. Clearly, there is no limit to the amount of data we can
generate, but it becomes extremely costly. From Figures 3,48 - 3.50
it appears that the results are similar to those obtained from the
historical data. In the historical data; we have a fixed dimensionless
sample standard deviation, sp of approiimately 1. It is observed
(compare Figures 3.48 and 3.49) that there is a relatively small increase of

nonlinearity when the standard deviation of the input increases from
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Accretion Input, p = 2,0 and s, = 3.0
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0.5 to 1.5. The nonlinearity occurs in the range of lower frequency
for which output amplitude decreaseé'as sP increases. There is some
significant changes when the standard deviation increases to 3 (com-
pare Figures 3.50 and 3.29). In realistic situations, a standard
deviation of 3 for accretion, at a particular location.over'a signifi~
cantly long record, is consideréd to be rare., Hence it can be con-
cluded that the wvariance has a relatively small nonlinear effect on
the groundwater system, |

So far, precipitation records have been used to represent the
accretion rate in order to facilitate the spectral analysis ﬁsing field
data input and output time records. In reality, precipitation and
accretion differ not oniy in magnitude but also in spatial and temporal
distributions due to the complicated processes occuring as water infil-
trates into the ground and passes through the soil moisture zone. The
two main topics to be considered in the simulation study will be the
temporal and spatial distributions of the input accretion.

It has been shown in Figure 3.46 that the historical precipitation
records have relatively uncorrelated temporal structure. We now incor-
porate into the synthetic accretion time series an arbitrary temporal
correlation and study the behaviour of the transfer function of such a
system. The time series is constructed in such a way that it depends
‘on the accretion during the previous time steps. The intensity of de-

pendence on the past is chosen by weights, w The synthetic time

it

series is represented in a discrete manner in the numerical model as

p(Ti) = A cos QTi + w.e (ri - i) (3.3.23)

L
i=0
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where

™
=
pli
fun

and 0<w, <1

€¢ is generated from a normal distributed process as done previously.

From equation 3.3.24 the mean and variance of the time series are found

to be
P = e
Opz - %E . ? wiZ Géz + iji 2 wiwj Rij (3.3.24)
1=0

where i # j

Rij = autocovariance of e between the ith

and jth time step

ce2 = theoretical variance of e

Since n .
S

we have

Upz = %E_’+ Qéz + iji 2 W (Rij - cez)

One can see if there is strong correlation of the process between any

two time steps, and if the weights, w, are relatively high, the con~
. . . 2 .

tribution to the dimensionless accretion variance, ap would be high.

Two cases are studied and are given in Table 3.6.
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Figure Dimensionless Sample Amplitude of Dimension~- | Weights|
Number Accretion Standard Deterministic less
Mean Deviation Component Frequency
p se A Q LA
3.51 1 Q.5 0 - Yo~
W1= L]
w,=0.
3.52 1 0.5 0.2 16 wy=0.4
w1=0.3
w2=0.3
Table 3.6 List of Nonlinear Simulation Parameters for

the Synthetic Accretion System with Temporal
Correlation

It is seen that the correlational structure of the input time

series has slightly greater nonlinear effects than the one without

correlation
occur in the range of lower frequency such that the amplitude of

transfer function is lower.

(compare Figure 3.51 with 3.48).

The nonlinear effects

One explanation of this is that for a

correlated time series the total variance (sum of variance and auto-

covariance as in equation 3.3.24 has larger value than that of the

uncorrelated one.

The interaction of covariance of the input series

is further affected when the input is passed through the transformation

system which also has a correlation structure.

In other words the

output time series has a correlation structure even if the input is

white noise,.

series’

structure.

Another observation that may be made from

The intensity of correlation will depend on the input

Figures 3.51 and 3.52 is that there are some large fluctuations at
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high frequencies (@ > 50). At such high frequencies, the nonlinear
simulation results show an amplitude of transfer function that is
substantially higher than that of the linear theory. There are

several possible sources of these effects including numerical error,
aliasing error and the temporal correlation structure of the system.
From the historical data analysis, and from the synthetic data analysis
with no temporal correlation, we can see that these fluctuations do not
exist at higher frequencies. Since the parameters used in these
temporal correlation cases (compare Tables 3.5 and 3.6) are similar,

it seems that numerical or aliasing error may not contribute to these
fluctuations. Intuitively, this may be interpreted to mean that cor-
related accretion at high frequencies leads to a fluctuating system
response, due to the interactions between the correlation of the input
series and the transformation system.

Spatial as well as temporal distribution of accretion is of vital
practical importance in this study. Four possible cases are considered.
First, it is assumed that the spatial distribution is fixed for all
time and is generated from a random normal process with a given mean
and variance. Second, it is assumed that this spatial distribution
varies randomly with time and has a mean equal to the uniform temporal
fluctuation. Third and fourth, an arbitrary spatial correlation
structure is incorporated in the above two cases. This structure is
similar to that of the temporal structure, i.e. the spatial distribution
depends on the weights Wy given by the previous spatial coordinates

starting from x/L =0 to 1. Hence the input accretion time series is
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proportional to
n
I w,.e (i - k)
k=1
where n = number of horizontal spatial nodes in
which there is dependence
i = number denotes the spatial horizontal

coordinate

The following table lists the four cases.

Figure Type of Spatial Weights Dimensionless
Number Spatial Correlation Accretion Mean
Distribution Structure Yk p
3.53 Fixed Uncorrelated 2
3,54 |Time variablé Uncorrelated 2
. : ) wy = 0.4, wy= 0,3
3.55 Fixed Correlated wg = 0.2, wy= 0.1 2
. . . wy = 0.4, wy= 0.3
3.56 |Time variable Correlated w3 = 0.2, wy= 0.1 2

Table 3.7 List of Nonlinear Simulation Parameters for the

Accretion Input System with Spatial Distribution

The temporal distribution of these four cases is the same as that
of the historical data. The fixed spatial distribution is generated
from a normal process with mean of 1 and standard deviation of 0.5
as shown in Figure 3.57. The linear theory for a spatially distributed
accretion input developed in section 3.1 may be used for comparision to
the nonlinear simulation results. There are two basic parameters to

be chosen in order for comparision. These are the wave number, k
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and the ratio of the amplitude of spatial fluctuation to that of the
temporal fluctuation, a”/a. The choice of k depends on the intensity
of the spatial fluctuation as shown in Figure 3.57. In this figure

it can be estimated that the value of k is in the range from 81 to
10m. The comparison is based on the assumption that the spatial fluc-
tuation is of the form of a sinusoidal wave a”/a cos ki. The variance
of this sinusoidal process, O.S(a’/a)z, and the sample variance of the
normal process from the simulation is equivalent as

52 = O.S(_a’/a)2

S a’ja = V2 s
Also in this case, s = 0.5, hence a”/a = 0.707. An example of the
square of the amplitude of the transfer function with k = 10w and
a”/o = 0.707 has already been shown in Figure 3.10. There is virtually
no difference from the case without spatial variability. The non-
linear simulation results for a fixed spatial distribution (see
Figures 3.53 and 3.55 are somewhat different from those of the
linear theory. Firstly, the amplitude of the transfer function is
lower for all frequencies. This effect is observed in the linear
theory for a spatially distributed accretion input (see Figure 3.9)
but is not as significant as in the nonlinear system. Secondly, it is
observed that the simulation results show a rather strong local
- spatial effect. In this example, it is seen that the amplitude drops
down significantly at x/L = 1, below amplitudes for other locations
at higher frequencies (£>30). This is due to the particular spatial
structure of the system (see Figure 3.57 which shows that the sam-

ple mean is lower than 1 and the spatial
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distribution intensity at x/L = 1 is substantially smaller than at
other locations). This effect is not predicted in the linear theory.
On the other hand, the cases with a time variable spatial distribution
compare more closely with the linear theory. (See Figure 3.54 and
3.56). This seems reasonable as the random distribution has a mean
which is equal to that of the uniform temporal distribution. The
cases with spatial correlation for this system indicate little dif-
ference from the cases without correlation. The more significant
difference is in the range of higher frequencies.

In the investigation of the two cases - fixed and time variable
spatial structure -~ the former is probably more typical of field
conditions because variations in accretion will be associated with
soil conditions and vegetation. The time variable spatial structure
relates to recharge variations associated with variable precipitation
patterns and is useful in the initial investigation of this study.

In conclusion, the transfer function obtained from the spatially
variable accretion input system is little different from the case where
there is no spatial variability. This agrees closely with the linear
theory for a spatially distributed input developed earlier. However,
it seems that an extreme intensity of the spatial distribution at a
particular location may have significant effects on the spectral
response for higher frequencies at that location. The implications
of these local effects require further investigation.

In this synthetic time series study, we see that the variance

is relatively unimportant to the nonlinear effects. Also, the spatial
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parameter, x/L may play an important role when the spatially dis-
tributed accretion input is subject to extreme local variations,

The simulation model can be further investigated with additienal
complexities. The most interesting items would be‘the incorporation
of the spatial variability of hydraulic conductivity and the two
dimensional spatial representation of the system. These can be
easily implemented using the numerical model;;but it would be expensive,
especially the latter case. It is expected that in the case of
spatial variability of hydraulic conductivity the behaviour of the
transfer function may be more sensitive to changes of input parameters
than in the case of spatial variability of accretion. In the two
dimensional representation, some insight could be gained with regard

to the two dimensional spatial distribution properties of the system.
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3.4 Summary

In this study of the nonlinear simulation of the phreatic aquifer
system, a finite difference model is regarded as a transformation
system and the input time series are either obtained from historical
field data or generated from synthetic data. Emphasis has been on
the comparision of the tranéfer function of the nonlinear system,
obtained from the spectral analysis of the simulation results, to the
transfer function from the linear theory.

The linear theory for the Dupuit model is first developed and a
simple evaluation of nonlinearity is discussed with emphasis on deter-
ministic sinusoidal inputs. Then the numerical model is introduced
and tested for a number of simple cases with sinusoidal inputs, It is
found that the numerical error is sufficiently small and that the
simple evaluation of nonlinearity is quite reasonable. This further
confirms the identification of the parameters that control nonlinearity
in the deterministic system. In the stochastic system, these parameters
are correspondingly the mean, variance and autocovariance of the input
stationary time series. This investigation leads to important physical
and statistical interpretations of the phreatic aquifer system. The
dimensionless mean is related to the physical dimensions and properties
of the system, while the variance and autocovariance relate to the
distribution properties of the input hydrological processes. The
combination of these parameters leads to the evaluation of the nonlinear

system.
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The mean of dimensionless accretion is found to be the major cause
of all nonlinear effects. This effect is significant in the range of
lower frequency at which the amplitude of the transfer function for
the nonlinear system is smaller, and this deviation increases as the
dimensionless mean increases. In realistic situations, the dimension-
less mean is found to be in the rénge from 0.1 to 2 and the nonlinear
simulation results show relatively small deviation from the linear
theory. Also, it is found that the deviation slightly increases
as the spatial parameter - distance away from the stream - increases.

For a given system with fixed physical dimensions and properties,
the probability distribution properties of the stream stage and accre-
tion fluctuations are the more important determining factors of non-
linearity. It is found that the standard deviation of dimensionless
accretion has similar effects on the amplitude of the transfer function
as that of the dimensionless mean, but is less significant in the
range from 0.5 to 1.5. Significant differences occur when the standard
deviation is as high as 3, which is rare for a hydrological process
with a long record. In the case of stream interaction, the standard
deviation of dimensionless stream stage fluctuation is relatively
unimportant in the range from 0.05 to 0.2, which can represent a good
number of cases in realistic situations.

For the accretion input with both temporal and spatial distribution,
it is found that there are negligible spatial effects. However, it
seems that the extreme spatial distribution intensity at one location

may have a significant effect on the spectral response for higher
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frequencies at that particular location. Further investigation is
required to identify the nonlinear effects of such a system.

The overall study of the stochastic groundwater systems is an
exploratory investigation using spectral analysis to evaluate aquifer
parameters with available data., The results of this portion of the
study substantiate the reliébility of the overall spectral simulation,
This is because the transfer function obtained from inputs which
have been passed through the numerical model and the spectral estima-
tion process, shows excellent agreement with the linear theory. This
simulation study further confirms that the linearized Dupuit model is
a good approximation of the nonlinear model for typical aquifer phys-
ical dimensions and ﬁarameters, and input probability distribution prop-
erties. Future possible investigations, such as the spatial variabil-
ity of hydraulic conductivity and the two dimensional spatial represen-
tation, can be easily implemented into the numerical model and should

give additional insight into the system.
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Chapter 4 DATA ANALYSIS AND PARAMETER EVALUATION

4.1 General Review of Spectral Analysis for Lumped Parameter Linear

Systems

Single-input Linear Systems. A system is said to be a single-

variable system if and only if it has only one input and one output,

and if the input and output can be related by the convolution integral,

constant parameter

x(t) linear system y(t)
g(t), 6w

Figure 4.1 Single-input Linear System

namely,

y(t) = g(t)x(t-1) dt (4.1.1)

00
For example, a first order linear system can be described by
C édELt) +y(t) = x(t) (4.1.2)
where C is called the time constant, It has to be assumed that the
system is initially relaxed at t < -», That is to say the output is

excited solely and uniquely by the input applied thereafter.

The Convolution Theorem., The most useful relation between the

Fourier transform and the convolution integral is the convolution
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theorem. Taking the Fourier transform of the convolution integral as

given by equation 4.1.1, we have

[+

y(t) = g(T)x(tur) dt 4.1.3)

=00

Y(w) = [ ) y(t) e 19t 4¢
- J e g()x(t~1) e Tt g7 g¢
- [,: —: g(t) e T (rar) 72T 4 e
- {: g(t) e o7 :x(t—r; e 10t 4¢ 4r
- [:g(r) e T X(w) dt
Y(w) = G(w) X(w) (4.1.4)

where Y(w), G(w) and X(w) are the Fourier transforms of y(t), g(t) and
x(t), respectively. Thus, the Fourier transform of the convolution of

two functions is the product of their transforms.
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Spectral Relationships for Single-input Linear Systems. Taking the

product of y(t) and y(t+t) as given in equation 4.1.3, we have

v

y(BO)y(t+t) = | |g(m)x(t-n)g(E)x(t+1~-&)dn dE (4.1.5)
00
The expectation of equation 4.1.5 gives the relation between the covari-
ance functions of the input and output series in the time domain;

-]

ne () = | g g(&ug(t+n-g) dn dg (4.1.6)
.y
Similarly, taking the expectation of the product of x(t) and y(t+t1), we

have, in time domain,

8

E[x(t)y(t+t)] = E[ g(Mx(t)x(t+t-n)dn]

Hxy (1) = g(Muy (t-n) dn @%.1.7)
Using the convolution theorem, equations 2.1.8 and 2.1.23, equations
4.1.6 and 4.1.7 can be transformed into the frequency domain having the

following relations:

2
SYY(\w) |G(w) | Sy ) % .1.8)

Syy (W) G(w) Sxx(‘“) “.1.9)
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Equation 4.1.8 shows the relation between the input and output spectra
and is a real function, while equation 4.1.9 shows the relation between
the input spectrum and the cross-spectrum of both input and output

series. Note that 'G(w)l is the gain factor or the amplitude of the

transfer function. If SXX(m), SYY(N) and SXX(M) are estimated by gxx(g),

A

SYY(w) and SXY(w) respectively, this gain factor, [G(w)| is equivalent

to equation 2.1.26, and equations 4.1.8 and 4.1.9 become

S, = Jew |? s, (4.1.10)

SXY(w) G(w) Sx(w) (4.1.11)

Multiple-input Linear Systems and their Spectral Relationships. In

direct generalization of equation 4.1.1, series y(t), g(t) and x(t-t)

can be thought of as vectors. Thus, we have

yi(t) = gi('r)xi(t-'r) dt i=1,++-+,n (4.1.12)

-0

If the inputs, {xi(t), i=1,"""",n}, are all mutually independent,

equations 4.1.8, 4.1.9, 4.1.10 and 4.1.11 can simply be generalized
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{Xi(t)}

:>gi('f) s Gi (U))

DO o

Figure 4.2 Multiple~Inputs Linear System.

respectively to:

n

IGi(w)I2 sx ()
1

Gi(w) sX_(w)
1

16, @)]? 5y W

G, () éx ()

Iy, (£)}

(4.1.13)

4.1.14)

(4.1.15)

(4.1.16)

Owing to the linearity of the system, the spectrum of the final output,

Y(t), can be found by simply summing over i, i.e.



n
s, = I ]6@]% s, W (4.1.17)

i=1 i

For mutually correlated inputs, the auto-correlation function uY(T) can

be computed as follows:

n n

Ely(e)y(e+1)] = E[ I y,(8) I,
1=1 i=1

]

g (1) (t+1) ]

n n Y
E[Z I g, (n)x, (t=-n)g, (8)x, (t+t~=E)dn dE]
i=1 j=1 [ J o 3

00 'l

a n o (o]
I I g. (Mg, (& (t+n-g)dn dg 4 .1.18)
i=1 j=1 [ [ i XXy

w007 mulO

By multiplying equation 4.1,18 by lw(n=8) 1w(n-g)

= 1 and taking the
Fourler transform, the relationship between the input series and the

output y(t) can then be found as,

SY(w) = J [ gi(n)gj(€)ux‘x.(r+n-£)
1 i%j

1
=]

i=1j

B

QO ~00 —C0

e—iw(n-E)eiMOT-ae-indndEdT

Im [m J gi(n)gi(i)uX X (t+n-&)
1 i™j

e—lwnelwge—iw(r+n-£)

[ e I =]

n
3
i=1 j

dnd&dt
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n n . ® . .
S(w = £ £ | g,(me™an| g, (&)™ u, o (t4n-8)
Y 11 3=1 i 1 XX,
e-im(r+n—£)dT
(w) = I T G,(w)G,(w)s (w) (4.1.19)
Y 1=1 3=1 T 3R

In similar fashion, the cross-correlation function can be computed as:

n
u (t) = E[x, (t)y(t+1)] = E[x,(t) I g, (Mx, (t+1t-n)dn]
XY i i 4=1 3 3
n .
= I u (t-n) g,(n) dn (4.1.20)
=1 ] %% J

=00

By taking the Fourier transform of equation 4.1,20, the relations

between the cross-spectra and the input spectra can be shown as

n ® .
Sy ¢(T) = I g, (nu (t-n)e  “Tdndr
X,Y jo1 { 3R
> ~iw ~iw(t-n)
= I g, (me " Hy g (T-n)e ORI dndr
=1 J 3
n .
(W= I G,(w) S (w) (4.1.21)
%, ¥ i1 1 x g,
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Note that equations 4.1.19 and 4.1.21 are reducible to equations 4.1.13

and 4.1.14 if S (w) =0, for 1 # j, i.e., X, and X, are mutually
XX, i 5

independent. Note also that the property of cross-spectra,

*
gxixj(g) = sxjxi(w) (4.1.22)

Again, SY(w), S (w), SXY(w) and S (w) in equations 4.1.19 and

Xin ’Xin A .
4.1.20 are estimated, in practical computations, by SY(w), SX X (w),
. ~ 15
SX Y(w)and S (w), respectively. For a special case of two correlated

i Xin
inputs, Xl(t) and Xz(t), equation 4.1,19 gives,

X(w) +

2 *
Sy (w) = |6, ()]s, « (W) + G, (w)G, (w)S
Y l 1 XlX1 1 2 X1 2

* / 2
G, ()6, (w)Sy Xfw) + |G2(w)l szxéw) (4.1.23)

2

and equation 4.1.21 gives,

SX Y(w) = Gl(w)SX X(w) + Gz(w)SX X(w)

1 171 172
(4.1.24)
S, (W) = G (w)S, ,(w) + G, (w)S, (w)
X,Y 1 X, X; 2 X,X,

229



| Sex® S g @
s, (@) S
Gyw) = | sXZY tw) SXZXZZ:;
XX, XX,
sxle(w) szxz(w)
and
Sxx(® Sx, ¥
S (w) s, ,(w)
Gy () = szzzl @) Szi tw)
1% 1%2
@ Sxx, @)

After expanding equations 4.1.25 and 4.1,26,

leY(w)(l—

S (w) S
XlXZ

2

x. v

Sy @ Sy @

272

Gl(w) =

S (w) (1~
X%

and

S (w)s, o (w)
XZXl X X

172

)
S (w)s (w)
xlxl X, X

230

272

(4.1.25)

(4.1.26)

(4.1.27)



Sy x. (@) Sy y()

2°1 1
S (w) (1~ )
XY S (w) Sy (w)
, 2 X, X, X,Y
Gz(w) = (4.1.28)
Sy 5 (@) Sy o (W)
Sy ¢ (@) (- SX2X1 o lexz(w))
242 X1X1 X,X,

*

Note that S (w) =S
X2X1 X1X2

the denominator of equations 4.1.27 and 4.1.28,

(w), therefore by using equation 2.1.24, in

Sy v (w) S (w)

v M iy
S ) s W XX
X, X, X,X, 1*2

(w) (4.1.29)
Note that equation 4.1.23 has a form identical to the linearized Dupuit
aquifer model, equation 2.3.9, and this makes it possible to apply

these results in the data analysis.

4.2 Numerical Procedure of Spectral Estimation

In order to use the relationships outlined in the previous section
4.1, we have to estimate the power spectra of the input and the output
series as well as the cross-spectra between each of the input and the
output series, i.e., éXiY’ and the cross~spectra between the input

series, i.e., S from equi-spaced time series data of limited

Xin’

length. First of all, these series of data are standardized by sub-
tracting the mean and dividing by the standard deviation of the respec~

tive series. The autocovariances can then be computed as
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n-p
D 1 = * 0 0
Rxx(pAt) = o z xkxk+P p=0,1,2,3, km (4.2.1)

k=1
where n = number of discrete data points taken at constant time interval
of At and km = maximum number of lags. Then the raw estimate of the

power spectrum can be obtained by discrete cosine transform.

’ _ 2t fm hpn
gxx(wh) == pfﬁ ap RXX(pAt) cos P (4.2.2)
h = 0’1,ooo,km
1 Opeky
where a =1
P 1
7 POk,
_ _hm
and wh = X At
m

These raw estimates of the power spectrum are then smoothed by the fol-

lowing "hamming" window,

~ n, ’\;
Sx(® = .54 S, (0) + .46 S (wy)
R n n n
SXX(wh) = .23 SXX(mhvl) + .54 SXX(wh) + .23 SXX(wh+l) “%.2.3)
o N '\.,
Syg () ) = 54 S (w, ) + .46 5 (0 1)
m m m

The smoothed estimates of the power spectrum can be checked for accu-

racy with allowable truncation errors, by the following equality,
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k -1
i

~ 1.0 - m
"Ry, (0) = —— [ 5(S4,(0)+S, (w, )) + Syp(w )1  (4.2.4)
XX k At © 27XX XXk hep XX h

Similar procedures can be used in computing the cross-spectra. The

cross—-covariance is computed by the formula

. 1 B7P
RXY(PAt) 'n__:i; k-._z-:]_ xkyk-!-p P=Osl92a Tt akm

(4.2.5)

n-p

Ry (-put)

E’__p"ki:l Xk-l-pyk P=Osla2:”'akm
Then taking the discrete cosine and sine transforms of equation 4.2.5,
we have the raw estimates of the co-spectrunm, COXY’ and quadrature

spectrum, QXY’ respectively.

k
v _ At m A S hE'ﬂ'
CoXY(wh) —’;—-pio aP[RXY(pAt)+RXY(—pAt)]cos(km )
N km (4.2.6)
- At R R (=~ hpm
Qey () =~ I ap[lgw(pAtHRXY( PAt) Isin (i)
P=0 m
h = 0,1,2,3," " k_
1 <k
where a = { n
P 1
5 on’km
hm
and mh % At
m

These raw estimates are again smoothed by the "hamming" window as given
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in equation 4.2.3 to be CoXY(wh) and QXY(mh). Now we have the cross-

spectrum of X and Y, namely
Sy (W) = Cogylwy) + L Qy (0} (4.2.7)

Then the gain factor or the amplitude of the transfer function can be

computed as

2 2
Jeoky o 4% (w,)
leCuy)] = RS (4.2.8)
XX*h
and the phase shift of series Y with respect to series X is
-1 Q)
eXY(wh) = tan W (4.2.9)

Finally, the coherence square, between series X and Y, is given as

Goz (o) + Q2 (uy)

2
Yoo (W ) = (4.2.10)
Xt hT T S G By (w)
Due to availability and convenience, BMD T-series programs, from the

Health Science Computing Facility, UCLA, have been used, in particular,

the program BMDO2T.

4.3 Estimation of Aquifer Parameters

Fleld Description. Through the U.S. Geological Survey, District

Office at Lawrence, Kansas, we were able to obtain a relatively complete

set of records of groundwater table fluctuations, gage height of the
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nearby stream and the monthly precipitation at the city of Wichita,
Kansas. The groundwater table fluctuations have been recorded since
1937 around the well fileld of the city of Wichita by means of observa-
tion wells. The well field is located mainly between the Arkansas River
and the Little Arkansas River approximately 20 miles northwest of the
city of Wichita. This well field is developed in alluvial material known as
Equus beds in south-central Kansas. The water-bearing materials consist
of unconsolidated deposits of sand, gravel, silt and clay of Pleistocene
age. The hydraulic gradient of the water table in the well field is
toward the Little Arkansas River, and some water is being discharged
into it, although most of the water moving across the well field is in-
tercepted by pumping. The primary source of water for recharge to the
well field is local precipitation. The geology and hydrology of this
area had been studied extensively by Williams and Loﬁman (1949). For
more detailed information of this area, readers are referred to the
Bulletin No. 79, State Geological Survey of Kansas, 1949, Well no. 12
(no. 557 in Bulletin 79) and well no. 812 (no. 558 in Bulletin 79) have
been chosen, in the following data amalysis, on the grounds of the
length of records, being from January 1938 to September 1971, and
February 1937 to December 1962, respectively, and consistency of re-
cording intervals. As reported by Williams and Lohman (1949), the
average transmissivity of this area is of the order of lO4 ftz/day and,
from a field test at well no, 12, the specific yield or storage coeffi-
cient is 0.33. (Table 7, Bulletin 79, USGS, 1949). There was no report
at well no. 812. A map showing the relative location of well no. 12

and no. 812 is reproduced in Figure 4.3.
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Figure 4.3 Map of Wichita Well Field (reproduced from Bulletin 119,

State Geological Survey of Kansas, 1956)
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Estimation of Aquifer Parameters. From the set of records ob-

tained from the U.S. Geolegical Survey we can estimate the power spectra,
cross~spectra and the gain factor or the amplitude of the transfer
functions. The results are shown in_Tables 4.1 and 4.2, Data is ex-~
tracted at approximately 30 day intervals. Hence, we have 405 points
for well no. 12 and 288 points for well no. 812. The time series are
shown in Figures 4.4 and 4.5. The spectral calculations were made using

36 lags. The power spectra of the time series are shown in Figures 4.6

and 4.7 with the corresponding 95% confidence intervals. The transfer func-

tions and spectra are related, for the case of independent inputs by equa-

tion 4.1.11, namely

N

SXY =G SX | (4.1.11)

where |G|2 is the square of the amplitude of the transfer function; and

for the case of correlated inputs, by equation 4.1.23, namely,

s, = |e.|%s +G.Go8 + GG, S + le,|%s
Y 1 x.x, 2K X, © TI27XX) 2! "x,X,

(4.1.23)

where G, and G, are given by equations 4,1,27 and 4.1.28. In both cases,

Y is referred to as the output and Xi are the inputs. The values of
2 2 2
165175 Iyl 1!

4,8-4.11, respectively, for well no. 12, and in Figures 4.12-4.15 re-

s |G and |G2|2 versus frequency are plotted in Figures

spectively, for well no. 812.

Consider the horizontal bottom case of the linearized Dupuit Approx-

imation., From equation 2.3.9, we have
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8¢¢C

FRECUENCY

C.C

C.Ul4
C.C28
C.C42
CeC5¢E
L.C6G
c.C82
0.097
Celll
C.125
Cel39
C.153
C.l67
C.181
Ce 194
C.208
Ce222
0e236
0250
C.264
C.278
Ce.292
Ge3Ce
(.319
C.3133
03417
Je 361
Ge315
C.386
C.403
0.417
0.431
Teb44
C.458
CebT2
Oe.48¢
Ge5C0

PCWER SPECTRAL ESTIMATES
(CYCLES/ MONTH) CF

SERIES 1

Ce4616737
C.40CCT7S7
Ce2504€45
042214662
C.1647226
1.00265¢€C
2.0223532
0.58351%4
0.214448C
0.2025C25
C.1556762
0.2378010
G.231C1€7
0.1298041
0.1842¢04
Ue26€34E5
0.2188570
C.20430¢€2
02296384

" 0.1922260

12 elevation).

C.2175%24
0.232€224

0.1975353

0.25783%4
0.2502195
Ue 1914€€GC
C.1685728
Ue1933311
Ce22224%E
0.24751C3
0.21836¢¢
0.181C817C
0.17669220
U.21181729
C.245C€4C
042150671
C.2178ECS

PCWER SPECTRAL ESTIMATES
OF SERIES 2

l.7€6C€18
1.075251¢
Cea7CCEES
0+345641¢
0.2733956
C.4243¢S41
0e5964¢€174
0.41753¢€5
G.20816¢¢
0.27754¢€1
0.2285¢€15
C.1841C7¢
0.208532¢
Ce2l18ECC
0.229CS¢17
0.28317€5
0.26182ES
0.3369848
C.2514216
0.1547222
J.2183325
0.25C2117¢
Ue225165¢
0.1837316
Cel92772C
0.2193381
C.2C4l16C
0.1E1623¢
0.2101920
Ce247216C
Ue2956141
Ce2315451
0.27159¢25
0.324434¢
Ue224C425
C.2786E¢%¢
0.2635271

Table 4.1 Spectral Results for Well No. 12 (l=precipitation,

PCWER SPECTRAL ESTINMATES
OF SERIES 3

6.27188¢€2
4.0993355
l1.4CB8€522
0.5118627
Ue293114¢
0e.3C€E56€2
0.34671758
C.2C756¢4
0.1272C72
G.lul4alCa
C.C€7EG4S
0.C64CCEC
Le0532¢€C6
CeC421i12
0.05347¢€3
CeC4G74¢51
C.C323CT7C
Vel0342543
0.Cc22187C
0.0221518
Ue.G324012 -
0.032439¢1
G.C235781
CeC26L17E7
CeC2535¢5
U.02818(C
CoCl3€CE7
QeU1138582
Jo.C1311C3
G.C125C41
U.C122€C5
0.C155184
C.Cl1C8S1
0.0127715
CeC2274Z¢
0.C2382¢€4
OeClET€1C

=stream stage, and 3=well no.



6€7

FREQUENCY
(CYCLES/ MCNTH)

0.0

0.Cl4
c.028
C.C42
0.056
0.C69
g.C82
Ce.CS7
O.111
0.125
0.129
g.153
0.167
C.181
G.1¢4
g.2C8
C.222
0.23¢
0.25C
0.2¢€4
0.2178
Ce262
0.30¢
0.319
C.333
0.347
C.361
C.3175
0.389
Ce.4(C3
O.4117
0.421
Qo444
0e45€
Ce.412
0.48¢
Ce5CC

CG—-SFECTRUM

CF

SERIES 1 ANC

C.5492625
C.425¢€815
0.2929254
C.2050447
C.163C0177
C.4975184
C.£724203
C.415397¢
C.C912592
C.C4522523
G.0277922
C.C111751¢C
C.C453719
C.0410284
C.C31414C
0.C1€65044
-C.C184029
-C.C55305¢
-C.C655931
-C.C151332
G.Cl10108
-C.0168735
~C.C49781¢€
-C.C571551¢C

-C.C60142C

-C.C819513
-C.0805233
-G.C74185¢
-C.1261737¢
-0.09596€3
-CeC74628¢
-G.C829571
-C.12C82C¢
-0.133182¢
-6.1406332
-C.C947788
~C.C630650

2

SERIES

Table 4.1

QUACRATURE SPECTRLM

OF

0.0190047
C.C4CS466
0.0€23251
0.C5€8162
0.CE148CC
0.0516860
-0.0%765C2
0.01433¢€5
0.126852¢
0.1715483
6.1387198
0.1152524
C.1413517
C.1CEBT44
0.15€65433
C.2C€533¢
0.1244329
C.1468871
0.1148209
€.0498227
0.1243101
0.1777741
C.1211966
C.CSECSEL
0.C€93154
C.0€25255
0.C856179
0.0£674989
C.C%30410
C.0€86592
C.0€24296
C.C16C047
-0.0154884
C.CCl12722
0.C79C018
0.0520430
C.01207C7

1 AND 2

continued

CC~SFECTRUM

CF

SERIES 1 ANC

-1.327282C
-C.E722C2¢8
—Ce32176955
~C.12747197
-0.0614405
-C.22C481%
~0.440266C
-Cez2CS5115
-0.0219914
-C.00261751
-0.0055512
~C.C024248
-C.(128043

C.002416¢

€.00027917
-0.C13C023
-0.02226C1
=C.C1270%4
-C.C07251¢2
=0.01595917
-C.C208474
=-C.0124151
-0.C125382
-C.C28721713
‘0.020[196

C.CCCS1¢é¢
~-G.C1C495¢C
-C.0123814

C.C0246217
~-C.0033342
-(0+0084673
-C.C0000¢4

0.C03389C
-C.C078615
=-C.0104317
-C.0103635%
-C.C18137%

3

OF

SERIES 1 ANC

-C.3€917175
-C.5CC27s8
-C.4(2282¢
~C.2226€61¢
-0.1€42944
-0.254C277
-0.4511588
-C.24€56C1
-C.1C5€165
-C.1C64083¢
-C.CE75¢11
-0.0359763
-C.C481883
-C.Cc€2872
-0.0719635
-C.C€58153
-C.C453012
-C.C214737
~-C.C26€8367
-0.0284687
~0.04176412
-C.08CsS517
-C.C155203
—O.C39746C
-C.CEC426C
=-C.01907C6
-C.CC591¢57
-0.0C72061
-C.C1C8B114
~C.CCEC1E2
-0.CC72384
-0.C118C6
=-C.C(36404
-0.0C14138
~C.C1C40223
-C.CC21318

0.0C3371C

CUACRATURE SPECTRUWV

cl

-



(Independent Input)

0%7¢

Table 4.1 continued

FRECLENCY CC-SFECTRUM CUACRATURE SPECTRUM CCHERENCE SCUARE AMPLITLDE OF
(CYCLES/ MCNTH) CF CF CF TRANSFER FUNCTION

SERIES 2 AND 2 SERIES 2z ANC 3 SERIES 2 ANC 3 FRCM 2 TC 3
0.0 =2.3253059 =0.3414624 0.45C€533 1.3307819
C.Cl4 ~1.492€214 ~C.4778C31 «88712397 1.4575481
C.C28 -C.€61133(¢2 -C0.4120255 C.8C87377 1.54531169
C.C42 -(.20C78C2 -C.2225832 Ce81€34G4 1.(850725
C.C56 -C.171601¢ -C.1271662 «57C5461 G.78211C8
C.C69 ~-0.20815417 -C.1¢3417C 0.6062143 D.€65411175
C.CE3 ~(e259796C -0.2€57448 C.721CS5CC Ceb4174648
C.CS7 -C.16515¢¢ -C.17CS67¢ C.e€€785¢ C.5754615
Celll ~0.1437123 -C.C€72871 0.7215837 0.5457374
C.12% -C.11C440S ~-C.Cc51664 «EE1763¢ 0.4514245
C.139 -C.C5837CC -C.C25C75¢2 0.3162281 0.3072646
0.1£3 -~0.0590453 -C.0331152 C.3EESC2C 0.3677066
C.1€7 -C.C7832C2 -C.C1CC36E 0.515€6CC 03643841
C.181 ~-C.G0624012 -C.(15C806 C.4€1C268 0.30289C2
C.154 -C.CS5C245¢C ~-0.CC59112 C.E€T158E5 0.36476C7
0.2C8 -C.C94767¢ C.CCCE2CE 0.€378157 C.23346643
C.222 -C.C44734¢ C.CC46611 0.23S1362 0.1717726
C.23¢ -C.C3¢C813 -C.0C28283 Cell2474¢ Ce1C73965
C.250 -C.C2521717¢ C.C(€2354 0.116273¢C 0.1C35524
C.2¢€4 -0.C27653¢ 0.CCS1424 C.247422C 0.188230%
C.218 =C.Ca€86€3 €.CCS7266 0.32386175 0.216232¢
C.252 -0.0523637 C.C1C1923 Ce3426253 0.2171241
C.3C¢ -C.C25¢831¢ 0.Cl126216 Cel®27733 0.1264729
C.319 -C.C17488¢C C.C227574 Q.1716382 C.1563827
C.233 ~0.0322433 CeC22C734 C.2(C346€25 0.2359198
C.341 -C.C2¢€1183 C.Cl64261 Ce124C18S 0.1406€95
0.3€1 -C.0088574 C.CCECEZ4 C.CE16556 0.C586787
C.3175 -C.Clé0190C C.0136999 C.216€973 0.1169421
0.38$ -C.C22¢€512 Q0.CCES5C38 0.2124306 0.11£1C85
0.403 -0.C137318 c.C11C583 0.0s77185 0.C714185
Ce4l1 -C.Cl7CeC? 0.0138131 0.1221406 0.07430658
0.4121 -C.0222922 C.CCZl4cE 0.1522664 c.1C1C211
Co444 -C.C1537s8 =0.0C34145 C.CE24112 0.(580074
Co45E -C.C13C€ec¢ 0.((9€6555 0.C€27C172 C.C50C786
C.472 ~C.C251€7C 0.C155242 0.1418933 Uel1C1G6%4
C.4t6 -0.C133483 -0.CC2¢389 0.C277¢€CC 0.C4e87C28
C.5CC C.C08G3¢¢E -C.CCe782C C.03£¢c416 G.Ca1545¢C



e

Table 4,1 eontinued

FRECLENCY CCHERENCE SCUARE AMPLITULDE OF (CORRELATED INPUT) (CORRELATED INPUT)

{CYCLES/ MGNTH) CF TRANSFER FUNCTION AMPLITUDE OF THE AMPLITUDE OF THE

SERIES 1 AND 3 FRCM 1 TO 3 TRANSFER FUNCTION TRANSFER FUNCTION
FROM 1 TO 3 FROM 2 TO 3
C.0 0.€451867 2.98407C8 0 .,2456646 - « 658637
0.0139 0.E1€55€C 2.51344€7 1,7065054 +8321352
C.C278 0. €421622 1.7647656 6765883 1.2940054
0.C417 0.€24%6G7 1.2G18916 ,5308164 9341296
€.C556 0.53$C316 0.9007518 .5101726 «2245961
C.C6S4 G.4263551 0.3665377 1125131 ¢5531393
0.0823 C.5€6€733 0.31172C0 . 2902898 +5221896
C.CS172 0.5361804 0.33639C3 1609497 «4157547
C.l111 Ce45€20C2 0.5213417 S2132922 $ 4644513
C.1250 0.5276362 <E1415¢€4 3666456 «3512720
C.1386 0.252€291 0.2955259 ‘2605913 30161283
0.1528 0.C€54326 0.1516432 .115353¢ $4128620
C.1667 0.2C1557¢ 0.215717217 1477656 3920475
C.18C¢ Ce35€4162 043458227 L1965711 «2217188
0.1544 0.5255594 0.3905565 S1752162 «3301909
0.2C€3 0.6215476 043407254 1907774 2018524
Ceizze C.3€C3274 0.2306305 L21193571 1264277
C.2361 0.1€46217$ 0.166121717 195418 1227005
Ce25CC 041449451 0.1208978 S139371¢ <A%45524
C.2635 0.25CC81E 0.1697847 L 1397069 1543639
C.2778 0.3836453 0.22603¢€2 L1713266 . 1266851
Ce2€17 C+3442098 0.2256013 1443399 1377625
C.3C56 C.CES4TLE 0.1C1CC48 39426009 1383127
Ce3154 0.35€3027 0.1501561 1709629 9694463
G.3222 C.2231766 0.2165759 1564174 .1567894
003472 0.CE15613 0.C99718¢ TB4R1469 1299758
Ce3€11 0.G537518 0.0606871 T0E14133 «2789694
0.3750 0.0525C44 0.C741075 1129819 161523
0.388% 0.0421575 0.0458923 683258 < 1508430
C.4(28 0.C235626 0.0350209 291423 0765520
C.4l617 CeC463427 0.C51C0¢€C 4530125 « 3793536
C.4306 0.045¢€121 0.065202¢ OR31754 1170568
Co4444 C.012€091 0.C281125 L0560193¢ «P7g5681
0.4583 C.02251785 0.C377CCC A855098 0830916
Ce4122 0.C372985 0.0601145 1197170 . 1456994
0.4€¢€1 0.C21€36¢ 0.C451978 Caenueog <0819165
C.5CCO 0.C$31974 0.C846725 ‘an1o104 0357596
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FREQUENCY

(CYCLES/ MONTH

0.0

De014
0.028
0.042
0.056
J.069
00083
0.097
0.111
Oe 125
0.139
0.153
0.167
0.181
Ue 194
2.208
0.222
Qe 236
0.250
0.264
0.278
0,292
Ue306
0.319
0.333
0.347
Ve 361
0e 375
0.389
0.403
Oe4l7
D431
0.4%444
0.458
0.472
0.486
0.5C0

POWER SPECTRAL ESTIMATES
OF SERIES 1

U.53748C8
043837751
0.2173141
0.2153191
0.23327133
C.9996482
le8161268
0.864515¢
0.2524533
0.2644865
0.227012¢
062797015
3.29€0474
C.1716580
Ce 1944860
C.2838922
0.2465112
C.2317605
Ce2459462
Ce 2086559
0.22161¢4
0.2031941
0.1393378
C.1768278
0.1921526
541662740
0.17309SS
0e1717C70
0.211728(5S
0.2540515
0.2455114
Ue22446E5
062079843
0.24326¢8
0.3040683
Ue 2521988
0.24806¢1

no. 812 elevation).

POWER SPECTRAL ESTIMATES
OFf SERIES 2

1.26852¢€C
0.8597792
U.4381655
0.2512252
0e2239184
Ue47C8245
0.6250646
0.42854173
0.3583584
0e3161583
J.238940C
0.1821527
0.2133330
0.23389°51
062702937
0.3319917
0.2963868
0.3909397
0.2833095
0e 1864448
J3.264615S
02625701
Ce 2096615
0.15736€2
0.195891¢
0.2520521
0.2030430
001653225
0.2151617
0.2459328
0.3216650
0.2708046
002879887
043442041
0.3669816
0e 2921533
Ue258454C

FOWER SPECTRAL ESTIMATES
NF SERIES 3

1¢5446291
4.7825741
1.3861264
0.2511411
C.l19321€2
002120602
C.13624CS
C.11390C2
Ue 0873989
0.05985172
0.0474303
C.0314855
0.0311634
Ve 0242400
C.0244861
0.0234363
0.01922817
0.014621C
00118639
0.0106318
0.007961S
00084262
G.0065C10
0.0103075
0.0117814
U.01C971¢C
0.0108849
C.0(CS95C7
0.0081530
0.0058417
U.008365C
000067426
C.0130381
0.,01530¢€5
0.0149631
J3.01752176
00166986

Table 4.2 Spectral Results for Well No, 812 (l=precipitation, 2=stream stage, and 3=well



£€ve

FREQUENCY -
(CYCLES/ MONTH)

0.0

0.014
0.028
00042
0.056
0.069
0.083
0.057.
Oelll
0.125
0.139
0.153
0.16€7
Oe 181
0.194
0.2C8
0.222
0.236
0e250
0.264
0.278
0.292
0.306
00319
0.333
0.347
0«36l
0.375
0.389
0.403
0.417
0.431
0e458
0.472
0.486
0.500

CO-SPECTRUM

OF

SERIES 1 AND

0.5934544
0.4387881
0. 2601902
0 1715844
0.1445757
0.4958999
0.8613555
04302959
Ue 1171054
0.0554643
0.01445417
0.0064282
0. 589046
0e 0438863
0.0351257
0.0250411
-0.0208642
-0. 0487455
-0,0657021
=0.0280692
0.0060719
-0G.0091965
-0. 0596035
-Le 0558303
-0.0613305
-0.,1011285
-0.0947801
-0.C919228
-0e 1569655
-0.1139014
-0,C918743
-0.1046796
-0.1472512
~0e 1739575
-0.1837862
-0, 1046023
-0.0651873

2

CF

SERIES 1 ANC

Oe 0424455
0.04G425¢8
0.035427C
0e G4332¢S
0.081765C
Ge 05055CS
~0.0G36¢53
0.0235687
0. 1816434
0.2085586
0e 1554420
0.1237102
C.1547C29
Oe 1351151
0.1939378
0e 2494217
Ce.14744€5
0.167257¢C
Oe 1113451
C.0572293
Ce 1508234
0.1765762
0.0746164
Oe 04417262
C.072287C
0.093C34S
0.0889423
0.0643825
Ce 0274885
0.0479721
0.052C705
6.00692081
-0.C286656
Ce C075133
C.1228%60
0.C963448
0.0384422

QUACRATURE SPECTRUM

2

Table 4.2 continued

CC-SPECTRUM

OF

SERIES 1 AND

-0.6505423
-0.42C91138
-0e 1225896
-0.C064758

0. 056685
=0.0634411
~0. 1846801

~0e 1069716

0.0036852

0.0148437
0.0128739

0.0161403

00 0003234
-0.0140864
-0.,02C4440
-0.0203728
-0.0208998
-0 0245328
-0.,0156738
-0. 0066228
-0.0121342
-0.,0089311
-0 0108804
-0.0118123
-0.0131461
~000058837
-0e 0046817
-0.0076724
~0. 0069335
=06 0009366
-0.,0051403
~0e 0104580
-0.0182945
-0. 0336563
-0 0363462
~000334923

3

OF

SERIES 1 AND

-0.5859217
~C.6331782
-GCe 23423175
~CeCG24EET
=0.C95955¢C
-0.100uUS34
-C.0312616
-Ce06153CE
~C.0480823
-0.C791C34
-0.0426738

C.C004CCS

Oe G0L1226C
-0.C218556

0.0017919
-€.0301€57
-0.03452¢¢
-0 02602177
-0.02335]132
-0.0230150
-C.0068546
-0.01381725
~0e011175E
-C.C01721C2
-C.0143624
=C.C07¢C227
-0.0C62667
~Ue 0047634
-C.(0u2e18
-0.0114CS0
-C.015¢151
-0.01261G8
-0 0215347
~0.01761745
-0.C184147
-C.0208452
-0.0146C3C

QUACRATURE SPECTRUM

3



(Independent Input)

VAL

FREQUENCY CC-SPECTRUM QUACRATURE SPECTRUM COHERENCE SQUARE AMPLITUDE OF
{CYCLES/ MONTH) QF OF OF TRANSFER FUNCTICN
SERIES 2 AND 3 SERIES 2 AND 3 SERIES 2 ANC 3 FRCM 2 TO 3
0e0 —2¢ 2237883 —-0e 6888822 0.5662975 1.8352327
0.014 -1.3068628 ~C.7961345 065694900 167798376
0.028 ~-0.3706C64 ~063770931 0.4602407 1.206591¢
0.042 -0.096471S -0.1002672 0.3069494 0.5539374
D.U56 ~-0.05553865 -C.0430381 0e1141055 0.3137853
06069 ~-Ue V468276 -0 0855252 0.0952231 C.2070958
0.083 -0.0753059 -C+0563346 0.101¢€214 Ce 1504573
0.0697 -0.0939134 -0 0574366 0.24821753 C.2568796
0.111 -0.0568609 -0.0282C174 0.1286336 0.1771215
0.125 -0.0492156 -C.0541159 0628217422 0.2313666
06139 -060607753 -060365445 0.44376(38 02967959
Ge153 ~-0.03427€2 -C.03414¢64 0.4081¢%44 Qe 2656132
0.167 -0.0373857 -CeC0O11319 0.2104747 Csl175344¢8
0.181 -0.0366257 0.0054E€16 0.2419537 0.1583513
0.164 -Ue 0099176 Cs0317633 06161721795 Cel23106S1
Ue208 -0e 00€2384 Ue0l471CC 0.0328123 C.0481282
0e222 -0e 0002690 0.037883¢6 0.,2518187 001278199
0.236 -0.0015383 Ce0483C79 0.4086855 Ce.123€312
0250 -0,0072838 G.(359889 0.40113C6 C.129606C
0.264 -0.0102035 0.019359¢C 062415853 Qell?73717
" 0278 -00158025 0e022516C 0.3588821 Ce103952¢
C.26G2 -0.C147248 0.0087558 0.132€45S 0e 0652449
0.306 ~0, 005608C C.0112550 0.0793805 0.U596767
0.319 -0.0059049 0.6C09023 0,0219977 0.C379582
0.333 -0.,0137206 C.0157414 01889328 061065951
0e347 -0e GUS6T710 0e0112C43 0.0570268 0.0498215
0.361 CeG009507 CeCll36€2C 0.05882C6 e 0561543
0.375 0. 0042891 -0.6078742 0.0488728 G.054237¢C
0.389 0.00967179 -0.0003056 0.0533627 0.04467S8
0.4C3 0.C094477 C.0128156 Qe 1 764547 Qe 064 74(8
Oe4l7 0e 0167387 000272485 0.3800777 Ve 0994187
0.431 0.0130876 CsC193366 0.2C664CS 0.,0862218
Oe444 0. C063050 0.0346488 0.3303168 C.122288%
06458 G.(C149681 G.0224S03 0.13853006 Coe (784878
Qe412 0,0038127 C.0107S06 060238513 Oe0311847
Oe4 86 0e 0017760 0e 0011684 0.006:C8825 0.00727¢3
0.5Uu 0.0122587 ~-0.0036156S 00378559 0.0494555
Table 4.2 continued



344

FREQUENCY COMERENCE SQUARE AMPLITUDE OF (CORRELATED INPUT)  (CORRELATED INPUT)
(C.CLES/ MONTH) OF TRANSFER FUNCTICN AMPLITUDE OF TUE AMPLITUDE OF THE
SER IES 1 ANC 3 FRCM ‘l 10 3 TRANSFER FUNCTION TRANSFER FUNCTION
FROM 1 TO 3 FROM 2 TO 3
060 041890256 1.628912¢C 242456646 - .sgbfgg
0.0139 0.3149563 1.981150C¢ 1.7085054 l'§ B o
0,0278 0.222C3€7 142165680 .6785883 2540054
0.0417 0.1589648 C.4305941 .5308164 s2oa1ads
0.0556 0.2063518 0.4134241 5101726 -5g45§q
040694 00662472 0.1185467 1125131 °5°2i952
0.0833 0.1387384 0.1031356 3912898 -onzl8oe
0.0572 0e 1546583 0 1427454 1639497 ey
0.1111 0.1053569 0.191018$ .2132922 P
0.1250 0.4091610 0.3042993 .3666456 '3ms?°“g
0.1389 01869070 0.1976125 .2605913 08128
0.1528 0.0255957 0.0577233 11502533 - 412862
0.1667 000001742 040042828 «1477656 « 3920475
0.1806 0.1624870 0.151475¢8 L1965711 2217188
0.1544, 0.0884288 0.1055211 1752162 « 3301905
0.2083 0e 1591499 0.1282206 4907774 2018524
0.2222 0.3436520 0.1637256 2193571 « 1264477
0.2361 0.3775325 Oe 1543285 1954183 - 1227925
0.2500 0.2710705 0.1143494 L 1793710 0845524
0.2635 0.2585449 0.1147773 .1357065 «1543639
062778 0e 1095916 0.0628853 1713266 1266851
0.2917 0.1585867 0.0811970 1443395 «1377625
0.3056 0.1837670 0s 1116397 1942609 . 1383127
0.3194 0.2390589 0.1180465 1769625 +D694463
0.3333 0.1674582 0.1013277 1564174 « 1567894
Ve34T72 000460128 0. 055U999 S4B 469 1299758
0.3611 0.028€759 00426120 WIE14133 2789694
0.3750 0.0261074 0e C388970 1129819 1615223
0.3889 0.0332743 0.0353348 .N633258 « 1508430
0.4028 0.1200966 0.0525456 9291423 8165520
De4l67 Oel191548 0. 0637168 L1530125 + 793536
U.4306 0.0848027 0.0606687 LOR31754 1170568
0.4444 0.21134¢€3 0e 1151038 05601938 «07g5681
0.4583 0.1737868 0.1045655 .A855098 «0830916
0.4722 0.3234570 Ce1261712 L1193172 « 1456994
064861 Ue 3571792 Oe 1661446 .Aes0eop +O819165
0.5600 0.3222738 0.1472874 LI812124 0387598
Table 4.2 continued
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Figure 4.8 Square of the Amplitude of the Transfer Function
from Series 1 (precipitation) to Series 3

(groundwater table fluctuations) for the Independent
Input case for well No. 12.
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Figure 4.9 Square of the Amplitude of the Transfer Function
from Series 2 (stream stage) to Series 3 (ground-
water table fluctuation) for the Independent Input
Case for well No. 12,
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Figure 4.10 Square of the Amplitude of the Transfer Function
from Series 1 (precipitation) to series 3 (ground-
water table fluctuation) for Correlated-Input Case
for Well No. 12.
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Figure 4.11 Square of the Amplitude of the Transfer Function
from Series 2 (stream stage) to Series 3 (ground-
water table fluctuation) for Correlated-Input Case
for Well No. 12.
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Input Case for Well No. 812.
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%
_ (Q-F)A-F) -1 romyrEts - (1-FF
Shh = m232 Sce wS[(l F)F Sem ~ (1-F)F SH€]
*
+ FF SHH (4.3.1)
cosh[bL(% ~1)1]
with F =
cosh(bL)
(141) wi>.1/2
oL = = )
V2
and o = g-
The dimensionless parameter,
2
wL
WL 4
3 C Q (4.3.2)

is referred to as the dimensionless frequency. Note that equation 4.3.1
is exactly in the same form as equation 4.1.23 with the following
equivalencies,

_ -1Q-B) ¢ .3.3)

provided that X. is equivalent to e and X2 to H. In the independent input

1

case, G can take on either form depending on which input series is being
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used. Note that € 1is referred to as the net accretion and that we have
only precipitation records to work with. It is therefore necessary to

assume a relationship between the total precipitation and the accretion.
The simplest way is to assume that the accretion is a constant fraction

of precipitation, i.e.,
e = y(precipitation) = YP (4.3.5)
where Y = constant <1

By introducing this relation into the linearized Dupuit Approximation,

it can be shown that equation 4.3.1 becomes

_ (A-H(A-F) 2

Shh 7.2 Y Spp
w S

iy mvete Rt
SIA-PF s _,-(1-FF 5, ]

*
+ FF SHH (4.3.6)

where F, Q and o are as previously defined and SPP is the power spectrum

of the precipitation. With X1 as the precipitation, equations 4.1.23

and 4.3.6 are compatible for comparisons. However, the function
2 *
(1-F) (1-F )y (1-F) 1-F ) _
w282 % Qz
together with FF = f(Q) are computed and plotted in Figures 4.16 and

can still not be computed. Instead

g(Q)

4,17 for a given value of x/L. We then have the following relationship

® 2 2_4
(1~F;(§—F W o oo 1_%~ “4.3.7)
w S

T
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Figure 4.16 Aquifer Response to Accretion; Plot of g along
the Aquifer with Horizontal Bottom (I'=0).
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Figure 4.17 Aquifer Response to Stream Stage Fluctuations;
Plot of f along the Aquifer with Horizontal

Bottom (I'=0).
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The right hand side of equation 4.3.7 can be seen to be equivalent to

|G]2 in the single precipitation input case or |G of equation 4.1.23

2

for the correlated input case.

Matching Procedures for Independent Inputs. If it is assumed that the

two inputs, precipitation and stream stage, are independent then the trans-

fer function is calculated using the form of equation 4.1.11

-~ ~

Stn = Cudn (4.3.8)
Spp = GPSP (4.3.9)
which are simply special cases of equation 4.1.24 when S =S =0. It
XlX2 X2Xl

is obvious from Tables 4.1 and 4.2 that the inputs for these data are not
independent; the co-spectrum and quadrature sepctrum of series 1 and 2 are
non-zero. However, the following analysis will illustrate the procedure
for the independent case and also demonstrate the effect of making that

assumption. The theoretical transfer functions are

£() = FF (4.3.10)

g(@ yL/r? (4.3.11)

Thus, for well no. 12, by matching Figures 4.9 and 4.17 and shifting
along the abscissa, a best fit curve corresponding to a value of x/L

can be chosen. The value of § corresponding to a particular value of f
can be found. Then by matching Figures 4.8 and 4.16, holding the same
relative position along the abscissa with the same value of x/L, a value
of g(f)) corresponding to a particular value of |GP]2 can be determined
by just shifting along the ordinate. A similar procedure holds for well

no. 812. A set of sample matched positions can be found in Figures 4.18
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and 4.19 for well no. 12 and in Figures 4.20 and 4.21 for well no. 812,

From the matching procedure of well no. 12, we have

1og(5%—2—) = log(f) + 1og(221‘2)
_g_= 2222 (4.3.12)
log[g(2)] + logIYiI;] + loglop|?
I.;‘_Z_ =2 (4.3.13)

The distance of the well no. 12 from the stream can be estimated from
the topographic map to be 1200 feet (Figure 4.22). Then L can be com-—
puted as

L= ¥ 1600 feet

. S
.75
Using vy = 0.05, S and T can be determined from equations 4.3.12 and 4.3.13
to be 0.135 and O.212x104 ftz/day, respectively. Similarly, for well no.

812, we have

T _ 21rL2
S 70
2
and 1%— = 1.949
with L = 6000 ft.

4 ftz/day,

Using vy = 0.05, S and T can be determined to be 0.285 and 3.078x10
respectively.
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Figure 4.18 Sample Matching of Figure 4.9 and Figure 4.17 for
the Independent-Input Case. (x) is the point used in
the estimation of parameters at well no. 12.
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Figure 4.19 Sample Matching of Figure 4.8 and 4.16 for theIndependent
Input Case. (x) is the point used in the estimation of
parameters at well no. 12.
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Figure 4.20 Sample Matching of Figures 4.13 and 4.17 for the Independent

Input Case. (x) is the point used in the estimation of parameters
at well no. 812.
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Matching Procedure for Correlated Inputs.

have

*

2
Spp = 16917Spp + 616y Spy

Compared to equation 4.3,6, we can see

) * 2
(1-F)(1-F )y
2.2
w S

FF

+ G,G

From equation 4.1.23, we

*

2
162 Syp + ]Gzl Sy (4.3.14)

the following equivalencies
(4.3.15)

(4.3.16)

Similar procedures, as in the independent inputs, can be employed for Figures

4,10, 4.11, 4.16 and 4.17.

A set of sample matched positions can be

found in Figures 4.23 and 4.24 for well no. 12 and in Figures 4 .25 and

4.26 for well no. 812,

Hence, we have,

for well no. 12

2L 2
loglg(2)] + log 5~ = log|G, |
T
2.4
T -1.8
T
L2
Iir.= 1.341 (4.3.17)
and
2 2
L 2
log(U2) = log(f) + log(*It)
T _ 2m1.2
S = 76 (4.3.18)
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Figure 4.23 Sample Matching of Figures 4.10 and 4.16 for the

Correlated-Input Case.
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(x) is the point used in the
estimation of parameters at well no. 12.




f = FF*
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Figure 4.24 Sample Matching of Figures 4.11 and 4.17 for

the

Correlated-Input Case.
in the estimation of parameters at well no. 12.

(x) is the point used
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Figure 4.25 Sample Matching of Figures 4.14 and 4.16 for the

Correlated-Input Case. (x) is the point used in the estima-
tion of parameters at well no. 812.

272



f = FF*

10

—
2 e
IG2| —
1 ==
— x/L = 0.75 [
1 I Y —
— —
A e 01—
— —
.001 l [ \
001 L1 1] L L1 LT W 1N LI
1 —— , 10 100
o00s — 1| ||||||‘ L L LI
.01 .1 p .5

Figure 4.26 Sample Matching of Figures 4.15 and 4.17 for the
Correlated-Input Case. (x) is the point used in
the estimation of parameters at well no. 812.
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Taking x = 1200 feet, L = 1600 feet and y = 0.05, S and T can be deter-
mined to be 0.27 and O.32x104 ftz/day, respectively. Similarly, for

Qell no. 812, we have

12
Y—f— = 1.844
2
T 27L
and s 775
with L = 6000 feet

Using vy = 0.05, S and T can be determined to be 0.32 and 3.25x104 ftz/day,
respectively. Note that S is directly proportional to y in these compu-
tations so that a reduction in the estimated value of y will produce a
corresponding decrease in S. However, S is independent of the estimation
of L. A summary of the values S and T as estimated by the two approaches

and the values given by Williams and Lohman (1949) are given in Table 4.3.

4,4 Discussion

The above results demonstrate that the spectral analysis technique
can yield reasonable estimates of aquifer parameters in a complex natural
setting. It should be emphasized that the site and data selection for this
analysis was based largely on the availability of a relatively long term
record of the type that would be available at many sites. That is, to
demonstrate the method in a realistic setting, we purposely selected a site
which involved a complex unknown aquifer configuration rather than a
restricted known configuration which would reproduce the idealized geometry
of the theoretical model. The objective was to demonstrate the technique

for realistic field conditions. It was not felt that the model required
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verification in- the idealized geometry because the basic aquifer equation
(2.3.1) is well established and the validity of linearization in the
stochastic case has been demonstrated by the simulations in Chapter 3.

The input time series for the numerical spectral estimates were, in
the case of the stream stage and aquifer water level, values extracted at
monthly intervals, this being the smallest time period for which data were
consistently available. However, in the case of the precipitation data,
total monthly values (actually the average rate over the month) were
used. The use of monthly average precipitation may appear to be incon-
sistent, but actually on both physical and theoretical grounds it is more
appropriate than using discrete values. Theoretically, the effect of
using the average of a time series can be evaluated by analyzing the
averaging process as a filter using linear system theory (see e.g.,

Chapter 2 of Jenkins and Watts, 1968). This analysis shows that spectral
amplitude is attenuated near the Nyquist frequency (0.5 cycle/mo) but that
the spectrum is undistorted at the lower frequencies. The effect is very
much like that shown in Figure 2,33 which demonstrates the effect of storage
in the unsaturated zone. Physically it is recognized that, because of the
storage effects in the unsaturated zone, the recharge input will not be pro-
portional to the instantaneous precipitation rate. The use of the average
precipitation rate implicitly accounts for storage in the unsaturated zone
in a way which is theoretically sound and hence appropriate.

Our experience, based on some preliminary numerical spectral analysis
of daily precipitation and groundwater levels for a well in Wilmington,
Massachusetts, is that monthly data will addquately characterize the
spectral response of most phreatic aquifer systems. The energy content of

the higher frequencies (»0.5 cycle/mo) is very small and has no effect on
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the estimated transfer function. The Wilmington aquifer had a response
time (S/a in equation 2.2.4) of around 3 months; the Kansas site shows a
response time of the same magnitude (response time = SL2/3T from equation
4.3.18). Only for very small response times (say less than 1 month), i.e.,
small highly permeable aquifers, will a smaller sampling interval be re-
quired.

Because of the fluctuations in the calculated transfer functions
(see e.g., Figures 4.23 and Z.Zé), the matching procedure may appear to be
somewhat subjective. Our experience was that completely independent match-
ing analyses produced essentially the same results; however, a more object-
ive procedure such as a least squares fitting could be used. The fluctua-
tions in the estimated transfer functions could be eliminated by intro-
ducing more smoothing (e.g., fewer lags) in the spectral calculation;
however, this would be at the risk of introducing bias in the spectral
estimates. This is the well known tradeoff between stability and fidelity
in spectral estimation (Jenkins and Watts, Chapter 7). We have opted for
a scheme which retains spectral detail although there is the possibility
that some of the fluctuation is spurious. The theoretical comparisons
could be made to appear more favorable by introducing more smoothing.

The results summarized in Table 4.3 show that the effects of correlated
inputs are significant and should be included.

In this data analysis a simple linear relationship between recharge
and precipitation was assumed, recognizing this as a crude approximation
of the actual recharge process. It was beyond the scope of this work to
even attempt to solve the difficult problem of recharge prediction. Most
hydrologists recognize this as a basically unresolved problem, but if and

when improved predictive methods become available, they can easily be in-
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LLT

Source Well |Transmissivity Storage Coef. Y |{Length of

No. 2 Aquifer
T (ft"/day) S L (ft.)

independent input |12 .212x104 .135 .05 1600

case 812 3.08x10% ,285 .05 6000

correlated input |12 0.32x10% .27 .05 1600

case 812 | 3.25x10% .32 .05 6000

. 4
Bulletin 79 .615%x10 .33
(William & Lohman to 4.41x104 (at well #12)

1949)

Table 4.3 Summary of Aquifer

Parameters



corporated in the spectral model. Given a functional relationship for
recharge in terms of precipitation, temperature, and other climatological
data, a multiple-input analysis is carried out with these additional input
series. The procedure is outlined in Section 2.6 for the case of evapo-
transpiration losses linearly related to temperature. The seasonal effects
of evapotranspiration losses are likely to be significant in some cases and
should be explored in future research. The use of spectral analysis as a
method of estimating groundwater recharge from water level fluctuations
should also be explored.

Although there are natural complexities as indicated above, the
generally favorable results of the spectral method applied to the Kansas
site suggest that there could be significant potential for such methods in
the interpretation of natural groundwater level fluctuations. The large
amount of existing data on groundwater levels could provide more quantita-
tive information through spectral analysis and the analyses would be per-
formed routinely as the data becomes computer accessible. As experience
is developed, it may also be possible to recognize certain descriptive
features of groundwater systems by inspection of spectra. Other methods
of data interpretation may be useful; for example, the simpler linear re-~
servoir model (Section 2.2) may be desirable for some problems (Gelhar and
Wilson, 1974). The parameters for this lumped parameter model (S and a in
equation 2.2.4) can be found by spectral transfer function analysis but
the theoretical transfer functions are simpler (see equation 2.2.9).
Methods based on cross spectral analysis of water levels from several wells

in an aquifer are also attractive.
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Chapter 5 CONCLUSIONS

Several major results of significance in relation to temporal varia-
bility of groundwater systems have been established. These fall into the
following categories:

1. Linear aquifer models provide theoretical predictions of the

spectral response characteristics of several phreatic aquifer con-
figurations. The effects of aquifer slope, flow zone thickening,
vertical flow, etc. are analyzed and the conditions under which
these factors can be neglected are determined. The horizontal
Dupuit aquifer model is reasonable for application under many
field conditions, but the other effects can be included if the
aquifer configuration is known.

2, Nonlinear aquifer simulations predict the overall effects

of nonlinearity on the spectral response of phreatic aquifers.
The nonlinear effects are typically quite small for field con-
ditions, and the linear analytical models therefore provide a
reasonable basis for the interpretation of field observations.
The effects of spatially variable accretion rate on the frequency
spectrum are also quite small.

3. Aquifer parameters can be determined by comparing the ob-

served spectral response of an aquifer with the linear theory.
From precipitation, stream stage and aquifer water level data,
the storage coefficient and transmissivity of a stream-connected

aquifer can be estimated using a spectral matching procedure.
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In addition, it was established that the spectral distortion assoc-
iated with flow phenomena in the unsaturated zone above the water table
will be quite small for a sampling interval of one month or greater. In
the design of simple flow measuriné networks it was shown that spatial
variability of hydraulic conductivity, as characterized by a spatial
correlation function, is an important factor which should be included.

The results of this study should be widely applicable for the esti-
mation of aquifer parameters from natural fluctuations of groundwater
level. Thus it should be possible to make much better use of extensive
existing data of this type for the evaluation of groundwater resources.
Important items which should be explored in future studies are techniques
for dealing with nonstationary aquifer response and methods of incorpora-
ting spatial variability of hydrologic parameters into the design of com-
plex multiple-well observation networks. More realistic recharge models
including the effect of temperature on evapotranspiration losses should

also be investigated.
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LIST OF SYMBOLS

The following list covers the symbols which are widely used in the
report. The dimensions of dimensional quantities are given in brackets.

Also shown is the section in which the term is first used.

Symbol Definition Section
a linear reservoir coefficient [1/T] 2.2
CoXY cospectrum of X and Y 2.1
e random noise generated from a normal process 3.3
f square of the amplitude of the normalized transfer 2.3

function for a stream stage input
g square of the amplitude of the normalized transfer 2.3

function for an accretion input

G transfer function 2.1

Gl transfer function from accretion to aquifer response 3.1

G2 transfer function from stream stage to aquifer 3.1
response

h thickness of the saturated zone [L] 2.1

ho elevation of water outfall of the linear reservoir 2.3
in the coupled system [L]

H stream or reservoir stage [L] 2.1

i V-1

i discrete x-coordinate of the finite difference model 3.2

3 discrete y-coordinate of the finite difference model 3.2

km maximum number of lags 4.2

K hydraulic conductivity [L/T] 2.1
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Symbol

Definition

horizontal aquifer length [L]

a characteristic aquifer [L] thickness generally
taken at stream

mean value of x

probability density function

effective porosity

precipitation rate [L/T]

outflow per unit area, linear reservoir [L/T]
discharge [L3/T]

quadrature spectrum of X and Y
autocorrelation functionAX

estimated autocorrelation function of X

cross correlation function of X and Y

estimated cross correlation function of X and Y
sample variance of X

storage coefficient in Dupuit aquifer

power. spectrum of X(t)

smoothed estimate of power spectrum of X(t)

cross spectrum of X(t) and Y(t)

smoothed estimate of cross spectrum of X(t) and Y(t)

time [T]
aquifer transmissibility [LZ/T]
horizontal spatial coordinate [L]

an arbitrary input random time series
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Section

2.1

2.1

3.2

2.2

2.5

2.1

2.1

2.1

2.1

3.3

2.1

2.1

2.1



Symbol Definition Section

v elevation of water table above datum ( = h + ) [L] 2.5
z vertical spatial coordinate [L] 2.3
a = T/S [L2/r] 2.3
8 slope of aquifer bottom 2.3
Y fraction of precipitation producing recharge 3.3
YzXY coherence squared function between X and Y 2.1
€ accretion [L/T]

z elevation of aquifer bottom above datum [L] 2.1
n dimensionless thickness of saturated zonme ( = h/m) 3.1
no dimensionless stream stage elevation ( = H/m) 3.1
eXY phase spectrum from X to Y ' 2.1
U a perturbation parameter ( = eL?/2KH) 2.3
0% autocovariance function of X 2.1
3 dimensionless horizontél coordinate ( = x/L) 3.1
0 dimensionless accretion ( = L%g/Tm = 2yu) 3.1
T dimensionless time ( = Tt/SL ) 3.1
¢ piezometric head (L] 2.4
W dimensional circular frequency [1/T] 2.1
Q dimensionless frequency ( = SwL2/T) 2.3
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APPENDIX A

Listing of the Computer Program

This program is based on the aquifer simulation program with
water table conditions written by Prickett and Lonnquist in 1971.
There are minor modifications which include the incorporation of the
proper boundary conditions and the one dimensional representation.
This listing is for the particular case of a dual input system with
stream stage and accretion inputs. The data were obtained from the
U.S. Geological Survey of Kansas at Wichita and are given at the end
of the program. Also listed is the procedure for the BMD 02T
(Biomedical Computer Program, Autocovariance and Power Spectral
Analysis) which is used for the data analysis of the input and output
time series, the latter of which is obtained directly from the

numerical simulation program.
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BASPQ087
BASP0OSS
BASPOG8Y
BASPGO9I0
BASP0OO91
BASP0092
BASP0093
BASP0094
BASPOC95
BASPO096
BASPQOST
BASPO0S8
BASP0099
BASP0100
BASPO101
BASP0102
BASPO103
BASPO104
BASPO105
BASPO106
BASPO107
BASPO108



€6¢

90

100
110

12¢
130

149
150

160

179

184

COLUMN CALCULATIGONS
BC 19C II=1,NC
I=11

IF(MOD(ISTEP+ITER,2)EQ.1) I=NC-1+1

DC 170 J=1,NR

CALCULATE 8 AND G ARRAYS
BB=SF2({1,J)/CELTA

Lv=0,

Co= Hu(IyJ)*SFZ(I'J)/DELTA+RR(15TEP) =UM*Q{1,J)

ApN=C.0

CC=0,0

IF(J-1)SU, 108,90
AA"-“-T(I,J'l,l’
BB=B8+T(I,J-1,1)
IF(J-NE)}110G,120,110
CC==T(IyJ,1)
BB=BB+T(1,J,1)

JdF(I-11130,4140,130

BB=BB+T{I-14J,2)
CC=0D+EB{1-1,J)%T(I-1yJ,y2)
IF{I-NC)150,160,150
BB=BB+T(14J,2)

:C= DD+H(I*1’J)*T(Iny2)
w=BB-AAXPR(J-1)
£(J)=CC/HW
GlJ)=(0C-AA%G(J-1) )/ W
RE-ESTIMATE HEADS ‘
E=£+ABS(F(I,NR)-G(NR))
H{T4sNR)=G(NR)

N=Nk-1
HA=GIN)-EIN)*H(I4N+1)
E=F+ABS(HA-H({I,N))
F(I,N)=HA

N=N-1 §

IF{NeGTLCIGC TO 180

DO 193 N=14NR

BASPO109
BASPO110
BASPOL111
BASPQO112
BASPO113
BASPOll4
BASPO115
BASPO116
BASPO117
BASPO118
BASPO11S
BASPO120
BASPO121
BASPG122
BASPO123
BASPO124
BASPQO125
BASPO126
BASPO127
BASPO128
8ASPO129
BASPU130
BASPO131
BASPO132
BASPO133
BASPOl134
BASPO135
BASPO136
BASPO137
BASPO138
BASPO139
BASPO140
BASPC1l4l
BASPO142
BASPO143
BASPG144



%62

190

193

200

210
220

230
240

250
260

270
2715
280

IF(H(I«N).GT.BOT(I,N))GO TO 190
E=E+BOT (I yN)+0.01-H(I,N)
H{T,N)=BOTY(I,N)+(.01

CONTINUE

TRANSMISSIVITY CCNTRCL

DO 193 J=1,4NR

DO 193 I=1,NC

IF{ILLTNC)IT T 3Je2)=PERM{IyJe2)*(H{I4J)+H(I+1,J))/2
IF(J-LT.NRIT(I yJyl)= PERM(IvJyl'*(H(IyJ)*H(I,J*l))/Z
ROW CALCULATICNS

DO 300 JJ=1,NR

J=JJ

IF(MOD{ISTEP+ITER+2).EQs1l) J=NR-J+1
D0 280 I=1,4NC

BB=SF2{I1,J)/DELTA
DD=HO(T14J)*SF2{1,J)/DELTA+RR(ISTEP)I=-UMX*Q(I,J)
AA=0.0

CC=0.0

1F{J-1)200,210,200

BB=BB+T(I,J-1,1)
DO=DD+H(1,J-1)*T(I,J-1,1)
IF{J-NR)220,230,220
DD=DD+H(I,4J+1)*T(1,J,1)
BB=BB+T(I,J,1)

1F(1-1)240,250,240

BR=BB+T{I-14J,42)

AA=-T(I-1yJ,s2)

IF{I-NC)260,270,26C

BB=BB+T(I,J+2)

CC==T(14J,2)

W=BB-AA%#B{I-1)

GO TO 275

W=BB-(AA+CC)*B(I-1)

B{I)=CC/™

GUIN=(DN-AA*G(I-1))/W

RE-ESTIMATE HEADS

BASPO145
BASPO146
BASPO147
BASPO148
BASPO149
BASPO150
BASPO151
BASPO152
BASPO153
BASPO154
BASPO155
BASPO156
BASPO157
BASPO158
BASPO159
BASPO160
BASPO161
BASPO162
BASPO163
BASPO164
BASPQO165
BASPO166
BASPO167
BASPO168
BASPO169
BASPOL70
BASPOL171
BASPOL172
BASPO173
BASPO174
BASPO175
BASPOL176
BASPO177
BASPOL178
BASPO179
BASPO180
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E=E+ABRSIHINC 4 J)=GINC)) BASPGL81

HINC,J)=G(NC) BASPO182
N=NC-1 BASPO183

290 HA=GIN)=BIN)*H(N+1,J) BASPO184
E=E+ABS(HIN,J)=-HA) BASPO185
HIN,J)=HA BASPO186

N=N-1 | BASP)187
IF(N.GTL0)G0 TO 299 : ' BASPO188

DC 300 N=1,NC | | BASPO189Y
IF(H(NyJ)GTBOTIN,JIIGC TO 300 BASPQ190
E=E+BOT (NyJ) +0.01-H(N,J) - BASPO191

H{Ny J)=BCTIN,J)+0e01 BASP0192

390  CONTINUE ‘ BASP0193
c PRINT RESULTS BASPO194
IF(E.GT.ERROR) GG T 80 BASPO195

315 CG 320 J=1,1 ‘ BASPO196
WRITE(69330) ISTEP,HY{ISTEP)  (HUI4J)y I=14NC,y5) - BASP0197

c STORE CATA IN TAPE BASPO198
320 WRITE(12,330)ISTEP,HY(ISTEP ), (H(144),1=1,NCy5) . BASPO199
330  FGRMAT(16,6F1245) _ BASP0200
34¢  CCNTINUE BASP0201
sToP | : BASP0202

END BASP0203

c CONTROL CARDS(OMITTEC) FUR GENERATED DATA IN TAPE BASP0204
c TO BE USED IN THE BMD 02T PROGRAM , BASP0205
c LISTING OF DATA BASPU206
405 0.0314 €.003 BASP0207

z1 2 1eC leC  CeO 0.0025 1.0 0.0 BASP0208

c NODE CARCS BASP0209
1 1 1.0 1.0 1.0 0.0 S0CC000040 1.0 1.0 000 BASPO210

I 2 1.0 1.0 1.0 0.6 S00C0000.0 1.0 1.¢ U0 RASPO211

2 1 1.0 1.0 1.0 0.0 0.C025 1.0° 1.0 0.0 BASPO212

2 2 1s0 1leC 1le0 040 04CO25 1e0 140 0e0 BASP0213

3 1 1.0 LleC 1D Uel 0.C€825 l.¢ 1.0 0.0 BASPO214

3 2 1.0  1leG 1.0 0.0 0.€025 1.0 1.0 0.0 BASPO215

4 1 1s0  1lof 1e0 Ca0 0aG025 1s0 1e0 0.0 BASP0216
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1.2 1.4 lels Getd Jela25 1.0 l.4} Uel BASPO217 -
1.0 oG 1.0 Ca0 0lL025 1.8 1.0 0.0 BASPO218
1o laU 10U Uul o025 loed leD 060 BASP{i219
1o lew leid T La{025 l.0 1.0 (P ] RASP(220
1.0 l1.C 1leU 0.0 0.0025 1.0 1.0 0.0 BASPQ221
1.0 1.0 1s0 0.0 0.C025 1o 1.C Jel BASPL 222
1.0 leG 1ea0 060 046025 1.0 1.0 0.C BASPO223
1,0 loC 160 000 0,C025 lou 1le0 060 BASP(O224
l.0 letl  leil Uel welil25 1.2 1.0 Ged BASPO225
1.9 1.¢ 1.0 Uald O.CCZS 1.0 1.0 0.0 BASP0226
1o © leGC lel CeU (eC025 10 140 0.0 BASP(227
1.0 Lot 1a0) Colc JeCU25 1.0 1.0 CeC BASP0228
1.0 leC 140 0.0 0420625 1.0 1.0 0.0 BASP0O229
1.0 leb 1e0 Gl D.C025 1.0 1.0 Ue U BASPO230
l1.¢ leC 1la0 00 0.0025 1.0 1.0 0.0 o BASPO231
10 10 160 060 0600025 10 10 U0 BASP0O232
1.0 leU 1.0 Q.0 ©a€325 1.0 1.6 OeC BASP0233
1.0 leC 1.0 0.0 G.C025 1.0 1.0 0.0 ’ BASP0234
1o 9 loG 1leU 08 DeCO25 le0O 1la0 0.0 BASP0235
ledd 1.¢ 1.0 CoC C.0025 1.0 1.0 (s 0Q BASPO236
1.0 1.0 1.0 0.0 0.,C025 1.0 1.0 O C ; BASPO237
1.0 1.¢ 1.0 G.G €.CG25 1.0 1.0 Uel BASP(O238
l.6 l.G 1.0 Co0 0.C€025 1.0 1.0 U.C BASP0O239
1ls 0 leG 100 000 0,C025 10 160 Ve 0 BASP024G
1.4 1o 1a0 wefl DeCU25 1.0 1.0 0.0 BASP(O241
1.0 10 1e0 Je0 04025 1.0 1.0 0.0 BASPQO242
1o 0 1aG 10 GoU 05,0025 leUO 1la0 0.0 BASPN243
loid 1.6 led DG U.C025 1.0 1.0 0.0 BASPO244
1.0 1.0 1.0 0.0 0.6G025 1.0 1.0 0.0 BASPO245
1.0 l.¢ 1.0 9.0 0.6025 1.2 1.8 Oeu BASPG246
1.0 1ol 10 060 Do0G25 1.0 1.0 U.C RASPQ247
1e 0 leC 1lo0 Vo0 06G025 loGO 1le0 Oe0 BASP0248
1.0 1.0 1.0 Jdetd Ua0C25 l.0 1.0 U0 BASPO249
1.2 1.C 1.0 C.0 C€.C025 1.0 1.0 0.0 BASP0O250
le 0 leC 1lel Coll Ue0025 leO 160 0.0 BASPN251
35 DAYS-INTERVAL DATA 0OF PRECIPITATICN FROM 1638 1O 1971 BASPQ252



L6C

1928
1936
1S4
1641
1942
1943
1644
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1958
1957
1958
1959
1960
1561
1562
1663
1664
1€¢5
1966
1967
1568
1569
1s7C
1971

1938

3¢

Jel?2
14 (S
1¢43
1.53
Ge23
Q.27
la 01
1.7
2.21
0a71
1.00
6.29
Je52
1.03
Uo 41
Jelb
C.C9
.61
Ue43
Lol9
V.81
Ue53
1437
V.02
1.C7
1.22
.71
005(‘*
1423
Ce28
Lo l4
Get5
0028
H4G8

DAYS—-INTERVAL DATA

2a2L5S

2.48
10563
1.43
1.09
1.63
Ge67
le 34
1.23
Ce 52
1.19
10 80
l.61
2.58
(e 35
Ue82
0.57
1.71
Q.45
0. 77
1.03
.23
1o 41
1.51
0,47
0.02
0.53
1o 39
144
0.09
Qe 20
1.35
De 2l
1. 70

20 19

1.51
1o 57
C.74
1.11
0. 83
1.21
40 55
1.85
1.81
2.91
1.51
2.01
CeB
2.69
2468
3.35
1.30
0.68
0.91
2460
4,07
C.85
lo18
4.83
0426
1.67
0.89
Go 48
Ge 26
0.57
1.36
1.73
2470
Coll

2022

2.83 2,14
20l4 3425
6,15 5.€2
283 2.8¢
7.08 1.67
leG4 6459
12042 26004
679 1.2¢
1.87 2.11
520 4.69
1.65 1.86
3833 6615
Ce88 2424
6.33 7.60
1e37 2631
G571 2002
1.54 4.84
.72 4,02
1le46 140
331 Te57
1.23 2.44
2417 5.52
lo28 4410
2:00 4092
1.02 0s59
Je22 6415
2+S7 5.84%4
2463 6426
2.21 Go76
1.20 1.42
2.16 4.37
4.30 3,28
4949 1la58
CF STREAM
2608 2005

4449
8o 9V
4483
703
Be. 69
3.43
la 60
4ol
2.71
2.57
9,76
3216
4,02
10.07
1l 08
217
0«94
3.68
1.28
16e 46
3,00
2435
4,59
2'61
4480
4451
3,73
8000
2667
562
2.38
6482
6012
2. 7¢

2.24
0.72
Ca94
2041
2.34
6451
5049
5.01
0.32
2.89
6439
6497

13.37

4.45

4094

2. 9

0.19

1.30

2.51

1499

7.19

7.38

5.57

6456

9422

2.70

2.23

3462

1.78

4.28

3.65

6423

0047

6.65

~

5.60
5.84
2.81
3654
4‘51
1. 55
4077
4.11
2490
0.82
2.12
1.13
5.63
5.38
2452
0.82
0.56
l.06
C.70
Oe5S
2493
4420
T.91
3.80
2495
2.86
6.1C
4091
l.09
1.91
6.41
1.07
2037
1.49

GAUGE FRGM 14938 TC

Te 77

4040

2629

2662
6el4s
4429
7.21
3. 14
2620
1058
1,27
Je25
1.C5
3062
1.04
6.59
0.28
053
1,09
3.79
0.03
5005
6.11
2.31
225
5.24
8e 23
4.90
2. 66
Bedh
De12
3.19
5.91
4,77
4004
.73
1971
2.31

0.16
l.14
1.05
4081
3.77
1.83
2020
0.51
4. 32
1.50
0.67
1.51
(.48
2.05
Q.00
3,77
2483
5.84
2.69
2612
000
6.13
5.03
4.87
le32
2447
1.64
0632
Oe47
2.98
3.06
2.80
1.38
554

N

.14

2,05
N.81

.3.82

0678
0.68
0.07
1693
0.05
2e14
N.89
3.30
0406

Je26

lea?
2.40
1e46
Ce GO
0.03
D.48
le45
2439
0.30
0.37
2.80
le62
1.04
5.88
Oell
0.9
0e39
241
0.01
VeU5
2449

2.10

0.15
0.95
1.56
Ue G2
3.14
233
3.6G8
0.62
Oe 78
2.98
0.23
le22
0.02
0.24
1.G9
1.06
Oe 18
0.03
039
Qe 45
0446
1.60
l1.73
1.01
Qe 60
C.34
1.03
2425
Ce43
le4l
l1.31
1.36
Oe 4G
e95

BASP0253
BASP(G254
BASPU255
BASP0256
BASP0257
BASP0258
BASP0259
BASPO260
BASP0261
BASP0O262
BASP3263
BASP0264
BASP0265
BASP0266
BASP0267
BASP0268
BASP0269
BASPO2T0
BASP0271
BASP0O272
RASP0273
BASPO274
BASP0275
BASPC276
BASP(G277
BASPO278
BASP0279
BASP0280
BASPO231
BASP0282
BASP(0283
RASPO284
BASP0285
BASP(286
BASP0287
BASP0288



86¢

1939
194Q
1941
1942
1943
1944
1945
1946
1947
1548
1949
1950
1651
1952
1923
1654
1955
1656
1657
1958
165S
196G
1661
1962
1563
15¢€4
1665
1566
16867
1968
1566
1570
1971
C

C

C

223
2e16
2021
3.14
4048
2643
3.21
20871
234
2.93
2084
2.84
2042
2.52
1.95
1o 74
1.53
1.39
1.01
1.60
26016
2420
1.78
lo 70
1.45
1.13
1.25
2.02
Ue 80
l1a23
leal
1.C9
Je90

2626
2429
’1062
2018
34356
3.(:3
3.26
2¢ 80
229
2.31
4.E6
2459
2062
2.45
1.S8
le 72
1.62
le4l
l.08
l1.73
26 22
3.33
letl
be D
l.64
1020
l1.11
1.38
0. 83
1.25
1.13
1.¢8
0'96

2e 34
3.43
2020
24175
3.12
2+ 54
5.86
269
2426
236
G.31
266
2059
2.39
2.G2
le 74
1.57
1.31
1.10
2.31
2011
2405
1.66
1.76
1.40
la12
le44
l.41
Uo 78
1.15
7.11
G.S55
3. 32

247
Zelb
2e22
20069
294
3,66
2.29
2070
3.07
3.50

260 .

3,11
2e£2
1.54
le72
1.62
1.25
3.29
8262
2054
3.32
l.64
le42
l.08
lel4
1. 0C
£S5
2.01
2.88
1.29

CGNTROL CARDS(OMITTED) FOR
NUMBER OF INPUT DATA FOR EACH SERIES IS 405
NUMBER CF LAGS IS 36

2620
3.26
2018
6440
2478
13. 52
137
20 52
3.33
2.8
12.58
20353
11.88
24 BO
1.62
5009
1. 46
1.17
225
3.24
192
3.17
4079
1.45
1.21
171
e GG
1.47
(e B4
l.12
3.66
l1.58
1.08

2. c8
2-“1'8
3421
3.18
3.56
44T
3.28
2e41
6087
2.44
6.22
2457
4o 42
2.46
2.33
12 64
1.58
1.25
4453
2.37
4o T2
3.25
2.25
10.04
1. 25
1683
3,28
Ue 56
De82
2.39
3.23
1.5
2.61

THE BMD 02T

1U.18
2.11
3,88
8e 40
2076
3,08
3439
26435
4446
l4.34
5.88
3,48 1
16e16
2.09
3,20
1651
le34
1,01
14.66
2.33
loe96
2.53
1.55
2429
Ce95
1le06
1G.34
1.10
9075
e 97
200
1.40
1.35
PROGRAM

234
1.96
2465
2485
2o BE
3.18
263
2,07
2641
5.05
3.32
Se43
30717
1.98
1. 65
l1.34
1.28
De96
214
9.12
2611
1.82
1.79
2.71
1.19
0es83
1.63
1.01
3,07
2.01
1215
.73
4459

2642
1.58
2420
3.01

2o 54

2+50
2621
2424
2.97
2+85
4.47
2096
1.89
1.56
l.44
1.21
0«80
1.51
2.45
304
6.93
le44
1.73
0.98
3400
.24
0.76
1.29
1.87
123
Je54
J.94

2010
2.04
3.27
3.(8
2039
5.66
13.90
2012
2.18
250
2672
2.72
378
1.81
1.55
1.35
6. 04
0. 81
le41
2. 60
le92
2.56
1.92
20\}8
1.07
Ge92
3.12
0.70
2.58
C.66
136
1.40

24036
2.056
8,83
3460
2058
284
3.05
2425
225
2074
2472
248
3¢50
1.99

l.66

1.49
1.45
CeS2
1.61
2.32
26465
3.20
3448
1.69
1.49
Ue85
1.46
0.71
1.56
l.48
160
1.13

2.15
2.48
3.15
3.13
2050
3.07
2.87
2.31
2425
3631
2.71
246
2072
l1.94
l.74
1.49
1.36
0099
1.58
2.20
le 77
1.75
1098
1.68
1.16
le 35
1.34
0.75
1.30
1.28
1405
0.97

BASP4289
BASP0290
BASPQ291
RASPU292
BASP0293
BASPO294
BRASP0O295
BASPU296
BASP0O297
BASPO298
BASP(299
BASPGU300
BASPO301
BASPU3U2
BASPO303
BASPO304
BASPO305
BASPO306
BASPO307
BASP0O308
BASPO30GS
BASP(O310
BASPO311
BASP(}312
BASPQO313
BASPO314
BASPQ315
BASPO316
BASPO317
BASPO318
BASPO319
BASPO320
BASPO321
BASPG322
BASPQ323
BASP0324
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C RAS: SERIES IS ACCRETICA
PRUBLVMKANSA?2

(6Xy6F12.5)

SELECT YES YES YES 01 ub U2
C BASE SERIES IS STRFAM
PEGBILMNKANSAZ

{18XyEF12.5)

FINISH

6 435 36 1luu 1. OGUMONTHYES

03 U4 05

5 4Ub 36 100 leOOMUNTH

D6

112 1

112 1

BASPO325
BASPO326
BASPO327
BASP(328
BASPO329
BASPO330
BASPO331
BASP0332



interval is given by

APPENDIX B

Confidence Limits for the Spectrum

The sampling distribution of a smoothed estimate of a spectrum

is approximately chi-square with v degrees of freedom.
spectral density SXX(Q) based upon an estimate S

the number of lags, M and a total record length T, a l-a

v N
SXX(Q) < s @ < ’ S ()
2 - XX -
X v; a/2 X v; 1-a/p

Hence, for a
(Q) measured with

confidence

(3 1)

where y = 2.667 T/M for the Turkey window used in this program

(See p. 252, Jenkins and Watts, 1968.)

300



Figure
2.1

2.2

2.3

2.4

2.5

2.6
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APPENDIX C

List of Figures

Schematic Representation of Linear Reservoir System.
Phreatic Aquifer with Fully Penetrating Stream and
Arbitrary Bottom.

Aquifer Response to Stream Stage Fluctuations;

Plot of f at x/L = 0.2 with Different Values of I'.
Aquifer Response to Stream Stage Fluctuations;

Plot of f at x/L = .5 with Different Values of T.
Aquifer Response to Stream Stage Fluctuations;

Plot of f at x/L = .8 with Different Values of TI'.
Aquifer Response to Accretion; Plot of g at

x/L = .25 with Different Values of T.

Aquifer Response to Accretion; Plot of g at

x/L = .5 with Different Values of T.

Aquifer Response to Accretion; Plot of g at

x/L = .75 with Different Values of I.

Schematic Representation of Dupuit Aquifer with
Adjacent Linear Reservoir.

Response of the Aquifer-Reservoir System, Plot of

g along the Aquifer with aLz/a = 1.0 and SL/% = 0.1.
Response of the Aquifer-Reservoir System, Plot of

g along the Aquifer with aLz/a = 1.0 and SL/% = 0.5.

Response of the Aquifer-Reservoir System, Plot of

g along the Aquifer with aLz/a = 1.0 and SL/% = 1.0.
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34

38
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Figure Page

2.13 Response of the Aquifer-Reservoir System, Plot of g

along the Aquifer with aLz/u = 1.0 and SL/% = 5.0. 41
2.14 Response of the Aquifer~Reservoir System, Plot of g

along the Aquifer with aL2/a = 200 and SL/% = 5. 42
2.15 Response of the Aquifer-Reservoir System, Plot of

‘ : . 2,
shh,x=0/shh along the Aquifer with al”/a = 1.0 and

SL/2 = 0.1. 43
2.16 Response of the Aquifer-Reservoir System, Plot of

Shh|x=0/shh along the Aquifer with aLz/a = 1.0 and

SL/% = 0.5. 44
2.17 Response of the Aquifer-Reservoir System, Plot of

Shhlx=0/shh along the Aquifer with aLz/a = 1.0 and

SL/% = 1.0. 45
2.18 Solution to Equation 2.3.45. 52-54
2.19 PH(x,qa)dZH in Equation 2.3.45. 56
2.20 %E P (x,w)dZ in Equation 2.3.45. 57
2.21 Plot of f in Equation 2.3.50 withu = 0.1. 58
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