WATER BALANCE STUDIES OF THE BAHR EL GHAZAL SWAMP

by
Siu-On Chan
and
Peter S. Eagleson

RALPH M. PARSONS LABORATORY
FOR
WATER RESOURCES AND HYDRODYNAMICS

Department of Civil Engineering
Massachusetts Institute of Technology

Report No. 261

Prepared under the Support of The Agency for International Deveopment The United States Department of State and the
Technology Adaptation Program

WATER BALANCE STUDIES OF THE BAHR EL GHAZAL SWAMP

by

SIU-ON CHAN
and

PETER S. EAGLESON

RALPH M. PARSONS LABORATORY FOR WATER RESOURCES AND HYDRODYNAMICS

Department of Civil Engineering MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Report No. 261

Prepared under the Support of
The Agency for International Development The United States Department of State

Abstract

Future increases in Egyptian and Sudanese water resources may come from reduction of the large water losses of the Upper White Nile's swampy regions, particularly from the Bahr el Ghazal swamp. In this work, new methods of water balance estimation which incorporate the dynamic interaction of climate, soil and vegetation are applied to the Bahr el. Ghazal basin in order to study its contribution to the flow of the White Nile, and to estimate the potential water recovery through drainage of this swamp.

ACKNOWLEDGEMENTS

This work was sponsored by the M.I.T. Technology Adaptation Program which is funded through a grant from the Agency for International Development, United States Department of State.

The work was performed by Siu-On Chan, Research Assistant, and essentially as given here, constitutes his thesis presented in partial fulfillment of the requirements for the degree of Civil Engineer in the field of Water Resources. The work was supervised by Dr. Peter S. Eagleson, Professor of Civil Engineering

The authors wish to thank the many persons who made contributions to this work.

They are very grateful to Dr. Romas Krzysztofowicz, Mr. Fabio Ramos and Dr. Dick K. Yue for their many helpful discussions.

Particular thanks are due to Mr . Pedro Restrepo who provided technical assistance on computer work, and to Mrs. Anne L. Clee, who typed this report.

TITLE PAGE 1
ABSTRACT 2
ACKNOWLEDGEMENT 3
TABLE OF CONTENTS 5

LIST OF SYMBOLS 10
LIST OF TABLES 15
LIST OF FIGURES 17

Chapter 1 INTRODUCTION 20
1.1 The Nile System 20
1.2 Apparent Water Losses in the Swampy Region
of the Upper Nile Basin
1.3 Evapotranspiration of Papyrus Swamps and
Grasslands
1.4 Projects for Conserving Water for Egypt and the Sudan33
1.5 The Objective of this Work 34
Chapter 2 METHODOLOGY 36
2.1 Introduction 36
2.2 Water Balance Model 36
2.3 Hydrologic Parameters and Distributions 42
2.3.1 Introduction 42
2.3.2 Precipitation and its Distribution 42
2.3.3 Evapotranspiration 47
2.3.4 Storm Surface Runoff 54
2.3.5 Groundwater Runoff 55
2.3.6 Yield of a Catchment and its Distribution 57
2.4 Remote Sensing as a Tool to Define Basin Parameters 62

Page No.
Chapter 3 GENERAL DESCRIPTION OF THE BAHR EL GHAZAL BASIN
3.1 Introduction
64
3.2 Demarcation of Boundaries of Sub-catchments 66
3.3 The River System 69
3.3.1 A Typical River 69
3.3.2 Naam 71
3.3.3 Maridi 71
3.3.4 Tonj 71
3.3.5 Jur 72
3.3.6 Pongo 72
3.3.7 Lo11 72
3.3.8 Bahr el Arab 72
3.3.9 Raqaba el Zarqa 73
3.3.10 Bahr el Ghazal 73
3.4 Hydrological Zones 74
3.4.1 Introduction 74
3.4.2 The Flood Region 74
3.4.3 The Equatorial Region 76
3.5 Soils and Vegetation Distribution 77
3.5.1 Soil and Vegetation Distribution in
the Central Swampland
3.5.1.1 On the "High Land" 77
3.5.1.2 On the Intermediate land 78
3.5.1.3 On the Toich land 79
3.5.1.4 On the Sudd land 80
3.5.1.5 On the edge of the Ironstone
Plateau
3.5.2 $\begin{aligned} & \text { Soils and Vegetation of the Sub- } \\ & \text { catchments }\end{aligned}$
$\begin{array}{ll}\text { 3.5.2.1 On the Ironstone Plateau } & 81\end{array}$
3.5.2.2 On the Green Belt 82
3.4.2.3 On the Central Hills 83
3.6 Groundwater Table 83
3.7 Climatic Parameters 84
3.7.1 Rainfall Characteristics 84
$\begin{array}{ll}\text { 3.7.2 } & \begin{array}{l}\text { Potential Evaporation and Evapo- } \\ \text { transpiration }\end{array}\end{array}$
3.7.2.1 Potential Evaporation97
3.7.2.2 Potential Evapotranspiration 101
3.8 The Inhabitants and their Living Pattern 107
3.8.1 On the Flood Region of the Central Swampland 107
3.8.2 On the Ironstone Edge of the Central Swampland 107
3.8.3 On the Ironstone Plateau of the Sub- catchments 108
3.8.4 On the Green Belt of the Sub- catchments 108
3.8.5 Population Distribution of the Bahr el Ghazal Basin 109
Chapter 4 MODELLING THE BAHR EL GHAZAL BASIN 113
4.1 Introduction 113
4.2 A Preliminary Water Balance of the Central Swampland 114
4.3 A Refined Water Balance Model of the Central Swampland 118
4.3.1 The Refined Water Balance Mode1 118
4.3.2 CDF of Catchment Precipitation 122
4.3.3 Uncertainty in the Water Yield from each Sub-catchment 126
4.3.4 A Refined Mean Annual Water Balance of the Central Swampland 136
4.4 Uncertainty in the Potential Water Yield from Swamp Drainage 139
4.4.1 Introduction 139
4.4.2 Simulation of Correlated Annual Catchment Yields 143
4.4.3 Uncertainty in the Potential Water Yield from Swamp Drainage 154
Chapter 5 CANAL COST-CAPACITY UNDER UNCERTAIN CANAL FLOWS 160
5.1 Introduction 160
5.2 Analytical Representation of the Simulated Distributions 161
5.3 Derivation of the Distribution, Mean and Variance of the Potential Canal Flows Given the Canal Capacity 167
5.3.1 Derivation of the Distribution of Potential Canal Flows Given the Canal Capacity 167
5.3.2 Derivation of the Mean and Variance of the Potential Canal Flows Given the Canal Flows Given the Canal Capacity 171
5.3.3 Estimation of the Distribution, Mean and Variance of the Total Potential Water Recovery at Malakal due to Canal Inflows 180
5.4 Canal Cost-Capacity under Uncertain Canal Flows 187
5.4.1 Introduction 187
5.4.2 Determination of the Cost Function of Canal Work 187
5.4.3 Cost-Capacity Comparison of Canal Alternatives under Uncertain Canal Flows 192
5.5 Derivation of the Distribution, Mean and Variance of the Potential Canal Flow Given the Canal Capacity (A Refined Model) 196
5.5.1 Introduction 196
5.5.2 Derivation of the Distribution, Mean and Variance of the Monthly Potential Canal Flow Given the Canal Capacity 198
5.5.3 Derivation of the Distribution, Mean and Variance of the Annual Potential Canal Flow Given the Canal Capacity (A Refined Model) 203
Chapter 6 SOME ANTICIPATED IMPACTS OF CANAL PROJECTS 210
6.1 The Jonglei Canal Project 210
6.2 On Environmental Impacts 211
6.3 On Sociological Impacts 212
Chapter 7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 214
7.1 Summary and Conclusions 214
7.2 Future Work 215
7.2.1 Suggested Hydrologic Studies 215
7.2.2 Suggested Remedial Measures for Some Adverse Environmental Impacts 216
7.2.3 Suggested Remedial Measures for Some Adverse Sociological Impacts 217
REFERENCES 219
APPENDIX A Hydrologic Parameters of the Bahr el Ghazal Basin 223
APPENDIX B Frequency Distribution of Catchment Precipitation and Catchment Yield 265
APPENDIX C Computer Programs 293

NOTE:	1) Symbols not included in the list are defined in the text wherever they are used.
	2) In cases if a single notation represents more than one quantity in the text, it should be self-evident from the context to which it implies.
	3) In the text, overhead bar normally indicates time average and underbar, areal average.
A	catchment area, km^{2}
A_{s}	shortwave albedo of wet soil surface
A_{w}	space-time average wetted surface area in a catchment, km^{2}
$\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}$	monthly proportionality factor
b_{i}	ratio of gaged mean monthly yield to gaged mean annual monthly yield for the $i^{\text {th }}$ month
c	pore disconnectedness index
$\mathrm{C}_{\text {L }}$	total canal construction cost, U.S. \$
D	deep seepage at Central Swampland, md
$\mathrm{D}_{\text {B }}$	deep seepage at the Bahr el Ghazal basin, md
d	diffusivity index
E	evaporation effectiveness
$\mathrm{E}_{\mathrm{p}_{\mathrm{A}}}$	annual (seasonal) total potential evapotranspiration, cm
$\mathrm{E}_{\mathrm{r}_{\mathrm{A}}}$	annual (seasonal) surface retention, cm
E_{rs}	surface retention loss from bare soil fraction, cm
E_{rv}	surface retention loss from vegetated fraction, cm
E_{r}	surface retention loss, cm
$\mathrm{E}_{\text {S }}$	soil moisture evaporation from bare soil fraction, cm
E_{v}	transpiration from vegetated fraction of surface, cm

${ }^{E_{T}}$	annual (seasonal) evapotranspiration, cm
$e^{\text {p }}$	potential evaporation rate of wet soil surface, $\mathrm{cm} /$ day
$e_{\text {pw }}$	potential evaporation rate of water surface, cm/day
$\mathrm{e}_{\mathrm{p}}^{*}$	weighted potential evapotranspiration rate, cm/day
e_{p}^{\prime}	Piche tube water evaporation rate, $\mathrm{cm} /$ day
G	gravitational infiltration parameter
G_{L}	ungaged inflow to Central Swampland, md
H	mean residual sensible heat flux, ly/min
H	depth of channe1, m
h	storm depth, cm
h_{0}	surface retention capacity, cm
J_{0}	annual Jebel spillage, md
K(1)	saturated hydraulic conductivity, $\mathrm{cm} / \mathrm{sec}$
k_{v}	potential transpiration efficiency
$\mathrm{k}_{\mathrm{v}}^{\prime}$	plant coefficient
$\mathrm{L}_{\text {e }}$	latent heat of vaporization, $\cong 597 \mathrm{cal} / \mathrm{g}$
M	vegetated fraction of surface (vegetal canopy density)
M_{0}	equilibrium vegetal canopy density
m	pore size distribution index
$\mathrm{m} v$	mean annual (seasonal) number of storms
m^{\prime}	mean annual (seasonal) number of rainy days
m_{vc}	mean annual (seasonal) number of catchment storms
m_{τ}	mean length of rainy season, days
m_{H}	mean storm depth, cm
m_{i}	mean storm intensity, cm/sec

$m_{t_{r}}$	mean storm duration, days
$m_{t_{b}}$	mean time between storms, days
N	cloud cover
n	effective medium porosity
$\mathrm{P}_{\text {A }}$	annual precipitation, cm
P_{0}	annual precipitation at Central Swampland, md
$\mathrm{P}_{\text {S }}$	annual seasonal precipitation, cm
q	canal flow, md/yr
q_{i}	Insolation rate on a unit surface of the catchment, $1 y / \mathrm{min}$
q_{i}	monthly canal flow, md/month
q_{b}	net outgoing longwave radiation rate, $1 \mathrm{y} / \mathrm{min}$
q_{c}	canal capacity, md/yr, $\mathrm{Mm}^{3} /$ day
q_{cm}	monthly canal capacity, md/mo, $\mathrm{Mm}^{3} / \mathrm{mo}$
$\mathrm{q}_{\text {A }}$	annual canal flow, md/yr
q_{N}	annual canal flow from the north-going canal, md/yr
q_{S}	annual canal flow from the south-going canal, md/yr
q_{T}	total annual potential water recovery at Malakal, md/yr
${ }^{\text {q }}$ CS	capacity of south-going canal, md/yr
q_{CN}	capacity of north-going canal, md/yr
$\mathrm{R}_{\mathrm{g}_{\mathrm{A}}}$	annual (seasonal) groundwater runoff, cm
$\mathrm{R}_{\mathbf{s}_{\mathrm{A}}}$	annual (seasonal) surface runoff, cm
S	relative humidity
50	space-time average soil moisture in surface boundary layer
$\mathrm{T}_{\text {A }}$	air temperature, ${ }^{\circ} \mathrm{C}$
T_{S}	wet season air temperature, ${ }^{\circ} \mathrm{C}$

w	capillary rise from water table, cm/sec
w	top width of canal, m
x	normalized annual canal flow
x_{c}	normalized annual canal capacity
$\mathrm{x}_{\mathrm{ci}}, \mathrm{x}_{\mathrm{cj}}$	normalized monthly canal capacity
x_{i}	normalized monthly canal flow
${ }^{\text {x }}$	normalized annual canal flow from the north-going canal
${ }^{\text {x }}$	normalized annual canal flow from the south-going canal
x_{T}	normalized total annual potential water recovery at Malakal
$\mathrm{x}_{\text {CS }}$	normalized annual canal capacity of the south-going canal
x_{CN}	normalized annual canal capacity of the north-going canal
Y_{A}	annual catchment yield, cm
y	normalized annual catchment yield
z	depth to water table, cm
α	reciprocal of m_{i}, $\mathrm{sec} / \mathrm{cm}$
β	$\text { reciprocal of } m_{t_{h}} \text {, days }{ }^{-1}$
δ	$\text { reciprocal of } \mathrm{m}_{\mathrm{t}_{\mathrm{r}}} \text {, day }{ }^{-1}$
η	$\text { reciprocal of } \mathrm{m}_{\mathrm{H}}, \mathrm{~cm}^{-1}$
K	parameter of Gamma distribution of storm depth
λ	parameter of Gamma distribution of storm depth, equal to $\mathrm{k} / \mathrm{m}_{\mathrm{H}}$, cm^{-1}
Δ	slope of vapor pressure-temperature curve
Δ	relative error term

v	counting variable for number of storms
σ	capillary infiltration parameter
σ_{x}	standard deviation of x
${ }_{x}$	mean of x
τ	length of rainy season, days
ϕ_{e}	dimensionless desorption diffusivity
ϕ_{i}	dimensionless sorption diffusivity
$\psi(1)$	saturated soil matrix potential, cm (suction)
E[]	expected value of []
J []	evapotranspiration function
$\mathrm{P}[\mathrm{a}, \mathrm{x}]$	Pearson's incomplete Gamma function
$\operatorname{Var}[$]	variance of []
$\Gamma[]$	Gamma function
$\gamma[a, x]$	incomplete Gamma function

LIST OF TABLES

Table No.

Page No.

1.1 Apparent Water Losses of Major Nile Swamps 34
3.1 Precipitation and Discharge for the Bahr el Ghazal Basin 70
3.2 Location of Meteorological Stations and Their Mean Annual Precipitation Data 86
3.3 Long-term and Short-term Rainfall Parameters 94
3.4 Space-time Mean Monthly Catchment Precipitation 96
3.5 Important Catchment Precipitation Parameters (Space-time Averages) 98
3.6 Mean Annual Station Insolation 100
3.7 Space-time Mean Monthly Catchment Potential Evaporation (Water Surface) 102
3. 8 Space-time Mean Monthly Catchment Potential Evaporation (Wet Soil Surface) 103
3.9 Piche Reduction Factor 104
3.10 Catchment Potential Transpiration Efficiency and Plant Coefficient 106
3.11 Population Statistics of the Bahr el Ghazal Basin (26) 112
4.1 Catchment Precipitation Parameters 123
4.2 Space-time Average Wetted Surface Area Percentage in a Catchment 126
4.3 Results Generated by the Soil Parameters in Figure 4.5 132
4.4 Climatic-Soil-Vegetal Parameters of 6 Sub- Catchments 137
4.5 Components of the Refined Water Balance for the Sub-catchments 138
4.6 Simple (lag-zero) Correlations of Annual Observed Catchment Precipitations (32 Years) 144

Table No.
Page No.
4.7 Lag-one Correlations of Annual Observed Catchment Precipitations (32 Years) 145
4.8 Comparison of the Observed and the Generated Catchment Precipitation Means and Variances 151
4.9 Simulated Mean Annual Catchment Yield Data 153
4.10 Lag-zero Correlations of Simulated Annual Catchment Yield 155
4.11 Simulated Mean Annual Combined Catchment Yield Data 158
5.1 Simulated Distribution of Annual Combined Catchment Yield, Catchment C456 (including Polynomial Coefficients of Equation (5.3)) 166
5.2 Comparison of Empirical Results and Derived Results of Mean and Standard Deviation of Canal Flow with Unlimited Canal Capacity (Normalized) 176
5.3 Mean and Standard Deviation of Annual Canal Flows Given the Canal Capacity (Normalized), for the North-going Canal 177
5.4 Mean and Standard Deviation of Annual Canal Flows Given the Canal Capacity (Normalized) for the South-going Canal 178
5.5 Construction Costs for Phase I of the Jonglei Canal Project 190
5.6 Cost-capacity Design (North-going Cana1) 193
5.7 Cost-capacity Design (South-going Cana1) 194

LIST OF FIGURES

Figure No.
1.1a The Nile System - The Blue Nile and the Joint Nile (1)
1.1b The Nile System - The Headwater Lakes and the White Nile (1)
1.2 Longitudinal Profile of White and Main Nile (1) 24
1.3 Rainfall Distribution along the Nile System (1) 25
1.4 Jebe1-Zeraf Swamp (The Sudd) (3) 26
1.5 A Crude Annual Water Balance (Jebel-Zeraf Swamp) 29
1.6 A Crude Annual Water Balance (Ghazal Swamp) 30
2.1 Climatic Influence on the Annual Water Balance 39
2.2 Schematic Representation of Soil Column 40
2.3 Soil Moisture Representation 41
2.4 Model of Precipitation Event Series 43
2.5 Frequency of Annual Precipitation, Clinton, MA 45
2.6 Frequency of Annual Precipitation, Santa Paula, CA 46
2.7 Evapotranspiration Function 53
2.8 Plot of Surface Runoff Function 56
$\begin{array}{ll}\text { 2.9 Frequency of Annual Basin Yield with Sub-optimal } \\ & \text { Vegetal Cover (South Branch of the Nashua River at } \\ & \text { Clinton, MA, Area }=174 \mathrm{~km}^{2} \text {) }\end{array}$
2.10 Frequency of Annual Basin Yield with Sub-optimal Vegetal Cover (Santa Paula Creek near Santa Paula, CA, Area $=64 \mathrm{~km}^{2}, \mathrm{~K}=0.25$)
61
3.1 General Location of the Study Area
3.2 Thiessen Division of the Bahr el Ghazal Basin and Demarcation of Boundaries of Sub-catchments
Figure No. Page No.
3.3 Tributaries of the Bahr el Ghazal Basin 68
3.4 Hydrological Map, Bahr el Gházal Basin 75
3.5 Correlation between Mean Annual Station Precipitation and Mean Annual Number of Rainy Days 87
3. 6 Correlation between Mean Annual Station Precipitation and Latitude 88
3.7 Frequency of Annual Precipitation (Station Wau) 92
3.8 Distribution of Population during Wet Season (26) 110
4.1 Schematic Representation of the Bahr el Ghazal Basin 115
4.2 Triangular Distribution of the Normalized Temporal Mean Flooded Area 117
4.3 A Preliminary Mean Annual Water Balance of the Central Swampland 119
4.4 Frequency of Annual Catchment Precipitation (Tonj Catchment) 124
4.5 Soil Parameter Range for the Tonj Catchment 131
4.6 Frequency of Annual Catchment Yield (Tonj Catchment) 133
4.7 Frequency of Annual Catchment Yield for Tonj Catchment: Effects of Varying the Water Table Depth 135
4.8 A Refined Mean Annual Water Balance of the Central Swampland 140
4.9 Canal Routes 142
4.10 Frequency of Annual Combined Catchment Yield 159
5.1 Simulated Distribution of Annual Combined Catchment Yield (Functional Representation) 163
5.2 Annual Canal Flow as a Function of Annual Combined Catchment Yield (Normalized) 169
Figure No. Page No.
5.3 Cumulative Distribution of Annual Combined Catchment Yield (Normalized) 169
5.4 Cumulative Distribution of Annual Canal Flow (Normalized) 169
5.5 Mean and Standard Deviation of Annual Canal Flow Given the Canal Capacity (Normalized), North-going Canal 179
5.6 Simulation of the Total Canal Inflows at Malakal 186
5.7 Cost-Capacity Comparison of Canal Alternatives under Uncertain Canal Flows 195
5.8 Monthly Combined Catchment Yield (as Proportional to Gaged Mean Monthly Yield) 197
5.9 Relationship between Monthly Canal Flow and Monthly Combined Catchment Yield 200
5.10 Relationship between the Normalized Monthly Canal Capacities for Months i and j 205

Chapter 1

INTRODUCTION

1.1 The Nile System

The river Nile flows a distance of 6680 kilometers from its source in the equatorial lakes to the Mediterranean Sea. It is the second longest river in the world, shorter than the Mississippi-Missouri (6823 km), but longer than the Amazon (6437 km). Except for its headwaters, the Nile flows through only two countries, the Republic of the Sudan and Egypt. Figure 1.1 shows the Nile system. The numbers in brackets are the mean annual discharges in milliards* of cubic meters along its course.

The waters of the lower Nile come from two main sources - the Blue Nile in the east and the White Nile in the south. The White Nile originates in a series of equatorial lakes lying astride several international boundaries. These lakes include Lake Albert, Lakes Edward and George, Lake Kioga and Lake Victoria. The last is the largest and contributes more than 90% of the total headwaters flow (23 md). Most of the lakes are within the boundaries of Uganda, while the southern-half of Lake Victoria is in the territory of Tanzania.

The upper White Nile is known as the Albert Nile from Lake Albert to Nimule, and as the Bahr el Jebel from Nimule to Lake No. At Lake No, the White Nile receives a very minor inflow from the Bahr el Ghazal (0.6 md). Between Lake No and Malakal, it is joined by two more tributaries, the Bahr el Zeraf (4 md) and the Sobat (13 md), all of which
${ }^{\star} 1$ milliard (md) $\equiv 10^{9}$. When used by itself hereafter, the term will refer to the number of cubic meters annually.

FIGURE 1.1a
THE NILE SYSTEM - THE BLUE NILE AND THE JOINT NILE (1)

FIGURE 1.1b
THE NILE SYSTEM -- THE HEADWATER LAKES AND THE WHITE NILE (1)
give the White Nile a combined flow of 27 md at Malakal. It then flows from Malakal to Khartoum, where it is joined by the Blue Nile flowing from the east.

The Blue Nile, starting from Lake Tana in Ethiopia, receives its water from numerous streams along its course, and by the time it gets to the Roseires Dam, the discharge amounts to 50 md - the largest among all tributaries of the Nile. It then receives two more tributaries, the Dinder (3 md) and Rahad (1 md) before joining the White Nile at Khartoum.

The last tributary, the Atbara (12 md), enters the Nile 322 km downstream from Khartoum. This is an ephemeral river, active only during the July to October rainy season.

The White Nile, the Blue Nile and the Atbara jointly give the Nile a total natural discharge of 86 md , which is the approximate mean annual inflow to Lake Nasser at Dongola. According to the Nile Water Agreement concluded between Egypt and Sudan in 1959, 55.5 md of water is allocated to Egypt at the Aswan Dam and 18.5 md is allocated to Sudan (2). The remaining 12 md is accounted for by evaporation and seepage at Lake Nasser.

The longitudinal profiles of the White and Main Nile are shown in Figure 1.2, and the distribution of rainfall along the Nile system is shown in Figure 1.3.

1.2 Apparent Water Losses in the Swampy Region of the Upper Nile Basin

Before reaching Mongalla, the Bahr el Jebel is joined by numerous streams contributing 4.3 md , so that at Mongalla the total discharge is 27 md (see Figure 1.4).

FIGURE 1.2
LONGITUDINAL PROFILE OF WHITE AND MAIN NILE (1)

FIGURE 1.3
RAINFALL DISTRIBUTION ALONG THE NILE SYSTEM (1)

FIGURE 1.4

From Mongalla to Lake No, along the river on both sides are mostly papyrus swamps and savanna grasslands.

Between Mongalla and Bor, the river spills more-or-less equally over both banks in times of flood. The spillage losses in this reach are not as large as those farther north because the extent of the swamps is bounded here by high ground on both sides. On the east bank, high ground ends 15 km north of Bor (612 km from Lake No), whereas on the west, it ends at Lake Nuong (356 km from Lake No). The land levels between Jonglei and Peake's Latitude are such that about 25% of the river spill of this reach goes to the east, occurring in the first 100 km north of Jonglei, while 75% goes to the west, occurring north of Lake Nuong (4). This westward spill migrates toward the Bahr el Ghazal. North of Peake's Latitude, the river spills over both banks, with the west side probably receiving the larger portion.

In a normal year, the 27 milliards passing Mongalla are reduced by spillage to 23.4 md at Jonglei, and to 14.3 md (Jebel and Zeraf) below Lake No. It is estimated (4) that 6 md from the Jebel are spilled westward between Lake Nuong and Buffalo Cape, divided into 4.6 md between Lake Nuong and Peake's Latitude and 1.4 md between Peake's Latitude and Buffalo Cape.

It is surprising that the Jebel, in flowing through this swampy region, loses almost half of its discharge. But it is even more surprising that the Bahr el Ghazal, which receives a total discharge of about 12.7 md from its eight tributaries, loses practically everything while passing through the central swampy region bounded more-or-1ess by the 400 meter contour line (see Figure 3.3). The Bahr el Ghazal Basin, with an area of $500,000 \mathrm{~km}^{2}$, will be fully described in Chapter 3 .

The total area of permanent swamps in connection with the Bahr el Jebel and the Bahr el Zeraf is estimated to be $8300 \mathrm{~km}^{2}$ (5). For the Bahr el Ghazal, it is estimated to be $16,600 \mathrm{~km}^{2}$ (5). The mean annual precipitation on the swampy areas is about 900 mm , which produces inputs of 7.5 md to the Jebel and Zeraf swamps and 15 md to the Ghazal swamps.

In order to have some idea of how much water is lost in the swampy region of the Upper Nile, an approximate water balance of the swamps is necessary.

The above flows can be combined to give the mean annual water balance of the Jebel and Zeraf swamps as illustrated schematically in Figure 1.5. For these swamps, the mean total annual water loss is 14.2 md on $8300 \mathrm{~km}^{2}$, which is about 1.7 meters.

In a similar water balance for the Ghazal swamp, we must realize that the gaged surface inflows from the tributaries of the Bahr el Ghazal do not discharge directly into the permanent swamp (see Figure 3.3). Instead they discharge into the surrounding toich lands.* To the first approximation, the annual precipitation in this region (900 mm) is matched by the open water potential evaporation during the wet season (7 months). If we assume that the vegetation in the toich lands, which is mainly grass, transpires at the same rate as the open water evaporation during the wet season, we may perform a crude water balance of the permanent Ghazal swamp which is independent of the toich lands. This is indicated schematically in Figure 1.6 , where we see the water losses in the Ghazal Swamp alone to be 33.1 md over an area of $16,600 \mathrm{~km}^{2}$, which is about 2.0 meters.

[^0]
$$
1 \mathrm{md}=1 \mathrm{~km}^{3}=10^{9} \mathrm{~m}^{3}
$$
\[

$$
\begin{aligned}
& \text { Apparent Water Loss at the Jebel-Zeraf Swamp } \\
& =\text { Input-Output }=(21.0+7.5-14.3) \mathrm{md} \\
& =14.2 \mathrm{md} \equiv 1.7 \mathrm{~m}
\end{aligned}
$$
\]

FIGURE 1.5
A CRUDE ANNUAL WATER BALANCE

P: Precipitation

E: Actual Evapotranspiration
Y: Gaged Discharges
J: Jebel Spillage
R: Outflow at Lake No
Overbar denotes mean annual values
$1 \mathrm{md}=1 \mathrm{~km}^{3}=10^{9} \mathrm{~m}^{3}$
Apparent Water Loss at the Ghazal Swamp
$=$ Input - Output $=(18.7+15.0-0.6) \mathrm{md}$
$=33.1 \mathrm{md} \equiv 2.0 \mathrm{~m}$
FIGURE 1.6
A CRUDE ANNUAL WATER BALANCE
(GHAZAL SWAMP)

The total water loss of all the swamps (Jebel and Zeraf, and Ghazal) thus amounts to 47.3 md over an area of $24,900 \mathrm{~km}^{2}$, which is about 1.9 meters.

If we compare the apparent water losses (47.3 md) in all the swamps (Jebel and Zeraf, and Ghazal) with the flow of the White Nile at Malakal (27 md) and with that of the total Nile at Dongola (86 md), the ratios are 1.75 and 0.55 , respectively. In other words, more than one and a half times the flow of the White Nile, or half the discharge of the total Nile, disappears in the swamps.

What happens to this water? There are only two practical possibilities - evapotranspiration and deep groundwater seepage. What is the magnitude of the actual evapotranspiration? Could evapotranspiration alone explain most of the losses, or is there appreciable leakage through the aquiclude on which the swamp is founded? These are some of the questions which we hope to answer in this report.

1.3 Evapotranspiration of Papyrus Swamps and Grasslands

From May 1947 to April 1948, Migahid (6) performed a lysimeter experiment to measure the evapotranspiration of papyrus swamps near the Zeraf Cuts. The average result was 6.5 mm per day or 2.4 meters per year.

For the papyrus swamps in the region of Lake Victoria, Vowinckel and Orvig (7) used an energy budget to estimate an evapotranspiration rate of 2.2 meters per year.

For papyrus swamps in Bangweulu, Zambia, Balek (8) used the water balance method to estimate an evapotranspiration rate of 2.1 meters per year.

Based on the above consistent findings, the mean annual potential evapotranspiration of papyrus swamps in tropical Africa is taken to be 2.2 meters per year.

Considering next the potential evapotranspiration of grasslands, experimental values for standard grasses around Lake Victoria (9) indicate a rate of 1496 mm per year (125 mm per month).

For Nigeria (10), experimental values for short grass cover give 1366 mm per year (114 mm per month).

For natural savanna grasslands with forest glades in the Congo Basin (11), water balance estimates show that the mean annual. evapotranspiration is 1082 mm . Since the rainy season there is about 9 months, the mean annual potential evapotranspiration is estimated to be 120 mm per month in the wet season.

From the above values, the mean annual potential evapotranspiration for grasslands in tropical Africa is taken to be 120 mm per month during the wet season.

It is instructive to compare the above average annual rate of evapotranspiration from papyrus swamps (2.2m) with the apparent annual water losses of the major Nile swamps obtained from the crude water balance computations summarized in Table 1.l. Discounting the Machar marshes due to the high uncertainty of the water balance components, the areally-weighted average annual loss for the Ghazal and Jebel-Zeraf is 1.9 meters. The closeness of these two values indicates the likelihood that the swamp water losses are due primarily if not entirely to evapotranspiration rather than to ungaged outflows such as surface spillage or deep seepage. This result confirms the earlier conclusion of others (5), (11), (12).

We must remember, however, that there may be ungaged inflows to the swamps, both surface and groundwater, which could greatly increase the apparent water loss. These inflows must be estimated and included in a refined water balance before we can eliminate the possibility of significant deep groundwater seepage.

1.4 Projects for Conserving Water for Egypt and the Sudan

Anticipating full utilization of the current annual Nile flow, Egyptian and Sudanese water resource planners have sought upstream development projects on the White Nile which give promise of increasing the available water. Among these projects are:

1. Mutir dam to regulate Lake Albert
2. Nimule dam on the Bahr el Jebel between Lake Albert and Mongal1a
3. Jonglei Canal to channelize the Bahr el Jebel between Monga1la and Malakal
4. Gambeila dam in the headwaters of the Sobat River
5. Drainage and land reclamation in the Machar marshes along the lower reaches of the Sobat.
6. Drainage and land reclamation in the swamps contiguous to the Bahr el Jebel
7. Drainage and land reclamation in the huge swamp area from which the Bahr el Ghazal flows to join the Bahr el Jebel at Lake No to form the White Nile.

Of all these projects, the largest potential return in terms of increased water yield would seem to come from the last three which
involve drainage of the large swamp areas. Indeed, without reducing the water lost in passage of the flow through these swamps, any upstream projects would be of limited utility.

Table 1.1 gives a comparison of the apparent water losses of major Nile swamps. These losses are compared in the last column with $27 \mathrm{md}^{*}$, the mean annual flow of the White Nile downstream of the swamps at Malaka1.

Clearly, the Ghazal area has the greatest development potential, and we will limit this study to that region.

Table 1.1
Apparent Water Losses of Major Nile Swamps

Location	Area of Permanent Swampkm^{2}	Inputs			Output Gaged md	Losses		$\begin{aligned} & \text { Loss } \\ & \text { White * } \\ & \text { Nile } \end{aligned}$
		Prec.	Gaged inflow	Estimated Spillage				
		md	md	md		md	m	
Machar $\left.{ }^{(}\right)$	8,700	7.3	2.0	3.5	0.1	12.8	1.5	0.47
Jebel-Zeraf	8,300	7.5	27.0	-6.0	14.3	14.2	1.7	0.53
Ghazal	16,600	15.0	12.7	6.0	0.6	33.1	2.0	1.23

By preventing spillage and tributary inflows by appropriate channelization, water which is now transpired will be retained in the Nile for downstream use. Due to reduced water supply in the swamps after channelization, a new equilibrium vegetal system will be reached which transpires at a lower level than that before channelization.

1.5 The Objective of this Work

The objective of this work is to estimate the potential water recovery by alternative drainage projects in the Bahr el Ghazal Basin.

Since precipitation is probabilistic in nature, we can only define the basin yield in statistical terms. The methodology used in achieving this objective will be fully described in Chapter 2.

Chapter 2

METHODOLOGY

2.1 Introduction

In the previous chapter we used gross estimates from the literature to perform a preliminary overall water balance for the permanent and semi-permanent swamplands of the White Nile. These analyses confirmed earlier findings that the observed water losses of the White Nile in the region may be accounted for by evapotranspiration.

In this chapter we will introduce new techniques which will be used later in a more detailed analysis of sub-catchments of the Bahr el Ghazel Basin in order to refine estimates of the water yield and of the other water balance components. This approach should also indicate whether or not deep groundwater seepage is currently taking place and hence whether proposed swamp drainage might seriously reduce regional groundwater recharge.

2.2 Water Balance Model*

The water balance of a catchment can be formulated, from conservation of mass principles, assuming groundwater seepage is negligible.
as

$$
\begin{align*}
& \int_{0}^{t}\left[i(t)-e_{T}(t)-V_{S}(t)\right] d t \\
= & \int_{0}^{t}\left[r_{S}(t)+r_{g}(t)\right] d t \equiv \int_{0}^{t} y(t) d t \tag{2.1}
\end{align*}
$$

[^1]where
\[

$$
\begin{aligned}
i(t)= & \text { precipitation rate } \\
e_{T}(t)= & \text { evapotranspiration rate } \\
V_{S}(t)= & \text { rate of moisture storage in soil, vegetation, } \\
& \text { snow, lakes, etc. } \\
r_{S}(t)= & \text { surface runoff rate } \\
r_{g}(t)= & \text { groundwater runoff rate } \\
y(t)= & \text { yield rate }
\end{aligned}
$$
\]

By fixing the time interval of the integration, o to t, to correspond exactly with the annual water year, and assuming the system is stationary in the mean, we may take the expected value, term by term, of equation (2.1), and write the long-term mean annual water balance equation as

$$
\begin{equation*}
E\left[P_{A}\right]-E\left[E_{T_{A}}\right]=E\left[R_{S_{A}}\right]+E\left[R_{g_{A}}\right]=E\left[Y_{A}\right] \tag{2.2}
\end{equation*}
$$

where by the stationarity assumption,

$$
\begin{equation*}
E\left[\int_{0}^{1} \text { year } V_{S}(t) d t\right] \equiv 0 \tag{2,3}
\end{equation*}
$$

and where

$$
\begin{aligned}
\mathrm{E}[]_{\mathrm{A}} & \equiv \text { Expected value of }[] \\
\mathrm{P}_{\mathrm{A}} & =\text { Annual precipitation } \\
\mathrm{E}_{\mathrm{T}_{\mathrm{A}}} & =\text { Annual evapotranspiration } \\
\mathrm{R}_{\mathrm{S}_{\mathrm{A}}} & =\text { Annual surface runoff } \\
\mathrm{R}_{\mathrm{g}_{\mathrm{A}}} & =\text { Annual groundwater runoff } \\
\mathrm{Y}_{\mathrm{A}} & =\text { Annual water yield }
\end{aligned}
$$

A qualitative representation of equation 2.2 is shown in Figure 2.1 , and a schematic representation of the soil column is shown in Figure 2.2.

The annual potential evapotranspiration may be computed from the conservation of energy principle, as a function of the insolation, the longwave back radiation and the sensible heat transfer of the surface considered.

Each component of the water balance model is formulated from accepted physical laws as a function of the climate, soil and vegetation parameters of the basin. The inclusion of these parameters in the water balance elements is extremely important because it is only through changes in such real parameters that we may study the effects of any man-induced alteration of the system.

For notational simplicity we will now drop the expectation signs in Equation 2.2, replacing them by overbars (e.g. $\overline{\mathrm{P}}_{\mathrm{A}}$). All water balance elements, except for the mean annual precipitation, are functions of the average moisture content of the catchments surface soils. This space-time average soil moisture is shown in Figure 2.3 as "s ".

Equation 2.2 may now be written as,

$$
\begin{equation*}
\overline{\mathrm{P}}_{\mathrm{A}}-\overline{\mathrm{E}}_{\mathrm{T}_{\mathrm{A}}}\left(\mathrm{~s}_{\mathrm{o}}\right)=\overline{\mathrm{R}}_{\mathrm{S}_{\mathrm{A}}}\left(\mathrm{~s}_{\mathrm{o}}\right)+\overline{\mathrm{R}}_{\mathrm{g}_{\mathrm{A}}}\left(\mathrm{~s}_{\mathrm{o}}\right)=\overline{\mathrm{Y}}_{\mathrm{A}}\left(\mathrm{~s}_{\mathrm{o}}\right) \tag{2.4}
\end{equation*}
$$

Given the mean annual precipitation, and all the climatic, soil. and vegetation parameters, the above equation contains one unknown, s_{0}, which may be obtained by trial and error solution. Once "s ${ }_{0}$ " is known it can be back substituted to obtain the individual water balance components.

FIGURE 2.1
CLIMATIC influence on the annual water bALANCE

FIGURE 2.2
SCHEMATIC REPRESENTATION OF SOIL COLUMN

FIGURE 2.3
SOIL MOISTURE REPRESENTATION

In the above formulation of the water balance, deep underground and lateral water seepages are assumed neglegible. Wherever there is a large discrepancy between the computed mean annual basin yield and that obtained from a long series of historical records of discharge, the groundwater seepage term or the ungaged discharge has to be included. This modification will be discussed in Chapter 4 , where the water balance of each sub-catchment is considered.

2.3 Hydrologic Parameters and Distributions

2.3.1 Introduction

In the previous section a brief account of the water balance model is given. In this section the formulations of the individual water balance element are presented along with the probability distributions of the precipitation and yield components. For a detailed derivation of all the formulas, refer to (13 through 20).

The processes which operate in the vertical direction on a unit horizontal area of a catchment, namely precipitation, infiltration and evapotranspiration, are considered separately, and then are combined to formulate the water balance of the catchment.

2.3.2 Point Precipitation and Its Probability Distribution

Point precipitation is represented by Poisson arrivals of rectangular intensity-pulses having random depth and duration (Figure 2.4). Assuming the storm depths to be independent and identically gammadistributed, the cumulative distribution function (CDF) for normalized annual precipitation is derived in terms of two parameters of the storm sequence; the mean number of storms per annual rainy season, m_{v}, and the shape parameter, K, of the gamma distribution of storm depths. This derived CDF is

$\stackrel{\omega}{\omega}$
(a) ACTUAL

(b) MODEL

FIGURE 2.4

$$
\begin{equation*}
\operatorname{Prob}\left[\frac{P_{A}}{\bar{P}_{A}}<z\right]=e^{-m_{v}}\left\{1+\sum_{\nu=1}^{\infty} \frac{m_{v}^{\nu}}{\nu!} \cdot P\left[\nu K, m_{v} k z\right]\right. \tag{2.5}
\end{equation*}
$$

where $P[a, x]$ is Pearson's incomplete gamma function, as

$$
\begin{equation*}
P[a, x]=\frac{\gamma[a, x]}{\Gamma(a)} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{aligned}
\gamma[a, x] & =\text { the incomplete gamma function } \\
\Gamma(a) & =\text { the gamma function }
\end{aligned}
$$

with
$\mathrm{P}_{\mathrm{A}}=$ annual precipitation $\overline{\mathrm{P}}_{\mathrm{A}}=$ mean annual precipitation
$\nu=$ counting variable for number of storms
Comparisons of this Poisson precipitation distribution with
observations (using the Thomas (1948) plotting position) (21) are shown in Figure 2.5 and 2.6. The Thomas relation is given as

$$
\begin{equation*}
\operatorname{Prob}\left[\frac{\mathrm{P}_{\mathrm{A}}}{\overline{\mathrm{P}}_{\mathrm{A}}}<\mathrm{z}\right]=\frac{\mathrm{m}_{\mathrm{z}}}{\mathrm{~N}+1} \tag{2.7}
\end{equation*}
$$

where $m_{z}=$ rank order of observation of magnitude z
$\mathrm{N}=$ number of years of record
The agreement is remarkable even though the parameters of Equation 2.5 were evaluated using only 5 years of storm data. Other comparisons are made by Eagleson (15), and the conclusion is that the precipitation distribution function is applicable in general to both arid and humid climates, provided that the storms are independent and come

ANNUAL PRECIPITATION NASHUA RIVER BASIN AT CLINTON, MASS
FIGURE 2.5
FREQUENCY OF ANNUAL PRECIPITATION, CLINTON, MA.

FIGURE 2.6
FREQUENCY OF ANNUAL PRECIPITATION, SANTA PAULA, CA.
from a single, homogenous population.

2.3.3 Evapotranspiration

For permeable natural surfaces comprising a homogeneous mixture of vegetated and bare soil fractions, the evapotranspiration process can be separated into three components, namely the surface retention loss, E_{r}, the bare soil evaporation, E_{S}, and the vegetal transpiration, E_{V}.

The surface retention loss is the depth of free-standing water left on all surfaces at the conclusion of precipitation and surface runoff. This is comprised of retention loss on the bare soil part, $E_{r s}$, and that on the vegetation part, $E_{r v}$. They are assumed to be evaporated in between storms at the wet soil surface potential rate e_{p}, and the vegetal potential rate $e_{p v}$, respectively. Neglecting carryover unevaporated retention from storm to storm, the bare soil retention loss is given as (17)

$$
\begin{align*}
\beta \overline{\mathrm{E}}_{r s} / \bar{e}_{\mathrm{p}}=1 & -e^{-\beta h_{o} / \bar{e}_{p}} \frac{\Gamma\left(\kappa, \lambda h_{o}\right)}{\Gamma(\kappa)} \\
& -\left(1+\frac{\beta h_{o} / \bar{e}_{p}}{\lambda h_{o}}\right)^{-\kappa} \cdot \frac{\gamma\left[\kappa,\left(\lambda h_{o}+\beta h_{o} / \bar{e}_{p}\right)\right]}{\Gamma(\kappa)} \tag{2.8}
\end{align*}
$$

The vegetation retention loss is

$$
\begin{align*}
\beta \bar{E}_{r v} / \bar{e}_{p} & =k_{v}\left\{1-e^{-\beta h_{o} / \bar{e}_{p}} \frac{\Gamma\left[\kappa, \lambda k_{v} h_{o}\right]}{\Gamma(\kappa)}\right. \\
& \left.-\left(1+\frac{\beta h_{o} / \bar{e}_{p}}{\lambda k_{v} h_{o}}\right)^{-\kappa} \cdot \frac{\gamma\left[\kappa,\left(\lambda k_{v} h_{o}+\beta_{h_{o}} / \bar{e}_{p}\right)\right]}{\Gamma(\kappa)}\right\} \tag{2.9}
\end{align*}
$$

And the mean annual surface retention loss, $\bar{E}_{r_{A}}$, as

$$
\begin{equation*}
\frac{\bar{E}_{r_{A}}}{\bar{E}_{p_{A}}}=\frac{(1-M) \beta \bar{E}_{r s} / \bar{e}_{p}+M \beta \bar{E}_{r v} / \bar{e}_{p}}{\left(1-M+M k_{v}\right)} \tag{2.10}
\end{equation*}
$$

where the overbars again denote the expected value, or the long-term mean value and

$$
\begin{aligned}
E_{r_{A}} & =\text { annual surface retention loss, mm } \\
E_{p_{A}} & =\text { annual potential evapotranspiration, mm } \\
E_{r s}= & \text { surface retention loss from bare soil fraction, mm } \\
E_{r v}= & \text { surface retention loss from vegetated fraction, mm } \\
e_{p}= & \text { potential evaporation rate of wet soil surface, mm/day } \\
h_{o}= & \text { surface retention capacity, mm } \\
k_{v}= & \text { ratio of potential rates of transpiration and wet } \\
M= & \text { vegetal canopy density } \\
B= & \text { reciprocal of average time between storms, equal to } \\
& m_{t_{b}}-1, \text { days }{ }^{-1} . \\
K= & \text { parameter of gamma distribution of storm depth } \\
\lambda= & \text { parameter of gamma distribution of storm depth, } \\
m_{H}= & \text { mean storm depth, mm }
\end{aligned}
$$

The interstorm evaporation from a unit area of bare soil, E_{S}, is
$\beta \bar{E}_{s} / \bar{e}_{p}=\left\{\frac{\gamma\left[\kappa, \lambda h_{0}\right]}{\Gamma(\kappa)}-\left[1+\frac{\beta h_{o} / \bar{e}_{p}{ }^{-1}}{\lambda h_{o}}\right] \cdot \frac{\gamma\left[\kappa, \lambda h_{o}+\beta h_{o} / \bar{e}_{p}\right]}{\Gamma(\kappa)} \cdot e^{-B E}\right.$

$$
+\left[1-\frac{\gamma\left[\kappa, \lambda h_{0}\right]}{\Gamma(\kappa)}\right] \cdot\left[1-e^{-B E-\beta h_{o} / \bar{e}_{p}} \cdot\left(1+M k_{v}+(2 B) \cdot E-w / \bar{e}_{p}\right)\right.
$$

$$
+e^{-C E-\beta h_{o} / \bar{e}_{p}} \cdot\left(M k_{v}+(2 C)^{1 / 2} \cdot E-w / \bar{e}_{p}\right)
$$

$$
\left.+(2 E)^{1 / 2} \cdot e^{-\beta h_{o} / \bar{e}_{p}} \cdot\left[\gamma\left(\frac{3}{2}, C E\right)-\gamma\left(\frac{3}{2}, B E\right)\right]\right]
$$

$$
+\left[1+\frac{\beta h_{o} / \bar{e}_{p}}{\lambda h_{o}}\right] \cdot \frac{\gamma\left[\kappa, \lambda h_{o}+\beta h_{o} / \bar{e}_{p}\right]}{\Gamma(\kappa)}\left[(2 E)^{1 / 2} \cdot\left[\gamma\left(\frac{3}{2}, C E\right)-\gamma\left(\frac{3}{2}, B E\right)\right]\right.
$$

$$
+e^{-C E}\left[M k_{v}+(2 C)^{1 / 2} \cdot E-w / \bar{e}_{p}\right]
$$

$$
\begin{equation*}
\left.\left.-e^{-B E}\left[M k_{v}+(2 B)^{1 / 2} E-w / \bar{e}_{p}\right]\right]\right) \tag{2.11}
\end{equation*}
$$

Here $\quad B=\frac{1-M}{1+M k_{v}-w / \bar{e}_{p}}+\frac{M^{2} k_{v}+(1-M) w / \bar{e}_{p}}{2\left(1+M k_{v}-w / \bar{e}_{p}\right)^{2}}$
$C=\frac{1}{2}\left(M k_{v}-w / \bar{e}_{p}\right)^{-2}$

$$
\begin{equation*}
E=\left[2 \beta n K(1) \psi(1) / \pi m \bar{e}_{p}^{2}\right] \phi_{e} s_{o}^{d+2} \tag{2.14}
\end{equation*}
$$

where E is the evaporation effectiveness
and $\quad n=$ effective medium porosity
$m=$ pore size distribution index
$K(1)=$ saturated effective hydraulic conductivity, cm/sec
$\psi(1)=$ soil matrix potential (suction), cm
$\phi_{e}=$ dimensionless exfiltration diffusivity
$s_{0}=$ time and spatial average soil moisture concentration
in surface boundary layer
$\mathrm{w}=$ capillary rise from water table, cm/sec
$\mathrm{d}=$ diffusivity index
For a vegetal surface, assuming that the mean interstorm transpiration, \bar{E}_{v}, is always at the potential rate, $k_{v} \bar{e}_{p}$, we have

$$
\begin{equation*}
\bar{E}_{v} / \bar{e}_{p}=k_{v} \tag{2.15}
\end{equation*}
$$

Finally the mean annual evapotranspiration for a unit surface of homogenous soil and vegetation fractions, $\bar{E}_{T_{A}}$, is

$$
\begin{equation*}
\frac{\bar{E}_{T_{A}}}{\bar{E}_{p_{A}}}=J\left(E, M, k_{v}, h_{o}\right)=\frac{(1-M) \beta \bar{E}_{S} / \bar{e}_{p}+M \beta \bar{E}_{v} / \bar{e}_{p}}{\left(1-M+M k_{v}\right)} \tag{2.16}
\end{equation*}
$$

The mean potential evaporation rate of the wet soil surface, \bar{e}_{p}, may be estimated by the modified combination Penman equation (13),

$$
\begin{equation*}
\bar{e}_{p}=\frac{\bar{q}_{i}\left(1-A_{s}\right)-\bar{q}_{b}+H}{\rho_{e} L_{e}(1+\gamma / \Delta)} \tag{2.17}
\end{equation*}
$$

where $\bar{q}_{i}=$ mean insolation rate on a unit surface of the catchment $\ell y / m i n$
$\bar{q}_{b}=$ mean net outgoing long wave radiation rate, $\ell y / m i n$
$H=$ mean residual sensible heat flux, ly/min
$A_{s}=$ shortwave albedo of wet soil surface
$\rho_{\mathrm{e}}=$ mass density of evaporating water ($\left(\cong 1 \mathrm{~g} / \mathrm{cm}^{3}\right)$
$\mathrm{L}_{\mathrm{e}}=$ latent heat of vaporization ($(\tilde{=} 597 \mathrm{cal} / \mathrm{g})$
$\frac{\gamma}{\Delta}=$ atmospheric parameter
$\bar{q}_{b}, H, \gamma / \Delta$ may be estimated by the following empirical
relations (13),

$$
\begin{align*}
& \overline{\mathrm{q}}_{\mathrm{b}}=(1-0.8 \mathrm{~N})\left[0.245-0.145 \times 10^{-10} \overline{\mathrm{~T}}_{\mathrm{A}}\right], \quad \ell \mathrm{y} / \mathrm{min} \tag{2.18}\\
& \frac{\overline{\mathrm{q}}_{\mathrm{b}}}{\mathrm{H}}=0.25+1 /(1-\overline{\mathrm{S}}) \tag{2.19}\\
& 1 /\left(1+\frac{\gamma}{\Delta}\right)=0.42+0.013 \overline{\mathrm{~T}}_{\mathrm{A}} \tag{2.20}
\end{align*}
$$

and

$$
\begin{gathered}
\begin{aligned}
& \mathrm{N}= \text { mean annual seasonal cloud cover fraction } \\
& \overline{\mathrm{S}}= \text { mean annual seasonal relative humidity } \\
& \overline{\mathrm{T}}_{\mathrm{A}}= \text { mean annual seasonal air temperature, } \\
& \mathrm{o}_{\mathrm{K}} \text { in Equation (2.18), }{ }^{\circ}{ }^{\circ} \mathrm{C} \text { in Equation (2.20) } \\
& \overline{\mathrm{e}}_{\mathrm{p}} \text { as obtained from Equation } 2.17 \text { is in cm per minute. A }
\end{aligned} \\
\text { conversion factor is needed to convert it into mm per day. }
\end{gathered}
$$

Assuming evapotranspiration to be significant only during interstorm periods in the rainy season, the mean annual potential evapotranspiration may be estimated by

$$
\begin{equation*}
\bar{E}_{p_{A}}=m_{v} m_{t_{b}} \bar{e}_{p}^{*} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{align*}
\overline{\mathrm{e}}_{\mathrm{p}}^{*} & =(1-M) \bar{e}_{p}+M \bar{e}_{p v} \tag{2.22}\\
& =\left[1-M+M k_{v}\right] \bar{e}_{p}
\end{align*}
$$

with $\quad \bar{e}_{p}^{*}=$ weighted mean potential evapotranspiration rate, mm/day $m_{t_{b}}=$ mean time between storms, days. $m_{v}=$ mean number of storms per rainy season

Equation (2.16) is represented in Figure 2.7, evaluated over the practical ranges of the parameters; $h_{o}=0(1) \mathrm{mm}^{*}$, $\beta=0\left(10^{-1}-10^{-2}\right)$ days $^{-1}, \lambda=0\left(10^{-1}-10^{-2}\right) \mathrm{mm}^{-1}$, and $\overline{\mathrm{e}}_{\mathrm{p}}=0(1) \mathrm{mm} /$ day.

For bare soil conditions, $M=0$ and $w / \bar{e}_{p} \ll 1$ (Figure 2.7a), the results indicate that surface retention makes an appreciable difference in the annual evaporation only in the very arid climate where the evaporation effectiveness, E, is small; and that $J(E)$ is very insensitive even at small E , to variations in the relative surface retention, λh_{o}, but is quite sensitive there to changes in $\beta h_{o} / \bar{e}_{p}$.
$\bar{*} O(\quad)$ the order of magnitude

FIGURE 2.7
EVAPOTRANSPIRATION FUNCTION

$$
\left(\kappa=0.5, k_{v}=1, w / \bar{e}_{p} \ll 1\right)
$$

For mixed vegetation and bare soil conditions (Figure 2.7b, c) with $k_{v}=1$ and $w / \bar{e}_{p} \ll 1$, vegetal cover apparently has a strong effect on annual evapotranspiration particularly for small E.

2.3.4 Storm Surface Runoff

The Philip infiltration equation and the joint distribution of rainfall intensity and duration are used to derive the distribution of the annual storm surface runoff volume, and hence, its expected value (18).

The expected annual surface runoff volume, $\overline{\mathrm{R}}_{\mathrm{S}_{\mathrm{A}}}$, is given as

$$
\begin{aligned}
& \frac{\overline{\mathrm{R}}_{\mathrm{S}_{\mathrm{A}}}}{\overline{\mathrm{P}}_{\mathrm{A}}}=\mathrm{e}^{-\mathrm{G}-2 \sigma} \cdot \Gamma(\sigma+1) / \sigma^{\sigma}-\overline{\mathrm{E}}_{\mathrm{r}} / \mathrm{m}_{\mathrm{H}} \\
& \text { if } \quad \mathrm{e}^{-\mathrm{G}-2 \sigma} \Gamma(\sigma+1) / \sigma^{\sigma}>\overline{\mathrm{E}}_{\mathrm{r}} / \mathrm{m}_{\mathrm{H}} \\
& \text { otherwise } \quad \overline{\mathrm{R}}_{\mathrm{s}_{\mathrm{A}}} / \overline{\mathrm{P}}_{\mathrm{A}}=0
\end{aligned}
$$

The first term on the right side of Equation (2.23) represents the rainfall excess and the second, the mean interstorm surface retention, $\overline{\mathrm{E}}_{\mathrm{r}}$.

Here, G is the gravitational infiltration parameter and σ, the capillary infiltration parameter, as

$$
\begin{align*}
& G=\frac{\alpha K(1)}{2}\left[1+s_{o}^{c}\right]=\alpha_{w} \tag{2.24}\\
& \sigma=\left[\frac{5 \mathrm{n} n^{2} K(1) \psi(1)\left(1-s_{o}\right)^{2} \phi_{i}(d, s o)}{6 \pi \delta M}\right]^{\frac{1}{3}} \tag{2.25}
\end{align*}
$$

with

$$
\begin{aligned}
\alpha= & \text { reciprocal of average rainstorm intensity, } \\
& \text { equal to } m_{i}^{-1}, \mathrm{sec} / \mathrm{cm} \\
\mathrm{~m}_{\mathbf{i}}= & \text { average rainstorm intensity }
\end{aligned}
$$

$$
\begin{aligned}
\eta= & \text { reciprocal of mean storm depth, } \\
& \text { equal to } \mathrm{m}_{\mathrm{H}}^{-1}, \text { days }^{-1} \\
\mathrm{~m}_{\mathrm{Il}}= & \text { mean storm depth } \\
\delta= & \text { reciprocal of average storm duration, } \\
& \text { equal to } \mathrm{m}_{\mathrm{r}}^{-1}, \text { days }^{-1} \\
\mathrm{~m}_{\mathrm{t}_{\mathrm{r}}}= & \text { average storm duration, days } \\
\phi_{\mathbf{i}}= & \text { dimensionless infiltration parameter }
\end{aligned}
$$

The mean interstorm surface retention \bar{E}_{r} is related to the mean annual interstorm surface retention $\bar{E}_{T_{A}}$ by $\bar{E}_{r_{A}}=m_{V} \bar{E}_{r}$

The fraction of mean annual precipitation becoming mean annual surface runoff is sensitive to the gravitational and capillary infiltration potentials, $G\left(\dot{s}_{0}=0\right)$ and $\sigma\left(s_{0}=0\right)$, respectively, and to the average soil moisture s_{o}. Values of this fraction evaluated for typical climate and soil properties compare favorably with observations. (18)

To facilitate computations, values of σ versus $e^{G} \bar{R}_{S_{A}} / \bar{P}_{A}$ are plotted in Figure 2.8.

2.3.5 Groundwater Runoff

The annual groundwater runoff is taken as the difference between percolation to the water table during the wet season and capillary rise from the water table over the year.

The mean annual groundwater runoff is given as

$$
\begin{equation*}
\bar{R}_{g_{A}}=m_{\tau} K(1) s_{o}^{c}-T w \tag{2.26}
\end{equation*}
$$

SURFACE RUNOFF FUNCTION

FIGURE 2.8
PLOT OF SURFACE RUNOFF FUNCTION ($h_{o}=0$)
where

$$
\begin{aligned}
& \mathrm{m}_{\tau}=\text { mean length of rainy season, days } \\
& \mathrm{c}=\text { pore disconnectedness index } \\
& \mathrm{T}=1 \text { year }=365 \text { days } \\
& 2.3 .6 \text { Yield of a Catchment and its Distribution }
\end{aligned}
$$

From Equation 2.4 , the mean annual water budget is

$$
\begin{equation*}
\bar{P}_{A}-\bar{E}_{T_{A}}\left(s_{o}\right)=\bar{R}_{S_{A}}\left(s_{o}\right)+\bar{R}_{g_{A}}\left(s_{o}\right)=\bar{Y}_{A}\left(s_{o}\right) \tag{2.27}
\end{equation*}
$$

For non-zero surface runoff it can be written as

where E, G, and σ are functions of s_{o}.
Equation 2.28, from left to right, represents the precipitation, the actual evapotranspiration including surface retention, the rainfall excess, the surface retention, the groundwater recharge and the groundwater loss.

With the climatic, soil and vegetation parameters known, the above function contains only one unknown, the long-term space-time average soil moisture, s_{0}, which can be solved to obtain the mean annual water budget of the catchment. Once s_{o} is known, each water balance element is known, giving the mean annual yield of the catchment.

In order to introduce uncertainty into the catchment yield to a first order approximation, we will replace the mean annual values of Equation (2.27) by their respective annual values. This assumes small annual deviations from their mean annual values. The annual water budget now becomes

$$
\begin{equation*}
P_{A}-E_{T_{A}}=R_{S_{A}}+R_{g_{A}}=Y_{A} \tag{2.29}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{A}-E_{P_{A}} \cdot J\left(E, M, k_{v}, h_{o}\right)=P_{A} e^{-G-2 \sigma} \Gamma(\sigma+1) \sigma^{-\sigma}-E_{r_{A}}+\tau K(1) s_{o}^{c}-T w \tag{2.30}
\end{equation*}
$$

To facilitate analytical derivation of the distribution of the annual yield, the seasonal length, τ, the annual potential evapotranspiration, $E_{p_{A}}$, and the annual surface retention loss, $E_{r_{A}}$, are held at their respective mean annual values. This forces all yield variance to originate with precipitation variance. In computer application of course we can retain the appropriate distribution for τ and $\mathrm{E}_{\mathrm{p}_{\mathrm{A}}}$ and derive the distribution of Y_{A} through Monte Carlo simulation.

Equation (2.30) can now be rewritten (after rearranging) as

$$
P_{A}\left[1-e^{-G-2 \sigma} \Gamma(\sigma+1) \sigma^{-\sigma}\right]=\bar{E}_{p_{A}} J\left(E, M, k_{v}, h_{o}\right)-\bar{E}_{r_{A}}+M_{\tau}^{K}(1) s_{o}^{c}-T w
$$

i.e. Infiltration $=$ Total Evapotranspiration - surface retention + Groundwater discharge
and

$$
\begin{equation*}
Y_{A}=P_{A}-\bar{E}_{p_{A}} \cdot J\left(E, M, k_{v}, h_{o}\right) \tag{2.32}
\end{equation*}
$$

which is in a form

$$
\begin{equation*}
Y_{A}=g\left(P_{A}\right) \tag{2.33}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{A}=g^{-1}\left(Y_{A}\right) \tag{2.34}
\end{equation*}
$$

For each annual precipitation, Equation (2.31) is used to determine the space-time average soil moisture for the year. Substituting the annual precipitation and the corresponding space-time
average soil moisture into Equation (2.32) then gives the annual yield of the catchment.

Since from Equation (2.32) the annual yield is a monotonic increasing function of the annual precipitation, we may derive the distribution of the annual yield from the distribution of precipitation. From Equations (2.5) and (2.34) we obtain

$$
\begin{equation*}
\operatorname{Prob}\left[\frac{Y_{A}}{\bar{P}_{A}}<z\right]=e^{-m} \nu\left\{1+\sum_{\nu=1}^{\infty} \frac{m_{\nu}^{\nu}}{\nu!} P\left[\nu K, m_{v} k g^{-1}(z)\right]\right\} \tag{2.35}
\end{equation*}
$$

The derived yield distribution is compared with historical data (using the Thomas plotting relation) for two catchments, one in Clinton, Massachusetts, and the other in Santa Paula, California, as shown in Figure (2.9) and (2.10). The K values are from Figure (2.5) and (2.6). A detailed discussion of the procedures used in obtaining the soil parameters, and the sets of values of the optimal vegetation canopy density, M_{o}, and potential transpiration efficiency, k_{v}, is given in (19). From the comparison on the figures, the agreements are remarkable, which justifies the gross approximations in our model assumptions and indicates the general validity of applying such a technique to different catchments.

In the original development of the water balance model (19), the storm surface runoff is obtained, as herein, by subtracting the surface retention from the rainfall excess. However, later development (22) shows that it is more appropriate (though still only approximate) to subtract the surface retention at the beginning of the rainfall period, than to discount it against those events producing rainfall excess.

FIGURE 2.9
FREQUENCY OF ANNUAL BASIN YIELD WITH SUB-OPTIMAL VEGETAL COVER (SOUTH BRANCH OF THE NASHUA RIVER AT CLINTON, MA., AREA $=174 \mathrm{~km}^{2}$)

\% LESS THAN

FIGURE 2.10
FREQUENCY OF ANNUAL BASIN YIELD WITH SUB-OPTIMAL VEGETAL COVER (SANTA PAULA CREEK NEAR SANTA PAULA, CA., AREA $=64 \mathrm{~km}^{2}, \mathrm{~K}=0.25$)

With this modification, Equation 2.23 is reduced to

$$
\begin{equation*}
\frac{\overline{\mathrm{R}}_{\mathrm{s}_{\mathrm{A}}}}{\overline{\mathrm{P}}_{\mathrm{A}}}=\mathrm{e}^{-\mathrm{G}-2 \sigma} \Gamma(\sigma+1) / \sigma^{\sigma} \tag{2.36}
\end{equation*}
$$

and the water balance (Equation 2.28 and 2.31) becomes
$\bar{P}_{A}\left[1-e^{-G-2 \sigma} \Gamma(\sigma+1) \sigma^{-\sigma}\right]=\bar{E}_{p_{A}} \cdot J\left(E, M, k_{v}, h_{o}\right)+m_{\tau} K(1) s_{o}^{c}-T w$
and
$P_{A}\left[1-e^{-G-2 \sigma} \Gamma(\sigma+1) \sigma^{-\sigma}\right]=\bar{E}_{p_{A}} \cdot J\left(E, M, k_{v}, h_{o}\right)+m_{\tau} K(1) s_{o}^{c}-T w$

This modification will be used throughout this work and the effect of it on the $C D F$ of yield is only significant in the dry years, when the surface retention becomes relatively important.

The water balance model is derived for the rainy season only and it is more correct to use the annual seasonal precipitation in the water balance equations than of the annual total precipitation. This assumes that the rainfall in the dry season is too small to have any appreciable effects on the annual catchment yield, and will be evaporated.

2.4 Remote Sensing as a Tool to Define Basin Parameters

In studying a large basin like the Bahr el Ghazal, which consists of eight subcatchments, occupying an area of five hundred thousand square kilometers (close to the size of France), it is extremely difficult, if not impossible, to know the distribution of vegetation and soil types over the entire basin. Remote sensing, one of the best tools
available to the water resource planner, is especially effective in studying such a large scale system particularly because of the system's diversity of habitat, variability of hydrologic regime and inaccessibility of terrain.

The Landsat satellite, for example, employs an optical-mechanical multispectral scanner (MSS) to acquire data in four spectral band widths in the visible and the near-infra red portions of the electromagnetic spectrum. Each band emphasizes different surface or subsurface features of the land. Together with ground control observations they allow one to define the swamp areas and the extent of surface water, drainage patterns, vegetation and soil types, and surface geological information such as 1andform.

Satellite mappings of the whole basin in the wet and dry season are crucial to understanding the dynamic physical processes governing the swamps, for they indicate the extent of permanently-flooded and seasonally-flood areas.

Simultaneous ground observations and aerial data (i.e., ground truth) are needed to confirm the Landsat data interpretations.

Chapter 3

GENERAL DESCRIPTION OF THE BAHR EL GHAZAL BASIN

3.1 Introduction

The Bahr el Ghazal Basin is located in the southwestern part of the Sudan. It lies between latitudes 4° and 14° North and between longitudes 23° and 31° East. Its area is about half a million square kilometers ($5 \times 10^{5} \mathrm{~km}^{2}$) (see Figure 3.1).

Topographically, the area approximates a funnel having eight tributary streams leading to a central swampy region which occupies the extremely flat lands at the mouth. The peculiarity of this basin lies in its enormous loss of water in the central swampy region.

The output from the basin measured at Lake No remains more or less a constant from year to year, despite large yearly variations in precipitation, and hence in the streamflow of each sub-catchment. The variability of precipitation and of streamflow within the basin is reflected in the area of the swampy region, rather than in the streamflow output of the basin. Because of its funnel-like shape with an extremely flat bottom (slope: $1 \mathrm{~cm} / \mathrm{km}$), heavy rainfall and high input streamflows will cause the flooded area to expand considerably, thus making available a huge area for evapotranspiration and groundwater seepage, while at the same time causing only a relatively small change in water surface elevation and hence in output streamflow. When rainfall is scanty and runoffs are low, the flooded area will contract, thus reducing the water loss considerably, but not greatly lowering the output streamflow. Such a

Figure 3.1 GENERAL LOCATION OF THE STUDY AREA
mechanism explains the relative constancy of the basin output. The evapotranspiration and groundwater seepage in the swampy region are so high that the basin output amounts to only a few percent of the total input.

3.2 Demarcation of Boundaries of Sub-catchments

The boundary of the basin is shown in Figure 3.2. The boundaries in the north and in the south follow the water-dividing lines万f the "Operational Navigation Charts" (23), while in the east, it goes southward from Lake No to Lake Nuong, then follows the water-dividing line separating the catchments of River Naam and River Lau. River Lau is excluded in this investigation because from the drainage map of the Jonglei Canal project area (obtained from Landsat satellite images), there is a strong indication that its water is flowing into the Bahr el Jebel near Lake Nuong. The boundary between Lake No and Lake Nuong is adjacent to the Bahr el Jebel, since the Bahr el Jebel is known to spill its water westward into the Bahr el Ghazal swamp along this line (4).

The boundaries for each sub-catchment can be traced along its drainage divide from available maps. At the lower end of the tributaries, however, the boundaries are rather vague because the drainage divides as well as the tributary stream channels (River Jur excepted) disappear as they merge with the central swampy region. The latter is more or less bounded by the 400 meter contour (Figure 3.3).

The central swampy region can be roughly divided into two
parts -- the papyrus swamp and the open grassland. The two intermingle.

FIGURE 3.3
tributaries of the bahr el ghazal basin

For simplicity, we will use the words "Central Swampland" to represent the sum of these two regions, as shown on Figure 3.2. In order to define the tributary inputs to the Central Swampland, we will choose the boundary of the Central Swampland as the line crossing all the downstream gaging stations of the sub-catchments. With the system boundaries so defined, Table 3.1 gives the area of each sub-catchment, and of the Central Swampland.

3.3 The River System (26)

3.3.1 A Typical River

Most of the important rivers in this basin are torrents originating in the southwest where the rainfall is heaviest. As shown in Figure 3.2, the main tributaries of the Bahr el Ghazal include the rivers Jur, Loll, Tonj, Pongo, Maridi, Naam, Raqaba el Zarqa and Bahr el Arab. The rivers Jur and Loll contribute about 70% of the total discharge of the basin while Raqaba el Zarqa and Bahr el Arab contribute only 3%. Table 3.1 shows the gaged discharge of the rivers. The monthly discharges of the rivers (Raqaba el Zarqa and Bahr el Arab excepted) are plotted in Appendix A.

All the rivers in the southwest show a strong resemblance to one another in their stages of development.

The typical river begins at the Nile-Congo Divide and flows through a steep area of rapid runoff where drainage is good and small streams are numerous. Rapids occur in this region. It then flows into an area of well-defined flood plains where the reduction in channel

Table 3.1

PRECIPITATION AND DISCHARGE FOR BAHR EL GHAZAL BASIN
$\left.\begin{array}{lccccc}\begin{array}{c}\text { Catchment } \\ \text { Name }\end{array} & \begin{array}{c}\text { Catchment } \\ \text { Number }\end{array} & \begin{array}{c}\text { Mean } \\ \text { Annual } \\ \text { Precipitation* }\end{array} & \begin{array}{c}\text { Catchment } \\ \text { Area** }\end{array} & \begin{array}{c}\text { Mean } \\ \text { Annual }\end{array} & \begin{array}{c}\text { Mean } \\ \text { Gaged }\end{array} \\ \text { Precipitation } \\ \text { Discharge }\end{array}\right)$

* by Thiessen method, using precipitation values on Table 3.2.
**above gage at edge of Central Swampland
D.S.R.B. $=$ Downstream of Road Bridge
a: From (25), for the period (1942-1952), at Mvolo.
b: From (25), for the period (1942-1960), through Road Bridge.
slope causes the river to spill and deposit the suspended material carried down from above, forming alluvial banks alongside the channel. The sandy river bed in this region takes up much of the dry season flow through seepage. Going downstream, the river enters the Central Swampland where flooding is unrestricted. The impermeable clay plain together with the extremely small gradient ($1 \mathrm{~cm} / \mathrm{km}$) accounts for the eventual disappearance of the river identity (River Jur excepted) in this region. Swamp formation occurs locally where the land level is depressed.

3.3.2 Naam

Starting in a clockwise direction from the Southeastern catchment boundary, River Naam is the first river encountered within the basin. It has two tributaries, the Era and the Yalo, which rise from the Nile-Congo Divide. About 50 kilometers north of the road from Shambe to Rumbek, the Naam is lost in swamp (see Figure 3.3).
3.3.3 Maridi

The second river is the Maridi. Its flood plain begins about 50 kilometers upstream of the Tonj-Mvolo road-bridge. South of Meshra E1 Rek (around latitude 8° North), it disappears in the swamp.

3.3.4 Tonj

The third river is the Tonj. It is also known as the Ibba in its southern reaches. The river begins to spill at about latitude $6^{\circ} 40^{\prime}$ (80 kilometers south of Tonj) and at about $7^{\circ} 40^{\prime}$, it is lost in the swamp.

3.3.5 Jur

The Jur is the fourth and the largest river. It has two major tributaries, River Sue and River Busseri, which join just south of Wau. Rivers Wau and Numatinna are tributaries of the Busseri, and River Bo is a tributary of the Sue. Definite spills occur downstream of Deim Beshir. Beyond Ghabat el Warrana, the river narrows with many square miles of swampy area bordering it on both sides. At the end of its journey, the Jur empties into Lake Ambadi.

3.3.6 Pongo

The fifth river is the Pongo. In the literature, it is considered to be a tributary of the Loll. Since it joins the Loll north of Deim Beshir, which is well inside the Central Swampland, it will be considered, for modeling purposes, as a separate river feeding the Central Swampland.

3.3.7 Lo11

The sixth river is the Loll, which is the second largest river of the basin. It is fed by four tributaries (Pongo excluded). In a clockwise direction, they are the Kuru, (Biri, a Kuru tributary), Sopo, Raga and Boro. They all join to form the Loll before Nyamlell is reached. Below Nyamle11, the Loll starts to spill into swamps and it eventually disappears about 180 kilometers downstream of Nyamle11.

3.3.8 Bahr el Arab

The seventh river is the Bahr el Arab. This river has the largest catchment in the basin and yet the smallest discharge due to its
lower precipitation and flatter land slope. Its two most important tributaries come from the extreme southwestern part of the catchment, with River Adda being the first and River Umbelasha the second. Most of the streams in the north do not reach the Bahr el Arab, instead, they terminate in swamps connected with the Arab. For example, the principal stream, Ibra, ends in a swamp near Lake Kundi.

It is possible that the Bahr el Arab starts spilling near Kafia Kingi because of some swamp formation along that reach. When the river reaches Safaha due north of Nyamlell, much of its water has already been lost by spilling, and further losses occur downstream. In the dry season, there is practically no flow at Safaha. Further downstream at about latitude $9^{\circ} 18^{\prime} \mathrm{N}$ and longitude $29^{\circ} \mathrm{E}$, it splits up into many small channels and is eventually lost in a swampy region where the Bahr el Arab and Loll are believed to merge.

3.3.9 Raqaba el Zarqa

The eighth river is the Raqaba el Zarqa. There is practically no information on this river. Only some meteorological data are available for a few stations within this catchment.

3.3.10 Bahr el Ghazal

The outflow from Lake Ambadi is known as the Bahr el Ghazal. Flowing north, it is joined by the Bahr el Arab which is now a stream emerging from the swamps of Loll and Arab. From the mouth of the Bahr el Arab to Lake No, the Ghazal breaks into many parallel channels, spreading out and rejoining the main stream along its course. Towards

Lake No, the defined river banks give way to many channels and lagoons. The Bahr el Ghazal terminates in Lake No.

3.4 Hydrological Zones

3.4.1 Introduction

A hydrological map of the Bahr el Ghazal basin is shown in Figure 3.4, as obtained from Reference (26). Information is available only to about 10° North latitude, however, this includes most of the important sub-catchments of the basin. We will ignore the Bahr el Arab and Raqaba el Zarqa catchments in the following descriptions since they apparently make a negligible contribution to the hydrology of the Bahr el Ghazal.

The Bahr el Ghazal basin has been divided hydrologically into two zones (26): the Flood Region and the Equatorial Region (Figure 3.4).

3.4.2 The Flood Region

The Flood Region has a mean annual rainfall of 750 to 1000 mm during the rainy season of 6 to 7 months. The lands are extremely flat, with a general slope of about 10 cm per kilometer. Because of the impermeable soils in this region, heavy flooding and waterlogging occur during rains. According to the level of flooding, it can be further subdivided into four land types, the High land, the Intermediate land, the Toich land and the Sudd land.

The "High land" is about one meter higher than the surrounding areas but is relatively flood-free even at the peak of the rainy season. Vegetation is mainly woodland of the thorn type or open-mixed woodland.

FIGURE 3.4
hYDROLOGIC MAP, BAHR EL GHAZAL BASIN

Soils vary from clay to loose sands.

The Intermediate land is subjected to heavy flooding during rains but remains dry during the dry season. The land level is lower than the High land but higher than the Toich land. Vegetation is predominantly open perennial grassland with some areas of acacia woodland. Soils vary from clay to heavy loam.

The Toich land is seasonally flooded by spill-water from the rivers. Vegetation is mainly grasses and few trees exist. The soil retains sufficient moisture to support active grass growth even in the dry season. Soils vary from sandy-clay to heavy clay.

The Sudd land is permanent or semi-permanent swamp where the soil moisture is always at saturation. Vegetation is predominantly Cyperus papyrus. This land type is usually at the lowest level in the Flood Region where it is inundated most of the year. The soils contain a fairly high percentage of clays which swell when wet inhibiting infiltration (12).

3.4.3 The Equatorial Region

The Equatorial Region contains the Ironstone Plateau, the Green Belt and the Central Hills.

The Ironstone Plateau has a mean annual precipitation of 900 to 1300 mm during the rainy season of 6 to 8 months. Vegetation is main1y broad-leaved woodland and savanna grasslands. The soils are predominantly shallow, reddish, sandy loams.

The Green Belt has the highest mean annual precipitation in
the basin, receiving 1350 to 1600 mm during the rainy season of 8 to 9 months. Vegetation is similar to the Ironstone Plateau but the woodland is more luxuriant, with forests along perennial streams. Soils are similar to the Ironstone Plateau.

The Central Hills have a mean annual precipitation of 900 to 1200 mm during the rainy season of 7 to 8 months. Vegetation is similar to the Ironstone Plateau, but with less developed woodland and denser grasses. Soils are usually red loams with frequent rock exposure.

3.5 Soils and Vegetation Distribution (26)

3.5.1 Soils and Vegetation Distribution in the Central Swampland

The Central Swampland lies almost entirely within the Flood Region, with only a narrow strip of Ironstone Plateau intruding along its southwestern boundary (Figure 3.4). Within the Flood Region, four land types have been identified, namely, the "High land," the Intermediate land, the Toich land and the Sudd land. The soils and vegetation are highly specific according to different land types. They are described as follows:

3.5.1.1 On the "High land"

The soils of the "High land" vary from clay to loose sands.
Sandy soils generally occur as outcrops on flat clay plains. Flooding is uncommon due to free soil drainage. The coarse sand content is high (25 to 60%) and the clay content is usually below 15%. Because of free drainage, crops grown on these soils may be susceptible to drought.

Clay soils are found on flat ground slightly higher than the surrounding lands, or on sloping ground on the banks of watercourses. Flooding is also uncommon. Clay content ranges from 25 to 60\%. These soils are often intensively cultivated.

The predominant vegetation types on the "High land" are the woodlands. They are generally of the thorn type, including Acacia seyal, Acacia fistula, Balanites aegyptiaca, and Acadia sieberiana.

In the northern Central Swampland, the shorter annual grasses, Eragrostis spp. and Aristida spp. occur frequently, but in areas of dense Acacia seyal-Balanites aegyptiaca woodland, the taller annual grasses, Rottboellia exaltata and Leptochloa chinensis, are more common.

In the southern Central Swampland, the grasses Hyparrhenia dissoluta, Hyparrhenia filipendula, and some Andropogon gayanus, are more common.

Close to the edge of the Ironstone Plateau, mixed woodland of the broad-leaved and the thorn type usually occurs on sandy soils (see also Section 3.5.1.5).

In many areas, numerous trees have been cut down for fuel and building purposes.
3.5.1.2 On the Intermediate land

The soils in this region vary from clay to heavy loams. They both occur on flat plains and are subjected to heavy flooding during the rainy season. The clay content of the loam soils ranges from 25 to 50%, with a coarse sand content of over 20%. The clay content of the clay soils is much higher, from 40 to 75%. Both soils are fertile, but
their agricultural value is limited by poor drainage.
The vegetation on the open plains is predominantly grassland, with species Setaria incrassata dominating areas of lesser flooding and Hyparrhenia rufa dominating other areas.

On higher ground, acacia woodlands occur, mainly a mixture of Acacia seyal and Balanites aegyptiaca.

Most of the open grassland in the region is purposely burned off in the dry season to stimulate regrowth for cattle feeding.
3.5.1.3 On the Toich land

The predominant vegetation on this land is grass. Few trees exist. The distribution of grasses is largely governed by the depth and duration of flooding, by the soil type, and to a lesser degree, by the extent of grazing and burning. Three types of grassland are of major importance -- Echinochloa toiches, Phragmites toiches and Hyparrhenia toiches.

The dominant grass species on the Echinochloa toiches are Echinochloa stagnina and Echinochloa pyramidalis. They are generally found on riverain flood-plains where flooding occurs from 3 to 6 months of the year and where the soils do not dry out completely throughout the year. E. stagnina usually stands on lower flood-plain levels while E. pyramidalis appears on the higher. The clay content of the soils is high (40 to 70\%). The soils are fertile and they provide excellent dry season grazing.

The dominant grass on the Phragmites toiches is Phragmites communis. It occurs on riverain flood-plains where flooding lasts 2
to 4 months of the year, with the soils drying out completely toward the end of the dry season. The clay content of the soil is between 25 to 60%. The soils are only of moderate fertility and support moderate dry season grazing.

The dominant grass on the Hyparrhenia toiches is Hyparrhenia rufa, though sometimes a considerable amount of Vetineria nigritana is also present. They are generally found on lands where flooding rarely exceeds a period of ten weeks and where the water table is high in the rainy season. The soils are mainly clay with sandwiched, thin, sand layers. The soils are fertile, but at present cultivation is not extensive.

3.5.1.4 On the Sudd land (permanent swamps)

The Sudd vegetation is predominantly Cyperus papyrus. It occurs on low-level lands adjoining the major watercourses, with a flooding period of 4 to 8 months per year, but with a waterlogging period of 9 to 12 months of the year. Clay content of the soils is usually high (up to 60%). In some areas, coarse sand content may amount to 40%. Swamp vegetation grows luxuriantly on the clay soils, but its growth is stunted on the sandy soils (12).
3.5.1.5 On the edge of the Ironstone Plateau

The dominant vegetation here is mixed woodland of the broadleaved and the thorn type. They usually occur on sandy soils which is at most only slightly flooded during the rainy season. In many areas, the broad-leaved type is more common. The mixed woodland generally includes Combretum sp., Terminalia sp., Anogeissus schimperi, Acacia spp. (A. segal, A. sieberiana, A. senegal, A. campylacantha), Balanites
aegyptiaca, Dalbergia melanoxylon, Mitragyne sp., Kigelia aethiopica, Ficus sp., Bauhinia reticulata, Dichrostachys glomerata and other broadleaved types.

The grass may include Hyparrhenia dissoluta, H. barteri var. calvescens, H. rufa and Andropogon gayanus, and Setaria incrassata.

3.5.2 Soils and Vegetation of the Sub-catchments

The six sub-catchments in the south lie almost entirely on the Ironstone Plateau, only a small part in the southern-most region of the catchments* Jur, Tonj, Maridi and Naam is within the Green Belt, and a small part of Naam is in the Central Hills zone (Figure 3.2 and 3.4). The soils and vegetation of these regions are described as follows.

3.5.2.1 On the Ironstone Plateau

The major part of this area is covered by shallow reddish sandy loam overlying hard ironstone. The depth of soil is generally much shallower than 2 feet.

At the highest elevations where the soils are shallow, coarse and very well drained, broad-1eaved woodland exists. The common tree species are Khaya senegalensis, Anogeissus schimperi, Lannea kerstingii, Burkea africana, Combretum ghasalense, Prosopis africana, Boscia senegalensis, Grewia mollis and Terminalia mollis. Grasses in this area are not well-developed, with perennial Hyparrhenia spp. (H. barteri var.

[^2]calvescens and H. dissoluta) being the dominant type.
Along the slopes where the soils are deeper and better drained, the grass cover is better developed than the woodland. Here fewer tree species exist.

On the low-level land, the deeper, heavier and less freely drained soils are subject to seasonal flooding. Grass growth is luxurious and many areas are treeless. Major grasses are Hyparrhenia spp. (H. rufa and H. filipendula). In areas where woodland occurs, the tree species include Terminalia spp., Anogeissus schimperi, Acacia seyal and Mitragyne sp.

Two factors which may be important in the redistribution of vegetation on the Ironstone Plateau are the annual fires and the shifting pattern of cultivation. Where grass growth is dense, the annual fires are severe and the development of woodland is stunted. In shifting cultivation, new lands are periodically cleared while the old sites are allowed to regenerate. However, the regeneration of trees is much slower than that of grasses, and the regeneration of non-fire-resistant tree species is almost impossible.

3.5.2.2 On the Green Belt

The soils in this region are similar to those of the Ironstone Plateau. Because of the heaviest rainfall and smaller land slopes in this region, the broad-leaved woodland here is more luxuriant, with additional species of ChZorophora sp., Anona sp., Lophira sp., Sterculia sp. and Crossopteryx sp.

Fully-developed forests occur alongside River Sue, and in the southwestern part of Yambio District. Tree species in these forests include Khaya grandifoliola, Chlorophora excelsa, Canarium schweinfurthii, Ceiba pentandra, Erythrophleum guineense, and Mitragyne stipulosa.

3.5.2.3 On the Central Hills

The soils here are similar to those of the Ironstone Plateau. However, due to high erosion in this region, they are generally very shallow and lateritic, with frequent rock exposure. Deeper red loams are found only in the valleys and local depressions. Vegetation is similar to that of the Ironstone Plateau, but with less developed woodland and denser grasses. In addition to the broad-leaved woodland, woodland of the thorn type also occurs.

This region is just outside of the Bahr el Ghazal basin and appears to be of minor importance to the hydrology of the basin. Thus, no further description of it will be given.

3.6 Groundwater Table

Available information on the groundwater table in the Bahr el Ghazal basin is very limited. The following description comes from Reference (26).

On the lower ironstone peneplain (close to the Central Swampland), the water table is generally high.

At Rumbek, water is found as little as 10 feet below the land surface (see Figure 3.3).

In Tonj District, 90 government wells have depths ranging from 20 to 100 feet, and more than 180 other wells have depths down to 15 feet.

Along the Wau-Aweil-Raga road, close to the edge of the ironstone, depth of well is generally found to be between 15 to 20 feet.

Along the direct Wau-Raga road, water is easily found at depths of up to 30 feet.

In the Gogrial area of the Central Swampland, 60 government wells have an average depth of 25 feet.

In the southern and southwestern part of the ironstone areas and in the Green Belt, wells in general have not been successful. An exception is at Tembura (close to Li Yubo), where a well at 40 feet strikes water, yet another well 10 meters away remains dry in the dry season.

Most of the information available comes from the northern-most part of the catchments at the edge of the Central Swampland where the water table should be closest to the surface. As an estimate, the areal mean depth to water table for all the catchments is taken to be 20 meters. Effects of varying this depth will be discussed in the next chapter.

3.7 Climatic Parameters

3.7.1 Rainfall Characteristics

Rainfall in the study area is generally convective in nature and occurs in violent afternoon and evening thunderstorms (26), (27). The rainy season ranges in length from 5 months (May to September) in the north to 9 months (March to November) in the south and is governed largely by the migration of the inter-tropical convergence zone (ITCZ). Within the season, monthly rainfall rises to a peak in July or August.

There are about twenty meteorological stations in the study area. Table 3.2 gives their names, locations and altitudes, together with the long-term mean annual precipitation and the mean number of rainy days.

The mean annual precipitation is lowest in the north $(299 \mathrm{~mm}$ at E1 Fasher) and highest in the south (1498 mm at Li Yubo). It is linearly related to the mean annual number of rainy days (see Figure 3.5) and to the latitude (see Figure 3.6). Assuming one storm per rainy day, the former correlation implies a relatively constant average storm depth $\left(\mathrm{m}_{\mathrm{H}}=\overline{\mathrm{P}}_{\mathrm{A}} / \mathrm{m}_{\mathrm{V}}^{\prime}=14.3 \mathrm{~mm}\right)$ throughout the basin.

For all stations, the monthly precipitation follows a bellshaped curve. The rainy season is determined by omitting those months in the tails having a collective precipitation no greater than 5% of the annual total. The average annual seasonal precipitation, $\overline{\mathrm{P}}_{\mathrm{S}}$, may then be estimated as 95% of the annual value. By this estimation, it is obvious that $P_{S} / \bar{P}_{S}=P_{A} / \bar{P}_{A}$ and the observed distribution for the two are the same.

To apply the Poisson model developed earlier, we need to know the mean seasonal number of storms $\left(m_{\nu}\right)$ and the shape parameter, k, of the Gamma distribution of the storm depth. If a long record of the annual precipitations and the associated m_{ν} are available (say, more than 20 years), then K may be obtained from these data using the Poisson definition

Table 3.2
LOCATION OF METEOROLOGICAL STATIONS AND THEIR MEAN ANNUAL PRECIPITATION DATA

Station	Latitude North (28)	Latitude East (28)	Altitude (28)	Mean Annual Precipitation	Standard Deviation of P A	Mean Annual Number of Rainy Days	Years of Observation (up to 1975)
			(m)	$\bar{P}_{A}(\mathrm{~mm})$	$\sigma_{P_{A}}(m m)$	m^{\prime}	
E1 Fasher	$13^{\circ} 37^{\prime}$	$25^{\circ} 20^{\prime}$	730	299	120	34.3	58
E1 Obeid	$13^{\circ} 10^{\prime}$	$30^{\circ} 14^{\prime}$	570	371	111	34.2	73
En Nahud	$12^{\circ} 42^{\prime}$	$38^{\circ} 26^{\prime}$	565	396	102	33.8	64
Nyala	$12^{\circ} 04^{\prime}$	$24^{\circ} 53^{\prime}$	675	486	109	42.4	54
Dilling	$12^{\circ} 02^{\prime}$	$29^{\circ} 38^{\prime}$	670	436	127	46.2	59
Kadug1i	$11^{\circ} 00^{\prime}$	$29^{\circ} 43^{\prime}$	500	747	144	53.2	64
Talodi	$10^{\circ} 37^{\prime}$	$30^{\circ} 24^{\prime}$	473	794	150	56.0	60
Tonga*	$9^{\circ} 28^{\prime}$	$31^{\circ} 03^{\prime}$	390	877	193	58.8	61
Fangak*	$9^{\circ} 04^{\prime}$	$30^{\circ} 53^{\prime}$	390	936	290	59.6	49
Aweil*	$8^{\circ} 46^{\prime}$	$27^{\circ} 24^{\prime}$	415	901	175	64.6	41
Raga	$8^{\circ} 28^{\prime}$	$25^{\circ} 41^{\prime}$	545	1183	162	79.6	63
Meshra el Rek*	$8^{\circ} 25^{\prime}$	$29^{\circ} 16^{\prime}$	427	836	179	49.5	53
Wau*	$7^{\circ} 42^{\prime}$	$28^{\circ} 01^{\prime}$	435	1126	182	82.9	72
Tonj*	$7^{\circ} 17^{\prime}$	$28^{\circ} 45^{\prime}$	430	1056	198	71.7	28
Shambe*	$7^{\circ} 05^{\prime}$	$30^{\circ} 46^{\prime}$	405	780	228	51.1	61
Rumbek*	$6^{\circ} 48^{\prime}$	$29^{\circ} 42^{\prime}$	420	988	217	63.9	63
Amadi	$5^{\circ} 31^{\prime}$	$30^{\circ} 20^{\prime}$	500	1175	185	80.6	39
Li Yubo	$5^{\circ} 24^{\prime}$	$27^{\circ} 15^{\prime}$	600	1498	200	104.8	34
Maridi	$4^{\circ} 55^{\prime}$	$29^{\circ} 28^{\prime}$	750	1385	225	100.3	55
Yambio	$4^{\circ} 34^{\prime}$	$28^{\circ} 24^{\prime}$	650	1429	197	110.3	52

FIGURE 3.5
CORRELATION BETWEEN MEAN ANNUAL STATION PRECIPITATION AND MEAN ANNUAL NUMBER OF RAINY DAYS

FIGURE 3.6
CORRELATION BETWEEN MEAN ANNUAL STATION PRECIPITATION AND LATITUDE

$$
\begin{equation*}
k=\left[\mathrm{m}_{v}\left(\frac{{ }^{\mathrm{P}_{\mathrm{A}}}}{\overline{\mathrm{P}}_{\mathrm{A}}}\right)^{2}-1\right]^{-1} \tag{3.1}
\end{equation*}
$$

which is derived in (15).
In a long record, to facilitate the work, m_{V} in Eq. (3.1) may be replaced by the mean annual number of storms, instead of the mean seasonal, since in this case the two differs by very little.

If only a few years of rainfall record are available, k may best be determined from observations of individual storm depth (h) as follows:

By definition of the Gamma distribution

$$
\begin{equation*}
\mathrm{m}_{\mathrm{H}}=\kappa / \lambda=\text { mean storm depth } \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{H}^{2}=\kappa / \lambda^{2}=\text { variance of storm depth } \tag{3.3}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\kappa=\left(\frac{m_{H}}{\sigma_{H}}\right)^{2} \tag{3.4}
\end{equation*}
$$

The CDF of storm depth is given in (), as

$$
\begin{equation*}
\operatorname{Prob}\left(h \leq h^{\prime}\right)=\int_{0}^{h^{\prime}} \frac{\lambda(\lambda h)^{\kappa-1} e^{-\lambda h}}{\Gamma(\kappa)} d h \tag{3.5}
\end{equation*}
$$

in which, as before,

$$
\begin{equation*}
\lambda=\kappa / m_{H} \tag{3.6}
\end{equation*}
$$

Storm depth data available through the Sudanese Meteorological Service consist of the average number of rainy days in the wet season
having a storm depth, h, greater than $0.1 \mathrm{~mm}\left(X_{1}\right)$, greater than 1.0 mm $\left(\mathrm{X}_{2}\right)$, and greater than $10.0 \mathrm{~mm}\left(\mathrm{X}_{3}\right)$. The station record length is from 3 to 18 years. To obtain the parameters k and λ of the Gamma distribution fitted to these points on the CDF of storm depth (Equation 3.5), two assumptions are made:
(1) The number of storms is proportional to the number of rainy days

$$
\begin{equation*}
m_{v}=a m_{v}^{\prime} \tag{3.7}
\end{equation*}
$$

where

$$
m_{V}^{\prime}=\text { average number of rainy days in the wet season }
$$

and

$$
\mathrm{a}=\text { constant } \geq 1
$$

(2) Storms with $\mathrm{h} \leq 0.1 \mathrm{~mm}$ are neglected. Then

$$
\begin{align*}
& \operatorname{Prob}[\mathrm{h} \leq 1.0 \mathrm{~mm}]=1-\frac{\mathrm{aX}_{2}}{\mathrm{aX}_{1}}=1-\frac{\mathrm{X}_{2}}{\mathrm{X}_{1}} \tag{3.8}\\
& \operatorname{Prob}[\mathrm{~h} \leq 10 \mathrm{~mm}]=1-\frac{\mathrm{aX}_{3}}{\mathrm{aX}_{1}}=1-\frac{\mathrm{X}_{3}}{\mathrm{X}_{1}} \tag{3.9}
\end{align*}
$$

Equations (3.5), (3.6), (3.8) and (3.9) define k and λ which together give the mean storm depth from Equation (3.2). The mean number of storms in the wet season is then given by

$$
\begin{equation*}
\mathrm{m}_{v}=\overline{\mathrm{P}}_{\mathrm{s}} / \mathrm{m}_{\mathrm{H}} \tag{3.10}
\end{equation*}
$$

where

$$
\bar{P}_{S}=\text { mean annual seasonal precipitation, } \mathrm{cm}
$$

and from Eq. (3.7),

$$
\begin{equation*}
a=\frac{m_{v}^{\prime}}{m_{v}} \tag{3.11}
\end{equation*}
$$

The values of "a" using the above solution range from 0.85 to 1.48 for the 20 stations. K and m_{v} so obtained are checked by comparing Eq. (2.5) with the CDF of observed station annual precipitation. The results in general are poor. For the three stations (Wau, Raga, Yubo) that fit well, "a" ranges from 1.03 to 1.10.

The poor results are not unexpected. Due to the practical difficulty of distinguishing between depths of 0.1 mm and 1 mm in the field, the right-hand side of Eq. (3.8) may be highly inaccurate, and, in some extreme cases, it is even driven to zero, which makes Eq. (3.5) impossible.

To circumvent this problem, Eq. (3.8) is not used. Instead, by assuming $a=1.0$ in Eq. (3.7), we obtain

$$
\begin{equation*}
m_{v}=m_{v}^{\prime} \tag{3.12}
\end{equation*}
$$

which then gives the mean storm depth as

$$
\begin{equation*}
\mathrm{m}_{\mathrm{H}}=\overline{\mathrm{P}}_{\mathrm{s}} / \mathrm{m}_{v} \tag{3.13}
\end{equation*}
$$

Equations (3.5), (3.6), (3.9) and (3.13) now define K. The values of K and m, so defined may be checked by comparing Eq. (2.5) with the CDF of observed station annual precipitation. Figure 3.7 for station Wau gives a typical comparison. The rest of the stations are given in Appendix A. In all these figures, $\overline{\mathrm{P}}_{\mathrm{A}}=\mathrm{m}_{P_{A}}$ and $\overline{\mathrm{P}}_{\mathrm{S}}=\mathrm{m}_{\mathrm{P}_{\mathrm{S}}}$. The fit for

FIGURE 3.7
FREQUENCY OF ANNUAL PRECIPITATION
(STATION WAU)
most of the stations is amazingly good even using only three to eighteen years of observations for determining the parameters. There are three exceptions, stations El Fasher, E1 Obeid and Fangak. These are probably due to the fact that stations E1 Fasher and El Obeid were moved to new locations several miles away from their old sites in 1945 and 1942 , respectively, while the precipitation of Fangak appears to have been experiencing a decreasing trend since 1947. Using a few years of precipitation observations at the new station sites or the observations in the low precipitation years will certainly underestimate the variance of the long-term records, thus giving a flatter CDF than the observed. Obtaining the Poisson parameters from the entire sample of annual observations, as indicated in Eq. (3.1), gives a remarkable fit with the observations at all stations indicating that these are Poisson arrival processes. The above results reinforce our earlier conclusion that the precipitation distribution function is applicable in general to both arid and humid climates, provided that the storms are independent and come from a single, homogeneous population. They also show the validity of using only a few years of precipitation records to predict the long-term precipitation CDF.

The P_{S}, m_{τ}, K and m_{V}^{\prime} of the stations are tabulated in Table 3.3.

Since the Bahr el Arab and Raqaba el Zarqa apparently make a negligible contribution to the hydrology of the Bahr el Ghazal because of their insignificant discharges, we will ignore the stations in these two catchments in the rest of this study.

Table 3.3
LONG-TERM AND SHORT-TERM RAINFALL PARAMETERS
Long-term

$($ up to 1975$)$$\quad$| Short-term |
| :---: |
| $(3$ to 18 years) $)$ |

Mean	Mean Rainy	K
Seasonal Precipitation	Season	Length
$\overline{\mathrm{P}}_{\mathrm{S}}(\mathrm{mm})$	m_{τ} (months)	
$\left(=0.95 \overline{\mathrm{P}}_{\mathrm{A}}\right)$		

	El Fasher	284	5	0.22	0.43	39.7	6
	E1 Obeid	353	6	0.49	0.66	40.4	8
$\stackrel{\circ}{+}$	En Nahud	377	6	0.80	0.44	39.5	6
	Nyala	461	6	0.88	0.75	45.0	6
	Dilling	604	6	1.19	0.96	39.6	16
	Kadugli	710	6	1.02	0.77	60.0	8
	Talodi	754	6	1.00	0.78	55.0	3
	Tonga	833	6	0.54	0.65	59.6	15
	Fangak	890	7	0.21	0.88	45.4	16
	Aweil	856	7	0.70	0.73	66.4	10
	Raga	1124	7	2.03	0.81	88.3	10
	Meshra E1 Rek	794	7	0.79	1.28	45.8	11
	Wau	1069	7	0.86	0.71	90.6	10
	Tonj	1003	7	0.66	0.75	69.0	18
	Shambe	741	7	0.30	0.50	45.4	8
	Rumbek	939	7	0.48	0.67	71.2	10
	Amadi	1116	9	1.00	1.38	73.9	12
	Li Yubo	1423	9	1.15	0.96	100.0	6
	Maridi	1315	9	0.61	1.08	108.1	3
	Yambio	1357	9	0.91	0.81	117.3	7

Only nine stations in the south are needed to describe the climatic parameters of the six sub-catchments by the Thiessen's method. If $a_{i j}$ denotes the area belonging to station i in catchment j, then the Thiessen's method gives the areal average of a parameter x for the catchment j by the following expression,

$$
\begin{equation*}
x_{j}=\frac{\sum_{i=1}^{9} a_{i j} x_{i j}}{\sum_{i=1}^{9} a_{i j}}=\frac{\sum_{i=1}^{9} a_{i j} x_{i j}}{A_{j}}, \quad j=1, \ldots, 6 \tag{3.14}
\end{equation*}
$$

where
$A_{j}=$ area of the $j^{\text {th }}$ catchment.
For example, for annual precipitation, we have

$$
\begin{equation*}
{\underset{\mathrm{P}}{\mathrm{~A}}}^{\bar{P}_{i=1}^{9}} \sum_{i j} \bar{P}_{A_{i j}} / A_{j}, \quad j=1, \ldots, 6 \tag{3.15}
\end{equation*}
$$

where the overbar denotes the time average and the underbar denotes the spatial average.

The mean monthly precipitation, number of rainy. days and storm depth for the 9 stations are given in Appendix A, together with the table for $a_{i j}$ and the space-time average of the latter two parameters for the 6 sub-catchments.

The space-time mean monthly catchment precipitation is tabulated in Table 3.4. Using the rainy season criterion mentioned before, we obtain the wet season months $\left(m_{\tau}\right)$, and the mean seasonal precipitation, $\overline{\mathrm{P}_{s}}$. Once the wet season months are known, the mean seasonal catchment rainy days, $\underline{m}_{v}^{\prime}$, and the mean seasonal catchment storm

Table 3.4
Space-time Mean Monthly Catchment Precipitation, mm/month
(Time average up to 1972)

Naam	Maridi	Tonj	Jur	Pongo	Loll
1	2	3	4	5	6

depth, \underline{m}_{H}, can be evaluated.
Observations of storm durations are few. The closest stations to the Tonj catchment with such information are Juba (27) ($4^{\circ} 51^{\prime} \mathrm{N}$, $31^{\circ} 37^{\prime} \mathrm{E}$) where the mean storm duration $\mathrm{m}_{\mathrm{t}_{\mathrm{r}}}=1.1 \mathrm{hr}$., Bata $\left(2^{\circ} 3^{\prime} \mathrm{N}\right.$, $33^{\circ} 12^{\prime} \mathrm{E}$) where $\mathrm{m}_{\mathrm{t}_{\mathrm{r}}}=1.2 \mathrm{hr}$. and Bugunese ($1^{\circ} 9^{\prime} \mathrm{N}, 34^{\circ} 14^{\prime} \mathrm{E}$) where $\mathrm{m}_{\mathrm{t}_{r}}=$ 1.2 hr . (9). Based on these findings, the mean storm duration $\left(\mathrm{m}_{\mathrm{t}}\right)$ for the six catchments in the south is taken to be 1.2 hr .

The mean time between storms, $\underline{m}_{t_{b}}$, is computed by the following equation,

$$
\begin{equation*}
\underline{m}_{t_{b}}=\frac{\underline{m}_{\tau}}{\underline{m}_{v}^{\prime}}-m_{t} \tag{3.16}
\end{equation*}
$$

The mean storm intensity, \underline{m}_{i}, is computed by

$$
\begin{equation*}
\underline{m}_{i}=\frac{\underline{m}_{H}}{m_{t r}} \tag{3.17}
\end{equation*}
$$

Extensive plots of station k versus station precipitation parameters, station longitudes, latitudes and altitudes show that there are hardly any correlations, so we assume K is a random variable and use the Thiessen's method to obtain the areal average \underline{K} for each subcatchment.

All the important catchment precipitation parameters are
summarized in Table 3.5.

3.7.2 Potential Evaporation and Evapotranspiration

3.7.2.1 Potential evaporation

The average wet season monthly evaporation rates for a water

Table 3.5: Important Catchment precipitation parameters
(Space-time Averages)

surface, $\bar{e}_{p w}$, and for a wet soil surface, \bar{e}_{p}, are computed using a form of the modified Penman equation (Equation 2.17). Parameters required for evaluating $\overline{\mathrm{e}}_{\mathrm{pw}}$ and $\overline{\mathrm{e}}_{\mathrm{p}}$ include the insolation, surface albedo, air temperature, relative humidity and cloud cover. The last three are provided by the Sudanese Meteorological Service. The albedos for water surface and wet soil surface are assumed to be 0.05 and 0.10 , respective1y. Reference (29) gives the mean annual insolation across Africa. By interpolating the insolation between isolines, we obtain the station insolation as given in Table 3.6

The mean monthly insolation is obtained by proportioning the annual insolation according to the variation in monthly temperature, as

$$
\begin{equation*}
\overline{\mathrm{q}}_{\mathrm{i}}^{\mathrm{j}}=\overline{\mathrm{q}}_{\mathrm{i}}^{\mathrm{m}} \times \frac{\overline{\mathrm{T}}_{\mathrm{A}}^{\mathrm{j}}}{\overline{\mathrm{~T}}_{\mathrm{A}}^{\mathrm{m}}} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{q}_{i}^{j} & =\text { the mean insolation for month } j, \mathrm{kcal} / \mathrm{cm}^{2} / \mathrm{month} \\
\overline{\mathrm{q}}_{\mathrm{i}}^{\mathrm{m}} & =\text { the mean annual monthly insolation, } \mathrm{kcal} / \mathrm{cm}^{2} / \mathrm{month}=\frac{\bar{q}_{i}}{12} \\
\overline{\mathrm{q}}_{\mathrm{i}} & =\text { the mean annual insolation, kcal/cm }{ }^{2} / \text { year } \\
\overline{\mathrm{T}}_{\mathrm{A}}^{\mathrm{j}} & =\text { the mean air temperature for month } \mathrm{j},{ }^{\circ} \mathrm{C} \\
\overline{\mathrm{~T}}_{\mathrm{A}}^{\mathrm{m}} & =\text { the mean annual monthly air temperature, }{ }^{\circ} \mathrm{C} \\
& =\sum_{j=1}^{12} \overline{\mathrm{~T}}_{\mathrm{A}}^{\mathrm{j}} / 12
\end{aligned}
$$

The mean monthly insolation, air temperature, relative humidity and cloud cover, and the mean monthly potential evaporation for water and wet soil surface evaluated by Equations (2.17) through (2.20) for the 9 stations are all tabulated in Appendix A.

Table 3.6
Mean Annual Station Insolation $\bar{q}_{i}, K c a l / \mathrm{cm}^{2} /$ year

Station Name	Aweil	Raga	Wau	Tonj	Rumbek	Amadi	Yubo	Maridi	Yambio
Station Number	1	2	3	4	5	6	7	8	9
Mean Annua1 Insolatiqn (Kcal/cm $/ \mathrm{yr}$) Kan	164	161	159	158	156	154	153	152	151

Tables 3.7 and 3.8 give the mean monthly catchment potential evaporation for water, $\overline{\mathbf{e}}_{\mathrm{pw}}$, and wet soil surface, $\overline{\mathrm{e}}_{\mathrm{p}}$, respectively. The Piche tube observations, $\bar{e} \bar{p}$, for the 9 stations are also tabulated in Appendix A, together with the catchment areal averages, $\overline{\mathrm{e}}_{\mathrm{p}}^{\prime}$.

The Piche reduction factor (annual $\bar{e}_{p w} / \bar{e}_{p}^{\prime}$) for the six catchments ranges from 0.70 to 1.00 (Table 3.9) with an overall areal average of 0.78 . This result is consistent with Hurst's findings (5) that in a highly humid region, the Piche reduction factor is larger than the standard 0.5.

The mean monthly Piche tube observation and water surface evaporation are also plotted for the six catchments in Appendix A.

3.7.2.2 Potential evapotranspiration

The potential evapotranspiration rate for papyrus swamp has been estimated earlier to be 2.2 meters per year, and that for grasslands in our catchments to be 120 mm per month in the wet season. And for woodland in tropical Africa, it is estimated to be $158 \mathrm{~mm} / \mathrm{month}$ in the wet season (30).

According to the vegetation distribution map for the Jonglei project area (31), the vegetation of the Ironstone Plateau is estimated to be 67% grasses and 33% deciduous trees. There is no mention of the bare soil fraction in this area, nor the actual canopy density (vegetation fraction) of the area. In a later chapter, the canopy density for each catchment will be derived from our water balance model by adopting

Table 3.7: Space-Time Mean Monthly Catchment Potential
Evaporation (Water Surface), $\overline{\mathrm{e}}_{\mathrm{p}_{\mathrm{W}}}$, mm/month
(Albedo $=0.05$)

	Naam 1	$\begin{gathered} \text { Maridi } \\ 2 \end{gathered}$	Tonj 3	Jur 4	Pongo 5	Lol1 6
Month						
1	129	134	128	128	130	120
2	142	145	141	138	146	139
3	154	161	152	145	163	164
4	145	153	147	141	164	177
5	138	142	137	130	151	164
6	128	131	127	121	137	149
7	121	125	120	116	128	138
8	121	124	120	113	125	136
9	126	129	125	118	131	140
10	130	134	128	122	135	143
11	132	136	129	125	134	134
12	130	132	126	122	127	119
$\begin{aligned} & \text { Yearly } \\ & (\mathrm{mm} / \mathrm{yr}) \end{aligned}$	1595	1646	1582	1517	1670	1718
Seasonal (mm/month in the wet season)	133	137	132	125	142	149

Table 3.8: Space-time Mean Monthly Catchment Potential

Evaporation (Wet Soil Surface) $, \bar{e}_{p}, m m / m o n t h ~$					
	(Albedo $=0.10)$				
Naam	Maridi	Tonj	Jur	Pongo	Loll
1	2	3	4	5	6

Month

1	121	126	120	120	122	112
2	134	137	133	129	137	130
3	144	151	142	135	153	155
4	136	144	138	132	154	167
5	130	134	129	122	142	155
6	121	124	120	113	128	140
7	114	117	113	108	120	130
8	114	116	112	106	118	128
9	119	121	118	111	123	132
10	122	126	121	114	126	134
11	124	128	121	117	125	126
12	122	124	118	113	119	112
$\begin{gathered} \text { Yearly } \\ (\mathrm{mm} / \mathrm{yr}) \end{gathered}$	1499	1548	1484	1420	1568	1621
Seasonal (mm/month in the wet season)	125	129	124	118	133	141

Table 3.9
Piché Reduction Factor ($\bar{e}_{\mathrm{pw}} / \overline{\mathrm{e}}_{\mathrm{p}}^{\prime}$)

		Naam	Maridi	Tonj	Jur	Pongo	Loll
Yearly $\overline{\mathrm{e}}_{\mathrm{pw}}$	(mm)	1595	1646	1582	1517	1670	1718
Yearly $\overline{\mathrm{e}}_{\mathrm{p}}^{\prime}$	(mm)	1603	1884	2012	1880	2393	2449
Yearly $\overline{\mathrm{e}}_{\mathrm{pw}} / \overline{\mathrm{e}}_{\mathrm{p}}^{\prime}$	1.00	0.87	0.79	0.81	0.70	0.70	

the vegetal equilibrium hypothesis (19) which states that for a given climate, soil and plant coefficient, the equilibrium canopy density, M_{o}, is such that the space-time average soil moisture is a maximum, Under such a condition, the vegetation is only experiencing a minimum stress.

Since our six catchments lie almost entirely within the Ironstone Plateau, the composite potential evapotranspiration, $\overline{\mathrm{E}}_{\mathbf{v}}$, for the vegetation surface of the catchments will be estimated as $\overline{\mathrm{E}}_{\mathrm{V}}=120(0.67)+158(0.33)=134 \mathrm{~mm} /$ month in the wet season.

The potential transpiration efficiency, k_{v}, for the catchments is defined by

$$
\begin{equation*}
\mathrm{k}_{\mathrm{v}}=\frac{\bar{E}_{v}}{\overline{\bar{e}}_{\mathrm{p}}} \tag{3.19}
\end{equation*}
$$

and the $p l a n t$ coefficient, k_{v}^{\prime}, for the catchments

$$
\begin{equation*}
\mathrm{k}_{\mathrm{v}}^{\prime}=\frac{\mathrm{E}_{\mathrm{v}}}{\overline{\mathrm{e}}_{\mathrm{pw}}} \tag{3.20}
\end{equation*}
$$

These values are given in Table 3.10 where, for convenience, $\overline{\mathrm{e}}_{\mathrm{p}}$ and $\overline{\mathrm{e}}_{\mathrm{PW}}$ are also given.

Because of the extreme closeness of the values of \bar{E}_{v} and \bar{e}_{p} or $\overline{\mathrm{e}}_{\mathrm{pw}}$ (in many cases the differences are only a few millimeters, which is well within the limits of estimation error), there is no strong evidence to indicate that ${\underset{V}{v}}^{\text {is greater than or less than one. In lieu }}$

The surface retention capacity, h_{o}, of the vegetal surface is assumed to be 3 mm .

Table 3.10
Catchment Potential Transpiration Efficiency and Plant Coefficient

3.8 The Inhabitants and their Living Pattern

3.8.1 On the Flood Region of the Central Swampland (Fig. 3.4)

The Flood Region is occupied almost exclusively by the Nilotic
tribes -- the Dinka, Nuer and Shilluk. Cultivation in this region is extremely limited because the crops either perish from drought in the dry season or are drowned by heavy flooding during the wet season. Only the "High land" is heavily exploited for permanent dwellings and for crop production. Dura (sorghum, millet) is the only major crop. Since crop production is a precarious undertaking, cattle raising becomes the most important economic activity in this region. In some areas, fishing is also important.

During the rainy season, the river overflows its bank and the people are forced to move inland to higher ground where they cultivate their crops and graze their herds in the immediate vicinity. During the dry season, the herds are driven from the "High land" to graze first on the Intermediate land and then on the Toich land. As the rainy season comes, they return again to "High land". This annual cycle of movement shows a living pattern in which man is living in a very delicate balance with his environment.
3.8.2 On the Ironstone edge of the Central Swampland

This region includes the transition zone between the Flood Region and the Ironstone Plateau along Rumbek, Tonj, Gogrial and Aweil (Figures 3.3 and 3.4). The inhabitants in this region are mostly the Dinka tribes. Here, a mixed economy is practiced, in which animal
husbandry is sometimes more important than crop production. Permanent dwellings are mainly along the edge of the Ironstone Plateau. Shifting cultivation is practiced in the vicinity of their dwellings. The fields are normally cultivated for 4 to 5 years and then rested for 3 to 5 years. After 10 to 12 years, they are abandoned and new fields and dwellings have to be found. The old fields are allowed to regenerate for a period of 20 to 30 years before they are reopened. Dura is the only important crop grown here. In the dry season, livestocks are moved for grazing to the widely dispersed toich areas in the Flood Region, and along many of the watercourses.
3.8.3 On the Ironstone Plateau of the Sub-catchments

On the Ironstone Plateau, along Wau and Raga, and south of the Green Belt, the inhabitants are composed of many small tribes of mixed origin including the western Sudanic and a few of the Shilluk-speaking Nilotic. They are all settled cultivators and the number of livestock is very small. The major crops include dura, sesame, groundnuts, beans and cassava. Lands here are cultivated continuously for 5 to 8 years and then rested for up to 30 years. People move their homes frequently and over long distances because of limited areas of fertile soils.

3.8.4 On the Green Belt of the Sub-catchments

On the Green Belt along Tembura, Yambio and Ibba, the inhabitants are mostly the Zande of western Sudanic origin. They are primarily cultivators because the presence of the tsetse fly renders cattle raising almost an impossible task. Cotton and cassava are among
the important crops. There are also some minor subsidiary activities such as fishing, hunting and honey extraction.

Around the Amadi area are the Moru-Madi group. They are settled cultivators. Dura and cotton are the major crop. Some cattle of smaller stock exists, but their numbers are very limited due to the infestation of tsetse fly.

Shifting cultivation is also practiced on the Green Belt region. Lands are normally cultivated for from 3 to 5 years and then rested for a period of 5 to 10 years. Two crops a year are common.

3.8.5 Population Distribution of the Bahr el Ghazal Basin

The Sudan is politically divided into eight provinces. The Bahr el Ghazal basin lies astride five of them, namely, the Darfur, the Kordofan, the Upper Nile, the Bahr el Ghazal and the Equatoria Provinces (Figure 3.8)*. The last two cover the six sub-catchments and the major part of the Central Swampland. The remaining part of the Central Swampland and the Raqaba el Zarqa catchment are within the territory of the Upper Nile Province. The source of Bahr el Arab lies in the Bahr el Ghazal Province and the rest of it is in the Darfur Province. As our information is only available up to 10° North latitude, we will ignore the Bahr el Arab and Raqaba el Zarqa catchment in the following description.

[^3]

FIGURE 3.8
DISTRIBUTION OF POPULATION DURING WET SEASON (26)

Each province is sub-divided into districts. Within the Bahr el Ghazal Province, there are four districts, the Jur River, the Lakes, the Aweil and the Western District. In the Equatoria Province, only the Zande and Moru District are associated with the Bahr el Ghazal basin, and in the Upper Nile Province, it is the Western Nuer District.

Table 3.11 gives the approximate population distribution by districts of the Bahr el Ghazal basin. The "Estimated Total Population" is the number of tax-payers in the region multiplied by a factor ranging from 4 to 5. Even with such a multiplier, these figures are still probably very much less than the actual (26). The population density given in the table could be quite deceptive because hugh areas of the districts are still unexplored and uninhabited. The population are concentrated mostly in areas where water is accessible and communication possible. These areas are along the water-courses and the major roads. The "High land" and Ironstone edge of the Central Swampland, and the Green Belt of the sub-catchments have the highest population concentration.

The "Estimated Animal Population" is noticeably small in the Western, Zande and Moru Districts because they are within the tsetse fly zone where the stock can hardly survive.

Just to have a rough idea of how many people would be affected by the drainage projects of the Bahr el Ghazal swamps, we may sum the "Estimated Total Population" in the Aweil, the Jur River, the Western, the Western Nuer and the Lakes Districts. This amounts to $1,090,822$.

Table 3.11: Population Statistics of the Bahr el Ghazal Basin (26)

Estimated		
Total		
Population		Density

(sq. miles) (非/sq. mile)
$16,593 \quad 16.2$

16,087
11,706
38,234
Western

Zande
169, 219
64,555

193,935

1,324,596
Total:

22,124
9,210

14,000

127,954

Estimated
Animal
Population
Ratio of Animal Unit to Humans
sheep cattle and goat

280,000	480,000	1.3
540,000	648,000	1.9
251,000	190,000	1.3
7,200	5,000	0.1

0.1
7.6
7.0
13.9

257,000
111,000
1.4

Chapter 4

MODELLING THE BAHR EL GHAZAL BASIN

4.1 Introduction

The objective of this work is to model the hydrologic behavior of the Bahr el Ghazal basin in such a way as to demonstrate the effect of possible drainage and channelization projects upon the statistics of the contribution from this region to the flow of the White Nile. To achieve the objective, the water balances of the Central Swampland and of all the individual catchments have to be known. A conceptual model of the Central Swampland will be formulated for the purpose of studying its dynamic behavior in response to varying annual inputs, and in order to estimate the change in water yield which will result from swamp drainage.

In such a study, satellite mapping techniques are useful in obtaining estimates of the extent of different vegetation and soil types over the entire basin, and the extent of permanent swamps. This information is vital in the estimation of the actual evapotranspiration rate both on land and on swamp, and of other hydrologic parameters. However, at the present time, these data are not available. Without satellite mapping data for our area, we will rely heavily on available literature and on the satellite mapping information of the nearby 'Jonglei Canal Project' area in the estimation of the hydrologic, soil and vegetation parameters of the Bahr el Ghazal basin.

4.2 A Preliminary Water Balance of the Central Swampland

There are eight Bahr el Ghazal sub-catchments, producing eight tributary inputs to the Central Swampland. The Central Swampland has two constituents -- papyrus swamps and grasslands -- which are intermingled. For modelling purposes, we will concentrate the grasslands in an annulus surrounding the papyrus swamp which is the lower limit of the variable water-surface area shown in Figure 4.1.

Since we are only dealing with mean annual values in this section, for simplicity, we will drop the words 'mean annual' in the following discussion.

There are about 20 available precipitation stations scattered more or less uniformly over the entire basin. Based on Thiessen's weighting, the average annual precipitation over all the sub-catchments $\left(\overline{\mathrm{P}}_{\mathrm{L}}\right)$ amounts to 384.1 md and on the Central Swampland $\left(\overline{\mathrm{P}}_{\mathrm{o}}\right)$, to 77.9 md (Table 3.1).

For the papyrus swamps $\left(16,600 \mathrm{~km}^{2}\right)$, the evapotranspiration is assumed to occur at its potential rate (2.2m) since the water supply is unlimited. This produces an annual loss of 36.5 md .

The grasslands in the Central Swampland cannot all be transpiring at the potential rate during the entire year. When flooded, we assume they will transpire at the potential rate throughout the year, but where unflooded, we assume they will transpire only during the rainy season and then at the potential rate. The area of the flooded grassland is highly variable, and is a function of the land slopes, precipitation, yearly carry-over in water storage, evapotranspiration of grassland,

Figure 4.1 SCHEMATIC REPRESENTATION OF THE BAHR EL GHAZAL BASIN
seepage, etc. To the first approximation, we will deal only with the estimated mean annual flooded grassland area (A_{F}). The outer boundary of this mean flooded area is limited by the outer boundary of the Central Swampland while the inner boundary is limited by the extent of the papyrus swamps. The mean flooded area then varies between 0 and $68,400 \mathrm{~km}^{2}$ ($\mathrm{F}_{\mathrm{max}}$). At the moment, detailed description of the topography of the $F_{\text {max }}$ Central Swampland is not available. In order to have some idea of the space-time average flooded area, we will assume that the random variable, A_{F}, follows a triangular distribution (Figure 4.2). It is more likely that the annual flooded area is closer to the inner boundary than to the outer, since it is flooding outward from the center. In order to account for the above fact, we will assume the distribution shown in Figure 4.2. Under such an assumption, the expected value of the mean unflooded grassland area is $39,900 \mathrm{~km}^{2}$.

Assuming the unflooded grass to be dormant in the dry season and using the potential evapotranspiration rate determined earlier, we can calculate the evapotranspiration of the grassland, E_{g}, as
$\overline{\mathrm{E}}_{\mathrm{g}}=120 \mathrm{~mm} /$ month x 12 months $\mathrm{x} 28,500 \mathrm{~km}^{2}+120 \mathrm{~mm} / \mathrm{month}$ x 7 months $\mathrm{x} 39,900 \mathrm{~km}^{2}$
$=74.6 \mathrm{md}$
The total evapotranspiration of the Central Swampland is the sum of the evapotranspiration of the papyrus swamps and the grasslands, and amounts to $111.1 \mathrm{md}\left(\bar{E}_{0}\right)$.

The total gaged discharge $\left(\bar{Y}_{L}\right)$ from the eight tributaries amounts to 12.7 md (Table 3.1).

Figure 4.2 TRIANGULAR DISTRIBUTION OF THE NORMALIZED TEMPORAL MEAN FLOODED AREA

Before reaching the Central Swampland, all the tributaries start to spill onto their flood-plains during the wet season (3), (26). The sandy river bed on the Ironstone Plateau just south of the Central Swampland takes up much of the dry season flow through seepage (26). Numerous ungaged small streams, either ephemeral or perennial, flow into the Central Swampland from the sub-catchments (32). On the boundary of the Central Swampland, the water table is generally high. The average depth of well is about 10 to 25 feet along the southern boundary (page 83), which may give rise to ungaged sub-surface inflows along this boundary.

The varied evidence cited above gives a strong indication that there is a significant ungaged surface and/or sub-surface inflow $\left(\overline{\mathrm{G}}_{\mathrm{L}}\right)$ to the Central Swampland. Assuming that deep seepage ($\overline{\mathrm{D}}_{0}$) at the Central Swampland is negligible, a \bar{G}_{L} of 15.1 md is required to close the water balance of this region (Fig. 4.3).

The evapotranspiration on the sub-catchments, \bar{E}_{L}, is estimated by a subsequent closure of the water balance of the lumped sub-catchments.

From the result of the above water balance, it is found that the magnitude of ungaged inflow, \bar{G}_{L}, to the Central Swampland (15.1 md) is comparable to that of the gaged discharges, $\bar{Y}_{L}(12.7 \mathrm{md})$.

In the above analysis, any sub-catchment outflow not entering the Central Swampland (such as deep seepage) is ignored.

4.3 A Refined Water Balance Mode1 of the Central Swampland

4.3.1 The Refined Water Balance Model

In the preliminary mean annual water balance of the Central

FIGURE 4.3

A PRELIMINARY MEAN ANNUAL WATER BALANCE OF THE CENTRAL SWAMPLAND

Swampland, the deep seepage at the Central Swampland (\bar{D}_{0}) and on the sub-catchments is neglected. In order to know whether deep seepage is indeed negligible, a refined water balance model is needed.

Referring to Figure 4.1, the annual water balance for the Central Swampland of the Bahr el Ghazal basin can be written as

$$
\begin{equation*}
\underline{P}_{0}+Y_{L}+G_{L}+J_{0}-\underline{E}_{0}-D_{0}-\Delta S_{0}=R_{0} \tag{4.1}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \underline{P}_{O}=\text { areal average annual precipitation } \\
& Y_{L}=\sum_{i=1}^{n=8} Y_{i}=\text { sum of gaged annual inflows from the n sub- } \\
& G_{L}=\sum_{i=1}^{n=8} G_{i}=\text { sum of ungaged annual inflow from the n sub- } \\
& \text { catchments, including catchment deep seepage. } \\
& J_{o}=\text { annual spillage from the Bahr el Jebel } \\
& E_{0}=\text { areal average annual evapotranspiration } \\
& D_{o}=\text { annual deep seepage } \\
& R_{o}=\text { annual outflow from Lake No } \\
& \Delta S_{o}=\text { annual change in storage }
\end{aligned}
$$

Taking the expected value of Equation (4.1) term by term, we eliminate the troublesome change-of-storage term to obtain the average annual water balance

$$
\begin{equation*}
\underline{\underline{P}}_{O}+\bar{Y}_{L}+\bar{G}_{L}+\bar{J}_{0}-\bar{E}_{O}-\bar{D}_{0}=\bar{R}_{o} \tag{4.2}
\end{equation*}
$$

where the underbar represents the Thiessen areal average and the overbar
represents the time average.
The mean total annual outflow from the catchments $\left(\bar{Y}_{\mathrm{T}}\right)$ may be obtained from a similar water balance analysis for each of the tributary catchments. Since there is no spillage into these tributaries, this will be given by

$$
\begin{equation*}
\bar{Y}_{T}=\bar{Y}_{L}+\bar{G}_{L}=E\left[\sum_{i=1}^{n=8}\left(Y_{i}+G_{i}\right)\right]=E\left[\sum_{n=1}^{n=8}\left(\underline{P}_{i}-\underline{E}_{i}\right)\right] \tag{4.3}
\end{equation*}
$$

To the first order approximation (20), the cumulative distribution function (CDF) of the annual yield, Y_{T}, can be obtained from those of the annual tributary precipitations, ${\underset{i}{i}}^{i}$, using Eq. (4.3) without time averaging.

The CDF of R_{o} may be estimated by the Monte Carlo simulation method, given the CDF's of the annual variables on the left side of Eq. (4.1).

The value of J_{0} will be related to the stage in the Bahr el Jebel. Its CDF may be crudely estimated from that of the observed Jebel discharge.

The value of E_{0}, D_{o} and ΔS_{o} will be related to the flooded area of the swamp which is hydraulically related to the outflow, R_{o}, through the rating curve of the outlet control. In the natural state, this is the outlet of Lake No, but in a proposed drained state, this would be determined by the particular drainage scheme.

Equation (4.1) thus provides the mechanism for assessing the uncertainty of R_{o} both in the natural state and under various drainage schemes.

4.3.2 CDF of Catchment Precipitation

The CDF of station annual precipitation is given by Eq. (2.5), as

$$
\begin{equation*}
\operatorname{Prob}\left|\frac{\mathrm{P}_{\mathrm{A}}}{\overline{\mathrm{P}_{\mathrm{A}}}}<z\right|=\mathrm{e}^{-\mathrm{m}_{\nu}}\left\{1+\sum_{\nu=1}^{\infty} \frac{\mathrm{m}_{\nu}^{\nu}}{\nu!} \cdot \operatorname{P}\left[\nu K, m_{\nu} k z\right]\right\} \tag{2.5}
\end{equation*}
$$

This is a one-dimensional model in which the annual precipitation is assumed to fall uniformly over the entire catchment. For small catchments, this assumption is rather good, as can be verified from the previous application in Chapter 2 (Santa Paula and Clinton catchments). However, for large catchments with localized thunderstorms, this onedimensional model may not be adequate. In large catchments, high annual precipitation at one station may be offset by low annual precipitation at another station, thereby reducing the variance of the areal average annual catchment precipitation. The annual total number of storms (say rainy days) within a large catchment could, in fact, be much larger than any station's annual number of storms (rainy days) because it could rain in different portions of the catchment on different days. This twodimensional precipitation characteristic will be reflected in the parameters of Equation (2.5), which is now rewritten as
where the underbar again represents the Thiessen areal average and ${ }^{m} \times$ is the mean annual number of catchment storms ${ }^{1}$ given by Equation (3.1), as

[^4]\[

$$
\begin{equation*}
\mathrm{m}_{v c}=\left(\frac{\frac{\overline{P_{A}}}{\overline{\sigma_{P_{A}}}}}{\underline{\underline{K}}}\right)^{2}\left[1+\frac{1}{\underline{K}}\right] \tag{4.5}
\end{equation*}
$$

\]

Station K is treated as a random variable and the catchment K is represented by the Thiessen areal average of the station K^{\prime} s (Chapter 3, Page 95).

To verify the two-dimensional precipitation model (Equation (4.4) and (4.5)), 32 years of synchronized station precipitations of 9 stations were areally averaged to obtain the 6 catchment annual precipitations which are tabulated in Appendix B. Table 4.1 gives the relevant parameters.

Table 4.1
CATCHMENT PRECIPITATION PARAMETERS

\underline{K}	0.73	0.54	0.70	1.00	1.07	1.76
$\begin{aligned} & \overline{\mathrm{P}_{\mathrm{A}}} \\ & \underline{\mathrm{~mm}} \end{aligned}$	1199	1091	1251	1388	1198	1165
${ }_{\underline{\mathrm{P}_{\mathrm{A}}}}(32 \mathrm{yrs})$	97	117	127	136	99	123
$\mathrm{m}_{v \mathrm{C}}$	362	298	236	208	283	141

Figure 4.4 illustrates a typical fitting of the two-dimensional precipitation model (solid line) to the observed CDF of catchment precipitation (circles) for the Tonj catchment. The observations are plotted using the Thomas plotting position (21), (Appendix B)

FIGURE 4.4
FREQUENCY OF ANNUAL CATCHMENT PRECIPITATION
(TONJ CATCHMENT)

$$
\begin{equation*}
\operatorname{Prob}\left[\mathrm{P}_{A} / \overline{\mathrm{P}_{A}}<z\right]=\frac{\mathrm{m}_{\mathrm{z}}}{\mathrm{~N}+1} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{m}_{z} & =\text { rank order of observation of magnitude } z \\
\mathrm{~N} & =\text { number of years of record }
\end{aligned}
$$

The dashed line in Figure 4.4 represents the one-dimensional precipitation model, in which m_{V} in Equation (4.4) is replaced by the Thiessen areal average of the observed station $\mathrm{m}_{\nu}^{\prime}$. It is clear from this figure that the one-dimensional precipitation model has a larger variance than that of the two-dimensional model. This illustrates the potentially large error which could be introduced by applying the onedimensional model to such large catchments.

In Figure 4.4, the long-term mean annual and seasonal precipitation and the rainy season length are taken from Table 3.4. The $C D F^{\prime}$ s of P_{A} for the rest of the stations are given in Appendix B. Assuming that $m_{\nu c}$ represents the actual total number of storms falling on a catchment in a normal year, (rather than being just a fitting parameter to account for the smaller precipitation variance), we may draw some inference about average storm size. This comes from the preservation of annual precipitation volume, as given by

$$
\begin{equation*}
\overline{\bar{P}_{A}} A=m_{V C}{\underset{H}{H}}^{A_{w}} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{aligned}
A= & \text { total area of the catchment } \\
A_{W}= & \text { average area of the catchment that is wetted by a single } \\
& \text { storm }
\end{aligned}
$$

$$
\underline{m}_{H}=\text { mean areal storm depth }
$$

But

$$
\begin{equation*}
\overline{\bar{P}_{A}}=\underline{m}_{\nu}^{\prime} \underline{m}_{H} \tag{4.9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{A_{w}}{A}=\frac{m_{v}^{\prime}}{m_{v_{c}}} \tag{4.10}
\end{equation*}
$$

which tells us on the average the percentage of wetted surface area in a catchment in a normal year. It is a measure of the "patchiness" of the storm rainfall.

This result is given in Table 4.2 .

Table 4.2
SPACE-TIME AVERAGE WETTED SURFACE AREA
PERCENTAGE IN A CATCHMENT

	Naam	Maridi	Tonj	Jur	Pongo	Loll
$\underline{m}^{\prime}{ }^{\prime}$	82.4	72.1	36.4	93.3	80.3	74.1
$\mathrm{m}_{\nu c}$	362	298	236	208	283	141
$\frac{A}{\mathrm{~A}} \%$	22.8	24.2	36.6	44.9	28.4	52.6

4.3.3 Uncertainty in the Water Yield from Each Sub-catchment

The mean annual water balance of a catchment along with the CDF of annual precipitation and annual yield are derived in (19), (20) and are given in Chapter 2. Only slight modification of the above model is
needed in order to apply it to each of the sub-catchments of the Bahr el Ghazal basin.

In functional form, the mean annual catchment water balance equation is

$$
\begin{align*}
\underline{\bar{P}_{s}}= & \bar{E}_{T_{A}}\left(s_{o} \mid \bar{e}_{p}, \underline{m}_{\tau}, \underline{m}_{t_{b}}, n, K(1) \Psi(1), m, M, k_{v}, h_{o}, Z\right) \\
& +\bar{R}_{s_{A}}\left(s_{o} \mid \underline{m}_{v}, \underline{m}_{H}, \underline{m}_{i}, \underline{m}_{t_{r}}, \underline{m}_{t_{b}}, \bar{e}_{p}, \underline{k}, n, K(1), \Psi(1), m, M, k_{v}, h_{o}, Z\right) \\
& +\bar{R}_{g_{A}}\left(s_{o} \mid \underline{m}_{\tau}, K(1), \Psi(1), n, m, Z\right) \tag{4.11}
\end{align*}
$$

With $\overline{P_{s}}$ and the climate, soil and vegetation parameters of a catchment known, Equation (4.11) can be solved for the soil moisture, s_{o}, which is then back-substituted into Equation (4.11) to obtain the individual water balance elements of the sub-catchment.

The total outflow from each sub-catchment is the sum of the surface and groundwater runoffs. Assuming that the water table is a constant, then deep seepage may be considered as part of the groundwater runoff because it is coming from the water that percolates into the ground. The mean annual sub-catchment outflow is thus

$$
\begin{equation*}
\overline{\mathrm{Y}}_{\mathrm{A}}=\overline{\mathrm{R}}_{\mathrm{s}_{\mathrm{A}}}+\overline{\mathrm{R}}_{\mathrm{g}_{\mathrm{A}}}=\text { gaged outflow }+ \text { ungaged outflow including deep seepage } \tag{4.12}
\end{equation*}
$$

In this application, the gaged and ungaged outflows from each
sub-catchment become the gaged and ungaged inflows to the Central Swampland. Any deep seepage from the sub-catchments, however, may or may not seep into the Central Swampland. Further consideration will be given to this quantity later.

To the first order (20), we may use Equations (4.11) and (4.12) to describe the relationship among the annual quantities themselves (by removing the overhead bars). Assuming the variance in annual yield to be due solely to variance in the seasonal catchment precipitation, Equations (4.11) and (4.12) provide an approximate relation between the two annual random variables:

Equations (4.4) and (4.13) define the CDF of the total annual outflow from each sub-catchment as

$$
\begin{equation*}
\operatorname{Prob}\left|\frac{Y_{A}}{\frac{P_{S}}{-}}<z\right|=e^{-m_{v c}}\left\{1+\sum_{v=1}^{\infty} \frac{m_{v c}^{\nu}}{v!} \cdot P\left[v K, m_{\left.v c-g^{-1}(z)\right\}} \mid\right.\right. \tag{4.14}
\end{equation*}
$$

Notice that $\mathrm{m}_{v c}$ is used only in the $C D F$ of the annual catchment precipitation and yield (Equations (4.4) and (4.14)), but it is not used in the water balance equation (Equation (4.11)) because its sole purpose is to preserve the $C D F$ of annual catchment precipitation and hence the CDF of the catchment yield or outflow. It has no physical significance
in the generation of local soil moisture.
Most of the parameters in Equation (4.11) are known (Tables 3.5, 3.7 and 4.1) with the exception of the catchment vegetal density (M) and the soil parameters $(K(1), \Psi(1), n, m)$.

The six sub-catchments in the south lie almost entirely within the soil zone defined as the "Ironstone Plateau." Similar soils found in the Jonglei Project area (Figure 3.1) are described (31) as well drained, moderately permeable, loaming soils which have a saturated permeability (K(1)) ranging from 10^{-4} to $10^{-3} \mathrm{~cm} / \mathrm{sec}$. Our analysis of the two most applicable soil profiles from the Ironstone region of the Jonglei area (31) indicates the range of the pore size distribution index (m) to be from 0.17 to 1.7 and that of the soil suction $(\Psi(1)$) to be from 30 to 150 cm . The effective porosity (n) is taken to be 0.35 .

The above ranges of soil parameters are then scanned using Eq. (4.11). For each set of soil parameters ($n, m, K(1), \Psi(1))$, a plot of the space-time soil moisture s_{o} versus the vegetal canopy, M, defines the equilibrium vegetal canopy, M_{o}, occurring at the maximum space-time soil moisture. It is found that M_{o} is a decreasing function of m and for m to be high (e.g., > 0.3), M_{o} is always low (e.g., < 0.7). M_{o} is an increasing function of both $K(1)$ and $\Psi(1)$, but mapparently sets the higher bound to which M_{o} can rise. Our six catchments enjoy a wet tropical climate and it is very unlikely that the vegetal canopy should fall below 0.6. Thus, we set as a criterion that M_{o} must be greater than 0.6. This determined m to be 0.2.
$K(1)$ largely determines the ratio of annual surface runoff
$\left(R_{S_{A}}\right)$ to annual groundwater runoff $\left(R_{g_{A}}\right)$. For humid regions where the soils have been described as 'well-drained, moderately permeably loamy soils,' it seems reasonable to expect the groundwater runoff component to be higher than the surface runoff component (33). For high $\mathrm{K}(1)$, however, the ratio $\left(\bar{R}_{S_{A}} / \bar{R}_{g_{A}}\right)$ becomes so small (e.g., < 0.05) as to render it highly improbable. Thus, we set the limits of $\left(\bar{R}_{S_{A}} / \bar{R}_{g_{A}}\right)$ to be between 0.05 and 1.0 .

With the above two criteria for M_{0} and $\left(\bar{R}_{S_{A}} / \bar{R}_{g_{A}}\right)$, we have effectively narrowed the range of $K(1)$ to be from 3×10^{-4} to 6×10^{-4} $\mathrm{cm} / \mathrm{sec}$ and that of $\Psi(1)$, from 100 to 150 cm .

Figures 4.5 and 4.6 illustrate the final procedure employed to obtain the parameters $K(1)$ and $\Psi(1)$. Tonj catchment is shown as a typical example. In Figure 4.5, soils number 1 and 12 represent the just-estimated bounds of the soil parameters, $K(1)$ and $\Psi(1)$. The CDF's of the normalized yield for these two soils are plotted on Figure 4.6, with curve 1 representing soil number 1 and curve 2 , soil number 12 . It is seen that in the dry year, curve 1 lies above the observed CDF while curve 2 lies below. These two curves define the estimated upper and lower limits of the derived $C D F^{\prime}$'s, which also give the 'uncertainty range' of $\overline{\mathrm{Y}}_{\mathrm{A}} \sqrt{\mathrm{P}_{\mathrm{S}}}$. In the dry years, we would expect the ungaged outflow from a catchment to be very much diminished, since the stream would be within its banks. Thus, the tails of the derived and the observed CDF's should match. This forms the last fitting criterion, which in turn determines the soil parameters, $\Psi(1)$ and $K(1)$, as given by soil number 13 in Table 4.3. $K(1)$ and $\Psi(1)$ for the remaining 5 catchments are determined by the

FIGURE 4.5

SOIL PARAMETER RANGE FOR THE TONJ CATCHMENT

Table 4.3: Results generated by the Soil Parameters in Figure 4.5

Number	M_{0}	$\overline{\mathrm{R}}_{\mathrm{s}_{\mathrm{A}}} / \overline{\mathrm{R}}_{\mathrm{g}_{\mathrm{A}}}$	$\overline{\mathrm{Y}}_{\mathrm{A}} / \overline{\mathrm{P}_{\mathrm{s}}}$	w/ $\overline{\underline{e}}_{\mathrm{p}}$,\%
1	0.60	0.80	0.1692	5.3
2	0.68	0.81	0.1412	8.9
3	0.77	0.81	0.1240	14.8
4	0.68	0.46	0.1510	7.1
5	0.73	0.45	0.1284	12.4
6	0.82	0.42	0.1154	19.5
7	0.70	0.29	0.1426	8.3
8	0.80	0.28	0.1187	15.4
9	0.83	0.25	0.1120	24.3
10	0.70	0.19	0.1346	10.1
11	0.80	0.18	0.1159	18.3
12	0.85	0.17	0.1084	29.6
13	0.78	0.35	0.1234	13.6

FIGURE 4.6
FREQUENCY OF ANNUAL CATCHMENT YIELD
(TONJ CATCHMENT)
same procedure. The CDF's for the 5 remaining catchments are plotted in Appendix B.

Referring to Figure 4.6 , the vertical distance between the observed normalized mean annual discharge and the derived normalized mean annual discharge multiplied by the mean annual seasonal precipitation gives the so-called 'Estimated Ungaged outflow' from the catchment, including deep seepage (Fig. 4.6).

In the extremely dry years, there is an abrupt change in the slope of the derived CDF. This starts at the point where the groundwater runoff is driven to zero by the scanty rainfall. Further decrease in the rainfall does not cause a corresponding rate of decrease of surface runoff, and hence a more slowly decreasing rate of normalized yield results.

The water table effects are explored in Figure 4.7, using Tonj as a typical illustration. It is seen that the smaller the depth to the water table (Z), the higher is the equilibrium vegetal density (M_{0}) and the higher is the ratio of the rate of capillary rise from the water table to the rate of potential wet soil surface evaporation (w/E $\overline{\mathrm{e}}_{\mathrm{p}}$).
$A^{\prime} Z^{\prime}$ of 10 meters produces a fully-vegetated cover ($M_{0}=1.0$) over the entire catchment and a high ratio of $w / \vec{e}-\mathrm{p}$ (83.4%). The tail of the derived yield CDF for this shallow water table cuts that of the observed yield sharply, violating the tail-matching criterion. All these conditions indicate the infeasibility of a 10 -meter Z. Even though the 30 -meter Z could be a possible candidate for matching the tails, the observed depth of wells in the area (Section 3.6) shows it to be highly

FIGURE 4.7
FREQUENCY OF ANNUAL CATCHMENT YIELD FOR TONJ CATCHMENT:
EFFECTS OF VARYING THE WATER TABLE DEPTH
unlikely. Thus, it seems that the 20 -meter Z should be a fairly good representation of the actual areally-averaged depth to the water table in the area.

For comparison, the CDF of the normalized yield without the water table $(Z=\infty)$ is also plotted. This produces the lowest M_{o} and the highest normalized yield ratio, and the groundwater runoff component is never driven to zero.

For convenience, all the climatic, vegetation and soil parameters are tabulated in Table 4.4. The results generated using these parameters are given in Table 4.5.

4.3.4 A Refined Mean Annual Water Balance of the Central Swampland

In a preliminary analysis (Section 4.2), we obtained the ungaged inflows* \bar{G}_{L} (15.1 md) required to close the water balance of the Central Swampland with deep seepage ignored. In the refined water balance model, \bar{G}_{L} is estimated by summing the ungaged inflows from the six sub-catchments. This amounts to 19.8 md (Table 4.5).

The difference between the refined and preliminary \bar{G}_{L} (19.8$15.1=4.7 \mathrm{md}$) may account for deep seepage on the 6 sub-catchments or it may merely reflect the uncertainty of the various estimates. This seepage, if it exists, may or may not seep into the Central Swampland. If it does, it will become the deep seepage at the Central Swampland. In either case, this 4.7 md represents the total water imbalance on the entire basin, \bar{D}_{B}.

[^5]Table 4.4: Climatic-soil-vegetal parameters of 6 sub-catchments

Table 4.5: Components of the Refined Water Balance for the Sub-catchments

The refined water balance of the Central Swampland is shown in Figure 4.8. The water loss from the gaged and ungaged inflows alone amounts to at least $27.8 \mathrm{md}^{*}$, and possibly $32.5 \mathrm{md} * *$, which is comparable to the flow of White Nile at Malakal (27 md).

The deep seepage for the entire basin appears to be negligible (4.7 md). However, we must remember that the two dry sub-catchments in the north, Bahr el Arab and Raqaba el Zarqa (which we have not considered) have a combined annual precipitation of 166.5 md . Even if one percent of this quantity made its way into the Central Swampland, it would still be a huge amount (16.7 md).

Even though we cannot conclude definitely that the deep seepage at the Central Swampland is insignificant, we can be sure that the huge water loss at the Central Swampland can be explained by evapotranspiration alone.

4.4 Uncertainty in the Potential Water Yield from Swamp Drainage

4.4.1 Introduction

Planning for water resource development requires estimation of the anticipated annual basin yield. For each drainage scheme, we need to state not only the anticipated mean annual basin yield, but also the anticipated probability distribution of this basin yield.

Different drainage schemes may be devised for the Bahr el Ghazal basin, but the most obvious one is to dredge a canal surrounding
${ }^{\star}$ Preliminary $\left(\bar{G}_{L}\right)+\bar{Y}_{L}=15.1+12.7=27.8 \mathrm{md}$ (Figure 4.3)
${ }^{* *}$ Refined $\left(\bar{G}_{L}\right)+\overline{\mathrm{Y}}_{\mathrm{L}}=19.8+12.7=32.5 \mathrm{md}$ (Figure 4.8)

FIGURE 4.8

A REFINED MEAN ANNUAL WATER

 BALANCE OF THE CENTRAL SWAMPLANDthe Central Swampland in the north and in the south, collecting the tributary inflows before they reach the Central Swampland.

Two drainage schemes are of particular interest (see Figure 4.9). One starts at the Tonj catchment, going east along the boundary of the Central Swampland, intercepting the Maridi and the Naam. It eventually joins the Bahr el Jebel upstream of the Jonglei Canal offtakes so that its water may reach Malakal via the Jonglei Canal. The other starts at the Jur catchment, cutting the Pongo and the Loll along the edge of the Central Swampland, going directly north at Nyamlell to cut the Bahr el Arab, then swings east to cross the Raqaba el Zarqa, and eventually reaches the White Nile south of Malakal. The north-going canal may be identified closely with the Gogrial By-pass, which is described in the literature (34), (35). The reason that River Jur should join the north-going canal is probably due to the topography of the region.

For the rivers Tonj, Jur, Pongo, Loll, based on 5 to 11 years of synchronized observations, the correlation of the annual gaged discharges between adjacent catchments ranges from 0.33 to 0.77 .

Due to a lack of knowledge of the joint probability distributions of the correlated streamflows, the CDF's of their sums will not be derived analytically. Instead, they will be estimated by employing the Monte Carlo simulation technique. A model is called for to generate the six annual catchment areally-averaged precipitations, which preserves the respective catchment observed precipitation mean and variance, as well as the lag-zero and lag-one auto- and cross-

FIGURE 4.9
CANAL ROUTES
correlations. Long series of these 6 catchment correlated synthetic annual precipitations are used as the inputs to the water balance equation, which then produces long series of the corresponding 6 catchment correlated synthetic annual yields. From these synchronized synthetic yields, we may evaluate the empirical $C D F^{\prime}$ s of the six separate catchment annual yields, and the empirical CDF's of the combined catchment annual yields.

After the swamps are drained, it is expected that they will be replaced naturally by grasslands which transpire at a lower rate, and that the precipitation and Jebel spillage on the Central Swampland will be matched approximately by the actual evapotranspiration of the grasslands in the region.

4.4.2 Simulation of Correlated Annual Catchment Yields

Analysis of the 32 years of the 6 catchment annual observed precipitations (Appendix B) has shown that these precipitations are correlated, with simple (lag-zero) correlations ranging from -0.10 to 0.68 among the catchments (Table 4.6). The lag-one correlations appear to be rather insignificant (Table 4.7).

A multivariate, autoregressive, Markovian model (36), (37), (38), is used to generate six synchronized long series of catchment annual precipitation, which preserves the observed historical catchment annual precipitation means, variances, lag-zero and lag-one auto- and cross-correlations. This model is applicable to a weakly-stationary process and is described as follows:

* This is a symmetric matrix, with
$\rho_{\underline{P_{A}}}^{(i j)}(0)=\underline{\rho_{P_{A}}^{(j i)}}(0)$
** Lag-zero correlations of the annual synthetic catchment precipitations (2,000 years)

* Lag-one correlations of the annual synthetic catchment precipitations (2,000 years)

Consider a linear relationship expressed by

$$
\begin{equation*}
{\underline{P_{A}}}^{(k+1)}=\underline{\underline{A P}}^{(k)+\underline{B V}(k+1)} \tag{4.15}
\end{equation*}
$$

with

$$
\begin{equation*}
\underline{P}_{A}(k+1)=\left[P_{A}^{(1)}(k+1),{\underset{A}{A}}_{(2)}^{P_{A}}(k+1), \ldots, \underline{P_{A}^{(6)}}(k+1)\right]^{T} \tag{4.16}
\end{equation*}
$$

Here, $\mathrm{P}_{\mathrm{A}}(k+1)$ is a vector (6×1) denoting the annual six sub-catchment precipitations in the $(k+1)^{\text {th }}$ year. $A(6 \times 6)$ and $B(6 \times 6)$ are the generation matrices for the annual catchment precipitations. $\underline{V}(k+1)$ is a random vector (6×1) independent of ${ }^{P_{A}}(k)$.

This is a one-step Markov process in which the current precipitation depends probabilistically on only the immediately preceding precipitation. It is assumed that $P_{A}(k+1)$ and $P_{A}(k)$ are both internally correlated (lag-zero correlations) and that they are externally correlated at lag-one.

To facilitate the determination of matrices A and B, the vectors in Equation (4.15) are reduced by their respective means, as

$$
\begin{align*}
& \underline{x}_{k+1}=\underline{P_{A}}(k+1)-E\left\{\underline{P_{A}}(k+1)\right\}=\underline{P}_{A}(k+1)-\overline{P_{A}} \\
& \underline{x}_{k}=\underline{\underline{P_{A}}}(k)-E\left\{\underline{\underline{P_{A}}}(k)\right\}=\underline{P}_{\underline{A}}(k)-\overline{P_{A}} \\
& v_{k+1}=\underline{V}(k+1)-E\{\underline{V}(k+1)\} \tag{4.17}
\end{align*}
$$

and

$$
\overline{\bar{P}_{A}}=\left[\bar{P}_{A}^{(1)}, \overline{\mathrm{P}}_{A}^{(2)}, \ldots, \overline{\mathrm{P}}_{A}^{(6)}\right]^{T}
$$

Now,

$$
\begin{equation*}
\underline{x}_{k+1}=A \underline{x}_{k}+B \underline{v}_{k+1} \tag{4.18}
\end{equation*}
$$

Taking the expected values on both sides of Eq. (4.18),

$$
\begin{equation*}
\left.\left.\mathrm{E}\left\{\underline{\mathrm{x}}_{\mathrm{k}+1}\right\}=\mathrm{AE} \underline{\mathrm{x}}_{\mathrm{k}}\right\}+\mathrm{BE} \underline{\mathrm{v}}_{\mathrm{k}+1}\right\} \equiv \underline{0} \tag{4.19}
\end{equation*}
$$

Post-multiplying Equation (4.18) by the transpose of x_{k} gives

$$
\begin{equation*}
\underline{x}_{k+1} \underline{x}_{k}^{T}=\mathrm{A} \underline{x}_{k} \underline{x}_{k}^{T}+B \underline{v}_{k+1} \underline{x}_{k}^{T} \tag{4.20}
\end{equation*}
$$

Taking the expected value of the above equation,

$$
\begin{equation*}
\mathrm{E}\left\{\underline{\mathrm{x}}_{\mathrm{k}+1} \underline{\mathrm{x}}_{\mathrm{k}}^{\mathrm{T}}\right\}=\mathrm{AE}\left\{\underline{\mathrm{x}}_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}^{\mathrm{T}}\right\}+\mathrm{BE}\left\{\underline{\mathrm{v}}_{\mathrm{k}+1} \underline{x}_{-\mathrm{x}}^{\mathrm{T}}\right\} \tag{4.21}
\end{equation*}
$$

But, $\underline{v}_{\mathrm{k}+1}$ and $\underline{\mathrm{x}}_{\mathrm{k}}$ are independent, which implies

$$
\begin{equation*}
\mathrm{E}\left\{\underline{\mathrm{v}}_{\mathrm{k}+1} \underline{\mathrm{x}}_{\mathrm{k}}^{\mathrm{T}}\right\}=\underline{\underline{0}} \tag{4.22}
\end{equation*}
$$

Let
and

$$
\mathrm{S}_{\underline{\mathrm{xx}}}=\mathrm{E}\left\{\underline{\mathrm{x}}_{\mathrm{k}} \underline{x}_{\mathrm{k}}^{\mathrm{T}}\right\}
$$

and

$$
\begin{equation*}
S_{\underline{x^{\prime} x}}=E\left\{\underline{x}_{k+1} \underline{x}_{k}^{T}\right\} \tag{4.23}
\end{equation*}
$$

Then, Equation (4.21) becomes
or

$$
\left.\begin{array}{l}
S_{\underline{x^{\prime} x}}=A S_{\underline{x x}} \tag{4.24}\\
A=S_{\underline{x^{\prime} x}} S_{\underline{x x}}^{-1}
\end{array}\right\}
$$

Matrix A is defined because $S_{\underline{x x}}$ is the variance-covariance matrix which is nonsingular and hence its inverse exists.
$S_{\underline{x x}}$ and $S_{\underline{x^{\prime} x}}$ are estimated by

(4.25)
$=\mathrm{a}$ symmetric matrix

where N, the number of years of observed precipitation records, is 32 . Post-multiplying Equation (4.18) by its transpose yields

$$
\begin{aligned}
\underline{x}_{k+1} \underline{x}_{k+1}^{T} & =\left(A \underline{x}_{k}+B \underline{b v}_{k+1}\right)\left(A \underline{x}_{k}+B \underline{v}_{k+1}\right)^{T} \\
& =A \underline{x x}_{k} \underline{x}_{k}^{T} A^{T}+A \underline{x}_{k} v_{k+1}^{T} B^{T}+\frac{B v_{k+1}}{} \underline{x}_{k}^{T} A^{T}+\underline{B v}_{k+1} \underline{v}_{k+1}^{T} B^{T} \quad(4.27)
\end{aligned}
$$

Taking the expected values of Equation (4.27), and simplifying, gives

$$
\begin{equation*}
S_{\underline{x^{\prime} x^{\prime}}}=A S_{\underline{x x}} A^{T}+B{\underline{v^{\prime} v^{\prime}}}^{B^{T}} \tag{4.28}
\end{equation*}
$$

where

$$
\begin{aligned}
& {\underline{S_{x^{\prime} x^{\prime}}}}=E\left\{\underline{x}_{k+1} \underline{x}_{k+1}^{T}\right\} \\
& {\underline{S_{v^{\prime}} v^{\prime}}}=E\left\{\underline{v}_{k+1} \underline{v}_{k+1}^{T}\right\}
\end{aligned}
$$

For annual precipitations, $\mathrm{S}_{\underline{x^{\prime} x^{\prime}}}=\mathrm{S}_{\underline{x x}}$. By defining the random process to be of unit variance, that is, $\underline{S}_{v^{\prime} v^{\prime}}=I$, where ' I ' is the identity matrix, we may now combine Equations (4.28) and (4.24) to yield

$$
\begin{equation*}
B B^{T}=S_{\underline{x x}}-S_{\underline{x^{\prime} x}} S_{\underline{x x}}^{-1} S_{\underline{x} x}^{T} \tag{4.29}
\end{equation*}
$$

where $B B^{T}$ is a known positive semi-definite matrix. One of the techniques in recovering matrix B from $B B^{T}$ employs the principal component analysis which is fully described in Reference (37) (including computer programs), so it will not be repeated here.

It is possible to state at this point that using this model the observed precipitation means are preserved by Equation (4.19), without any restrictions on matrices A and B.

However, to preserve the second moments (the observed precipitation lag-zero and lag-one variance-covariances), matrices A and B have to be chosen in such a way as to satisfy Equation (4.24) and (4.29). Notice that the only conditions imposed on the random variate, $\mathrm{V}_{\mathrm{k}+1}$ are that its elements are independently identically distributed with zero means, zero covariances and unit variances, and that it is independent of \underline{x}_{k}. There is no restriction on the underlying distribution of $\underline{v}_{\mathrm{k}+1}$. In this work, it will be sampled from a normal distribution. A discussion of using the normal distribution in this model is also given in References (37) and (38).

After matrices A and B are determined, the generation of synthetic rainfall series proceeds by first setting the initial values $\underline{x}_{1}=\underline{0}$ in Equation (4.18) and then using the same equation recursively, each time feeding in a new set of random normal variates:(zero means, unit variances). To these generated annual precipitation residues $\left(\underline{x}_{k}^{\prime} s\right)$ are added the long-term observed mean annual catchment precipitation from Table 3.4 , instead of the short-term (32 years) observed mean values. These synthetic correlated annual records are further discounted by multiplying by the factor, $\overline{\mathrm{P}_{\mathbf{s}}} \overline{\mathrm{P}_{\mathrm{A}}}$, (Table 4.8) to reduce them to the synthetic seasonal catchment precipitation. The synthetic seasonal records are then used as the inputs to the annual water balance model (Equations (4.11) and (4.12) without time averaging) to

Table 4.8: Comparison of the observed* and the generated Catchment precipitation meansıand variances

			Naam	Maridi	Tonj	Jur	Pongo	Loll
			1	2	3	4	5	6
	$\overline{\mathrm{P}_{\mathrm{A}}}$ (Observed)	mm	1235	1129	1261	1364	1171	1134
	$\overline{P_{A}}$ (Generated)	mm	1234	1128	1261	1363	1171	1136
	$\sigma_{\mathrm{P}_{\mathrm{A}}}$ (Observed)	mm	97	117	127	136	99	123
	$\sigma_{\mathrm{P}_{\mathrm{A}}} \quad(\text { Generated })$	mm	86	103	112	124	91	115
$\underset{\sim}{G}$	$\overline{\underline{\mathrm{P}_{\mathrm{S}}}} / \overline{\mathrm{P}_{\mathrm{A}}}$ (Observed)		0.975	0.958	0.976	0.971	0.974	0.976
	$\left.-\overline{\bar{\Gamma}_{A}}(0 b s)\right] / \overline{P_{A}}(o b s)$	\%	-0.1	-0.1	0.0	-0.1	0.0	0.2
	n) $\left.-\sigma_{\mathrm{P}_{\mathrm{A}}}(\mathrm{obs})\right] / \sigma_{\mathrm{P}_{\mathrm{A}}}(\mathrm{obs})$	\%	-11.3	-12.0	-11.8	-8.8	-8.1	-6.5

[^6]generate six series of correlated annual catchment yields. After some trials, it is concluded that synthetic series of 2000 years are sufficient to generate reliable empirical catchment yield $C^{\prime}{ }^{\prime}$ s.

From Table 4.8 , it is seen that the generated precipitation means are almost identical with the observed, with a maximum absolute value of the relative error of only 0.2%. The standard deviation of the generated precipitation is consistently below that of the observed, with a relative error ranging from 6.5% to 12.0%. The reason for this underestimation is not clear; but a maximum relative error of 12% in the variance is still a good indication of the validity of the generating model. The lag-zero correlations of the synthetic precipitations are given under that of the observed in Table 4.6 for comparison. The results are quite satisfactory when considering the preservation of 15 correlations. The lag-one correlations comparison is dismissed because the lag-one correlations of the observed catchment precipitation appear to be quite insignificant (Table 4.7).

Preservation of the observed annual catchment precipitation CDF's can be demonstrated by comparing the empirical CDF's of the catchment's synthetic records with those of the observed records. This may also be demonstrated by comparing the derived CDF's of the catchment yield with the empirical CDF's of the catchment synthetic yield.

The comparison of the CDF's of the simulated normalized catchment annual yields with that of the derived are seen in Figure 4.6, Table 4.9 and in Appendix B. In all the comparisons, the simulated curve is slightly flatter than the derived (ignoring the bending of the

Table 4.9: Simulated Mean Annual Catchment Yield Data

Catchment			Naam	Maridi	Tonj	Jur	Pongo	Lol1
Catchment Number			1	2	3	4	5	6
Mean Seasonal Precipitation (Observed)	$\overline{\mathrm{P}_{\mathrm{s}}}$	mm	1024	1081	1230	1325	1140	1107
	$\mathrm{A} * \overline{\mathrm{P}_{\mathrm{S}}}$	md	14.40	13.64	26.70	72.48	9.61	72.33
Mean Annual Yield (Observed)	$\overline{\mathrm{Y}}_{\mathrm{A}}$	mm	119	101	159	283	135	156
	$\mathrm{A} * \overline{\mathrm{Y}}_{\mathrm{A}}$	md	1.42	1.56	3.45	15.48	1.14	10.17
Mean Annual Yield (Derived)	\bar{Y}_{A}	mm	115	89	152	282	129	147
	$\mathrm{A}^{*} \overline{\mathrm{Y}}_{\mathrm{A}}$	md	1.34	1.36	3.29	15.42	1.08	9.62
Standard Deviation of Y_{A} (Simulated)	${ }^{\sigma_{\mathrm{Y}}}$	mm	70	74	93	118	70	97
	$A^{*} \sigma_{Y}$	md	0.84	1.14	2.02	6.46	0.59	6.34
Coefficient of variation (Simulated)	$\sigma_{Y_{A}}$							
	$\overline{\mathrm{Y}}_{\mathrm{A}}$		0.588	0.733	0.585	0.417	0.519	0.622
Normalized Mean Annual	Y_{A}							
	$\overline{\mathrm{P}_{\mathrm{S}}}$		0.0988	0.0938	0.1291	0.2136	0.1183	0.1407
CDF at $\overline{\mathrm{Y}}_{\mathrm{A}} / \overline{\mathrm{P}_{\mathrm{s}}}$ (simulated)	\%		53	56	51	50	52	52

tail where the groundwater runoff component is zero), indicating a smaller variance in the simulated case. This is due to the fact that the synthetic catchment precipitation has a smaller variance than the observed. However, despite this small deviation, all the simulated curves match closely with the observed.

As a result of the simulation, we also derive the lag-zero correlation structure of the simulated annual catchment yields as tabulated in Table 4.10.

4.4.3 Uncertainty in the Potential Water Yield from Swamp Drainage

In this section, the empirical CDF's of the estimated potential water yield from different drainage schemes (canals) will be given for the ideal case of unlimited canal capacities. This assumes that all yields from the sub-catchments are fully intercepted by the canals and that no spillage, evaporation or seepage losses occur. In reality, the amount of water to be recovered depends critically on the design of the interception system, and of the canal capacity. Because of the various ways in which the ungaged inflows to the Central Swampland can occur (page 118), without any on-site investigation, it is impossible at this stage of our work to speculate on the efficiency of the interception system. The seepage loss may be significant if the soils along the canal routes are highly permeable. At the moment, since no detailed soil description along the canal routes is available, we will only consider the ideal case. In the next chapter, the CDF's of the yield from the canals given the canal capacities will be explored.

Table 4.10: Lag-Zero Correlations of the simulated annual catchment yield (a symmetric matrix)

	Naam	Maridi	Tonj	Jur	Pongo	Lo11
	1	2	3	4	5	6
1	1					
$\overline{2}$	0.62	1				
3	0.47	0.32	1			
4	0.27	0.17	0.60	1		
5	0.43	0.27	0.54	0.56	1	
6	0.03	-0.18	-0.25	-0.12	0.34	1

For simplicity, we will use numbers one to six to represent the six catchments, with Naam as 1, Maridi, 2 , Tonj, 3, Jur, 4, Pongo, 5 and Loll, 6.

For the combined catchments, we will adopt the following notations:

C12 = Catchments Naam + Maridi
C123 = Catchments Naam + Maridi + Tonj
C56 = Catchments Pongo + Lo11
C456 = Catchments Jur + Pongo + Loll
C16 = Catchments Naam + Maridi + Tonj + Jur + Pongo + Loll
Due to our drainage schemes (Fig. 4.9), only the CDF's of the potential water yield from adjacent catchments are needed. The potential yield from C456, C123 and C16 are, respectively, the ideal maximum water recovery from the north-going and the south-going canal, and the maximum water gain at Malakal due to swamp drainage.

From the last section, six synchronized series of the synthetic annual catchment yields are available, each 2,000 years long. In the final analysis, these synchronized synthetic yields are combined year-byyear to give the combined catchment yields which are then normalized by their combined catchment seasonal precipitation.

For the combined catchment, k, where $k=(1,2),(1,2,3)$, $(5,6),(4,5,6),(1,2,3,4,5,6)$, we have:

The combined catchment area:

$$
\begin{equation*}
A_{k}=\sum_{a 11} A_{i} \tag{4.30}
\end{equation*}
$$

The space-time mean seasonal combined catchment precipitation,

$$
\begin{equation*}
\overline{\mathrm{P}_{\mathrm{s}}}(\mathrm{k})=\left(\sum_{\text {all }} \mathrm{A}_{\mathrm{i} k}{ }_{i} * \overline{\mathrm{P}_{\mathrm{s}}}(\mathrm{i})\right) / \mathrm{A}_{\mathrm{k}} \tag{4.31}
\end{equation*}
$$

The annual combined catchment yield,

$$
\begin{equation*}
Y_{A}^{(k)}(j)=\left[\sum_{a 11} \sum_{i \in k} A_{i} * Y_{A}^{(i)}(j)\right] / A_{k}, \quad j=1, \ldots, 2000 \tag{4.32}
\end{equation*}
$$

The space-time mean annual combined catchment yields,

$$
\begin{equation*}
Y_{A}^{(k)}=\frac{1}{N} \sum_{j=1}^{N} Y_{A}^{(k)}(j) \quad, \quad N=2000 \text { years } \tag{4.33}
\end{equation*}
$$

and the normalized annual combined catchment yield

$$
\begin{equation*}
\left[Y_{A}^{(k)}(j) /{\underline{P_{s}^{s}}}^{(k)}\right] \quad, \quad j=1, \ldots, 2000 \tag{4.34}
\end{equation*}
$$

with its mean at $\overline{\mathrm{Y}}_{\mathrm{A}}^{(\mathrm{k})} / \underline{\mathrm{P}_{\mathrm{s}}}(\mathrm{k})$.
The results for the mean values are tabulated in Table 4.11 and the empirical CDF's of $\mathrm{Y}_{\mathrm{A}}^{(\mathrm{k})} / \underline{\mathrm{P}_{\mathrm{s}}}(\mathrm{k})$ are plotted on Figure 4.10. From Table 4.11, the mean yield from C 456 is 26.8 md , from $\mathrm{C} 123,6.4 \mathrm{md}$, and from C16, 33.2 md . The 33.2 md is augmented by 0.4 md , the reported mean discharge of Bahr el Arab and Raqaba el Zarqa (5) to arrive at 33.6 md which is the total simulated yield from the sub-catchments of the Bahr el Ghazal basin. It compares favorably with the derived yield $(12.7+19.8=32.5 \mathrm{md}$ from Figure 4.8$)$, with a difference of only 3%.

Table 4.11: Simulated Mean Annual Combined Catchment Yield Data

	Combined Catchment:			C12	C56	C123	C456	C16
	Area, A		km^{2}	27,352	73,766	49,060	128,471	177,531
	Mean Seasonal Precipitation (Observed),	$\overline{\mathrm{P}_{\mathrm{s}}}$	mm	1135	1111	1177	1202	1195
		$A * \overline{\mathrm{P}_{S}}$	md	31.04	81.95	57.74	154.42	212.15
	Mean Annual Yield (Simulated),	$\overline{\mathrm{Y}}_{\mathrm{A}}$	mm	109	153	131	209	187
		$A * \bar{Y}_{A}$	md	2.98	11.31	6.43	26.79	33.22
$\underset{\infty}{\leftarrow}$	Standard Deviation of Y_{A} (Simulated)	$\sigma_{Y_{A}}$	mm	65	86	65	69	57
		$\mathrm{A}^{*} \sigma_{Y_{A}}$	md	1.78	6.34	3.21	8.86	10.17
	Coefficient of Variation	$\frac{\sigma_{\mathrm{Y}_{\mathrm{A}}}}{\overline{\mathrm{Y}}_{\mathrm{A}}}$		0.596	0.561	0.499	0.330	0.306

Mean Normalized Annual Yield

$$
\frac{\overline{\mathrm{Y}}_{\mathrm{A}}}{\overline{\mathrm{P}_{\mathrm{s}}}}
$$

0.0961
0.1380
0.1114
0.1735
0.1566

Standard Deviation
of $Y_{A} / \overline{P_{S}}$,
$\sigma_{Y_{A}} / \underline{P_{S}}$
0.0573
0.0774
0.0555
0.0575
0.0480

CDF at $\overline{\mathrm{Y}}_{\mathrm{A}} \underline{/ \underline{\mathrm{P}_{\mathrm{S}}}}$
\%
54.5

52
54
52
50

Chapter 5

CANAL COST-CAPACITY UNDER CERTAIN CANAL FLOWS

5.1 Introduction

In the previous chapter, we have obtained the simulated distributions* of the annual combined catchment yields. These distributions are identical to those of the canal flows from the combined catchments in the ideal case of unlimited canal capacities and fully-efficient interception systems. Without any on-site knowledge of the ungaged inflows and of the soil parameters along the canal routes, we will not laurrch a full-scale study of the interception and conveyance losses. These will be left for future research.

In this chapter, we will consider only the distribution of the maximum potential canal flow given the canal design capacity. This distribution is very important in canal capacity design, since it defines the uncertainty in the amount of potentially-available water given the canal capacity. It will be derived from the empirical distribution of the combined catchment yield. Wherever possible, we will strive for analytical solutions instead of numerical ones.

Some cost estimates of canal work are also offered. These estimates are by no means the actual construction costs and should not be used in any specific canal cost estimates. Their main purpose here is to demonstrate how the distribution of canal flow with limited canal capacity can be useful in the ultimate problem of canal cost estimation.

[^7]
5.2 Analytical Representation of the Simulated Distributions

The simulated distributions of annual combined catchment yield are given in numerical form in Appendix B. To facilitate the derivation of the distribution of the canal flow given the canal capacity, the yield distributions should be represented in functional form. For simplicity, a continuous function should be used.

Many functions can be employed to fit simulated distributions, but by far the most convenient are the polynomials, since their integrals, derivatives and products are also polynomials.

The simulated distribution may be fitted by a function of the form

$$
\begin{equation*}
\hat{F}=\sum_{k=0}^{N} C_{k} y^{k} \tag{5.1}
\end{equation*}
$$

with $0 \leq \mathrm{y}<\infty, 0 \leq \hat{\mathrm{F}}<1$ or

$$
\begin{equation*}
\hat{y}=\sum_{k=0}^{N} C_{k} F^{k} \tag{5.2}
\end{equation*}
$$

with $0 \leq \hat{\mathrm{y}}<\infty, 0 \leq \mathrm{F}<1$ where
$y=Y_{A} / \overline{P_{s}}=$ normalized annual combined catchment yield $\hat{y}=$ estimate of y
$\mathrm{F}=\mathrm{CDF}$ of y
$\hat{F}=$ estimate of F
$C_{k}=$ coefficient of kth term
$\mathrm{N}=$ highest degree of the polynomials

Both forms suffer the drawback of not matching the upper tail
condition $(y \rightarrow \infty, F \rightarrow 1)$. If we set the upper limit finite at ($y=y_{\text {max }}$, $F=0.9999$) and use a polynomial of degree $N=10, \hat{F}$ can be greater than 1 when y approaches $y_{\text {max }}$ in Eq. (5.1). Also, \hat{y} in Eq. (5.2) matches poorly with the actual y when F is greater than 0.98 . Equation (5.2) is easier to handle than Equation (5.1), because the independent variable F in the former lies between 0 and 1. To remedy its upper tail-matching condition, the following form is suggested,

$$
\begin{equation*}
\hat{y}=\sum_{k=0}^{N} C_{k} F^{k}+\frac{a}{(1-F)^{b}}=G(F) \tag{5.3}
\end{equation*}
$$

with

$$
\begin{aligned}
& 0 \leq \hat{y}<\infty \\
& 0 \leq F<1
\end{aligned} \quad, \quad a, b>0
$$

It is obvious from this formulation that \hat{y} approaches infinity when F approaches one.

Referring to Fig. 5.la, the simulated CDF curve is represented by $y=g(F) . \quad\left(F_{i}, y_{i}\right)$ is the ith discrete data point on $y=g(F)$.

The fitting procedure takes two steps.
The first step involves the determination of the constants
a and b in Eq. (5.3) by employing those points ($\mathrm{F}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) for which $0.98 \leq \mathrm{F}_{\mathrm{i}}<1$. This is done by writing

$$
\begin{equation*}
y^{\prime}=\frac{a}{(1-F)^{b}} \tag{5.4}
\end{equation*}
$$

for $0.98 \leq \mathrm{F}<1, \mathrm{a}, \mathrm{b}>0$
Taking the logarithm of both sides,

FIGURE 5.1
SIMULATED DISTRIBUTION OF ANNUAL COMBINED CATCHMENT YIELD (FUNCTIONAL REPRESENTATION)

$$
\begin{equation*}
\log _{10} y^{\prime}=\log _{10} a-b \log _{10}(1-F) \tag{5.5}
\end{equation*}
$$

This is a polynomial of degree one, which can be written

$$
\begin{equation*}
z=a_{0}+a_{1} v \tag{5.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{z}=\log _{10^{\mathrm{y}}}, \quad \mathrm{a}_{\mathrm{o}}=\log _{10^{\mathrm{a}}} \\
& \mathrm{v}=\log _{10}(1-\mathrm{F}), \mathrm{a}_{1}=-\mathrm{b}
\end{aligned}
$$

The coefficients a_{0} and a_{1} in Eq. (5.6) can be determined by a least-squares fit to the data points $\left(Z_{i}, v_{i}\right)$. Notice that at least two points are required for the fitting. The constants a and b can then be retrieved from,

$$
\begin{equation*}
a=10^{a_{0}} \quad, \quad b=-a_{1} \tag{5.7}
\end{equation*}
$$

Having determined a and b, we form the function u, as

$$
\begin{equation*}
u=y-\frac{a}{(1-F)^{b}} \tag{5.8}
\end{equation*}
$$

and for discrete points

$$
\begin{equation*}
u_{i}=y_{i}-\frac{a}{\left(1-F_{i}\right)^{b}} \tag{5.9}
\end{equation*}
$$

for all points (F_{i}, y_{i}) for which $0 \leq F_{i}<1$ (Figure 5.1 b).
The second step requires the fitting (39) of u by \hat{u} of the polynomial form

$$
\begin{equation*}
\hat{\mathrm{u}}=\sum_{\mathrm{k}=0}^{\mathrm{N}} \mathrm{C}_{\mathrm{k}} \mathrm{~F}^{\mathrm{k}} \tag{5.10}
\end{equation*}
$$

The fitting error (ε) is described by

$$
\begin{equation*}
\varepsilon=\hat{u}-\mathbf{u} \tag{5.11}
\end{equation*}
$$

Combining Eqs. (5.8), (5.10) and (5.11) yields

$$
\begin{equation*}
y+\varepsilon=\sum_{k=0}^{N} c_{k} F^{k}+\frac{a}{(1-F)^{b}} \tag{5.12}
\end{equation*}
$$

which is identical to Eq. (5.3) for

$$
\begin{equation*}
\hat{y}=\mathrm{y}+\varepsilon \quad \text { or } \quad \varepsilon=\hat{\mathrm{y}}-\mathrm{y} \tag{5.13}
\end{equation*}
$$

The relative error, Δ, is defined by

$$
\begin{equation*}
\Delta=(\hat{y}-y) / y \quad, \quad y \neq 0 \tag{5.14}
\end{equation*}
$$

The above fitting procedure is applied to the simulated distribution of C 123 , C 456 and C 16 . It is found that with polynomials of degree N up to ten, the results are entirely satisfactory. A typical fitting result is given in Table 5.1. Here, F and Y are the simulated CDF data points $\left(F_{i}, y_{i}\right)$ for the combined catchment $C 456$. YFIT is given by Eq. (5.3). YERR is ε and YREL is \triangle. Discard the point $(F=0$, $y=0$) which is of no interest. It can be seen that when F approaches zero, the absolute error $|\varepsilon|$ is in the hundredths, and when F approaches one, the maximum absolute value of the relative error Δ is about 3%. The coefficients and constants in Eq. (5.3) for C123 and C16 are given in Appendix B.

TABLE 5.1

SIMULATED DISTRIBUTION OF ANNUAL COMBINED CATCHMENT YIELD,
CATCFMENT C456 (INCLUDING POLYNOMIAL COEFFICIENTS OF EQUATION 5.3)

CATCHMENT NAME
 C456

COEFF. OF FOI YNOMTAL IN ASCENTING OROER

$C(0)=$	$-0.2164263 E+00$
$C(1)=$	$0.3230697 E+01$
$C(2)=$	$0.5536269 E+02$
$C(3)=$	$0.5170396 E+03$
$C(4)=$	$-0.2761466 E+04$
$C(5)=$	$0.9000055 E+04$
$C(6)=$	$-0.1851148 E+05$
$C(7)=$	$0.2412408 E+05$
$C(8)=$	$-0.1930970 E+05$
$C(9)=$	$0.8658594 E+04$
$C(10)=$	$-0.1664771 E+04$

$A=0.2298366 E+00 \quad B=0.6665868 \mathrm{E}-01$

I	$F(1)$	$Y(\mathrm{I})$	YFTT (T)	YERFE (I)	YFEL (T)
1	0.0	0.0	0.0134	0.01 .34	
2	0.0010	0.0200	0.01 .66	$\cdots 0.0034$	$\cdots 0.1699$
3	0.0050	0.0300	0.0283	$\cdots-0.0017$	$\cdots 0.0560$
4	0.0080	0.0400	0.0361	-0.0039	$\cdots 0.0978$
5	0.0115	0.0500	0.0442	-0.0058	$\cdots-0.1168$
6	0.0160	0.0600	0.0531	$\cdots 0.0069$	$\cdots-0.11 .46$
7	0.0305	0.0700	0.0734	0.0034	0.0489
8	0.0485	0.0800	0.0865	0.0065	0.081 .6
9	0.0690	0.0900	0.0934	0.0034	0.0372
10	0.0905	0.1000	0.0974	\cdots	$\cdots 0.0261$
11	0.1300	0.11 .00	0.1056	$\cdots 0.0044$	-0.0399
12	0.1805	0.1200	0.1200	$\cdots 0.0000$	$\cdots 0.0003$
1.3	0.2305	0.1300	0.1325	0.0025	0.0191
14	0.2900	0.1 .400	0.1415	0.0015	0.0105
15	0.3510	0.1500	0.1483	$\cdots 0.0017$	-0.0113
16	0.4150	0.1600	0.1581	-0.001.9	$\cdots 0.0117$
17	0.4865	0.1700	0.1 .713	0.0013	0.0074
18	0.5590	0.1800	0.1817	0.0017	0.0092
19	0.6265	0.1900	0.1891	-0.0009	$\cdots 0.0046$
20	0.6870	0.2000	0.1 .976	$\cdots 0.0024$	$\cdots 0.0121$
21.	0.7455	0.2100	0.2095	$\cdots 0.0005$	$\cdots 0.0022$
22	0.7900	0.2200	0.2197	$\cdots 0.0003$	$\cdots 0.0015$
23	0.8374	0.2300	0.2305	0.0005	0.0020
24	0.8729	0.2400	0.2391	$\cdots 0.0009$	$\cdots 0.0039$
25	0.9034	0.2500	0.2470	-0.0030	$\cdots 0.0118$
26	0.9284	0.2600	0.2595	$\cdots 0.0005$	$\cdots 0.0020$
27	0.9459	0.2700	0.2722	0.0022	0.0081
28	0.9609	0.2800	0.2828	0.0028	0.0101
29	0.9719	0.2900	0.2889	$\cdots 0.0011$	$\cdots 0.0039$
30	0.9799	0.3000	0.2966	--0.0034	$\cdots 0.0112$
31.	0.9884	0.3100	0.3073	$\cdots 0.0027$	$\cdots 0.0087$
32	0.9944	0.3200	0.3212	0.0012	0.0037
33	0.9959	0.3300	0.3285	\cdots	$\cdots 0.0044$
34	0.9969	0.3400	0.3290	$\cdots 0.0110$	-0.032\%
35	0.9984	0.3500	0.3490	-0.0010	\cdots
36	0.9989	0.3700	0.3596	$\cdots 0.0104$	$\cdots 0.0281$
37	0.9994	0.3800	0.3752	$\cdots 0.0048$	$\cdots 0.0127$
38	0.9999	0.4200	0.4192	$\cdots 0.0008$	$\cdots 0.0019$

5.3 Derivation of the Distribution, Mean and Variance of the Potential Canal Flow Given the Canal Capacity
5.3.1 Derivation of the Distribution of Potential Canal Flow Given the Canal Capacity

Having put the simulated distribution of the annual combined catchment yield in functional form (Appendix B), we now proceed to derive the distribution of the potential canal flow given the canal capacity. The potential canal flow is the flow from the combined catchment without taking into consideration any canal interception, seepage and conveyance losses. For simplicity, we will omit the word "potential" when discussing canal flow throughout this section.

The canal flow is limited by the canal capacity. When the catchment yield exceeds this capacity, the flow is constant at the capacity, The canal flow (q) is given by

$$
q=\left\{\begin{array}{lll}
A^{*} Y_{A} & , & A * Y_{A}<q_{c} \tag{5.15}\\
q_{c} & , & A * Y_{A} \geq q_{c}
\end{array}\right.
$$

or

$$
x= \begin{cases}y & , \quad y<x_{c} \tag{5.16}\\ x_{c} & , \quad y \geq x_{c}\end{cases}
$$

where

$$
y=Y_{A} \underline{P_{s}}=A Y_{A} /\left({\overline{A P_{s}}}^{* *}=\right.\text { normalized combined catchment yield }
$$

**- is the space-time mean seasonal precipitation falling on an unit s area of the catchment ($\mathrm{cm} / \mathrm{yr}$ or $\mathrm{mm} / \mathrm{yr}$). $\mathrm{A} \bar{P}_{\mathrm{s}}$ is the space-time mean seasonal precipitation falling on the entire s catchment $\left(\mathrm{m}^{3} / \mathrm{yr}, \mathrm{km} \mathrm{m}^{3}\right.$ yr or md/yr) (see Table 4.11).
$\mathrm{Y}_{\mathrm{A}}=$ annual combined catchment yield
$\mathrm{x}=\mathrm{q} /(\mathrm{AP} \overline{\mathrm{s}})=$ normalized canal flow
$x_{c}=q_{c} /\left(\underline{\overline{A_{s}}}\right)=$ normalized canal capacity
$\mathrm{q}=$ canal f1ow
$q_{c}=$ canal capacity
$A=$ area of combined catchment
$\overline{\mathrm{P}_{\mathrm{s}}}=$ space-time mean seasonal precipitation
Knowing the error of replacing y by \hat{y} (Eqs. 5.3 and 5.12) is small, Eq. (5.16) may be written as

$$
x= \begin{cases}\sum_{n=0}^{10} C_{n} F^{n}+\frac{a}{(1-F)^{b}}, & 0 \leq F<F_{c} \tag{5.17}\\ x_{c} & , \quad F_{c} \leq F \leq 1\end{cases}
$$

Figures 5.2, 5.3 and 5.4 show, respectively, the relationship of x and y (Eq. 5.16), the CDF of y and the CDF of x.

In Figure 5.2, the shaded area represents the probability
that x is equal to x_{c}, as

$$
\begin{align*}
\operatorname{Prob}\left[x=x_{c}\right] & =\operatorname{Prob}\left[y \geq x_{c}\right] \\
& =\int_{x_{c}}^{\infty} f(y) d y=\int_{F_{c}}^{1} d F=\left(1-F_{c}\right) \tag{5.18}
\end{align*}
$$

where
$f(y)=$ probability density function (PDF) of y

In Figure 5.3, the distribution of y is given by Eq. (5.12),

FIGURE 5.2: ANNUAL CANAL

FLOW AS A FUNCTION OF ANNUAL COMBINED CATCHMENT YIELD (NORMALIZED

FIGURE 5.3: CUMULATIVE DISTRIBUTION OF ANNUAL

COMBINED CATCHMENT YIELD (NORMALIZED)

ignoring the minor fitting error (ε), that is,

$$
\begin{align*}
y=G(F) & =\sum_{n=0}^{10} C_{n} F^{n}+\frac{a}{(1-F)^{b}} \tag{5.19}\\
0 & \leq F<1
\end{align*}
$$

from which

$$
\begin{equation*}
x_{c}=G\left(F_{c}\right)=\sum_{n=0}^{10} C_{n} F_{c}^{n}+\frac{a}{\left(1-F_{c}\right)^{b}} \tag{5.20}
\end{equation*}
$$

where

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{CDF} \text { of } \mathrm{x}_{\mathrm{c}}
$$

and

$$
\begin{equation*}
F=G^{-1}(y) \tag{5.21}
\end{equation*}
$$

Given any normalized canal capacity (x_{c}), Eq. (5.20) may be easily solved numerically to obtain F_{c} by a binary search algorithm (40).

The distribution of x is shown in Fig. 5.4. The probability impulse is given by Eq. (5.18) and

$$
\begin{equation*}
\operatorname{Prob}\left[x<x^{\prime} \mid 0 \leq x^{\prime}<x_{c}\right]=\int_{0}^{x^{\prime}} f(x) d x=\int_{0}^{F^{\prime}} d F=F^{\prime}=G^{-1}\left(x^{\prime}\right) \tag{5.22}
\end{equation*}
$$

where

$$
f(x)=P D F \text { of } x
$$

and

$$
\begin{equation*}
\operatorname{Prob}\left[x \leq x_{c}\right]=1 \tag{5.23}
\end{equation*}
$$

5.3.2 Derivation of the Mean and Variance of the Potential Canal Flow Given the Canal Capacity

The normalized canal flow (x) with capacity constraint (x_{c}) is given by Eq. (5.17).

The mean of x given x_{c} is derived from Eq. (5.17) as follows,

$$
\begin{align*}
& \mu\left(x \mid x_{c}\right)=E\left(x \mid x_{c}\right)^{*}=\int_{0}^{\infty} x f(x) d x \\
& =\int_{0}^{x} x f(x) d x+\int_{x_{c}}^{\infty} x_{c} f(x) d x \\
& =\int_{0}^{\mathrm{F}}\left[\sum_{n=0}^{10} C_{n} F^{n}+\frac{a}{(1-F)^{b}}\right] d F+x_{c} \int_{F_{c}}^{1} d F \\
& =\sum_{n=0}^{10} \frac{C_{n} F_{c}^{n+1}}{(n+1)}+\frac{a}{(1-b)}\left[1-\left(1-F_{c}\right)^{1-b}\right]+x_{c}\left(1-F_{c}\right) \\
& \text { for } a>0,0<b<1 \tag{5.24}
\end{align*}
$$

The variance of x given x_{c} is

$$
\begin{aligned}
\sigma^{2}\left(x \mid x_{c}\right)= & E\left(x^{2} \mid x_{c}\right)-\mu^{2}\left(x \mid x_{c}\right) \\
= & \int_{0}^{x} x^{2} f(x) d x+\int_{0}^{\infty} x_{c}^{2} f(x) d x-\mu^{2}\left(x \mid x_{c}\right) \\
= & \int_{0}^{c}\left(\sum_{n=0}^{10} C_{n} F^{n}\right)^{2} d F+2 a \sum_{n=0}^{10} C_{n} \int_{o}^{F} F^{n}(1-F)^{-b} d F \\
& +a^{2} \int_{o}^{F}(1-F)^{-2 b} d F+x_{c}^{2}\left(1-F_{c}\right)-\mu^{2}\left(x \mid x_{c}\right)
\end{aligned}
$$

[^8]\[

$$
\begin{equation*}
=I_{1}+2 a \sum_{n=0}^{10} C_{n}^{*} I_{2}+I_{3}+x_{c}^{2}\left(1-F_{c}\right)-\mu^{2}\left(x \mid x_{c}\right) \tag{5.25}
\end{equation*}
$$

\]

where

$$
\begin{align*}
I_{1} & =\int_{o}^{F}\left(\sum_{n=0}^{10} C_{n} F^{n}\right)^{2} d F \\
& =\int_{0}^{F} \sum_{n=0}^{c} e_{n} F^{n} d F=\sum_{n=0}^{20} \frac{e_{n} F_{c}^{n+1}}{(n+1)} \tag{5.26}
\end{align*}
$$

with

$$
\begin{align*}
e_{o} & =C_{0}^{2}, \quad e_{n}=\sum_{k=0}^{n} C_{k} * C_{n-k}, \quad n=1, \ldots, 20 \\
I_{2} & =\int_{0}^{F} F^{n}(1-F)^{-b} d F \\
& =B(n+1,1-b) * I_{F}(n+1,1-b), \quad 0<b<1 \tag{5.27}
\end{align*}
$$

where

$$
B(z, w)=\text { Beta function }=\int_{0}^{1} t^{z-1}(1-t)^{w-1} d t
$$

with

$$
\begin{equation*}
z, w>0 \tag{5.28}
\end{equation*}
$$

and

$$
\begin{align*}
I_{\alpha}(z, w) & =\text { incomplete Beta function } \\
& =\frac{1}{B(z, w)} \int_{0}^{\alpha} t^{z-1}(1-t)^{w-1} d t \tag{5.29}
\end{align*}
$$

with

$$
0 \leq \alpha \leq 1
$$

The Beta function can be represented by the Gamma function,
$\Gamma(\cdot)$, as

$$
\begin{equation*}
B(z, w)=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)}=B(w, z) \tag{5.30}
\end{equation*}
$$

so that I_{2} can be written as (from Eq. (5.27), (5.30))

$$
\begin{gather*}
I_{2}=\Gamma(1-b)\left\{\frac{\Gamma(n+1)}{\Gamma(n+2-b)} * I_{F_{c}}(n+1,1-b)\right\} \tag{5.31}\\
0<b<1
\end{gather*}
$$

Finally,

$$
\begin{align*}
I_{3} & =a^{2} \int_{o}^{F} c \\
& =\frac{a^{2}}{(1-2 b)}\left[1-\left(1-F_{c}\right)^{1-2 b} d F\right. \tag{5.32}
\end{align*}
$$

For

$$
0<b<1 / 2, \quad a>0
$$

Combining Eq. (5.25) through (5.32), we arrive at

$$
\begin{align*}
\sigma^{2}\left(x \mid x_{c}\right)= & \left\{\sum_{n=0}^{20} \frac{e_{n} F_{c}^{n+1}}{(n+1)}+2 a * \Gamma(1-b) \sum_{n=0}^{10} c_{n} * \frac{\Gamma(n+1)}{\Gamma(n+2-b)} * I_{F_{c}}(n+1,1-b)\right. \\
& \left.+\frac{a^{2}}{(1-2 b)}\left[1-\left(1-F_{c}\right)^{1-2 b}\right]+x_{c}^{2}\left(1-F_{c}\right)-\mu^{2}\left(x \mid x_{c}\right)\right\} \tag{5.33}
\end{align*}
$$

with

$$
\begin{gathered}
a>0, \quad 0<b<1 / 2 \\
e_{o}=C_{o}^{2}, \quad e_{n}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad n=1,2, \ldots, 20
\end{gathered}
$$

The limits for b in Eq. (5.24) and (5.33) imply that b is in the
range $0<b<1 / 2$.*
Since the combined catchment flow is the flow in a canal of infinite capacity, the validity of Eqs. (5.24) and (5.33) may be checked by comparing them with the mean and variance of the normalized annual combined catchment yield (Table 4.11) for the case $\mathrm{x}_{\mathrm{c}} \rightarrow \infty, \mathrm{F}_{\mathrm{c}} \rightarrow 1$. For unlimited canal capacity, Eq. (5.20) gives

$$
\begin{equation*}
x_{c}=\operatorname{Lim}_{F_{c} \rightarrow 1}\left\{\sum_{n=1}^{10} C_{n} F_{c}^{n}+\frac{a}{\left(1-F_{c}\right)^{b}}\right\} \rightarrow \infty \quad, \quad a>0,0<b<1 / 2 \tag{5.34}
\end{equation*}
$$

To evaluate $\mu\left(\mathrm{x} \mid \mathrm{x}_{\mathrm{c}} \rightarrow \infty\right)$ and $\sigma^{2}(\mathrm{x} \mid \mathrm{x} \rightarrow \infty)$, the two terms, $x_{c}\left(1-F_{c}\right)$ and $x_{c}^{2}\left(1-F_{c}\right)$, have first to be evaluated for the limiting case ($\mathrm{x}_{\mathrm{c}} \rightarrow \infty, \mathrm{F}_{\mathrm{c}} \rightarrow 1$). Multiplying Eq. (5.20) by ($1-\mathrm{F}_{\mathrm{c}}$) on both sides and taking the limits,

$$
\begin{gathered}
\operatorname{Lim}_{\substack{x_{c} \rightarrow \infty \\
\mathrm{~F}_{\mathrm{c}} \rightarrow 1}} \mathrm{x}_{\mathrm{c}}\left(1-\mathrm{F}_{\mathrm{c}}\right)=\operatorname{Lim}_{\mathrm{F}_{\mathrm{c}} \rightarrow 1}\left\{\sum_{\mathrm{n}=0}^{10} \mathrm{C}_{\mathrm{n}} \mathrm{~F}_{\mathrm{c}}^{\mathrm{n}}\left(1-\mathrm{F}_{\mathrm{c}}\right)+\mathrm{a}\left(1-\mathrm{F}_{\mathrm{c}}\right)^{1-b}\right\}=0 \\
\text { for } 0<b<1 / 2
\end{gathered}
$$

and

$$
\begin{gathered}
\lim _{x_{c} \rightarrow \infty} x_{c}^{2}\left(1-F_{c}\right)=\operatorname{Lim}_{F_{c} \rightarrow 1}\left\{\sum_{n=0}^{20} e_{n} F_{c}^{n}\left(1-F_{c}\right)+2 a\left(1-F_{c}\right)^{1-b} * \sum_{n=0}^{10} C_{n} F_{c}^{n}\right. \\
\left.+a^{2}\left(1-F_{c}\right)^{1-2 b}\right\}=0 \\
\text { for } 0<b<1 / 2
\end{gathered}
$$

Hence, from Eqs. (5.24) and (5.35), for unlimited canal

[^9]capacity $\left(\mathrm{x}_{\mathrm{c}} \rightarrow \infty, \mathrm{F}_{\mathrm{c}} \rightarrow 1\right)$,
\[

$$
\begin{equation*}
\mu\left(x \mid x_{c} \rightarrow \infty\right)=\sum_{n=0}^{10} \frac{c_{n}}{(n+1)}+\frac{a}{(1-b)} \tag{5.37}
\end{equation*}
$$

\]

and from Eqs. (5.33) and (5.36),

$$
\begin{align*}
& \sigma^{2}\left(x \mid x_{c} \rightarrow \infty\right)=\left\{\sum_{n=0}^{20} \frac{e_{n}}{(n+1)}+2 a * \Gamma(1-b) \sum_{n=0}^{10} c_{n} * \frac{\Gamma(n+1)}{\Gamma(n+2-b)}\right. \\
&\left.+\frac{a^{2}}{(1-2 b)}-\mu^{2}\left(x \mid x_{c} \rightarrow \infty\right)\right\} \tag{5.38}\\
& \text { for } \quad a>0, \quad 0<b<1 / 2
\end{align*}
$$

Equations (5.37) and (5.38) are compared with the mean and variance of the normalized combined catchment yield for C123, C456 and C16 (Table 4.11). The results are tabulated in Table 5.2. The agreement is remarkable. The absolute value of the relative error is less than 1% in μ, and it is no greater than 2% in σ. These justify our ignoring the fitting error ε in Eq. (5.12) to arrive at Eq. (5.17). It also gives us the confidence in applying Eqs. (5.24) and (5.33) to different canal capacity designs.

Tables 5.3 and 5.4 give the mean and standard deviation of the normalized canal flow given different canal capacities for the northgoing and south-going canals, respectively. They are plotted on Fig. 5.5 for the north-going canal. From Table 5.3 and Figure 5.5, it can be seen that both $\mu\left(x \mid x_{c}\right)$ and $\sigma\left(x \mid x_{c}\right)$ are monotonically increasing functions of x_{c}. The figure implies that when the canal capacity is small, the mean canal flow is almost identical with the canal capacity, with

Table 5.2: Comparison of Empirical Results and Derived Results of $\mu\left(x \mid x_{c}+\infty\right)$ and $\sigma\left(x \mid x_{c}+\infty\right)$

*
Relative error $=($ Derived $\mu-$ Empirical $\mu) / E m p i r i c a l ~ \mu$
** Relative error $=($ Derived $\sigma-$ Empirical σ)/Empirical σ Absolute Relative error $=\mid$ Relative error \mid

Table 5.3: $\mu\left(x \mid x_{c}\right)$ and $\sigma\left(x \mid x_{c}\right)$ for the North-going Canal

x_{c}	F_{c}	$\mu\left(\mathrm{x} \mid \mathrm{x}_{\mathrm{c}}\right)$	$\mu\left(\mathrm{q} \mid \mathrm{q}_{\mathrm{c}}\right)^{* *}$	$\sigma\left(\left.\mathrm{x}\right\|_{\mathrm{c}}\right)^{*}$	$\sigma\left(\mathrm{q} \mid \mathrm{q}_{\mathrm{c}}\right)^{* *}$
0.02	0.0021	0.0200	3.0884	0.0002	0.0309
0.04	0.0096	0.0399	6.1614	0.0014	0.2162
0.06	0.0200	0.0596	9.2034	0.0034	0.5250
0.08	0.0378	0.0790	12.1992	0.0061	0.9420
0.10	0.1045	0.0978	15.1023	0.0096	1.4824
0.13	0.2188	0.1229	18.9782	0.0176	2.7178
0.15	0.3643	0.1372	21.1864	0.0242	3.7370
0.1737	0.5010	0.1506	23.2557	0.0323	4.9878
0.19	0.6328	0.1578	24.3675	0.0381	5.8834
0.21	0.7432	0.1639	25.3094	0.0445	6.8717
0.23	0.8301	0.1682	25.9734	0.0490	7.5666
0.27	0.9443	0.1722	26.5911	0.0544	8.4004
0.31	0.9876	0.1734	26.7764	0.0571	8.8174
0.37	0.9992	0.1737	26.8228	0.0573	8.8483
0.42	0.9999	0.1737	26.8228	0.0575	8.8792
∞	1.0000	0.1737	26.8228	0.0579	8.9409

* Coefficients and constants for the Equ. come from Table 5.1

$$
\begin{aligned}
& * * q_{c}=x_{c} * A \underline{\overline{P_{s}}} \quad A \underline{\overline{P_{s}}}=154.42 \mathrm{md} / \mathrm{yr} \\
& q=x * A \overline{\mathrm{P}_{s}} \quad(T a b 1 e 4.11, \text { for } \mathrm{C} 456) \\
& \mu\left(q \mid q_{c}\right)=\mu\left(x \mid x_{c}\right) * A \overline{P_{s}} \\
& \sigma\left(q \mid q_{c}\right)=\sigma\left(x \mid x_{c}\right) * A \overline{P_{s}}
\end{aligned}
$$

Table 5.4: $\mu\left(x \mid x_{c}\right)$ and $\sigma\left(x \mid x_{c}\right)$ for the South-going Canal

x_{c}	F_{c}	$\mu\left(\mathrm{x} \mathrm{x}_{\mathrm{c}}\right)$	$\mu\left(\mathrm{q} \mid \mathrm{q}_{\mathrm{c}}\right)^{* *}$	$\sigma\left(\left.\mathrm{x}\right\|_{\left.\mathrm{x}_{\mathrm{c}}\right)}\right.$	$\sigma\left(\mathrm{q} \mid \mathrm{q}_{\mathrm{c}}\right)^{* *}$
0.01	0.0072	0.0100	0.5774	0.0004	0.0231
0.02	0.0193	0.0198	1.1433	0.0013	0.0751
0.04	0.0996	0.0389	2.2461	0.0046	0.2656
0.06	0.1934	0.0559	3.2277	0.0102	0.5889
0.08	0.3301	0.0708	4.0880	0.0171	0.9874
0.09	0.3984	0.0772	4.4575	0.0208	1.2010
0.10	0.4580	0.0829	4.7866	0.0245	1.4146
0.1106	0.5264	0.0883	5.0984	0.0280	1.6167
0.13	0.6543	0.0961	5.5488	0.0351	2.0267
0.15	0.7441	0.1021	5.8953	0.0411	2.3731
0.18	0.8965	0.1075	6.1031	0.0483	2.7888
0.21	0.9561	0.1096	6.3283	0.0522	3.0140
0.23	0.9780	0.1102	6.3629	0.0534	3.0833
0.25	0.9921	0.1105	6.3803	0.0537	3.1006
0.32	0.9999	0.1106	6.3860	0.0546	3.1526
0	1.0000	0.1106	6.3860	0.0544	3.1411

* coefficients and constants for the Equation come from Appendix B for catchment C123

$$
\begin{aligned}
& * * q_{c}=x_{c} * A \overline{P_{s}} \\
& q=x * A \overline{P_{s}} \\
& \mu\left(q \mid q_{c}\right)=\mu\left(x \mid x_{c}\right) * A \overline{P_{s}} \\
& \sigma\left(q \mid q_{c}\right)=\sigma\left(x \mid x_{c}\right) * A \underline{\bar{P}_{s}}
\end{aligned}
$$

$\mathrm{A} \overline{\mathrm{P}_{\mathrm{c}}}=57.74 \mathrm{md} / \mathrm{yr}$
(Tab1e 4.11 for C123)

FIGURE 5.5
MEAN AND STANDARD DEVIATION OF ANNUAL CANAL FLOW GIVEN THE CANAL
a very minor standard deviation. When the canal capacity is high, the mean and standard deviation of the canal flow are limited by the mean and standard deviation of the annual yield from the combined catchment.

In design, for example, if we choose $x_{c}=0.08$ (Table 5.3), that is, a canal capacity of $(0.08)(154.42)=12.35 \mathrm{md} / \mathrm{yr}$, we would expect to recover a mean canal flow of $12.20 \mathrm{md} / \mathrm{yr}$, with a standard deviation of only $0.94 \mathrm{md} / \mathrm{yr}$. The probability of having the capacity flow (12.35 md/yr) is given by Eq. (5.18) and Table 5.3 to be 1 $0.0378=0.9622$. The recurrence interval of this flow is given by $1 / F_{c}=26.46$ years. This means that on the average the annual canal flow will be lower than the canal capacity only once in twenty-six years.
5.3.3 Estimation of the Distribution, Mean and Variance of the Total Potential Water Recovery at Malakal due to Canal Inflows

The total potential water recovery $\left(\mathrm{q}_{\mathrm{T}}\right)$ at Malakal is the sum of the canal flows from the north-going $\left(\mathrm{q}_{\mathrm{N}}\right)$ and the south-going canal $\left(q_{S}\right)$. Denoting their respective canal capacities as $q_{C N}$ and ${ }^{q_{C S}}$,

$$
\begin{equation*}
q_{T}=q_{S}+q_{N} \tag{5.39}
\end{equation*}
$$

with

$$
q_{S}=\left\{\begin{array}{lll}
A_{S} Y_{A}^{(S)} & , & A_{S} * Y_{A}^{(S)}<q_{C S} \tag{5.40}\\
q_{C S} & , & A_{S} * Y_{A}^{(S)} \geq q_{C S}
\end{array}\right.
$$

and

$$
q_{N}=\left\{\begin{array}{lll}
A_{N} Y_{A}^{(N)} & , & A_{N} * Y_{A}^{(N)}<q_{C N} \tag{5.41}\\
q_{C N} & , & A_{N} * Y_{A}^{(N)} \geq q_{C N}
\end{array}\right.
$$

where

$$
\begin{aligned}
A_{S} & =\text { area of catchment } C 123 \\
A_{N} & =\text { area of catchment } C 456 \\
Y_{A}^{(S)} & =\text { annual yield per unit area of catchment C123 } \\
Y_{A}^{(N)} & =\text { annual yield per unit area of catchment C456 }
\end{aligned}
$$

Normalizing Eq. (5.39) ,
$\frac{q_{T}}{\left(A_{s} \bar{P}_{s}^{(S)}+A_{N} \overline{\mathrm{P}}_{s}^{(N)}\right)}=\frac{A_{s} \bar{P}_{s}^{(S)}}{\left(A_{s} \bar{P}_{s}^{(S)}+A_{N} \bar{P}_{s}^{(N)}\right)} \cdot\left[\frac{q_{S}}{A_{s} \bar{P}_{s}^{(S)}}\right]$

$$
\begin{equation*}
+\frac{A_{N} \bar{P}_{s}^{(N)}}{\left(A_{s} \bar{P}_{s}^{(S)}+A_{N} \bar{P}_{s}^{(N)}\right)} \cdot\left[\frac{q_{N}}{A_{N} \bar{P}_{s}^{(N)}}\right] \tag{5.42}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{T}=\alpha_{S} x_{S}+\alpha_{N} x_{N} \tag{5.43}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{S} \frac{\bar{P}_{S}^{(S)}}{(S)} & =\text { space-time mean seasonal precipitation on } \mathrm{C} 123 \\
& =57.74 \mathrm{md} / \mathrm{yr} \text { (Table } 4.11) \\
\mathrm{A}_{\mathrm{N}} \frac{\overline{\mathrm{P}}(\mathrm{~S})}{} & =\text { space-time mean seasonal precipitation on } \mathrm{C} 456 \\
& =154.42 \mathrm{md} / \mathrm{yr}(\text { Table } 4.11) \\
\mathrm{X}_{\mathrm{T}} & =\mathrm{q}_{\mathrm{T}} /\left(\mathrm{A}_{\mathrm{S}} \frac{\overline{\mathrm{P}}_{\mathrm{S}}(\mathrm{~S})}{\underline{S}}+\mathrm{A}_{\mathrm{N}} \underline{\overline{\mathrm{P}}_{\mathrm{S}}^{(N)}}\right)=\mathrm{q}_{\mathrm{T}} / \alpha_{\mathrm{T}} \\
& =\text { normalized total potential water recovery at Malakal }
\end{aligned}
$$

$$
\begin{align*}
& x_{S}=q_{s} /\left(A_{s} \underline{\bar{p}_{s}^{(S)}}\right) \tag{5.45}\\
& =\text { normalized canal flow from the south-going canal } \\
& \mathrm{x}_{\mathrm{N}}=\mathrm{q}_{\mathrm{N}} /\left(\mathrm{A}_{\mathrm{N}} \underline{\overline{\mathrm{P}}_{\mathrm{S}}^{(\mathrm{N}}}\right) \tag{5.46}\\
& =\text { normalized canal flow from the north-going canal } \\
& \alpha_{T}=\left(A_{S} \underline{\mathrm{P}}_{\underline{s}}^{(\mathrm{S})}+\mathrm{A}_{\mathrm{N}} \underline{\mathrm{P}}_{\underline{\mathrm{S}}}^{(\mathrm{N})}\right)=212.16 \mathrm{md} / \mathrm{yr} \tag{5.47}\\
& \alpha_{S}=A_{s} \underline{\mathrm{P}}_{\underline{s}}^{(\mathrm{S})} /\left(\mathrm{A}_{\mathrm{s}} \underline{\overline{\mathrm{P}}_{\underline{s}}^{(S)}}+\mathrm{A}_{\mathrm{N}} \underline{\mathrm{P}}_{\underline{s}}^{(N)}\right)=0.2722 \tag{5.48}\\
& \alpha_{N}=A_{N} \underline{\mathrm{P}}_{\underline{s}}^{(N)} /\left(A_{s} \underline{\bar{P}_{\underline{s}}^{(S)}}+A_{N} \underline{\bar{P}_{\underline{s}}^{(N)}}\right)=0.7278 \tag{5.49}
\end{align*}
$$

Normalizing Eq. (5.39) keeps the numerical values of x_{T}, x_{S} and x_{N} between 0 and 1 , which is more manageable.

From Eqs. (5.40) and (5.45), we obtain
and from Eqs. (5.41) and (5.46),

$$
x_{N}= \begin{cases}A_{N} Y_{A}^{(N)} /\left(A_{N} \overline{\mathrm{P}}_{\underline{s}}^{(N)}\right)=Y_{A}^{(N)} / \bar{P}_{\underline{s}}^{(N)} & , \quad Y_{A}^{(N)} \underline{\bar{P}_{s}^{(N)}}<x_{C N} \tag{5.51}\\ q_{C N} /\left(A_{N} \bar{P}_{s}^{(N)}\right)=x_{C N} & , \quad Y_{A}^{(N)} / \underline{\bar{P}_{s}^{(N)}} \geq x_{C N}\end{cases}
$$

Given the above form of x_{T} (Eqs. (5.43), (5.50), and (5.51)), it will be extremely difficult to derive in closed analytical forms the distribution, mean and variance of x_{T} given the normalized capacities $x_{C S}$ and $x_{C N}$, especially when x_{S} and x_{N} are correlated. Before offering a procedure to solve this problem in general, we will first consider
some special cases where approximate analytical solutions do exist.
When the canal capacity is very small (say, two standard deviations below the mean annual yield of its corresponding combined catchment), the canal flow will be very close to the canal capacity (see Table 5.3 and Figure 5.5), and will be relatively independent of the flows from other canal(s). Therefore, if either x_{CS} or x_{CN} is very small, or both are, we may treat x_{S} and x_{N} as independent (uncorrelated). Under such conditions, the mean of x_{T} may be obtained by taking the expected value of Eq. (5.43) as

$$
E\left(x_{T} \mid x_{C S}, x_{C N}\right)=\alpha_{S} E\left(x_{S} \mid x_{C S}\right)+\alpha_{N} E\left(x_{N} \mid x_{C N}\right)
$$

or

$$
\begin{equation*}
\mu\left(x_{T} \mid x_{C S}, x_{C N}\right)=\alpha_{S} \mu\left(x_{S} \mid x_{C S}\right)+\alpha_{N} \mu\left(x_{N} \mid x_{C N}\right) \tag{5.52}
\end{equation*}
$$

where $\mu\left(x_{S} \mid x_{C S}\right)$ and $\mu\left(x_{N} \mid x_{C N}\right)$ are given by Eq. (5.24), using the constants and coefficients of C123 for the south-going canal (Appendix B), and those of C456 for the north-going canal (Table 5.1).

The variance of x_{T} is then,

$$
\begin{equation*}
\sigma^{2}\left(\mathrm{x}_{\mathrm{T}} \mid \mathrm{x}_{\mathrm{CS}}, \mathrm{x}_{\mathrm{CN}}\right)=\alpha_{\mathrm{S}}^{2} \sigma^{2}\left(\mathrm{x}_{\mathrm{S}} \mid \mathrm{x}_{\mathrm{CS}}\right)+\alpha_{\mathrm{N}}^{2} \sigma^{2}\left(\mathrm{x}_{\mathrm{N}} \mid \mathrm{x}_{\mathrm{CN}}\right) \tag{5.53}
\end{equation*}
$$

where $\sigma^{2}\left(\mathrm{x}_{\mathrm{S}} \mid \mathrm{x}_{\mathrm{CS}}\right)$ and $\sigma^{2}\left(\mathrm{x}_{\mathrm{N}} \mid \mathrm{x}_{\mathrm{CN}}\right)$ are given by Eq. (5.33).
The empirical distribution of x_{T} may be generated from Eq.
(5.17) by the following steps:

Step 1: Generate 2 uniformly distributed random numbers $\left(F_{S}, F_{N}\right)$ between 0 and 1.

Step 2: If $\mathrm{F}_{\mathrm{S}}=1$, set $\mathrm{F}_{\mathrm{S}}=0.99999$.
If $F_{N}=1$, set $F_{N}=0.9999$.
Step 3: Obtain x_{S} and x_{N} from Eq. (5.17), given F_{S} and F_{N}.
Step 4: Evaluate $\mathrm{x}_{\mathrm{T}}=\alpha_{\mathrm{S}} \mathrm{x}_{\mathrm{S}}+\alpha_{\mathrm{N}} \mathrm{x}_{\mathrm{N}}$ (Eq. 5.43).
Step 5: Repeat Steps 1 through 4 for M times.
Step 6: Compute $\bar{x}_{T}=\frac{1}{M} \sum_{j=1}^{M} x_{T}(j)$
$\operatorname{Var}\left(\mathrm{x}_{\mathrm{T}}\right)=\frac{1}{M} \sum_{\mathrm{j}=1}^{\mathrm{M}}\left[\mathrm{x}_{\mathrm{T}}(\mathrm{j})\right]^{2}-\overline{\mathrm{x}}_{\mathrm{T}}^{2}$
$\delta_{\mu}(\mathrm{M})=\left[\bar{x}_{T}-\mu\left(\mathrm{x}_{\mathrm{T}} \mid \mathrm{x}_{\mathrm{CS}}, \mathrm{x}_{\mathrm{CN}}\right)\right] / \mu\left(\mathrm{x}_{\mathrm{T}} \mid \mathrm{x}_{\mathrm{CS}}, \mathrm{x}_{\mathrm{CN}}\right)$
$\delta_{\sigma}(\mathrm{M})=\left[\left(\operatorname{Var}\left(\mathrm{x}_{\mathrm{T}}\right)\right)^{1 / 2}-\sigma\left(\mathrm{x}_{\mathrm{T}} \mid \mathrm{x}_{\mathrm{CS}}, \mathrm{x}_{\mathrm{CN}}\right)\right] / \sigma\left(\mathrm{x}_{\mathrm{T}} \mid \mathrm{x}_{\mathrm{CS}}, \mathrm{x}_{\mathrm{CN}}\right)$

Step 7: If $\left|\delta_{\mu}(M)\right|$ and $\left|\delta_{\sigma}(M)\right|$ are less than some prescribed error bounds, stop and form the empirical CDF of x_{T} from the series $\left\{\mathrm{x}_{\mathrm{T}}(\mathrm{k})\right\}_{\mathrm{k}=1}^{\mathrm{M}}$.
Step 8: If the conditions in Step 7 are not met, increase M and repeat Steps 1 through 7.

It will be helpful to plot $\left|\delta_{\mu}(M)\right|$ and $\left|\delta_{\sigma}(M)\right|$ versus M to see that the former two indeed fall below the prescribed error bounds gradually as $M \rightarrow \infty$, instead of accidentally falling below them for some unexpected small M (say $M=100$). Since Eq. (5.17) is a simple equation, it will not require much computer time even if we increase M to 50,000 .

In general, for any given capacities, $x_{C S}$ and $x_{C N}$, and correlated f lows, x_{S} and x_{N}, the empirical distribution, mean and variance
of x_{T} can be determined by the Monte Carlo simulation technique as described in Sections 4.4 .2 and 4.4 .3 (see Chapter 4). From the simulation, we obtain the annual catchment yield Y_{A}, as shown in Fig. 5.6. From Eqs. (4.38) and (4.40), we may write Eq. (5.50) as

$$
x_{S}(j)=\left\{\begin{array}{lll}
Y_{A}^{(k)}(j) / \bar{P}_{s}^{(k)} & , & Y_{A}^{(k)}(j) / \bar{P}_{s}^{(k)}<x_{C S} \tag{5.58}\\
& \underline{S} \\
x_{C S} & , & Y_{A}^{(k)}(j) / \bar{P}_{s}^{(k)} \geq x_{C S}
\end{array}\right.
$$

for

$$
\begin{aligned}
& \mathrm{k}=(1,2,3) \text { representing catchment C123 } \\
& \mathrm{j}=1,2,3, \ldots, 2000
\end{aligned}
$$

Similarly, for Eq. (5.51),

$$
x_{N}(j)= \begin{cases}Y_{A}^{(k)}(j) / \bar{P}_{s}^{(k)}, & Y_{A}^{(k)}(j) / \overline{\mathrm{P}}_{\underline{s}}^{(k)}<x_{C N} \tag{5.59}\\ x_{C N} & , \quad Y_{A}^{(k)}(j) / \overline{\mathrm{P}}_{\underline{s}}^{(k)} \geq \mathrm{x}_{C N}\end{cases}
$$

for

$$
\begin{aligned}
& \mathrm{k}=(4,5,6) \text { representing catchment } C 456 \\
& \mathrm{j}=1,2,3, \ldots, 2000
\end{aligned}
$$

And

$$
\begin{array}{r}
x_{T}(j)=\alpha_{S} * x_{s}(j)+\alpha_{N} * x_{N}(j) \tag{5.60}\\
j=1,2,3, \ldots, 2000
\end{array}
$$

The empirical distribution of x_{T} can be formed from the series $\left\{x_{T}(j)\right\}_{j=1}^{2000}$. The mean and variance of x_{T} can be computed from Eqs. (5.54) and (5.55) with $M=2000$ years. The empirical distribution,

FIGURE 5.6

- SIMULATION OF TOTAL CANAL INFLOWS AT MALAKAL
mean and variance of the total potential water recovery $\left(\mathrm{q}_{\mathrm{T}}\right)$ at Malakal can easily be retrieved from those of x_{r} using Eqs. (5.44) and (5.47).
5.4 Cana1 Cost-Capacity under Uncertain Canal Flows
5.4.1 Introduction

The purpose of this section is to demonstrate how the cost of canal work for different canal alternatives may be compared by using the distribution, mean and variance of normalized canal flows derived in Section 5.3. We do not intend to provide the actual cost estimates.

5.4.2 Determination of the Cost Function of Canal Work

For a trapezoidal, open-channel aqueduct, the construction costs include the fixed cost, the excavation cost and the lining cost. The fixed cost may include rights of way, surveying, canal head and tail flow regulators and navigation locks. In general, these costs will vary with the top width (w) of the canal very roughly as (41),

$$
\begin{align*}
& \text { Fixed cost per kilometer, } F C=k_{o}+k_{1} w \tag{5.61}\\
& \text { Excavation cost per kilometer, } E C=k_{2} w^{2} \tag{5.62}\\
& \text { Lining cost per kilometer, } L C=k_{3} w^{1.5} \tag{5.63}
\end{align*}
$$

Hence, the total construction costs $\left(\mathrm{C}_{\mathrm{T}}\right)$ per unit length of canal is roughly a polynomial in w, as

$$
\begin{equation*}
\mathrm{C}_{\mathrm{T}}=\mathrm{k}_{\mathrm{o}}+\mathrm{k}_{1} \mathrm{w}+\mathrm{k}_{2} \mathrm{w}^{2}+\mathrm{k}_{3} \mathrm{w}^{1.5} \tag{5.64}
\end{equation*}
$$

For a trapezoidal canal with constant channel bed slope and without a freeboard, the canal capacity $\left(q_{c}\right)$ is roughly proportional to the canal top width (w) by (41)*

$$
\begin{equation*}
q_{c}=k_{4} w^{2.7} \tag{5.65}
\end{equation*}
$$

Also, the depth of channel (H) is assumed proportional to the top width (w), by*

$$
\begin{equation*}
\mathrm{H}=\mathrm{k}_{5} \mathrm{w} \tag{5.66}
\end{equation*}
$$

To determine the total construction cost, the cost coefficients k_{o}, k_{1}, k_{2} and k_{3} in Eq. (5.64) need to be evaluated first. Table 5.5 (42) gives the actual construction costs for the Jonglei Canal, which may be used to estimate these cost coefficients.

From the Jonglei Canal project literature (4), the following data are obtained,

$$
q_{c}=27.5 \mathrm{Mm}^{3} / \text { day }=27.5 \times 10^{6} \operatorname{meter}^{3} / \text { day }
$$

for

$$
\mathrm{w}=76 \text { meters }
$$

H = 4 meters

From Eq. (5.65), $\mathrm{k}_{4}=\mathrm{q}_{\mathrm{c}} / \mathrm{w}^{2.7}$

Equations (5.65) and (5.66) should never be used in actual capacity design, as the error involved may be quite large.

$$
\therefore \quad k_{4}=\frac{27.5 \times 10^{6} \mathrm{~m}^{3} / \text { day }}{(76)^{2.7} \mathrm{~m}^{2.7}}=229.69 \mathrm{~m}^{0.3} / \text { day }
$$

From Eq. (5.66), $\mathrm{k}_{5}=\mathrm{H} / \mathrm{w}$

$$
\therefore \quad k_{5}=4 / 76=0.0526
$$

The canal capacity in Table 5.5 is $20 \mathrm{Mm}^{3} /$ day. From Eq. (5.65), the top width of the canal is

$$
\begin{aligned}
\mathrm{w} & =\left(\mathrm{q}_{\mathrm{c}} / \mathrm{k}_{4}\right)^{1 / 2.7} \\
& =\left(\frac{20 \times 10^{6} \mathrm{~m}^{3}}{229.69 \mathrm{~m}^{0.3}}\right)^{1 / 2.7}=67.5 \text { meters }
\end{aligned}
$$

The Jonglei Canal is about 280 km long. The excavation cost is 16.7 million Sudanese pounds (Table 5.5, Item 1) or U.S. $\$ 33.4$ million, so the excavation cost per kilometer of the $20 \mathrm{Mm}^{3} /$ day capacity canal is, by Eq. (5.62),

$$
\mathrm{EC}=\frac{\$ 33.4 \times 10^{6}}{280 \mathrm{~km}}=\mathrm{k}_{2}(67.5 \text { meters })^{2}
$$

or

$$
\mathrm{k}_{2}=\$ 26.18 / \mathrm{m}^{2} / \mathrm{km}
$$

The lining cost is not mentioned in Table 5.5, so we assume $k_{3}=0$ in Eqs. (5.63) and (5.64).

Two data points are required to determine the cost coefficients k_{o} and k_{1} in Eq. (5.61). Items 3 and 4 in Table 5.5 suggest these two points.

Table 5.5 (42)

CONSTRUCTION COSTS FOR PHASE I OF THE JONGLEI CANAL PROJECT

WORKS*
Cost
(Sudanese Pounds)**

1. Earth work in the excavation of the $20 \mathrm{~mm}^{3} /$ day
$16,700,000$
Jonglei Canal ($1 \mathrm{Mm}^{3} /$ day $=10^{6} \mathrm{~m}^{3} /$ day)
2. Construction of Jonglei Canal head regulator capacity $20 \mathrm{Mm} 3 /$ day, with navigation lock taking into account the presence of weeds and other elements

$$
9,500,000
$$

3. Construction of the Canal tail regulator, capacity $20 \mathrm{Mm} 3 /$ day with navigation lock

$$
9,500,000
$$

4. Construction of lower Atem regulator, capacity $60 \mathrm{Mm}^{3} /$ day

$$
12,000,000
$$

5. Training and banking of River Atem from its head to the Lower Atem regulator at Jonglei latitude to pass the maximum natural flows $6,000,000$
6. Local development projects, including an irrigation canal with a capacity of $5 \mathrm{Mm} 3 /$ day, appurtenant irrigation and drainage scheme network and the reclamations, construction and community development projects $\quad 18,000,000$

TOTAL
$71,700,000$
Gross drainage works, reserve funds and contingencies

$$
9,300,000
$$

GRAND TOTAL
$81,000,000$

* Period of construction: 1976-1982
** 1 Sudanese Pound $\equiv 2.0000$ U.S. Dollar
1 Egyptian Pound $\equiv 1.4286$ U.S. Dollar as the market exchange rate in August, 1980 (43).

In Item 3, the fixed cost for the construction of the Canal tail regulator, capacity $20 \mathrm{~mm}^{3} /$ day $(w=67.5$ meters) with navigation lock is 9.5 million Sudanese pounds (U.S. $\$ 19$ million). In Item 4, the fixed cost for the construction of lower Atem regulator of capacity $60 \mathrm{Mm}^{3} /$ day amounts to 12 million Sudanese pounds (U.S. $\$ 24$ million). For such a capacity, w is 101.5 meters (from Eq. (5.65)). Thus, from Eq. (5.61),

$$
\begin{aligned}
& \$ 19 \times 10^{6}=k_{o}+k_{1} \quad(67.5 \text { meters }) \\
& \$ 12 \times 10^{6}=k_{o}+k_{1} \quad(101.5 \text { meters })
\end{aligned}
$$

Solving these gives

$$
\begin{gathered}
k_{o}=\$ 5.102941 \times 10^{6} \\
k_{1}=\$ 0.205882 \times 10^{6} / \text { meter }
\end{gathered}
$$

In this application, the form of Eq. (5.61) is adopted for the fixed cost (instead of the fixed cost per kilometer). This is the cost connected primarily with the construction of a flow regulator. Since there are normally two flow regulators, one at the head and the other at the tail of the canal, the cost coefficients, k_{o} and k_{1}, are both multiplied by two.

Sumarizing, the total construction cost (C_{L}) for an unlined canal, L kilometers long with a capacity of q_{c} cubic meters per day, is

$$
\begin{equation*}
C_{L}=2 k_{o}+2 k_{1} w+k_{2} L w^{2} \tag{5.67}
\end{equation*}
$$

where

$$
w=\left(q_{c} / k_{4}\right)^{1 / 2.7} \text {, from Eq. (5.65) }
$$

and

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{o}}=\$ 5.102941 \times 10^{6} \\
& \mathrm{k}_{1}=\$ 0.205882 \times 10^{6} / \text { meter } \\
& \mathrm{k}_{2}=\$ 26.18 / \text { meter }^{2} / \text { kilometer } \\
& \mathrm{k}_{4}=229.69 \text { meter }^{0.3} / \text { day } \\
& \mathrm{k}_{5}=0.0526
\end{aligned}
$$

5.4.3 Cost-Capacity Comparison of Canal Alternatives under Uncertain Canal Flows

The total construction costs are evaluated for various canal capacities, and are tabulated in Tables 5.6 and 5.7 for the northgoing (840 km) and south-going (300 km) canal, respectively. Table 5.6 can be combined with Table 5.3 , and Table 5.7 combined with Table 5.4, to prepare Figure 5.7 for cost-capacity design comparison of the two canals. In Fig. 5.7, $P\left(q=q_{c}\right)$ is the probability of $q=q_{c}$, which is obtained from Eq. (5.18) as (1-F $)$.

To interpret Figure 5.7 , we start with a design canal capacity, q_{c}, traveling up the graph, we determine the total construction costs, C_{L}, for such a capacity at a point on the $C_{L}-q_{c}$ curve. Going right from this point, we find the mean annual canal flow given the canal capacity $\mu\left(q^{\mid} q_{c}\right)$ from a point on the $C_{L}-\mu\left(q_{c} q_{c}\right)$ curve. Traveling downward from this point, we reach a point on the $\sigma\left(q_{\mid q_{c}}\right)-\mu\left(q_{c} q_{c}\right)$ curve which tells the standard deviation of the canal flow given the canal design capacity.

TABLE 5.6

COST-CAPACITY DESIGN (NORTH-GOING CANAL)

NOFTHGOTNG CANAL ($\mathrm{L}=840 \mathrm{~km}$)

\mathbf{x}	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ \mathrm{md} / \mathrm{yr} \end{gathered}$	$\operatorname{rim}^{3} /{ }^{q^{c}} / \text { day }$	w meters	H meters	$\begin{gathered} C_{L} \\ \text { U.S. } \$ \times 10^{6} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}} / \mathrm{L} \\ \text { U.S. } \$ \times 10^{6} / \mathrm{km} \end{gathered}$
0.0200	3.0884	8.46	49.12	$2 \cdot 69$	83.48	0.0994
0.0300	4.6326	12.69	\%7.07	3.00	10w.34	0.12 E 4
0.0400	6.1768	16.92	63.49	3.34	12 F . 00	0.1488
0.0600	7.7210	21.16	68.96	3.63	143.18	0.1705
0.0600	9.2652	$2 \mathrm{~W}+38$	73.78	3.88	160.29	0.1908
0.0700	10.8094	29.61	78.11.	4.11	176.56	0.2102
0.0800	12.3536	33.85	82.07	4.32	192.14	0.2287
0.0900	13.8978	38.08	85.73	4.51	207.15	0.2466
0.1000	$15+4420$	42.31	89.1㤩	4.69	221.67	0.2639
0.11 .100	16.9862	46.54	$92+3$	4.86	$235+78$	0.2807
0.1200	18.5304	W0.77	$95+37$	5.02	249.51	0.2970
0.1300	20.0746	5	98.24	5.17	262.91	0.3130
0.1400	21.6188	\%9-23	1.00 .98	5 + 31	276.01	0.3286
0.1500	23.1630	63.46	103.59	5	288.85	0.3439
0.1600	24.7072	67.69	1.06 .10	ت, 58	301.43	0.3588
0.11700	26.2514	71.92	1.08. 51	W.71	313.80	0.3736
0.1800	27.7956	$76 \cdot 15$	1.10.83	5.83	32 F +95	0.3880
0.1900	29.3398	80.38	113.07	5.95	337.91	0.4023
0.2000	30.8840	84.61.	$115+24$	6.07	349.69	0.4163
0.2100	$32+4282$	88.84	1.17.34	6.18	361.30	0.4301
0.2200	33.9724	93.08	119.38	6.28	372.76	0.4438
0.2300	35.5166	97.31.	121.36	6.39	384.06	0.4572
0.2400	37.0608	1.01.54	123.29	6.49	395.23	0.4705
0.2000	38.6050	103.77	1.25.17	6.59	406.27	0.4837
0.2600	$40 \cdot 1492$	110.00	1.27.00	6.68	417.18	0.4966
0.2700	41.6934	114.23	1. 28.78	6.78	427.97	0.5095
0.2800	43.2376	11.8.46	130.53	6.87	438.65	0.5222
0.2900	44.7818	122.69	1.32, 24	6.96	449.22	0.5348
0.3000	46.3260	126.92	1.33.91	7.05	459.68	0.5472
0.31 .00	47.8702	131.1世	1.35.5\%	$7 \cdot 13$	470.05	0.5596
0.3200	49.41 .44	1.36.38	137.15	7-22	$480 \cdot 33$	0.5718
0.3300	W0.9586	1.39 .61	138.72	7.30	490.61	0.5839
0.3400	W2, 9028	1. 43.84	140.26	7.39	500.61	0.5960
0.3 BO	\%4.0470	1.48.07	141.78	7.46	510.62	0.6079
0.3600	\%5. 59.2	152.30	143.26	7.54	520.56	0.6197
0.3700	\%7, 1364	156.54	1.44.73	7.62	530.41	0.6314
0.3800	W8.6796	$160 \cdot 77$	146.16	7.69	540.19	0.6431
0.3900	60.2230	16\%.00	1.47.57	7.77	549.90	$0.6 \% 46$
0.4000	61.7680	169.23	1.48 .97	7.84	599, 54	0.6661
0.4100	63.3122	173.46	$1: 30.33$	7.91	\%69.11	0.6776
0.4200	64.8564	177.69	151.68	7.98	578.62	0.6888
0.4300	66.4006	1.81.92	1. 53.01	0.05	589.06	0.7001
0.4400	67.9448	196.16	154.32	0.12	597.44	0.7112
0.1737	26.8227	73.49	109.37	\% 76	318.31	0.3787

TABLE 5.7
COST-CAPACITY DESIGN (SOUTH-GOING CANAL)

SOUTH GOING CANAL $\quad(L=300 \mathrm{~km})$

x	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ \mathrm{md} / \mathrm{yr} \end{gathered}$	$\begin{gathered} 3^{9} c \\ \mathrm{Mm}^{3} / \text { day } \end{gathered}$	meters	H meters	$\begin{gathered} C_{L} \\ \text { U.S. } \$ \times 10^{6} \end{gathered}$	$\begin{gathered} C_{L} / L \\ \text { U.S. } \$ \times 10^{6} / \mathrm{km} \end{gathered}$
0.0100	0. 5774	1. 58	26.39	1.39	26.54	0.0885
0.0200	1. 1.548	3.1 .6	34.12	1.80	33.40	0.1113
0.0300	1. +7322	4.75	39.65	2.09	38.88	0.1296
0.0400	2.3096	6.33	44.10	2.32	43.64	0.145
$0.0 \% 00$	2.8870	7.91	47.70	2.52	47.95	0.1598
0.0600	3.4644	9.49	W1.26	$2+70$	W1.94	0.1731
0.0700	4.0418	11.07	54.26	2.86	E\% 67	0.1856
0.0800	4.6192	1.2.66	57.01	3.00	59.21	0.1974
0.0900	ت, 1966	14.24	59.66	3.13	$62 \cdot 69$	0.2086
0.1000	5.7740	15.82	61.93	3.26	65.82	0.21 .94
0.1100	6.3514	1.7.40	64.15	3.38	68.94	0.2298
0.1200	6.9288	18.98	66.25	3.49	71.96	0.2399
0.1300	7.5062	20.56	68.24	3.59	74.89	0.2486
0.1 .400	8.0836	22. E	70.1 .4	3.69	77.73	0.2591
0.1500	8.6610	23.73	71.96	3.79	80.51	0.2684
0.1600	9. 3.384	26.31	73.70	3.88	83.21	0.2774
0.1700	$9.81 \% 8$	26.89	75.37	3.97	$8: 8.86$	0.2862
0.1800	10.3932	28.47	76.99	4.05	88.46	0.2949
$0+1.900$	$1.0+9706$	30.06	78.54	$4 \cdot 13$	91.00	0.3033
0.2000	11.	31.64	80.05	4.21	93.50	0.3117
0.2100	12. 2.24	33.22	81. 51	4.29	$9 \% .9 \%$	0.3198
0.2000	12.7028	34.80	82.93	4.36	98.36	0.3279
0.2300	13.2802	36.38	84.30	4.44	100.74	0.3358
0.2400	13.8976	37.97	85.64	4.4	103.08	0.3436
0.2000	14.43:7)	39.6	86.9%	4. 68	10\%.30	0.3613
0.2600	1\%40124	41.13	88.22	4.64	10\%.66	0.3589
0.2700	15.5898	42.71	89.46	4.71	109.90	0.3663
0.2800	$1.6+1.672$	44.29	90.67	4.77	$112 \cdot 12$	0.3737
0.2900	1. 6.7446	$4 \% .88$	91.86	4.83	11.4 .30	0.3810
0.3000	17.3290	47.46	93.02	4.90	1. 1.6.47	0.388%
0.31 .00	17.8984	49.04	94.16	4.96	118.61	0.3954
0.3200	18.4768	ツ0.62	$9 \% .27$	\%.01	1.20.72	0.4024
0.3300	17.0642	-22.20	96.36	E. 0%	122.82	0.4094
0.3400	1.9 .631 .6	63.79	97.43	W. 1.3	1.24.89	0.4163
0.3500	20.2090	56	98.49	\%.18	126.94	0.4231
0.11 .06	6.3860	17.50	64.28	3.38	$6 \% \cdot 13$	0.2304

FIGURE 5.7
COST-CAPACITY COMPARISON OF CANAL ALTERNATIVES UNDER UNCERTAIN CANAL FLOWS

In comparing the canal alternatives, for example, for a mean canal flow $\mu\left(\mathrm{q} \mid \mathrm{q}_{\mathrm{c}}\right.$) of $5 \mathrm{md} / \mathrm{yr}$ (Fig. 5.8), it will be cheaper to build the south-going canal. However, the standard deviation of the canal flow in this case is much higher than that of the north-going canal. A tradeoff exists between having cheaper canal construction costs but higher uncertainty of canal flows (higher $\sigma\left(q^{\mid} \mid q_{c}\right)$), and more expensive construction costs but smaller uncertainty of canal flows (smaller $\sigma\left(q \mid q_{c}\right)$). For a mean canal flow of higher than $6.39 \mathrm{md} / \mathrm{yr}$, the north-going canal is the only choice because the south-going canal cannot yield a flow higher than $6.39 \mathrm{md} / \mathrm{yr}$ even for unlimited canal capacity.

5.5 Derivation of the Distribution, Mean and Variance of the Potential Canal Flow Given the Canal Capacity (A Refined Model)

5.5.1 Introduction

In the previous sections, only the annual flows are considered. We have assumed implicitly that a canal capacity capable of recovering a mean annual flow of 12 md implies a recovery of 1 md per month. This is not strictly correct because of the fluctuation of the mean monthly catchment yields. In this section, the monthly spillage will be considered, and the mean and variance of the annual potential canal flow given the constant monthly canal capacity will be derived in closed analytical form. Due to insufficient data of the mean monthly sub-catchment flows, application of the cost-capacity analysis will be left for future research.

FIGURE 5.8 : MONTHLY COMBINED CATCHMENT YIELD
(AS PROPORTIONAL TO GAGED MEAN MONTHLY YIELD)
5.5.2 Derivation of the Distribution, Mean and Variance of the Monthly Potential Canal Flow Given the Monthly Canal Capacity

To facilitate our work, the fluctuation of the monthly combined catchment yield (gaged + ungaged), $A * Y_{i}$, is assumed to follow that of the gaged mean monthly combined catchment yield, $A * \bar{Y}_{i}^{G}$, as shown in Fig. 5.8. Here,

$$
\begin{equation*}
\mathrm{A} * \overline{\mathrm{Y}}_{\mathrm{i}}^{\mathrm{G}}=\mathrm{b}_{\mathrm{i}} * \mathrm{~A} * \overline{\mathrm{Y}}_{\mathrm{m}}^{G} \tag{5.68}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{b}_{\mathrm{i}}=\overline{\mathrm{Y}}_{\mathrm{i}}^{\mathrm{G}} / \overline{\mathrm{Y}}_{\mathrm{m}}^{\mathrm{G}}, \quad \mathrm{i}=1, \ldots, 12 \tag{5.69}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{A}= & \text { area of combined catchment } \\
\overline{\mathrm{Y}}_{\mathrm{m}}^{\mathrm{G}}= & \overline{\mathrm{Y}}_{\mathrm{A}}^{\mathrm{G}} / 12=\text { gaged mean annual monthly yield } \\
\mathrm{Y}_{\mathrm{A}}= & \text { annual combined catchment yield } \\
\mathrm{Y}_{\mathrm{i}}= & \text { monthly combined catchment yield for month } i \\
\mathrm{~b}_{\mathrm{i}}= & \text { ratio of gaged mean monthly yield to gaged mean annual } \\
& \text { monthly yield for the } i^{\text {th }} \text { month }
\end{aligned}
$$

The overbar signifies time average and the superscript " G " means "gaged discharge," and

$$
\begin{equation*}
A Y_{i}=b_{i} * A * Y_{m}=b_{i} * A *\left(Y_{A} / 12\right) \tag{5.70}
\end{equation*}
$$

or

$$
\begin{equation*}
Y_{i}=a_{i} Y_{A} \tag{5.71}
\end{equation*}
$$

$$
a_{i}=b_{i} / 12, i=1, \ldots, 12
$$

$Y_{i}, Y_{m}, \bar{Y}_{i}^{G}, \bar{Y}_{m}^{G}$ may be in $m / m o n t h$ or $\mathrm{cm} /$ month. $A * Y_{i}, A * Y_{m}$, $A * \bar{Y}_{i}^{G}, A^{*} \bar{Y}_{m}^{G}$ may be in $\mathrm{m}^{3} /$ month or $\mathrm{Mm}^{3} /$ month or $\mathrm{md} /$ month.

From Fig. 5.9(a), the monthly canal flow (q_{i}) is given by

$$
q_{i}= \begin{cases}A * Y_{i}, & A * Y_{i}<q_{c m} \tag{5.72}\\ q_{c m}=q_{c} / 12, & A * Y_{i} \geq q_{c m}\end{cases}
$$

with

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{cm}}=\text { constant monthly canal capacity } \\
& \mathrm{q}_{\mathrm{c}}=\text { annual canal capacity }
\end{aligned}
$$

Substituting Eq. (5.71) in (5.72) and normalizing by $\left(\mathrm{a}_{\mathrm{i}} \mathrm{A} * \overline{\mathrm{P}}_{\mathbf{s}}\right)$, where a_{i} is the monthly proportionality factor and $\mathrm{A} * \overline{\mathrm{P}}_{\mathbf{s}}$ is the space-time mean seasonal catchment precipitation,

$$
\begin{align*}
& \frac{q_{i}}{a_{i} A * \underline{P_{s}}}=\left\{\begin{array}{ll}
Y_{A} / \bar{P}_{s} & Y_{A} / \bar{P}_{s}
\end{array}<q_{c m} /\left(a_{i} A * \bar{P}_{s}\right)\right. \\
& q_{c m} /\left(a_{i} A *{\overline{P_{s}}}\right), Y_{A} / \bar{P}_{s} \geq q_{c m} /\left(a_{i} A *{\overline{P_{s}}}\right) \tag{5.73}\\
& i=1,2, \ldots, 12
\end{align*}
$$

Let

$$
\begin{align*}
x_{i} & =q_{i} /\left(a_{i} A * \underline{\bar{P}_{s}}\right) \tag{5.74}\\
& =\text { normalized monthly canal flow for month } i \\
x_{c i} & =q_{c m} /\left(a_{i} A * \underline{\bar{P}_{s}}\right) \tag{5.75}\\
& =\text { normalized monthly canal capacity for } \\
& \text { month } i
\end{align*}
$$

FIGURE 5.9 : RELATIONSHIP BETWEEN MONTHLY CANAL FLOW and monthly Combined catchment yield
(Notice that the capacity q_{cm} is the same constant for all the months, but the normalized capacity x_{ci} is different for different months because of the monthly factor a_{i}. This seemingly strange normalization allows easy application of previous derived formulas.)

Equation (5.73) can be written as

$$
\begin{align*}
& x_{i}=\left\{\begin{array}{lll}
Y_{A} / \bar{P}_{s} & , & Y_{A} / \bar{P}_{s}<x_{c i} \\
x_{c i} & , & Y_{A} / \bar{P}_{s} \geq x_{c i}
\end{array}\right. \tag{5.76}\\
& \text { i }=1,2, \ldots, 12
\end{align*}
$$

Equation (5.76) is almost identical to Eq. (5.16), except for the normalizing factor which is monthly specific. Therefore, Eqs. (5.17) through (5.38) are applicable to the normalized monthly canal flow (x_{i}). We only need to replace $\mathrm{x}, \mathrm{x}_{\mathrm{c}}, \mathrm{F}$ and F_{c} in those equations (5.17 to 5.38) by $x_{i}, x_{c i}, F_{i}$ and $F_{c i}$, respectively, to arrive at, from Eqs. (5.24) and (5.33),

$$
\begin{equation*}
\mu\left(x_{i} \mid x_{c i}\right)=\sum_{n=0}^{10} \frac{c_{n} F_{c i}^{n+1}}{(n+1)}+\frac{a}{(1-b)}\left[1-\left(1-F_{c i}\right)^{1-b}\right]+x_{c i}\left(1-F_{c i}\right) \tag{5.77}
\end{equation*}
$$

and

$$
\begin{align*}
\sigma^{2}\left(x_{i} \mid x_{c i}\right)= & \left\{\sum_{n=0}^{20} \frac{e_{n} F_{c i}^{n+1}}{(n+1)}+2 a * \Gamma(1-b) \sum_{n=0}^{10} \frac{c_{n} * \Gamma(n+1)}{\Gamma(n+2-b)} * I_{F_{c i}}(n+1,1-b)\right. \\
& \left.+\frac{a^{2}}{(1-2 b)}\left[1-\left(1-F_{c i}\right)^{1-2 b}\right]+x_{c i}^{2}\left(1-F_{c i}\right)-\mu^{2}\left(x_{i} \mid x_{c i}\right)\right\} \tag{5.78}
\end{align*}
$$

for

$$
\begin{array}{r}
a>0, \quad 0<b<1 / 2 \\
e_{o}=c_{o}^{2}, \quad e_{n}=\sum_{k=0}^{n} C_{k} C_{n-k} \\
i=1,2, \ldots, 12, \quad n=1,2, \ldots, 20
\end{array}
$$

where

$$
\begin{aligned}
\mu\left(x_{i} \mid x_{c i}\right)= & \text { mean monthly canal flow (normalized) given the } \\
& \text { monthly canal capacity (normalized) } \\
\sigma^{2}\left(x_{i} \mid x_{c i}\right)= & \text { variance of monthly canal flow (normalized) given } \\
& \text { the monthly canal capacity (normalized) }
\end{aligned}
$$

From Eqs. (5.74) and (5.75), we obtain

$$
\begin{align*}
\mu\left(q_{i} \mid q_{c m}\right) & =a_{i} A * \overline{\mathrm{P}}_{s} * \mu\left(x_{i} \mid x_{c i}\right) \tag{5.79}\\
\sigma^{2}\left(q_{i} \mid q_{c m}\right) & =\left(a_{i} A * \bar{P}_{s}\right)^{2} * \sigma^{2}\left(x_{i} \mid x_{c i}\right) \tag{5.80}
\end{align*}
$$

which are the mean and variance of the monthly canal flow given the monthly canal capacity.

The distribution of q_{i} can be deduced from Eqs. (5.18), (5.22) and (5.23), as

$$
\begin{gather*}
\operatorname{Prob}\left[q_{i}<q_{i}^{\prime} \mid 0 \leq q_{i}^{\prime}<q_{c m}\right]=F_{i}^{\prime}=G^{-1}\left(x_{i}^{\prime}\right) \tag{5.81}\\
\operatorname{Prob}\left[q_{i}=q_{c m}\right]=1-F_{c i} \tag{5.82}\\
\operatorname{Prob}\left[q_{i} \leq q_{c m}\right]=1 \tag{5.83}
\end{gather*}
$$

Figure 5.9(b) shows the monthly spillage loss. This loss depends critically on the factor a_{i}, which determines whether q_{i} is higher or lower than q_{cm}.
5.5.3 Derivation of the Distribution, Mean and Variance of the Annual Potential Canal Flow Given the Monthly Canal Capacity

The annual canal flow (q_{A}) is the sum of the monthly canal
flows $\left(q_{i}\right)$, as

$$
\begin{equation*}
q_{A}=\sum_{i=1}^{12} q_{i} \tag{5.84}
\end{equation*}
$$

From Eqs. (5.74) and (5.75) and (5.72)

$$
\begin{align*}
q_{i} & =a_{i} A * \bar{p}_{s} * x_{i} \tag{5.74}\\
q_{c m} & =a_{i} A * \bar{p}_{s} * x_{c i} \tag{5.75}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{q}_{\mathrm{c}}=12 * \mathrm{q}_{\mathrm{cm}} \tag{5.72}
\end{equation*}
$$

Taking the expected value of both sides of Eq. (5.84), given the constant monthly canal capacity, $q_{c m}$,

$$
\begin{equation*}
E\left(q_{A} \mid q_{c m}\right)=E\left[\sum_{i=1}^{12}\left(q_{i} \mid q_{c m}\right)\right] \tag{5.85}
\end{equation*}
$$

which is equivalent to

$$
\begin{align*}
\mu\left(q_{A} \mid q_{c}\right) & =\sum_{i=1}^{12} a_{i} A * \bar{P}_{s} * E\left(x_{i} \mid x_{c i}\right) \\
& =A * \bar{P}_{s} * \sum_{i=1}^{12} a_{i} * \mu\left(x_{i} \mid x_{c i}\right) \tag{5.86}
\end{align*}
$$

where $\mu\left(q_{A} \mid q_{c}\right)$ is the mean annual canal flow given the canal capacity. The variance of annual canal flow given $q_{c m}$ is

$$
\begin{equation*}
\operatorname{Var}\left(q_{A} \mid q_{c m}\right)=\operatorname{Var}\left[\sum_{i=1}^{12}\left(q_{i} \mid q_{c m}\right)\right] \tag{5.87}
\end{equation*}
$$

or equivalently,

$$
\begin{align*}
\sigma^{2}\left(q_{A} \mid q_{c}\right)= & \operatorname{Var}\left[\sum_{i=1}^{12}\left(a_{i} A * \underline{P_{s}} * x_{i} \mid x_{c 1}, x_{c 2}, \ldots, x_{c 12}\right)\right. \\
= & \left(A * \bar{P}_{s}\right)^{2} \sum_{i=1}^{12} a_{i}^{2} \sigma^{2}\left(x_{i} \mid x_{c i}\right) \\
& +2 *\left(A * \bar{P}_{s}\right)^{2} \sum_{i=1}^{12} \sum_{j=i+1}^{12} a_{i} a_{j} * Z(i, j) \tag{5.88}
\end{align*}
$$

where $Z(i, j)$ is the covariance term given by

$$
\begin{align*}
z(i, j) & =\operatorname{cov}\left(x_{i}, x_{j} \mid x_{c i}, x_{c j}\right) \\
& =E\left[x_{i} * x_{j} \mid x_{c i}, x_{c j}\right]-\mu\left(x_{i} \mid x_{c i}\right) * \mu\left(x_{j} \mid x_{c j}\right) \tag{5.89}
\end{align*}
$$

$Z(i, j)$ depends on the relative magnitude of a_{i} and a_{j}. There are three distinct cases:

Case 1: $\quad a_{j} / a_{i}=1$
This case implies $x_{j}=x_{i}$. Therefore, the covariance becomes the variance, as

$$
\begin{align*}
z(i, j) & =\operatorname{cov}\left(x_{i}, x_{i} \mid x_{c i}, x_{c i}\right) \\
& =\sigma^{2}\left(x_{i} \mid x_{c i}\right)=\sigma^{2}\left(x_{j} \mid x_{c j}\right) \tag{5.90}
\end{align*}
$$

Case 2: $a_{j} / a_{i}>1$
In this case, it can be seen that from Eq. (5.75), $x_{c i}>x_{c j}$.
The relation between $x_{c i}$ and $x_{c j}$ is shown in Fig. 5.10(a).
There are three regions (I, II, III).
Region I is defined by $0<\left(x_{i}, x_{j}\right)<x_{c j}<x_{c i}$. Here,

(b) For $a_{j} / a_{i}<1, x_{c j}>X_{c i}$

FIGURE 5.10 : RELATIONSHIP BETWEEN THE NORMALIZED MONTHLY CANAL CAPACITIES FOR MONTHS i AND j

$$
\begin{align*}
x_{j} / x_{i} & =\frac{q_{j} /\left(a_{j} A * \bar{P}_{s}\right)}{q_{i} /\left(a_{i} A * \underline{P_{s}}\right)}=\frac{q_{j} a_{i}}{q_{i} a_{j}} \\
& =\frac{\left(a_{j} Y_{A}\right) a_{i}}{\left(a_{i} Y_{A}\right) a_{j}}=1 \tag{5.91}
\end{align*}
$$

For Region II, since x_{j} is bounded by $x_{c j}$, we have

$$
\begin{equation*}
x_{j}=x_{c j} \text { and } x_{c j} \leq x_{i}<x_{c i} \tag{5.92}
\end{equation*}
$$

For Region III,

$$
\begin{equation*}
x_{j}=x_{c j} \text { and } x_{i}=x_{c i} \tag{5.93}
\end{equation*}
$$

With the relationship between x_{j} and x_{i} in the three regions defined, the evaluation of the expectation term in Eq. (5.89) can now proceed.

$$
\begin{align*}
E\left[x_{i} * x_{j} \mid x_{c i}, x_{c j}\right]= & \int_{0}^{x_{c j}} x_{i}^{2} f\left(x_{i}\right) d x_{i}+x_{c j} \int_{x_{c j}}^{x_{c i}} x_{i} f\left(x_{i}\right) d x_{i} \\
& +x_{c j} x_{c i} \int_{x_{c i}}^{\infty} f\left(x_{i}\right) d x_{i} \quad, \quad a_{j} / a_{i}>1 \tag{5.94}
\end{align*}
$$

where

$$
f\left(x_{i}\right)=\operatorname{PDF} \text { of } x_{i}
$$

The integrals in the above equation are similar to those of
Eqs. (5.24) and (5.25), and the final form of Eq. (5.94) is

$$
\begin{align*}
E\left[x_{i} *_{x_{j}} \mid x_{c i}, x_{c j}\right] & =\sum_{n=0}^{20} \frac{e_{n} F_{c j}^{n+1}}{(n+1)}+2 a * \Gamma(1-b) \sum_{n=0}^{10} c_{n} * \frac{\Gamma(n+1)}{\Gamma(n+2-b)} \\
& * I_{F_{c j}}(n+1,1-b)+\frac{a^{2}}{(1-2 b)}\left[1-\left(1-F_{c j}\right)^{1-2 b}\right] \\
& +x_{c j}\left\{\sum_{n=0}^{10} \frac{c_{n}\left(F_{c i}-F_{c j}\right)^{n+1}}{(n+1)}+\frac{a}{(1-b)}\left[\left(1-F_{c i}\right)^{1-b}\right.\right. \\
& \left.\left.-\left(1-F_{c j}\right)^{1-b}\right]\right\}+x_{c j} x_{c i}\left(1-F_{c i}\right) \text { for the case } a_{j} / a_{i}>1 \tag{5.95}
\end{align*}
$$

where

$$
\begin{gathered}
e_{o}=c_{o}^{2}, \quad e_{n}=\sum_{k=0}^{n} c_{k} c_{n-k}, \quad n=1,2, \ldots, 20 \\
a>0, \quad 0<b<1 / 2
\end{gathered}
$$

$$
\begin{aligned}
\Gamma(u) & =\text { Gamma function } \\
I_{\alpha}(u, v) & =\text { Incomplete Beta function (Eq. (5.29)) }
\end{aligned}
$$

$F_{c i}$ and $F_{c j}$ can be obtained by replacing (X_{c}, F_{c}) in Eq. (5.20) by $\left(x_{c i}, F_{c i}\right)$ and $\left(x_{c j}, F_{c j}\right)$.

Equations (5.95) and (5.89) define the covariance term $Z(i, j)$
in Eq. (5.88) for Case 2 where $a_{j} / a_{i}>1$.
Case 3: $a_{j} / a_{i}<1$
In this case, $x_{c j}>x_{c i}$.
In Region 1 (Fig. 5.10b),

$$
\begin{equation*}
x_{j} / x_{i}=1 \text { for } \quad 0<\left(x_{i}, x_{j}\right)<x_{c i}<x_{c j} \tag{5.96}
\end{equation*}
$$

In Region II,

$$
\begin{equation*}
x_{i}=x_{c i} \text { and } x_{c i} \leq x_{j}<x_{c j} \tag{5.97}
\end{equation*}
$$

In Region III,

$$
\begin{equation*}
x_{i}=x_{c i} \text { and } x_{j}=x_{c j} \tag{5.98}
\end{equation*}
$$

and

$$
\begin{align*}
E\left[x_{i} * x_{j} \mid x_{c i}, x_{c j}\right] & =\int_{o}^{x_{c i}} x_{j}^{2} f\left(x_{j}\right) d x_{j}+x_{c i} \int_{x_{c i}}^{x_{c j}} x_{j} f\left(x_{j}\right) d x_{j} \\
& +x_{c i} x_{c j} \int_{x_{c j}}^{\infty} f\left(x_{j}\right) d x_{j}, \quad a_{j} / a_{i}<1 \tag{5.99}
\end{align*}
$$

Equation (5.99) is similar in form to Eq. (5.94) in which $x_{c j}$ interchanges with $x_{c i}$, and $F_{c j}$ interchanges with $F_{c i}$. Therefore, the solution to Eq. (5.99) is the same as Eq. (5.95), but with the prescribed variables interchanged.

Having determined the covariance $Z(i, j)$ for the three cases $\left(a_{j} / a_{i}=1, a_{j} / a_{i}<1\right), \sigma^{2}\left(q_{A} \mid q_{c}\right)$ in Eq. (5.88) is defined.

In general, the distribution of the annual canal flow (q_{A}) given the canal capacity (q_{cm}) can be determined by the Monte Carlo simulation technique, as described in Sections 4.4.2 and 4.4.3. For each simulated annual combined catchment yield, the monthly canal flows can be computed by Eqs. (5.71) and (5.72), and the annual canal flows (q_{A}) by Eq. (5.84). After a long series of q_{A} has been obtained, its empirical

CDF can be formed.

Chapter 6

SOME ANTICIPATED IMPACTS OF CANAL PROJECTS

6.1 The Jonglei Canal Project

In 1946, the Governor-General of the Republic of the Sudan approved the appointment of the "Jonglei Committee" to study in detail all possible effects of water resource development proposals submitted by the Egyptian Government. In this way, the effects and remedies of the Jonglei Canal proposal became a seven year study (1946-53) of the Jonglei Investigation Team (JIT).

In 1959, the Permanent Joint Technical Commission (PJTC), an intergovernmental body between Egypt and the Sudan was established, with the authority to draw up plans, supervise and execute water resource development projects for the benefit of both countries.

The final version of the Jonglei Canal Project was issued by the PJTC in April, 1974. It consists of two phases. Phase I includes the dredging of a $20 \mathrm{Mm}^{3}$ /day capacity canal to bypass the Jebel-Zeraf swamp (the Sudd). The water is to be diverted from Bahr el Jebel at Jonglei, and delivered to the White Nile at the mouth of the River Sobat south of Malakal (Fig. 1.4). Phase II includes controlling the headwater lakes (Victoria, Kyoga, and Albert) (see Fig. 1.1) to equalize their natural outflows, and widening of the first phase canal, or the excavation of a new canal so that the total canal capacity reaches $43 \mathrm{Mm}^{3} /$ day . The anticipated increased Nile yield from Phase I amounts to 4.7 md at Malakal, and after Phase II, 9 md. Phase I is expected to be completed
in seven years (1976-82), with a total cost of 162 million U.S. dollars (Table 5.5).

Since the Bahr el Ghazal swamp and the Jebel-Zeraf swamp share the same hydrologic and ecological regimes, the drainage impacts from the latter are transferable to the former. In the following sections, the anticipated impacts from draining the Bahr el Ghazal swamp are inferred from the study of the Jonglei Investigation Team (JIT) (4).

6.2 On Environmental Impacts

By intercepting the inflows to the Central Swampland through the north-going and the south-going canals, some adverse environmental impacts are to be expected.

Within the Central Swampland, many toich lands will be lost due to insufficient river spills. This will cause serious losses in the pasture for grazing. The livestock population now dependent on toich land may be greatly reduced.

Deprived of river spills, numerous lakes and pools within the Central Swampland will dry out. The fish population in these areas will be sharply diminished.

The canals will stand as barriers to wildlife migration, and to the movement of people and their stocks.

Since the inhabitants (Nilotic tribes) of the Central Swampland are living in a very delicate balance with their environment (Section 3.8), any disruption of their environment will surely affect their livelihood to a greater or lesser extent. The total population to be
affected in one way or another amounts to more than one million people (page 111).

At present, the huge amount of silt carried down the Ghazal tributaries is being filtered out at the Ghazal swamp. In the future, the canals will carry this silt into the White Nile, which may seriously reduce its carrying capacity.

At this time, it is not possible to estimate with assurance either the magnitude or the extent of any climatic changes which may be triggered by the swamp drainage. Certainly, reduction of the evapotranspiration by such an amount will cause a rise in the local mean temperature and a decrease in local mean humidity. Depriving the atmosphere of this evaporate may result in a reduction of regional precipitation.

6.3 On Sociological Impacts

There is no doubt that the Bahr el Ghazal canal project will bring profound economic and social changes to the inhabitants of the area.

Along the routes of the canals, large scale resettlement may be unavoidable.

Reduction of pastural lands will also cause friction among the tribes in some areas. In the past, grazing across other tribal territories was usually tolerated, but due to future shortages of toich land in such areas, these rights will be severely curtailed.

In areas where alternate pastural lands cannot be found,
agricultural remedies may have to be offered to the victims. This will completely change their mode of living.

The Nilotic people are, in general, self-sufficient even though on a subsistance level. They are contented with what they have, and are not impressed by western civilization. Their resistance to change may create serious problems in the implementation of the project. Because of their reluctance to use cattle as working animals, machinery may have to be introduced in order for farming to increase the crop yield. This will cause drastic changes in the redistribution of wealth among the people.

Chapter 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1 Summary and Conclusions

In an annual water balance of the Central Swampland (Fig. 4.3), by neglecting any deep seepage of groundwater, it is found that an ungaged inflow of 15.1 md is necessary in order to account for the large evapotranspiration. The total estimated gaged and ungaged inflows to the Central Swampland amounts to 27.8 md , which may be considered the minimum potential water recovery from swamp drainage.

In a complementary annual water balance of the tributary catchments (Fig. 4.8), the ungaged inflow to the Central Swampland is found to be 19.8 md . The total estimated gaged and ungaged inflows to the Central Swampland from this analysis amounts to 32.5 md , which may be considered the maximum potential water recovery from draining the Ghazal swamp.

The physical evidence for ungaged inflow to the Central
Swampland is:

1) Before reaching the Central Swampland, all the Bahr el Ghazal tributaries start to spill onto their flood-plains during the rainy season (3), (26).
2) The sandy river bed on the Ironstone Plateau just south of the Central Swampland takes up much of the dry season flow through seepage (26).
3) Numerous ungaged small streams, either ephemeral or perennial, flow into the Central Swampland from the subcatchments (32).

The two dry catchments in the north (Bahr el Arab and Raqaba el Zarqa) are excluded in the analysis of tributary inflows because they apparently make an insignificant contribution to the hydrology of the Bahr el Ghazal swamp. Any ungaged outflows from these two catchments will contribute either to deep seepage or to the closure error of the water balance, or both.

Based on the above results, even though we cannot conclude definitely that deep seepage at the Central Swampland is insignificant, we can be sure that the huge water loss (27.8 md to 32.5 md) at the Central Swampland can be explained by evapotranspiration alone.

7.2 Future Work

7.2.1 Suggested Hydrologic Studies

Future work on the hydrology of the Bahr el Ghazal basin should include:

1) Onsite investigation of the ungaged flow and the soil parameters along the canal routes for the design of the interception system and for the estimation of seepage and conveyance losses.
2) Onsite investigation of the practicality of joining the River Jur to the south-going canal because this route to Malakal is much shorter than that of the north-going canal.
3) Addition of the yields from the Lau and the Gell catchments to the south-going canal flows, since the canal intercepts these two rivers before reaching the Bahr el Jebel at Jong1ei.
4) Acquisition and analysis of periodic satellite and aerial mapping data to define swamp topography, vegetation, and the annual cycle of water surface area.
5) Study of the dynamics of the expanding and contracting flooded area in the Central Swampland including the drying transient which will follow tributary interception. This will be valuable in planning land reclamation.
6) Verification or modification of the equilibrium canopy density on the tributary catchments, by onsite observation, or by aerial photograph.
7) Study of the spillage loss of canal flows at the monthly level.
8) Water balance study of the Bahr el Arab and Raqaba el Zarqa catchments to further refine the possibility of significant deep seepage at the Central Swampland.
9) Estimation of the distribution, mean and variance of the sum of the Bahr el Jebel flows and the south-going canal flows, both at Jonglei, for capacity expansion design of the Jonglei Canal to accommodate the combined inflows.

7.2.2 Suggested Remedial Measures for Some Adverse Environmental Impacts

The major environmental impact comes from the reduction of
toich lands for grazing at the Central Swampland. Therefore, remedial measures should include the provision of domestic water supply to existing pastures which are at present unused due to water shortage. Pasture lands can also be increased by clearing the brush on the edge of the Ironstone Plateau, and in some parts of the Flood Region.

Small fish-breeding ponds should be provided to replace the natural sites lost by drainage.

Cattle ramps and canal crossings should be adequately provided so that the movement of men and animals will not be unduly hindered by the canal.
7.2.3 Suggested Remedial Measures for Some Adverse Sociological Impacts

The major sociological impacts come from the necessary resettlement of people along the canal routes, and from the people's resistance to changing their mode of living (Section 6.3).

Of course, the only way to eliminate these adverse sociological impacts is to eliminate the canal itself. This seems to be highly unlikely, since the alternatives for increasing the current Nile flow are very few, and the sources of appreciable recoverable water are mainly the swampy regions of the Sudan.

If the canal project is inevitable, it is suggested that public hearings be included as part of the decision process. The logistics and communication difficulties in obtaining public inputs and in identifying victims may be reduced to a minimum if the victims of various groups can be represented by spokesmen. These spokesmen may be interpretors chosen by the tribes to speak for the victim groups, or
government agents working with the problems of the victims. The public hearings should be held for the spokesmen instead of the individual victim because the latter is almost impossible to reach.

Large contingency funds should be made available, if necessary, as many victims may not be readily identified at the conclusion of the public hearings.

Our contention is that if change is inevitable, every remedial measure should be taken into consideration and carefully implemented so as to help the natives make a smooth transition from their old mode of living to the new.

REFERENCES

1. Rzoska, J., The Nile, Biology of an Ancient River, The Hague, 1976.
2. Sanderson and Porter, Inc., Power Sector Survey - Arab Republic of Egypt, System Planning Diagnostic Report, Section I, Cairo, April, 1977.
3. Hurst, H. E. and Phillips, P., The Nile Basin, Volume I, General Description of the Basin, Meteorology, Topography of the White Nile Basin; Ministry of Public Works, Egypt; Physical Department, Physical Department Paper No. 26, Government Press, Cairo, 1931.
4. The Equatorial Nile Project (and Its Effects in the Anglo-Egyptian Sudan), a Report by the Jonglei Investigation Team. Introduction and Summary, Page xx; Volume I, Page 25; Volume III, Page 973, 978.
5. Hurst, H. E. and Phillips, P., The Nile Basin, Volume V, The Hydrology of the Lake Plateau and Bahr el Jebel; Ministry of Public Works, Egypt; Physical Department, Physical Department Paper No. 35, Schindler's Press, Cairo, 1939, Pages 35, 52, 120, 185, Chapter VII.
6. Migahid, A. M., Further Observations on the Flow and Loss of Water in the "Sudd" Swamps of the Upper Nile, Cairo University Press, 1952.
7. Vowinckel, E. and Orvig, S., "The Water Budget and Potential Water Reserves of the East Africa Source Region of the Nile," Journal of Applied Meteorology, Vol. 18, No. 2, Feb. 1979, American Meteorological Society.
8. Balek, Jaroslav, Hydrology and Water Resources in Tropical Africa, Elsevier Scientific Publishing Company, 1977.
9. Hydrometeorological Survey of the Catchments of Lakes Victoria, Kyoga and Albert, Report prepared by the Governments of Burundi, Egypt, Kenya, Rwanda, Sudan, United Republic of Tanzania and Uganda by the World Meteorological Organization acting as Executive Agency for the United Nations Development Programme, Geneva, 1974, Vol. I, Page 505; Volume III, Page 150, 218.
10. Chapas, L. C. and Roes, A. R., "Evaporation and Evapotranspiration in Southern Nigeria," Quarterly Journal, Royal Meteorological Society, Vol. 89, Page 314, 1963.
11. Penman, H. L., Vegetation and Hydrology, Technical Communication No. 53, Commonwealth Bureau of Soils, Harpenden, Published by the Commonwealth Agricultural Bureau, Farnham Royal, Bucks, England, Page 4, 64, 1963.
12. Migahid, A. M., An Ecological Study of the "Sudd" Swamps of the Upper Nile, Proceedings of the Egyptian Academy of Sciences, 3, 57-86, 1947.
13. Eagleson, P. S., "C1imate, Soil and the Water Balance," M.I.T. Department of Civil Engineering, 1977.
14. Eagleson, P. S., "C1imate, Soil and Vegetation 1. Introduction to Water Balance Dynamics," Water Resources Research, Vol. 14, No. 5, 1978a.
15. Eagleson, P. S., "Climate, Soil and Vegetation 2. The Distribution of Annual Precipitation Derived from Observed Storm Sequences," Water Resources Research, Vo1. 14, No. 5, 1978b.
16. Eagleson, P. S., "Climate, Soil and Vegetation 3. A Simplified Model of Soil Moisture Movement in the Liquid Phase," Water Resources Research, Vol. 14, No. 5, 1978c.
17. Eagleson, P. S., "Climate, Soil and Vegetation 4. The Expected Value of Annual Evapotranspiration," Water Resources Research, Vol. 14, No. 5, 1978d.
18. Eagleson, P. S., "Climate, Soil and Vegetation 5. A Derived Distribution of Storm Surface Runoff," Water Resources Research, Vol. 14, No. 5, 1978e.
19. Eagleson, P. S., "Climate, Soil and Vegetation 6. Dynamics of the Annual Water Balance," Water Resources Research, Vol. 14, No. 5, 1978f.
20. Eagleson, P. S., "Climate, Soil and Vegetation 7. A Derived Distribution of Annual Water Yield," Water Resources Research, Vo1. 14, No. 5, 1978g.
21. Thomas, H. A., "Frequency of Minor Floods," J. Boston Soc. Civil Eng., 35, pp. 425-442, 1948.
22. Tellers, T. E. and Eagleson, P. S., "Estimation of Effective Hydrologic Properties of Soils from Observations of Vegetation Density," M.I.T., Department of Civil Engineering, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Technical Report No. 254, March 1980.
23. Operational Navigation Chart, prepared and published by the Defense Mapping Agency Aerospace Center, St. Louis Air Force Station, Missouri 63118 (Series: ONC, Sheets: K-4, L-4).
24. The Nile Basin, Volume IV, up to the 8th Supplement. Ten-Day Mean and Monthly Mean Discharges of the Nile and its Tributaries by Nile

Control Staff. Ministry of Irrigation, Egypt, Nile Control Department, Paper No. 27, Cairo. General Organization for Government Printing Offices, 1971.
25. Ibrahim, H., Shibeerny, F. and Mostafa, F., Bahr el Ghazal Water Development Project (unpublished report).
26. Natural Resources and Development Potential in the Southern Provinces of the Sudan, A Preliminary Report, by the Southern Development Investigation Team, Sudan Government, Pages 5, 6, 39, 48 and 115, 1954.
27. E1 Shazly, E. M. and Abdel-Hady, M. A., et al., Satellite Mapping Regional Geology, Geomorphology, Structure, Drainage and Hydrology of Bahr E1 Jebel Area (Jonglei Canal Project Area) Southern Sudan, published by Remote Sensing Center, Academy of Scientific Research and Technology, Cairo, Egypt, April, 1978.
28. The Nile Basin, Volume VI, up to 7 th Supplement. Monthly and Annual Rainfall Totals and Number of Rainy Days at Stations in and near the Nile Basin by Nile Control Staff. Arab Republic of Egypt, Ministry of Irrigation, Nile Control Department, Paper No. 33, 1972.
29. Landsberg, H. E., Lippman, H., Paffen, K. H. and Troll, C., World Maps of Climatology (3rd edition). Publication of the Geomedical Research Unit of the Heidelberg Academy of Science, 1966.
30. Balek, J. and Perry, J. E., "Hydrology of Seasonally Inundated African Headwater Swamps," Journal of Hydrology, 19, pp. 227-249, 1973.
31. Soil Resources and Potential for Agriculture Development in Bahr el Jebel Area, Southern Sudan (Jonglei Canal Project Area). A report published by Remote Sensing Center, Academy of Scientific Research and Technology, Cairo, Egypt, for the Permanent Joint Technical Commission for Nile Waters, April 1978.
32. General Drainage Map of Bahr el Ghazal Area, Southwestern Sudan, Sheet II (from the Interpretation of Landsat Satellite Images), published by Remote Sensing Center, Academy of Scientific Research and Technology, Cairo, Egypt, 1980.
33. Hewlett, J. D. and Hibbert, A. R.,"Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas," in International Symposium on Forest Hydrology, edited by W. E. Sopper and H. W. Lul1, pp. 275-290, Pergamon Press, New York, 1967.
34. Permanent Joint Technical Commission (P.J.T.C.), Study of the Water Losses in River Jur, Bahr El Ghazal Basin, Ministry of Irrigation Press, Cairo, 1971.
35. Mobarek, I. E., Salem, M. H. and Dorrah, H. T., Hydrological Studies on the River Nile, Cairo University - Massachusetts Institute of Technology Technological Planning Program, Cairo, A.R.E., May 1979.
36. Matalas, N. C., "Mathematical Assessment of Synthetic Hydrology," Water Resources Research, Vol. 3, No. 4, pp. 937-945, 1967.
37. Valencia, D. R. and Schaake, J. C., Jr., "A Disaggregation Model for Time Series Analysis and Synthesis," M.I.T., Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Technical Report No. 149, 1972.
38. Stochastic Modelling of Nile Inflows to Lake Nasser, The River Nile Project, Cairo University - Massachusetts Institute of Technology, Technological Planning Program, Cairo, A.R.E., Dec. 1977.
39. International Mathematical and Statistical Librarian, Inc. (IMSL), Library 2, Edition 6, 1977 (Subroutines RLFOTH and RLDOPM).
40. Shoup, T. E., A Practical Guide to Computer Methods for Engineers, Prentice-Hall, Inc., 1979.
41. Hall, W. A. and Dracup, J. A., Water Resources Systems Engineering, McGraw-Hill, New York, 1970.
42. Permanent Joint Technical Commission (P.J.T.C.), Jonglei Project, First Phase, Cairo, Nov. 1978 (Unpublished Report).
43. International Financial Statistics, Volume XXXIII, October 1980, No. 10 , published monthly by the International Monthly Fund, Washington, D. C. 20431.

APPENDIX A

Hydrologic Parameters of the Bahr el Ghazal Basin

Table Al
Gaged Mean Monthly Discharges * (up to 1967), $10^{6} \mathrm{~m}^{3} /$ month

Naam	Maridi	Tonj	Jur	Pongo	Loll
1	2	3	4	5	6

Month						
1	-	-	34.7	44.3	9.7	26.8
2	-	-	19.4	11.0	3.8	8.4
3	-	-	16.6	0.0	0.2	3.0
4	-	-	15.6	30.3	0.0	1.8
5	21.7	8.6	49.2	130.0	3.0	20.5
6	60.0	49.7	99.1	248.0	21.9	128.0
7	62.0	72.7	165.0	436.0	42.4	306.0
8	62.0	115.0	241.0	803.0	86.1	750.0
9	60.0	161.0	390.0	1310.0	147.0	1180.0
10	62.0	96.2	363.0	1380.0	154.0	1070.0
11	27.0	19.4	169.0	646.0	93.1	342.0
12	3.1	0.6	36.3	180.0	13.7	65.8
Yearly	-	-	1600	5220	575	3900
* From Reference						

Table A2
Mean Monthly Station Precipitation, mm/month (up to 1972)

Table A3
Mean Monthly Station Number of Rainy Days m^{\prime}, (up to 1972)

| Aweil | Raga | Wau | Tonj | Rumbek | Amadi* | Yubo** | Maridi | Yambio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

	Month									
	1	0.0	0.0	0.1	0.2	0.0	0.6	1.0	1.4	1.9
	2	0.2	0.4	0.6	0.2	0.0	1.7	2.0	2.4	2.7
	3	1.2	2.0	2.8	2.3	2.7	4.8	5.3	6.4	7.7
	4	3.6	5.2	5.5	6.1	6.3	8.9	9.5	10.6	11.2
	5	8.8	9.8	10.2	9.1	8.4	10.4	13.4	12.7	12.7
	6	10.0	11.0	11.3	10.2	9.3	10.0	12.4	12.3	11.9
$\begin{aligned} & N \\ & N \end{aligned}$	7	12.3	14.2	13.6	11.8	10.4	10.5	11.3	12.5	12.6
	8	13.5	16.2	14.8	13.4	11.6	12.0	13.8	12.7	14.2
	9	10.7	12.9	12.5	10.4	8.4	9.5	13.7	11.9	12.8
	10	4.0	7.5	9.9	6.8	5.6	8.3	12.7	10.9	14.0
	11	0.2	0.9	1.7	1.3	1.2	3.5	4.8	5.6	7.2
	12	0.0	0.0	0.0	0.0	0.0	0.9	1.6	1.8	2.4
	Yearly	64.5	80.1	83.0	71.8	64.5	81.1	101.5	101.2	111.3

* Years of Data (1924-1964)
* Years of Data (1928-1949)

Table A4

* Monthly Storm Depth $=$ Monthly Precipitation/monthly number of rainy days

Table A5
Space-time Mean Monthly Catchment $\underline{m}_{v}^{\prime}$

Naam	Maridi	Tonj	Jur	Pongo	Loll
1	2	3	4	5	6

Month

1	0.8	0.5	0.9	0.9	0.2	0.0
2	1.7	0.8	1.5	1.7	0.8	0.4
3	5.0	3.8	4.8	5.0	2.9	1.9
4	9.1	7.6	8.7	8.7	5.9	4.9
5	11.0	9.8	11.2	12.3	10.5	9.6
6	10.8	10.3	11.3	11.9	11.3	10.8
7	11.3	11.2	12.1	12.1	13.1	13.8
8	12.2	12.1	13.2	14.1	14.7	15.7
9	10.3	9.7	11.5	13.0	12.6	12.5
10	8.8	7.4	9.6	11.9	9.3	6.8
11	3.9	2.6	3.9	4.3	2.0	0.8
12	1.1	0.6	1.1	1.3	0.3	0.0
Yearly	86.0	76.5	89.9	97.2	83.5	77.1
Seasonal	82.4	72.1	86.4	93.3	80.3	74.1

Table A6
Space-time Mean Monthly Catchment Storm Depth ${\underset{-H}{H}}^{H}$, mm

Naam	Maridi	Tonj	Jur	Pongo	Lo11
1	2	3	4	5	6

Month

Table A7

Table for Theissen's Areal weights, $a_{i j}, \mathrm{~km}^{2}$

Table A8

Table A9
Mean Monthly Station Air Temperature, ${ }^{*} \bar{T}_{A},{ }^{\circ} \mathrm{C}$

Aweil	Raga	Wau	Tonj	Rumbek	Amadi	Yubo	Maridi	Yambio
1	2	3	4	5	6	7	8	9

Month

1	26.0	22.9	26.6	27.0	27.1	26.1	26.2	25.0	25.5
2	27.8	24.7	28.2	27.9	28.2	27.1	26.5	25.9	26.4
3	30.7	27.6	30.2	29.7	30.3	28.4	26.9	26.5	26.7
4	30.8	29.1	30.3	29.3	29.4	27.4	25.9	25.3	26.0
5	29.8	28.0	29.0	28.2	28.3	26.8	25.3	25.2	25.4
6	27.5	26.4	27.3	26.8	27.0	25.6	24.5	24.2	24.6
7	26.2	25.3	26.1	25.5	26.0	24.6	23.8	23.2	23.9
8	25.7	25.1	25.9	25.6	25.9	24.7	23.9	23.5	23.9
9	26.2	25.7	26.6	26.5	26.6	25.3	24.5	24.0	24.6
10	26.9	26.1	27.4	27.3	27.3	25.9	24.7	24.4	24.7
11	26.6	24.9	27.4	27.5	27.5	26.2	25.4	24.8	24.9

[^10]
Table A10

Mean Monthly Station Relative Humidity, $\overline{\mathrm{S}}$, \% $\begin{array}{ccccccccc}\text { Aweil } & \text { Raga } & \text { Wau } & \text { Tonj } & \text { Rumbek } & \text { Amadi }{ }^{* *} & \text { Yubo } & \text { Maridi } & \text { Yambio } \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Month

1	36.0	36.4	31.5	39.2	40.0	47.9	52.7	55.8	57.8
2	33.7	34.2	28.6	34.5	37.7	46.2	54.6	54.6	57.6
3	33.9	38.0	35.4	39.4	42.8	53.2	63.0	63.6	66.5
4	47.1	51.7	50.1	57.0	57.8	66.9	73.2	76.0	76.7
5	58.7	64.9	62.8	65.5	71.2	74.0	78.3	76.8	79.2
6	70.3	73.2	70.5	71.7	74.6	77.6	79.7	80.6	80.7
7	78.0	80.0	75.2	77.9	77.9	80.7	81.8	83.5	84.8
8	81.1	80.9	77.6	79.6	80.1	82.1	83.6	84.1	84.8
9	79.4	78.9	73.8	77.3	77.0	79.7	80.2	82.4	81.1
10	71.6	73.1	68.8	72.2	73.3	75.9	78.9	78.4	81.2
11	54.7	56.7	51.3	60.6	59.9	66.7	71.9	73.4	74.5
12	42.8	44.3	37.6	49.5	42.9	51.8	60.4	60.7	66.2

[^11]Table A11
Mean Month1y Station Cloud Cover*, $\overline{\mathrm{N}}$, \%

		Aweil	Raga 2	Wau 3	Tonj 4	Rumbek 5	Amadi** 6	Yubo 7	Maridi 8	Yambio
	Month									
	1	25.0	50.4	40.9	41.3	59.2	51.1	25.9	42.9	41.7
	2	31.3	59.6	44.2	47.1	60.5	56.7	29.2	52.9	45.0
	3	42.9	62.9	60.4	61.7	73.8	71.1	42.8	68.3	65.0
	4	60.0	77.5	65.9	70.4	79.2	80.3	55.0	81.3	75.0
	5	58.8	80.8	70.9	69.2	77.5	77.9	51.7	78.3	73.8
	6	68.9	83.8	71.0	71.8	76.3	77.4	50.0	78.4	72.5
$\underset{\sim}{\omega}$	7	75.9	86.7	79.6	78.8	83.3	83.1	56.8	82.8	79.9
	8	77.9	85.9	79.2	76.2	82.1	81.5	51.0	80.8	78.7
	9	72.1	84.2	75.0	73.8	79.2	78.8	46.3	78.4	72.5
	10	56.0	80.4	69.3	66.4	79.2	78.4	51.3	77.5	75.0
	11	34.2	69.6	54.2	51.3	74.2	70.3	41.3	66.3	65.0
	12	26.7	59.6	38.8	39.2	63.8	57.8	30.0	51.7	42.9
	Yearly mean	52.5	73.5	62.5	62.3	74.0	72.0	44.3	70.0	65.6

[^12]
Table Al2

Space-time Mean Monthly Catchment Air Temperature, $\overline{\mathrm{T}_{\mathrm{A}}}$, ${ }^{\mathrm{O}} \mathrm{C}$

Naam	Maridi	Tonj	Jur	Pongo	Loll
1	2	3	4	5	6

Month

1	25.8	26.4	26.0	26.2	25.9	23.5
2	26.8	27.5	26.9	27.0	27.3	25.3
3	28.0	29.0	27.9	27.8	29.3	28.2
4	26.9	28.1	27.1	27.1	29.4	29.4
5	26.4	27.3	26.5	26.3	28.3	28.4
6	25.3	26.1	25.4	25.3	26.7	26.6
7	24.3	25.1	24.3	24.4	25.6	25.5
8	24.4	25.1	24.5	24.5	25.4	25.2
9	25.0	25.8	25.2	25.1	26.0	25.8
10	25.6	26.4	25.7	25.5	26.7	26.3
11	25.9	26.7	26.0	26.0	26.6	25.2
12	25.8	26.2	25.9	25.8	25.8	23.5
Yearly Mean	25.9	26.6	26.0	25.9	26.9	26.1
Seasonal Mean	25.8	26.6	25.8	25.8	27.2	26.8

Table Al3
Mean Monthly Station Potential Evaporation (Water Surface) ${ }^{*}, \bar{e}_{\mathrm{pw}}, \mathrm{mm} / \mathrm{month}$

Aweil	Raga	Wau	Tonj	Rumbek	Amadi	Yubo	Maridi	Yambio
1	2	3	4	5	6	7	8	9

	Month									
	1	130	117	135	136	139	131	126	123	120
	2	150	136	152	148	150	143	132	136	133
	3	178	161	170	166	170	157	133	143	139
	4	180	177	169	164	161	148	128	135	135
	5	166	164	155	147	147	140	118	132	128
	6	146	150	139	135	135	129	111	123	121
$\stackrel{N}{\omega}$	7	135	139	131	12.6	129	123	107	116	117
	8	131	137	128	12.5	127	122	104	117	116
	9	134	142	134	132	133	127	109	121	121
	10	134	145	139	136	139	132	113	124	122
	11	131	135	139	137	142	134	118	125	122
	12	124	118	132	131	135	131	119	126	115
	Yearly	1739	1721	1723	1683	1707	1617	1418	1521	1489

$* \quad$ Albedo $=0.05$

Table A14
Mean Monthly Station Potential Evaporation (Wet Soil Surface) ${ }^{*}$, $\overline{\mathrm{e}}_{\mathrm{p}}$, mm/month

[^13]
Table Al5

Mean Monthly Station Piche Tube Evaporation ${ }^{{ }^{*}}{ }_{\mathrm{e}}^{\mathrm{p}} \mathrm{p}$ ' (mm/month)

Aweil	Raga	Wau	Tonj	Rumbek	Amadi ${ }^{* *}$ Yubo	Maridi	Yambio	
1	2	3	4	5	6	7	8	9

Month

1	319	298	350	415	282	248	254	214	211
2	357	322	357	444	293	254	255	215	209
3	397	360	360	400	285	225	186	164	171
4	309	276	267	270	183	138	120	93	111
5	211	183	186	189	133	107	93	81	90
6	120	123	126	138	93	80	78	66	75
7	87	102	102	96	74	65	68	56	62
8	71	87	90	87	71	64	68	56	62
9	84	96	105	105	81	72	75	63	72
10	124	127	130	141	105	90	81	74	78
11	198	198	225	246	165	134	126	102	99
12	264	257	310	353	229	197	208	164	155

* From 13 to 21 years of data in (1950-1975)
** Average of Station Kumbek and Maridi

Table Al6

Space-Time Mean Monthly Catchment Piché Tube Evaporation, $\bar{e}_{\mathrm{p}}^{\mathrm{p}}$, mm/month

	Naam	Maridi	Tonj	Jur	Pongo	Loll
Month	1	2	3	4	5	6
1	241	275	300	278	321	302
2	246	284	312	282	333	329
3	212	259	265	237	333	367
4	128	164	171	161	247	282
5	101	123	128	120	172	188
6	77	89	98	92	116	122
7	63	71	74	76	94	99
8	62	68	70	73	83	84
9	70	78	82	83	96	94
10	86	99	103	95	120	126
11	127	154	163	151	200	198
12	190	222	244	231	278	258
Yearly	1603	1884	2012	1880	2393	2449
$(\mathrm{~mm} / \mathrm{yr})$						

FIGURE A. 1
MONTHLY DISTRIBUTIONS OF HYDROLOGIC PARAMETERS (NAAM CATCHMENT)

FIGURE A. 2
MONTHLY DISTRIBUTIONS OF HYDROLOGIC PARAMETERS
(MARIDI CATCHMENT)

FIGURE A. 3
MONTHLY DISTRIBUTIONS OF HYDROLOGIC PARAMETERS
(TONJ CATCHMENT)

FIGURE A. 4
MONTHLY DISTRIBUTIONS OF HYDROLOGIC PARAMETERS
(JUR CATCHMENT)

FIGURE A. 5
MONTHLY DISTRIBUTIONS OF HYDROLOGIC PARAMETERS
(PONGO CATCHMENT)

FIGURE A. 6
MONTHLY DISTRIBUTIONS OF HYDROLOGIC PARAMETERS (LOLL CATCHMENT)

FIGURE A. 7

FREQUENCY OF ANNUAL PRECIPITATION
(STATION EL FASHER)

FIGURE A. 8
FREQUENCY OF ANNUAL PRECIPITATION
(STATION EL OBEID)

FIGURE A. 9

FREQUENCY OF ANNUAL PRECIPITATION
(STATION EN NAHUD)

FIGURE A. 10

FREQUENCY OF ANNUAL PRECIPITATION
(STATION NYALA)

FIGURE A. 11
FREQUENCY OF ANNUAL PRECIPITATION
(STATION DILLING)

FIGURE A. 12
FREQUENCY OF ANNUAL PRECIPITATION
(STATION KADUGLI)

FIGURE A. 13
FREQUENCY OF ANNUAL PRECIPITATION
(STATION TALODI).

FIGURE A. 14
FREQUENCY OF ANNUAL PRECIPITATION
(STATION TONGA)

FIGURE A. 15
FREQUENCY OF ANNUAL PRECIPITATION
(STATION FANGAK)

FIGURE A. 16
FREQUENCY OF ANNUAL PRECIPITATION
(STATION AWEIL)

FIGURE A. 17

FREQUENCY OF ANNUAL PRECIPITATION
(STATION RAGA)

FIGURE A. 18

FREQUENCY OF ANNUAL PRECIPITATION (STATION MESHRA EL REK)

FIGURE A. 19
FREQUENCY OF ANNUAL PRECIPITATION (STATION TONJ)

FIGURE A. 20

FREQUENCY OF ANNUAL PRECIPITATION
(STATION SHAMBE)

FIGURE A. 21
FREQUENCY OF ANNUAL PRECIPITATION (STATION RUMBEK)

FIGURE A. 22
FREQUENCY OF ANNUAL PRECIPITATION
(STATION AMADI)

FIGURE A. 23
FREQUENCY OF ANNUAL PRECIPITATION
(STATION LI YUBO)

FIGURE A. 24

FREQUENCY OF ANNUAL PRECIPITATION
(STATION MARIDI)

FIGURE A. 25
FREQUENCY OF ANNUAL PRECIPITATION
(STATION YAMBIO)

APPENDIX B

Frequency Distribution of Catchment Precipitation and Catchment Yield

Table B1
Annual Observed Catchment Precipitation, mm (1932 - 1963)

	NAAM	MAFT.	TON, J	JUF	FONGO	L...).... 1.
	1.	2	3	4	5	6
1.	1217	1270	1.1.79.	14%	11.75	1.103.
2	1129.	1054 .	1208	1. 515	1.195*	1230*
3	1246.	1106	1.155.	1.130.	1.103.	1212\%
4	1221.	1067	1259.	1358	1.1.07	1062
5	1.237.	1044.	1345.	1544	1298	1113
6	1282.	1077	1359	1.444.	1.1.27	1261.
7	1212	1117	1279.	1.399.	1.317	1351.
8	1383 .	1.113.	1209	1.387	1398	1578
9	1103.	866.	11.86.	1371.	1.15.5.	1170
10	1260.	1096.	1316	1404.	1.1.76.	1012
1.1	1105	1016.	1010.	1.1.97	1025	11.85
12	947 .	977.	981.	1.145	1005	1206
1.3	11.95	1133.	1165	1.440 .	1316.	1079.
1.4	1215	11.69.	1266 .	1.400	1.064.	999.
15	1205	1066.	1.158.	1360	1275.	1328
1. 6	1244 .	1289.	1283	1526	1310	1021.
17	1263.	11.47	1210	1131.	1016.	969.
1.8	1292.	1091.	1.250.	1365	1.1.91.	1.096
1.9	1304	12.244	1421.	1363 *	1. 35.	1. 1.54 +
20	897.	887 .	1.01 .7	1230 -	1.058 +	1216
21	1201.	1199.	1.1.98	1519	1203	1.10\%
22	1064 .	1.008	1.1.00.	1.1.41.	1183.	1210.
33	1.1.39.	1268	1.449	1.436	I1. 182 +	1.1.08.
24	1176.	1. 1.69	1.227	11.96	1238	1235
25	1274	1202	1209.	1.437	1. 1. 56	11 1.6
26	11.76*	965	1.367	1.459.	1283	129%
27	1.250	901.	1353.	1489 .	1335	1204.
28	1208	899.	11.87 .	131.4	1.159	1. 1. 18.
29	1132 .	949.	1488 .	1590	1226	970.
30	1236	1130	1360	1585	1.198.	1201.
31.	1283.	1. 255	1515	1529	1324	1.1.3.
32	1262 +	1.1.10.	1318.	1562	1. 287	1263

Table B2

Frequency of Annual Observed Catchment Precipitation (Naam Catchment)

```
NAAM
MEAN ANNUAL FRECTFTTATTON \(=1199 . \quad\) SHU \(=97\).
\begin{tabular}{|c|c|c|c|}
\hline \(N\) & EA & z & cur \\
\hline 1. & 1383. & 1.1531 & 0.9697 \\
\hline 2 & 1304. & 1.0873 & 0.9394 \\
\hline 3 & 1292. & 1. 0770 & 0.9091 \\
\hline 4 & 1283. & 1.070.1 & 0.8788 \\
\hline 5 & 1282. & 1.0693 & 0.8486 \\
\hline 6 & 1274. & 1.0622 & 0.8182 \\
\hline 7 & 1263. & 1.0535 & 0.7879 \\
\hline 8 & 1262 + & 1.0524 & 0.7576 \\
\hline 9 & 1260. & 1. 1.0504 & 0.7273 \\
\hline 1.0 & 1.250 & 1. 0420 & 0.6970 \\
\hline 11 & 1.246. & 1.0391 & 0.6667 \\
\hline 12 & 1244. & 1.0371 & 0.6364 \\
\hline 13 & 1237. & 1.031 .1 & 0.6061 \\
\hline 14 & 1236. & 1.0307 & 0.5758 \\
\hline 15 & 1221. & 1.0176 & 0.5455 \\
\hline 16 & 1217. & 1.0145 & 0.6152 \\
\hline 17 & 1215. & 1.0129 & 0.4848 \\
\hline 18 & 1212 + & 1. 0.104 & 0.4545 \\
\hline 19 & 1208. & 1. .0068 & 0.4242 \\
\hline 20 & 1205. & 1.0049 & 0.3939 \\
\hline 21. & 1201. & 1.0012 & 0.3636 \\
\hline 22 & 1196. & 0.9971 & 0.3333 \\
\hline 23 & 1195. & 0.9967 & 0.3030 \\
\hline 24 & 1176. & 0.9806 & 0.2727 \\
\hline 25 & 1139 & 0.9500 & 0.2424 \\
\hline 26 & 1132 + & 0.9441 & 0.2121 \\
\hline 27 & 1129. & 0.941 .6 & 0.1818 \\
\hline 28 & 1105. & 0.9212 & 0.1515 \\
\hline 29 & 11.03. & 0.9200 & 0.1212 \\
\hline 30 & 1.064 . & 0.8874 & 0.0909 \\
\hline 3.1 & 9.47. & 0.7897 & 0.0606 \\
\hline 32 & 897. & 0.7478 & 0.0303 \\
\hline
\end{tabular}
SDV \(=\) Standard Deviation of \(\mathrm{P}_{\mathrm{A}}\)
\(Z=\underline{P}_{\underline{A}} / \overline{\mathrm{P}_{\mathbf{A}}}=\underline{P}_{\underline{s}} / \overline{\mathrm{P}_{\mathbf{s}}}\)
```

Table B3
Frequency of Annual Observed Catchment Precipitation (Maridi Catchment)

MARIII			
MEAN ANNUAL..	FRECIFITATION	$=1.091$.	$\operatorname{smu}=1.17$
N	FA	7.	COFF
1	1289.1	1. 181.4	0.9697
2	1270.1	1. 1.647	0.9394
3	1268.1	1. +1.623	0.9091
4	1264.1	1. 1593	0.8788
5	1255. 1	1. +1.503	0.8485
6	1202. 1	1. 1.018	0.8182
7	1.1 .99 . 1	1. 00991	0.7879
8	1.169 .1	1. 0715	0.7676
9	1.169. 1	I. +071.4	0.7273
10	11.47 . 1.	1. 1.0513	0.6970
11	1.1.33. 1	1. 0.384	0.6667
12	1.130. 1.	1. 0361	0.6364
13	1.117. 1.	1. +0.243	0.6061
14	1.1.3. 1.	1. 0202	0.5758
15	1.1.1. 1.	1. $\cdot 0178$	0.5455
1.6	1106.	1. 01.40	0 0.5152
17	1.096 .1	1. +0053	0.4848
18	1091. 1.	1. 0003	0.4545
19	1077 . 0	0.9874	0.4242
20	1067 . 0	0.9779	0.3939
21	1066.0	0.9773	0.3636
20	1054.0	0.9659	0.3333
23	1044.0	0.9575	0.3030
24	1016	0.931 .9	0.2727
25	1.008 .0	0.9239	0.2424
26	977. 0	0.8958	0.2121
27	965.0	0.885%	$0+1818$
28	949. 0	0.8699	0.1515
29	901. 0	0.8263.	0.1212
30	899. 0	0.8239	0.0909
31.	887. 0	0.8136	0.0606
32	866.0	0.7941	0.0303

Table B4
Frequency of Annual Observed Catchment Precipitation (Tonj Catchment)

TON.J

MEAN ANNUAL FFECIFTTATION = $=1251 . \quad$ GOU $=127$.

N	PA	z	crive
1	1515.	1.211.4	0.9697
2	1488.	1. 1.897	0.9394
3	1449 .	1.1583	0.9091
4	1421 .	1.1361	0.8788
5	1367 .	1.0926	0.8485
6	1.360 .	1.0875	0.8182
7	1359.	1.0861	0.7879
8	1353.	1.0819	0.7576
9	1345.	1.0754	0.7273
10	1318.	1.0538	0.6970
11.	1316.	1.0522	0.6667
12	1283.	$1+0259$	0.6364
13	1279.	1.0225	0.6061
14	1266.	1.0121	0.5758
15	1259.	$1+0064$	0.5455
16	1250.	0.9991	0.5152
17	1227 .	0.9810	0.4848
18	1210.	0.9672	0.4545
1.9	1209.	0.9667	0.4242
20	1209.	0.9665	0.3939
21.	1208.	0.9658	0.3636
22	11.98.	0.9573	0.3333
23	1187.	0.9491	0.3030
24	1186.	0.9480	0.2727
25	1179.	0.9427	0.2424
26	1165	0.9311	0.2121
27	1158.	0.9256	0.1818
28	1155	0.9234	0.1615
29	11.00 .	0.8797	0.1212
30	1017.	0.81 .30	0.0909
31.	1010.	0.8078	0.0606
32	98\%.	0.7844	0.0303

Table B5

Frequency of Annual Observed Catchment Precipitation (Jur Catchment)

Table B6
Frequency of Annual Observed Catchment Precipitation (Pongo Catchment)

FONGO.

N	$F \cdot \mathrm{~A}$	7	Crim:
1	1357	1. 1327	0.9697
2	1335.	1. +1.1 .44	0.9394
3	1324.	1. 1.049	0.9091
4	1317	1. 0.0994	0.8788
5	1316.	1. 09880	0.8485
6	1310 .	1. +0938	0.8182
7	1298.	1. 1.0836	0.7879
8	1298 .	1. 0835	0.7676
9	1287	1. 0739	0.7273
10	1283	1. 071.0	0.6970
1.	1275	1. 0642	0.6667
12	1238	1. 0.330	0.6364
13	1226	1. +0236	0.606%
1.4	1203.	1. 00038	0.978
15	11.98.	1. 000.3	0.64%
16	11.9%.	0.9976	0.9112
17	11.91.	0.9946	0.4848
18	1.183.	0.9873	0.4\%4\%
1.9	11.83 -	0.9867	0.4242
20	11.176.	0.9816	0.3939
21.	1.17\%	0.981 I	0.3636
23	1169	0.967%	0.3333
23	1196*	0.96%	0.3030
24	11 1 y \%	0.9606	0.2727
2%	1197*	0.9403	0.0424
26	11.0%	0.9236	0.2121
27	11.03.	0.9210	0.1818
28	1064.	0.8881	0.1415
29	10以8	0.8834	0.1212
30	102%	0.8 \%63	0.0909
31	1016.	0.8477	0.0606
3%	100\%	0.8386	0.0303

Table B7
Frequency of Annual Observed Catchment Precipitation (Loll Catchment)

LOLL

MEAN ANNUAI.. FFECIFITATMON =: $1.65 . \quad$ STU $=123$.

N	F'A	7	COF
1	1578	1. 3542	0.9697
2	1351.	1. 1.597	0.9394
3	1328.	1. 1.1396	0.9091
4	129\%	1. 1.1.1.7	0.8788
5	1263	1. 0.0841	0.8485
6	126\%	1. 0824	0.81 .82
7	1. 23.	1. 0.01999	0.7879
8	123\%	1. 0.0576	0.7576
9	1216*	1. 1.0433	0.7273
10	1212 +	1. 00404	0.6970
11.	1210.	1. 0.0385	0.6667
12	1206	1. 0.0349	0.6364
13	1204.	1. 0335	0.6061
1.4	1.201.	1. +0306	0.6768
15	1185	1. 01.67	0. $1: 4 \%$
1.6	1.170.	1. +00.37	$0+5152$
17	1. 1.94	0.9908	0.4848
18	1118.	0.9596	0.4546
19	It 1.6	0.9575	0.4242
20	1113.	0.9550	0.3939
21.	11.13.	0.9549	0.36 .36
23	1.108.	0.9510	0.3333
23	11.0\%	0.9487	0.30 .30
24	1.103.	0.9469	0.2727
25	1096	0.9409	0.2424
26	1.079.	0.9263	0.2121
27	1062	0.911 .3	0.1818
28	1021.	0.876	$0+1515$
29	1012.	0.8687	$0+1212$
30	999.	0.8669	0.0909
31.	970	0.8326	0.0606
32	969.	0.8316	0.0 .303

Table B8
Frequency of Annual Derived Catchment Precipitation

Naam Catchment
$\left(\mathrm{m}_{\nu}=362, \mathrm{~K}=0.73\right.$)
z^{*}
$0.65 \quad 0.0005$
$0.70 \quad 0.0030$
$0.75 \quad 0.0124$
$0.80 \quad 0.0391$
$0.85 \quad 0.0980$
$0.90 \quad 0.2008$
0.95
0.3453

Maridi Catchment
$\left(m_{\nu}=298, k=0.54\right)$
$z^{*} \quad \operatorname{CDF}$
$0.60 \quad 0.0003$
$0.65 \quad 0.0014$
$0.70 \quad 0.0061$
$0.75 \quad 0.0204$
$0.80 \quad 0.0546$
0.850 .1203
$0.90 \quad 0.2241$
$1.00 \quad 0.5121$
$0.95 \quad 0.3610$
$1.00 \quad 0.5140$
$\begin{array}{llll}1.10 & 0.8037 & 1.05 & 0.6611\end{array}$
$\begin{array}{llll}1.15 & 0.8947 & 1.10 & 0.7840\end{array}$
1.20
0.9493
1.150 .8742
1.25
0.9780
$1.20 \quad 0.9329$
1.30
0.9912
1.25
0.9671
1.35
0.9966
1.30
0.9850
1.40
0.9985
1.35
0.9936
1.45
0.9992
$1.40 \quad 0.9972$
1.450 .9987
$1.50 \quad 0.9992$
${ }^{*} Z=\underline{P_{A}} / \overline{P_{A}}=\underline{P_{S}} / \overline{\mathrm{P}_{\mathrm{S}}}$

Table B9
Frequency of Annual Derived Catchment Precipitation

Tonj Catchment		Jur Catchment	
(mv ${ }^{\text {c }}$ 236,	$K=0.70)$	$\left(m_{V}=2\right.$	$K=1.00)$
Z^{*}	CDF	Z^{*}	CDF
0.65	0.0006	0.65	0.0002
0.70	0.0033	0.70	0.0014
0.75	0.0133	0.75	0.0073
0.80	0.0410	0.80	0.0276
0.85	0.1009	0.85	0.0791
0.90	0.2039	0.90	0.1791
0.95	0.3474	0.95	0.3300
1.00	0.5124	1.00	0.5105
1.05	0.6713	1.05	0.6848
1.10	0.8010	1.10	0.8225
1.15	0.8920	1.15	0.9127
1.20	0.9472	1.20	0.9624
1.25	0.9767	1.25	0.9856
1.30	0.9905	1.30	0.9949
1.35	0.9963	1.35	0.9981
1.40	0.9984	1.40	0.9990
1.45	0.9991		
$\mathrm{Z}=\mathrm{P}_{\mathrm{A}} / \overline{\mathrm{P}_{\mathrm{A}}}=\mathrm{P}_{\mathrm{S}} / \overline{\mathrm{P}_{\mathrm{S}}}$			

Table B10
Frequency of Annual Derived Catchment Precipitation

Pongo Catchment
$\left(m_{V}=283, K=1.07\right)$
$Z^{*} \quad$ CDF
$0.65 \quad 0.0002$
$0.70 \quad 0.0012$
$0.75 \quad 0.0065$
0.80
0.0256
0.0756
0.85
0.1749
0.3269
0.5102
0.6872
0.8262
0.9161
0.9647
0.9868
0.9954
0.9983
0.9991
1.40
-
教
$Z=\underline{P_{A}} / \overline{P_{A}}=P_{S} / \overline{P_{S}}$
0.95
1.00
1.05
1.15
1.20
1.25
0.9868
1.30
1.35

Loll Catchment
$\left(m_{V}=141, k=1.76\right)$
Z^{*} CDF
$0.65 \quad 0.0002$
0.70
0.0012
0.75
0.0062
0.80
0.0246
0.85
0.0734
0.90
0.1720
0.95
0.3243
1.00
0.5093
1.05
0.6884
1.10
0.8287
1.25
0.9879

Table B 11: Observed Annual Gaged Discharges, md/yr (24)
Tonj Jur Pongo Loll
Year

1942
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1961
Years of Record

5.81
(4.195) -
2.51 -
258)
(7.025)
(3.347)
-

14
(2.965)
(3.577)
4.830
4.74
-
3.65
5.44
5.16
(4.047)
(3.032)
(1.870)
(1.034)
(0.627)
(At Nyamlell)
(0.596)
(0.628)
(0.294)
-
-
-
-
0.841
0.498
0.441
0.587
-
0.925
-
(0.435
5.730
-
*
Numbers inside brackets are estimates

Table B12

Frequency of Annual Derived Catchment Yield

	NAAM CATCHM		MARIDI CATCHMENT		
I	CIF	$\left.Y D\right\|^{*}$	1	CDF	Yai
1	0.9953	0.3097	1	0.9960	0.3495
2	0.9835	0.2654	2	0.9873	0.3002
3	0.9518	0.2248	3	0.9655	0.2551
4	0.8878	0.1879	4	0.9218	0.2138
5	0.7859	0.1541	5	0.8503	0.1761
6	0.6536	0.1233	6	0.7517	0.1418
7	0.5086	0.0953	7	0.6340	0.1104
8	0.3709	0.0697	8	0.5098	0.0818
9	0.2547	0.04641	9	0.3915	0.0558
10	0.1706	0.0267	10	0.2882	0.0320
11	0.1582	0.0252	11	0.2659	0.0293
12	0.1458	0.0257	12	0.2507	0.0287
13	0.1336	0.0252	13	0.2351	0.0282
14	0.1215	0.0247	14	0.2194	0.0276
15	0.1097	0.0242	15	0.2037	0.0271
16	0.0985	0.0237	16	0.1879	0.0266
17	0.0877	0.0233	17	0.1724	0.0261
18	0.0776	0.0229	18	0.1573	0.0256
19	0.0681	0.0224 !	19	0.1426	0.0251
20	0.0595	0.0220	20	0.1285	0.0247
21	0.0515	0.0216	21	0.1152	0.0242
22	0.0444	0.0212	22	0.1027	0.0238
23	0.0380	0.0208	23	0.0910	0.0234
24	0.0324	0.0205	24	0.0802	0.0230
25	0.0275	0.0201	25	0.0704	0.0226
23	0.0232	0.0197	26	0.0615	0.0222
27	0.0195	0.0194	27	0.0536	0.0218
$28 \cdots$	0.0164	0.0191	28	0.0465	0.0214
29	0.0138	0.0137	29	0.0402	0.0210
30	0.0115	0.0184	30	0.0348	0.0207
31	0.0097	0.0181	$31 \cdots$	0.0300	0.0203
			32	0.0259	0.0200
			33	0.0223	0.0197
			34	0.0 .193	0.0194
			35	0.0167	0.0190
			36	0.0144	0.0187

* $\mathrm{YD}=\mathrm{Y}_{\mathrm{A}} / \overline{\mathrm{P}_{\mathrm{S}}}$.

Frequency of Annual Derived Catchment Yield

TONJ CATCHMENT

I	CIIF	$Y \mathrm{n}^{*}$	I
1^{*}	0.9980	0.4384	1
2	0.9939	0.3857	2
3	0.9821	0.3375	3
4	0.9555	0.2933	4
5	0.9070	0.2529	5
6	0.8331	0.2160	6
7	0.7364	0.1823	7
8	0.6248	0.1515	8
9	0.5093	0.1234	9
10	0.4000	0.0978	10
11	0.3039	0.0745	11
12	0.2244	0.0533	12
13	0.1619	0.0339	13
14	0.1420	0.0289	14
15	0.1333	0.0283	15
16	0.1247	0.0277	16
17	0.1161	0.0272	17
18	0.1077	0.0267	18
19	0.0995	0.0262	19
20	0.0916	0.0257	20
21	0.0840	0.0252	21
22	0.0768	0.0247	22
23	0.0699	0.0243	23
24	0.0635	0.0238	24
25	0.0575	0.0234	25
26	0.0519	0.0230	26
27	0.0468	0.0226	27
28	0.0421	0.0222	28
29	0.0379	0.0218	29
30	0.0340	0.0214	30
31	0.0306	0.0211	31
32	0.0275	0.0207	32
33	0.0247	0.0204	33
34	0.0223	0.0200	34
35	0.0201	0.0197	35
36	0.0181	0.0194	36
37	0.0164	0.0190	37
38	0.0149	0.0137	38
			39
			40

JUR CATCHMENT

C1F	Y1
0.9978	0.5211
0.9909	0.4580
0.9676	0.4002
0.9110	0.3471
0.8093	0.2984
0.6670	0.2537
0.5062	0.2128
0.3541	0.1754
0.2300	0.1412
0.1401	0.1098
0.0810	0.0812
0.0450	0.0551
0.0255	0.0330
0.0244	0.0324
0.0232	0.0317
0.0221	0.0310
0.0210	0.0304
0.0198	0.0298
0.0187	0.0292
0.0176	0.0286
0.0165	0.0280
0.0154	0.0275
0.0143	0.0270
0.0133	0.0264
0.0123	0.0259
0.0113	0.0254
0.0104	0.0250
0.0096	0.0245
0.0089	0.0241
0.0080	0.0236
0.0073	0.0232
0.0067	0.0228
0.0061	0.0224
0.0055	0.0220
0.0031	0.0216
0.0045	0.0212
0.0041	0.0209
0.003	0.0205
0.029	
0.029	

Table B14
Frequency of Annual Derived Catchment Yield

PONGO CATCHMENT

I	CDF	YD	I	CLF	YD ${ }^{\prime}$
1	0.9953	0.3226	1	0.9968	0.4372
2	0.9857	0.2842	2	0.9894	0.3815
3	0.9626	0.2489	3	0.9693	0.3304
4	-0.9178	0.2167	4	0.9270	0.2836°
5	0.8459	0.1871	5	0.8557	0.2407
6	0.7478	0.1601	6	0.7556	0.2016
7	0.6314	0.1354	7	0.6354	0.1658
8	0.5087	0.1129	8	0.5088	0.1331
9	0.3915	0.0922	9	0.3891	0.1032
10	0.2888	0.0734	10	0.2856	0.0760
11	0.2049	0.0563	11	0.2024	0.0511
12	0.1514	0.0443	12	0.1414	0.0293
13	0.1355	0.0435	13	0.1341	0.0288
14	0.1204	0.0427	14	0.1269	0.0282
15	0.1061	0.0420	15	0.1195	0.0276
16	0.0928	0.0412	16	0.1122	0.0271
17	0.0805	0.0405	17	0.1050	0.0265
18	0.0693	0.0398	18	0.0978	0.0260
19	0.0591	0.0391	19	0.0909	0.0255
20	0.0501	0.0384	20	0.0841	0.0250
21	0.0422	0.0377	21	0.0776	0.0246
22	0.0352	0.0371	22	0.0714	0.0241
23	0.0293	0.0365	23	0.0655	0.0237
24	0.0242	0.0359	24	0.0599	0.0232
25	0.0199	0.0353	25	0.0546	0.0228
26	0.0163	0.0347	26	0.0497	0.0224
27	0.0133	0.0341	27	0.0452	0.0220
28^{*}	0.0109	0.0336	28	0.0411	0.0215
29	0.0088	0.0330	29	0.0372	0.0212
			30	0.0338	0.0209
			31	0.0306	0.0205
			32	0.0278	0.0201
			33	0.0252	0.0198
			34	0.0229	0.0195
		,	35	0.0208	0.0191
			36	0.0170	0.0188

${ }^{*} \mathrm{YD}=\mathrm{Y}_{\mathrm{A}} / \overline{\mathrm{P}_{\mathrm{S}}}$

Table B15: Simulated Distribution of Annual Combined Catchment Yield for Catchment C12 and C56

Table B16

Simulated Distribution of Annual Combined Catchment Yield (Catchment C123)

CATCHMENT NAME

C123

COEFF OF FOL YNOMIAL IN ASCENIING OFOEF $C(0)=\cdots 0.1989620 E+00$
$C(1)=0.1336679 E+01$
$C(2)=0.0420952 E+02$
$C(3)=0.2486388 E+03$
$C(4)=-0.1427008 E+04$
$C(E)=0.4925684 \mathrm{E}+04$
$C(6)=-\cdots+1062900 E+05$
$C(7)=0.1443311 E+05$
$C(8)=-0.1197110 E+05$
$C(9)=0.5535289 F+04$
$C(10)=0.0 .1092543 E+04$
$A=0.2004309 E+00 \quad B=0.5112957 E-01$

J	F (T)	$Y(\mathrm{~T})$	YFTTT(I.)	YERFR (I)	YFELL (I)
1.	0.0	0.0	0.0015	0.0015	
2	0.0 .150	0.0200	0.0170	$\cdots 0.0030$	-0.1501
3	0.0560	0.0300	0.0330	0.0030	0.1011
4	0.0940	0.0400	0.0390	-0.0010	$\cdots 0.0250$
5	0.1 .405	0.0500	0.0483	$\cdots-0.0017$	$\cdots 0.0346$
6	0.1995	0.0600	0.061 .3	0.0013	0.0217
7	0.2575	0.0700	0.0709	0.0009	0.0128
8	0.321 .5	0.0800	0.0789	-0.0011.	$\cdots 0.0136$
9	0.3940	0.0900	0.0893	$\cdots 0.0007$	\cdots
1.0	0.4610	0.1000	0.1005	0.0005	0.0054
1. 1.	0.5310	0.11 .00	0.1112	0.0012	0.01111
12	0.5885	0.1200	0.1190	$\cdots 0.0010$	$\cdots 0.0082$
1.3	0.6460	0.1300	0.1287	$\cdots 0.0013$	$\cdots-0.0097$
1.4	0.7000	0.1 .400	0.1398	$\cdots 0.0002$	$\cdots 0.0012$
15	0.7430	0.1500	0.1502	0.0002	0.001 .6
1.6	0.7920	0.1600	0.1617	0.0017	0.01 .04
17	0.8409	0.1700	0.1699	$\cdots 0.0001$	-0.0007
18	0.8789	0.1800	0.1776	-0.0024	$\cdots-0.0134$
17	0.9129	0.1900	0.1853	$\cdots 0.0047$	$\cdots 0.0248$
20	0.9374	0.2000	0.1964	$\cdots 0.0036$	$-0.01 .78$
21.	0.9544	0.2100	0.2063	$\cdots 0.0037$	$\cdots 0.01 .75$
22	0.9669	0.2200	0.2192	-0.0008	-0.0038
23	0.9729	0.2300	0.2257	$\cdots 0.0043$	$\cdots 0.0187$
24	0.9824	0.2400	0.2351	$\cdots 0.0049$	\cdots
25	0.9874	0.2500	0.2479	$\cdots 0.0021$	$\cdots-0.0084$
26	0.9909	0.2600	0.2476	$\cdots 0.0124$	$\cdots-0.0476$
27	0.9959	0.2700	0.2615	$\cdots 0.0085$	$\cdots 0.0316$
28	0.9984	0.2800	0.2753	$\cdots 0.0047$	$\cdots-0.01 .69$
29	0.9994	0.2900	0.2894	$\cdots 0.0006$	$\cdots 0.0022$
30	0.9999	0.3200	0.3170	$\cdots 0.0030$	$\cdots .0 .0094$

Table B17

Simulated Distribution of Annual Combined Catchment Yield (Catchment C16)

CATCHMENT NAME
C16

COEFF. OF FOI. YNOMTAI. IN ASCENDING OFKER

$C(0)=$	$-0.1893290 E+00$
$C(1)=$	$0.3419068 E+01$
$C(2)=$	$-0.6347559 E+02$
$C(3)=$	$0.6125542 E+03$
$C(4)=$	$-0.3309473 E+04$
$C(5)=$	$0.1077599 E+05$
$C(6)=$	$-0.2200362 E+05$
$C(7)=$	$0.2836010 E+05$
$C(8)=$	$-0.2240262 E+05$
$C(9)=$	$0.9901406 E+04$
$C(10)=$	$-0.1875088 E+04$

$A=0.2023618 E+00 \quad B=0.6485122 E-01$

I	$F(I)$	$Y(I)$	YFITT (T.)	YERR(I)	YREEL (T)
1	0.0	0.0	0.0130	0.0130	
2	0.0010	0.0100	0.0164	0.0064	0.6402
3	0.0035	0.0300	0.0243	$\cdots 0.0057$	--0.1902
4	0.0060	0.0400	0.031 .5	-0.0085	$\cdots-0.21 .33$
5	0.0095	0.0500	0.0404	--0.0096	--0.1918
6	0.0165	0.0600	0.0549	-0.0051	-0.0849
7	0.0355	0.0700	0.0776	0.0076	0.1 .086
8	0.0525	0.0800	0.0857	0.0057	0.0707
9	0.0800	0.0900	0.0896	-0.0004	$\cdots 0.0042$
10	0.1215	0.1000	0.0954	$\cdots 0.0046$	$\cdots \mathrm{O}-0.0458$
11	0.1670	0.11 .00	0.1 .084	$\cdots 0.0016$	$\cdots-0.0150$
12	0.21 .95	0.1200	0.1231	0.0031.	0.0256
13	0.2890	0.1300	0.1318	0.001 .8	0.0141
1.4	0.3745	0.1 .400	0.1 .367	$\cdots 0.0033$	$\cdots 0.0233$
15	0.4625	0.1500	0.1499	$\cdots 0.0001$	$\cdots 0.0008$
16	0.5420	0.1600	0.1626	0.0026	0.0160
17	0.61 .65	0.1 .700	0.1698	--0.0002	\cdots
18	0.6905	0.1800	0.1774	$\cdots 0.0026$	$\cdots-0.0142$
19	0.7620	0.1900	0.1 .908	0.0008	0.0041
20	0.81 .05	0.2000	0.1996	$\cdots 0.0004$	$\cdots 0.0020$
21	0.8609	0.2100	0.2085	-0.0015	-0.0070
22	0.9064	0.2200	0.2173	--0.0027	$\cdots-0.0124$
23	10.9364	0.2300	0.2257	-0.0043	$\cdots 0.0185$
24	0.9689	0.2500	0.2443	-0.0057	$\cdots 0.0227$
25	0.9824	0.2600	0.2562	-0.0038	-0.0145
26	0.9914	0.2700	0.2689	$\cdots-0.0011$	-0.0041
27	0.9939	0.2800	0.2765	-0.0035	-0.0125
28	0.9949	0.2900	0.2800	--0.0100	--0.0346
29	0.9974	0.3000	0.2970	-0.0030	$\cdots 0.0099$
30	0.9984	0.3100	0.301 .7	-0.0083	-0.0266
31	0.9989	0.3200	0.3133	$\cdots 0.0067$	$\cdots 0.0209$
32	0.9994	0.3300	0.3255	-0.0045	$\cdots 0.0136$
33	0.9999	0.3600	0.3640	0.0040	0.0110

FIGURE B. 1
FREQUENCY OF ANNUAL CATCHMENT PRECIPITATION
(NAAM CATCHMENT)

FIGURE B. 2
FREQUENCY OF ANNUAL CATCHMENT PRECIPITATION (MARIDI CATCHMENT)

FIGURE B. 3
FREQUENCY OF ANNUAL CATCHMENT PRECIPITATION
(JUR CATCHMENT)

FIGURE B. 4
FREQUENCY OF ANNUAL CATCHMENT PRECIPITATION
(PONGO CATCHMENT)

FIGURE B. 5

FREQUENCY OF ANNUAL CATCHMENT PRECIPITATION
(LOLL CATCHMENT)

FIGURE B. 6

FREQUENCY OF ANNUAL CATCHMENT YIELD
(NAAM CATCHMENT)

FIGURE B. 7

FREQUENCY OF ANNUAL CATCHMENT YIELD
(MARIDI CATCHMENT)

FIGURE B. 8
FREQUENCY OF ANNUAL CATCHMENT YIELD
(JUR CATCHMENT)

FIGURE B. 9
FREQUENCY OF ANNUAL CATCHMENT YIELD
(PONGO CATCHMENT)

FIGURE B. 10
FREQUENCY OF ANNUAL CATCHMENT YIELD
(LOLL CATCHMENT)

APPENDIX C

Computer Programs

PAGE 2

3000	FORMAT (1042)	CDF00470
	WRITE (6,3001)	CDF00480
3001	FORMAT ('1',' INPUT M,K ')	CDF00490
	$\operatorname{READ}(5, *) \mathrm{M}, \mathrm{K}$	CDF00500
	IF (M.EQ.O.0)STOP	CDF00510
	WRITE (6,4000) NAME , M, K	CDF00520
4000		CDF00530
	\$9X, 1HZ, 6X, 4HPROB/)	CDF00540
C		CDF00550
C	INITIALIZING VALUES	CDF00560
C		CDF00570
	$Z=Z L$	CDF00580
	$\mathrm{VM}=\mathrm{IFIX}(5 N G L(M)$)	CDF00590
	VMAX $=$ IFIX (SNGL (3.*M))	CDF00600
3	$\mathrm{X}=\mathrm{M} * \mathrm{~K} * \mathrm{Z}$	CDF00610
	I I $=0$	CDF00620
	لJ=1	CDF00630
	SUM1 $=0.000$	CDF00640
	SUM2 $=0.0 \mathrm{O} 0$	CDF00650
13	$V=V M-I I$	CDF00660
	I COUNT $=\mathrm{V}$	CDF00670
	IF (V.EQ.O)GO TO 500	CDF00680
23	IF(V.EQ.VMAX)GO TO 600	CDF00690
	IF(V.GT.600)GO TO 600	CDF00700
C		CDF00710
C	COMPUTE LOG INCOMPLETE GAMMA DISTRIBUTION	CDF00720
C		CDF00730
	$A=D F L O A T(V) * K$	CDF00740
	XOLD $=1.0 D 0 / A$	CDF00750
	XSUM $=1.000 / \mathrm{A}$	CDF00760
	$I=1$	CDF00770
100	XOLD $=(\mathrm{XOLD} /(\mathrm{A}+\mathrm{I})) * \mathrm{X}$	CDF00780
	XSUM = X SUM + XOLD	CDF00790
	IF ($(X O L D / X S U M) . L E . E P S) G O$ TO 200	CDF00800
	$I=I+1$	CDF00810
	KCOUNT = I	CDF00820
	GO TO 100	CDF00830
200	CONTINUE	CDF00840
	GAMLID $=$ A*DLOG (X$)-\mathrm{X}+\mathrm{DLOG}(X S U M)-$ DLGAMA (A)	CDF00850
C		CDF00860
C	COMPUTE THE SUMMATION OF ALL V TERMS	CDF00870
C		CDF00880
	VOLD $=$ DFLOAT (V)*DLOG(M)-FAC (V) +GAMLID-M	CDF00890
	IF (VOLD.LE.-170.DO)VOLD $=-170 . \mathrm{DO}$	CDF00900
	VNEW=DEXP (VOLD)	CDF00910
	IF(V.GT.VM)GO TO 800	CDF00920

PAGE 3

PAGE 2

PAGE 3

```
C
C
C***************************************
C
WRITE(6,883)
883 FORMAT(' ENTER CLIMATE/SOIL PROPERTIES')
WRITE (6,763) NAME
763 FORMAT(' ',20A4)
WRITE(IO,1003)EPR,MTB,MTR,TAU.TA,K1,M,N,MH,MI,PAM,W,HO,
1 AK,WT, BMM,SI1,MU,AKV
1003 FORMAT(' EPR=',F10.4/' MTB=',F10.4/' MTR=',F10.4/' TAU='
        1,F10.4/' TA =',F10.4/' K1 =1,E10.4/1 M=1,F10.4/1 N=1
        2,F10.4/'MH=1,F10.4/'MI =',F10.4/' PAM=;F10.4/
        3'W = ,F10.4/i HO =',F10.4/i AK ='.F10.4/i'WT =',E10.4/
        4' BMM=',F10.4/' SI1=',F10.4/' MU ='.F10.4/' AKV = ',F7.2/)
        WRITE(6,777)
    777 FORMAT(5X,'BMM',5X,'PAM'.7X,'SO'.5X,'J(E)'.8X,'E',6X,'RSA'。
        16X,'RGA',4X,'EVAPO',4X,'ERN'.11X,'G',7X,'SIGRF'.8X,'YIEP')
C
C
C***************************************
        COMPUTE WATER CONSTANTS
        SUT=SURFACE TENSION
        NU = VISCOSITY
        GAMSW = SPECIFIC WEIGHT
        CALL WATCN(TA,SUT,NU,GAMSW)
C
C*****************************************
C
COMPUTE CLIMATIC PARAMETERS
        PA=PAN
        BM=BMM
        BETA=1./(24.*MTB)
        DELTA=1./(24.0*MTR)
        ETA=1./MH
        ALPHA=1./MI
        EPP=EPR*MU*MTB*24.
C
C***************************************
C
COMPUTE SURFACE RETENTION CONSTANTS
    IF(HO.EQ.O.O)HO=1.E-7
    AL =AK /MH
    AL=AK /MH
    BLE=BETA/(AL*EPR)
    ALH=AL*HO
    BHE=BETA*HO/EPR
```

WAT00930 WAT00940 WAT00950 WAT00960 AT00970 NAT00970 WAT00980 WAT00990 WATO1000 WAT01010 WATO1020 WAT01030 ATO1030 WATO1040 WATO1050 WATO1060 WATO1070 WAT01080 WAT01090 WATO1100 WATO1110 Watoi110 WATO1120 WATO1130 WATO1140
WATO1150 WATO1 150 WATO1160 WAT01170 WATO1180 WATO1190 AT01190 WATO1200 WATO1210
WATO1220 WATO1230 WATO1240 WATO 1250 WATO1260 WATO 1270 WATO1270 WATO1280 WATO1290 WATO 1300 WATO1310 WATO1320 WATO1330 WATO1340 ato1340 WATO1350 NATO1360 WATO1370 WATO1380

		WATO1390
	GK2 = GAMT (AK. ALH+BHE)/GAMMA (AK)	WATO1400
	GK3=1.-GK1*EXP(-BHE)-GK2/(1.+BLE)**AK	WAT01410
	GK4 $=\mathrm{ALH}$	WAT01420
	GK5 $=$ BHE	WAT01430
	$E R R V=E R S V(G K 4, G K 5, A K V, A K)$	WATO 1440
C		WATO1450
C*****	**************************	WATO1460
C		WAT01470
C	COMPUTE SOIL RELATED CONSTANTS	WAT01480
C		WATO1490
	FIED=FIE (DE)	WAT01500
	$E C N S T=2 . * B E T A * N * B K 1 * S I 1 /(3.1415927 * M * E P R * E P R) * F I E D * 3600 .$ $\text { SIGC }=3000 . * N * E T A * E T A * B K 1 * S I 1 /(3.1415927 * D E L T A * M)$	WAT01510 WAT01520
C		WATO1530
C*****	**************************	WAT01540
C		WAT01550
	DO $255 \mathrm{~KB}=1,12$	WAT01560
	$\mathrm{BM}=1.2-0.1 * \mathrm{FLOAT}(\mathrm{KB}$)	WAT01570
	IF (KB.EQ.1) $B M=0.95$	WAT01580
	IF (KB.EQ.2) $\mathrm{BM}=0.9$	WAT01590
	IF (KB.EQ.3) $B M=0.85$	WAT01600
	IF (KB.EQ.12) $\mathrm{BM}=0.05$	WAT01610
	SO = 1.E-2	WAT01620
	$D S=0.1$	WAT01630
	ITER=1	WAT01640
C		WAT01650
C.*****	**********************************	WAT01660
C		WAT01670
C	COMPUTE SURFACE RETENTION	WAT01680
	$E R N=(E P R / B E T A) *((1 .-B M) * G K 3+B M * A K V * E R R V)$	WAT01690
C		WAT01700
C*****	**************************	WAT01710
C		WAT01720
C		WATO1730
C	COMPUTE EVAPOTRANSPIRATI ON	WAT01740
	$E P A=E P P *(1 .-B M *(1 .-A K V))$	WATO1750
10	E=ECNST*SO**D2	WAT01760
	$E J E=E J(E, B H E, A L H, B M, A K V, A K, W, E P R, B E T A, B L E)$	WATO1770
12	$E T=E P A * E J E$	WATO1780
	$E T 1=E T / P A M$	WAT01790
C		WAT01800
C*****	**********************************	WAT01810
C		WAT01820
C----	COMPUTE THE GROUNDWATER RUNOFF	WAT01830
	RGA $=$ TAU*BK1*SO**C*86400.-365.*24.*W	WAT01840

PAGE 5

$I F(R G A . L T .0 .0) R G A=0.0$
WAT01850
C
WATO1860
C**************************************
C
COMPUTE THE SURFACE RUNOFF
FIID=FII(DI, SO)
SIGRF=(SIGC*FIID*(1.-SO)*(1.-SO))**0.333333
$\mathrm{G}=\mathrm{ALPHA} * B K 1 * 0.5 *(1 .+S O * * C) * 3600 .-A L P H A * W$
RS1=EXP(-G-2.*SIGRF)*GAMMA(SIGRF+1.)*SIGRF**(-SIGRF)
IF (RS1.LT.0.0)RS1=0.
RSA $=$ RS $1 *$ PAM
C

C
COMPUTE WATER BALANCE COMPONENTS
AWBAL=PA* (1.-RS1)-ET-RGA
IF (ITER.EQ. 1) GO TO 15
IF (ABS (AWBAL).LE.PA*O.002)GO TO 50
IF (AWBAL*OLD.LE.O.0)DS =-DS*0.5
15 OLD =AWBAL
SOLD=SO
$S O=S O+D S$
IF(SO.GT.1.)GO TO 254
IF(SO.LE.O.)GO TO 254
ITER=2
GO TO 10
$\mathrm{SO}=0.0$
$E U E=0.0$
GO TO 253
RG1 = RGA / PAM
YIELI =RS $1+R G 1$
YIELD $=R S A+R G A$
YIEP=YIELD/PAM
$P A Z=P A$
WAT01870 WAT01880 WATO1890 WATO1900 WATO1910 WAT01920 WATO1930 WATO1940 WATO1940 WATO1950
WATO1960 WATO1960
WATO1970 WATO1970 WATO1980 WATO1990 WAT02000 WAT02010 WAT02010 WAT02020 WAT02030 WAT02040
WATO2050 WAT02050 WAT02060 WAT02070 WAT02080 WAT02090 WAT02100 WATO2 100 WAT02110 WATO2 130 WATO2140 WATO2150 WATO2160 WAT02170 WATO2180 C
C******************************
C
253 WRITE(6,3127)BM,PAZ,SO,EJE,E,RSA,RGA,ET,ERN,G,SIGRF,YIEP
3127 FORMAT(2F8.2,4F9.4,2F9.2.F7.2.3E12.4)
255 CONTINUE
GO TO 123
END WATO2190 WATO2200 WAT02210 WAT02220 WAT02230 WAT02240 WAT02250 WAT02260
C WATO2270
C***WATO2280
C

```
C COMPUTE THE WATER CONSTANTS AT A GIVEN TEMPERATURE TA WAT02310
            COMPUTE THE WATER CONSTANTS AT A GIVEN TEMPERATURE TA WATO2310
            DIMENSION SUTT(11),NUT(11),GAMST(11) WATO2330
            DATA SUTT/75.6,74.9,74.2,73.5.72.0.72.1,71.4.70.7,70.0,69.3.68.6/, WAT02340
        NUT/17.93E-3,15.18E-3.13.09E-3.11.44E-3.10.08E-3.8.94E-3.8.E-3, WAT02350
        27.2E-3,6.53E-3,5.97E-3,5.94E-3/.10, WAT02360
        3GAMST/0.99987,0.99999,0.99973.0.99913,0.99823.0.99708,0.99568,0.99WAT02370
        4406,0.99225,0.99025,0.98807/,0.999,3.0.99823.0.99708,0.9956,0.90WAT02380
        WAT02380
        IF(TA.GT.50.)GO TO 10
        WAT02390
        ITA:=IFIX(TA*O.2)+1
        ITA| = ITA+1
        WAT02400
        WAT02410
        WATO2420
        SUT:=(SUTT(ITA1)-SUTT(ITA))*0.2*FRAC+SUTT(ITA)
        NU=(NUT(ITA1)-NUT(ITA))*0.2*FRAC+NUT(ITA) WAT02440
        GAMSW=((GAMST(ITA1)-GAMST(ITA))*0.2*FRAC+GAMST(ITA))*980. WAT02450
        RETURN
    WAT02450
    WAT02460
    10 SUT-SUTT(11) WAT02470
        NU=NUT(11) WATO2480
        GAMSW=GAMST(11)*980. WAT02490
        RETURN
        END
    NAT02500
WATO2520
C*************************************************************************WATO2530
    FUNCTION ERSV(GK4,GK5,AKV,AK)
WATO2540
    GKG:=GK4*AKV COMPUTES THE VEGETATED SURFACE RETENTION
    WAT02560
    GK6:=GK4*AKV 
    GK7:: 1.-GAMT (AK,GK6)/GAMMA (AK)
    GK8:=GK5/GK6
    WAT02570
    WAT02580
    GK=:=GAMT(AK, GK6+GK5)/GAMMA (AK)
    ERSV=1.-GK7*EXP(-GK5)-GK9/(1.+GK8)**AK WAT02610
    RETURN WAT02620
    END
WAT02630
C*************************************************************************WATO2650
C
WAT02650
FUNCTION FIE(D) WATO2670
C THIS FUNCTION COMPUTES THE DESORPTION COEFFICIENT BY MEANS OF A
    LOGARITHMIC INTERPOLATION OF THE VALUES GIVEN IN THE TABLE Y.
    WAT02680
    WAT02690
    WAT02700
    WAT02710
    DIMENSION Y(7) WATO2720
    DATA Y/0.18,0.11,0.077,0.056.0.044.0.034.0.029/ WATO2730
    IF(D.GE.8.)GO TO 10 WAT02740
    ATO2740
    X=D-1.
    *AT02750
I=IFIX(X)
WAT02760
```

PAGE 7

PAGE 8

60 RETURN WATO3690

END

WAT03690 WAT03700
C
WAT03720

```
THIS PROGRAM COMPUTES THE CDF OF YIELD FROM A CATCHMENT
INPUTS :
NAME= NAME OF STATION
PAM = MEAN SEASONAL PRECIPITATION. CM
MU = MEAN NUMBER OF STORMS PER RAINY SEASON
MUC = MEAN CATCHMENT STORMS
MH = MEAN STORM DEPTH, CM
MTR = MEAN STORM DURATION, DAYS
MTB = MEAN TIME BETWEEN STORMS, DAYS
TAU = MEAN SEASONAL LENGTH. DAYS
MI = MEAN STORM INTENSI.TY. CM/HOUR
AK = KAPPA. PARAMETER OF GAMMM DISTRIBUTION OF STORM DEPTH
AK = KAPPA, PARAMETER OF GANMA DISTRIBU
BMM = VEGETAL CANOPY DENSITY
EPR = POTENTIAL EVAPORATION(WET SOIL SURFACE).CM/HOUR
HO = SURFACE RETENTION CAPACITY. CM
TA = MEAN SEASONAL AIR TEMPERATURE. *C
WT = AVERAGE DEPTH TO WATER TABLE. CM
N = MEDIUM EFFECTIVE POROSITY
M = PORE SIZE DISTRIBUTION INDEX
M1 = SATURATURED EFFECTIVE HYDRAULIC CONDUCTIVITY. CM/SEC
SI1 = SOIL SUCTION, CM
DSO = SOIL MOISTURE INCREMENT(0.002-0.05)
CYU =UPPER LIMIT USED FOR THE CDF OF YD
CYL = LOWER LIMIT USED FOR THE CDF OF YD
BYU = UPPER LIMIT USED FOR YD IN THE CDF
BYL = LOWER LIMIT USED FOR YD IN THE CDF
OUTPUTS :
YD = NORMALIZED MEAN ANNUAL CATCHMENT YIELD = YIEP
SO = SPACE-TIME AVERAGE SOIL MOISTURE
U(E) = EVAPOTRANSPIRATION FUNCTION
E = EVAPORATION EFFECTIVENESS
RSA = ANNUAL (SEASONAI.) SURFACE RUNOFF. CM
RGA = ANNUAL (SEASONAL) GROUND WATER RUNOFF, CM
EVAPO = ANNUAL (SEASONAL) EVAPOTRANSPIRATION. CM
ERN = SURFACE RETENTION. CM
G = GRAVITATIONAL INFILTRATION PARAMETER
SIGRF = CAPILLARY INFILTRATION PARAMETER
W = RATE OF CAPILLARY RISE FROM THE WATER TABLE. CM/HR
```

WAT00010 WATOOO10 WAT00020 WAT00030 WAT00040 WAT00050 WAT00060 WAT00070 WAT00080 WAT00090 WAT00090 WATOO 100 WATOO 110 WATOO120 WATOO 130 WATOO 140 WATOO150 WATOO 160 WATOO160 WAT00170 WAT00180 WATOO190 WAT00200 WAT00210 WAT00220 WAT00230 WAT00240 WAT00250 WATOO250 WAT00260 WAT00270 WATOO280 WAT00290 WAT00300 WAT00310 WAT00320 WAT00330 WAT00330 WAT00340 WAT00350 WAT00360 WAT00370 WAT00380 WAT00390 WAT00400 WAT00400 WAT00410 WAT00420 WAT00430 WAT00440 WAT00450 WAT00460

PAGE 2

C	CDF = CUMULATIVE DISTRIBUTION OF YD	WAT00470
C		WAT00480
C		WAT00490
C		WAT00500
C		WAT00510
	REAL MTB,MTR,MH,MI,MU,M,N,K1,NU,MUC	WAT00520
	INTEGER SWITCH	WAT00530
	DIMENSION ZPA (500), FZ(500). YD(500). NAME (20)	WAT00540
	REA゙L*8 FAC(900), ZPAD(500).VTOT, MUCD. AKD	WAT00550
	COMMON FAC	WAT00560
C		WAT00570
	$I O=6$	WAT00580
	INP $=5$	WAT00590
	WRITE (6,566)	WAT00600
566	FORMAT ('1'. ' INPUT STATION NAME ')	WAT00610
	READ (5,76)NAME	WAT00620
76	FORMAT (20A4)	WAT00630
C		WAT00640
C***************************************		WAT00650
C		WAT00660
C	ENTER CLIMATIC PARAMETERS	WAT00670
	WRITE (6,567)	WAT00680
567	FORMAT ('1', ' INPUT PAM, MUC.MU.MH.MTR,MTB.TAU.MI ')	WAT00690
	READ(5,*)PAM, MUC, MU, MH, MTR,MTB, TAU,MI	WAT00700
	WRITE (6,568)	WAT00710
568	FORMAT ('1', ' INPUT AK,AKV, BMM, EPR.HO,TA.WT ')	WAT00720
	READ (5,*)AK, AKV, BMM, EPR, HO.TA.WT	WAT00730
C		WAT00740
C	ENTER SOIL PARAMETERS	WAT00750
	WRITE (6,569)	WAT00760
569	FORMAT ('1', ' INPUT N, M. K1.SI1.DSO ')	WAT00770
	READ (5,*)N,M,K1,SI 1, DSO	WAT00780
C		WAT00790
C		WAT00800
C	ENTER CDF STOPPING CRITERIA	WAT00810
	WRITE (6,570)	WAT00820
570	FORMAT ('1',' INPUT CYU,CYL.BYU.BYL ')	WAT00830
	READ (5,*)CYU,CYL, BYU,BYL	WAT00840
C		WAT00850
C***************************************		WAT00860
C		WAT00870
C		WAT00880
C	COMPUTE LOG OF V FACTORIAL	WAT00890
C		WAT00900
	DO 30. $J=1.900$	WAT00910
	VTOT $=0.0 \mathrm{O}$	WAT00920

40	DO 40 IV=1, ل		WAT00930
	VTOT = VTOT+DLOG(DFLOAT(IV))		WAT00940
	FAC(U) = VTOT		WAT00950
30	continue		WAT00960
c			WAT00970
C**			WAT00980
C			WAT00990
C	COMPUTE M RELATED CONSTANTS		WATO1000
	$\mathrm{C}=3 .+2 . / \mathrm{M}$		WAT01010
	FIC $=10.0 * *(0.66+0.55 / M+0.14 /(M * M))$		WAT01020
	$D I=C-1 . / M-1$.		WATO1030
	$D E=2 .+1 . / M$		WAT01040
	$D 2=D E+2$.		WAT01050
C			WATO1060
C*******************************			WAT01070
C			WAT01080
C			WAT01090
C	COMPUTE THE CAPILLARY RISE		WAT01100
	BK1 $=\mathrm{K} 1$		WAT01110
	$B Z=1 .+1.5 /(M * C-1$.		WATO1120
	$W W=B Z * B K 1 *(S I 1 / W T) * *(M * C)$		WATO1130
	$W=W W * 3600$.		WATO1140
C			WATO1150
C			WAT01160
C			WATO1170
C***************************************			WATO1180
C			WATO1190
	WRITE (6,883)		WATO1200
883	FORMAT(' ENTER CLIMATE/SOIL PROPERTIE	ES')	WATO1210
	WRITE(6,77)NAME		WAT01220
77	FORMAT (' '. 20A4)		WAT01230
	WRITE (IO, 1003)EPR, MTB, MT R, TAU, TA, K1. M	M,N,MH,MI, PAM, W, HO,	WATO1240
	1 AK, WT, BMM, SI 1 , MU, AKV,MUC		WATO1250
1003	FORMAT('EPR ${ }^{\prime}$ ',F10.4/' MTB='.F10.4/'	MTR = ', F10.4/' TAU='	WATO1260
	1.F10.4/' TA $=1, F 10.4 /{ }^{\prime} \mathrm{K} 1 \mathrm{I}^{\prime} . \mathrm{E} 10.4 /^{\prime}$	$M={ }^{\prime} . F 10.4 / 1 \mathrm{~N}={ }^{\prime}$	WATO1270
	2,F10.4/' $\mathrm{MH}=1, F 10.4 /{ }^{\prime} \mathrm{MI}=1 . \mathrm{F} 10.4 /^{\prime}$	PAM $=1, F 10.4 /$	WATO1280
	$3^{\prime} \mathrm{W}={ }^{\prime}, \mathrm{F} 10.4 /{ }^{\prime} \mathrm{HO}=^{\prime}, F 10.4 / \prime A K={ }^{\prime} . F$	F10.4/' WT =',E10.4/	WATO1290
	4^{\prime} BIMM $=1, F 10.4 / 1$ SII $=1, F 10.4 / 1 \mathrm{MU}=1$,	. F10.4/' AKV $=1 . F 7.2 /$	WAT01300
	5' MUC $=1, F 10.4 / 1$		WATO1310
	WRITE(6,777)		WAT01320
777			WATO1330
	16 X, 'RGA', 4X, 'EVAPO', 4X, 'ERN', 11 X . 'G'	.7X. 'SIGRF'.8X, 'YIEP')	WATO1340
C			WAT01350
C***************************************			WAT01360
C			WAT01370
C---	COMPUTE WATER CONSTANTS		WATO1380

PAGE 4

```
C SUT=SURFACE TENSION WATO1390
C NU = VISCOSITY
NU = VISCOSITY 
    CALL WATCN(TA,SUT,NU,GAMSW)
C
C*****************************************
C
C COMPUTE CLIMATIC PARAMETERS
        PA=PAM
        BM=BMM
    BETA=1./(24.*MTB)
    DELTA=1./(24.0*MTR)
    ETA=1./MH
    ALPHA=1./MI
    EPP=EPR*MU*MTB*24
C
C***************************************
C
COMPUTE SURFACE RETENTION CONSTANTS
    IF(HO.EQ.O.O)HO=1.E-7
    AL =AK /MH
    BLE=BETA/(AL*EPR)
    ALH=AL*HO
    BHE=BETA*HO/EPR
    GK1=1.-GAMT (AK,ALH)/GAMMA (AK)
    GK2=GAMT (AK.ALH+BHE)/GAMMA (AK)
    GK3=1.-GK1*EXP(-BHE)-GK2/(1.+BLE)**AK
    GK4=ALH
    GK5=BHE
    ERRV =ERSV (GK4,GK5 , AKV ,AK )
C
C********************************
C
COMPUTE SOIL RELATED CONSTANTS
    FIED=FIE(DE)
    ECNST=2.*BETA*N*BK1*SI1/(3.1415927*M*EPR*EPR)*FIED*3600.
    SIGC=3000.*N*ETA*ETA*BK1*SI1/(3.1415927*DELTA*M)
C
C*********************************
C
SO=1.E-2
    DS=0.1
    ITER=1
    SWITCH=1
    IP=1
```

C

```

WATO1850
WAT01860
WAT01870
WAT01870
WATO1880
WATO1890
WATO1900
WATO1910
WAT01920
WATO1930
WATOT 940
WAT01950
WATO1960
WAT01970
WAT01980
WATO1990
WAT02000
WAT02010
WAT02020
WAT02020
WATO2030
WATO2040
WAT02050
WAT02060
WAT02070
WAT02080
WAT02090
WATO2100
WATO2110
WAT02110
WATO2 120
WATO2 130
WATO2140
WATO2150
WATO2160
WATO2170
WATO2180
WAT02180
WATO2190
WATO2200
WAT02210
WATO2220
WATO2230
WATO2240
WATO2250
Wat02250
WAT02260
WAT02270
WATO2280
WATO2290
WAT02300
\begin{tabular}{|c|c|c|}
\hline & If(SO.GT.1.)GO TO 254 & WATO2310 \\
\hline & If(SO.LE.O.)GO TO 254 & WAT02320 \\
\hline & ITER=2 & WAT02330 \\
\hline & GO TO 10 & WAT02340 \\
\hline 254 & \(\mathrm{SO}=0.0\) & WAT02350 \\
\hline & \(E J E=0.0\) & WATO2360 \\
\hline & GO TO 253 & WAT02370 \\
\hline C & & WAT02380 \\
\hline 50 & SOM=SO & WAT02390 \\
\hline & SWITCH=2 & WAT02400 \\
\hline & GO TO 113 & WAT02410 \\
\hline 25 & \(P A=E T+R S A+R G A\) & WAT02420 \\
\hline & YIELD \(=\) RSA + RGA & WATO2430 \\
\hline & \(Y \mathrm{IEP}=\mathrm{YIELD} / \mathrm{PAM}\) & WAT02440 \\
\hline & \(P A Z=P A\) & WAT02450 \\
\hline & \(2 P A(I P)=P A / P A M\) & WAT02460 \\
\hline & YD(IP) \(=\) YIEP & WAT02470 \\
\hline C**** & ************************* & WAT02480 \\
\hline C & & WAT02490 \\
\hline 253 & WRITE(6,3127)BM, PAZ,SO,EJE,E.RSA,RGA,ET.ERN,G.SIGRF,YIEP & WAT02500 \\
\hline 3127 & FORMAT(2F8.2,4F9.4,2F9.2,F7.2.3E12.4) & WATO2510 \\
\hline C & & WAT02520 \\
\hline C** &  & WAT02530 \\
\hline C & & WAT02540 \\
\hline C & evaluate the cdf of yield & WAT02550 \\
\hline C & & WAT02560 \\
\hline & ZPAD(IP) = DBLE(ZPA (IP)) & WAT02570 \\
\hline &  & WAT02580 \\
\hline & \(\mathrm{AKD}=\mathrm{DBLE}(\mathrm{AK})\) & WAT02590 \\
\hline & CALL CPREC(AKD, MUCD, ZPAD (IP).FZ(IP)) & WAT02600 \\
\hline & IF(SO.GT. SOM)GO TO 123 & WAT02610 \\
\hline & IF(FZ(IP).LT.CYL)SO=SOM+2*DSO & WAT02620 \\
\hline & IF (YD (IP). LT. BYL)SO=SOM+2*DSO & WAT02630 \\
\hline & \(\mathrm{IP}=\mathrm{IP}+1\) & WAT02640 \\
\hline & SO=SO-DSO & WAT02650 \\
\hline & GO TO 113 & WAT02660 \\
\hline 123 & CONTINUE & WAT02670 \\
\hline & IF(FZ(IP).GT.CYU)GO TO 234 & WAT02680 \\
\hline & IF(YD(IP).GT.BYU)GO TO 234 & WAT02690 \\
\hline & SO \(=\) SO+DSO & WAT02700 \\
\hline & IP \(=1 P+1\) & WAT02710 \\
\hline & GO TO 113 & WAT02720 \\
\hline C & & WAT02730 \\
\hline C**** &  & WAT02740 \\
\hline C & & WAT02750 \\
\hline C & & WATO2760 \\
\hline
\end{tabular}

PAGE 7



PAGE 9
\begin{tabular}{|c|c|c|}
\hline & \(B M K V=B M * A K V\) & WAT03690 \\
\hline & GAMK \(=\) GAMT (AK, ALH)/GAMMA (AK) & WAT03700 \\
\hline & GAMA15 = GAMMA(1.5) & WAT03710 \\
\hline & \(C E=1 . E 10\) & WAT03720 \\
\hline & DEB \(=1 .+B M K V-W E P\) & WAT03730 \\
\hline & \(B B=(1 .-B M) / D B B+(B M * B M K V+(1 .-B M) * W E P) /(2 . * D B B * D B B)\) & WAT03740 \\
\hline & GAMK 1 = GAMT ( \(A K, A L H+B H E) / G\) AMMA (AK) & WAT03750 \\
\hline & UNFL = BMKV.GT. 0.0 & WAT03760 \\
\hline & IF (BMKV-WEP. NE.0.0) CC=0.5/( BMKV-WEP)**2 & WAT03770 \\
\hline & \(E S 3=0.0\) & WAT03780 \\
\hline & ES4 \(=0.0\) & WAT03790 \\
\hline & IF (UNFL) CE=CC*E & WAT03800 \\
\hline & UNFL=CE.LT. 100. & WAT03810 \\
\hline & \(\mathrm{BE}=\mathrm{BB} * \mathrm{E}\) & WAT03820 \\
\hline & IF(UNFL)GO TO 25 & WAT03830 \\
\hline & GAMCE = GAMA 15 & WAT03840 \\
\hline & GO TO 27 & WAT03850 \\
\hline 25 & GAMCE \(=\operatorname{GAMT}(1.5, \mathrm{CE})\) & WAT03860 \\
\hline 27 & GAMBE \(=\operatorname{GAMT}(1.5, \mathrm{BE})\) & WAT03870 \\
\hline & IF (UNFL)ES3 = - EXP (-CE-BHE ) * (WEP-BMKV-SQRT (2.*CC)*E) & WAT03880 \\
\hline & ESO = GAMK - (1.+BLE) ** (-AK)*GAMK1*EXP (-BE) & WAT03890 \\
\hline & ES1 \(=(1 .-G A M K) *(1 .-E X P(-B E-B H E) *(1 .-W E P+B M K V+S Q R T(\) & WAT03900 \\
\hline & 22.*B8)*E) & WAT03910 \\
\hline & \(3+\) ES3 & WAT03920 \\
\hline & \(4+\operatorname{SQRT}(2 . * E) * E X P(-B H E) *(G A M C E-G A M B E))\) & WAT03930 \\
\hline & ES5 \(=(1 .+B L E) * *(-A K) * G A M K 1\) & WAT03940 \\
\hline & ES6=EXP (-BE) * (WEP-BMKV-SQRT (2.*B8)*E) & WAT03950 \\
\hline &  & WAT03960 \\
\hline &  & WAT03970 \\
\hline & \(E V J=A K V\) & WAT03980 \\
\hline 30 & \(E J=((1 .-B M) * E S U+B M * E V J) /(1 .-B M *(1 .-A K V))\) & WAT03990 \\
\hline & RETURN & WAT04000 \\
\hline & END & WAT04010 \\
\hline C & & WAT04020 \\
\hline & ************************************************************ & WAT04030 \\
\hline C & & WAT04040 \\
\hline & FUNCTION GAMT( \(A, X\) ) & WAT04050 \\
\hline C & & WAT04060 \\
\hline C & THIS FUNCTION COMPUTES THE TRUNCATED GAMT DISTRIBUTION & WAT04070 \\
\hline C & ACCORDING TO THE ALGORITTHM IN THE NATIONAL BUREAU OF STANDARDS & WAT04080 \\
\hline C & 'HANDBOOK OF MATHEMATICAL TABLES' & WAT04090 \\
\hline & IF (X.EQ.O.0)GO TO 40 & WAT04100 \\
\hline & IF (X.GE. 100.) GO TO 50 & WAT04110 \\
\hline & \(10=6\) & WAT04120 \\
\hline & \(S \cup M=1 . / A\) & WAT04130 \\
\hline & \(A N=1.0\) & WAT04140 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & C & & WAT04610 \\
\hline & C & & WAT04620 \\
\hline & C & INITIALIZING VALUES & WAT04630 \\
\hline & C & & WAT04640 \\
\hline & & \(M=W\) & WAT04650 \\
\hline & & \(E P S=0.000100\) & WAT04660 \\
\hline & & VM=IFIX(SNGL (M)) & WAT04670 \\
\hline & & VMAX \(=1 \mathrm{FIX}\) (SNGL(3.*M) ) & WAT04680 \\
\hline & 3 & \(X=M * K * Z\) & WAT04690 \\
\hline & & II \(\pm 0\) & WAT04700 \\
\hline & & \(J J=1\) & WAT04710 \\
\hline & & SUM1 \(=0.000\) & WAT04720 \\
\hline & & SUM2 \(=0.000\) & WAT04730 \\
\hline & 13 & \(V=V M-I I\) & WAT04740 \\
\hline & & IF(V.EQ.O)GO TO 500 & WAT04750 \\
\hline & 23 & IF(V.EQ.VMAX)GO TO 600 & WAT04760 \\
\hline & C & & WAT04770 \\
\hline & C & COMPUTE LOG INCOMPLETE GAMMA DISTRIBUTION & WAT04780 \\
\hline & C & & WAT04790 \\
\hline & & \(A=D F L O A T(V) * K\) & WAT04800 \\
\hline & & XOLD \(=1.000 / \mathrm{A}\) & WAT04810 \\
\hline ↔ & & XSUM \(=1.0 D 0 / \mathrm{A}\) & WAT04820 \\
\hline - & & \(I=1\) & WAT04830 \\
\hline & 100 & XOLD \(=(X O L D /(A+I)) * X\) & WAT04840 \\
\hline & & XSUM \(=\) XSUM + XOLD & WAT04850 \\
\hline & & IF ( \({ }^{\text {POLD/XSUM }) . L E . E P S) ~ © O ~ T O ~} 200\) & WAT04860 \\
\hline & & \(\mathrm{I}=\mathrm{I}+1\) & WAT04870 \\
\hline & & GO TO 100 & WAT04880 \\
\hline & 200 & CONTINUE & WAT04890 \\
\hline & & GAMLID \(=A *\) DLOG ( \(X\) )-X+DLOG ( XSUM) - DLGAMA ( \(A\) ) & WAT04900 \\
\hline & C & & WAT04910 \\
\hline & C & COMPUTE THE SUMMATION OF ALL \(V\) TERMS & WAT04920 \\
\hline & C & & WAT04930 \\
\hline & & \(V O L D=D F L O A T(V) * D L O G(M)-F A C(V)+G A M L I D-M\) & WAT04940 \\
\hline & & IF (VOLD.LE.-170.DO)VOLD \(=-170.00\) & WAT04950 \\
\hline & & VNEW=DEXP (VOLD) & WAT04960 \\
\hline & & IF(V.GT.VM)GO TO 800 & WAT04970 \\
\hline & & SUM 1 = SUM1 + VNEW & WAT04980 \\
\hline & & IF((VNEW/SUM1).LE.EPS)GO TO 500 & WAT04990 \\
\hline & & \(I I=I I+1\) & WAT05000 \\
\hline & & GO TO 13 & WAT05010 \\
\hline & 500 & \(V=V M+J J\) & WAT05020 \\
\hline & & IF(V.GT.900)GO TO 600 & WAT05030 \\
\hline & & GO TO 23 & WAT05040 \\
\hline & 800 & SUM2 = SUM2+VNEW & WAT05050 \\
\hline & & IF((VNEW/SUM2).LE.EPS)GO TO 600 & WAT05060 \\
\hline
\end{tabular}
```


[^0]: ''Toich lands', a common Nilotic word meaning lands seasonally flooded by spill-water from rivers. Vegetation is mainly open grassland.

[^1]: *Sections 2.2 and 2.3 are from Eagleson 1978

[^2]: *For simplicity, the words "catchment" and "sub-catchment" will be used interchangeably throughout this work.

[^3]: * Numbers next to circles in the figure stand respectively for i) Nyamlell, 2) Aweil, 3) Gogrial, 4) Meshra el Req, 5) Wau, 6) Deim Zubeir, 7). Raga, 8) Said Bundas, 9) Tonj, 10) Rumbek, 11) Yirol, 12) Shambe, 13) Tembura, 14) Li Yubo, 15) Yambio, 16) Maridi, 17) Amadi, 18) Juba, 19) Yei.

[^4]: ${ }^{1}$ Individual "catchment storms" are defined by separation in time not space.

[^5]: * In this section, for simplicity, the words 'mean annual' will be dropped from all mean annual parameters.

[^6]: * From Table 3.4 long term records up to 1972

[^7]: ''distribution' and 'CDF' are used interchangeably in this work.

[^8]: ${ }^{*} E(\quad) \equiv$ the expected value of ()

[^9]: *This range of b takes precedence over that found in Eq. (5.24).

[^10]: * From 10 to 20 years of data in (1950-1975)
 ** Average of Station Rumbek and Maridi

[^11]: * From 12 to 21 years of data in (1950-1975)
 ** Average of Station Rumbek and Maridi

[^12]: * From 10 to 21 yrs. of data in (1950 - 1975)
 ** Average of station Rumbek and Maridi

[^13]: * Albedo $=0.1$

